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Abstract	
 

This thesis presents the development of hybrid modeling methodologies for HVAC 

component static/steady-state models and dynamic/transient models, and the 

development and implementation of a model-based optimization approach for building 

heating, ventilating, and air conditioning (HVAC) systems, especially for the out-

building section. Firstly, through component characteristic analysis, hybrid HVAC 

component models associated with cooling loads, operating variables and energy 

consumption characteristics for heat exchangers and energy consuming devices are 

established. All the model parameters can be derived from manufacturers’ specification 

data or on-site testing and measurement data. Secondly, the nonlinear constraint 

optimization problem for HVAC out-building section which consists of a refrigeration 

cycle and a condenser water loop is formulated by considering the system level and 

component level characteristics and interactions among all components and their 

associated variables. The optimization of both the refrigeration cycle and the condenser 

water loop is realized using a PSO based optimizer, with the target of minimizing the 

total power consumption of the HVAC system. Simulation studies of the proposed 

system optimization approach are conducted to compare the control accuracy, 

computation time and memory requirement of the proposed PSO based optimizer with 

those of the GA based optimizer using the same models. The results show that the 

system optimization approach using PSO based optimizer is able to achieve the same 

control accuracy yet requiring less computation time and memory compared to the 

system optimization approach using a GA based optimizer. Then the proposed hybrid 

model-based system optimization approach using a PSO based optimizer is 

implemented in the laboratorial centralized HVAC system to validate and evaluate the 

energy performance of the proposed method compare to traditional ones. The results of 
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experimental tests show that the proposed method indeed improves the system 

performance significantly.  

The main contribution of this thesis is to propose hybrid modeling methodologies 

to predict the steady-state as well as the transient performance of the HVAC component, 

which is the prerequisite for model-based control and optimization; and to develop a 

general feasible model-based system optimization approach to systematically optimize 

the energy consumption of a HVAC system out-building section instead of optimizing 

its individual components. 
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CHAPTER 1 INTRODUCTION 

1.1 Background of HVAC Systems, EMCS and Supervisory Control  

A building’s heating, ventilation and air conditioning (HVAC) system can be 

generally described as a system for transporting heat and moisture between the inside 

building and the outside environment. HVAC is particularly important in the design of 

medium to large industrial and commercial buildings such as skyscrapers or hotels 

where comfort and healthy living conditions are regulated through temperature and 

humidity, as well as with “fresh air” from outdoors.  

    The scheme of a typical building water cooled HVAC system is shown in Figure 1.1., 

which can be divided into five heat transfer loops [1]:  

• The indoor air loop includes fans, cooling coils, terminal units, dampers, ducts, 

and controls. The air in the conditioned space is driven by fans through cooling 

coils and then distributed to terminal units. Dampers are used to control airflows 

to the terminal units and fans are used to keep a certain air pressure in the ducts. 

The cooling and ventilation loads are transferred from the conditioned space to 

the chilled water.  

• The chilled water loop includes pipes, pumps, cooling coils, evaporators, 

valves, and controls. The chilled water contained in pipes is driven by pumps to 

circulate between the cooling coils and the evaporators. Valves are used to 

control the water flow to the cooling coils. The heat is transferred from air 

handling units (AHUs) to the evaporators.  

• The refrigerant cycle consists of evaporators, compressors, condensers, 

expansion valves and controls. The refrigerant extracts heat through the 

evaporators by changing phase from liquid to vapour. The compressors turn the 

refrigerant into a high pressure and high temperature state. The compressed high 

temperature refrigerant is cooled in the condensers. The high pressure gas-state 
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refrigerant is ejected by expansion valves back to the evaporators again with 

phase change. The heat is transferred from the evaporators to the condensers.  

• The condenser water loop includes cooling towers, condensers, pumps and 

controls. The condenser water in the refrigeration cycle is delivered to cooling 

towers by pumps. The heat is transferred from the condensers to the cooling 

towers.  

• Finally, the outdoor air loop includes fans, cooling towers, and controls. The 

outdoor air is driven by fans to go through cooling towers and to exchange heat 

with the cooling tower water. The heat is transferred from the cooling towers to 

the ambient environment.  

 

 

 

 

 

Figure 1.1 Scheme of a typical building HVAC system 

Energy management and control system (EMCS) technology for HVAC system has 

evolved over the past three decades from pneumatic and mechanical devices to direct 

digital controls (DDC) or computer-based controllers and systems. Today's EMCSs for 

HVAC system consist of electronic devices with microprocessors and communication 

capabilities and utilize powerful, low cost microprocessors and standard communication 

protocols. 

Supervisory control for HVAC systems aims at seeking the minimum energy input 

or operating cost to provide the satisfied indoor comfort and healthy environment, 

taking into account the ever-changing indoor and outdoor conditions as well as the 
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characteristics of HVAC systems. It is the total system monitoring and overall control 

of the local subsystems. 

 EMCSs integrated with a supervisory control strategy using model-based system 

optimization approach provides a two-level control structure; i.e., local control and 

system optimization, as illustrated in Figure 1.2[2].  

Figure 1.2 Control structure of supervisory control and EMCS for HVAC systems 

Local control is at the lower level in the EMCS structure, comprising of the basic 

control and automation that allow the HVAC systems to operate properly and provide 

adequate services. Local control can be further subdivided into two groups, including 

sequencing control and process control. Sequencing control defines the order and 

conditions associated with bringing equipment online or moving them offline. The 

typical sequencing control in HVAC systems includes chiller sequencing control, 

cooling tower sequencing control, pump sequencing control, fan sequencing control, etc. 

Process control is used to adjust the control variables to guarantee the operation 

robustness and keep track of well-defined objective set points regardless of disturbances 

by using measurements of state and/or disturbance variables. The typical process 
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control algorithm used in the HVAC field is proportional integral derivative (PID) 

control [2].  

System optimization is at the higher level of the EMCS structure aiming at on-line 

seeking the optimal or near optimal operating set points which make the HVAC system 

operate with a minimal energy consumption or operating cost to provide on demand 

cooling load, taking into account the ever-changing indoor and outdoor conditions as 

well as the characteristics of HVAC systems. Different from the local control, system 

optimization requires an overall consideration of the system level characteristics and 

interactions among all components and their associated variables. The knowledge of the 

system level characteristics and interactions can be utilized to formulate a well-defined 

cost function or objective function, which would lead to improved system response and 

reduced overall system operating energy consumption or cost without violating the 

operating constraints of each component.   

1.2 Motivation and Objectives 
Among building energy service systems, HVAC systems are the most energy 

consuming facilities, and account for about 55% of the total electrical usage in 

Singapore [3]. Consequently, operation and control of HVAC systems have significant 

impact on the energy or cost effectiveness of buildings.  

The growing concerns on energy conservation, sustainability and eco-friendly 

development have motivated extensive research on various aspects of HVAC system 

optimization approaches. The study on modeling as well as optimizing the HVAC 

systems is one of the fastest growing areas that contribute to energy savings and 

improve HVAC system operating performance.  

In an effort to reduce energy costs, the performance of individual components in 

building HVAC systems, such as chillers, pumps, fans, and heat exchangers, has been 
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greatly improved for decades. Nowadays, the effort of improving the efficiency of 

individual components becomes expensive and limited; however, a big potential for 

energy savings lies in maximizing the efficiency of the overall system through system 

optimization. Unfortunately, as there are always numerous components in a large-scaled 

HVAC system and hundreds of cross coupled control set points to be controlled and 

monitored, it is extremely difficult to consider all of them as a whole for optimization 

without simple yet accurate models as well as powerful optimization techniques. For 

example, in a typical multi-chiller HVAC system, the thermal processes and associated 

power consumption taking place in the out-building section, can be broken down as 

follows:  sensible/latent energy flows of the refrigerant, chilled water and condenser 

water in the refrigeration cycle; sensible/latent energy flows of the water and air in the 

cooling tower; conversion of evaporating and condensing refrigerant into the 

compressor electrical power consumption with respect to the chilled water temperature 

and condenser water temperature through the refrigeration cycle; and conversion of 

water and air flow rate into pump and fan electrical power consumption with respect to 

the ambient wet-bulb temperature and condenser water temperature entering the cooling 

tower, etc. Due to the fact that these thermal processes and the corresponding operating 

variables which directly relate to the component power consumption characteristics are 

simultaneously undergoing changes and interacting with each other, a system approach 

is required to accurately model these processes, the power consumption characteristics 

and their interactions. It is only then feasible to find improved control strategies to the 

problem of optimizing the thermal processes in the HVAC system.  

During the past thirty years, tremendous efforts have been made on modeling or 

simulating the HVAC system for the purpose of developing system optimization 

approaches. However, the consensus is that most EMCSs integrated with supervisory 
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control for HVAC system in practice have not performed to their full potential with 

respect to its optimization functions. One of the main reasons for poor performance is 

the fact that HVAC processes are most likely optimized at the local loop level, which 

does not include system level process-to-process interactions. Another reason is the lack 

of suitable simple yet accurate and comprehensive HVAC component and system 

models which can be easily mastered and used by the HVAC engineers. Thus, the 

challenge of performing system optimization for the overall system relies on the 

sophisticated HVAC component and system models as well as the compatible global 

optimization techniques which could make the over-all system optimization possible. 

To address the above problems, this thesis will focus on 1) developing simple yet 

accurate HVAC component models using hybrid methods 2) formulating and resolving 

the global optimization problem of energy savings in a HVAC system out-building 

section 3) the application of EMCS implemented with the proposed system optimization 

approach for the HVAC out-building section. 

1.3 Major Contributions 
The major contributions of this thesis include the modeling of individual 

components, formulating and solving the optimization problem, and implementing of 

the proposed system optimization approach into the EMCS for a laboratorial centralized 

HVAC plant for the purpose of validating and evaluating the proposed methods. The 

main achievements are summarized below:  

• Development of a hybrid static model for cooling towers based on energy balance 

principles and heat and mass transfer analysis. The developed model is useful for 

studying interactions among chiller condenser, cooling tower, and operating 

variables. The model can be used to perform various energy management and 

optimization strategies. 
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• Development of hybrid dynamic models for the cooling coils and the cooling 

towers. The developed models can be used to simulate the HVAC system local 

control performance or designing local controllers.  

• Development of a composite model for the refrigeration cycle of chillers for the 

HVAC system optimization. The developed model is used to study interactions 

among cooling tower, evaporator, condenser, compressor and operating variables.     

• Development of model-based system optimization approaches using PSO and GA 

for energy savings of HVAC out-building section and for algorithm performance 

comparison studies. 

• Implementation and validation of proposed system optimization approach using 

PSO as the optimization technique for the HVAC out-building section.  

1.4 Organization of the Thesis 
This thesis is organized into 8 chapters. Chapter 1 introduces the general 

information of building HVAC systems and EMCS followed by the motivations, 

objectives and major contributions. Chapter 2 reviews the studies and research work on 

HVAC system modeling, and research and applications of model-based optimization in 

EMCS for HVAC systems. Chapter 3 develops a static model of cooling towers using a 

hybrid method. Chapter 4 develops dynamic models for cooling coils and cooling 

towers based on a similar hybrid modeling method. Chapter 5 presents a hybrid 

composite model for the refrigeration cycle with a component-based method for model-

based optimization. Chapter 6 proposes the optimization method for building HVAC 

systems, focusing on using Particle Swarm Optimization (PSO) and the Genetic 

Algorithm (GA) to resolve the energy minimization problem of the HVAC out-building 

section, respectively. Simulation studies are conducted to compare the control accuracy, 

computation time and memory requirement of these two optimization techniques.  In 



 

8 

Chapter 7, the system optimization approach based on the developed models is 

implemented into the EMCS for a centralized HVAC pilot plant. Experimental studies 

are conducted to evaluate the operating energy saving of the proposed approach by 

compared to that of the conventional method. Chapter 8 concludes the thesis and 

discusses potential future work.  
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CHAPTER 2 LITERATURE REVIEW 

Over the last three decades, HVAC system optimization methods have been 

developed enormously thanks to the innovation of information, computer and EMCS 

integration technologies. According to the classification in Figure 1.2, the methods of 

HVAC system optimization can be divided into four categories, namely，model-based, 

hybrid, performance map-based, and model-free optimization methods.  

This thesis will focus on the model-based optimization methods. The fundamental 

asset of a model-based system optimization method is its modeling. On one hand, 

establishing static models to simulate component or system performances enables us to 

understand the behavior of a HVAC system under different operating conditions, and to 

calculate system energy consumption; thus the cost of operating a system without 

constructing and operating an actual system. On the other hand, constructing the 

dynamic models enables us to understand the system’s transient responses to the ever-

changing demands, environment, and control settings of the actual systems, and thus 

design the local controller to make the EMCS to perform sophisticated local loop 

controls.  

Another essential constituent of the model-based system optimization approaches is 

the development of the optimization technique. The purpose of an optimization 

technique is to seek the optimal control settings (i.e., operation modes and/or set points) 

by taking into account the system operating constraints which lead to minimal system 

power consumption or operating cost while still satisfying the cooling demand.  

In this chapter, the literature review of the related works is divided into three 

sections. Section 2.1 reviews the existing static and dynamic models for HVAC 

components; Section 2.2 reviews the applications and research work on HVAC system 
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optimization based on the combinations of various kinds of models and various kinds of 

optimization techniques; finally, the objectives of this thesis are summarized in section 

2.3. 

2.1 Modeling 
HVAC component modeling has attracted a great amount of research interests as it 

can be utilized for controller design, simulation and optimization depending on the 

characteristics of the model types. According to the different characteristics, the existing 

models can be classified into two categories: i) static models, also known as steady-state 

models, and ii) dynamic models, also known as transient models. A static model does 

not account for the element of time, while a dynamic model does. Static models predict 

the performance of the HVAC component/system at steady-state operating condition. 

Dynamic models typically are represented with difference equations or differential 

equations, and used to predict the performance of the HVAC component/system during 

the transient period. According to the different methods in developing the models, each 

category can be further classified into i) physical models, also known as theoretical 

models, ii) black-box models, also known as empirical models and iii) hybrid model, 

also known as gray-box models.  

Just as the name implies, the physical models strictly rely on fundamental physical 

laws and principles, such as the general principles of thermodynamics and heat and 

mass transfer to predict pressure, temperatures and fluid flow rates within each 

component of the HVAC system. Physical models require information on the physical 

dimensions, properties, and processes that determine the performance of the equipment, 

and the interactions among components of the equipment. Most of the required 

information can be obtained from physical descriptions of the equipment and its 

components, thus few or no performance test data are needed. Usually, these physical 
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models have high accuracy in prediction and high control reliabilities within their 

allowed working conditions since the basic assumptions and laws utilized in the model 

development are effective and valid within their allowed ranges. However, most such 

models are rather complicated. And an iteration process is usually required in 

calculating the results, which may cause instability and divergence as well as high 

computational cost and memory demand. These drawbacks may constitute serious 

obstacles to their real-time applications. 

Different from physical model approaches, the black-box models use a simple 

“black box” concept that is partially supported by physical laws or totally ignores 

physical laws [4]. Statistical analysis with or without the support of general engineering 

principles are used to select input and output variables that are important in representing 

the modeled equipment and its role in an entire system. This model approach directly 

relates the input variables to the output variables and uses regression analysis to fit the 

equations with discrete performance data obtained from the HVAC equipment 

manufacturer, in-laboratory tests, or data generated from the more complex models. 

Black-box models can be used to predict equipment performance within the range of 

available test data for the particular equipment operating in a specific environment. The 

simplicity and ease-of-use of these models make them particularly suitable to be used in 

adaptive control modeling, where the parameters required can be updated based on the 

on-line measurement. However, models cannot be used to forecast performance outside 

the limited range of test data, or for other similar type of equipment operating in 

different environments. This is the main drawback of this model approach and largely 

limits the flexibility in real world applications. 

To achieve a wide operating range as in the physical models but still keep a simple 

structure as in the black-box models, engineers and researchers have made great efforts 
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in recent years to develop hybrid models for HVAC equipment and systems. Generally, 

two methods are used to develop hybrid models. One is through numerical analysis, by 

which the prior knowledge of the system or testing process can be incorporated as 

constraints on the model parameters or variables. The other is through a specific model 

structure based on physical relations, which describe the behaviors of the process or 

system. The main advantage of hybrid models is that the complexity of the model 

structure and computational cost to achieve the optimal solutions are greatly reduced, 

while at the same time, the parameters in the models still retain certain physical 

significance and can be used for extrapolation outside the range of the test data covered.  

In the following sections, we will firstly review the existing models for these 

HVAC components including the static models for a cooling tower, the dynamic models 

for cooling coils and cooling towers and the composite model for the whole 

refrigeration cycle. The development of hybrid models for HVAC main components, 

including cooling tower, cooling coil and the whole refrigeration cycle will be presented 

in Chapters 3~5.  

2.1.1 Static cooling tower models 

A HVAC cooling tower is employed to reject heat from an operating refrigeration 

cycle to the environment. Heat rejection in cooling towers is accomplished by heat and 

mass transfer between hot water droplets and ambient air. Much attention is currently 

being paid to cooling tower designs as they are important factors in energy conservation 

of HVAC systems [5-7]. As such, there have been substantial research interests in 

modeling of static performance of cooling towers [8-15].  

The first milestone work may be traced back to 1925, when Merkel [8] developed a 

practical model for cooling tower operation, where the water loss of evaporation is 

neglected and the Lewis number (Le ) is assumed to be one in order to simplify the 
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analysis. The model has since been the basis for most modern cooling tower analysis 

and a revised form was adopted by a software package for energy calculation [16]. 

However, the Merkel method does not accurately represent the physical characteristics 

of the heat and mass transfer process in the cooling tower fill [17]. HVAC1Toolkit [16] 

developed the equations necessary to apply the Effectiveness-NTU method directly to 

counter-flow cooling towers. This approach is particular accurate and simplifies the 

method of solution when compared with a more conventional numerical procedure.  The 

drawback of the Effectiveness-NTU method is that the heat transfer coefficient-area 

product is difficult to determine and requires detailed geometric information of cooling 

towers. Besides, an iterative computational procedure is a must when the operating 

point changes. Bernier [11] proposed a one-dimensional cooling tower model for 

idealized spray-type towers based on the analysis of heat and mass transfer process in 

cooling towers at water droplet level. This particular model is useful for cooling tower 

designers, but little information is provided to plant operators for cooling towers already 

in operation. Soylemez [14] presented a method for estimating the size and performance 

of forced draft countercurrent cooling towers backed with experimental results. Then 

again, this model also needs iterative computation and is not suitable for online 

optimization.  

2.1.2 Dynamic cooling coil models  

Cooling coils of Air Handling Units (AHUs) are the interface between the HVAC 

out-building section (primary plant) and the in-building section (secondary plant/air 

distribution system). As the heat exchanger, a cooling coil is an important component in 

a HVAC system which plays an essential role to transfer the cooling load from the air 

loop to the chilled water loop by forcing air flow over the coil and into the space to be 

conditioned [18-20].  



 

14 

The design of efficient controllers for AHU largely depends on the availability of 

good dynamic models of a cooling coil. It is important that the dynamic models are 

developed from fundamental principles for the purpose of comparison, validation and 

more importantly for i) finding global optimal dynamic operating strategies using  

modern control theory and ii) simulating the control performance of the EMCS. So far, 

various approaches have been suggested to model the transient performance of the 

cooling coil, and these approaches can be generally placed into two categories: 1) finite 

difference models and 2) lumped parameter models. The finite difference approach 

results in a large number of equations and it is suitable only for numerical simulation. 

For this approach, Myers et al. [21] and Kabelac [22] used the governing differential 

equations to study the dynamic response of a cooling coil by the assumption that one 

fluid has an infinite capacitance. Gartner and Daane [23] found transfer function 

relations for different coil parameters. Bocanegra [24] and Khan [25] developed a 

model to analyze the performance of a counter-flow cooling and dehumidification coil. 

Yao [26] presented a rigorous analysis of the effect of a perturbation of the relevant 

parameters on the thermal quality of a cooling coil under different initial conditions. 

The obstacle of applying these models to industrial applications is that modeling 

methodologies require comprehensive information on the structure of the cooling coil 

and physical properties of the fluids, such as the fin and the tube thickness, diameter and 

spacing, which are often unavailable from manufacturers’ specifications. Another 

drawback is that they require intensive computation and can potentially lead to 

numerical instabilities. 

 The lumped parameter approach involves fewer equations, but frequently ignores 

some dynamics due to the complex heat exchanger behavior. Specifically, the entire 

cooling coil dynamics is often modeled as a single system, and the important dynamics 
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associated with the moving boundary between the wet surface region and the dry 

surface region are ignored. Lebrun et al. [27] derived a first-order differential equation 

on the basis of an energy balance to represent the dynamics of a coil with lumped 

thermal mass. This approach has been used by several authors for simulation purposes, 

and occasionally for controller design purposes [28]. Extending this approach, Bi and 

Cai et al. [29] presented a lumped parameter empirical model through a robust 

identification method and applied the modeling method to the HVAC control loop auto-

tuning [30]. Wang and Hibara [31] presented a distinct method (also called equivalent 

dry-bulb temperature method) to simplify the calculation in each region. This method is 

examined in Wang et al. [18]’s work. They showed the potential that the complex heat 

and mass transfer characteristics of the cooling coil could be further simplified yet still 

predicts the system correctly.   

2.1.3 Dynamic cooling tower models  

 As mentioned in section 2.1.1, a cooling tower is an important heat exchanger in the 

HVAC system which rejects heat carried by water through heat exchange with the 

ambient air to the environment; its performance has big implications on the total energy 

consumption of the overall process. Ideally, the cooling tower should be controlled such 

that the condenser water supply temperature will follow the set points regardless of the 

ever-changing operating conditions, i.e., the cooling tower water supply temperature 

and flow rate, and the ambient air wet bulb temperature. However, this requirement can 

hardly be satisfied for a long period of time in practice. The main problem is the lack of 

an effective model to derive the control laws for the constantly changing operating 

conditions. Therefore, a simple yet effective dynamic model which can be applied to a 

wide range of operating conditions is necessary for deploying the optimal control 

strategies for the cooling towers.  
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 For dynamic modeling, the existing cooling tower models are mainly derived by 

finite difference approach, which may results in a large number of governing equations 

[32-37]. Similarly, the obstacle for these models to be applied in practice is that 

modeling methodologies require comprehensive information on the structure of the 

cooling tower and the physical properties of the fluids, such as the fill structure, 

spraying nozzles distribution, etc. which are often unavailable in manufacturers’ 

specifications. Another drawback is that they require great computational effort and 

potentially cause numerical instabilities.  To overcome these difficulties, Al-Nimr 

proposed a simple mathematical model to describe the dynamic thermal behavior of 

cooling towers [38-39]. An analytical solution can be obtained by the perturbation 

technique to solve the governing equations of the model for the hot water and cold air 

temperatures. However, the detailed relationship between the control variables and the 

manipulated variables was not revealed in the formulae.  

2.1.4 Composite models for the refrigeration cycle  

Vapor-compression refrigeration cycles are the essential component in a building 

HVAC system, and their operation consumes the majority of the electricity. The 

refrigeration cycle consists of four major components: evaporator, compressor, 

condenser and expansion valve (EX valve), where the evaporator and compressor can 

be regarded as the heat exchangers, the compressor is the power-consumption device 

and the expansion valve is the throttling device. Many refrigeration cycle models have 

been developed using various principles and a variety of purposes [40-56].  

For example, Braun et al. [40] developed a thermodynamic model for the 

refrigeration cycle of a centrifugal refrigeration cycle with variable speed control. The 

model is useful for predicting the power requirement, the cooling capacity, and also the 

conditions at which compressor surge develops. Both heat exchanger models neglected 
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pressure drops. The model neglected the effect of sensible cooling of the superheated 

refrigerant on the condensing heat transfer coefficient. The boiling heat transfer 

coefficient in the evaporator was also evaluated using correlations for boiling on a 

single tube.  

Ng et al.[41] developed a simple thermodynamic model using regression analysis 

for a centrifugal refrigeration cycle which was experimentally validated with data from 

an air-conditioning plant with a computer management system. The model successfully 

predicted two distinct operating regimes for the refrigeration cycle where: (i) the 

refrigeration cycles operate at high load and high efficiency; and (ii) the refrigeration 

cycles operate at low load and low efficiency due to the throttling action of the guide 

vanes.   

Van Houte and Van den Bulck [42] developed a steady-state model for a centrifugal 

refrigeration cycle where each heat exchanger was split into three specific regimes i.e. 

saturated refrigerant liquid, two-phase refrigerant, and superheated refrigerant gas. The 

log mean temperature- difference (LMTD) method is used for simulating changes in the 

heat-transfer coefficients of the evaporator and air-cooled condenser at part load. 

Browne and Bansal [43] proposed a static model for water-cooled centrifugal 

refrigeration cycles. Their method is based on physical laws and heat-transfer 

coefficients determined using the number of transfer units-effectiveness (NTU-e) 

approach through a “bundle average” method for the evaporator and condenser. Later 

Browne and Bansal [44] extended this model to develop an improved model using a 

unique “elemental” methodology to account for the variation in the heat transfer 

coefficients throughout the heat exchangers. This kind of model is able to predict a wide 

range of conditions and operating capacities of a refrigeration cycle.  
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A finite-time thermodynamic model for the refrigeration cycle was developed by 

Gordon et al. [45, 46]. This proposed model is universal enough to carry out a 

diagnostic case study and to deal with the performance of refrigeration cycles with 

reciprocating or centrifugal type compressors. 

Bourdouxhe et al. [47] established a toolkit for primary HVAC system energy 

calculations. The toolkit contains subroutine programs to model a water-cooled 

refrigeration cycle operating at full and part load separately. Both the evaporator and 

condenser are modeled using the NTU-e method with constant heat-transfer coefficients 

(UA). And semi-empirical models are applied to determine the power input to the 

centrifugal compressors when the capacity control is done by adjusting the open 

position of the inlet guide vanes at constant speed [47 – 51].  

Chan and Yu [52-56] developed thermodynamic models for air-cooled refrigeration 

cycles with different types of compressors. The log mean temperature difference 

(LMTD) is used for simulating changes in the heat-transfer coefficients of the 

evaporator and condenser at part load. These models include an algorithm to evaluate 

the heat-rejection second flow required for any given cooling capacity based on a set 

point condensing temperature. This algorithm is particularly important in modeling 

precisely the heat-rejection characteristics of condensers and in assessing the 

controllability of the condensing temperature under various operating conditions.  

All above mentioned thermodynamic models for the refrigeration cycles have the 

drawback of requiring complex iterative computation or requiring data of the heat 

exchangers that are generally considered confidential by the manufacturers and are 

often unavailable to HVAC engineers, especially when using the NTU-e or the LMTD 

method to calculate the heat-transfer coefficient. Hence, a much better modeling 

approach would be to predict the performance, i.e. the coefficient of performance (COP) 
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and to have simple model structure which only requires manufacturer’s specification 

data and input variables that can be easily acquired, e.g. the chilled water temperature 

and flow rate entering the evaporator, the condenser water temperature and flow rate 

entering the condenser, and the evaporating and condensing pressure. This leads to the 

hybrid composite model for the refrigeration cycle which will be given in Chapter 5.    

2.2 Model –Based System Optimization for HVAC Systems 
Based on the knowledge of the system utilized to formulate the optimization 

problem, model-based system optimization approaches can be further divided into 

physical model-based, black-box model-based, and hybrid model-based system 

optimization approaches. Because of the inherent characteristics of highly nonlinearity 

and interactions of the operating equipment, the optimization problems of building 

HVAC systems are often characterized with discretization, nonlinearity, and high 

constraints. Hence, only nonlinear optimization techniques are suitable for such 

applications.  

During the past three decades, much research has been done on the development 

and application of various nonlinear optimization techniques in HVAC systems [57-61]. 

These efforts have resulted in significant achievements, which provide HVAC 

professionals or designers with an opportunity to effectively use reliable and efficient 

optimization techniques for their applications. 
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A classification according to Figure 2.1 summarize the nonlinear optimization 

techniques into three categories [2], i) nonlinear local optimization techniques and 

nonlinear global optimization techniques. As their names implied, the nonlinear local 

optimization techniques seek the local optimum, and nonlinear global optimization 

techniques seek the global optimum, however, the nonlinear global optimization 

techniques cannot always converge to the global optimal solutions due to the 

complexity of the optimization problems. 

Figure 1.1 Classification of nonlinear optimization techniques for HVAC system optimization 
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It is worth to point out that, as a subcategory of the nonlinear global optimization 

techniques, the evolutionary algorithms (EA) have drawn much attention these years, 

especially with the advance of computing techniques and computer hardware. 

Evolutionary algorithms get their inspiration from natural selection and survival of the 

fittest in the biological world. They initiate a search from a “population” of solutions. 

Each iteration process consists of a competitive selection that discards poor solutions. 

The solutions with high “fitness” are “recombined” or “updated” with other solutions by 

swapping parts of a solution with another. Solutions are also “mutated” by making a 

small change to a single element of the solution. Recombination and mutation are used 

to generate new solutions that are biased towards regions of the search space for which 

good solutions have already been identified [62].  

The existing evolutionary algorithms include evolutionary strategy (ES), 

evolutionary programming (EP), genetic algorithm (GA), genetic programming (GP) 

and particle swarm optimization (PSO). They all share similar basic static models, but 

are considerably different in the way of their representation of an individual solution 

(binary or real-valued), the means of their selection (stochastic or deterministic), and the 

essentials of the evolution process.  

In practice, however, optimization techniques should be selected based on the 

combination of the complicity and characteristics of the HVAC system under study as 

well as the number of optimization variables involved in a particular optimization 

problem. The selected optimization technique should have guaranteed the required 

control accuracy with less computational cost and memory demand subject to the 

limitation and requirement of practical applications.  

The different combinations of models and optimization techniques lead to 

differences of control accuracy and implementation feasibility of the model-based 
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system optimization methods. Based on the work of Wang and Ma [2], this section 

reviews the research, development as well as the applications of model-based system 

optimization approaches in building HVAC systems in the last three decades according 

to the classification of models used.  

2.2.1 Physical model-based system optimization  

So far, there are quite a number of studies utilizing dynamic and/or static governing 

equations as well as physical models, which are derived based on the fundamental laws 

of energy, mass and heat transfer, momentum and flow balance, etc., to formulate the 

system optimization problems for the supervisory control strategies of EMCS in 

building HVAC systems.  

Kaya et al. [63] introduced a thermal model based on the governing equations for 

the space along with an index of energy consumption. On top of this model, they used a 

static optimization technique, namely the generalized reduced gradient method, to 

develop a system optimization approach consisting of controlling temperature, humidity, 

and velocity simultaneously to keep the room at the comfort region and to minimize the 

corresponding energy expenditure. The method implemented static and dynamic 

optimization schemes and included the interdependence of those three parameters. The 

optimization theory was then utilized to develop the new control policies. A comparison 

between the proposed method and a conventional method under a common baseline was 

demonstrated by experiments. The experimental results showed that the control 

performance and energy efficiency can be much more improved through controlling 

temperature, humidity and velocity simultaneously rather than independently. Their 

work indicated that the control strategy that takes into consideration control variable 

interactions among the system and components systematically can result in more energy 
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saving when compared to the control strategies considering the control variables 

separately. 

Cumali [64] formulated the optimization problem for building HVAC systems 

based on the physical component models, and then he employed a global optimization 

technique to develop optimal control and operation strategies. The results showed that 

projected and/or augmented Lagrange multiplier methods did not perform well because 

of the equality constraints used in the problem formulation, while generalized reduced 

gradient methods appeared to provide consistent results if one starts with a reasonable 

initial solution.  

By deriving governing equations from the principles of conservation of mass and 

energy, House et al. [65] and House and Smith [66] described a systematic approach for 

optimization of building HVAC systems. The approach considered the interactions 

among the system equipment, the multi-zone building system, and their associated 

variables. The optimization problem was resolved by a nonlinear sequential quadratic 

programming method, in which the continuous control variables were discretized in the 

time domain to transform the infinite dimensional optimization problem to a finite 

dimensional form. Using discrete values for the state and control variables, the cost 

function was integrated numerically based on the trapezoidal rule. The drawback of the 

sequential quadratic programming method is that it has to start from initial guesses for 

the solutions and the convergence speed is affected by its initial guesses. 

Zaheer-Uddin and his collaborators have made considerable contributions in the 

optimal and sub-optimal optimization approaches of building HVAC systems [67-70]. 

These optimal and sub-optimal optimization approaches were developed based on 

physical models. The simulation results demonstrated that these optimal and sub-

optimal optimization approaches, in which multiple control variables were optimized 
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simultaneously, can improve the system response and operational efficiency. They also 

demonstrated that a multistage optimization technique is an effective and useful tool for 

computing optimal set points profiles for building systems subject to time-of-day 

operating schedules. 

Koeppel et al. [71] investigated the system performance and optimization 

approaches for a direct-fired LiBr absorption refrigeration cycle system using 

simulation. They used detailed and simplified component models to predict the system 

energy and environment performance. A global optimization algorithm, simulated 

annealing, was employed to determine the optimal control settings under different 

control options. Their results showed that the optimal operation schedule for absorption 

refrigeration cycles can be determined from the optimization investigation under the 

simulation environment. 

Kota et al. [72] investigated the performance of the differential dynamic 

programming (DDP) technique which can be applied to dynamic optimization of 

building HVAC systems. Based on the mass and energy conservation principles, they 

derived the state equations utilized to describe the HVAC system. In their study, they 

compared their optimization result with that obtained from a nonlinear programming 

(NLP) technique using the sequential quadratic programming (SQP) method. They 

demonstrated that DDP is more efficient compared to NLP for the example problems, 

while NLP is more robust and can treat constraints on the state variables directly. 

Henze et al. [73] described the development and simulation of a predictive optimal 

controller for thermal energy storage systems. The optimal strategy based on the 

dynamic programming method minimizes the cost of operating the cooling plant over 

the simulation horizon. The particular case of an ice storage system was investigated in 

a simulation environment. Various predictor models were analyzed with respect to their 
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performance in forecasting cooling load data and information on ambient conditions 

(dry-bulb and wet-bulb temperatures). The predictor model provides load and weather 

information to the optimal controller in discrete time steps. An optimal storage charging 

and discharging strategy was planned at every time step over a fixed look-ahead time 

window utilizing newly available information. The first action of the optimal sequence 

of actions was executed over the next time step and the planning process was repeated 

at every following time step. The effect of the length of the planning horizon was 

investigated. Various utility rate structures were analyzed to cover a range of potential 

real-time pricing scenarios. The predictive optimal controller was then compared to 

conventional control heuristics. And the simulation results showed that this optimal 

controller can achieve a significant performance benefit over the conventional controls 

in the presence of complex rate structures, while requiring only a simple predictor. 

Later, Henze et al. [74] demonstrated a physical model-based predictive 

optimization of an active and passive building thermal storage inventory in a test facility 

in real time using time-of-use differentiated electricity prices without demand charges. 

In their study, the building was modeled in the transient systems simulation program, 

TRNSYS, while Matlab and its optimization toolboxes were used to interface with the 

building simulation program. The experimental results showed that the savings 

associated with passive building thermal storage inventory were small because the test 

facility utilized was not an ideal candidate for the investigated control technology. 

Wang and Jin [75] presented a system optimization approach for variable air 

volume (VAV) air-conditioning systems in which simplified physical models were 

utilized to predict the overall system performance, and a genetic algorithm (GA) was 

used to resolve the optimization problem of multiple control variables. It was the first 

application of GA in solving an optimal control problem formulated using a system 
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approach in the HVAC field. The simulation results showed that this online supervisory 

control strategy can improve the overall system energy and environment performance 

since it took into consideration the system level characteristics and interactions among 

the system variables. 

Xu and Wang et al. [76] extended the work of Wang and Jin [75] to develop a 

model-based system optimization approach for multi-zone VAV air-conditioning 

systems aiming at optimizing the total fresh air flow rate by compromising the thermal 

comfort, indoor air quality and total energy consumption. The proposed optimization 

approach is based on a constructed cost function relating all the optimization objectives 

including the thermal comfort, the indoor air quality and the total energy consumption, 

while the cost function is calculated based on the prediction of system responses using 

simplified models. The genetic algorithm (GA) was again used for optimizing the 

temperature set point of critical zones in the optimization process. This approach was 

evaluated in a simulated building and air-conditioning environment under various 

weather conditions. Test results showed that the genetic algorithm is a convenient tool 

for optimizing the temperature set point for online optimization applications by 

minimizing the total cost with the aim of optimally estimating the total ventilation rate 

in multi-zone air-conditioning systems. 

Based on the physical models of building and plant equipment, Zhang and Hanby 

[77] presented a model-based system optimization approach for renewable energy 

systems in buildings. The objective of the optimization problem was to minimize the net 

external energy consumption of the system subject to a series of constraints. An 

evolutionary algorithm was then used to seek the optimal and near-optimal control 

settings. Simulation results indicated that significant improvements in system operation 

are possible as compared to the existing rule-based control scheme. 
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These above studies demonstrated that the energy or cost efficiency, the in-building 

environment performance and the system response of the building HVAC system can be 

improved by using physical model-based system optimization approaches. However, 

many parameters in the governing equations are uncertain, and many parameters in the 

detailed physical models require detailed information of the system or process of 

concern. In practice, the parameter online identification and performance prediction of 

these governing equations and physical models in the supervisory control strategies 

often require many iterations, which may result in high computational cost and memory 

demand, as well as control instability. All of these characteristics are the major 

obstacles that may seriously prevent the online control applications of physical model-

based supervisory control strategies.  

2.2.2 Black-box model-based system optimization 
There are also a number of studies that utilize black-box models to construct the 

system optimization approaches in the HVAC field. One popular technique is artificial-

neural-networks (ANNs)-based optimization.  

ANNs are networks of highly interconnected neural computing elements that have 

the ability to respond to input stimuli and to learn to adapt to the environment [78]. 

ANNs do not require detailed information about the system; they learn the relationships 

between input and output variables by studying the historical data. The main advantages 

of ANNs are their abilities to map nonlinear functions, to learn and generalize by 

experience, as well as to handle multivariable processes in HVAC system. These merits 

make ANNs feasible for control applications. The research and development on ANNs 

in building HVAC systems started at the early 1990s.  

Curtiss et al. [79] and Massie [80] developed ANNs-based optimization approach to 

minimize the total energy consumption of building HVAC systems. They proposed an 
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optimization approach consisting of two networks, a training network and a predictor 

network, working in parallel. The training network was used to learn the relationship 

between the various controlled and/or uncontrolled variables and the total power 

consumption of HVAC systems. The training network weights were then passed to the 

predictor network where they were used as an activation function of the predictor 

network. The predictor network subsequently found optimal values for the controlled 

variables that can minimize the overall system operating cost. Bradford [81] adopted the 

method introduced by Curtiss et al. [79] to deploy online optimization of a cooling plant 

without storage. The historical data from a test building are used to train the ANNs. The 

output of the networks was the total power consumption of the HVAC system. The 

network was configured with two hidden layers of three and two nodes, respectively. 

These three studies demonstrated that an ANNs-based optimization approach can 

greatly reduce the operating cost of building HVAC systems and it is also robust in 

finding optimal solutions at any given working condition since such an optimizer does 

not rely on any assumptions of the system or process of concern.  

Curtiss et al. [82] used HVAC system performance data collected in the laboratory 

to train ANN models and discussed the results of a proof-of-concept experiment in 

which ANNs were used for both local and global optimization of a commercial building 

HVAC system. The experimental results obtained from the laboratory testing showed 

that significant energy savings are possible when the proposed optimization approach is 

used.  

Gibson [83] installed both GA based and ANNs based optimizers at the central 

cooling system of a building in a high school to compare their performances. The 

system operation results showed that both GA and ANNs are effective techniques for 

online optimization. However, the important lessons learned by the authors showed that 
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great care should be given since GA and ANNs cannot always provide the desirable 

solutions.  

Chow et al. [84] introduced the concept of integrating a neural network with GA in 

the optimization of an absorption refrigeration cycle system. The neural network was 

used to model the system characteristics of the absorption unit and GA is applied as a 

global optimization tool. The results from the case studies showed that considerable 

energy can be saved since such an optimizer allows an overall consideration of the 

interactions among the systems and their controlled variables. 

Xu et al. [85] presented an optimization-based methodology to control HVAC units 

in stochastic settings. Considering the difficulties related to tuning the parameters for 

different buildings, a neural network was used to predict the dynamics of HVAC 

systems instead of using system dynamic governing equations. A Lagrangian relaxation 

method was used to obtain near-optimal solutions with quantified quality. Numerical 

testing and prototype implementation results showed that this method is significantly 

better than other existing methods. 

The above studies using ANNs-based supervisory control strategies demonstrate 

that ANNs could be a choice for the optimization of building HVAC systems. Energy or 

cost savings are possible when such ANNs-based optimizers are used. However, most 

of these studies were presented from the view point of academic research, the 

practicability and effectiveness of the real-time application of ANNs-based optimization 

approach still need to be proved and improved. Since ANNs operate as black-box 

models, they have the inherent deficiency that they are only reliable at the operation 

conditions in the range of training data covered. Hence, significant control errors might 

occur when the system operates outside the range of ANNs trained, and/or measurement 

faults, and/or component degradations occur. Moreover, the training of ANNs always 
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requires extensive computational cost and memory demand, which makes it almost 

impossible and unacceptable to apply adaptive control in practice to improve the 

prediction accuracies of ANN models. The online practical application of such methods 

needs to be implemented with great care [2]. 

Another general technique for black-box model-based optimization is empirical-

relationship-based optimization. 

Empirical relationships, including polynomial regression models and identification 

models, etc., could be the simplest way to formulate and construct the system and/or 

component models. Both inputs and outputs are known and measured from field 

monitoring. There are a few studies that use empirical relationship-based models to 

construct system optimization approaches. 

Braun et al. [86-88] have devoted considerable efforts on developing optimal and 

near-optimal system optimization approaches using quadratic relationships for 

refrigeration cycle and water systems. These are addressed in detail in Chapter 41 of the 

2003 ASHRAE Handbook—HVAC Applications [89]. These studies included the 

application of two basic methodologies for determining optimal or near-optimal values 

of the independent control variables in the building HVAC system that minimize the 

instantaneous operating costs of a refrigeration cycle plant. One was a component 

model-based nonlinear optimization algorithm, in which power consumptions of 

refrigeration cycles, cooling towers, chilled water pumps, as well as supply and return 

fans were expressed as quadratic relationships. This methodology was used as a 

simulation tool for investigating the system performance. The other was a system-based 

methodology for near-optimal optimization, in which an overall empirical cost function 

of total power consumption of a refrigeration cycle plant was developed using a 
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quadratic function. This method allowed a rapid determination of near-optimal control 

settings over a range of conditions.  

Pape et al. [90] extended Braun’s method to the overall HVAC system. The power 

consumption of the entire HVAC system was represented by a quadratic relationship in 

terms of control variables, loads, and ambient conditions. The optimal operating set 

points were determined by equating the first derivative of the power with respect to each 

control variable to zero. Braun’s method was also further extended by Cascia [91] 

through simplifying the component models and providing the equations for determining 

the set points of near-optimal control. All component power consumptions (e.g., 

refrigeration cycles, pumps, fans) were expressed as a function of temperature 

difference between chilled-water supply and return temperatures. The parameters in the 

model were determined from the direct measurements of total power consumption and 

temperature difference obtained from a direct digital control (DDC) system. This 

methodology was implemented at a small pilot cooling plant. A third-party energy 

accounting program was used to track the energy savings by the near-optimal control. 

The results showed a monthly energy reduction ranging from 3% to 14%. However, this 

strategy was based on the assumption that the condenser water flow rate is unchanged. 

Cassidy and Stack [92] showed that varying the speed of cooling tower fans can 

reduce energy consumption at part load conditions. By considering the effects of the 

condenser water flow rate on the performance of the refrigeration cycle condensers and 

cooling towers, Shelton and Joyce [93] recommended a fixed condenser water flow rate 

(1.5 gpm/ton) as a rule of thumb for system operation. Later, Kirsner [94] demonstrated 

that a high condenser water flow rate (3 gpm/ton) has good performance at full load 

condition, while a low condenser water flow rate (1.5 gpm/ton) has advantages at part 

load conditions. 
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Braun et al. [95] identified several guidelines for near-optimal optimization of 

chilled-water systems without significant thermal energy storage. They also identified 

that the optimization of a chilled water system was primarily a function of the total 

chilled water cooling load and ambient wet-bulb temperature. On top of these results, 

Braun and Diderrich [96] developed the near-optimal control strategy for cooling towers. 

The control algorithm for cooling tower was expressed as an open-loop control equation 

in terms of total chilled-water cooling load. Braun [97] further extended this method to 

develop a general control algorithm for cooling towers in cooling plants with 

refrigeration cycles. And Braun and Diderrich’s method [96] was again used by Cascia 

[98] to develop a patent on determining the set points of near-optimal optimization for 

HVAC system with the simplified model. These near-optimal optimization approaches 

mentioned above are easy to implement for practical application, however the energy 

savings are not really significant compared to the “optimal” system optimization 

approaches. 

Olson and Liebman [99] presented a mathematical programming approach for 

determining which available refrigeration cycle equipment to use to meet a cooling load 

as well as the optimal operating temperatures for the water flows throughout the system. 

First, an empirical model that is only dependent on cooling load was established to 

predict the power that would be required to cool the building with various combinations 

of equipment. Then, a mixed-integer, nonlinear formulation of the problem is developed. 

A heuristic approach for handling the integer variables is presented which allows 

optimal solutions to be obtained by solving a series of continuous problems using 

sequential quadratic programming (SQP). The results showed that computational cost 

can be reduced significantly by this approach.  
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Austin [100] utilized biquadratic polynomial models of refrigeration cycles and 

cooling towers to optimize the condenser water temperature set point. Based on the 

detailed analysis of refrigeration cycle and cooling tower performance characteristics, 

Austin emphasized that system modeling can help select the best combination of 

refrigeration cycles and condenser water temperature set points to meet different loads 

under various outdoor working conditions with the minimum energy input. 

Ahn and Mitchell [101] developed a system optimization approach for a cooling 

plant. A quadratic regression equation was used to predict the power consumption of a 

total cooling system in terms of forcing function and controlled variables. The optimal 

control settings, e.g., supply air temperature, chilled-water temperature, condenser water 

temperature, etc., were selected to minimize the total system power consumption. The 

simulation result showed that minimum total system power consumption was a trade-off 

among power consumptions of different components. This method is simple and easy to 

implement. However, there are as many as 28 coefficients with no physical significance 

required to be identified from the monitoring data, which may result in significant 

prediction deviations for practical applications. 

Yao et al. [102] investigated and established the empirical relationships among 

controlled variables, uncontrolled variables, and system performance of a large cooling 

system using site measurement data. A model of optimal operation for the system was 

established based on these empirical relationships. A system coefficient of performance 

(SCOP) was introduced to analyze the effects of energy savings of the cooling system. 

The results obtained from case studies showed that the energy saving was likely to 

reach as high as 10% by applying the optimal operation strategy to the cooling system.  

Sun and Reddy [103] presented a general and systematic optimization approach, 

termed as complete simulation-based sequential quadratic programming (CSB-SQP), to 
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determine the optimal control strategy for building HVAC systems.  Linear 

approximation with a Taylor expansion was utilized to formulate the system models. A 

case study on a simple cooling plant illustrated the accuracy, efficiency and robustness 

of this methodology. 

These system optimization approaches using black-box relationships also 

demonstrate the energy- or cost-saving potentials in HVAC systems when such methods 

are utilized. Empirical relationship-based system optimization approaches are easy to 

implement in practical supervisory control of EMCS since the methodologies involved 

in such methods are relatively simple, and computation time is generally manageable. 

However, most existing approaches seem to lack generality because they were only 

validated for simulations or pilot tests with certain operating points. The application of 

such methods in large office or commercial buildings is lacking. The robustness of such 

methods is also a big issue in practice, especially when the systems operate at the range 

where the training data are not covered or system degradations or measurement faults 

occur. Although adaptive control can improve the prediction accuracies of these models 

to some extent, it is very dangerous to apply adaptive control to large and complicated 

HVAC systems at the current stage. More research is essentially needed to further 

validate the feasibilities of adaptive empirical relationship-based system optimization 

approaches in practice and special care should be given when such methods are used [2]. 

2.2.3 Hybrid model-based system optimization  

A few studies using hybrid models are reviewed in this section. Actually it is quite 

difficult to clearly define what kinds of models hybrid models are. Occasionally, semi-

physical models, simplified physical models and semi-empirical models can be regarded 

as hybrid models. In the study of Braun [104], the building model was a simplified 

physical model which can be regarded as a hybrid model, while refrigeration cycle plant 
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models were quadratic relationships. Simulation results of this study indicated that both 

operating costs and peak electrical use can be reduced significantly through optimal 

control of the intrinsic thermal storage within building structures. The proposed control 

methodology was employed by Simmonds [105] to minimize the system operating cost 

while maintaining the acceptable indoor comfort.  

Lu et al. [106-109] presented a series of system optimizations for building HVAC 

systems. The interactive nature within and between components and their controlled 

variables in the system was considered. The objective function of global optimization 

was formulated based on mathematical models of the major components. The 

thermodynamic characteristics of the cooling coil and cooling tower were predicted 

with the hybrid models, which are simple yet accurate with some physical significance. 

The power consumption of refrigeration cycles was predicted using an empirical model, 

while the power consumption of water pumps and fans was modeled as a function of the 

ratio of water flow rate to the designed water flow rate and the ratio of airflow rate to 

the designed airflow rate. A modified genetic algorithm was utilized to search the 

optimal control settings. Simulation studies based on a small pilot-scale centralized 

HVAC plant showed that system level optimization can improve overall system 

operating performance significantly. 

Fong et al. [110] proposed a simulation optimization approach for effective energy 

management of building HVAC systems. An empirical refrigeration cycle model and a 

hybrid cooling coil model were used to predict the system energy and environment 

performance, and then evolutionary programming was used to handle the discrete, 

nonlinear, and highly constrained optimization problems.  The simulation exercises for 

the HVAC system in a subway station showed that 7% energy saving can be achieved 
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by optimizing the set points of chilled water temperature and supply air temperature on 

a monthly basis. 

Braun [111] presented a simple control strategy for hybrid cooling plants that could 

be readily implemented with low installation costs. The refrigeration cycle performance 

was modeled by associating COPs with cooling capacities, while the cooling tower was 

modeled using an effectiveness hybrid model. This strategy was developed and 

evaluated using a simulation tool that could determine optimal control settings for 

specific simulated cooling plants. Braun [112] further developed a near-optimal control 

strategy for cool storage systems with dynamic electric tariff. This strategy used a 

hybrid model of the ice storage tank and an empirical model of the refrigeration cycle. 

This strategy was evaluated for ice storage tank using a simulation tool for different 

combinations of cooling plants, storage sizes, buildings, locations, and real-time electric 

tariff. The simulation results showed that 2% cost savings are possible with the use of 

optimal control. 

Hybrid models-based system optimization approaches could be more suitable, and 

might be a feasible solution which can direct many advanced strategies to be applied in 

practice if the hybrid models are well developed and are combined effectively with 

other types of models in the system. However, most existing hybrid model-based 

system optimization approaches were evaluated by simulations, and their practical 

applications seemed to be inadequate. More research on application of hybrid model-

based system optimization approaches in practice is highly needed. 

2.3 Summary 
In general, the previous studies have contained limitations when viewed in the 

context of (i) static hybrid HVAC component models with simple model structures 
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suitable for online system optimization; (ii) simple yet accurate transient hybrid models 

suitable for local control and/or constructing simulation platform; (iii) effective 

optimization algorithms suitable to the characteristic of the studied system and the 

optimization problem formulated based on the simple yet accurate hybrid HVAC 

component models; and especially, (iv) general and feasible hybrid model-based system 

optimization approach and its application in a real HVAC plant. The details are listed as 

follows:  

1) Most models for cooling towers are physical models or black-box models which 

may not be suitable for online system optimization application. 

2) Most models for cooling towers and cooling coil are of steady state type, which are 

not suitable for control analysis, because they do not consider the dynamics of the 

equipment. 

3) Furthermore, few dynamic models for cooling towers and cooling coils are 

developed with the hybrid modeling methodologies for simulating and studying the 

transient response characteristics of the cooling coils and cooling towers which 

takes into account the variable air and water flow rate as well as time varying air 

and water temperature. 

4) Little work has been done for analyzing the interactions among the energy 

consumption of the compressor, the condenser water supply temperature as well as 

the condensing and evaporating pressure within the refrigeration cycle. This kind of 

model and study are necessary for analysis of refrigeration cycle.  

5) Little research has been done on using PSO to determine the global optimal set 

point profiles of a HVAC system subject to time varying weather and cooling loads, 
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which will be valuable in developing supervisory control strategies for energy 

efficient operation of a HVAC system.  

Therefore, this thesis deals with the development of modeling methodologies for 

both static and dynamic semi-physical hybrid models for HVAC components and 

presents optimization techniques for global optimal operation of HVAC out-building 

section subject to realistic operating constraints. These hybrid models have the 

advantages of:  

1) incorporation of theoretical and physical knowledge;  

2) reliability over a wider range of operating conditions compared to empirical models; 

3) less computational effort than the complex physical models.  

The emphasis of this thesis is placed on  

i) the application of fundamental principles to develop an analytical component and 

system-level models of HVAC system using hybrid methods;  

ii) the application of an optimization technique such as the genetic algorithm (GA) and 

particle swarm optimization (PSO) to develop a methodology for determining the 

global optimal set point profiles for the local controller subject to realistic operating 

conditions which include the varying cooling load and varying weather condition; 

and  

iii) the application of the proposed system optimization approach to a real HVAC 

system to verify its effectiveness. 
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CHAPTER 3 STATIC MODEL OF COOLING 

TOWERS 

3.1 Introduction  
In this chapter, we propose a simple yet accurate hybrid steady state cooling tower 

model for the purpose of energy conservation and management. Firstly, the mechanism 

of the cooling tower as well as the details of Merkel’s model, the NTU-effectiveness 

model and Stoecker’s model are introduced. Then, on the basis of Merkel’s theory and 

the Effectiveness-NTU method, a new hybrid model is developed from an energy 

balance as well as heat and mass transfer analysis. Only three characteristic parameters 

are required to predict the steady state performance of heat transfer in cooling towers 

without iterative computation to calculate the heat rejection rate. The Levenberg-

Marquardt method is employed to determine the three parameters by curve fitting the 

manufacturers’ specification data or real time experimental data. Compared with the 

existing models, the proposed model is simple and accurate; therefore, it can be used for 

real time prediction of the performance of cooling towers. In Chapter 6, this model is 

integrated into the system models of HVAC out building section to formulate the 

system optimization problem for energy savings. 

3.2 Hybrid Cooling Tower Model  

3.2.1 Mechanism analysis of mechanical cooling towers  
Most popular cooling towers in HVAC systems are mechanical towers utilizing 

large fans to force air through circulated water. The water falls downward over fill 

surfaces which help increase the contact time between the water and the air, thus 

maximizing heat transfer between the two. Figure 3.1 shows a schematic representation 



 

40 

of two types of mechanical draft cooling towers: counter-flow and cross-flow. The 

principle of counter-flow is that the hot water flows downwards while the air is forced 

upwards by a fan. As the water flows further through the system, the air it encounters is 

fresher, in other words cooler and less saturated with moisture. On the other hand, the 

principle of cross-flow is that warm water flowing down through a cooling unit is 

cooled by air drawn upwards by a fan. Evaporation and direct heat exchange cause a 

rapid drop of temperature.  

 
Figure 3.1 Mechanical draft counter-flow and cross-flow tower 

Fills or packings are employed in cooling towers to increase the contact area and 

time between the water that needs to be cooled and the cooling air. There are basically 

three different types of fill designs: film, splash, and trickle type fills. A thin film of 

water runs down the film fill surface while the splash fill breaks the water stream into 

smaller droplets. The trickle film is basically a combination of film and splash type fill. 

However, Kloppers and Kröger’s [17] revealed that the differences between the Merkel 

and Effectiveness-NTU approaches are independent of the fill type considered.                                    

3.2.2 Merkel’s model 
The Merkel model relies on several critical assumptions: 
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1. the Lewis number (Le ) relating heat and mass transfer is equal to 1;  

2. the air exiting the tower is saturated with water vapor and it is characterized only by 

its enthalpy;  

3. the reduction of water flow rate by evaporation is neglected in the energy balance. 

Eqs. (3.1) and (3.2) are obtained from mass and energy balances of the control 

volumes where air is in counter-flow with a downwards flowing water stream. For the 

Merkel theory it is assumed that the change in cooling tower water mass flow rate ( ctwm& ) 

due to evaporation is negligible, and 
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where, Eqs. (3.1) and (3.2) describe, respectively, the change in the enthalpy of the air-

water vapor mixture ( h ) and the change in cooling tower water temperature ( ctwT ) as 

the air travel distance changes ( z ). Eqs. (3.1) and (3.2) can be combined to yield upon 

integration the Merkel expression: 
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where, MMe is the tower characteristic, i.e. Merkel number, according to Merkel’s 

approach. CTWRT  and CTWST denote the cooling tower water return temperature and 

cooling tower water supply temperature, respectively. It is often difficult to evaluate the 

surface area per unit volume of fill due to the complex nature of the two-phase flow in 

fills. It is, however, not necessary to explicitly specify the surface area per unit volume 

( a ) or the mass transfer coefficient ( ωk ) as these are contained in the Merkel number 

which can be obtained from the right-hand side of Eq.(3.3). 
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It is not possible to calculate the true state of the air leaving the fill according to Eq. 

(3.3). Merkel assumed that the air leaving the fill is saturated with water vapor. This 

assumption enables the air temperature leaving the fill to be calculated.  

3.2.3 NTU-effectiveness method 

The NTU-effectiveness method is based on the same simplified assumptions as the 

Merkel method. The HVAC1Toolkit [16] presented a counter-flow cooling tower model 

of a typical NTU-effectiveness method. Based on this method, the total heat rejection 

rate ( ctQ& ) due to the direct contact between air and water under steady-state conditions 

is calculated as:  
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where, U denotes the heat transfer coefficient, A denotes the heat transfer area and paC

denotes the specific heat of moist air, respectively. The first step in the modeling proced

-ure is to assume that the moist air enthalpy can be defined by the wet-bulb temperature 

only and that the moist air can be treated as an equivalent ideal gas characterized by the 

following mean specific heat: 
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where, epaC ,  denotes the equivalent ideal gas specific heat, oah ,  and iah ,  denote the air 

enthalpy at the outlet and inlet of the cooling tower, and owbT , and iwbT ,  denote the air 

wet-bulb temperatures at the outlet and inlet of the cooling tower, respectively. 

The water side conductivity is much greater than the air side conductivity. Therefore, 

the wetted surface temperature is also assumed to be equal to the water temperature. On 

the basis of these assumptions, the expression of the total heat rejection rate becomes: 
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An energy balance on the water and air sides gives: 
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The water-side effectiveness of the cooling tower can be defined by analogy to the 

effectiveness of a simple heat exchanger: 
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The combination of Eqs.(3.6) and (3.7) is integrated. The result of this integration is 

combined with Eq.(3.8) to provide the following expression of the cooling tower 

effectiveness: 
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Then, the heat rejection rate is expressed by the following equation: 
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As can be seen, when
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From the derivation of Eq.(3.12), it is self evident that the value of NTU has a direct 

relationship with the tower characteristic ( MMe ). Consequently, Eq.(3.12) establishes 

the relationship between NTU and the physical variables in order to predict the 

performance of cooling towers. Nevertheless, the main influential factors are am&  

and ctwm& , and iwbT ,  and CTWST  theoretically have no effect on the value of NTU and the 

tower characteristic MMe  [8]. Consequently, the cooling tower can be modeled, in the 

steady-state regime, by an equivalent classical counter-flow heat exchanger (Figure 3.2). 

Figure 3.2 Conceptual scheme of the counter-flow cooling tower 

The first fluid is water and the second fluid is an equivalent fluid entering the heat 

exchanger at temperature iwbT , and characterized by the specific heat epaC , . The heat 

exchanger is characterized by a single parameter, its global equivalent coefficient-area 

product ( eUA ), which is related to the actual cooling tower heat transfer coefficient-

area product by the following expression: 
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Therefore, in the steady-state regime, the combination of the mass and heat transfer 

of water-vapor towards the air can be equivalent to the behavior of heat transfer by 

convection between water and moist air.  

3.2.4 Stoecker’s model 
Apart from using NTU based on heat transfer theory, an entirely empirical model of 

a cooling tower was proposed by Stoecker [9]. In this model, the cooling tower was 

supposed to have a constant airflow rate and a water flow rate based on a polynomial 

approximation.  
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If M operating points (M > 9) are collected for model identification, Eq. (3.15) falls 

into a system of linear equations:  
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The best estimation *X  of X can then be obtained using a standard least-squares 

method as: 

( ) ΓΨΨΨ=
− TTX 1*                                                (3.17) 



 

46 

3.3 Hybrid Model  
Before developing the new hybrid cooling tower model, we use the follow 

reasonable assumptions:  

1. heat and mass transfer occurs in a direction normal to the flow only;  

2. the Lewis number (Le ) is a constant;  

3. the reduction of water flow rate by evaporation is neglected in the energy balance; 

4. the cross-sectional area of the tower and temperature distribution throughout the 

water stream at any cross section is uniform;  

5. the saturation enthalpy is approximately linear with respect to web-bulb 

temperature.  

As we mentioned in the previous section, the cooling tower can be modeled, in the 

steady-state regime, by an equivalent classical counter-flow heat exchanger. Thus, 

during the process of heat transfer, heat is transferred from the water drops to the 

surrounding moist air by convection. As show in Figure 3.3, the equivalent heat transfer 

process can be classified into two parts: water convection and air convection.  

Figure 3.3 Heat exchange scheme using an electric analogy 
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The heat rejection rate can be calculated using the overall heat resistance ( R ) 

according to heat transfer theory and the energy balance [113]. 

R
TT

Q iwbCTWS
ct

,−
=&                                                 (3.18) 

When comparing Eq.(3.11) and Eq.(3.18),  we can have another definition of the 

overall heat resistance: 

                                                        
min

1
C

R
&⋅

=
ε

                                                     (3.19) 

Theoretically, the overall heat resistance ( R ) consists of two parts: heat resistance 

due to the water convection ( ctwR ) and heat resistance due to the air convection ( aR ).  

actw RRR +=                                                      (3.20) 

Convection heat transfer refers to the heat exchanged between an interface and the 

fluid moving over the interface. The amount of heat thus transferred depends on the 

nature of the interface and the fluid, the geometry of the cooling tower and the velocity 

of the fluid over the interface as well as the temperature difference.  

As water and air in cooling towers are moved by pumps and fans, respectively, the 

type of heat transfer between water and air can be considered as forced convection. 

Assuming the uniform cross section area of the water flow is circular, with diameter 

( D ), by dimensional analysis [114], the heat resistance of water convection ( cwR ) and 

mass flow rate ( cwm& ) can be calculated as: 
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where v , ρ , μ  and k  denote the average velocity, density, viscosity and thermal 

conductivity of the cooling tower water flowing through the cooling tower, respectively. 

And the values of the constant C and the exponents 1e  and 2e  in Eq.(3.21) are difficult 

to be determined exactly.  

For steady stable flow, it is reasonable to assume that the value of the heat transfer 

area of the cooling tower water side convection ( ctwA ), the cooling tower water density 

( ρ ) and the velocity ( v ) remain constant. Moreover,μ , k  and pwC  are approximately 

constants if the temperature difference is not too big (not greater than 6 C°  for water and 

50 C°  for a gas) [115]. Replace v  in Eq. (3.21) by Eq. (3.22), we obtain: 
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Following the same argument, the heat resistance of air convection can be expressed 

as: 
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Substituting Eqs.(3.20), (3.23) and (3.24) into (3.18), a cooling tower model for 

computing heat rejection rate is obtained as:  
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where 11 bc = , 212 bbc =  and 13 ec = . These three parameters can be determined either 

by manufacturers’ data or by real time experimental data. 

Forced convection heat transfer is very complex and influenced by many factors. 

The approach of combining the property factors and geometric factors into the constants 

(characteristic parameters) was used in Eq.(3.25). Compared with the existing cooling 

tower model, Eq.(3.25) is characterized by fewer characteristic parameters and 

simplicity.  

Compared with the existing models mentioned above, the proposed model releases 

the control variable, mass flow rate of water and air, from the lumped parameter 

MMe and NTU, thus, iterative computation can be avoided when cwm&  and am&  change.    

By dimensional analysis, the cross-flow arrangement cooling tower can be 

hypothetically considered as a counter-flow arrangement with the same terminal 

temperatures [116, 117]. Therefore, this model can also be applied in a cross-flow 

cooling tower, with the equivalent water mass flow rate ctwequctw mm && λ=, . For a given 

cooling tower, the conversion coefficient (λ ) is constant, thus, λ  can be lumped in the 

unknown parameters 1c  and 2c  in Eq.(3.25). 

The proposed model is deduced from the analysis of the Effective-NTU method, 

thus, the utilization of the proposed approaches is independent of the type of fill 

considered. This feature makes that it can be widely used to describe the characteristics 

of cooling towers with different kinds of fill arrangement. 

3.4 Parameter Identification   

If the variables CTWST , ,wbT , ctwm& , am&  and ctQ&  can be obtained, manipulating the 

cooling tower into N states, it follows that  
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To determine the empirical parameter 31 ~ cc , an objective function is defined as:  
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Since it is a non-linear unconstrained optimization problem, several existing 

algorithms can be used to find the solution. Here, the Levenberg-Marquardt method 

[118] is implemented, which uses a search direction between the Gauss-Newton and the 

steepest descent direction by solving the linear set of equations:  

( ) ( )( ) ( ) ( )kkkkk
T

k uFuJdIuJuJ −=+ λ                                 (3.28) 

Where, ku  is the thk  iteration value of [ ]Tcccu 321 ,,= ;  

( ) [ ]( )T
iki cccFuF 321 ,,= ;                                              (3.29a) 

( ) ( ) ( ) ( )[ ]TkNkkk uFuFuFuF ,, 21 L= ;                                   (3.29b) 
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kkk duu +=+1                                                       (3.29d) 

In the equations, kλ  controls both the magnitude and direction of kd . When kλ  is 

zero, the direction kd  is identical to that of the Gauss-Newton method. If kλ  tends to 

infinity, kd  tends towards a vector of zeros and a steepest descent direction. This makes 

it less effective than the Gauss-Newton search direction but more robust. 

The whole procedure of model identification is given as follows:  

Step 1. Obtain cooling tower operating points from either manufacturers’ data or real 

time experimental data.  

Step 2. Initialize 0u  and 0λ , calculate ( )0uF  and ( )0uJ  from Eqs. (3.29b) and (3.29c). 

Step 3. Determine initial search direction d0 from Eq. (3.28).  

Step 4. Compute the ( )kuF  with Eq.(3.27) and determine the search direction of the 

next step from Eqs.(3.28) and (3.29).  

Step 5. Stop the computation when ( )kuF  or ( ) ( )1+− kk uFuF is less than a pre-specified 

small number (usually in the range of 6101 −× ~ 5101 −× ). Otherwise, return to 

Step 4. 
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3.5 Model Validation  
In order to validate the proposed model, a cooling tower operating in the Grand 

Hyatt Singapore hotel HVAC system with the following specifications is used: 

1. Type: Induced draft, counter-flow;  

2. Tower dimension: 4.94 m × 4.94 m × 3.96 m (length, width, height);   

3. Nominal water circulation flow rate: 80.44 kg/s (1275 gallon/minute);  

4. Designed supply water temperature: 35.00 °C (95 °F);  

5. Designed return water temperature: 29.44 °C (85 °F);  

6. Designed wet-bulb temperature: 26.67 °C (80 °F);  

7. Heat rejection at design condition: 2461.83 kW (700 Ton);  

8. Nominal fan power: 15 kW;  

9. Water distribution system: low pressure down spray;  

10. Fan motor location: outside air discharge steam. 

Both the cooling tower fan and the water pump are equipped with Variable Speed 

Drive (VSD) to regulate the air and water speed during part-load condition. The air 

speed through the cooling tower can be estimated from the frequency of the motor 

driving the fan. A flow meter installed at the condenser water loop (cooling tower water 

is driven by the condenser water pump) shows the water flow through the cooling tower. 

The dry-bulb and wet-bulb temperature of the ambient environment are measured by 

sensors in the weather station, which has been set up near the HVAC plant. Two 

accurate temperature sensors are installed to monitor the water temperatures entering 

and leaving the cooling towers. With the temperature differences and water flow rates, 



 

53 

the heat rejection rate of the cooling tower can be determined as the real operating data. 

All these variables are recorded by EMCS in the hotel.  

According to the settings of EMCS in the Grand Hyatt Singapore hotel, the 

sampling rate of each variable is one minute. Therefore, there are totally 1440 values for 

each variable in one day. In order to quantitatively show the performances of the model 

prediction, an error index, Root-Mean-Square of Relative Error (RMSRE), is adopted:  
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                                    (3.30) 

where, realD  denotes the real measured data, and ncalculatioD denotes the calculated data.  

A whole day’s data (February 03rd, 2006) is used for parameter identification of the 

proposed cooling tower model and the results are shown in Figure 3.4. The horizontal-

axis shows the real data of heat rejection rate measured on site, while the vertical-axis 

shows the calculated data predicted by the cooling tower model.  

Figure 3.4 Comparison between the calculated data and the real data on February 03rd, 2006 
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There are three lines in the Figure 3.4 to indicate the performance of the cooling 

tower model. The line in the center indicates the ideal case, where the cooling tower 

model exactly predicts the heat rejection rate of the operating component. The other two 

lines give the boundary of ±10% deviation from the ideal case. If the data points fall 

within a margin of ±10% error, it means that the model under predicts the heat rejection 

rate of the cooling tower. When the data points fall in margin of ±10% error, the model 

over-predicts the real heat rejection rate. Using the Levenberg-Marquardt method, the 

parameters are estimated as 1c =4.43; 2c =1.12 and 3c =1.11. The RMSRE for this model 

identification of 1440 data points is 0.060 and this is acceptable for control and 

optimization purposes.  

This model is then used to predict the cooling tower performance of the very next 

day (February 04th, 2006). Figure 3.5 shows that the results are quite good for the model 

validation.  

Figure 3.5 Comparison between the calculated data and the real data on February 04th, 2006 
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The RMSRE for this model validation of 1440 data points is 0.056. ( 1c =4.43; 

2c =1.12; 3c =1.11) If all these 1440 data are used to identify the new cooling tower 

model, the RMSRE for the model identification is 0.054. ( 1c =5.73; 2c =1.61; 3c =1.09) 

There is no big difference between the prediction accuracies of these two models.  

Secondly, the original model identified by data on February 03rd, 2006 is used to 

predict the cooling tower performance after seven days (February 10th, 2006). Figure 3.6 

shows the results of the model validation.  

Figure 3.6 Comparison between the calculated data and the real data on February 10th, 2006 with 
the model parameters identified on February 3rd, 2006 

The RMSRE for this model validation of 1440 data points is 0.082. ( 1c =4.43; 

2c =1.12; 3c =1.11). If all these 1440 data are used to identify the new cooling tower 

model, the RMSRE for the model identification is 0.063. ( 1c =4.71; 2c =1.21; 3c =1.09) 

Although the results of the model validation are tolerant for engineering purposes, some 

avoidable errors are induced for the performance prediction by the original model.  
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Finally, the original model identified by data on February 03rd, 2006 is used to 

predict the cooling tower performance one month away (March 03rd, 2006). Figure 3.7 

shows the results of the model validation.  

Figure 3.7 Comparison between the calculated data and the real data on March 03rd, 2006 with the 
model parameters identified on February 3rd, 2006 

The RMSRE for this model validation of 1440 data points is 0.143. ( 1c =4.43; 

2c =1.12; 3c =1.11) The results of the model may not be tolerated for accurate control 

and optimization. For the majority of data points, the model over-predicts the 

performance of the cooling tower.  

For the direct contact cooling tower used for testing, the water quality and effective 

contact area varies in time because of the pollution from the surrounding environment. 

The reason why the predicted performance is not the same for different testing times is 

due to the decreasing effective contact area in the cooling tower. And the deterioration 

of water quality results in the fall of the heat exchange efficiency. As time passes, the 

performance of the cooling tower becomes worse. Therefore, the predicted cooling 

tower performance by the identified parameters on February 04th, 2006 is better than the 



 

57 

real performance on February 10th, 2006 and much better than the real performance on 

March 03rd, 2006. 

Since the characteristics of the cooling tower are slow time-varying, we need to 

identify the characteristic parameters of the cooling tower operating on March 03, 2006. 

With the new parameters 1c =1.53; 2c =0.62 and 3c =1.29, we can perfectly predict the 

cooling tower performance with a RMSRE of 0.048, as shown in Figure 3.8. 

Figure 3.8 Comparison between the calculated data and the real data on March 03rd, 2006 with new 
identified model parameters  

According to the validation of the proposed cooling tower model, the model with 

new parameters is accurate enough for process control and optimization (RMSRE<0.1). 

For long periods of time, e.g. a month, the characteristic parameters should be updated 

periodically to accurately predict the cooling tower performance since the 

characteristics of the cooling tower is time varying. Generally, the characteristic 

parameters can be used for some time interval after it is identified, and the time interval 

depends on the surrounding environment condition of the operating cooling tower. For 

example, rainfall, dust and/or pollutant deteriorate the water quality of the circulation 
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cooling tower water as well as the heat transfer characteristics of the fills or packings 

inside the cooling tower.  Therefore, after a certain period of time, the cooling tower 

model with the original characteristic parameters might not be accurate enough and 

should be updated by new performance data.  With this characteristic of the proposed 

model, the inaccuracy of the model and the requirement of updating model parameters 

can be used as an index for maintaining the cooling tower and replacing or purifying the 

circulation cooling tower water. 

3.6 Summary   

A simple cooling tower model has been presented in this chapter. The proposed 

model is based on heat resistance and energy balance principles. It introduced only three 

empirical parameters whose values can be determined by either manufacturers’ catalog 

data or real operating data. Unlike other existing cooling tower models, this model 

captures the geometric characteristics without requiring geometric specifications and no 

iterative computation and initial guess are required to determine the parameters. 

Consequently, online determination of the model parameters becomes practical and 

simple. The real operating data from a HVAC system of a commercial hotel is used to 

identify and validate the proposed model. The slow time-varying characteristics of the 

cooling tower under test can be specified by altering the model parameters and 

accurately predict the cooling tower performance. As time evolves, the parameters of 

the cooling tower should be constantly updated to maintain the prediction accuracy.  

The significance of the developed model is that it can be easily applied to real-time 

HVAC system optimization. The following is the comparison of the developed model 

with existing models:  
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Merkel’s model:  

1. The Merkel method, employing a numerical method to determine the tower 

characteristic MMe , does not accurately represent the physics of the heat and mass 

transfer process in the cooling tower fill. 

2. Iterative computation is needed.  

3. Geometric specification of the cooling tower is required. 

Effectiveness-NTU model:  

1. The value of UA, which varies with the changing mass flow rate of water and air, is 

difficult to determine and requires geometric specification of the cooling tower.  

2. An initial guess of the outlet air condition and an iterative computation are needed 

in order to find true outlet air conditions.  

Stoecker’s method:  

1. This is an entirely empirical model and incapable of considering the variations of 

airflow and water flow rates. Extending this model to variable airflow rate or water 

flow rate requires more coefficients, which increases the complexity for model 

identification.  

2. The model only uses a curve-fitting technique to approximate the real experimental 

data. It might work well under predefined conditions within the experimental data 

region. When the assumption is no longer true and the operating region is beyond 

the experimental data, the model cannot reflect the real performances of the cooling 

tower.  
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Proposed model:  

1. The proposed model lumps the geometric information as constants and only 

considers the inlet and outlet conditions of the cooling tower, therefore it is 

incapable of providing useful information for cooling tower designs and retrofits.  

2. Due to the global uniqueness of the characteristic parameters and the simple 

procedure to determine them, the model is more desirable for real time optimization 

of operating cooling towers.  

In summary, the advantages of the proposed model are simple, flexible, relative 

accurate, and easy for engineering applications. It focuses on the characteristics of the 

exiting cooling tower and the relationship between heat rejection rates and mass flow 

rates under different circumstances. Table 3.1 summarizes the comparison of the 

proposed new models and existing model mentioned above.  

Table 3.1 Comparison of different cooling tower models  

Cooling tower model Stoecker’s Merkel’s E-NTU New model 

Number of parameters 9 ( 91 ~ cc ) 1 ( MMe ) 1 (UA ) 3 ( 31 ~ cc ) 

Variable mass flow 

rate 
NO YES YES YES 

Geometric data NO YES NO NO 

Iterative computation NO YES YES NO 

Modeling technique Empirical Physical Hybrid Hybrid 

Model application Simulation Simulation 
and design

design and 
control 

control and 
optimization 

 

According to the comparison, the main significance of the developed model is that it 

can be easily applied to real-time HVAC system optimization where set points of each 

energy consumption device in the condenser water loop are related to the model. 

Therefore, the cooling tower model is the constrained condition in the course of energy 

minimization of the loop. In Chapter 6, this hybrid model is used to analyze and 
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formulate the energy minimization problem of operating building HVAC system 

consisting of multiple cooling towers and chillers. And a model-based system 

optimization approach for a real HVAC system is developed and validated based on this 

developed hybrid cooling tower model in Chapter 7. 
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CHAPTER 4 DYNAMIC MODELS OF COOLING 

COILS AND COOLING TOWERS 

4.1 Introduction 
The objective of this chapter is to develop dynamic models for the cooling coils and 

the cooling towers. The focus of this chapter will be to accurately model the transient 

heat and mass transfer processes taking place in the cooling coils and cooling towers. 

What is significant is that the modeling methodologies proposed in this chapter can be 

extended to model other subcategory heat exchangers of the HVAC system, e.g. 

condensers or evaporators.                         

In the sections below, we will present the simplified dynamic cooling coil and 

cooling tower models developed with proposed hybrid modeling methodologies. 

Furthermore, we will show how the model parameters are identified, and also how the 

models are validated through actual experiments and simulations.                                                           

4.2 Hybrid Cooling Coil Model  

4.2.1 Modeling based on heat transfer mechanism                                                                  

A water cooling coil uses chilled water as the coolant inside the tubes. The chilled 

water cools and dehumidifies the moist air that flows over the external surface of the 

tubes and fins, as shown in Figure 4.1. To maintain a higher rate of heat transfer, the air 

and water normally follow a counter-flow arrangement; i.e., the low and high 

temperature air meets the low and high temperature water correspondingly. Through 

heat exchange with the air outside the cooling coil tubes, the chilled water flows from 

the inlet to the outlet of the cooling coil forced by the chilled water pump with inlet 
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temperature ( ichwT , ) and the mass flow rate ( chwm& ), the outlet temperature of the chilled 

water rises to ochwT , . The air flows from the inlet to the outlet of the cooling coil forced 

by the supply air fan with the on-coil dry-bulb temperature ( iaT , ), wet-bulb temperature 

( wbiaT ,, ) and mass flow rate ( am& ). Likewise, the off-coil dry-bulb and wet-bulb air 

temperatures descend to oaT ,  and wboaT ,, , respectively.   

Figure 4.1 A typical finned-tube cooling coil 

During the process of heat transfer, a quantity of heat that moves from the hot air 

element through the metal tube wall (usually made of copper or aluminum alloy) into 

the chilled water element can be given by: 

total

chwa
cc R

TTq −
=                                                      (4.1) 

a tube of the 
cooling coil 
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where, ccq  and totalR  denote the heat exchange quantity of the element and total heat 

resistance between water and air element; aT  and chwT  denote the temperature of air and 

the temperature of chilled water, respectively.  

As shown in Figure 4.2, the overall heat resistance ( totalR ) consists of three parts: 

heat resistance of the chilled water convection, heat resistance of the metal wall 

conduction and heat resistance of the air convection. However, as the materials of the 

metal wall used in the cooling coil are good conductors of heat and hence the resistance 

can be considered as a constant during the operation, the conduction effect can be 

lumped into the unknown coefficients and neglected in the following development.             

 

 

 

 

 

 

Figure 4.2 Heat transfer mechanism of coil 

Therefore, the overall heat resistance is:  

achwtotal RRR +=                                                  (4.2) 

where, chwR  and aR denote the heat resistance of the chilled water convection and the 

heat resistance of the air convection, respectively.  

The quantity of heat thus transferred depends on the nature of the surface and fluid, 

the geometry of the cooling coil, the velocity of the fluid over the surface as well as the 
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temperature differences. The overall heat resistance of a chilled-water coil can then be 

written as [18]: 

ll

ll

&&

&&

aaachwchwchw

aaachwchwchw

aachwchw
total mAbmAb

mAbmAb
AFAF

R
+

=+=
11                            (4.3) 

Where, chwF , aF , chwA aA are the film coefficient of chilled water, the film coefficient 

of air, the heat transfer area of the chilled water side convection and the heat transfer 

area of the air side convection, respectively, and l , chwb , ab are considered as constant 

parameters to be identified. 

By combining Eqs. (4.1) and (4.3), we obtain: 

( )chwa
aaachwchwchw

aaachwchwchw
cc TT

mAbmAb
mAbmAbq −

+
=

ll

ll

&&

&&
                                  (4.4) 

4.2.2 Modeling based on energy and mass conservation  

For modeling convenience, we assume that: 

1. The dry air and water vapor in the air are treated as a non-reacting mixture of ideal 

gases.  

2. The specific heat and the density of the wet air are considered as constants in the 

process of heat and mass transfer.  

3. Since the heat and mass exchange between moist air and the external surface of the 

cooling coil tubes arrives at a balance, the Lewis number (Le ) is considered as a 

constant. 

4. Both the air and the water are well mixed in the cross-section normal to its flow. 

Therefore, only gradients for each fluid exist in their respective flow directions 

[119]. 
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5. The humidity of saturated wet air is approximately linear to its temperature when 

the temperature changes within a small range. 

Let the total lengths of tubes and cooling coil depth be ξ  and l ,  the velocity of the 

airflow ( au ) and equivalent velocity of chilled water ( '
chwu ) in the counter airflow 

direction are:  

tubechw

chw
chwchw A

mlulu
ρξξ
&

=='                                              (4.5) 
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a
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ρ
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=                                                              (4.6) 

Using the energy and mass conservation laws, the dynamic change of chilled water 

temperature and air temperature in an infinitesimal volume can be expressed as: 
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Where, chwV and aV  are constants representing the volume of chilled water and air 

element in the mass and heat transfer process in the X direction (Figure 4.3).   
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Figure 4.3 Temperature changes in the X direction 

There is a dry-wet boundary inside the cooling coil that divides it into the sections 

of the dry surface and the wet surface, as show in Figure 4.4 [120]. 

Figure 4.4 Temperature and enthalpy profiles of cooling coil 

In this figure, the solid curves represent the true temperature and enthalpy profiles. 

If we approximate chilled water temperature ( chwT ) and air enthalpy ( ah ) variation 

profiles by a linear equation between the two boundaries (dotted line), then any point 

along the air movement direction can be expressed by: 
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where,  ochwT ,  and ichwT , denote the chilled water temperature at the outlet and inlet of the 

cooling coil; oah , and iah ,  denote the air enthalpy at the outlet and inlet of the cooling 

coil, respectively. 

Take the first derivative of Eqs.(4.9) and (4.10) respectively, we obtain: 

l
TT

x
T ichwochwchw ,, −

=
∂

∂
                                             (4.11) 

l
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x
h iaoaa ,, −

=
∂
∂                                                  (4.12) 

In practice, the relative humidity of the coil inlet air usually fluctuates inside a 

small region; therefore, the enthalpy of moist air can be approximated by the equivalent 

dry-bulb temperature (EDT) method [31], i.e.   

apaa TCh ≈                                                         (4.13) 

)( ,,,, iaoapaiaoa TTChh −≈−                                        (4.14) 

where, paC  denotes the specific heat of the moist air.  

By combining Eqs. (4.7-4.14) we have:  
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4.2.3 Dynamic modeling 

ccq is representing a heat exchange quantity of an infinitesimal volume of a cooling 

coil, we can replace q  in Eqs. (4.15, 4.16) by Eq. (4.4) to result in: 
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Where,
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=5, , and ccl  are constants which can be determined from the 

manufacturer’s data or by real-time experimental data.   

Notice that it will take a certain amount of time for an individual air and water fluid 

element at the new temperature to traverse the distance l  and ξ  from the inlet to the 

outlet of the cooling coil, any temperature changes at the air and water inlet will not be 

registered instantaneously at the outlet. We denote chwτ and aτ   as the time intervals that 

the air and chilled water fluid element take for traversing from inlet to outlet of the 

cooling coil, which are defined, respectively, by: chw tube
chw

chw chw

A
u m
ξ ξρτ = =

&
 and 

a a
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a a

l l A
u m
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. 

Finally, the engineering dynamic model using only boundary conditions at the outlet 

of cooling coil package can be written as: 
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In practice, the number of sensors mounted on an actual HVAC system is limited. 

Several variables have to be obtained by indirect methods if necessary [18]. 

1.  The chilled water flow rate can be obtained by measuring the pressure difference 

across the cooling coil. From 

               
2

0 1 2chw chwp b b m b mΔ = + +& &  (4.21)

where 0b , 1b , 2b  are unknown parameters to be determined through catalog data or 

online testing,  pΔ  is the chilled water inlet-outlet pressure difference of a coil. 

Therefore, the following chilled water flow rate can be derived from Eq. (4.21): 

2
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=&                                   (4.22) 

2.  By employing the method proposed in [16], the cooling load ( ccQ& ) can be 

obtained through the chilled water flow rate and the temperature difference between the 

cooling coil inlet and outlet, and it is given by: 

                ( )ichwochwchwpwcc TTmCQ ,, −= &&  (4.23)

3. According to the energy balance, the air flow rate can then be estimated by: 
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The coil inlet air enthalpy can also be approximated by measuring the dry-bulb 

temperature with an assumption of the coil inlet air relative humidity of 60% and the 

coil outlet air relative humidity of 95% respectively. The use of apaa TCh ≈   eliminates 
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the need of separately calculating heat transfers for the dry coil and the wet coil since 

both dry bulb and wet bulb air temperatures are considered in calculating am& as: 

oaia

cc
paa TT

Q
Cm

,, −
=

&
&                                                  (4.25) 

Using the estimation or measurement of variables ichwT , , iaT , , ochwT , , oaT , , chwm&  and 

am& , the unknown model parameters 5,1, cccc cc − and ccl  in Eqs. (4.19) and (4.20) can be 

determined in the parameter identification phase (see Section 4.4). Otherwise, if 

8.0=l (engineering rule of thumb value) is adopted, the model has only five parameters 

to be determined.  

4.3 Hybrid Cooling Tower model 

4.3.1 Modeling based on heat transfer mechanism   

To develop the cooling tower model based on the heat transfer mechanism, we 

adopt the following reasonable assumptions:  

1. heat and mass transfer in a direction normal to the flow only;  

2. the Lewis number (Le ) is a constant;  

3. the reduction of water flow rate by evaporation (normally 1~4%) is neglected in 

the energy balance; 

4. the cross-sectional area of the tower and temperature distribution throughout the 

water stream at any cross sections is uniform;  

5. the saturation enthalpy is approximately linear with respect to web-bulb 

temperature.  

As the cooling tower can be modeled, in the steady-state regime, by an equivalent 

classical counter flow heat exchanger [121], heat is transferred from the water drops to 

the surrounding moist air by convection during the process of heat transfer.  
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The quantity of heat rejected from the hot cooling tower water element into an air 

element ( ctq ) can then be calculated using the overall heat resistance ( R ) according to 

heat transfer theory and the energy balance [114]. 

R
TT

q wbctw
ct

−
=                                                 (4.26) 

where,  ctwT and wbT denote the cooling tower water temperature and the air wet-bulb 

temperature, respectively. 

And the overall heat resistance ( R ) consists of two parts: heat resistance of the 

cooling tower water convection ( ctwR ) and heat resistance of the air convection ( aR ).  

actw RRR +=                                                  (4.27) 

Convection heat transfer refers to the heat exchanged between the air-water interface 

and the air or water flow moving over this interface. Thus the amount of transferred heat 

depends on the thermo physical properties of the air and water involved in the heat and 

mass transfer process, the geometry of the cooling tower and the velocity of air and 

water flow over the interface as well as the temperature differences between air and 

water.  

As water and air in cooling towers are driven by pumps and fans, respectively, the 

type of heat transfer between water and air can be equivalently considered as forced 

convection. Assuming the uniform cross section area of the water flow is round, with 

the fictitious diameter ( D ), by dimensional analysis [114], the heat resistance of water 

convection ctwR and mass flow rate ctwm&  can be calculated by 
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where, v , ρ , μ  and k  denote the average velocity, density, viscosity and thermal 

conductivity of the cooling tower water element under study. And the constant C and 

the exponents 1e  and 2e  are constant. For a uniform flow, it is reasonable to assume that 

the value of heat transfer area ( ctwA ), density ( ρ ) and velocity ( v ) of the cooling tower 

water element under study remain constant. Moreover,μ , k and Cpw are approximately 

constants if the temperature difference is not too big (not greater than 6 C°  for water and 

50 C°  for gas). Replace v in Eq. (4.28) by Eq. (4.29), we obtain: 
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Following the same argument, the heat resistance of air convection can be expressed as:  
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Substitute Eqs. (4.27), (4.30) and (4.31) into (4.26), a cooling tower model for 

computing heat rejection rate is obtained as follows:     
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where, the parameters ctwb , ab  and 1e , 2e  can be determined either by manufacturers’ 

specification data or by real time experimental data, and  
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 which are very complicated and influenced by many factors.  
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By dimensional analysis, the cross-flow arrangement cooling tower can be 

hypothetically considered as a counter-flow arrangement with the same terminal 

temperatures [114]. Therefore, this modeling procedure can also be applied in a cross 

flow cooling tower, with the equivalent water mass flow rate ctwectw mm && λ=, . For a 

specific cooling tower, the conversion coefficient is constant, thus, λ  can be lumped 

within the unknown parameters ctwb  and ab in Eq. (4.32). 

4.3.2 Modeling based on energy and mass conservation  
For modeling based on energy and mass conservation, without loss of generality, we 

assume that: 

1. Dry air and water vapor in the air are treated as a non-reacting mixture of ideal 

gases.  

2. The specific heat and the density of wet air are considered as constants in the 

process of heat and mass transfer.  

3. Both the air and the water are well mixed in the cross-section normal to its flow. 

Therefore, only gradients for each fluid exist in their respective flow directions [31]. 

4. The humidity of saturated wet air is approximately linear to its temperature when 

the temperature changes. 

5. The air leaving the fill is saturated with water vapor.  

Using the energy and mass conservation laws, the dynamic change of cooling tower 

water temperature in an infinitesimal volume can be expressed as: 
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where, ctwV is a constant representing the volume of a water element in the mass and 

heat transfer process traveling towards the vertical (Z) direction for counter-flow type 
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cooling tower and towards the horizontal (X) direction for cross-flow type cooling 

tower (Figure 4.5).   

Figure 4.5 Temperature changes towards the Z and X direction 

The simultaneous heat, mass and momentum transfer process occurring throughout 

the cooling tower is difficult to analyze. It would be more beneficial to subdivide the 

system into separate subsystem elements. For convenience, we sub-divide the system 

into 0.2*0.4 m ( 2.0Z =Δ , 2.0X =Δ ) elements as shown in Figure 4.6. The 

measurement results of the temperature distribution of the cooling tower water and 

moist air through the cooling tower are reported in Figure 4.7 and Figure 4.8. Figure 4.7 

indicates that the cooling tower water and wet bulb air temperature variations are 

relatively small through the width of the count-flow type cooling tower in the X 

direction at the same height in the Z direction, while Figure 4.8 indicates that the 

nonlinear process of heat transfer between water and air at Z direction can be 

approximated and linearized. A similar temperature variation pattern in a cross flow 

type cooling tower was also observed in the numerical analysis of Bourouni et al. [32]. 

The difference is that the air temperatures vary in the X direction.  Therefore, the 

variation of cooling tower water and wet bulb air temperature across the cooling tower 
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can be linearized with the  height or the width of the cooling tower in the direction of 

count-flow or cross-flow. 

 
Figure 4.6 Directions of water and air flows, levels and sections in the cooling tower 

Figure 4.7 Temperature changes in the X direction 
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Figure 4.8 Temperature changes in the Z direction 

In Figure 4.8, the crosses and circles represent the real measured cooling tower 

water temperature and air wet bulb temperature profiles respectively. Approximating 

ctwT  by a linear equation between the two boundaries, then any point along the air 

movement direction can be expressed by: 

z
H

TTTT CTWRCTWS
CTWSctw

−
−=                                        (4.34)  

where, CTWST , CTWRT  and H  are cooling tower water supply temperature, cooling tower 

water return temperature and the total height of the cooling tower,  respectively. 

Taking the first derivative with respect to z in Eq. (4.34), we obtain: 

H
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By combining Eqs. (4.33-4.35), the dynamic change of cooling tower water 

temperature can be expressed as:  
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4.3.3 Dynamic modeling  

We can replace ctq  in Eq. (4.36) by Eq. (4.32) to result in: 
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where,
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parameters.  

Finally, the engineering dynamic model using only boundary conditions can be 

written as:   
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In this model, the variables CTWST , owbT , , CTWRT , ctwm&  and am& can be estimated or 

measured [33], while the model parameters 31, −ctc and ctl  are determined in the 

parameter identification phase (see the next section).  

4.4 Parameter Identification 
This section presents the method to identify the unknown parameters of the 

developed dynamic models from Sections 4.2 and 4.3. Since the cooling coils have a 

similar model as cooling towers, we only use the cooling coil model as an example to 

illustrate the parameter identification procedures.  

For the cooling coil model, with the different model characteristic parameters of 

Eqs.(4.19, 4.20), the parameter identification procedure can be separated  into two parts: 

(1) Steady state identification  and (2) Dynamic identification. 
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Step 1 Steady state identification 
At the steady state, the inlet air temperature ( iaT , ) and the inlet chilled water 

temperature ( ichwT , ) can be considered as constants, consequently
( )

t
tT ochw

d
d , =0 and 

( )
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d
d ,  = 0. Then we can rewrite Eqs.(4.19) and (4.20) as: 

By combining Eqs.(4.23) and (4.25), we have: 
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Using Eqs.(4.39) and (4.40), we obtain the following expression: 

( ) ( )ochwoa

chw

a
cc

a
cc

pa

ochwoa

chw

a
cc

a
cc

cc
pw

cc TT

m
mc

m
c
c

C
TT

m
mc

m
c
c

C
Q

cc

cccc

cc

cc

,,

3,

4,
,,

3,

1,

2,

11

5,

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
l

l

l

l

&

&

&

&

&

&

&       (4.42) 
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We obtain the steady state model expression: 
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By employing the identification procedure used by Wang et al [18], we can obtain 

the parameters 3,ccc , 6,ccc  and ccl . 

Step 2 Dynamic identification  

For the dynamic identification, a simple yet robust identification method for a 

linear process was proposed by Bi et al. [29] which can be used to identify the model 

parameters. 

If we denote 
chw

cc
cccc C

c
cc 6,

1,2, =  and 
pa

cc
cccc C

c
cc 6,

4,5, = , then we can rewrite Eqs.(4.19) 

and (4.20) as:  
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To identify the parameters 1,ccc and 2,ccc , the process has to be reset at a steady state. 

Starting from this initial state, at 0=t , the step inputs of mass flow rate of water and air 

flow are given for testing. Assume that the interception of the tangent to the step 

response that has the largest slope with respect to the horizontal axis givesΗ , integrate 

the differential terms in Eqs. (4.45) and (4.46) from 0=t  to τ=t ( Ητ ≥ ), the 
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following equation comes into existence:  
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With the sampling interval sT and snT=τ ， we can define 
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(4.48)

By collecting Eq. (4.48) for all sampled ( )tT  after 0=t , a system of linear equations 

is obtained as: 

ΔΓΨθ +=                                                     (4.49) 

Where Δ is the noise or measurement error, and  
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The best estimate of θ̂ can be found using the standard least squares method as in 

Eq.(4.50), and the best estimates of 1,ccc and 2,ccc can then be obtained from θ̂ . 
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( ) ΓΨΨΨθ T1Tˆ −
=                                              (4.50) 

Since both cooling coil and cooling tower models are based on similar modeling 

methodologies and have similar model expressions, this 2-step procedure can be applied 

to cooling tower models as well. For a cooling tower, at the steady state, the time 

derivative ( )
t

tTCWR

d
d =0. Then we can rewrite Eq.(4.38) as: 
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By employing the method proposed in [33], the heat rejection rate of the cooling 

tower ( ctQ& ) can be calculated with the cooling tower water flow rate ( cwm& ) and the 

temperature difference between the cooling tower supply and return water, and the 

equation is given as: 

( )CTWRCTWSctwpwct TTmCQ −= &&
                                         (4.52) 

Substituted by Eq.(4.51), we have the following expression: 
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If we denote: 

1,

2,
4,

ct

ct
pwct c

c
Cc =                                                        (4.54) 

We obtain the steady state model expression: 
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Employing the identification procedure proposed in [121], we can obtain the 

parameters 3,ctc , 4,ctc  and ctl . 

Likewise, for a cooling tower, with the estimated 4,ctc , we can denote
pw

ct
ctct C

c
cc 4,

1,2, = . 

Then, Eq. (4.38) can be formulated as a nonlinear first-order model:  
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So that the dynamic identification method introduced in Step 2 can be applied to 

determine the other two model parameters 1,ctc and 2,ctc . 

 With the parameter identification methods mentioned above, we can obtain the 

model parameters for the cooling coil and the cooling tower. The next section presents 

the model validation experiments and corresponding testing results for the cooling coil 

model and the cooling tower model respectively. 

4.5 Model Validation 
A number of experimental environments were built to validate the dynamic models 

proposed for the cooling coil and the cooling tower individually, applying the parameter 

identification method described above. 
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4.5.1 Model validation of a cooling coil 

The cooling coil used in the model validations has face dimensions of 0.25 m ×  

0.25 m, four tube rows and 328 aluminum fins per meter, as shown in Figure 4.9. Fresh 

air is used to keep a relatively constant inlet air temperature.  

Figure 4.9 An AHU and a cooling coil of the pilot plant 

The measurement signals for the experiment are the water and air flow rates, on-coil 

and off-coil air dry-bulb/web-bulb temperatures, and cooling coil inlet and outlet water 

temperatures. The experiment is conducted under the following conditions: 

1. Fresh air is used to keep a relatively constant inlet air temperature.  

2. The chilled water supply temperature is changing slowly; the cooling load variation 

is achieved through the air and water flow rates.  
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In order to study the dynamic relationships between the parameters and the cooling 

coil’s heat exchange, real time varying conditions for testing are given (Figure 4.10). 

Figure 4.10 Time varying temperature and mass flow rate of inlet air and chilled water  

Through Step1 and Step 2, we can obtain the parameters 5,1, cccc cc − , and ccl  from 

experimental fitting, these are listed in Table 4.1. 

Table 4.1  Estimated parameters of the six-parameter and five-parameter model ( 8.0=l ) 

Model   Load range 
(kw) ccl  1,ccc  2,ccc  3,ccc  4,ccc  5,ccc  

Six-
parameter 0.60-1.20 0.6078 6.7142 0.7412 0.7021 8.9936 3.9722

Five-
parameter 0.60-1.20 0.8 6.9431 1.1993 0.8021 9.3274 6.4431

 

The results calculated from the six-parameter model and the simplified five-

parameter model are compared with the measured data in Figures 4.11 and 4.12, 

respectively. 
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Figure 4.11 Comparison of six-parameter model calculations with the measured data 

Figure 4.12 Comparison of five-parameter model calculations with the measured data 

Finally, to quantitatively evaluate the accuracy of the model, the calculated results 

of the model are examined through the root mean square error (RMS) defined as:  
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( )
N

TT i,experimentincalculatio
N
i∑ −

= =
2

,1RMS  

where N is the number of fitted points, incalculatioT , is the temperature of point i predicted 

by the model and iexperimentT , is the temperature of point i acquired from experimental 

data. The performances of the two models are given in Table 4.2. 

Table 4.2 Performances of the six-parameter model and the five-parameter model 

 
From the experimental results, we can conclude: 

1. The proposed dynamic model accurately reflects the details of the transient 

performance of the cooling coil. With the constant parameters, the models work 

appropriately in a relatively wide operating range: both the difference of the outlet 

chilled water temperature and the off-coil air temperature are about 3 C° , which is 

the normal operating range for a cooling coil.  

2. The linear approximation of the dry and wet cooling coil does not generate a 

significant error (RMS index) but dramatically simplifies the calculation procedure 

as compared to complex numerical modeling methodologies. Of course, the 

proposed cooling coil model may work even better in the totally dry or totally wet 

regime. 

3. The responses of off-coil air and outlet chilled water temperature naturally have a 

time delay with respect to the changes of the on-coil air and inlet chilled water 

temperature. The testing results do not show this obviously, because the total 

lengths of the tubes and the cooling coil depth, i.e. ξ  and l , are relatively small 

versus the velocity of the cooling water and airflow being chwu  and au . 

Model RMS (off-coil air temperature) RMS (chilled water temperature) 
Six-parameter 0.236 C°  0.132 C°  
Five-parameter 0.285 C°  0.172 C°  



 

88 

4. The six-parameter model results in a little better performance over the entire 

operation range but with the price of more complicated calculations compared to 

the five-parameter model. Therefore, it may be worth sacrificing some accuracy for 

simplifying the parameter identification procedure in real engineering applications.                       

4.5.2 Model validation of a cooling tower 

In order to validate the proposed cooling tower model, a cooling tower operating in 

Grand Hyatt Singapore hotel HVAC system with the specifications as given in Section 

3.5 was used. 

The measurement signals for the experiments are the cooling tower water and air 

flow rates, ambient air dry-bulb/web-bulb temperatures, and cooling tower water supply 

and return temperatures. To analyze the transient characteristic of the cooling tower, we 

set the sampling rate of each variable to one second, and the experiments are conducted 

under the following conditions: 

1. Ambient air keeps a relatively constant wet bulb temperature in a short time 

period, e.g. 1 hour.  

2. The cooling tower water supply temperature is changing slowly; the heat rejection 

variation is achieved only through the air and water flow rates.  

By identification procedure Step1 and Step 2, we can obtain the parameters 

3,1, ctct cc − , and ctl  from an experimental fitting, and these are listed in Table 4.3. 

Table 4.3  Estimated parameters of the four-parameter model 

Load range (kW) ctl  1,ctc  2,ctc  3,ctc  

796.1~2290kW 1.14 2.53 13.12 20.01 

A step response analysis was carried out through a change from the initial steady-

state condition in each of the following inputs: water flow, air flow and cooling tower 
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water supply temperatures. The modeled data and measure data plots of cooling tower 

water return temperature ( CTWRT ) are compared in Figures 4.13-4.15. 

Figure 4.13  Increase of the mass flow rate of water from 48kg/s to 80 kg/s 

 

 
Figure 4.14  Increase of the mass flow rate of inlet air from 175kg/s to 250 kg/s 

 
 
 



 

90 

Figure 4.15 Cooling tower water supply temperature step rise from 35.5 to 38.5 C  

To quantitatively assess the effectiveness of the model, the calculated results of the 

model are evaluated through the root mean square error (RMS) given in Table 4.4. 

Table 4.4 Performances of the model in different scenarios 

Scenarios increase in cwm&  increase in am&  cwlT increase (35.5 to 38.5 Co  ) 

RMS 
( CTWRT ) 0.2867 oC   0.2436 oC    0.1972 oC  

The plots illustrate that the model captures the general speed and shape of the 

responses of each of the outputs. Likewise, the RMS index indicates that the model is an 

accurate representation of the major transient dynamics of the system.              

The observations from the experimental results are summarized as follows: 

1. The proposed dynamic model accurately reflects the details of the transient 

performance of the cooling tower. With constant parameters, the models work in a 

relatively wide operation range: the temperature difference of supply cooling tower 
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water and return cooling tower water, is about 4 C°  as well as the range is about 

8 C° , which is the normal operating condition for the cooling towers.  

2. The linear approximation of the convection and the evaporation cooling process 

does not generate a significant error (RMS index) but dramatically simplified the 

calculation procedure compared to complex numerical modeling methodologies.  

4.6. Summary 
In this chapter, a simple, low order and non-linear dynamic model for a cooling coil 

and a cooling tower were derived based on physical analysis of the heat transfer 

mechanism and the energy balance with reasonable approximations. The effects of 

sensible and latent cooling in the heat and mass transfer behavior were also taken into 

consideration. Experimental results were provided to show that the models can achieve 

accurate transient performance prediction over a wide operating range. Since the 

parameters of the developed models can be obtained from the manufacturers’ 

specifications or experimental data without going into detailed physical properties of a 

cooling coil and cooling tower, it can be easily applied to practical applications of a 

HAVC system local controls for simulation or controller design or tuning purpose.  
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CHAPTER 5 COMPOSITE MODEL OF 

REFRIGERATION CYCLES 

5.1 Introduction 
All those physical and empirical modeling methodologies reviewed in Chapter 2 

could be used to develop static models for the refrigeration cycle to simulate the steady-

state performance. However, there are few composite refrigeration cycle models 

suitable for real-time model-based system optimization of the building HVAC system 

which has guaranteed reliability over a wider range of operating conditions yet requiring 

less computational effort.  

To address this need, this chapter proposes a composite model for the refrigeration 

cycle of a water-cooled centrifugal chiller. The proposed model was developed on top 

of the hybrid component models of the refrigeration cycle. The developed composite 

model is validated by using the performance data of an existing chiller running under a 

wide range of ambient and time varying load conditions. 
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5.2 Composite Model 
As shown in Figure 5.1, the refrigeration cycle in a vapor-compression water-

cooled chiller consists of four major components i.e. compressor, evaporator, condenser, 

and expansion valve.  

Figure 5.1 Schematic diagram of a vapour-compression water –cooled chiller  

Figure 5.2 describes the thermodynamics of the refrigeration cycle. The saturated 

vapor refrigerant leaves the evaporator at point 1. From point 1 to point 1’ superheating 

occurs both in the evaporator due to conduction through the divider plate and in the 

suction line to the compressor. Through polytropic compression, this process increases 

the refrigerant pressure to the state point 2, then the refrigerant is desuperheated in the 

condenser to a saturated condition at point 2’. From point 2’ the refrigerant is condensed 

to the saturated liquid state at point 3’. From point 3’ to point 3 the fluid refrigerant is 

further cooled to the subcooled condition. And then the subcooled liquid refrigerant 

expands isentropically to point 4 before entering the evaporator. If the pressure loss in 

the refrigerant pipelines and the compressor inlet guide vane is ignored, then 1P , '1P , 

4P , '4P can be regarded to be equal to the evaporating pressure ( evP ), and 2P , '2P  , 3P , 

'3P  can be regarded to be equal to the condensing pressure ( cdP ), respectively. 
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Figure 5.2 Thermodynamics of the refrigeration cycle 

The performance of the refrigeration cycle of a chiller is determined by the 

performance of its components: evaporator, compressor, throttling device and 

compressor. Thus, it is critical to understand the processes of these components as well 

as to formulate the relationship between the compressor power consumption and the 

related operating variables of individual components, e.g., chilled water temperature 

entering the evaporator ( chweT ), condenser water supply temperature ( CWST ), part load 

ratio ( PLR ), evaporating pressure ( evP ) and condensing pressure ( cdP ), etc. The 

following sections will describe the proposed refrigeration cycle model broken into 

individual components with their corresponding processes and adopted models.  

5.2.1 Evaporator model  

The evaporator is one of the major components of the refrigeration cycle 

performing as heat exchanger, and has a critical impact on the performance of the 

evaporation process. Inside the evaporator, the refrigerant evaporates to extract heat 

from the chilled water flows through the chiller. A schematic diagram of an evaporation 

process is shown in Figure 5.3, which consists of two loops: the refrigerant loop and the 

chilled water loop. 
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Figure 5.3 Schematic diagram of evaporator 

In the refrigerant loop, the liquid refrigerant before entering the throttling device is 

of temperature ( viT ), and inlet pressure ( viP ), which are assumed to be equal to refeevT ,  

and condensing pressure ( cdP ), respectively. After passing through the throttling device, 

it enters into the evaporator with reduced pressure causing it to boil and flush into vapor. 

Because the boiling point of the refrigerant is lower than the temperature of the chilled 

water surrounding the coils, heat is transferred from the chilled water to the refrigerant 

through the metal tube wall, and the refrigerant continues to evaporate at a low-pressure. 

At the position x , as shown in Figure 5.3, all the liquid has been vaporated. By the time 

the vapor refrigerant reaches the outlet of the evaporator, it is superheated to several 

degrees higher than its saturation temperature.    

In the chilled water loop, the heat transfer is a single-phase forced convection 

process, the forced chilled water of entering temperature ( chweT ), and mass flow rate 

( chwm& ), flows through the evaporator. At the outlet of the evaporator, the temperature of 

the chilled water drops to chwlT  as a result of heat transfer with the refrigerant. 
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In the refrigerant loop, the heat exchange depends not only on heat convection but 

also phase change. The phase change from liquid to vapor makes the phenomena of heat 

transfer considerably more complex than those without phase change. The mass flow 

rate, the latent heat of vaporization, the pressure, and possibly other properties of the 

vapor all contribute to the effectiveness of the boiling process. According to the 

refrigerant physical characteristics, the evaporator can be divided into two sections, i.e., 

a two-phase section and a superheated vapor section, as shown in Figure 5.4. 

Figure 5.4 Heat transfer mechanism of evaporator                   

The refrigerant entering the two-phase section is a mixture of liquid and vapor with 

low temperature and low pressure. Because the temperature is below the saturation 

temperature of the refrigerant, the boiling begins immediately at the inlet of the 

evaporator. During the process of absorbing the heat from the chilled water, the 

refrigerant gradually becomes saturated vapor. At the superheated vapor section, the 

previous two-phase refrigerant is totally evaporated to the vapor phase and further 

heated to become superheated. 

A hybrid modeling approach was proposed by Cai [18, 121], to model heat 

exchangers with a single-phase fluid such as cooling coils and cooling towers. The 
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model validation showed that the modeling approach is robust and gives a better match 

to real performance over the entire operating range compared with other modeling 

methods. Based on this approach, Ding et al. [122] developed a hybrid model of an 

evaporator, which can correlate the heat transfer on both the refrigerant and chilled 

water sides, with the following expression for the heat rejection rate in the evaporator:  
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where satrefevh ,, , refeevh , and satrefevT ,, are the saturation enthalpy of the refrigerant vapor, 

enthalpy of the entering refrigerant and the saturation temperature of the refrigerant, 

respectively. And chweT , refm& , chwm& , are the entering chilled water temperature, the 

refrigerant mass flow rate and the chilled water mass flow rate, respectively.  

In Eq. (5.1), the fluid property factors and evaporator geometric characteristics are 

lumped in to three characteristic constant model parameters 1,evc  to 3,evc . Therefore, the 

total heat transfer rate of the evaporator can be simply and accurately described by a 

function of three fundamental operating variables, i.e., chweT , refm& , chwm& and the thermal 

parameters  satrefevT ,, , satrefevh ,, and refeevh , .  

In practice, the refrigerant temperature entering the evaporator ( refeevT , ), the chilled 

water temperature entering the evaporator ( chweT ) and the evaporating pressure ( evP ) can 

be measured directly using temperature or pressure sensors. For the other variables 

which are difficult to be measured directly, the following indirect methods are 

suggested in determining the model of Eq. (5.1). 

1. The chilled water mass flow rate ( chwm& ) through the evaporator can be obtained 

by measuring the pressure difference across the evaporator. From 
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2
210 chwchwchw mamaaP && ++=Δ                                           (5.2) 

where 0a , 1a , 2a  are unknown parameters to be determined through specification data 

or on line testing,  chwPΔ  and chwm& are the pressure difference and the mass flow rate of 

the chilled water across the evaporator, respectively. The following mass flow rate can 

be derived: 
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2. The refrigerant mass flow rate ( refm& ) can either be measured directly or 

indirectly. For direct measurement, a flow meter is placed before the throttle device. If 

an indirect method is used, the cooling load evQ&  can be firstly obtained from the energy 

balance of the chilled water:  

( )chwlchwechwpwev TTmCQ −= &&                                           (5.4) 

where pwC , chweT , and chwlT  are the specific heat, the chilled water temperature at 

evaporator inlet and outlet, respectively; and then the refrigerant mass flow rate ( refm& ) 

can then be estimated as: 

refeevreflev

ev
ref hh

Qm
,, −

=
&

&                                                 (5.5) 

where refeevh ,  and reflevh ,  are the entering and leaving refrigerant enthalpies, respectively, 

which can be obtained from thermodynamics tables of the refrigerant based on the 

entering/leaving temperature and pressure imposed on the refrigerant. 

3.    There are two methods to determine the saturation temperature ( satrefevT ,, ), the 

saturation vapor enthalpy ( satrefevh ,, ) and the entering enthalpy ( refeevh , ) of the refrigerant: 
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1) Directly looking-up the fluid property database to find their values according to the 

measured saturated pressure and inlet pressure, which are assumed to be equal to evP , 

and measured inlet temperature ( viT ), which is assumed to be equal to refeevT , ; 2) Using 

the following polynomial equations to calculate their values respectively: 
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where the coefficients ia , ib  and ijc  can be calculated off line through curve fitting of 

the look-up table with the measureable evP and refeevT ,  respectively. 

As the saturation refrigerant vapor enthalpy ( satrefevh ,, ) and the inlet enthalpy of the 

refrigerant ( satrefevT ,, ) can be uniquely determined by the evaporating pressure ( evP ) and 

the refrigerant temperature entering the evaporator ( refeevT , ), the heat transfer capacity 

from the model depends on five independent variables: the entering temperature of the 

refrigerant ( refeevT , )  and chilled water ( chwem& ), the mass flow rate of the refrigerant ( refm& ) 

and the chilled water ( chwm& ), and the evaporating pressure ( evP ). This makes the impact 

of each individual variable and combination of several variables on the evaporator 

performance to be conveniently analyzed. This hybrid evaporator model focuses on the 

characteristics of an existing evaporator and the relationships among heat extraction 

rates, refrigerant mass flow rates, chilled water mass flow rates, refrigerant entering 

temperature, and the chilled water temperature entering the evaporator under different 
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circumstances. Furthermore, as the working points of energy consumption devices for 

both refrigerant and chilled water are revealed in the model, it can be used as the 

constraint conditions in the optimization of a HVAC system operation. 

5.2.2 Compressor model 
The compressor is the heart of the refrigeration cycle. In this study, the chiller 

system is equipped with a hermetic variable speed centrifugal compressor. The 

volumetric flow rate of the refrigerant at the impeller outlet ( refV ) can be evaluated from 

[123]: 

( ) ( )( ) ⎥
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⎢
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⎡
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−
= − 21

2 1
1

tan impev
imp

imp
ref UvP

U
A

V ξξπ
ξ
ξβ                         (5.7a) 

The angle ( β ), outlet area ( impA ) and tip speed ( impU ) of the impeller can be determined 

from the manufacturer’s product specification data or by using the parameter 

identification program given by Bourdouxhe et al. [123]. 

The system pressure ratio π  calculated by Eq. (5.7b) accounts for the throttling rate 

δ  which is equal to 1 at full load. Under part load conditions, δ  is less than 1, which 

indicates an increase in the system pressure ratio. 

ev

cd

P
P
δ

π =                                                         (5.7b) 

Aiming to reduce the difficulty of determining the instantaneous δ when the 

compressor is working at different part load ratios, it is reasonable to correlate refm&  with 

its maximum max,refm& , at full load condition by a ratioγ , as shown in Eq. (5.8). The ratio 

γ  is assumed to be a function of refrigeration cycle part load ratio ( PLR ), as shown in 

Eq. (5.9), where the constants 1f to 3f  are identified based on the calculated refm&  with 
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respect to various operating conditions, and the value of max,refm& can be calculated with 

Eq.(5.10)[123]. 

max,refref mm && γ=                                                       (5.8) 
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The actual compressor power ( comP ) can then be calculated from Eq.(5.11), which 

has three items inW , polη  and mη . The polytrophic compression efficiency ( polη ) can be 

expressed by Eq.(5.12a), an empirical polynomial of the part load ratio ( PLR ). This 

empirical polynomial and its parameters ( 64−f ) can be determined by correlating the 

modeled results of the mechanical work input ( inW ) expressed by Eq.(5.12b) to the 

measurable compressor performance data under part load conditions [47], while the 

combined motor and transmission efficiency ( mη ) is often considered as a constant.  
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Therefore, the power consumption model of the compressor can be expressed as: 
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By substituting the evaporator model (Eq.(5.1)) and compressor power 

consumption model (Eq.(5.13)), the coefficient of performance (COP) of the 

refrigeration cycle can be calculated as: 
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5.2.3 Expansion valve model  

The expansion valve is modeled as a static component while the valve is assumed to 

be isenthalpic. The refrigerant mass flow rate ( refm& ) is calculated using the standard 

orifice equation in Eq.(5.15) based on the flow coefficient vC . It is a widely used 

approach in expansion valve modeling. The flow coefficient curve is provided by the 

manufacturers and it is considered as a function of the expansion valve’s steps, while 

the refrigerant density ( cdρ ) and the exponent ( n ) is considered to be a constant. 

( )[ ]nevcdcdvref PPCm −= ρ&                                         (5.15) 

5.2.4 Condenser model 

The condenser, as a key component of the condensation process where the 

refrigerant changes phase from vapour to liquid through rejecting heat to the 

surrounding media, has critical impact to the overall system operation. 
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A schematic diagram of a condenser is shown in Fig. 5.5, which consists of two 

loops: the refrigerant loop and the condenser water loop. In the refrigerant loop, 

imposed by the high temperature ( refecdT , ), and high pressure ( cdP ), the refrigerant is in a 

vapor phase entering the condenser with a mass flow rate ( refm& ). Because the refrigerant 

has a higher temperature than that of the condenser water, heat is transferred from the 

refrigerant to the condenser water through the metal tube wall between the two fluids, 

and the refrigerant condenses at a high pressure. At the outlet of the condenser, the 

refrigerant condenses to a liquid phase and its temperature drops to reflcdT , . In the 

condenser water loop, the forced condenser water with the entering temperature ( CWST ) 

and mass flow rate ( cwm& ), flows through the condenser. At the outlet of the condenser, 

the temperature of the leaving condenser water rises to CWRT  as a result of heat transfer 

with the refrigerant fluid. 

Figure 5.5 Schematic diagram of a condenser 
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In the condenser water loop, the heat transfer is a single-phase forced convection 

process, which is governed by the geometry of the condenser, the viscosity, the density, 

the thermal conductivity, the expansion coefficient, and the specific heat of the 

refrigerant. 

In the refrigerant loop, the heat transfer is a two-phase forced convection process. 

The heat exchange depends not only on heat convection, but also on phase change. The 

phase change from vapor to liquid makes the phenomena of heat transfer considerably 

more complex than those without phase change. The mass flow rate, the latent heat of 

vaporization, the pressure, and possibly other properties of the vapor all contribute to 

the effectiveness of the condensation process. According to the fluid physical 

characteristics, the condenser can be divided into three sections, i.e., a superheated 

vapor section, a two-phase section, and a subcooled liquid section, as shown in Figure 

5.6.      

Figure 5.6 Heat transfer mechanism of condenser 

The refrigerant entering the superheated vapor section is at a superheated status 

with entering temperature ( refecdT , ), higher than the saturation temperature ( satrefcdT ,, ), 

and no condensation occurs. At the two-phase section, the refrigerant temperature 
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becomes lower and the vapor is less superheated due to heat exchange. The 

condensation begins, as the condenser surface temperature is below the saturation 

temperature of the refrigerant, and the saturation vapor becomes saturation liquid. At the 

subcooled liquid section, the fluid is totally condensed to the liquid phase and is further 

cooled to the subcooled condition. The heat transfer follows the pattern of the single-

phase fluid similar to the superheated vapor section. 

For applications in the areas of performance simulation, control and optimization, it 

is important that the model can simultaneously reflect the impact of all basic operating 

variables to the system output. Ding et al. [124] developed a model with no more than 

four key operational characteristic model parameters which can correlate the heat 

transfer on both the refrigerant and condenser water sides. The heat rejection cdQ  

involves the energy and mass balance in the condenser and it is predicted by: 
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where, satrefcdT ,, , refecdT , and latentrefcdh ,, are the saturation temperature of the refrigerant 

vapor, the temperature of the entering refrigerant and the latent heat of the vaporization 

refrigerant, respectively, while, CWST , refcdm ,& and cwm& are the condenser water supply 

temperature, the refrigerant mass flow rate and the condenser water mass flow rate, 

respectively.  

In Eq.(5.16), the value of the saturation temperature ( satrefcdT ,, ) and the latent heat of 

refrigerant vaporization ( latentrefcdh ,, ) can be determined by polynomials : 

( ) ∑
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,,                                           (5.17a) 
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This condenser model lumps the fluid thermal property and condenser geometric 

information as constant model parameters 1,cdc to 4,cdc and considers only the condenser 

inlet and outlet conditions. Therefore, the total heat transfer rate can be sufficiently 

described by a function of five basic operating variables, i.e. refecdT , , refm& , CWST , cwm&  and 

cdP .  

In practice, the refrigerant temperature entering the condenser ( refecdT , ), condenser 

water supply temperature ( CWST ) and the condensing pressure ( cdP ) can be obtained by 

direct measurements using temperature or pressure sensors. Similar to the variables of 

the evaporator model, the other variables of this condenser model which are difficult to 

be measured directly, can be determined by indirect methods: 

1. The condenser water mass flow rate ( cwm& ) can be obtained by measuring the pressure 

difference across the condenser from the empirical relation [124] 

2
210 cwcwcw mamaaP && ++=Δ                                          (5.18) 

where 0a , 1a , 2a  are parameters to be determined through specification data or 

online testing,  cwPΔ  and cwm& are the pressure difference and the mass flow rate of the 

condenser water across the condenser, respectively. Therefore, the mass flow rate 

can be derived from Eq. (5.19): 
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2. The mass flow rate refm& of the refrigerant can either be measured directly or 

indirectly. If the indirect method is used, the rejected heat cdQ&  can be calculated from 

the energy balance of the condenser water  

( )CWSCWRcwpwcd TTmCQ −= &&                                           (5.20) 

where pwC , CWST , and CWRT  are the specific heat, the temperature of the condenser 

water entering and leaving the condenser, respectively; and then the mass flow rate 

refm&  of the refrigerant can then be estimated as: 

reflcdrefecd

cd
ref hh

Qm
,, −

=
&

&                                               (5.21) 

where refecdh ,  and reflcdh ,  are the entering and leaving enthalpies, respectively, which 

can be obtained from thermodynamics tables of the refrigerant based on the 

entering/leaving temperature and pressure of the refrigerant. 

5.3 Model Validation 
After building up models for four key components, validation is conducted on a 

laboratorial HVAC pilot plant. The laboratorial system consists of a refrigeration cycle, 

a VSD condenser water pump and a VSD chilled water pump (see the schematic 

diagram in Figure 5.1). Table 5.1 summarizes the main specification parameters of the 

chiller system studied.  

Table 5.1 Details of the experimental chiller 

Chiller  

Nominal cooling capacity 4.8 kW 

Nominal compressor power 1.5 kW 

Nominal COP 3.2 
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Designed chilled water entering/leaving temperature  7/12 Co  

Designed chilled water mass flow rate 0.23 kg/s 

Designed condenser water supply/return temperature 31/37 C°  

Designed condenser water mass flow rate 0.25 kg/s 

Nominal condenser water pump power 0.3 kW 

Since the individual models have already been validated in the previous work [122-

124], in this chapter, the focus is to validate the composite refrigeration cycle model. 

Usually, the energy performance of refrigeration cycles is expressed as the coefficient 

of performance (COP), which is defined as the ratio of cooling capacity to power 

consumption. In this study, we will validate the composite refrigeration cycle model by 

comparing the measured COP with modeled COP.  

For the measured COP, since the instantaneous power consumption can be obtained 

from the power meter (model no. Panasonic AKW1121), and the chilled water flow rate 

and chilled water temperature difference between the evaporator inlet and outlet can be 

measured in real time, it can be calculated with the real measured data. Figure 5.7 

illustrates the comparison between modeled COP estimated by Eq. (5.14) and the 

measured COP over 7 days’ chiller operation period at 1 minute’s time scale.        

Figure 5.7 Comparison between modeled COP and measured COP       
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To further quantify the accuracy of the proposed model, the mean absolute error 

(MAE) and root mean square error (RMSE) of Figure 5.7 are calculated in Table 5.2. 

The figures below indicate that the proposed model achieves an accurate prediction of 

the COP. 

Table 5.2 Model accuracy 

 Mean absolute error Root mean square error 
COP 0.1638  0.2531 

 

5.4 Summary 

This chapter presented a component-based refrigeration cycle model developed 

specifically to investigate the factors affecting the refrigeration cycle performance. The 

model considers physical and thermal characteristics such as the heat-transfer rate 

estimation of the evaporator and condenser. Experimental results show that the 

developed model is sophisticated enough to determine the steady-state COP under 

various operating conditions over a long operating period, as well as to estimate the 

power consumption with respect to the varying operating conditions.  

Moreover, this model does not require an iteration procedure to figure out the 

model parameters, thus can be easily used in model based optimization. In the next 

chapter, this refrigeration cycle model will be used to develop a practical model based 

supervisory and optimal control strategy to systematically optimize the operating set 

points to achieve the maximum energy saving for a real operating HVAC plant. 
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CHAPTER 6 HVAC SYSTEM OPTIMIZATION                   

– OUT-BUILDING SECTION 

6.1 Introduction 
As introduced in Chapter 1, the centralized HVAC process consists of five loops, 

which can be further grouped into two sections geographically: the in-building section 

and the out-building section. Because the configuration of a real building HVAC system 

is very complex, the online optimization of a building HVAC system are often 

separated into the optimization of the in-building section and the optimization of the 

out-building section.  

The in-building section consists of an indoor air loop and part of the chilled water 

loop. The indoor air loop includes terminal units, cooling coils, dampers, fans, ducts, 

and controls. The chilled water loop includes cooling coils, evaporators, pumps, pipes, 

valves, and controls [1]. The evaporator prepares the supply chilled water through the 

heat exchange between the water and the refrigerant. To satisfy the indoor cooling loads, 

this chilled water with controlled temperature and flow rate is distributed to each AHU 

cooling coil through a chilled water distribution system of the HVAC in-building 

section. Lu et al. [107] presented a practical method to optimize the in-building section. 

Their method considered the variation of the cooling load of each end user and 

employed an adaptive neuro-fuzzy inference system (ANFIS) to model duct and pipe 

networks and obtains optimal differential pressure (DP) set points based on limited 

sensor information. A mix-integer nonlinear constraint optimization of the system 

energy was formulated and solved by a modified GA approach.  

The out-building section, as schematically shown in Figure 6.1, consists of three 

other loops: the refrigerant cycle, the condenser water loop and the ambient air loop 
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[120]. The condenser transfers cooling loads and the heat generated by compressors to 

the condenser water loop. Pumps provide the energy to circulate the condenser water 

between the condensers and the cooling towers. The heat is then rejected to the ambient 

air through heat transfer and evaporation by cooling towers.  

Figure 6.1 Block diagram of HVAC out building section 

The out-building section is a main power consumer in a HVAC system and its 

energy consumption contributes to the majority of the overall operating cost. Many 

studies introduced in Chapter 2 centered on optimizing the chillers and cooling towers 

to enhance their performance and energy efficiency [70, 88, 92-99, 106, 108-109, 125-

128].  

To perform system optimization for a HVAC outbuilding section, accurate and 

reliable system component models and associated optimization algorithms are essential. 

The models are used to predict the system energy performances, as well as the system 

response to the changes of the control settings, weather conditions and cooling loads. 

However, so far, most of the model-based system optimization approaches introduced in 

Chapter 2 utilize either pure empirical data driven component models [88, 92-99] or 

traditional physical component models [125-128]. The drawbacks of both types of the 

models examined in Chapter 2 may limit their real-time online application in building 
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HVAC system optimization when the processes are nonlinear and have wide operating 

ranges.  

Comparing with the models presented in literature, the models proposed or adopted 

in the thesis have the advantages of:  

1) simple model structure without cumbersome iterative computation 

2) high accuracy with physical significances  

Moreover, without the proposed models, it is difficult to identify the interactions 

among HVAC components, derive the constraints, and formulate the complex 

optimization problem in the HVAC system. Consequently, using simplified hybrid 

models becomes a more promising choice. 

With all these advantages of hybrid models, we adopt this modeling approach for 

HVAC system out-building section optimization in our study. In Chapter 3 and 5, we 

have proposed simple yet accurate component models for the cooling towers and the 

refrigeration cycle of the HVAC systems. Based on these models, this chapter will 

extend the work of Lu et al. [106, 108-109] to simultaneously optimize the overall 

performance of the HVAC out-building section.  

For the chosen of optimization algorithm, because the HAVC optimization problem 

is a combinational optimization problem with nonlinear constraints and contains both 

continuous and discrete variables, conventional gradient-based optimization methods 

cannot be applied directly. Although an exhaustive search method or a combined 

exhaustive search with conventional gradient-based methods can be applied to find the 

optimal solutions, it is impractical in the real time applications for such a complicated 

problem due to its time consuming nature. Thus, according the literature review of 

Chapter 2, we chose evolutionary algorithms, PSO algorithm and GA to determine the 

control settings which minimize the system power consumption. 
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6.2 Formulation of Model-Based Optimization  

6.2.1 Objective function 
In the out-building section of a centralized HVAC system, there are three types of 

devices which consume energy, namely compressors, condenser water pumps and 

cooling tower fans. Therefore, the objective function for optimization is to minimize the 

total energy consumption of these devices. 
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where the power consumption model of compressors have been discussed in Chapter 5. 

 For large-scaled HVAC systems with multiple compressors, the operating power 

consumption models of the compressors are adjusted as:  
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The operating power consumption of associated condenser water pumps and 

cooling tower fans can then be given by 
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and 
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where chN and ctN are the total numbers of chillers and cooling towers in a HVAC out-

building section, respectively. And k denotes the number of a operating chiller 

(condenser water pump is regarded as a part of a chiller) in the total chN  chillers while  j 

denotes the number of a operating cooling tower in the total ctN cooling towers. The 

subscript “ nom ” stands for the nominal values of variables. 
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In Eq.(6.2), the device operating variables krefm max,,& , kv ,2 , kξ , kδ  can be determined 

with the manufacturer’s specification data and the compressor model 

parameters kf ,61− can be determined at the system modeling phase, thus the power 

consumption model of the refrigeration cycle can be regarded to be a function of the 

independent variables, namely the evaporating pressure ( kevP , ), the condensing pressure 

( kcdP , ) and the part load ratio control ( kPLR ). 

In Eqs. (6.3) and (6.4), kcwcdm ,,&  and jam ,& denote the mass flow rate of condenser 

water and air, respectively, which are the only independent variables of power 

consumption models for condenser water pumps and cooling tower fans.  

 Therefore, the independent variables in the objective function are listed as follows: 

kPLR    part load ratio of the thk refrigeration cycle 

kcwcdm ,,&  water flow rate of the thk condenser water pump 

jam ,&    air flow rate of the thj cooling tower fan 

kevP ,   evaporating pressure of the thk  evaporator 

kcdP ,   condensing pressure of the thk  condenser  

With these independent variables, the model parameters and the manufacturers’ 

specification data, the total power consumption of the HVAC system out-building 

section can be determined uniquely for the given cooling load. Any change of these 

independent variables will impact the efficiency of the whole HVAC system. However, 

the operation of the out-building section has to obey a number of constraints, i.e. 

mechanical limitations, basic energy and mass balances and interaction of individual 

components etc. These constraints have to be considered in solving the optimization 

problem. In general, these constraints can be categorized into two types: physical 
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limitations of components and interaction between components. In this study, nine 

constraints are identified as elaborated below. 

6.2.2 Physical limitation constraints of components 
Constraint (1) The physical limitations for kcwcdm ,,& and jam ,& are: 

max,,,,,min,,, kcwcdkcwcdkcwcd mmm &&& ≤≤                                            (6.5) 

 max,,,min,, jajaja mmm &&& ≤≤                                                  (6.6) 

If the condenser water mass flow rate ( kcwcdm ,,& ) through the condenser is too small, 

the condenser water temperature may increase above the safety limit for a big cooling 

load. Therefore, the minimal condenser water flow rate ( min,,, kcwcdm& ) of the thk condenser 

water pump is to keep the condenser water temperature within normal operation range. 

At the same time, the maximum condenser water flow rate ( max,,, kcwcdm& ) of the thk  

condenser water pump is limited by the capability of the motor driving the pump. 

Similarly, the minimal and maximum air flow rates ( min,, jam& , max,, jam& ) of the thj  cooling 

tower fan are also limited. 

Constraint (2) To ensure the occurring of superheating and subcooling in the 

refrigeration cycle, the evaporating and condensing pressures ( kcdP , , kevP , ) should be 

restricted by boundaries provided by the manufacturers: 

max,,,min,, kevkevkev PPP ≤≤                                            (6.7) 

max,,,min,, kcdkcdkcd PPP ≤≤                                            (6.8) 

Constraint (3) the condenser water supply temperature ( CWST ) at the condenser inlet 

is limited by  

max,min, CWSCWSCWS TTT ≤≤                                           (6.9) 
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Assuming the mixed cooling tower water return temperature equals to the 

condenser water supply temperature ( CWST ), the lower bound of the condenser water 

supply temperature ( min,CWST ) is the ambient wet bulb temperature ( iwbT , ), which is the 

theoretical lower limit of the heat transfer process in the mechanical draft cooling tower. 

Its upper bound ( max,CWST ) is a safety requirement from chiller manufacturers to keep the 

pressure in the condensers at an acceptable level. 

Constraint (4) The kPLR of the thk operating refrigeration cycle is given by 

max,min, PLRPLRPLR kkk ≤≤                                       (6.10) 

where min,PLR k , and max,PLR k  are the minimal and maximal operating part load ratios 

of the thk  refrigeration cycle which are specified by the manufacturer’s catalog.  

6.2.3 Interaction constraints between components 

Besides the physical limitations of components themselves, the interactions among 

components also place restrictions on the feasible solution of the optimization problem. 

This section identifies theses interactions based on the component models of the 

evaporator, the condenser and the cooling tower described in Chapter 3 and Chapter 5.  

For large-scale HVAC systems with multiple refrigeration cycles and cooling towers, 

the models of evaporators, condensers and cooling towers are rewritten as follows:  

Evaporator model of the thk  refrigeration cycle: 
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Condenser model of the thk refrigeration cycle:  
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Cooling tower model of the thj cooling tower: 
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Without loss of generality, for a cooling tower, it is assumed that the distributed 

cooling tower water mass flow rates follows:  

opct
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k
kcwcd

ctw N

m
m

opch

,

1
,,

,

∑
==
&

&                                                 (6.14)  

where opchN ,  denotes the number of chiller (the associated condenser water pump is 

regarded as a part of chiller) in operation and opctN , denotes the number of cooling 

towers in operation. Take note that not all chillers or cooling towers will be in operation, 

especially at part load ratio conditions, the number of operating chillers and cooling 

towers should be decided by the optimizer.   

If we assume that the condenser water flows from each condenser are ideally mixed 

before being supplied to the cooling towers, then the cooling tower water supply 

temperature can be determined by: 

( )
ctwopct
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k
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∑
==                                              (6.15) 

Likewise, the mixed condenser water supply temperature follows: 
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Constraint (5) Based on the first law of thermodynamics, the rejected heat rate of 

the thj  cooling tower follows: 

( )jCTWRCTWSpwctwjct TTCmQ ,, −= &&                                     (6.17)     

Replacing jctQ ,
& with the hybrid cooling tower model of Eq.(6.13), we obtain:  
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According to Eq.(6.18), there are two factors affecting cooling tower performance, 

one is ctwm& vs. jam ,& and the other is CTWST vs. iwbT , . To simplify the analysis, it is assumed 

that CTWST and iwbT , are constants when the effect of ctwm& vs. jam ,& is discussed. The 

performance of a cooling tower is simulated by the model provided by Braun et al. [10]. 

Figure 6.2 shows five curves of equal heat rejection rate, where the horizontal-axis 

represents the percentage of water flow rate and the vertical-axis represents the 

percentage of airflow rate. These curves of equal heat rejection rate are divided into 

three regions. 

• Region (1): The airflow rate is very small and the water flow rate must be very 

large in order to achieve a given heat rejection rate. In this case, the airflow rate is 

too small to exchange heat efficiently with the cooling tower water. The outlet 

airflow wet-bulb temperature is almost the same as that of the inlet water.  
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• Region (2): The airflow rate is very large while the water flow rate is very small, 

the heat exchange is saturated and the outlet water temperature is nearly equal to 

the ambient air wet-bulb temperature.  

•  Region (3): The heat rejection rate of the cooling tower increases with either the 

increased airflow rate or the increased water flow rate, and vice versa.  

Figure 6.2 Performance of a cooling tower 

Apparently, the energy-efficient operating range must drop inside Region (3). In 

this region, the reduced airflow rate leads to lower fan power consumption, yet the 

water flow rate has to be increased, resulting in the increased pump power consumption. 

Similarly, the reduced water flow rate lowers the pump power consumption but results 

in increased fan power consumption. Constraint (1) limits the value of ctwm& and jam ,& due 

to the cooling tower characteristics.  

The term ( )iwbCTWS TT ,−  in Constraint (5) (Eq.(6.18)) reflects the effect of iwbT ,  on 

the cooling tower performance. Assuming the cooling tower heat rejection rate and 

cooling tower water supply temperature are fixed for the given cooling demand, the 
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optimal operating point of the cooling towers changes when the ambient wet-bulb 

temperature ( iwbT , ) changes. Figure 6.3 gives an example where the cooling tower heat 

rejection rate is assumed to be a fixed value for two wet-bulb temperatures of the 

ambient air, 20 °C and 25 °C, respectively. The optimal operating points are labeled as 

large stars to indicate the corresponding power consumption of fans and pumps. While 

the curves of fan power consumption are the same for different wet-bulb temperatures, 

the cooling tower water flow rate changes with changing airflow and outdoor 

environment for a constant cooling tower heat rejection rate.  

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Optimal operating points at different wet-bulb temperatures 

The optimal airflow rate is 85% of the full-load at 25 °C and 50% at 20 °C.  For an 

optimal operating point, the power consumption is 12% of the full-load at 20 °C wet-

bulb temperature. If the airflow rate is kept at 85% of the full-load at 20 °C instead of 

50%, the combined power consumption of fan and pump is 19% of the full-load. 

Compared with 12% of the full-load at the optimal point, almost 7% energy of the full-

load savings could be achieved with the varying mass flow rate of water and air when 

the ambient wet-bulb temperature is at 20 °C.  

 19% 
 12%
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Constraint (6) In the refrigeration cycle, base on the second law of thermodynamics, 

the heat exchange rate in the thk  evaporator, i.e., the cooling load can be expressed as  

( )kchwlevkchweevpwkchwkev TTCmQ ,,,,,, −= &&                                 (6.19) 

Constraint (7) Likewise, the heat rejection rate in the thk  condenser can be calculated 

by 

( )CWSkCWRpwkcwcdkcd TTCmQ −= ,,,, &&                                      (6.20) 

Constraint (8) The interactions between the thk compressor mechanical work and the 

heat exchange rate in the associated condenser and evaporator is expressed as: 

kevkcdkmkpolkcomkin QQPW ,,,,,,
&& −== ηη                                  (6.21) 

Replacing kinW , and kcdQ , with Eqs. (5.7b) and (6.20), respectively, we obtain: 
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Based on Eq. (6.22), the interactions between the compressor power consumption 

and condenser water pump power consumption can be identified. Assuming the cooling 

load ( kevQ ,
& ) remains unchanged, an increase of the compressor frequency consumes 

more electric power and leads to an increase of the evaporating pressure ( kevP , ) as well 

as the condensing pressure ( kcdP , ) if the compressor and throttling devices are controlled 

for maintaining a constant refrigerant mass flow rate ( krefm ,& ). This increase of 

evaporating pressure ( kevP , ) and condensing pressure ( kcdP , ) will result in the increase of 

evaporating temperature and condensing temperature, respectively. If the condenser 

water supply temperature ( CWST ) remained constant through the cooling tower fan 

control, with an increased condensing temperature, the condenser is able to generate a 
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higher condenser water return temperature ( kCWRT , ) which results in a larger temperature 

range of condenser water ( )CWSkCWR TT −, . With this larger temperature range, the 

condenser water mass flow rate ( kcwcdm ,,& ) can be reduced for power savings of the 

condenser water pump. On the contrary, an increased condenser water mass flow rate 

requires a potential smaller ( )CWSkCWR TT −, , which leads to the power savings of the 

compressor by reducing the kevP ,  and kcdP , . Therefore, the evaporating pressure ( kevP , ) 

and condensing pressure ( kcdP , ) are important variables which need to be optimized. 

Figures 6.4 and 6.5 show the test results of the condensing pressures, evaporating 

pressures, superheat and refrigerant flow rate at the same ambient wet-bulb temperature 

and decreasing cooling load conditions (100 to 40%, 15kW to 6kW) for the cases of 

constant condensing pressure and optimal condensing pressure control.  We can observe 

how the condensing pressure and the evaporating pressure vary with respect to the 

decreasing cooling load  (four pressure transducers for each side, compressor outlet, 

condenser inlet and outlet, valve inlet for the condensing pressure side, valve outlet, 

evaporator inlet and outlet, compressor inlet for the evaporating pressure side). We can 

also see how the refrigerant flow rates ( krefm ,& ) (denoted by “REFR flow” in the Figures) 

drop in both cases with the cooling load demand. 
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Figure 6.4 Pressures & refrigerant flow for decreasing cooling load with constant condensing 
pressure control 

Figure 6.5 Pressures and refrigerant flow for decreasing cooling load with optimal condensing 
pressure control 

Figures 6.6 and 6.7 show the different power consumptions and COPs 

corresponding to Figures 6.4 and 6.5, respectively. As the cooling load decreases, the 

cooling capacity and power consumption also decreases. We can observe that the 

optimal condensing pressure control (Figure 6.5) leads to a power consumption 

reduction (Figure 6.7 vs. Figure 6.6) when compared to the constant condensing 

pressure control (Figure 6.4) and consequently results in a higher COP as well as a 

lower power consumption at light-load conditions. 
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Figure 6.6 Power consumption and COP for decreasing cooling load with constant condensing 
pressure control 

Figure 6.7 Power consumption and COP for decreasing cooling load with optimal condensing 
pressure control 

On the other hand, if the condenser water mass flow rate ( kcwcdm ,,& ) remains constant, 

with the increased condensing temperature, the condenser can accept a higher condenser 

water supply temperature ( CWST ) and consequently results in a higher condenser water 

return temperature ( kCWRT , ) for the same heat rejection rate of a condenser. This 

improves the cooling tower efficiency with the same ambient wet bulb temperature, 

because of the larger enthalpy difference between the ambient air and the condenser 

water return temperature ( kCWRT , ) for the cooling tower inlet, which results in less 
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electricity consumption of the cooling tower fan for the same heat rejection rate of the 

cooling tower. Therefore, the condenser water supply temperature ( CWST ), i.e., the 

mixed cooling tower water return temperature is also an important independent variable 

which needs to be optimized. 

Constraint (9) For a multi-chiller system, the total heat rejection rate in the cooling 

towers equals the heat absorbed by the condenser water from the chiller condensers: 

∑ ∑
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By adopting the cooling tower model and by rearranging Eq. (6.21) to 

substitute kcdQ ,
& , we can rewrite Eq.(6.23) as:  
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Then, based on Eq.(6.24), the interactions between the compressor power 

consumption and cooling tower fan power consumption can be identified. Figure 6.8 

illustrates the trade-off between the chiller power and corresponding cooling tower fan 

power with respect to the increasing tower airflow [96]. Here, a fixed cooling tower 

water mass flow rate ( ctwm& ) and cooling tower water supply temperature ( CTWST ) are 

assumed. As the airflow increases, the fan power increases. At the same time, there is a 

reduction in the mixed cooling tower water return temperature, i.e. condenser water 

supply temperature ( CWST ) (refer to Eq.(6.16)), resulting in a lower compressor power 

consumption according the analysis in Constraint (8). 
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Figure 6.8 Trade-offs between compressor power and fan power [96] 

On the other hand, the condenser water return temperature ( kCWRT , ) affects the heat 

exchange efficiencies of cooling towers. Because for the same heat rejection rate of the 

cooling tower, a lower mixed condenser water return temperature, i.e. cooling tower 

water supply temperature ( CTWST ) (refer to Eq.(6.15)), results in lower efficiencies of the 

cooling towers under the same ambient wet-bulb temperature as the enthalpy difference 

between ambient air and cooling tower supply water becomes smaller. Consequently, if 

the power consumption of compressor and condenser water pump remains unchanged, 

more power will be consumed by the cooling tower fan according the cooling tower 

model expressed by Eq.(6.13). Thus, the optimal operating point occurs at a point where 

the rate of power increment in the fans is equal to the rate of power reduction in the 

chillers.  

With the expressions of the component models, the objective function, and the 

constraints, it is easy to conclude that the optimal control of the HVAC out-building 

section results from an optimum trade-off in the power consumption of the compressors, 
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condenser water pumps and cooling tower fans with the optimum combination settings 

of the independent variables of part load ratio ( kPLR ) of the thk  refrigeration cycle, 

evaporating pressure ( kevP , ) of the thk  evaporator, condensing pressure ( kcdP , ) of the 

thk  condenser, water flow rate ( kcwcdm ,,& ) of the thk condenser water pump, condenser 

water supply temperature ( CWST ) and air flow rate  ( jam ,& ) of the thj cooling tower fan. 

6.3 Optimization Based on PSO Algorithms 

PSO, developed by Eberhart and Kennedy [129], is a population based stochastic 

optimization technique promising in solving nonlinear optimization problems of 

building HVAC system with its features of easy-to-implement, low memory 

requirement and faster calculation speed. The algorithm is divided into four parts: 

initialization, construction of the fitness function, update of velocity and position, and 

termination.  

6.3.1 Initialization  
In PSO, each particle represents a potential solution. In simple terms, each particle 

flows through a multidimensional search space, where the position of each particle is 

adjusted according to its own experience and that of its neighbors.  

As the search space is multidimensional, the particle i  of the swarm can be 

represented by an n -dimensional vector ( )iniii xxx ,,, 21 L=X , which also denotes the 

position of the particle i , and n denotes the number of variables of the optimization 

problem. For this particular problem, iX = 

( 1,evP , 2,evP ,…, kevP , , 1,cdP , 2,cdP , …, kcdP , , 1PLR , 2PLR ,…, kPLR , 

1,,cwcdm& , 2,,cwcdm& ,…, kcwcdm ,,& , CWST , 1,am& , 2,am& ,…, jam ,& ), therefore, 14 ++= jkn . The 
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velocity of this particle can be represented by another n -dimensional 

vector ( )iniii vvv ,,, 21 L=V . 

In the initialization step, the particles with random positions and velocities are 

uniformly distributed over the search space. 

6.3.2 Construction of the fitness function 
Since the objective of this optimization problem is to minimize totalP , the fitness 

function should be constructed to give the maximum value for the smallest totalP . In 

addition, in order to fulfill the constraints described by Eqs.(6.5-6.24), penalty functions 

are commonly used to penalize an unfeasible solution. In this step, a penalty function is 

added if any constraint cannot be fulfilled. Therefore, the fitness function is expressed 

in the following equation. 
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With the constraints written as:  
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                        (6.26a) 

( )[ ]2,,,,,2,2 CWSkCWRpwkcwcdkcdkk TTCmQP −−⋅= &&θ                                   (6.26b) 

 
( )2,,,,,,3,3 kcdkevkmkpolkcomkk QQPP && −+⋅= ηηθ                                       (6.26c) 
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where 111 ~ θθ are the penalty multipliers, which should be large positive numbers. With 

this fitness function, the minimal system power consumption without violating any 

constraints has the maximal fitness value.  

6.3.3 Updating velocity and position 
The fitness of each particle with associated unique position and velocity can be 

evaluated according to the fitness function of the optimization problem defined by Eq. 

(6.25). The best previously visited position of the particle i  is noted as its individual 

best position ( )iniii ppp ,,, 21 L=P . The position of the best individual of the whole 

swarm is noted as the global best position ( )ni ggg ,,, 21 L=G . At each iteration step, 

the velocity of the particle and its new position will be assigned according to 

                             ( ) ( )iiiiii rcrc XGXPVV −⋅⋅+−⋅⋅+⋅= 2211ω                      (6.27)       
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iii VXX +=                                                        (6.28)                     

where ω  is the inertia weight that controls the impact of the previous velocity of the 

particle on its current one; 1r , 2r are independently uniformly distributed random 

variables with range ( )1,0 ; 1c , 2c are positive constant acceleration coefficients which 

control the maximum step size. Eq. (6.24) is used to calculate the new velocity 

according to its previous velocity and according to the distance of its current position 

from both its own best historical position and the best position of the entire population 

or its neighborhood. Generally, the value of each component in iV  can be clamped to 

the range [ ]maxmax , vv−  to control excessive roaming of particles outside the search 

space. Then the particle flies toward a new position according to Eq. (6.28). This 

process is repeated until user-defined termination criteria are reached, which are defined 

in the next section. 

6.3.4 Termination  
The computation of the PSO is terminated when one of the following termination 

criteria is reached: 

• when a maximum number of iterations has been exceeded. 

•  when an acceptable solution has been found. 

•  when no improvement is observed over a number of iterations. 

•  when the objective function slope is approximately zero. 

6.3.5 PSO implementation  
The PSO can be implemented by the following steps:  

Step I:  Initialize a swarm of particles with random positions and velocities. These 

random particles must be formed at allowed ranges for each variable. These 

ranges are determined by the optimization problem formulated in Section 6.2.2. 



 

131 

Step II:  Calculate the fitness values of all particles. Set the individual best position bestP  

and its corresponding fitness for each particle equal to the current position and 

fitness value of the particle. Set the global best position bestG  and its 

corresponding fitness value equal to the best position and fitness value attained 

by the swarm. 

Step III:  Update the velocity and position of each particle according to Eqs. (6.27) and 

(6.28). 

Step IV:  Update bestP  and bestG . Evaluate the fitness values of all particles. For each 

particle, compare its current fitness value with the best fitness value it 

attained so far ( bestP ). If the current value is better, then update bestP  and its 

fitness value with the current position and fitness value. Determine the best 

particle of the current population with the best fitness value. If the fitness 

value is better than the fitness value of bestG , then update bestG  and its fitness 

value with the position and fitness value of the current best particle. 

Step V:  Check termination criteria. If a stopping criterion is met, then output bestG  

and its fitness value; otherwise go to step III.     

The flowchart of optimization procedure of the PSO based optimizer is shown as in 

Figure 6.9 [130].    
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Figure 6.9 Optimization procedure of PSO based optimizer  

The optimization algorithm can be easily implemented without encoding variables 

and changing optimal settings’ units. A reasonable number of commonly used sensors is 

required to monitor the overall system, and the optimal settings can be calculated based 

on mathematical models and the PSO algorithm. Of course, this standard PSO can be 

further improved to reduce the risk of convergence to a suboptimal solution. But, in 

consequence, an improved PSO will increase the computational cost and memory 

requirement.  However, this study will not discuss further on this point because the 

effectiveness of optimization techniques is very case specific.  

6.4 Optimization Based on Genetic Algorithms (GA) 
To compare the control accuracy and application feasibility in practice, genetic 

algorithms (GA) is also employed to resolve the formulated system optimization 

problem for HVAC out-building section. 

Similar to PSO, genetic algorithms (GA) are stochastic global search methods, 

which are based on principles of nature biological evolution. The basic principles of 
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genetic algorithms were first proposed by Holland [131], and the consolidation of their 

theories was later developed by Goldberg in 1989 [132]. It has been recognized as a 

powerful tool for solving many complex problems, such as combinational optimization, 

planning, symbolic regression and automatic programming.  

Generally, four steps are required to complete a simple genetic algorithm procedure: 

encoding, construction of a fitness function, execution of the evolutionary operation, 

and finding termination criteria. These steps are briefly introduced in the following 

sections.  

6.4.1 Encoding  
In genetic algorithms, it is presumed that the potential solution of a problem is an 

individual and can be represented by a set of variables. These variables are regarded as 

the genes of a chromosome and can be structured by a string of values in binary form. 

The procedure to convert a set of variables into a string is called encoding.  

Binary string encoding [133] is the most classical approach used by researchers 

because of its simplicity. Here, each variable in an individual is encoded as a binary 

string and these strings are concatenated to form a chromosome. The use of Gray coding 

has been advocated as a method of overcoming the hidden representational bias in 

conventional binary representation as the Hamming distance between adjacent values is 

constant [134]. The following shows the contrast between binary string and Gray code:  

Real value:   0 1 2 3 4 5 6 7  

Binary string:  000 001 010 011 100 101 110 111  

Gray code:   000 001 011 010 110 111 101 100  
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The above example shows that a Gray code represents each number in the sequence 

of an integer as a binary string in an order such that adjacent integers have Gray code 

representations that differ in only one bit position.  

Whilst binary string encoding is most commonly used, there are some alternative 

encoding strategies, such as integer and real-valued representations [134]. However, 

there is no general consensus on which encoding strategy is superior for a given 

problem.  

For this particular problem, according to Eqs. (6.1-6.4), each independent variable 

( kevP , , kcdP , , kPLR , kcwcdm ,,& , CWST  and jam ,& ) in Equation (6.15) is converted into a 

binary string. And all of these strings are combined together to form a chromosome. For 

the independent variables ( kevP , , kcdP , , kPLR , kcwcdm ,,& , CWST  and jam ,& ), the upper and 

lower bounds of their binary strings stand for minimum and maximum values in 

Constraint (1), (2), (3) and (4). The lengths of the binary strings are determined by the 

control precision of the corresponding variables: the more precise set point requires the 

longer binary string.  

6.4.2 Construction of the fitness function  
Similar to that of PSO, the fitness function of GA is used to provide a measure of 

how individuals have performed in the whole population. It is an important link 

between genetic algorithms and the practical optimization problems. In the case of a 

minimization problem, the fittest individual should have the lowest numerical value of 

the associated objective function and have the highest numerical value of the associated 

fitness function. In other words, the fitness function is normally used to transform the 

objective function value into a measure of relative fitness, thus:  

                                                         F(x) = g(f(x))                                                     (6.29) 
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where f(.) is the objective function, g(.) transforms the value of the objective function 

into a non-negative number and F(.) is the resulting relative fitness.  

A simple way to transform a minimization problem into a maximization problem is 

using a large positive constant to minus the objective function. This large positive 

constant should guarantee that all the fitness values incurred are positive numbers. For a 

maximization problem with the negative object values, a large positive constant should 

be chosen to add to the objective function. Similarly, the constant should be large 

enough to guarantee all positive fitness results. A linear transformation which offsets 

the objective function is often used prior to fitness assignment as:  

                                                             F(x) = a f(x) + b                                             (6.30) 

where a is a positive scaling factor if the optimization is to maximize and negative if it 

is to minimize. The offset b is used to ensure that the resulting fitness values are non-

negative.  

The linear scaling and offsetting outlined above are, however, susceptible to 

premature convergence. The evolutionary operators select individuals for reproduction 

on the basis of their relative fitness. Using linear scaling, the expected value of the 

offspring is approximately proportional to the individual’s performance. As there is no 

constraint on an individual’s performance in a given generation, highly fit individuals in 

the early generation can dominate the reproduction causing premature convergence to 

possibly sub-optimal solutions. Similarly, if there is little deviation in the population, 

then scaling provides only a small bias towards the fittest individuals [135].  

Here, the GA based optimizer shares the same fitness function as the PSO based 

optimizer which is constructed in section 6.3.3.  
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6.4.3 Evolutionary operation  
The typical evolutionary operation of GA consists of selection, crossover, mutation, 

and reinsertion.  

Selection is the process of determining the number of times that a particular 

individual is chosen for reproduction and, thus, the number of offspring that an 

individual will produce. The roulette wheel selection method is generally adopted in 

most genetic algorithms due to its characteristics of zero bias and unlimited spread. The 

probability to select an individual as one of the parents for the next generation is 

proportional to the fitness value of the associated individual. It is stochastic sampling 

with replacement. The selection operation is repeated until the mating pool for 

reproduction is full of individuals.  

Crossover is the basic operation for producing new chromosomes of the next 

generation. It produces new individuals who have some parts of both parents’ genetic 

information. Normally, there are three types of crossover: one-point crossover, multi-

point crossover, and uniform crossover. Although the preference of which crossover 

techniques to use is arguable [131], one-point crossover is the simplest and most likely 

to be adopted. An example of a one-point crossover operation for binary coded 

chromosomes is shown as follows:  

Parent 1:   1 1 1 1 1 1       “crossover at the 2nd bit”           New individual 1:  1 1 0 0 0 0 

Parent 2:   0 0 0 0 0 0         ⇒                  New individual 2:  0 0 1 1 1 1 

The crossover point is usually selected randomly throughout the chromosomes. The 

probability of crossover is a user-controlled option and the determination of this 

parameter is briefly discussed in [132].  
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Mutation plays a secondary role in an evolutionary operation [132]. It makes 

alternations to the values of one or more genes in a chromosome with low probability. 

The function of mutation is to give new information to the population and to prevent the 

population from becoming saturated or premature convergent. Single-bit mutation is 

commonly used and is shown in the following example.  

Original individual: 1 1 1 1 1 1  “mutation at the 5th bit”    New individual:    1 1 1 1 0 1 

Like in crossover, the mutation bit is also selected randomly throughout the 

chromosomes. Large mutation rates increase the probability of destroying good 

individuals, but increase population diversity. In contrast, small mutation rates intend to 

keep the good individual and decrease population diversity. The determination of this 

parameter is also discussed in [132].  

Reinsertion is the last step to complete a generation. New individuals produced by 

crossover and mutation are selected on the basis of fitness to replace some or all the 

individuals in old population to form a new population. Usually, the worst 

chromosomes are replaced when new chromosomes are inserted into the population and 

the best chromosomes are kept to the succeeding generation.  

For this particular problem, elitist roulette wheel selection [136], single-point 

crossover, and single-bit mutation operators are adopted. The crossover and mutation 

points are all selected randomly in each generation. Fitness-based reinsertion is adopted 

to operate according to the predetermined generation gap.  

6.4.4 Termination 
Because genetic algorithms are a stochastic search method, it is difficult to formally 

specify convergence criteria. Here, the computation of genetic algorithms is terminated 

when any of the following criteria is satisfied.  
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• The maximum number of generations is reached;  

• The fitness value of the best chromosome converges to some asymptote.  

Once the algorithm is terminated, a set of optimal set points of independent 

variables ( kevP , , kcdP , , kPLR , kcwcdm ,,& , CWST  and jam ,& ) are achieved corresponding to the 

certain outdoor environment and cooling load.  

6.4.5 GA implementation  

The optimization procedure can be implemented by the following algorithm and 

visualized in Figure 6.10.  

Step 1:  Predetermine the parameters of component models based specification data or 

on-site testing data (refer to Chapter 3 and 5) and input the measurement 

variables;   

Step 2:  Initialize parameters of the genetic algorithm: population size, maximum 

number of generations, precision of each variables, generation gap, and 

probabilities of crossover and mutation;  

Step 3:  Perform the evolutionary operations as illustrated in Figure 6.10;  

Step 4:  Repeat Step 3 until the genetic algorithm is terminated;  

Step 5:  Verify the optimal values of the independent variables to avoid the 

uncertainties of the genetic algorithm caused by insufficient computation. If 

the results are not reasonable, maintain the set points unchanged for the 

current sampling period;  

Step 6:  Calculate the optimal set points of each component based on the optimization 

results in Step 5;  

Step 7:  Pass the optimal set points to supervisory control strategy for the final decision 

for each local control unit.  
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Figure 6. 10  Optimization procedure of GA based optimizer 

6.5 Comparison Study of Two Optimization Methods 
In this section, with the given environment and cooling load conditions, the control 

accuracy, computation time and the size of memory requirement are evaluated by 

determine the model parameters
input the measurement variables

initialize the parameters of the gentic algorithm

counter = counter + 1

calculate the fitness values of current population
store the individual with highest fitness value

determine the probabilities of crossover and mutation

maintain the optimal set points of  
independent variables of the last time step 

unchanged in current sampling period

perform crossover and mutation operation for individuals 
in mating pool to generate new population

use elitist roulette wheel method to select individuals 
for mating pool from current population

pass the optimal set points to the supervisory 
control strategy module for the final decision   

calculate the optimal set points of 
independent variables

replace current population by new population based on fitness 
replace the individual of least fitnees by the stored one

counter < maximum generation ?

reach termination criteria?

results reasonable ?Yes No

No

No



 

140 

comparing the simulation results of the PSO based optimizer with that of the GA based 

optimizer.  

The simulation studies are based on a laboratory HVAC system consist of three 

identical refrigeration cycles and three identical cooling towers (see the schematic 

diagram in Figure 6.11).  

Figure 6.11 Schematic of the laboratorial HVAC out-building section 
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The parameters of the cooling towers and chillers are listed in Table 6.1. 

Table 6.1 Parameters of the pilot HVAC system under study 

Total cooling capacity (kW) 

(Three identical sets of chillers, pumps and cooling towers) 

14.4 kW 

Chiller  

Nominal cooling capacity 4.8 kW 

Nominal compressor power 1.5 kW 

Nominal COP 3.2 

Designed chilled water entering/leaving temperature  7/12 Co  

Designed chilled water mass flow rate 0.23 kg/s 

Designed condenser water supply/return temperature 31/37 C°  

Designed condenser water mass flow rate 0.25 kg/s 

Nominal condenser water pump power 0.3 kW 

  

Cooling tower  

Nominal heat rejection capacity  8 kW 

Designed entering/leaving temperature 38/31 C°  

Designed water circulation  mass flow rate 0.25 kg/s 

Designed air mass flow rate 0.5kg/s 

Nominal fan motor power  0.45 kW 

Three typical cases, which represent the typical operation conditions of the HVAC 

system in the light-load, medium-load and heavy-load, respectively, were selected to 

simulate and evaluate the performance of the proposed hybrid model-based system 

optimization approaches as presented in Table 6.2. The properties of the computer used 

for simulating these cases are presented in this table as well. 
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Table 6.2 Typical test conditions, and optimization results using different optimization techniques 

Items Load conditions   

 Light-load Medium-load Heavy-Load 

Working conditions    

loadQ (kW) 4.26 8.44 13.87 

chweevT , ( C° ) 11.7 11.5 11.2 

chwlevT , ( C° ) 7 7 7 

iwbT , ( C° ) 21.56 23.77 25.45 

Items Tools   

 PSO GA PSO GA PSO GA 

Optimization results       

totalP  (kW) 1.39 1.38 2.88 2.88 4.33 4.34 

chN  1 1 2 2 3 3 

ctN  2 2 3 3 3 3 

CWST  ( C° ) 27.34 27.39 29.81 29.83 31.64 31.62 

Computation time (s) 9.42 35.22 9.54 36.06 8.88 36.72 
Memory requirement 
(MB) 72  348 72 348 72 348 

Computer properties      

Operating system Microsoft windows XP professional   

Processor Intel(R) Core(TM) 2 Quad CPU @ 2.33 GHz 

Memory 2.00 GB of RAM     

These simulation results show that the model-based system optimization approach 

using PSO can accurately find the one-point global optimal solutions for all three 

typical cases with significant reduced computation times; from around 36 s for the GA 

based optimizer to around 9 s for the PSO based optimizer. Moreover, the memory 

requirements are reduced greatly, from 348 MB for the GA based optimizer to 72 MB 

for the PSO based optimizer. The reduction of the average computation time and the 

reduction of memory requirement of the system optimization approach using PSO as the 

optimization technique are about 70% and 80% respectively, compared with the system 

optimization approach using the same models but using the GA as the optimization 

technique. 
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6.5 Summary 
This chapter formulated and resolved the global optimization problem of the 

HVAC out-building section based on the simplified hybrid models developed in 

Chapter 3 and Chapter 5. These proposed component models have high predictive 

accuracy as well as the physical significance of the model parameters which have been 

verified by experimental tests. Based on these component models, the interactions 

among these components are examined, and then the nonlinear, highly-constrained 

optimization problem of the HVAC out-building section for energy minimization is 

formulated. Finally, easy-to-implement nonlinear optimization tools, PSO as well as GA 

are employed to resolve this optimization problem. The performance comparison 

between PSO based optimizer and GA based optimizer in terms of the control accuracy, 

computation time and memory requirement are also given. The simulation results 

demonstrate that the system optimization approach using the PSO optimization 

technique has the same control accuracy as the system optimization approach using GA 

as the optimization technique, but the required memory is reduced by around 4 times in 

the tests. And the average computation time reduction when applying the proposed 

model-based system optimization approach using the PSO based technique was 80% 

compared to that using the GA as the optimization technique. 

Comparing with GA, the PSO algorithm does not require coding and decoding the 

individual solutions and converges much faster. These features lead to the significant 

reduction of computation time and memory requirement as what have been approved 

through comparison studies. Hence, the hybrid model-based system optimization 

approach using PSO based optimizer becomes our proposed method for implementation. 

In Chapter 7, real applications of the proposed method to a HVAC system will be 

examined and validated by experimental studies. 
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CHAPTER 7 REAL SYSTEM IMPLEMENTATION 

7.1 Introduction  
 The ultimate objective of any technique development is its application. Engineers 

are always trading off among cost, energy efficiency, and ease of implementation etc. 

Through experiment studies, this chapter will validate and evaluate the application of 

the HVAC EMCS, integrated with the proposed model-based system optimization 

approach using PSO as the optimization technique, for which details can be found in 

Chapter 6.  

 The studies designed to validate and evaluate the EMCS control strategies are 

divided into two categories: energy performances of the control strategies, and realistic 

control performances of control strategies. When the realistic performances of the 

control strategies are of concern, the dynamics of the system include not only the 

building thermal dynamics but also the controllers, coils, cooling towers etc. which 

affect the local loop control activities and should be properly modeled and evaluated in 

the application.  

When only the energy performances of the strategies are of concern, the dynamics 

of the process, such as the HVAC components thermal dynamics etc., which noticeably 

affect the energy performance of the system, are investigated. The dynamics of the 

components such as sensors, actuators, and coils only affect the control performance but 

do not affect the energy performance and thus are not investigated in the application of 

optimizing energy savings. For practical applications, control and optimization 

strategies are expected to be simple and easy-to-implement while still providing 

satisfactory performance with high control reliability and stability. The computation 

time and memory requirement are generally manageable and can meet the requirements 
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of online control applications. When the optimal set points are downloaded to the local 

loop, the local loop controls should ensure stable and reliable transient performance of 

the HVAC system. The following sections will use on-site experiments to validate and 

evaluate the energy performance of the proposed hybrid model-based system 

optimization approach. 

7.2 Description of Experimental HVAC System 
Experiments are conducted on a laboratorial HVAC pilot plant (see the schematic 

diagram in Figure 6.11 and the real system in Figure 7.1) to validate and evaluate the 

proposed system optimization approach. The laboratory scale HVAC system consists of 

three identical refrigeration cycles in parallel, each of which is associated with one VSD 

condenser water pump and one VSD chilled water pump. The three refrigeration cycles 

are connected by one constant primary chilled water pump. The multiple VSD pumps 

are connected by a bypass pipe that connects the return and supply headers. Each set 

consisting of a refrigeration cycle and pump (as can be seen in Figure 6.11) operates 

independently. And three identical cooling towers equipped with the dedicate VSD fans 

are installed as a group. The electric valves mounted on the condenser water return 

pipes are used to select the operating cooling tower. To make the system operate to 

serve a designed cooling demand/load, the supply chilled water head and return chilled 

water headers can be connected to an electrical water heater (the electrical water heater 

is not illustrated in Figure 6.11), which can heat up the supply chilled water and give it 

back to the system as the return chilled water. 

For the measurement part, resistance temperature detectors (RTDs) PT100 Ωwith 

an accuracy of ±0.05 C° are installed to measure the chilled water temperature and 

condenser water temperature. And the mass flow rate of chilled water and condenser 

water are measured from a flow meter. As the mass flow rate of the refrigerant flows 
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through the evaporator is the same mass flow rate of the refrigerant flows through the 

condenser, it is measured through a flow meter with an accuracy of ±0.5% of full scale. 

The pressure transducers with a measurement pressure range of 0–1600 kPa and an 

accuracy of ±0.5% of full scale are used to measure the evaporating pressure and 

condensing pressure. The refrigerant temperatures at the inlet and outlet of the 

evaporator and condenser are measured with T-type thermal couples with a 

measurement range of -40 to 150 C°  with an accuracy of ± 0.1 C° (the measurement 

points of temperature, pressure and mass flow rate are illustrated in Figure 7.1). The 

ambient air temperature and relative humidity (RH) is measured using an EE21 

transmitter with an accuracy of ± 0.2 C° for temperature and ± 2% RH for relative 

humidity. Thus the wet-bulb temperature can be calculated from the measured dry-bulb 

temperature and relative humidity with a psychometrics-subroutine. The power meters 

(model no.: Panasonic AKW1121) with an accuracy of ±0.01kW and ±0.01kWh are 

installed in the power distribution box to record the instantaneous power consumption 

and accumulated energy consumption of the chillers and cooling towers. All the 

measured data were controlled and recorded automatically by a computer through a 

National Instrument data acquisition interface. The experimental data were recorded 

continuously with 1-minute time intervals. And the accumulated energy consumption 

data were calculated hourly-based.  

Commissioning tests were conducted to analyze the steady state performance of the 

experimental HVAC system. The uncertainties of the cooling capacity and COP 

estimated by the composite system model for the real laboratorial HVAC system were 

approximately 4.5% and 5%, respectively. The maximum difference between the chilled 

water-side and the refrigerant-side capacity was also less than 5%. The maximum 

difference between the condenser water-side and the refrigerant-side capacity was less 
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than 3%. The maximum difference between condenser capacity and cooling tower 

capacity was less than 6%. These uncertainties are acceptable in the real application. 

For the local control, the DDC controllers are installed to control the frequency of the 

VSD pump and fan ( pumpFreq and fanFreq ), the opening ratio of the expansion valve 

( valveμ ) and the frequency of the VSD compressor ( comFreq ) to the set points. 

Figure 7.1 Experimental setup 

    The main parameters of the components of the pilot HVAC out-building section are 

already given in Table 6.1. 

Cooling tower

Refrigeration cycle
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7.3 Implementation of System Optimization Approach 
The hybrid model-based optimization approach presented in this thesis is developed 

as part of EMCS implemented in the laboratory scale HVAC system located in 

Singapore.  

Based on the optimization problem formulation in Chapter 6, the hybrid model-

based system optimization approach for the HVAC system outbuilding section should 

include two main functions for energy efficiency optimization: one is to seek the 

optimal set points of the condenser water temperature entering the condenser, and the 

other is to determine the best combination of control settings of the chillers (the 

condenser water pump is regarded as a part of the chiller system) and the cooling towers 

that can control the system of HVAC out-building section to satisfy the ever-changing 

cooling load requirement with the minimal instantaneous power input in each sampling 

period, e.g., one hour, and thus the minimal energy consumption in a certain period of 

time, e.g., one hour. In this study, the HVAC component models developed in the 

previous chapters are used to predict the system’s energy performances of the HVAC 

out-building section with respect to the changes of the cooling load and ambient 

conditions. All of the component models are connected together according to their 

interactional thermal and power consumption relationships to form a system thermal 

performance and power consumption model.  

The detailed online implementation procedures of this hybrid model-based system 

optimization approach using PSO are illustrated in Figure 7.2. Online measurements 

collected from the sensors and transmitters are sent to a measurement filter to remove 

the noisy or bad readings. These validated measurements and pre-defined initial settings, 

i.e., the initialization values of the independent variables for performing PSO are the 

inputs to the HVAC component models. The HVAC component models used for 
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optimization, including the cooling tower model and the refrigeration cycle model, are 

already parameterized in the model parameter identification phase, the method for 

model parameter identification have been introduced in Chapter 3, 4 and 5, respectively.  

For online applications, the parameters of the HVAC component models are required to 

be updated periodically to ensure the prediction accuracy.  

Figure 7.2 Implementation procedures of the proposed system optimization approach 

Table 7.1 lists the measurements and initial settings of each component model. 

Table 7.1 Measurements and defined initial settings for system component models 

Component Measurement/pre-identified data Pre-defined initial settings 

Cooling tower  iwbT , , CTWST  ctwm& , jam ,&  

Condenser krefm ,& , kδ , kchwm ,& , krefecdT ,,  kPLR , kevP , , kcdP , , CWST , kcwcdm ,,&  

Expansion valve krefm ,&  kevP , , kcdP , , kPLR  

Compressor krefm ,& , kδ   kPLR , kevP , , kcdP ,  

Evaporator krefm ,& , kδ , kchwm ,& , kchweevT ,, , krefeevT ,,  kPLR , kevP , , kcdP ,  

Online measurements 

Measurement filter Defined initial settings 
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Based on those component models, the optimizer using the PSO algorithm is then 

applied to determine the optimal set points for the independent variables of the overall 

system, i.e., kevP , , kcdP , , kPLR , kcwcdm ,,& , CWST  and jam ,& . The relationships between these 

optimal set points and the corresponding actual system components control settings, i.e., 

compressor frequency ( kcomFreq , ), valve setting ( kvalveu , ), pump frequency ( kpumpFreq , ) 

and fan frequency ( kfanFreq , ) can be determined by a look-up subroutine based on the 

manufacturers’ specifications data or factory test data. And the supervisory control 

strategy of the EMCS will provide the final decision, i.e. control settings, for the EMCS 

taking into account the real time dynamic operating constraints for a practical 

application, e.g., the time interval between changes of two sets of control settings 

should avoid an alternating ON/OFF of the corresponding components etc. Then those 

final control settings are downloaded into the local DDC controllers to operate the 

corresponding components to achieve the minimal overall system energy consumption. 

This hybrid model-based system optimization approach can be easily implemented 

without changing local controllers or HVAC system structures. Only a reasonable 

number of commonly used sensors are required to monitor the overall system, and the 

optimal operating set points can be provided based on the proposed hybrid models and 

the PSO optimization technique. The comparison between traditional control strategies 

and the proposed method are given as follows:  

• opctN , , opchN , : In traditional methods, they are controlled by the scheduler of the 

EMCS. In the model-based system optimization approach, they are determined by 

the PSO based optimizer.  For the experimental HVAC system tested in this thesis, 

an solution has following structure: 
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( 1,evP , 1,cdP , 1PLR , 1,,cwcdm& , 2,evP , 2,cdP , 2PLR , 2,,cwcdm& , 3,evP , 3,cdP , 3PLR , 3,,cwcdm& , 

1,am& , 2,am& , 3,am& , CWST  ) 

According to the constraint 4 of section 6.2.2, when ;3,2,1,PLRPLR min, =≤ kkk  

1.0PLR min, =k , that means the thk chiller is not selected, and kevP , , kcdP , , kPLR and 

kcwcdm ,,& are set to be zero by the optimizer. Similarly, according to Constraint 1 of 

section 6.2.2, when 3,2,1,min,,, =≤ jmm jaja && , that means the thj cooling tower is 

not selected by the optimizer.  

• kevP , , kcdP , : In traditional methods, they are controlled by an inverter driven 

compressor motor as well as expansion valves, and considered as a constant. In 

the model-based system optimization approach, they are computed as independent 

variables. 

• kPLR : As a multiple chiller system consists of two or more refrigeration cycles, 

traditional optimization methods such as mixed integer linear and non-linear 

programming can be used to determine the PLR of each connected chiller; 

however, difficulties arise due to multiple local minima and the overwhelming 

computational effort. In the model-based system optimization approach, it is 

determined by the PSO based optimizer.  

• kcwcdm ,,& : In traditional methods, the mass flow rate of condenser water of thk  

chiller condenser ( kcwcdm ,,& ) is unchangeable for the majority of building HVAC 

systems. In the model-based system optimization approach, it is controlled by 

VSD pumps and the value is given by optimal independent variables directly.  
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• CWST : In traditional methods, it is controlled by adjusting the frequency of the 

cooling towers VSD fans. The value of this variable is usually a constant or 

changes gradually with the cooling rejection rate as well as ambient condition. In 

the model-based system optimization approach, it is computed as one of the 

independent variables. 

• jam ,& : In traditional methods, they are directly controlled by cooling tower VSD 

fans. The values of those variables are usually changed gradually to keep a set 

point value of condenser water temperature entering the condenser ( cweT ) with the 

cooling rejection rate as well as ambient condition. In the model-based system 

optimization approach, it is also computed as the independent variables. 

7.4 Experimental Study of Energy Performances 
 In this study, the energy performance of the proposed hybrid model-based system 

optimization approach subject to the time varying loads and weather conditions is 

evaluated by comparing it with that of the conventional control strategy. Among the 

existing conventional control strategies, the fixed approach (the temperature difference 

between the condenser water supply temperature and ambient wet-bulb temperature 

remains constant) control method is one of the simplest strategies from an 

implementation point of view. The fixed approach control method varies the cooling 

tower air flow rate to maintain a constant temperature difference between the condenser 

water supply temperature and the ambient air wet bulb temperature.  

In this study, the performance of the fixed approach control method (approach 

temperature is 6 C° ) is used as the benchmark. And the comparison was in terms of the 

set points of the condenser water supply temperature and the total power consumption 

of the HVAC out-building section including chillers and cooling towers. Three typical 
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days, which represent the three typical operation conditions of the air conditioning 

system in the three different weather seasons of Singapore are selected to test and 

evaluate the energy performance of the proposed hybrid model-based system 

optimization approach.  

7.4.1 Building cooling load calculation 
Because of its Southeast Asian location, Singapore is characterized by a hot and 

humid climate. Located just one degree north of the equator, Singapore quite naturally 

enjoys a tropical/equatorial climate. There is no clear-cut wet or dry season and rain is 

experienced every single day, usually in the afternoons and early evenings. However, 

there are two main monsoon seasons in Singapore: the Northeast Monsoon Season 

(December-March) and the Southwest Monsoon Season (June-September). Separating 

these two seasons is the inter-monsoon period (April-May and October-November), also 

named as non-monsoon season. To investigate the operation characteristics of a HVAC 

system under different weather conditions, we do the experiments with the HVAC 

system on each typical day of the three seasons (December 12th 2008, June 15th 2009, 

October 6th 2009) and the recorded daily weather data of these three typical days’ are 

also used for simulations. Moreover, to also take into consideration the impact of 

weather condition on the cooling load of the building, we use TRNSYS 17 [137] multi-

zone building model (Type 56) to build a one-floor empty building model to calculate 

the hourly based 24-hour cooling load profiles of the building under the weather 

conditions of the three seasons. TRNSYS standard model Type 56 is a complete, 

modular, and expansible simulation model for the transient simulation of multi-zone 

buildings.  

 This building under study is 10 meters in length, 8 meters in width and 3 meters in 

height, the thermal information of the building envelope are summarized in Table 7.2.   
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Table 7.2 Building envelop parameters of the studied building 

Building envelop Heat transfer coefficient [W/㎡·K] 
External wall 0.44 
External roof 0.29 

Ceiling 
External ceiling 0.29 
Adjacent ceiling 0.49 

Door 1.5 

Adjacent wall 0.93 

Window Design value 

Window orientation Window-wall ratio Heat transfer coefficient [W/㎡·K] shading 

east 0.04 2 0.7 
south 0.35 2 0.7 
west 0.04 2 0.7 
north 0.22 2 0.7 

The profiles of daily building cooling load under the three typical days of three 

season, including (a) Northeast Monsoon Season, (b) Southwest Monsoon Season, and 

(c) Non-monsoon Season, are presented in Figures 7.3 (a) ~7.3 (c), respectively.     

(a) Northeast Monsoon Season 
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(b) Southwest Monsoon Season 

(c) Non-monsoon Season 

Figure 7.3 Wet-bulb temperature and building cooling load profile for a typical day 

Through Figure 7.3(a) ~ 7.3(c), we can observe that the cooling loads of an empty 

building without any internal thermal gain are dramatically impacted by the ambient 
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wet-bulb temperature. The building cooling load increases/decreases with respect to the 

increase/decrease of the ambient wet-bulb temperature. And we also can notice that the 

cooling load at different times of the day may be different even for the same wet-bulb 

temperature. This is because the building cooling load is also affected by other weather 

factors, e.g., sun irradiation and wind speed etc. To simulate exactly the same cooling 

loads in the experiments, we can just change the temperature set point of the return 

chilled water through controlling the power input of the auxiliary electrical water heat. 

The control strategy is then implemented into the EMCS for the laboratorial HVAC 

system to optimize the energy performance under the weather conditions of the three 

typical days. The condenser water supply temperature can be directly measured from 

the temperature transmitter; and the corresponding instantaneous power consumptions 

as well as the accumulated energy consumption of the system are recorded by the power 

meter.  

7.4.2 Fixed approach control method simulation and implementation  
Since different models may result in different calculation deviations, the fixed 

approach control method utilizes the same refrigeration cycle and cooling tower models 

as that of the proposed system optimization approach used to predict the system 

performance in the following comparison studies. For the fixed approach method, it is 

impossible to achieve identical operating weather conditions under which the proposed 

method is tested on the experimental HVAC system. Alternatively, with the recorded 

weather data of these three typical days, only simulation data of the fixed approach 

method based on the real HVAC system are used to compare with the experiment data 

of the proposed method. For the fixed approach method, a traditional sequencing 

control algorithm for the chillers and cooling towers is adopted, which is an 

increment/decrement sequencing, where the additional chiller is staged on when the 
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cooling load is above a certain value, for example, 90% of chiller capacities, and the 

extra chiller is staged off in the same manner. For the sequencing of chilled water 

pumps, condenser water pumps, and cooling tower fans, they are switched on or off 

with the dedicated chillers. The implementation procedures of the fixed approach 

method based supervisory control are illustrated in Figure 7.4. 

Figure 7.4 Implementation procedures of the fixed approach method 
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7.4.3 Evaluation of energy performance 
Figures 7.5(a) ~ 7.5(c) present the profiles of the hourly set points of the condenser 

water supply temperature obtained by using the proposed hybrid model-based system 

optimization method (indicated as optimal method in the figures), the fixed approach 

method along with the hourly wet-bulb temperature of the typical day in (a) the 

Northeast Monsoon Season, (b) the Southwest Season and (c) the Non-monsoon Season, 

respectively. These figures reveal that the optimal set points of the condenser water 

supply temperature by using the proposed hybrid model-based system optimization 

method deviate from the values determined by using the fixed approach control method.  

(a) Northeast Monsoon Season 
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 (b) Southwest Monsoon Season  

(c)  Non-monsoon Season 

Figure 7.5 Condenser water supply temperatures and wet-bulb temperatures for a typical day 

And considering the weather characteristic of Singapore, the search range of the set 

points of the condenser water supply temperature is pre-constrained between 20 C°  and 

36 C° . Figures 7.5(a) ~ 7.5(c) illustrate that  the optimal set points of the condenser 
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water supply temperature searched by using the proposed hybrid model-based system 

optimization approach are all within the defined search ranges for the three typical days, 

which can further verify the effectiveness of the proposed method. It is worth pointing 

out that the search range for each sampling period can be further narrowed down, as the 

set points of the condenser water supply temperature decided by the fixed approach 

method can be a good reference of the search range of the optimal set points of the 

condenser water supply temperature. From Figures 7.5(a) ~ 7.5(c), we can observe that 

optimal set points of the condenser water supply temperature at each sampling period 

may occur near to those set points decided by the fixed approach method. The reason is 

that besides the characteristics of the cooling towers and chiller systems in a HVAC 

system out-building section, the optimal set points of the condenser water supply 

temperature are partly impacted by the outdoor wet-bulb temperature; the detailed 

analysis of this point was examined in section 6.2.3. Therefore, the future work of fine 

tuning the search range may help to reduce the computational cost of proposed hybrid 

model-based system optimization approach using PSO based optimizer. 

The performance of this hybrid model-based system optimization approach is 

further validated in terms of system power consumptions. Figures 7.6(a) ~ 7.6(c) 

present the differences between the hourly averaged power consumptions using the 

fixed approach control method and the proposed hybrid model-based system 

optimization approach (indicated as optimal method in the figures) in the typical days in 

the Northeast Monsoon season, Southwest Monsoon season and Non-monsoon season, 

respectively. From figures 7.6(a) ~ 7.6(c), it is obvious that the hourly averaged power 

consumption of the HVAC system outbuilding section controlled by the proposed 

method is less than that of the fixed approach method in each time interval, which 

means substantial energy can be saved when this hybrid model-based system 
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optimization approach is used. These comparisons reveal that the proposed method can 

provide much more energy efficient control than the fixed approach control method. 

(a) Northeast Monsoon Season 

(b) Southwest Monsoon Season 
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(c)  No-monsoon Season 

Figure 7.6 Total power consumptions for a typical day  

Table7.3 presents the accumulated energy consumptions of the HVAC out-building 

section (chillers + cooling towers) for three typical days when using different control 

methods. Compared with the fixed approach control method, the energy consumption 

saved by applying the proposed system optimization approach using PSO based 

optimizer is 1.32 kWh (6.38%), 3.34 kWh (7.88%) and 4.42 kWh (6.43%) in the typical 

three days in Northeast Monsoon Season, Southeast Monsoon Season and Non-

monsoon Season, respectively.  

Table 7.3 Comparison of one day total electricity consumption using different control strategies 

Conditions Light-load Medium-load Heavy-Load 

Energy & Saving Energy 
(kWh)  

Saving
(kWh) 

Saving
(%) 

Energy
(kWh) 

Saving
(kWh)

Saving 
(%) 

Energy 
(kWh) 

Saving 
(kWh) 

Saving
(%) 

Operation strategy    

Fixed approach  20.69 - - 42.41    - - 68.70 - - 

Proposed 19.37 1.32 6.38 39.07 3.34 7.88 64.28 4.42 6.43 

 
Compared with the fixed approach control method, over 6% of totally energy 

consumption can be saved by applying the proposed hybrid model-based system 
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optimization approach. And these results demonstrate that the proposed method is more 

energy efficient. It is noted, the fixed approach method is already optimized in some 

degree, a lager percentage of energy saving can be achieved if compared with 

conventional control strategies. 

Figure 7.7 shows the identified number of operating towers and the identified 

number of operating chillers using the proposed hybrid model-based system 

optimization approach with respect to the building cooling load profile and the weather 

data of a typical day of Non-monsoon Season (Figure 7.3(c)). It shows that all three 

towers are in operation from 7 a.m. to 9 p.m., while the number of operating chillers 

changes between one and three. This observation demonstrates that operating more 

cooling towers with a lower fan frequency may be an energy efficient means to save 

power consumption of a HVAC system out-building section. This finding may help us 

to improve the optimization procedure of the PSO optimizer and thus enhance the 

computational time as well as reduce the memory demand further in our future work.  

Figure 7.7 Operating numbers of chillers and cooling towers 
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Based on the above study, it can be found that the proposed hybrid model-based 

system optimization approach can save over 6% of total energy consumption more than 

the fixed approach method. The proposed method is still simple and easy enough to 

implement in practice. It is worthwhile to point out that the chilled water supply 

temperature is not optimized and is maintained as a constant (7 C° ) during the above 

experiments. 

7.5 Summary 
In this chapter, the developed hybrid model-based system optimization approach is 

implemented into an EMCS to operate a laboratorial scale HVAC system. The energy 

performance evaluation experimental study shows total energy consumption can be 

saved when applying the hybrid model-based system optimization approach using PSO 

as an optimization technique compared to that of the conventional fixed approach 

control method. The daily energy savings when using the proposed hybrid model-based 

system optimization approach was over 6% as compared with the fixed approach 

control method. It is worthwhile to note that this part of the energy savings was 

achieved by applying the system optimization algorithm only and without adding any 

additional cost. It is also worth pointing out that the fixed approach control method used 

as the benchmark in this study has already optimized the temperature set point of the 

condenser water supply temperature. Therefore, the actual energy saving using the 

proposed hybrid model-based system optimization using PSO as optimization technique 

could be significantly more than the energy savings presented above since the 

conventional control strategies utilized in practice might be more simple. These 

experiments and the comparison studies show these characteristics make the proposed 

method suitable for online practical and real time optimization applications. 
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CHAPTER 8 CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions  
In this thesis, hybrid modeling and model-based system optimization methodologies 

for building HVAC systems were presented. Firstly, the existing modeling 

methodologies and optimization approaches for building HVAC systems were reviewed 

and the key factors for performing system optimization were identified. Then the 

mathematical models of the major components were developed, including: 1) a static 

cooling tower model developed in Chapter 3 based on heat exchange theories. It only 

involves three parameters for correlation without requiring any geometric information; 

2) dynamic cooling tower and cooling coil models proposed in Chapter 4 based not only 

on the components’ inherent physical and mechanical characteristics but also on 

reasonable approximations of complex heat and mass transfer processes; and 3)  a 

composite refrigeration cycle model developed in Chapter 5 based on the modeling of 

its components, including evaporator, compressor, expansion valve and condenser. 

These models are simple and easy-to-use, the experimental test results showed that they 

could accurately describe the process characteristics. In Chapter 6, with the static 

component models of cooling towers and refrigeration cycles, the physical constraints 

of the individual components as well as the interactions among them in the HVAC 

system were discussed and analyzed. Then, the optimization problems for the HVAC 

systems out-building section operation with respect to varying cooling load demands 

and changing ambient environments were formulated. The individual variables need to 

be optimized including condenser water supply temperature; evaporating and 

condensing pressure of the refrigeration cycle; PLR of each operating refrigeration 

cycle; condenser water mass flow rate and air flow rate through each cooling tower. 
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PSO and GA are then selected as the optimization techniques used for resolving the 

optimization problem. The fundamental theorem, optimization algorithms, procedure of 

algorithms implementation and the system architecture were introduced in details. 

Based on the same HVAC component models and simulation conditions, the 

comparison studies between PSO based optimizer and GA based optimizer in terms of 

accuracy, computing time and memory requirement were also given in details. The 

results show that the PSO based optimizer is superior to the GA based optimizer, hence 

the hybrid model-based system optimization approach using the PSO based optimizer 

becomes our proposed method.  

  In Chapter 7, experimental studies were conducted on a laboratory scale HVAC 

plant to validate and evaluate the application of proposed hybrid model-based system 

optimization approach. The experimental results of the energy performance evaluation 

showed that the overall system energy consumption could be indeed reduced by the 

proposed method as compared with the traditional fixed approach control methods 

8.2 Future work  
Real time control and optimization of the HVAC system is a continuously 

developing field along with the advance of hardware, software and communication 

technologies. The intention of this research work is to present hybrid modeling 

methodologies for HVAC component modeling and to establish a general systematic 

model-based approach to govern the operation of the HVAC process in terms of 

minimal energy usage without violating the system physical or interaction constraints. 

To transfer the technology from the laboratory to real world applications of commercial 

scale HVAC systems, more efforts are needed, including:     
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1) The compressor model adopted in Chapter 5 is only suitable to predict the 

performance of centrifugal type refrigeration cycles. More work should be done to 

investigate the mechanical characteristics of other types of refrigeration cycles, 

such as reciprocating type refrigeration cycles, scroll type refrigeration cycles, 

screw type refrigeration cycles, and absorption type refrigeration cycles. Simplified 

semi-physical or hybrid models for each type of refrigeration cycles with physical 

significant parameters are desirable for online modeling, simulation and 

optimization.  

2) The algorithm of PSO can be further improved and the search ranges of the optimal 

set points can be fine tuned to enhance the control accuracy, computational cost and 

memory requirement in future studies, so as to extend this work to deal with larger 

commercial size HVAC systems.  

3) The system optimization approach considered herein is limited to cooling systems. 

Methods similar to those explored here could be applied to heating systems as well. 

The optimization of set points in heating mode, considering both the effect on 

heating and cooling systems energy use, needs to be considered. A more fully 

integrated optimization is a logical continuation of this study. 

4) This thesis only considers the system optimization approach for the HVAC out-

building section. It would be more beneficial to develop the system optimization 

approach viewing the in-building section [107], even the overall HVAC system, as 

a whole.   

5) So far, all the research work within this thesis is for building HVAC systems 

without cooling storage functions. If the systems have the function of cooling 

storage and they are operated at time varying tariff structure, and if the system 
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maintenance cost, maximum operation life cycle of the equipment and integration 

of renewable energy sources are taken into account, the formulation of the 

optimization problem should be re-considered and the optimization procedure may 

become more complicated. It is worth noting that minimizing system operating cost 

is not always equivalent to minimizing system energy input. How to determine the 

optimal set points for the multi-objective optimization of HVAC systems will be 

studied in the future.  

6) Sophisticated nonlinear controllers for local loop control should be designed based 

on the developed dynamic models for the purpose of improving the control 

performance of the EMCS for HVAC system. And the component and system 

models developed in this thesis could be extended to online adaptive control 

applications. 
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