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Abstract

With the increase in the number of available 3D models, thigyto accurately and effi-
ciently search for 3D models is crucial in many applicatisnsh as Computer-Aided De-
sign (CAD), on-line 3D model shopping and 3D game, movie amdhation production
As a result, 3D model retrieval has become an important reSesrea. In recent years,
several typical algorithms that extract different type8bfmodel features have been pro-
posed. However, 3D model feature supporting multi-modaligs such 3D modelsand
2D sketches is an important research direction which has teteted work.In addition 3D
normalization is an important process3D model retrieval t@extract rotation-dependent
features and currently there still exists much room in tesfredignment accuracy and con-
sistency. In this thesis work, we propose several algosttorcontribute solutions for the
above issues. Motivated by the mechanisnmhoiman perception and multi-view vision,
that is 3D shape information of a 3D object can be obtaineddas multiple viewsto-
gether with the retrieval performance comparison of previcetrieval work as well as the
verifications of our proposed algorithmsewdopt a view-based approach which extracts
features based on the rendered views of a 3D model.

The first part of our work is dealing with 3D pose normalizatid\ novel Minimum Pro-
jection Area-based (MPA) alignment method is proposed é@emormalization based on
the idea of successively finding two perpendicular prinicas with minimum projection
area. Eyerimental results demonstrate that MPA has a good perfarenm finding ac-
curate axes; can robustly find a consistent pose for simitatds and outperforms PCA,
CPCA, and NPCA in terms of 3D model retrieval performance.

Next, we propose a view-based 3D model feature named viewexbto supportboth
Query-by-Model and Query-by-Sketch retrievalhe view context of a particular view



captures the distribution of visual information differescbetween this view and a set of
arranged viers. Experimental results demonstrate tloatr Query-by-Model retrieval al-
gorithm outperforms the relatediew-based approach afight Field. Comparative and
evaluative experiments also demonstrate the effectigeard robustness aur Query-
by-Sketch retrieval algorithm which incorporates a 2D ske2D model alignment step
based on view contexnd it significantly outperforms several latest sketchebasgtrieval
algorithms.

Finally, to improve the retrieval performance on a clasgii® model database, we propose
a 3D model retrieval algorithm based on a hybrid 3D shaperiggsc and a class-based
approach utilizing the existing class information of theadb@se. We define an integrated
distance metric which takes into account the class infaonat Extensive experiments
demonstrate that our class-based retrieval approachepaimproves the retrieval per-
formanceand it is also general and can be used with any shape desstiptonprove their
retrieval performance.

In conclusion, we have conducted substantial researchveraeaspectsf 3D model re-
trieval techniqueand proposed our solutisiy mainly adopting a view-based framework.
Specificaly,

e \We make substantial contribution to the research of 3D maligghment, an impor-
tant aspect of 3D model retrieval techniques, by propogiadtPA algorithm which
achieves better performance than existing alignment gltgos.

e We develop a 3D shape descriptor supporting multi-modatigsidy defining the
view context shape descriptor; and also foster the resedgitetch-based 3D model
retrieval by the first proposal of incorporating a 2D skeBfhmodel alignment step
for more accurate 2D-3D matching for the retrieval, as welbg the apparent im-
provement in the sketch-based retrieval performance.

e We perform the research of retrieval on a classified 3D moatalwhse. We propose a
hybrid shape descriptor which is already comparable to ttebthan several related
shape descriptors; we are also the first to utilize the clafesmation available in
the already classified 3D model database and develop a ¢etemsbased retrieval
approach to obviously improve the retrieval performancanyf shape descriptors.
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Chapter 1

Introduction

1.1 Background and Motivation

3D models consist of data stored in computer files to repte®erobjects and they can
be used to support a wide variety of applications. At presemt use 3D models in a
lot of fields. Inindustry, digitalization is conducted in many courses of the proiduct
system and one of them is to use computer to design productbe Idesign process, the
shape information of the products is usually expressed as8@els, such as 3D meshes.
Moreover, in tle fields of computer graphics such as visualization and exitenent, 3D
models are indispensabl&.3D object is modeled as a 3D model in computer graphics and
the 3D model functions as the most important data structudelze basis for the three 3D
computer graphics-related research fields: 3D modelirgg @eformation, simplification,

denoising), 3D rendering and 3D animation. Thathgre are a lot of needs for 3D models.

With the progress in 3D scanning techniques and the avhiiedi affordable 3D scanners,
the number of 3D models has grown in an exponential way. Ttineme exist a lot of 3D
model retrieval applications, such as 3D prototyping basedutomatic Computer-Aided
Design (CAD) and existing CAD models, on-line 3D model shogpand 3D game, film

and animation production, where we need to search and featodels from existing

1
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3D model databases. Therefoitds very important to have aeffective, efficient an@asy

way toretrieverelevant 3D models from 3D model databases.

To find relevant 3D models, we usually first extract a 3D shagsedptor to depict a 3D
mocel. During the retrievalshape descriptors of different modelethencompared with
each other in the feature space for ramgkim this stage, different distance metrics from the
simplestL1 distance to the complicated ones like Earth Mover’s dstdiEMD) [24, 106]
and Wasserstein [149] distance metrics may be employednpae two 3D shape de-
scriptors. In the case of extracting a rotation-dependeape descriptor, if not utilizing
certain pair-wise matching techniques such as the sphe&oceelation method in [114]
and the iterative comparison method used in the Light Fiektdptor [23], we often need
performing pose normalization first before the featureaetion. This is because 3D mod-
els are created in arbitrary scale, orientation and pwsitio3D space. Therefore, pose
normalization of 3D models is important in many computempgias applications such as
3D model retrieval, 3D model recognition and 3D visuali@aati The goal of 3D model
pose normalization is to transform a model into a canonioaldinate frame, where the
representation of the model is independent of its scalentation and position. An ideal
canonical coordinate frame of a 3D model is defined as a coatelframe whose axes are
parallel to the front-back, left-right and top-bottom ditiens of the model. The normal-
ization process includes three steps: translation, ggalia alignment. The important and
difficult step is 3D model alignment and the traditional noetho deal with this is Principle
Component Analysis (PCA) [71]. To improve the accuracyjous alignment algorithms
based on the idea of PCA have been proposed, such as CorgiR@@u(consider the area
of each face) [190] and Normal PCA (consider the normal ohdace) [146]. Other ap-
proaches utilize symmetry information [22], virtual cocttarea (VCA) [145], or projection

area [101, 125].
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Currently, many shape descriptors and techniques have repoged for 3D model re-
trieval. They can be classified into three categories: gégriased, view-based and hy-
brid techniques. Geometry-based techniques extract features based onstiniwtion of

a model’'s geometric elements or topological structuresemhew-based techniques char-
acterize a 3D model based on its rendered view images. Hydcithiques utilize both
techniques. Recently, several typical retrieval algonghextracting different kinds of 3D
model features have been proposed. For example, shapgraist¢4], 3D shape context
[80], shape distribution [135], moment [35] and 3D harmenié8] are some examples
for geometry-based techniques. Multiple view descrip®][ Light Field [23] and salient
local visual feature-based retrieval method [131] areaimsés for view-based techniques.

Two representatives of hybrid approaches are DESIRE [18%d PANORAMA [142].

However,till now it is still difficult to find a shape descriptor which performell on all
types of 3D model benchmarkSome main challenges include: (1) the great diversity of
models within a class; (2) the different initial positiorms £ven one model; (3) the differ-
ent poses and deformations for some special types of makielsdn-rigid and deformable
ones; and (4) the intrinsic gap between the geometricalgrtigs of a 3D model and its
semantic classOn the other handys mentioned before, alignment of 3D models is neces-
sary to utilize rotation-dependent 3D model features foatron-invariant retrievalsBut

the currently available 3D alignment algorithms still hawech room for further improve-
ment in terms ofinding accurate alignment axes, aligning similar modelsimilar poses
under different conditions such as model variations, nargginitial poses, as well dee
retrieval performance improvement for a rotation-depahdbape descriptor. Last but not
least, 3D model retrieval supporting multi-modal querieshsas text, 3D models, 2D/3D
sketches is another important research diredbecause of its versatility and wider appli-
cations by considering end users’ diverse input prefereacel modalities to meet their

requirements
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Somechallenges of 3D model retrieval techniqueslisted here according to our knowl-

edge.
e Extract 3D model featuethat outperform others f@apecificapplications.

e Develop a 3D shape descripttirat supportslifferent types ofqueries such as 3D

models and 2D sketches.

e Devise better 3D model alignment algorithms that improvepédormance of 3D
normalization for diverse types of models. The alignmeuaacy and consistency
within a class of 3D models usually hamentrivialinfluence on the retrieval perfor-

mance of a rotation-dependent shape descriptor.

e Develop a universal search engine or platform to facilitagedevelopment of various
applications dependent on a 3D model retrieval module. Tigine has versatile
capabilities and it can select appropriate features enadtirules and algorithms for

different applications.

e Build professional 3D benchmark databases for differentiegiion fields, such as
biology, architecture and mechanics. This is important@nparing different kinds
of retrieval algorithms to help people &electappropriate onesThis is because
different algorithms/shape descriptors often performdvan certain fields or for

certain types of 3D models.

e Use interdisciplinary techniques such as machine learnmcamputer vision to

develop 3D model retrieval algorithms.

Our project concentrates on providing solutions for the fhreee challenges: (1) new and
better performing shape descriptors; (2) multi-modal 3Rleloetrieval; and (3) better 3D

model alignment methods. We will present the details in tyd Bection.
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To test aretrieval algorithm, we selected the followingsserepresentative standard bench-

mark databases,

e Princeton Shape BenchmaiR$B) [167]. It contains 1814 models totally, which are
classified into two parts: test and train datasets. Bothsé#&tacontain 907 models
and the test dataset is classified into 131 classes and thelataset is classified into
129 classes. We use the train dataset only in Section 6.dn2l2or other cases we

only use the test dataset.

e Engineer Shape Benchmaik$B) [67]. This is a CAD model database which con-

tains 867 models, classified into 45 classes.

¢ National Taiwan University databasdTU) [23]. This database contains 1833 3D
models and only 549 3D models are grouped into 47 classehiamddt 1284 models

are assigned as the “miscellaneous”.

e Konstanze 3D Model BenchmarkCCCC) [190]. CCCC comprises 1838 models
and 473 models are grouped into 55 types and other 1365 mardelsclassified.

e McGill 3D Shape Benchmark{SB)[168]. This database is to test the performance
of articulated or non-rigid models, such as humans and dhts.composed of 19

classes and 457 models.

e NIST Generic Shape BenchmanKIST) [3, 36]. This database is to overcome sev-
eral shortcomings or biases of previous benchmarks, sudkfesent sizes of each

class. It contains 800 models, classified into 40 classes\d&ikls each.

e AIM@Shape Watertight Models BenchmaM®/iB) [187]. The dataset has 400

watertight models, divided into 20 classes, 20heac

To evaluate the 3D model retrieval performanee employsevemmetrics including Preci-

sion-Recall, Nearest Neighbor (NN), First Tier (FT), Setdner (ST), E-measure (E),

5
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Discounted Cumulative Gain (DCG) [167] and Average PrecigAP). Precision indicates
how much percentage of the tépmodels belongs to the same class as the query model
while recall means how much percentage of a class has beaeveet among the to
retrieval list. NN measures the percentage of the closetthesa that are relevant models.
FT is the recall of the tog — 1 list, whereC is the cardinality of the relevant class of the
query model. Similarly, ST is the recall of the topC2- 1) list. E is used to measure the
performance of the retrieval results with a fixed length, thg first 32 models. It combines
both the precisiof® and recall performanc®: E = 2/(# + &). DCG is another accuracy
measure of the retrieval list based on the idea that relevadels with different positions
will have different weights. The nearer the relevant modeds the higher the weights will
be assignedDCG is defined as the summed weighted value related to thegusof the
relevant models. AP is to measure the overall performand& aombines precision, recall
as well as ranking positions. A good AP needs both high recall precision. AP can be

computed by counting the total area under the PrecisioraRaarve.

1.2 Overview of Our Research

In this research, we have proposed algorithms to tatiddirst three aforementioned chal-
lenges by adopting a view-based approach. Usually, humae@on and understanding
of a 3D object are based on several views of the objéatcording to the human vision
theory proposed by David Marr [117], vision proceeds fromDav2sual array as input
to a 3D description of the world as output. It includes threges: (1) a 2D or primal
sketch of a scene comprising of fundamental features likgegand regions; (2) a 2.5D
sketch of the scene, where textures, colors and shadingglprdepth information; (3) a
3D model, where the scene is presented in our mind in the férancontinuous 3D map.

Since the first stage is dealing with the most important arsickiaformation of a scene,
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the 3D shape information existing in the 2D primal sketchvtes us the most crucial
and fundamental information during the process of humaogmion of a 3D object while
the depth information functions as a complement for bettedyesis and understanding.
Therefore, we mainly concentrate on the 3D shape informatidraction based on multi-
ple 2D views of a 3D object for our 3D model retrieval reseavstcording to the field of
multiple view geometry [53], we can estimate the depth imfation of an object based on
the pixel disparity information existed in its multiple wie. Thus, based on several views
captured around an object, we can estimate the 3D locatiothe sample points on the
surface of the 3D object, that is we can percept its shapenration. Therefore, we can

use appropriate number of sample views to approximatehesemt a 3D obp.

The reason of our selection of view-based approach is alsallmasthe fact that this type of
technique often achieves better performance comparedny geometric-based methods.
It is also proved by our proposed algorithms. For examplsedan the observation that
for many objects, one of their canonical views (that is, ezitihont-back view or left-right
view or top-bottom view) has a minimum projection area coragdao the other arbitrary
views of the objects, we propose a view-based 3D model akgriagpproach which outper-
forms commonly used approaches such as Principal Compamatygsis (PCA)[49, 71]
Continuous Principal Component Analysis (CPCA) [190] aratriNal Principal Compo-
nent Analysis (NPCA) [146]. To support multi-modal quenesluding both 2D and 3D
gueries, we propose a view-based 3D shape descriptor naedontext. In addition,
hybrid approach is also uséuproposing a 3D shape descriptorour project motivated
by the fact that different types of features are effectiveharacterizing different types of
models, we develop hybrid feature ZFDR by taking the adgegaf both view-based and
geometry-based techniquesy Blopting a view-based framework, we have proposed four

algorithms for the first three challenges:
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e Minimum Projection Area (MPA) Based 3D Model Alignment Algorithm . This
is for the third challenge of developing better 3D modelratigent algorithms to im-
prove retrieval performance of rotation-dependent shagseriptas. The basic idea
of our alignment algorithm MPA is successively finding thpegpendicular prin-
ciple axes with minimum projection areas to align a modet fikst principle axis
gives the minimum projection area when we perform an ortiolgic projection of
the model in the direction parallel to this axis, the secoxid s perpendicular to the
first axis and gives the minimum projection area, and thel twis is the cross prod-
uct of the first two axes. We devise an optimization metho@tas Particle Swarm
Optimization (PSO) [34] to efficiently find the axis with mmum projection area.
For application in retrieval, we further perform axis otidgrand orientation in order
to align similar models in similar poses. We have tested MRAseveral standard
databases which include rigid/non-rigid and open/waghttmodels. Experimen-
tal results demonstrate that MPA has a good performancedim@ralignment axes
which are parallel to the ideal canonical coordinate frafhenodels and aligning
similar models in similar poses under different conditisash as model variations,
noise and initial poses. In addition, it achieves a bettem3flel retrieval perfor-
mance than several commonly used approaches such as CP@% Al PCA.

One example to demonstrate this is shown in Fig. 1.1.

i
|
1
|
i
i

(a) PCA (b) CPCA (c) NPCA (d) MPA

Figure 1.1: An example demonstrating tloatr MPA can find more accurate alignment
axes than PCA, CPCA and NPCA.
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¢ View Context 3D Shape Descriptor and Related Retrieval Algorithm It is a new
view-based shape descriptor dedicated to the first chale¥pw context captures
the shape appearance deviation of a 3D model by measurirtdiftbeence between
the current view and a set of arranged views. It can difféaémtnodels based on the
fact that similar models have similar view contexts and tie@ncontexts of models
from different classes are usually distinctively differerrig. 1.2 shows the view
context features of several example models. We develop aioeashape descriptor
based on view context. Experimental results demonstratettis combined shape

descriptor outperforms the related view-based Light Fikdsicriptor.
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Figure 1.2:View context [95] of six models. (a)(f): six models; (g)-(I): matrix represen-
tation of the view context of the initial poses of the modelga)~(f). (m): view context
plots. 12 arranged views are selected.

e Sketch-Based Retrieval (SBR) Algorithm bylncorporating 2D-3D Alignment
Step Itis dedicated to the second challenge of multi-modalee#iito support other
gueries such as 2D sketches/images besides 3D mdgketsdes the differentiatio
property of view context for different modelgje found a new property of it view
contexts of different views of the same model are also oftardnt. This property

can be utilized talistinguish different views of the same mogde&hich is employed
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CERERT Ea

(a) Yoon et al.s [201] retrieval results

A S EERESESEREREEFEFLERE!

(b) Our retrieval results

Figure 1.3: A sketch-based retrieval example indicating our bettefgoerance than the
state-of-the-art sketch-based retrieval algorithm psegaby Yoon et al. [201]. The left
most of each row is the query sketch.

for integrating an efficient 2D sketch-3D model alignmeeipsin our sketch-based

retrieval algorithm

Our sketch-based retrieval algorithm is based on the viewesd 3D model feature
and 2D relative shape context matching. To enhance theamcof 2D sketch-3D
model correspondence as well as the retrieval performamegyropose to align a
3D model with a query 2D sketch before measuring their dcgarBased on view
context, we can efficiently select some candidate views faoset of densely sam-
pled views of the 3D model to align the sketch and the modeddbas their view
context similarities. Our sketch-based retrieval aldonitis composed of two stages
which are precomputation and retrieval. The retrieval stagmprises two steps
which are 2D-3D alignment and 2D-3D matching. Comparativé @valuative ex-
periments based on hand-drawn and standard line drawitghglsedemonstrate the
effectiveness and robustness of our approach and it signifjcoutperforms several
latest sketch-based retrieval algorithms. eGaxample indicating our better perfor-
mance than the state-of-the-art sketch-based retrigyatitim proposed by Yoon et

al. [201] is demonstrated in Fig. 1.3.

e Class-Based Retrieval (CBR) Algorithm Utilizing Hybrid Features. It is designed
for the second challenge of new retrieval framework. It ididated for the retrieval

on a classified 3D model database by adopting a new retrievalfivork by taking

10
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into account the class information and a proposed hybrigeshkescriptor named
ZFDR. An integrated distance metric is defined to combinentioelel distance be-
tween the query model and a target model in a class of a datasawell as the
class distance between the query model and the class. Thiel figature ZFDR is
composed of four components which characterize a 3D moadiel fifferent aspects
and it itself is already comparable to or better than sevetated shape descriptors.
Fig. 1.4 shows a retrieval example using pure ZFDR descrgma our complete

class-based retrieval algorithm CBR-ZFDR.

Our CBR approach is general and can be used with any shapepdescto im-
prove their retrieval performance. Extensive generic aamtigd 3D model retrieval
experiments on seven standard databases demonstratite¢hateaemploy CBR, the
retrieval performance of our algorithm CBR-ZFDR is evidgnmproved and the
result is better than that achieved by the state-of-theaathod on each database in

terms of most of the commonly used performance metrics.

1.3 Contributions

Motivated by the existing challengesdaprevious work in 3D model retrieval research,
we have done substantial research in several aspects gmuspobour solutiamby mainly
adopting a view-based framework. Specifically, we contelin the followingthreeas-

pects:

e We propose a novel Minimum Projection Area-based (MPA)ratignt method for
pose normalization. It outperforms current available 3grahent algorithms includ-
ing PCA, CPCA and NPCA and we also found it improves the redfiperformance
of rotation-dependent shape descriptors such as modifgéd Eield descriptor. In a

word, we have made substantial contribution to the resezr8D model alignment,

11
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ml03, distance=0.000 2, ml04, distance=1.650 3, ml06, distance=1.660 4, ml08, distance=1.692

, m86, distance=l.781 6, ! 2 7, m88, distance=1.862 , ml07, distance=1.888

ml03, distance=0.000 2, ml04, d 4, ml08, distance=T7.593

(b) CBR-ZFDR

Figure 1.4: A retrieval example in the Princeton Shape Berack (PSB) [167] database
using ZFDR and CBR-ZFDR to indicate that CBR pushes theaveeit models to the rear
part of the retrieval list. Green: query models; Blue: cori@ass; Red: wrong class. The
distances are shown above the images. In total, there amecglels in the horse class that
the query model belongs to.

an important aspect of 3D model retrieval techniques, by@song an alignment

algorithm with better performance.

e \We develop a new 3D model feature named view context which@pmulti-modal
gueries. We propose a view context descriptor for retriegalg 3D model queries
and a 2D sketch-3D model alignment algorithm for retrieveihg sketch queries.
Our proposed view context-based shape descriptor achaevwester performance
than the related view-based Light Field descriptor. Outdkbéased retrieval al-

gorithm based on the view context 3D model feature and 2livelahape con-

12
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text matching also achieves significantly better perforoeahan the state-of-the-art
sketch-based retrieval algorithm. In a word, we contribatthe following two re-
lated aspects: (1) developing a 3D shape descriptor supganulti-modal queries
by defining the view context shape descriptor; (2) fostetimgresearch of sketch-
based 3D model retrieval by the first proposal of incorpagaéi 2D sketch-3D model
alignment step for more accurate 2D-3D matching for resilieas well as by the ap-

parent improvement in the sketch-based retrieval perfooma

e We advise a new retrieval algorithm utilizing Class-Basedrigval (CBR) frame-
work and hybrid features. Our proposed hybrid shape ddscrfFDR achieves
comparable or better performance compared to severat¢detfitape descriptors; we
are also the first to utilize the class information “alreadyailable in the classi-
fied 3D model database to develop a general class-basesvatt@ipproach which
can be applied to any shape descriptors to improve theievatrperformance. Our
extensive experiments also demonstrate that the retrparébrmance is evidently

improved after adopting our CBR framework.

1.4 Thesis Organization

The thesis is organized as follows.

e Chapter 2reviewsthe related work in 3D model retrievand 3D model alignment

techniques.

e Chapter Jirst presentshe Minimum Projection Area-based (MPA) 3D model align-
ment algorithm and then shows two evaluation experiments respect to axes ac-

curacy and retrieval performance.

13
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e Chapter 4first presentshe idea of view contedx3D model feature and based on it
we propose a view context shape descriptor to depict theavappearance devia-
tion feature of a 3D model. Then, a 3D model retrieval aldponitusing the view
context shape descriptor is explained. Finally, the restiexperiments results are

demonstrated.

e Chapter 5 proposes a sketch-based retrieval algodthincorporating an efficient
2D-3D alignment.We first introduce the 2D and 3D feature extraction. Aftett,tha
our sketch-based 3D model retrieval algorithm which wgithe proposed view con-
text feature for an efficient 2D-3D alignment is proposed anally evaluative and

comparative experiments are conducted.

e Chapter Gpresents a new retrieval algorithm utilizing hybrid feamand class in-
formation for query on classified 3D databaSéne hybrid shape descriptor ZFDR
is first presented followed by the details of our class-b&dnodel retrieval algo-
rithm CBR-ZFDR which uses ZFDR. Then, extensive experimeior generic and

partial retrieval, on seven standard 3D databases are deratad.

e Chapter 7contains the conclusions and future work. We fitsdw a conclusion on
the thesis work and then propdsen new directions for theesearchiopics of sketch-

based 3D model retrieval and partial similarity 3D modeliestl as the future work

14
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Related Work

In this chapter, we present a literature review on reseanedisaelated to our project. The
main objective of our project is to propose solutions to dedh the challenges in 3D
model retrieval. Therefore, we first rewe3D retrieval techniques in Sectisr2.1~2.3:
generic, partial and sketch-based 3D model retrieval. ketich-based 3D model retrieval,
we propose to estimatbe pose information of a 3D model to correspond to a 2D $ketc
for an accurate 2D sketch-3D model correspondence. Thua,domparisonin Section
2.3 both the 2D sketch-3D model alignment and genericiRge3D modelalignment
techniques aralso reviewed. Since 3D model alignment is often needed in 3D model
retrieval techniques, we review exigjiBD model alignment methods in Section 2.4. We

compare the algorithms we have proposed with the relateld iwnd@ection 25.

2.1 Generic 3D Model Retrieval

Natraj et al. [63] and Tangelder et al. [176] reviewed andsifeed current typical 3D
model retrieval techniques in their respective survey. &kisting generic 3D model re-
trieval techniques can be classified into three categogiesmetry-based, view-based and

hybrid techniques. Geometry-based techniques use thiédigin of geometric elements,
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such as vertices and faces, or some intrinsic topologioattsires to characterize the fea-
tures of 3D models while view-based techniques extracufeatbased on the rendered

view images. Hybrid techniques employ both geometry-basedview-based techniques.

2.1.1 Geometry-Based Techniques

Most of the previous work in 3D model retrieval belongs togleemetry-based techniques.
This type of approach uses the distribution of 3D features to charaet¢he geometric
information of a 3D model. The 3D features can be either dlaeh as shape distribution
[135] and shape histogram [4], or local, such as, 3D shaptexgdl, 60, 80] Extended

Gaussian Images (EGI) [55] and conformal factor [11].

Shape distribution foceson geometric shape function that measures the distanceéetw
two random points on the surfaceaxnodel. Shape histogram [4] is an extension of the 2D
shape matching techniques to 3D. For each surface poiotyipates the distance from the
center of mass and spherical angle. The distance distibigiencoded into a histogram,
whose bins are formed according to three types of 3D spat¢gigrang methods: Shells
(only use distance), Sectors (only use spherical angle)Sgder Web (use both). 3D
shape context is based on the idea of 2D shape context [1L@hwea log-polar histogram
and defines the relative distribution of other points witbpect to a pointBased on the
aforementioned different 3D space partitioning methda®d forms of 3D shape context
have been proposed accordingly: the support of volume 3Peshantext [41] based on
the Shell model, the 3D cylindrical shape context [60] ugshng Sector model and the 3D

point shape context [80] utilizing the Spider web model.

Ben-Chen and Gotsman [11] proposadD shape descriptor named conformal factor
which depicts the amount of local work involved to transfoanmodel into a sphere.

Graph-based methodS4, 173]use skeleton or topology graph to represent a 3D model
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and employ a graph matching method to measure the distahwedretwo graphskKazh-
dan et al. [78] employed spherical harmonics to decompogbkexigal function (e.g. shape
histogram) into orthogonal component while preservingibens, thus there is no need to
align 3D models’ orientations when computing their siniflas. It can make a rotation-
dependent shape descriptor based on spherical functiaartétion-invariant, but it also

decreases the discrimination power of retrieval.

Recently, Shih and Chdi66] proposed amngularradialtransformatiorbasedsevation
descriptor (ART-ED)and a shell grid descriptor to encode theernal and internahape
information of a 3D modelrespectively By employing Poisson equation to depict a 3D
object,Pan et al. [139] proposkea Poisson histogram descriptor to depict the structural

feature of a 3D model.

During the past few years, geodesic distance and spectratyseésrapproaches have re-
ceived much attention, especially for dealing with theiegaal of non-rigid 3D models. We

give a brief review for them as follows.

2.1.1.1 Geodesic Distance-Based Descriptors

Geodesic distance is an inelastic deformation invarisstadce metric, thus popular for the
analysis and recognition of non-rigid objects. Typicathg extractedgeodesic distance-
based featw is a geodesic distance matrix (GDM) measuring the distamoes@a set of

points uniformly sampled on the surface of an object.

To deal with deformable 3D model retrieval, Smeets et al9]pBoposed a modal represen-
tation method based on the singular value decompositiojS¥W the geodesic distance
matrix of a 3D model. They utilized several largest eigengalof a GDM as the shape
descriptor and this modal approach outperforms the diagiaM histogram comparison

method To improvethe retrieval performance further, in [170], they adviseddmbine
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GDM with diffusion distance tensors (DDT) to utilize thegspective advantages. They
found that GDM has advantages in differentiating smallrictass variations while DDT

performs better with respect to noise and topology robgstne

Rabin et al. [149] devised a geodesic distance-based 2DRrsth&pe retrieval algorithm.
They employed several global or local geodesic distansedteatures (e.g. geodesic dis-
tance distributiorandgeodesic quantileneasuresto form a hybrid feature set comprising
several distributions andtilized Wasserstein metric [188] to measure the distance between

two joint distributions.

Different from the above algorithms which use a 2D geodesitadce matrix to represent
a 3D modelHamza and Krim [50] proposed to use a geodesic shape distiib The idea

is similar to shape distribution [135] but they adopted teekl density estimation (KDE)
to associate with the geodesic distance shape distribafidtmre model to approximate its
probability density function and utilized Jensen-Shandwergence distance to measure

the dissimilarity of two probability distributions.

2.1.1.2 Laplace-Beltrami Spectrum Analysis Method

Spectrum analysis on 3D models has been steadily becomepamtart research field in
the community of geometry processing and analysis. Two googkys about spectral ge-

ometry processing methods are presented by Zhang et al. 86T évy [93], respectively.

The pioneer work of applying Laplace-Beltrami spectrunsioape analysis is proposed by
Reuter et al. [155]. They defined a 3D shape descriptor wihiei talled “Shape-DNA”.

It is composed of the eigenvalues of the Laplace-Beltraneraior of a 3D model An-
other pioneering work which applies spectrum analysis tinudated or non-rigid models

is proposed by Jain et al. [64, 65]. They insgowing work in several related fields: (1)
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shape matching and retrievd9, 154, 169] (2) shape analysis: [46]; (33hape segmen-
tation[30, 103, 152, 153] (4) shape corresponden§@5, 183} and (5)shape registration
[152].

Besides the standard definitions of Laplace-Beltrami dpesaWu et al. [196] proposed a
symmetric mean-value Laplace-Beltrami representatiset@n manifold harmonic anal-
ysis. They extendethe Laplace-Beltrami operator representationa teew representation
which hasa better reconstruction quality. Based on this, they furgeformed spectral
analysis on a local region and combined it with the globasiaer to form a hybrid one for
both global and partial similarity matching. The basic feamork for feature extraction is
still as the same as its precedents, but utilizes a pyramtdhimg method for the feature
matching process based on the histogram-based representainfortunately, they did
not perform the algorithm on a database level and only shawedetrieval example. In
addition, several methods also have been proposed foregfficaplace-Beltrami spectrum

computation for a 3D mesh, such[&@s 120, 182]
2.1.1.3 Heat Kernel Descriptors

Heat kernelk (x,y) is defined as the probability/amount of the heat that has bees-
ferred from a unit heat source poixto pointy. It is the fundamental solution to the heat
equation, an important function to study heat conductiash @diffusion. We can also use
heat kernel for Laplacian spectrum analysis based on thgaeship between their eigen-
values and eigenfunctionpi=e A, wherep; andJ; are the eigenvalues of heat kernel and
Laplace-Beltrami operators respectively, and they alse ltlde same eigenfunctiogsfor

the corresponding eigenvalugsandA;.

Sun etal. [172] first proposed a novel shape descriptor n&ieatKernel Signature (HKS)

in 2009. HKS measures how much percentage of the heat willfenafiem a point on the
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surface of a model to other points at timét has many good properties, such as isometry-
invariant, multi-scale, robust and informative. The Heatrel Signatures at all the points
of a model can uniquely define the model up to isometry. HKSkeantilized for many
applications, such as shape correspondence [138], shgiseraton, shape retrieval and

partial matching [31].

Dey et al. [31] further applied persistent homology to detestable set of feature points
with maximum HKS and a feature vector of the combination®HKS values at different
time scales. Shape distance is defined as the minimum Landistbetween two sets of
feature vectors. One advantage of this shape descriptbaigttis applicable for either

partial, incomplete or complete models.

Ovsjanikov et al. [137] developed a HKS-based scale-iaviirshape descriptor in 3D
space by an analogy to the scale invariant feature trans{St/r) [110] in 2D space.

They applied the framework of Bag-of-Features (BoF) to thK&Heature space and further
integrated the spatial relationship constraints into dewelop a spatially-sensitive Bag-of-

Features for non-rigid shape retrieval.

Recently, Bronstein and Kokkinos [16] developed a scalafsiant heat kernel signature
(SI-HKS) for non-rigid shape recognition. It apparentlytmerforms HKS and “Shape-
DNA’ on a database named ShapeGoogle [137], which compbisisnon-rigid and rigid

models. Bronstein et al. [15] explored the applicabilitydiffusion distances within the
Gromov-Hausdorff framework. Raviv et al. [150] proposedotumetric heat kernel by

extending HKS to an isometry-invariant volumetric destoip

To accelerate the computation of heat kernels on a mesh, tanesblution approach uti-
lizing the heat kernel in a 2D space [roposed by Vaxman et al [184]. It shortens the
computation time needday traditional method while maintaining a good approximation.

This approach is specially good for heat kernel computdbomodels with many details.
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2.1.2 View-Based Techniques

Rather than extracting the 3D features directly as the gagrbased techniques, view-
based techniques represent a 3D model using a set of viewthandsual similarities

between the view images of different models are compared @ath other to measure
model differences. Multiple view descriptor [68], Lightdtd descriptor [23] and our pro-
posed view context shape descriptor (Chapter 4) belongisocttegory. Multiple view

descriptor classifies models by comparing the views rendeoen the primary, secondary
and tertiary viewing directions of principle axes after digranent with PCA[71]. Chen

et al. [23] proposed the Light Field descriptor to define tistashce of two models as the
minimum distance between their 10 corresponding silhewetivs, rendered from the ver-
tices of a dodecahedron using the orthographic projecthomalignment process is also
proposed to find this minimum distance and it is simplified btating a camera system
which consists of 20 cameras set on the vertices of a rego@eahhedron. Therefore,
essentially, the Light Field descriptor defines a 3D modgnahent method to compare
models. The features in each image are encoded using thik&enoments and Fourier

descripta.

Chaouch and Verroust-Blondet [21] proposed a multi-viewtdédine approach (MDLA)

to represent a 3D model. 20 depth images, rendered from thieegof a regular dodeca-
hedron, are coded into sequences of symbols and then thendypeogramming method

is employed to measure their differences. It can achabetter performance than the
famous Light Field descriptor. Salient local visual feativased retrieval method [131]
adopts the Bag-Of-Features (BoF) framework to accumulegeScale Invariant Feature
Transform (SIFT) [110] features of multiple depth viewsoiatn occurrence histograto
representt 3D model.lt first renders a set of depth view images for a 3D model and then
extracts the multi-scale local features of these viewsgSIRT, which is invariant to trans-

lation, scaling and rotation. Finally, it fuses all thesedbfeatures into a histogram using
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theBag-Of-Features (BoF) approach, which accumulates theWgords (extended from
the bag-of-words in text retrieval) of multiple views intsgleoccurrencéristogram to

represent the feature of a 3D model.

Recently,Daras and Axenopoulos [29] developed a multi-view deserighat supports
multi-modal queries including 3D models, 2D images and dbosiette sketches. To ex-
tract 3D model features, they rendered multiple silhouattgepth sample views for a 3D
model and utilized Zernike moments and Krawtchouk mome2@] to represent their
features. Experiments on the PSB database demonstraiéubatg silhouette views the
performance is very similar to Light Field and using deptews can achieve a slightly
better performance than Light Field. To demonstrate théopaance of retrieval using
sketch queries, they directly used rendered silhouettesvg# the 3D models in the target
database, which apparently has some bias because usersii@ite a sketch as the query

without knowing the information about the 3D models in thegyéd database.

Lian et al. [100] proposed a view-based descriptor watdo adopts the BoF approach
to extract the SIFT features of a view and utilizes an efficranlti-view shape matching
approach to find the minimum distance between the correspgmews of two models.

They considered the 24 axes permutations of a normalized @emAxenopoulos et al.
[8] also adopted a view-based approach but relied on a moreae 3D model alignment

method.

2.1.3 Hybrid Techniques

Hybrid approach employs both the visual and geometric médion of a 3D model. Sev-
eral hybrid shape descriptovgith superior retrieval performance and promising results
have been proposed in recent years. DESIRE [191] is a hylhajesdescriptor which com-

prises three shape descriptors: depth buffer-based gescrsilhouette-based descriptor
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and ray-based with spherical harmonic representatiorriggzc Depth-buffer based de-
scriptor is composed of the 2D Fourier coefficientsig depth buffer images. Silhouette-
based descriptor applieme-dimensionaFourier transforma three silhouette views to
extract the features. Ray-based with spherical harmopiesentation descriptor first ex-
tracts the ray-based feature vector in the spatial domaedan the outmost intersections
between the model and a set of rays emanating from the cehtae anodel and then
transforms the obtained features from spatial domain tepeetral domain by Spherical
Harmonics Transform [78]. DESIRE achievagperior performances than several famous
view-based and geometry-based technigeesh as Light Field [23] and Spherical har-

monics [78].

Pgpadakis et al. [141] proposed another hybrid 3D shape geescridy combining both
depth buffer-based 2D features and spherical harmoniesebdD features. Papadakis et
al. [142] presented another novel hybrid 3D shape descn@med PANORAMA using

a set of panoramic views of a 3D model. The panoramic viewsonbt capture the vi-
sual information of the 3D model but also contain the geolm@tformation, such as the
3D location and orientation of the model’s surface. The gi@ne generated by projecting
the model to three axis-aligned cylinders respectively #rah unfolding the projection
images into 2D images. They ustte Fourier and wavelet transforms to extract the fea-
tures for each panoramic view. Recently, Leng and Xiong [@8posed a hybrid shape
descriptomamed TUGE which combines theo-view version of the depthuffer-based
shape descriptor in [190] and t&EDT shape descriptor in [43]. It has a slightly better
performance than DESIRE.

According to our knowledge, PANORAMA achieves the begtrallperformance on sev-
eral 3D model databases, including PSB [167], ESB [67], CQT3D] and NIST [36],

among the available existing shape descriptors.
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2.1.4 Using Class Information

Class-based retrieval scheme has been used in documesvalatr classification [51, 105].
For example, Han et al. [51] first applied centroid-basedsifeer to automatic text cate-
gorization and achieved good performance. With the growtBD model retrieval re-
search, class-based retrieval scheme was introduced towmpetrieval performance. For
instance, Hou et al. [56] proposed a retrieval approachdassemantic labeling: first as-
sign the relevant class for a query model based on the Suggctdr Machine (SVM) clus-
tering information of the target 3D model database and thak all the models belonging
to the relevant class based on a feature vector selectibnitpee which is also dependent
on the clustering results. Apparently, the accuracy of tist §ieveral nearest neighbors
is highly dependent on the semantic clustering results. eSother learning-based ex-
ample algorithms include those based on supervised [83834,95] or semi-supervised
[132, 198] learning algorithms. Xu and Li [197] defined thetdnce between two models
by adding the weighted difference between their back prafiag neural network (BPNN)
3D model classification output vectors and the Euclidear) ¢li®&tance between their 3D
moment feature vectors. Biasotti et al. [13] proposed a 3@ahclassification approach by
comparing a query model with several prototypes selectegpi@sent a classnd applied
this prototype-based schenmo a 3D model retrieval application. They made a compari-
son studybetween the prototype-based retrieval methods and the coigrased Nearest
Neighbor (NN)-basednd the results show that NN achieves the best retrievaracgu

though may be slower.

Tatsuma and Anon [177] designed a hybrid shape descriptoedanulti-Fourier spectra
descriptor (MFSD) by applying 2D or 3D Fourier transform lie tontour, silhouette and
depth images or the voxelization representation of a 3D inddey also utilized a spectral

clustering method to cluster the models before rettielia measure the distance between
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the query model and a target model in a clustered databaseysedanaddition operator

to combine the minimum distance between the query model lamdnbdels in the most
relevant cluster as well as the model distance between #my quodel and the target mdde
According to our knowledge, this is the only existing aldumtthat directly combines the

cluster distance and model distance to forjuiat distance for 3D model retrieval.

2.2 Partial 3D Model Retrieval

2.2.1 Partial Retrieval Techniques

Partial retrieval can be mainly classified into two grouds: draph-based, such as Tierny
et al.’s [179] Reeb Pattern Unfolding (RPU) method, Biasettal.'s [14] Extended Reeb
Graph (ERG) approach, and Cornea et al.'s [26] skeletonhiragebased approach (COR
NEA); (2) local feature-based, such as Toldo et al.’s [188y#®f-Words component Fea-
ture based approach (BoF), Liu et al.'s Shape Topics [10d]@al and Cohen-Or’s salient
local features [45]. The main idea and performance of the@partial retrieval approaches

are as follows.

RPU [179] is a graph-based partial 3D retrieval method basdtie reeb graph representa-
tion. First, it segments the model based on reeb graph aratieathe relationship of parts
into a dual reeb graph. Then, the concept of “reeb patterrd @eb graph is introduced to
speed up the process of partial matching. It need304sec to process a query model with

a3 GHz P4 PC.

ERG [14] is a graph-based approach based on Extended Repb (&RG) shape descrip-
tor, which contains not only structural but also geometrickormation of a model. A
directed attributed graph matching method is adopted tothednaximum common sub-

parts between two ERGs. It can be roughly estimated baseaegorovided performance
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data [14] that ERG needs at leastBl sec (1.4 sec for feature matching, and~118 sec

for the preprocessing of feature matching) using a 3.4 GHz PC

CORNEA [26] is a graph-based approach which extends theetgebased matching
framework by Sundar et al. [173] with more robust and efficgkeletonization and match-
ing algorithms. The skeletonization is performed by pr@tengy normals to the interior of
a 3D model and the matching is based on a distribution-basghgnatching method uti-
lizing a distance measure between distributions callethBdover’s Distance (EMD) [24].

There is no computational time information provided in tia@er.

BoF [180] is a local feature-based approach by extendin@ihdag-of-Words (BoW)

features to represent 3D components. First, it segmentsra@i2| into several subparts
and then extracts a local feature for each subpart. Nextotta features are clustered to
define a 3D vocabulary. Finally, it uses an occurrence hiatogs the shape signature for
a subpart or a complete model to do the matching. It needd &bd®sec to process a query

model on a 1.66 GHz laptop.

Shape Topics [107] uses spin image [70] as local featurelanchdopted a similar Bag-of-
Feature framework for partial matching. Salient geomédeatures [45] are defined based
on a local region characterized by curvature and area. Tieegraployed to extract local
shape descriptors to represent the salient parts of a 3Dlmond¢hus used to match similar
parts of different models. Ferreira et al. [38] presentedagpe decomposition method for
parts-based retrieval by considering the contextual méiion of the parts from the same

collection.

Marini et al. [115] studied the feature selection issue furcdral matching based on three
approaches, such as Hill climbing and Adaboost. They fohatiriot all eigenvalues are
necessary for shape matching. Wessel and Klein [195] peaptasdecompose a man-made

object into primitives and then learn its compositionahteinship for 3D model retrieval.
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In fact, this primitive-level decomposition method may teoauseful for partial similarity

retrieval.

Liu et al. [106] proposed to learn a ground distance to adsgp&arth Mover’s Distance
(EMD) framework for partial similarity matching. Attene at [7] extended the coarse-
to-fine strategy to part-in-whole 3D shape matching scerarshorten the matching time.
They utilized layered or onion 3D shape descriptors and itemative manner, they used

increasing portions of the features for the search eachttilt@ the whole descriptor.

3D mesh segmentation are often employed in partial 3D xetriegorithms and different
approaches have been proposed to partition a mesh into sermparts. Typical methods
include graph cut [76], fuzzy clustering [77], spectralstkring [103], fitting primitives
[6], shape diameter function (SDF) [164], random cut [48] &arning method [74]. For a
point on the surface of a model, shape diameter function {36 define the local diam-
eter information in terms of its neighboring volume withiretregion of a cone, centered
around the opposite normal of the point and with a defaulhopeangle of 120. Recently,
Kalogerakis et al. [74] proposed a data-driven approachamlthe segmentation of a 3D
model. They utilized several available features includshgpe context, SDF, geodesic
distances and spin image [70]. They also found that shapexiols the most important
feature. They formulated thabjectivefunction based on Conditional Random Field (CRF)

[82] model and adopted JointBoost [181] classifier for thgnsentation.

2.2.2 3D Parts Analysis

3D parts analysis is important and often employed in paBiiaimodel retrieval. Shapira
et al. [162, 163]proposed a method for 3D model contextual parts analysissbygLa
partition based approach. They adopted the shape diarmetdidn (SDF) defined in [164]

for 3D model segmentation. For the segmented parts, theyadeé part shape descriptor

27



CHAPTER 2. RELATED WORK

integrating several local features such as shape diamesteibdtion, shape distribution
[136] and conformal factor [11]. Based on the local feasuthey defined a contextual-
aware distance metric and applied it into parts retrieval parts annotation. The main
shortcoming is thathe approach is highly restricted to the initial segmeotabf the 3D

objects in the target database

Liu et al. [104] defined a part-aware feature named Voluroedhape Image (VSI) to
encode the visibility information of a surface point basedSDF [164]. A combination

of VSI, geodesic and normal features is utilized to define agaare surface metric. The
main issue is the efficienayf computing VSI(e.g.,15 seconds for a dragon model with
50K faces). Similarly, the parts selectiedependent on the initial segmentation method

for target models.

2.3 Sketch-Based 3D Model Retries

Sketh-based 3D model retrieval is to retrieve 3D models uai@@ sketchas input. This
scheme is intuitive and convenient for users to search fevaat 3D models and also
important for several applicatiomscludingsketch-based modeling [134] and sketch-based
recognition [202]. One examplef integratinga sketch-based retrievalgorithm into a
sketch-based modelimrocesss proposed by Fonseca dt #0]. Dependent on the 3D
model view sampling strategy adopted in the retrieval allgor, we classify current sketch-
based 3D model retrieval techniques into two categoridagysedefined views and using

clustered views.

2.3.1 Using Predefined Views

Funkhouser et al. [43] developed a search engine that stgopidf3D sketch queries. To

measure the distance between a 2D sketch and a 3D model,ghlegdcethe 3D spherical
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harmonics [78] method to the 2D sketch in an analogous waxttaa a rotation-invariant
amplitude-related feature vector and then compared it thitise of al3 sample views.
Similarly, Pu and Ramani [147, 148] extended 3D sphericahloaics [78] and shape dis-
tribution [135] from 3D modelsa 2D drawings and proposed a 2.5D spherical harmonics
and 2D shape histogram respectively for the retrieval of GlkBwings. Lee et al. [88]
matched a sketch witB4 possible orthogonal contour views, based on 6 standard view
directions and 4 axis-aligned up-vectors. Squared disttmaasform is then applied and a
sum of squared distances-based similarity metric is adajpteneasure the sketch-model
distance. Hou and Ramani [57, 58] used a multi-classifiesstonate the probability of
the sketch belonging to each class and adopted a classifigiication scheme to find rel-
evant classesCao et al. [18] proposed a different retrieval framework eganstruction

of a 3D query model using Bezier surface representationdbaseiser drawn sketches. It
constructs an accurate enough 3D query model where usalgmeleaw enough curves
to specify the features, which means it may take more timegers to perform retrieval.
They mainly compared the performances of different relegaieedback methods using
several models and did not compare with other retrievalrdalgos using a whole bench-

mark database.

Kanai [75] proposed a sketch-based retrieval interfacamyl@ying two rotation-invariant
features, which are generic Fourier descriptor (GFD) [20%] a variation of local binary
pattern (LBP) initially proposed by Ojala et al. [133], to asere the distance between
a 2D sketch and a rendered view of a 3D model. Wang et al. [18%gsed a sketch-
based CAD model retrieval interface using three sketchdsaaskeleton image as input.
To measure the similarity of a 2D outline sketch and the netliof a 3D model, they
adopted angular radial partitioning (ARP) [19]. It decorsesan outline sketchnto a
set of angular radial sectors, then applies Fourier tramsfo the statistics of the feature

points’ distribution, and finally uses the rotation-inzari magnitude vector to represent
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the 2D sketch. However, they compared the sketch with o tstandard outline views
of a normalized 3D model. This is feasible for CAD model ®tal but not appropriate for
general 3D model retrievalor which theposeof the query sketch i®ften not one of the

principle views.

Eitz et al. [119] sampled 50 views and utilized apparenteglfy 3] to depict the features
of a 3D model to correspond with a 2D sketcfhey tested on the PSB benchmark [167]
using several sketches but did not provide the overall pednce. While, Mahmoudi
and Daoudi [112, 113] chose only 7 (3 principle and 4 secopddraracteristic views to
represent a 3D modekEitz et al. [119] adopted a Bag-of-Features (BoF) framework to
develop an efficient sketch-based 3D model retrieval algori They extracted the local
feature of Histogram of Gradient (HOG) for the subdividedcpas of both sketch and
image. The HOG feature stores for each image cell the sunuafed gradient magnitudes
falling into one of six discrete orientation bins. Becau$¢he local feature and the BoF
framework, the algorithm supports part-based retrievake@ia [175] proposed to utilize
a scale, shift, and rotation invariant shape descriptorethiivage Euclidean Distance
(IMED) [193] to measure the minimum distance between 20arnify sampled silhouette

views of a 3D model and 8 rotation images of a sketch.

Recently, Napoléon and Sahli25, 126]proposed another sketch-based retrieval algo-
rithm. They utilized a multi-scale convexity/concavity Q&) shape representation [2] to
represent the contours of a set 8#0) sampled views. To speed up the retrieval, a pruning
strategy and a dynamic programming approach are adoptedtthrthe MCC features of
the sketch and the contours. Yoon et al. [201] proposed alshetsed retrieval algorithm
by matching the sketch with4 rendered suggestive conto(iB2] feature views of a model
based on the diffusion tensor fields feature representtiidhe sketch and sampled views.

Using the same view sampling method and feature views as ¥bah [201], Saavedra
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et al. [158] proposed a sketch-based 3D model retrievariéthgo using a structure-based
local approach (STELA) and achieved a better performararedn improved histogram of
edge local orientations-based global approach (HELO)gseg by Saavedra and Bustos

[157].

To summarize, to avoid comparing the sketch with a large rermabsample views, many
previous sketch-based 3D model retrieval algorithms aatbp®2D sketch-3D model match-
ing framework based on several predefined sample views. Hawis framework has a
shortcoming with respect to how representative the saniplgsvare and the accuracy of

the 2D-3D correspondeac

2.3.2 Using Clustered Views

Compared to the approaches based on predefined views, nagalesearch work has been

done based on the strategy of view clustering.

Mokhtarian and Abbadil, 121, 122]proposed a view clustering method by matching the
rendered views and discarding the similar views whose nragatosts fall in a predefined
threshold. They first created a list of similar views for eaelmple view and then sorted
all the sample views based on the number of similar vigvey haveand finally only kept

several top ones as the final characteristic views set.

Ansary et al. [5] proposed an image-based 3D model retriglggdrithm by clustering
320 sample views into a set of characteristic views basederBayesian probabilistic
approach. They also developed a method to optimize the numéae/ing from 1 to 40)
of characteristic views based on the X-means [143] clusgemethod. Zernike moments
[79] are adopted to represent the views or 2D image queriefrtuinately, only one demo

result for sketch queries was given and no overall perfoonaavere evaluated.

31



CHAPTER 2. RELATED WORK

2.3.3 2D Sketch-3D Model Alignment

In our proposed sketch-based 3D model retrieval algoritiepropose aligning the sketch
with the 3D model, that is 2D sketch-3D model alignment, bef2D-3D matching.2D
sketch-3D model alignment is aligning a 2D sketch of an dbjeth a similar 3D model.

It is important for related applications, such m®del-based vision or recognition [109]
and sketch-based 3D modelirigpr example, a concept sketch-based 3D modeling system
[91] also involves estimating the camera parameters of 2D sietichorder to establish
correspondences between the 2D features in the sketchélscssdon the surface of a 3D

model.

Generic2D-3D alignment is to estimate the pose of a 3D model for a 2Bgen Most
previous 2D-3D alignment methof7, 61]are based on optimizing the rotation angl@s (
8, Y) and the translation parameteTs,(Ty, T;). For example, Lavallee et al. [86] extended
the famous 3D-3D optimization alignment algorithm IteratClosest Point (ICP) [12] to

solve the 2D-3D alignment problem.

However, our research of 2D sketch-3D model alignment hesrakapparent differences
when compared with previous generic 2D-3D alignment atgms. For a comparative

reference, we review generic 2D-3D alignment techniqueligsection.
2.3.3.1 Generic 2D-3D Alignment

2D-3D alignment usually comprises two steps: feature ektra and model transforma-
tion. The accuracy of the alignment result is highly dependa the quality of feature

extraction and matching. According to the different featuadopted, we classify 2D-
3D alignment into three types: mutual information-basédtpsette or contour-based and
other features-based methods. For a general 2D-3D alignmegmstration and alignment

have the same meaning, so we use these two words interclidygea
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Mutual Information-Based Methods. Viola et al. [189] introduced the concept of mutual
information (MI) as a similarity measure based on informatiheory. They demonstrated
its usage for aligning untextured 3D objects to images usiegnterpolated surface nor-
mals. Leventon et al. [92] used multiple views rather thaly ansingle view to improve
the accuracy of the 2D-3D registration result based on thedsameworkof maximiza-
tion of mutual information. Liebelt et al. [102] combinecetbontour matching and mutual
information to measure the similarity osgnthetic aperture radar (SARZage and a view
image of a 3D model. They also used an evolutionary stratagyed particle swarm op-
timization (PSO) [34] to optimize the similarity measure.ads et al. [111] proposed a
multimodality image registration algorithm by maximiziagmore general notion of mu-
tual information. It can achieve subvoxel accuracy. Cormsiral. [27] designed a method
by measuring the mutual information difference betweenrage to be registered and a
model’s renderings incorporating certain illuminatiaiated geometric properties, such as
normals, reflection directions, and ambient occlusionsaiit cover different conditions of
lighting or materials. In several publications, extensitmthe classical Ml formulation are

proposed, notably by introducing normalization terms [62]

Mutual information-based registration techniques areusblwith respect to variations of
illumination [189]. However, they are based on the graysaaformation of the views of
an object, rather than the geometric features, such as tneges and regions. Therefore,

it cannot be applied to solve our 2D sketch-3D model alignrpesblem.

Silhouette or Contour-Based Methods. These approaches usually optimize the spatial
distances between the silhouettes or contours of a 2D imatjtha projected contours of a
3D model. lwashita et al. [62] proposed a fast alignmentrtigm utilizing a 2D distance
map constructedsingthe level set method (LSM). They adoptidst marching method

(FMM) [160] to rapidly construct a distance map on the 2D imadane. Finally, they
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compared the distances between the contours in the 2D déstaap and the projections
of the 3D model to align the model. Lavallee et al. [86] ugliza precomputed 3D dis-
tance map of a freeform object for 3D pose estimation. Therenetric is defined as the
minimum distance between the surface of the 3D model andjagbian ray. The sum of
the error is minimized using the Levenberg-Marqu§®@d 116]method. To make the reg-
istration process more efficient, 3D distance from the serfa precomputed and stored in
an octree structure. Cyr et al. [28] proposed a global hibreal shape matching approach
based on aspect graph segmentation of the object view spheg.adopted a medial axis
metric to measure the topological difference between tvewsi First, a set of sampled
2D views are generated and matched against the given viewt, Béditional views are

generated near the best view and the process is repeatedamvergence.

Silhouette or contour-based alignment approaches pettoeralignment process through
an optimization process by defining some error metrics. Thhest related algorithms
compare the silhouette or contour features of each projeeiew of a 3D model with a

2D image directly. While, for our case of 2D sketch-3D modgjranent, since there is no
one exact pose to perfectly align the 2D sketch with 3D mqdeésoptimization process

is inapplicable.

Other Feature-Based Methods. Hara et al. [52] proposed to solve the problem of 2D-
3D alignment based on four defined geometrical consistentirear consistency, planar
consistency, parallel consistency and orthogonal carsigt Firstly, a geometrical consis-
tency based registration method is applied to determin@iglhroelative pose and then an
edge-based registration algorithm is used to estimate@spreose. Chang-Chang et al.
[20] proposed a method by matching scale-invariant feararesform (SIFT) features of
a single image to viewpoint invariant patches (VIP) of a 3Ddeldoy warping the SIFT
features approximately into the orthographic frame of tie féatures. This approach sig-

nificantly increases the number of feature correspondenbeash results in a reliable and
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robust pose estimation. Kurazume et al. [81] proposed tinelsneous registration al-
gorithm using 2D texture images and reflectance images.oigsiponstraints are utilized
to estimate relative poses of multiple texture images demelously. Based on the mutual
information alignment framework, Cprsomo et al. [27] a@d illumination-related 3D

model geometric properties such as normals, ambient aoalasd reflection directions to

solve the 2D image and 3D model alignment.

Shape context matchidgased human body pose estimation was proposed by Mori and
Malik [124]. They adopted deformable template matchingoalize human body joint
positions. First, store a number of exemplar 2D views of a dnuinody in a variety of
different configurations and viewpoints with respect to¢henera. The joints of the body

in each exemplar view are manually labeled@hen, match input images and exemplar
views based on shape context matching [10] &ndlly transfer the results to 3D body
configurations. The goal of this method is to find a pose fdcaldted objects which is

different from ours.

2.3.4 2D Shape Descriptors

Developingor selecting an appropriate 2D shape descriptor is an impopar for a
sketch-based retrieval algorithm. In this section, we gmeseveral typical 2D shape de-

scriptors that are promising for sketch-based retrieval.

Fourier descriptor (FD) is an important shape descriptdrtaas been successfully applied
in many pattern recognition related applications such apslkanalysis, classification and
retrieval as well as character recognition [203]. Howeiteassumes that we can get the
boundary information of a shape beforehand ambbés not considehe internal informa-
tion of the shape Considering the above limitations of Fourier descriptdradg and Lu

[159, 204]extended the Fourier descriptor and proposed a more robdst@urate shape
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descriptor called generic Fourier descriptor (GRi)ich applies Fourier transform on a

polar-raster sampled shape image.

Zernike moments feature [79] is one typical moment desarighiat outperforms other mo-
ments in terms of performance in different applications.d@mple, 3D Zernike moments
[129] has been developed to deal with 3D model retrieval.aRé\et al. [156] proposed
an improved Zernike moments [79] comparator which considet only the magnitude of
the moments (classic Zernike moments comparator) but ladsoghase information. They

demonstrated its better performance thaclassic one.

Local binary patterri75, 133]divides the surrounding regions of any pixel in a binary
image into eight directions, computes the percentagesegbittels falling in each bin and
regards this distribution information as a local binarytgat (LBP) encodedsing ar8-bit
binary number, and finally represents the whole image basedeostatistical distribution
of all the local binary patterns. It can be used to measuresithdarity between the 2D

sketch after a preprocessing and the rendered feature $n0&dge3D model.

Scale-invariant feature transform (SIFfEature together with the Bag-of-Features (BoF)
framework hasnany applications in various computer vision researchdiele optimize
the search accuracy, efficiency and memory usage in a laaje istage retrieval scenario
which utilizes SIFT features and BoF framework, Jeégou.d68l] proposed a new compact
image representation to aggregate SIFT local descriptioashievesa significantly better

performance than BoF on condition that the feature vectees lhave the same size.

Shape context [10] is a log-polar histogram and defines tla¢ivie distribution of other
points with respect to a point. It has been successfullyiegphto diverse applications.
The default shape context definition partitions the surdingarea of a sample point of a
2D shape into 5 distance bins and 12 orientation,lassshown in Fig. 2.1 (c)Thus, the

shape context is represented b$ & 12 matrix. In Fig. 2.1, we show the shape context
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features of three points in two shapes. As can be seen,ahffpoints have different shape
context features in one shape, such Fig. 2.1 (d) and Fig.e2.dand similar points in two
similar shapes usually have similar shape context fegtlikes=ig. 2.1 (d) and Fig. 2.1 (f).

y

(a) (b) (c)
N A
®

(d) ()

Figure 2.1:Shape context examples. (d), (e), (f) are the shape comatires of points A
and B in (a) and point C in (b) respectively. The grayscaleealf each element represents
the percentage of other points in each bin. Darker meandesmal

Shape context is scale and transformation-invariant butatation-invariant.To achieve
the property of rotation invariance, in [10] a relative fram defined by adopting the local
tangent vector at each point as the referexegis for angle computation and we named
it relative shape context. Shape context has been sucttgsgiplied into diverse applica-
tions, such as 2D shape matching [123] and human body padseaéish [124]. 3D shape
context [41, 60, 80] extends the idea of shape context [bBhf2D to 3D. There are three
forms of 3D shape context according to the aforementionedt{@ 2.1.1) three types of
3D space partitioning methods. Shell model divides the 3&spnto a set of concentric
spheres, resulting in the support of volume 3D shape cofékt Sector model only di-
vides the spherical angle space, and we will get 3D cylimdisbape context [60]. Spider

web model combines both and we get the 3D point shape co@@jxt [

37



CHAPTER 2. RELATED WORK

2.4 3D Model Alignment

In this section, we review the related techniques in 3D matlghment. Our proposed
MPA 3D model alignment algorithm (Chapter 3) is based on mum projection area, so
it can be considered as a view-based approach. As such, weeaisw some viewpoint
selection techniques in Section B4.Please note that though the spherical correlation
method proposed by Makadia et al. [114] (mentioned in Sectid) is also a view-based
approach, it is a pair-wise 3D model matching technique dsedistance computation
and cannot be classified as a 3D model alignment approachwshimuld independently

transform a 3D model into a canonical frame.

Nowadays, there are several approaches to align a 3D moeded, We review four different

approaches.

2.4.1 PCA-Based Approach

Principle Component Analysis (PCA) [71] and Continuous&iple Component Analysis
(CPCA) [190] are two commonly used alignment algorithmsey itilize the statistical
information of vertex coordinates and extract the threkagbnal components with largest
extent to depict the principle axes of a 3D modakis ordering and axis orientation are
further applied to solve the axis reflection (flipping) in@gce, which usually utilize vari-
ance or moment analysis [191An extension of the idea of CPCA is Normal Principle
Component Analysis (NPCA) [140], which applies CPCA to tlmemals of the surface

points of a 3D model.

The shortcoming of PCA-based approach is that the direstibithe largest extent are not
necessary parallel to the axes of the ideal canonical coatelframe of 3D models. CPCA

is generally regarded as a more stable PCA-based methoceudoviPapadakis et al. [140]
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found that for some models (e.g. car, shovel, hammer antegdiptant) CPCA outperforms
NPCA, but for some other models (like plane, chair, gun arskidg computer) NPCA has

a better alignment performance.

2.4.2 Symmetry-Based Approach

Chaouch and Verroust-Blondet [22] proposed an approadctdoas the analysis of the re-
flection symmetry property of a 3D model, such as cyclic, dihkand rotation symmetries.
Podolak et al. [144] developed a symmetry transform to mesathe degree of symmetry
of a 3D model with respect to any candidate symmetry planeljokesumo and Kheng

Leow [178] developed an alignment algorithm using bildtsyanmetry planes (BSPs) by
considering the 3D aspect ratio of a model. They defined tB&R axes in an analogous
way as PCA [71]: the first BSP axis has the largest extend irB®#e the second is per-
pendicular to the first, and the third is the normaktoé BSP. However, symmetry-based
approach has a limitation in dealing with models withoutaept symmetry property or

non-symmetrical models.

2.4.3 Optimization-Based Approach

Fu et al. [42] proposed an upright alignment algorithm fomaaade models. The al-
gorithm first computes the convex hull of a model, then findetao$ candidate bases,
and finally selects the base with the largest assessmerniduonalue as the bottom of the
model. The assessment functincomposed ofour geometrical propertiesstatic sta-

bility, symmetry, parallelism and visibility. Random Feteclassifier and Support Vector
Machine(SVM) classifier are adopted to train the function. The uprighgraation algo-

rithm achieves around 90% prediction accuracy in terms @fvértical extent of models.

Sfikas et al. [161] proposed an alignment algorithm namedyR@Sninimization of the
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bounding box of a 3D model based on PCA and Reflective ObjeanSstry (ROSy). They
achieved this by minimizing a combined spatial and anguktadce metricMartinek and
Grosso [118] proposed an optimization and GPU-based ag@iprimaalign two 3D mod-
els. They constructed a model function with respect to thersection and union of the

projection results of two models.

2.4.4 Projection Area-Based Approach

Recently, we notice that there are other two papers whiclprggection area for alignment.

Lian et al. [101] proposed a method that first determines ®te of candidate axes using
PCA and the rectilinearity metric. Then, the final alignmaxes are decided by selecting
the set of candidate axes which minimizes the sum of the gtegjearea of silhouettes.

Napoléon and Sahbi [125] presented an alignment methothvgieilects one of three align-
ment results (original pose, PCA and NPCA) that gives themmim visual hull, that is

minimizes the sum of the projected areas on the three projegtanes.

2.4.5 Viewpoint Selection

The goal of viewpoint selection is to find a set of represérgatiews to depict a 3D model.

Usually, it is used to select the best views of a 3D model.

Lee et al. [87] defined the idea of mesh saliency for 3D modeleims of Gaussian-
weighted mean curvatures. Viewpoint selection, one of pieations of mesh saliency,
was demonstratdaased on gradient-descent search to find the candidate views witi loc
maximums and random searchlgorithmto find the global maximum. Yamauchi et al.
[199] proposed a method to find a set of representative viema 8D model by clustering
the views and using mesh saliency [87] to characterize tladitguof a view. Laga and

Nakajima [83, 84] proposed a supervised learning appraashklect a set of best views of
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a 3D object that discriminate itself from other objects arakimize the similarity between
itself and the models belonging to the same cla&squez et al[185, 186]proposed an

information theory-related measurement named viewpaoittbpy to depict the amount of
information a view contains and based on this they develgpedthod to automatically
find a set of best views with top view entropy values. All thesavpoint selection tech-
niques can select the best views of 3D models with respetietio Yiew quality metrics,

however, in general the direction of the best views are nalighto the axes of the ideal

canonical coordinate frame of 3D models.

2.5 Comparison Between Our Proposed Techniques with
Previous Methods

2.5.1 View-Based 3D Shape Descriptor: View ContexXfersus Other
Approaches

Firstly, our view context descriptor supports multi-modakries, such as 3D models and
2D sketch/images while many view-based approaches rediewsection 2.1.2 only sup-
port 3D model queries. Secondly, previous view-based skaperiptors like the Light
Field descriptor comparthe views of different models directly, while our view coxite
shape descripte@ncodes the differences of views of the same model first antitieecom-
pare the view context features of different models to meatheir differenceThat is, our
view context shape descriptor characterizes the shapatasvidifference of a 3D model
while previous view-based shape descriptors includingitkjeld do not encode such in-
formation. As such, we utilize this property of the view aexitdescriptor and devise a 2D
sketch-3D model alignment algorithm and incorporate itun Query-by-Sketch retrieval

algorithm.

41



CHAPTER 2. RELATED WORK

2.5.2 Class-Based 3D Model Retrieval: Integrated Distanc¥ersus
Additive Distance

Firstly, in Chapter 6, we propose an integrated distance which dotpesthe aforemen-
tioned and commonly used additive one (Section 2. \M&reover none of the existing 3D
model retrieval algorithms utilize tHalready” available class information of a classified
3D model databas&or example, existing class information-based approacveswed in
Section 2.1.4 usually learn the class information, suctbés§3, 84, 85, 132, 195, 197,
198], or employ a spectral clustering method like [177], doat a prototype-based re-
trieval framework like [13]. None of them consider and dihgaise the already available
class information existing in the classified databasHsus, in Chapter 6, we propose a
new 3D model retrieval algorithm by taking into accodine existing class information.
Thirdly, our experiments in Chapter 6 show that our retrieval algoritbBR-ZFDR can
achieve better retrieval performance for most of the comynosed performance metrics

than PANORAMA on six standard databases.

2.5.3 3D Model Alignment: MPA Versus Othe A pproaches

Firstly, dfferent from thetwo projection area-based 3D model alignment methods-intro
duced in Section 2.4,4ur proposed method performs alignment by successividgtagg
two axes with minimum projection areas. Moreover, we penfar global optimization
search for finding the minimum projection area and our atgoridoes not rely on the

PCA-based approach.

Secondly, MPA has several differences compared to Fu stugdright orientation method
[42] (Section 2.4.3). They target on computing the uprigigmtation (not complete align-
ment) of man-made models with a flat supporting base while N4Ra align generic 3D

models; their approach is based on geometry alone while ethiad is mainly view-based;
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they utilize a supervised learning approach and need cartistg a manually labeled train-

ing dataset while our MPA algorithm is unsupervised and reehelent of training.

Thirdly, diverse experiments also demonstrate that MPAesels a better performance than
several commonly used approaches such as CPCA, NPCA andiP@amns of alignment

accuracy and retrieval performance

2.5.4 Sketch-Based 3D Model Retrieval: 2D Sketch-3D Model Align-
ment

Firstly, different from previous sketch-based 3D modailiegtl algorithms which directly
compare the sketch with a set of predefined views of a 3D modekketch-based retrieval
algorithm first aligns the sketch with the 3D model based @nview context similarities
between the sketch and the sample views of the model. Weeutlie precomputed view
context features of a set of densely sampled views to sbibetliset of good candidate
sample views to align with the sketch. In the mean time, sthee2D sketch-3D model

alignment process is very efficient, thilie computational cost for alignment is low

Secondly, our 2D sketch-3D model alignment is also diffefiemm the common 2D image-
3D model registration techniques which optimize the rotatingles and the translation
and scaling parameters to register a 3D model with a 2D im&geone handtheir 2D
image and 3D model depict the same object. However, for ae tteey are not and some
differences are often exister®@n the other hangrevious 2D image-3D model registration
techniquesised 2D real imagwhich has brightness (shading) informatiemd developed
an as accurate as possible 2D-3D alignment. For our casesen@usketchvhich only has
line information and since the 2D sketch and the 3D model ateompletely the same,

an approximate alignment sufficient for our retrieval applications
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Thirdly, comparative and evaluative experiments basedamtdrawn and standard line
drawing sketches demonstrate the effectiveness and reassof our approach and it sig-
nificantly outperforms several latest sketch-based rettrialgorithms. Incorporating our

2D sketch-3D model alignment step to shortlist better cdetei views apparently improves
the retrieval performance and our alignment is also gea@ltan be incorporated in other

sketch-based 3D model retrieval algorithms to improvertbeiformance.
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3D Model Alignment Based on
Minimum Projection Area

3.1 Overview

As described in Section 1.1, several typical alignmentritigams (PCA, CPCA, NPCA and
VCA) have been proposed to deal with 3D model alignment. Hewehe existing align-
ment algorithns gill have room for improvement in terms of the performancdiiaing
alignment axes which are parallel to the ideal canonicatdioate frame and 3D model re-
trieval. This motivates us to propose a novel 3D alignmega@hm which finds the align-
ment axes based on minimum projection area (MPA). Our pregbakyorithm is based on
the observation that many objects have a minimum projeeiea when we orthogonally
project them in the direction parallel to one of the axes efitteal canonical coordinate
frame.To efficiently find the axis with minimum projection area, as# algorithm based
on Particle Swarm Optimization (PSO) [34] is developed. Ppla MPA in 3D model
retrieval application, two additional steps, axis ordgrand axis orientation, are devised
to align similar models in similar poseBased on experimental results, we find our MPA
algorithm can align most 3D models in terms of axes accurteydxes are parallel to the

ideal canonical coordinate frame). Our alignment alganitan also align similar models
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in similar poses which is important for 3D model retrievalislalso robust with respect to
model variationswhich include different shapes of the same class, noa-dgformation

and articulation transformationsoisein terms of vertex displacemeand initial poses.

The rest of this chapter is organized as follows. In Secti@n8e present the details of our
MPA alignment algorithm. Extensive experiment resultssr@wn in Section 3.3. Section

3.4 contains the conclusions and the future work.

3.2 Minimum Projection Area-based (MPA) Alignment

3.2.1 Basic ldea

Based on its ideal canonical coordinate frame, every 3D Ino&® six canonical ortho-
graphic projection views, which are front, back, left, igiop and bottom views as shown
in Fig. 3.1. If we only consider the projection area (the arkthe region occupied by the
object in the view images in Fig. 3.1), then there are onlgetdifferent canonical views
because under orthographic projection, the front view hasame projection area as the
back view, the left view has the same area as the right viesMlatop view has the same
area as the bottom view. We observe that for many objectspbtieeir canonical views
(that is, either front-back view or left-right view or totbom view) has a minimum pro-
jection area compared to the other arbitrary views of theabj Fig. 3.2 shows two such
examples. In fact, we conduct experiments on several 3D huadabases and verify that

the above-mentioned observation is true for a large numiigD anodels.

Motivated by the above findings, we develop a Minimum PraogecArea-based alignment
algorithm (MPA). Our algorithm finds three principle axesad3D model which satisfy the
followings. The first principle axis gives the minimum projen area when we perform

an orthographic projection of the model along (paralleltto} axis, the second axis is
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(a) Front (b) Back

(e) Top (f) Bottom

Figure 3.1: Six canonical orthographic projection viewsafar model based on its ideal
canonical coordinate frame.

(g) 0.367722 (h) 0.276133 (i) 0.267911 (j) 0.342333 (k) 0.277456 (I) 0.284011

Figure 3.2: Examples showing that one canonical view of a 3ilehusually has the
minimum projection area. In each row, the first three imagestlae front, left and top
views of a 3D model and the remaining three images are thiegay views of the same
model. The number underneath each view is its normalize@gtion area.

perpendicular to the first axis and gives a minimum projecsicea, and the third axis is the

cross product of the first two axes.

3.2.2 MPA Alignment Algorithm

Given a 3D model, the set of candidate axes is generated by assphere. Aandidate

axisis defined as a line which connects a point on the surface cffgthere and the center
of the sphere. To compute the projection area of this axisp&réorm an orthographic
projection of the model in the direction parallel to the aaisl determine the projection

area by counting the number of pixels occupied by the moddlarprojection image.

The framework of our MPA algorithm is shown in Fig. 3.3 and tletailed stepsre as
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Search Search Compute
the 1° the 2nd the 3™ Axis Axis
i e N — =
principle principle principle ordering orientation
axis axis axis
A Y A A
PSO- Brute- Cross Static Viewpoint
based force product stability entropy
search search operation metric metric
algorithm

Figure 3.3:The framework of our MPA algorithm.

follows.

Step 1: Find the P! principle axis. We sample a set of points on the surface of the
sphere, compute the candidate axes based on these poirfisdatite axis with minimum
projection area. To find this axis, we devise an efficientdeatgorithm based on the

Particle Swarm Optimization (PSO) [34] method (see Se@iGjh

Step 2: Find the 2" principle axis. We find the axis with minimum projection area by
sampling on the perimeter of a circle which is perpendictdahe # principle axis. Since
this is only a 1D search, we perform a brute-force search tbtfir 29 principle axis by

sampling the perimeter in the range of[080°) and choosing a step of’1

Step 3: Compute the & principle axis. We compute the third axis as the cross product

of the first two principle axes.

For 3D model retrieval application, the following two stepe performed to align similar

models in similar poses.

Step 4: Axis ordering. First, we determine the top and bottom orientations of theeho

by adopting the static stability metric in upright oriembat [42]. We compute six static
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stability values of the principle axes (two for each axistha positive and negative direc-
tions). The direction with the largest static stabilitywals set as the bottom of the model
(they negative axis of the model) and the corresponding prin@gis is set as thg axis.
Then, we determine theandz axes based on the variance of the remaining two principle
axes. The axis with a larger variance is set ascteis and the other as thlexis. In order

to compute the variance, we employ a similar method as [19@dmsidering the area of

each face of the model.

Step 5: Axis orientation. We employ the viewpoint entropy metric [186] to decide the
orientations of thex andz axes. We render two views of the model from the positive and
negative sides of the axes g axes) and select the one with a larger entropy value as the

left side (front part) of the model.

Fig. 3.4 shows the result at each step of MPA alignment foriagmodel.

3.2.3 PSO-Based Search for Minimum Projection Area

The simplest method to find the axis with minimum projectioaaais by performing a
brute-force search. We can uniformly sample a set of pointghe surface of the sphere
based on the subdivision of a regular icosahedron whichristeéd as the zero level icosa-
hedronLg. Fig. 3.5 shows the resulting icosahedrons at differerglgeaf subdivision by

applying the Loop subdivision rule [108] onde§, twice (L), thrice (L3) and four times

(La).

Fig. 3.6 shows the distribution of projection area of two migdn NIST database [36]
using the ¥ level icosahedrohgs for sampling the axes and mapping their projection areas
as colors on the surface of the spheres. The drawback of the-fmrce search is the high
computational cost. Based on experimental results, welfiaicin order to get a result with

good accuracy, we have to use at ldastcosahedron (40@sampling points). As such,
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(a) Original pose  (b) Step 1: # principle axis (c) Step 2: 29 principle axis

R ~——1

(d) Step 3-4: axis ordering  (e) Step 5: axis orientation (final result)

Figure 3.4: An example of the alignment process using our Migarithm. (b)-(e) show
the intermediate alignment results of the five steps in therdhm, respectively.

the brute-force search is not the ideal method for findingattie with minimum projection

area.
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Figure 3.5: Subdivision of an icosahedron. The numbeyachbracketis the number of
sample points of theorrespondingubdivided icosahedno

To find the axis efficiently, we develop a search method basdthaticle Swarm Optimiza-

tion (PSO) [34] which is a global search optimization alfom. PSO belongs to swarm
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(a) A bicycle model (b) An apartment house model

(c) Area distribution of (a) (d) Area distribution of (b)

Figure 3.6: Distribution of the projection area of two madeRrea is coded using HSV

color model and smooth shading. Red: small area; greensin&area; blue: large area.
The yellow bar depicts the sample point with minimum area.

intelligence optimization techniques and it imitates thedom search actions of a flock
of birds seeking for a piece of food in a region. Each bird asldpe same strategy of
searching the surrounding area of the bird that is neardstetéood and they learn with

each other and update themselves based on the obtainemation. PSO has been found

to be robust and fast in solving non-linear and non-difféedate problems [165].
The steps of our PSO-based search are as follows.

Step 1: Initialization. We initialize the numbeNp and positions of a set of search particles
and then compute the private best for each particle andrduglebal best based on all the
private bests. In practice, we use the 42 sample pointsto distribute the search particles.

To compute the private best of a search particle, we consggdd¥p /3| nearest neighboring
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particles in terms of geodesic distance. Then, we set thueval the maximum number of

search iteratiom;.

Step 2: Update. We compute the velocity update stepnversely proportional to the

current iteration number
Nt —i
\

wherec is a constant variable. We choosdo be 0.5 in our experimerdccording to

S= +cC, (Eq. 3.1)

the trade-off between the accuracy of the experimentalteeand speed Based orthe

following two equations [165)we update the new positidar each particle as follows.

R(i+1) = X(0) +s- (i), (Eq. 3.2)

V(i +1) = V(i) + 11+ (Rp(i) —X(i)) + G2 T2+ (Xg(i) — X(i)). (Eq. 3.3)

X(i) andv(i) are the position and velocity of a partick; andXy are the positions of private
and global bestsc; andc, are non-negative constant number, typicaliyc,=2 [34]; ry
andr, are random variables between 0 andulis an inertia-weight to balance the abilities
of global search and local search. Biggemmeans more global search power and less
dependency on the initial positions of the search particsallerw corresponds to finer
search in a local region. Similar as [165], we dynamicallgrdasew from 1.4 to 0 based

on an inversely proportional function with respect to tlegation numbet.

a):wi‘i‘%am (Eq. 3.4)

where wmax (1.4) andwmin (0) is the maximum and minimum inertia-weight values. The
new positiorX(i + 1) may not be located on the surface of the sphere, as such wepitoj

to the surface of the sphere in the direction from the centére computed(i + 1).
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Step 3: Evaluation. Based on its new position, for each particle, we compute tre c
responding axis, render the 3D model, compute the projeetiea and update its private

best. Based on all the private bests, we update the global bes

Step 4: Verification. If the current iteration number has exceedgdwe stop and output
the axis which corresponds to the position of the currenbajldest as thesi principle

axis; otherwise, go t&tep 2: Updateto continue the search.

3.3 Experiments and Discussion

To intensively investigate the performance of our MPA atigamt algorithm, weestthe
MPA algorithm onfour representative standard databases described irofdcfi: PSB

(test dataset), NIST, WMB and ESB.

3.3.1 Evaluation with Respect to Axes Accuracy

Experiments on different types of models, such as generdeiaan PSB, CAD models in
ESB, andnon-rigid models in WMB, demonstrate that our MPA can align most of them

accurately, robustly and consistently. Some exampleshemersin Fig. 3.7.

Finding three alignment axes which are parallel to the idealonical coordinate frame
is important. Therefore, we perforaxesaccuracy experimesbn theabove-mentioned
four databases and compare MPA with CPCA in terms of the p&ages of the alignment
results that have three axes parallel to the ideal canoocgzaidinate frame (allow a very
small rotational difference). For a database, we calculs®eaverage percentage over all
the models as well as the percentage for each class. Tabterdgdaresheir performancs
and Table 3.2 lists the classes in which MPA achieves a mutterbgerformance than

CPCAon the PSB database
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Figure 3.7: Example alignment results for different typémodels using our MPA align-
ment algorithm.

As shown in Table 3.1, our MPA approach achieves apparesttgiboverall performance
than CPCA. MPA is better than CPCA in aligning 53.3% classesPiSB, and 52.5%,
70.0%, 55.5% for NIST, WMB and ESB, respectiveBonversely, the percentages for the
casesn whichCPCA outperforms MPAaremuch smaller (15.2%17.5%, 15% and 11.1%,
respectively. MPA has a much better performance (the surpassing pagemulifference

is more than 20) in aligning the listed 41 classes of PSB nsoileTable 3.2, especially
for box-like shapes, such @gsktop computer, computer monitor, school desk and church
Fig. 3.8 shows some examples which demonstrate that MPA edmfore accurate axes

than CPCA.

For certain models, MPA cannot find their accurate axes anallyshere exists some small
rotational differences. The reason for these differengéisata small rotation from the ac-

curate axes will make the projection area even smaller. &tyges of classes include dog,
desk chair, potted plant, barren tree, conical tree, hamdgd fireplace. Some alignment

results for these classes are shown in Fig. 3.9. Neverthelescan see evahthe axes
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Table 3.1: Comparison of the axes accuracy performancesrmstof models and classes
using MPA and CPCA on the PSB, NIST, WMB and ESB databaBe8°* andRVPA is
the average performance over all the models in a datahasehe performance difference
value of subtracting MPAsixesaccuracy percentage by CPCA's for one clads> 20:
MPA is much better than CPCA; 20 A > 0: MPA is better than CPCAA = 0: MPA is
the same as CPCA; and vice versa.

Databases PSB NIST WMB ESB
#(models) 907 800 400 867

REPCA 632 (69.7%) 652 (81.5%) 270 (67.5%) 657 (76.1%)
RMPA 804 (88.6%) 695 (86.9%) 327 (81.8%) 744 (86.2%)
#(classes) 92 40 20 45

A> 20 41 (44.6%) 5(12.5%) 6(30.0%) 15 (33.3%)
20>A>0 8(8.7%) 16 (40.0%) 8 (40.0%) 10 (22.2%)
A=0 29 (31.5%) 12(30.0%) 3(15.0%) 15 (33.3%)

0>A>-20 6(6.5%) 6 (15.0%) 1 (5.0%) 4 (8.9%)
A< —20 8 (8.7%) 1 (2.5%) 2 (10%) 1 (2.2%)

found are not the perfect ones, their alignment resultstdre@sistentamong the models

in the same classvhich is important for applications, such as 3D model esil.

(a) cpca (b)‘ MPA (c) cpca (d) mPA

Figure 3.8: Examples indicating that our MPA algorithm aeleis better alignment results

/i W5 )N B

Figure 3.9: Examples showing that the alignment resultsuofMPA algorithm arestill
consistent within classeaven if the result axes are not the perfect ones.
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3.3.2 Evaluation with Respect to Robustness

In this section, we test the robustness propedfddPA with respect to model variations,

noise and initial poses as well as the convergence of PSOregfiect to iteration number.

(1) Robustness to model variations. The basic requirement falignment in applica-
tions such as 3D model retrieval and recognition is to align simiteodels in a similar
way under different conditions such as varias@nd @formatiors. For this purposeve
investigate the alignment performance mon-rigid models with different variations, for
example hand, tedg and head models in the previously mentioned four databaseeeS
example alignment results for these types of models in theBNidtabase are shown in
Fig. 3.10.The first nine models are examples of deformable models. Wealsa see that
the head models with different variations are aligned iasily, such as the three similar
head models looking to the front and the other three simig@dhmodels looking to the
left.

ije e

Figure 3.10: Examples indicating MPA can align similar misde similar poses.

(2) Robustness to noise.3D models may have noise due to storage, transmission and
modification. A 3D model alignment algorithm should be inséwve to small amount of
noise. We test the robustness of &diPA algorithmagainst noise by randomly adding a
small amount of displacement to the vertices of a 3D moded. Bill shows tha¥iPA

hasa good robustness property against a small amount of noigs.isi¢ontributed to our
utilization of projection area for aligning a 3D model sinoegeneral projection area is

stable under small changes of the vertices’ coordinates.
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(a) 0.291556 (b) 0.292822 (c) 0.295589 (d) 0.308511

Figure 3.11: Examples indicating MPAS robustness to noigg¢ The view from the %
principle axis with minimum projection area for the original bicycle mod@d)~(d): the
views from the %! principle axis of the bicycle model when we added noise by randomly
moving each vertex with a small displacement vector whosenrie bounded by 0.12%,
0.25% and 1% of the diameter of the model’'s bounding box,eesgely. The number
underneath each view is its normalized projection area.

(3) Robustness to initial poses3D models may have arbitrary initial poses. It is important
for our alignment algorithm to align a model with differenttial poses to the same pose.
Fig. 3.12 illustrateshree sets oéxamples indicating MPA's robustness to initial poses. As
can be seen, MPA is not dependent on the initial poses of a 3izhamd only a very small
difference exists among the minimum arfeund. MPA's independence of initial poses i
because we adopt the global optimization approach PSO toHmd'tprinciple axiswith
minimum projection area. In the initial stage of the seaiichses aglobal searb to avod

local minimums and threenhancsthe local search ability to find an as accurate as possible

global minimum projection area.

(4) Evaluation with respect to PSQO's iteration number. In PSO, the number of iteration

is an important factor which influences the accuracy andchdane. To test the influence

of iteration number on the alignmergsults we apply MPA using different iteration num-
bers to find the ¥ principle axis Fig. 3.13shows the resultsWe can find that after 11
iterations the area converges to abb@91and we achieve the best results which are below
0.2913 at 36-40 iterations. We also find that the convergence speed islisstally after

10 iterations, MPA already finds an area which is close to fiter@l one. For the same
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|

(a) pose 1 (b) pose 2 (c) pose 3 (d) pose 1 (e) pose2 (f) pose3
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(9) pose 1 (h) pose2 (i) pose3 (j) 0.357644 (k) 0.357778 (l) 0.357944

P S e T

(m) 0.267322  (n) 0.267300 (0) 0.267144  (p) 0.260689 (q) 0.261144 (r) 0.260900

Figure 3.12: Three sets of examples indicating MPA's rafesss to initial poses. PSO is
used to search for thet'lprinciple axis The second row shows the corresponding views
from the P! principle axis for the models in the first rowThe rotated views are only
due to different up-vectors of the cameras during renderidgte that we get the same
final alignment results for each set of modelghe number underneath each view is its
normalized projection area.

accuracy as PSO, brute-force method neeatsiehlonger time. For example, MPA based
on 10 iterations finds smaller area than brute-force metkouiL, icosahedronZ562ver-
tices) foraxissampling; MPA needs about 8 seconds while brute-force nagtiees about
43 seconds. If based on 40 iterations, MPA finds smaller draa brute-force method
based orLg icosahedron (40@vertices); MPA averagely needs 46 seconds and the brute-
force needs 530 seconds for the PSB mod&&ble 3.3 compares the average alignment
time using Brute-force and PSO-based search algorithmseoNIST benchmark. On each
row of the table, MPA has better alignment accuracy. We cartlsat the time difference
between the Brute-force and PSO-based algorithms becargesr land larger (2.0, 3.7

and 9.7) in order to achieve a more and more accurate alignpeeformance. However,

for our PSO-based algorithm there is still a trade-off bemvéhe time and accuracy ac-
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cording to the requirements and available resources ofghkcations. Our suggestion is
that selecting the value of the iteration numbiby performing an initial test on several
example models by setting different values (e.g. 10, 20480, Based on the different re-
sults of alignment accuracy and time, we compare and decidgppropriate value faxk.
Sometimes, we also can choose different valuedlifoFor example, we set a bigger value
to achieve better accuracy during pre-processing targeeitaon a database and select a

smaller value when aligning a query model to speed up thievatr

30 20 11
<
(a) initial pose (b) 0.291200 (c) 0.291156 (d) 0.291533 (e) 0.291622

1

(f) 0.293244  (g) 0.293456  (h) 0.295944

Figure 3.13: Examples showing MPAS! brinciple axis results based on PSO’s iteration
number. (b)~(h): the axes with minimum projection area based on thetiteraaumbes
displayed on the upper-right corner. The rotated views aeetd different up-vectors of
cameras during renderinfhe number underneath is the normalized projection area.

3.3.3 Evaluation with Respect to Retrieval Performance

In this section, we evaluate MPA in terms wdtrieval performance improvement on a
rotation-dependent shape descriptor by compaitiegetrieval performances when using
different alignment methodsuch aPCA, NPCA, CPCA and our MPA. For the selection
of a rotation-dependent shape descriptor, we choose tofynibai Light Field descriptor

[23], which is a famous and typical shape descriptor. Thiadie of two models is defined
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as the minimum distance between 10 corresponding viewseatftb models.The Light
Field descriptor adopts an integrated image shape descigtich contains 35 Zernike
moments and 10 Fourier descriptors and use L1 distanceat@trieasure the differences.
To find the minimum distance between two models, the oridimgtht Field approach per-
forms an alignment process by rotating a camera system chi2@i@s set on the vertices
of a regular dodecahedron. We modify this original LightléFigescriptor by replacing its
internal alignment process with an explicit alignment sispng PCA, NPCA, CPCA or

our MPA, and we name it modified-LF.

To performa comprehensive evaluation for 3D model retrieval perforcea we employ
five metrics including Nearest Neighbor (NN), First Tier jFBecond Tier (ST), Dis-
counted Cumulative Gain (DCG) [167] and Average Precisid?)(as described in Section
1.1We test the modified-LF retrieval algorithm on tAR8B, NIST and WMBlatabasegs-
ing the above-mentionetifferent alignment algorithms. Table 3.4 compares thenfqr-
mances. Compared with PCA, NPCA and CPCA, our MPA achievisrijgerformances
in all the five performance metrics. The main reason for thgrawement is our achieving
higher percentage of consistent alignment results for isdukdonging to the same class.
In addition, according to the experimental results in [16he ROSy (Reflective Object
Symmetry) alignment algorithm proposed by Sfikas et al. [1&& a similar performance
as CPCA and NPCA in terms of retrieval performance thougi tlee a different shape
descriptor proposed in [141]. In terms of alignment accyr®OSy is comparable to the
symmetry-based approach proposed by Chaouch and VeBtustet [22]. Compared to
ROSy, based on the experimental results in Table 3.4 andctheacy results in Section
3.3.1 and [22], we anticipate that MPA will achieve betteableast comparable results in

terms of either retrieval performance or axes accuracy.

Due to the performance limitation of the shape descriptops&et, the differences of certain

performance metric on some benchmarks may be small, suble aé*tdifference between

60



CHAPTER 3. 3D MODEL ALIGNMENT BASED ONMINIMUM PROJECTIONAREA

MPA and CPCA on the PSB dataset is 0.7. This indicates thatssiply reaches its ac-
curacy limitation. In addition, as mentioned in Section.3,3ve can also choose different
values for the iteration numb&; to process target and query models in order to perform

an efficient retrieval.

3.3.4 Limitations of MPA

As shown in the previous experiments, MPA has a good perfocenén 3D model align-
ment. Nevertheless, it has some limitations. Firstly, eslaot work well for certain types
of modelswhich do not have normalized poses witlinimumprojection areas. Some ex-
amplesareshown in Fig. 3.9. Secondlyhough in general the axes found are accurate,
we cannot guarantee a perfect alignment for all models,ishihie z+, x+ andy-+ axes
correspond to the front, left and top parts of a model, rethgdy. This is because we
do not consider the semantics information of models durdegalignment. Although we
already utilize the static stability and view entropy, oppeoach is still lack of semantics

information for deciding the perfect axes orientationsdtb8D models.

3.4 Summary

A novel Minimum Projection Area-based alignment approad@®Mor 3D model pose
normalization was proposed in this chapter. It is based endéa of finding two perpen-
dicular principle axes with minimum projection ard2SO was employed to efficiently find
the axis with minimum projection ared@hree evaluation experiments were conduc{@yl:
Accuracy in terms of finding three axes which are parallehtoaxes of the ideal canonical
coordinate frame of a 3D model; (2) Robustness of results iegpect to model variations,
noise, initial poses and PSO iteration number; and (3) 3Deahoetrieval performance

using a rotation-dependent shape descriptdl.the three experiments demonstrated the
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ability of our MPA approach to find a consistent pose for samihodels. Experimental
results showed that our MPA algorithm achieves a betteopmdnce compared to PCA,

CPCA and NPCA in terms aixesaccuracy and 3D model retrieval.

Considering the limitations of MPA, we think it can be impeaVby combining other type
of features, such as symmetry, with projection area wherckiggy for the principle axes.
We would like to investigate this further. Another possihlaure work is to perform se-

mantics analysis for axis ordering with the ultimate goahdiiieving perfect alignment.
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Table 3.2: List of the 41 classes of PSB in which MPA achievesiah better performance
than CPCA in terms a@ixesaccuracy percentage.

Class # CPCA MPA
Helicopter 18 77.8 100.0
Enterprise spaceship 11 36.4 100.0
Dog 7 00.0 57.1
Horse 6 16.7 50.0
Rabbit 4 00.0 75.0
Snake 4 25.0 75.0
Head 16 62.5 93.8
Skull 6 00.0 66.7
Barn 5 40.0 100.0
Church 4 00.0 100.0
Gazebo 4 80.0 100.0
One story building 14 35.7 100.0
Skyscraper 5 80.0 100.0
Two story building 10 10.0 100.0
Chess set 9 66.7 100.0
City 8 375 75.0
Desktop computer 11 00.0 100.0
Computer monitor 13 00.0 100.0
Eyeglasses 7 71.4 100.0
Fireplace 6 00.0 33.3
Cabinet 9 66.7 100.0
School desk 4 00.0 100.0
Bench seat 11 00.0 455
Dining chair 11 00.0 90.9
Desk chair 15 00.0 20.0
Shelves 13 76.9 100.0
Rectangular table 25 72.0 100.0
Single leg table 6 66.7 100.0
Handgun gun 10 00.0 40.0
Ladder 4 50.0 100.0
Streetlight lamp 8 75.0 100.0
Mailbox 7 143 857
Potted plant 26 53.8 885
Satellite 4 25.0 50.0
Large sail boat 6 00.0 50.0
Sink 4 25.0 100.0
Slot machine 4 25.0 100.0
Hammer 4 75.0 100.0
Covered wagon 5 00.0 100.0
Semi vehicle 7 14.3 100.0
Train car 63 5 400 1000




CHAPTER 3. 3D MODEL ALIGNMENT BASED ONMINIMUM PROJECTIONAREA

Table 3.3:Average alignment time (in seconds) comparison betweeteBaice and PSO-
based search algorithms on the NIST benchm&skxe andTpsodenote the average align-
ment time for the Brute-force and PSO-based alignment @hgos. “L4/N;=10" means

the Brute-force method usirlg, icosahedron and the PSO-based method sets the iteration
numberN;=10. Others are similar. In each row, the PSO-based methuéwass more
accurate alignment results than the Brute-force algorithm

Brute-force  PSO  Time differencefu)

L4/N:=10 37.7 18.7 2.0
Ls/Ne=30 144.0 38.6 3.7
Le/N;=40 516.5 53.3 9.7

Table 3.4: Comparisoof retrieval performancamong our MPA and other three alignment
algorithms based on the modified-LF shape descriptor.

Methods NN FT ST DCG AP
PSB

MPA 60.4 33.5 43.2 0.603 50.5
CPCA 58.7 32.8 42.6 0.597 49.8
NPCA  57.8 323 416 0.596 49.3
PCA 58.4 31.1 40.7 0.586 48.3

NIST

MPA 83.5 42.2 552 0.745 53.8
CPCA 81.3 415 53.7 0.734 52.7
NPCA  81.1 38.2 49.9 0.724 49.9
PCA 77.3 39.2 50.4 0.710 49.7

WMB

MPA 89.5 46.7 59.8 0.783 59.7
CPCA 84.8 44.6 58.8 0.765 57.6
NPCA  86.3 44.2 575 0.765 56.5
PCA 85.5 442 59.0 0.764 57.1
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Chapter 4

Query-by-Model: View Context-Based
Retrieval

4.1 Overview

3D model feature supporting multi-modal retrieval is a tvajing and significant issue in
3D model retrieval.In this chapter, we propose a novel 3D model feature namesiv'vi
context” that also supports multi-modal querie8Vhen we look at a 3D model from a
view V (i.e. the viewer is located aft), the visible features in the view image form the
visual information of the model from this view. We assume a 3D model is represented
as a triangle meshWe encode the visual information of a 3D model from a viévas

an integrated image shape descriptor of the silhouette neadered from the view. The
view context of a view is then defined as the differences of the visual informatetwben

V and a set of arranged views.

In this chapter, w apply the view context for 3D model retredwsing 3D model queries
and in the following Chapter 5 we will present its applicatia 3D model retrieval using
2D sketch queriedn order to apply view context iQuery-by-Modetetrieval, we propose
a view context shape descriptfor a 3D model. The proposed shape descriptor consists of

the view contexts computed at several sampling viaWs.first align the 3D modalsing
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Cube- View's View Ranking
based ZFEC View context Shape o
view [ feature [—| Ccontext 1 sha pe —)  distance —)
i : output
sampling extraction compuiation descriptor computation

Figure 4.1:The framework of our view context-based 3D model retrielgbathm.

our proposed minimum projection area-based method MPAepted in Chapter Before
computing the shape descriptor for a 3D model. To furtherawp the retrieval accuracy,
we also add the difference between the feature views setgoofmiodels.The framework

of our view context-based 3D model retrieval algorithm iswh in Fig. 4.1.
Our main contributions are as follows:

(1) We devise a new 3D model feature named view context fortiiygng modelsand it
supports multi-modal queries including 3D model and 2D &ker image Similar models

in general have similar view contexts and the view contefasarlels from different classes
are often distinctively differentOn the other hand, view contexts of different views of the
same model are often distinctively different, as well. Thhe view context feature also
demonstrates promising performance in effectively andaiefitly aligning a 2D sketch

with a 3D model for sketch-based 3D model retrieval appilicet (Chapter 5).

(2) We propose a retrieval algorithm based on view conteadthrough experiments verify
that it itself achieves aomparable retrieval performanes the related descriptors, such
as Light Field and a combined shape descriptor based on \aatext outperforms Light

Field.

The remaining of this chapter is organized as follows. $ecdi.2 describes in detail the
idea of view context. In Section 4.3, we propose the view exinshape descriptor. In

Section 4.4, an algorithm for 3D model retrieval using thewicontext shape descriptor
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is explained. The results of retrieval experiments are destnated in Section 4.5. Section

4.6 contains the conclusions and lists some topics for éuttork.

4.2 View Context

4.2.1 Definition

The view context of a particular view of a 3D model encodesvisaal information dif-
ferences between this view and a set of arranged views. ttiepthe shape appearance

deviation of a 3D model.

y
A

Figure 4.2:View space.

Assume that the 3D model is centered in the origin of a 3D doatd system. Its view
context from a view/j is defined as follows. First, we rotate the 3D model such theat v
\p coincides with thez axis of the coordinate system. Then, we orderly sample afset o
views{(¢,0)} based on the currépose.As shown in Fig. 4.2, w assume that the origin

of the coordinate system © and the camera locates at a poitthen¢ is the angle
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(d) e

—6— Hot air balloon0
—&— Hot air balloonl
—+—Ant0

—»— Antl

=5~ Human0

—A— Human1

Appearance distance

Base view index

(9) View context plots

Figure 4.3: View contexts of six models: (a) Hot air ballopi) Hot air balloon1; (c)
AntO; (d) Ant1; (e) HumanO; (f) Humanl.

between the vectdDP and they axis andf is the angle between the projection@P on
thexoz plane and the axis. ¢ € [0,18( andf < [0,360). For example, view¢, 8) can be
generated by first rotating the modgldegrees about theaxis and therf degrees about

they axis.
The view context of a viewy is composed of a set of feature vectors:
{(¢,6,d)[(¢,0) eV}, (Eq. 4.1)

whered is the view appearance distance between \igwd) and viewV. V is a sequence
of baseviews The methods obaseview sequence sampling and view distance computa-

tion will be presented in Sections 4.2.2 and 4.2.3, resypayti
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View context represents the relative appearance devatath other views. Fig. 8.gives
an example of the view contexts of the initial poses of six sledFig. 43 (a)~(f)) in
Princeton Shape Benchmark Database [167]. In these exantipébase view sequendé
consists of 13 views based on the cube-based view samplitigpchdescribed in Section
4.2.2and the distance between two views is computed accordirtgetoethod in Section
4.2.3 Fig. 43 (g) shows the plot of the six view context featsir®\Ve can see that similar
models have similar view contexts and the view contexts fiémdint models are often
distinctively different. This is useful foQuery-by-Modelretrieval for which we can use

view context features to differentiate different models.

4.2.2 Cube-Based View Sampling

To decide thdbaseview sequenc®/, we need to determine the valuesgpand6 in Equa-
tion (4.1). Consideringhe symmetrical property during our feature views genenasec-
tion 4.2.3)as well as the balance between feature extraction time dnewvad accuracy,
we samplel3 views by setting the cameras acube. The camera locations are (0,0,1),
(1,0,0),(0,2,0),(2,2,1),(-1,1,1), (-2,-1,1), (1,-1,Mm,0,-1), (0,1,-1), (1,1,0), (0,1,1), (1,0,1),
(1,-1,0). As shown in Fig. 4, they comprie 3adjacent face center vieyw4top corner
views and 6 middle edge views. Based on these camera losatiencompute thebase

view sequencé(¢,0)}.

4.2.3 View Appearance Distance

To compute the view appearance distaddeetween two view imageg, andV;, we first
define the feature views and then introduce an integratedgardascriptoto measure their

difference.
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1
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Figure 4.4: Cube-based sampling.

4.2.3.1 Feature views

To representifferent features of a viewwe adopt two types of feature views, which are
outline and silhouette viewsased on orthogonal projectioue to the orthogonal projec-
tion, both feature views have a symmetrical rendering ptgpévo views rendered from
two opposite camera locations are identicalvo examples are shown in Fig. 54.Out-
line view represents the contour information of the viehile silhouette view depicts the

region information of the view.

4.2.3.2 Integrated image descriptor

We compardwo sets of feature viewlsased on an integrated image descriptor, motivated
by the Light Field descriptor proposed by Chen et al. [23] #radr source code. Teep-
resentthe region and contour featurestbk feature viewswe adopt tle shape descriptor
proposed by Zhang and Luo [206] and use Zernike moni&(up to the 10th order, totally

35 momentsjo represent the silhouette view and Fourier descrigfofthe first 10 coef-
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X

(a) Teddy model (b) Outline view (c) Silhouette view

4

W )

\

—

(d) Duck model (e) Outline view (f) Silhouette view

Figure 4.5:The feature views of a 3D teddy model and a 3D chair model ecsgely.

ficients of centroid distance-based Fourier descriptob]R represent the outline view.
In addition, to depict the geometric information of the melview, we extract its eccen-
tricity and circularity features. Eccentricity is to meesthow much a shape deviates from
a circle. For a 2D shape defined byoints{(x,Vi)|i = 1,---,n}, we adopt the following

definition to compute its eccentricity,

N (XGPS (y )22 370 (% — Gy — )2
E—[i;(m Cx) iZi(y. cy)?2+4- ST 6 =T ST~ & (Eq. 4.2)

whete (cy, ¢y) is the center of the bounding box of the 2D shélper. our case, the 2D shape
is a closed curve and the range of its eccentricity of is [0Fby example, the eccentricity
of a circle is 0 and the eccentricity of an ellipse falls in taage of (0,1) Circularity is to
measure the compactrsed the shape. Itis defined as the quotient of the area of theeshap

and the area of a circle with the same perimete

C=4xmxA/P?, (Eq. 4.3)
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whereC is the circularity A andP are the area and perimeter of the shape respectively.

We use the city block (L1) distance metric to measure the mist®sfor Zernike moments

(dz), Fourier descriptorsdg), Eccentricity descriptordg) and Circularity descriptord):

35
dz = > |Z1(p) —Z(p)l, (Eg. 4.4)
p=1

wher Z; andZ, are the Zernike moments features of two silhouette views.

10

dr = > [Fa(a) — ()], (Eq. 4.5)
g=1

where F; andF; are the Fourier descriptors features of two outline views.

de = |E1—Eal, (Eq. 4.6)

where E; andE; are the eccentricity features of two outline views,c [0,1).

dc = [|C1 - C7, (Eg. 4.7)
where C; andC; are the circularity features of two outline vievag, € [0,1).

The integrated image distandebetween two sets of feature views is the combination of

the above four component distances,

d=dz+dr +dg+dc. (Eq. 4.8)

The four featureZ, F, E, C depict a feature view from different aspects and we follow
the source code of Light Field descriptor and regard that ke the same contribution
in the computation of the integrated image distance. Thesefve linearly combine them
and assign the same weight for each feature. However, a teeighm approach should be

promising in achieving even better performance.
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4.3 View Context Shape Descriptor

4.3.1 Definition

The process to construct a view context shape descriptaa 81D model is as follows:
first, to achieve translation and scale invariance, we kaémshe center of the bounding
sphere of the model to the origin of the coordinate systemtlaad scale it tanormalize
the radius ofits bounding sphereTo achieve rotation-invariance, we align the 3D model
using our proposed minimum projection area-based alighmethod MPA proposed in
Chapter 3Then weselect the 13 cube-based sampling views (Section 4.2.2)rdea&ture
views. Finally, we computéhe view context of the sample viewsth respect to a set
of selected base viewSection 4.2.2and compute the view contexts of these views, and
finally concatenate them into a £33 matrix as the view context shape descripidge want

to mention that in the experiment section, for comparisoraige test using the original

models, that is without alignment, directly for the view gaimg.

4.3.2 Invariance Properties of the View Context Shape Desigtor

The invariance properties of our view context shape detsergye as follows.

Translation invariance. From the definition of view context, we can inférat our view
context shape descriptor is translation-invariant bezaweshave centered the 3D model at

the origin before extracting its view context shape desorgp

Scale invariance.We achieve scale invariance by scaling all the 3D models thatttheir

bounding spheres have the same radius.

Rotation invariance. We perform a pose normalization by MPA to make it rotation-

invariant. MPA maps the same model with different initiaspe into the same canonical
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coordinate frame. Thus, our view context shape descriptoaetion is independent of the

initial poses of the model.

4.3.3 Comparison with Related 3D Shape Descriptors

In this section, v@ compake aur view context shape descriptwith three relatedif terms of
the structure of shape descriptor definition or view feat@aaoptefi3D shape descriptors,

which are shape context, shape distribution and Light Fiektriptor.

Comparison with shape contex View context is different from shape context. View con-
text depicts the distribution of other views’ appearanceia®n from the current view.
Shape context of one point depicts tredative location distribution of other sampling
points. In addition, a feature viewan adopt different typed éeatures, while the feature

of a point can only use its relative position.

Comparison with shape distribution. The most obvious and important difference is in
the features they depict. View context shape desarigtabout sample views and shape
distribution is about sample points. Shape distributioioisieasure the distance distribu-
tion of any two sample points of a model, while view context shagscdptorencodeshe
appearance deviation ofset of selected sample viewsth respect to a predefindazase

view sequencef the modé

Comparison with Light Field descriptor. The fundamental assumptions of Light Field
descriptor and view context shape descriteadifferert. The former is based on the idea
that if two 3D models are similar, they will look similar froall similar viewing angles.
Therefore, the distance between two models is defined asitiismom distance between
their 10 corresponding silhouette views. Tla#ter, however, is based on the idea that if

two models are similar, they will have similar appearanagati@ns from similar viewing
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angles. Therefore, we define the view context distance leztiveo modelss the summed

view context dissimilarities between their sample views.

4.4 3D Model Retrieval with View Context

4.4.1 Retrieval Algorithm

We focus on retrieval using 3D models as queries. Given ayquedel, we propose a 3D

model retrieval algorithm as follows.

(1) Compute view context shape descriptonVe compute the view context shape descrip-
tor for each target model (off-line processing) and the yueodel (on-line processing) as

described in Section 4.3.1.

(2) Compute the shape distance matrix and ranking. We design two shape distance
metrics to measure the difference between two view contexpe descriptors extracted
with or without 3D model alignment. We also propose a comthisbape distance by
combining the dissimilarity between two view context shdpscriptors and the difference

between two models’ feature views sets. We describe these diistances in Section 4.4.2.

4.4.2 Shape Distance Metrics

Two candidate metrics that can be used to measure the didv@tween two view contexts
are correlation ang(? distance. After comparing their differentiation capatgh through
experiments, we found that correlation performs betterergfore, we use correlation to
measure the difference of two view contexts. As depictedectitn 4.3.1, we select 13
cube-based sampling views as feature viewsaftetr performing ar MPA alignmentor
using the original 3D models directhAccordingly, we design one shape distance metric

for each, described as follows.
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4.4.2.1 Ordered Correlation Distance

We assuméhat the view contexts of two models &rf€={VCy, - - -, VCi2} and\7é:{\/NCo,

. ,\7@12} according to the order of the base view sequetece we have aligned the 3D
models using MPA, the view context dissimilariy between two models’ view context
shape descriptors is computed by summing all the 13 viewegbobrrelation differences

of their corresponding pair views.
12

d\,:_%(l—corr(vci,\ﬁ:i)). (Eq. 4.9)

wherecorr(VQ,\?éi) is the correlation between the view contexts of two sampevsi

VG and\/NCi,

12 . TRV T
oV ey = EEVGVEVG VG
V3120(VG; ~VG)25120(VG, ~VT)?

whereVG andVTCi are the mean value of view conteX§; and\7éi, respectively.
4.4.2.2 LAP Correlation Distance

For a view context shape descriptor directly extracted dasethe initial 3D models, we
use the Jonker’s Linear Assignment Problem (LAP) algorifig} to correspond these two

sets of feature views and use the minimal matching cost adistence between them.
4.4.2.3 Combined Shape Distance

To further improve the retrieval performance, we also caersiide difference between two
sparse sample views sdtsform acombinedshape descriptor. We propose a combined
shape distance by combining the dissimilarity betweenwe&w context shapdescriptors,
depicted bydy,, and thentegrated shape descriptor feature (Section 4.2df&rence be-

tween two modelssampleviews sets, depicted g, We combine the two distances based
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on an automatic weighting method according to the diffeagioin ability of each type of
distance. First, we normalizk anddy, into dN\, anchNm by their respective maximum dis-
tances based on all the models in the database. Then, we compute thbta&, and wn

for the view context feature distance asample views’ difference

s 0
sl+sQ’m“ Si+s

(Eq. 4.11)

s; ands, are the standard deviations df and d, over all the models in the database.

Finally, we combine these two normalized features by thairasponding weights,

d = coy * Oy + G * Ay - (Eq. 4.12)
4.5 Experiments and Discussion

To investigate the retrieval performance and the charatitey of our view context shape
descriptor, we tested our view context descriptor orR88 (test dataset) and NTU bench-
marks (Section 1.19nd compared it with other related descriptdi@ compare the retrieval
performance, we use the six metrics described in SectionFrdcision-Recall, Nearest
Neighbor (NN), First Tier (FT), Second Tier (ST), Discount€umulative Gain (DCG)

and Average Precision (AP).

4.5.1 PSB Database

Fig. 46 and Table 4.1 compare the performanoésur two view context-based shape
descriptors, denoted by VC and VCdas well as other three shape descriptors. For the
performancesf D2 [135] and SHELL [4], we referred to the experiment résim [167].

For Light Field descriptor [23], we generated the resulisgitheir provided execution file.
Fig. 46 (a) shows the results on tiPA aligned PSB database, while Fig64b) shows

the results on the original PSB database.
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Figure 4.6: Precision-Recall plots of our view context atitkothree descriptors: (a) MPA
aligned PSB database: Ordered correlation distance; (g)n@ar PSB database: LAP cor-
relation distance. “VC”: our view context descriptor. “Vi€: combined shape descriptor
by integrating the sample views’ difference and VC.
Compared to the shape distribution (D2) and SHELL desarifioe type of shape his-
togram descriptor), view context descriptor performs a@pty betterin terms of all the
six metrics From Fig. 4.6, wecan see that compared with the Light Field descriptor, view

context shape descriptor can achieMsetter or comparablBrecision-Recalperformance

when retrieving a certain percentage of models (for exam@endl5 percent). While the

Table 4.1: Other performance metrics for the performance comparisorthe PSB
database.

Methods NN FT ST DCG AP
Ordered correlation distance

VC-F 60.9 35.9 46.3 0.62750.8
VC 49.7 259 349 0532 399
LAP correlation distance

VC-F 61.6 35.8 46.2 0.62750.8
VC 491 259 349 0535 39.9
Light Field Descriptor 65.7 38.0 48.7 0.64348.0
D2 31.1 158 235 0.434 29.7
SHELL 22.7 11.1 17.3 0.386 24.4
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combined shape descriptor VC-F integrating the differesfcegample views sets can im-
prove the performance further and we can achieve bBtegision-Recaltesults than the
Light Field descriptor.As shown in Table 4.1, in terms of other performance metnes i
cluding NN, FT, ST and DCG, Light Field outperforms VC-F omsthenchmark; while in

terms of the AP metric, VC-F performs better, which indisadetter overall performance.

4.5.2 NTU Database

For the full MPA aligned or original database (1833 models),compared our view con-
text shape descriptonsith the three descriptors mentioned in [23]: Light Fiel@[23D
harmonics [78], and multiple view descriptor [68]. Fig74nd Table 4.2 showhe com-
parisors of their performances. Fahe Light Field descriptor, wean their program on the
NTU database based dmeir provided execution file, while for 3D harmonics and gt
view descriptor, we referred to the experiment results B].[Some performance metrics
that are not provided in these papers are indicated bywVe.can see it aur view context
shape descriptor apparently outperforms the 3D harmonidghbe multiple view descrip-
tor on all the six metricsAs can be seen from Fig. 4.%,iiself can achieve a similar and
comparabld’recision-Recalberformance as the Light Field descriptor while toenbined
shape descriptor VC-évidentlyoutperforns the Light Field descriptoAs shown in Table
4.2, in terms of ST and DCG, VC-F is comparable to the Lightd=gescriptor; in terms
of NN and FT, Light Field descriptor performs better; whiteterms of AP, VC-F outper-
forms the Light Field descriptor, similarly demonstratiadpetter overall performance of

our VC-F.

Fig. 48 and Table 4.3 compatke performancebetween our view context based methods
and Light Field descriptor over the 549 classified med&8imilarly, we can see that our
view contextitself is comparable to the Light Field descriptorterms of the Precision-

Recall metricard integrating the difference of feature views sets can apggremprove
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Figure 4.7: Precision-Recall plots of our view context arnldeo three descriptors: (a)
MPA aligned complete NTU database (1833 models): Ordereeletion distance (Sec-
tion 4.4.2.1); (b) Original complete NTU database (1833 ei®)d LAP correlation distance
(Section 4.4.2.2). “VC”: our view context descriptor. “ViE: combined shape descriptor
by integrating the sample views’ difference and VC.

the Precision-Recall performanceOverall, we can achieve better results than the Light

Field descriptor, in terms of almost all the performance metrics

Table 4.2: Other performance metrics for the performance comparisothe complete
NTU database (1833 models).

Methods NN FT ST DCG AP
Ordered correlation distance

VC-F 59.2 29.6 39.2 0.592 40.9
VC 542 25.3 33,5 0520 33.0
LAP correlation distance

VC-F 58.8 29.3 38,5 0.588 40.3
VC 52.1 25.2 33.6 0519 33.2
Light Field Descriptor 63.5 31.2 39.1 0.604 35.3
Multiple View Descriptor - - - - 28.9
3D Harmonics - - - - 26.5
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Figure 4.8: Precision-Recall plots of our view context arnldeo three descriptors: (a)
MPA aligned classified NTU database (549 models): Ordereeladion distance (Section
4.4.2.1); (b) Original classified NTU database (549 modelsAP correlation distance

(Section 4.4.2.2). “VC”: our view context descriptor. “ViE: combined shape descriptor
by integrating the sample views’ difference and VC.

4.5.3 Timing Information

On average, it takes 4.6 seconds and 6.1 seconds to exteadeth context feature for a
model in PSB and NTU respectively using a computer with agl lé¢on CPU E5520@2.27
GHz and 12.0 GB of RAM. It takes only 0.27 millisecond for arpdC-F feature com-
parison, that is, 0.25 and 0.49 second of matching time founerygon PSB and NTU,

Table 4.3: Other performance metrics for the performance comparisothe classified
NTU database (549 models).

Methods NN FT ST DCG AP

Ordered correlation distance

VC-F 67.2 415 53.3 0.689 535
VC 61.5 335 45.0 0.629 459
LAP correlation distance

VC-F 67.8 42.2 53.8 0.696 54.1
VC 60.1 334 449 0.628 45.8
Light Field Descriptor 70.0 39.0 50.1 - 48.4
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respectively. We also need to mention that our implemesrtasi not optimized. Compar-
atively, Light Field needs 2.6 seconds for feature extoacfor a model in PSB or NTU
database. 2 milliseconds are needed to perform a pair éeebunparison, thus, 1.9 and 1.2
seconds are required to perform a query on PSB and NTU resglgcOverall, our view
context-based retrieval algorithm has a comparable affigigperformance as the Light

Field descriptor and also meets the requirements for airaalretrieval application.

4.5.4 Limitations

We have demonstrated the comparable performance of VC assvidle superior perfor-
mance of VC-F when compared with the related shape destsip®ince view context
mainly measures the deviation in the visual informatioruess of a 3D model based on a
set of base views and sample views, combining it with thealisdformation itself in the
sample views can achieve better differentiation abilitgd &me resulting combined shape
descriptor improves the retrieval performance further ihodtperformsthe related view-

based shape descriptor Light Field

Nonetheless, there are some limitations. Firstly, thegoerédnce of VC itselfs not among
the state-of-the-art compared to other top view-basedkevadrtechniques, such as BF-
DSIFT [44] and CM-BOF [100], let alone other view-based iestal algorithms which
further utilize distance metric learning techniques tattfar improve the retrieval per-
formances, such as the DG1SIFT shape descriptor [130] wiecforms the best in the
SHREC 2012 generic 3D model retrieval track [127]. The pennce of VCcan be
boosted further. For example, utilizing a more powerful 2@attire for view context com-
putation can improve VC's performance further. Secondliher than combining another
visual information feature to form the combined one VC-Fyhrid shape descriptor that
contains the visual information feature of VC aswimecertain geometrical features to de-

pict a 3D model, has not been tested and compared. It shoukddience to outperform
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the existing one. Thirdly, the influence of different paraenesettings related to the view

context definition on the retrieval performances can bén&rexplored

4.6 Summary

We have presented a new 3D model feataew contex which captures the shape deviation
distribution feature of a 3D model. It can differentiate ratsdeffectively because similar
models have similar view contexts and different models imegal have apparently different
view contexts. To improve the retrieval accuracy, we premsombined shape descriptor
which also integrates the difference of feature views. Expent results show that the view
context shape descriptor is comparable withréslated view-basedescriptors in retrieval
performance and the combined shape descriptor can achmygeaior performance than

the related ones.

There are still many facets about the view context to be eggloFor exampleye can
adopt a different view sampling method, such as setting éineecas on the 20 vertices of

a regular dodecahedroin addition,since the result of shape analysis is often dependent
on the scale selected, a multi-scale view context can bieedil We can organize a view
context scale-space by uniformly dividing the view spaaetiie base view sampling at a
series of scales, arranged from coarse to fine, and then ¢emigw context at each scale.

The view context features at several scales are utilizexlyoior the shape analysis task.
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Chapter 5

Query-by-Sketch: Incorporating 2D-3D
Alignment

5.1 Overview

Currently, there exismanysketch-based 3D model retrieval algorithms sucf#3s75, 88,
126, 158, 192, 201]However, to the best of our knowledge, all the availablerapghes
compare te query 2D sketch with a very limited number of sample views ef 3D model.
For example, Funkhouser et al. [43] only sampled 13 viewdessd from 4 top corners,
6 edge midpoints and 3 adjacent face centers of a cube; K&bkiYoon et al. [201] and
Saavedra et al. [158] sampled only 14 views comprising 6ogridphic and 8 isometric
views by sampling viewpoints on a cube or a sphere. In fai,dparse view samipig
approach is subject to inaccurate 2D sketch-3D model quoretence because theseof
the query sketchthat is, the viewpoint of the viewer when drawing the sketohy have
big difference with any of the sample views. Thus, the 2D-8BD@&spondence is not robust

based on only several sample views generated ysiedefinedixed sample locations.

When retrieving 3D models using a 2D query sketch, we needmopate the distance
between the 2D sketch and the 3D model. Ideally, it is goockift@mpare the 2D sketch

with the most similar view or the optimal corresponding vieithe 3D model. However,
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if we sparsely sample a limited number (e.g-23 in previous work) of views, the chance
that the optimal view is among the selected sample viewsheillow. However, due to
the high computational cost, we also cannot exhaustivatypare with a large amount of
sample views of a 3D model. Experimental results in Secti@dnsbow that considering
more views of a target 3D model to correspond with a queryctkiir a more accurate

2D-3D correspondence improves the retrieval performance.

Motivated by the above findings and in order to improve theenat performance, we pro-
pose a novel sketch-based 3D model retrieval algoritimeh first performs a 2D sketch-
3D model alignment before 2D-3D matching. The framework of sketch-based 3D
model retrieval algorithm is shown in Fig. 5.1. Our propo2&dsketch-3D model align-
mentutilizes the 3D model featug view contextproposed in Chapter # rapidly select
some candidate views from a set of densely sampled viewsy domtext is utilized be-
cause we have found a new property of it: view contexts okdkiffit views of the same
model are often distinctively different. This property ifdates us todistinguishdifferent
views during the candidate views selection 2D-3D correspondence. Our sketch-based
retrieval algorithm is composed of two stages which areqgrguutation and retrievalhe
retrieval stage comprises two steps which are 2D-3D aligniaed 2D-3D matchinglThe
effectiveness as well as the robustness of our approacheanertstrated by comparative
and evaluative experimenissing both hand-drawn sketches and standard line dravasgs
gueries and a standard 3D model dataset as target datdbas®ver, ve have achieved

better performance than several lagttch-based retrievalgorithms.

The rest of this chapter is organized as follows. Featureaetion and feature distance
computation methods for 3D model and 2D sketch are pres@ngelction 5.2 and Section

5.3, respectively. In Section 5.4, we preseatsketch-based 3D model retrieval algorithm.
Experiments are conducted in Section 5.5. Section 5.6 udeslthe chapter and lists

several future research directions.
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Figure 5.1:The framework of our sketch-based 3D model retrieval atgori

5.2 Feature Extraction

To measure the difference between a 2D sketch and the viea8Bf model effectively
and efficiently, we need to extract similar yet simple feasuin our algorithm, to represent
different features of a view, we extrasithouette and outline feature views for both 2D
sketclesand 3D moddd. Silhouette feature view is selected because of its robsstioe the
2D sketch-3D model alignment, while outline view is chosenduse of its better accuracy
in selecting the relevant models during the 2D-3D matchmthe retrieval stage. Silhou-
ette and outline feature views are simple in essence and oftexist in both the sketches
and the sample views of an object and thus form a simple anthsi@ature set. Compared
to the features in the related work section, such as 3D sgidrarmonics, generic Fourier
descriptor (GFD), local binary pattern (LBP), multi-scalenvexity/concavity (MCC) as
well as diffusion tensor fields feature representationsugfestive contours, the features
we selected have the virtues of simpleness and low compuotdtcomplexity. In Section
4.2.3.1, we have present extracting silhouette and outéature views for 3D models.

Now we mainly introduce the feature view extraction methadD sketches.

5.2.1 2D Sketch Feature Extraction

A sketch is composed of a set of curves. It can be: (1) a haagrdsketch drawn by

non-artist people, such as the sketches built by Yoon et2fl1][ (2) a sketch drawn by
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artists, for example, the sketch dataset created by Cole §%; or (3) a standard line

drawing such aghe 260 Snograss and Vanderwart’s standardef2dbject images [171].

We need to extradhe silhouette and outline feature views for a 2D sketch to cpoad
with a3D model. We generate a silhouette view based on the follpgi@psbinarization
Canny edge detection, morphological closing operatiogge@t until the result no longer
changes), gap connection and region filling. After that, melyathe Canny edge detector
on the binary silhouette image to extract the outline of #etch.Fig. 5.2 gives an example
indicating the silhouette feature view generation procésg. 523 illustrates two groups

of examples of hand-drawn sketches in Yoon et al. [201] aaddstrd line drawings in

() ()

Figure 5.2:Silhouette feature view generation example: (a) origikatch; (b) binariza-
tion; (c) Canny edge detection; (d) morphological closif®;gap connection and region

o e o8 M L

(a) Hand-drawn sketches in [201]

e =

(b) Standard line drawing sketches in [171]

Snograss and Vanderwart [171].

J

(@) (b)

JANRY

Figure 5.3:Foursets of examples of sketch feature extraction for both lradm sketches
in [201] and standard line drawings in [171]. For every seanf left to right: sketch,
silhouette view and outline view.
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5.3 Feature Distance

To compute the distance between two feature views, we neextiiact appropriate shape
descriptors to balance the efficiency and accuiiacdifferent stages of our retrieval al-
gorithm. For the view context feature extractigsed in the precomputation stage and the
2D-3D alignment step in the retrieval stagee adopt computationally efficienhtegrated
image descriptopresented in Section 4.2.3 Ror the2D-3D matchingluring the retrieval

stage, we utilize the more accurate relative shape conésdrgbtoras follows

5.3.1 Relative Shape Context Matching Distance

We usetherelative shape context matching [10] to compute a more ateutistance to
measure the difference between the sketch and each camdiéat resulting from the
alignment stegluring tre retrieval stage. Relative shape contection 2.3.4)s defined

to achieve rotation invariance property and it is necestarpur sketch-based retrieval
scenario, for which sample vievghiould be independent of camera up-vectors during ren-

dering and the orientation of the sketch.

To compute the difference between two outline feature viemes first sample a set of
feature points for each image and then use the relative sta@gext matching algorithm

described in [10] to measure their distance.

(1) Feature points samplingVe sample 100 points for every outlifeature viewbased on

the following stepscontour extractiongubic B-Spline interpolation and uniform sammin

(2) Relative shape context matchie first extract theelativeshape context feature [10]
for every feature point imn outlineview andthen adoptlonker’'s LAP algorithm [72] to
correspond the feature points of twatlineviews andfinally use the minimum matching

cost to measure their distance. To compute the relativeesbaptext, ve compute the
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tangent vectoto define the local relative axis for each sample point. This can be easily
achievedconsidering thatve usea cubic B-spline to interpolatthe contour dring the
abovefeature points samplingrocessand the derivative curve of a cubic B-spline curve is

aquadricB-spline cune [151]

5.4 Our Sketch-Based 3D Model Retrieval Algorithm

As described in Section 5.1 and Section 2.3, many previoakibased 3D model re-
trieval algorithms (e.g. [88, 126, 192]) sample only a ledinumbele.g. 3~24) of views
to match a 3D model with a query 2D sketékpparently,as mentioned in Section 5.this
sparse view sampling approawfil limit the accuracyof the 2D-3D correspondencé&his
is becaus if the poseof the query sketcls apparently different fronthose of the limited
number of predefined sampling views, the 2D-3D correspotelsmotaccurate Thus, the
2D-3D matching distance cannot represent the real difter&etween the 2D sketch and
the 3D model. Motivated by the above findings, we propose $b fierforma 2D sketch-
3D model alignment step to find a set of candidate views for2lbe8D correspondence
and then compute the 2D-3D matching distance based on tlueded® vievs. It should
be noted that as compared in Section 2.3.3 and Section 254D sketch-3D model

alignment is different from the common 2D image-3D modelstgtion techniques.

In this section, we present a sketch-based 3D model retradgatithm utilizing the 3D
model feature view contexiresented in Chapter @ndrelative shape contexhatching
[10]. It includes twostages precomputation and retrieval. During the retrieval siage
first select a set of candidate views to align a 2D sketith a 3D model based on the
precomputed view context featuresthe 3D modebefore measuring their more accurate
distancs, in terms ofrelative shape contexhatching cost.The 2D-3D alignment step

avoids brute-force direct matching between the sketch aadynsample views, that is
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reducing the search space to only a set of candidate viewstiliging the features of all
the densely sampled views to efficiently shortlist seveoaldycandidate views for a more

accurate 2D-3D correspondence.

The idea of view context was originally proposed in Chaptdod3D model retrieval
using 3D model queries. In [96] we found that view context barutilized to align a 2D
sketch with a similar 3D model and performed preliminaryges some modelsBased
on Chapter 4and [96], we found a new property of view context: for different views of
the same model, their view contexts are often different. r@loee, view context can be
utilized todistinguishdifferent sample views of the model, thus useful for canidéews
selection for the 2D-3D alignment. Based on this, we develapmain idea to align a 3D
model with a 2D sketch as follows: we replace each sample gfdhe 3D model with the
sketch anccomputeits view context and if the obtained new view context is varngiar

to its original one, then this sample view is considered asraliclate view for th 2D-3D

alignmer.

5.4.1 View Context

To meet the requirements of the 2D-3D alignment step in oeitctkbased retrieval algo-
rithm, we modify the view context proposed in Chapter 4 ar@] [8/ choosing a fixed set
of base views described as follows and an integrated imagmigeor presented in Section
4.2.3.2 for feature distance computati¢tor a 3D model centereat the origin, we lect

a series of views as base view Vé?l;
VP =< VP VP VRS (Eq. 5.1)

where mis the number of base views. For a vislyits view context is defined as the visual

information differences betwe&handeach view in the base view s‘éP,
{dV V)V eVl 1< j<m}, (Eq. 5.2)
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Figure 5.4: An example indicating that view contexts of elifint views of the same model
are often different. The view contexts of the front, left aod views of the model HumanO
in Fig. 4.3(e) are shown.

whered(v,vjb) is the integrated image distance (Secto?.3.9 betweerV andeb. Thus,

view context measures the shape appearance deviationdedita 3D model with respect

to a set of base views.

In Fig. 4.3, we shovthe view contexts of several modeMloreover,we found that view
contexts of different views of the same model are also oftéerdnt, as shown in Fig. 5.4.
This newly found property is important for sketch-basedeet framework to distinguish

different sample views of a 3D model fire 2D-3D alignment.

5.4.2 Precomputation Stage

To speed p retrieval, we precompute the view context and relative sltapgext features

for a set of sample views of each target 3D mddelatabase
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5.4.2.1 View Context Precomputation

The view context feature computation for ev@® modelis detailed as follows.

(1) Base and sample views definitionse define the viewpoints for the base and sample
views by subdividing an icosahedron based on the Loop sididlivrule [108]. Fig. 5.5
shows the view sampling by subdividing the icosahedtghgnce(L1) and twice(L,) and

we set the cameras at the verticedhasd subdivided icosahedron for the base and sample
view sequence generation. Considering the symmetricglgoty in rendering the feature
views (Section 4.2.3.1)we select hall; (select one from pair symmetric vertices, 21
views) for the base views and hdlj- (81 views) for the sample viewsWe denote the

sample view seV* as follows,
V=<V V5, ... V3 >, (Eq. 5.3)

wheren is the number of sample views. Thus;81, m=21.

AAVAVAV
(g
O

>

N

7.

\

}
\ /

(@) Lo (b) Ly (c) L2
Figure 5.5: Viewpoints sampling metholdy: icosahedront_1, L: subdivide the icosahe-
dron once and twice.
(2) View context feature extractionVe compute the integrated image distance (Section
4.2.3.2 between each sample view W* and each base view WP, Assume that;;
(i=1,...,n;j =1,...,m) is the distance between the sample vivand the base view
ij, then for each model we form an< mview distance matri® = {d;j }nxm. Theit" row

represents the view context feature of the sample W&vthat is,Df =< di1,d2, . . ., dim >.
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5.4.2.2 RelativeShape Context Precomputation

We also precompute the relative shape context features@¢8&c81) for the sample views

of each 3D model. They will be used in the retrieval stage. riprove thestorageeffi-
ciengy, we adopt a sparse matrix representation to denote theseetdtape context features
and only keep the feature values that are non-zeroselg-5) and save them into a series
of three-dimensional vector 0,r,value>, where @, r) denotes one bing; orientation,

r: distance of therelative shape contexitartition, for which we use the defaul3.2 par-
tition. During the retrieval stageve thus only need to extract the relative shape context

features for theuerysketch.

5.4.3 Retrieval Stage

Based on the precomputed view context and relative shapextdeatures of the 81 sample
views for each target 3D model,endevelopa retrieval algorithm comprisingwo steps:

2D-3D alignment and 2D-3D matching. The details are as\lo
5.4.3.1 Step 1. 2D-3D Alignment

(1) 2D sketch feature extractiorkirst, we extract the silhouette and outline viegighe
guery 2D sketch based on the method in Sectionbahd then compute its Zernike mo-

ments, Fourier descriptors, eccentricity and circuldegtures (Sectiod.2.3.3.

(2) Sketch’s view context feature extractiddimilar to the view context precomputation
(Section 5.4.2.1) for a 3D model, we compute the integratealge distances (Section
4.2.3.2 between the sketch and all the base \@ef the target modelral name the re-

sulting distance vectdd*=<d,ds.. .. dn> sketch’s view context.
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(3) 2D-3D alignmentTo align the 2D sketch ané 3D model before 2D-3D matching, we
choose some candidate views by keeping a certain percentégg. 20%, 10% or 5%,
that is, 16, 8 or 4 sample views in our experiments) of the samigws with top view
context similaritiesasthe sketch, in terms of correlation similarigy,

k
DS-D

5= o8 Toe

(Eq. 5.4)

where,D? (defined in Section 5.4.2.1) amf are the view contexts of the sample Vst

of the 3D model and the 2D sketch, respectively.
5.4.3.2 Step 2. 2D-3D Matching

(1) Sketch-model distance computatido.more accurately measure the similarity between
the sketch and the model as well as to encompass the or@ntiifierencs between the
sketch and the sample views, we compare the sketch with @agidate outline view
using the relative shape context matching (Sectiorilpahd regard the minimumelative

shape contexdistance obtained as the sketch-model distance.

(2) Ranking and outputVe sort all the sketch-model distances between the skettthan

models in an ascending order and list the retrieved modetzdingly.

5.5 Experiments and Discussion

To evaluate our sketch-based retrieval algorithm using é8RCalignment we perform
comparative and evaluative experiments based on both thawveh and standard line draw-
ing query sketchesas well as a standard 3D model databaage. would like to mention
that our 2D sketch-3D model alignment is different from themous 2D image-3D model

registration techniques, where the 2D image contains th off the same object as the
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3D model. Thus, they can use objective metrics to measuralitiement accuracy. How-
ever, for us the object in the 2D sketch is not completely Hraesas the 3D model and
thus it is not one of its complete views. Therefore, thereoi®ne exact pose to perfectly
align the 2D sketch with 3D models. As a result, we mainly estd the alignment accu-
racy by comparing the robustness (change in performanagraktrieval algorithm while

reducing the number of candidate views during the alignment

5.5.1 Hand-Drawn Sketches

We first test and evaluate our sketch-based retrieval altgoriby performing a similar ex-
periment ashe one described in a 2010 papentmpon et al. [201]. They built a benchmark
database by using the first 260 models (13 classes, 20 eadfiyl8f dataset (Section 1.1)
as target 3D model dataset and 250 hand-drawn sketches @sdheset. For each class,
one typical 3D model and sketch are shown in Fig. 5.6. We neaddntion that (1)

to compare with the available retrieval results obtainedrbgn et al. in this sectionwe
select the same sketchesthesein their papey (2) the hand-drawn sketches were drawn
by non-artists and some of them are very simple sketchesusigg only 4 line segments

to represent an ant. We will give the overall performanceusfapproach later.

For the precomputation (Section 5.4.2), on average it tAkesconds to process a model
usinga computer with an Intel Xeon CPU E5520@2.27 GHz and 12.0 GRA: 8.8
seconds for the view context precomputation 8&@seconds for the relative shape context
precomputation, for all the 81 sample views of the 3D modalrify the retrieval stage
(Section 5.4.3), we set the default value for the percentafge candidate views selection
(Section 5.4.3) to be 20%, that is, keeping top 16 candid@&tesy We use the sketches
in Fig. 5.6 as queries and the top-20 retrieved models aedli®spectively in Fig. 5.7.

Compared to the retrieval results obtained by Yoon et all1]28s shown in Fig. 5.8, our
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Figure 5.6: Typical 3D model and 2D sketch for each class anvYet al.'s[201] bench-
mark

retrieval lists age betterfor the bear, ant and hand queries and comparable for theani
cup queries. For the human and glasses sketches, Yoon ethaéved better results (in
Section 5.5.3, we will show that our approach achieves bpégormance on class level).
For the seven queries, the average accuracy (the percesfttgerelevant models) in the
top-8 retrieval results of our algorithm and Yoon et al.s 80.4% and 76.8%, respectively.

Thus, we have achieved a better performance

To measure the retrieval accuracy of our algorithm, we atlopiperformance metric of
First Tier (FT), referred to Section 1.1. ¥test the same queriasin Fig. 5.7 with different
percentagesl(=20%, 10% and 5%) for candidate views selection. Table SGripewes their

FT scores.

We can see that when we reduce the number of candidate vievestalbof the default
value T=20%, 16 views), that |8 views, theaveragd-T scoredecreases only 3.6%kven

after reducing it further to be only a quarter of tthefault valuethat is, only 4 candidate
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Table 5.1:First Tier performance comparison using different peraget values and the
thirteen query sketches in Fig. 5.7.

T(%) 20 10 5

chair 70% 55% 50%
cup 85% 85% 80%
teddy 85% 80% 80%
ant 90% 85% 85%
hand 75% 70% 70%
human 45% 50% 45%
glasses 10% 10% 10%
plane 85% 75% 70%
table 75% 70% 55%
plier 80% 80% 75%
fish 65% 65% 55%
bird 45% 45% 35%
octopus 35% 35% 40%

views, the FT sca dops only9.3% averagely. This indicates the robustness of our sketch-
based retrieval algorithmvith respect to the number of candidate viewke relatively high

FT scores also demonstrates accuracy of our retrieval algorithm. We note that for some
classes, such as human and octopus, wiihbecomes higher, FT may decrease somehow.
Our explanation is as follows. Whénis increased, more candidate views are considered
to compute the sketch-model distance, that is to say, a t@egpience (e.g. 8 views when

T = 10% and 16 views wheii = 20%) of sketch-view distances will be computed for
each model. The sketch-model distance computed based @aawdidate views may be
smaller than that computed based on less candidate viewesefbne, when more candidate
views are considered, the sketch-model distances betweesketch and some irrelevant
models may become smaller and thus these irrelevant modetevpushed forward in the

retrieval lists and this decreases the First Tier perfocaan
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5.5.2 Standard Line Drawings

We performa similar experimenasdescribed in Section 5.5.1 using line drawing queries.
We still use the same WMB database but utilize Snograss andevivart’s standard line
drawings dataset [171] as queries. Fig. 5.9 shows seveeatitawings examples that have

relevant classes in WMB.

Similarly, we set the percentadefor candidate views selection to be 20%. We use the
sketches in Fig. 5.9 as queries and their top-@tievalresults are shown in Fig. 5.10.
Table 5.2 shows the changes of the FT performance when usffiegedt percentagd
values for candidate views selection. Thbustness of our sketch-based retrieval algorithm
is verified again by the standard line drawing sketch queriBise decreases in the FT
performance by changinf from 20% to 10% and fror20% to 5% are8.1% and 71% on
average

Table 5.2:First Tier performance comparison using different peraget values and the
seven query sketches in Fig. 5.10.

T(%) cup bear ant plane hand table chair
20 90% 70% 55% 70% 80% 60% 75%

10 85% 65% 40% 70% 75% 55% 75%
5 90% 55% 30% 70% 70% 55% 80%

5.5.3 Overall Performance Comparison

To assess the overall performance of our algorithm on a datdlevel angerforma com-
parative evaluation with other approaches, we test ouevetralgorithmon the complete
guery set (250 sketches) of Yoon et al.’s [201] benchmarkamdpare the performance
with a 2011 paper by Saavedra et al. [158]. They teshsir proposed STELA approach

on the same benchmark database and compared with the gladyse slescriptor-based
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approach HELO [157]. Table 5.3 and Fig. 5.11 compaeeFirst Tier performances of
our approach=20%) and these two methods (STELA and HELO) on each cl&ss.
the performances of STELA and HELO, we refer to [158he average First Tier perfor-
mances over all the classes are as follows: HELO: 13.9%, 3TEB.5%, Ous. 41.5%.
Apparently, we have achieved much better ressmlterms of respective classasdoverall
performance.

Table 5.3:First Tier performance comparison between our method ariel 8T158], as
well as HELO [157].

Methods HELO STELA Ours

chair 8.8% 12.1% 31.8%
cup 13.8% 14.2% 57.4%
teddy 21.0% 33.8% 62.9%
ant 14.7% 12.6% 64.5%

hand 33.3% 31.9% 37.4%
human  25.5% 32.1% 29.1%
glasses 29% 7.9% 25.6%
plane 21% 11.7% 40.5%
table 13.5% 12.0% 44.2%

plier 7.9% 45% 63.8%
fish 16.2% 15.2% 38.4%
bird 10.7% 11.0% 20.8%

octopus 10.8% 15.0% 22.9%

In addition, we want to compare our approach with the algoritn Yoon et al. [201], in
terms of the overall performance. Though we cannot find theptete overall performance
data in the paper, according to our knowledge (personal agmuation with one of the
author of the paper Yoon et al. [201]: Dr. Sang Min Yoon), tleefprmance of Yoon et
al. [201] is comparable to STELA, in terms of the overall Eifger performance as well
as the First Tier performance for each class. Thus, our@lan-based retrieval approach

also outperforms Yoon et al. [201].
To have a comprehensive evaluation of our algorithm, weh&rrprovide the results for
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other performance metrics (Section 1.1) including PreaidRecall plot, Nearest-Neighbor
(NN), Second Tier (ST), E-measure (E), Discounted Cumedd®iain (DCG) and Average
Precision (AP), as shown in Fig. 5.12 and Table 5.4 respalgtiv

Table 5.4:Other performance metrics of our algorithm on the Yoon & E101] bench-
mark.

NN ST E DCG AP
0.688 0.581 0.411 0.731 0.556

Similarly, we also perform the robustness experiment byghg the values of and com-
pare the results in Figh.13 Their average First Tier performances over all the classes a
as follows: T=20%: 41.5%T=10%: 40.8%:T=5%: 38.9%.The conclusion is consistent
with the previous ones, thus our retrieval algorithm is robust wéspect to either respec-
tive models or classe3hough the 2D hand-drawn sketch dataset in the Yoon et 20%|[
benchmark is composed of 2D sketches corresponding toigmher articulated models
in the WMB dataset (Section 1.1), we have achieved muchrettidormances and this
also demonstrates the robustness of our algorithm witheégp non-rigid or articulated

sketches/models.

5.5.4 Extensibility to Larger or Other Database

To testthe extensibility of our SBR algorithrio a larger database, we ube same query
set as that of Yoon et al.’s benchmark and ¢benplete 400 models in the WMB database.
Thatis, we add 140 more models, classified into 7 classels 28and regard them as noise.
Example models fothose 7classes are shown in Fig.18. We setT=20% andperform

a similar experiment athe one inSection 5.5.3. Fig. 85 compares the performance
with that of the experiment done in Section 5.5.3 which usssn¥t al's benchmark260

models of the WMB database)Ve can see evewhenwe addedmore models to the 3D
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dataset used in Yooet al's benchmark, the performance is still stable and for m@stses
there are only trivial decrease. The average FT performan88.3% and itonly drops
3.2% compared to the performance achétusing Yoonet al's benchmark.We need to
mention that the accuracy disparity in the “cup” class istiube newly added “vase” class
and some “vases” are quite similar to “cup”, either in termh¢he overall shape or their
outlines. On the other hand, the outlines of some cup sketalealso similar to vases,
which also shows a limitation of the outline feature repnéstion. The retrieval time for
the Yoon et al.'s benchmark and the above mentioned extevelstn is averagely 72.3
seconds and 121.8 seconds respectively when keeping 1i@latediews, which indicates
arough linear relationship between the retrieval time &edstze of the benchmark. This is
a limitation of the extensibility of our algorithm and we Walnalyze it in detail in Section

5.5.6.

We further tested our algorithm on the NIST database [36hfwehich we select 260 mod-
els that have relevant classes in the Yoon et al.'s sketasdht 13 relevant classes were
selected from NIST but we combined related classes acaptdithe available sketch cat-
egories in Yoon et al.’s sketch database, in the end we gats8es. We sdi=20% and the
First Tier performances are: human: 23.6%, cup: 78.2%sgks31.8%, plane: 60.8%,
chair: 57.9%, table: 46.6%, fish: 43.7%, bird: 13.3%. Thaaye First Tier performance

is 44.5%, which is comparable to the performance on Yoon'stdztabase.

5.5.5 Discussions

We found thats goodpose to aligra 3D model with a sketcbften ranks high antbr many
of them it is anong the topfour. For example, Fig. 36 dows the topfour candidate
views forthe cup, teddy and planeand-drawnquery sketchesnd cup, bear and plane

line drawingquery sketchesAs seen in Fig. 5.16,ni the topfour candidate views for
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these sketches, usually we already can find certain viewsed&D models that are accurate
enough, in terms of retrieval, to correspond with the sketchVe also want to mention that
the orientationdifferences between the sketch and candidate views iexamplessuch
as those existing in thisur candidate views for thplaneline drawing query dignment
results in thethird row of Fig. 516), are notan issu€for the retrieval since watilize the

relative shape context to encomp#ss variations in camera up-vectors during rendering

To find out the contribution of 2D-3D alignment, we comparee performances of using
the fixed sampling method and our alignment approach bas#dte@ame number of sam-
ple/candidate views. For the fixed one, we tested with Yo@h'stsampling method [201]:
6 orthographic and 8 isometric views. Because of the symaoaé{property in rendering
our feature views as described in Section 4.2.3.1, onlydfdlie 14 sample views, that is
3 orthographic and 4 isometric views, are selected aftgnedg 3D models with Contin-
uous Principal Component Analysis (CPCA) [190] method. &ar algorithm, we keep
the top 7 candidate views. We test them on the Yoon et al.&bdae. Table 5.5 compares
their First Tier scores with respect to each class and thveradl First Tier performances
are as follows: Fixed: 32.6%, Ours: 39.8%, which demons$rah apparent improvement
of using the 2D-3D alignment step to shortlist several cdagi views. As can be seen
from Table 5.5, compared to the fixed sampling approach, @tihod also achieves a more

balanced performance especially on the chair, hand, hugiesses, table and plier classes.

Here, we also want to mention that the relative shape comeaxthing part is also impor-
tant to achieve a better performance. The clue can be alsa foom the fact that without
alignment, that is using the fixed sampling approach, thegivel shape context matching-
based retrieval algorithm already achieves a First Tiefop@ance of 32.6%, which al-
ready surpasses HELO (around 13.9%) and STELA (around J6re¥erred to Section
5.5.3. However, if incorporating our 2D sketch-3D modefjafnent step to shortlist bet-

ter candidate views, we further improve the retrieval penfance to 39.8%. Therefore,
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both the view context-based 2D sketch-3D model alignmeatlaa relative shape context
matching on the outline feature views, have important ¢outions to our apparently better

performance than HELO and STELA.

Table 5.5:First Tier performance comparison between fixed samplimgoam method.
Methods Fixed Ours

chair 16.3% 28.1%

cup 51.6% 55.3%
teddy 57.1% 59.5%
ant 52.4% 64.2%

hand 16.6% 34.2%
human 16.2% 28.1%
glasses  10.6% 25.6%
plane 40.5% 38.3%
table 32.1% 41.3%
plier 38.5% 60.3%
fish 46.6% 38.4%
bird 20.5% 20.0%
octopus 24.7% 24.7%

In addition, we also successfully participated in the SHRIBCT?2 Track: Sketch-Based 3D
Shape Retrieval [128], held in conjunction with the fifth Bgiraphics Workshop on 3D
Object Retrieval. According to the track report [97], ouetlh-based 3D model retrieval
algorithm, denoted as “Li(SBR-2D-3D)”, achieves the bestuaacy performance and it
apparently outperforms other participating approachesmesresults are shown in Fig.
5.17. While, it also shows that our algorithm is not the md8tient, as shown in Fig.

5.18.

To conclude, ou2D-3D matchingconsiders a large number of sample views compared
to previously sparse view sampling strategies, tiius more robust to differenposes
of the sketches. It can efficiently find sevegdod candidate poseof a 3D model to
align the model with a skete. The above two types of experiments on the hand-drawn

sketch queries and standard line drawing queries have dgmted the effectiveness of our
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retrieval algorithm, which shows better performance thaaryet al. [201] and Saavedra et

al. [157, 158] Therobustnessf our retrieval algorithm is also verified in our experiment

5.5.6 Limitations

As shown in the above experiments, our approach has a goadaagdan terms of sketch-
based retrieval. Nevertheless, it has some limitationsstli the performances for some
sketches (e.g. glasses, octopus and bird) are not as godkess and still have room for
further improvements. Secondly, relative shape contextiniag part dominates the most
part of the retrieval timeon average, it takes 0.86 second to extract the featurenik@er
moments, Fourier descriptors, eccentricity, circuladhd relative shape contexts) for a
sketch; only 0.37 milliseconds for the 2D-3D alignment fonadel; 17.5 milliseconds for
the 2D-3D matching based on relative shape context for agbaketch-candidate view.
The average time for a complete retrieval on the Yoon etddfabase is 19.5 seconds, 37.3
seconds and 72.3 seconds when keeping 4, 8 and 16 candieatereispectively. The re-
trieval timet (sec) is proportional to both the number of candidate vigand the number
of the 3D models in the database, denotedNbyVe denote as the matching time for one
candidate view, then the retrieval timh¢sec) can be approximately formulated as follows:
t=M*N*1. In our experiments;=0.0175 sec. Thirdly, our precomputation (Section 5.4.2)
also takes time and needs space. For example, as statedtionS26.1 on average the
precomputation time of processing a model is 97 secondss&&:8nds for the view con-
text precomputation and 88.2 seconds for the relative sbapiext precomputation of 81
sample views for a 3D model. The spatial spaces for the prpated view context and rel-
ative shape context data is averagely 16.6K and 2542.6k bsdspectively. Totally, about

665M bytes are needed to save the precomputated data of timeeYal.’'s benchmark.

According to the robustness analysis of our algorithm intise&.5.3 (Fig. 5.13, there

is no much performance decrease when we keep fewer candidate. Thus, we further
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tested our algorithm by keeping only 2 and 1 candidate vied sdill got the average First
Tier performances of 37.4% and 35.9% respectively, congparthe 41.5% when keeping
16 candidate views. The retrieval time is 48condsind 5.4secondsespectively.Thus,

our suggestion is that users can make decision for the tffdaktaveen the accuracy and ef-

ficiency based on the requirements of their respective egpins and available resources.

5.6 Summary

In this chapter, we have presented a sketch-based 3D madeVat algorithm based on
the idea of first aligning a 3D model withcuery2D sketch before computing their match-
ing distance. The algorithm comprises precomputation atrieval stages During the
precomputation stage, we compute the view context andvelsthape context features of

a set of densely captured sample views for each target mBdskd on the precomputed
view context features of a target modiel the retrieval stageve canefficiently and effec-
tively align the model with the 2D skeicExperiments based on hand-drawn and standard
line drawings sketches demonstrate the superior perfarenand robustness of our ap-
proach. Thus, ihas apotential to be usediigpplications, such as sketch-based 3D model

recognition and modeling, as well as 3D scene reconstmbiésed on 2D sketels

Several facets of the algorithm can be further exploredst, during the retrievaktage
we can use representativelative shape contex123] to speed up the matching process
between the sketch and the candidate views since we can tlegecandidate views that
are obviously different from the sketches earliIn addition, if using other faster corre-
spondence algorithms to replace our adopted LAP algorithedopting some 2D image
descriptors which are comparable in terms of effectivebessnore computationally ef-
ficient, we may improve the retrieval performance furtheec&@d we want tofurther

test our sketch-based retrieval on other types of 3D modebdses and sketcheBhird,
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extending our algorithms to other types of queries is amnoiiiteresting direction. For

example, query by a 2D image or eva@sketch of a 3Bcere comprising several objects
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Figure 5.7:Hand-drawn sketch-based retrieval examples on WMB dagabsisig hand-
drawn sketches in [201]. The first 20 models are listed.
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Figure 5.8:Hand-drawn sketch-based retrieval results in [201].
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Figure 5.10:Standard sketch-based retrieval examples on WMB datalsasg line draw-
ings in [171]. The first 20 models are listed.
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Figure 5.11First Tierperformance comparison between our method and STELA [858],
well as HELO [157].
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Figure 5.12: Precision-Recall performance of our algorithm on the Yobmlés [201]
benchmark.
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Figure 5.13: First Tier performance comparison using ciffé percentag€ values on the
Yoon et al.'s [201] benchmark.
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Figure 5.14: Typical 3D model for each of the added 7 classes.
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Figure 5.15First Tierperformance comparison using the whole WMB database (4@B mo
els) and only the relevant 260 models as the target 3D modtizhdse.
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Figure 5.162D-3D alignmenexamples. Each row shows two sets of alignment results for
a hand-draw sketch andh line drawing sketie. For eat result, from left to right: a 2D
sketch, a 3D model (in initial pose) and the top 4 candidagevsito align the 2D sketch

and the 3D model.
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Figure 5.17:Precision-Recall plot performance comparison results9i]:[ (a) Yoon et
al.’s benchmark; (b) Extended version (see Section 5.5.¥)on et al.'s benchmark.
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Figure 5.18:Timing information comparison results in [97] on Yoon etsabenchmark.
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Chapter 6

Query by Utilizing Class Information
and Hybrid Features

6.1 Overview

In spite of the fact that mny shape descriptors and techniques have been propos#d for
model retrieval, it is still difficult to find a shape descoptwhich performs well on all
types of shape benchmarks. However, we believe anotherigirapapproach to achieve a
better retrieval performance is by exploiting the shapewe®rs guided by the database
classification information. That is, the available clagsimation is utilized to improve the
retrieval performance. In fact, many existing professiamayeneric 3D model databases
are already classifiedome examples includengineering Shape Benchmark (ESB) [67],
Bonn University Architecture Databases Benchmark [194ijhdeton Shape Benchmark
(PSB) [167], National Taiwan University Shape Benchmarkg)[23], CCCC [190] and
Shape Retrieval Contest (SHREC) datasets [3].

In this chapter, W& propose a 3D model retrieval algorithm CBR-ZFDR which isdshon
a hybrid 3D shape descriptor named ZFDR and a class-basesvaé{CBR) algorithm.
Motivated by the fact that different types of features afeative in characterizing different

types of models [17], we develdpehybrid feature ZFDR by taking the advantages of both
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view-based and geometry-based techniques. ZFDR con§fsisr@aomponents, which are
Zernike momentdg;ourier descriptoDepth information an@Ray-based features, each rep-
resents a 3D model from a different angle, either visuallg@smetrically. It itself has a
better performance than tineost related iew-based shape descriptor Light Field [23Han
hybrid shape descriptor DESIRE [191{s performance is also close to the state-of-the-art
shape descriptors on several databaSesfurther improve the retrieval performance, we
propose a CBR algorithm which incorporates the class inddion of the target database
by defining an integrated distance which scales the mod&lrdie using the correspond-
ing class distance. We shaWwatan apparent improvement in almost all commonly used
performance metrics can be achieved after adopting thgretied distanceMoreover, the
CBR approach can be used with any shape descriptors for einlgatieir performance.
Extensive experiments, for generic and partial retrievalseven standard 3D databases
demonstrate the best performance of our retrieval algor@iBR-ZFDR compared tthose

achievedy previous methods.

The rest of this chapter is organized as follows. The hybhigps descriptor ZFDR is
presented in Section 6.2. In Section 6.3, we present thelglefaour class-based 3D
model retrieval algorithm CBR-ZFDR. Extensive experimegults are demonstrated in

Section 6.4. Section 6.5 contains the conclusions and thesfwork.

6.2 Hybrid Shape Descriptor ZFDR

We define a hybrid shape descriptor, which we named ZFDR,pgesent a 3D model.
ZFDR comprises four componentgernike moments featur&ourier descriptor feature,
Depth information feature anBay-based feature. It contains both visual and geometric
information of a 3D model.lt has a property that this formation can make its compo-

nents complement with each other to represent more types@éls comprehensively and
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effectively, thus achieving a comparable retrieval perfance as the currently top shape
descriptors.The computation of the shape descriptor consists of twessfagt normalize
the 3D model and then compute the descripkag. 6.1 graphically shows the ZFDR fea-
ture extraction process-or the normalization part, we first compute the boundingesph
of the 3D model. Then, we translate the model so that the cehtee bounding sphere
coincides with the origin of the coordinate system and theifoumly scale the model to
make the radius of its bounding sphere equal to 1.0. Next,tileeuContinuous Principle
Component Analysis (CPCA) [190] alignment algorithm t@althe 3D model. For shape

descriptor computation, we present the details as follows.

Compute Translate the center | J Scale to make the .| CPcA
bounding sphere to the origin radius equal to 1.0 alignment
Compute Zernike moments Cube-based view sampling
featureZ and Fourier descriptors |« <
featureF for each view -‘-‘
M Compute depth-based feature D
ZFDR K— ! <
-y @

Z:13x35 matrix
F: 13x10 matrix c R based feat R
D: 438-dimensional vector L] ompute ray- se eature P
R: 136-dimensional vector ] M

Figure 6.1:ZFDR feature extraction process.

6.2.1 Visual Information Features

In this section, we first introduce the view sampling methadextracting the two visual

information features and then present each feature reggkyct
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Cube-Based View Sampling To balance between the computational time for feature ex-
traction and retrieval performance, we sample 13 silheue#iws to represent a 3D model.
We set cameras at 13 sampled locations on a cube: (1,0,00X00,0,1), (1,1,1), (-1,1,1),
(-1,-1,1), (1,-1,1), (1,0,-1), (0,1,-1), (1,1,0), (O5,@,0,1), (1,-1,0). As shown in Fig. 6.2
(a), they are composed of three adjacent face center vieagdinta squares), four top cor-
ner views (red squares) and six middle edge views (blue sguaespectively. Fig. 6.2 (b)

shows an example of 13 silhouette views of a chair model.

O Hu e i
. ARMe
== o @

(@)

O Top corner views
O Adjacent face center views
O Middle edge views

Figure 6.2: View sampling. (a) camera locations; (b) an edarof 13 silhouette views of
a chair model.
To characterize the features of a silhouette view, we adophage descriptor proposed by

Zhang and Lu [206]. It is composed of Zernike moments and iEodescriptors.

Zernike moments feature (Z) Zernike moments depict the region-based features of a
silhouette view. We compute the Zernike moments [79] (uphto 10" order, totally 35
moments) of each view image and concatenate them ordenyding to the order of the
view sequence to form a X385 matrix to define the Zernike moments feature of a 3D

model.
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Fourier descriptor feature (F) Fourier descriptor represents the contour information of
a silhouette view using a series of Fourier coefficients (@n@nsional vector). Fourier
descriptors can be defined on different features of the consoch as curvature and cen-
troid distance. However, Fourier descriptor defined onroghtdistance was proved [205]
to have better performance than other types in retrievingl2ipes and thus we also adopt
the centroid distance-based Fourier descriptor [205]. ¥eetle first 10 Fourier coefficients
as the Fourier descriptor. By combining the Fourier desargof 13 views, we forms a

13x 10 matrix as the Fourier descriptor feature of a 3D model.

6.2.2 Geometric Information Features

Zernike moments and Fourier descriptor features capt@weigual information of a 3D
model. These types of features are found to be effective amacherizing some certain
types of models like “sea animal” models, but for other dartgpes of models, such as
“car models”, depth buffer-based features is more effedtiv]. That is, different types
of features have advantages in measuring different typesoafels. Motivated by this,
we also extract the geometric information features to fornylarid shape descriptor that
can represent more types of models effectively. Vranic [tefined a depth buffer-based
feature and a ray-based with spherical harmonic represamfaature. These two features
characterize the geometric information from differentgpexctives and we integrate them

into our hybrid shape descriptor.

Depth information feature (D) This feature is composed of 2D Fourier coefficients of
six depth buffer images. We first render the six depth views 8D model and then apply
2D Fourier Transform to themAs recommended in [190], setting the size of the view

image to be 256256, that iSN=256, and the length of the Fourier coefficients will be
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6x((log, N)2+log, N+1). We utilize the executable file [190] to compute the deqptfier-
based descriptor and use the obtained 438 Fourier coetBasrihe depth features of a 3D

model.

Ray-based feature (R) First, the ray-based feature vector in the spatial domaixis
tracted based on the outmost intersections between thel modi@ set of rays emanating
from the center of the model. Then, the obtained radial destefeature vector is trans-
formed from the spatial domain to the spectral domain uspige8cal Harmonics Trans-
form [78]. For this one, we also use the provided executable file [19@cty and it is
also very fast. As recommended and also used in DESIRE [1&lhg the firstk=16
rows of obtained spherical harmonic coefficients, and theedsion of the feature vector
is (k’4-k)/2 = 136. Thus, we use the obtained 136-dimensional featur@vedepict

the ray-based features.

6.2.3 Combining the Visual and Geometric Features

We define the hybrid shape descriptor of magieby combining Zernike moments feature
Z;, Fourier descriptoi, Depth information featur®; and Ray-based descript& as

ZFDR.

To compute the hybrid descriptor distartg-pr between two modelsy andm;, we first
assign appropriate distance metrics to measure the compdistanceslz, d-, dp and
dr, then we combine the four component distances to deterrebytbrid descriptor dis-
tancedzrpr. After comparing the performance of different distanceringf85], such as
city block distance (L1), Euclidean distance (L2), Canaetistance [85], correlation dis-
tance, divergence distance and scaled-L1 distance [1@0¢/wose the scaled-L1 distance
metric for Z;, D; andR; and the Canberra distance metric foy respectively. Scaled-L1

means scaling or normalizing the feature vector by its Ldrmbefore applying the L1
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distance metric. We find it improves the retrieval perforg&forour features of Z, D and
R. While, Canberra distance is only applied to the Fouriecdptor F is also based on
the performance comparison in terms of the overall perfocea of the complete shape
descriptor ZFDR on several 3D model benchmarksw, we give the definitions for the

four component distancelz, dr, dp anddr.

1 8B 2z(pr) Zj(pr)

“=132, 2|z, 21l

whereZ; andZ; are the Zernike moments feature matrices of modelandm;. Z , and

(Eq. 6.1)

Z; p represent thg!" row vector ofz; andz;. ||.||, represents the L1-norm of a vector. Here,
we apply the scaled-L1 distance metric on the correspondewgs of two models and use
the average distance of view pairs to represent the Zerntkaents distance between the

two modelsdz € [0,1].

13 10| _E (p,r)\
0 = 13>< 10 Z Z |: (pr) (Eq. 6.2)
whereF; andF; are the Fourier descriptors of andmj, dr < [0, 1].
do = : (Eq. 6.3)
4382, ol |y,

whereD; andDj are the Depth information descriptor vectorswfandm;, dp < [0, 1].

1 136

R Ri(p)
R_1362 (p) J

Rl TR (Eq. 6.4

whereR; andR; are the Ray-based descriptor vectorsmpandm;, dr € [0,1].

Then, we define the hybrid descriptor distanigepr between modeiny and modeln; as
follows,

dzrpr=dz +dr +dp + dr. (Eq. 6.5)

The four component features Z, F, D, R depict a model fromethffit aspects and they

have the same contribution for the hybrid descriptor distasomputation. Therefore, we
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linearly combine them. In addition, the pair feature dis&sfor the four features fall in
the same range of [0,1], as such, we assign the same weigbaébrcomponent feature.
An example showing the hybrid shape distance computatioiemsonstrated in Fig. 6.3

and Table 6.1.

(a) Bird1 (b) Bird2:1.570 (c) Cupl: 3.736

Figure 6.3:An example of ZFDR distances. The number is the ZFDR dist&eteeen
the model Bird1 and the respective model.

Table 6.1:Z, F, D, R component distances for the example in Fig. 6.3.
Distances dz dr dp dr dzrpr

Bird2 0.352 0.450 0.275 0.494 1.570
Cupl 0.912 0.956 0.673 0.912 3.736

6.3 3D Model Retrieval Algorithm Using Class Informa-
tion

In this section, we propose a 3D model retrieval algorithmmed CBR-ZFDR which uti-
lizes a newClassBasedRetrieval algorithm CBR and the ZFDR hybrid descriptor pre-
sented in Sectio®.2 For CBR, we define an integrated distance to fuse the modkl an
class distanse One good merit of our CBR scheme is that it is general, thatéscan use

any shape descriptors to represent 3D models when we apyBR scheme in retrieval.

The scenario for our retrieval is that given a query magleind a classified 3D model

databaseM={m;|i=1---n}, wherem are the models in the database, we retrieve similar
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target models in datababé Both the query and target 3D models are defined as triangular
meshesOur 3D model retrieval algorithm CBR-ZFDR is composed of filowing five

steps.

(1) Shape descriptors extraction.We extract the ZFDR shape descriptors of query model
g (on-line processing) and all the modéls; } in the databasM (off-line preprocessing),

based on the method in Section 6.2.

(2) Model distance computation.We compute the shape descriptor distadg m;) be-
tween query modej and every modaty in the database based on Equasi{@i1)~(6.5).

(3) Class distance computationTo measure the dissimilarity between query mapahd

a class in the database, we can use minimum, average oridafist@nces.

The classified 3D model databdgehas a number of classes, each of which contains some
models. We denot€;j as thej" class of databask! and asume modein € Cj. The
minimum distance between query modeind all models in clags; is defined as the class
distanced:(q,C;j),

0c(,Cj) = min {d(q, m)} (Eq. 6.6)
Average distance is computed by averaging all the distdret@geen query modeland the
models inC;. Centroid distance [51] is determined by first computingshape descrip-
tor centroid of clas€; by averaging the shape descriptors of the modelSjiand then
computingthe distance between this shape descriptor centroidrensghape descriptof
guery modelq to define the centroid distance. In our experiments, if thergimodel is
selected from the database, to avoid bias we exclude thigfimain C; when computing
the class distance. Based on experimégection 6.4.1)we found that minimum distance

performs the best and thus we adopt this class distance.

(4) Integrated distance computation. To measure the distance between query model

g and target modetny (assumem € C;), we scale its model distanckq, my) using the
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corresponding class distandgg,C;j) to define a class-based distarnig;,

deor (0, M) = de(q,Cj)® x d(q,m;), (Eq. 6.7)

wherea (a > 0) is a constant to adjust the relative weight of the clagswdce with respect
to the model distance. We setto be 3 in our retrieval algorithm based on experimental
results(Section 6.4.1.1) This definition of integrated distance is general and candael

with any shape descriptors to improve their retrieval peniance.

(5) Ranking and output. Sort all the models in the database in ascending order based o

their integrated distances and output the retrieval listeadingly.

Finally, please note that our class information-basedesett algorithm CBR-ZFDR is dif-

ferent from the distance metric learning approach. Distanetric learning is to generate
meaningful distance metrics automatically with machiredéeng algorithms. It learns a
distance metric for the input space of data from the traidia with pairwise constraints
about whether they belong to the same/different classass, Tthemploys a machine learn-
ing algorithm to generate the distance metric. However, agorithm is not based on
any learning algorithms. It incorporates the availablsgliaformation of the database di-
rectly into the integrated distance and it should be categdinto class information-based

retrieval approach, as reviewed in Section 2.1.4.

6.4 Experimentsand Discussion

To investigate the generic 3D model retrieval performarsevall as the characteristics
of our retrieval algorithm CBR-ZFDR, we selected sevenespntative standard bench-
mark databases described in Section 1.1: R8& datasetf)ESB, NTU (only use the 549
classified models), CCCC (only use the 473 classified moddiSB, NIST and WMB.
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To comprehensively evaluate the generic 3D model retriegllts, we employ six metrics
(Section 1.1)ncluding Precision-Recall, Nearest Neighbor (NN), Firsr (FT), Second
Tier (ST), Discounted Cumulative Gain (DCG) [167] and Agedrecision (R).

To assess our algorithm'’s ability in partial 3D model retaie we choose the 3D model
database benchmark used in the SHREC 2007 partial matctziok (187]: the target
dataset is WMB (Section 1.1) and the query dataset cont@imsdlels by combining the
parts of two or more models of the target database (two typixamples are the query
models in Fig. 6.12 and Fig. 6.13). We use the Normalizedd@isted Cumulative Gain
(NDCG) [66] metric to evaluate the performance of partialiesal results. This metric is

explained in Section 6.4.3 which is dedicated for partialB8del retrieval experiments.

6.4.1 Comparative Evaluation with Respect to Algorithm Corligura-
tions

In this section, we justify our choice of class distance, ih&-DR is used as the shape

descriptor and the evaluation of our hybrid shape descrff®R.
6.4.1.1 Choices of class distan@nd parameter a

Three different types of class distance, which are minimawarage and centroid distances,
are mentioned in Sectio®.3. To justify our choice of using minimum distance, for each
of the seven databases, we perform a comparison of our loéesesd retrieval algorithm
with respect to different class distances. Two represertakamples for PSB and NIST
databases are shown in Fig. 6.4. In general, we find tleglbdbt performance is achieved

by using the minimum class distance for all the databases.

The parameteo controls the relative weight of the class distance. To sed@propriate

weight value fora for our CBR algorithm, we perform a comparison experimengiach
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Comparison of three class distances on PSB Comparison of three class distances on NIST
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Figure 6.4: Precision-Recall plots comparison in termsifiéknt class distance defini-
tions. “Minimum?”, “Average” and “Centroid” denote the ckdased retrieval approaches
using minimum, average and centroid class distances,ctaglg.

database by selecting five values (1,2,3,4,5) for paransetegimilarly, we demonstrate
two representative examples on the PSB and NIST databa&#g.i6.5. We have found
that biggera will evidently improve the metrics of FT, ST, DCG and AP. Hoxee the
front part (e.g. reca# 0.2 for PSB when using CBR-ZFDR) of the Precision-Recaltplo
with the biggestr does not give the best result in terms of precision. Basetefact that
the front part of the Precision-Recall plot is relativelymdmportant than the rear part in
retrieval applications and we also need to consider othdoqmeance metrics such as FT,
ST, DCG and AP, we set =3 in our class-based algorithm because it can achieve #te be

overall performance.

The weight value selection far is directly related to our formulation of the integrated
distance and is insensitive to the descriptors employeds;Timere is no need to adjust a
chosen weight value for parametereach time we use CBR with a new shape descriptor.
For example, we also verify the above property of our CBR wtigm with PANORAMA

and DESIRE on the above mentioned seven databases.
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Weight of class distance anaylsis on PSB database Weight of class distance anaylsis on NIST database

154
©
a

[N

o

©
o©
©
a

o
©  »
@ @
o
©

o©

3

al
o
©
a

Precision
I
3
Precision
o
o]

| | —=8— CBR-ZFDR-1
—A— CBR-ZFDR-2
f | —+— CBR-ZFDR-3
—*— CBR-ZFDR-4
[ | —— CBR-ZFDR-5

o
o}
a

\ —&— CBR-ZFDR-1
[ | —A— CBR-ZFDR-2
—+— CBR-ZFDR-3
| | —— CBR-ZFDR-4
i) —— CBR-ZFDR-5 o

o

)
o
9
a

o

o

a
o
o

bt
ol

. . . . 0.65 . . . .
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Recall Recall

Figure 6.5: Comparative analysis of the weight of class distance on PSB NIST
databases. “CBR-ZFDR-1" means settimgo be “1” in our class-based retrieval algo-
rithm CBR-ZFDR. Others are similar. Note that the “preamiaxes do not start from
“0".

6.4.1.2 Analysis of Our Hybrid Shape Descriptor ZFDR

To justify the feature selection for our hybrid shape dgxori we analyze the contribution
of visual and geometric features by performing experimentall the seven databases. To
find the intrinsic properties of the hybrid shape descrigiebR, in the experiments, we
use only the shape descriptor itself and do not employ tresddased retrieval approach.
We also compare ZFDR with the two most related shape descsipPESIRE [191] and
LF [23]. For DESIRE, we generate the results based on their providedug®n files
[190]. For LF, we refer to the experiment results in PSB [1&d§l PANORAMA [142].
Some “DCG” results are not provided in these papers and alieated by “-”.  Two

representative results are shown in Fig. &@ Table 6.2nd others are very similar.

As can be seein both Fig. 6.6 and Table 6.2, firstly, ZFDR has a better peréoroe

compared to only visual information-based descriptor Zlerdy geometric information-
based descriptor DR. Therefore, our hybrid shape descrgatotaining both the visual
and geometric features outperforms the ones using thel\asggometric features alone.

Secondly, ZFDRalso outperforms DESIRE and LEFDR exceeds DESIRE in NN, FT,
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Features contribution analysis: PSB database Features contribution analysis: NIST database

—o—ZFDR —e—ZFDR

——ZF —+—ZF
0.8} 1 0.8} —&—DR
+ﬂ EFR —A—F
DESIRE —— DESIRE
0.6 1 0.6 1

Precision
Precision

Recall Recall

Figure 6.6: ZFDR features contribution analysis on PSB al®Nlatabases. ZF and DR
are the two main features of the hybrid descriptor ZFDR.

ST and AP by6.1%, 8.7%, 7.0% and 5.8% on PSB, 4.9%, 8.1%, 4.9% and Bré®ST.
This isattributedo ourcarefully selecting anohtegrating different types of featuras well

as related distance metrits make them complement with each other and thus the hybrid

shape descriptor can represent more types of models coanmigkly and effectively.

Table 6.2:0ther performance metrics for the ZFDR features contrisuéinalysis on PSB
and NIST databases.
Methods NN FT ST DCG AP

PSB

ZFDR 69.8 43.9 549 0.691 60.6
DESIRE 65.8 40.4 51.30.663 57.3

LF 65.7 38.0 48.7 0.643 50.2
DR 64.7 37.2 48.1 0.637 54.0
ZF 62.1 37.3 48.3 0.638 54.3
NIST

ZFDR 87.8 55.0 68.1 0.821 66.2
DESIRE 83.7 509 649 - 62.7
LF 84.1 439 56.0 - 55.1
DR 80.3 48.0 61.7 0.771 59.2
ZF 83.6 475 60.7 0.775 58.6
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6.4.2 Generic 3D Model Retrieval

6.4.2.1 Standard Benchmark Databases

To compare the performance of our retrieval algorithm CBHBR, we consider the fol-

lowing three state-of-the-art algorithms,

e 2D-3D[141]: a 2D/3D hybrid descriptor based on 2D depth images3ihgpherical

harmonics.

e MFSD [177]: a multi-Fourier spectra descript@MFSD) by integrating depth infor-
mation, contour and silhouette features of rendered vieswsedl as a 3D Fourier
features through voxelization. It adopts a cluster-bagguiaach by clustering the
target models before retrievaAn addition operator is used to combine the spectral

clustering (SC) distance and model distance to form a MFSDai§orithm

e PANORAMA [142]: a hybrid 3D shape descriptor that performs best dyzirtg a
set of panoramic viewsA local relevance feedback (LRF) is developed to further

improve the retrieval performance and the method is namé&dHRAMA+LRF.

PANORAMA and 2D-3D do not utilize class information, but yheepresent the state-
of-the-art performances that have been achieved on the slatabases and thus we can
know which performance level we can reach if incorporatimg already available class
information based on our class-based retrieval algoritBRZFDR. Fig. 6.7 and Table
6.3~6.4 compare the performance of our CBR-ZFDR algorithm aedthove mentioned
three shape descriptordo demonstrate the superior performance of our integraited d
tance, we compare CBR-ZFDR with a modified CBR-ZFDR algamithihich applies the
addition operator to fuse the class and model distances artknote it as CBR-ZFDR-A.
To evaluate the effectiveness of our CBR algorithm, for cangon, we also list the per-

formances when using only the ZFDR shape descriptor. Fopén®rmances of 2D-3D
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and PANORAMA, we refer to the experiment results in 2D-3D]JLPANORAMA [142]
and PSB [167]. Some “DCG” results that are not provided is¢hgapers are indicated by

As can be seem Fig. 6.7 and Table 6:36.4, firstly, by comparing the performance of
CBR-ZFDR and CBR-ZFDR-A, we can conclude that by using ttadiisg operation pro-
posed in our integrated distance rather than the additiproagh used in MFSD to fuse
the class and model distances, we can achieve apparertdy petformanceFor example,
for PSB our integrated distancaitperforms the additive one by 14.3%, 8.0%, 3.6% and
6.3% in FT, ST, DCG and AP respectively and for NIST the cqroesling increments are
11.9%, 6.3%, 2.5% and 6.5%econdly, our hybrid descriptor ZFDR itself is comparable
to the 2D-3D shape descriptand it is close to PANORAMA on several datasets, espe-
cially on PSB, NTU and ESBHowever, after applying our CBR algorithm, CBR-ZFDR
achieves better performances than PANORABKwell as PANORAMA+LRFandits per-
formance is also better thadhe cluster-based method MF$85C This indicates that after
applying our CBR approach, we achieve more improvement epegpto the LRF and SC
techniquesThere are apparent improvements in either Precision-Relca$ or other per-
formance metrics including FT, ST, DCG and AP. We also find tisaually NN remains
unchanged and this is because using the minimum distandasasdistance will typically
have no impact on NN. Therefore, our integrated distancpkéee nearest model in the
beginning of the retrieval list while pushing the relevarddals to the front of retrieval
lists (FT, ST, DCG and AP are thus higher). One example to deitnate this is shown
in Fig. 6.8. We can see that the distance gap between thantlelass (horse) and other
irrelevant classes (e.g. dog) also becomes bigger aftgtiadgathe CBR approach. This
indicates that CBR pushes the irrelevant models to the @amopthe retrieval list. Thus,

the retrieval errors (e.g. the two dog models m86 and m88)éragd when only using the

128



CHAPTERG6. QUERY BY UTILIZING CLASS INFORMATION AND HYBRID FEATURES

hybrid shape descriptor ZFDR itself are rectified. This iatdbuted to the utilization of

the class information/distance.

AssumeC as the cardinality of the relevant class, our retrieval algm CBR-ZFDR has

the ability to find most relevant models belonging to the satass as the query model in
the front part (e.g., the to|©f1) or at least Z¢-1) models) of the retrieval list, thus FT and
ST are higher. Usually there are very few relevant modeleearést of the list, hence the

recall remains almost unchanged in the rear parts of thedRyaeRecall plots.

In addition, though we do not explicitly consider the issfi@abustness to non-rigid de-
formation and articulation when designing our ZFDR shapscdptor and CBR-ZFDR
retrieval algorithm, we have achieved good performancesamrigid or articulated 3D
model benchmarks, such as MSB and WMB. As mentioned in Se6t®.2, we target on
proposing a hybrid shape descriptor which contains botiaviand geometric information
to effectively represent and deal with different types ofd@lg, which contributes the good
performances in retrieving non-rigid or articulated maedéd also shows the robustness of

our algorithm with respect to the retrieval of non-rigid otieulated models.

Our retrieval algorithm mainly comprises two processesDRHeature extraction for a
guery model and feature matching with all the models in theallse. ZFDR feature
extraction requires rendering to compute the features B,dhd line-triangle intersection
computation for the feature R, both of which depend on theberraf triangles of the query
model. Feature matching is a simple computation based oatteqs (6.1)-(6.7) and the

matching time is proportional to the number of mod@isble 6.5 lists the timings of CBR-
ZFDR on different databases based on a computer with anXemh CPU E5520 @2.27
GHz and 12.0 GB of RAM. We want to mention that the implemeateits not optimized

in terms of computational time. Nevertheless, our CBR-ZFgorithm already meet the

requirements for interactive retrieval applicatiomgpically, the response time is less than
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2 seconds for aligning the query model using CPCA, rendetsnt3 views, extracting the
Zernike moments and Fourier descriptors features for alllwiews, extracting the depth
information and ray-based features, and finally computimgranking the differences with
all the shape descriptors in the database. Basically, @messmall deviations in the ren-
dering time may happen due to different number of verticesaoh model. Other processes

mainly remain constant or are proportional to the number adats.

6.4.2.2 SHREC 2009 and PSB Test vs Train

In these two experiments, the query models are not selecigdthe target database, that
is, the query set and the target set are two completely diftastatasets. For this purpose,

we utilize the following two datasets:

e SHREC 2009 NIST datasef47]: the dataset used in the Shape Retrieval Contest
(SHREC) 2009 (generic track). It was constructed based®NtBT Generic Shape
Benchmark described in Section 1ftom which two models in each class were
selected as query models and the rest as the target modalsefdie, there are 80

guery models and 720 target models in the dataset.

e PSB test and train datasets We use the test dataset as query dataset and the train
dataset as the target dataset. Since the classes in thangitest datasets are not
completely the same, we only consider the classes thatiexigith datasets when

measuring the retrieval performance.

For the SHREC 2009, we compare with the top two methods in SHRED9 [47], which
are the composite descriptor proposed by Lian et al. [10Tpposite”) and the multi-
view depth line approach (“MDLA") proposed by Chaouch andrdast-Blondet [21]. For
PSB, we apply our CBR algorithm to both ZFDR and DESIRE shagszptors for a

comparative evaluation. We denote the CBR algorithm usiedESIRE shape descriptor
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as CBR-DESIRE. Fig. 6.9 and Table 6.6 give their performaiaraparison. Obviously,
our CBR-ZFDR approach has a better overall performanceceShe query models is not
included in the target datasets, these experiments deratsste robustness of our re-
trieval algorithm. The experiments with DESIRE also dentiais that our CBR algorithm
is general and can be applied to any shape descriptors terglyicelevate their retrieval

performance.

6.4.2.3 SHREC 2012 Generic 3D Benchmark

Based on the ZFDR shape descriptor, we also successfutlgipated in the SHREC 2012
Track: Generic 3D Shape Retrieval [127], held in conjunttioth the fifth Eurographics
Workshop on 3D Object Retrieval. It is based on the SHREC Zvdrzeric 3D Benchmark
which contains 1200 models, evenly divided into 60 clas8esording to the track report
[94], ZFDR ranks in the third place. Here, we further test GBR-ZFDR algorithm on

the SHREC 2012 Generic 3D Benchmark and the performanceasops with the par-
ticipating methods of the SHREC 2012 Generic Track are shoviig. 6.10 and Table
6.7. Similarly, we find that our CBR approach has evidentlgrioved the performance of

ZFDR, and make CBR-ZFDR achieve the best overall performanc

6.4.3 Partial 3D Model Retrieval

To demonstrate the versatility of our retrieval algorithBRGZFDR, we also test and com-
pare the performance of our algorithm in a partial matchicenario using the previously

described WMB benchmark [187$ection 6.4)

The goal is to retrieve similar subparts. To evaluate thégdaimilarity retrieval perfor-

mance, we adopt the average Normalized Discounted Cuweilatin (NDCG) [66] over
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all the query models. NDCG is defined by dividing the DCG of gipbretrieval algorithm
by the ideal DCG related to the database. Thus, the range Gf\WIll be [0,1].

Because a query model (e.g. the query models in Fig. 6.12 mndeEL3) is composed
of several parts cut from models of different classes, tloenga truth [187] classifies the
target models into “relevant”, “marginally-relevant” afybon-relevant” classes for every
guery model and assign relevance scores of 2, 1 and O for thessseclasses respectively.
These scores are used to compute NDCG. To determine NDCGrswvedimpute the gain
vector G. For example, the Centaur model in Fig. 6.12 is relevant turflegs” and
“human” classes and marginally relevant to “armadillo” dtetldy” classes. Then, the
models in its retrieval list will be replaced by the corresgimg scores to compute the gain

vectorG: (2,2,2,2,2,0,2), (2,2,2,2,2,1,1), (2,2,2,2,2,2,2}Farthree rows respectively. The

remaining steps of computing NDCG can be referred to WMB [E8id [66].

We compare with four previous partial retrieval algorithri®PU [179], BoF [180], ERG

[14] and CORNEA [26]. ERG and CORNEA are the only two partgifs in SHREC 2007
partial retrieval track [187] while the latest RPU and Bogaxlthms outperform ERG and
CORNEA. Fig. 6.11 gives the NDCG performance comparisoalt&sAs can be seen,
using only our ZFDR shape descriptor, we already can aclaeapparently better NDCG
performance than RPU, ERG and CORNEA and an overall bettésrpgance than BoF.

After adopting our CBR algorithm, we achieve an even betéefgpmance than any of the

five methods.

Fig. 6.12 and Fig. 6.13 show two retrieval examples using@BR-ZFDR and ZFDR
methods as well as the RPU method. Similarly, we can alsdse€BR-ZFDR approach
pushes the relevant models to the front of the retrieval.li&dditionally, we can also find
that better than RPU, our methods can find the geometricadiyemelevant models first,

which is more reasonable and easier for our understandimg aVerage time to process a
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query model using our CBR-ZFDR and ZFDR methods is aboutg: 8%79 sec for feature
extraction, 0.04 sec for feature matching). To some dedhéeexperiment demonstrates

the superior performance of our retrieval algorithm CBROEHN terms of partial retrieval.

6.4.4 Generality of Our CBR Approach

Our CBR approach is general and can be used with any shapepdesc In Section
6.4.2.2, we have demonstrated this using the DESIRE shaoeipt®r on the PSB Test vs
Train datasets (Fig. 6.9 (b)). We then further test CBR withSIRE on other datasets
including NIST, NTU and MSB, and the results are shown in Bid4, from which we can
draw a similar conclusion as that in Section 6.4.2.2. Thaius CBR approach is general

and an evident improvement can be achieved after employig. C

By combining it with a better shape descriptor, we can achexen better performances.
To verify this, we replace the ZFDR shape descriptor with PAARAMA, which has bet-
ter performances than ZFDR and perform experiments usmgnbvided executable files
[142] on four representative benchmarks: NIST, NTU, ESBBISB. Fig. 6.15 shows the
performance comparison with CBR-ZFDR, as well as PANORAM§ether with the lo-
cal relevance feedback (LRF) technique, that is PANORAMRFLApparently, the results
show that CBR-PANORAMA apparently outperforms PANORAMAdais also superior
to PANORAMA+LRF. With a better shape descripfANORAMA applied to our CBR
algorithm, we achieve even better retrieval performandeaus] the performance improve-
ment of our CBR approach is general and it is not dependenherstiape descriptors
themselves. In addition, we can find that CBR achieves mquarapt improvements com-
pared to the LRF technique when both applied to PANORAMA ,chhalso demonstrates

the advantage of our CBR algorithm.
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6.4.5 Limitations

Our CBR-ZFDR algorithm has achieved good performance oh geberic and partial 3D
model retrieval. However, it has some limitationBirstly, ZFDR is not the best shape
descriptor if we compare it with PANORAMA.. Nevertheless, ingorporating the CBR
algorithm, we can achieve a better performance than PANORAS&condly, we only can
directly apply our CBR-ZFDR algorithm to the already cléissi 3D model databases. If
the 3D model database is unclassified, we can still apply lgarighm by first clustering

the models in the database.

6.5 Summary

In this chapter, to improve the retrieval performance oraasified 3D model database, we
have proposed a 3D model retrieval algorithm named CBR-ZMDRh is based on the
proposed hybrid shape descriptor ZFDR and class-baseevedt(CBR) algorithm which
makes use of the already available class informatd¥DR integrates a 3D model’s both
visual and geometric information from different aspectsy dptimizing the choices of
the four component features and carefully choosing theeBelal and Canberra distance
metrics, we achieve better performances than the mosédalegw-based shape descriptor
Light Field and hybrid-based shape descriptor DESIRE. thtamh, its performance is also
close to the state-of-the-art shape descriptors on sedatabasesrlo further improve the
retrieval performance, we define a new integrated distamfese the model distance and
class distance in the CBR algorithm. We compute the intedrdistance, which incorpo-
rates the class information of the database, by scaling tigehdistance using the class
distance.Our CBR scheme is general, it can be applied to any shapeigkessrto evi-
dently improve their retrieval performancé&xtensive experiments demonstrated that: (1)

with respect to generic retrieval, for most of the perforocemetrics, our results are better
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than the state-of-the-art methods on each of the sevenadaalused in the experiments;
(2) with respect to partial retrieval, it also shows an afipggerformance both in terms
of accuracy and speed: not only better than the two partitspim SHREC 2007 partial
retrieval track [187], but also outperforms the two latdstfge descriptors RPU [179] and
BoF [180].

Through experiments, we have shown that our retrieval dlguaris promising for retriev-
ing models in a classified database. In order to enable usply apr retrieval algorithm
to unclassified databases, as future work, we would like ¥elde a method to group the

models of unclassified 3D model databases and integrat® ibur retrieval algorithm.
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Figure 6.7: Performance comparisor?recision-Recall plots of our retrieval algorithm
CBR-ZFDR and three state-of-the-art shape descriptor8R‘ZFDR” denotes our re-
trieval algorithm that utilizes the CBR algorithm descdla Section 6.3 and the ZFDR
shape descriptor presented in Section 6@2BR-ZFDR-A" denotes a variation of CBR-
ZFDR algorithm which uses addition to 1488 the class and irdigances“ZFDR” means
using only our hybrid shape descriptor ZFDR and do not us€8IR algorithm.
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Table 6.3:0ther performance metrics of our CBR-ZFDR algorithm andétstate-of-the-

art shape descriptors: PSB, NTU, ESB and CCCC databaseR-ZFHBDR” denotes our

retrieval algorithm that utilizes the CBR algorithm debexd in Section 6.3 and the ZFDR
shape descriptor presented in Section 6.2. “CBR-ZFDR-Afadles a variation of CBR-

ZFDR algorithm which uses addition to fuse the class and iig&ances. “ZFDR” means

using only our hybrid shape descriptor ZFDR and do not us€8i algorithm.

Methods NN FT ST DCG AP
PSB

CBR-ZFDR 69.8 69.5 77.0 0.801 79.2
CBR-ZFDR-A 69.8 60.8 713 0.773 74.5
ZFDR 69.8 439 549 0.691 60.6
PANORAMA+LRF 75.2 53.1 659 - 69.4
PANORAMA 753 479 603 - 64.5
MFSD+SC 71.1 509 63.1 0.723 67.4
MFSD 716 453 59.1 0.704 62.6
2D-3D 742 473 60.6 - 66.1
NTU

CBR-ZFDR 747 743 79.7 0.833 814
CBR-ZFDR-A 747 658 744 0809 76.4
ZFDR 74.7 449 575 0.725 594
PANORAMA 79.7 49.0 61.0 0.755 63.0
2D-3D 76.2 46.6 59.1 - 61.2
ESB

CBR-ZFDR 84.1 84.2 88.4 0.909 87.8
CBR-ZFDR-A 84.1 77.7 855 0.895 83.8
ZFDR 84.1 46.8 60.9 0.769 58.0
PANORAMA+LRF 87.0 499 658 - 61.1
PANORAMA 86.5 494 641 - 61.0
MFSD+SC 87.5 51.0 71.2 0.793 62.3
MFSD 87.5 49.4 658 0.789 60.7
2D-3D 829 465 605 - 57.5
CCcCC

CBR-ZFDR 84.7 83.8 88.6 0.898 90.2
CBR-ZFDR-A 84.7 78.0 859 0.884 87.7
ZFDR 84.7 58.8 72.6 0.814 74.7
PANORAMA+LRF 87.4 70.3 86.6 - 84.1
PANORAMA 879 66.3 81.2 - 81.2
2D-3D 874 60.2 758 - 76.7
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Table 6.4: Other performance metrics of our CBR-ZFDR algorithm anaehstate-of-
the-art shape descriptors: MSB, NIST and WMB databases.R‘ZBDR” denotes our
retrieval algorithm that utilizes the CBR algorithm debex in Section 6.3 and the ZFDR
shape descriptor presented in Section 6.2. “CBR-ZFDR-Afadles a variation of CBR-
ZFDR algorithm which uses addition to fuse the class and ihg&ances. “ZFDR” means
using only our hybrid shape descriptor ZFDR and do not us€8Ie algorithm.

Methods NN FT ST DCG AP
MSB

CBR-ZFDR 92.1 90.2 94.7 0.954 93.0
CBR-ZFDR-A 92.1 82.7 90.3 0.935 88.1
ZFDR 92.1 58.1 70.3 0.852 69.0
PANORAMA 945 626 754 0.880 74.6
MFSD+SC 90.3 65.7 76.7 0.868 74.8
MESD 92.6 53.2 654 0.828 64.2
NIST

CBR-ZFDR 87.8 85.7 92.9 0.930 89.8
CBR-ZFDR-A 87.8 76.6 87.4 0.907 84.3
ZFDR 87.8 55.0 68.1 0.821 66.2
PANORAMA+LRF 904 715 84.1 - 81.8
PANORAMA 90.8 63.4 77.6 0.869 74.6
2D-3D 88.1 556 721 - 68.6
WMB

CBR-ZFDR 92.3 90.2 95.1 0.951 93.1
CBR-ZFDR-A 92.3 825 90.6 0.932 885
ZFDR 92.3 57.4 69.5 0.842 69.2
PANORAMA+LRF 95.7 743 839 - 83.5
PANORAMA 95.7 67.3 784 - 78.4
2D-3D 955 642 773 - 75.7

Table 6.5: Timings information of CBR-ZFDR on different daasests, ty, t denote the
feature extraction time for a query model, feature matchimg between the query model
and all the models in the database, and response time forummg opodel, respectively.

Time PSB NTU ESB CCCC MSB NIST
tf(s) 1.12 2.07 1.28 141 153 1.97

tn(s) 0.11 0.04 0.09 0.05 0.05 0.09
t(s) 1.23 2.11 1.37 1.46 158 2.06
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ml03, distance=0.000 7 distance=1. 650 3, ml06, distance=l.660 4, ml08, distance=l.692

, m86, distance=l.781

ml03, distance=0.000 2, ml04, d 3, ml06, distance=T. 451 4, ml08, distance=7.593

, ml05, distance=8.102 5, ml07, d 8. 473 7, m86, distance=10.066

(b) CBR-ZFDR

Figure 6.8: A retrieval example in the PSB database usingZBbd CBR-ZFDR. Green:
guery models; Blue: correct class; Red: wrong class. Thamties are shown above the
images. In total, there are six models in the horse clasgthibajuery model belongs to.

SHREC2009 NIST database PSB database
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Figure 6.9: Peformance comparison: Precision-Recall plots of our reali@lgorithm
CBR-ZFDR and other methods on SHREC 2009 NIST and PSB dasbas
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Table 6.6: Other performance metrics for the performance comparison on SHRED

NIST and PSB databases.

Methods NN FT ST DCG AP
NIST

CBR-ZFDR 88.7 87.3 94.0 0.937 81.2
ZFDR 88.7 58.1 70.6 0.844 60.2
MDLA 96.3 73.0 84.8 0.917 73.8
Composite 925 724 84.4 0904 729
PSB

CBR-ZFDR 81.8 81.6 89.0 0.899 85.6
ZFDR 81.8 50.6 64.6 0.780 58.3
CBR-DESIRE 775 78.6 86.4 0.879 824
DESIRE 775 47.8 60.9 0.757 55.2
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Figure 6.10: Performance comparison on the SHREC'12 Generic 3D Bendaomar
Precision-Recall plots of our retrieval algorithm CBR-ZR[nd the participating meth-
ods of the SHREC 2012 Generic Track.
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Table 6.7:0ther performance metrics for the performance comparisothe SHREC'12
Generic_3D Benchmark.

Participant Methods NN FT ST DCG AP

Li CBR-ZFDR 81.8 79.2 88.1 0.894 89.8
Li ZFDR 81.8 49.1 62.1 0.776 65.0
Bai LSD-sum 51.7 23.2 32.7 0565 38.1
Redondo 3DSR2_1000hik 685 37.6 50.2 0.685 52.6
Tatsuma DVD+DB+GMR 82.8 61.3 739 0.833 76.5
Yanagimachi DGI1SIFT 87.9 66.1 79.9 0.871 81l.1

WMB database

0.4 —— CBR-ZFDR] |
0.3 —ZFDR
—RPU
0.2 ——BOF
0.1 ERG
—— CORNEA

50 100 150 200 250 300 350 400
Items retrieved

Figure 6.11: Performance comparison: NDCG plots of ourewt algorithm and other
methods on SHREC 2007 Watertight database.
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Figure 6.12: A partial matching example showing the toptiieeal results using RPU §1
row), ZFDR (2" row) and CBR-ZFDR (%8 row) methods. The first model in each row is
the query model.

EnjiEniE

AR EVY IR bYW
A At A4+ A4 Ay
A A4 A+ 4 A4 A+

Figure 6.13: Another partial matching example showing tye retrieval results using
RPU (2 row) method and the top-9 retrieval results using ZFDFE @w) and CBR-
ZFDR (39 row) methods. The first model in each row is the query model.
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Figure 6.14:.CBR generality based on DESIRE: Precision-Recall plotsunf@BR algo-
rithm with different shape descriptors on NIST, NTU and MSRabases.
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Figure 6.15:CBR generality: Precision-Recall plots of our CBR alganmthvith different
shape descriptors on NIST, NTU, ESB and MSB databases.

144



Chapter 7

Conclusions and Future Work

In this chapter, we draw a conclusion and propsseerafuture wak. For the conclusions,
we briefly present the main idea, results and contributidnsuo proposed algorithms.
For the future work, we propose two new research directionsketch-based 3D model

retrieval and partial similarity 3D model retrieval.

7.1 Conclusions

The objective of our project is to provide solutions for timallenges existing in 3D model
retrieval techniques, thus to advance the research fielfl @s well as the related industrial,
academic and entertainment applications. Provided witleeia sketch, a model or an
image,our goal isto effectively and efficiently retrieve a set of relevant ratsdfroma

3D model database. The retrieval process is generally asatpof several stages which
are 3D or 2D-3D alignment, 2D/3D feature extraction, featdistance computation and

ranking. Now, we conclude the work that has been done for eactponent as follows.

(1) 2D/3D feature extraction.Firstly, we defined a new 3D model feature view context

which supports multi-modal retrieval framework. Based b idea of view context, we
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proposed a view context shape descriptor in Chapter 4 fory@ueModel retrieval and

extended it further in Chapter 5 for Query-by-Sketch apians.In detail,

e A new view-based 3D feature view context and a view contesaeb3D model re-
trieval algorithm were proposedExperiment results show that the view context
shape descriptor is comparable with the relatenv-baseddescriptor Light Field
in retrieval performance and a combined shape descriptadoan view context out-

performs Light Field.

e We proposed a sketch-based retrieval algorithm by incapiog a 2D-3D alignment
step based on our view context featufidne basic idea is to perform 2D sketch-3D
model alignment before computing their distances. Viewtexirhas a good perfor-
mance in distinguishing different views of the same modwrlistbased on this prop-
erty we can efficientl\selectseveral candidate views to align a 3D model with a 2D
sketch. Comparative and evaluative experiments basedrahidrawn and standard
line drawing sketches demonstrate the effectiveness dngtioess of our approach

and it significantly outperforms several latest sketchebasgtrieval algorithms.

Secondly, considering different characteristics andeddifitiation abilities of view-based
and geometry-based features, in Chapter 6 we proposed & Hghture ZFDR. It inte-

grates both visual and geometric features to make them @wmnapit with each other, thus
achievesa better performance than its components and also outpesfvo related shape
descriptors Light Field and DESIRE. Its performance is alese to the state-of-the-art

shape descriptors on several databases.

(2) 3D or 2D-3D alignment. We proposed a Minimum Projection Area-based (MPA)
approach in Chapte3 for 3D model alignment, as well as a 2D sketch-3D model align-
ment algorithm in Chapter 5 based on the proposed featunecoatext. MPA is used for

retrieval using 3D model queries (Chapter s described abovehe 2D-3D alignment
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algorithm is specially designed for retrieval using skejakries (Chapter 5). It utilizes the
differentiation power of view context in distinguishingférent views of the same model.

The details of our MPA algorithm are as follows.

e We proposed a novel Minimum Projection Area-based (MPAhatefor 3D model
pose normalizationlt finds three orthogonal axes by searching three view doest
with minimum projection area based on an efficient and dffeehodified PSO al-
gorithm. To deal with retrieval scenario, we further pemfied axis ordering and
orientation alignment. Experimental results demonstitzie MPA has a good per-
formance in finding alignment axes which are parallel to theal canonical coor-
dinate frame of models and aligning similar models in simplases under different
conditions such as model variations, noise and initial poseaddition, it achieves a
better 3D model retrieval performance than several comynasegd approaches such

as CPCA, NPCA and PCA.

(3) Feature distance computation. To utilize the class information available in the
target databasey new retrieval algorithm based on the class-based retr{@BR) ap-
proach and the proposed ZFDR hybrid shape descriptor wasestior query on classified
databases. We proposed integrated 3D model distance which scales the modeindista
using the corresponding class distan&xtensive generic and partial 3D model retrieval
experiments on seven standard databases demonstrateBiRaaparently improves the
retrieval performance of ZFDR and our class-based refredgarithm CBR-ZFDR out-
performs the top shape descriptor PANORAMA on each dataipasems of most of the
commonly used performance metrics. Our CBR approach isrgeard can be with any
shape descriptors to apparently improve their performmandée also demonstrated its ap-

parently better performance than the usually adoptediaddiistance.

In a word, we have done substantial research in severaltaspfe®D model retrieval tech-

niques, proposed our solutions by mainly adopting a vieseddramework, and partic-
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ularly contributed in the following four important aspect3D model alignment, shape
descriptor supporting multi-modal queries, sketch-ba&i@anodel retrieval and query by

taking into account the class information of a 3D model dasab In detail,

e We make substantial contribution to the research of 3D maligghment, an impor-
tant aspect of 3D model retrieval techniques, by propogiadtPA algorithm which
outperforms existing alignment approaches in severatdaggch as axis accuracy,
robustness, and retrieval performance improvement. Téarighm is also easy to

understand and implement as well.

e We develop a 3D shape descriptor supporting multi-modaiigsiea challenging re-
search direction of 3D model retrieval research, by defitiregview context shape
descriptor. We also advance the research of sketch-basewb@Bl retrieval by first
proposing incorporating a 2D sketch-3D model alignmemni steo sketch-based re-
trieval algorithm to increase the accuracy of 2D-3D matghiiThe effectiveness,
robustness and significantly superior performance of opragzh have been com-
prehensively demonstrated via several diverse evaluatiperiments. Our view
context-based 2D sketch-3D model improves the retriev&bpaance in a nontrivial
manner and it is also general and can be with other sketabdlyatrieval algorithms

to improve their performance.

e We also conduct solid research in the research directiogtoéval on a classified 3D
model database. Firstly, our proposed hybrid shape déscpprforms comparably
or better than several related shape descriptors. Secavellgre the first to perform
the research of utilizing the class information availalolehie already classified 3D
model database, by developing a general class-basedvabtfi@BR) approach to

obviously improve the retrieval performance for any shagscdptors.
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In addition, there is also possibility of combining two or re@f our proposed algorithms.
For instance, we can apply the general class-based rét(i@B&) approach proposed in
Chapter 6 to the sketch-based retrieval (SBR) algorithmsgured in Chapter 5. On the
other hand, in order to deal with the fourth challenge mewibin Section 1.1, we may
also integrate all our proposed four algorithms (MPA, Viean@&xt, SBR, CBR-ZFDR)

into a search platform providing universal functions, feample, automatically selecting

alignment algorithms, 3D model features, retrieval meghaxad rules.

7.2 Future Work

In this section, & propose two promising directions for sketch-based rettiaud partial

similarity retrieval.

7.2.1 Scene Sketch-Based 3D Model Retrieval

Sketch-based 3D model retrieval in the context of asketch image of a scene, such
as a 2D storyboards very important for the 3¥cenereconstruction from a 2B8ketch
which is usually a fundamental step for 3D animation promunoguided by2D storyboards
[174]. This is mainly because sketches are more human-friendlypaople are more
accustomed to “sketch” their ideas using a set of sketche8Dlanimation productiu,
2D storyboardsre often first drawn before reconstruction of the corredpan3D scene.
Proper 3D models are retrieved from available 3D databasésitd a 3D scengl74]

while keepingthe contexinformationin the original 2D sceneonsistent

The reconstruction process often comprises three mairs §1&p, 174] 3D object de-
tection in the 2D scene sketch, sketch-based 3D modelvakimmsed on the extracted

objects and 3D scene building using the retrieved 3D moddlded by the original 2D
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scene sketch. Rather than having a 3D scene available aspihg we only draw a 2D
sketch image to represent the scene, thus a new sketch-BBsembdel retrieval frame-
work which differs from previous sketch-based 3D modeliegtal systems is needed. It

involves multiple objects in an input scene sketch.

Currently, there is a lot of research in sketch-based 3D m@deeval. However, they
usually target the problem of retrieving a list of candidatedels using a single sketch
as input. Therefore, the retrieval is ideally assumed aglesisketch for single object,
rather than in the context of a 2D scesleetchwhich contains several objects, which may
overlap with each other and thus be occluded and also hatesedbcationconfiguratiors.
Therefore, sketch-based 3D model retrieval in the conteat 2D scenesketchdeserves

our further exploration.

Compared to sketch-based retrieval in the context of asiskgtch, sketch-based retrieval
using a 2D scensketchquery is much less studied. Fisher and Hanrahan [39] projp@se
novel 3D model retrieval scheme named context-based 3D Imetdeval, which means re-
trieving models according to its spatial context in a 3D scérhey adopted a new pipeline
of model retrieval by first locating the position of the mobtgldrawing a 3D box and then
searching relevant 3D models based on the dimensionalttycantext information. The
models in the scenes are extracted beforehand and both fgand tags are utilized to
find similar models based on the assumption that similar ts@ggear in similar contexts.
However, our research topic differs from theirs in sevaaeaéts. Firsttheirinput is already

a 3D scene consisting of several models. Second, it is monlgcene completion rather

than scene reconstruction. Finally, they do not draw slestéh represent a 3D model.

According to our knowledge, few algorithms have been predds specially deal with

sketch-based 3D model retrieval in a 2D scesketch For example, Zernike moments
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descriptor [79] is a typical and important 2D feature and flal.€[174] developed a patch-
based Zernike moments descriptor motivated by and baseldeoimproved Zernike mo-
ments comparator [156]. It integrates not only the diffeesbetween the extracted features
themselves but also their local relationship, such asivelatistance and rotation angle.
Similar experiments as [156] demonstrate that this locapstdescriptor is more robust to
occlusion than its initial global version [156] and thus iaeles better performance in 3D

model retrieval as well as viewpoint selection applicasion

We plan to modify our sketch-based retrieval algorithm ps®d in Chapter 5 to deal with
scene sketch-based retrieval and reconstruction. Bbsia& incorporate an object detec-
tion module to facilitate retrieving the candidate modelsréconstruction. The contextual
information existing in the scene sketch is utilized to sedgppropriate models and align

the features of the models to the sketch features in the scene

7.2.2 Partial Similarity Retrieval of Deformable Models

Compared to generic 3D model retrieval, partial similaBE model retrieval is more dif-
ficult and much less studied. Our target is to propose a 3Desbapcriptor that can be
used for both global and partial similarity retrieval, esiply for non-rigid 3D models,
like animals (e.g. ant, bird, cat, fish, octopus and sa d)me candidate 3D features
we have considered are shape context, geodesic distamqe dlameter and heat kernel.
However, we plan to develop a part-aware hybrid shape geecrivhich may utilize the
above features. Shape context is considered based on theyéril [74]: among the afore-
mentioned features adopted for 3D mesh segmentation, vidicighly related to partial
retrieval, shape context is the most important one. We theddesic distance features are
promising because of its superiority in characterizing @mwbgnizing deformable models,

which has been demonstrated by Smeets ¢98|.169, 170] Motivated by the volumetric
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heat kernel proposed by [104], we plan to define a part-basatikernel shape descrip-
tor to further improve the partial retrieval performancen évaluate our partial retrieval
algorithm, we plan to use the following three benchmark$:tli@ benchmark used in the
SHREC 2007 partial matching track [18(8ection 6.4) (2) the database for the SHREC
2010 non-rigid 3D shape retrieval track [99]; and (3) thedbenark for the SHREC 2009

qguery with partial models track [33], for which parts of mtslare already available.

The key techniques possibly involved in tpartial similarity retrievaklgorithm include:

feature sampling or salient feature points extraction endirface of a model; efficient
feature matching methods, such as the Earth Mover’s DistéakID) [24]; part and con-
textual information definitionsThe main potential advantages the retrieval algorithm
areas follows pose invariance for general/deformable mogsd$ation invariance, com-

pactness and efficiency for dealing with deformable modeknel.
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