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Abstract

To date, most successful advanced stochastic optimization algorithms involve some forms of

individual learning or meme in their design. Memetic Algorithm (MA), as a form of hy-

bridization between population-based and individual-based searches, represents one of the re-

cent growing areas in evolutionary algorithm research. In the success and surge in interests on

MAs, researchers have been exploring on various possible hybridizations of search operators

towards the development and manual crafting of specialized algorithms that solve a specific

problem or a set of problems effectively, using the domain knowledge obtained from human

expertise. However, with so many population-based and individual-based procedures available

for hybridizing, it is a tedious task, if not impossible, to design in advance an effective memetic

algorithm for a given problem at hand. Furthermore, when high-fidelity analysis codes are used

for evaluating design solutions in the optimization process, it is not uncommon for the single

simulation process to take minutes, hours to days of supercomputer time to compute. Since

the design cycle time of a product is directly proportional to the number of calls made to the

costly analysis solvers, there has been practical needs for novel meta-model/surrogate-assisted

memetic frameworks that can handle these forms of problems elegantly.

More recently, significantly more efforts have been directed towards formal and generic

frameworks that address various design issues of MAs, leading to the field of emerging adap-

tive MAs, towards intelligent self-configurable memetic search. The image of modern evolu-

tionary algorithms in computational intelligence can be established as a symbiosis of stochastic

variation and individual learning, working in sync on the given problem in hand. In most re-

search work on the topic, these search operators are generally studied as separate independent

entities consisting of the stochastic population-based variation and individual learning phases,

with much emphasis on the latter. Despite the extensive research efforts in the field, there has

been limited progress made on revealing the working mechanisms responsible for the success
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of memetic algorithms. Taking this cue, this dissertation presents an effort to fill this gap in the

context of continuous optimization by reporting the work accomplished towards modelling the

symbiosis or synergy of search operators in memetic search, which is deem to pose greatest

influence on search performance, but has remained yet to be properly and formally investigated

with rigor.

The symbiosis of stochastic variation and individual learning operators in MA search, la-

belled in this thesis as symbiosis search profile, is formalized in the form of the local optimum

connectivity. To quantify the suitability of search components in creating viable, or poten-

tially favorable solutions, the evolvability of symbiotic search profile or approximation model

is introduced as the basis for assessment and subsequently used as the metric for adaptation in

the present work. Via the effective use of statistical learning techniques on optimization data

that are archived online, while the search progresses, productive symbiosis of unique search

components or multiple fitness-improving approximation models are then proposed to mitigate

the issues of complex problems. Empirical analyses on representative benchmark problems

and case studies on real-world problems including the optimization of OSS2 potential energy

model and aerodynamic car rear design produced noteworthy results, thus demonstrating the

efficiency, competitiveness and robustness of self-configurable memetic search paradigm.
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Chapter 1

Introduction

Optimization is a common problem arising in various domains that ranges from physics, bi-

ology, engineering designs to a plethora of other real world applications. It deals with the

problem of minimizing or maximizing some metrics such as cost, energy consumption, aero-

dynamics, economical gains or others. The problem can be modeled either mathematically or

via computational simulations, or through physical experimentations. This research focuses on

the domain of continuous parametric optimization. Mathematically, the optimization problem

can be expressed as to find the solution x∗ in x = {xi}ni=1, which denotes a vector of n inde-

pendent scalar variables such that the function f(x1, x2, . . . , xn) is minimized (or maximized).

Without loss of generality, the minimization problem is considered here. Function f(x) pro-

vides a measure of the solution quality, and is commonly referred to as the objective or fitness

function.

f(x∗) = min
x

f(x1, x2, . . . , xn)

In particular, this research considers the general non-linear programming single-objective

continuous problem of the form:

Minimize / Maximize: f(x)

Subject to: x
(i)
l ≤ x(i) ≤ x

(i)
u , ∀i = 1 . . . n

1



CHAPTER 1. INTRODUCTION

where x ∈ R
n is the vector of design variables, and xl, xu are vectors of lower and upper

bounds, respectively.

For the last half of a century, the field of optimization has been studied extensively by re-

searchers, with many algorithms and implementations that are now made available for used in

the engineering community. The plethora of optimization techniques can generally be classi-

fied into three core categories, namely individual-based methods, population-based evolution-

ary algorithms and hybrid methods.

Individual-based method searches for an improved solution (if it exists) from a given start-

ing point (i.e., a vector of decision variables) in a stochastic or deterministic manner. These

methods have the advantage of high efficiency; however, they are sensitive to starting point

selection and are more likely to stop at non-global optima than evolutionary population-based

methods. Population-based (evolutionary) algorithms, on the other hand, operate on a pop-

ulation of individual solutions that evolves over time using nature-inspired search operators.

They are less prone to stalling at local optima and have exhibited great potentials in solving

non-convex, disjoint and noisy optimization problems. To date, numerous evolutionary opti-

mization algorithms have been proposed, extending from genetic algorithms [65], evolution

strategies [14], particle swarm optimization [212, 147], differential evolution [185, 156], es-

timation of distribution algorithm [92] to many others. These search methods have also been

demonstrated with much success in many real world applications.

The third category of optimization methods is the hybrid evolutionary algorithm which has

gathered remarkable increasing interest in the recent decades. From the algorithmic perspec-

tive, it is believed that two or more distinct algorithms when combined together in a synergistic

manner can greatly enhance the problem-solving capacity of the derived hybrid. Inspired by

Darwin’s theory of natural evolution and Dawkins’ notion of meme, the form of hybridization

between population-based and individual-based searches that facilitates both exploration and

exploitation via cooperation/competition, is known as Memetic Algorithm (MA), and repre-

sents the most popular hybridization paradigm today. Such hybrid algorithms have not only

2



CHAPTER 1. INTRODUCTION

been used successfully for solving a wide variety of engineering design problems but also

shown to generate higher quality solutions more efficiently than canonical evolutionary algo-

rithms [102, 136, 201, 119, 68, 55, 161, 35].

1.1 Research Objective

To date, most successful advanced stochastic optimization algorithms involve some forms of

individual learning or meme in their design. Here, meme as the basic unit of cultural transmis-

sion is regarded by the computational intelligence community as a form of individual learning

procedure capable of generating refinement on the given individual. Memetic Algorithm (MA),

as a form of hybridization between population-based and individual-based searches, represents

one of the recent growing areas in evolutionary algorithm research. Due to several recent and

potential realizations of memes in the past two decades, MA research has further evolved into

the studies of Memetic Computing, which is defined in [137] as a “paradigm that uses the

notion of meme(s) as units of information encoded in computational representations for the

purpose of problem-solving”.

In the success and surge in interests on MAs, researchers have been exploring on various

possible hybridizations of search operators towards the development and manual crafting of

specialized algorithms that solve a specific problem or a set of problems effectively, using the

domain knowledge obtained from human expertise. However, with so many population-based

and individual-based procedures available for hybridizing, it is a tedious task, if not impossi-

ble, to design in advance an effective memetic algorithm for a given problem at hand. More

recently, significantly more efforts have been directed towards formal and generic frameworks

that address various design issues of MAs, leading to the field of emerging adaptive MAs, to-

wards self-configurable search. It is expected that only autonomous self-configurable systems

can turn high performance search algorithms into widely used methodologies. Such systems
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should be able to configure themselves on the fly, be aware of its operational states and auto-

matically adapt to a wide range of problem conditions. Adaptation of parameters and operators

thus represents one of the most important and promising areas of research in the field. With

such developments, an increasing varieties of adaptive memetic algorithms have been proposed

in the literature, with many shown to solve a great variety of optimization problems more ef-

fectively and robustly than their canonical counterparts.

The image of modern evolutionary algorithms in computational intelligence can be estab-

lished as a symbiosis of stochastic variation and individual learning, working in sync on the

given problem in hand. In most research work on the topic, these search operators are gen-

erally studied as separate independent entities consisting of the stochastic population-based

variation and individual learning phases, with much emphasis on the latter, which is evident

in the works of Hinterding et al. [61] and Ong et al. [138]. Many schemes proposed for

performing the adaptations however, are typically designed using a semi-ad-hoc or heuristic/

meta-heuristic paradigm that come with little theoretical rigor [132]. Few has investigated the

synergistic behaviors of stochastic variations and lifetime learning in search formally. Despite

the extensive research efforts in the field, there has been limited progress made on revealing

the working mechanisms responsible for the success of memetic algorithms and the intrinsic

properties of commonly used complex benchmark problems. Taking this cue, this disserta-

tion presents an effort to fill this gap in the context of continuous optimization by reporting the

work accomplished towards modelling the symbiosis or synergy of search operators in memetic

search, which is deem to pose greatest influence on search performance, but has remained yet

to be properly and formally investigated with rigor.

Last but not least, when high-fidelity analysis codes are used for evaluating design solu-

tions in the optimization process, it is not uncommon for the single simulation process to take

minutes, hours to days of supercomputer time to compute. A motivating example at Honda

Research is aerodynamic car rear design, where one function evaluation involving a Compu-

tational Fluid Dynamics (CFD) simulation to calculate the fitness performance of a potential
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design can take many hours of wall clock time. Besides parallelism, which is an obvious choice

to achieving near linear order improvement in evolutionary search, researchers are gearing to-

wards the approach of replacing as often as possible, calls to the costly high-fidelity analysis

solvers with approximation models that are deem to be less costly to build and compute. Since

the design cycle time of a product is directly proportional to the number of calls made to the

costly analysis solvers, there has been practical needs for novel meta-model assisted memetic

frameworks that can handle these forms of problems elegantly.

Thus, the main objectives of this research include the followings:

• providing insights to the memetic search mechanisms in continuous domain, especially

on the symbiosis of stochastic variation and lifetime learning,

• developing intelligent self-configurable memetic framework that encourages productive

symbiosis among unique search components, and

• incorporating advance approximation model management framework to handle compu-

tationally expensive problems in real-world optimization.

1.2 Organization of the Thesis

The rest of this thesis is organized as follows:

• In Chapter 2, the fundamentals of optimization and survey of several well-established

optimization techniques are presented. Through this chapter, the background knowledge

provided would serve to benefit the readers in better comprehending the main motivations

and research works of this dissertation.

• Chapters 3-6 contain the core contributions of this dissertation. Particularly, Chapter 3

presents an extensive fitness landscape analysis on the local optimum structure of com-

monly used benchmark problems to reveal the influence of individual learning on the
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Lamarckian memetic search performance. From there, Chapter 4 presents the formal

model of stochastic variations and lifetime learning working in symbiosis for search, and

introduces the notion of evolvability of symbiotic profile.

• Chapter 5 presents the proposed self-configurable memetic framework, established in

this thesis as Symbiotic Evolution (SE), that facilitates the emergent and self-configuration

of unique search profiles transpiring from the symbiosis of stochastic variation and life-

time learning.

• The generality of evolvability is further demonstrated in the self-configurable frame-

work extended with use of surrogates, established as Evolvability Learning of Surrogates

(EvoLS), for addressing optimization problems with computationally expensive objec-

tive function and presented in Chapter 6.

• Chapter 7 showcases two case studies of the proposed self-configurable memetic frame-

work in solving real-world optimization problems: Symbiotic Evolution for optimizing

the OSS2 potential model that describes (H2O)n water clusters and EvoLS on an aerody-

namic car rear design that involves highly computationally expensive CFD simulations.

• Last but not least, Chapter 8 concludes this thesis and outlines some potential future

research directions on self-configurable search.
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Chapter 2

Background

For many decades, optimization has been an important area that has been studied extensively by

researchers from various disciplines, with many algorithms and implementations that are now

made available and used in the different communities. In this chapter, a survey of several no-

table optimization approaches are presented as three core categories, namely, population-based

(evolutionary) algorithms, individual-based algorithms and memetic algorithms. Subsequently,

the four main design issues of memetic algorithm are discussed in details to highlight the core

motivations towards self-configurable memetic search.

2.1 Population-based Methodologies

A remarkable increase of interest by researchers in the field of evolutionary computation have

been witnessed in the recent decades. This form of algorithm operates on a population of

individual solutions that evolves over time according to nature-inspired search operators.

As discussed by De Jong in [36], the unified model of the general evolutionary population-

based algorithm is composed of the parent selection operator, stochastic variation operator(s)

and replacement (or survival selection) operator, as outlined in Algorithm 1. In short, the

selection and replacement schemes simulate the effect of “survival of the fittest” in nature se-

lection. Replacement methods are similar to parent selection operators that determine which
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individuals survive across generations. A great number of selection operators has been pro-

posed in the literature [8, 50], including fitness proportional and stochastic universal selections

[9], tournament selection [19] and Boltzmann selection [224]. The choice of selection operator

largely depends on the desired selection pressure of the search. To some extent, the design

of the stochastic variation operator(s) largely defines how population-based evolutionary al-

gorithms differentiate from one another. In the subsequent subsections, some representative

population-based algorithms, or more precisely, some notable forms of stochastic variation

operators available in the literature are discussed.

Algorithm 1 Population-based Evolutionary Algorithm
1: Initialize: Generate the initial population;
2: while Stopping condition is not satisfied do
3: Evaluate individuals in the population;
4: Select parents pool Pt from the population;
5: Apply stochastic variation operator(s) V (x,Pt) on x ∈ Pt to generate offspring;
6: Replace a proportion or the entire population with the offsprings;
7: end while

2.1.1 Genetic Algorithms

Canonical crossover and mutation operators of Genetic Algorithm (GA) are first introduced by

Holland in [65] and have since evolved, with many advanced forms of variation operators now

made available, as reviewed comprehensively in [60].

For individual solutions that are represented as a vector of binary or real values, crossover

operator creates offsprings from two or more parents by exchanging or recombining parts of

their loci (location of the vector). Some of the common crossover schemes are one-point

crossover, two-point crossover and uniform crossover [211]. For instance, in uniform crossover,

the offspring are constructed from parents x1 and x2

x1 = {x(1)
1 ,x

(2)
1 , . . . ,x

(n)
1 }

x2 = {x(1)
2 ,x

(2)
2 , . . . ,x

(n)
2 }
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by exchanging independent ith locus of x(i)
1 and x

(i)
2 , i = 1, 2, . . . , n at probability p. For

real-coded individual, arithmetical crossover is among some of the most widely used crossover

operators [119]. In this case, the offspring are defined as y1 = λx1+(1−λ)x2 and y2 = λx2+

(1− λ)x1 in which λ denotes a constant or varies with regard to the number of generations.

On the other hand, mutation operator randomly modifies the solution vector of an individ-

ual, subjected to a small mutation probability, thus introducing a pinch of randomness into the

population. Similar to crossover operators, mutation operators are encoding scheme depen-

dent, i.e., differing for binary or real-coded vector. Examples of real-coded mutation operators

include the uniform mutation, Gaussian mutation and arithmetical mutation [119]. In Gaus-

sian mutation, the real-coded vector of an individual is perturbed with a multivariate Gaussian

distribution r ∼ N(0, σ) to create offspring x′ = x+ r.

Theoretical analysis of crossover and mutation in continuous domain can also be found

in [157] and [158]. Advanced sampling techniques can also be considered as substitutions of

the conventional crossover & mutation operators to generate the next population state. These

include the Orthogonal GA [101], dynamic adaptation of crossover points [167, 207], parent-

offspring analysis [206, 115], and evolvability analysis [12, 4].

2.1.2 Differential Evolution

The stochastic variation operators of Differential Evolution (DE) are designed by Storn and

Price [185, 156] for solving continuous optimization problems. DE involves the phases of

crossover and mutation [185, 163] to generate the subsequent population of individuals. The

basic strategy of DE is described in [185] which is briefly discussed in what follows. For each

parent individual xi, a mutated individual ui is generated according to the following equation

ui = xr1 + F × (xr2 − xr3) (Eq. 2.1)

where indexes r1, r2, r3 denote randomized and mutually different integers drawn from Si =

{1, 2, . . . , n} \ {i}. F is a constant learning rate between [0, 2] to control the amplification of

9



CHAPTER 2. BACKGROUND

the differential variation (xr2 − xr3). The mutated individual ui is then recombined with the

parent xi through a form of uniform (binomial) crossover to produce offspring yi. More recent

developments in DE algorithm design and applications are discussed in [213, 23, 214].

2.1.3 Particle Swarm Optimization

The core difference between Particle Swarm Optimization (PSO) and other population-based

EAs is that each individual of the population is represented by a position vector x i (i.e., design

variables) and a velocity vector vi [40, 41]. For each generation of the basic PSO [212, 147],

the position and velocity of each individual is updated as follows:

vt+1
i = ωvt

i + η1r1(x
t
pbesti

− xt
i) + η2r2(x

t
gbest − xt

i) (Eq. 2.2)

xt+1
i = xt

i + vt+1
i (Eq. 2.3)

where xt
i and xt+1

i represent the current and updated position of an individual i, respectively.

Similarly, the current and updated velocity of an individual are represented by vt
i and vt+1

i ,

respectively. xt
pbesti

and xt
gbest are the best position found by individual i so far and the global

best position found by the population so far, respectively. ω denotes an inertia weight to de-

termine how much the current velocity is preserved. η1 and η2 are the acceleration constants

that control the influence of xt
pbesti

and xt
gbest on the search. r1 r2 are random numbers drawn

from uniform distribution [0, 1]. More advanced and recent versions of PSO are discussed in

[98, 151, 99, 221, 33, 220].

2.1.4 Evolution Strategies

In Evolution Strategy (ES), each individual solution xi is associated with a vector of mutation

strengths zi. The mutation strengths is usually configured at a large value in the beginning so

as to better explore the search space, and adaptively decreased as the search progresses. The
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stochastic variation of Evolution Strategy constructs the next population state as a convolu-

tion of the current using some additive distribution Z. For instance, the canonical Evolution

Strategy as described in [13] uses an additive Gaussian [14] (or Cauchy/Lévy distributions

[217, 219, 97]) with yi = xi + zi, where yi, xi and zi represent the offspring, correspond-

ing parent, and random variable of distribution Z (named as mutation strength), respectively.

Subsequently, crossover and mutation can be applied to both the decision variables and mu-

tation strengths to create the offspring population, making ES a search with self-adaptation

properties.

2.1.5 Covariance Matrix Adaptation Evolution Strategy

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) designed by Hansen et al.

[53, 52] is an Evolution Strategy with the adaptation of the full covariance matrix of the nor-

mal mutation distribution Z. At generation t, the offspring y in CMA-ES(μ, λ) are sampled

independently according to

yi ∼ N
(
x
(t)
W , (σ(t))2C(t)

)
, i = 1, . . . , λ (Eq. 2.4)

where N
(
x
(t)
W , (σ(t))2C(t)

)
denotes a Gaussian distributed random vector with mean x

(t)
W and

covariance matrix C(t). The μ best offspring are recombined into the mean vector x(t+1)
W =∑μ

i=1wiyi in which the positive weights wi sum to one. The covariance matrix C(t) and the

step-size σ(t) of the normal distribution are then updated for the next generation [51]. Note

that x(0)
W and σ(0) are the user-specified parameters whose values depend on the given prob-

lem in hand. Since population size λ poses a significant impact on the performance of the

algorithm, particularly when dealing with problems imbued with multi-modal properties [51],

restart CMA evolution strategy with increasing population size IPOP-CMA-ES [5] are used to

mitigate the difficulty of choice in the parameters in the absence of prior knowledge.
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2.1.6 Probabilistic Search Algorithms

The stochastic variation operator in continuous probabilistic search creates offspring by sam-

pling from an explicit probabilistic model Z of promising solutions instead of relying on clas-

sical crossover or mutation genetic operators [149, 26]. At each generation, the probabilis-

tic model is constructed from a selected parent pool. In addition, prior knowledge about the

problem can be expressed through distribution Z, such as multivariate Gaussian distributions

N (μ,
∑

) or Bayesian networks, with assumptions on the dependencies among variables, as

means of arriving at high quality search performances. Some of the popular works in this

category include the Bayesian optimization algorithm (BOA) [148], Population-based Incre-

mental Learning (PBIL) [11], Univariate Marginal Distribution Algorithm (UMDA) [120], and

Estimation of Distribution Algorithms (EDA) [93, 92, 223].

2.2 Individual-based Methodologies

Individual-based search operator, also known better as local search, individual learning or life-

time learning, involves the process of searching for an improved solution (if it exists), starting

from a given vector of decision variables [21]. The pseudo codes of a typical individual learn-

ing method is outlined in Algorithm 2. The search generally begins with a choice in the direc-

tion of movement. Subsequently a line search, trust region approach, or otherwise is performed

to determine an appropriate next step. The process is repeated from the newly improved vector

solution and the algorithm continues until a local minimum is found or the maximum compu-

tational budget allowable is reached. Individual learning methods can be distinguished by their

choice of search directions and step length. Note that decisions can be made in a deterministic

[45] or stochastic [184, 67] manner. For a detailed description of some representative methods

in this category, the readers is referred to the Appendix B of the thesis.
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Algorithm 2 Individual learning procedure L(x)

Start from some given point x(1).
Assign iteration counter k = 1.
while not converged do

Calculate a search direction D(k), Determine an appropriate step length λ(k).
Next search point x(k+1) = x(k) + λ(k)D(k)

k = k + 1
end while

2.2.1 Deterministic Methods

In general, according to the use of derivative information in the procedure, continuous de-

terministic individual learning methods, largely referred to a group of numerical mathematical

programming solvers in the literature, can be categorized as zeroth, first or second order method

[168]. It is worth noting that the mathematical programming solvers in this category come with

rigorous proofs of convergence to precise stationary points (i.e., 1st order necessary condition

[168, 103]), which exist in the form of minima, maxima or saddle points 1.

2.2.1.1 2nd-order Derivative Methods

This method requires the functional values, its first (partial) derivative vector and the second

derivative matrix - the Hessian. Newton-Raphson method [82] denotes a typical example. It is

based on the idea of approximating partial derivative with linear Taylor series expansion about

a value. The method is powerful and simple to implement. It guarantees convergence to a

stable point from any sufficiently close starting value.

2.2.1.2 1st-order Derivative Methods

In practice, the Hessian matrix may not be positive definite or may be difficult to calculate, thus

making it infeasible to consider the second order methods. As a result, various techniques and

variants of Newton method have been proposed to avoid calculating the exact Hessian matrix.

1In non-linear programming, the solution of interest lies in stationary point x, where ∇F (x) = 0 or ∇F (x) <
ε, with ε denoting some arbitrarily small value.
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Such approaches are known as first-order methods that employ the function values and first

(partial) derivative vector to decide its moves, i.e., search directions and step length.

The second derivative of the objective function is then approximated using either finite

differencing or via some iterative techniques. Methods in which the Hessian matrix is updated

in an iterative manner are categorized generally as Quasi-Newton methods. The strategies

of Davidon-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS) are some

notable examples of the Quasi-Newton method [153].

2.2.1.3 Zero-order Derivative Methods

Zero-order methods, also known as direct search techniques, use only the objective function

values or the relative rank of objective values in the move operator to decide on the search

structure. These are often very useful when the derivative information, including both Hessian

and gradients of the function, are either unavailable, unreliable or expensive to compute [80].

Simplex search [127], pattern search [103], and methods with adaptive sets of search directions,

such as Davies, Swann, and Campey with Gram-Schmidt orthogonalization (DSCG) [168],

constitute to the three main categories of direct search.

2.2.2 Stochastic Methods

To deal with the scale-up in problem complexity, such as high multi-modality or noisy land-

scapes, stochastic refinement methods have been proposed to enhance search diversity in the

neighborhood. While a majority of stochastic methods has been focused on solving combina-

torial problems [67], there is an increasing trend of their presence in the continuous domain.

Some of the early popular methods include simulated annealing [29, 216, 175, 198], tabu search

[174, 24, 25], and the Solis Wets method [180] that operate on stochastic neighborhoods.

When first (partial) derivatives or gradients are not readily or cheaply available, especially

on problems with computationally expensive objective and constraint functions, it may be ad-
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vantageous to use approximated stochastic gradients than finite differencing [27]. The simulta-

neous perturbation stochastic approximation (SPSA) introduced by Spall in [183, 182] denotes

one of the recent approaches with stochastic gradients.

Evolution strategy (ES) and covariance matrix adaptation evolution strategy (CMA-ES)

that are configured to exploit local structure have also been demonstrated as reliable and highly

competitive stochastic individual learning procedures for search [7, 123, 95]. Other notable

approaches that received recent attention also include the real-coded hill-climbing crossover-

based local search (XLS) [112, 134].

2.3 Memetic Methodologies

Memetic Algorithm (MA), also commonly known as hybrid EAs, Baldwinian EAs, Lamarkian

EAs, or genetic local search, represents an emerging field that has attracted increasing research

interest in recent times, with a growing number of publications appearing in a plethora of

international journals and conference proceedings. The earliest form of Memetic Algorithms

[176, 124, 125, 215] was first introduced as a marriage between population-based global search

and individual learning, where the latter is often referred to as local search or a meme, capable

of local refinement. Taking fundamentals from Darwinian principles of natural evolution and

Dawkins notion of a meme, many modern evolutionary algorithms in the field of computational

intelligence have been designed and crafted specifically for addressing particular problems or

domains, and with significant success reported [102, 201, 68, 86, 139, 69, 141, 188, 195, 22,

189]. Memetic algorithms have been used successfully to solve a wide variety of engineering

design problems and often shown to generate higher quality solutions more efficiently than

canonical evolutionary algorithms [205, 102, 136, 201, 119, 68, 55, 161, 35]. A discussion

on the different depictions of MAs inspired from Dawkins’s theory of Universal Darwinism is

provided in [131].
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It is well established that the main purpose of designing a successful MA hybrid search lies

in balancing well between generality (through stochastic variations) and problem specificity

(through individual learning) [125, 57, 161, 132, 143]. In the next subsections, representative

works in memetic research are discussed according to the four main design issues, namely level

of hybridization, modes of learning, memetic operators and algorithmic parameters.

2.3.1 Level of Hybridization

It is worth noting that individual learning can be incorporated as a form of population initial-

ization, before the population-based search, to enhance the search performance as contrast to

a random initialization scheme. For interleaved hybrid procedures, on the other hand, individ-

ual learning is conducted after undergoing the stochastic variation or reproduction operator(s).

In other hybrids, refinement is incorporated after the population-based search as a form of

post-processing to fine-tune or improve the precision of the solution found by the EA.

An outline of the basic Memetic Algorithm is provided in Algorithm 3, where it can be

seen that besides the stochastic operators, an individual learning phase (line 7) is included to

refine the individuals.

Algorithm 3 Memetic Algorithm
1: Generate an initial population
2: while Stopping conditions are not satisfied do
3: Evaluate all individuals in the population
4: Select individuals for the parents pool Pt via selection operator S(.)
5: for each individual x in P do
6: Evolve x to offspring y according to stochastic variation operators V (x,Pt)
7: Refine y to z through individual learning operator L(y)
8: Proceed in the spirit of Lamarckian or Baldwinian learning
9: end for

10: end while
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2.3.2 Modes of Learning

In the literature, two basic modes of individual learning (or inheritance schemes) are often

discussed, namely, Lamarckian and Baldwinian learning [138] (line 8 in Algorithm 3). Lamar-

ckian learning forces the genotype to reflect the result of improvement in individual learning

by placing the locally improved individual back into the population to compete for reproduc-

tive opportunities [136, 68, 85]. In diverse contexts, Lamarckian memetic algorithms have also

been used under the name of hybrid evolutionary algorithm, Lamarckian evolutionary algo-

rithm, or genetic local search. Baldwinian learning, on the other hand, only alters the fitness of

the individuals and the improved genotype is not encoded back into the population. Let x and

xopt denote the initial and improved solutions after undergoing refinement. Algorithmically,

Lamarckian learning returns (xopt, f(xopt) to the population while Baldwinian learning return

(x, f(xopt) instead. Although Lamarck’s theory of evolution has generated controversies and

doubts from biology, the potentials and contributions of Lamarckian learning in computational

evolutionary systems have been significant [70, 64]. It is worth emphasizing that most suc-

cessful MAs to date are designed in the spirit of Lamarckian learning which exhibits clear

advantage on problems in non-changing environments [118, 117, 208, 94]. On the other hand,

Baldwinian learning is deemed as more appropriate for problems in dynamic or uncertain en-

vironments [145, 141, 166, 170].

2.3.3 Memetic Operators

In MA, an effective combination of search operators has to be found, both to combine different

characteristics and strengths, and to design efficient communication mechanisms. Researchers

have been exploring on various hybridizations of search operators towards the development

and manual crafting of specialized algorithms that solve a specific problem or a set of problems

effectively, using the domain knowledge of human expertise.
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For example, the hybridizations of genetic operators with individual-based search methods

have manifested as hybrid real-coded Genetic Algorithm with female and male differentia-

tion (RCGA-FMD) [46], approximate probabilistic memetic framework based on GA-DSCG

(APrMF) [132], and memetic algorithm with local search chaining (MA-LSCh-CMA) [122]. A

review of different hybridizations of genetic algorithm with diverse individual learning strate-

gies that employ gradient information is reported in [104]. On the other hand, accelerating

differential evolution using an adaptive local search (DEahcSPX) [134] represents an example

of combining DE’s stochastic operators with local search to accelerate the search progress. Par-

ticle Swarm CMA-ES [126] denotes an example of hybrid MA in which CMA-ES is employed

as an individual learning procedure with the population-based search PSO. Another notable ex-

ample is the estimation of distribution algorithm (EDA) with ant-miner local search proposed

in [2] for solving the nurse rostering problem.

Under the design issue of memetic operators, much effort has also been spent on the studies

of adapting the appropriate individual learning procedures or otherwise often referred in the lit-

erature as local search(es) or meme(s) to employ, when solving specific problems or domains,

by means of vertical inheritance [88, 131] and meme selection via heuristics [136, 31, 87]. It is

worth noting that different learning procedures can be instances of the same strategy working

on different parameters settings. Adaptation of local search parameters for real-coded memetic

algorithm can be achieved through some heuristics, such as the adaptive hill-climbing XLS in

[134], or via co-evolution mechanism [177, 152, 178]. For instance, in co-evolving memetic

algorithm (COMA) proposed by Smith [177], neighborhood region associated with each in-

dividual solution in local search is adaptively updated based on a set of rules R represented

by two bit strings. The bit-string rules are then evolved separately in another population using

Darwinian evolutionary mechanisms (i.e. cooperative co-evolutionary system).
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2.3.4 Algorithmic Parameters

From a survey of the field, the basic configuration of a memetic algorithm can be summarized

as three core parameters

• Subset individuals of the population that should undergo individual learning

• Frequency of individual learning, which denotes how often individual learning is applied

on the population

• The computational budget allocated for the individual learning phase defines how long

each learning process should proceed for.

One of the conventional topics pertinent to the MA hybrid design is to identify which indi-

viduals of the search population should undergo individual learning, where for instance fitness

and distribution-based strategies have been proposed by Land [91] and Nguyen et al. [133].

On the question pertaining to how often individual learning should be used, the effect of indi-

vidual learning on MA search were investigated by Hart in [55] where various configurations

at different stages of the search were considered. On the other hand, [90] suggested to ap-

ply learning on every individual when the computational complexity of the learning procedure

is low. Schemes to adapt the frequency of individual learning based on search diversity and

fitness distribution criteria have also been considered by Molina et al. in [112, 121].

To address the overall balance of stochastic variation and individual learning in search, a

theoretical upper bound on the computational budget to allocate was proposed by Nguyen et al.

in [132]. The bound provided a means to adapt various design issues of MA simultaneously,

and at runtime, from which individuals that should undergo individual learning, to the amount

of computational budget allocated for learning. In addition, the concept of local search chains

to adapt the intensity of individual learning was also introduced in [123]. To alleviate the poten-

tially high intensity and computational budget incurred in individual learning, especially when
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dealing with real world complex problems plagued with computationally expensive objective

functions, management schemes to adapt the use of approximation models or surrogates in lieu

of the original objective functions [75] have also been considered.
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Chapter 3

Landscape Analysis in Lamarckian
Memetic Algorithms

To date little progress on the analytical study of Lamarckian MA in non-linear programming

has been made [118, 117, 208, 146], in contrast to the greater effort reported on enhancing

the understandings of Baldwinian MAs [62, 17, 144, 143]. Ironically, the majority of memetic

algorithms that have experienced significant success on real-world problems happened to adopt

the Lamarckian mode of learning in their design.

Given the limited progress made on revealing the working mechanisms of Lamarckian

memetic algorithms in general non-linear programming and the intrinsic properties of com-

monly used complex benchmark problems, this chapter introduces the concepts of local op-

timum structure and provides a systematic study on the local optimum structure of several

commonly used benchmark problems for non-linear programming to gain clues into the suc-

cess or failure of MAs. Note that the empirical studies also serve to address the lack of analysis

on benchmark problems that are commonly used in the literature.

The chapter is organized in the following manner. The influence of individual learning

on the selection pressure in Lamarckian memetic algorithm is analyzed based on the concept

of local optimum structure. Case studies on the local optimum structure of five continuous

optimization benchmark problems of diverse properties are presented in Section 3.2. Finally, a

brief conclusion of the chapter is provided in Section 3.3.
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Nomenclature

f(x) = Objective or fitness function
x∗ = Global optimum
x(i) = i-th element of vector x
d(x,y) = Euclidean distance ‖x− y‖ =

√∑n
i=1 (xi − yi)2 between x and y

Ψ = A set of local optimums
E[.|P] = Expectation of a measure conditioned to population P
n = Number of dimensions
N = Population size
S(.) = Selection operator

3.1 Local Optimum Structure

In non-linear programming, the solution of interest lies in stationary point x, where ∇F (x) =

0 or ||∇F (x)|| < ε, with ε denoting some arbitrarily small value. Stationary points exist

in the form of minima, maxima or saddle points. In Lamarckian MAs, individual learning

procedures based on mathematical solvers have been well established to converge to precise

stationary points efficiently (i.e., 1st order necessary condition [168, 103]). Practically, if Ψ

is the complete local optimum set of a given problem and individual learning is performed

until local optimality condition is satisfied, all populations of Lamarckian MA search, with

the exception of the initial population, are subsets of Ψ. The study on the search dynamics of

Lamarckian MAs thus evolves around the set of local optimum solutions. For this reason, it is

crucial to uncover the properties and characteristics of the local optimum set Ψ when analyzing

Lamarckian MAs.

Since the search operators of Lamarckian MAs evolve around the set of local optimum

solutions Ψ, the local optimum structure or distribution of local optimum solutions represents

one of the key property of the problem landscape to bring insights into the search and the

algorithm that effects it. To study and analyze the influence of local optimum structure on

the performance of Lamarckian MA search, particularly as a result of the stochastic selection
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operator, the notion of constructive and obstructive local optimum structure and other basic

definitions and theorems used are first introduced in what follows.

Let Pt = {xk ∈ Ψ}Nk=1 denotes the population of N locally optimum individuals at gen-

eration t and Pt
S = S(Pt) = {x′

k ∈ Ψ}Nk=1 denotes the resultant population of optimum

individuals after undergoing the stochastic selection operation.

Definition 1: The selection progress rate of the search θS at generation t is defined as the

expected change in distance to global optimum as a result of the selection operator S(.).

θS(P
t) = D − E[D′|Pt]

=
1

N
×

N∑
k=1

d(xk,x
∗)− 1

N
×

N∑
k=1

E[d(x
′
k,x

∗)|Pt] (Eq. 3.1)

Definition 2: A ‘constructive’/ ‘obstructive’ local optimum structure exhibits property

of local optima with ‘increasing’/ ‘decreasing’ fitness quality f(x) when being closer to the

global optimum, i.e., d(x,x∗).

Let Ψ = {x1,x2, . . .xM}, where |Ψ| = M , denote the finite set of local optimum solu-

tions. Let di and fi be the abbreviations for d(xi,x
∗) and f(xi), respectively. Without loss

of generality, members of set Ψ are sorted in an ascending order of distance to the global

optimum d(xi,x
∗) such that 0 < d1 ≤ d2 ≤ d3 . . . ≤ dM . For a maximization problem,

the definition implies f1 ≥ f2 ≥ f3 . . . ≥ fM for constructive local optimum structure and

f1 ≤ f2 ≤ f3 . . . ≤ fM for obstructive correlated structure of local optimums. Illustrative

examples of problems with a fitness landscape imbued with properties of constructive and

obstructive correlated local optimum structure are depicted in Figures 3.1.a and 3.1.b, respec-

tively.

In what follows, an analysis on the search mechanisms of the stochastic selection operator

in Lamarckian MAs, by taking into considerations the local optimum structure of a problem

landscape, is presented. In particular, the well-established stochastic fitness-proportional se-

lection scheme [50], which represents one of the selection operators commonly used in evolu-

tionary computation, is analyzed.
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3.1.a: Problem Landscape with Constructive Local Optimum
Structure

3.1.b: Problem Landscape with Obstructive Local Optimum
Structure

Figure 3.1: Illustrations of ‘constructive’/ ‘obstructive’ landscapes in maximization problem
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For a Lamarckian MA with stochastic fitness-proportional selection operator, the probabil-

ity of individual xk ∈ Pt = {xk}Nk=1 to survive in the reproduction pool, can be derived as

fk∑N
j=1 fj

. The selection progress rate can then be derived as

θS(P
t) =

∑N
k=1 dk
N

− 1

N
×

N∑
k=1

E[d(x
′
k,x

∗)|Pt]

=

∑N
k=1 dk
N

− 1

N
×N × (

∑N
u=1 fudu∑N
j=1 fj

)

=

∑N
k=1 dk
N

−
∑N

u=1 fudu∑N
j=1 fj

=
(
∑N

j=1 fj)(
∑N

k=1 dk)−N ×∑N
u=1 fudu

N
∑N

j=1 fj
(Eq. 3.2)

Without loss of generality, the progress rate of the stochastic selection operator on maxi-

mization problems with fitness landscape containing a constructive or obstructive local opti-

mum structure can be inferred from Eq. 3.2, using the Chebyshev’s sum inequality theorem

[54]. Note that on constructive local optimum structure, two sequences {fj}Nj=1 and {dk}Nk=1

are of an inverted order. According to the Chebyshev’s sum inequality theorem1, we have

(

N∑
j=1

fj)(

N∑
k=1

dk) ≥ N ×
N∑

u=1

fudu

(
N∑
j=1

fj)(
N∑
k=1

dk)−N ×
N∑

u=1

fudu ≥ 0 (Eq. 3.3)

Since the left-hand side of Eq. 3.3 is the numerator of θS(Pt) in Eq. 3.2, we have θS(P
t) ≥ 0.

Thus, for a maximization problem fitness landscape containing a constructive correlated local

optimum structure, the selection progress rate is positive, i.e., θS(Pt) ≥ 0, ∀Pt.

Conversely, for a maximization problem fitness landscape containing obstructive correlated

local optimum structure, the selection progress rate can be shown to be negative, i.e., θS(Pt) ≤
1Chebyshev’s sum inequality theorem: considering two sequences, {fj}Nj=1 and {dk}Nk=1 of the same order,

f1 ≤ f2 ≤ . . . ≤ fN and d1 ≤ d2 ≤ . . . ≤ dN , then (
∑N

j=1 fj)(
∑N

k=1 dk) ≤ N ×∑N
u=1 fudu Similarly, if two

sequences are of an inverted order, f1 ≥ f2 ≥ . . . ≥ fN and d1 ≤ d2 ≤ . . . ≤ dN , then (
∑N

j=1 fj)(
∑N

k=1 dk) ≥
N ×∑N

u=1 fudu
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0, ∀Pt. Similarly, note that on obstructive local optimum structure, two sequences {fj}Nj=1 and

{dk}Nk=1 are of the same order. According to the Chebyshev’s sum inequality theorem, we have

(

N∑
j=1

fj)(

N∑
k=1

dk) ≤ N ×
N∑

u=1

fudu

(

N∑
j=1

fj)(

N∑
k=1

dk)−N ×
N∑

u=1

fudu ≤ 0 (Eq. 3.4)

Since the left-hand side of Eq. 3.4 is the numerator of θS(Pt) in Eq. 3.2, we have θS(Pt) ≤ 0.

To summarize, the stochastic selection operator in MA exhibits the property of “pulling”

the population towards the global optimum on problem landscapes imbued with a constructive

correlated local optimum structure, thus advancing the search towards the global optimum.

In contrast, the stochastic selection operator exhibits the effect of “pushing” the population

away from the global optimum on problem landscapes with an obstructive correlated optimum

structure.

3.2 An Analysis on the Local Optimum Structure of Repre-
sentative Benchmark Problems

In non-linear programming, a number of complex benchmark minimization problems having

diverse properties are commonly used [186]. Although the set of problems has been used

extensively for benchmarking evolutionary [210, 101, 218] and memetic algorithms [55, 136,

130, 131, 134], little effort has been made to reveal their properties in the context of memetic

algorithms thus far, particularly on the local optimum structure of these benchmark problems.

In this section, a systematic analysis on the local optimum structure of five commonly used

continuous parametric benchmark problems is presented. These benchmarks including the

Ackley, Rastrigin, Griewank, Weierstrass and Rosenbrock functions, represent classes of mul-

timodal, ‘epistatic’/ ‘non-epistatic’ optimization problems [136], as detailed and summarized

in Appendix A.
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To study the local optimum structure of the benchmark problems, the random multi-start

individual learning (local search) which forms the baseline optimization algorithm is used to

search on them 2. In the experiments, the sets of local optimum solutions for the five problems

3 are attained using the popular Davidon-Fletcher-Powell (DFP) strategy, which belongs to the

family of the quasi-Newton approach. The stopping criteria of DFP is defined by the Cauchy’s

convergence test 4 (i.e. |xn+1 − xn| ≤ ε for N > N0 and precision ε set to 1E-8). In each run,

m solutions x are randomly sampled to undergo individual learning based on DFP to arrive

at the corresponding local optimums. Here, m is configured to 4000 and the local optimums

attained are analyzed to reveal the properties of the original problem fitness landscape and the

transformed landscape due to individual learning.

Fitness distance correlation (FDC) analysis is a common method to reveal the correlated

structure of a landscape [190, 79, 118]. Correlation coefficient measure, �, gives the level of

correlation between the fitness and distance to global optimum, which is defined by

�(f, d) =
Cov(d, f)

σ(d)× σ(f)
(Eq. 3.5)

Alternatively, � can be estimated from the set of m solutions {(di, fi)}mi=1 as follows

�(f, d) ≈ 1

σ(f)σ(d)

1

m

m∑
i=1

(fi − f)(di − d), (Eq. 3.6)

where f and σ(f) refer to the mean and standard deviation, respectively. Similar notations

are used for d and σ(d). Using Eq. 3.6, the statistical measure �L of the transformed problem

landscape can be estimated from the set of m local optimums. In addition to the fitness dis-

tance correlation coefficient �, the scatter plot (f(x), d(x,x∗)) of fitness and distance to global

2The random multi-start individual learning (local search) algorithm is the simplest form of stochastic algo-
rithm that uses a basic random search as a global optimizer. Being an unbiased global optimizer, it allows an
accuracy revelation on the local optimum structure of the problem landscape

3ΨAckley , ΨRastrigin , ΨGriewank,ΨRosenbrock and ΨWeierstrass
4Cauchy’s convergence test for sequence {x i} can be described as: for every ε > 0, there is a number N , such

that for all n,m > N holds ‖xm − xn‖ < ε
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Benchmark
Problem

Original Landscape Structure
(�± σ)

Transformed Landscape or Lo-
cal Optimum Structure (�L±σL)

Ackley 0.780676± 6.539E − 3
Weak Constructive Correlation

0.920672± 5.791E − 3
Strong Constructive Correlation

Rastrigin 0.719241± 6.925E − 3
Poor correlation

0.994019± 0.306E − 3
Strong Constructive Correlation

Griewank 0.994486± 0.247E − 3
Strong Constructive Correlation

0.995402± 0.297E − 3
Strong Constructive Correlation

Rosenbrock 0.621473± 9.374E − 3
Poor correlation

0.999912± 0.228E − 3
Strong Constructive Correlation

Weierstrass 0.877178± 3.749E − 3
Weak Constructive Correlation

0.709783± 8.725E − 3
Poor correlation

Table 3.1: Mean (�L/�) and Variance (σL/σ) of Landscape Structure Correlation

optimum, which can aid visual analysis on the correlation property of a problem landscape, is

also considered here.

Using the results on 10-dimensional benchmark problems across 30 independent runs from

the experimental study, the fitness distance scatter plots and correlation coefficients, i.e., �L

and �, are presented in Figures 3.2-3.6 and Table 3.1, respectively. From the scatter plots in

Figures 3.2 and 3.3, strong constructive correlated structure of local optimums are observed

on both Ackley and Rastrigin functions. The left and right panels of the figures show the

scatter plot of local optimums and initial sampled points, or the transformed and the original

landscapes, respectively. Further, the results in Table 3.1 indicate higher mean-variance struc-

ture correlation value for the transformed fitness landscape than the original fitness landscape

on Ackley (�L = 0.920672 ± 5.791E − 3 > � = 0.780676 ± 6.539E − 3) and Rastrigin

(�L = 0.994019± 0.306E − 3 > � = 0.719241± 6.925E − 3). This highlights the significant

impact of individual learning on the search space, where the phenomenon of reinforcement in

fitness distance correlation is observed in the transformed fitness landscape. 5

5On a minimization problem, the local optimum solutions of the landscape is considered to possess strong
constructive correlation property if FDC-L �L ≈ 1, i.e., the closer an individual is to the global optimum, the
lower (better) is its fitness value. On the other hand, the local optimum structure is considered to display strong
obstructive correlation property if FDC-L �L ≈ −1.
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3.2.a: Ackley(10D)

3.2.b: L-Ackley(10D)

Figure 3.2: Fitness distance scatter plots of Ackley function
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3.3.a: Rastrigin(10D)

3.3.b: L-Rastrigin(10D)

Figure 3.3: Fitness distance scatter plots of Rastrigin function
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On the Griewank function, however, the scatter plot in Figure 3.4 shows a similar degree

of constructive correlation structure in both the original and transformed landscape, i.e., (�L =

0.995402± 0.297E − 3 ≈ � = 0.994486± 0.247E− 3). It is likely that the decreased level of

ruggedness in Griewank function for increasing problem dimension that led to the similar level

of structure correlations observed.

For the 10-dimensional Rosenbrock function, 3 stationary points have been found in the

experiment study, which is consistent to the results reported in [172]. The scatter plot in Figure

3.5 indicates the presence of constructive correlated structure among the local optimums in

the transformed Rosenbrock landscape,which is significantly higher than that exhibited by the

solutions of the original landscape (�L = 0.999912±0.228E−3 � � = 0.621473±9.374E−
3).

Last but not least, based on the scatter plot in Figure 3.6, Weierstrass function is found to

possess a weak constructive correlated structure of local optimums, even though visually the

original problem landscape may appear to be relatively structured. The resulting FDC coeffi-

cient � of Weierstrass, based on original fitness landscape is found to be higher (� = 0.877178±
3.749E−3) than the local optimum structure correlation (�L = 0.709783±8.725E−3). Inter-

estingly, the Weierstrass function thus possesses an unique property that differs from the other

benchmark functions considered.

From the structure correlation profile of the five representative benchmark problems sum-

marized in Table 3.1, it is worth noting that most of the problems investigated and analyzed

here displayed increased constructive correlations in the transformed landscape than the orig-

inal fitness landscape, i.e., �L > �. Based on the proof presented in Section 3.1, this in-

creased constructive structure correlation of the transformed landscapes is expected to benefit

the Lamarckian MA due to the strong “pulling” effect of the stochastic selection operator on

the population of individuals, thus enhancing the search towards the global optimum. On the

other hand, it is also revealed that the degraded constructive correlated structure of the Weier-

strass transformed landscape, i.e., �L < �, would lead to poorer search performance when
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3.4.a: Griewank(10D)

3.4.b: L-Griewank(10D)

Figure 3.4: Fitness distance scatter plots of Griewank function
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3.5.a: Rosenbrock(10D)

3.5.b: L-Rosenbrock(10D)

Figure 3.5: Fitness distance scatter plots of Rosenbrock function
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3.6.a: Weierstrass(10D)

3.6.b: L-Weierstrass(10D)

Figure 3.6: Fitness distance scatter plots of Weierstrass function
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using MA-DFP as compared to a simple random search. In such event, the DFP individual

learning should not be used.

3.3 Conclusions

In this chapter, the notion of ‘constructive’/ ‘obstructive’ local optimum structure has been

introduced and defined as a useful property for analyzing the transformed fitness landscape

brought about by the individual learning procedure of MA. Subsequently, the influence of

individual learning on the selection pressure in Lamarckian memetic algorithm is analyzed to

demonstrate how memetic algorithm benefits from the individual learning process in advancing

the search towards the global optimum. The results of improved correlated constructive struc-

ture observed in most of the transformed landscape relative to the original on typical bench-

mark problems thus highlight the positive influence of individual learning that contributes to

the success of MAs recently reported in the literature.
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Chapter 4

Evolvability

The image of modern memetic algorithms in computational intelligence can be established as a

symbiosis of stochastic variation and individual learning, working in sync on the given problem

in hand. In most research work on adaptive evolutionary algorithms, the symbiosis of stochastic

variation and individual learning are generally studied as separate independent entities, which

is evident in the works of Hinterding et al. [61] and Ong et al. [138]. Few has considered

formal modelling on the combined behaviors of stochastic variations and individual learning

in search. Based on the insights gained on the effect of individual learning on Lamarckian MA

search in Chapter 3, this chapter proceeds to formalize and study the symbiosis 1 or synergy

of search operators in memetic search, which perhaps has the greatest influence on search

performance but has remained yet to be formally investigated with sufficient rigor.

Chapter 4 is organized in the following manner. The concept of symbiotic search profile

and connectivity structure for analysis of MAs are first presented in Section 4.1. The notion

of evolvability as the basis for assessment is also introduced to quantify the degree of syn-

ergy between the stochastic variation and individual learning operators. To bring about new

insights into the symbiosis of search operators on Lamarckian MA design, investigations on

the search mechanisms of two unique search profiles on the benchmark problems by analyzing

1In biology, the term ’Symbiosis’ commonly refers to the interactions of two dissimilar organisms or species,
living together [38, 209].
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their evolvability measures is further proceeded in Section 4.2. Finally, a brief conclusion of

the chapter is provided in Section 4.3.

4.1 Evolvability of Symbiotic Search Profile

In what follows, we proceed to study the synergy between the stochastic variation and indi-

vidual learning operators, labelled here as symbiotic search profile, using the proposed notion

of evolvability. A search profile, ID, is defined by a pair of stochastic variation V (x,Pt) and

individual learning L(x), i.e., ID = (V, L).

The “evolvability” of symbiotic search profile is introduced here as the basis for assessment.

Since the term “evolvability” has been used in different contexts2, it is worth highlighting

that here the notion of evolvability in this work is generalized from that of learnability in

machine learning [197]. Here the evolutionary process is regarded as “evolvable” on a given

optimization problem if the progress in search performance is observed for some moderate

number of generations. Hence evolvability of a symbiotic search profile is referred here to the

propensity of the stochastic variation and individual learning in creating viable, or “potentially

favorable” individuals that leads towards the global optimum.

The evolvability of search profile ID for a given solution x at generation t, denoted here as

EvID(x, t), may be defined using a variety of criteria or cost functions. An intuitive and com-

mon quantitative measure of evolvability in search would be to consider the expected fitness

improvement (FI) with respect to the expected computational cost (C) incurred. Without loss

of generality, minimization problems are considered throughout this chapter. The evolvability

of symbiotic search profile EvID(x, t), for a potential solution x in population Pt, may be

formulated in terms of (FI) and (C) as follows:

2In [203], “evolvability” is defined as the genome’s ability to produce adaptive variants when acted upon by the
genetic system. Others have generally refer the term to the ability of stochastic or random variations to produce
improvement for adaptation to happen [138].
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EvID(x, t) =
FI(x, t)

C(x, t)
(Eq. 4.1)

FI(x, t) = E[�f |Pt,x] =

∫ ∫
�f × P (y|Pt,x)P (z|y)dydz

=

∫
y

P (y|Pt,x)×
∫
z

�f × P (z|y)dzdy (Eq. 4.2)

C(x, t) = E[�C|Pt,x] =

∫ ∫
�C × P (y|Pt,x)P (z|y)dydz

=

∫
y

P (y|Pt,x)×
∫
z

�C × P (z|y)dzdy (Eq. 4.3)

where

f(x) = Objective or fitness function
Pt = Reproduction pool at generation t
x = Solution individual in the reproduction pool, i.e., x ∈ Pt

y = Offspring produced by stochastic variation, i.e., y = V (x,Pt)
z = Resultant individual from offspring through individual learning, i.e., z = L(y)
P (z|y) = Density function of individual learning L applied on offspring y
P (y|Pt,x) = Density function of variation operator V applied on parent x
�f = Fitness improvement f(x)− f(z) on minimization problem
�c = Computational cost or the number of function evaluations incurred by variation

and individual learning operators.

Let Gain(y,x) =
∫
z
�f × P (z|y)dz and Cost(y,x) =

∫
z
�c× P (z|y)dz then Eq. 4.2

and Eq. 4.3 becomes

FI(x, t) =

∫
y

P (y|Pt,x)×Gain(y,x)dy (Eq. 4.4)

C(x, t) =

∫
y

P (y|Pt,x)× Cost(y,x)dy (Eq. 4.5)

With the substitution of Eq. 4.4 and Eq. 4.5 into Eq. 4.1, we arrive at

EvID(x, t) =

∫
y
P (y|Pt,x)×Gain(y,x)dy∫

y
P (y|Pt,x)× Cost(y,x)dy

(Eq. 4.6)
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Figure 4.1: Connectivity of local optimums

By this definition, evolvability measure of a symbiotic search profile EvID(x, t) indicates the

expectation of how a developed offspring, after undergoing individual learning, is improved

over its initial parent with the computational cost taken into consideration.

Next, a special case of MA in which the individual learning strategy is performed until con-

vergence to local optimum (under sufficient computational budget) is considered and discussed

for further illustration. Subsequently, the solver’s behavior that emerged from the stochastic

variation and individual learning mechanisms in search can be modelled as a directed graph that

defines the connectivity probability of local optimum solutions, more precisely, the probability

of “jumping” from one local optimum to another as determined by the symbiotic search profile

used [94]. Local optimum u is connected to local optimum v if and only if v is reachable from

u, i.e., the probability of v = L(V (u)) is non-zero, or P (v = L(V (u))) > 0. The connec-

tivity of local optimum solutions is then modeled as a directed graph G = (V,E). Vertex V

represents the local optimum solutions (i.e. V = Ψ). A directed edge eu,v represents that v is

reachable from u via the stochastic variation V and individual learning L operators. Figure 4.1

depicts possible connections between a local optimum u to other local optimum solutions of a

improved or inferior quality, as illustrated by vertex v1,v2 and v3,v4, respectively.
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For minimization problems, positive or high evolvability measure on a local optimum x,

i.e., EvID(x, t) ≥ 0, indicates a constructive connectivity of the given local optimum. On the

other hand, negative evolvability measure of a local optimum x, i.e., EvID(x, t) < 0, defines an

obstructive connectivity. In other words, a ‘constructive’/ ‘obstructive’ connectivity indicates

that a local optimum is more likely to connect to other local optimum solutions of ‘improved’/

‘inferior’ quality. Note that the concepts of ‘constructive’/ ‘obstructive’ connectivity does not

involve the notion of distance to global optimum used in the concepts of ‘constructive’/ ‘ob-

structive’ local optimum structure, presented in Chapter 3. As the distance to global optimum

of solution x is generally not available in practice, here the fitness function f(x) is used instead

to evaluate the solution quality. In addtion, it is worth noting that the connectivity characteristic

of a local optimum, i.e., being ‘constructive’ or ‘obstructive’, also depends on the time factor

t.

Examples on constructive and obstructive connectivity of local optimum solutions are de-

picted in Figure 4.2.a and 4.2.b, respectively. Note that the ‘solid’/ ‘dotted’ lines in the figures

refers to the ‘high’/ ‘low’ probability connections of local optimums. For the constructive

connectivity property illustrated in Figure 4.2.a, as most of the local optimums xk of an opti-

mization problem possess a high probability of connecting to improved quality solutions at low

learning expense,i.e., high or positive evolvability EvID(x, t), Lamarckian MAs will search ef-

fectively and efficiently towards the global optimum. On the other hand, for problems imbued

with obstructive connectivity where most local optimums are likely to connect to low-quality

solutions at the expenses of high learning costs, i.e., negative evolvability EvID(x, t), a limited

progress rate can be expected. In the extreme case, where x = L(V (x)) = z, no search im-

provement can be achieved, which leads to the well-known problem of premature convergence

or stagnation in MA [208].
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4.2.a: Constructive Connectivity of Local Optimums

4.2.b: Obstructive Connectivity of Local Optimums

Figure 4.2: Illustrations of ‘constructive’/ ‘obstructive’ connectivity in minimization problem
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4.2 Analysis of Symbiotic Profiles in MA

Given the restricted theoretical knowledge available in this area, an attempt to provide some

insights into the success of MAs by analyzing the evolvability of two symbiotic search profiles

is presented in what follows. In the experimental study, a MA that uses a search profile of

Gaussian mutation operator as the stochastic variation V (x), and the Davidon-Fletcher-Powell

(DFP) or Davies, Swann, & Campey with Gram-Schmidt orthogonalization (DSCG) for in-

dividual learning L(x), and are notated hereafter as MA-DFP and MA-DSCG, respectively.

DSCG represents a form of direct search method that has been demonstrated to have good per-

formance over some derivative-based numerical methods on the set of continuous benchmark

problems in [136, 130]. DFP, on the other hand, is a popular quasi-Newton based individual

learning method, which has also been used in Section 3.2 to obtain the sets of local optimums.

Here the stopping criteria of the individual learning strategies is defined by the Cauchy’s con-

vergence test3, thus allowing the learning strategies to arrive at local optima.

Using the five sets of local optimum solutions for the benchmark problems 4 (obtained

previously in Chapter 3), the evolvability measure EvID(x, t) of each search profile for each

local optimum x are subsequently estimated to provide insights into the search mechanisms of

the Gaussian mutation and individual learning operators, i.e., DFP or DSCG in the MAs. For

each search profile, the fitness improvement FI(x, t) in Eq. 4.4 is estimated from a simulation

of T = 10 × n iterations (n denotes the number of dimensions) on each local optimum x:

FI(x, t) ≈ ∑T
i=1 (f(x)− f(zi))/T . In each iteration i, yi = V (x) is an offspring of x

reproduced using a mutation with normal distribution N(0, 1) and zi = L(yi) denotes the

resulting individual or local optimum obtained after learning. Using a similar procedure, the

computational cost expectation of the search operators in Eq. 4.5 can also be estimated as

C(x, t) ≈ ∑T
i=1Ci/T , where Ci denotes the total computational cost incurred by L(yi) in

3|xn+1 − xn| ≤ ε for N > N0 and precision ε set to 1E-4
4ΨAckley , ΨRastrigin, ΨGriewank, ΨRosenbrock and ΨWeierstrass
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each iteration. Here, the computational cost is defined by the number of function evaluations

incurred until local optimality convergence.

Subsequently, the evolvability measure of each search profile on local optimum x is calcu-

lated as EvID(x, t) = FI(x, t)/C(x, t). Note that t can omitted in this case since the fitness

improvement and cost in the search profiles are averaged across the stochasticity of V (x) which

is independent of time. The details of the simulation procedure used is outlined in Algorithm 4.

Simulation results obtained on the five 10-dimensional benchmark problems are then summa-

rized using scatter plot {f(x), EvID(x)}, labelled here as Ev-plot, in Figures 4.3-4.7. Note that

in the figure, x-axis and y-axis represent the fitness f(x) and the evolvability measure EvID(x)

of the local optimum, respectively.

Algorithm 4 Simulation Procedure
for x in Ψ do
FI(x) = 0, C(x) = 0
for i = 1 to T = 10× n do

Produce offspring yi according to V (x)
Produce individual zi by individual learning L(yi)
Fitness improvement �f(x, zi) = f(x)− f(zi)
FI(x) = FI(x) +�f(x, zi)
C(x) = C(x) + Ci

end for
FI(x) = FI(x)/T
C(x) = C(x)/T
EvID(x) = FI(x)/C(x)

end for
Provide Ev-plot

4.2.1 Ackley function

The Ev-plots for symbiotic profiles (M, DFP) and (M, DSCG) on the Ackley function are

illustrated in Figure 4.3. On the lower panel of Figure 4.3, (M, DSCG) is observed to exhibit

positive evolvability EvID(x) on each local optimum x. In contrast, the upper panel of Figure

4.3 indicates that (M, DFP) shows negative evolvability for local optimum with fitness value
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under 8 (see x-axis). Further, the negative evolvability phenomenon is shown to prevail for most

of the local optimums even at higher fitness ranges. The results thus highlighted a significantly

higher evolvability EvID(x) on the local optimum resulting from search profile (M, DSCG)

than (M, DFP). Based on the notions of constructive and obstructive connectivity described in

Section 4.1, the property of constructive connectivity, i.e., local optimums of Ackley function

are likely to connect to other optimums of higher fitness, is shown for (M, DSCG). In contrast,

obstructive connectivity is observed on profile (M, DFP).
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Figure 4.3: Evolvability Analysis on Ackley(10D) function.

4.2.2 Rastrigin function

As shown in Figure 4.4, both (M, DFP) and (M, DSCG) bring about positive evolvability mea-

sures on majority of the local optimum, but negative evolvability on some high quality local

optimums of the Rastrigin function. Hence a obstructive connectivity can be inferred for local

optimums that are closer to the global optimal. Comparing (M, DFP) with (M, DSCG), how-

ever, (M, DSCG) exhibits significantly higher evolvability on most of the local optimums than

(M, DFP). This implies that (M, DSCG) displays a stronger constructive connectivity profile

than (M, DFP) on Rastrigin.
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Figure 4.4: Evolvability Analysis on Rastrigin(10D) function

4.2.3 Griewank function

Next, the simulation results on the Griewank function is analyzed and discussed. Visually

although the local optimum landscape of the Griewank function appears similar to that of the

Rastrigin function, as presented in Chapter 3, it is worth noting that in contrast to the latter,

both (M, DFP) and (M, DSCG) exhibit positive evolvability on nearly all the local optimums,

as observed in Figure 4.5. Further, (M, DSCG) shows a higher evolvability measure than (M,

DFP) for the same local optimums. Particularly, for local optimums with fitness value of 100,

(M, DSCG) contributed evolvability measures that are in the range of 0.1 to 0.2, while (M,

DFP) showed evolvability measures lower than 2E − 3.

4.2.4 Rosenbrock function

With respect to the Rosenbrock function, it is worth noting that the sparseness of the scatter plot

in Figure 4.6 indicates a small number of local optimums existing in the fitness landscape. The

obtained evolvability measure as shown in Figure 4.6 clearly depicts the strong constructive

connectivity of the local optimums to global optimum.
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Figure 4.5: Evolvability Analysis on Griewank(10D) function
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Figure 4.6: Evolvability Analysis on Rosenbrock(10D) function
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4.2.5 Weierstrass function

(M, DSCG) shows a positive evolvability on nearly all local optimums of the Weierstrass func-

tion. A linearly increasing evolvability measure is observed in the lower panel of Figure 4.7

for (M, DSCG). (M, DFP), on the other hand, exhibits an entirely opposite behavior, with

most local optimums giving negative evolvability, as shown in Figure 4.7, i.e., for those local

optimums with fitness value under 15.

0 5 10 15 20 25
−0.2

−0.1

0

0.1

0.2
Evolvability Measures on Weierstrass

Fitness of local optima f(x)

E
v ID

(x
)

 

 
DFP

0 5 10 15 20 25
−0.05

0

0.05

0.1

0.15

Fitness of local optima f(x)

E
v ID

(x
)

 

 
DSCG

Figure 4.7: Evolvability Analysis on Weierstrass(10D) function

As summarized in Table 4.1, the results of analyzing the evolvability measures indicate that

the search profile (M, DSCG) possesses a constructive local optimum connectivity on most of

the representative benchmark functions, while (M, DFP) exhibits an obstructive connectivity of

local optimums when approaching the global optimum of the Ackley, Rastrigin and Weierstrass

functions. Further, it is worth noting that local optimum connectivity of a higher evolvability

measure is observed in (M, DSCG) as compared to (M, DFP) on four out of the five problems

considered, thus suggesting explanation into the wide success of hybrid MA-DSCG reported

in the literature [136, 130].
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Benchmark Problem
Local Optimum Connectivity
MA-DSCG MA-DFP

Ackley Constructive Obstructive
Rastrigin Constructive Constructive
Griewank Constructive Constructive

Rosenbrock Constructive Constructive
Weierstrass Constructive Obstructive

Table 4.1: Local Optimum Connectivity Profiles of Benchmark Problems

4.3 Conclusions

In this chapter, the proposed notions of symbiotic search profile is first introduced. The sym-

biosis of stochastic variation and individual learning operators in MA is then formalized in the

form of local optimum connectivity and quantified via the notion of evolvability. The concepts

of ‘constructive’/ ‘obstructive’ connectivity is also introduced as an important property for re-

vealing the working mechanisms of MA in search. Further analysis on the symbiotic profile of

(M, DSCG) and (M, DFP) based on their evolvability measure highlighted the unique local op-

timum connectivity properties and their influences on MA search performance, thus bringing

about new understandings to the superior performance and success of MA-DSCG reported in

previous studies.
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Symbiotic Evolution

Several adaptive memetic algorithms have been proposed in recent years, with many shown to

solve a great variety of optimization problems more effectively and robustly than their canon-

ical counterparts. Existing schemes for performing the adaptations however, are mostly de-

signed based on semi-ad-hoc or heuristic/ meta-heuristic methods that comes with limited the-

oretical rigor [132]. More importantly, few has explicitly modelled the dynamics of stochastic

variations and individual learning, or the symbiotic search profile, for adaptation in search. In

Chapter 4, the notion of evolvability as the basis for assessment of symbiotic search profile has

been introduced to quantify the degree of synergy between the stochastic variation and indi-

vidual learning operators. Through the study, the evolvability of symbiotic search profiles was

demonstrated to have great influence on search performance of MA. Taking this cue, Chapter

5 proceeds to present Symbiotic Evolution (SE) as the proposed memetic framework that fa-

cilitates the emergence and self-configuration of productive search profiles, transpiring from

the symbiosis of stochastic variation and individual learning, working in sync on solving the

given problem in hand. Last but not least, it is worth noting that the core interest of taking

such a pursue of research is nonetheless motivated by the potential benefits brought about from

the constructive synergy of stochastic variation and individual learning in accelerating search

performances.

The chapter is organized as follows: Section 5.1 introduces Symbiotic Evolution (SE) as
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a realization of the presented study on symbiosis in the context of self-configurable memetic

algorithm, for solving complex problems. Taking a data-centric paradigm in the spirit of Optin-

formatics [96], SE performs the statistical learning of evolvability, at runtime, to infer the most

productive symbiotic search profile for use on a given solution individual, leading to a self-

configuring solver that adapts to search on the given problem in hand. Section 5.2 presents a

numerical study on the search performance of SE while Section 5.3 analyzes the performances

of SE with assessment made against several recent state-of-the-art modern evolutionary meth-

ods, adaptive and hybrid approaches. Finally, Section 5.4 concludes the present study with a

brief discussion.

5.1 Self-configurable Memetic Search: Symbiotic Evolution

In the previous chapter, memetic solver’s behavior that emerged from the symbiotic search

profile has been formalized in the form of local optimum connectivity based on the notion of

evolvability. Figure 5.1 presents an illustrative example of self-configurable memetic search

where the connectivity of local optimums exhibited by three memetic algorithms are depicted

on the contour plots of a problem landscape. The symbiotic search profiles, as defined by the

interactions of unique stochastic variation and individual learning mechanisms, are then repre-

sented by broken and/or continuous directed edges1 in Figure 5.1(a), (b), and (c), respectively.

In the figures, search profile Y (represented by continuous line) is depicted as more effective

for finding good quality solutions that are close to the global optimum faster than profile X

(represented by broken line), while the latter is shown as more effective in converging to the

precise global optimum, although more hops (denoting the computational effort incurred) are

required.

In particular, the search behaviors of the stochastic variation and individual learning are

depicted as directed graphs that model the connectivity probability of local optimum solutions

1Note that only the edge with highest probability of reaching a minimum among all others is depicted.
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on the contour plot. (a) Connectivity Search Profile of X (b) Connectivity Search Profile of Y

(c) Connectivity Search Profile of X+ Y. From the graphs, the search path from solution A

to the global optimum G is likely to be A → B → C → D → E → F → G when profile

X (“dotted line”) is used. Note that the ”circle” and ”star” symbols in Figure 5.1 denotes the

local optimums and global optimum, respectively. Thus profiles X and Y display strength in

solution precision and efficiency, respectively. However, when both profiles work together

effectively (profile X+ Y), the path becomes shorter as defined by A → C → E → F →
G. The emergent behavior resulting from the interactions by unique stochastic variations and

individual learning mechanisms working in symbiosis, i.e., search profiles X + Y, as depicted

in Figure 5.1(c), if appropriately harvested would lead to a higher probability of discovering

the global optimum at high precision and efficiency in search, thus forms the core motivation

of the present study on self-configurable memetic algorithm.

Figure 5.1: Symbiosis of stochastic variation and individual learning.

5.1.1 Statistical Learning of Evolvability

The evolvability measure of a symbiotic search profile EvID(x, t) is introduced to indicate the

expectation of how a developed offspring z, after undergoing individual learning, is improved

over its initial parent x with the computational cost taken into consideration. Given a multi-

tude of search profiles composing of stochastic variation and individual learning working on
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a minimization problem, the most productive profile for a given solution x is defined here as

having the highest evolvability measure, i.e., argmaxEvID(x, t). Since realistic problems are

seldom tractable and possess fitness landscapes that are highly complex in practice, a theoretic

formulation as introduced in Chapter 4 may be deemed inappropriate. To deal with complex

search problems, the concept of Evolvability Learning in Symbiotic Evolution is introduced

in the present section. Taking a data-centric paradigm [96], here a statistical approach on the

evolvability learning of symbiotic search profiles during runtime is proposed. In consistence

with the definition of evolvability in Eq. 4.6

EvID(x, t) =

∫
y
P (y|Pt,x)×Gain(y,x)dy∫

y
P (y|Pt,x)× Cost(y,x)dy

the statistical learning on the evolvability EvID(x, t) of symbiotic search profile ID = (V, L)

on solution individual x at generation t is quantitatively estimated from distinct data pairs

ΦL = {(y1, z1), . . ., (ym, zm), . . ., (yK , zK)} using Algorithm 5. Note that ΦL denotes the

database containing the vectors of solution individuals and their associated fitness uncovered

along the evolution and yi �= yj if and only if i �= j.

Using weighted sampling approach, based on the density distributionP (y|P t,x) of stochas-

tic variation operator, each distinct sample pair of solution individuals {(y i, zi)} is then asso-

ciated with some weight wi(x), which defines the probability of it being selected in the es-

timation of EvID. The weight wi(x) essentially reflects the current probability of jumping

from solution x, via stochastic variation P (y|Pt,x), to offspring yi which was archived in the

database. In other words, the weight wi(x) measures the relevancy of {yi, zi} in evolvability

learning process on solution x. Considering {(yi, zi)}Ki=1 as distinct samples from current dis-

tribution P (y|Pt,x), the weights wi(x) associated with samples (yi, zi) satisfy the equations:∑K
i=1wi(x) = 1 and wi(x) is proportional to

∫
v(yi)

P (yi|Pt,x)dy, in which v(yi) denotes the

arbitrarily small bin v around solutionyi and the integral is taken over interval [y(k)
i −v,y

(k)
i +v]

on each dimension k. Since the integration
∫
v(yi)

P (y|Pt,x)dy is computationally expensive,
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without significant loss of precision, the weight wi is estimated by Eq. 5.1.

wi(x) =
P (yi|Pt,x)∑K
j=1 P (yj|Pt,x)

(Eq. 5.1)

It is worth noting that the condition
∑K

i=1wi(x) < ε (Line 4 of Algorithm 5) caters for the

scenario when all samples (yi, zi) are irrelevant for evolvability estimation on solution x , i.e.,

P (yi|Pt,x) is too small. The role of ε thus specifies the threshold level of irrelevance for

archived samples in the evolvability learning. In particular, ε is configured to a precision of

1E − 9 in the present study. Note that the conditional density function P (y|P t,x) in Eq. 5.1

is derived based on the characteristic of variation operators used, in order to reflect the current

state of the search. Details of this step (Line 2 of Algorithm 5) in the current implementation

will be provided in Section 5.2.1. From the K archived sample pairs2, FI(x, t) and C(x, t) are

then estimated using a weighted sampling approach defined by wi as follows:

FI(x, t) =

∫
y

P (y|Pt,x)×Gain(y,x)dy ≈
K∑
i=1

wi ×Gain(yi,x) (Eq. 5.2)

C(x, t) =

∫
y

P (y|Pt,x)× Cost(y,x)dy ≈
K∑
i=1

wi × Cost(yi,x) (Eq. 5.3)

Using Eq. 4.6, Eq. 5.2 and Eq. 5.3, the evolvability of symbiotic search profile ID is estimated

by Eq. 6.3

EvID(x, t) =

∑K
i=1wi ×Gain(yi,x)∑K
i=1wi × Cost(yi,x)

(Eq. 5.4)

5.1.2 Symbiotic Evolution for Non-linear Programming

Next, the proposed self-configurable memetic framework, labelled here as Symbiotic Evolution

(SE), for solving non-linear programming problems is presented. The essential ingredients

2In the implementation, the database ΦL = {(yj → zj , Cost)} is created and maintained for each individual
learning strategy L. Each time the individual learning L is performed, the new entry will be inserted to Φ L in the
first-in-first-out (FIFO) manner, i.e., the outdated entries in the database will be removed when the number of
entries of ΦL exceeds the maximum size.
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Algorithm 5 Statistical Evolvability Learning SEvL(ID)
1: Query archived data ΦL = {(yj → zj , Cost)} of search profile ID = (V, L)
2: Model density distribution P (y|Pt,x) of variation operator V (.), based on Pt and x
3: Calculate weight wi(x) = P (yi|Pt,x) for each sample yi

4: if
∑K

i=1wi(x) < ε then
5: wi(x) = 0 {No relevant data is available}
6: return EvID(x, t) = −∞
7: else
8: wi(x) = wi(x)/

∑K
j=1wj(x) {Normalize wi}

9: return EvID(x, t) =
∑K

i=1wi(x)×Gain(yi,x)/
∑K

i=1wi(x)× Cost(yi,x)
{Eq. 6.3}

10: end if

of the framework is composed of multiple stochastic variation V and individual learning L

procedures that are governed by the evolvability of symbiotic search profiles. Let Ψ denote the

set of symbiotic search profiles (Stochastic Variation, Individual Learning) considered in the

SE. Based on the statistical evolvability learning scheme described in Section 5.1.1, SE adapts

the search by inferring the most productive symbiotic search profile (i.e., that would lead to

good search performances) to use on each individual while the search progresses online, as

outlined in Algorithm 6. Without loss of generality, in the event of a minimization problem,

the most productive symbiotic search profile for individual x is deemed as one that has the

largest estimated evolvability measure, i.e., argmaxEvID(x, t).

It is worth noting on the generality of the proposed framework in the use of density function

P (y|Pt,x) to represent and reflect the unique characteristics of the stochastic search operators,

thus not restricting to any particular type of operator. By formulating the search operator with

a density function, the framework allows the incorporation of different stochastic variation

operators, which depends on suitability to the given problem of interest.

In the first step, a population of individuals is initialized either randomly or using design

of experiment techniques such as Latin hypercube sampling. The evaluated population of in-

dividuals then undergoes natural selection, for instance, via fitness-proportional or tournament

selection. The evolvability of symbiotic search profiles with respect to each individual in the
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population is then estimated probabilistically using the database ΦL of solution individuals

uncovered and archived along the search. Subsequently, each individual is evolved using their

respective statistically inferred productive symbiotic search profile for generating the next pop-

ulation of solution individuals. The entire process repeats until the specified stopping criteria

is satisfied.

At the initial generation, note that no data in ΦL are available for the learning of evolv-

ability. This case is also considered in Algorithm 5 as “no relevant data available” and the

evolvability of search profiles are set to −∞ (line 5, Algorithm 5). In this case, each search

profile is randomly selected for use on each individual with the equal probability of 1/|Ψ|(line

11, Algorithm 6). In the subsequent generations, the evolvability learning will be able to pro-

ceed on the databaseΦL of each symbiotic search profile which has been populated with sample

data (y → z, Cost). For the sake of brevity, a summary of the Symbiotic Evolution is depicted

in Figure 5.2.

Algorithm 6 Symbiotic Evolution
1: Generate an initial population
2: while Stopping conditions are not satisfied do
3: Evaluate all individuals in the population
4: Update reproduction pool size
5: Select individuals for the reproduction pool Ω
6: for each individual x in Ω do
7: for each ID = (V, L) ∈ Ψ do
8: EvID(x, t) = SEvL(ID) on x (see Algorithm 5)
9: end for

10: if EvID(x, t) < 0 ∀ ID then
11: Select symbiotic profile ID randomly
12: else
13: Select symbiotic profile ID with optimal (largest) EvID(x, t)
14: end if
15: Evolve x according to stochastic variation operator V (.)
16: Perform individual learning via operator L(.)
17: Proceed in the spirit of Lamarckian learning
18: end for
19: end while
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Figure 5.2: Symbiotic Evolution (SE) Framework
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5.2 Empirical Study

In this section, a numerical study of the proposed SE on several commonly used continuous

parametric benchmark functions is presented. To ensure a comprehensive study, diverse pairs

of unique stochastic variations and individual learning procedures are considered.

5.2.1 Stochastic Variations: Mutation & Crossover

The density distribution P (y|Pt,x) of some common stochastic variation in EA, also some-

times referred to as genetic variations, are derived and described in what follows. In the

present experimental study, the stochastic variation operators considered include the conven-

tional Gaussian mutation and the uniform crossover, which have been used widely in real-coded

genetic evolution. The motivation to use simple variation operators is to provide a simple illus-

tration that would give an ease of understanding on the generality of Symbiotic Evolution. It

is worth noting that other advanced real-parameter search operators, such as that discussed in

[59], can also be considered within the framework through the density distribution P (y|P t,x).

In real-coded Gaussian mutation, for instance, each individual vector is perturbed with a

multivariate Gaussian distribution r ∼ N(0,C), i.e., x′ = x + r. In this case, the density

function of mutation operator is given in [39] as

P (y|Pt,x) =
1

(2π)n/2|C|1/2 × exp (−1

2
(y− x)TC−1(y − x)) (Eq. 5.5)

The uniform crossover procedure for a single parent x consists of the following steps: a) x

selects randomly its mate x′ in the current reproduction pool, b) uniformly crossover x and x′

to create two offspring: each location i of the offspring, i.e., y(i)
1 or y(i)

2 , has a value of either

x
(i)
1 or x(i)

2 at the crossover probability pcross, and c) select randomly one of the offspring as

the offspring of x. Although there exists many variations of crossover operators in real-coded

representation, such as the uniform and arithmetic crossovers, it is worth highlighting all these

57



CHAPTER 5. SYMBIOTIC EVOLUTION

variations share common property of the resultant offspring y bounded by minj=1...N {x(i)
j }

and maxj=1...N {x(i)
j } for each dimension3, i.e., ∀i = 1 . . . n.

Hence the density distribution of crossover operator can be modelled as a uniform distribu-

tion of bounds

R = [ min
j=1...N

{x(i)
j }, max

j=1...N
{x(i)

j }]i=1...n

defined in Eq. 6.4, where V ol(R) denotes the hyper-volume of hyper-rectangle R. Note

that since the hyper-rectangle R reduces as the search progresses, the probabilistic model of

crossover operator reflects well on the refinement of the search space by crossover and selec-

tion pressure. In particular, Eq. 6.4 models the density distribution of the coordinated-based

crossover considered in the present study.

P (y|Pt,x) = UniformDist(R) =

{
1

V ol(R)
if y ∈R

0 otherwise
(Eq. 5.6)

5.2.2 Individual Learning

In the present study, a comprehensive set of representative individual learning schemes is con-

sidered. These include the zero-order derivative Davies, Swann, and Campey with Gram-

Schmidt orthogonalization (DSCG) [168], 1st-order derivative Davidon, Fletcher and Powell

strategy (DFP) [153], and stochastic Evolution Strategy (1 + n) (ES) (Appendix B.4).

To deal with ”black-box” optimization problems that usually exist in practice, the investiga-

tion of symbiotic evolution (SE) does not assume the availability of the gradient information in

analytical form. In the study, the gradient information used by DFP strategy is estimated using

numerical differentiation in numerical analysis [155]. To facilitate a fair comparison to other

3If x1, x2 and y denote the parents and the offspring then each locus of the offspring y satisfies the inequality

min {x(i)
1 ,x

(i)
2 } ≤ y(i) ≤ max {x(i)

1 ,x
(i)
2 }, ∀i = 1 . . . n
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evolutionary/memetic algorithms that use other forms of information in the individual learn-

ing, the exact function evaluations incurred by the estimation of gradient information were also

included in the computational budget of the proposed SE4.

5.2.3 Numerical Results of Symbiotic Evolution on Representative Com-
plex Benchmark Problems

To instill further understanding on symbiotic evolution, various aspects of the proposed frame-

work are investigated on a comprehensive collection of unimodal/multimodal, epistatic/non-

epistatic, continuous/discontinuous and noisy benchmark problems used in literature [150].

The reader is referred to Appendix A where the benchmark test functions are tabulated with

their notable characteristics. In particular, here the analysis of numerical results focuses on the

potential of symbiotic evolution in providing high quality solution and efficiency across differ-

ent problem types and the amount of additional computational effort incurred over and above

the canonical memetic algorithms.

5.2.3.1 Search Quality & Efficiency

The parametric configurations of the experiments are summarized in Table 5.1. From the con-

figurations of stochastic variations (i.e., Gaussian mutation or coordinated-based crossover)

and individual learning procedures (i.e., DSCG, DFP or ES) considered, note that six poten-

tial combinations or unique configurations of symbiotic search profiles can transpire in the

Symbiotic Evolution.

The average convergence search trends across 50 independent runs, attained by means of

symbiotic evolution and canonical evolution represented by the six MAs, when solving the

representative 30-dimension shifted rotated Ackley, Rastrigin, Griewank, shifted Rosenbrock

and noisy shifted Schwefel functions are depicted in Figures 5.3.a-5.7.a, respectively. Here,

4For instance, the estimation of the 1st-order gradient of an individual solution x, given f(x), for a 30-
dimension problem requires the cost of 30 additional function evaluations.
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Table 5.1: Algorithm parameters setting
General parameters

Encoding scheme Real-coded
Population size 50
Selection scheme Roulette wheel
Merging scheme Elitism
Stopping criteria 300000 evaluations
Individual learning
strategies

DSCG, DFP and ES

Initial individual
learning intensity

300 evaluations

Variation operator Uniform crossover
and Gaussian mutation
N(0, 1)

each run continues until the global optimum was found or a maximum of 300, 000 function

evaluations were reached. In addition, the average frequency of each symbiotic profile that is

inferred as most productive on the solution individuals along the search are depicted in Figures

5.3.b-5.7.b for the respective problems considered.

Statistical results in Figures 5.3.a-5.7.a indicated that by adaptively configuring the sym-

biotic search profile along the search, Symbiotic Evolution exhibits search performance that

outwits all the canonical MAs. It is worth noting that the search traces in Figures 5.3.a-5.7.a

revealed interesting trends of slower convergence rate exhibited by symbiotic evolution dur-

ing the initial stage of the search as compared to the other canonical evolutions on all the test

problems. This denotes the initial learning phase of the SE in acquiring sufficient data and

knowledge about the search profile before evolvability learning begins to bite. Note that when

the database ΦL = {(yi, zi)} containing data pairs that represents each search profile gets suf-

ficiently populated, the statistical evolvability learning kicks in to select the most productive

search profile for each unseen individual solution, leading to a faster convergence to the precise

global optimum than other canonical MAs considered.
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5.3.b: Profile frequency

Figure 5.3: Shifted rotated Ackley (30D) function
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5.4.b: Profile frequency

Figure 5.4: Shifted rotated Rastrigin (30D) function
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5.5.b: Profile frequency

Figure 5.5: Shifted rotated Griewank (30D) function
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5.6.b: Profile frequency

Figure 5.6: Shifted Rosenbrock function
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Figure 5.7: Shifted noisy Schwefel (30D) function
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From Figure 5.3.b, search improvement in Symbiotic Evolution on the rotated Ackley func-

tion can be inferred as contributed mainly by profile (Crossover, DSCG) and (Crossover, ES),

while the contributions of (Crossover, DSCG) is more evident at later stages of the search.

On rotated Rastrigin function, however, (Mutation, ES) is chosen for most individuals in the

early generations of the SE search, before (Crossover, DSCG) begins to take effect as the search

space is refined. For unimodal landscapes including Rosenbrock and noisy Schwefel functions,

the plots in Figures 5.6.b and 5.7.b showed that decreasing frequencies of usage for symbiotic

profiles with Gaussian mutation operator at the later stages of search. This appears to be due

to the destructive effect of the Gaussian mutation operator when the search tries to converge

to the global optimum with high precision. The observations of no fixed symbiotic configura-

tion working as best throughout the search and across different optimization problems further

confirm the motivation for introducing the concept of Symbiotic Evolution.

5.2.3.2 Computational Complexity

Algorithmically, Symbiotic Evolution differs from canonical evolution in that the former intro-

duces a Statistical Learning of Evolvability phase that involves two core computations, namely

i) Modeling the density distribution P (y|Pt,x) of stochastic variation for all individuals in the

reproduction pool. The computational cost or time complexity of this estimation largely

depends on the form of variation method considered. For instance, the costs of modeling

the density function of the Gaussian mutation and crossover operators, described in Sec-

tion 5.2.1, is of order O{nindivs} and O{1}, respectively, where nindivs denotes the size

of reproduction pool.

ii) Computing weights wi of the archived solutions for all individuals in the reproduction pool.

The computational cost or time complexity involved is of order O{nindivs×|Ψ|× |ΦL|},

with |ΦL| denoting the number of archived individuals.
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Hence the additional time complexity for one generation of symbiotic evolution is of order

O{nindivs × (|Ψ| × |ΦL|+ 1)} in which the number of symbiotic search profiles |Ψ| equals to

nIL × nV , where nIL and nV denote the number of individual learning and variation methods

considered. As the size of reproduction pool nindivs and the size of archived database |ΦL| is

typically fixed in advance, the time complexity of symbiotic evolution is linearly proportional

to the number of search profiles involved. More importantly, since Symbiotic Evolution re-

quires no additional function evaluation calls, the extra cost incurred may be considered to be

negligible when dealing with computationally expensive problems [201].

5.3 Symbiotic Evolution: Assessment Against Other Evolu-
tionary and Adaptive Search Approaches

In this section, a detail assessment of Symbiotic Evolution (as described in Section 5.2.3)

against several recent state-of-the-art evolutionary and adaptive approaches on commonly used

test suite (see Appendix A) is presented to verify the efficacy of the proposed approach.

5.3.1 Comparison to Adaptive Algorithms

To see how adapting the symbiotic search profiles affects the performance and efficiency of the

search as compared to meme adaptation alone, in this subsection, the performance of Symbiotic

Evolution is compared with those of other adaptive mechanisms on the choice of individual

learning methods (memes) in MAs. Researchers use the terms meta-Lamarckian learning,

hyperheuristic and multi-memes arbitrarily when referring to memes adaptation in adaptive

MAs. In [138], adaptive mechanisms are classified into adaptation types (static, adaptive and

self-adaptive rules using qualitative or quantitative feedback) and levels (external, local and

global level) as summarized in Table 5.2. In addition, comparison to eight canonical MAs

reported in the literature as listed in Table 5.3 are made in the present study.
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Table 5.2: Classification of Adaptive MAs
Adaptation Type
Static No form of feedback (improvement attained by the chosen meme on

the chromosome search) is used during the search
Adaptive Qualitative or quantitative feedback influences the choice of memes

at each decision point
Self-adaptive The self-adaptation of memes is implemented in the idea of evolu-

tion
Adaptation Level
External No online knowledge about the memes is involved in the choice of

memes
Local Parts of the historical knowledge is involved in the choice of memes
Global Complete historical knowledge is used to decide on the choice of

memes

Table 5.3: List of Memes or Individual Learning Methods Considered
Abbreviations Algorithm Description
BL Bit climbing algorithm [34]
DP Davis, Swan and Campey with Palmer orthogonalizational [168,

187]
FB Schwefel library Fibonacci search [168]
FL Fletcher’s 1972 method by Siddall [44]
GL Repeated one-dimensional Golden section search [168]
SX Powell’s strategy of conjugate directions [153]
PS A direct search using the conjugate direction approach with

quadratic convergence [66]
SK A series of exploratory moves that consider the behavior of the ob-

jective function at a pattern of points, all of which lie on a rational
lattice [127]

To be consistent, the results presented for Symbiotic Evolution are the average of 50 in-

dependent runs. For fair comparison, each run continues until the global optimum was found

or a maximum of 40, 000 function evaluation calls was reached, which follows the experimen-

tal conditions considered in [138]. Using statistical T-test at 95% confidence level [162], the

performance comparison of Symbiotic Evolution to the adaptive MAs on the benchmark test

problems are tabulated in Table 5.4. For the detailed statistical results pertaining to each adap-

tive method, the reader is referred to Table 5.5. In the case where an algorithm manages to
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locate the global optimum of a benchmark problem, the number of evaluation count presented

indicates the effort taken to reach the optimum solution. Otherwise, the best fitness averaged

over 50 independent runs is reported.

From Table 5.4, Symbiotic Evolution is shown to outperform all the canonical and adaptive

MAs significantly, statistically at 95% confidence on all the problems. Note that this is a sig-

nificant finding, which highlights the benefits of facilitating the self-configuring of emergence

productive symbiosis search profiles in evolutionary computation instead of adapting only at

the level of individual learning, as previously studied in the literature.

Table 5.4: Results of t-test at 95% confidence level for SE and other adaptive search algo-
rithms in solving the benchmark problems (Note that s+ or s- indicates that SE is significantly
statistically better or not, respectively).

Level-Type FGriewank(10D) FRastrigin(20D) FSphere(30D) FStep(5D)

External-Static S-E s+ s+ s+ s+

Local-Qualitative
QL1-L s+ s+ s+ s+
QL2-L s+ s+ s+ s+

Global-Qualitative QL3-G s+ s+ s+ s+

Global-Quantitative
QN1-G s+ s+ s+ s+
QN2-G s+ s+ s+ s+

Local-Quantitative QN3-L s+ s+ s+ s+
Local Self-adaptive S-L s+ s+ s+ s+

Canonical MAs GA-< . > s+ s+ s+ s+

5.3.2 Assessment Against Other Recent State-of-the-Art Evolutionary Ap-
proaches

In this section, the proposed Symbiotic Evolution is assessed against 13 recent state-of-the-

art evolutionary approaches reported in the literature. Table 5.6 tabulates the list of diverse

algorithms, consisting of Memetic Algorithms [132, 134, 122, 121], CMA Evolution Strategy

[7, 5], continuous Estimation of Distribution Algorithms [223], Genetic Algorithms [46, 10],

Differential Evolution [163], Particle Swarm Optimization [126], Cooperative Co-Evolution

[152], and Population-based Algorithm Portfolio [150], considered here for comparisons with
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Table 5.5: Success measure of the algorithms in solving the benchmark functions. Either av-
erage best fitness or average number of evaluation count incurred to locate the global optimum
is presented for each function. Bold italic also highlights the best search performance.

Level-Type
FGriewank(10D) FRastrigin(20D) FSphere(30D) FStep(5D)

(Eval. Count) (Eval. Count)

Local-Quantitative SE 0 0 3429 1552
External-Static S-E 5.2500e-3 16.8760 12593 23433

Local-Qualitative
QL1-L 5.2537e-1 84.9772 > 40000 19504
QL2-L 1.0610e-2 18.6215 8599 8942

Global-Qualitative QL3-G 4.5000e-4 18.0530 8599 8056

Global-Quantitative
QN1-G 6.2000e-5 9.6078 8193 9653
QN2-G 6.1060e-3 14.5241 9196 14329

Local-Quantitative QN3-L 5.5800e-4 33.4929 10194 12007
Local Self-adaptive S-L 2.8630e-3 14.1689 11792 28100

Canonical MAs

GA-BL 6.1370e-1 92.3340 > 40000 8588
GA-DP 5.1600e-4 14.4480 9098 8931
GA-FB 1.9096e+1 144.2500 > 40000 25706
GA-FL 7.0700e-3 69.8630 6666 > 40000
GA-GL 2.2646e+1 155.1100 > 40000 25706
GA-PS 3.3780e-3 74.1060 12292 > 40000
GA-SK 3.3862e-1 81.1180 40000 > 40000
GA-SX 7.8610e-1 73.7900 > 40000 > 40000

a brief description of each algorithm provided. Using a statistical T-test of 95% confidence

level, the search performances of each algorithms are pitted against the SE on solving the set

of benchmark functions described in Appendix A, where the results are tabulated in Table 5.7.

The detailed statistics of the different algorithms on numerical errors with respect to the global

optimum, are provided separately in Table 5.8. For the sake of fair comparison, note that the

accuracy level of convergence ε, is configured as 1E− 8, which follows the configuration used

by other researchers of earlier studies as a strict guideline.

From the results in Table 5.7, Symbiotic Evolution is observed to fair competitively or sig-

nificantly outperform most of the state-of-the-art methods considered, at 95% confidence level

on the 30-dimensional benchmark functions, particularly on the noisy and rotated shifted multi-

modal functions. This highlights the robustness, efficacy and superior performance attained by

taking advantage of the emergence behavior that is resulted from the interactions of stochastic
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Table 5.6: Recent State-of-the-Art Evolutionary Approaches
Abbreviations Algorithm Description
APrMF Approximate probabilistic memetic framework based on GA-DSCG [132]
MA-LSCh-CMA Memetic algorithm with local search chaining [122]
DEahcSPX Accelerating differential evolution using an adaptive local search [134]
LR-CMA-ES Local restart CMA evolution strategy [7]
IPOP-CMA-ES Restart CMA evolution strategy with increasing population size [5]
EDA Continuous Estimation of Distribution Algorithms [223]
RCMA Adaptive local search parameters for real-coded Memetic Algorithm [121]
RCGA-FMD Hybrid real-coded Genetic Algorithm with female and male differentiation [46]
SPC-PNX Steady-state real parameter Genetic Algorithm SPC-PNX [10]
DE Differential Evolution [163]
CoEVO Real-parameter optimization using the mutation step co-evolution [152]
PS+CMA-ES Particle Swarm CMA-ES [126]
PAP Population-based Algorithm Portfolio based on (DE+PSO+PCX+ES) [150]

variations and individual learning working in symbiosis, as advocated in the symbiotic evolu-

tion.
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CHAPTER 5. SYMBIOTIC EVOLUTION

5.4 Conclusion

The general practice on manual crafting of dedicated search solvers in computational intelli-

gence community has evolved into the emerging field of self-configurable search algorithms.

Adaptation of parameters and operators in search now represents one of the most important,

promising and challenging areas of research in the field computational intelligence.

To demonstrate how the study on symbiosis of stochastic variation and individual learning

in memetic search introduced in Chapter 4 can be put into practice for solving complex prob-

lems, a self-configurable Symbiotic Evolution (SE) is proposed in this chapter. SE performed a

statistical learning of evolvability at runtime to infer the respective productive symbiotic search

profile for each individual, leading to the self-configuration of solver that searches effectively

on a given problem in hand. Numerical study of the SE with assessment made against sev-

eral recent state-of-the-art modern evolutionary methods, adaptive and hybrid approaches on

representative benchmark problems confirmed the motivation for formalizing the symbiosis of

search mechanisms in self-configurable memetic search.
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Chapter 6

Evolvability of Surrogates

Engineering reliable and high quality products is now becoming an important practice of many

industries to stay competitive in today’s increasingly global economy, which is constantly ex-

posed to high commercial pressures. Strong engineering design know-how results in lower time

to market and better quality at lower cost. In recent years, advancement in science, engineering

and the availability of massive computational power have led to the increasing high-fidelity ap-

proaches introduced for precise studies of complex systems in silico. Modern Computational

Structural Mechanics, Computational Electro-Magnetics, Computational Fluid Dynamics and

Quantum mechanical calculations represent some of the approaches that have been shown to

be highly accurate [73, 228, 63]. These techniques play a central role in the modelling, simula-

tion and design process since they serve as efficient and convenient alternatives for conducting

trials on the original real-world complex system that are otherwise deemed to be too costly or

hazardous to construct.

Typically, when high-fidelity analysis codes are used, it is not uncommon for the single

simulation process to take minutes, hours to days of supercomputer time to compute. A moti-

vating example at Honda Research Institute is aerodynamic car rear design, where one function

evaluation involving a Computational Fluid Dynamics (CFD) simulation to calculate the fitness

performance of a potential design can take many hours of wall clock time. Since the design cy-

cle time of a product is directly proportional to the number of calls made to the costly analysis
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CHAPTER 6. EVOLVABILITY OF SURROGATES

solvers, researchers are now seeking for novel stochastic optimization approaches, including

evolutionary frameworks, that handle these forms of problems elegantly. Besides parallelism,

which is an obvious choice to achieving near linear order improvement in evolutionary search,

researchers are gearing towards surrogate-assisted or meta-model assisted evolutionary frame-

works when handling optimization problems imbued with costly non-linear objective and con-

straint functions [106, 77, 181, 139, 75, 110, 109, 191, 173, 202, 165].

The general consensus on surrogate-assisted evolutionary frameworks is that the efficiency

of the search process can be improved by replacing as often as possible, calls to the costly high-

fidelity analysis solvers with surrogates that are deemed to be less costly to build and compute.

In this manner, the overall computational burden of the evolutionary search can be greatly re-

duced since the efforts required to build the surrogates and to use them are much lower than

those in the traditional approach that directly couples the evolutionary algorithm (EA) with the

costly solvers [171, 16, 76, 83, 42, 78, 196, 18, 226]. Among many data-centric approximation

methodologies used to construct surrogates to date, polynomial regression or response surface

methodology [100], support vector machine [30, 199], artificial neural networks [229], radial

basis function [154], Gaussian process referred to as Kriging or design and analysis of com-

puter experiment models [114, 20] and ensembles of surrogates [225, 48, 164, 1] are among

the most prominently investigated [75, 226, 173]. Early proposed approaches have consid-

ered using surrogates that target to model the entire solution space or fitness landscape of the

costly exact objective or fitness function [107, 108]. However, due to the sparseness of data

points collected along the evolutionary search, the construction of accurate global surrogates

[196, 20] that mimics the entire problem landscape well is impeded by the effect of “curse

of dimensionality” [37]. To enhance the accuracies of the surrogates used, researchers have

turned to localized models [47, 42, 139, 160] as opposed to globalized models, or their syner-

gies [226, 109]. Others have also considered the use of gradient information [140] to enhance

the prediction accuracy of the constructed surrogate models or physics-based models that are

deemed to be more trustworthy than pure data-centric counterparts [81, 111].
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CHAPTER 6. EVOLVABILITY OF SURROGATES

In the context of surrogate-assisted optimization [74, 173], present performance or assess-

ment metrics and schemes used for surrogate model selection and validation involve many

prominent approaches that have taken root in the field of statistical and machine learning

[43, 173]. Particularly, the focus have been placed on attaining surrogate model that has mini-

mal apparent error or training error on some optimization data collected during the evolutionary

search, as an estimation of the true error when used to replace the original costly high-fidelity

analysis solver. Maximum/Mean Absolute Error, Root Mean Square Error (RMSE) and Corre-

lation Measure denote some of the performance metrics that are commonly used [74]. Typical

model selection schemes that stem from the field of statistical and machine learning, including

the split sample (holdout) approach, cross-validation and bootstrapping, are subsequently used

to choose surrogate models that have low estimation of apparent and true errors [159, 193].

[192] used the multiple cross-validation schemes for the selection of low-error surrogates that

replace the original costly high-fidelity analysis solver to avoid convergence at false optima of

poor accuracy models.

In spite of the significant research effort spent on optimizing computationally expensive

problems more efficiently, existing surrogate-assisted evolutionary frameworks may be fun-

damentally bounded by the use of apparent or training error as the performance metric used

to assess and select surrogates. In contrast, it would be more worthwhile to select surrogates

that enhance search improvement in the context of optimization, as opposed to the usual prac-

tice of choosing surrogate model with minimal estimated true error. Further, the influence

of the data-centric approximation methodology employed is deemed to have a major impact

on surrogate-assisted evolutionary search performance. The varied suitability of approxima-

tion methodology to different fitness landscapes, state of the search, and characteristics of the

search algorithm suggests for the varieties of surrogate-assisted evolutionary frameworks in the

literature that have emerged with ad-hoc approximation methodology selection. To the best of

our knowledge, little work has been done to mitigate this issue since only limited knowledge

of the “black-box” optimization problem is available before one starts.
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CHAPTER 6. EVOLVABILITY OF SURROGATES

Falling back on the basics of Darwin’s grand idea of “Natural Selection” as the criterion

for the choice of surrogates that brings about fitness improvement to the search, this paper

describes a novel evolutionary search process that evolves along with fitness improving surro-

gates. Here, the study focuses on the Evolvability Learning of Surrogates (EvoLS), particularly

the adaptive choice of data-centric approximation methodologies that build fitness improving

surrogates in place of the original computationally expensive “black-box” problem, during the

evolutionary search. In the spirit of reward-based or improvement-based adaptation for the

choice of variation operators [49, 194, 32], EvoLS infers the fitness improvement contribution

of each approximation methodology towards the search, which is here referred to as evolv-

ability measure. Hence for each individual or design solution in the evolutionary search, the

evolvability of each approximation methodology is determined statistically, according to the

current state of the search, properties of the search operators and characteristics of the fitness

landscape, while the search progresses online. Using the evolvability measures derived, the

search adapts by using the most productive approximation methodology inferred for the con-

struction of surrogates embedded within a trust-region enabled individual learning strategy (of-

ten referred to as local search), leading to the self-configuration of surrogate-assisted memetic

algorithm that deals with complex optimization of computationally expensive problems more

effectively. It is worth noting that to the best of our knowledge, our current effort has not been

previously studied in the literature of surrogate-assisted EA.

The chapter is outlined as follows: Section 6.1 introduces the notion of evolvability as a

performance or assessment measure that expresses the suitability of an approximation method-

ology in guiding towards improved evolutionary search and subsequently the essential ingre-

dients of our proposed EvoLS. Section 6.2 presents a numerical study of EvoLS on commonly

used benchmark problems. Detailed analyses on the suitability and cooperation of surrogates

in search, as well as the correlation between the estimated fitness prediction error and evolv-

ability in EvoLS of the surrogate models, are also presented in the section. Finally, Section 6.3

summarizes the present study with a brief discussion and concludes the chapter.
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CHAPTER 6. EVOLVABILITY OF SURROGATES

6.1 Self-configurable Memetic Search: Evolvability Learn-
ing of Surrogates

This section presents the essential ingredients of the proposed Evolvability Learning of Sur-

rogates (EvoLS) for handling computationally expensive optimization problems. In particular,

the framework concentrates on the general nonlinear programming problem of the following

form:

Minimize : f(x)

Subject to : xl ≤ x ≤ xu

where x ∈ R
n is the vector of design variables, and xl, xu are vectors of lower and upper

bounds, respectively. In this paper, we are interested in cases where the evaluation of f(x) is

computationally expensive, and it is desired to obtain a near-optimal solution on a limited com-

putational budget, using a novel evolutionary process that adapts fitness improving surrogates,

f̂M(x) as a replacement of f(x), in the search.

Data-centric surrogates are (statistical) models that are built to approximate computation-

ally expensive simulation codes or the exact fitness evaluations. They are orders of magnitude

cheaper to run and can be used in lieu of the exact analysis during evolutionary search. Let

{(xi, ti)}mi=1 where ti = f(xi) denote the training dataset, where x ∈ R
n is the input vector of

scalars or design parameters, and f(x) ∈ R is the output or exact fitness value. Based on the

approximation methodologyM , the surrogate f̂M(x) is constructed as an approximation model

of the function f(x). Further, the surrogate model can also yield insights into the functional

relationship between the input x and the objective function f(x). For a detailed description of

some representative approximation methodologies used in the literature, the readers is referred

to the Appendix C of the thesis.

In what follows, the section begins with a formal introduction on the notion of evolvability

as a performance or assessment measure to indicate the productivity and suitability of an ap-

proximation methodology for constructing surrogate that brings about fitness improvement to
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CHAPTER 6. EVOLVABILITY OF SURROGATES

the evolutionary search (see Section 6.1.1). The essential backbone of the proposed Evolvabil-

ity Learning of surrogates framework is a evolutionary algorithm coupled with a trust-region

enabled individual learning strategy with adaptive surrogates, in the spirit of Lamarckian learn-

ing. In contrast to existing works, the choice of approximation methodology is adapted for the

construction of fitness improving data-centric surrogates in place of the original computation-

ally expensive “black-box” problem when conducting the computationally intensive individual

learning (local search) in the context of memetic optimization [56, 89, 137] (see Section 6.1.2).

6.1.1 Evolvability of Surrogate

Conventionally, surrogate models are assessed and chosen according to their estimated true

error, |f(x) − f̂M(x)|, where f̂M(x) denotes the predicted fitness value of input vector x by

a surrogate constructed using approximation method M . In contrast to existing surrogate-

assisted evolutionary search, the surrogate model employed for each individual design solution

in the present study favors fitness improvement as the choice of merit to assess the usefulness

of surrogates in enhancing search improvement, as opposed to the estimated true error.

In this subsection, the concept of “Evolvability” of an approximation methodology is in-

troduced as the basis for adaptation. Since the term “Evolvability” has been used in different

contexts1, it is worth highlighting that our concept of evolvability generalizes from that of

learnability in machine learning [197]. Here the evolutionary process is regarded as “evolv-

able” on a given optimization problem if the progress in search performance is observed for

some moderate number of generations. Hence evolvability of an approximation methodology

here is referred to the propensity of the method in constructing a surrogate model that guides

towards viable, or “potentially favorable” individuals with improved fitness quality.

In particular, the evolvability measure of an approximation methodology M for the con-

struction of a fitness improving data-centric surrogate on individual solution x at generation t,

1In [203], “evolvability” is defined as the genome’s ability to produce adaptive variants when acted upon by
the genetic system. Others have generally referred the term to the ability of stochastic or random variations to
produce improvement for adaptation to happen [138].
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assuming a minimization problem, is denoted here as EvM(x, t) and derived in the form of

EvM (x, t) = Exp[f(x)− f(z)|Pt,x]

= f(x)−
∫
y

f(ϕM(y))× P (y|Pt,x)dy (Eq. 6.1)

Here P (y|Pt,x) denotes the conditional density function of the stochastic variation operators

applied on parent x to arrive at solution y at generation t, i.e., y ∼ P (y|Pt,x), where Pt is the

current reproduction pool consisting of individual solutions after undergoing natural selection.

ϕM(y) denotes the resultant solution derived by the individual learning strategy that operates

on the surrogate constructed based on approximation method M . The evolvability measure

of an approximation methodology indicates the expectation of fitness improvement which the

refined offspring, denoted here as z = ϕM(y), has gained over its parent, upon undergoing

individual learning improvement on the respective constructed surrogate2. A high evolvability

measure encapsulates two core essences of the surrogate-assisted evolutionary search: 1) When

a surrogate exhibits low true error estimates, fitness improvement on the refined offspring z

over initial parent x can be expected and 2) When a surrogate exhibits high true error estimates,

the discovery of offspring solutions with improved fitness z of x can be still attained due to the

“blessing of uncertainty” phenomenon [142] (see Fig. 6.1 for an example illustration).

Taking into account the current state of the evolutionary search, properties of the search

operators, and characteristics of the fitness landscape, a statistical learning approach to esti-

mate the evolvability measure EvM(x, t) of each approximation methodology (as defined in

Eq. 6.1) for use on a given individual solution x at generation t, is proposed. Let ΦM =

{(yi, ϕM(yi))}Ki=1 denote the database of distinct samples archived along the search, which

represents the historical contribution of the approximation methodology on the problem con-

sidered. Through a weighted sampling approach, the weight wi(x) that defines the probability

of choosing a sample (yi, ϕM(yi)) for the estimation of expected improvement EvM (x, t), or

2The individual learning strategy serves as a function that takes the starting solution x as input and returns z
as the refined solution. As such, the function is represented as z = ϕM (y).
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CHAPTER 6. EVOLVABILITY OF SURROGATES

Figure 6.1: Illustration of evolvability under the effect of “bless of uncertainty”

the integral
∫
y
f(ϕM(y))× P (y|Pt,x)dy in particular, is first derived and efficiently estimated

here as follows:

wi(x) =
P (yi|Pt,x)∑K
j=1 P (yj|Pt,x)

(Eq. 6.2)

The weight wi(x) essentially reflects the current probability of jumping from solution x,

via stochastic variation P (y|Pt,x), to offspring yi which was archived in the database. In

other words, the weight wi(x) measures the relevancy of the samples (yi, ϕM(yi)) for the

evolvability learning process on solution x. Considering {(yi, ϕM(yi))}Ki=1 as distinct samples

from current distribution P (y|Pt,x), the weights wi(x) associated with samples (yi, ϕM(yi))

satisfy the equations:
∑K

i=1wi(x) = 1 and wi(x) is proportional to P (yi|Pt,x). Note that the

conditional density function P (y|Pt,x) is modeled probabilistically based on the properties of

the evolutionary variation operators used to reflect the current state of the search. Subsequently,

using the archived samples in ΦM = {(yi, ϕM(yi))}Ki=1 and weights wi obtained using Eq. 6.2,

EvM(x, t) is estimated as follows:

EvM(x, t) = f(x)−
K∑
i=1

f(ϕM(yi))× wi(x) (Eq. 6.3)
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6.1.2 Evolution with Adapting Surrogates

The proposed Evolvability Learning of Surrogates (EvoLS) for solving computationally ex-

pensive optimization problems is presented and outlined in Algorithm 7. The essential ingredi-

ents of our proposed EvoLS framework, are composed of multiple data-centric approximation

methodologies having diverse characteristics3, denoted here as {Mid}IDid=1. In the first step,

a population of N individuals is initialized either randomly or using design of experiment

techniques such as Latin hypercube sampling. The cost or fitness value of each individuals

in the population is then determined using f(x). The evaluated population then undergoes

natural selection, for instance, via fitness-proportional or tournament selection. Each indi-

vidual x in the reproduction pool Pt is evolved to arrive at the offspring y using stochastic

variation operators including crossover and mutation. Subsequently, with ample design points

in the database Ψ or after some predefined database building phase of exact evaluations Gdb

(line 4), the trust-region enabled individual learning with adaptive surrogate kicks in for each

non-duplicated design point or individuals in the population. For a given individual solution

x at generation t, the evolvability EvMid
(x, t) of each data-centric approximation methodol-

ogy is estimated statistically by taking into account the current state of the search, properties

of search operators and characteristics of the fitness landscape via the historical contribution

by the respective constructed surrogates, while the search progresses online4. Without loss of

generality, in the event of a minimization problem, the most productive data-centric approxima-

tion methodology, which is deemed as one that has the highest estimated evolvability measure

argmaxEvMid
(x, t), is then chosen to construct a surrogate that will be used by the individual

learning to bring about fitness improvement on individual x.

3Typical approximation techniques are Radial Basic Function (RBF), Kriging or Gaussian process (GP) and
Polynomial Regression (PR).

4Note that a uniform selection of approximation methodologies is employed in EvoLS instead of Algorithm
8 in the first generation right after the database building phase. In this way, all approximation methodologies
are ensured to be given equal opportunities to work on each individual in the population. Thus sufficient data
points are expected to be made available for the evolvability learning of each approximation methodology in the
subsequent generations.
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Algorithm 7 Evolvability Learning of Surrogates (EvoLS) Framework
1: Generate and evaluate an initial population
2: while computational budget is not exhausted do
3: Select individuals for the reproduction pool Pt

4: if evaluation count < database building phase (Gdb) then
5: Evolve population by evolutionary operators (crossover, mutation)
6: else
7: Evolve population by evolutionary operators (crossover, mutation)
8: for each individual x in the population do
9: Perform approximation methodology selection on x to arrive at Mid

10: /*** Individual Learning Phase on Surrogate Model***/
11: Find m nearest points to y in the database Ψ as training points for surrogate model
12: Build surrogate model f̂Mid

(x) based on training points
13: Apply individual learning strategy ϕMid

(y) to arrive at z
14: Replace y with z (Lamarckian learning)
15: Archive sample (y, ϕMid

(y)) into the database ΦMid

16: end for
17: end if
18: Evaluate new population using exact fitness function f(x)
19: Archive all exact evaluations (x, f(x)) into the database Ψ
20: end while

The outline of the approximation methodology selection process is detailed in Algorithm

8. It is worth noting on the generality of the proposed framework in the use of density function

P (y|Pt,x) to represent and reflect the unique characteristics of the stochastic search operators

(line 1), thus not restricting to any specific type of operator. By formulating the search op-

erator with a density function, the framework allows the incorporation of different stochastic

variation operators, which depends on suitability to the given problem of interest. It is worth

highlighting that the condition
∑K

i=1wi(x) < ε (line 5) caters for the scenario when all samples

(yi, ϕMid
(yi)) are irrelevant for evolvability estimation on solution x , i.e., P (yi|Pt,x) is too

small. The role of ε thus specifies the threshold level of irrelevance for archived samples in the

evolvability learning. In particular, ε is configured to a precision of 1E−9 in our present study.

Rather than constructing a global surrogate based on the entire archived samples, nearest

sampled points to y in the database Ψ are selected as training dataset T = {(xi, f(xi))}mi=1
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for building local fitness improving surrogate f̂Mid
. The improved solution found using the

respective constructed surrogate, denoted here as z = ϕMid
(y), is subsequently evaluated using

the original computationally expensive fitness function f(x) and replaces the parent individual

in the population, in the spirit of Lamarckian learning. Exact evaluations of all newly found

individuals {(z, f(z))}, together with {(y, ϕMid
(y))} are then archived into the database Ψ

and ΦMid
, respectively, for subsequent use in the search. The entire process repeats until the

specified stopping criteria are satisfied.

Algorithm 8 Approximation Methodology Selection Process
1: Construct density distribution P (y|Pt,x) of variation operators
2: for each approximation methodology Mid do
3: Query archived data ΦMid

= {(yj, ϕMid
(yj))} for Mid

4: Calculate weight wi(x) = P (yi|Pt,x) for each sample yi

5: if
∑K

i=1wi(x) < ε then
6: wi(x) = 0 {No relevant data available}
7: EvMid

(x, t) = −∞
8: else
9: wi(x) = wi(x)/

∑K
j=1wj(x) {Normalize wi}

10: EvMid
(x, t) = f(x)−∑K

i=1 f(ϕMid
(yi))× wi(x) {Eq. 6.3}

11: end if
12: end for
13: if EvMid

(x, t) < 0 ∀Mid then
14: Select approximation methodology randomly
15: else
16: Select approximation methodology with highest EvMid

(x, t) for x
17: end if

6.1.3 Complexity Analysis and Parameters of EvoLS Framework

Here the computational complexity of present conventional surrogate selection schemes that

take roots in the fields of statistical and machine learning [43, 159, 192] is first discussed. In

conventional surrogate selection schemes, multiple sets of sample data are generally segre-

gated, typically into training and test sets. For each approximation methodology, the respective

85



CHAPTER 6. EVOLVABILITY OF SURROGATES

surrogate model is commonly constructed based on the training set and the true error is esti-

mated using the test set in the prediction process. This procedure of computation cost CM is

typically repeated for k times on different training and test sets to arrive at a statistically sound

estimation of the approximation error that is then used in the selection scheme. Although

many error estimation approaches are in abundance, the major differences lie mainly on how

the training and test sets are generated, which vary from random subsampling (holdout), k-

fold cross-validation and bootstrapping as described in [84]. For ID number of approximation

methodologies considered, the overall computational complexity of the conventional selection

scheme in estimating the error of the surrogates can thus be derived as O(ID × k × CM).

Next, a complexity analysis of the EvoLS framework is detailed. Apart from the standard

parameters of a typical surrogate-assisted evolutionary algorithm [109], EvoLS has two ad-

ditional parameters: database ΦMid
and density function P (y|Pt,x). Typically, the form of

P (y|Pt,x) can be explicitly defined according to the stochastic operator used (as illustrated

in Section 6.2), while databases ΦMid
naturally follows a first-in-first-out queue structure to

favor more recently archived optimization data {(y, ϕMid
(y))}. The complexity for evolv-

ability learning of surrogates can be derived as O(ID × |ΦMid
| × CE) where |ΦMid

| denotes

the database size, ID denotes the number of approximation methodologies used, and CE is

the computational effort incurred to determine P (yi|Pt,x) for each yi. For each individual,

since only the most productive approximation methodology inferred is used to construct a new

surrogate at a computational requirement of CM , the complexity of EvoLS can be derived as

O(ID × |ΦMid
| × CE + CM). Nevertheless, as (ID × |ΦMid

| × CE) << CM in practice,

the computational complexity of EvoLS becomes O(CM). Thus, EvoLS offers an alternative

to the conventional selection scheme with a significantly lower complexity of O(CM) that is

independent of the number of approximation methodologies considered in the framework.
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6.2 Empirical Study

In this section, the numerical results obtained by the proposed EvoLS using three commonly

used approximation methodologies, namely: 1) interpolating linear spline Radial Basic Func-

tion (RBF), 2) 2nd order Polynomial Regression (PR) and 3) interpolating Kriging/ Gaussian

Process (GP), are presented. For the details on GP, PR and RBF, the reader is referred to Ap-

pendix C. Representative 30 dimensional benchmark functions considered in the present study

are summarized in Table 6.1 while the algorithmic parameters of EvoLS are summarized in

Table 6.2.

Table 6.1: Benchmark problems considered in the empirical study. On shifted rotated prob-
lems, note that z = M × (x − o) where M is the rotation matrix and o is the shifted global
optimum. Otherwise, z = x.

Function Benchmark test functions Range of x Multi* Non-sep*

Ackley (F1)
FAckley = 20 + e− 20e

−0.2

√
1
n

n∑
i=1

z2i − e
1
n

n∑
i=1

cos(2πzi) [−32, 32]n Yes Yes

Griewank (F2) FGriewank = 1 +
n∑

i=1
z2i /4000 −

n∏
i=1

cos(zi/
√
i) [−600, 600]n Yes Yes

Rosenbrock (F3) FRosenbrock =
n−1∑
i=1

(100 × (zi+1 − z2i )
2 + (1− zi)

2) [−2.048, 2.048]n Yes Yes

Shifted Rotated
Rastrigin (F4)

FRastrigin−SR = 10n+
n∑

i=1
(z2i − 10 cos(2πzi)) [−5, 5]n Yes Yes

Shifted Rotated
Weierstrass (F5)

FWeierstrass−SR =
n∑

i=1
(
kmax∑
k=0

(ak cos(2πbk(zi + 0.5))))

−n
kmax∑
k=0

(ak cos(πbk))

a = 0.5, b = 3, kmax = 20

[−0.5, 0.5]n Yes Yes

Expanded
Griewank plus
Rosenbrock (F6)

FGrie+Rosen =
D∑
i=1

FGriewank(FRosenbrock(zi, zi+1))

zD+1 = z1

[−3, 1]n Yes Yes

The stochastic variation operators considered in the present study are uniform crossover

and mutation, which have been widely used in real-coded genetic evolution. For the sake of
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brevity, the use of simple variation operators is considered in the illustrating study to showcase

the mechanism and generality of the proposed EvoLS. It is worth noting that other advanced

real-parameter search operators, such as that discussed in [60], can also be considered in the

framework through density distribution P (y|Pt,x).

In particular, the crossover procedure considered here is outlined as follows: a) randomly

select two solutions, x and x′ from the population; b) perform uniform crossover on x and x′

to create two offspring y1 and y2 where the locus i of offspring y
(i)
1 /y(i)

2 has value x
(i)
1 /x(i)

2

with crossover probability of pcross, and c) select y = y1 or y2 as the offspring of x. Uniform

mutation is conducted on y such that each locus y(i) is assigned to a random value bounded by

[minj=1...N {x(i)
j },maxj=1...N {x(i)

j }] with a mutation probability of pmut. Note that N denotes

the population size.

The task of deriving exact density distribution function is non-trivial due to the complexity

of the search dynamics. Thus a simplified assumption of uniformity in the offspring distribution

is considered for practical purposes in our empirical study. The density distribution P (y|P t,x)

is then modeled as a uniform distribution with

P (y|Pt,x) = UniformDist(R) =

{
1

V ol(R)
if y ∈R

0 otherwise
(Eq. 6.4)

where V ol(R) denotes the hyper-volume of hyper-rectangle with bounds R defined as

R = [ min
j=1...N

{x(i)
j }, max

j=1...N
{x(i)

j }]i=1...n

Note that the stochastic variations considered impose the resultant offspring y to be bounded

by minj=1...N {x(i)
j } and maxj=1...N {x(i)

j } for each dimension5, i.e., ∀i = 1 . . . n. Since the

hyper-rectangle R reduces as the search progresses, the probabilistic model of the variation

operators reflects well on the refinement of the search space throughout the evolution.

5If x1, x2 and y denote the parents and offspring, then each locus of the offspring y satisfies the inequality

min {x(i)
1 ,x

(i)
2 } ≤ y(i) ≤ max {x(i)

1 ,x
(i)
2 }, ∀i = 1 . . . n (Eq. 6.5)
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On the other hand, the individual learning strategy of EvoLS involves a trust-region frame-

work [142] with Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) method [227]. Note that

under mild assumptions, trust-region framework ensures theoretical convergence to the local

optimum or stationary point of the exact objective function, despite the use of surrogate models

[3, 139]. For each individual yi in the population, the individual learning method L-BFGS-B

proceeds on the inferred most productive surrogate model f̂M(x) to perform a sequence of

trust-region sub-problems of the form:

Minimize : f̂M(y + yk
i )

Subject to : ||y|| ≤ Ωk

where k = 0, 1, 2, . . . kmax, f̂M(y) denotes the approximate function corresponding to the orig-

inal fitness function f(y), yk
i andΩk denote the starting point and trust-region radius at iteration

k, respectively. For each individual yi, the surrogate model f̂M(y) of the original fitness func-

tion is created dynamically using training data from archived database Ψ = {(xi, f(xi))}Qi=1 to

estimate the fitness during individual learning. Note that yk+1
i = argmin f̂M(y + yk

i ) denotes

the local optimum of the trust-region sub-problem at iteration k. At each kth iteration, yk+1
i

and the trust-region radius Ωk are updated accordingly. In the present study, the resultant indi-

vidual denoted here as ykmax
i = ϕM(yi), is the improved solution attained by L-BFGS-B over

surrogate model f̂M(x).

6.2.1 Search Quality and Efficiency of EvoLS

To see how adapting the choice of most productive approximation methodology affects the per-

formance and efficiency of the search as compared to the use of single approximation method,

in this subsection, the performance of Symbiotic Evolution is compared with the canonical

surrogate-assisted evolutionary algorithms (SAEAs) with single approximation methodology,

i.e., EA-RBF, EA-PR and EA-GP. Note that the procedure of canonical SAEA is consistent to
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Table 6.2: Algorithm Configuration
Parameters

Population size 100
Selection scheme Roulette wheel
Stopping criteria 8000 evaluations
Individual learning method L-BFGS-B
Number of trust region itera-
tion

3

Crossover probability (pcross) 1
Mutation probability (pmut) 0.01
Variation operator Uniform crossover and mutation
Database building phase (Gdb) 2000 evaluations
Precision Accuracy 1E-8

the EvoLS outlined in Algorithm 7, except that the former lacks any approximation methodol-

ogy selection mechanism (line 11). In addition, EA-Perfect, which refers to a canonical SAEA

that employs an imaginary approximation method that generates error-free surrogates6 is also

considered here to assess the benefits of using evolvability measure versus approximation errors

as the criterion for model selection.

The averaged convergence trends obtained by EvoLS on the benchmark problems as a

function of the total number of exact fitness function evaluations are summarized in Figs. 6.2.a-

6.2.f. The results presented here are the average of 20 independent runs for each test problem.

Also shown in the figures are the averaged convergence trends obtained using the canonical

surrogate-assisted evolutionary algorithms (SAEAs), i.e., EA-RBF, EA-PR, EA-GP and EA-

Perfect. To facilitate a fair comparison study, the parametric configurations of EvoLS and

SAEAs are maintained consistent, as defined in Table 6.2. In addition, the proposed EvoLS

is further assessed against other recent state-of-the-art evolutionary approaches reported in the

literature. In particular, GS-SOMA [109] and IPOP-CMA-ES7 [6], which are well established

6An error-free surrogate model is realized by using exact fitness function for evaluation inside the individual
learning strategy where a surrogate model should be used. Note that the incurred fitness evaluation here is not
counted as part of the computational budget.

7MATLAB implementation, version 3.55.beta January 2011, available at http://www.lri.fr/ hansen/cmaes.m
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Table 6.3: Results of Wilcoxon test at 95% confidence level, for EvoLS and other SAEAs in
solving the 30D benchmark problems. Note that s+, s- or ≈ indicates that EvoLS is signifi-
cantly statistically better, worse or indifferent, respectively.

Algorithm EA-GP EA-PR EA-RBF EA-Perfect GS-SOMA IPOP-CMA-ES

FAckley s+ ≈ s+ s+ s+ s+
FGriewank s+ s- s+ s- ≈ s+
FRosenbrock s- s+ s+ s- s+ s+
FRastrigin−SR s+ s+ s+ s+ s+ s+
FWeiertrass−SR s+ ≈ s+ s+ s+ s+
FGrie+Rosen s+ s+ ≈ s+ s+ s+

evolutionary algorithms designed for numerical optimization under the scenarios of limited

computational budget, are included here as the state-of-the-art algorithms for comparison. Note

that all algorithms considered are configured to their default parametric settings in [109, 6] to

facilitate a fair comparison in our study8. Using a statistical Wilcoxon test at 95% confidence

level, the search performances of each algorithm are pitted against the EvoLS on solving the

set of benchmark functions described in Table 6.1, where the results are tabulated in Table 6.3.

The detailed statistics of the algorithms from 20 independent runs on the numerical errors with

respect to the global optimum are provided separately in Table 6.10.

Statistical analysis shows that EvoLS fares competitively or significantly outperforms most

of the methods considered, at 95% confidence level on the 30-dimensional benchmark prob-

lems. In the ideal case of error-free surrogate model, denoted by EA-Perfect, the results indi-

cated that the search on surrogate model with low approximation error does not always lead to

better performance over the others. As one would expect, the EA-Perfect exhibits superior per-

formance on the low-modality Rosenbrock (with 2 local optima [172]) and Griewank (which

has a relatively smooth fitness landscape at high dimensionalities [94]), as observed in Figs.

6.2.b-6.2.c, due to the high efficacy of the individual learning strategy used on a perfect or

8Note that the population size was configured to 100 for GS-SOMA and (50, 100) for IPOP-CMA-ES in the
study.
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error-free model. However, on problems with highly multi-modal and rugged landscapes in-

cluding Ackley, Rastrigin-SR, Weierstrass-SR and expanded Griewank plus Rosenbrock (see

Figs. 6.2.a, 6.2.d-6.2.f), EvoLS which operates on inferring the most suitable approximation

method according to their evolvability measure, is observed to outperform EA-Perfect signifi-

cantly.

Focusing on the Griewank function, it is worth noting that EvoLS exhibits more robust

search than EA-PR, as indicated by the relatively lower standard deviation in solution quality

(as shown in Table 6.10). Similar robustness in the EvoLS over EA-GP can also be observed

on the Rosenbrock function. On the other hand, the competitive performance displayed by

EA-PR and EvoLS on 3 out of the 6 benchmark problems suggests both are benefitting well

from the landscape smoothing effect of low-order polynomial regression. Such a phenomenon

is established as the “blessing of uncertainty” in SAEA [109]. Overall, the results from the

statistical tests confirmed the robustness and superiority of the EvoLS over those that assumed a

single fixed approximation methodology throughout the search (EA-GP, EA-PR, EA-RBF and

EA-Perfect). Last but not least, from the statistical results in Table 6.3, EvoLS is also observed

to fare competitively or significantly outperforms the state-of-the-art methods GS-SOMA and

IPOP-CMA-ES, at 95% confidence level on the 30-dimensional benchmark problems, thus

highlighting the robustness and superiority of EvoLS.

In Table 6.4, the percentage of savings in computational budget by EvoLS (in terms of the

number of calls made to the original computational expensive function) to arrive at equivalent

solution quality to the respective algorithms on the 30D benchmark problems, are tabulated.

Note that only those algorithms that are significantly outperformed by EvoLS on the respective

benchmark problem are discussed here. The superior efficiency of the EvoLS over the counter-

part algorithms can be observed from the table, where significant savings of 25.32% to 88.41%

are noted.
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Table 6.4: Percentage of savings in computational budget by EvoLS on the benchmark prob-
lems, in terms of the number of calls made to the original computational expensive function to
arrive at equivalent converged solution quality of the respective algorithms.

Algorithm EA-GP EA-PR EA-RBF EA-Perfect GS-SOMA IPOP-CMA-ES

FAckley 74.60 - 66.91 74.91 62.01 47.83
FGriewank 74.76 - 74.76 - - 74.76
FRosenbrock - 50.27 55.20 - 52.88 40.25
FRastrigin−SR 49.64 55.31 26.33 25.32 53.85 59.45
FWeiertrass−SR 58.57 - 42.28 63.32 41.72 88.41
FGrie+Rosen 47.67 45.05 - 44.13 44.99 74.76

Table 6.5: Statistics of the converged solution quality at the end of 8000 exact function evalu-
ations for SAEAs, GS-SOMA, IPOP-CMA-ES and EvoLS on benchmark problems.

Optimization
Algorithm

Ackley (F1)
Mean Std. Dev. Median Best Worst

EA-GP 1.05E+01 4.42E+00 1.23E+01 1.17E-03 1.53E+01
EA-PR 1.54E-03 8.34E-04 1.30E-03 4.93E-04 3.39E-03
EA-RBF 4.62E+00 1.67E+00 4.47E+00 2.66E+00 6.40E+00
EA-Perfect 1.28E+01 1.17E+00 1.30E+01 9.73E+00 1.42E+01
GS-SOMA 3.58E+00 5.09E-01 3.67E+00 2.87E+00 4.28E+00
IPOP-CMA-ES 1.08E+00 1.34E+00 6.01E-01 1.50E-01 5.67E+00
EvoLS 1.28E-03 9.84E-04 1.13E-03 1.32E-04 3.40E-03

Table 6.6: Statistics of the converged solution quality at the end of 8000 exact function evalu-
ations for SAEAs, GS-SOMA, IPOP-CMA-ES and EvoLS on benchmark problems.

Optimization
Algorithm

Griewank (F2)
Mean Std. Dev. Median Best Worst

EA-GP 2.67E+00 1.12E+01 1.88E-02 4.02E-05 5.02E+01
EA-PR 3.96E-04 1.27E-03 3.77E-09 4.34E-10 5.04E-03
EA-RBF 1.07E+00 3.03E-01 1.10E+00 2.43E-01 1.47E+00
EA-Perfect 6.02E-019 1.51E-019 5.96E-019 3.25E-019 8.67E-019
GS-SOMA 2.20E-03 4.60E-03 8.95E-09 1.40E-10 1.54E-02
IPOP-CMA-ES 6.14E-01 2.72E-01 6.06E-01 2.23E-01 1.05E+00
EvoLS 7.89E-08 2.80E-07 1.12E-08 1.71E-09 1.17E-06
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6.2.a: Ackley-30D
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6.2.b: Griewank-30D
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6.2.c: Rosenbrock-30D
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6.2.d: Rastrigin-30D-RS
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Figure 6.2: Performance of EvoLS and SAEAs on the benchmark problems
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Table 6.7: Statistics of the converged solution quality at the end of 8000 exact function evalu-
ations for SAEAs, GS-SOMA, IPOP-CMA-ES and EvoLS on benchmark problems.

Optimization
Algorithm

Rosenbrock (F3)
Mean Std. Dev. Median Best Worst

EA-GP 2.29E+01 1.76E+01 1.92E+01 1.47E+01 9.70E+01
EA-PR 3.63E+01 2.29E+01 2.81E+01 2.66E+01 1.18E+02
EA-RBF 5.90E+01 2.15E+01 5.57E+01 3.07E+01 1.02E+02
EA-Perfect 5.65E-18 2.04E-17 1.05E-18 2.96E-019 9.22E-17
GS-SOMA 4.63e+01 2.92e+01 3.02e+01 2.83e+01 1.26e+02
IPOP-CMA-ES 2.84E+01 5.12E-01 2.85E+01 2.72E+01 2.92E+01
EvoLS 2.32E+01 1.66E+00 2.29E+01 2.11E+01 2.66E+01

Table 6.8: Statistics of the converged solution quality at the end of 8000 exact function evalu-
ations for SAEAs, GS-SOMA, IPOP-CMA-ES and EvoLS on benchmark problems.

Optimization
Algorithm

Shifted Rotated Rastrigin (F4)
Mean Std. Dev. Median Best Worst

EA-GP 1.88E+02 7.42E+01 1.79E+02 6.67E+01 3.44E+02
EA-PR 2.11E+02 1.36E+01 2.12E+02 1.86E+02 2.39E+02
EA-RBF 7.63E+01 2.86E+01 8.02E+01 3.43E+01 1.38E+02
EA-Perfect 7.30E+01 1.54E+01 6.99E+01 4.97E+01 1.09E+02
GS-SOMA 2.04E+02 1.60E+01 2.07E+02 1.66E+02 2.30E+02
IPOP-CMA-ES 2.28E+02 1.76E+01 2.35E+02 1.91E+02 2.51E+02
EvoLS 4.93E+01 1.66E+01 4.73E+01 2.36E+01 8.16E+01

Table 6.9: Statistics of the converged solution quality at the end of 8000 exact function evalu-
ations for SAEAs, GS-SOMA, IPOP-CMA-ES and EvoLS on benchmark problems.

Optimization
Algorithm

Shifted Rotated Weierstrass (F5)
Mean Std. Dev. Median Best Worst

EA-GP 3.33E+01 4.42E+00 3.42E+01 2.44E+01 3.99E+01
EA-PR 1.91E+01 2.61E+00 1.93E+01 1.38E+01 2.37E+01
EA-RBF 2.63E+01 2.97E+00 2.63E+01 2.08E+01 3.29E+01
EA-Perfect 3.57E+01 2.64E+00 3.58E+01 3.15E+01 4.12E+01
GS-SOMA 2.60E+01 3.05E+00 2.90E+01 2.40E+01 3.40E+01
IPOP-CMA-ES 4.62E+01 6.47E+00 4.87E+01 2.97E+01 5.26E+01
EvoLS 1.99E+01 2.69E+00 1.97E+01 1.52E+01 2.52E+01
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Table 6.10: Statistics of the converged solution quality at the end of 8000 exact function eval-
uations for SAEAs, GS-SOMA, IPOP-CMA-ES and EvoLS on benchmark problems.

Optimization
Algorithm

Expanded Griewank plus Rosenbrock (F6)
Mean Std. Dev. Median Best Worst

EA-GP 1.90E+01 4.58E+00 1.87E+01 1.20E+01 2.81E+01
EA-PR 1.81E+01 1.04E+00 1.81E+01 1.61E+01 2.04E+01
EA-RBF 8.85E+00 2.03E+00 9.25E+00 5.84E+00 1.17E+01
EA-Perfect 1.76E+01 6.26E+00 1.66E+01 9.27E+00 3.67E+01
GS-SOMA 1.80E+01 1.05E+00 1.77E+01 1.70E+01 1.90E+01
IPOP-CMA-ES 1.93E+01 1.17E+00 1.93E+01 1.66E+01 2.15E+01
EvoLS 8.60E+00 1.78E+00 8.77E+00 6.27E+00 1.15E+01

6.2.2 Suitability of Surrogates

In this subsection, the suitability of surrogates in evolutionary search with respect to the bench-

mark problem of interest, prediction quality and states of the evolution are investigated and

discussed.

6.2.2.1 Fitness Landscapes

The summarized search performances of the algorithms with single approximation methodol-

ogy (i.e., RBF, PR or GP), as tabulated in Table 6.10, confirm our hypothesis that the suitability

of surrogates in an evolutionary search largely depends on problem fitness landscape. For the

purpose of discussion here, we focus the attention on the results for EA-PR and EA-RBF. EA-

PR is observed to outperform other SAEAs with single approximation method (GP or RBF)

on Ackley and Griewank, while EA-RBF emerging as superior on Rastrigin-SR and expanded

Griewank plus Rosenbrock. Through adapting the choice of suitable approximation method-

ology by means of evolvability learning while the search progresses online, EvoLS is noted to

attain search performances that are better or at least competitive to the best performing SAEA

(with single approximation method) for the respective problems considered.
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6.2.2.2 Prediction Quality and Fitness Improving Surrogate

The correlations between prediction quality and surrogate suitability in bringing about the

search improvement in EvoLS are further discussed in this subsection. The correlations can

be assessed by analyzing the average frequency of usage and the normalized root mean square

fitness prediction errors (N-RMSE) of the surrogates (or the associated approximation method-

ology used to construct the surrogate), across the search9, such as that depicted in Figs. 6.3

and 6.4, respectively. From Figs. 6.3 and 6.4, it is notable that the low-error fitness prediction

surrogates constructed using RBF have been beneficial in enhancing the search towards the

refinement of solutions with improved fitness. The presence of fitness improving surrogates

thus naturally led to the high frequency of usage of RBF in EvoLS . Conversely, negative cor-

relations between fitness prediction quality and surrogate suitability may also occur to benefit

search. Here, one such scenario is observed in the study for illustration purpose. In spite of

the high-error fitness predictions exhibited by the 2nd-order polynomial regression (PR) on

Griewank (as can be observed in Figs. 6.3 and 6.4), the persistently high frequency of usage

for PR in EvoLS clearly depicts the inference towards productive fitness improving over fitness

error-free surrogates.

6.2.2.3 State of Evolution

To assess the suitability of the surrogates at different stages of the evolution, the fitness pre-

diction errors of the surrogates and their frequencies of usage in the EvoLS search are further

next analyzed and summarized in Figs. 6.5.a-6.5.f. The upper subplot of each figure depicts

how often an approximation methodology is inferred as most productive and hence chosen

for use within the individual learning strategy of the EvoLS. The lower subplot, on the other

hand, depicts the root mean square fitness prediction errors of the respective surrogates. The

9For each generation t, the root mean square (RMS) prediction errors of all methodologies (GP, PR and RBF)
are first computed across the independent runs and subsequently normalized, thus bringing the prediction errors
to the common scale of [0, 1] throughout the different stages of the search. Subsequently, for each problem, the
normalized RMSEs of GP, PR and RBF are averaged across all generations of the entire search.
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Figure 6.3: Frequency of usage of surrogate models on benchmark problems.

Figure 6.4: Fitness prediction error of surrogate models on benchmark problems.
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results from Fig. 6.5 suggest that no single approximation methodology has served as most

suitable throughout the different stages of the search. For instance, RBF is noted to be used

more prominently than the other approximation methodologies at the initial stages of the search

but then exhibits a decreasing trend in frequency of usage at the later stage of the search on

both the Rosenbrock and rotated shifted Rastrigin (see Figs. 6.5.c, 6.5.d). Likewise, the fitness

prediction qualities of GP is noted to be significantly low at the initial stage of the search on

Griewank (see Fig. 6.5.b) but the error eases as the search evolves. Note that such variations

in fitness prediction qualities of the PR model can also be observed on Ackley (see Fig. 6.5.a).

These results in a way strengthens our aspiration towards the notion of evolvability and hence

the significance of EvoLS in facilitating productive cooperation among diverse approximation

methodologies, working together to accomplish the shared goal of effective and efficient global

optimization in the evolutionary search.
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6.5.a: Ackley-30D
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6.5.b: Griewank-30D
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6.5.c: Rosenbrock-30D
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6.5.d: Rastrigin-30D-RS
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6.5.e: Weierstrass-30D-RS
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6.5.f: Grie+Rosen-30D

Figure 6.5: Surrogates in EvoLS
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6.3 Conclusions

In this chapter, a novel Evolvability Learning of Surrogates (EvoLS) framework that operates

on multiple approximation methodologies of diverse characteristics has been presented. The

suitability of an approximation method in the construction of surrogates for guiding the search

is assessed by the evolvability metric instead of solely focusing on the fitness prediction er-

ror. By constructing the respective surrogate using the most productive approximation method

inferred for each individual solution in the population, EvoLS serves as a self-configurable

surrogate-assisted memetic algorithm for optimizing computationally expensive problems at

improved search performance.

Numerical study of EvoLS with assessment made against the use of either single approx-

imation methodology or the imaginary perfect surrogates as well as other state-of-the-art al-

gorithms on representative benchmark problems demonstrated the robustness and efficiency of

EvoLS. Further analysis on the suitability of surrogates operating within EvoLS also confirmed

the motivations to introduce the evolvability measure that takes into account the current state of

the search, properties of the search operators and characteristics of the fitness landscape, while

the search progress online. EvoLS thus serves as an initial effort to design a framework that

promotes competition and cooperation among diverse approximation methodologies, working

together to accomplish the shared goal of global optimization in the evolutionary search.
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Real-World Applications

Chapter 7 presents two case studies of the proposed self-configurable memetic framework in

solving real-world optimization problems. First, Section 7.1 illustrates Symbiotic Evolution

for optimizing the OSS2 potential model that describes (H2O)n water clusters when no prior

knowledge of suitable search profile on the problem of interest is available. Section 7.2 then

showcases the real world application of EvoLS on an aerodynamic car rear design that involves

highly computationally expensive CFD simulations. Finally, Section 7.3 concludes the present

study with a brief discussion.

7.1 OSS2 Potential Modelling for (H2O)n Water Clusters

Water clusters play a fundamental role for understanding the enigmatic properties of water.

In science, water clusters are heavily studied to characterize the basic molecular interactions,

elucidate water’s role in biochemical processes and the hydrophobic/ hydrophilic interactions

[204]. As opposed to conducting experimental study which is extremely difficult, some sci-

entists have turned to computer simulation studies on the structures, properties and spectra of

water, including the potential energy and electrostatic properties. Among the models currently

in use are first-principles (ab initio) quantum chemical computations and semi-empirical meth-

ods. The former possess the benefits of high fidelity but can be extremely computationally
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expensive, limiting their use to simulations involving only a small numbers of atoms. Ad-

vanced empirical water models, which are fitted to experimental data, on the other hand, are

computationally more efficient but give a trade-off in terms of model fidelity or accuracy.

Today, the design of computationally cheap advanced empirical water models remains an

important and unsolved problem. Here, the parametric design of a potential model, known

as OSS2, for describing neutral water clusters (H2O)n [135, 128, 179] by means of symbiotic

evolution is considered. The benefits of OSS2 potential model include dissociability, polariz-

ability and flexibility, allowing the simulation of different forms of water clusters. It is worth

noting that the potential model was originally designed to describe protonated water clusters,

H+(H2O)n, by taking into consideration the interactions between H+ and O2− ions, with ad-

ditional three-body H-O-H interactions terms and self-consistent treatment of the polarizabil-

ity of the oxygen ions, as described in [135]. In order to adopt the OSS2 potential model

for neutral water clusters, (H2O)n, 40 variables of the model are generated by fitting to the

high level ab initio MP2/cc-pVTZ potential energy surface of the H2O and (H2O)2 clusters.

The objective is then to minimize the root mean square differences between the cluster poten-

tial energies of OSS2 model and those based on high-fidelity ab initio MP2 calculations, i.e.,

(Ek
OSS2(p)−Ek

MP2), which takes the form of

fRMS(p) =

√√√√ 1

M

M∑
k=1

(Ek
OSS2(p)−Ek

MP2)
2 (Eq. 7.1)

where p is the candidate set of parameters, M is total number of cluster configurations in the

fitting data, Ek
OSS2(p) and Ek

MP2 are the energies of water cluster configuration k obtained by

OSS2 and ab initio MP2 calculations, respectively.

The parametric design of a potential model OSS2, described by Eq. 7.1, has been known in

molecular chemistry to possess a multimodal fitness landscape [135]. As such, a conventional

gradient descent algorithm may easily get stuck in a local optimum. Here, symbiotic evolu-

tion (SE) and three other canonical memetic algorithms using a gradient-based local search
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DFP (MA-DFP), direct search DSCG (MA-DSCG) and stochastic local search (MA-ES) are

considered on the problem. Under the computational budget of 300, 000 evaluations, the re-

sultant optimized fRMS on the 40-dimensional problem from the best run (out of five runs)

for each algorithm are MA-DFP (0.298 kJ.mol−1), MA-DSCG (0.436 kJ.mol−1) and MA-ES

(2.36 kJ.mol−1). On this potential model design problem, the worst and best canonical MA

with single search profile were found to be MA-ES and MA-DFP, respectively. Symbiotic evo-

lution with six search profiles (as described in Section 5.2.3), on the other hand, generated a

low numerical error of 0.222 kJ.mol−1, which outperforms the best canonical MA on this real

world problem. It also worth noting that to the best of our knowledge, the fRMS solution at-

tained by SE is much lower than that of the original OSS2 parameters reported in the literature

[135], which stands at 2.58 kJ.mol−1.

Aside from the ability of the OSS2 potential model in reproducing ab initio MP2 energy

calculation, it is also desirable for the potential model to be capable of accurately describing

the stable geometry structures of (H2O)n clusters. Figure 7.1 illustrates the geometry structures

of water clusters [(H2O)n, n=1-3] in which red balls represent the oxygen atoms whereas the

yellow ones represent hydrogen atoms. Due to the symmetry of the clusters’ structures, only

representative bond information of the distances (D), angles (A) and torsion angles (T) between

atoms are shown in the figure.

The stable geometry structures of water clusters with lowest potential energy are first ob-

tained by conducting a structural optimization procedure on the OSS2 potential energy surface

with the original and optimized parameters obtained by the algorithms. The bonding informa-

tion of the optimized [(H2O)n, n=1-3] clusters is then assessed by taking the ab initio MP2

calculations as baseline for investigating the quality of the freshly designed OSS2 potential

model. The numerical results as reported in Table 7.2 include, from left to right, the MP2

bonding information and those calculated using the original OSS2 model [135] and optimized

OSS2 models obtained by the MAs and symbiotic evolution (SE). Note that the ab initio MP2
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Figure 7.1: Structures of water clusters [(H2O)n, n=1-3].
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bonding information is considered as the reference geometric structures for comparison. The

bond information errors of the optimized structures with respect to the ab initio MP2 calcula-

tions are normalized and reported in Table 7.1. Summation of the normalized errors for each

algorithm on the (H2O)n clusters is subsequently used as an error index for comparison. From

the table, SE exhibits the lowest error index, thus indicating that the potential model derived

by symbiotic evolution reproduces well not only the ab initio potential energies but also the

geometrical structures of water clusters that agree favorably with those obtained by means of

ab initio calculations. Such results confirmed our motivation for formalizing the symbiosis of

gene and meme in adaptive search, thus encouraging the use of symbiotic evolution model,

rather than relying simply on one fixed, and possibly poor choice of search profile that may not

lead to truly optimized designs. Symbiotic evolution clearly offers a high quality and robust

approach for continuous parametric design problems, regardless of whether a priori knowledge

of the most suitable search profile on the problem is available.

7.2 Aerodynamic Optimization of the Rear of a Car Model

Our ultimate motivation of the present work lies in the difficulties and challenges posed by

computationally expensive real-world applications. In this section, the proposed EvoLS is

considered for the design of a quasi-realistic aerodynamic car rear using a simplified model

version of the Honda Civic. The objective is to minimize the aerodynamic performance calcu-

lation of the design, i.e., the total drag of the car rear. The design model of the Honda Civic

used in the present study is labelled here as Baseline-C-Model. Aerodynamic car rear design

is an extremely complex task that is normally undertaken over an extended time period and

at different levels of complexity. In this application, an aerodynamic performance calculation

of the design requires a Computational Fluid Dynamics (CFD) simulation that generally takes

around 60 minutes wall-clock time on a Quad-Core machine. For the calculation, the Open-
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Table 7.1: Normalized errors on the optimized structures of water clusters with respect to the
ab initio MP2 calculations. From left to right: normalized errors from the original OSS2 model
[135] and optimized OSS2 models obtained by the MAs and symbiotic evolution (SE).

[(H2O)n] Clus-
ters

Original
OSS2
Model

MA-
DFP

MA-
DSCG

MA-ES SE

n=1
D(1-2) 0.33 0.04 0.25 0.33 0.04
A(1-2-3) 0.47 0.00 0.16 0.37 0.00

n=2
D(1-2) 0.24 0.31 0.20 0.20 0.04
D(2-3) 0.03 0.03 0.81 0.03 0.10
A(1-2-3) 0.15 0.19 0.49 0.11 0.06
D(3-4) 0.02 0.18 0.72 0.02 0.06
A(3-4-5) 0.13 0.29 0.32 0.13 0.14
D(4-6) 0.04 0.20 0.40 0.00 0.36
A(4-5-6) 0.44 0.20 0.00 0.32 0.04
T(1-2-4-5) 0.03 0.92 0.01 0.03 0.02

n=3
D(1-2) 0.23 0.14 0.45 0.09 0.09
D(2-3) 0.07 0.12 0.57 0.07 0.17
A(1-2-3) 0.15 0.03 0.69 0.10 0.02
A(3-2-4) 0.07 0.11 0.62 0.07 0.13
D(2-4) 0.03 0.10 0.71 0.02 0.14
A(2-4-5) 0.13 0.22 0.38 0.09 0.18
T(1-2-5-6) 0.06 0.01 0.54 0.38 0.00

Total 2.65 3.06 7.34 2.38 1.58
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Table 7.2: Optimized structures of water clusters. From left to right: the ab initio MP2 bonding
information and those calculated using the original OSS2 model [135] and optimized OSS2
models obtained by the MAs and symbiotic evolution (SE). Note that the ab initio MP2 bonding
information is considered as the reference geometric structures for comparison.

[(H2O)n] Clus-
ters

MP2
bonding
informa-
tion

Original
OSS2
Model

MA-
DFP

MA-
DSCG

MA-ES SE Unit

n=1
D(1-2) 0.966 0.958 0.965 0.972 0.958 0.967 Å
A(1-2-3) 103.9 109.2 103.9 102.1 108 103.9 ◦

n=2
D(1-2) 0.965 0.953 0.98 0.955 0.955 0.963 Å
D(2-3) 0.973 0.982 0.98 1.194 0.982 1.000 Å
A(1-2-3) 104.3 109.7 97.8 87.1 108.1 102.3 ◦

D(3-4) 1.952 1.932 2.109 1.309 1.935 1.899 Å
A(3-4-5) 104.2 113.7 126.2 80.2 114.3 114.6 ◦

D(4-6) 0.967 0.966 0.972 0.957 0.967 0.976 Å
A(4-5-6) 104.2 109.2 101.9 104.2 107.9 104.6 ◦

T(1-2-4-5) 123.3 116.7 -90 124.9 116.8 118.8 ◦

n=3
D(1-2) 0.965 0.96 0.968 0.975 0.963 0.967 Å
D(2-3) 0.979 1.008 1.027 1.209 1.007 1.046 Å
A(1-2-3) 105.2 111.8 104.1 75.7 109.6 106.2 ◦

A(3-2-4) 89.3 90.0 90.4 83.0 90.0 88.0 ◦

D(2-4) 1.925 1.893 1.836 1.264 1.906 1.798 Å
A(2-4-5) 148.4 146.2 144.7 154.9 150 151.4 ◦

T(1-2-5-6) -21.2 -2.8 -24.5 -176 -129.5 -22.2 ◦

108



CHAPTER 7. REAL-WORLD APPLICATIONS

FOAM CFD flow solver [71, 72] used allows a tight integration into the optimization process,

providing an automatic meshing procedure as well as parallelization.

The choice of an adequate geometrical representation of the car simulation model that can

be reasonably coupled to the optimization algorithm is also crucial. In the presented experi-

ments, the state-of-the-art Free Form Deformation (FFD) [169, 28] has been chosen as the geo-

metrical representations since it provides a fair trade-off between design flexibility and scalable

number of optimization parameters. FFD is a shape morphing technique that allows smooth

design changes using an arbitrary number of parameters which are intuitively adjustable to the

problem at hand. The benefits of FFD can be found in [116].

For the technical realization, the application of FFD requires a control volume, i.e. a lattice

of control points, in which the model geometry is embedded. In the next step the geometry is

transferred to the spline parameter space of the control volume, a numerical process which is

called “freezing”. After the object is frozen it is possible to select and move single or several

control points to generate deformed shape variations. To amplify the surface deformations, it is

important to position the control points close to the car body. Fig. 7.2 illustrates the Baseline-C-

Model as well as the implemented FFD control volume. Based on this set-up, ten optimization

parameters pi have been chosen. Each parameter comprises a group of 22 control points within

one layer of the control volume as marked by the dashed box in the lower left image of Fig.

7.2. Since the model is symmetric to the center plane in y-direction, the parameters affect the

left and right side of the car in the same way.

During the evaluation step of the optimization process, the aerodynamic performance of

each design solution, i.e. the total drag of the car, is calculated. Therefore, each of the ten

parameters stored in the design solution or individual are extracted and added as an offset on the

corresponding layer of control points, either in x-direction (p1, p3, p5, p7, p9) or in z-direction

(p2, p4, p6, p8, p10). Second, based on the modified control points, the car shape is updated

using FFD and stored as a triangulated mesh, i.e. STL file format. Third, the external air flow
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around the car is computed by the OpenFOAM CFD solver. Therefore, a CFD calculation grid

around the updated car shape has to be generated and is automatically carried out using the

snappyHexMesh tool of OpenFOAM. Based on this grid, the external air flow is calculated,

resulting in a drag value that is monitored every 10th time step of the simulation. After the

calculation has sufficiently converged, the total drag value is extracted and assigned to the

individual.

Figure 7.2: Experiment Set-up

7.2.1 Fitness Landscape Analysis

To conduct a preliminary analysis on the conditions of the problem fitness landscape, the ef-

fect of design variables pi on drag at the car rear is investigated in this section. In particular,

the design solutions generated randomly using the Latin hypercube sampling technique and

the corresponding aerodynamic performance (i.e., total drag) from the SimpleBase-C-Model

landscape are first grouped into different bins based on each control variable pi. The average

fitness and standard deviation of each bin is plotted against the control variable for the sensi-
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tivity analysis. Here the plots of 700 samples drawn from the search range of [−0.4, 0.4]10 for

each dimension pi which is divided into 10 bins are presented in Fig. 7.3.

The sensitivity analysis of the design variables presented in Fig. 7.3 depicts the relation-

ships between each input variable and the objective function. In this case, the non-monotonic

sensitivity of the problem landscape with respect to each design variable was observed, es-

pecially in Figs. 7.3.a, 7.3.b, 7.3.c, 7.3.f, 7.3.h and 7.3.j. The dependencies of the objective

function to the interactions of multiple design variables as implied by the non-monotonic trends

in Fig. 7.3 thus highlighted the landscape ruggedness of the quasi-realistic aerodynamic car

rear design problem.

111



CHAPTER 7. REAL-WORLD APPLICATIONS

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
410

420

430

440

450

460

470

480

490

500

p1

f(
.)

Main effect of p
i

7.3.a: Main effect of p1
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7.3.c: Main effect of p3
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Figure 7.3: Landscape Analysis of the Aerodynamic Car Rear Design Problem
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7.2.2 Optimization Results

Due to the highly computationally expensive CFD simulations, a computational budget of 200

exact evaluations (200 hours) is used for one optimization run in our study. A small popula-

tion size of 10 was considered in EvoLS. Note that no database building phase (i.e., Gdb = 0)

is required by EvoLS in this case since sufficient sample data of the search space was avail-

able at hand. The convergence trend of the best run (out of five runs) for the aerodynamic

car rear design problem obtained by EvoLS (as described in Section 6.2) after 200 evaluations

on the aerodynamic car rear design problem is shown in Fig. 7.4. The optimization results

obtained previously based on the Covariance Matrix Adaptation Evolution Strategy [51], in-

cluding CMA-ES(5, 10) and CMA-ES(1, 10), are also reported in the figure for comparison.

As shown in the figure, due to the complexity of the problem landscape, CMA-ES(1, 10) as an

individual-based search strategy performed worst as compared to the other population-based

approaches. Among the algorithms considered, EvoLS exhibited the best performances by

locating the car rear design with the lowest drag value of 403.573. The search trends also

show that the proposed EvoLS arrived at the best design solution discovered by CMA-ES(5,

10) using only 1/2 of the computational budget incurred by the latter.

Subsequently, the actual designs of the car model constructed from the control volume (i.e.,

22 control points) optimized using EvoLS and CMA-ES(5,10) are presented in Figure 7.5. The

grid in red color reflects the change from the modified control points, compared to the shape

of the default design in white color. From Figures 7.5.c-7.5.d, it is suggested that the better

aerodynamic performance of the design from EvoLS is achieved with a higher curvature and

extended car rear as compared to that obtained by CMA-ES(5,10) in Figures 7.5.a-7.5.b. Thus,

the design principle to reduce the total drag force drawn from the optimization results comes

with a trade-off in higher lift force at the car rear.

In conclusion, the computational saving of more than 50% and improved solution quality

attained thus show that in a practical setting, the usage of the proposed EvoLS can be highly
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Figure 7.4: Convergence Trace on Aerodynamic Car Rear Design

beneficial as compared to standard techniques for solving challenging computationally expen-

sive design optimization.
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7.5.a: Design from CMA-ES(5, 10) - Side view 7.5.b: Design from CMA-ES(5, 10) - Rear view

7.5.c: Design from EvoLS - Side view 7.5.d: Design from EvoLS - Rear view

Figure 7.5: Actual design models from the optimized parameters.
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7.3 Conclusions

The general practice on manual crafting through trials of dedicated search solvers in com-

putational intelligence community has evolved into the self-configurable memetic framework

proposed and presented in this thesis. Two main difficulties that are often encountered when

solving real-world optimization problems have been identified as: 1) a lack of prior knowl-

edge for suitable search configurations or search landscape and 2) a burden of computationally

expensive simulation to evaluate candidate (design) solutions. By formalizing the symbiosis

of search mechanisms in memetic search and further incorporating approximation models, the

present work arrives at a practical self-configurable memetic search paradigm that can handle

these difficulties effectively and elegantly. The case studies presented in this chapter have high-

lighted the competitiveness of the proposed self-configurable memetic framework in attaining

improved search performance on complex real-world applications under limited computational

budget.
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Chapter 8

Concluding Remarks

This chapter concludes the work done so far in the research topic of “Self-configurable Memetic

Algorithm” with a brief summary of the core contributions and outlines several potential areas

of future research.

8.1 Research Contributions

The focus of this research is to develop intelligent and practical self-configurable memetic

framework that leverages from hybridizing available high performance population-based and

individual-based search algorithms to achieve new advancements in solving complex optimiza-

tion problems. By encouraging productive symbiosis among unique search components and in-

corporating fitness-improving approximation models, the proposed framework has effectively

handled two common difficulties found in solving real-world complex optimization problems,

identified as: 1) a lack of prior knowledge for suitable search configurations or search land-

scape and 2) a burden of computationally expensive simulation to evaluate candidate (design)

solutions. This was achieved by the effective use of statistical learning techniques on optimiza-

tion data archived online while the search progresses.

The primary contribution of this dissertation work is summarized as follows:

• The core contributions of the present research include a comprehensive survey on ex-

isting conventional mathematical programming and evolutionary algorithms for single-
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objective continuous optimization in Chapter 2. The survey, which establishes a back-

ground for the reader before proceeding to the main highlights of the thesis in the subse-

quent chapters, serves to be a helpful reference for researchers or practitioners on related

works and technology.

• For the understanding of MA search mechanisms, the influence of individual learning on

the selection pressure is first analyzed in Chapter 3 to illustrate how memetic algorithm

benefits from individual learning in advancing the search towards the global optimum,

due to the presence of constructive local optimum structure. Subsequently, the symbio-

sis of stochastic variation and individual learning operators in MA search, labelled in

this thesis as symbiosis search profile, is formalized in the form of the local optimum

connectivity in Chapter 4. To quantify the suitability of search components in creating

viable, or potentially favorable solutions, the evolvability of symbiotic search profile is

introduced as the basis for assessment and subsequently used as the metric for adapta-

tion in the present work. Using the proposed concepts, experimental study and analyses

on benchmark problems are then performed to provide insights into the success of MAs

reported recently in the literature.

• To support the online self-configuration of productive search on complex continuous

optimization problems, a novel statistically learning scheme on the evolvability of search

profiles using historical data archived along the search is introduced in Chapter 5. From

here, the main contribution of the current research is the proposal of a self-configurable

memetic framework, established as Symbiotic Evolution, that facilitates the emergence

of productive search profiles from multiple stochastic variation and individual learning

strategies, based on their inferred evolvability measure.

• To deal with real-world complex optimization problems plagued with computationally

expensive fitness functions that would take many hours of wall clock time (per evalu-

ation) to compute, the proposed memetic framework is thus extended in Chapter 6 to
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incorporate approximation models that mitigate these forms of problems elegantly. In

particular, the notion of evolvability is further studied as an effective metric to assess the

appropriateness of approximation models, known also as surrogates, in bringing about

search improvement efficiently. This has led to the proposal of a novel Evolvability

Learning of Surrogates framework that operates autonomously on multiple fitness im-

proving surrogates working in synergy to enhance memetic search.

• Last but not least, empirical analyses on representative benchmark problems and case

studies on real-world problems including the optimization of OSS2 potential energy

model and aerodynamic car rear design indicate noteworthy results in our effort to pro-

vide a formal modeling on the combined behaviors of search components, leading to an

unified self-configurable approach to many population-based and numerical optimization

techniques available.

8.2 Future Work

The methodologies proposed in this dissertation have provided some of the groundwork to-

wards an intelligent self-configurable optimization system for solving complex optimization

problems, by leveraging from available high performance population-based and individual-

based search algorithms and the effective use of statistical learning techniques on optimization

data archived online while the search progresses. Future research will continue to focus on

the challenges posed by optimization problems in real-world scenarios and further extends the

practicality of the self-configurable framework. A summary of several potential future works

is outlined below.

8.2.1 Generalization of Variation Operators

Future research to demonstrate the generality of the framework on other advanced search pro-

files is warranted to promote the proposed self-configurable memetic framework to practitioner

119



CHAPTER 8. CONCLUDING REMARKS

and researchers. The aim is to provide users a possibility to integrate the solvers in their spec-

ified domain to the self-configurable framework straightforwardly to achieve advancement in

search. The main challenges lie in developing the density distribution functions of the search

operators while addressing the complexity of the framework in spite of the increasing number

of search components.

8.2.2 Multi-objective/Constrained Optimization

Optimization problems in real-world applications often come in more complex scenario than

single-objective optimization. For example, a successful development of car designs with mul-

tiple interrelating disciplines or scenarios requires advanced computational methods for the

complexity of engineering tasks in the automotive area. Increasing computational power as

well as simulation capabilities allows the evaluation and optimization of a manifold of de-

sign proposals in various environmental scenarios, such as aerodynamic optimization, struc-

ture optimization or noise, vibration and harshness (NVH) optimization. Even within a single

scenario, usually several objectives have to be treated simultaneously, such as drag reduction,

design constraints, internal car air flow, etc., in the aerodynamic scenario. Therefore, it is im-

portant and yet challenging to place the future research efforts on the topics of multi-objective

and/or constraints optimization problems [113, 222, 200], in which the notion of evolvability

could be extended to encapsulate the goals of the self-configurable solver.

8.2.3 Combinatorial Optimization

Last but not least, combinatorial optimizations which exist in many real-world optimization

problems and application, such as job scheduling [69, 58] or large scale integrated-circuit

(VLSI) design automation [189], pose as another area of notable future search for self-configurable

memetic framework. Here, the main challenge would be on modelling the probability functions

for various stochastic variations and individual learning procedures on discrete variables.
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[8] T. Bäck, D. B. Fogel, and Z. Michalewicz. Handbook of evolutionary computation.

Taylor & Francis, 1997.

121



REFERENCES

[9] J. E. Baker. Reducing bias and inefficiency in the selection algorithm. Proceedings of

the Second International Conference on Genetic Algorithms, pages 14–21, 1987.

[10] P. J. Ballester, J. Stephenson, J. Carter, and K. Gallagher. Real-Parameter Optimization

Performance Study on the CEC-2005 Benchmark with SPC-PNX. Proceedings of the

2005 IEEE Congress on Evolutionary Computation (CEC’ 2005), pages 498–505, 2005.

[11] S. Baluja. Population-Based Incremental Learning: A Method for Integrating Genetic

Search Based Function Optimization and Competitive Learning. Technical report, Pitts-

burgh, PA, USA, 1994.

[12] H. G. Beyer. Toward a Theory of Evolution Strategies: Some Asymptotical Results from

the (1,+ λ)-Theory. Evolutionary Computation, 1(2):165–188, 1993.

[13] H. G. Beyer. The Theory of Evolution Strategies. Springer, 2001.

[14] H.-G. Beyer and H.-P. Schwefel. Evolution strategies–A comprehensive introduction.

Natural Computing, 1(1):3–52, 2002.

[15] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, USA,

1996.

[16] A. J. Booker, J. E. Dennis, P. D. Frank, D. B. Serafini, V. Torczon, and M. W. Trosset.

A rigorous framework for optimization of expensive functions by surrogates. Structural

and Multidisciplinary Optimization, 17(1):1–13, 1999.

[17] E. Borenstein, I. Meilijson, and E. Ruppin. The effect of phenotypic plasticity on evo-

lution in multipeaked fitness landscapes. Journal of Evolutionary Biology, 19(5):1555–

1570, 2006.

[18] J. Branke and C. Schmidt. Faster convergence by means of fitness estimation. Soft

Computing - A Fusion of Foundations, Methodologies and Applications, 9(1):13–20,

2005.

[19] A. Brindle. Genetic algorithms for function optimization. (doctoral dissertation and

technical report tr81-2), Edmonton: University of Alberta, Department of Computer

Science, 1981.

122



REFERENCES

[20] D. Buche, N. N. Schraudolph, and P. Koumoutsakos. Accelerating evolutionary algo-

rithms with Gaussian process fitness function models. IEEE Transactions on Systems,

Man, and Cybernetics, Part C: Applications and Reviews, 35(2):183–194, 2005.

[21] B. D. Bunday. Basic Optimization Methods. Edward Arnold (Publishers) Ltd, 1985.

[22] A. Caponio, G. L. Cascella, F. Neri, N. Salvatore, and M. Sumner. A Fast Adaptive

Memetic Algorithm for Online and Offline Control Design of PMSM Drives. IEEE

Transactions on Systems, Man, and Cybernetics, Part B, 37(1):28–41, 2007.

[23] U. K. Chakraborty. Advances in Differential Evolution. Springer Verlag, 2008.

[24] R. Chelouah and P. Siarry. Tabu search applied to global optimization. European Journal

of Operational Research, 123(2):256–270, 2000.

[25] R. Chelouah and P. Siarry. A hybrid method combining continuous tabu search and

Nelder-Mead simplex algorithms for the global optimization of multiminima functions.

European Journal of Operational Research, 161(3):636–654, 2005.

[26] T. Chen, K. Tang, G. Chen, and X. Yao. On the analysis of average time complexity

of estimation of distribution algorithms. IEEE Congress on Evolutionary Computation,

2007. CEC 2007, pages 453–460, 2007.

[27] D. C. Chin. Comparative study of stochastic algorithms for system optimization based

on gradient approximations. IEEE Transactions on Systems, Man, and Cybernetics, Part

B: Cybernetics, 27(2):244–249, 1997.

[28] S. Coquillart. Extended Free-Form Deformation: A Sculpturing Tool for 3D Geometric

Modeling. Computer Graphics, 24(4):187–196, 1990.

[29] A. Corana, M. Marchesi, C. Martini, and S. Ridella. Minimizing multimodal functions

of continuous variables with the simulated annealing algorithm. ACM Transactions on

Mathematical Software (TOMS), 13(3):262–280, 1987.

[30] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297,

1995.

123



REFERENCES

[31] P. Cowling, G. Kendall, and E. Soubeiga. A hyperheuristic approach to scheduling a

sales summit. pages 176–190. Springer, 2001.

[32] L. DaCosta, A. Fialho, M. Schoenauer, and M. Sebag. Adaptive operator selection with

dynamic multi-armed bandits. Proceedings of the 10th annual Conference on Genetic

and Evolutionary Computation, pages 913–920, 2008.

[33] W. Daneshyari and G. G. Yen. Cultural MOPSO: A cultural framework to adapt param-

eters of multiobjective particle swarm optimization. 2008 IEEE Congress on Evolution-

ary Computation, CEC 2008, pages 1325–1332, 2008.

[34] L. Davis. Bit Climbing, Representational Bias, and Test Suite Design. Fourth Interna-

tional Conference on Genetic Algorithm, pages 18–23, 1991.

[35] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold Company, 1991.

[36] K. De Jong. Evolutionary Computation: A Unified Approach. MIT Press, 2006.

[37] D. L. Donoho. High-dimensional data analysis: the curses and blessings of dimen-

sionality. American Mathematical Society Conference on Math Challenges of the 21st

Century, August 2000.

[38] A. E. Douglas. Symbiotic Interactions. Oxford University Press, USA, 1994.

[39] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience,

2000.

[40] R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. Proceedings

of the Sixth International Symposium on Micro Machine and Human Science, 1995.

MHS ’95., pages 39–43, 1995.

[41] R. Eberhart, P. Simpson, and R. Dobbins. Computational intelligence PC tools. Aca-

demic Press Professional, Inc., San Diego, CA, USA, 1996.
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[195] V. Tirronen, F. Neri, T. Kärkkäinen, K. Majava, and T. Rossi. An enhanced memetic dif-

ferential evolution in filter design for defect detection in paper production. Evolutionary

Computation, 16(4):529–555, 2008.

[196] H. Ulmer, F. Streichert, and A. Zell. Evolution strategies assisted by Gaussian processes

with improved preselection criterion. The 2003 Congress on Evolutionary Computation,

2003. CEC ’03, 1:692–699, 2004.

139



REFERENCES

[197] L. G. Valiant. Evolvability. J. ACM, 56(1):1–21, 2009.

[198] D. Vanderbilt and S. G. Louie. A Monte Carlo simulated annealing approach to opti-

mization over continuous variables. Journal of Computational Physics, 56(2):259–271,

1984.

[199] V. N. Vapnik. Statistical Learning Theory. Wiley New York, 1998.

[200] S. Venkatraman and G. G. Yen. A generic framework for constrained optimization using

genetic algorithms. IEEE Transactions on Evolutionary Computation, 9(4):424–435,

2005.

[201] A. Vicini and D. Quagliarella. Airfoil and wing design through hybrid optimization

strategies. American Institute of Aeronautics and Astronautics Journal, 37(5):634–641,

1999.

[202] I. Voutchkov and A. Keane. Multi-objective optimization using surrogates. Computa-

tional Intelligence in Optimization, pages 155–175, 2010.

[203] G. P. Wagner and L. Altenberg. Perspective: Complex adaptations and the evolution of

evolvability. Evolution, pages 967–976, 1996.

[204] D. J. Wales and I. Ohmine. Structure, dynamics, and thermodynamics of model (H2O)8

and (H2O)20 clusters. J. Chem. Phys., 98(9):7245–7256, 1993.

[205] Z. Wang, K. Tang, and X. Yao. A Memetic Algorithm for Multi-Level Redundancy

Allocation. IEEE Transactions on Reliability, 59(4):754–765, 2010.

[206] E. Weinberger. Correlated and uncorrelated fitness landscapes and how to tell the differ-

ence. Biological Cybernetics, 63(5):325–336, 1990.

[207] T. White and F. Oppacher. Adaptive Crossover Using Automata. Lecture Notes in

Computer Science, pages 229–229, 1994.

[208] D. Whitley, V. S. Gordon, and K. Mathias. Lamarckian evolution, the Baldwin effect and

function optimization. Parallel Problem Solving from Nature–PPSN III: International

Conference on Evolutionary Computation, The Third Conference on Parallel Problem

Solving from Nature, pages 6–15, 1994.

140



REFERENCES

[209] D. M. Wilkinson. At cross purposes. Nature, 412(6846):485–485, Aug. 2001.

[210] J. Wojtusiak and R. S. Michalski. The LEM3 implementation of learnable evolution

model and its testing on complex function optimization problems. pages 1281–1288,

2006.

[211] A. H. Wright. Genetic algorithms for real parameter optimization. Foundations of

Genetic Algorithms, 1:205–218, 1991.

[212] H. Xiaohui, S. Yuhui, and R. Eberhart. Recent advances in particle swarm. Proceedings

of the IEEE Congress on Evolutionary Computation (CEC2004), pages 90–97, 2004.

[213] Z. Yang, K. Tang, and X. Yao. Differential Evolution for High-dimensional Function

Optimization. IEEE Congress on Evolutionary Computation, 2007. CEC 2007, pages

3523–3530, 2007.

[214] Z. Yang, K. Tang, and X. Yao. Scalability of generalized adaptive differential evolu-

tion for large-scale continuous optimization. Soft Computing-A Fusion of Foundations,

Methodologies and Applications, 2010.

[215] X. Yao. Optimization by Genetic Annealing. Proc. of the 2nd Australian Conf. on

Neural Networks (ACNN’SI), ed. M. Jabri, Sydney, pages 94–97, 1991.

[216] X. Yao. Simulated annealing with extended neighborhood. International Journal of

Computer Mathematics, 40:169–189, 1991.

[217] X. Yao and Y. Liu. Fast Evolutionary Programming. Proceedings of the Fifth Annual

Conference on Evolutionary Programming, pages 451–460, 1996.

[218] X. Yao and Y. Liu. Fast Evolution Strategies. Control and Cybernetics, 26:467–496,

1997.

[219] X. Yao, Y. Liu, and G. Lin. Evolutionary programming made faster. IEEE Transactions

on Evolutionary Computation, 3:82–102, 1999.

[220] G. G. Yen and M. Daneshyari. Diversity-based information exchange among multiple

swarms in particle swarm optimization. 2006 IEEE Congress on Evolutionary Compu-

tation, CEC 2006, pages 1686–1693, 2006.

141



REFERENCES

[221] G. G. Yen and W. F. Leong. Dynamic multiple swarms in multiobjective particle swarm

optimization. IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and

Humans, 39(4):890–911, 2009.

[222] G. G. Yen and H. Lu. Dynamic multiobjective evolutionary algorithm: Adaptive cell-

based rank and density estimation. IEEE Transactions on Evolutionary Computation,

7(3):253–274, 2003.

[223] B. Yuan and M. Gallagher. Experimental Results for the Special Session on Real-

Parameter Optimization at CEC 2005: A Simple, Continuous EDA. Proceedings of

the 2005 IEEE Congress on Evolutionary Computation (CEC’ 2005), pages 1792–1799,

2005.

[224] C. Yunpeng, S. Xiaomin, and J. Peifa. Probabilistic modeling for continuous eda with

boltzmann selection and kullback-leibeler divergence. Proceedings of the 8th annual

conference on Genetic and Evolutionary Computation (GECCO ’06), pages 389–396,

2006.

[225] L. E. Zerpa, N. V. Queipo, S. Pintos, and J.-L. Salager. An optimization methodology

of alkaline-surfactant-polymer flooding processes using field scale numerical simulation

and multiple surrogates. Journal of Petroleum Science and Engineering, 47(3-4):197–

208, 2005.

[226] Z. Zhou, Y. S. Ong, P. B. Nair, A. J. Keane, and K. Y. Lum. Combining Global and

Local Surrogate Models to Accelerate Evolutionary Optimization. IEEE Transactions

on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 37:66–76, 2007.

[227] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm 778: L-BFGS-B: Fortran subrou-

tines for large-scale bound-constrained optimization. ACM Trans. Math. Softw., 23:550–

560, December 1997.

[228] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method for Solid and Structural

mechanics. Butterworth-Heinemann, 6th edition, 2006.

[229] J. Zurada. Introduction to Artificial Neural Systems. West Publishing Co., St. Paul, MN,

USA, 1992.

142



Appendix A: Benchmark Test Problems

Some commonly used benchmark test problems already extensively discussed in the literature

are used here in this research work. They represent classes of general constrained, unimodal

and multimodal continuous parametric test problems. They represent classes of continuous

parametric benchmark functions with diverse fitness landscapes for studying evolutionary op-

timization [105, 150].

In the equations, n is the dimensionality, x is the vector of design variables to be optimized.

Note that most problems have their global optima located at the origin. In order to avoid any

biased of the search algorithms on exploiting the symmetric property of the benchmark func-

tions, the design variables are shifted. Vector o is the shifted global optimum and z = x− o

is the vector of shifted variables. For rotated problems, including of Problem 5, 7, 8, 10, 11

and 12, M is the rotation matrix and z = M× (x− o) is the vector of shifted rotated design

variables.
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Appendix B: Individual-based Search
Methods

B.1 Davies, Swann, and Campey with Gram-Schmidt orthog-
onalization (DSCG) method

In the DSCG procedure, the search begins with starting point x(k,i) = x(1,0), where i and

k are the direction and iteration counters, respectively. A line search is conducted on each

independent n dimension along direction set {v(k)} . At the end of each iteration k, a new set

of orthogonal search directions is generated. This process is repeated until convergence to a

local optimum or the allowable computational budget has elapsed. For the details, the reader is

referred to Figure B.1 which outlines the main steps of the DSCG procedure.

B.1.1 Pseudo-code
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Algorithm 9 DSCG [129]
Initialization:

Starting point x(0,0)

Initial step length s(0)

Accuracy ε

First set of direction {v(0)
i } = {ei}, (i = 1, 2, . . . , n)

Iteration counter k=0 Direction counter i=1
loop

Run n line search along n direction vectors {v(k)
i }, (i = 1, 2, . . . , n):

F (x(k,i)) = mind F (x(k,i−1) + dv
(k)
i )

Calculate the distance vector from the first point and the last point:
z = x(k,n) − x(k,0)

if (‖z‖ > 0) then
Do one more line search along the direction of z:

v
(k)
n+1 = z/‖z‖

F (x(k,n+1)) = mind F (x(k,n) + dv
(k)
n+1)

else
x(k,n+1) = x(k,n)

end if
if (‖x(k,n+1) − x(k,0)‖ ≥ s(k)) then

Perform orthogonalization using Gram-Schmidt process to get new set of direction vec-
tors {v(k+1)

i }
s(k+1) = s(k)

x(k+1,0) = x(k,n)

x(k+1,1) = x(k,n+1)

k = k + 1, i = 2
else
s(k+1) = 0.1s(k)

if (s(k+1) < ε) then
End the search, return the current best point x(k,n+1)

else
k = k + 1, i = 1

end if
end if

end loop
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B.1.2 Flow chart

Figure B.1: The strategy of Davies, Swann, and Campey with Gram-Schmidt orthogonalization
(DSCG). [129]
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B.2 Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is a method to solve an unconstrained

nonlinear optimization problem [129].

The BFGS method is derived from the Newton’s method in optimization, a class of hill-

climbing optimization techniques that seeks the stationary point of a function, where the gradi-

ent is 0. Newton’s method assumes that the function can be locally approximated as a quadratic

in the region around the optimum, and use the first and second derivatives to find the stationary

point.

In Quasi-Newton methods the Hessian matrix of second derivatives of the function to be

minimized does not need to be computed at any stage. The Hessian is updated by analyz-

ing successive gradient vectors instead. Quasi-Newton methods are a generalization of the

secant method to find the root of the first derivative for multidimensional problems. In multi-

dimensions the secant equation is under-determined, and quasi-Newton methods differ in how

they constrain the solution. The BFGS method is one of the most successful member of this

class.

B.2.1 Formula

The search direction pk at stage k is given by the solution of the analogue of the Newton

equation

Bkpk = −∇f(xk).

A line search in the direction pk is then used to find the next point xk+1. Instead of requiring

the full Hessian matrix at the point xk+1 to be computed as Bk+1, the approximate Hessian at

stage k is updated by the addition of two matrices.

Bk+1 = Bk + Uk + Vk

Both Uk and Vk are rank-one matrices but have different bases. So equivalently, Uk and Vk

construct a rank-two update matrix which is robust against the scale problem often suffered in

the gradient descent searching. The quasi-Newton condition imposed on this update is

Bk+1(xk+1 − xk) = − (∇f(xk+1)−∇f(xk)) .
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B.2.2 Algorithm

From an initial guess x0 and an approximate Hessian matrixB0 the following steps are repeated

until x converges to the solution.

(i) Obtain sk by solving: Bksk = −∇f(xk).

(ii) Perform a line search to find the optimal αk in the direction found in the first step, then

update xk+1 = xk + αksk.

(iii) yk = ∇f(xk+1)−∇f(xk).

(iv) Bk+1 = Bk + (yky
T
k )/(y

T
k sk)− (Bksks

T
kB

T
k )/(s

T
kBksk).

f(x) denotes the objective function to be minimized. Convergence can be checked by

observing the norm of the gradient, |∇f(xk)|. Practically, B0 can be initialized with B0 = I ,

so that the first step will be equivalent to a gradient descent, but further steps are more and

more refined by Bk, the approximation to the Hessian.

The first step of the algorithm is carried out using an approximate inverse of the matrix Bk,

which is usually obtained efficiently by applying the ShermanMorrison formula to the fourth

line of the algorithm, giving

B−1
k+1 = B−1

k +
(sks

T
k )(s

T
k yk + yT

kB
−1
k yk)

(sTk yk)2
− (B−1

k yks
T
k + sky

T
kB

−1
k )

(sTk yk)
.

Credible intervals or confidence intervals for the solution can be obtained from the inverse

of the final Hessian matrix.

B.3 Newton-Raphson method

Newton’s method gives rise to a wide and important class of algorithms that require computa-

tion of the gradient vector [129]

Δf(x) =

⎛⎜⎜⎝
∂f/∂x1

∂f/∂x2

...
∂f/∂xn

⎞⎟⎟⎠
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and the Hessian matrix

Δ2f(x) =
(
∂2f/(∂xi∂xj)

)
Consider at iteration k:

f(x(k) + s) = f(x(k) + s) + Δf(x(k))T s+
1

2
sTΔ2f(x(k))s

for some small s. When the Hessian matrix is positive definite, the above equation has a

unique minimizer, obtained by solving:

Δ2f(x(k))s = −Δf(x(k))

And the next search point will be

x(k+1) = x(k) + s

The convergence rate is quadratic, that is:

‖x(k+2) − x∗‖ < ‖x(k+1) − x∗‖

where x∗ is the global optimum.

B.4 Evolutionary Strategy Individual Learning

Similar to the adaptation mechanism in other deterministic individual-based or local search

methods, (1+n) ES with Gaussian mutation adapted by the 1/5-rule is proposed and described

in Algorithm 10. From the starting point x, n candidate solutions are randomly generated using

the stochastic Gaussian mutation. If the number of improved solutions is larger than n/5, the

mutation strength is increased by a factor of ratio. Otherwise it is decreased. The initial point x

is then replaced by the best candidate solution found. The process is repeated until convergence

to a local optimum or the allowable computational budget has elapsed.
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Algorithm 10 Evolutionary Strategy Individual Learning (1 + n) ES (Starting point x)
1: Initialize good = 0, bad = 0
2: Initialize mutation strength σ = 1.0
3: while (stopping conditions are not satisfied) do
4: Generate the mutation vector m = {mi},mi = N(0, σ)
5: Create a new search point using Gaussian mutation xi = x+m
6: if (f(xi) < f(x)) then
7: good = good+ 1
8: else
9: bad = bad + 1

10: end if
11: evaluationCount = evaluationCount+ 1
12: if (good+ bad = n) then
13: if (good ≥ 1/5× n) then
14: Increase mutation strength σ = σ × ratio
15: else
16: Decrease mutation strength σ = σ/ratio
17: end if
18: good = 0, bad = 0
19: end if
20: if (evaluationCount mod n = 0) then
21: Replace x with the best search point x = argminxi∈{x,x1,...,xn} f(xi)
22: end if
23: end while
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Appendix C: Surrogate Modelling

There exist a variety of approximation methodologies for constructing surrogate models that

take its roots from the field of statistical and machine learning field [75, 173]. One popular

approach in the design optimization literature is polynomial regression or response surface

methodology [100]. Neural networks which have shown to be effective tools for function

approximation have also been employed as surrogates extensively in evolutionary optimization.

These include support vector machine [30, 199], artificial neural networks [229] and radial

basis function [154]. A statistically sound alternative is Gaussian process or Kriging [114],

referred to as design and analysis of computer experiment models. Next, a brief overview on

three different approximation methods used in the paper, namely, polynomial regression (PR),

radial basic function (RBF) and Gaussian process (GP) is provided in the subsections.

C.1 Polynomial Regression

The most widely used polynomial regression model is the quadratic model which takes the

form

f̂M (x) = β0 +
n∑

i=1

βix
(i) +

∑
1≤i≤j≤n

βn−1+i+jx
(i)x(j) (C.1)

where n is the number of input variables, x(i) is the i-th component of x, and βi are the coeffi-

cients to be estimated. As the number of terms in the quadratic model is nt = (n+1)(n+2)/2

in total, the number of training sample points should be at least nt for proper estimation of the

unknown coefficients, by means of either least square or gradient-based methods [75].
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C.2 Radial Basic Function

The surrogate models in this category are interpolating radial basic function (RBF) networks

of the form

f̂M(x) =

m∑
i=1

αiK(‖ x− xi ‖) (C.2)

where K(‖ x− xi ‖) : Rd → R is a RBF and α = [α1, α2, . . . , αm]
T ∈ R

m denotes the vector

of weights. The number of hidden nodes used in interpolating RBF is often assumed as equal

to the number of training vector points.

Typical choices for the kernel function include linear splines, cubic splines, multiquadrics,

thin-plate splines and Gaussian functions [15]. Given a suitable kernel, the weight vector α

can be computed by solving the linear algebraic system of equations

Kα = t

where t = [t1, t2, . . . , tm]
T ∈ R

m denotes the vector of outputs and K ∈ R
m×m denotes

the Gram matrix formed using the training inputs (i.e., the ij-th element of K is computed as

K(‖ xi − xj ‖)).

C.3 Kriging/Gaussian Process

The Kriging model or Gaussian Process (GP) assumes the presence of a global model g(x) and

an additive noise term Z(x) in the original function.

f(x) = g(x) + Z(x)

where g(x) is a known function of x as a global model of the original function, and Z(x) is a

Gaussian random function with zero mean and non-zero covariance that represents a localized

noise or deviation from the global model. Usually, g(x) is a polynomial and in many cases,

it is reduced to a constant β. The approximation model of f(x), given the m samples and the

current input x, is defined as:

f̂M(x) = β̂ + rT (x)R−1(t− β̂I) (C.3)

where t = [t1, t2, . . . , tm]
T , I is a unit vector of length m, and R is the correlation matrix which

can be obtained by computing the correlation function between any two samples, i.e., Ri,j =
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R(xi,xj). While the correlation function can be specified by the user, Gaussian exponential

correlation function, defined by correlation parameters {θk}nk=1, has often been used:

R(xi,xj) = exp

[
−

n∑
k=1

θk|x(k)
i − x

(k)
j |2

]

where x
(k)
i and x

(k)
j are the k-th component of sample points xi and xj , respectively. r is the

correlation vector of length m between the given input x and the samples {x1, . . . ,xm}, i.e.,

r = [R(x,x1), R(x,x2), . . . , R(x,xm)]
T .

The estimation of the unknown parameters β and {θk}nk=1 can be carried out using the

maximum likelihood method [173]. Aside from the approximation values, Kriging model or

Gaussian process can also provide a confidence interval without much additional computa-

tional cost incurred. However, one main disadvantage of Gaussian process is the significant

increasing of computational expense when the dimensionality becomes high, due to the matrix

inversions in the estimation of parameters.
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