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Abstract

With the increase in the number of available 3D models, the ability to accurately and effi-

ciently search for 3D models is crucial in many applicationssuch as Computer-Aided De-

sign (CAD), on-line 3D model shopping and 3D game, movie and animation production.

As a result, 3D model retrieval has become an important research area. In recent years,

several typical algorithms that extract different types of3D model features have been pro-

posed. However, 3D model feature supporting multi-modal queries such as 3D modelsand

2D sketches is an important research direction which has littlerelated work.In addition, 3D

normalization is an important processin 3D model retrieval toextract rotation-dependent

features and currently there still exists much room in termsof alignment accuracy and con-

sistency. In this thesis work, we propose several algorithms to contribute solutions for the

above issues. Motivated by the mechanism ofhuman perception and multi-view vision,

that is 3D shape information of a 3D object can be obtained based on multiple views, to-

gether with the retrieval performance comparison of previous retrieval work as well as the

verifications of our proposed algorithms, we adopt a view-based approach which extracts

features based on the rendered views of a 3D model.

The first part of our work is dealing with 3D pose normalization. A novel Minimum Pro-

jection Area-based (MPA) alignment method is proposed for pose normalization based on

the idea of successively finding two perpendicular principal axes with minimum projection

area. Experimental results demonstrate that MPA has a good performance in finding ac-

curate axes; can robustly find a consistent pose for similar models and outperforms PCA,

CPCA, and NPCA in terms of 3D model retrieval performance.

Next, we propose a view-based 3D model feature named view context to supportboth

Query-by-Model and Query-by-Sketch retrieval.The view context of a particular view
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captures the distribution of visual information differences between this view and a set of

arranged views. Experimental results demonstrate thatour Query-by-Model retrieval al-

gorithm outperforms the relatedview-based approach ofLight Field. Comparative and

evaluative experiments also demonstrate the effectiveness and robustness ofour Query-

by-Sketch retrieval algorithm which incorporates a 2D sketch-3D model alignment step

based on view contextand it significantly outperforms several latest sketch-based retrieval

algorithms.

Finally, to improve the retrieval performance on a classified 3D model database, we propose

a 3D model retrieval algorithm based on a hybrid 3D shape descriptor and a class-based

approach utilizing the existing class information of the database. We define an integrated

distance metric which takes into account the class information. Extensive experiments

demonstrate that our class-based retrieval approach apparently improves the retrieval per-

formanceand it is also general and can be used with any shape descriptors to improve their

retrieval performance.

In conclusion, we have conducted substantial research in several aspectsof 3D model re-

trieval techniquesand proposed our solutions by mainly adopting a view-based framework.

Specifically,

• We make substantial contribution to the research of 3D modelalignment, an impor-

tant aspect of 3D model retrieval techniques, by proposing the MPA algorithm which

achieves better performance than existing alignment algorithms.

• We develop a 3D shape descriptor supporting multi-modal queries by defining the

view context shape descriptor; and also foster the researchof sketch-based 3D model

retrieval by the first proposal of incorporating a 2D sketch-3D model alignment step

for more accurate 2D-3D matching for the retrieval, as well as by the apparent im-

provement in the sketch-based retrieval performance.

• We perform the research of retrieval on a classified 3D model database. We propose a

hybrid shape descriptor which is already comparable to or better than several related

shape descriptors; we are also the first to utilize the class information available in

the already classified 3D model database and develop a general class-based retrieval

approach to obviously improve the retrieval performance ofany shape descriptors.
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Chapter 1

Introduction

1.1 Background and Motivation

3D models consist of data stored in computer files to represent 3D objects and they can

be used to support a wide variety of applications. At present, we use 3D models in a

lot of fields. In industry, digitalization is conducted in many courses of the production

system and one of them is to use computer to design products. In the design process, the

shape information of the products is usually expressed as 3Dmodels, such as 3D meshes.

Moreover, in the fields of computer graphics such as visualization and entertainment, 3D

models are indispensable.A 3D object is modeled as a 3D model in computer graphics and

the 3D model functions as the most important data structure and the basis for the three 3D

computer graphics-related research fields: 3D modeling (e.g. deformation, simplification,

denoising), 3D rendering and 3D animation. That is, there are a lot of needs for 3D models.

With the progress in 3D scanning techniques and the availability of affordable 3D scanners,

the number of 3D models has grown in an exponential way. Then,there exist a lot of 3D

model retrieval applications, such as 3D prototyping basedon automatic Computer-Aided

Design (CAD) and existing CAD models, on-line 3D model shopping, and 3D game, film

and animation production, where we need to search and select3D models from existing
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3D model databases. Therefore,it is very important to have aneffective, efficient andeasy

way toretrieverelevant 3D models from 3D model databases.

To find relevant 3D models, we usually first extract a 3D shape descriptor to depict a 3D

model. During the retrieval,shape descriptors of different modelsarethencompared with

each other in the feature space for ranking. In this stage, different distance metrics from the

simplestL1 distance to the complicated ones like Earth Mover’s distance (EMD) [24, 106]

and Wasserstein [149] distance metrics may be employed to compare two 3D shape de-

scriptors. In the case of extracting a rotation-dependent shape descriptor, if not utilizing

certain pair-wise matching techniques such as the spherical correlation method in [114]

and the iterative comparison method used in the Light Field descriptor [23], we often need

performing pose normalization first before the feature extraction. This is because 3D mod-

els are created in arbitrary scale, orientation and position in 3D space. Therefore, pose

normalization of 3D models is important in many computer graphics applications such as

3D model retrieval, 3D model recognition and 3D visualization. The goal of 3D model

pose normalization is to transform a model into a canonical coordinate frame, where the

representation of the model is independent of its scale, orientation and position. An ideal

canonical coordinate frame of a 3D model is defined as a coordinate frame whose axes are

parallel to the front-back, left-right and top-bottom directions of the model. The normal-

ization process includes three steps: translation, scaling and alignment. The important and

difficult step is 3D model alignment and the traditional method to deal with this is Principle

Component Analysis (PCA) [71]. To improve the accuracy, various alignment algorithms

based on the idea of PCA have been proposed, such as Continuous PCA (consider the area

of each face) [190] and Normal PCA (consider the normal of each face) [146]. Other ap-

proaches utilize symmetry information [22], virtual contact area (VCA) [145], or projection

area [101, 125].
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Currently, many shape descriptors and techniques have been proposed for 3D model re-

trieval. They can be classified into three categories: geometry-based, view-based and hy-

brid techniques.Geometry-based techniques extract features based on the distribution of

a model’s geometric elements or topological structures while view-based techniques char-

acterize a 3D model based on its rendered view images. Hybridtechniques utilize both

techniques. Recently, several typical retrieval algorithms extracting different kinds of 3D

model features have been proposed. For example, shape histogram [4], 3D shape context

[80], shape distribution [135], moment [35] and 3D harmonics [78] are some examples

for geometry-based techniques. Multiple view descriptor [68], Light Field [23] and salient

local visual feature-based retrieval method [131] are instances for view-based techniques.

Two representatives of hybrid approaches are DESIRE [191] and PANORAMA [142].

However,till now it is still difficult to find a shape descriptor which performswell on all

types of 3D model benchmarks.Some main challenges include: (1) the great diversity of

models within a class; (2) the different initial positions for even one model; (3) the differ-

ent poses and deformations for some special types of models like non-rigid and deformable

ones; and (4) the intrinsic gap between the geometrical properties of a 3D model and its

semantic class.On the other hand,as mentioned before, alignment of 3D models is neces-

sary to utilize rotation-dependent 3D model features for rotation-invariant retrievals. But

the currently available 3D alignment algorithms still havemuch room for further improve-

ment in terms offinding accurate alignment axes, aligning similar models insimilar poses

under different conditions such as model variations, noiseand initial poses, as well asthe

retrieval performance improvement for a rotation-dependent shape descriptor. Last but not

least, 3D model retrieval supporting multi-modal queries such as text, 3D models, 2D/3D

sketches is another important research directionbecause of its versatility and wider appli-

cations by considering end users’ diverse input preferences and modalities to meet their

requirements.
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Somechallenges of 3D model retrieval techniquesarelisted here according to our knowl-

edge.

• Extract 3D model features that outperform others forspecificapplications.

• Develop a 3D shape descriptorthat supportsdifferent types ofqueries such as 3D

models and 2D sketches.

• Devise better 3D model alignment algorithms that improve theperformance of 3D

normalization for diverse types of models. The alignment accuracy and consistency

within a class of 3D models usually havenontrivial influence on the retrieval perfor-

mance of a rotation-dependent shape descriptor.

• Develop a universal search engine or platform to facilitate the development of various

applications dependent on a 3D model retrieval module. The engine has versatile

capabilities and it can select appropriate features, retrieval rules and algorithms for

different applications.

• Build professional 3D benchmark databases for different application fields, such as

biology, architecture and mechanics. This is important forcomparing different kinds

of retrieval algorithms to help people toselectappropriate ones.This is because

different algorithms/shape descriptors often perform better in certain fields or for

certain types of 3D models.

• Use interdisciplinary techniques such as machine learning and computer vision to

develop 3D model retrieval algorithms.

Our project concentrates on providing solutions for the first three challenges: (1) new and

better performing shape descriptors; (2) multi-modal 3D model retrieval; and (3) better 3D

model alignment methods. We will present the details in the next section.
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To test a retrieval algorithm, we selected the following seven representative standard bench-

mark databases,

• Princeton Shape Benchmark (PSB) [167]. It contains 1814 models totally, which are

classified into two parts: test and train datasets. Both datasets contain 907 models

and the test dataset is classified into 131 classes and the train dataset is classified into

129 classes. We use the train dataset only in Section 6.4.2.2and for other cases we

only use the test dataset.

• Engineer Shape Benchmark (ESB) [67]. This is a CAD model database which con-

tains 867 models, classified into 45 classes.

• National Taiwan University database (NTU) [23]. This database contains 1833 3D

models and only 549 3D models are grouped into 47 classes and the rest 1284 models

are assigned as the “miscellaneous”.

• Konstanze 3D Model Benchmark (CCCC) [190]. CCCC comprises 1838 models

and 473 models are grouped into 55 types and other 1365 modelsare unclassified.

• McGill 3D Shape Benchmark (MSB)[168]. This database is to test the performance

of articulated or non-rigid models, such as humans and ants.It is composed of 19

classes and 457 models.

• NIST Generic Shape Benchmark (NIST) [3, 36]. This database is to overcome sev-

eral shortcomings or biases of previous benchmarks, such asdifferent sizes of each

class. It contains 800 models, classified into 40 classes, 20models each.

• AIM@Shape Watertight Models Benchmark (WMB ) [187]. The dataset has 400

watertight models, divided into 20 classes, 20 each.

To evaluate the 3D model retrieval performance, we employsevenmetrics including Preci-

sion-Recall, Nearest Neighbor (NN), First Tier (FT), Second Tier (ST), E-measure (E),
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Discounted Cumulative Gain (DCG) [167] and Average Precision (AP). Precision indicates

how much percentage of the topK models belongs to the same class as the query model

while recall means how much percentage of a class has been retrieved among the topK

retrieval list. NN measures the percentage of the closest matches that are relevant models.

FT is the recall of the topC−1 list, whereC is the cardinality of the relevant class of the

query model. Similarly, ST is the recall of the top 2(C−1) list. E is used to measure the

performance of the retrieval results with a fixed length, e.g. the first 32 models. It combines

both the precisionP and recall performanceR: E = 2/( 1
P + 1

R). DCG is another accuracy

measure of the retrieval list based on the idea that relevantmodels with different positions

will have different weights. The nearer the relevant modelsare, the higher the weights will

be assigned.DCG is defined as the summed weighted value related to the positions of the

relevant models. AP is to measure the overall performance and it combines precision, recall

as well as ranking positions. A good AP needs both high recalland precision. AP can be

computed by counting the total area under the Precision-Recall curve.

1.2 Overview of Our Research

In this research, we have proposed algorithms to tacklethe first three aforementioned chal-

lenges by adopting a view-based approach. Usually, human perception and understanding

of a 3D object are based on several views of the object.According to the human vision

theory proposed by David Marr [117], vision proceeds from a 2D visual array as input

to a 3D description of the world as output. It includes three stages: (1) a 2D or primal

sketch of a scene comprising of fundamental features like edges and regions; (2) a 2.5D

sketch of the scene, where textures, colors and shadings provide depth information; (3) a

3D model, where the scene is presented in our mind in the form of a continuous 3D map.

Since the first stage is dealing with the most important and basic information of a scene,
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the 3D shape information existing in the 2D primal sketch provides us the most crucial

and fundamental information during the process of human perception of a 3D object while

the depth information functions as a complement for better analysis and understanding.

Therefore, we mainly concentrate on the 3D shape information extraction based on multi-

ple 2D views of a 3D object for our 3D model retrieval research. According to the field of

multiple view geometry [53], we can estimate the depth information of an object based on

the pixel disparity information existed in its multiple views. Thus, based on several views

captured around an object, we can estimate the 3D locations of the sample points on the

surface of the 3D object, that is we can percept its shape information. Therefore, we can

use appropriate number of sample views to approximately represent a 3D object.

The reason of our selection of view-based approach is also based on the fact that this type of

technique often achieves better performance compared to many geometric-based methods.

It is also proved by our proposed algorithms. For example, based on the observation that

for many objects, one of their canonical views (that is, either front-back view or left-right

view or top-bottom view) has a minimum projection area compared to the other arbitrary

views of the objects, we propose a view-based 3D model alignment approach which outper-

forms commonly used approaches such as Principal ComponentAnalysis (PCA)[49, 71],

Continuous Principal Component Analysis (CPCA) [190] and Normal Principal Compo-

nent Analysis (NPCA) [146]. To support multi-modal queriesincluding both 2D and 3D

queries, we propose a view-based 3D shape descriptor named view context. In addition,

hybrid approach is also usedin proposing a 3D shape descriptorin our project: motivated

by the fact that different types of features are effective incharacterizing different types of

models, we develop hybrid feature ZFDR by taking the advantages of both view-based and

geometry-based techniques. By adopting a view-based framework, we have proposed four

algorithms for the first three challenges:
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• Minimum Projection Area (MPA) Based 3D Model Alignment Algorithm . This

is for the third challenge of developing better 3D model alignment algorithms to im-

prove retrieval performance of rotation-dependent shape descriptors. The basic idea

of our alignment algorithm MPA is successively finding threeperpendicular prin-

ciple axes with minimum projection areas to align a model: the first principle axis

gives the minimum projection area when we perform an orthographic projection of

the model in the direction parallel to this axis, the second axis is perpendicular to the

first axis and gives the minimum projection area, and the third axis is the cross prod-

uct of the first two axes. We devise an optimization method based on Particle Swarm

Optimization (PSO) [34] to efficiently find the axis with minimum projection area.

For application in retrieval, we further perform axis ordering and orientation in order

to align similar models in similar poses. We have tested MPA on several standard

databases which include rigid/non-rigid and open/watertight models. Experimen-

tal results demonstrate that MPA has a good performance in finding alignment axes

which are parallel to the ideal canonical coordinate frame of models and aligning

similar models in similar poses under different conditionssuch as model variations,

noise and initial poses. In addition, it achieves a better 3Dmodel retrieval perfor-

mance than several commonly used approaches such as CPCA, NPCA and PCA.

One example to demonstrate this is shown in Fig. 1.1.

(a) PCA (b) CPCA (c) NPCA (d) MPA

Figure 1.1: An example demonstrating thatour MPA can find more accurate alignment
axes than PCA, CPCA and NPCA.
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• View Context 3D Shape Descriptor and Related Retrieval Algorithm. It is a new

view-based shape descriptor dedicated to the first challenge. View context captures

the shape appearance deviation of a 3D model by measuring thedifference between

the current view and a set of arranged views. It can differentiate models based on the

fact that similar models have similar view contexts and the view contexts of models

from different classes are usually distinctively different. Fig. 1.2 shows the view

context features of several example models. We develop a combined shape descriptor

based on view context. Experimental results demonstrate that this combined shape

descriptor outperforms the related view-based Light Fielddescriptor.
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Figure 1.2:View context [95] of six models. (a)∼(f): six models; (g)∼(l): matrix represen-
tation of the view context of the initial poses of the models in (a)∼(f). (m): view context
plots. 12 arranged views are selected.

• Sketch-Based Retrieval (SBR) Algorithm byIncorporating 2D-3D Alignment

Step. It is dedicated to the second challenge of multi-modal retrieval to support other

queries such as 2D sketches/images besides 3D models.Besides the differentiation

property of view context for different models,we founda new property of it: view

contexts of different views of the same model are also often different. This property

can be utilized todistinguish different views of the same model, which is employed
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(a) Yoon et al.’s [201] retrieval results

(b) Our retrieval results

Figure 1.3:A sketch-based retrieval example indicating our better performance than the
state-of-the-art sketch-based retrieval algorithm proposed by Yoon et al. [201]. The left
most of each row is the query sketch.

for integrating an efficient 2D sketch-3D model alignment step in our sketch-based

retrieval algorithm.

Our sketch-based retrieval algorithm is based on the view context 3D model feature

and 2D relative shape context matching. To enhance the accuracy of 2D sketch-3D

model correspondence as well as the retrieval performance,we propose to align a

3D model with a query 2D sketch before measuring their distance. Based on view

context, we can efficiently select some candidate views froma set of densely sam-

pled views of the 3D model to align the sketch and the model based on their view

context similarities. Our sketch-based retrieval algorithm is composed of two stages

which are precomputation and retrieval. The retrieval stage comprises two steps

which are 2D-3D alignment and 2D-3D matching. Comparative and evaluative ex-

periments based on hand-drawn and standard line drawing sketches demonstrate the

effectiveness and robustness of our approach and it significantly outperforms several

latest sketch-based retrieval algorithms. One example indicating our better perfor-

mance than the state-of-the-art sketch-based retrieval algorithm proposed by Yoon et

al. [201] is demonstrated in Fig. 1.3.

• Class-Based Retrieval (CBR) Algorithm Utilizing Hybrid Features. It is designed

for the second challenge of new retrieval framework. It is dedicated for the retrieval

on a classified 3D model database by adopting a new retrieval framework by taking
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into account the class information and a proposed hybrid shape descriptor named

ZFDR. An integrated distance metric is defined to combine themodel distance be-

tween the query model and a target model in a class of a database as well as the

class distance between the query model and the class. The hybrid feature ZFDR is

composed of four components which characterize a 3D model from different aspects

and it itself is already comparable to or better than severalrelated shape descriptors.

Fig. 1.4 shows a retrieval example using pure ZFDR descriptor and our complete

class-based retrieval algorithm CBR-ZFDR.

Our CBR approach is general and can be used with any shape descriptors to im-

prove their retrieval performance. Extensive generic and partial 3D model retrieval

experiments on seven standard databases demonstrate that after we employ CBR, the

retrieval performance of our algorithm CBR-ZFDR is evidently improved and the

result is better than that achieved by the state-of-the-artmethod on each database in

terms of most of the commonly used performance metrics.

1.3 Contributions

Motivated by the existing challenges and previous work in 3D model retrieval research,

we have done substantial research in several aspects and proposed our solutions by mainly

adopting a view-based framework. Specifically, we contribute in the followingthreeas-

pects:

• We propose a novel Minimum Projection Area-based (MPA) alignment method for

pose normalization. It outperforms current available 3D alignment algorithms includ-

ing PCA, CPCA and NPCA and we also found it improves the retrieval performance

of rotation-dependent shape descriptors such as modified Light Field descriptor. In a

word, we have made substantial contribution to the researchof 3D model alignment,
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(a) ZFDR

(b) CBR-ZFDR

Figure 1.4: A retrieval example in the Princeton Shape Benchmark (PSB) [167] database
using ZFDR and CBR-ZFDR to indicate that CBR pushes the irrelevant models to the rear
part of the retrieval list. Green: query models; Blue: correct class; Red: wrong class. The
distances are shown above the images. In total, there are sixmodels in the horse class that
the query model belongs to.

an important aspect of 3D model retrieval techniques, by proposing an alignment

algorithm with better performance.

• We develop a new 3D model feature named view context which supports multi-modal

queries. We propose a view context descriptor for retrievalusing 3D model queries

and a 2D sketch-3D model alignment algorithm for retrieval using sketch queries.

Our proposed view context-based shape descriptor achievesa better performance

than the related view-based Light Field descriptor. Our sketch-based retrieval al-

gorithm based on the view context 3D model feature and 2D relative shape con-

12



CHAPTER 1. INTRODUCTION

text matching also achieves significantly better performance than the state-of-the-art

sketch-based retrieval algorithm. In a word, we contributein the following two re-

lated aspects: (1) developing a 3D shape descriptor supporting multi-modal queries

by defining the view context shape descriptor; (2) fosteringthe research of sketch-

based 3D model retrieval by the first proposal of incorporating a 2D sketch-3D model

alignment step for more accurate 2D-3D matching for retrieval, as well as by the ap-

parent improvement in the sketch-based retrieval performance.

• We advise a new retrieval algorithm utilizing Class-Based Retrieval (CBR) frame-

work and hybrid features. Our proposed hybrid shape descriptor ZFDR achieves

comparable or better performance compared to several related shape descriptors; we

are also the first to utilize the class information “already”available in the classi-

fied 3D model database to develop a general class-based retrieval approach which

can be applied to any shape descriptors to improve their retrieval performance. Our

extensive experiments also demonstrate that the retrievalperformance is evidently

improved after adopting our CBR framework.

1.4 Thesis Organization

The thesis is organized as follows.

• Chapter 2reviewsthe related work in 3D model retrieval and 3D model alignment

techniques.

• Chapter 3first presentsthe Minimum Projection Area-based (MPA) 3D model align-

ment algorithm and then shows two evaluation experiments with respect to axes ac-

curacy and retrieval performance.
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• Chapter 4first presentsthe idea of view context 3D model feature and based on it

we propose a view context shape descriptor to depict the visual appearance devia-

tion feature of a 3D model. Then, a 3D model retrieval algorithm using the view

context shape descriptor is explained. Finally, the retrieval experiments results are

demonstrated.

• Chapter 5 proposes a sketch-based retrieval algorithmby incorporating an efficient

2D-3D alignment.We first introduce the 2D and 3D feature extraction. After that,

our sketch-based 3D model retrieval algorithm which utilizes the proposed view con-

text feature for an efficient 2D-3D alignment is proposed andfinally evaluative and

comparative experiments are conducted.

• Chapter 6presents a new retrieval algorithm utilizing hybrid features and class in-

formation for query on classified 3D database.The hybrid shape descriptor ZFDR

is first presented followed by the details of our class-based3D model retrieval algo-

rithm CBR-ZFDR which uses ZFDR. Then, extensive experiments, for generic and

partial retrieval, on seven standard 3D databases are demonstrated.

• Chapter 7contains the conclusions and future work. We firstdraw a conclusion on

the thesis work and then proposetwo new directions for theresearchtopics of sketch-

based 3D model retrieval and partial similarity 3D model retrievalas the future work.
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Chapter 2

Related Work

In this chapter, we present a literature review on research areas related to our project. The

main objective of our project is to propose solutions to dealwith the challenges in 3D

model retrieval. Therefore, we first review 3D retrieval techniques in Sections 2.1∼2.3:

generic, partial and sketch-based 3D model retrieval. For sketch-based 3D model retrieval,

we propose to estimatethe pose information of a 3D model to correspond to a 2D sketch

for an accurate 2D sketch-3D model correspondence. Thus, fora comparison,in Section

2.3 both the 2D sketch-3D model alignment and generic 2Dimage-3D modelalignment

techniques arealso reviewed.Since 3D model alignment is often needed in 3D model

retrieval techniques, we review existing 3D model alignment methods in Section 2.4. We

compare the algorithms we have proposed with the related work in Section 2.5.

2.1 Generic 3D Model Retrieval

Natraj et al. [63] and Tangelder et al. [176] reviewed and classified current typical 3D

model retrieval techniques in their respective survey. Theexisting generic 3D model re-

trieval techniques can be classified into three categories:geometry-based, view-based and

hybrid techniques. Geometry-based techniques use the distribution of geometric elements,
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such as vertices and faces, or some intrinsic topological structures to characterize the fea-

tures of 3D models while view-based techniques extract features based on the rendered

view images. Hybrid techniques employ both geometry-basedand view-based techniques.

2.1.1 Geometry-Based Techniques

Most of the previous work in 3D model retrieval belongs to thegeometry-based techniques.

This type of approach uses the distribution of 3D features to characterize the geometric

information of a 3D model. The 3D features can be either global, such as shape distribution

[135] and shape histogram [4], or local, such as, 3D shape context [41, 60, 80], Extended

Gaussian Images (EGI) [55] and conformal factor [11].

Shape distribution focuseson geometric shape function that measures the distance between

two random points on the surface ofamodel. Shape histogram [4] is an extension of the 2D

shape matching techniques to 3D. For each surface point, it computes the distance from the

center of mass and spherical angle. The distance distribution is encoded into a histogram,

whose bins are formed according to three types of 3D space partitioning methods: Shells

(only use distance), Sectors (only use spherical angle) andSpider Web (use both). 3D

shape context is based on the idea of 2D shape context [10], which is a log-polar histogram

and defines the relative distribution of other points with respect to a point.Based on the

aforementioned different 3D space partitioning methods, three forms of 3D shape context

have been proposed accordingly: the support of volume 3D shape context [41] based on

the Shell model, the 3D cylindrical shape context [60] usingthe Sector model and the 3D

point shape context [80] utilizing the Spider web model.

Ben-Chen and Gotsman [11] proposeda 3D shape descriptor named conformal factor

which depicts the amount of local work involved to transforma model into a sphere.

Graph-based methods[54, 173]use skeleton or topology graph to represent a 3D model
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and employ a graph matching method to measure the distance between two graphs.Kazh-

dan et al. [78] employed spherical harmonics to decompose a spherical function (e.g. shape

histogram) into orthogonal component while preserving thenorms, thus there is no need to

align 3D models’ orientations when computing their similarities. It can make a rotation-

dependent shape descriptor based on spherical function to be rotation-invariant, but it also

decreases the discrimination power of retrieval.

Recently, Shih and Chen[166] proposed anangularradial transformation-basedelevation

descriptor (ART-ED)and a shell grid descriptor to encode theexternal and internalshape

information of a 3D model, respectively. By employing Poisson equation to depict a 3D

object,Pan et al. [139] proposed a Poisson histogram descriptor to depict the structural

feature of a 3D model.

During the past few years, geodesic distance and spectrum analysis approaches have re-

ceived much attention, especially for dealing with the retrieval of non-rigid 3D models. We

give a brief review for them as follows.

2.1.1.1 Geodesic Distance-Based Descriptors

Geodesic distance is an inelastic deformation invariant distance metric, thus popular for the

analysis and recognition of non-rigid objects. Typically,the extractedgeodesic distance-

based feature is a geodesic distance matrix (GDM) measuring the distances among a set of

points uniformly sampled on the surface of an object.

To deal with deformable 3D model retrieval, Smeets et al. [169] proposed a modal represen-

tation method based on the singular value decomposition (SVD) of the geodesic distance

matrix of a 3D model. They utilized several largest eigenvalues of a GDM as the shape

descriptor and this modal approach outperforms the directGDM histogram comparison

method. To improvethe retrieval performance further, in [170], they advised to combine
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GDM with diffusion distance tensors (DDT) to utilize their respective advantages. They

found that GDM has advantages in differentiating small inter-class variations while DDT

performs better with respect to noise and topology robustness.

Rabin et al. [149] devised a geodesic distance-based 2D and 3D shape retrieval algorithm.

They employed several global or local geodesic distance-based features (e.g. geodesic dis-

tance distributionandgeodesic quantilemeasures) to form a hybrid feature set comprising

several distributions andutilizedWasserstein metric [188] to measure the distance between

two joint distributions.

Different from the above algorithms which use a 2D geodesic distance matrix to represent

a 3D model, Hamza and Krim [50] proposed to use a geodesic shape distribution. The idea

is similar to shape distribution [135] but they adopted the kernel density estimation (KDE)

to associate with the geodesic distance shape distributionof the model to approximate its

probability density function and utilized Jensen-Shannondivergence distance to measure

the dissimilarity of two probability distributions.

2.1.1.2 Laplace-Beltrami Spectrum Analysis Method

Spectrum analysis on 3D models has been steadily become an important research field in

the community of geometry processing and analysis. Two goodsurveys about spectral ge-

ometry processing methods are presented by Zhang et al. [207] and Lévy [93], respectively.

The pioneer work of applying Laplace-Beltrami spectrum forshape analysis is proposed by

Reuter et al. [155]. They defined a 3D shape descriptor which they called “Shape-DNA”.

It is composed of the eigenvalues of the Laplace-Beltrami operator of a 3D model.An-

other pioneering work which applies spectrum analysis on articulated or non-rigid models

is proposed by Jain et al. [64, 65]. They inspirefollowing work in several related fields: (1)
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shape matching and retrieval[59, 154, 169]; (2) shape analysis: [46]; (3)shape segmen-

tation[30, 103, 152, 153]; (4) shape correspondence[65, 183]; and (5)shape registration

[152].

Besides the standard definitions of Laplace-Beltrami operators, Wu et al. [196] proposed a

symmetric mean-value Laplace-Beltrami representation based on manifold harmonic anal-

ysis. They extendedtheLaplace-Beltrami operator representations toanew representation

which hasa better reconstruction quality. Based on this, they further performed spectral

analysis on a local region and combined it with the global version to form a hybrid one for

both global and partial similarity matching. The basic framework for feature extraction is

still as the same as its precedents, but utilizes a pyramid matching method for the feature

matching process based on the histogram-based representation. Unfortunately, they did

not perform the algorithm on a database level and only showedone retrieval example. In

addition, several methods also have been proposed for efficient Laplace-Beltrami spectrum

computation for a 3D mesh, such as[9, 120, 182].

2.1.1.3 Heat Kernel Descriptors

Heat kernelkt(x,y) is defined as the probability/amount of the heat that has beentrans-

ferred from a unit heat source pointx to pointy. It is the fundamental solution to the heat

equation, an important function to study heat conduction and diffusion. We can also use

heat kernel for Laplacian spectrum analysis based on the relationship between their eigen-

values and eigenfunctions:ρi=e−tλi , whereρi andλi are the eigenvalues of heat kernel and

Laplace-Beltrami operators respectively, and they also have the same eigenfunctionsφi for

the corresponding eigenvaluesρi andλi.

Sun et al. [172] first proposed a novel shape descriptor namedHeat Kernel Signature (HKS)

in 2009. HKS measures how much percentage of the heat will transfer from a point on the
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surface of a model to other points at timet. It has many good properties, such as isometry-

invariant, multi-scale, robust and informative. The Heat Kernel Signatures at all the points

of a model can uniquely define the model up to isometry. HKS canbe utilized for many

applications, such as shape correspondence [138], shape registration, shape retrieval and

partial matching [31].

Dey et al. [31] further applied persistent homology to detect a stable set of feature points

with maximum HKS and a feature vector of the combination of its HKS values at different

time scales. Shape distance is defined as the minimum L1-distance between two sets of

feature vectors. One advantage of this shape descriptor is that it is applicable for either

partial, incomplete or complete models.

Ovsjanikov et al. [137] developed a HKS-based scale-invariant shape descriptor in 3D

space by an analogy to the scale invariant feature transform(SIFT) [110] in 2D space.

They applied the framework of Bag-of-Features (BoF) to the HKS feature space and further

integrated the spatial relationship constraints into it todevelop a spatially-sensitive Bag-of-

Features for non-rigid shape retrieval.

Recently, Bronstein and Kokkinos [16] developed a scale-invariant heat kernel signature

(SI-HKS) for non-rigid shape recognition. It apparently outperforms HKS and “Shape-

DNA” on a database named ShapeGoogle [137], which comprisesboth non-rigid and rigid

models. Bronstein et al. [15] explored the applicability ofdiffusion distances within the

Gromov-Hausdorff framework. Raviv et al. [150] proposed a volumetric heat kernel by

extending HKS to an isometry-invariant volumetric descriptor.

To accelerate the computation of heat kernels on a mesh, a multi-resolution approach uti-

lizing the heat kernel in a 2D space is proposed by Vaxman et al [184]. It shortens the

computation time neededby traditional methods while maintaining a good approximation.

This approach is specially good for heat kernel computationfor models with many details.
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2.1.2 View-Based Techniques

Rather than extracting the 3D features directly as the geometry-based techniques, view-

based techniques represent a 3D model using a set of views andthe visual similarities

between the view images of different models are compared with each other to measure

model differences. Multiple view descriptor [68], Light Field descriptor [23] and our pro-

posed view context shape descriptor (Chapter 4) belong to this category. Multiple view

descriptor classifies models by comparing the views rendered from the primary, secondary

and tertiary viewing directions of principle axes after an alignment with PCA[71]. Chen

et al. [23] proposed the Light Field descriptor to define the distance of two models as the

minimum distance between their 10 corresponding silhouette views, rendered from the ver-

tices of a dodecahedron using the orthographic projection.An alignment process is also

proposed to find this minimum distance and it is simplified by rotating a camera system

which consists of 20 cameras set on the vertices of a regular dodecahedron. Therefore,

essentially, the Light Field descriptor defines a 3D model alignment method to compare

models. The features in each image are encoded using the Zernike moments and Fourier

descriptor.

Chaouch and Verroust-Blondet [21] proposed a multi-view depth line approach (MDLA)

to represent a 3D model. 20 depth images, rendered from the vertices of a regular dodeca-

hedron, are coded into sequences of symbols and then the dynamic programming method

is employed to measure their differences. It can achievea better performance than the

famous Light Field descriptor. Salient local visual feature-based retrieval method [131]

adopts the Bag-Of-Features (BoF) framework to accumulate the Scale Invariant Feature

Transform (SIFT) [110] features of multiple depth views into an occurrence histogramto

representa 3D model.It first renders a set of depth view images for a 3D model and then

extracts the multi-scale local features of these views using SIFT, which is invariant to trans-

lation, scaling and rotation. Finally, it fuses all these local features into a histogram using
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theBag-Of-Features (BoF) approach, which accumulates the visual words (extended from

the bag-of-words in text retrieval) of multiple views into asingleoccurrencehistogram to

represent the feature of a 3D model.

Recently,Daras and Axenopoulos [29] developed a multi-view descriptor that supports

multi-modal queries including 3D models, 2D images and 2D silhouette sketches. To ex-

tract 3D model features, they rendered multiple silhouetteor depth sample views for a 3D

model and utilized Zernike moments and Krawtchouk moments [200] to represent their

features. Experiments on the PSB database demonstrate thatif using silhouette views the

performance is very similar to Light Field and using depth views can achieve a slightly

better performance than Light Field. To demonstrate the performance of retrieval using

sketch queries, they directly used rendered silhouette views of the 3D models in the target

database, which apparently has some bias because users often draw a sketch as the query

without knowing the information about the 3D models in the target database.

Lian et al. [100] proposed a view-based descriptor whichalsoadopts the BoF approach

to extract the SIFT features of a view and utilizes an efficient multi-view shape matching

approach to find the minimum distance between the corresponding views of two models.

They considered the 24 axes permutations of a normalized 3D model. Axenopoulos et al.

[8] also adopted a view-based approach but relied on a more accurate 3D model alignment

method.

2.1.3 Hybrid Techniques

Hybrid approach employs both the visual and geometric information of a 3D model. Sev-

eral hybrid shape descriptorswith superior retrieval performance and promising results

have been proposed in recent years. DESIRE [191] is a hybrid shape descriptor which com-

prises three shape descriptors: depth buffer-based descriptor, silhouette-based descriptor
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and ray-based with spherical harmonic representation descriptor. Depth-buffer based de-

scriptor is composed of the 2D Fourier coefficients of six depth buffer images. Silhouette-

based descriptor appliesone-dimensionalFourier transform to three silhouette views to

extract the features. Ray-based with spherical harmonic representation descriptor first ex-

tracts the ray-based feature vector in the spatial domain based on the outmost intersections

between the model and a set of rays emanating from the center of the model and then

transforms the obtained features from spatial domain to thespectral domain by Spherical

Harmonics Transform [78]. DESIRE achievessuperior performances than several famous

view-based and geometry-based techniques, such as Light Field [23] and Spherical har-

monics [78].

Papadakis et al. [141] proposed another hybrid 3D shape descriptor by combining both

depth buffer-based 2D features and spherical harmonics-based 3D features. Papadakis et

al. [142] presented another novel hybrid 3D shape descriptor named PANORAMA using

a set of panoramic views of a 3D model. The panoramic views notonly capture the vi-

sual information of the 3D model but also contain the geometric information, such as the

3D location and orientation of the model’s surface. The views are generated by projecting

the model to three axis-aligned cylinders respectively andthen unfolding the projection

images into 2D images. They usedtheFourier and wavelet transforms to extract the fea-

tures for each panoramic view. Recently, Leng and Xiong [89]proposed a hybrid shape

descriptornamed TUGE which combines thetwo-view version of the depth buffer-based

shape descriptor in [190] and theGEDT shape descriptor in [43]. It has a slightly better

performance than DESIRE.

According to our knowledge, PANORAMA achieves the bestoverallperformance on sev-

eral 3D model databases, including PSB [167], ESB [67], CCCC[190] and NIST [36],

among the available existing shape descriptors.
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2.1.4 Using Class Information

Class-based retrieval scheme has been used in document retrieval or classification [51, 105].

For example, Han et al. [51] first applied centroid-based classifier to automatic text cate-

gorization and achieved good performance. With the growth in 3D model retrieval re-

search, class-based retrieval scheme was introduced to improve retrieval performance. For

instance, Hou et al. [56] proposed a retrieval approach based on semantic labeling: first as-

sign the relevant class for a query model based on the SupportVector Machine (SVM) clus-

tering information of the target 3D model database and then rank all the models belonging

to the relevant class based on a feature vector selection technique which is also dependent

on the clustering results. Apparently, the accuracy of the first several nearest neighbors

is highly dependent on the semantic clustering results. Some other learning-based ex-

ample algorithms include those based on supervised [83, 84,85, 195] or semi-supervised

[132, 198] learning algorithms. Xu and Li [197] defined the distance between two models

by adding the weighted difference between their back propagation neural network (BPNN)

3D model classification output vectors and the Euclidean (L2) distance between their 3D

moment feature vectors. Biasotti et al. [13] proposed a 3D model classification approach by

comparing a query model with several prototypes selected torepresent a classand applied

this prototype-based schemeinto a 3D model retrieval application. They made a compari-

son studybetween the prototype-based retrieval methods and the commonly used Nearest

Neighbor (NN)-basedand the results show that NN achieves the best retrieval accuracy,

though may be slower.

Tatsuma and Anon [177] designed a hybrid shape descriptor named multi-Fourier spectra

descriptor (MFSD) by applying 2D or 3D Fourier transform to the contour, silhouette and

depth images or the voxelization representation of a 3D model. They also utilized a spectral

clustering method to cluster the models before retrieval. To measure the distance between

24



CHAPTER 2. RELATED WORK

the query model and a target model in a clustered database, they usedanaddition operator

to combine the minimum distance between the query model and the models in the most

relevant cluster as well as the model distance between the query model and the target model.

According to our knowledge, this is the only existing algorithm that directly combines the

cluster distance and model distance to form ajoint distance for 3D model retrieval.

2.2 Partial 3D Model Retrieval

2.2.1 Partial Retrieval Techniques

Partial retrieval can be mainly classified into two groups: (1) graph-based, such as Tierny

et al.’s [179] Reeb Pattern Unfolding (RPU) method, Biasotti et al.’s [14] Extended Reeb

Graph (ERG) approach, and Cornea et al.’s [26] skeleton matching-based approach (COR-

NEA); (2) local feature-based, such as Toldo et al.’s [180] Bag-of-Words component Fea-

ture based approach (BoF), Liu et al.’s Shape Topics [107] and Gal and Cohen-Or’s salient

local features [45]. The main idea and performance of the above partial retrieval approaches

are as follows.

RPU [179] is a graph-based partial 3D retrieval method basedon the reeb graph representa-

tion. First, it segments the model based on reeb graph and encodes the relationship of parts

into a dual reeb graph. Then, the concept of “reeb pattern” ona reeb graph is introduced to

speed up the process of partial matching. It needs 4∼30 sec to process a query model with

a 3 GHz P4 PC.

ERG [14] is a graph-based approach based on Extended Reeb Graph (ERG) shape descrip-

tor, which contains not only structural but also geometrical information of a model. A

directed attributed graph matching method is adopted to findthe maximum common sub-

parts between two ERGs. It can be roughly estimated based on the provided performance
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data [14] that ERG needs at least 3∼11 sec (1.4 sec for feature matching, and 1.5∼10 sec

for the preprocessing of feature matching) using a 3.4 GHz PC.

CORNEA [26] is a graph-based approach which extends the skeleton-based matching

framework by Sundar et al. [173] with more robust and efficient skeletonization and match-

ing algorithms. The skeletonization is performed by propagating normals to the interior of

a 3D model and the matching is based on a distribution-based graph matching method uti-

lizing a distance measure between distributions called Earth Mover’s Distance (EMD) [24].

There is no computational time information provided in the paper.

BoF [180] is a local feature-based approach by extending the2D Bag-of-Words (BoW)

features to represent 3D components. First, it segments a 3Dmodel into several subparts

and then extracts a local feature for each subpart. Next, thelocal features are clustered to

define a 3D vocabulary. Finally, it uses an occurrence histogram as the shape signature for

a subpart or a complete model to do the matching. It needs about 5.5 sec to process a query

model on a 1.66 GHz laptop.

Shape Topics [107] uses spin image [70] as local feature and also adopted a similar Bag-of-

Feature framework for partial matching. Salient geometricfeatures [45] are defined based

on a local region characterized by curvature and area. They are employed to extract local

shape descriptors to represent the salient parts of a 3D model and thus used to match similar

parts of different models. Ferreira et al. [38] presented a shape decomposition method for

parts-based retrieval by considering the contextual information of the parts from the same

collection.

Marini et al. [115] studied the feature selection issue for spectral matching based on three

approaches, such as Hill climbing and Adaboost. They found that not all eigenvalues are

necessary for shape matching. Wessel and Klein [195] proposed to decompose a man-made

object into primitives and then learn its compositional relationship for 3D model retrieval.
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In fact, this primitive-level decomposition method may be also useful for partial similarity

retrieval.

Liu et al. [106] proposed to learn a ground distance to adapt the Earth Mover’s Distance

(EMD) framework for partial similarity matching. Attene etal. [7] extended the coarse-

to-fine strategy to part-in-whole 3D shape matching scenario to shorten the matching time.

They utilized layered or onion 3D shape descriptors and in aniterative manner, they used

increasing portions of the features for the search each timetill to the whole descriptor.

3D mesh segmentation are often employed in partial 3D retrieval algorithms and different

approaches have been proposed to partition a mesh into semantic parts. Typical methods

include graph cut [76], fuzzy clustering [77], spectral clustering [103], fitting primitives

[6], shape diameter function (SDF) [164], random cut [48] and learning method [74]. For a

point on the surface of a model, shape diameter function (SDF) is to define the local diam-

eter information in terms of its neighboring volume within the region of a cone, centered

around the opposite normal of the point and with a default opening angle of 120◦. Recently,

Kalogerakis et al. [74] proposed a data-driven approach to learn the segmentation of a 3D

model. They utilized several available features includingshape context, SDF, geodesic

distances and spin image [70]. They also found that shape context is the most important

feature. They formulated theobjectivefunction based on Conditional Random Field (CRF)

[82] model and adopted JointBoost [181] classifier for the segmentation.

2.2.2 3D Parts Analysis

3D parts analysis is important and often employed in partial3D model retrieval. Shapira

et al. [162, 163]proposed a method for 3D model contextual parts analysis by using a

partition based approach. They adopted the shape diameter function (SDF) defined in [164]

for 3D model segmentation. For the segmented parts, they defined a part shape descriptor
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integrating several local features such as shape diameter distribution, shape distribution

[136] and conformal factor [11]. Based on the local features, they defined a contextual-

aware distance metric and applied it into parts retrieval and parts annotation. The main

shortcoming is thatthe approach is highly restricted to the initial segmentation of the 3D

objects in the target database.

Liu et al. [104] defined a part-aware feature named Volumetric Shape Image (VSI) to

encode the visibility information of a surface point based on SDF [164]. A combination

of VSI, geodesic and normal features is utilized to define a part-aware surface metric. The

main issue is the efficiencyof computing VSI(e.g.,15 seconds for a dragon model with

50K faces). Similarly, the parts selectionis dependent on the initial segmentation method

for target models.

2.3 Sketch-Based 3D Model Retrieval

Sketch-based 3D model retrieval is to retrieve 3D models usinga 2D sketchas input. This

scheme is intuitive and convenient for users to search for relevant 3D models and also

important for several applicationsincludingsketch-based modeling [134] and sketch-based

recognition [202]. One exampleof integratinga sketch-based retrievalalgorithm into a

sketch-based modelingprocessis proposed by Fonseca et al. [40]. Dependent on the 3D

model view sampling strategy adopted in the retrieval algorithm, we classify current sketch-

based 3D model retrieval techniques into two categories: using predefined views and using

clustered views.

2.3.1 Using Predefined Views

Funkhouser et al. [43] developed a search engine that supports 2D/3D sketch queries. To

measure the distance between a 2D sketch and a 3D model, they applied the 3D spherical
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harmonics [78] method to the 2D sketch in an analogous way to extract a rotation-invariant

amplitude-related feature vector and then compared it withthose of a13 sample views.

Similarly, Pu and Ramani [147, 148] extended 3D spherical harmonics [78] and shape dis-

tribution [135] from 3D models to 2D drawings and proposed a 2.5D spherical harmonics

and 2D shape histogram respectively for the retrieval of CADdrawings. Lee et al. [88]

matched a sketch with24 possible orthogonal contour views, based on 6 standard view

directions and 4 axis-aligned up-vectors. Squared distance transform is then applied and a

sum of squared distances-based similarity metric is adopted to measure the sketch-model

distance. Hou and Ramani [57, 58] used a multi-classifier to estimate the probability of

the sketch belonging to each class and adopted a classifier combination scheme to find rel-

evant classes.Cao et al. [18] proposed a different retrieval framework by reconstruction

of a 3D query model using Bezier surface representation based on user drawn sketches. It

constructs an accurate enough 3D query model where users need to draw enough curves

to specify the features, which means it may take more time forusers to perform retrieval.

They mainly compared the performances of different relevance feedback methods using

several models and did not compare with other retrieval algorithms using a whole bench-

mark database.

Kanai [75] proposed a sketch-based retrieval interface by employing two rotation-invariant

features, which are generic Fourier descriptor (GFD) [204]and a variation of local binary

pattern (LBP) initially proposed by Ojala et al. [133], to measure the distance between

a 2D sketch and a rendered view of a 3D model. Wang et al. [192] proposed a sketch-

based CAD model retrieval interface using three sketches and a skeleton image as input.

To measure the similarity of a 2D outline sketch and the outlines of a 3D model, they

adopted angular radial partitioning (ARP) [19]. It decomposesan outline sketchinto a

set of angular radial sectors, then applies Fourier transform to the statistics of the feature

points’ distribution, and finally uses the rotation-invariant magnitude vector to represent
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the 2D sketch. However, they compared the sketch with only the 3 standard outline views

of a normalized 3D model. This is feasible for CAD model retrieval but not appropriate for

general 3D model retrieval,for which theposeof thequery sketch isoften not one of the

principle views.

Eitz et al. [119] sampled 50 views and utilized apparent ridges [73] to depict the features

of a 3D model to correspond with a 2D sketch.They tested on the PSB benchmark [167]

using several sketches but did not provide the overall performance. While, Mahmoudi

and Daoudi [112, 113] chose only 7 (3 principle and 4 secondary) characteristic views to

represent a 3D model.Eitz et al. [119] adopted a Bag-of-Features (BoF) framework to

develop an efficient sketch-based 3D model retrieval algorithm. They extracted the local

feature of Histogram of Gradient (HOG) for the subdivided patches of both sketch and

image. The HOG feature stores for each image cell the sum of squared gradient magnitudes

falling into one of six discrete orientation bins. Because of the local feature and the BoF

framework, the algorithm supports part-based retrieval. Takeda [175] proposed to utilize

a scale, shift, and rotation invariant shape descriptor named IMage Euclidean Distance

(IMED) [193] to measure the minimum distance between 20 uniformly sampled silhouette

views of a 3D model and 8 rotation images of a sketch.

Recently, Napoléon and Sahbi[125, 126]proposed another sketch-based retrieval algo-

rithm. They utilized a multi-scale convexity/concavity (MCC) shape representation [2] to

represent the contours of a set of (3∼9) sampled views. To speed up the retrieval, a pruning

strategy and a dynamic programming approach are adopted to match the MCC features of

the sketch and the contours. Yoon et al. [201] proposed a sketch-based retrieval algorithm

by matching the sketch with14 rendered suggestive contours[32] feature views of a model

based on the diffusion tensor fields feature representationfor the sketch and sampled views.

Using the same view sampling method and feature views as Yoonet al. [201], Saavedra
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et al. [158] proposed a sketch-based 3D model retrieval algorithm using a structure-based

local approach (STELA) and achieved a better performance than an improved histogram of

edge local orientations-based global approach (HELO) proposed by Saavedra and Bustos

[157].

To summarize, to avoid comparing the sketch with a large number of sample views, many

previous sketch-based 3D model retrieval algorithms adopted a 2D sketch-3D model match-

ing framework based on several predefined sample views. However, this framework has a

shortcoming with respect to how representative the sample views are and the accuracy of

the 2D-3D correspondence.

2.3.2 Using Clustered Views

Compared to the approaches based on predefined views, much less research work has been

done based on the strategy of view clustering.

Mokhtarian and Abbasi[1, 121, 122]proposed a view clustering method by matching the

rendered views and discarding the similar views whose matching costs fall in a predefined

threshold. They first created a list of similar views for eachsample view and then sorted

all the sample views based on the number of similar viewsthey haveand finally only kept

several top ones as the final characteristic views set.

Ansary et al. [5] proposed an image-based 3D model retrievalalgorithm by clustering

320 sample views into a set of characteristic views based on the Bayesian probabilistic

approach. They also developed a method to optimize the number (varying from 1 to 40)

of characteristic views based on the X-means [143] clustering method. Zernike moments

[79] are adopted to represent the views or 2D image queries. Unfortunately, only one demo

result for sketch queries was given and no overall performance were evaluated.
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2.3.3 2D Sketch-3D Model Alignment

In our proposed sketch-based 3D model retrieval algorithm,we propose aligning the sketch

with the 3D model, that is 2D sketch-3D model alignment, before 2D-3D matching.2D

sketch-3D model alignment is aligning a 2D sketch of an object with a similar 3D model.

It is important for related applications, such asmodel-based vision or recognition [109]

and sketch-based 3D modeling.For example, a concept sketch-based 3D modeling system

[91] also involves estimating the camera parameters of 2D sketches in order to establish

correspondences between the 2D features in the sketches andthose on the surface of a 3D

model.

Generic2D-3D alignment is to estimate the pose of a 3D model for a 2D image. Most

previous 2D-3D alignment methods[37, 61]are based on optimizing the rotation angles (φ ,

θ , ψ) and the translation parameters (Tx, Ty, Tz). For example, Lavallee et al. [86] extended

the famous 3D-3D optimization alignment algorithm Iterative Closest Point (ICP) [12] to

solve the 2D-3D alignment problem.

However, our research of 2D sketch-3D model alignment has several apparent differences

when compared with previous generic 2D-3D alignment algorithms. For a comparative

reference, we review generic 2D-3D alignment techniques inthis section.

2.3.3.1 Generic 2D-3D Alignment

2D-3D alignment usually comprises two steps: feature extraction and model transforma-

tion. The accuracy of the alignment result is highly dependent on the quality of feature

extraction and matching. According to the different features adopted, we classify 2D-

3D alignment into three types: mutual information-based, silhouette or contour-based and

other features-based methods. For a general 2D-3D alignment, registration and alignment

have the same meaning, so we use these two words interchangeably.
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Mutual Information-Based Methods. Viola et al. [189] introduced the concept of mutual

information (MI) as a similarity measure based on information theory. They demonstrated

its usage for aligning untextured 3D objects to images usingthe interpolated surface nor-

mals. Leventon et al. [92] used multiple views rather than only a single view to improve

the accuracy of the 2D-3D registration result based on the same frameworkof maximiza-

tion of mutual information. Liebelt et al. [102] combined the contour matching and mutual

information to measure the similarity of asynthetic aperture radar (SAR)image and a view

image of a 3D model. They also used an evolutionary strategy named particle swarm op-

timization (PSO) [34] to optimize the similarity measure. Maes et al. [111] proposed a

multimodality image registration algorithm by maximizinga more general notion of mu-

tual information. It can achieve subvoxel accuracy. Corsini et al. [27] designed a method

by measuring the mutual information difference between theimage to be registered and a

model’s renderings incorporating certain illumination-related geometric properties, such as

normals, reflection directions, and ambient occlusions. Itcan cover different conditions of

lighting or materials. In several publications, extensions to the classical MI formulation are

proposed, notably by introducing normalization terms [62].

Mutual information-based registration techniques are robust with respect to variations of

illumination [189]. However, they are based on the grayscale information of the views of

an object, rather than the geometric features, such as lines, curves and regions. Therefore,

it cannot be applied to solve our 2D sketch-3D model alignment problem.

Silhouette or Contour-Based Methods.These approaches usually optimize the spatial

distances between the silhouettes or contours of a 2D image and the projected contours of a

3D model. Iwashita et al. [62] proposed a fast alignment algorithm utilizing a 2D distance

map constructedusingthe level set method (LSM). They adoptedfast marching method

(FMM) [160] to rapidly construct a distance map on the 2D image plane. Finally, they
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compared the distances between the contours in the 2D distance map and the projections

of the 3D model to align the model. Lavallee et al. [86] utilized a precomputed 3D dis-

tance map of a freeform object for 3D pose estimation. The error metric is defined as the

minimum distance between the surface of the 3D model and a projection ray.The sum of

the error is minimized using the Levenberg-Marquardt[90, 116]method. To make the reg-

istration process more efficient, 3D distance from the surface is precomputed and stored in

an octree structure. Cyr et al. [28] proposed a global hierarchical shape matching approach

based on aspect graph segmentation of the object view space.They adopted a medial axis

metric to measure the topological difference between two views. First, a set of sampled

2D views are generated and matched against the given view. Next, additional views are

generated near the best view and the process is repeated until convergence.

Silhouette or contour-based alignment approaches performthe alignment process through

an optimization process by defining some error metrics. Thus, most related algorithms

compare the silhouette or contour features of each projection view of a 3D model with a

2D image directly. While, for our case of 2D sketch-3D model alignment, since there is no

one exact pose to perfectly align the 2D sketch with 3D models, the optimization process

is inapplicable.

Other Feature-Based Methods.Hara et al. [52] proposed to solve the problem of 2D-

3D alignment based on four defined geometrical consistencies: linear consistency, planar

consistency, parallel consistency and orthogonal consistency. Firstly, a geometrical consis-

tency based registration method is applied to determine a rough relative pose and then an

edge-based registration algorithm is used to estimate a precise pose. Chang-Chang et al.

[20] proposed a method by matching scale-invariant featuretransform (SIFT) features of

a single image to viewpoint invariant patches (VIP) of a 3D model by warping the SIFT

features approximately into the orthographic frame of the VIP features. This approach sig-

nificantly increases the number of feature correspondenceswhich results in a reliable and
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robust pose estimation. Kurazume et al. [81] proposed the simultaneous registration al-

gorithm using 2D texture images and reflectance images. Epipolar constraints are utilized

to estimate relative poses of multiple texture images simultaneously. Based on the mutual

information alignment framework, Cprsomo et al. [27] utilized illumination-related 3D

model geometric properties such as normals, ambient occlusion and reflection directions to

solve the 2D image and 3D model alignment.

Shape context matching-based human body pose estimation was proposed by Mori and

Malik [124]. They adopted deformable template matching to localize human body joint

positions. First, store a number of exemplar 2D views of a human body in a variety of

different configurations and viewpoints with respect to thecamera. The joints of the body

in each exemplar view are manually labeled.Then, match input images and exemplar

views based on shape context matching [10] andfinally transfer the results to 3D body

configurations. The goal of this method is to find a pose for articulated objects which is

different from ours.

2.3.4 2D Shape Descriptors

Developingor selecting an appropriate 2D shape descriptor is an important part for a

sketch-based retrieval algorithm. In this section, we present several typical 2D shape de-

scriptors that are promising for sketch-based retrieval.

Fourier descriptor (FD) is an important shape descriptor and has been successfully applied

in many pattern recognition related applications such as shape analysis, classification and

retrieval as well as character recognition [203]. However,it assumes that we can get the

boundary information of a shape beforehand and itdoes not considerthe internal informa-

tion of the shapes. Considering the above limitations of Fourier descriptor, Zhang and Lu

[159, 204]extended the Fourier descriptor and proposed a more robust and accurate shape
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descriptor called generic Fourier descriptor (GFD)which applies Fourier transform on a

polar-raster sampled shape image.

Zernike moments feature [79] is one typical moment descriptor that outperforms other mo-

ments in terms of performance in different applications. For example, 3D Zernike moments

[129] has been developed to deal with 3D model retrieval. Revaud et al. [156] proposed

an improved Zernike moments [79] comparator which considers not only the magnitude of

the moments (classic Zernike moments comparator) but also their phase information. They

demonstrated its better performance thantheclassic one.

Local binary pattern[75, 133] divides the surrounding regions of any pixel in a binary

image into eight directions, computes the percentages of the pixels falling in each bin and

regards this distribution information as a local binary pattern (LBP) encodedusing an8-bit

binary number, and finally represents the whole image based on the statistical distribution

of all the local binary patterns. It can be used to measure thesimilarity between the 2D

sketch after a preprocessing and the rendered feature images of a 3D model.

Scale-invariant feature transform (SIFT)feature together with the Bag-of-Features (BoF)

framework hasmany applications in various computer vision research fields. To optimize

the search accuracy, efficiency and memory usage in a large scale image retrieval scenario

which utilizes SIFT features and BoF framework, Jégou et al. [69] proposed a new compact

image representation to aggregate SIFT local descriptors.It achievesa significantly better

performance than BoF on condition that the feature vectors used have the same size.

Shape context [10] is a log-polar histogram and defines the relative distribution of other

points with respect to a point. It has been successfully applied into diverse applications.

The default shape context definition partitions the surrounding area of a sample point of a

2D shape into 5 distance bins and 12 orientation bins, as shown in Fig. 2.1 (c). Thus, the

shape context is represented by a5 × 12 matrix. In Fig. 2.1, we show the shape context
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features of three points in two shapes. As can be seen, different points have different shape

context features in one shape, such Fig. 2.1 (d) and Fig. 2.1 (e) and similar points in two

similar shapes usually have similar shape context features, like Fig. 2.1 (d) and Fig. 2.1 (f).

Figure 2.1:Shape context examples. (d), (e), (f) are the shape context features of points A
and B in (a) and point C in (b) respectively. The grayscale value of each element represents
the percentage of other points in each bin. Darker means smaller.

Shape context is scale and transformation-invariant but not rotation-invariant.To achieve

the property of rotation invariance, in [10] a relative frame is defined by adopting the local

tangent vector at each point as the referencex axis for angle computation and we named

it relative shape context. Shape context has been successfully applied into diverse applica-

tions, such as 2D shape matching [123] and human body pose estimation [124]. 3D shape

context [41, 60, 80] extends the idea of shape context [10] from 2D to 3D. There are three

forms of 3D shape context according to the aforementioned (Section 2.1.1) three types of

3D space partitioning methods. Shell model divides the 3D space into a set of concentric

spheres, resulting in the support of volume 3D shape context[41]. Sector model only di-

vides the spherical angle space, and we will get 3D cylindrical shape context [60]. Spider

web model combines both and we get the 3D point shape context [80].
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2.4 3D Model Alignment

In this section, we review the related techniques in 3D modelalignment. Our proposed

MPA 3D model alignment algorithm (Chapter 3) is based on minimum projection area, so

it can be considered as a view-based approach. As such, we also review some viewpoint

selection techniques in Section 2.4.5. Please note that though the spherical correlation

method proposed by Makadia et al. [114] (mentioned in Section 1.1) is also a view-based

approach, it is a pair-wise 3D model matching technique usedfor distance computation

and cannot be classified as a 3D model alignment approach which should independently

transform a 3D model into a canonical frame.

Nowadays, there are several approaches to align a 3D model. Here, we review four different

approaches.

2.4.1 PCA-Based Approach

Principle Component Analysis (PCA) [71] and Continuous Principle Component Analysis

(CPCA) [190] are two commonly used alignment algorithms. They utilize the statistical

information of vertex coordinates and extract the three orthogonal components with largest

extent to depict the principle axes of a 3D model.Axis ordering and axis orientation are

further applied to solve the axis reflection (flipping) invariance, which usually utilize vari-

ance or moment analysis [191]. An extension of the idea of CPCA is Normal Principle

Component Analysis (NPCA) [140], which applies CPCA to the normals of the surface

points of a 3D model.

The shortcoming of PCA-based approach is that the directions of the largest extent are not

necessary parallel to the axes of the ideal canonical coordinate frame of 3D models. CPCA

is generally regarded as a more stable PCA-based method. However, Papadakis et al. [140]
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found that for some models (e.g. car, shovel, hammer and plotted plant) CPCA outperforms

NPCA, but for some other models (like plane, chair, gun and desktop computer) NPCA has

a better alignment performance.

2.4.2 Symmetry-Based Approach

Chaouch and Verroust-Blondet [22] proposed an approach based on the analysis of the re-

flection symmetry property of a 3D model, such as cyclic, dihedral and rotation symmetries.

Podolak et al. [144] developed a symmetry transform to measure the degree of symmetry

of a 3D model with respect to any candidate symmetry plane. Tedjokusumo and Kheng

Leow [178] developed an alignment algorithm using bilateral symmetry planes (BSPs) by

considering the 3D aspect ratio of a model. They defined threeBSP axes in an analogous

way as PCA [71]: the first BSP axis has the largest extend in theBSP, the second is per-

pendicular to the first, and the third is the normal ofthe BSP. However, symmetry-based

approach has a limitation in dealing with models without apparent symmetry property or

non-symmetrical models.

2.4.3 Optimization-Based Approach

Fu et al. [42] proposed an upright alignment algorithm for man-made models. The al-

gorithm first computes the convex hull of a model, then finds a set of candidate bases,

and finally selects the base with the largest assessment function value as the bottom of the

model. The assessment functionis composed offour geometrical properties: static sta-

bility, symmetry, parallelism and visibility. Random Forest classifier and Support Vector

Machine(SVM) classifier are adopted to train the function. The upright orientation algo-

rithm achieves around 90% prediction accuracy in terms of the vertical extent of models.

Sfikas et al. [161] proposed an alignment algorithm named ROSy by minimization of the
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bounding box of a 3D model based on PCA and Reflective Object Symmetry (ROSy). They

achieved this by minimizing a combined spatial and angular distance metric.Martinek and

Grosso [118] proposed an optimization and GPU-based approach to align two 3D mod-

els. They constructed a model function with respect to the intersection and union of the

projection results of two models.

2.4.4 Projection Area-Based Approach

Recently, we notice that there are other two papers which useprojection area for alignment.

Lian et al. [101] proposed a method that first determines two sets of candidate axes using

PCA and the rectilinearity metric. Then, the final alignmentaxes are decided by selecting

the set of candidate axes which minimizes the sum of the projected area of silhouettes.

Napoléon and Sahbi [125] presented an alignment method which selects one of three align-

ment results (original pose, PCA and NPCA) that gives the minimum visual hull, that is

minimizes the sum of the projected areas on the three projection planes.

2.4.5 Viewpoint Selection

The goal of viewpoint selection is to find a set of representative views to depict a 3D model.

Usually, it is used to select the best views of a 3D model.

Lee et al. [87] defined the idea of mesh saliency for 3D models in terms of Gaussian-

weighted mean curvatures. Viewpoint selection, one of the applications of mesh saliency,

was demonstratedbased on agradient-descent search to find the candidate views with local

maximums anda random searchalgorithmto find the global maximum. Yamauchi et al.

[199] proposed a method to find a set of representative views for a 3D model by clustering

the views and using mesh saliency [87] to characterize the quality of a view. Laga and

Nakajima [83, 84] proposed a supervised learning approach to select a set of best views of
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a 3D object that discriminate itself from other objects and maximize the similarity between

itself and the models belonging to the same class.Vázquez et al.[185, 186]proposed an

information theory-related measurement named viewpoint entropy to depict the amount of

information a view contains and based on this they developeda method to automatically

find a set of best views with top view entropy values. All theseviewpoint selection tech-

niques can select the best views of 3D models with respect to their view quality metrics,

however, in general the direction of the best views are not parallel to the axes of the ideal

canonical coordinate frame of 3D models.

2.5 Comparison Between Our Proposed Techniques with
Previous Methods

2.5.1 View-Based 3D Shape Descriptor: View ContextVersus Other
Approaches

Firstly, our view context descriptor supports multi-modalqueries, such as 3D models and

2D sketch/images while many view-based approaches reviewed in Section 2.1.2 only sup-

port 3D model queries. Secondly, previous view-based shapedescriptors like the Light

Field descriptor comparethe views of different models directly, while our view context

shape descriptor encodes the differences of views of the same model first and then we com-

pare the view context features of different models to measure their difference.That is, our

view context shape descriptor characterizes the shape deviation difference of a 3D model

while previous view-based shape descriptors including Light Field do not encode such in-

formation. As such, we utilize this property of the view context descriptor and devise a 2D

sketch-3D model alignment algorithm and incorporate it in our Query-by-Sketch retrieval

algorithm.
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2.5.2 Class-Based 3D Model Retrieval: Integrated DistanceVersus
Additive Distance

Firstly, in Chapter 6, we propose an integrated distance which outperformsthe aforemen-

tioned and commonly used additive one (Section 2.1.4). Moreover, none of the existing 3D

model retrieval algorithms utilize the“already” available class information of a classified

3D model database.For example, existing class information-based approachesreviewed in

Section 2.1.4 usually learn the class information, such as [56, 83, 84, 85, 132, 195, 197,

198], or employ a spectral clustering method like [177], or adopt a prototype-based re-

trieval framework like [13]. None of them consider and directly use the already available

class information existing in the classified databases.Thus, in Chapter 6, we propose a

new 3D model retrieval algorithm by taking into account the existing class information.

Thirdly, our experiments in Chapter 6 show that our retrieval algorithm CBR-ZFDR can

achieve better retrieval performance for most of the commonly used performance metrics

than PANORAMA on six standard databases.

2.5.3 3D Model Alignment: MPA Versus Other A pproaches

Firstly, different from thetwo projection area-based 3D model alignment methods intro-

duced in Section 2.4.4, our proposed method performs alignment by successively selecting

two axes with minimum projection areas. Moreover, we perform a global optimization

search for finding the minimum projection area and our algorithm does not rely on the

PCA-based approach.

Secondly, MPA has several differences compared to Fu et al.’s upright orientation method

[42] (Section 2.4.3). They target on computing the upright orientation (not complete align-

ment) of man-made models with a flat supporting base while MPAis to align generic 3D

models; their approach is based on geometry alone while our method is mainly view-based;
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they utilize a supervised learning approach and need constructing a manually labeled train-

ing dataset while our MPA algorithm is unsupervised and independent of training.

Thirdly, diverse experiments also demonstrate that MPA achieves a better performance than

several commonly used approaches such as CPCA, NPCA and PCA,in terms of alignment

accuracy and retrieval performance.

2.5.4 Sketch-Based 3D Model Retrieval: 2D Sketch-3D Model Align-
ment

Firstly, different from previous sketch-based 3D model retrieval algorithms which directly

compare the sketch with a set of predefined views of a 3D model,our sketch-based retrieval

algorithm first aligns the sketch with the 3D model based on the view context similarities

between the sketch and the sample views of the model. We utilize the precomputed view

context features of a set of densely sampled views to shortlist a set of good candidate

sample views to align with the sketch. In the mean time, sincethe 2D sketch-3D model

alignment process is very efficient, thusthe computational cost for alignment is low.

Secondly, our 2D sketch-3D model alignment is also different from the common 2D image-

3D model registration techniques which optimize the rotation angles and the translation

and scaling parameters to register a 3D model with a 2D image.On one hand, their 2D

image and 3D model depict the same object. However, for our case they are not and some

differences are often existent.On the other hand, previous 2D image-3D model registration

techniquesused 2D real imagewhich has brightness (shading) informationand developed

an as accurate as possible 2D-3D alignment. For our case, we use 2D sketchwhich only has

line information and since the 2D sketch and the 3D model are not completely the same,

an approximate alignment issufficient for our retrieval applications.
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Thirdly, comparative and evaluative experiments based on hand-drawn and standard line

drawing sketches demonstrate the effectiveness and robustness of our approach and it sig-

nificantly outperforms several latest sketch-based retrieval algorithms. Incorporating our

2D sketch-3D model alignment step to shortlist better candidate views apparently improves

the retrieval performance and our alignment is also generaland can be incorporated in other

sketch-based 3D model retrieval algorithms to improve their performance.
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3D Model Alignment Based on
Minimum Projection Area

3.1 Overview

As described in Section 1.1, several typical alignment algorithms (PCA, CPCA, NPCA and

VCA) have been proposed to deal with 3D model alignment. However, the existing align-

ment algorithms still have room for improvement in terms of the performance infinding

alignment axes which are parallel to the ideal canonical coordinate frame and 3D model re-

trieval. This motivates us to propose a novel 3D alignment algorithm which finds the align-

ment axes based on minimum projection area (MPA). Our proposed algorithm is based on

the observation that many objects have a minimum projectionarea when we orthogonally

project them in the direction parallel to one of the axes of the ideal canonical coordinate

frame.To efficiently find the axis with minimum projection area, a search algorithm based

on Particle Swarm Optimization (PSO) [34] is developed. To apply MPA in 3D model

retrieval application, two additional steps, axis ordering and axis orientation, are devised

to align similar models in similar poses.Based on experimental results, we find our MPA

algorithm can align most 3D models in terms of axes accuracy (the axes are parallel to the

ideal canonical coordinate frame). Our alignment algorithm can also align similar models
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in similar poses which is important for 3D model retrieval. It is also robust with respect to

model variations, which include different shapes of the same class, non-rigid deformation

and articulation transformations, noisein terms of vertex displacementand initial poses.

The rest of this chapter is organized as follows. In Section 3.2, we present the details of our

MPA alignment algorithm. Extensive experiment results areshown in Section 3.3. Section

3.4 contains the conclusions and the future work.

3.2 Minimum Projection Area-based (MPA) Alignment

3.2.1 Basic Idea

Based on its ideal canonical coordinate frame, every 3D model has six canonical ortho-

graphic projection views, which are front, back, left, right, top and bottom views as shown

in Fig. 3.1. If we only consider the projection area (the areaof the region occupied by the

object in the view images in Fig. 3.1), then there are only three different canonical views

because under orthographic projection, the front view has the same projection area as the

back view, the left view has the same area as the right view, and the top view has the same

area as the bottom view. We observe that for many objects, oneof their canonical views

(that is, either front-back view or left-right view or top-bottom view) has a minimum pro-

jection area compared to the other arbitrary views of the objects. Fig. 3.2 shows two such

examples. In fact, we conduct experiments on several 3D model databases and verify that

the above-mentioned observation is true for a large number of 3D models.

Motivated by the above findings, we develop a Minimum Projection Area-based alignment

algorithm (MPA). Our algorithm finds three principle axes ofa 3D model which satisfy the

followings. The first principle axis gives the minimum projection area when we perform

an orthographic projection of the model along (parallel to)this axis, the second axis is
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(a) Front (b) Back (c) Left (d) Right

(e) Top (f) Bottom

Figure 3.1: Six canonical orthographic projection views ofa car model based on its ideal
canonical coordinate frame.

(a) 0.311733 (b) 0.377711 (c) 0.506589 (d) 0.411464 (e) 0.323189 (f) 0.498833

(g) 0.367722 (h) 0.276133 (i) 0.267911 (j) 0.342333 (k) 0.277456 (l) 0.284011

Figure 3.2: Examples showing that one canonical view of a 3D model usually has the
minimum projection area. In each row, the first three images are the front, left and top
views of a 3D model and the remaining three images are three arbitrary views of the same
model. The number underneath each view is its normalized projection area.

perpendicular to the first axis and gives a minimum projection area, and the third axis is the

cross product of the first two axes.

3.2.2 MPA Alignment Algorithm

Given a 3D model, the set of candidate axes is generated by using a sphere. Acandidate

axis is defined as a line which connects a point on the surface of thesphere and the center

of the sphere. To compute the projection area of this axis, weperform an orthographic

projection of the model in the direction parallel to the axisand determine the projection

area by counting the number of pixels occupied by the model inthe projection image.

The framework of our MPA algorithm is shown in Fig. 3.3 and thedetailed stepsare as
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Figure 3.3:The framework of our MPA algorithm.

follows.

Step 1: Find the 1st principle axis. We sample a set of points on the surface of the

sphere, compute the candidate axes based on these points andfind the axis with minimum

projection area. To find this axis, we devise an efficient search algorithm based on the

Particle Swarm Optimization (PSO) [34] method (see Section2.3).

Step 2: Find the 2nd principle axis. We find the axis with minimum projection area by

sampling on the perimeter of a circle which is perpendicularto the 1st principle axis. Since

this is only a 1D search, we perform a brute-force search to find the 2nd principle axis by

sampling the perimeter in the range of [0◦,180◦) and choosing a step of 1◦.

Step 3: Compute the 3rd principle axis. We compute the third axis as the cross product

of the first two principle axes.

For 3D model retrieval application, the following two stepsare performed to align similar

models in similar poses.

Step 4: Axis ordering. First, we determine the top and bottom orientations of the model

by adopting the static stability metric in upright orientation [42]. We compute six static
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stability values of the principle axes (two for each axis, inthe positive and negative direc-

tions). The direction with the largest static stability value is set as the bottom of the model

(they negative axis of the model) and the corresponding principleaxis is set as they axis.

Then, we determine thex andz axes based on the variance of the remaining two principle

axes. The axis with a larger variance is set as thex axis and the other as thezaxis. In order

to compute the variance, we employ a similar method as [190] by considering the area of

each face of the model.

Step 5: Axis orientation. We employ the viewpoint entropy metric [186] to decide the

orientations of thex andz axes. We render two views of the model from the positive and

negative sides of thex axes (z axes) and select the one with a larger entropy value as the

left side (front part) of the model.

Fig. 3.4 shows the result at each step of MPA alignment for a guitar model.

3.2.3 PSO-Based Search for Minimum Projection Area

The simplest method to find the axis with minimum projection area is by performing a

brute-force search. We can uniformly sample a set of points on the surface of the sphere

based on the subdivision of a regular icosahedron which is denoted as the zero level icosa-

hedronL0. Fig. 3.5 shows the resulting icosahedrons at different levels of subdivision by

applying the Loop subdivision rule [108] once (L1), twice (L2), thrice (L3) and four times

(L4).

Fig. 3.6 shows the distribution of projection area of two models in NIST database [36]

using the 3rd level icosahedronL3 for sampling the axes and mapping their projection areas

as colors on the surface of the spheres. The drawback of the brute-force search is the high

computational cost. Based on experimental results, we find that in order to get a result with

good accuracy, we have to use at leastL6 icosahedron (40002 sampling points). As such,

49



CHAPTER 3. 3D MODEL ALIGNMENT BASED ON M INIMUM PROJECTIONAREA

(a) Original pose (b) Step 1: 1st principle axis (c) Step 2: 2nd principle axis

(d) Step 3∼4: axis ordering (e) Step 5: axis orientation (final result)

Figure 3.4: An example of the alignment process using our MPAalgorithm. (b)∼(e) show
the intermediate alignment results of the five steps in the algorithm, respectively.

the brute-force search is not the ideal method for finding theaxis with minimum projection

area.

(a) L0 (12) (b) L1 (42) (c) L2 (162) (d) L3 (642) (e) L4 (2562)

Figure 3.5: Subdivision of an icosahedron. The number ineachbracketis the number of
sample points of thecorrespondingsubdivided icosahedron.

To find the axis efficiently, we develop a search method based on Particle Swarm Optimiza-

tion (PSO) [34] which is a global search optimization algorithm. PSO belongs to swarm
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(a) A bicycle model (b) An apartment house model

(c) Area distribution of (a) (d) Area distribution of (b)

Figure 3.6: Distribution of the projection area of two models. Area is coded using HSV
color model and smooth shading. Red: small area; green: mid-size area; blue: large area.
The yellow bar depicts the sample point with minimum area.

intelligence optimization techniques and it imitates the random search actions of a flock

of birds seeking for a piece of food in a region. Each bird adopts the same strategy of

searching the surrounding area of the bird that is nearest tothe food and they learn with

each other and update themselves based on the obtained information. PSO has been found

to be robust and fast in solving non-linear and non-differentiable problems [165].

The steps of our PSO-based search are as follows.

Step 1: Initialization. We initialize the numberNP and positions of a set of search particles

and then compute the private best for each particle and current global best based on all the

private bests. In practice, we use the 42 sample points inL1 to distribute the search particles.

To compute the private best of a search particle, we considerits ⌊NP/3⌋ nearest neighboring
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particles in terms of geodesic distance. Then, we set the value for the maximum number of

search iterationNt .

Step 2: Update. We compute the velocity update steps inversely proportional to the

current iteration numberi,

s=
Nt − i

Nt
+c, (Eq. 3.1)

wherec is a constant variable. We choosec to be 0.5 in our experimentaccording to

the trade-off between the accuracy of the experimental results and speed. Based onthe

following two equations [165], we update the new positionfor each particle as follows.

~x(i +1) =~x(i)+s·~v(i), (Eq. 3.2)

~v(i +1) = ω∗~v(i)+c1 · r1 · (~xp(i)−~x(i))+c2 · r2 · (~xg(i)−~x(i)). (Eq. 3.3)

~x(i) and~v(i) are the position and velocity of a particle;~xp and~xg are the positions of private

and global bests.c1 andc2 are non-negative constant number, typicallyc1=c2=2 [34]; r1

andr2 are random variables between 0 and 1.ω is an inertia-weight to balance the abilities

of global search and local search. Biggerω means more global search power and less

dependency on the initial positions of the search particles. Smallerω corresponds to finer

search in a local region. Similar as [165], we dynamically decreaseω from 1.4 to 0 based

on an inversely proportional function with respect to the iteration numberi:

ω =
ωmin−ωmax

Nt
· i +ωmax, (Eq. 3.4)

whereωmax (1.4) andωmin (0) is the maximum and minimum inertia-weight values. The

new position~x(i +1) may not be located on the surface of the sphere, as such we project it

to the surface of the sphere in the direction from the center to the computed~x(i +1).
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Step 3: Evaluation. Based on its new position, for each particle, we compute the cor-

responding axis, render the 3D model, compute the projection area and update its private

best. Based on all the private bests, we update the global best.

Step 4: Verification. If the current iteration number has exceededNt , we stop and output

the axis which corresponds to the position of the current global best as the 1st principle

axis; otherwise, go toStep 2: Updateto continue the search.

3.3 Experiments and Discussion

To intensively investigate the performance of our MPA alignment algorithm, wetest the

MPA algorithm onfour representative standard databases described in Section 1.1: PSB

(test dataset), NIST, WMB and ESB.

3.3.1 Evaluation with Respect to Axes Accuracy

Experiments on different types of models, such as general models in PSB, CAD models in

ESB, andnon-rigidmodels in WMB, demonstrate that our MPA can align most of them

accurately, robustly and consistently. Some examples are shown in Fig. 3.7.

Finding three alignment axes which are parallel to the idealcanonical coordinate frame

is important. Therefore, we performaxesaccuracy experiments on theabove-mentioned

four databases and compare MPA with CPCA in terms of the percentages of the alignment

results that have three axes parallel to the ideal canonicalcoordinate frame (allow a very

small rotational difference). For a database, we calculatethe average percentage over all

the models as well as the percentage for each class. Table 3.1comparestheirperformances

and Table 3.2 lists the classes in which MPA achieves a much better performance than

CPCAon the PSB database.
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Figure 3.7: Example alignment results for different types of models using our MPA align-
ment algorithm.

As shown in Table 3.1, our MPA approach achieves apparently better overall performance

than CPCA. MPA is better than CPCA in aligning 53.3% classes for PSB, and 52.5%,

70.0%, 55.5% for NIST, WMB and ESB, respectively.Conversely, the percentages for the

casesin whichCPCA outperforms MPAaremuch smaller (15.2%, 17.5%, 15% and 11.1%,

respectively). MPA has a much better performance (the surpassing percentage difference

is more than 20) in aligning the listed 41 classes of PSB models in Table 3.2, especially

for box-like shapes, such asdesktop computer, computer monitor, school desk and church.

Fig. 3.8 shows some examples which demonstrate that MPA can find more accurate axes

than CPCA.

For certain models, MPA cannot find their accurate axes and usually there exists some small

rotational differences. The reason for these differences is thata small rotation from the ac-

curate axes will make the projection area even smaller. These types of classes include dog,

desk chair, potted plant, barren tree, conical tree, handgun and fireplace. Some alignment

results for these classes are shown in Fig. 3.9. Nevertheless, we can see evenif the axes
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Table 3.1: Comparison of the axes accuracy performances in terms of models and classes
using MPA and CPCA on the PSB, NIST, WMB and ESB databases.RCPCA andRMPA is
the average performance over all the models in a database.∆ is the performance difference
value of subtracting MPA’saxesaccuracy percentage by CPCA’s for one class.∆ ≥ 20:
MPA is much better than CPCA; 20> ∆ > 0: MPA is better than CPCA;∆ = 0: MPA is
the same as CPCA; and vice versa.

Databases PSB NIST WMB ESB

#(models) 907 800 400 867
RCPCA 632 (69.7%) 652 (81.5%) 270 (67.5%) 657 (76.1%)
RMPA 804 (88.6%) 695 (86.9%) 327 (81.8%) 744 (86.2%)
#(classes) 92 40 20 45
∆ ≥ 20 41 (44.6%) 5 (12.5%) 6 (30.0%) 15 (33.3%)
20> ∆ > 0 8 (8.7%) 16 (40.0%) 8 (40.0%) 10 (22.2%)
∆ = 0 29 (31.5%) 12 (30.0%) 3 (15.0%) 15 (33.3%)
0> ∆ >−20 6 (6.5%) 6 (15.0%) 1 (5.0%) 4 (8.9%)
∆ ≤−20 8 (8.7%) 1 (2.5%) 2 (10%) 1 (2.2%)

found are not the perfect ones, their alignment results are still consistentamong the models

in the same class, which is important for applications, such as 3D model retrieval.

(a) CPCA (b) MPA (c) CPCA (d) MPA (e) CPCA (f) MPA

Figure 3.8: Examples indicating that our MPA algorithm achieves better alignment results
than CPCA.

Figure 3.9: Examples showing that the alignment results of our MPA algorithm arestill
consistent within classeseven if the result axes are not the perfect ones.
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3.3.2 Evaluation with Respect to Robustness

In this section, we test the robustness propertiesof MPA with respect to model variations,

noise and initial poses as well as the convergence of PSO withrespect to iteration number.

(1) Robustness to model variations.The basic requirement for alignment in applica-

tions such as 3D model retrieval and recognition is to align similarmodels in a similar

way under different conditions such as variations and deformations. For this purpose, we

investigate the alignment performance onnon-rigid models with different variations, for

example, hand, teddy and head models in the previously mentioned four databases. Some

example alignment results for these types of models in the WMB database are shown in

Fig. 3.10.The first nine models are examples of deformable models. We can also see that

the head models with different variations are aligned consistently, such as the three similar

head models looking to the front and the other three similar head models looking to the

left.

Figure 3.10: Examples indicating MPA can align similar models in similar poses.

(2) Robustness to noise.3D models may have noise due to storage, transmission and

modification. A 3D model alignment algorithm should be insensitive to small amount of

noise. We test the robustness of ourMPA algorithmagainst noise by randomly adding a

small amount of displacement to the vertices of a 3D model. Fig. 3.11 shows thatMPA

hasa good robustness property against a small amount of noise. This is contributed to our

utilization of projection area for aligning a 3D model sincein general projection area is

stable under small changes of the vertices’ coordinates.
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(a) 0.291556(b) 0.292822 (c) 0.295589 (d) 0.308511

Figure 3.11: Examples indicating MPA’s robustness to noise. (a) The view from the 1st

principleaxiswith minimum projection area for the original bicycle model, (b)∼(d): the
views from the 1st principleaxisof the bicycle model when we added noise by randomly
moving each vertex with a small displacement vector whose norm is bounded by 0.12%,
0.25% and 1% of the diameter of the model’s bounding box, respectively. The number
underneath each view is its normalized projection area.

(3) Robustness to initial poses.3D models may have arbitrary initial poses. It is important

for our alignment algorithm to align a model with different initial poses to the same pose.

Fig. 3.12 illustratesthree sets ofexamples indicating MPA’s robustness to initial poses. As

can be seen, MPA is not dependent on the initial poses of a 3D model and only a very small

difference exists among the minimum area found. MPA’s independence of initial poses is

because we adopt the global optimization approach PSO to find the 1st principleaxiswith

minimum projection area. In the initial stage of the search,it uses aglobal search to avoid

local minimums and then enhancesthe local search ability to find an as accurate as possible

global minimum projection area.

(4) Evaluation with respect to PSO’s iteration number. In PSO, the number of iteration

is an important factor which influences the accuracy and search time.To test the influence

of iteration number on the alignmentresults, weapplyMPA using different iteration num-

bers to find the 1st principle axis. Fig. 3.13shows the results. We can find that after 11

iterations the area converges to about0.291and we achieve the best results which are below

0.2913 at 30∼40 iterations. We also find that the convergence speed is fast. Usually after

10 iterations, MPA already finds an area which is close to the optimal one. For the same
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(a) pose 1 (b) pose 2 (c) pose 3 (d) pose 1 (e) pose 2 (f) pose 3

(g) pose 1 (h) pose 2 (i) pose 3 (j) 0.357644 (k) 0.357778 (l) 0.357944

(m) 0.267322 (n) 0.267300 (o) 0.267144 (p) 0.260689 (q) 0.261144 (r) 0.260900

Figure 3.12: Three sets of examples indicating MPA’s robustness to initial poses. PSO is
used to search for the 1st principleaxis. The second row shows the corresponding views
from the 1st principle axis for the models in the first row.The rotated views are only
due to different up-vectors of the cameras during rendering. Note that we get the same
final alignment results for each set of models.The number underneath each view is its
normalized projection area.

accuracy as PSO, brute-force method needs amuchlonger time. For example, MPA based

on 10 iterations finds smaller area than brute-force method usingL4 icosahedron (2562ver-

tices) foraxissampling; MPA needs about 8 seconds while brute-force method takes about

43 seconds. If based on 40 iterations, MPA finds smaller area than brute-force method

based onL6 icosahedron (40002 vertices); MPA averagely needs 46 seconds and the brute-

force needs 530 seconds for the PSB models.Table 3.3 compares the average alignment

time using Brute-force and PSO-based search algorithms on the NIST benchmark. On each

row of the table, MPA has better alignment accuracy. We can see that the time difference

between the Brute-force and PSO-based algorithms becomes larger and larger (2.0, 3.7

and 9.7) in order to achieve a more and more accurate alignment performance. However,

for our PSO-based algorithm there is still a trade-off between the time and accuracy ac-
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cording to the requirements and available resources of the applications. Our suggestion is

that selecting the value of the iteration numberNt by performing an initial test on several

example models by setting different values (e.g. 10, 20, 30,40). Based on the different re-

sults of alignment accuracy and time, we compare and decide an appropriate value forNt .

Sometimes, we also can choose different values forNt . For example, we set a bigger value

to achieve better accuracy during pre-processing target models in a database and select a

smaller value when aligning a query model to speed up the retrieval.

(a) initial pose (b) 0.291200 (c) 0.291156 (d) 0.291533 (e) 0.291622

(f) 0.293244 (g) 0.293456 (h) 0.295944

Figure 3.13: Examples showing MPA’s 1st principle axis results based on PSO’s iteration
number. (b)∼(h): the axes with minimum projection area based on the iteration numbers
displayed on the upper-right corner. The rotated views are due to different up-vectors of
cameras during rendering.The number underneath is the normalized projection area.

3.3.3 Evaluation with Respect to Retrieval Performance

In this section, we evaluate MPA in terms ofretrieval performance improvement on a

rotation-dependent shape descriptor by comparingthe retrieval performances when using

different alignment methodssuch asPCA, NPCA, CPCA and our MPA. For the selection

of a rotation-dependent shape descriptor, we choose to modify the Light Field descriptor

[23], which is a famous and typical shape descriptor. The distance of two models is defined
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as the minimum distance between 10 corresponding views of the two models.The Light

Field descriptor adopts an integrated image shape descriptor which contains 35 Zernike

moments and 10 Fourier descriptors and use L1 distance metric to measure the differences.

To find the minimum distance between two models, the originalLight Field approach per-

forms an alignment process by rotating a camera system of 20 cameras set on the vertices

of a regular dodecahedron. We modify this original Light Field descriptor by replacing its

internal alignment process with an explicit alignment stepusing PCA, NPCA, CPCA or

our MPA, and we name it modified-LF.

To performa comprehensive evaluation for 3D model retrieval performance, we employ

five metrics including Nearest Neighbor (NN), First Tier (FT), Second Tier (ST), Dis-

counted Cumulative Gain (DCG) [167] and Average Precision (AP), as described in Section

1.1.We test the modified-LF retrieval algorithm on thePSB, NIST and WMBdatabasesus-

ing the above-mentioneddifferent alignment algorithms. Table 3.4 compares their perfor-

mances. Compared with PCA, NPCA and CPCA, our MPA achieves better performances

in all the five performance metrics. The main reason for the improvement is our achieving

higher percentage of consistent alignment results for models belonging to the same class.

In addition, according to the experimental results in [161], the ROSy (Reflective Object

Symmetry) alignment algorithm proposed by Sfikas et al. [161] has a similar performance

as CPCA and NPCA in terms of retrieval performance though they use a different shape

descriptor proposed in [141]. In terms of alignment accuracy, ROSy is comparable to the

symmetry-based approach proposed by Chaouch and Verroust-Blondet [22]. Compared to

ROSy, based on the experimental results in Table 3.4 and the accuracy results in Section

3.3.1 and [22], we anticipate that MPA will achieve better orat least comparable results in

terms of either retrieval performance or axes accuracy.

Due to the performance limitation of the shape descriptor adopted, the differences of certain

performance metric on some benchmarks may be small, such as the AP difference between
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MPA and CPCA on the PSB dataset is 0.7. This indicates that it possibly reaches its ac-

curacy limitation. In addition, as mentioned in Section 3.3.2, we can also choose different

values for the iteration numberNt to process target and query models in order to perform

an efficient retrieval.

3.3.4 Limitations of MPA

As shown in the previous experiments, MPA has a good performance in 3D model align-

ment. Nevertheless, it has some limitations. Firstly, it does not work well for certain types

of modelswhich do not have normalized poses withminimumprojection areas. Some ex-

amplesareshown in Fig. 3.9. Secondly,though in general the axes found are accurate,

we cannot guarantee a perfect alignment for all models, thatis thez+, x+ andy+ axes

correspond to the front, left and top parts of a model, respectively. This is because we

do not consider the semantics information of models during the alignment. Although we

already utilize the static stability and view entropy, our approach is still lack of semantics

information for deciding the perfect axes orientations forall 3D models.

3.4 Summary

A novel Minimum Projection Area-based alignment approach MPA for 3D model pose

normalization was proposed in this chapter. It is based on the idea of finding two perpen-

dicular principle axes with minimum projection area.PSO was employed to efficiently find

the axis with minimum projection area.Three evaluation experiments were conducted:(1)

Accuracy in terms of finding three axes which are parallel to the axes of the ideal canonical

coordinate frame of a 3D model; (2) Robustness of results with respect to model variations,

noise, initial poses and PSO iteration number; and (3) 3D model retrieval performance

using a rotation-dependent shape descriptor.All the three experiments demonstrated the
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ability of our MPA approach to find a consistent pose for similar models. Experimental

results showed that our MPA algorithm achieves a better performance compared to PCA,

CPCA and NPCA in terms ofaxesaccuracy and 3D model retrieval.

Considering the limitations of MPA, we think it can be improved by combining other type

of features, such as symmetry, with projection area when searching for the principle axes.

We would like to investigate this further. Another possiblefuture work is to perform se-

mantics analysis for axis ordering with the ultimate goal ofachieving perfect alignment.
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Table 3.2: List of the 41 classes of PSB in which MPA achieves amuch better performance
than CPCA in terms ofaxesaccuracy percentage.

Class # CPCA MPA

Helicopter 18 77.8 100.0
Enterprise spaceship 11 36.4 100.0
Dog 7 00.0 57.1
Horse 6 16.7 50.0
Rabbit 4 00.0 75.0
Snake 4 25.0 75.0
Head 16 62.5 93.8
Skull 6 00.0 66.7
Barn 5 40.0 100.0
Church 4 00.0 100.0
Gazebo 4 80.0 100.0
One story building 14 35.7 100.0
Skyscraper 5 80.0 100.0
Two story building 10 10.0 100.0
Chess set 9 66.7 100.0
City 8 37.5 75.0
Desktop computer 11 00.0 100.0
Computer monitor 13 00.0 100.0
Eyeglasses 7 71.4 100.0
Fireplace 6 00.0 33.3
Cabinet 9 66.7 100.0
School desk 4 00.0 100.0
Bench seat 11 00.0 45.5
Dining chair 11 00.0 90.9
Desk chair 15 00.0 20.0
Shelves 13 76.9 100.0
Rectangular table 25 72.0 100.0
Single leg table 6 66.7 100.0
Handgun gun 10 00.0 40.0
Ladder 4 50.0 100.0
Streetlight lamp 8 75.0 100.0
Mailbox 7 14.3 85.7
Potted plant 26 53.8 88.5
Satellite 4 25.0 50.0
Large sail boat 6 00.0 50.0
Sink 4 25.0 100.0
Slot machine 4 25.0 100.0
Hammer 4 75.0 100.0
Covered wagon 5 00.0 100.0
Semi vehicle 7 14.3 100.0
Train car 5 40.0 100.063
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Table 3.3:Average alignment time (in seconds) comparison between Brute-force and PSO-
based search algorithms on the NIST benchmark.TBrute andTPSOdenote the average align-
ment time for the Brute-force and PSO-based alignment algorithms. “L4/Nt=10” means
the Brute-force method usingL4 icosahedron and the PSO-based method sets the iteration
numberNt=10. Others are similar. In each row, the PSO-based method achieves more
accurate alignment results than the Brute-force algorithm.

Brute-force PSO Time difference (TBrute
TPSO

)

L4/Nt=10 37.7 18.7 2.0
L5/Nt=30 144.0 38.6 3.7
L6/Nt=40 516.5 53.3 9.7

Table 3.4: Comparisonof retrieval performanceamong our MPA and other three alignment
algorithms based on the modified-LF shape descriptor.

Methods NN FT ST DCG AP

PSB

MPA 60.4 33.5 43.2 0.603 50.5
CPCA 58.7 32.8 42.6 0.597 49.8
NPCA 57.8 32.3 41.6 0.596 49.3
PCA 58.4 31.1 40.7 0.586 48.3

NIST

MPA 83.5 42.2 55.2 0.745 53.8
CPCA 81.3 41.5 53.7 0.734 52.7
NPCA 81.1 38.2 49.9 0.724 49.9
PCA 77.3 39.2 50.4 0.710 49.7

WMB

MPA 89.5 46.7 59.8 0.783 59.7
CPCA 84.8 44.6 58.8 0.765 57.6
NPCA 86.3 44.2 57.5 0.765 56.5
PCA 85.5 44.2 59.0 0.764 57.1
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Chapter 4

Query-by-Model: View Context-Based
Retrieval

4.1 Overview

3D model feature supporting multi-modal retrieval is a challenging and significant issue in

3D model retrieval.In this chapter, we propose a novel 3D model feature named “view

context” that also supports multi-modal queries.When we look at a 3D model from a

view V (i.e. the viewer is located atV), the visible features in the view image form the

visual information of the model from this viewV. We assume a 3D model is represented

as a triangle mesh.We encode the visual information of a 3D model from a viewV as

an integrated image shape descriptor of the silhouette viewrendered from the viewV. The

view context of a viewV is then defined as the differences of the visual information between

V and a set of arranged views.

In this chapter, we apply the view context for 3D model retrieval using 3D model queries

and in the following Chapter 5 we will present its application in 3D model retrieval using

2D sketch queries.In order to apply view context inQuery-by-Modelretrieval, we propose

a view context shape descriptorfor a 3D model. The proposed shape descriptor consists of

the view contexts computed at several sampling views.We first align the 3D modelusing
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Figure 4.1:The framework of our view context-based 3D model retrieval algorithm.

our proposed minimum projection area-based method MPA presented in Chapter 3before

computing the shape descriptor for a 3D model. To further improve the retrieval accuracy,

we also add the difference between the feature views sets of two models.The framework

of our view context-based 3D model retrieval algorithm is shown in Fig. 4.1.

Our main contributions are as follows:

(1) We devise a new 3D model feature named view context for identifying modelsand it

supports multi-modal queries including 3D model and 2D sketch or image. Similar models

in general have similar view contexts and the view contexts of models from different classes

are often distinctively different.On the other hand, view contexts of different views of the

same model are often distinctively different, as well. Thus, the view context feature also

demonstrates promising performance in effectively and efficiently aligning a 2D sketch

with a 3D model for sketch-based 3D model retrieval applications (Chapter 5).

(2) We propose a retrieval algorithm based on view context and through experiments verify

that it itself achieves acomparable retrieval performanceas the related descriptors, such

as Light Field and a combined shape descriptor based on view context outperforms Light

Field.

The remaining of this chapter is organized as follows. Section 4.2 describes in detail the

idea of view context. In Section 4.3, we propose the view context shape descriptor. In

Section 4.4, an algorithm for 3D model retrieval using the view context shape descriptor
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is explained. The results of retrieval experiments are demonstrated in Section 4.5. Section

4.6 contains the conclusions and lists some topics for future work.

4.2 View Context

4.2.1 Definition

The view context of a particular view of a 3D model encodes thevisual information dif-

ferences between this view and a set of arranged views. It captures the shape appearance

deviation of a 3D model.

Figure 4.2:View space.

Assume that the 3D model is centered in the origin of a 3D coordinate system. Its view

context from a viewV0 is defined as follows. First, we rotate the 3D model such that view

V0 coincides with thez axis of the coordinate system. Then, we orderly sample a set of

views{(ϕ,θ)} based on the current pose.As shown in Fig. 4.2, we assume that the origin

of the coordinate system isO and the camera locates at a pointP, thenϕ is the angle
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Figure 4.3: View contexts of six models: (a) Hot air balloon0; (b) Hot air balloon1; (c)
Ant0; (d) Ant1; (e) Human0; (f) Human1.

between the vectorOP and they axis andθ is the angle between the projection ofOP on

thexozplane and thex axis.ϕ ∈ [0,180] andθ ∈ [0,360). For example, view(ϕ,θ) can be

generated by first rotating the modelϕ degrees about thex axis and thenθ degrees about

they axis.

The view context of a viewV0 is composed of a set of feature vectors:

{(ϕ,θ ,d)|(ϕ,θ) ∈ V} , (Eq. 4.1)

whered is the view appearance distance between view(ϕ,θ) and viewV0. V is a sequence

of baseviews. The methods ofbaseview sequence sampling and view distance computa-

tion will be presented in Sections 4.2.2 and 4.2.3, respectively.
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View context represents the relative appearance deviations with other views. Fig. 4.3 gives

an example of the view contexts of the initial poses of six models (Fig. 4.3 (a)∼(f)) in

Princeton Shape Benchmark Database [167]. In these examples, thebase view sequenceV

consists of 13 views based on the cube-based view sampling method described in Section

4.2.2and the distance between two views is computed according to the method in Section

4.2.3. Fig. 4.3 (g) shows the plot of the six view context features. We can see that similar

models have similar view contexts and the view contexts of different models are often

distinctively different. This is useful for Query-by-Modelretrieval, for which we can use

view context features to differentiate different models.

4.2.2 Cube-Based View Sampling

To decide thebaseview sequenceV, we need to determine the values ofϕ andθ in Equa-

tion (4.1). Consideringthe symmetrical property during our feature views generation (Sec-

tion 4.2.3)as well as the balance between feature extraction time and retrieval accuracy,

we sample13 views by setting the cameras on a cube. The camera locations are (0,0,1),

(1,0,0), (0,1,0), (1,1,1), (-1,1,1), (-1,-1,1), (1,-1,1), (1,0,-1), (0,1,-1), (1,1,0), (0,1,1), (1,0,1),

(1,-1,0). As shown in Fig. 4.4, they comprise 3 adjacent face center views, 4 top corner

views and 6 middle edge views. Based on these camera locations, we compute thebase

view sequence{(ϕ,θ)}.

4.2.3 View Appearance Distance

To compute the view appearance distanced between two view imagesV0 andVi , we first

define the feature views and then introduce an integrated image descriptor to measure their

difference.
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Figure 4.4: Cube-based sampling.

4.2.3.1 Feature views

To representdifferent features of a view, we adopt two types of feature views, which are

outline and silhouette viewsbased on orthogonal projection. Due to the orthogonal projec-

tion, both feature views have a symmetrical rendering property: two views rendered from

two opposite camera locations are identical.Two examples are shown in Fig. 4.5. Out-

line view represents the contour information of the viewwhile silhouette view depicts the

region information of the view.

4.2.3.2 Integrated image descriptor

We comparetwo sets of feature viewsbased on an integrated image descriptor, motivated

by the Light Field descriptor proposed by Chen et al. [23] andtheir source code. Torep-

resentthe region and contour features ofthe feature views, we adopt the shape descriptor

proposed by Zhang and Luo [206] and use Zernike momentsZ (up to the 10th order, totally

35 moments)to represent the silhouette view and Fourier descriptorsF (the first 10 coef-
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(a) Teddy model (b) Outline view (c) Silhouette view

(d) Duck model (e) Outline view (f) Silhouette view

Figure 4.5:The feature views of a 3D teddy model and a 3D chair model, respectively.

ficients of centroid distance-based Fourier descriptor [205]) to represent the outline view.

In addition, to depict the geometric information of the outline view, we extract its eccen-

tricity and circularity features. Eccentricity is to measure how much a shape deviates from

a circle. For a 2D shape defined byn points{(xi,yi)|i = 1, · · · ,n}, we adopt the following

definition to compute its eccentricity,

E = [
n

∑
i=1

(xi −cx)
2−

n

∑
i=1

(yi −cy)
2]2+4 ·

[∑n
i=1(xi −cx)(yi −cy)]

2

[∑n
i=1(xi −cx)2+∑n

i=1(yi −cy)2]2
, (Eq. 4.2)

where(cx,cy) is the center of the bounding box of the 2D shape.For our case, the 2D shape

is a closed curve and the range of its eccentricity of is [0,1). For example, the eccentricity

of a circle is 0 and the eccentricity of an ellipse falls in therange of (0,1).Circularity is to

measure the compactness of the shape. It is defined as the quotient of the area of the shape

and the area of a circle with the same perimeter,

C= 4∗π ∗A/P2, (Eq. 4.3)
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whereC is the circularity,A andP are the area and perimeter of the shape respectively.

We use the city block (L1) distance metric to measure the distances for Zernike moments

(dZ), Fourier descriptors (dF ), Eccentricity descriptor (dE) and Circularity descriptor (dC):

dZ =
35

∑
p=1

|Z1(p)−Z2(p)|, (Eq. 4.4)

whereZ1 andZ2 are the Zernike moments features of two silhouette views.

dF =
10

∑
q=1

|F1(q)−F2(q)|, (Eq. 4.5)

whereF1 andF2 are the Fourier descriptors features of two outline views.

dE = |E1−E2|, (Eq. 4.6)

whereE1 andE2 are the eccentricity features of two outline views,dE ∈ [0,1).

dC = |C1−C2|, (Eq. 4.7)

whereC1 andC2 are the circularity features of two outline views,dC ∈ [0,1).

The integrated image distanced between two sets of feature views is the combination of

the above four component distances,

d = dZ+dF +dE +dC. (Eq. 4.8)

The four featuresZ, F, E, C depict a feature view from different aspects and we follow

the source code of Light Field descriptor and regard that they have the same contribution

in the computation of the integrated image distance. Therefore, we linearly combine them

and assign the same weight for each feature. However, a weighted sum approach should be

promising in achieving even better performance.
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4.3 View Context Shape Descriptor

4.3.1 Definition

The process to construct a view context shape descriptor fora 3D model is as follows:

first, to achieve translation and scale invariance, we translate the center of the bounding

sphere of the model to the origin of the coordinate system andthen scale it tonormalize

the radius ofits bounding sphere.To achieve rotation-invariance, we align the 3D model

using our proposed minimum projection area-based alignment method MPA proposed in

Chapter 3. Then weselect the 13 cube-based sampling views (Section 4.2.2) as our feature

views. Finally, we computethe view context of the sample viewswith respect to a set

of selected base views(Section 4.2.2)and compute the view contexts of these views, and

finally concatenate them into a 13×13 matrix as the view context shape descriptor.We want

to mention that in the experiment section, for comparison wealso test using the original

models, that is without alignment, directly for the view sampling.

4.3.2 Invariance Properties of the View Context Shape Descriptor

The invariance properties of our view context shape descriptor are as follows.

Translation invariance. From the definition of view context, we can inferthat our view

context shape descriptor is translation-invariant because we have centered the 3D model at

the origin before extracting its view context shape descriptors.

Scale invariance.We achieve scale invariance by scaling all the 3D models suchthat their

bounding spheres have the same radius.

Rotation invariance. We perform a pose normalization by MPA to make it rotation-

invariant. MPA maps the same model with different initial poses into the same canonical
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coordinate frame. Thus, our view context shape descriptor extraction is independent of the

initial poses of the model.

4.3.3 Comparison with Related 3D Shape Descriptors

In this section, we compare our view context shape descriptor with three related (in terms of

the structure of shape descriptor definition or view features adopted) 3D shape descriptors,

which are shape context, shape distribution and Light Fielddescriptor.

Comparison with shape context. View context is different from shape context. View con-

text depicts the distribution of other views’ appearance deviation from the current view.

Shape context of one point depicts therelative location distribution of other sampling

points. In addition, a feature viewcan adopt different types of features, while the feature

of a point can only use its relative position.

Comparison with shape distribution. The most obvious and important difference is in

the features they depict. View context shape descriptor is about sample views and shape

distribution is about sample points. Shape distribution isto measure the distance distribu-

tion of any two sample points of a model, while view context shape descriptorencodesthe

appearance deviation of aset of selected sample viewswith respect to a predefinedbase

view sequenceof the model.

Comparison with Light Field descriptor. The fundamental assumptions of Light Field

descriptor and view context shape descriptoraredifferent. The former is based on the idea

that if two 3D models are similar, they will look similar fromall similar viewing angles.

Therefore, the distance between two models is defined as the minimum distance between

their 10 corresponding silhouette views. Thelatter, however, is based on the idea that if

two models are similar, they will have similar appearance variations from similar viewing
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angles. Therefore, we define the view context distance between two modelsas the summed

view context dissimilarities between their sample views.

4.4 3D Model Retrieval with View Context

4.4.1 Retrieval Algorithm

We focus on retrieval using 3D models as queries. Given a query model, we propose a 3D

model retrieval algorithm as follows.

(1) Compute view context shape descriptor.We compute the view context shape descrip-

tor for each target model (off-line processing) and the query model (on-line processing) as

described in Section 4.3.1.

(2) Compute the shape distance matrix and ranking. We design two shape distance

metrics to measure the difference between two view context shape descriptors extracted

with or without 3D model alignment. We also propose a combined shape distance by

combining the dissimilarity between two view context shapedescriptors and the difference

between two models’ feature views sets. We describe these three distances in Section 4.4.2.

4.4.2 Shape Distance Metrics

Two candidate metrics that can be used to measure the distance between two view contexts

are correlation andχ2 distance. After comparing their differentiation capabilities through

experiments, we found that correlation performs better. Therefore, we use correlation to

measure the difference of two view contexts. As depicted in Section 4.3.1, we select 13

cube-based sampling views as feature views setafter performing our MPA alignmentor

using the original 3D models directly. Accordingly, we design one shape distance metric

for each, described as follows.
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4.4.2.1 Ordered Correlation Distance

We assumethat the view contexts of two models areVC={VC0, · · · , VC12} andṼC={ṼC0,

· · · , ṼC12} according to the order of the base view sequence. Since we have aligned the 3D

models using MPA, the view context dissimilaritydv between two models’ view context

shape descriptors is computed by summing all the 13 view context correlation differences

of their corresponding pair views.

dv =
12

∑
i=0

(1−corr(VCi ,ṼCi)). (Eq. 4.9)

wherecorr(VCi ,ṼCi) is the correlation between the view contexts of two sample views

VCi andṼCi ,

corr(VCi ,ṼCi)) =
∑12

j=0(VCi j −VCi)(ṼCi j −ṼCi)√
∑12

j=0(VCi j −VCi)2∑12
j=0(ṼCi j −ṼCi)2

. (Eq. 4.10)

whereVCi andṼCi are the mean value of view contextsVCi andṼCi , respectively.

4.4.2.2 LAP Correlation Distance

For a view context shape descriptor directly extracted based on the initial 3D models, we

use the Jonker’s Linear Assignment Problem (LAP) algorithm[72] to correspond these two

sets of feature views and use the minimal matching cost as thedistance between them.

4.4.2.3 Combined Shape Distance

To further improve the retrieval performance, we also consider the difference between two

sparse sample views setsto form acombinedshape descriptor. We propose a combined

shape distance by combining the dissimilarity between twoview context shapedescriptors,

depicted bydv, and theintegrated shape descriptor feature (Section 4.2.3.2)difference be-

tween two models’sampleviews sets, depicted bydm. We combine the two distances based
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on an automatic weighting method according to the differentiation ability of each type of

distance. First, we normalizedv anddm into d̃v andd̃m by their respective maximum dis-

tances based on all the models in the database. Then, we compute the weightsωv andωm

for the view context feature distance andsample views’ difference,

ωv =
s1

s1+s2
, ωm =

s2

s1+s2
. (Eq. 4.11)

s1 and s2 are the standard deviations ofdv and dm over all the models in the database.

Finally, we combine these two normalized features by their corresponding weights,

d = ωv∗ d̃v+ωm∗ d̃m . (Eq. 4.12)

4.5 Experiments and Discussion

To investigate the retrieval performance and the characteristics of our view context shape

descriptor, we tested our view context descriptor on thePSB (test dataset) and NTU bench-

marks (Section 1.1)and compared it with other related descriptors.To compare the retrieval

performance, we use the six metrics described in Section 1.1: Precision-Recall, Nearest

Neighbor (NN), First Tier (FT), Second Tier (ST), Discounted Cumulative Gain (DCG)

and Average Precision (AP).

4.5.1 PSB Database

Fig. 4.6 and Table 4.1 compare the performancesof our two view context-based shape

descriptors, denoted by VC and VC-Fas well as other three shape descriptors. For the

performancesof D2 [135] and SHELL [4], we referred to the experiment results in [167].

For Light Field descriptor [23], we generated the results using their provided execution file.

Fig. 4.6 (a) shows the results on theMPA aligned PSB database, while Fig. 4.6 (b) shows

the results on the original PSB database.
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Figure 4.6: Precision-Recall plots of our view context and other three descriptors: (a) MPA
aligned PSB database: Ordered correlation distance; (b) Original PSB database: LAP cor-
relation distance. “VC”: our view context descriptor. “VC-F”: combined shape descriptor
by integrating the sample views’ difference and VC.

Compared to the shape distribution (D2) and SHELL descriptor (one type of shape his-

togram descriptor), view context descriptor performs apparently betterin terms of all the

six metrics. From Fig. 4.6, wecan see that compared with the Light Field descriptor, view

context shape descriptor can achievea better or comparablePrecision-Recallperformance

when retrieving a certain percentage of models (for examplearound15percent). While the

Table 4.1: Other performance metrics for the performance comparison on the PSB
database.

Methods NN FT ST DCG AP

Ordered correlation distance

VC-F 60.9 35.9 46.3 0.62750.8
VC 49.7 25.9 34.9 0.532 39.9

LAP correlation distance

VC-F 61.6 35.8 46.2 0.62750.8
VC 49.1 25.9 34.9 0.535 39.9

Light Field Descriptor 65.7 38.0 48.7 0.643 48.0
D2 31.1 15.8 23.5 0.434 29.7
SHELL 22.7 11.1 17.3 0.386 24.4

78



CHAPTER 4. QUERY-BY-MODEL: V IEW CONTEXT-BASED RETRIEVAL

combined shape descriptor VC-F integrating the differenceof sample views sets can im-

prove the performance further and we can achieve betterPrecision-Recallresults than the

Light Field descriptor.As shown in Table 4.1, in terms of other performance metrics in-

cluding NN, FT, ST and DCG, Light Field outperforms VC-F on this benchmark; while in

terms of the AP metric, VC-F performs better, which indicates a better overall performance.

4.5.2 NTU Database

For the full MPA aligned or original database (1833 models), wecompared our view con-

text shape descriptorswith the three descriptors mentioned in [23]: Light Field [23], 3D

harmonics [78], and multiple view descriptor [68]. Fig. 4.7 and Table 4.2 showthe com-

parisonsof their performances. FortheLight Field descriptor, weran their program on the

NTU database based on their provided execution file, while for 3D harmonics and multiple

view descriptor, we referred to the experiment results in [23]. Some performance metrics

that are not provided in these papers are indicated by “-”.We can see that our view context

shape descriptor apparently outperforms the 3D harmonics and the multiple view descrip-

tor on all the six metrics. As can be seen from Fig. 4.7, it itself can achieve a similar and

comparablePrecision-Recallperformance as the Light Field descriptor while thecombined

shape descriptor VC-Fevidentlyoutperforms the Light Field descriptor. As shown in Table

4.2, in terms of ST and DCG, VC-F is comparable to the Light Field descriptor; in terms

of NN and FT, Light Field descriptor performs better; while in terms of AP, VC-F outper-

forms the Light Field descriptor, similarly demonstratinga better overall performance of

our VC-F.

Fig. 4.8 and Table 4.3 comparethe performancesbetween our view context based methods

and Light Field descriptor over the 549 classified models. Similarly, we can see that our

view contextitself is comparable to the Light Field descriptorin terms of the Precision-

Recall metricand integrating the difference of feature views sets can apparently improve
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Figure 4.7: Precision-Recall plots of our view context and other three descriptors: (a)
MPA aligned complete NTU database (1833 models): Ordered correlation distance (Sec-
tion 4.4.2.1); (b) Original complete NTU database (1833 models): LAP correlation distance
(Section 4.4.2.2). “VC”: our view context descriptor. “VC-F”: combined shape descriptor
by integrating the sample views’ difference and VC.

the Precision-Recall performance. Overall, we can achieve better results than the Light

Field descriptor, in terms of almost all the performance metrics.

Table 4.2: Other performance metrics for the performance comparison on the complete
NTU database (1833 models).

Methods NN FT ST DCG AP

Ordered correlation distance

VC-F 59.2 29.6 39.2 0.592 40.9
VC 54.2 25.3 33.5 0.520 33.0

LAP correlation distance

VC-F 58.8 29.3 38.5 0.588 40.3
VC 52.1 25.2 33.6 0.519 33.2

Light Field Descriptor 63.5 31.2 39.1 0.604 35.3
Multiple View Descriptor - - - - 28.9
3D Harmonics - - - - 26.5
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Figure 4.8: Precision-Recall plots of our view context and other three descriptors: (a)
MPA aligned classified NTU database (549 models): Ordered correlation distance (Section
4.4.2.1); (b) Original classified NTU database (549 models): LAP correlation distance
(Section 4.4.2.2). “VC”: our view context descriptor. “VC-F”: combined shape descriptor
by integrating the sample views’ difference and VC.

4.5.3 Timing Information

On average, it takes 4.6 seconds and 6.1 seconds to extract the view context feature for a

model in PSB and NTU respectively using a computer with an Intel Xeon CPU E5520@2.27

GHz and 12.0 GB of RAM. It takes only 0.27 millisecond for a pair VC-F feature com-

parison, that is, 0.25 and 0.49 second of matching time for a query on PSB and NTU,

Table 4.3: Other performance metrics for the performance comparison on the classified
NTU database (549 models).

Methods NN FT ST DCG AP

Ordered correlation distance

VC-F 67.2 41.5 53.3 0.689 53.5
VC 61.5 33.5 45.0 0.629 45.9

LAP correlation distance

VC-F 67.8 42.2 53.8 0.696 54.1
VC 60.1 33.4 44.9 0.628 45.8

Light Field Descriptor 70.0 39.0 50.1 - 48.4
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respectively. We also need to mention that our implementation is not optimized. Compar-

atively, Light Field needs 2.6 seconds for feature extraction for a model in PSB or NTU

database. 2 milliseconds are needed to perform a pair feature comparison, thus, 1.9 and 1.2

seconds are required to perform a query on PSB and NTU respectively. Overall, our view

context-based retrieval algorithm has a comparable efficiency performance as the Light

Field descriptor and also meets the requirements for a real-time retrieval application.

4.5.4 Limitations

We have demonstrated the comparable performance of VC as well as the superior perfor-

mance of VC-F when compared with the related shape descriptors. Since view context

mainly measures the deviation in the visual information features of a 3D model based on a

set of base views and sample views, combining it with the visual information itself in the

sample views can achieve better differentiation ability and the resulting combined shape

descriptor improves the retrieval performance further andit outperformsthe related view-

based shape descriptor Light Field.

Nonetheless, there are some limitations. Firstly, the performance of VC itselfis not among

the state-of-the-art compared to other top view-based retrieval techniques, such as BF-

DSIFT [44] and CM-BOF [100], let alone other view-based retrieval algorithms which

further utilize distance metric learning techniques to further improve the retrieval per-

formances, such as the DG1SIFT shape descriptor [130] whichperforms the best in the

SHREC 2012 generic 3D model retrieval track [127]. The performance of VCcan be

boosted further. For example, utilizing a more powerful 2D feature for view context com-

putation can improve VC’s performance further. Secondly, rather than combining another

visual information feature to form the combined one VC-F, a hybrid shape descriptor that

contains the visual information feature of VC andsomecertain geometrical features to de-

pict a 3D model, has not been tested and compared. It should have chance to outperform
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the existing one. Thirdly, the influence of different parameter settings related to the view

context definition on the retrieval performances can be furtherexplored.

4.6 Summary

We have presented a new 3D model feature view context which captures the shape deviation

distribution feature of a 3D model. It can differentiate models effectively because similar

models have similar view contexts and different models in general have apparently different

view contexts. To improve the retrieval accuracy, we propose a combined shape descriptor

which also integrates the difference of feature views. Experiment results show that the view

context shape descriptor is comparable with therelated view-baseddescriptors in retrieval

performance and the combined shape descriptor can achieve asuperior performance than

the related ones.

There are still many facets about the view context to be explored. For example,we can

adopt a different view sampling method, such as setting the cameras on the 20 vertices of

a regular dodecahedron.In addition,since the result of shape analysis is often dependent

on the scale selected, a multi-scale view context can be utilized. We can organize a view

context scale-space by uniformly dividing the view space for the base view sampling at a

series of scales, arranged from coarse to fine, and then compute view context at each scale.

The view context features at several scales are utilized jointly for the shape analysis task.
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Chapter 5

Query-by-Sketch: Incorporating 2D-3D
Alignment

5.1 Overview

Currently, there exist manysketch-based 3D model retrieval algorithms such as[43, 75, 88,

126, 158, 192, 201]. However, to the best of our knowledge, all the available approaches

compare the query 2D sketch with a very limited number of sample views of the 3D model.

For example, Funkhouser et al. [43] only sampled 13 views rendered from 4 top corners,

6 edge midpoints and 3 adjacent face centers of a cube; Kanai [75], Yoon et al. [201] and

Saavedra et al. [158] sampled only 14 views comprising 6 orthographic and 8 isometric

views by sampling viewpoints on a cube or a sphere. In fact, this sparse view sampling

approach is subject to inaccurate 2D sketch-3D model correspondence because theposeof

thequery sketch, that is, the viewpoint of the viewer when drawing the sketch,may have

big difference with any of the sample views. Thus, the 2D-3D correspondence is not robust

based on only several sample views generated usingpredefinedfixed sample locations.

When retrieving 3D models using a 2D query sketch, we need to compute the distance

between the 2D sketch and the 3D model. Ideally, it is good if we compare the 2D sketch

with the most similar view or the optimal corresponding viewof the 3D model. However,
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if we sparsely sample a limited number (e.g. 3∼24 in previous work) of views, the chance

that the optimal view is among the selected sample views willbe low. However, due to

the high computational cost, we also cannot exhaustively compare with a large amount of

sample views of a 3D model. Experimental results in Section 5.5 show that considering

more views of a target 3D model to correspond with a query sketch for a more accurate

2D-3D correspondence improves the retrieval performance.

Motivated by the above findings and in order to improve the retrieval performance, we pro-

pose a novel sketch-based 3D model retrieval algorithmwhich first performs a 2D sketch-

3D model alignment before 2D-3D matching. The framework of our sketch-based 3D

model retrieval algorithm is shown in Fig. 5.1. Our proposed2D sketch-3D model align-

mentutilizes the 3D model feature view contextproposed in Chapter 4to rapidly select

some candidate views from a set of densely sampled views. View context is utilized be-

cause we have found a new property of it: view contexts of different views of the same

model are often distinctively different. This property facilitates us todistinguishdifferent

views during the candidate views selection for 2D-3D correspondence. Our sketch-based

retrieval algorithm is composed of two stages which are precomputation and retrieval.The

retrieval stage comprises two steps which are 2D-3D alignment and 2D-3D matching.The

effectiveness as well as the robustness of our approach are demonstrated by comparative

and evaluative experiments, using both hand-drawn sketches and standard line drawingsas

queries and a standard 3D model dataset as target database. Moreover, we have achieveda

better performance than several latestsketch-based retrievalalgorithms.

The rest of this chapter is organized as follows. Feature extraction and feature distance

computation methods for 3D model and 2D sketch are presentedin Section 5.2 and Section

5.3, respectively. In Section 5.4, we presentoursketch-based 3D model retrieval algorithm.

Experiments are conducted in Section 5.5. Section 5.6 concludes the chapter and lists

several future research directions.
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Figure 5.1:The framework of our sketch-based 3D model retrieval algorithm.

5.2 Feature Extraction

To measure the difference between a 2D sketch and the views ofa 3D model effectively

and efficiently, we need to extract similar yet simple features. In our algorithm, to represent

different features of a view, we extractsilhouette andoutline feature views for both 2D

sketchesand 3D models. Silhouette feature view is selected because of its robustness for the

2D sketch-3D model alignment, while outline view is chosen because of its better accuracy

in selecting the relevant models during the 2D-3D matching in the retrieval stage. Silhou-

ette and outline feature views are simple in essence and often coexist in both the sketches

and the sample views of an object and thus form a simple and similar feature set. Compared

to the features in the related work section, such as 3D spherical harmonics, generic Fourier

descriptor (GFD), local binary pattern (LBP), multi-scaleconvexity/concavity (MCC) as

well as diffusion tensor fields feature representations of suggestive contours, the features

we selected have the virtues of simpleness and low computational complexity. In Section

4.2.3.1, we have present extracting silhouette and outlinefeature views for 3D models.

Now we mainly introduce the feature view extraction method for 2D sketches.

5.2.1 2D Sketch Feature Extraction

A sketch is composed of a set of curves. It can be: (1) a hand-drawn sketch drawn by

non-artist people, such as the sketches built by Yoon et al. [201]; (2) a sketch drawn by

86



CHAPTER 5. QUERY-BY-SKETCH: INCORPORATING2D-3D ALIGNMENT

artists, for example, the sketch dataset created by Cole et al. [25]; or (3) a standard line

drawing such asthe 260 Snograss and Vanderwart’s standardized2D object images [171].

We need to extractthesilhouette and outline feature views for a 2D sketch to correspond

with a3D model. We generate a silhouette view based on the following steps:binarization,

Canny edge detection, morphological closing operations (repeat until the result no longer

changes), gap connection and region filling. After that, we apply the Canny edge detector

on the binary silhouette image to extract the outline of the sketch.Fig. 5.2 gives an example

indicating the silhouette feature view generation process. Fig. 5.3 illustrates two groups

of examples of hand-drawn sketches in Yoon et al. [201] and standard line drawings in

Snograss and Vanderwart [171].

(a) (b) (c) (d) (e) (f)

Figure 5.2:Silhouette feature view generation example: (a) original sketch; (b) binariza-
tion; (c) Canny edge detection; (d) morphological closing;(e) gap connection and region
filling; (f) inversion.

(a) Hand-drawn sketches in [201]

(b) Standard line drawing sketches in [171]

Figure 5.3:Foursets of examples of sketch feature extraction for both hand-drawn sketches
in [201] and standard line drawings in [171]. For every set, from left to right: sketch,
silhouette view and outline view.
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5.3 Feature Distance

To compute the distance between two feature views, we need toextract appropriate shape

descriptors to balance the efficiency and accuracy in different stages of our retrieval al-

gorithm. For the view context feature extractionused in the precomputation stage and the

2D-3D alignment step in the retrieval stage, we adopta computationally efficientintegrated

image descriptorpresented in Section 4.2.3.2. For the2D-3D matchingduring the retrieval

stage, we utilize the more accurate relative shape context descriptoras follows.

5.3.1 Relative Shape Context Matching Distance

We usethe relative shape context matching [10] to compute a more accurate distance to

measure the difference between the sketch and each candidate view resulting from the

alignment stepduring the retrieval stage. Relative shape context(Section 2.3.4)is defined

to achieve rotation invariance property and it is necessaryfor our sketch-based retrieval

scenario, for which sample viewsshould be independent of camera up-vectors during ren-

dering and the orientation of the sketch.

To compute the difference between two outline feature views, we first sample a set of

feature points for each image and then use the relative shapecontext matching algorithm

described in [10] to measure their distance.

(1) Feature points sampling.We sample 100 points for every outlinefeature viewbased on

the following steps:contour extraction,cubic B-Spline interpolation and uniform sampling.

(2) Relative shape context matching.Wefirst extract therelativeshape context feature [10]

for every feature point inan outlineview andthen adoptJonker’s LAP algorithm [72] to

correspond the feature points of twooutlineviews andfinally use the minimum matching

cost to measure their distance. To compute the relative shape context, we compute the
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tangent vector to define the local relativex axis for each sample point. This can be easily

achievedconsidering thatwe usea cubic B-spline to interpolatethe contour during the

abovefeature points samplingprocessand the derivative curve of a cubic B-spline curve is

aquadricB-spline curve [151].

5.4 Our Sketch-Based 3D Model Retrieval Algorithm

As described in Section 5.1 and Section 2.3, many previous sketch-based 3D model re-

trieval algorithms (e.g. [88, 126, 192]) sample only a limited number(e.g. 3∼24)of views

to match a 3D model with a query 2D sketch. Apparently,as mentioned in Section 5.1,this

sparse view sampling approachwill limit the accuracyof the 2D-3D correspondence.This

is because if the poseof the query sketchis apparently different fromthose of the limited

number of predefined sampling views, the 2D-3D correspondence is notaccurate. Thus, the

2D-3D matching distance cannot represent the real difference between the 2D sketch and

the 3D model. Motivated by the above findings, we propose to first performa 2D sketch-

3D model alignment step to find a set of candidate views for the2D-3D correspondence

and then compute the 2D-3D matching distance based on the candidate views. It should

be noted that as compared in Section 2.3.3 and Section 2.5.4,our 2D sketch-3D model

alignment is different from the common 2D image-3D model registration techniques.

In this section, we present a sketch-based 3D model retrievalalgorithm utilizing the 3D

model feature view contextpresented in Chapter 4and relative shape contextmatching

[10]. It includes twostages: precomputation and retrieval. During the retrieval stage, we

first select a set of candidate views to align a 2D sketchwith a 3D model based on the

precomputed view context featuresof the 3D modelbefore measuring their more accurate

distances, in terms ofrelative shape contextmatching cost.The 2D-3D alignment step

avoids brute-force direct matching between the sketch and many sample views, that is
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reducing the search space to only a set of candidate views, byutilizing the features of all

the densely sampled views to efficiently shortlist several good candidate views for a more

accurate 2D-3D correspondence.

The idea of view context was originally proposed in Chapter 4for 3D model retrieval

using 3D model queries. In [96] we found that view context canbe utilized to align a 2D

sketch with a similar 3D model and performed preliminary tests on some models.Based

on Chapter 4and [96], we found a new property of view context: for different views of

the same model, their view contexts are often different. Therefore, view context can be

utilized todistinguishdifferent sample views of the model, thus useful for candidate views

selection for the 2D-3D alignment. Based on this, we developour main idea to align a 3D

model with a 2D sketch as follows: we replace each sample viewof the 3D model with the

sketch andcomputeits view context and if the obtained new view context is very similar

to its original one, then this sample view is considered as a candidate view for the 2D-3D

alignment.

5.4.1 View Context

To meet the requirements of the 2D-3D alignment step in our sketch-based retrieval algo-

rithm, we modify the view context proposed in Chapter 4 and [96] by choosing a fixed set

of base views described as follows and an integrated image descriptor presented in Section

4.2.3.2 for feature distance computation. For a 3D model centeredat the origin, we select

a series of views as base view setVb,

Vb =<Vb
1 ,V

b
2 , . . . ,V

b
m >, (Eq. 5.1)

wherem is the number of base views. For a viewV, its view context is defined as the visual

information differences betweenV andeach view in the base view setVb,

{d(V,Vb
j )|V

b
j ∈ Vb,1≤ j ≤ m} , (Eq. 5.2)
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Figure 5.4: An example indicating that view contexts of different views of the same model
are often different. The view contexts of the front, left andtop views of the model Human0
in Fig. 4.3(e) are shown.

whered(V,Vb
j ) is the integrated image distance (Section4.2.3.2) betweenV andVb

j . Thus,

view context measures the shape appearance deviation feature of a 3D model with respect

to a set of base views.

In Fig. 4.3, we showthe view contexts of several models. Moreover,we found that view

contexts of different views of the same model are also often different, as shown in Fig. 5.4.

This newly found property is important for sketch-based retrieval f ramework to distinguish

different sample views of a 3D model forthe2D-3D alignment.

5.4.2 Precomputation Stage

To speed up retrieval, we precompute the view context and relative shapecontext features

for a set of sample views of each target 3D modelin database.
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5.4.2.1 View Context Precomputation

The view context feature computation for every3D modelis detailed as follows.

(1) Base and sample views definitions.We define the viewpoints for the base and sample

views by subdividing an icosahedron based on the Loop subdivision rule [108]. Fig. 5.5

shows the view sampling by subdividing the icosahedron (L0) once(L1) and twice(L2) and

we set the cameras at the vertices ofthesubdivided icosahedron for the base and sample

view sequence generation. Considering the symmetrical property in rendering the feature

views (Section 4.2.3.1), we select half-L1 (select one from pair symmetric vertices, 21

views) for the base views and half-L2 (81 views) for the sample views.We denote the

sample view setVs as follows,

Vs=<Vs
1 ,V

s
2 , . . . ,V

s
n >, (Eq. 5.3)

wheren is the number of sample views. Thus,n=81,m=21.

(a) L0 (b) L1 (c) L2

Figure 5.5: Viewpoints sampling method.L0: icosahedron;L1, L2: subdivide the icosahe-
dron once and twice.

(2) View context feature extraction.We compute the integrated image distance (Section

4.2.3.2) between each sample view inVs and each base view inVb. Assume thatdi j

(i = 1, . . . ,n; j = 1, . . . ,m) is the distance between the sample viewVs
i and the base view

Vb
j , then for each model we form ann×mview distance matrixDs= {di j}n×m. Theith row

represents the view context feature of the sample viewVs
i , that is,Ds

i =< di1,di2, . . . ,dim >.
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5.4.2.2 RelativeShape Context Precomputation

We also precompute the relative shape context features (Section 5.3.1) for the sample views

of each 3D model. They will be used in the retrieval stage. To improve thestorageeffi-

ciency, we adopt a sparse matrix representation to denote the relative shape context features

and only keep the feature values that are non-zeros (e.g.>1e-5) and save them into a series

of three-dimensional vector< θ , r,value>, where (θ , r) denotes one bin (θ : orientation,

r: distance) of therelative shape contextpartition, for which we use the default 5×12 par-

tition. During the retrieval stage, we thus only need to extract the relative shape context

features for thequerysketch.

5.4.3 Retrieval Stage

Based on the precomputed view context and relative shape context features of the 81 sample

views for each target 3D model, we developa retrieval algorithm comprisingtwo steps:

2D-3D alignment and 2D-3D matching. The details are as follows.

5.4.3.1 Step 1. 2D-3D Alignment

(1) 2D sketch feature extraction.First, we extract the silhouette and outline viewsof the

query2D sketch based on the method in Section 5.2.1 and then compute its Zernike mo-

ments, Fourier descriptors, eccentricity and circularityfeatures (Section4.2.3.2).

(2) Sketch’s view context feature extraction.Similar to the view context precomputation

(Section 5.4.2.1) for a 3D model, we compute the integrated image distances (Section

4.2.3.2) between the sketch and all the base views of the target model and name the re-

sulting distance vectorDk=<d1,d2,. . . ,dm> sketch’s view context.
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(3) 2D-3D alignment.To align the2D sketch anda 3D model before 2D-3D matching, we

choose some candidate views by keeping a certain percentageT (e.g. 20%, 10% or 5%,

that is, 16, 8 or 4 sample views in our experiments) of the sample views with top view

context similaritiesasthe sketch, in terms of correlation similaritySi ,

Si =
Ds

i ·D
k

∥∥Ds
i

∥∥∥∥Dk
∥∥ . (Eq. 5.4)

where,Ds
i (defined in Section 5.4.2.1) andDk are the view contexts of the sample viewVs

i

of the 3D model and the 2D sketch, respectively.

5.4.3.2 Step 2. 2D-3D Matching

(1) Sketch-model distance computation.To more accurately measure the similarity between

the sketch and the model as well as to encompass the orientation differences between the

sketch and the sample views, we compare the sketch with everycandidate outline view

using the relative shape context matching (Section 5.3.1) and regard the minimumrelative

shape contextdistance obtained as the sketch-model distance.

(2) Ranking and output.We sort all the sketch-model distances between the sketch and the

models in an ascending order and list the retrieved models accordingly.

5.5 Experiments and Discussion

To evaluate our sketch-based retrieval algorithm using a 2D-3D alignment, we perform

comparative and evaluative experiments based on both hand-drawn and standard line draw-

ing query sketches, as well as a standard 3D model database.We would like to mention

that our 2D sketch-3D model alignment is different from the previous 2D image-3D model

registration techniques, where the 2D image contains the view of the same object as the
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3D model. Thus, they can use objective metrics to measure thealignment accuracy. How-

ever, for us the object in the 2D sketch is not completely the same as the 3D model and

thus it is not one of its complete views. Therefore, there is no one exact pose to perfectly

align the 2D sketch with 3D models. As a result, we mainly evaluate the alignment accu-

racy by comparing the robustness (change in performance) ofour retrieval algorithm while

reducing the number of candidate views during the alignment.

5.5.1 Hand-Drawn Sketches

We first test and evaluate our sketch-based retrieval algorithm by performing a similar ex-

periment asthe one described in a 2010 paper byYoon et al. [201]. They built a benchmark

database by using the first 260 models (13 classes, 20 each) ofWMB dataset (Section 1.1)

as target 3D model dataset and 250 hand-drawn sketches as thequery set. For each class,

one typical 3D model and sketch are shown in Fig. 5.6. We need to mention that: (1)

to compare with the available retrieval results obtained byYoon et al. in this section, we

select the same sketches asthosein their paper; (2) the hand-drawn sketches were drawn

by non-artists and some of them are very simple sketches, e.g., using only 4 line segments

to represent an ant. We will give the overall performance of our approach later.

For the precomputation (Section 5.4.2), on average it takes97 seconds to process a model

usinga computer with an Intel Xeon CPU E5520@2.27 GHz and 12.0 GB ofRAM: 8.8

seconds for the view context precomputation and88.2seconds for the relative shape context

precomputation, for all the 81 sample views of the 3D model. During the retrieval stage

(Section 5.4.3), we set the default value for the percentageT for candidate views selection

(Section 5.4.3) to be 20%, that is, keeping top 16 candidate views. We use the sketches

in Fig. 5.6 as queries and the top-20 retrieved models are listed respectively in Fig. 5.7.

Compared to the retrieval results obtained by Yoon et al. [201], as shown in Fig. 5.8, our
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Figure 5.6: Typical 3D model and 2D sketch for each class of Yoon et al.’s[201] bench-
mark.

retrieval lists are betterfor the bear, ant and hand queries and comparable for the chair and

cup queries. For the human and glasses sketches, Yoon et al. achieved better results (in

Section 5.5.3, we will show that our approach achieves better performance on class level).

For the seven queries, the average accuracy (the percentageof the relevant models) in the

top-8 retrieval results of our algorithm and Yoon et al.’s are 80.4% and 76.8%, respectively.

Thus, we have achieved a better performance.

To measure the retrieval accuracy of our algorithm, we adoptthe performance metric of

First Tier (FT), referred to Section 1.1. We test the same queriesasin Fig. 5.7 with different

percentages (T=20%, 10% and 5%) for candidate views selection. Table 5.1 compares their

FT scores.

We can see that when we reduce the number of candidate views to be half of the default

value (T=20%, 16 views), that is, 8 views, theaverageFT scoredecreases only 3.6%. Even

after reducing it further to be only a quarter of thedefault value, that is, only 4 candidate
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Table 5.1:First Tier performance comparison using different percentageT values and the
thirteen query sketches in Fig. 5.7.

T(%) 20 10 5

chair 70% 55% 50%
cup 85% 85% 80%
teddy 85% 80% 80%
ant 90% 85% 85%
hand 75% 70% 70%
human 45% 50% 45%
glasses 10% 10% 10%
plane 85% 75% 70%
table 75% 70% 55%
plier 80% 80% 75%
fish 65% 65% 55%
bird 45% 45% 35%
octopus 35% 35% 40%

views, the FT score drops only9.3% averagely. This indicates the robustness of our sketch-

based retrieval algorithmwith respect to the number of candidate views. The relatively high

FT scores also demonstratetheaccuracy of our retrieval algorithm. We note that for some

classes, such as human and octopus, whenT becomes higher, FT may decrease somehow.

Our explanation is as follows. WhenT is increased, more candidate views are considered

to compute the sketch-model distance, that is to say, a longer sequence (e.g. 8 views when

T = 10% and 16 views whenT = 20%) of sketch-view distances will be computed for

each model. The sketch-model distance computed based on more candidate views may be

smaller than that computed based on less candidate views. Therefore, when more candidate

views are considered, the sketch-model distances between the sketch and some irrelevant

models may become smaller and thus these irrelevant models will be pushed forward in the

retrieval lists and this decreases the First Tier performance.
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5.5.2 Standard Line Drawings

We performa similar experimentasdescribed in Section 5.5.1 using line drawing queries.

We still use the same WMB database but utilize Snograss and Vanderwart’s standard line

drawings dataset [171] as queries. Fig. 5.9 shows several line drawings examples that have

relevant classes in WMB.

Similarly, we set the percentageT for candidate views selection to be 20%. We use the

sketches in Fig. 5.9 as queries and their top-20retrieval results are shown in Fig. 5.10.

Table 5.2 shows the changes of the FT performance when using different percentageT

values for candidate views selection. Therobustness of our sketch-based retrieval algorithm

is verified again by the standard line drawing sketch queries. The decreases in the FT

performance by changingT from 20% to 10% and from20% to 5% are3.1% and 7.1% on

average.

Table 5.2:First Tier performance comparison using different percentageT values and the
seven query sketches in Fig. 5.10.

T(%) cup bear ant plane hand table chair

20 90% 70% 55% 70% 80% 60% 75%
10 85% 65% 40% 70% 75% 55% 75%
5 90% 55% 30% 70% 70% 55% 80%

5.5.3 Overall Performance Comparison

To assess the overall performance of our algorithm on a database level andperforma com-

parative evaluation with other approaches, we test our retrieval algorithmon the complete

query set (250 sketches) of Yoon et al.’s [201] benchmark andcompare the performance

with a 2011 paper by Saavedra et al. [158]. They testedtheir proposed STELA approach

on the same benchmark database and compared with the global shape descriptor-based
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approach HELO [157]. Table 5.3 and Fig. 5.11 comparethe First Tier performances of

our approach (T=20%) and these two methods (STELA and HELO) on each class.For

the performances of STELA and HELO, we refer to [158].The average First Tier perfor-

mances over all the classes are as follows: HELO: 13.9%, STELA: 16.5%, Ours: 41.5%.

Apparently, we have achieved much better results in terms of respective classesandoverall

performance.

Table 5.3:First Tier performance comparison between our method and STELA [158], as
well as HELO [157].

Methods HELO STELA Ours

chair 8.8% 12.1% 31.8%
cup 13.8% 14.2% 57.4%
teddy 21.0% 33.8% 62.9%
ant 14.7% 12.6% 64.5%
hand 33.3% 31.9% 37.4%
human 25.5% 32.1% 29.1%
glasses 2.9% 7.9% 25.6%
plane 2.1% 11.7% 40.5%
table 13.5% 12.0% 44.2%
plier 7.9% 4.5% 63.8%
fish 16.2% 15.2% 38.4%
bird 10.7% 11.0% 20.8%
octopus 10.8% 15.0% 22.9%

In addition, we want to compare our approach with the algorithm in Yoon et al. [201], in

terms of the overall performance. Though we cannot find the complete overall performance

data in the paper, according to our knowledge (personal communication with one of the

author of the paper Yoon et al. [201]: Dr. Sang Min Yoon), the performance of Yoon et

al. [201] is comparable to STELA, in terms of the overall First Tier performance as well

as the First Tier performance for each class. Thus, our alignment-based retrieval approach

also outperforms Yoon et al. [201].

To have a comprehensive evaluation of our algorithm, we further provide the results for

99



CHAPTER 5. QUERY-BY-SKETCH: INCORPORATING2D-3D ALIGNMENT

other performance metrics (Section 1.1) including Precision-Recall plot, Nearest-Neighbor

(NN), Second Tier (ST), E-measure (E), Discounted Cumulative Gain (DCG) and Average

Precision (AP), as shown in Fig. 5.12 and Table 5.4 respectively.

Table 5.4:Other performance metrics of our algorithm on the Yoon et al.’s [201] bench-
mark.

NN ST E DCG AP

0.688 0.581 0.411 0.731 0.556

Similarly, we also perform the robustness experiment by changing the values ofT and com-

pare the results in Fig.5.13. Their average First Tier performances over all the classes are

as follows:T=20%: 41.5%;T=10%: 40.8%;T=5%: 38.9%.The conclusion is consistent

with theprevious ones, thus our retrieval algorithm is robust with respect to either respec-

tive models or classes.Though the 2D hand-drawn sketch dataset in the Yoon et al.’s [201]

benchmark is composed of 2D sketches corresponding to non-rigid or articulated models

in the WMB dataset (Section 1.1), we have achieved much better performances and this

also demonstrates the robustness of our algorithm with respect to non-rigid or articulated

sketches/models.

5.5.4 Extensibility to Larger or Other Database

To testthe extensibility of our SBR algorithmto a larger database, we usethe same query

set as that of Yoon et al.’s benchmark and thecomplete 400 models in the WMB database.

That is, we add 140 more models, classified into 7 classes, each 20 and regard them as noise.

Example models forthose 7classes are shown in Fig. 5.14. We setT=20% andperform

a similar experiment asthe one inSection 5.5.3. Fig. 5.15 compares the performance

with that of the experiment done in Section 5.5.3 which uses Yoonet al.’s benchmark(260

models of the WMB database). We can see evenwhenwe addedmore models to the 3D
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dataset used in Yoonet al.’s benchmark, the performance is still stable and for most classes

there are only trivial decrease. The average FT performanceis 38.3% and itonly drops

3.2% compared to the performance achieved using Yoonet al.’s benchmark.We need to

mention that the accuracy disparity in the “cup” class is dueto the newly added “vase” class

and some “vases” are quite similar to “cup”, either in terms of the overall shape or their

outlines. On the other hand, the outlines of some cup sketches are also similar to vases,

which also shows a limitation of the outline feature representation. The retrieval time for

the Yoon et al.’s benchmark and the above mentioned extendedversion is averagely 72.3

seconds and 121.8 seconds respectively when keeping 16 candidate views, which indicates

a rough linear relationship between the retrieval time and the size of the benchmark. This is

a limitation of the extensibility of our algorithm and we will analyze it in detail in Section

5.5.6.

We further tested our algorithm on the NIST database [36] from which we select 260 mod-

els that have relevant classes in the Yoon et al.’s sketch dataset. 13 relevant classes were

selected from NIST but we combined related classes according to the available sketch cat-

egories in Yoon et al.’s sketch database, in the end we got 8 classes. We setT=20% and the

First Tier performances are: human: 23.6%, cup: 78.2%, glasses: 31.8%, plane: 60.8%,

chair: 57.9%, table: 46.6%, fish: 43.7%, bird: 13.3%. The average First Tier performance

is 44.5%, which is comparable to the performance on Yoon et al.’s database.

5.5.5 Discussions

We found thata goodpose to aligna 3D model with a sketchoften ranks high andfor many

of them it is among the topfour. For example, Fig. 5.16 shows the topfour candidate

views for the cup, teddy and planehand-drawnquery sketchesand cup, bear and plane

line drawingquery sketches. As seen in Fig. 5.16, in the topfour candidate views for
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these sketches, usually we already can find certain views of the 3D models that are accurate

enough, in terms of retrieval, to correspond with the sketches. We also want to mention that

theorientationdifferences between the sketch and candidate views in theexamples, such

as those existing in thefour candidate views for theplaneline drawing query (alignment

results in thethird row of Fig. 5.16), are notan issuefor the retrieval since weutilize the

relative shape context to encompassthe variations in camera up-vectors during rendering.

To find out the contribution of 2D-3D alignment, we compared the performances of using

the fixed sampling method and our alignment approach based onthe same number of sam-

ple/candidate views. For the fixed one, we tested with Yoon etal.’s sampling method [201]:

6 orthographic and 8 isometric views. Because of the symmetrical property in rendering

our feature views as described in Section 4.2.3.1, only halfof the 14 sample views, that is

3 orthographic and 4 isometric views, are selected after aligning 3D models with Contin-

uous Principal Component Analysis (CPCA) [190] method. Forour algorithm, we keep

the top 7 candidate views. We test them on the Yoon et al.’s database. Table 5.5 compares

their First Tier scores with respect to each class and their overall First Tier performances

are as follows: Fixed: 32.6%, Ours: 39.8%, which demonstrates an apparent improvement

of using the 2D-3D alignment step to shortlist several candidate views. As can be seen

from Table 5.5, compared to the fixed sampling approach, our method also achieves a more

balanced performance especially on the chair, hand, human,glasses, table and plier classes.

Here, we also want to mention that the relative shape contextmatching part is also impor-

tant to achieve a better performance. The clue can be also found from the fact that without

alignment, that is using the fixed sampling approach, the relative shape context matching-

based retrieval algorithm already achieves a First Tier performance of 32.6%, which al-

ready surpasses HELO (around 13.9%) and STELA (around 16.5%), referred to Section

5.5.3. However, if incorporating our 2D sketch-3D model alignment step to shortlist bet-

ter candidate views, we further improve the retrieval performance to 39.8%. Therefore,
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both the view context-based 2D sketch-3D model alignment and the relative shape context

matching on the outline feature views, have important contributions to our apparently better

performance than HELO and STELA.

Table 5.5:First Tier performance comparison between fixed sampling and our method.

Methods Fixed Ours

chair 16.3% 28.1%
cup 51.6% 55.3%
teddy 57.1% 59.5%
ant 52.4% 64.2%
hand 16.6% 34.2%
human 16.2% 28.1%
glasses 10.6% 25.6%
plane 40.5% 38.3%
table 32.1% 41.3%
plier 38.5% 60.3%
fish 46.6% 38.4%
bird 20.5% 20.0%
octopus 24.7% 24.7%

In addition, we also successfully participated in the SHREC2012 Track: Sketch-Based 3D

Shape Retrieval [128], held in conjunction with the fifth Eurographics Workshop on 3D

Object Retrieval. According to the track report [97], our sketch-based 3D model retrieval

algorithm, denoted as “Li(SBR-2D-3D)”, achieves the best accuracy performance and it

apparently outperforms other participating approaches. Some results are shown in Fig.

5.17. While, it also shows that our algorithm is not the most efficient, as shown in Fig.

5.18.

To conclude, our 2D-3D matchingconsiders a large number of sample views compared

to previously sparse view sampling strategies, thusit is more robust to differentposes

of the sketches. It can efficiently find severalgood candidate poses of a 3D model to

align the model with a sketch. The above two types of experiments on the hand-drawn

sketch queries and standard line drawing queries have demonstrated the effectiveness of our
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retrieval algorithm, which shows better performance than Yoon et al. [201] and Saavedra et

al. [157, 158]. Therobustnessof our retrieval algorithm is also verified in our experiments.

5.5.6 Limitations

As shown in the above experiments, our approach has a good accuracy in terms of sketch-

based retrieval. Nevertheless, it has some limitations. Firstly, the performances for some

sketches (e.g. glasses, octopus and bird) are not as good as others and still have room for

further improvements. Secondly, relative shape context matching part dominates the most

part of the retrieval time:on average, it takes 0.86 second to extract the features (Zernike

moments, Fourier descriptors, eccentricity, circularityand relative shape contexts) for a

sketch; only 0.37 milliseconds for the 2D-3D alignment for amodel; 17.5 milliseconds for

the 2D-3D matching based on relative shape context for a pairof sketch-candidate view.

The average time for a complete retrieval on the Yoon et al.’sdatabase is 19.5 seconds, 37.3

seconds and 72.3 seconds when keeping 4, 8 and 16 candidate views respectively. The re-

trieval timet (sec) is proportional to both the number of candidate viewsM and the number

of the 3D models in the database, denoted byN. We denoteτ as the matching time for one

candidate view, then the retrieval timet (sec) can be approximately formulated as follows:

t=M*N*τ. In our experiments,τ=0.0175 sec. Thirdly, our precomputation (Section 5.4.2)

also takes time and needs space. For example, as stated in Section 5.5.1 on average the

precomputation time of processing a model is 97 seconds: 8.8seconds for the view con-

text precomputation and 88.2 seconds for the relative shapecontext precomputation of 81

sample views for a 3D model. The spatial spaces for the precomputed view context and rel-

ative shape context data is averagely 16.6K and 2542.6K bytes, respectively. Totally, about

665M bytes are needed to save the precomputated data of the Yoon et al.’s benchmark.

According to the robustness analysis of our algorithm in Section 5.5.3(Fig. 5.13), there

is no much performance decrease when we keep fewer candidateviews. Thus, we further
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tested our algorithm by keeping only 2 and 1 candidate view, and still got the average First

Tier performances of 37.4% and 35.9% respectively, compared to the 41.5% when keeping

16 candidate views. The retrieval time is 10secondsand 5.4secondsrespectively.Thus,

our suggestion is that users can make decision for the tradeoff between the accuracy and ef-

ficiency based on the requirements of their respective applications and available resources.

5.6 Summary

In this chapter, we have presented a sketch-based 3D model retrieval algorithm based on

the idea of first aligning a 3D model with aquery2D sketch before computing their match-

ing distance. The algorithm comprises precomputation and retrievalstages. During the

precomputation stage, we compute the view context and relative shape context features of

a set of densely captured sample views for each target model.Based on the precomputed

view context features of a target model,in the retrieval stagewe canefficiently and effec-

tively align the model with the 2D sketch. Experiments based on hand-drawn and standard

line drawings sketches demonstrate the superior performance and robustness of our ap-

proach. Thus, ithas apotential to be used in applications, such as sketch-based 3D model

recognition and modeling, as well as 3D scene reconstruction based on 2D sketches.

Several facets of the algorithm can be further explored. First, during the retrievalstage,

we can use representativerelative shape context[123] to speed up the matching process

between the sketch and the candidate views since we can reject the candidate views that

are obviously different from the sketches earlier. In addition, if using other faster corre-

spondence algorithms to replace our adopted LAP algorithm or adopting some 2D image

descriptors which are comparable in terms of effectivenessbut more computationally ef-

ficient, we may improve the retrieval performance further. Second, we want tofurther

test our sketch-based retrieval on other types of 3D model databases and sketches.Third,
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extending our algorithms to other types of queries is another interesting direction. For

example, query by a 2D image or evena sketch of a 3Dscene comprising several objects.
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Figure 5.7:Hand-drawn sketch-based retrieval examples on WMB database using hand-
drawn sketches in [201]. The first 20 models are listed.
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Figure 5.8:Hand-drawn sketch-based retrieval results in [201].

Figure 5.9: Selected typical sketches in Snograss and Vanderwart’s dataset [171].

Figure 5.10:Standard sketch-based retrieval examples on WMB database using line draw-
ings in [171]. The first 20 models are listed.
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Figure 5.11:First Tierperformance comparison between our method and STELA [158],as
well as HELO [157].
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Figure 5.12: Precision-Recall performance of our algorithm on the Yoon et al.’s [201]
benchmark.
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Figure 5.13: First Tier performance comparison using different percentageT values on the
Yoon et al.’s [201] benchmark.

Figure 5.14: Typical 3D model for each of the added 7 classes.
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Figure 5.15:First Tierperformance comparison using the whole WMB database (400 mod-
els) and only the relevant 260 models as the target 3D model database.

Figure 5.16:2D-3D alignmentexamples. Each row shows two sets of alignment results for
a hand-drawn sketch anda line drawing sketch. For each result, from left to right: a 2D
sketch, a 3D model (in initial pose) and the top 4 candidate views to align the 2D sketch
and the 3D model.
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Figure 5.17:Precision-Recall plot performance comparison results in [97]: (a) Yoon et
al.’s benchmark; (b) Extended version (see Section 5.5.4) of Yoon et al.’s benchmark.
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Figure 5.18:Timing information comparison results in [97] on Yoon et al.’s benchmark.
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Chapter 6

Query by Utilizing Class Information
and Hybrid Features

6.1 Overview

In spite of the fact that many shape descriptors and techniques have been proposed for3D

model retrieval, it is still difficult to find a shape descriptor which performs well on all

types of shape benchmarks. However, we believe another promising approach to achieve a

better retrieval performance is by exploiting the shape descriptors guided by the database

classification information. That is, the available class information is utilized to improve the

retrieval performance. In fact, many existing professional or generic 3D model databases

are already classified.Some examples includeEngineering Shape Benchmark (ESB) [67],

Bonn University Architecture Databases Benchmark [194], Princeton Shape Benchmark

(PSB) [167], National Taiwan University Shape Benchmark (NTU) [23], CCCC [190] and

Shape Retrieval Contest (SHREC) datasets [3].

In this chapter, we propose a 3D model retrieval algorithm CBR-ZFDR which is based on

a hybrid 3D shape descriptor named ZFDR and a class-based retrieval (CBR) algorithm.

Motivated by the fact that different types of features are effective in characterizing different

types of models [17], we developthehybrid feature ZFDR by taking the advantages of both
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view-based and geometry-based techniques. ZFDR consists of four components, which are

Zernike moments,Fourier descriptor,Depth information andRay-based features, each rep-

resents a 3D model from a different angle, either visually orgeometrically. It itself has a

better performance than themost related view-based shape descriptor Light Field [23] and

hybrid shape descriptor DESIRE [191].Its performance is also close to the state-of-the-art

shape descriptors on several databases.To further improve the retrieval performance, we

propose a CBR algorithm which incorporates the class information of the target database

by defining an integrated distance which scales the model distance using the correspond-

ing class distance. We showthatan apparent improvement in almost all commonly used

performance metrics can be achieved after adopting the integrated distance.Moreover, the

CBR approach can be used with any shape descriptors for enhancing their performance.

Extensive experiments, for generic and partial retrieval,on seven standard 3D databases

demonstrate the best performance of our retrieval algorithm CBR-ZFDR compared tothose

achievedby previous methods.

The rest of this chapter is organized as follows. The hybrid shape descriptor ZFDR is

presented in Section 6.2. In Section 6.3, we present the details of our class-based 3D

model retrieval algorithm CBR-ZFDR. Extensive experimentresults are demonstrated in

Section 6.4. Section 6.5 contains the conclusions and the future work.

6.2 Hybrid Shape Descriptor ZFDR

We define a hybrid shape descriptor, which we named ZFDR, to represent a 3D model.

ZFDR comprises four components:Zernike moments feature,Fourier descriptor feature,

Depth information feature andRay-based feature. It contains both visual and geometric

information of a 3D model.It has a property that this formation can make its compo-

nents complement with each other to represent more types of models comprehensively and
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effectively, thus achieving a comparable retrieval performance as the currently top shape

descriptors.The computation of the shape descriptor consists of two steps: first normalize

the 3D model and then compute the descriptor.Fig. 6.1 graphically shows the ZFDR fea-

ture extraction process.For the normalization part, we first compute the bounding sphere

of the 3D model. Then, we translate the model so that the center of the bounding sphere

coincides with the origin of the coordinate system and then uniformly scale the model to

make the radius of its bounding sphere equal to 1.0. Next, we utilize Continuous Principle

Component Analysis (CPCA) [190] alignment algorithm to align the 3D model. For shape

descriptor computation, we present the details as follows.

Figure 6.1:ZFDR feature extraction process.

6.2.1 Visual Information Features

In this section, we first introduce the view sampling method for extracting the two visual

information features and then present each feature respectively.
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Cube-Based View Sampling To balance between the computational time for feature ex-

traction and retrieval performance, we sample 13 silhouette views to represent a 3D model.

We set cameras at 13 sampled locations on a cube: (1,0,0), (0,1,0), (0,0,1), (1,1,1), (-1,1,1),

(-1,-1,1), (1,-1,1), (1,0,-1), (0,1,-1), (1,1,0), (0,1,1), (1,0,1), (1,-1,0). As shown in Fig. 6.2

(a), they are composed of three adjacent face center views (magenta squares), four top cor-

ner views (red squares) and six middle edge views (blue squares), respectively. Fig. 6.2 (b)

shows an example of 13 silhouette views of a chair model.
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Figure 6.2: View sampling. (a) camera locations; (b) an example of 13 silhouette views of
a chair model.

To characterize the features of a silhouette view, we adopt an image descriptor proposed by

Zhang and Lu [206]. It is composed of Zernike moments and Fourier descriptors.

Zernike moments feature (Z) Zernike moments depict the region-based features of a

silhouette view. We compute the Zernike moments [79] (up to the 10th order, totally 35

moments) of each view image and concatenate them orderly according to the order of the

view sequence to form a 13×35 matrix to define the Zernike moments feature of a 3D

model.
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Fourier descriptor feature (F) Fourier descriptor represents the contour information of

a silhouette view using a series of Fourier coefficients (onedimensional vector). Fourier

descriptors can be defined on different features of the contour, such as curvature and cen-

troid distance. However, Fourier descriptor defined on centroid distance was proved [205]

to have better performance than other types in retrieving 2Dshapes and thus we also adopt

the centroid distance-based Fourier descriptor [205]. We use the first 10 Fourier coefficients

as the Fourier descriptor. By combining the Fourier descriptors of 13 views, we forms a

13×10 matrix as the Fourier descriptor feature of a 3D model.

6.2.2 Geometric Information Features

Zernike moments and Fourier descriptor features capture the visual information of a 3D

model. These types of features are found to be effective in characterizing some certain

types of models like “sea animal” models, but for other certain types of models, such as

“car models”, depth buffer-based features is more effective [17]. That is, different types

of features have advantages in measuring different types ofmodels. Motivated by this,

we also extract the geometric information features to form ahybrid shape descriptor that

can represent more types of models effectively. Vranic [190] defined a depth buffer-based

feature and a ray-based with spherical harmonic representation feature. These two features

characterize the geometric information from different perspectives and we integrate them

into our hybrid shape descriptor.

Depth information feature (D) This feature is composed of 2D Fourier coefficients of

six depth buffer images. We first render the six depth views ofa 3D model and then apply

2D Fourier Transform to them.As recommended in [190], setting the size of the view

image to be 256×256, that isN=256, and the length of the Fourier coefficients will be
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6×((log2N)2+log2N+1). We utilize the executable file [190] to compute the depthbuffer-

based descriptor and use the obtained 438 Fourier coefficients as the depth features of a 3D

model.

Ray-based feature (R) First, the ray-based feature vector in the spatial domain isex-

tracted based on the outmost intersections between the model and a set of rays emanating

from the center of the model. Then, the obtained radial distance feature vector is trans-

formed from the spatial domain to the spectral domain using Spherical Harmonics Trans-

form [78]. For this one, we also use the provided executable file [190] directly and it is

also very fast. As recommended and also used in DESIRE [191],using the firstk=16

rows of obtained spherical harmonic coefficients, and the dimension of the feature vector

is (k2+ k)/2 = 136. Thus, we use the obtained 136-dimensional feature vector to depict

the ray-based features.

6.2.3 Combining the Visual and Geometric Features

We define the hybrid shape descriptor of modelmi by combining Zernike moments feature

Zi , Fourier descriptorFi, Depth information featureDi and Ray-based descriptorRi as

ZFDR.

To compute the hybrid descriptor distancedZFDR between two modelsmi andmj , we first

assign appropriate distance metrics to measure the component distancesdZ, dF , dD and

dR, then we combine the four component distances to determine the hybrid descriptor dis-

tancedZFDR. After comparing the performance of different distance metrics [85], such as

city block distance (L1), Euclidean distance (L2), Canberra distance [85], correlation dis-

tance, divergence distance and scaled-L1 distance [190], we choose the scaled-L1 distance

metric for Zi , Di andRi and the Canberra distance metric forFi , respectively. Scaled-L1

means scaling or normalizing the feature vector by its L1-norm before applying the L1
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distance metric. We find it improves the retrieval performance forour features of Z, D and

R. While, Canberra distance is only applied to the Fourier descriptor F is also based on

the performance comparison in terms of the overall performances of the complete shape

descriptor ZFDR on several 3D model benchmarks.Now, we give the definitions for the

four component distancesdZ, dF , dD anddR.

dZ =
1
13

13

∑
p=1

35

∑
r=1

∣∣∣∣∣
Zi(p, r)∥∥Zi,p

∥∥
1

−
Z j(p, r)∥∥Z j ,p

∥∥
1

∣∣∣∣∣, (Eq. 6.1)

whereZi andZ j are the Zernike moments feature matrices of modelsmi andmj . Zi,p and

Z j ,p represent thepth row vector ofZi andZ j . ‖.‖1 represents the L1-norm of a vector. Here,

we apply the scaled-L1 distance metric on the correspondingviews of two models and use

the average distance of view pairs to represent the Zernike moments distance between the

two models,dZ ∈ [0,1].

dF =
1

13×10

13

∑
p=1

10

∑
r=1

∣∣Fi(p, r)−Fj(p, r)
∣∣

Fi(p, r)+Fj(p, r)
, (Eq. 6.2)

whereFi andFj are the Fourier descriptors ofmi andmj , dF ∈ [0,1].

dD =
1

438

438

∑
p=1

∣∣∣∣∣
Di(p)
‖Di‖1

−
D j(p)∥∥D j

∥∥
1

∣∣∣∣∣, (Eq. 6.3)

whereDi andD j are the Depth information descriptor vectors ofmi andmj , dD ∈ [0,1].

dR =
1

136

136

∑
p=1

∣∣∣∣∣
Ri(p)
‖Ri‖1

−
Rj(p)∥∥Rj

∥∥
1

∣∣∣∣∣, (Eq. 6.4)

whereRi andRj are the Ray-based descriptor vectors ofmi andmj , dR ∈ [0,1].

Then, we define the hybrid descriptor distancedZFDR between modelmi and modelmj as

follows,

dZFDR= dZ +dF +dD +dR. (Eq. 6.5)

The four component features Z, F, D, R depict a model from different aspects and they

have the same contribution for the hybrid descriptor distance computation. Therefore, we
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linearly combine them. In addition, the pair feature distances for the four features fall in

the same range of [0,1], as such, we assign the same weight foreach component feature.

An example showing the hybrid shape distance computation isdemonstrated in Fig. 6.3

and Table 6.1.

(a) Bird1 (b) Bird2:1.570 (c) Cup1: 3.736

Figure 6.3:An example of ZFDR distances. The number is the ZFDR distancebetween
the model Bird1 and the respective model.

Table 6.1:Z, F, D, R component distances for the example in Fig. 6.3.

Distances dZ dF dD dR dZFDR

Bird2 0.352 0.450 0.275 0.494 1.570
Cup1 0.912 0.956 0.673 0.912 3.736

6.3 3D Model Retrieval Algorithm Using Class Informa-
tion

In this section, we propose a 3D model retrieval algorithm named CBR-ZFDR which uti-

lizes a newClass-BasedRetrieval algorithm CBR and the ZFDR hybrid descriptor pre-

sented in Section6.2. For CBR, we define an integrated distance to fuse the model and

class distances. One good merit of our CBR scheme is that it is general, that is, we can use

any shape descriptors to represent 3D models when we apply the CBR scheme in retrieval.

The scenario for our retrieval is that given a query modelq and a classified 3D model

databaseM={mi |i=1· · ·n}, wheremi are the models in the database, we retrieve similar
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target models in databaseM. Both the query and target 3D models are defined as triangular

meshes.Our 3D model retrieval algorithm CBR-ZFDR is composed of thefollowing five

steps.

(1) Shape descriptors extraction.We extract the ZFDR shape descriptors of query model

q (on-line processing) and all the models{mi} in the databaseM (off-line preprocessing),

based on the method in Section 6.2.

(2) Model distance computation.We compute the shape descriptor distanced(q,mi) be-

tween query modelq and every modelmi in the database based on Equations (6.1)∼(6.5).

(3) Class distance computation.To measure the dissimilarity between query modelq and

a class in the database, we can use minimum, average or centroid distances.

The classified 3D model databaseM has a number of classes, each of which contains some

models. We denoteCj as the j th class of databaseM and assume modelm∈ Cj . The

minimum distance between query modelq and all models in classCj is defined as the class

distancedc(q,Cj),

dc(q,Cj) = min
m∈Cj

{d(q,m)} (Eq. 6.6)

Average distance is computed by averaging all the distancesbetween query modelq and the

models inCj . Centroid distance [51] is determined by first computing theshape descrip-

tor centroid of classCj by averaging the shape descriptors of the models inCj and then

computingthe distance between this shape descriptor centroid andthe shape descriptorof

query modelq to define the centroid distance. In our experiments, if the query model is

selected from the database, to avoid bias we exclude this model fromCj when computing

the class distance. Based on experiments(Section 6.4.1), we found that minimum distance

performs the best and thus we adopt this class distance.

(4) Integrated distance computation. To measure the distance between query model

q and target modelmi (assumemi ∈ Cj ), we scale its model distanced(q,mi) using the
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corresponding class distancedc(q,Cj) to define a class-based distancedcbr,

dcbr(q,mi) = dc(q,Cj)
α ×d(q,mi), (Eq. 6.7)

whereα (α > 0) is a constant to adjust the relative weight of the class distance with respect

to the model distance. We setα to be 3 in our retrieval algorithm based on experimental

results(Section 6.4.1.1). This definition of integrated distance is general and can beused

with any shape descriptors to improve their retrieval performance.

(5) Ranking and output. Sort all the models in the database in ascending order based on

their integrated distances and output the retrieval lists accordingly.

Finally, please note that our class information-based retrieval algorithm CBR-ZFDR is dif-

ferent from the distance metric learning approach. Distance metric learning is to generate

meaningful distance metrics automatically with machine learning algorithms. It learns a

distance metric for the input space of data from the trainingdata with pairwise constraints

about whether they belong to the same/different classes. Thus, it employs a machine learn-

ing algorithm to generate the distance metric. However, ouralgorithm is not based on

any learning algorithms. It incorporates the available class information of the database di-

rectly into the integrated distance and it should be categorized into class information-based

retrieval approach, as reviewed in Section 2.1.4.

6.4 Experimentsand Discussion

To investigate the generic 3D model retrieval performance as well as the characteristics

of our retrieval algorithm CBR-ZFDR, we selected seven representative standard bench-

mark databases described in Section 1.1: PSB(test dataset), ESB, NTU (only use the 549

classified models), CCCC (only use the 473 classified models), MSB, NIST and WMB.
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To comprehensively evaluate the generic 3D model retrievalresults, we employ six metrics

(Section 1.1)including Precision-Recall, Nearest Neighbor (NN), FirstTier (FT), Second

Tier (ST), Discounted Cumulative Gain (DCG) [167] and Average Precision (AP).

To assess our algorithm’s ability in partial 3D model retrieval, we choose the 3D model

database benchmark used in the SHREC 2007 partial matching track [187]: the target

dataset is WMB (Section 1.1) and the query dataset contains 30 models by combining the

parts of two or more models of the target database (two typical examples are the query

models in Fig. 6.12 and Fig. 6.13). We use the Normalized Discounted Cumulative Gain

(NDCG) [66] metric to evaluate the performance of partial retrieval results. This metric is

explained in Section 6.4.3 which is dedicated for partial 3Dmodel retrieval experiments.

6.4.1 Comparative Evaluation with Respect to Algorithm Configura-
tions

In this section, we justify our choice of class distance, where ZFDR is used as the shape

descriptor and the evaluation of our hybrid shape descriptor ZFDR.

6.4.1.1 Choices of class distanceand parameter α

Three different types of class distance, which are minimum,average and centroid distances,

are mentioned in Section6.3. To justify our choice of using minimum distance, for each

of the seven databases, we perform a comparison of our class-based retrieval algorithm

with respect to different class distances. Two representative examples for PSB and NIST

databases are shown in Fig. 6.4. In general, we find that the best performance is achieved

by using the minimum class distance for all the databases.

The parameterα controls the relative weight of the class distance. To set anappropriate

weight value forα for our CBR algorithm, we perform a comparison experiment for each
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Figure 6.4: Precision-Recall plots comparison in terms of different class distance defini-
tions. “Minimum”, “Average” and “Centroid” denote the class-based retrieval approaches
using minimum, average and centroid class distances, respectively.

database by selecting five values (1,2,3,4,5) for parameterα. Similarly, we demonstrate

two representative examples on the PSB and NIST databases inFig. 6.5. We have found

that biggerα will evidently improve the metrics of FT, ST, DCG and AP. However, the

front part (e.g. recall≤0.2 for PSB when using CBR-ZFDR) of the Precision-Recall plots

with the biggestα does not give the best result in terms of precision. Based on the fact that

the front part of the Precision-Recall plot is relatively more important than the rear part in

retrieval applications and we also need to consider other performance metrics such as FT,

ST, DCG and AP, we setα =3 in our class-based algorithm because it can achieve the best

overall performance.

The weight value selection forα is directly related to our formulation of the integrated

distance and is insensitive to the descriptors employed. Thus, there is no need to adjust a

chosen weight value for parameterα each time we use CBR with a new shape descriptor.

For example, we also verify the above property of our CBR algorithm with PANORAMA

and DESIRE on the above mentioned seven databases.
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Figure 6.5: Comparative analysis of the weight of class distance on PSB and NIST
databases. “CBR-ZFDR-1” means settingα to be “1” in our class-based retrieval algo-
rithm CBR-ZFDR. Others are similar. Note that the “precision” axes do not start from
“0”.

6.4.1.2 Analysis of Our Hybrid Shape Descriptor ZFDR

To justify the feature selection for our hybrid shape descriptor, we analyze the contribution

of visual and geometric features by performing experimentson all the seven databases. To

find the intrinsic properties of the hybrid shape descriptorZFDR, in the experiments, we

use only the shape descriptor itself and do not employ the class-based retrieval approach.

We also compare ZFDR with the two most related shape descriptors: DESIRE [191] and

LF [23]. For DESIRE, we generate the results based on their provided execution files

[190]. For LF, we refer to the experiment results in PSB [167]and PANORAMA [142].

Some “DCG” results are not provided in these papers and are indicated by “-”. Two

representative results are shown in Fig. 6.6and Table 6.2and others are very similar.

As can be seenin both Fig. 6.6 and Table 6.2, firstly, ZFDR has a better performance

compared to only visual information-based descriptor ZF oronly geometric information-

based descriptor DR. Therefore, our hybrid shape descriptor containing both the visual

and geometric features outperforms the ones using the visual or geometric features alone.

Secondly, ZFDRalso outperforms DESIRE and LF.ZFDR exceeds DESIRE in NN, FT,
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Figure 6.6: ZFDR features contribution analysis on PSB and NIST databases. ZF and DR
are the two main features of the hybrid descriptor ZFDR.

ST and AP by6.1%, 8.7%, 7.0% and 5.8% on PSB, 4.9%, 8.1%, 4.9% and 5.6%on NIST.

This isattributedto ourcarefully selecting andintegrating different types of featuresas well

as related distance metricsto make them complement with each other and thus the hybrid

shape descriptor can represent more types of models comprehensively and effectively.

Table 6.2:Other performance metrics for the ZFDR features contribution analysis on PSB
and NIST databases.

Methods NN FT ST DCG AP

PSB

ZFDR 69.8 43.9 54.9 0.691 60.6
DESIRE 65.8 40.4 51.3 0.663 57.3
LF 65.7 38.0 48.7 0.643 50.2
DR 64.7 37.2 48.1 0.637 54.0
ZF 62.1 37.3 48.3 0.638 54.3

NIST

ZFDR 87.8 55.0 68.1 0.821 66.2
DESIRE 83.7 50.9 64.9 - 62.7
LF 84.1 43.9 56.0 - 55.1
DR 80.3 48.0 61.7 0.771 59.2
ZF 83.6 47.5 60.7 0.775 58.6
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6.4.2 Generic 3D Model Retrieval

6.4.2.1 Standard Benchmark Databases

To compare the performance of our retrieval algorithm CBR-ZFDR, we consider the fol-

lowing three state-of-the-art algorithms,

• 2D-3D [141]: a 2D/3D hybrid descriptor based on 2D depth images and3D spherical

harmonics.

• MFSD [177]: a multi-Fourier spectra descriptor(MFSD) by integrating depth infor-

mation, contour and silhouette features of rendered views as well as a 3D Fourier

features through voxelization. It adopts a cluster-based approach by clustering the

target models before retrieval.An addition operator is used to combine the spectral

clustering (SC) distance and model distance to form a MFSD+SC algorithm.

• PANORAMA [142]: a hybrid 3D shape descriptor that performs best by utilizing a

set of panoramic views.A local relevance feedback (LRF) is developed to further

improve the retrieval performance and the method is named PANORAMA+LRF.

PANORAMA and 2D-3D do not utilize class information, but they represent the state-

of-the-art performances that have been achieved on the seven databases and thus we can

know which performance level we can reach if incorporating the already available class

information based on our class-based retrieval algorithm CBR-ZFDR.Fig. 6.7 and Table

6.3∼6.4 compare the performance of our CBR-ZFDR algorithm and the above mentioned

three shape descriptors.To demonstrate the superior performance of our integrated dis-

tance, we compare CBR-ZFDR with a modified CBR-ZFDR algorithm which applies the

addition operator to fuse the class and model distances and we denote it as CBR-ZFDR-A.

To evaluate the effectiveness of our CBR algorithm, for comparison, we also list the per-

formances when using only the ZFDR shape descriptor. For theperformances of 2D-3D
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and PANORAMA, we refer to the experiment results in 2D-3D [141], PANORAMA [142]

and PSB [167]. Some “DCG” results that are not provided in these papers are indicated by

“-”.

As can be seenin Fig. 6.7 and Table 6.3∼6.4, firstly, by comparing the performance of

CBR-ZFDR and CBR-ZFDR-A, we can conclude that by using the scaling operation pro-

posed in our integrated distance rather than the addition approach used in MFSD to fuse

the class and model distances, we can achieve apparently better performance. For example,

for PSB our integrated distanceoutperforms the additive one by 14.3%, 8.0%, 3.6% and

6.3% in FT, ST, DCG and AP respectively and for NIST the corresponding increments are

11.9%, 6.3%, 2.5% and 6.5%. Secondly, our hybrid descriptor ZFDR itself is comparable

to the 2D-3D shape descriptorand it is close to PANORAMA on several datasets, espe-

cially on PSB, NTU and ESB. However, after applying our CBR algorithm, CBR-ZFDR

achieves better performances than PANORAMAas well as PANORAMA+LRFandits per-

formance is also better thanthe cluster-based method MFSD+SC. This indicates that after

applying our CBR approach, we achieve more improvement compared to the LRF and SC

techniques.There are apparent improvements in either Precision-Recall plots or other per-

formance metrics including FT, ST, DCG and AP. We also find that usually NN remains

unchanged and this is because using the minimum distance as class distance will typically

have no impact on NN. Therefore, our integrated distance keeps the nearest model in the

beginning of the retrieval list while pushing the relevant models to the front of retrieval

lists (FT, ST, DCG and AP are thus higher). One example to demonstrate this is shown

in Fig. 6.8. We can see that the distance gap between the relevant class (horse) and other

irrelevant classes (e.g. dog) also becomes bigger after adopting the CBR approach. This

indicates that CBR pushes the irrelevant models to the rear part of the retrieval list. Thus,

the retrieval errors (e.g. the two dog models m86 and m88) happened when only using the
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hybrid shape descriptor ZFDR itself are rectified. This is contributed to the utilization of

the class information/distance.

AssumeC as the cardinality of the relevant class, our retrieval algorithm CBR-ZFDR has

the ability to find most relevant models belonging to the sameclass as the query model in

the front part (e.g., the top (C-1) or at least 2(C-1) models) of the retrieval list, thus FT and

ST are higher. Usually there are very few relevant models in the rest of the list, hence the

recall remains almost unchanged in the rear parts of the Precision-Recall plots.

In addition, though we do not explicitly consider the issue of robustness to non-rigid de-

formation and articulation when designing our ZFDR shape descriptor and CBR-ZFDR

retrieval algorithm, we have achieved good performances onnon-rigid or articulated 3D

model benchmarks, such as MSB and WMB. As mentioned in Section 6.2.2, we target on

proposing a hybrid shape descriptor which contains both visual and geometric information

to effectively represent and deal with different types of models, which contributes the good

performances in retrieving non-rigid or articulated models. It also shows the robustness of

our algorithm with respect to the retrieval of non-rigid or articulated models.

Our retrieval algorithm mainly comprises two processes: ZFDR feature extraction for a

query model and feature matching with all the models in the database. ZFDR feature

extraction requires rendering to compute the features Z, F,D and line-triangle intersection

computation for the feature R, both of which depend on the number of triangles of the query

model. Feature matching is a simple computation based on Equations (6.1)∼(6.7) and the

matching time is proportional to the number of models.Table 6.5 lists the timings of CBR-

ZFDR on different databases based on a computer with an IntelXeon CPU E5520 @2.27

GHz and 12.0 GB of RAM. We want to mention that the implementation is not optimized

in terms of computational time. Nevertheless, our CBR-ZFDRalgorithm already meet the

requirements for interactive retrieval applications.Typically, the response time is less than
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2 seconds for aligning the query model using CPCA, renderingits 13 views, extracting the

Zernike moments and Fourier descriptors features for all the 13 views, extracting the depth

information and ray-based features, and finally computing and ranking the differences with

all the shape descriptors in the database. Basically, only some small deviations in the ren-

dering time may happen due to different number of vertices ineach model. Other processes

mainly remain constant or are proportional to the number of models.

6.4.2.2 SHREC 2009 and PSB Test vs Train

In these two experiments, the query models are not selected from the target database, that

is, the query set and the target set are two completely different datasets. For this purpose,

we utilize the following two datasets:

• SHREC 2009 NIST dataset[47]: the dataset used in the Shape Retrieval Contest

(SHREC) 2009 (generic track). It was constructed based on the NISTGeneric Shape

Benchmark described in Section 1.1, from which two models in each class were

selected as query models and the rest as the target models. Therefore, there are 80

query models and 720 target models in the dataset.

• PSB test and train datasets. We use the test dataset as query dataset and the train

dataset as the target dataset. Since the classes in the trainand test datasets are not

completely the same, we only consider the classes that existin both datasets when

measuring the retrieval performance.

For the SHREC 2009, we compare with the top two methods in SHREC 2009 [47], which

are the composite descriptor proposed by Lian et al. [101] (“Composite”) and the multi-

view depth line approach (“MDLA”) proposed by Chaouch and Verroust-Blondet [21]. For

PSB, we apply our CBR algorithm to both ZFDR and DESIRE shape descriptors for a

comparative evaluation. We denote the CBR algorithm using the DESIRE shape descriptor
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as CBR-DESIRE. Fig. 6.9 and Table 6.6 give their performancecomparison. Obviously,

our CBR-ZFDR approach has a better overall performance. Since the query models is not

included in the target datasets, these experiments demonstrate the robustness of our re-

trieval algorithm. The experiments with DESIRE also demonstrate that our CBR algorithm

is general and can be applied to any shape descriptors to evidently elevate their retrieval

performance.

6.4.2.3 SHREC 2012 Generic 3D Benchmark

Based on the ZFDR shape descriptor, we also successfully participated in the SHREC 2012

Track: Generic 3D Shape Retrieval [127], held in conjunction with the fifth Eurographics

Workshop on 3D Object Retrieval. It is based on the SHREC 2012Generic 3D Benchmark

which contains 1200 models, evenly divided into 60 classes.According to the track report

[94], ZFDR ranks in the third place. Here, we further test ourCBR-ZFDR algorithm on

the SHREC 2012 Generic 3D Benchmark and the performance comparisons with the par-

ticipating methods of the SHREC 2012 Generic Track are shownin Fig. 6.10 and Table

6.7. Similarly, we find that our CBR approach has evidently improved the performance of

ZFDR, and make CBR-ZFDR achieve the best overall performance.

6.4.3 Partial 3D Model Retrieval

To demonstrate the versatility of our retrieval algorithm CBR-ZFDR, we also test and com-

pare the performance of our algorithm in a partial matching scenario using the previously

described WMB benchmark [187](Section 6.4).

The goal is to retrieve similar subparts. To evaluate the partial similarity retrieval perfor-

mance, we adopt the average Normalized Discounted Cumulative Gain (NDCG) [66] over
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all the query models. NDCG is defined by dividing the DCG of a partial retrieval algorithm

by the ideal DCG related to the database. Thus, the range of NDCG will be [0,1].

Because a query model (e.g. the query models in Fig. 6.12 and Fig. 6.13) is composed

of several parts cut from models of different classes, the ground truth [187] classifies the

target models into “relevant”, “marginally-relevant” and“non-relevant” classes for every

query model and assign relevance scores of 2, 1 and 0 for thesethree classes respectively.

These scores are used to compute NDCG. To determine NDCG, we first compute the gain

vector G. For example, the Centaur model in Fig. 6.12 is relevant to “four legs” and

“human” classes and marginally relevant to “armadillo” and“teddy” classes. Then, the

models in its retrieval list will be replaced by the corresponding scores to compute the gain

vectorG: (2,2,2,2,2,0,2), (2,2,2,2,2,1,1), (2,2,2,2,2,2,2) forthe three rows respectively. The

remaining steps of computing NDCG can be referred to WMB [187] and [66].

We compare with four previous partial retrieval algorithms: RPU [179], BoF [180], ERG

[14] and CORNEA [26]. ERG and CORNEA are the only two participants in SHREC 2007

partial retrieval track [187] while the latest RPU and BoF algorithms outperform ERG and

CORNEA. Fig. 6.11 gives the NDCG performance comparison results. As can be seen,

using only our ZFDR shape descriptor, we already can achievean apparently better NDCG

performance than RPU, ERG and CORNEA and an overall better performance than BoF.

After adopting our CBR algorithm, we achieve an even better performance than any of the

five methods.

Fig. 6.12 and Fig. 6.13 show two retrieval examples using ourCBR-ZFDR and ZFDR

methods as well as the RPU method. Similarly, we can also see that CBR-ZFDR approach

pushes the relevant models to the front of the retrieval lists. Additionally, we can also find

that better than RPU, our methods can find the geometrically more relevant models first,

which is more reasonable and easier for our understanding. The average time to process a
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query model using our CBR-ZFDR and ZFDR methods is about 2.8 sec (2.79 sec for feature

extraction, 0.04 sec for feature matching). To some degree,this experiment demonstrates

the superior performance of our retrieval algorithm CBR-ZFDR in terms of partial retrieval.

6.4.4 Generality of Our CBR Approach

Our CBR approach is general and can be used with any shape descriptors. In Section

6.4.2.2, we have demonstrated this using the DESIRE shape descriptor on the PSB Test vs

Train datasets (Fig. 6.9 (b)). We then further test CBR with DESIRE on other datasets

including NIST, NTU and MSB, and the results are shown in Fig.6.14, from which we can

draw a similar conclusion as that in Section 6.4.2.2. That is, our CBR approach is general

and an evident improvement can be achieved after employing CBR.

By combining it with a better shape descriptor, we can achieve even better performances.

To verify this, we replace the ZFDR shape descriptor with PANORAMA, which has bet-

ter performances than ZFDR and perform experiments using the provided executable files

[142] on four representative benchmarks: NIST, NTU, ESB andMSB. Fig. 6.15 shows the

performance comparison with CBR-ZFDR, as well as PANORAMA together with the lo-

cal relevance feedback (LRF) technique, that is PANORAMA+LRF. Apparently, the results

show that CBR-PANORAMA apparently outperforms PANORAMA and it is also superior

to PANORAMA+LRF. With a better shape descriptorPANORAMA applied to our CBR

algorithm, we achieve even better retrieval performance. Thus, the performance improve-

ment of our CBR approach is general and it is not dependent on the shape descriptors

themselves. In addition, we can find that CBR achieves more apparent improvements com-

pared to the LRF technique when both applied to PANORAMA, which also demonstrates

the advantage of our CBR algorithm.
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6.4.5 Limitations

Our CBR-ZFDR algorithm has achieved good performance on both generic and partial 3D

model retrieval. However, it has some limitations. Firstly, ZFDR is not the best shape

descriptor if we compare it with PANORAMA. Nevertheless, byincorporating the CBR

algorithm, we can achieve a better performance than PANORAMA. Secondly, we only can

directly apply our CBR-ZFDR algorithm to the already classified 3D model databases. If

the 3D model database is unclassified, we can still apply our algorithm by first clustering

the models in the database.

6.5 Summary

In this chapter, to improve the retrieval performance on a classified 3D model database, we

have proposed a 3D model retrieval algorithm named CBR-ZFDRwhich is based on the

proposed hybrid shape descriptor ZFDR and class-based retrieval (CBR) algorithm which

makes use of the already available class information.ZFDR integrates a 3D model’s both

visual and geometric information from different aspects. By optimizing the choices of

the four component features and carefully choosing the Scaled-L1 and Canberra distance

metrics, we achieve better performances than the most related view-based shape descriptor

Light Field and hybrid-based shape descriptor DESIRE. In addition, its performance is also

close to the state-of-the-art shape descriptors on severaldatabases.To further improve the

retrieval performance, we define a new integrated distance to fuse the model distance and

class distance in the CBR algorithm. We compute the integrated distance, which incorpo-

rates the class information of the database, by scaling the model distance using the class

distance.Our CBR scheme is general, it can be applied to any shape descriptors to evi-

dently improve their retrieval performance.Extensive experiments demonstrated that: (1)

with respect to generic retrieval, for most of the performance metrics, our results are better
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than the state-of-the-art methods on each of the seven databases used in the experiments;

(2) with respect to partial retrieval, it also shows an appealing performance both in terms

of accuracy and speed: not only better than the two participants in SHREC 2007 partial

retrieval track [187], but also outperforms the two latest shape descriptors RPU [179] and

BoF [180].

Through experiments, we have shown that our retrieval algorithm is promising for retriev-

ing models in a classified database. In order to enable us to apply our retrieval algorithm

to unclassified databases, as future work, we would like to develop a method to group the

models of unclassified 3D model databases and integrate it into our retrieval algorithm.
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Figure 6.7: Performance comparison:Precision-Recall plots of our retrieval algorithm
CBR-ZFDR and three state-of-the-art shape descriptors. “CBR-ZFDR” denotes our re-
trieval algorithm that utilizes the CBR algorithm described in Section 6.3 and the ZFDR
shape descriptor presented in Section 6.2.“CBR-ZFDR-A” denotes a variation of CBR-
ZFDR algorithm which uses addition to fuse the class and model distances. “ZFDR” means
using only our hybrid shape descriptor ZFDR and do not use theCBR algorithm.
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Table 6.3:Other performance metrics of our CBR-ZFDR algorithm and three state-of-the-
art shape descriptors: PSB, NTU, ESB and CCCC databases. “CBR-ZFDR” denotes our
retrieval algorithm that utilizes the CBR algorithm described in Section 6.3 and the ZFDR
shape descriptor presented in Section 6.2. “CBR-ZFDR-A” denotes a variation of CBR-
ZFDR algorithm which uses addition to fuse the class and model distances. “ZFDR” means
using only our hybrid shape descriptor ZFDR and do not use theCBR algorithm.

Methods NN FT ST DCG AP

PSB

CBR-ZFDR 69.8 69.5 77.0 0.801 79.2
CBR-ZFDR-A 69.8 60.8 71.3 0.773 74.5
ZFDR 69.8 43.9 54.9 0.691 60.6
PANORAMA+LRF 75.2 53.1 65.9 - 69.4
PANORAMA 75.3 47.9 60.3 - 64.5
MFSD+SC 71.1 50.9 63.1 0.723 67.4
MFSD 71.6 45.3 59.1 0.704 62.6
2D-3D 74.2 47.3 60.6 - 66.1

NTU

CBR-ZFDR 74.7 74.3 79.7 0.833 81.4
CBR-ZFDR-A 74.7 65.8 74.4 0.809 76.4
ZFDR 74.7 44.9 57.5 0.725 59.4
PANORAMA 79.7 49.0 61.0 0.755 63.0
2D-3D 76.2 46.6 59.1 - 61.2

ESB

CBR-ZFDR 84.1 84.2 88.4 0.909 87.8
CBR-ZFDR-A 84.1 77.7 85.5 0.895 83.8
ZFDR 84.1 46.8 60.9 0.769 58.0
PANORAMA+LRF 87.0 49.9 65.8 - 61.1
PANORAMA 86.5 49.4 64.1 - 61.0
MFSD+SC 87.5 51.0 71.2 0.793 62.3
MFSD 87.5 49.4 65.8 0.789 60.7
2D-3D 82.9 46.5 60.5 - 57.5

CCCC

CBR-ZFDR 84.7 83.8 88.6 0.898 90.2
CBR-ZFDR-A 84.7 78.0 85.9 0.884 87.7
ZFDR 84.7 58.8 72.6 0.814 74.7
PANORAMA+LRF 87.4 70.3 86.6 - 84.1
PANORAMA 87.9 66.3 81.2 - 81.2
2D-3D 87.4 60.2 75.8 - 76.7
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Table 6.4: Other performance metrics of our CBR-ZFDR algorithm and three state-of-
the-art shape descriptors: MSB, NIST and WMB databases. “CBR-ZFDR” denotes our
retrieval algorithm that utilizes the CBR algorithm described in Section 6.3 and the ZFDR
shape descriptor presented in Section 6.2. “CBR-ZFDR-A” denotes a variation of CBR-
ZFDR algorithm which uses addition to fuse the class and model distances. “ZFDR” means
using only our hybrid shape descriptor ZFDR and do not use theCBR algorithm.

Methods NN FT ST DCG AP

MSB

CBR-ZFDR 92.1 90.2 94.7 0.954 93.0
CBR-ZFDR-A 92.1 82.7 90.3 0.935 88.1
ZFDR 92.1 58.1 70.3 0.852 69.0
PANORAMA 94.5 62.6 75.4 0.880 74.6
MFSD+SC 90.3 65.7 76.7 0.868 74.8
MFSD 92.6 53.2 65.4 0.828 64.2

NIST

CBR-ZFDR 87.8 85.7 92.9 0.930 89.8
CBR-ZFDR-A 87.8 76.6 87.4 0.907 84.3
ZFDR 87.8 55.0 68.1 0.821 66.2
PANORAMA+LRF 90.4 71.5 84.1 - 81.8
PANORAMA 90.8 63.4 77.6 0.869 74.6
2D-3D 88.1 55.6 72.1 - 68.6

WMB

CBR-ZFDR 92.3 90.2 95.1 0.951 93.1
CBR-ZFDR-A 92.3 82.5 90.6 0.932 88.5
ZFDR 92.3 57.4 69.5 0.842 69.2
PANORAMA+LRF 95.7 74.3 83.9 - 83.5
PANORAMA 95.7 67.3 78.4 - 78.4
2D-3D 95.5 64.2 77.3 - 75.7

Table 6.5: Timings information of CBR-ZFDR on different databases.t f , tm, t denote the
feature extraction time for a query model, feature matchingtime between the query model
and all the models in the database, and response time for one query model, respectively.

Time PSB NTU ESB CCCC MSB NIST

t f (s) 1.12 2.07 1.28 1.41 1.53 1.97
tm (s) 0.11 0.04 0.09 0.05 0.05 0.09
t (s) 1.23 2.11 1.37 1.46 1.58 2.06
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(a) ZFDR

(b) CBR-ZFDR

Figure 6.8: A retrieval example in the PSB database using ZFDR and CBR-ZFDR. Green:
query models; Blue: correct class; Red: wrong class. The distances are shown above the
images. In total, there are six models in the horse class thatthe query model belongs to.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

SHREC2009 NIST database

 

 

CBR−ZFDR
ZFDR
MDLA
Composite

(a) SHREC 2009

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

PSB database

 

 

CBR−ZFDR
ZFDR
CBR−DESIRE
DESIRE

(b) PSB Test vs Train

Figure 6.9: Performance comparison: Precision-Recall plots of our retrieval algorithm
CBR-ZFDR and other methods on SHREC 2009 NIST and PSB databases.
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Table 6.6:Other performance metrics for the performance comparison on SHREC2009
NIST and PSB databases.

Methods NN FT ST DCG AP

NIST

CBR-ZFDR 88.7 87.3 94.0 0.937 81.2
ZFDR 88.7 58.1 70.6 0.844 60.2
MDLA 96.3 73.0 84.8 0.917 73.8
Composite 92.5 72.4 84.4 0.904 72.9

PSB

CBR-ZFDR 81.8 81.6 89.0 0.899 85.6
ZFDR 81.8 50.6 64.6 0.780 58.3
CBR-DESIRE 77.5 78.6 86.4 0.879 82.4
DESIRE 77.5 47.8 60.9 0.757 55.2
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Figure 6.10: Performance comparison on the SHREC’12 Generic 3D Benchmark:
Precision-Recall plots of our retrieval algorithm CBR-ZFDR and the participating meth-
ods of the SHREC 2012 Generic Track.
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Table 6.7:Other performance metrics for the performance comparison on the SHREC’12
Generic 3D Benchmark.

Participant Methods NN FT ST DCG AP

Li CBR-ZFDR 81.8 79.2 88.1 0.894 89.8
Li ZFDR 81.8 49.1 62.1 0.776 65.0

Bai LSD-sum 51.7 23.2 32.7 0.565 38.1

Redondo 3DSPL2 1000hik 68.5 37.6 50.2 0.685 52.6

Tatsuma DVD+DB+GMR 82.8 61.3 73.9 0.833 76.5

Yanagimachi DG1SIFT 87.9 66.1 79.9 0.871 81.1
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Figure 6.11: Performance comparison: NDCG plots of our retrieval algorithm and other
methods on SHREC 2007 Watertight database.
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Figure 6.12: A partial matching example showing the top-7 retrieval results using RPU (1st

row), ZFDR (2nd row) and CBR-ZFDR (3rd row) methods. The first model in each row is
the query model.

Figure 6.13: Another partial matching example showing the top-7 retrieval results using
RPU (1st row) method and the top-9 retrieval results using ZFDR (2nd row) and CBR-
ZFDR (3rd row) methods. The first model in each row is the query model.
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Figure 6.14:CBR generality based on DESIRE: Precision-Recall plots of our CBR algo-
rithm with different shape descriptors on NIST, NTU and MSB databases.
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Figure 6.15:CBR generality: Precision-Recall plots of our CBR algorithm with different
shape descriptors on NIST, NTU, ESB and MSB databases.
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Chapter 7

Conclusions and Future Work

In this chapter, we draw a conclusion and proposeseveralfuture work. For the conclusions,

we briefly present the main idea, results and contributions of our proposed algorithms.

For the future work, we propose two new research directions for sketch-based 3D model

retrieval and partial similarity 3D model retrieval.

7.1 Conclusions

The objective of our project is to provide solutions for the challenges existing in 3D model

retrieval techniques, thus to advance the research field itself as well as the related industrial,

academic and entertainment applications. Provided with either a sketch, a model or an

image,our goal isto effectively and efficiently retrieve a set of relevant models from a

3D model database. The retrieval process is generally comprised of several stages which

are 3D or 2D-3D alignment, 2D/3D feature extraction, feature distance computation and

ranking. Now, we conclude the work that has been done for eachcomponent as follows.

(1) 2D/3D feature extraction.Firstly, we defined a new 3D model feature view context

which supports multi-modal retrieval framework. Based on the idea of view context, we
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proposed a view context shape descriptor in Chapter 4 for Query-by-Model retrieval and

extended it further in Chapter 5 for Query-by-Sketch applications.In detail,

• A new view-based 3D feature view context and a view context-based 3D model re-

trieval algorithm were proposed.Experiment results show that the view context

shape descriptor is comparable with the relatedview-baseddescriptor Light Field

in retrieval performance and a combined shape descriptor based on view context out-

performs Light Field.

• We proposed a sketch-based retrieval algorithm by incorporating a 2D-3D alignment

step based on our view context feature.The basic idea is to perform 2D sketch-3D

model alignment before computing their distances. View context has a good perfor-

mance in distinguishing different views of the same model, thus based on this prop-

erty we can efficientlyselectseveral candidate views to align a 3D model with a 2D

sketch. Comparative and evaluative experiments based on hand-drawn and standard

line drawing sketches demonstrate the effectiveness and robustness of our approach

and it significantly outperforms several latest sketch-based retrieval algorithms.

Secondly, considering different characteristics and differentiation abilities of view-based

and geometry-based features, in Chapter 6 we proposed a hybrid feature ZFDR. It inte-

grates both visual and geometric features to make them complement with each other, thus

achievesa better performance than its components and also outperforms two related shape

descriptors Light Field and DESIRE. Its performance is alsoclose to the state-of-the-art

shape descriptors on several databases.

(2) 3D or 2D-3D alignment. We proposed a Minimum Projection Area-based (MPA)

approach in Chapter3 for 3D model alignment, as well as a 2D sketch-3D model align-

ment algorithm in Chapter 5 based on the proposed feature view context. MPA is used for

retrieval using 3D model queries (Chapter 4).As described above,the 2D-3D alignment
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algorithm is specially designed for retrieval using sketchqueries (Chapter 5). It utilizes the

differentiation power of view context in distinguishing different views of the same model.

The details of our MPA algorithm are as follows.

• We proposed a novel Minimum Projection Area-based (MPA) method for 3D model

pose normalization.It finds three orthogonal axes by searching three view directions

with minimum projection area based on an efficient and effective modified PSO al-

gorithm. To deal with retrieval scenario, we further performed axis ordering and

orientation alignment. Experimental results demonstratethat MPA has a good per-

formance in finding alignment axes which are parallel to the ideal canonical coor-

dinate frame of models and aligning similar models in similar poses under different

conditions such as model variations, noise and initial poses. In addition, it achieves a

better 3D model retrieval performance than several commonly used approaches such

as CPCA, NPCA and PCA.

(3) Feature distance computation. To utilize the class information available in the

target database,a new retrieval algorithm based on the class-based retrieval (CBR) ap-

proach and the proposed ZFDR hybrid shape descriptor was advised for query on classified

databases. We proposedan integrated 3D model distance which scales the model distance

using the corresponding class distance. Extensive generic and partial 3D model retrieval

experiments on seven standard databases demonstrate that CBR apparently improves the

retrieval performance of ZFDR and our class-based retrieval algorithm CBR-ZFDR out-

performs the top shape descriptor PANORAMA on each databasein terms of most of the

commonly used performance metrics. Our CBR approach is general and can be with any

shape descriptors to apparently improve their performances. We also demonstrated its ap-

parently better performance than the usually adopted additive distance.

In a word, we have done substantial research in several aspects of 3D model retrieval tech-

niques, proposed our solutions by mainly adopting a view-based framework, and partic-
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ularly contributed in the following four important aspects: 3D model alignment, shape

descriptor supporting multi-modal queries, sketch-based3D model retrieval and query by

taking into account the class information of a 3D model database. In detail,

• We make substantial contribution to the research of 3D modelalignment, an impor-

tant aspect of 3D model retrieval techniques, by proposing the MPA algorithm which

outperforms existing alignment approaches in several facets such as axis accuracy,

robustness, and retrieval performance improvement. The algorithm is also easy to

understand and implement as well.

• We develop a 3D shape descriptor supporting multi-modal queries, a challenging re-

search direction of 3D model retrieval research, by definingthe view context shape

descriptor. We also advance the research of sketch-based 3Dmodel retrieval by first

proposing incorporating a 2D sketch-3D model alignment step into sketch-based re-

trieval algorithm to increase the accuracy of 2D-3D matching. The effectiveness,

robustness and significantly superior performance of our approach have been com-

prehensively demonstrated via several diverse evaluationexperiments. Our view

context-based 2D sketch-3D model improves the retrieval performance in a nontrivial

manner and it is also general and can be with other sketch-based retrieval algorithms

to improve their performance.

• We also conduct solid research in the research direction of retrieval on a classified 3D

model database. Firstly, our proposed hybrid shape descriptor performs comparably

or better than several related shape descriptors. Secondly, we are the first to perform

the research of utilizing the class information available in the already classified 3D

model database, by developing a general class-based retrieval (CBR) approach to

obviously improve the retrieval performance for any shape descriptors.
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In addition, there is also possibility of combining two or more of our proposed algorithms.

For instance, we can apply the general class-based retrieval (CBR) approach proposed in

Chapter 6 to the sketch-based retrieval (SBR) algorithm presented in Chapter 5. On the

other hand, in order to deal with the fourth challenge mentioned in Section 1.1, we may

also integrate all our proposed four algorithms (MPA, View Context, SBR, CBR-ZFDR)

into a search platform providing universal functions, for example, automatically selecting

alignment algorithms, 3D model features, retrieval methods and rules.

7.2 Future Work

In this section, we propose two promising directions for sketch-based retrieval and partial

similarity retrieval.

7.2.1 Scene Sketch-Based 3D Model Retrieval

Sketch-based 3D model retrieval in the context of a 2Dsketch image of a scene, such

as a 2D storyboard,is very important for the 3Dscenereconstruction from a 2Dsketch,

which is usually a fundamental step for 3D animation production guided by2D storyboards

[174]. This is mainly because sketches are more human-friendly and people are more

accustomed to “sketch” their ideas using a set of sketches. In 3D animation production,

2D storyboardsare often first drawn before reconstruction of the corresponding 3D scene.

Proper 3D models are retrieved from available 3D databases to build a 3D scene[174]

while keepingthe contextinformationin the original 2D sceneconsistent.

The reconstruction process often comprises three main steps [156, 174]: 3D object de-

tection in the 2D scene sketch, sketch-based 3D model retrieval based on the extracted

objects and 3D scene building using the retrieved 3D models guided by the original 2D
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scene sketch. Rather than having a 3D scene available as the input, we only draw a 2D

sketch image to represent the scene, thus a new sketch-based3D model retrieval frame-

work which differs from previous sketch-based 3D model retrieval systems is needed. It

involves multiple objects in an input scene sketch.

Currently, there is a lot of research in sketch-based 3D model retrieval. However, they

usually target the problem of retrieving a list of candidatemodels using a single sketch

as input. Therefore, the retrieval is ideally assumed as single sketch for single object,

rather than in the context of a 2D scenesketchwhich contains several objects, which may

overlap with each other and thus be occluded and also have relativelocationconfigurations.

Therefore, sketch-based 3D model retrieval in the context of a 2D scenesketchdeserves

our further exploration.

Compared to sketch-based retrieval in the context of a single sketch, sketch-based retrieval

using a 2D scenesketchquery is much less studied. Fisher and Hanrahan [39] proposed a

novel 3D model retrieval scheme named context-based 3D model retrieval, which means re-

trieving models according to its spatial context in a 3D scene. They adopted a new pipeline

of model retrieval by first locating the position of the modelby drawing a 3D box and then

searching relevant 3D models based on the dimensionality and context information. The

models in the scenes are extracted beforehand and both geometry and tags are utilized to

find similar models based on the assumption that similar models appear in similar contexts.

However, our research topic differs from theirs in several facets. First,their input is already

a 3D scene consisting of several models. Second, it is mainlyfor scene completion rather

than scene reconstruction. Finally, they do not draw sketches to represent a 3D model.

According to our knowledge, few algorithms have been proposed to specially deal with

sketch-based 3D model retrieval in a 2D scenesketch. For example, Zernike moments
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descriptor [79] is a typical and important 2D feature and Ta et al. [174] developed a patch-

based Zernike moments descriptor motivated by and based on the improved Zernike mo-

ments comparator [156]. It integrates not only the difference between the extracted features

themselves but also their local relationship, such as relative distance and rotation angle.

Similar experiments as [156] demonstrate that this local shape descriptor is more robust to

occlusion than its initial global version [156] and thus achieves better performance in 3D

model retrieval as well as viewpoint selection applications.

We plan to modify our sketch-based retrieval algorithm proposed in Chapter 5 to deal with

scene sketch-based retrieval and reconstruction. Basically, we incorporate an object detec-

tion module to facilitate retrieving the candidate models for reconstruction. The contextual

information existing in the scene sketch is utilized to select appropriate models and align

the features of the models to the sketch features in the scene.

7.2.2 Partial Similarity Retrieval of Deformable Models

Compared to generic 3D model retrieval, partial similarity3D model retrieval is more dif-

ficult and much less studied. Our target is to propose a 3D shape descriptor that can be

used for both global and partial similarity retrieval, especially for non-rigid 3D models,

like animals (e.g. ant, bird, cat, fish, octopus and so on). Some candidate 3D features

we have considered are shape context, geodesic distance, shape diameter and heat kernel.

However, we plan to develop a part-aware hybrid shape descriptor which may utilize the

above features. Shape context is considered based on the findings in [74]: among the afore-

mentioned features adopted for 3D mesh segmentation, whichis highly related to partial

retrieval, shape context is the most important one. We thinkgeodesic distance features are

promising because of its superiority in characterizing andrecognizing deformable models,

which has been demonstrated by Smeets et al.[98, 169, 170]. Motivated by the volumetric
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heat kernel proposed by [104], we plan to define a part-based heat kernel shape descrip-

tor to further improve the partial retrieval performance. To evaluate our partial retrieval

algorithm, we plan to use the following three benchmarks: (1) the benchmark used in the

SHREC 2007 partial matching track [187](Section 6.4); (2) the database for the SHREC

2010 non-rigid 3D shape retrieval track [99]; and (3) the benchmark for the SHREC 2009

query with partial models track [33], for which parts of models are already available.

The key techniques possibly involved in thepartial similarity retrievalalgorithm include:

feature sampling or salient feature points extraction on the surface of a model; efficient

feature matching methods, such as the Earth Mover’s Distance (EMD) [24]; part and con-

textual information definitions.The main potential advantagesof the retrieval algorithm

areas follows: pose invariance for general/deformable models; rotation invariance, com-

pactness and efficiency for dealing with deformable model retrieval.
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[120] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. Discrete differential-geometry

operators for triangulated 2-manifolds. pages 35–57. Springer-Verlag, 2002.

[121] F. Mokhtarian and S. Abbasi. Automatic selection of optimal views in multi-view

object recognition. In M. Mirmehdi and B. T. Thomas, editors, BMVC. British Ma-

chine Vision Association, 2000.

[122] F. Mokhtarian and S. Abbasi. Robust automatic selection of optimal views in multi-

view free-form object recognition.Pattern Recognition, 38(7):1021–1031, 2005.

[123] G. Mori, S. Belongie, and J. Malik. Efficient shape matching using shape contexts.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(11):1832–

1837, 2005.

[124] G. Mori and J. Malik. Recovering 3D human body configurations using shape con-

texts.IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(7):1052–

1062, 2006.
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