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ABSTRACT 
 
Myeloid ecotropic viral integration site 1 (MEIS1), a member of the TALE class of 

homeodomain-containing transcription factors, is a co-factor for HOX and PBX 

proteins. Together, these regulators are involved in patterning the anteroposterior 

axis and limbs of developing embryos, organogenesis, hematopoiesis and cancer. 

Recent findings revealed that the MEIS1A C-terminus harbors a transcriptional 

activation domain that is responsive to protein kinase-A (PKA) signaling and 

dependent on the co-activator CREB-binding protein (CBP). This same C-terminus 

that harbors the transcriptional activation domain and is responsive to PKA 

signaling has also been shown to mediate MEIS1A oncogenicity. This thesis seeks 

to extend our current understanding of the mechanisms by which the MEIS1A C-

terminus exerts its transactivation function. We describe here the involvement of 

CREB and its coactivators CBP and CRTC in contributing to the PKA 

responsiveness at the MEIS1A C-terminus. Our studies revealed an ability of 

CRTC to bypass PKA for transactivation at the MEIS1A C-terminus. We have also 

demonstrated physical interaction between CRTC and MEIS proteins and have 

mapped the domain in CRTC that interacts with MEIS to the N-terminal coiled-coil 

region. Further chromatin immunoprecipitation confirmed co-occupancy of MEIS1, 

CRTC2 and PBX1 proteins on MEIS1 target genes. With the use of CREB 

mutants ACREB and ACREBR314, I determined the importance of CREB to 

the activity of MEIS1A. By means of proximity ligation assay, I have further 

established endogenous interactions between MEIS-CRTC, MEIS-CREB and 

MEIS-CBP. These findings strongly implicate the MEIS1A C-terminus in binding 
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and functionally interacting with CREB and CRTC. I have also attempted to 

elucidate the structure of the MEIS and CRTC proteins in the hope of 

understanding how the proteins interact to function during development. I have in 

this thesis identified a cooperative role of MEIS, CREB and CRTC interaction, 

where CRTC with the help of CREB physically cooperates with MEIS to achieve 

PKA-inducible transactivation through the MEIS1A C-terminus, implicating the 

concerted action of these proteins in developmental processes.  

 

  

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



20 

 

LIST OF ABBREVIATIONS 

 

ABD-B abdominal-B 

ALL  acute lymphoblastic leukemia 

AML  acute myeloid leukemia 

ARE  auto-regulatory element 

ATF-1  activating transcription factor-1  

bZIP   basic-leucine-zipper  

CAD  constitutive activation domain 

CBD   CREB binding domain 

CBP  CREB binding protein 

CRE  cyclic AMP response element 

CREB  cyclic AMP response element binding protein 

ChIP  chromatin immunoprecipitation 

CREM  cAMP response element modulator  

CRTC  cAMP-regulated transcriptional co-activators 

CTD  C-terminal domain 

DBD  DNA binding domain  

E14.5  embryonic day 14.5 

EXD   extradenticle 

FSK  Forskolin 

HD   homeodomain  

HSC   hematopoietic stem cells  
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HEK293T human embryonic kidney 293T 

hpf  hours post fertilization 

HR  homologous region 

HTH  homothorax  

HTLV-1 human T-cell leukemia virus type 1 

KID  kinase inducible domain 

KIX  KID interaction domain  

LMB  Leptomycin B 

MEIS  myeloid ecotropic viral integration site  

MLL  mixed lineage leukemia  

NTD  N-terminal domain 

NLS  nuclear localization signals  

NES   nuclear exporter sequences  

PBX  pre-B-cell leukemia homeobox 

PEPCK phosphoenolpyruvate carboxykinase 

PKA  protein kinase A 

PLA  proximity ligation assay 

PP  phosphatase 

PREP   PBX-regulating protein 

r  rhombomere 

RA  retinoic acid 

RARE  retinoic acid response elements  

Rlu  relative light units 
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SIK  salt-induced-kinase 

TAD  transcriptional activation domain 

TALE  three-amino-acid-loop extension 

TAX  transforming protein of human T-cell leukemia virus type 1  

TSA  Trichostatin A  

Ubx  ultrabithorax 

HAT   histone acetylasetransferase 

G6Pase  glucose-6-phosphatase  

PGC-1α  peroxisome proliferator-activated receptor γ coactivator 1α 
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1 MEIS 
 

The Meis1 (myeloid ecotropic viral integration site 1) homeobox gene was first 

identified as the site of viral integration in 15% of myeloid tumors arising in 

BXH-2 mice (Moskow et al, 1995). Insertional mutation caused by this virus 

produced misexpression of proto-oncogenic truncated Meis1 (Moskow et al, 

1995). The gene is located on chromosome 11 in mouse and on chromosome 

2p13–p14 in human (Moskow et al, 1995; Smith et al, 1997). Subsequent DNA 

cross-hybridization studies revealed two highly conserved Meis1-related genes 

residing on separate chromosomes, Meis2 and Meis3 (Nakamura et al, 1996a; 

Oulad-Abdelghani et al, 1997; Steelman et al, 1997; Yang et al, 2000). Meis 

orthologs were subsequently identified in a number of species: homothorax (hth) 

in Drosophila, Meis in chick and mammals, meis in zebrafish, Xmeis in 

Xenopus laevis and unc-62 (a.k.a. ceh-25) in C. elegans (Pai et al, 1998; 

Salzberg et al, 1999; Steelman et al, 1997; Van Auken et al, 2002; Waskiewicz 

et al, 2001).  

 

1.1 MEIS and TALE 

Meis, together with the Pbx (Pre-B-cell leukemia homeobox) and Prep (PBX-

regulating protein) families, encodes members of the three-amino-acid-loop 

extension (TALE) class of homeodomain-containing proteins (Mann & Abu-

Shaar, 1996; Moens & Selleri, 2006; Moskow et al, 1995; Nakamura et al, 

1996a). The TALE homeoproteins, as the name suggests, contain an extra three 
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highly conserved residues (Pro-Tyr-Pro) at positions 24–26 in the loop between 

helix 1 and 2 in the typical homeodomain (Bürglin, 1995; Burglin, 1997). Other 

members of the TALE family in animals include TGIF, and IRO (Iroquois) 

(Burglin, 1997). In plants: KNOX and BEL, and in fungi: M-ATYP (atypical 

mating type genes), and CUP (Burglin, 1997). Table 1 shows the members of 

the TALE class proteins and their corresponding ortholog within each family 

and the species in which they were first described. Apart from the 

homeodomain, the MEIS protein shares two homology regions with other 

members of the MEINOX TALE-homedomain-containing proteins, namely 

PREP1 and PREP2. The homology regions reside within the N-terminal regions 

termed HR1 and HR2 (residues 58–137) (Figure 1) (Berthelsen et al, 1998c; Pai 

et al, 1998). The N-terminal HR1 domain of MEIS/HTH/PREP allows the 

formation of a heterodimer via the PBC-A domain within the PBX/EXD N-

terminus (Figure 1) (Chang et al, 1997; Haller et al, 2002; Shanmugam et al, 

1999).  
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Table 1 Members of the vertebrate TALE class protein namely PBC, 

MEIS and PREP 

Listed are the corresponding ortholog under each family and the species in 

which they were first described in. Adapted from (Featherstone, 2003). 
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Figure 

 1 HOX and its cofactors 

Upper panel, PBX interacts with and binds DNA cooperatively with HOX 

proteins from paralog group 1 to 10, while MEIS interacts with and binds DNA 

cooperatively with HOX proteins from paralog group 9 to 13. HOX paralog 

group 9 and 10 interacts with MEIS and PBX. 

Lower panel, A schematic of HOX proteins and their DNA binding partners 

from the PBC and MEIS/PREP families. Functional domains are indicated. HD 

represents the homeodomain which are present in all three protein families. 

HOX and PBC family interaction involves the HOX conserved YPWM motif 

from paralog group 1 to 8. A conserved residue at the N-terminal of the 

homeodomain mediates HOX group 9 and 10 interaction with PBX. Interaction 

between PBX and MEIS family is mediated through the PBX-A domain of 

PBX and the HR1 domain of MEIS. In addition, the N-terminus of HOX and 

the HD and C-terminus of MEIS mediates the HOX and MEIS binding 

(interaction not shown). Domains involved in protein-protein interactions are 

shown by arrows. Adapted from (Goh 2007). 
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1.2 MEIS paralogs and their expression in normal development 

There are five isoforms of Meis1 as a result of alternative splicing into Meis1a-

e (Geerts et al, 2005; Knoepfler et al, 1997; Moskow et al, 1995; Wermuth & 

Buchberg, 2005). Expression of Meis1 has been found in the liver, pancreas, 

appendix and brain, with a high level within the cerebellum (Smith et al, 1997). 

Some identified roles of Meis1 during embryonic development include the 

establishment of hematopoietic stem cells, cell cycle regulation, proximo-distal 

limb growth, embryonic implantation as well as in the development of the eye 

(Azcoitia et al, 2005; Bessa et al, 2008; Mercader et al, 1999; Xu et al, 2008; 

Zhang et al, 2002).  

Meis1 is highly expressed in the adult bone marrow and E14.5 fetal liver rich in 

hematopoietic stem cells (HSC), indicating a role of Meis1, together with Hox 

and Pbx1 in proliferation and self-renewal of the HSC (Hisa et al, 2004; 

Pineault et al, 2002). A recent paper, in support of the finding has also showed 

an indirect effect of Hoxb4 in targeting the expression of Meis1 in HSC (Irving 

& Mason, 2000). In addition, MEIS, along with other TALE family proteins 

PBX and PKNOX have also found to play a role in regulating regional 

epidermal barriers both in human and mice skin, a region where a dermal HOX 

protein code has also been implicated (Jackson et al, 2011; Rinn et al, 2008). 

MEIS2, with 85% protein sequence identity to MEIS1, has its gene expression 

pattern in the developing nervous system, limbs, face, and in viscera of lung, 

gut , kidney as well as in rhombomeres 2 and 3 of wild-type embryos (Cecconi 
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et al, 1997; Niederreither et al, 2000; Oulad-Abdelghani et al, 1997). Meis2 has 

also been shown to mark proliferating striatal precursors/neurons for striatal 

neuron differentiation, as well as muscle and neural tissue histogenesis 

(Cecconi et al, 1997; Toresson et al, 1999). In the adult mouse, however, most 

of the Meis2 expression is detected in the brain and female genital tract, though 

it is interesting to note the different distribution of the alternative splice forms 

in these organs. Meis2c and d are more abundant in the female genital tract, 

while Meis2a and b are more abundant in the brain (Oulad-Abdelghani et al, 

1997).  

Meis1 and 2 have been shown to act upstream of and directly regulate Pax6 

expression in vertebrate lens formation in the eye (Heine et al, 2008; Zhang et 

al, 2002). Together with Pax6, Meis2 has been shown to be required in human 

neocortex development (Larsen et al, 2010). MEIS3, a MEIS family member 

with 67% identity with MEIS1, with gene expression abundantly expressed in 

pancreatic islets and β-cells and has been shown to regulate pancreatic cell 

survival (Liu et al, 2010). The involvement of Meis1, 2 and 3 have also recently 

been seen at the peripheral nervous system which were differentially expressed 

during dorsal root ganglion (DRG) and sympathetic chain formation both in 

mice and chick (Bouilloux, 2010).  

 

1.3 HTH in normal development 

In Drosophila, HTH expression is high in the endoderm cells of the embryonic 

midgut, where the PBX homolog encoded by extradenticle (exd) is nuclear 
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(Mann & Abu-Shaar, 1996). hth is both responsible and necessary for cell fate 

specification of inner photoreceptors (Wernet et al, 2003). Together with exd, 

hth is also required for salivary gland formation (Henderson & Andrew, 2000). 

In other roles, hth also plays the part of an antenna selector gene and acts with 

distal-less, a gene associated in proximodistal patterning of the Drosophila 

limbs (Casares & Mann, 1998; Dong et al, 2000). A recent finding provided 

evidence in the regulation of meis on the Prod1 promoter during axolotl limb 

regeneration, further extending the role of meis in specifying proximodistal axis 

(Shaikh et al, 2011). 

The role of hth can also be seen in inhibition of wing development where, 

together with teashirt, act to repress the vestigial gene and hence inhibits wing 

blade formation (Casares & Mann, 2000). In contrast, at the wing hinge, hth is 

instead activated by the wingless gene for wing hinge development (Casares & 

Mann, 2000).  

In the developing eye, HTH has been shown to act with EXD to repress eye 

formation and to prevent inappropriate eye development (Pai et al, 1998; Zhang 

et al, 2002). In addition, hth has been shown to be activated by wingless (wg) 

and repressed by decapentaplegic (dpp) and a complex of EYELESS (PAX6 

homolog), HOMOTHORAX and TEASHIRT has been found, suggesting a 

cooperative role of these proteins in promoting cell proliferation in the eye disc 

and a control of premature expression of other downstream transcription factors 

(Bessa et al, 2002; Mann & Chan, 1996; Peng et al, 2009). Two alternative 

splice forms of hth were found: one encodes the DNA-binding homeodomain 
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(hthFL) while one does not (hDless) (Noro et al, 2006). The hDless form was 

also identified in the mouse Meis1 (Noro et al, 2006). Both isoforms induce 

nuclear localization of exd but each carries out unique functions in vivo (Noro 

et al, 2006). 

 

1.4 MEIS expression in chicken  

Chicken Meis1 and Meis2 have also been identified to play a role during early 

embryogenesis and organogenesis during chicken development with an 

indication of the loss of the Meis3 ortholog in birds during evolution (Sanchez-

Guardado et al, 2011b). Meis1 and 2 expression have also been observed during 

early otic specification suggesting a role of Meis in the developing inner ear 

(Sanchez-Guardado et al, 2011a).  

 

1.5 MEIS expression in xenopus  

Xenopus homolog of Meis1 consists of at least three forms, Xmeis1, Xmeis2 and 

Xmeis3. Two alternative splice variants were detected for Xmeis1, namely 

Xmeis1a and Xmeis1b with divergence at the C-terminus (Moskow et al, 1995; 

Steelman et al, 1997). Xmeis1b has been shown to play a significant role in 

neural crest development and its misexpression induces ectopic of neural crest 

marker expression in developing embryos (Maeda et al, 2001). Xmeis1a, on the 

other hand, exhibits a less obvious effect (Maeda et al, 2001). Xmeis3 has been 

found in neural development in Xenopus and activates transcription of 

posteriorly expressed neural markers (Salzberg et al, 1999). Expression was 
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also observed in the hindbrain from rhombomere 2 to 4 and anterior spinal cord 

of developing Xenopus (Salzberg et al, 1999). Misexpression of Xmeis3 resulted 

in loss of cement gland, forebrain, eyes and midbrain structure (Salzberg et al, 

1999). MEIS has also been shown to caudalize and dorsalize the CNS of the 

Xenopus embryos and in cultures (Maeda et al, 2001; Salzberg et al, 1999). In 

support of this, ectopic Xmeis3 expression lead to caudalization of Xenopus 

embryos (Salzberg et al, 1999). Synergistic regulation has also been shown 

between Xmeis3 and Hoxd1 during gastrulation (In der Rieden et al, 2011). 

 

1.6 MEIS expression in zebrafish  

In zebrafish, meis1.1 is detected in three domains along the anteroposterior axis: 

the presumptive forebrain, the anterior midbrain and the hindbrain/spinal cord 

from rhombomere 3 onwards at the 2 somite stage (10.5 hpf) (Figure 2) 

(Waskiewicz et al, 2001). At the 10 somite stage (14 hpf), meis1.1 expression 

expands to the anterior to include rhombomere 2, as well as appearing in the 

developing eye fields, while expression in the presumptive forebrain persists 

(Figure 2)  (Waskiewicz et al, 2001). At the 20 somite stage (19 hpf), the 

expression of meis1.1 broadens, peaking in the hindbrain rhombomeres 2 to 4 

and in the developing eye. At 24 hpf, the expression of meis1.1 is expressed 

broadly in the neural tube, with high levels of expression within the hindbrain, 

retina and anterior midbrain-hindbrain boundary (Figure 2)  (Waskiewicz et al, 

2001).  
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Meis2.2 is expressed in the forebrain and from rhombomere 4 posteriorly in the 

hindbrain as well as the spinal cord at 2 somite stage (Figure 2) (Waskiewicz et 

al, 2001). At the 10 somite stage, meis2.2 can be detected within the 

presumptive eye fields, the forebrain and from rhombomere 2 posteriorly 

throughout the spinal cord (Waskiewicz et al, 2001). By 24 hpf, meis2.2 has 

extended towards the ventral forebrain, midbrain, hindbrain and spinal cord 

(Figure 2) (Waskiewicz et al, 2001).  

Within the developing eye, meis1.1 has a role in cell cycle control by regulating 

cyclin D1 and c-myc expression (Bessa et al, 2008; Heine et al, 2008). 

Expressions of meis1.1 and meis2.2 have also been detected in the olfactory 

epithelium, meis2.1 and meis2.2 in the branchial arches of the developing 

zebrafish (Santos et al, 2010). 

meis1 has also been implicated as a regulator of endothelial cell development 

and meis1 knockdown exhibit defects on arterial development thus revealing 

the role of meis in differentiation of endothelial cells and the formation of 

vascular network (Minehata et al, 2008). Knockdown of meis1.1 in zebrafish 

causes a delay in the G1 to S phase transition, correlating with significant 

reduction of cyclin D3 levels, resulting in severely reduced eyes and smaller 

lenses (Bessa et al, 2008; Hisa et al, 2004). Such phenotype has been 

recapitulated in Meis1 mutant mice (Argiropoulos et al, 2010; Hisa et al, 2004). 

meis3.1 can be detected in the posterior hindbrain up to rhombomere 3/4  

(Waskiewicz et al, 2001). By 24 hpf, expression is reduced in the hindbrain 

while the expression in the spinal cord and somites remains high (Figure 2) 
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(Waskiewicz et al, 2001). meis3 expression overlaps expression of sonic 

hedgehog (shh) in the endoderm of zebrafish embryos (diIorio et al, 2007). 

Knockdown of meis3 revealed its role in restriction of insulin expression in the 

anterior endoderm by acting upstream of shh (diIorio et al, 2007).  

 

 

Figure 2 Expression patterns of meis1.1, meis2.2 and meis3.1 at various 

stages during zebrafish development.  

RNA in situ hybridization of meis1.1 (A-E), meis2.2 (G-K) and meis3.1 (M-Q) 

at various developmental stages. meis expression is in blue, krox20 in r3 and r5 

is in red. Each panel is oriented such that anterior is towards the left. Adapted 

from (Waskiewicz et al, 2001). 

 

1.7 MEIS and hematopoiesis 

During embryogenesis, waves of hematopoietic activity from different sites of 

the embryo contribute to both embryonic and adult hematopoiesis (Galloway & 

Zon, 2003). Vertebrate hematopoiesis occurs in two successive waves: the 
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primitive and the definitive wave. Implications of Meis1 and Pbx were detected 

in hematopoiesis as Meis1 deficient and Pbx knockdown mice were shown to 

exhibit profound embryonic anemia (Azcoitia et al, 2005; DiMartino et al, 2001; 

Hisa et al, 2004). Despite the evolutionary differences between mammals and 

zebrafish, their hematopoietic pathways as well as the transcription factor genes 

that govern the pathways, are highly conserved. Given the similarities, both the 

mammalian and zebrafish hematopoietic pathway will be discussed here. 

1.7.1 Primitive wave 

The first wave of hematopoiesis, the primitive/embryonic wave in the 

mammalian embryos initiates within the yolk sac between embryonic days 7.25 

and 9.0, generating erythrocytes (Takahashi et al, 1989). In zebrafish 

development, the primitive wave is also transient and predominantly produces 

erythrocytes and primitive macrophages to supply blood cells for the initial 

stages of embryonic development (Galloway & Zon, 2003). The anatomical 

location for the primitive wave is the intermediate cell mass between 10-26 hpf 

and the rostral blood island (Jagadeeswaran et al, 1999). Some of the markers 

expressed during this wave include: scl, gata1, gata2, fli1a, imo2, hhex (Liao et 

al, 2000; Ransom et al, 2004; Thompson et al, 1998). The role of meis1 and 

pbx1 during zebrafish primitive hematopoiesis have also been noted, where 

inhibition of the proteins led to defects in erythropoietic gene expression (Goh 

2007; Pillay et al, 2010). meis and pbx, in association with certain hox genes, 

have been proposed to function upstream of gata1 to specify erythropoietic cell 

lineage and to inhibit myelopoiesis (Pillay et al, 2010). 
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1.7.2 Definitive wave 

The second wave, the definitive/fetal-adult hematopoiesis is responsible for 

maintaining long-term HSC renewal potential throughout the life of the 

organism. The HSC population is initially found in the aorta-gonad-

mesonephros at 24-48 hpf and finally residing at the liver and bone marrow 

around 4-5 dpf (Galloway & Zon, 2003; Zon, 1995). Some of the markers 

expressed in this wave include: c-myb, imo2, ikaros, and runx1 (Burns et al, 

2002; Kalev-Zylinska et al, 2003; Kalev-Zylinska et al, 2002; Thompson et al, 

1998). In mammals, Meis expression has been detected in the adult bone 

marrow and fetal liver and its requirement during differentiation of the 

megakaryocytic lineage and  correct patterning of the vascular network 

suggesting its role during definitive hematopoiesis (Azcoitia et al, 2005; Di 

Rosa et al, 2007; DiMartino et al, 2001; Ferretti et al, 2006; Hisa et al, 2004; 

Pineault et al, 2002). In support of this role, Meis1 deficient mice die during 

midgestation as a result of failure of definitive hematopoiesis (Azcoitia et al, 

2005). 

 

1.8 Regulation of expression by retinoic acid 

Vitamin A (retinol) adopts various roles during embryogenesis as well as in 

various adult physiologies. Its primary metabolite, retinoic acid (RA) acts as 

ligand that binds to retinoid receptors (RARs or RXRs). These receptors bind 

specifically to retinoic acid response elements (RAREs) within the nucleus, and 

their regulatory role in transcription of gene targets are governed by altering the 
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binding of corepressors and coactivators (Duester, 2008). Loss of RA signaling 

by deficiency in vitamin A or by compound RAR mutations revealed the 

importance of RA in the development of various organs including hindbrain, 

spinal cord, heart, skeleton, forelimb buds, eyes, lungs, pancreas and 

genitourinary tract (Clagett-Dame & DeLuca, 2002; Dersch & Zile, 1993; 

Dickman et al, 1997; Lohnes et al, 1994; Mendelsohn et al, 1994). As a 

morphogen (a molecule that emits signal from a localized source, forming a 

concentration gradient across a developing tissue), retinoic acid has been 

indicated to play a role in the anterior-posterior patterning, particularly in the 

development of the hindbrain and specifying the left-right symmetry (Irving & 

Mason, 2000; Mercader et al, 2000; Schneider et al, 1999). 

 

1.9 Meis induction by retinoic acid 

Expression of Meis1 and Meis2 is restricted to the proximal domain of the 

developing limb where RA acts upstream of Meis1 and Meis2 to regulate 

proximal limb development (Capdevila et al, 1999; Mercader et al, 1999; 

Mercader et al, 2000). The importance of Meis as a proximal regulator can be 

observed when overexpression of either Meis1 or Meis2 leads to inhibition or 

truncation of distal limb compartments (Capdevila et al, 1999; Mercader et al, 

1999). RA administration activates ectopic Meis1/Meis2 expression in the distal 

limb and promotes proximalization of limb cells and inhibits distalization 

during limb development and regeneration (Capdevila et al, 1999; Mercader et 

al, 1999; Mercader et al, 2005). Upon limb-bud emergence, fibroblastic growth 
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factor (FGF) then restricts RA synthesis and in turn Meis signaling to the 

proximal limb in the chick embryo (Mercader et al, 1999). The conservation of 

the effect of RA and Meis on hindbrain patterning can be seen in developing 

Xenopus laevis embryos, where Xmeis3 plays a role in posteriorizing cell fate 

(Dibner et al, 2001).  

In P19 cells, Meis2a to Meis2d are induced upon induction by retinoic acid, 

consistent with the in vivo studies observed (Oulad-Abdelghani et al, 1997).  

Mouse forelimb and hindlimb show up to four fold enhancement in the mRNA 

levels of Meis1, 2 and 3 after RA treatment (Qin et al, 2002). In addition, levels 

of Pbx mRNA and proteins (PBX1, 2 and 3) were also elevated post 

transcriptionally upon RA induction, possibly due to stabilization by MEIS 

protein (Ferretti et al, 2000; Knoepfler & Kamps, 1997; Oulad-Abdelghani et al, 

1997; Qin et al, 2002).  

 

1.10 Meis loss of function/mutant 

hth mutants are embryonic lethal and display defects in head involution, 

abdominal and thoracic segmentation, patterning of sensory organs and the 

central nervous system (Kurant et al, 1998; Rieckhof et al, 1997). In the adult, 

hth mutants causes antenna to leg transformation, ectopic eye growth in the 

ventral head and defect in leg segmentation whose phenotype resembles those 

of exd (Casares & Mann, 1998; Gonzalez-Crespo et al, 1998; Pai et al, 1998; 

Yao et al, 1999). The phenotype resulting from mutation of Drosophila hth 

resembles that of exd mutants and multiple hox gene mutants, signifying its 
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participation in most hox and exd functions (Kurant et al, 1998; Pai et al, 1998; 

Rieckhof et al, 1997). In addition, cooperative role for Meis1 and Pbx in 

congenital heart disease is suggested by the observation that mice bearing 

mutations in either gene display similar cardiac anomalies (Stankunas et al, 

2008). Meis1 deficient mice die around midgestation of cardiac anomalies, 

hemorrhage and liver hypoplasia, signifying the importance of Meis1 in 

hematopoiesis (Azcoitia et al, 2005). Meis1 null embryos fail to separate the 

blood and lymphatic vasculature, show extensive hemorrhaging, and 

completely lack megakaryocyte/platelets during angiogenesis and die by E14.5 

(Carramolino et al, 2010; Hisa et al, 2004). 

 

1.11 MEIS in oncogenesis 

Meis was originally detected due to its activation by retroviral insertion in mice 

myeloid tumors, identifying Meis as a leukemogenic gene (Moskow et al, 1995; 

Nakamura et al, 1996a). Supporting this finding, high Meis expression is also 

seen in a subset of human myeloid leukemia cell lines (Smith et al, 1997). 

MEIS1 in collaboration with PBX and HOX has been shown to accelerate and 

promote leukemic transformation in mice (Chang et al, 1997; Lawrence et al, 

1999; Schnabel et al, 2000; Thorsteinsdottir et al, 2001; Wermuth & Buchberg, 

2005). In human, Meis1, in concert with various Hox genes, is upregulated in 

most acute myeloid leukemias (AML) and mixed-lineage leukemias (MLL) 

(Afonja et al, 2000; Azcoitia et al, 2005; Fujino et al, 2001; Lawrence et al, 

1999; Moskow et al, 1995; Nakamura et al, 1996b; Wang et al, 2005).  
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There is a 16% overlap between the target genes regulated by MEIS and MN1, 

a negative prognostic factor in patients with AML (Heuser et al, 2011; Heuser, 

2010). Their common target genes reveal identical binding sites, suggestive of 

the dependence of MN1 on the transcriptional activity of MEIS1 for its 

transforming potential (Heuser et al, 2011; Heuser, 2010). A dominant trans-

active fusion of VP16-Meis1 renders Meis1 spontaneously oncogenic, 

suggestive of MEIS functioning as an autonomous oncoprotein and mimics 

combined activity of MEIS1-HOXA9 without co-expression of exogenous or 

endogenous Hox genes (Mamo et al, 2006; Wang et al, 2006). HOXA9 and 

MEIS1A are found to be co-expressed in human AML and have been shown to 

induce acute myeloid leukemia in mice (Calvo et al, 2001; Kroon et al, 2001; 

Thorsteinsdottir et al, 2001; Wermuth & Buchberg, 2005). Given that HOXA9 

and MEIS1 are down-regulated during normal myeloid differentiation, it is 

suggested that the pair acts to regulate progenitor abundance by suppressing 

differentiation and maintaining self-renewal (Calvo et al, 2001). With regards to 

their leukemogenic effects, overexpression of neither MEIS1A, HOXA9 nor 

PBX1 on its own leads to leukemogenesis, further demonstrating a 

collaborative effect in transformation of hematopoietic cells (Kroon et al, 1998).  

Apart from its requirement for initiating AML progenitors, Meis1 also plays a 

role in transcribing HSC genes like Cd34, Flt3 and Erg1 and complexes of 

HOXA7/A9, MEIS1 and PBX1/2 were found on the Flt3 promoter, giving rise 

to AML (Nicholas Zorko, 2010; Palmqvist et al, 2006; Wang et al, 2005; Wang 

et al, 2006). The c-myb gene plays a role in leukemia, highlighting a function of 
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c-myb in mediating HSC development by acting as an essential downstream 

target in mediating HOXA9-MEIS1 transformation of hematopoietic cells 

(Hess et al, 2006). Evidence of Meis1, together with c-myb, was found to be 

upregulated in neuroblastoma and is important for cell growth and proliferation 

of neuroblastoma cells (Geerts et al, 2005; Geerts et al, 2003; Thiele et al, 

1988). 

In the context of MLL, Meis1 is also found to be an essential and rate-limiting 

regulator, and Meis1 overexpression strongly induces caspase-dependent 

apoptosis in both hematopoietic and non-hematopoietic cells (Wermuth & 

Buchberg, 2005; Wong et al, 2007). In contrast coexpression of both Meis1 and 

Hoxa9 protect cells from various apoptosis signals, indicating a cooperative 

effort in modulating leukemogenesis (Wermuth & Buchberg, 2005). In other 

roles, Meis1 expression along with that of certain Hox genes and Pbx, has been 

detected in ovarian cancer (Crijns et al, 2007). An even more recent paper has 

also implicated Meis1 in binding and regulation of mitochondrial promoters and 

a role in pancreatic cancer cells (Tomoeda et al, 2011). 

Many studies have implicated MEIS1 in limb development. Its importance in 

limb development was further strengthened through a strong association 

between MEIS1 and restless leg syndrome (RLS) (Walters & Rye, 2009; 

Winkelmann et al, 2007; Xiong et al, 2009; Young et al, 2009). Peripheral and 

brain iron deficiency has been shown previously in RLS, and recent findings 

have revealed an increase in ferritin levels following a knockdown of MEIS1 in 
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vitro, thus providing an important association between RLS, MEIS1 and iron 

metabolism (Catoire et al, 2011).  

Bmi-1 is a gene that is essential in regulation and maintenance of the 

proliferative activity of both normal and leukemic stem cells (Lessard & 

Sauvageau, 2003). Its role in malignant hematopoiesis can be seen as HOXA9-

MEIS1-induced mouse leukemia is dependent on the expression of Bmi-1 

(Lessard & Sauvageau, 2003). In vivo co-occupancy of Meis1 is seen on 

regulatory sequences of Flt3, Trib2 and Ccl3, thus revealing the presence of 

other pathways employed by Meis1 for leukemogenesis (Argiropoulos et al, 

2008). These studies have therefore provided evidences of the cooperative 

capability of Meis1 with various (proto-) oncogenes in normal physiology and 

oncogenesis. 

 

2 Cooperative interaction between MEIS with HOX  
2.1 Homeodomain-DNA complex 

The Hox genes are known as the master regulatory genes which play important 

role in regulating the anterior-posterior body axis development (Favier & Dolle, 

1997; Veraksa et al, 2000). The HOX homeobox consists of a conserved 180 

nucleotide sequence which encodes a 60 amino acid sequence known as the 

homeodomain (Gehring et al, 1994a; Gehring et al, 1994b; Wolberger, 1996). 

The homeodomain consist of an N-terminal arm and three α helices held by 

hydrophobic interactions. Helix 2 and 3 resemble a helix-turn-helix motif, with 

the recognition helix, helix 3, and making contacts with the major groove of 
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DNA. The flexible N-terminal arm of the homeodomain contacts the minor 

groove and determines the specificity for HOX monomer binding (Joshi et al, 

2007; Phelan & Featherstone, 1997; Ryoo et al, 1999). All HOX homeodomain 

recognize a core binding site of 5’ TAAT 3’ sequence on the DNA. The first 

two bases (TAAT) are specified by the flexible N-terminal arm which often 

bears an arginine or a lysine at position 3 and an arginine at position 5 

(Featherstone, 2003). The two 3’ bases of the core binding site (TAAT) are 

specified by helix 3 and are contacted in the major groove (Billeter et al, 1993; 

Pabo & Sauer, 1992; Wolberger et al, 1991).  Asparagine occupies position 51 

within all homeodomain within the helix 3 and contacts DNA at (TAAT) 

(Featherstone, 2003). Position 50 on the homeodomain plays a major role in 

DNA recognition by contacting the two bases 3’ to the core (5’ TAATNN 3’) 

(Featherstone, 2003). A glutamine at position 50 (Gln50), such as is found in all 

HOX homeodomains, recognizes binding site TAATTG, TAATGG, or 

TAATTA, while a lysine at position 50 (Lys50), such as is found in the Bicoid 

homeodomain, favors TAATCC (Featherstone, 2003; Grant et al, 2000; Hanes 

& Brent, 1989; Treisman et al, 1989; Tucker-Kellogg et al, 1997).  

Since all HOX homeodomains bear a glutamine at position 50, the opportunities 

for differential sequence recognition with the HOX family are constrained 

(Featherstone, 2003). Having said that, there have been instances which 

demonstrate regulatory roles of HOX monomer in vivo (Galant & Carroll, 2002; 

Li & McGinnis, 1999; Li et al, 1999; Pinsonneault et al, 1997). However, 

collective work has established that the homeodomain alone is not likely to be 
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able to dictate HOX-DNA binding specificities (Affolter et al, 1990; Desplan et 

al, 1988; Ekker et al, 1994; Ekker et al, 1991; Hoey & Levine, 1988; Mann et al, 

2009).  

Thus one of the mysteries of HOX specificity is how different HOX proteins 

which possess similar in vitro DNA binding specificity as monomers direct 

cells into distinctly different developmental pathways to execute distinct highly 

specific functions in vivo (Brooke et al, 1998; Dessain et al, 1992; Ekker et al, 

1994; Laughon, 1991). The identification of HOX cofactors helped explain how 

HOX functions can be discriminated by increasing specificity and affinity of 

HOX-DNA binding. X-ray crystal structures suggest that the HOX-cofactor-

DNA complex not only increase the size of the binding sites but also help 

enforce additional structure to the otherwise unstructured homeodomain (Mann 

et al, 2009).  

 

2.2 Cooperative DNA binding model 

It is hence revealed that one way for HOX proteins to achieve functional 

diversity and specificity in vivo is by association with other proteins. The DNA 

binding ability of HOX transcription factors dramatically increases by forming 

heterodimeric complexes with other homeodomain-containing proteins 

(Asahara et al, 1999; Mann & Affolter, 1998; Mann & Chan, 1996; Mann et al, 

2009; Phelan & Featherstone, 1997; Sprules et al, 2003). A well characterized 

HOX cofactor is the transcription factor PBX, which binds to HOX proteins in 

paralog groups 1 to 10. The HOX/PBX heterodimer shows a significantly 
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longer recognition site hence a higher binding affinity and specificity than a 

HOX monomer (Figure 3) (Chang et al, 1995; Medina-Martinez & Ramirez-

Solis, 2003; Shen et al, 1997b). 

 

 

Figure 3 Comparison of consensus DNA binding sites of HOX monomer 

The sequences recognized by the HOX homeodomain in the monomeric and 

heterodimeric sites are aligned.  HOX/PBX heterodimer shows a significantly 

longer recognition site than the HOX monomer. Adapted from Figure 1A 

(Phelan & Featherstone1997). 

 

2.3 PBC group of TALE proteins 

The PBC-group of TALE proteins includes Pre-B cell leukemia homeobox 

(PBX) in vertebrates, EXTRADENTICLE (EXD) in Drosophila and CEH-20 in 

C. elegans (Burglin, 1998; Burglin & Ruvkun, 1992; Flegel et al, 1993; Monica 

et al, 1991; Rauskolb et al, 1993). The mammalian PBX1 was first identified 

due to its involvement in t(1;19) chromosomal translocation in 25% of 

childhood pre-B-cell acute leukemia (Kamps et al, 1990; Nourse et al, 1990). 

The translocation results in the formation of a fusion transcript which codes for 

the oncogenic E2A-PBX1 chimeric protein, where the C-terminal DNA binding 

domain of E2A is replaced by the homeodomain containing sequences of PBX1 
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(Kamps et al, 1990; Nourse et al, 1990). Isoforms for PBX1 and 3 have been 

identified and result from post-transcriptional alternative splicing (Kamps et al, 

1990; Milech et al, 2001; Monica et al, 1991; Nourse et al, 1990). Through 

alternative splicing, PBX1 encodes PBX1A and PBX1B isoforms with distinct 

biological properties (Asahara et al, 1999; Di Rocco et al, 1997). A C-terminal 

activation domain was mapped in PBX1A but is not present in the shorter 

PBX1B (Di Rocco et al, 1997). While PBX1B is predominant during mouse 

embryogenesis, PBX1A expression is primarily restricted to developing neural 

tissues and both forms E2A-PBX1A and E2A-PBX1B are detected in human 

primary tumor cells (Kamps et al, 1991; Schnabel et al, 2001).  

Subsequently, PBX2 and PBX3 were isolated based on their homology to 

PBX1. A fourth member of the PBX family, PBX4, was also identified in 

mouse, human and zebrafish (Monica et al, 1991; Popperl et al, 2000; 

Vlachakis et al, 2000; Wagner et al, 2001). PBX2 and PBX3 showed extensive 

sequence homology of 92 to 94% outside the homeodomain to PBX1, covering 

over 266 amino acids of sequence identity (Monica et al, 1991). Beyond the 

266 amino acids, all three PBX proteins are distinguished by extensive 

divergence at their extreme C- and N-termini (Monica et al, 1991). All three  

Pbx transcript can be detected in most fetal and adult tissues and tested cell 

lines, except for PBX1 which is absent in lymphoid cell lines (Monica et al, 

1991; Roberts et al, 1995). Members of the same subfamily of homeodomain 

containing proteins appear to have latent oncogenic potential as demonstrated 
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by the transformation competency when PBX2 and 3 are fused with E2A 

(Monica et al, 1994). 

The widespread expression domain of Pbx1 overlaps that of many Hox 

genes, allowing their protein products to act in concert to activate downstream 

target genes. The expression of Pbx1 also extends beyond the regions of Hox 

expression, an indication of Hox-independent functions in transcriptional 

regulation (DiMartino et al, 2001; Kim et al, 2002; Kmita et al, 2005; Krumlauf, 

1993; Roberts et al, 1995; Schnabel et al, 2001; Selleri et al, 2001).  

 

2.4 Domains of PBX 

The PBC domain consist of 2 regions of homology N-terminal to the 

homeodomain namely PBC-A and PBC-B (Figure 4) (Burglin, 1998). Upon 

DNA-binding, a fourth alpha helix (Figure 4) consisting of a 16 amino acid 

residues at the C-terminus of the PBX homeodomain contributes to a 

hydrophobic binding pocket for the HOX YPWM peptide which is crucial in 

stabilizing interactions with DNA (Jabet et al, 1999; Lu & Kamps, 1996; 

Passner et al, 1999; Piper et al, 1999; Sprules et al, 2000; Sprules et al, 2003). 

Physical interaction studies showed that intramolecular contacts between the 

PBX1 N-terminus and the HD masked the two nuclear localization signals 

(NLS) residing within the PBX homeodomain (Figure 4 asterisks) (Abu-Shaar 

et al, 1999; Ryoo et al, 1999; Saleh et al, 2000). The PBC-A domain of PBX1A, 

PBX1B and PBX2 has been shown to mediate interactions with other TALE 

proteins like PREP1 and MEIS1 (Berthelsen et al, 1998c; Chang et al, 1997). 
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Two nuclear exporter sequences (NES) have been found within the PBC-A 

domain across residues 45-72 and another across residues 73-90 (Berthelsen et 

al, 1999; Kilstrup-Nielsen et al, 2003). PBC domain of PBX1 also acts to 

controls the balance between nuclear export and import (Kilstrup-Nielsen et al, 

2003). A 25 residue α-helix inhibitory domain within the PBC-B domain binds 

to the homeodomain thereby inhibiting intrinsic PBX-DNA binding and 

heterodimerization with HOX proteins (Calvo et al, 1999; Neuteboom & Murre, 

1997). The folding of the inhibitory helix over the position 28 (E28) (Figure 4) 

within the homeodomain by intramolecular interactions represses activity either 

by masking or destabilizing the homeodomain-DNA complex (Calvo et al, 

1999). In addition to the 39 residues sequence N-terminal to that inhibitory 

helix which mediates PBX dimerization, the PBC-B domain also contains four 

conserved serine residues (187, 193, 202 and 290) within the PBC-B domain 

with a nuclear localization signal (Calvo et al, 1999; Kilstrup-Nielsen et al, 

2003). In another scenario, nuclear localization of PBX1 independent of MEIS 

protein has also been found. In certain cell context specific cases, protein kinase 

A (PKA) phosphorylates the serine residues with the PBC-B domain in vitro, 

and the activation of PKA was thus shown to block nuclear export of PBX1 in 

distal chick limb buds in vivo (Kilstrup-Nielsen et al, 2003). PREP1, another 

TALE homeodomain protein, has also been found to bind to the N-terminus of 

PBX1 during cooperative DNA-binding and de-represses the inhibitory helix 

function within PBX1 (Calvo et al, 1999). 
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Figure 4 Domains of human PBX1A 

PBC-A. PBC-B domains, the homeodomain (HD), the fourth helix (4), E28 

represents glutamate at position 28 within the homeodomain. Nuclear 

localization signals (NLS) are indicated in asterisks. Adapted from 

(Featherstone, 2003). 

 

 

2.5 HOX-PBX cooperative DNA binding 

HOX-PBX cooperative interactions are modulated by two regions. In the HOX 

partner, interaction with PBX is mediated by a short conserved motif lying 

upstream of homeodomain called the “hexapeptide” or YPWM motif (Chang et 

al, 1995; Green et al, 1998; Lu & Kamps, 1996; Phelan et al, 1995; Shanmugam 

et al, 1997). In the PBX partner, interaction with HOX is mediated by the Hox 

cooperative motif or GKFQ domain residing C-terminal to the homeodomain 

(Green et al, 1998).The GKFQ motif is dispensable for cooperative interaction 

but acts to stabilize the HOX-PBX complex (Green et al, 1998; Lu & Kamps, 

1996). On the other hand, the YPWM motif interacts with the PBX 

E28 
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homeodomain and is strictly required for cooperative interactions both in vitro 

and in vivo, even in the absence of the GKFQ domain (Green et al, 1998). 

PBX1-HOX heterodimers bind the consensus sequence 5’-

ATGATTNAT[G/T/A][G/T/A]3’ site and thereby displays greater DNA-

binding specificity than HOX or PBX monomers (Figure 3) (Lu et al, 1994; 

Van Dijk, 1993). HOX proteins recognize and bind to the 3’ half site 

(T[A/T]AT[G/T/A][G/T/A]) while PBX recognizes and binds the 5’ ATGAT 

half site. The recognition of A vs T at the second position of the HOX half site 

is specified by the N-terminal arm of the HOX homeodomain while the last two 

positions (G, T or A) are specified by a glutamine at position 50 of the 

homeodomain (Chan & Mann, 1996; Chang et al, 1996; Phelan & Featherstone, 

1997). This suggests an important role of the N-terminal arm of the 

homeodomain in the DNA-binding specificity of PBX-HOX heterodimers 

(Featherstone, 2003; Phelan & Featherstone, 1997; Ryoo et al, 1999).  

Interactions of HOX proteins from paralog groups 1 through 8 with PBX are 

mediated by a conserved YPWM sequence located N-terminal to the 

homeodomain, while this purpose is served by three amino acids (ANW) in the 

same region the HOX proteins encoded by paralog groups 9 and 10 (Chang et 

al, 1996; Johnson et al, 1995; Neuteboom et al, 1995; Phelan et al, 1995; Shen 

et al, 1996). Cooperative binding between PBX-HOX heterodimers is restricted 

to HOX proteins from paralog group 1 through 10, thereby excluding proteins 

from paralog group 11-13 (Chang et al, 1996; Shen et al, 1997b).  
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Dimerization between PBX/EXD and HOX cooperatively binds DNA and 

stabilizes the DNA bound complex (Chan et al, 1994; Chang et al, 1995; 

Passner et al, 1999; Peltenburg & Murre, 1996; Phelan et al, 1995; Piper et al, 

1999). The exception to the case can be seen during the regulation of the limb-

promoting gene distalless, where HOX proteins seem to bypass the requirement 

of classical YPWM motif for the recruitment of Drosophila extradenticle (Chan 

et al, 1994; Merabet et al, 2007). Thus, in most cases, the flexibility in HOX-

PBC contact contributes to the specificity of HOX protein function (Mann & 

Chan, 1996; Merabet et al, 2007).  

A previous finding by the lab has established that the formation HOX-PBX 

complex can lead to two outcomes. Depending on the context, HOX-PBX 

complex can repress or activate transcription through differential regulation 

with coregulators. Transcriptional activation can be mediated by binding of the 

HOX-PBX complex to coactivators (eg: CBP) while transcriptional repression 

can be brought about by associating with repressor complex such as histone 

deacetylases (Saleh et al, 2000). Importantly, PKA signaling has been shown to 

act as a switch that converts HOX-PBX from repressor to activator establishing 

that HOX-PBX functions in  patterning via cell signaling (Saleh et al, 2000). 

 

2.6 PBX expression in normal development 

Pbx genes have been shown to be essential in early limb bud formation, limb 

bud positioning, establishment of limb axis as well as in pelvic girdle 

development (Capellini et al, 2011a; Capellini et al, 2011b). Apart from its 
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collaboration with HOX proteins to regulate cell fate specificity, cooperative 

interactions between PBX and other homeodomain-containing proteins has also 

been shown. Such partners include ENGRAILED (Erickson et al, 2007; 

Peltenburg & Murre, 1996), the pancreatic and duodenal homeobox 1 

transcription factor (PDX1) which regulates somatostatin and insulin expression 

has been implicated (Goudet et al, 1999; Peers et al, 1995) and EMX2 which 

has a role in central nervous system and urogenital development (Capellini et al, 

2010). In another non-HOX related context, PBX has been found to bind to the 

myogenin promoter to mark muscle-specific genes for MyoD-mediated 

activation (Berkes et al, 2004). 

 

2.7 PBX mutant 

Pbx mutant die at E15/16 with severe hypoplasia or aplasia of multiple organs 

and defects of the axial and appendicular skeleton (Selleri et al, 2001). The 

malformation affected the proximal skeletal patterning but not affecting distal 

structures (Selleri et al, 2001). Pbx mutants in mice recapitulate the Hox loss of 

function phenotypes, supporting the dependence of PBX and HOX proteins 

function in the control of developmental processes (Moens & Selleri, 2006). 

Evidence can be seen in the inactivation of Pbx1, also in Pbx2 and Pbx3, leads 

to cardiac anomalies, a defect which has been observed in disruption of Hoxa3 

gene expression (Chisaka & Capecchi, 1991; Stankunas et al, 2008). In addition, 

Pbx null mice exhibited similar phenotype as Hoxa3 single mutants and other 

Hox compound mutants in pharyngeal development (Manley et al, 2004).    
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2.8 PBX expression in Drosophila 

The Drosophila EXD bears 71% resemblance to its human ortholog PBX1 

(Rauskolb et al, 1993). Expression of Pbx1 in the mouse limb resembles that of 

its ortholog in the Drosophila leg (Gonzalez-Crespo et al, 1998). The exd gene 

patterns the proximal region of the leg by antagonizing the distal gene wingless 

and decapentaplegic, while in the distal domain it is suppressed by distalless, 

which prevents nuclear import of exd (Diaz-Benjumea et al, 1994; Gonzalez-

Crespo et al, 1998; Lecuit & Cohen, 1997; Rauskolb et al, 1995). In Drosophila, 

exd is required for proper patterning of the peripheral nervous system (between 

stages 8-10), a time where EXD and HTH start to accumulation in the nuclei 

(Rauskolb et al, 1993). The activity of EXD is regulated post-translationally by 

nuclear translocation and it is only active in the nucleus (Aspland & White, 

1997; Mann & Abu-Shaar, 1996). Reduction in exd expression leads to 

homeotic transformation in the embryo where thoracic segments adopt an 

anterior fate while abdominal segments adopt a more posterior fate (Peifer & 

Wieschaus, 1990). Complete removal of maternally and zygotically expressed 

exd leads to specific alterations in segmentation, a result of loss of 

ENGRAILED function and gene expression (Kobayashi et al, 2003; Peifer & 

Wieschaus, 1990).  

Cooperative interactions were also observed between UBX (in Drosophila) and 

EXD and acts to stabilize the DNA-bound form of UBX (Chan et al, 1994). 

Interestingly, mutation in exd alters segmental identity without changing either 

the domains of Hox gene expression (Peifer & Wieschaus, 1990). Thus, these 
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findings suggest that exd and the Hox genes function in parallel during 

development (Rauskolb et al, 1993).  

 

2.9 PBX expression in zebrafish 

The PBX ortholog lazarus/pbx4 in zebrafish is required for segmentation of the 

hindbrain and anterior trunk development and has also been shown to be 

required for multiple hox functions as defects in the lazarus mutant 

phenocopies hox loss of function mutants in mice (Arenkiel et al, 2004; 

McClintock et al, 2002; Popperl et al, 2000; Studer et al, 1996). Meis3 has been 

shown to interact cooperatively with Pbx4 and Hoxb1b in promoting hindbrain 

fates in the zebrafish (Salzberg et al, 1999; Vlachakis et al, 2001; Vlachakis et 

al, 2000). Expression of hoxb1b and hoxa2 were suppressed in the context of a 

lazarus mutant (Cooper et al, 2003). Knockdown of Meis1.1 displayed a similar 

phenotype to lazarus mutant, where it is suggested to function in similar 

pathway as pbx in zebrafish hindbrain (Waskiewicz et al, 2001). In other 

functions, meis3, together with pbx4, acts upstream of shh and plays a role in 

foregut development via insulin restriction (diIorio et al, 2007). 

 

2.10 The MEINOX and PBX 

TALE class proteins encoded by Meis genes in animals and products of the 

Knox genes in plants contain a conserved domain residing N-terminal to the 

homeodomain. This domain was proposed to be derived from an ancestral 

domain, termed MEINOX, and must have evolved prior to the split between 
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animals and plants (Burglin, 1997). PREP1 and 2, additional TALE class 

homeodomain proteins closely related to MEIS, have also been placed in the 

MEINOX subfamily on the basis of these conserved domains (Fognani et al, 

2002). The complete MEINOX sequence was also found within the PBC 

domain which implied that PBX was also derived from the ancestral MEINOX 

gene.  

     

3 PREP1 
PREP1 (PBX-regulating protein), also known as PKNOX1 due to its 

resemblance to the Knotted-1 gene in plants, was purified along with PBX as a 

component of the urokinase enhancer factor 3 involved in tissue remodeling 

and cell migration (Berthelsen et al, 1998b; Burglin, 1998). It was also 

independently identified during a search for genes on human chromosome 21 

(Berthelsen et al, 1998c; Chen et al, 1997). Murine PREP1 shares 100% 

identity with human PREP1 in the homeodomain and 95% similarity 

throughout the whole protein (Ferretti et al, 1999). Members of the PREP 

family include human and mouse PREP/PKNOX1 and 2 (vertebrate) and 

zebrafish prep1.1, 1.2 and 2 genes (Bernardi et al, 2010; Berthelsen et al, 1998a; 

Chen et al, 1997; Choe et al, 2002; Deflorian et al, 2004; Fognani et al, 2002; 

Haller et al, 2002; Imoto et al, 2001; Vaccari et al, 2010). Expression of Prep1 

and Prep2 can be detected early in mouse development (Ferretti et al, 1999). 

PREP1 is expressed ubiquitously in the adult and is highest in the testis and 

thymus, while PREP2, though not as broadly expressed, displayed strong 
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expression in the brain, heart, skeletal muscle, ovaries and testis (Ferretti et al, 

1999; Fognani et al, 2002; Haller et al, 2002). The differences in relative levels 

between prep1 and prep2 varies between organs, suggesting a tissue-specific 

control (Haller et al, 2002). 

PREP1 shares two homology regions with MEIS proteins within the N-terminal 

regions termed HR1 and HR2 (residues 58–137) (Berthelsen et al, 1998c) . The 

N-terminal MEINOX domain (HR1) of PREP/MEIS mediates heterodimer 

formation through interaction with the PBC-A domain within the PBX N-

terminus (Haller et al, 2002). Interaction studies show that PREP and PBX1 

form strong complexes in solution independent of DNA-binding (Berthelsen et 

al, 1998b; Berthelsen et al, 1998c). Heterodimerization of PREP1 and PBX 

promotes PREP1 binding to DNA at a higher affinity to a 5’TGACAG3’ motif 

and overexpression of PREP1 increases the stability of PBX2 by preventing its 

proteasomal degradation (Berthelsen et al, 1998c; Longobardi & Blasi, 2003).  

 

3.1 PREP-PBX-HOX Heterotrimer 

Given the similarity between PREP and MEIS and their affinity for PBX, PBX-

HOX dimer has been found to activate and enhance gene transcription through 

interactions with PREP or MEIS (Ferretti et al, 2000; Jacobs et al, 1999; 

Popperl et al, 1995; Samad et al, 2004). PREP1 has been shown to form a stable 

ternary structure with PBX and HOX on DNA in vitro (Berthelsen et al, 

1998b), and evidence suggest that such heterotrimers function in the 

autoregulation of Hoxb1 (Ferretti et al, 1999). In vitro studies have also 
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identified the PREP1-PBX1-HOXB1 complex within protein extracts from P19 

cells upon retinoic acid induction (Ferretti et al, 2000). Expression of all three 

proteins are found in the mouse rhombomere 4 in vivo, suggestive of a 

regulatory role of PREP1 during development (Berthelsen et al, 1998b; Ferretti 

et al, 2005; Ferretti et al, 2000; Ferretti et al, 1999).   

Evidence of cooperativity of the HOX-PBX-PREP heterodimer can be seen 

where HOXD10-PBX1B-PREP1 complex are found to activate the rat renin 

promoter cooperatively in COS-7 cells (Pan et al, 2005). Involvement of HOX-

PBX1-PREP1 complex has also been shown in in vitro fetal adrenal-specific 

enhancer of the Ad4BP/SF-1 gene (Zubair et al, 2006). However in certain 

contexts, cooperative interaction was identified between PBX1-PREP1 or 

PBX1-HOXB1 but no HOXB1-PBX1-PREP1 heterotrimer was detected at the 

human α2(V) collagen COL5A2 promoter (Penkov et al, 2000), suggesting that 

trimer formation may be binding site specific and dependent on the context and 

constitution of the binding sites (Penkov et al, 2000). 

 

3.2 prep expression in zebrafish 

The zebrafish prep1.1 gene was found to display ubiquitous expression starting 

from the 2 cell stage, (indicating maternal deposition of prep1.1 mRNA) up to 

24 hpf. Strong expression is then restricted to the head from 48 hpf onwards 

(Deflorian et al, 2004). Low levels of expression are detected throughout the 

embryo during segmentation (examined from 13-25 hpf) (Choe et al, 2002). 

The expression pattern of prep1.1 at gastrula and segmentation stages 
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resembles that of lazarus (Popperl et al, 2000; Vlachakis et al, 2000). prep1.1 

has established essential functions in hindbrain development and neural crest 

cell differentiation (Deflorian et al, 2004).  

Zebrafish prep1.1 loss-of-function resulted in a significant defect in hindbrain 

segmentation and patterning (Deflorian et al, 2004). Downregulation of prep1.1 

causes a significant reduction of pbx2 and lazarus proteins and the overall 

PREP/MEIS/PBX DNA-binding activity was also strongly reduced (Choe et al, 

2002; Deflorian et al, 2004; Ferretti et al, 2006; Mercader et al, 1999; 

Waskiewicz et al, 2001). 

prep1.2 has much more resemblance to prep1.1 than prep2, contains 10 exons 

as well as an exon-intron organization identical to prep1.1(Vaccari et al, 2010). 

Both prep1.1 and prep1.2 harbors a glutamic acid rich region, though it resides 

at the C-terminal region in the former and at the N-terminal region in the latter 

(Vaccari et al, 2010). Maternal and zygotic expression of the paralog gene 

prep1.2 is detected ubiquitously up to early somitogenesis when expression 

begins to restrict to the head and trunk mesenchyme (Vaccari et al, 2010; 

Waskiewicz et al, 2001). prep1.2 has established a role during pharyngeal 

endoderm segmentation as well as pectoral fin bud development (Vaccari et al, 

2010). Supporting this data, a loss of function displays malformed pharyngeal 

cartilage and a lack of pectoral fin, a phenotype closely resembling the loss of 

RA (Grandel et al, 2002; Vaccari et al, 2010). Thus, the different features 

between prep1.1 and prep1.2 appears to confer specific function in regulating 

independent processes (Vaccari et al, 2010). 
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4 Heteromeric interactions involving MEIS 
4.1 HOX and MEIS 

Functional synergy between Meis and Hox genes was first indicated in BXH2 

mice with leukemia: 19 out of 20 leukemias presenting a retroviral insertion at 

the Meis1 gene also harbored a second insertion at Hoxa7 or Hoxa9 (Nakamura 

et al, 1996b). DNA binding by ABD-B class HOX proteins HOXA9 to 13 and 

MEIS has been demonstrated and heterodimerization enhanced DNA binding 

stability (Chang et al, 1997; Crans-Vargas et al, 2002; Ferretti et al, 2000; Shen 

et al, 1997a). Deletion studies have mapped the interaction domains of ABD-B 

HOX proteins and MEIS to the N-terminal amino acids 1 to 61 in HOXA9 and 

a region C-terminal to the homeodomain of MEIS (Shen et al, 1997b). ChIP 

studies demonstrated that HOXA9 and MEIS1 specifically bind to the 

conserved distal enhancer at the Meis1 locus which correlates with active MEIS 

expression (Wang, 2008). Thus overexpression of MEIS1 in acute leukemia is 

possibly sustained via an autoregulatory loop mediated through a distal 

enhancer element (Wang, 2008). In addition, Meis1 was found to be recruited to 

the MEIS1 target promoter in vivo, further establishing its autoregulatory 

function (Goh et al, 2009). The degree of requirement for MEIS by different 

HOX proteins (for example between zebrafish Hoxb1a and Hoxb1b) are 

different and this preference could be assigned to the N-terminus of HOX, 

where a transcription activation domain resides (Choe & Sagerstrom, 2005). 
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The DNA binding complex formed by HOX-MEIS-DNA displayed a slower 

dissociation than MEIS-DNA alone, suggesting that HOX protein stabilizes the 

MEIS-DNA interactions (Shen et al, 1997b). Despite not forming DNA 

complex with ANTP class HOX proteins, MEIS is still able to form a trimer as 

a non-DNA-binding partner with DNA bound PBX-HOXD4 (Shanmugam et al, 

1999). In another scenario, a different trimer class can form which involves 

non-DNA-bound PBX and DNA-bound MEIS-HOXD9 or D10 heterodimers 

(Shanmugam et al, 1999). 

ChIP has shown the recruitment of MEIS together with PBX1, HOXA1 and 

HOXB1 to the Hoxb1 autoregulatory element (ARE) which directs expression 

in rhombomere 4 of the hindbrain (Huang et al, 2005; Jacobs et al, 1999; 

Popperl et al, 1995). The Hoxb2 enhancer, where the MEIS1-PBX1-HOXB1 

binds, functions to direct appropriate expression of Hoxb2 gene in response to 

Hoxb1 cross-regulation to maintain r4 identity (Maconochie et al, 1997). In 

addition, putative binding sites have been identified for HOX-MEIS1 within the 

conserved Hoxa3 hindbrain enhancer (Manzanares et al, 2001). 

 

4.2 MEIS and PBX 

The first identified cis-acting target element for members of both the Pbx and 

Meis1 family is the cAMP-responsive sequence (CRS) (Bischof et al, 1998a; 

Bischof et al, 1998b). Binding site for PBX1 and MEIS1 can be detected on the 

CRS in the bovine CYP17 gene, and the sequence is conserved in Drosophila 

and C. elegans (Bischof et al, 1998a; Bischof et al, 1998b). This thus provided a 
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first example of cooperative interaction between MEIS1 and PBX1 as neither 

protein can bind to the element alone (Bischof et al, 1998a). 

In vivo and in vitro studies have identified heterodimerization of endogenous 

MEIS1 and PBX1 in the absence and presence of DNA binding (Chang et al, 

1997). MEIS1-PBX1 complex binding to DNA has identified a core sequence 

of 5’ TGATTGACAG 3’ recognition site revealed two half sites, consisting of 

the 5’ TGAT PBX site and a 3’ TGACAG MEIS1 site (Chang et al, 1996; 

Chang et al, 1997; LeBrun & Cleary, 1994; Lu et al, 1995; Van Dijk et al, 

1993). 

In Drosophila, physical interaction has been shown between the HR domains of 

HTH and the PBC-A domain of EXD, thereby inducing nuclear localization of 

EXD in vivo (Abu-Shaar et al, 1999; Jaw et al, 2000; Pai et al, 1998; Ryoo et al, 

1999). In the absence of MEIS/HTH, PBX/EXD is directed to the cytoplasm by 

the export receptor CRM1, an exporter which is specifically inhibited by the 

Leptomycin B (LMB) cytotoxin (Sakamoto & Frank, 2009; Zhang et al, 2005). 

EXD is thus exported out of the nucleus due to the dominant net nuclear export 

signal over the nuclear import signal (Abu-Shaar et al, 1999; Berthelsen et al, 

1999). In the presence of HTH, the interaction shifts the balance between the 

nuclear export and import signals to favor nuclear localization of EXD (Abu-

Shaar et al, 1999). An additional factor modulating the subcellular distribution 

is the nonmuscle myosin II heavy chain B (NMHCB) which has been shown to 

compete with MEIS to promote cytoplasmic retention of PBX/EXD in vivo 

(Huang et al, 2003). 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



62 

 

A dominant negative form of MEIS protein induces a phenocopy of the 

lazarus/pbx4 phenotype, and in addition, the E2A-PBX1 fusion protein 

produces a myeloid leukemia phenotype similar to that induced by MEIS1 

suggesting a common pathway for these gene functions (Dedera et al, 1993; 

Kamps & Baltimore, 1993; Waskiewicz et al, 2001). In addition, the vertebrate 

Meis1 gene is able to rescue the hth mutant phenotype and replace the role of 

hth in inducing nuclear translocation of exd in cell culture and Drosophila 

embryos suggesting an evolutionarily conserved mechanism for regulating Hox 

activity via the nuclear localization of exd  (Rieckhof et al, 1997). The role of 

MEIS and PBX as well as their Drosophila homolog HTH and EXD was 

established where nuclear import of EXD by HTH is the main role of HTH in 

patterning the embryonic peripheral nervous system (PNS) (Kurant et al, 2001; 

Kurant et al, 1998). The observation of extremely low levels of the HTH 

protein found in embryos deficient in EXD further supports their cooperative 

and mutual stabilizing role (Kurant et al, 1998). Exclusion to this is the scenario 

when certain imaginal disc cells are also capable of localizing exd to the 

nucleus independent of hth (Ferretti et al, 2000; Rieckhof et al, 1997). In the 

case of the developing female genital tract at certain phases of cell cycle, PBX1 

was found to be cytoplasmic even in the presence of MEIS, indicating another 

exception to the case (Dintilhac et al, 2005). An HTH-EXD complex has also 

been implicated in pattering of the thorax in Drosophila (Aldaz et al, 2005). 

MEIS-PBX complex plays a role in the activation of megakaryocytic gene 

expression and regulating expression at the dorsal neural tube of Xenopus 
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tailbud embryos and tadpoles (Kelly et al, 2006; Okada et al, 2003). This 

interaction has also been observed in related C. elegans MEIS/HTH homolog 

UNC-62 and the PBX/EXD homolog CEH-20 in specification and 

differentiation of the mesodermal M lineage (Jiang et al, 2009). Apart from 

acting as cofactors to HOX, other functions of the MEIS-PBX complex have 

been implicated which include complex formation with other homeodomain-

containing transcription factors such as Engrailed and Pdx1, as well as 

interaction with bHLH proteins like MyoD to regulate myogenin gene 

expression, with recently described cooperative interactions with Kruppel-like 

factor, Klf4 in tumorigenesis and maintanence of stem cell pluripotency (Berkes 

et al, 2004; Bjerke et al, 2011; Knoepfler et al, 1999; Liu et al, 2001).  

 

4.3 HOX-PBX-MEIS heterotrimer 

Ternary complexes of HOX-PBX-MEIS have been shown to play a role in the 

regulation of HOX function (Jacobs et al, 1999; Kurant et al, 1998; Ryoo et al, 

1999; Shanmugam et al, 1999; Shen et al, 1999). MEIS has been shown to bind 

DNA cooperatively with products of HOX groups 9-13, while PBX-HOX 

complexes have been described for the products of HOX groups 1-8 (Chang et 

al, 1996; Shen et al, 1997a). Hence, MEIS and PBX bind to different sets of 

HOX proteins, with the exception of HOX paralog group 9 and 10, which 

interact with both MEIS and PBX. Two types of trimers have been 

demonstrated where MEIS can either be DNA-bound or non-DNA-bound 

(Jacobs et al, 1999; Shanmugam et al, 1999; Shen et al, 1999). A third 
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permutation involving the formation of a MEIS-HOXA9-PBX trimer in the 

absence of DNA has also been observed in vitro (Shen et al, 1999). 

Heterotrimeric complexes have been observed to augment DNA-binding 

affinity and specificity (Fujino et al, 2001; Huang et al, 2005; Moskow et al, 

1995; Nakamura et al, 1996a; Shanmugam et al, 1999). The resulting 

complexes are highly oncogenic and greatly reduce the latency of HOX-

induced leukemia, implying a role for MEIS as a cooperating oncoprotein 

(Calvo et al, 2001; Calvo et al, 2002; Fujino et al, 2001; Kroon et al, 1998; 

Nakamura, 2005; Schnabel et al, 2000; Wang et al, 2005). Using chimeric 

NUP98-homeodomain fusions, mouse NUP98-HOXA9 confers potent 

transcriptional activity mediated through CREB binding protein (CBP)/p300 

and recapitulate phenotypes observed in human diseases (Kasper et al, 1999; 

Kroon et al, 2001). Meis1 has been shown to accelerate transformation of 

NUP98-HOXA9 in acute myeloproliferative disease, which eventually develops 

into AML (Kroon et al, 2001). The involvement of Meis in cell cycle regulation 

can be established by the observation where HOXA10-PBX1-MEIS1 trimer 

activates the cyclin dependent kinase inhibitor p21 to regulate cell cycle arrest 

and differentiation (Bromleigh & Freedman, 2000). These assorted DNA-

binding complexes are suggestive of additional roles in regulating transcription.  
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4.4 PBX and MEIS expression independent of HOX 

Meis expression in zebrafish exhibits similar patterns to the expression of Pbx 

and Hox within the hindbrain. However, Meis is also expressed in non-Hox 

expressing tissues, suggesting a role in Hox-independent functions (Waskiewicz 

et al, 2001). In Drosophila development, the EXD-HTH dimer is able to 

regulate transcription independent of HOX protein binding (Jaw et al, 2000). 

hth and exd expression has also been detected in the absence of Hox, and is 

required for correct positioning of antenna as well as leg and wing development 

(Abu-Shaar & Mann, 1998; Azpiazu & Morata, 2000; Casares & Mann, 1998; 

Casares & Mann, 2000; Casares & Mann, 2001; Dong et al, 2000; Dong et al, 

2001; Dong et al, 2002; Wu & Cohen, 1999; Wu & Cohen, 2000). In other 

cases, MEIS-PBX complexes in the absence of detectable HOX participation 

were shown to play an important role in regulating transcription of the platelet 

factor 4 gene, thus implicating MEIS-PBX in megakaryocytic gene expression 

(Okada et al, 2003). 

5 Transcriptional activation by MEIS1 
The Meis1 transcript undergoes alternative splicing and encodes a number of 

isoforms including MEIS1A and MEIS1B which are highly conserved apart 

from their extreme C-termini (Figure 5) (Huang et al, 2005; Steelman et al, 

1997). Studies by the Featherstone lab revealed a strong PKA-inducible 

transcriptional activation function to the MEIS1A C-terminus consisting of 

residues 335-390 (Figure 5) (Goh et al, 2009; Huang et al, 2005). Further to that, 
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MEIS1A was also found to promote transcriptional activity with histone-

deacetylase inhibitor trichostatin A (TSA) treatment (Huang et al, 2005). 

On its own, the MEIS1A is unable to cause leukemia, while a fusion to the 

transactivation domain of VP16 renders it spontaneously oncogenic VP16-

MEIS1 protein (Mamo et al, 2006; Wang et al, 2006). This VP16-MEIS1 fusion 

requires the MEIS1 binding to PBX and DNA but not its C-terminal domain 

(Mamo et al, 2006; Wang et al, 2006). In addition, the fusion retains the 

aggressiveness of Hoxa9 and Hoxa7 and enhances its oncogenic potential 

(Mamo et al, 2006; Wang et al, 2006). The HOXA9 N-terminal domain (NTD) 

is essential for cooperative transformation with MEIS1 which is dispensable in 

VP16-Meis1 progenitors (Wang et al, 2006).  

This ability of the transactivation domain to restore essential function of both 

N-terminus of HOXA9 and C-terminus of MEIS1 suggest the presence of an 

inherent transactivation function within the C-terminus of MEIS1A (Huang et 

al, 2005; Mamo et al, 2006; Wang et al, 2006). Thus, the co-localization of 

transactivation and oncogenic functions to the same C-terminal domain, in 

addition to the ability of the VP16 transactivation domain to replace the MEIS1 

C-terminus in oncogenic assays, supported the notion that the MEIS1A C-

terminus exerts its oncogenic functions via transcriptional activation of target 

genes (Huang et al, 2005; Mamo et al, 2006; Wang et al, 2006). 

The MEIS1B C-terminus was found to display a strong constitutive 

transactivation function that could be enhanced by PKA. By contrast the 

MEIS1A C-terminus appeared inert in the absence of PKA or TSA (Huang et al, 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



67 

 

2005). Thus, the distinctive response of MEIS1A was selected as the candidate 

for further investigation of the activity of MEIS1 rather than the compound 

activity of MEIS1B.  

 

 

 

Figure 5 Schematic diagram of the domain structures of the MEIS1A and 

MEIS1B homeoproteins 

HD represents the homeodomain. HR1 and HR2 indicate the PBX interacting 

domains. Colored block area from amino acids 372 onwards correspond to the 

unique C-terminal region of MEIS1A and MEIS1B. 

 

6 Cyclic adenosine monophosphate response element 

binding protein (CREB)      

    
The cyclic adenosine monophosphate response element binding protein, CREB, 

is a basic leucine zipper (bZIP) transcription factor that activates gene 

expression in response to increased levels of intracellular cAMP. 

Genes responsive to cAMP harbor one or more so-called cAMP-response 

elements (CRE) within their regulatory regions which serve as recognition sites 

for binding by CREB, CREM and ATF (Mayr & Montminy, 2001; Shaywitz & 
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Greenberg, 1999; Yamamoto et al, 1988). The full CRE has the consensus 

sequence 5’TGACGTCA3’ while the half-site is 5’TGACG3’ (or 5’CGTCA3’ 

on the other strand). The 43 kd CREB protein binds the CRE as a homodimer or 

heterodimer with other bZIP family proteins.  

Heterodimerization and DNA binding are mediated by a leucine zipper motif at 

its C-terminus (Comb et al, 1986; Dwarki et al, 1990; Montminy et al, 1986; 

Shankar et al, 2005a; Short et al, 1986; Yamamoto et al, 1988). Mutations 

which hamper dimer formation also inhibit DNA binding (Dwarki et al, 1990). 

Two major domains with transactivation function reside within the N-terminal 

part of CREB. The central kinase inducible domain (KID) contains a cluster of 

phosphorylation sites that regulates transactivation (Figure 6) (Parker et al, 

1996). A second domain flanking the KID consists of two glutamine-rich 

domains Q1 and Q2 (or the constitutive activation domain, CAD) and provides 

surfaces for interaction with and stabilization of the basal transcriptional 

complex (Figure 6) (Felinski & Quinn, 1999; Ferreri et al, 1994; Laoide et al, 

1993; Nakajima et al, 1997). Together, the KID and the Q2 domain make up the 

transactivation domain (TAD).  
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Figure 6 Structure of creb gene 

Upper panel, The genomic structure of creb gene with the coding exons 

indicated in various colors.  

Lower panel, Alternative splicing result in three isoforms of CREB: CREBα, 

CREBβ and CREBΔ (Blendy et al, 1996; Hoeffler et al, 1990; Hoeffler et al, 

1988). 

 

 

6.1 CREB antagonists 

Transcription factors related to CREB include the cAMP response element 

modulator (CREM) and activating transcription factor-1 (ATF-1). These factors 

are related to CREB by homology, particularly within the bZIP domain (De 

Cesare et al, 1999; Foulkes et al, 1991; Hai et al, 1989; Mayr & Montminy, 

2001; Rehfuss et al, 1991; Shaywitz & Greenberg, 1999). In addition to the 

homodimers, heterodimers between CREB and other bZIP family proteins like 

ATF-1, c-JUN and CREM have been identified as well (Benbrook & Jones, 

1990; Foulkes et al, 1991; Kobayashi & Kawakami, 1995; Loriaux et al, 1994). 

Alternative splicing generate CREM isoforms, which binds CRE specifically 

and efficiently but encodes for different exons and function as transcriptional 

activators or repressors (Foulkes et al, 1991; Walker & Habener, 1996). 
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6.2 CREB regulation  

The activity of CREB is known to be upregulated by extracellular signal-

regulated kinase (ERK) also known as mitogen-activated protein kinase 

(MAPK) and protein kinase A (PKA) via phosphorylation at Serine 133 

residing within the KID (Chrivia et al, 1993; Gonzalez & Montminy, 1989; 

Kwok et al, 1994; Montminy & Bilezikjian, 1987; Yamamoto et al, 1988). In 

the absence of cAMP stimulus, PKA resides in the cytoplasm and exists as an 

inactive heterotetrameric protein of two catalytic subunits and two regulatory 

subunits bearing cAMP binding sites (Figure 7).  

Upon cAMP binding, the regulatory subunits change conformation, dissociate 

from the complex and render the catalytic subunits free to diffuse into the 

nucleus (Figure 7) (Alberts et al, 2004; Hagiwara et al, 1993). The nuclear PKA 

then phosphorylates CREB at Serine 133 within its KID domain (Hagiwara et al, 

1993; Harootunian et al, 1993).  

CREB is then activated upon phosphorylation enabling it to recruit the CREB 

binding protein (CBP) and activate transcription (Cardinaux et al, 2000; Parker 

et al, 1996). The role of CBP in the activation of CREB is critical as 

dimerization and phosphorylation alone is not sufficient for activation (Chrivia 

et al, 1993). The solution structure revealed that upon phosphorylation, the KID 

domain of CREB assumes a more ordered structure and associates with the KID 

interaction (KIX) domain at the N-terminus of CBP (Radhakrishnan et al, 1997). 

The CREB-mediated transcription function is contributed by the intrinsic and 

associated histone acetyltransferase (HAT) activity and the bridging properties 
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with RNA polymerase II via RNA helicase A of the coactivators CBP/p300 

(Johannessen et al, 2004; Nakajima et al, 1997; Ogryzko et al, 1996). Forskolin 

is a direct activator of adenylate cyclase and has been used to study responses to 

increases in cAMP levels.  

It was long thought that the response of CREB to increased cAMP was entirely 

mediated by recruitment of CBP following phosphorylation at Ser133. More 

recently, however a second major pathway responsible for CREB’s cAMP 

responsiveness has been revealed which involves the coactivator of CREB, 

cAMP-regulated transcriptional co-activators (CRTCs).  Recruitment of CRTC 

enhances CRE-dependent transcription and activates CREB in a 

phosphorylation independent pathway.  

The position Arginine 314 within the bZIP/dimerization domain of CREB plays 

a role in CBP/p300 recruitment and KIX-independent CREB transactivation 

function. In addition, this residue is also critical to mediate CRTC binding to 

CREB, and thus binding to CBP/p300 (Xu et al, 2007). Following activation, 

transcriptional activity of CREB can be attenuated by dephosphorylation of the 

same Serine 133 residue. Dephosphorylation of Serine 133 may be carried 

about by phosphatases: protein phosphatase 1 (PP-1) and PP-2A (Bito et al, 

1996; Hagiwara et al, 1992; Wadzinski et al, 1993). In another study, 

phosphorylation of Serine 142 by (CAMK) has also been found to inactivate 

CREB activity (Sun et al, 1994; Sun & Maurer, 1995). Repressors of CREB 

include isoforms of CREM: α, β and γ isoforms as well as the Inducible cAMP 

early repressor (ICER) that binds CRE sequences and represses activity via 
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autoregulatory loop (Foulkes et al, 1991; Molina et al, 1993). Another study has 

identified a nuclear factor known as the Regulator of G protein Signaling (RGS) 

protein that suppresses CREB-mediated gene expression by binding to the 

phosphorylated CREB-CBP complex thereby reducing its interaction with CRE 

sites (Xie et al, 2008). 

 

6.3 Calcium and CREB 

As mentioned, apart from intracellular cAMP levels, CREB levels can also be 

modulated by elevated intracellular calcium/calmodulin-dependent kinases 

(Cam II and IV kinase) level (Ghosh & Greenberg, 1995). Calcium release in 

response to intracellular signaling via the endoplasmic reticulum (ER) or 

extracellular signaling via receptor or voltage calcium channels binds to the 

protein calmodulin and the complex can then activate the PKA pathway and 

result in phosphorylation of CREB, ATF-1 and CREM (de Groot et al, 1993; 

Shaywitz & Greenberg, 1999; Sun et al, 1996). The calcium cascade, like the 

cAMP pathway, phosphorylates CREB on Serine 133 to activating CRE 

containing genes (Dash et al, 1991; Montminy et al, 1990; Sheng et al, 1991). 

All three cAMP, calcium and CREB have been implicated in memory 

mechanisms in both vertebrates and invertebrates, converging these signaling 

pathway at CREB (Bartsch et al, 1995; Bourtchuladze et al, 1994; Dash et al, 

1991; Impey et al, 1996; Kaang et al, 1993; Kandel & Abel, 1995; Yin et al, 

1995; Yin et al, 1994).  
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Figure 7 cAMP signals CREB phosphorylation 

Binding of G-protein coupled receptors (GPCRs) leads to activation of adenylyl 

cyclase (AC) and catalyses the synthesis of cyclic AMP. Increase in cellular 

cAMP stimulate protein kinase A (PKA) signaling and phosphorylates the 

cAMP-responsive element (CRE)-binding protein (CREB) at Ser133 in the 

nucleus thereby promoting target gene expression at CRE promoters. Adapted 

from (Altarejos & Montminy, 2011). 

 

 

6.4 CREB dominant negative mutants: ACREB, KCREB and M1 

CREB 

The dimerization characteristics of CREB proteins have lead to the construction 

of dominant negatives of CREB to investigate the role CREB plays in various 

pathways. The constructed CREB mutants M1 CREB, ACREB and KCREB 

function to inhibit activity of endogenous CREB (Ahn et al, 1998; Gonzalez & 

Montminy, 1989; Walton et al, 1992). The unphosphorylatable M1 CREB 

mutant, though mutated at the Serine 133 phosphorylation site, still retains 
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binding to CRE sequences and works by preventing access by CREB and other 

factors that binds CRE (Gonzalez & Montminy, 1989; Shaywitz & Greenberg, 

1999). The dominant negative ACREB consists of the CREB bZIP domain 

artificially fused with an acidic extension replacing the usual basic residues at 

the N-terminus, thereby allowing the acidic extension to form a coiled-coil 

extension upon heterodimerization, thus preventing DNA binding of the 

endogenous CREB (Figure 8) (Ahn et al, 1998). The ACREB mutant forms a 

stable ACREB-CREB heterodimer that is 3,300-fold more stable than a CREB 

b-ZIP homodimer, thus preferentially and efficiently preventing endogenous 

CREB DNA binding (Ahn et al, 1998; Walton et al, 1992). The ACREBR314A 

mutant, an ACREB construct with a point mutation at the CRTC binding site of 

Arginine 314, disabling its ability to bind CRTC. KCREB consist of a full 

length CREB sequence with a single point mutation within its DNA-binding 

domain which abolishes binding to DNA while retaining its dimerization ability, 

thus preventing its interaction with the CRE (Shaywitz & Greenberg, 1999; 

Walton et al, 1992). 

 
 

Figure 8 Diagram of full length CREB vs CREB mutants 

Domains of ACREB consist of the bZIP domain and an acidic extension (black 

bar). Adapted and modified from (Lonze & Ginty, 2002). 
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6.5 CREB in normal development  

CREB is ubiquitously expressed and controls a variety of functions in response 

to various physiological signaling pathways from normal hematopoiesis, 

cardiac gene expression, spermatogenesis, circadian rhythms, cell survival in 

pancreatic β-cells to regulation of body weight (Cheng et al, 2008; Chiappini et 

al, 2011; Don & Stelzer, 2002; Ginty et al, 1993; Huggins et al, 2007; Husse & 

Isenberg, 2005; Liu et al, 2002; Mayr & Montminy, 2001; Ruppert et al, 1992). 

Within the liver, CREB has been shown to bind to the liver-enriched 

phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase 

(G6Pase) promoter, where CREB is suggested to mediate tissue-specific 

response to cAMP in basal as well as PKA-induced expression by activating 

transcription (Herzig et al, 2001; Liu et al, 1991; Quinn & Granner, 1990; 

Roesler et al, 1995; Wynshaw-Boris et al, 1986; Xing & Quinn, 1993). In 

another related study, CREB was found to mediate expression of the 

gluconeogenic program via interaction with the nuclear receptor coactivator 

PGC-1 and nuclear receptor subfamily 4 group A (NR4A) in response to 

prolonged fasting, which in turn potentiates induction and amplifies 

gluconeogenic gene expression, further corroborating the role of CREB in the 

liver (Herzig et al, 2001; Pei et al, 2006). In addition, CREB deficient mice 

displayed a phenotype of fatty liver with elevated levels of nuclear hormone 

receptor PPAR-γ further establishing its role in liver metabolism (Herzig et al, 

2003).  
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CREB plays a role in modulating a variety of forms of learning; memory in 

particular has been well studied. Studies on CREB in Aplysia, Drosophila and 

mice have demonstrated CREB’s profound role in long-term, but not short term 

memory (Alberini et al, 1994; Bartsch et al, 1995; Bourtchuladze et al, 1994; 

Dash et al, 1990; Kogan et al, 1997; Yin et al, 1995; Yin et al, 1994). Not 

limited to memory, a role of CREB has been shown in regulating development 

and neurogenesis and cell survival in neurons in the adult brain while mice 

brains with Creb knockdown displayed in neurodegeneration, implicating 

CREB as an important modulator in brain function (Dworkin & Mantamadiotis, 

2010; Lonze & Ginty, 2002; Mantamadiotis et al, 2002).    

 

6.6 Creb knockouts and transgenic mice 

Mice with targeted disruption of genes encoding one isoform of CREB have a 

compensatory increase in other CREB isoforms as well as an increase in levels 

of CREM, suggesting compensatory mechanisms within the CREB/ATF family 

of transcription factors (Blendy et al, 1996; Bourtchuladze et al, 1994; 

Hummler et al, 1994).  Mice null for the Creb gene exhibit excessive apoptosis 

and impairment in axonal growth and projections of their sensory neurons while 

transgenic mice expressing unphosphorylatable CREB (CREBM1) display a 

block in proliferation resulting in a dwarf phenotype with atrophied pituitary 

glands (Lonze & Ginty, 2002; Struthers et al, 1991).  
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6.7 CREB in oncogenesis 

Recently, overexpression of CREB has also been detected in patients with acute 

lymphoid and myeloid leukemia and correlates with poor clinical outcome 

(Cheng et al, 2007; Kinjo et al, 2005; Pigazzi et al, 2007; Shankar et al, 2005a). 

In addition, CREB transgenic mice develop myeloproliferative disease after 1 

year but not leukemia, suggesting that CREB contributes to, but is not sufficient 

for leukemogenesis (Cheng et al, 2007; Cheng et al, 2008). Evidence of 

oncogenic cooperativity can be seen between CREB and the oncoprotein TAX, 

a transforming protein of human T-cell leukemia virus type 1 (HTLV-1) 

believed to be a leading cause to HTLV-1 dependent leukemogenesis (Adya et 

al, 1994; Colgin & Nyborg, 1998). In support of CREB’s role in oncogenesis, 

CREB protein is overexpressed in 94% of patients with ALL and 76% in AML 

(Pigazzi et al, 2007). The oncogenic effect of overexpressed CREB has been 

ascribed to an increase in phosphorylated CREB which causes hyperactivation 

of target genes involved in cell proliferation and survival (Desdouets et al, 

1995). Expression of the dominant negative KCREB inhibits tumor growth and 

metastasis in human melanoma cells, thereby implicating CREB in metastasis-

promoting pathways (Xie et al, 1997). In addition, studies using rat cardiac 

fibroblasts have shown that abnormal activation of CREB contributes to 

increased proliferation, further establishing the role of CREB in maintaining 

homeostasis (Leicht et al, 2000). 
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6.8 CREB and MEIS 

Meis1 has been found to be a candidate significantly upregulated during a 

microarray analysis of genes in CREB-overexpressing myeloid cells (Esparza et 

al, 2008). CREB has also been implicated in AML, suggesting a possible 

cooperative association with MEIS in leukemogenesis (Conkright & Montminy, 

2005; Esparza et al, 2008; Kinjo et al, 2005; Shankar et al, 2005a; Shankar & 

Sakamoto, 2004). In support of these speculations, a recent work has identified 

physical interaction between MEIS1 and CREB proteins in which interaction 

depends on the phosphorylation state of CREB (Wang et al, 2010b). These 

newly reveled data hint at a cooperative association of CREB and MEIS, 

alongside other factors, to facilitate transcription and oncogenesis. 

 

7 CREB-regulated transcription coactivator (CRTC)  
CREB-regulated transcription coactivator 1 (CRTC1), previously known as 

Transducer Of Regulated CREB activity 1 (TORC1) belongs to a family of co-

activators which enhances CRE-dependent transcription via a phosphorylation-

independent way (Conkright et al, 2003). Prior to its association with CREB, 

CRTC1 was also known as mucoepidermoid carcinoma translocated-1 (MECT1) 

and was first identified as part of the MECT1-MAML2 fusion protein that 

comprises the N-terminal CREB regulator MECT1 and the C-terminal 

transcriptional activation domain of the Notch coactivator Mastermind-like 2 

(MAML2) (Enlund et al, 2004; Tonon et al, 2003). Subsequently, through two 

independent screenings, CRTC1 was identified as a co-activator of CREB 
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signaling that enhances CRE-dependent transcription by binding to the bZIP 

DNA binding domain of CREB (Conkright et al, 2003; Iourgenko et al, 2003).  

There are three CRTC family members in mammals: CRTC1, CRTC2 and 

CRTC3. Expression of CRTC1 is highest in the human brain and very low in all 

other tissues while expression of CRTC2 and 3 are detected ubiquitously in 

most tissues (Wu et al, 2006b). CRTC2 level is found highest in the liver 

compared to CRTC1 and 3 (Koo et al, 2005). CRTC1 and 2 are latently 

cytoplasmic under basal condition whilst CRTC3 is constitutively nuclear 

(Conkright et al, 2003; Screaton et al, 2004). A single functional homolog of 

CRTC has been indentified in Drosophila and in C. elegans, suggesting an 

evolutionarily conserved role (Mair et al, 2011; Wang et al, 2008).  

Immunofluorescence microscopy using truncated CRTC2 identified a nuclear 

localizing sequence (NLS) (aa 56-144 of CRTC2) and two nuclear export 

sequences (aa145-320) and the motifs were shown to be conserved within the 

CRTC family (Screaton et al, 2004). Other domains of CRTCs include a 

conserved N-terminal coiled coil domain, the CREB binding domain (CBD) 

with transactivation potential and bind as tetramers to CREB dimers in the 

nucleus (Bittinger et al, 2004; Conkright et al, 2003; Iourgenko et al, 2003; 

Screaton et al, 2004). In addition, CRTCs also contain a central regulatory 

region (REG) harboring the nuclear localization and export signals as well as 

calcineurin binding sites, a splicing domain (SD) as well as a C-terminal 

domain (Screaton et al, 2004). The C-terminus comprises a constitutively active 

transactivation domain (TAD) that functions in coordinating assembly of the 
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transcriptional apparatus by associating efficiently with TAFII130 (Figure 9) 

(Conkright et al, 2003; Iourgenko et al, 2003). CRTC2 is phosphorylated by 

AMPK and SIK2 at Serine 171, by microtubule affinity-regulating kinase 2 

(MARK2) at Serine 275, and by SIK2 at Serine 307. Phosphorylation at this 

latter site promotes 14-3-3 binding and cytoplasmic retention of CRTC2 (Figure 

9) (Altarejos & Montminy, 2011).  

Deletion mutants have mapped the CREB-interaction domain of CRTC1 to the 

N-terminal 56 amino acids within the coiled-coil domain, while the cognate 

interface on CREB is in the bZIP domain (Conkright et al, 2003). Recruitment 

of CRTC does not modulate CREB DNA binding activity, but rather enhances 

interaction and access of CREB to the components of the transcription 

machinery (Conkright et al, 2003). CRTC1 binds CREB via position Arginine 

314 within the bZIP domain of CREB, a position which has also been shown to 

contribute to the recruitment of CBP/p300 (Xu et al, 2007). In addition, the 

direct binding of CRTC to CREB helps recruit and stabilize CBP occupancy 

over the promoter (Ravnskjaer et al, 2007; Xu et al, 2007).  How CRTC does so 

is only beginning to be unveiled. Studies have shown that in the nucleus, the 

dephosphorylated CRTC2 undergoes acetylation at Lys628 by CBP, thereby 

blocking CRTC2 from ubiquitination and resulting stabilization (Dentin et al, 

2007; Liu et al, 2008; Ravnskjaer et al, 2007).   
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7.1 CRTC regulation (activation/inactivation) 

Under basal conditions, CRTCs are anchored in the cytoplasm via 

phosphorylation-dependent interaction with 14-3-3 protein. This is dependent 

on phosphorylation at Ser307 by salt-induced-kinase 2 (SIK2) and members of 

the AMPK family of Ser/Thr kinases (Katoh et al, 2006; Koo et al, 2005; 

Screaton et al, 2004; Shaw et al, 2005). CRTC and SIK have been found to be 

highly expressed in the brain, an area where CREB is known to mediate 

learning and memory function, providing a hint at their cooperative regulation 

(Screaton et al, 2004). 

Stimuli such as calcium and cAMP dephosphorylates CRTC2 interactions at 

distinct 14-3-3 interaction sites (Ser 171, Ser 275 and Ser 307), with a dominant 

role at Ser 171, resulting in nuclear translocation of CRTCs (Jansson et al, 

2008). Synergistic activity between calcium and cAMP signals have been 

observed to promote CRTC2 nuclear localization (Screaton et al, 2004). Within 

the nucleus, the unphosphorylated CRTC associates with CREB over target 

promoters, activating gene expression (Katoh et al, 2004; Screaton et al, 2004; 

Wang et al, 2008). In addition to the stimulus, dephosphorylation of CRTC2 at 

Ser 171 may act in parallel to expose the nearby nuclear localization signal, 

promoting nuclear access to CRTC (Screaton et al, 2004).  

 

7.2 CRTC in gluconeogenesis 

Glucose is the major energy source in mammals and energy homeostasis is 

maintained during fasting by fat burning and by mobilizing glucose for glucose-

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



82 

 

dependent tissues like the brain and the red blood cells. Glucose homeostasis is 

maintained in the liver by promoting the storage or production of glucose in 

response to insulin and glucagon signaling (Pilkis & Granner, 1992). Liver cells 

contain specific enzymes specific for the regulation of hepatic gluconeogenesis 

and glycolysis such as phosphoenolpyruvate (PEPCK), fructose 1,6-

bisphosphatase (Fruc1,6-Pase) and glucose-6-phosphatase (G6Pase) (Pilkis & 

Granner, 1992).   

 

7.3 CRTC in fasting/ starvation 

During fasting, levels of plasma insulin begin a descent which relieves the 

inhibition on gluconeogenic enzymes like PEPCK while allowing hormones 

like glucagon to enhance gluconeogenic gene expression by increasing cAMP 

levels (Koo et al, 2005; Pilkis & Granner, 1992). In parallel, this increase in 

gluconeogenic gene expression is further enhanced by the concerted effect of 

CRTC and the forkhead box domain protein within the FOXO family (FOXO1) 

(Dentin et al, 2007; Haeusler et al, 2010). Collectively, the net increase in the 

level of gluconeogenic genes results in an increased rate of gluconeogenesis. 

Upon prolonged fasting, the body begins to decrease gluconeogenesis in an 

attempt to prevent muscle wasting and glucose dependent tissues like the brain 

begins to use liver-derived ketone bodies as fuel. The hepatic CRTC2 level then 

begins to fall due to deacetylation and ubiquitination. Deacetylation of CRTC2 

can be regulated by the upregulated NAD+ dependent deacetylase sirtuin 1 

(SIRT1) (Liu et al, 2008). In parallel, SIRT1 acts to enhance the activity of 
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FOXO1 and PGC1α, thus maintaining the expression of the gluconeogenic 

program (Puigserver et al, 2003).  

 

7.4 CRTC in feeding 

During feeding, the increase in circulating insulin levels induces SIK2 

phosphorylation of CRTC2 and begins to turn down the gluconeogenic program 

(Dentin et al, 2007). At the same time, deacetylation of CRTC2 by SIK2 

disrupts the CRTC-CBP interactions (Yang et al, 2001; Yuan & Gambee, 2000). 

In addition, the rise in insulin has also been implicated in the disruption of 

CREB-CBP-CRTC interaction, further impeding gluconeogenesis (He et al, 

2009; Zhou et al, 2004). Type 2 diabetes is characterized by a high blood 

glucose level in the context of insulin resistance, resulting in an increase in 

gluconeogenic gene expression. Another mechanism contributing to the 

increase in blood glucose is via the O-glycosylation of intracellular proteins 

(Altarejos & Montminy, 2011). O-glycosylation is an enzymatic reaction in 

which a glycan is added to Ser/Thr residues in proteins, disabling 

phosphorylation at the same site (Altarejos & Montminy, 2011). O-

glycosylation of CRTC2 at Ser171 was observed in mice which enhance the 

activity of CRTC2 by preventing phosphorylation, resulting in nuclear 

translocation of CRTC2 and activation of CREB (Dentin et al, 2007). 
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7.5 CRTC in energy sensing pathway (AMPK) 

An additional modulator which could override cAMP as well as hormonal 

effects is the modulation of CRTC2 by calcineurin and AMPK levels, which 

increases upon stress and disrupts hepatic glucose production by catalyzing 

Serine 171 phosphorylation on CRTC2 (Koo et al, 2005). CRTC has been 

shown to function downstream of calcineurin and AMPK signalling in response 

to nutritional stimulus. Calcineurin/PP2B (CnA) is a calcium/calmodulin-

dependent Ser/Thr phosphatase that is directly activated by calcium influx, and 

physical interaction between CRTC2 and CnA has been observed (Screaton et 

al, 2004). AMPK has been shown to target and decrease CRTC activity in C. 

elegans (Mair et al, 2011). A high nutrient state activates calcineurin resulting 

in dephosphorylation of CRTC and subsequent CREB gene expression (Brunet, 

2011). In the absence of nutrients, AMPK is activated which then keeps CRTC 

in the cytoplasm via binding to 14-3-3 protein (Brunet, 2011).  

Thus, the link between the energy-sensing (AMPK) pathway and the hormonal 

pathway (insulin and glucagon) to modulate glucose output converges on 

CRTC, making CRTC a critical target in regulation of gluconeogenesis (Koo et 

al, 2005; Shaw et al, 2005). 

 

7.6 CRTC role in development and interacting partners of CRTC 

Apart from acting as the glucose sensor in the liver, the role of CRTC has been 

increasingly elaborated in various systems, shedding light onto the multi-

faceted role of this CREB co-activator. Involvement of CRTC ranges from 
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maintaining energy balance to fertility as Crtc deficient mice were found to be 

obese and infertile (Altarejos et al, 2008). A role of CRTC in maintenance of 

energy balance in the brain can also be seen in Drosophila where crtc mutants 

displayed reduced glycogen and lipid stores and are rendered vulnerable to 

starvation and oxidative stress (Choi et al, 2011; Wang et al, 2008). Disruption 

of CRTC1 has also been implicated in synaptic and memory dysfunction and an 

impairment of CRTC1 gene transcription has been observed in Alzheimer’s 

disease as well as in several other psychiatric disorders (Espana et al, 2010; 

Kovacs et al, 2007; Rabheru & Persad, 1997). Given the implication of CREB 

in age-related disorders such as Alzheimer’s, it is no surprise that one of the 

many roles associated with CRTC involves ageing. Studies in C. elegans have 

shown how AMPK and calcineurin promote longevity by regulation and 

inhibition of CRTC (Mair et al, 2011). Life span extension can thus be brought 

about via the phosphorylation-induced inactivation of CRTC mediated by 

AMPK activation and calcineurin inactivation (Mair et al, 2011).  

Nuclear CRTCs have also been found to play a role in muscle mitochondrial 

biogenesis via activation of the peroxisome proliferator-activated receptor γ 

coactivator 1α (PGC-1α), upregulating the expression of nuclear and 

mitochondrial encoded genes (Koo et al, 2005; Screaton et al, 2004; Than et al, 

2011; Wu et al, 2006b). Physical interaction has been shown between CRTC2 

and a spliceosome factor NONO (p54nrb), suggesting a role of CRTC in 

splicing (Amelio et al, 2007). Other implicated roles of CRTC include the 

regulation of steroidogenesis in the adrenal cortex in rats (Spiga et al, 2011). In 
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addition, CRTC can also be phosphorylated and activated by the Mitogen 

activated/extracellular signal-regulated kinase kinase 1 (MEKK1) implicating 

CRTC in mitogenic signaling program (Siu et al, 2008). Supporting evidence 

for the role of CRTC as a target of mitogenic kinases can be deduced from its 

role in promoting cellular growth and proliferation in association with the 

mitogen AP-1, a mediator of mitogenic response (Canettieri et al, 2009b).  

Other evidence of CRTC in human T-cell leukemia lies in its association with 

the oncoprotein TAX and initiating the activation of HTLV-1 transcription (Siu 

et al, 2006). There has been implication on the t(11;19)(q21;p13) translocation 

of CRTC in mucoepidermoid carcinoma which act via disruption of the Notch 

signaling pathway (Conkright et al, 2003; Ellisen et al, 1991; Tonon et al, 2003). 

The same chromosomal rearrangement resulting in a CRTC1-MAML2 fusion 

has also been found in a lung mucoepidermoid carcinoma, benign Warthin’s 

tumors (Johansson et al, 1995; Nordkvist et al, 1994; Stenman et al, 1998). 

Transcripts of the fusion have subsequently been identified in the cervix, breast, 

primary thyroid and sweat glands thus implicating the fusion as prognostic 

marker in tumors arising from mucous gland (Achcar Rde et al, 2009; Behboudi 

et al, 2005; Camelo-Piragua et al, 2009; Enlund et al, 2004; Kaye, 2009; 

Kazakov et al, 2007; Komiya et al, 2010; Tirado et al, 2007). Recent study has 

identified a conditional associating complex of MEIS-CBP-CRTC with the 

Ser/Thr kinase GSK-3 to facilitate HOX-mediated transcriptional and 

transformation in leukemia (Wang et al, 2010b). A finding which places CRTC 

alongside MEIS in HOX-dependent leukemic program. 
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Together, these data suggest at least two general pathways promoted by 

activation of CRTC: a metabolic pathway (a role in gluconeogenic gene 

expression) and a proliferative pathway (a role in cancer) (Canettieri et al, 

2009a). The preferential expression levels of CRTC in certain tissues could help 

explain the strong constitutive function of CREB in certain types of cells and 

why CREB phosphorylation is not sufficient to activate gene expression in 

certain cases thus providing a hint at the role of CRTC as the point of 

converging signals in controlling the magnitude of CREB responses during 

development (Altarejos & Montminy, 2011; Canettieri et al, 2009a; Conkright 

et al, 2003; Iourgenko et al, 2003).  

 

 

Figure 9 Schematic diagram of CRTC2 

CBD: CREB binding domain REG: regulatory region. SD: splicing domain. 

TAD: transactivation domain. Various phosphorylation sites were indicated. 

Adapted from (Altarejos & Montminy, 2011). 

 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



88 

 

RATIONALE 
 

MEIS1, a cofactor of HOX and PBX proteins, has been implicated in 

embryonic patterning and oncogenesis. Previous studies by our lab established 

that MEIS1A harbors a C-terminal transcriptional activation domain that 

responds to PKA signaling. Supporting studies have also mapped a conserved 

transcriptional function to the C-terminus of MEIS1A which is required for 

accelerating leukemogenesis, particularly in collaboration with HOXA9 (Mamo 

et al, 2006; Wang et al, 2005). Of interest to our lab, and the subject of this 

thesis, is molecular basis for the PKA-responsiveness of the MEIS1A C-

terminus. Results in Chapter 3 discuss how this mechanism involves the CREB 

coactivator CRTCs. Chapter 4 assesses the effects of CREB using CREB 

mutants, CBP and other protein interactions at the MEIS1A C-terminus. Finally 

in Chapter 5, I discuss my attempts to determine the nature of the MEIS-CRTC-

CREB complex in order to reveal the structural changes accompanying their 

interactions. Lastly, I propose future experiments to further understand the role 

of MEIS1 and CRTC in transcriptional regulation in the hope of extending this 

knowledge to physiological and disease models. 
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CHAPTER 2  

 

 

MATERIALS AND METHODS 
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Plasmid constructs- Expression plasmids for MEIS1A, PKAα, PBX1A, 

HOXA1, GAL-MEIS1A(335-390) and GAL-MEIS1A-(GQWHYM) have been 

described previously (Huang et al., 2005; Saleh et al., 2000b, Shanmugam et al., 

1999) . pML5XUAS is a luciferase reporter with five copies of GAL4 binding 

sites. (Huang et al., 2005). pRL Renilla is a luciferase control reporter vector. 

pMLHoxb1ARE is another luciferase reporter contains a 150bp Hoxb1 ARE 

upstream of the adenovirus major late promoter (Saleh et al., 2000). CRTC2, 

control shRNA plasmids, Flag-CRTC2 and Flag-CRTC2 (Wobble) expression 

plasmids have been previously reported (Conkright et al, 2003; Screaton et al, 

2004). Flag-CRTC1 coding sequence was PCR-amplified from template 

pCMV-SPORT6-CRTC1 purchased from Open Biosystems (catalogue number 

MHS1010–7507865; accession number BC028050), and cloned into BamHI 

and XhoI sites of pcDNA3.1(+) that had already been inserted with a FLAG tag. 

FLAG-CRTC1-(47–634), FLAG-CRTC1-(47–290), and FLAG-CRTC1-(148–

290) were subcloned as EcoRI-NotI fragments. FLAG-CRTC1-(1–431), 

FLAG-CRTC1-(1–518), Flag-CRTC1-(1–493), and FLAG-CRTC1-(1–627) 

were generated by removal of ClaI-XhoI, BsrGI-XhoI, SfiI-XhoI, and BspEI-

XhoI fragments, respectively, and ligated following a blunt ending treatment by 

T4DNA polymerase (Fermentas). Flag-CRTC1, Flag-CREB, Flag-CREB 

(R314A) and Flag-CREB (S133A) expression plasmids have been previously 

reported (Conkright et al., 2003; Screaton et al., 2004; Goh et al., 2009). CRE-

luc is a luciferase reporter assays construct courtesy of Walter Born. CREB-341 

expression plasmid was a generous gift by Richard Goodman (Oregon Health & 
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Science University). ACREB was a generous gift of Charles Vinson (National 

Institutes of Health, Bethesda) and has been described previously (Ahn et al., 

1998). Flag-ACREBR314A was generated with reverse primer overlapping 

position 314 of CREB mutated to alanine. GSK3β, GSK3β (S9A) and DN-

GSK3β expression plasmids were purchased from Addgene. Expression 

plasmids for pcDNA3-HA-GSK3β wildtype, pcDNA3-HA-GSK3 βS9A and 

pcDNA3-HA-GSK3β K85A were purchased from Addgene with plasmids 

number: 14753, 14754 and 14755 respectively. Expression plasmid for pXJ-

GFP was a kind gift from Dr Koh Cheng Gee’s lab in School of Biological 

Science, NTU. pXJ-GFP-MEIS1a was constructed by PCR-amplified construct 

of MEIS1A into BamHI and XhoI sites of pXJ-GFP plasmid. CRE-luc is a 

luciferase construct encodes the firefly luciferase reporter gene with a cAMP 

response element (CRE) incorporated. To construct the expression plasmid for 

pSG5-MEIS1A Δ334-390, MEIS1A (1-1002 basepairs) coding sequencing was 

PCR-amplified from constructed and cloned into EcoRI  and SacI sites of the 

pSG5 plasmid. DNA region coding for MEIS1A, CRTC1 and CREB341 were 

amplified by PCR and cloned into Ndel and BamH1 sites of pET15b and Bsa1 

and Xho1 sites of pSUMO that had already a 6XHis tag at the N-terminus of 

pET15b and pSUMO. Flag-CRTC1 (1-290) was amplified by PCR and cloned 

into Bsa1 and Xho1 sites of pSUMO. 

 

Cell culture and transfections- HEK293T cells were cultured in Dulbecco’s 

modified Eagle’s medium (cat no. 12100-046), supplemented with 10% fetal 
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bovine serum from Gibco, L-glutamine, and penicillin/streptomycin. HEK293T 

cells were seeded at 75% to 90% confluence in 6-well plates for 

immunoprecipitation and in 12-well plates at a concentration of 1.5X10
5
 

cells/ml for luciferase assay. Cells were allowed to attached overnight and then 

transfected by Lipofectamine 2000 reagent (catalog no. 11668-019, Invitrogen).  

 

Chemical- MG132 (Merck, catalogue number 474790) was used at 10 uM for 5 

h. Forskolin (Sigma-Aldrich Product Number F6886). Dithiothreitol (DTT) was 

purchased from Biorad (510610), Isopropyl β-D-1-thiogalactopyranoside (IPTG) 

was purchased from BST (12481C25) and Lithium chloride (LiCl) was 

purchased from Sigma (3650-1008). 

 

Antibodies- Anti-MEIS NT is an affinity purified rabbit polyclonal antibody 

raised in-house against amino acid residues 1–34 of MEIS1 (Huang et al, 2003; 

Huang et al, 2005). Anti-MEIS1/2/3 mouse monoclonal antibody was 

purchased from Upstate Biotechnology (catalog no. 05-779).  Anti-Flag mouse 

monoclonal antibody (catalog no. F3165) and anti-actin mouse antibody 

(A1978) were from Sigma. The anti-CRTC1 (sc-46268) and anti-CRTC2 

(catalog no. sc-46273) antibodies were purchased from Santa Cruz 

Biotechnology. The anti-PBX1 (catalogue number sc-889) and anti-Gal4 

(catalog no. sc-577) polyclonal antibodies were purchased from Santa Cruz 

Biotechnology. The anti-Gal4 (catalog no. sc-577) polyclonal antibodies were 

purchased from Santa Cruz Biotechnology. Vectashield mounting medium for 
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fluorescence with DAPI was purchased from Vector Laboratories Inc (H-1200). 

The secondary antibodies used in this study were horseradish peroxidase-

conjugated rabbit anti-mouse IgG (A9044 Sigma), horseradish peroxidase-

conjugated anti-rabbit IgG (P0448 DakoCytomation) and horseradish 

peroxidase-conjugated anti-goat IgG (A5420 Sigma). Anti-Flag antibody was 

purchased from Sigma (catalog no. F1804). All secondary antibodies were 

purchased from Molecular Probes (Invitrogen): Alexa-Fluor 488, 546 rabbit 

anti-goat IgG (catalog no. A-11078, A-21085), Alexa-Fluor 488, 546 goat anti-

mouse IgG (catalog no. A-11039, A-11040), Alexa-Fluor 594 chicken anti-

mouse IgG (catalog no. A21201), Alexa-Fluor 488, 546 goat anti-rabbit IgG 

(catalog no A-11034, A11010). We purchased the anti-FLAG M2 affinity 

agarose (catalogue number A2220) and anti-actin (catalogue number A3853) 

from Sigma. The anti-CBP (catalog no. ab50702) and rabbit polyclonal anti-

GFP antibody (ad290) were purchased from Abcam.  

 

Luciferase assays- A total of 800 ng of DNA consisting of 150 ng of 

pML5XUAS luciferase reporter or CRE luciferase reporter and 200 ng of each 

expression plasmid, 50ng of Renilla luciferase reporter were included in all 

reactions as an internal control value in which the pML5XUAS luciferase 

reporter gene may be normalized. All reactions were topped up to 800 ng with 

PSKII empty vector. Media was changed after 24 h and at 48 h post-

transfection, cell lysates were harvested with passive lysis buffer (PLB) from 

the Dual luciferase assay kit (catalog no. E1960 Promega). 250 ul of PLB we 
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dispensed into each well for 12-well culture plate to completely cover the cell 

monolayer. Culture plates were rocked gently at room temperature for 15 min. 

Lysate samples were cleared for 30 s by centrifugation at top speed and 50 ul 

aliquot of supernatant was added to a 96-well luminometer plate (Thermo 

Scientific cat: 9502887). Samples were quantified for luciferase activity using 

Fluoroskan Ascent FL luminometer (Thermo Electron Corporation) that 

dispense 100 ul per reaction of luciferase assay reagent and 100 ul of stop and 

glow solution. The Renilla reporter was co-transfected to normalize transfection 

efficiency. Data were normalized and compared as Relative luciferase relative 

fold induction (Rlu). Titration of increasing amount of plasmids (0-200ng) with 

a fix amount of reporter and control plasmids have been attempted to determine 

the saturation point. A linear readout was observed with increasing amount of 

plasmid.  

 

 

Immunoflorescence staining- An indirect immunofluorescence approach against 

endogenous levels of MEIS1/2/3, CRTC1 and CRTC2 as well as overexpressed 

Flag-tagged protein levels of CRTC1 were carried out. 1.0 x 10
5
 cells/ml 

HEK293T cells were seeded in 40-mm-diameter tissue culture dishes lined with 

ethanol- and acid-washed coverslips and allowed to attach overnight. Medium 

was changed the following day after transfection. 24 h after transfection cells 

were washed twice in pre-warmed Phosphate Buffer Saline (PBS) and fixed 

with 4% paraformaldehyde (Sigma-Aldrich, USA) for 20 min at room 
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temperature, followed by boiling with citrate buffer. Cells were washed thrice 

in PBS, blocked with 10% goat serum (Hyclone) in 0.1% Triton/PBS.  

Antibodies used were goat polyclonal anti-CRTC1 (sc-46268) and anti-CRTC2 

(sc-46274) (Santa Cruz Biotechnology, Inc., USA). Alexa Fluor dye 546 (on 

MEIS1A) and Alexa Fluor dye 488 (on CRTC1) from Invitrogen were used as 

the fluorescent label. Secondary antibodies were purchased from Molecular 

Probes (Invitrogen,USA): Alexa-Fluor 488, 546 rabbit anti-goat IgG (catalog 

no. A-11078, A-21085), Alexa-Fluor 488, 546 goat anti-mouse IgG (catalog no. 

A-11039, A-11040). Cells were mounted in Vectorshield DAPI (Vector 

Laboratories, USA). Anti-Flag antibody was purchased from Sigma (catalog no. 

F1804).  

 

Immunoprecipitation and Western Blot analysis- Cells were washed twice in 

ice-cold PBS 48 h post-transfection and harvested in 500 ul of Buffer B ( 150 

mM KCl, 0.1% NP-40, 20 mM Tris-Cl, pH 8.0, 5 mM MgCl2, 10% (w/v) added 

with protease inhibitor cocktail (catalog no. 11873580001, Roche). Following 

two freeze thaw cycles, cells were spun down at 4˚C for 10 min. For 

Immunoprecipitation, the supernatant was then incubated with appropriate 

antibody for 5 h to overnight at 4˚C, followed by a 3 h incubation at 4˚C with 

30 ul of a 50% slurry of Protein A agarose (catalog no. 16-156, Upstate 

Biotechnology). The precipitates were washed three times, each with 500 ul of 

Buffer B. Protein A agarose precipitate were then eluted with 1X sodium 

dodecyl sulfate (SDS) sample buffer and boiling. Elution from anti-Flag M2 
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affinity agarose was done by adding a 7.5 ug of Flag-peptide (catalog no. 

F3290, Sigma) for 1 h at 4˚C. Protein samples were separated by SDS-PAGE 

and transferred to 0.45 um  PVDF membrane. The membranes were blocked 

with 5% non-fat milk powder in 0.1% Tween 20 in PBST for 1 h at room 

temperature to reduce non specific background, followed by primary antibody 

incubation for 2 h at room temperature or overnight at 4˚C. The membranes 

were then washed six times, 5 min each with PBST, and incubated with 

secondary antibody conugated with horseradish peroxidase for 45 min at room  

temperature. Subsequent to six 5 min PBST washes, bound antibodies were 

detected with a chemiluminescent kit (catalog no. WBKLS0100 Millipore).  

 

Proximity ligation assay- Cells were seeded and grown on 6 well-plates for 

transfection and re-seeded in 8-well lab-tek chamber slides (cat no. 177402 

Thermo Scientific) of 200 ul media per well with a confluency of 2500 cells/ml. 

Transfected cells were washed with PBS at room temperature, fixed, and 

permeabilized using 0.2% Triton/PBS the following day. Samples were blocked 

in 1X blocking stock (10% FBS in 0.1%Triton/PBS) for 10 min at room 

temperature and washed with 0.1% Triton/PBS for 1 min, twice. Primary 

antibodies were diluted 100 times in 1%Triton/PBS and co-incubated overnight 

at 4°C. Slides were washed with PBST (1XPBS with 0.1% Tween) for 5 min, 

twice. PLA was performed using a Duolink II Detection Kit (catalog no. 92007-

0030, Genome Holdings). Slides were then incubated with a mixture of two 

diluted PLA probes in 1XPBS in a pre-heated humidity chamber for a 
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maximum of 2 h at 37˚C. Cells were washed with clean PBS 5 min, twice and 

incubated with diluted Duolink Hybridization stock in filtered water for 15 min 

at 37˚C for rolling circle amplification (RCA). To complete the rolling-circle 

priming template, T4 DNA ligase and samples were incubated 15 min at 37°C 

in a humidified chamber. RCA of the ligated oligonucleotide template was 

initiated by addition of DNA polymerase and incubation for 60 min at 37°C in a 

humidified chamber. Finally, Texas red–labeled oligonucleotide detection 

probes were incubated as 1× detection stock and incubated for 60 min at 37°C 

in a humidified chamber. Washing procedures with 2x saline-sodium citrate 

(SSC), 1x SSC, 0.2x SSC and 0.02x SSC for 2 mins each followed by a wash 

with 70% Ethanol for 1 min. Samples were fitted with coverslips and mounted 

with Vectashield and examined with a Zeiss LSM710 META Confocal 

Microscope under a 63× objective. 

 

Chromatin immunoprecipitation (ChIP) Assay—ChIP assays were performed 

according to the protocol from Upstate Biotechnology with minor changes as 

reported previously (Huang et al, 2005; Rastegar et al, 2004). P19 cells induced 

to differentiate down the neural pathway by aggregation in the presence of 

retinoic acid were treated with 20 uM forskolin for 2 h, cross-linked with 1% 

formaldehyde for 10 min at 37 °C, collected, and washed twice with ice-cold 

PBS containing protease inhibitor mixture. A 200-ul aliquot of SDS lysis buffer 

(1% SDS, 10 mM EDTA, 50 mM Tris-HCl, pH 8.0, protease inhibitor mixture) 

was added to each 1 x 10
6
 cells and incubated on ice for 10 min. The 200-ul 
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lysates were sonicated at 4 °C with 10 sets of 10-s pulses at 30% amplitude of a 

Betatec Sonics Vibra Cell sonicator to an average DNA length of 200 bp and 

centrifuged for 10 min at 4 °C. Each 100-ul sonicated cell supernatant was 

diluted 10-fold in ChIP dilution buffer (0.01% SDS, 1.1% Triton X-100, 

1.2mM EDTA, 16.7mM Tris-HCl, pH 8.0, 167 mM NaCl, protease inhibitor 

mixture) and pre-cleared with 40 ul of a 50% slurry of salmon sperm 

DNA/Protein A-agarose (catalogue number 16-157, Upstate Biotechnology) for 

30 min at 4 °C with rotation. After an overnight incubation with anti-MEIS NT, 

anti-PBX1, anti-CRTC2, or anti-rabbit IgG antibodies, 30 ul of salmon sperm 

DNA/Protein A slurry was added for 1 h at 4 °C, along with a no antibody as 

control. To remove nonspecific DNA from the protein A-antibody-histone 

complex, we performed extensive washes with 500 ul of each buffer in the 

following sequences: once with low salt buffer (0.1% SDS, 1% Triton X-100, 2 

mM EDTA, 20 mM Tris-Cl, pH 8.0, 150 mM NaCl), once with high salt buffer 

(0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-Cl, pH 8.0, 500 mM 

NaCl), once with lithium chloride buffer (0.25 M LiCl, 1% Nonidet P-40, 1% 

deoxycholate, 1 mM EDTA, 10 mM Tris-Cl, pH 8.0), and twice with TE buffer 

(1 mM EDTA, 10 mM Tris-Cl, pH 8.0). Each wash was done by first pipetting 

up and down for 10 times, and then 8–10 min incubation on a rotating platform 

at 4 °C. Subsequently, the histone complex was eluted from the antibody by 

incubating twice with 125 ul of elution buffer (1% SDS, 0.1 M NaHCO3) for 

15 min at room temperature. Cross-links were reversed at 65 °C for 4 h in the 

presence of 0.2 M NaCl. DNA was phenol-chloroform-extracted, ethanol 
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precipitated, and resuspended in 40 ul of distilled water (catalogue number 

15230-147, Invitrogen). Five percent (by volume) of the immunoprecipitated 

DNA was served as template in quantitative real-time PCR by a SYBR Green 

JumpStart Taq ReadyMix kit (catalogue number S1816, Sigma) with a Roche 

LightCycler. The sequences of ChIP primers used in this study were as follows: 

for Hoxb1 ARE, 5’-CTCTGGTCCCTTCTTTCC and 5’-

GGCCAGAGTTTGGCAGTC; for Hoxb2 r4 enhancer, 5’-

AGGCCTTTTTAAGGGATATGC and 5’-AGGCCTCAAAGCTGAAAATGA; 

for Meis1 promoter, 5’-TTAGGACTGATTCAAGGAAAGC and 5’-

GCCCCTCAGACCCAACTAC; and for gapdh, 5’-

AACGACCCCTTCATTGAC and 5’-TCCACGACATACTCAGCAC. The 

primers for the murine Meis1 gene flank a consensus PBX-MEIS binding site 

having the sequence 5’-TGATTGACAG-3’. 

 

Knock down studies- Knock down of human CREB1 was performed with ON-

TARGETplus siRNA Reagents (Thermo Scientific) using a SMARTpool 

reagent of 4 siRNAs which target both human CREB1 isoform A and B. 

HEK293T cells were first seeded on a 24-well plate on day 0 followed by 

siRNA knockdown using DharmaFECT general transfection protocol on day 1 

using Thermo Scientific DharmaFECT transfection reagents. Fresh media was 

replaced on day 2. Transfection of plasmids was done on day 3 following the 

knockdown. Cells were harvested at 96 hrs at >80% viability for transcriptional 

assay and western blot on day 4. CREB shRNA was purchased from 
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Dharmacon RNAi Technologies (On-TARGET plus SMART pool L-003619-

0005, Human CREB1).          

 

Protein expression- A 2 ml overnight cell culture was inoculated to 1 l of LB 

broth at 37°C. Cells were grown to A600 = 0.4-0.6. IPTG was added to a final 

concentration of 1 mM and protein expression induced for 2.5 h at 37°C. Cells 

from one litre culture were resuspended in 30-ml of buffer (50 mM Tris, pH 8.5, 

200 mM NaCl, EDTA, DTT) and lysed via sonication (BANDELIN, Sonopuls 

HD 2200, cone tip KE76). Lysate was centrifuged at 10,000 g for 35 min. The 

supernatant was passed through a 0.45 um membrane (Pall Cooperation).   

 

His-Tag purification- The supernatant was allowed to bind to the Ni-NTA-

Agarose (Nickel-Nitrilotriacetic Acid Agarose, Qiagen) and spin for 2 h at 4°C. 

After binding, elution was started by applying an increasing concentration of 

Imidazole from 0 mM to 300 mM.  Protein elution profile was determined with 

a 17.5% SDS-PAGE gel.  

 

Superdex- The sample was loaded onto a Superdex G-75 HR 10/30 as well as 

Superdex G-200 HR 10/30 gel-size exclusion chromatography column (GE 

Healthcare) using a buffer of 50 mM Tris–HCl (pH 8.5) and 200 mM NaCl. 

The protein was concentrated using Centricon YM-3 spin concentrators 

(Millipore). 
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Ion exchanger-The protein sample was loaded onto a column carrying 

positively-charged functional groups, which attracted negatively charged 

proteins. Because the pI of MEIS1A is 6.13, at a pH of 8.5, the MEIS1A protein 

should be negatively charged and should be binding to the column. Unbound 

proteins will then be washed off as flow through. Bound proteins were 

gradually eluted with an increasing ionic strength. 

 

Baculoviral expression and insect cell culture- Cloning and expression of Flag-

CRTC1 was performed using the Bac-to-bac expression system and step by step 

guide can be found in the manual by Invitrogen (catalog no. A11101). 

Spodoptera frugiperda Sf9 insect cells were used as the host for the baculovirus 

transfer vector. Sf9 cells were cultured under serum-free condition in sf-900 II 

Serum free media (SFM). Cells were maintained in 27 ˚C incubator with an 

active controlled oxygenated system at 10-50% of air saturation.  

 

Native gel- 15% native gel (30% Acrylamine, 5XTBE, 10% APS, TEMED) 

was set to pre-run at a voltage of 300 for 1 h in transfer buffer sans methanol. 

Protein bands were then visualized by staining in commassie blue.  

 

Dynamic light scattering studies- The homogeneity of the purified PREP2 

protein was measured using a Zetasizer by Malvern Instruments. Zetasizer 

measurement was performed according to the standard operating procedure 

(SOP) with a concentration of 1 mg/ml purified protein. Details of the 
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procedure were explained in the Zetasizer Nano Series User Manual 

(MAN0317). 
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CHAPTER 3 

 

 

To elucidate the mechanism behind the transcriptional 

activity of MEIS1A at the C-terminus 
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1 ABSTRACT 
MEIS1, a cofactor of HOX and PBX proteins, has been implicated in 

embryonic patterning as well as in oncogenesis. Previous studies by the lab 

have established that the MEIS1A C-terminus harbors a transactivation domain 

that is responsive to PKA signaling which is dependent on CBP. Supporting 

studies have also mapped a conserved transcriptional function to the C-terminus 

of MEIS1A which is required for accelerating leukemogenesis. Our studies 

investigated the involvement of the CREB coactivator CRTCs in the PKA-

mediated induction of the transcriptional functions of the MEIS1A C-terminus. 

Overexpression studies revealed the ability of CRTC to bypass PKA for 

transactivation at the MEIS1A C-terminus. Knockdown studies of CRTC 

further supported the role of CRTC1 in mediating MEIS1A transactivation. We 

also established the physical involvement of the CREB coactivator CRTC1 and 

CRTC2 in mediating the transcriptional function at the MEIS1A C-terminus, a 

result that was further supported by proximity ligation studies. Authenticity of 

the effect of CRTC1 was also observed strongly in the well-established CRE-

reporter assay while chromatin immunoprecipitation revealed recruitment of 

MEIS1, PBX1, and CRTC2 on MEIS1 target genes Hoxb1 and Hoxb2. The 

CRTC1 interaction domain on MEIS1A appears to involve the MEIS1A C-

terminus since deletion of the MEIS1A C-terminus prevents co-

immunoprecipitate with CRTC. The MEIS1 interaction domain on CRTC was 

mapped to the N-terminus, a region which has also been shown to mediate 

CREB binding. These results imply the physical collaborative effort of CREB 
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and CRTC with MEIS1 to achieve a PKA inducible activation at the MEIS1A 

C-terminus, pointing at the convergent action of these proteins in normal 

development as well as in oncogenic processes.   
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2 RESULTS 
Transcriptional activation by MEIS1A in response to PKA signaling 

Previous results from the Featherstone lab have indicated that the MEIS1A C-

terminus harbors a transactivation domain that is responsive to PKA (Huang 

2005). Deletion studies have mapped the region of PKA-responsiveness to 

residues 335-390 of MEIS1A (Huang 2005). To reveal the mechanism behind 

the transcriptional activity of the MEIS1A C-terminus (residues 335-390), I 

employed a fusion of this domain to the GAL4 DBD-binding domain. 

Transcriptional activity was then reported by five tandem copies of GAL-DBD 

(5XUAS) driving expression from a firefly luciferase cassette.  

The functionality of our PKA and CRTC1 expression vectors was validated 

using a luciferase reporter driven by cAMP response elements (CREs) 

HEK293T cells. The results show a robust transcriptional response to both PKA 

and CRTC1 expression, confirming the functionality of our reagents (Figure 1). 

Consistent with previous data from the lab, a strong transcription of the 

luciferase gene was detected in response to PKA signaling in HEK293T cells 

(Figure 2) (Goh et al, 2009; Huang et al, 2005).  

 

2.1 CRTCs bypass the need for PKA to activate transcription by 

MEIS1A  

Recent studies have identified a family of PKA-responsive CREB coactivators 

called CRTCs (Conkright et al, 2003; Screaton et al, 2004). To test whether the 

effect of PKA on the MEIS1A C-terminus might be mediated by CRTC1, 

expression vectors for CRTC1, GAL-DBD with 5XUAS and MEIS1A C-
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terminus were tested in HEK293T cells in the presence and absence of PKA 

(Figure 2). Luciferase assays showed that CRTC1 was able to bypass PKA 

signaling to activate transcription of the luciferase gene driven by the GAL-

MEIS1A C-terminus. The absence of synergistic activation upon co-expression 

of PKA and CRTC1 suggest the activity seen at the GAL-MEIS C-terminus is 

mediated by CRTC. Similar activation was seen by CRTC2 at the GAL-

MEIS1A C-terminus (SL. Goh, data not shown), which shares a 32% similarity 

with CRTC1 (Iourgenko et al, 2003).  
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Figure 1 Effect of PKA and CRTC1 at the CRE-luc promoter 

HEK293T cells were transiently transfected with the cAMP response element 

(CRE) luciferase reporter (“Reporter”) and expression plasmids for PKA and 

CRTC1 as indicated. The effect of the PKA catalytic domain and/or CRTC1 is 

shown. Luciferase activities were measured at 48 h post-transfection. Error bars 

represent the standard deviation of three independent experiments. Rlu: 

Relative luciferase.  
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Figure 2 CRTC1 bypasses the need for PKA to activate transcription 

through the MEIS C-terminus 

HEK293T cells were transfected with a pML5xUAS luciferase reporter 

(“Reporter”) and expression vectors for GAL-MEIS1A-(335–390) in the 

presence of. The effect of the PKA catalytic domain and/or CRTC1 is shown. 

Luciferase activities were measured at 48 h post-transfection. Error bar 

represent the standard deviation of three independent experiments. Rlu: 

Relative luciferase.  
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2.2 Localization of endogenous and overexpressed CRTCs  

Under basal conditions, CRTC proteins are phosphorylated by SIK2 and 

anchored in the cytoplasm via binding with 14-3-3 protein.  PKA inhibits SIK2 

and shifts CRTCs to the unphosphorylated state resulting in accumulation of 

CRTCs in the nucleus. This suggests that the ability of CRTC to bypass PKA 

observed in Figure 2 could be due to the accumulation of CRTC protein within 

the nucleus. Immunofluorescence experiments were performed on endogenous 

as well as Flag-tagged CRTC constructs to verify their subcellular location. 

Immunofluorescence detection with an antibody recognizing all endogenous 

MEIS products (MEIS1/2/3) showed cytoplasmic and nuclear staining in 

HEK293T cells, with a slightly higher proportion of MEIS visualized in the 

nucleus (Figure 3). Both the endogenous CRTCs showed an even accumulation 

both within the nucleus and cytoplasm (Figure 3). Following overexpression, 

strong CRTC2 was quantitated and observed strongly in the nucleus (Figure 3) 

whilst no significant nuclear accumulation was observed with overexpressed 

CRTC1 nucleus (Figure 3).  
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Figure 3 Cellular localization and quantification of endogenous and 

overexpressed proteins 

Upper panel: Localization of CRTCs and MEIS proteins in HEK293T cells 

with anti-CRTC1, anti-CRTC2 and anti-MEIS1/2/3 antibodies. DAPI staining 

served to visualize nuclear staining. 

Lower panel: Quantification of overexpressed CRTC2 in HEK293T cells 

Nuclear, nuclear signal, Cytoplasm, cytoplasmic signal; N=C, signals in the 

nucleus and cytoplasm approximately equal; N<C, nuclear signal weaker than 

cytoplasmic; C, exclusively cytoplasmic signal. 100 cells each were scored for 

the distribution of endogenous versus overexpressed CRTC2. 
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2.3 Contribution of CRTC1 at an authentic MEIS1 target promoter 

The contribution of CRTC1 to the transcriptional activity of MEIS1A was 

accessed on an authentic MEIS1 target promoter consisting of the 150 bp 

autoregulatory element (ARE) of the Hoxb1 gene driving luciferase gene 

expresion (Figure 4). As shown in the luciferase reporter assay, co-expression 

of MEIS, PBX and HOX strongly activated transcription in the presence of 

PKA signaling (Lane 2, darker bar. Diagram in Figure 4). As seen at the GAL-

MEIS1A C-terminus reporter, CRTCs alone activate transcription by MEIS-

PBX-HOX complex as strongly as PKA (Lane 3 and 6. Diagram in Figure 4). 

Deletion of the N-terminal 46 amino acid fragment within CRTC1 and the C-

terminal 203 amino acid region significantly reduced the transcriptional 

activation initiated by CRTC1 (Lane 4 and 5. Diagram in Figure 4). A deletion 

of the MEIS1A C-terminus (MEIS1AΔ334-390) impaired the transcriptional 

activity of the ternary complex in response to both CRTCs (Lanes 8-11. 

Diagram in Figure 4). This suggests that the MEIS1A C-terminus fulfills its 

role as a transactivation domain by recruitment of CRTCs. Note that the 

deletion of MEIS1A C-terminus would not completely abolish reporter gene 

activity as the endogenous MEIS1 can bind and recruit endogenous as well as 

overexpressed CRTC1 (Lanes 7-11 control. Diagram in Figure 4).  

 

2.4 The role of CRTC in MEIS1A transactivation using shRNA 

The effect of CRTC at mediating MEIS1A transactivation was accessed using 

shRNA against CRTC2. CRTC2 shRNA plasmid (2.5-10 ng) exhibited an 
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inhibition of transcriptional level at the MEIS1A C-terminus comparable to that 

without co-expression of Flag-CRTC2 (Top: Lanes 5-7 vs Lane 3. Diagram in 

Figure 5).This reduction in activity seen at Lanes 5-7 (Top) correlated with a 

depletion of Flag-CRTC2 protein level at Lane 2 (Lower panel in Figure 5). 

Specificity of the shRNA was validated when the control shRNA as well as a 

resistant version of Flag-CRTC2 (Wobble) did not show a reduction in activity 

nor protein levels Lanes 8-10 (Top panel in Figure 5) and Lanes 4-6 (Lower 

panel in Figure 5). 

 

2.5 Role of CRTC on transcriptional activation at the MEIS1A C-

terminus in response to PKA signaling 

With respect to the PKA response at the MEIS1A C-terminus, knockdown of 

CRTC2 impaired response of the MEIS1A C-terminus to PKA signaling, 

suggesting that the specific transcriptional activity seen at the C-terminus is 

mediated by the endogenous levels of CRTC2 (Lane 4 vs Lane 3 Figure 6). A 

Gal-DBD harboring only the Gal DNA binding domain served as the control 

did not activate transcription in response to PKA signaling (Lane 1 and 2 Figure 

6). 
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Figure 4 Contribution of CRTC1 to MEIS1A transcriptional activity on 

MEIS1 enhancer 

HEK293T cells were transiently transfected with the pMLHoxb1ARE 

luciferase reporter (“Reporter”) and expression plasmids as indicated. 

Luciferase activities in the absence or presence of the PKA catalytic domain 

(control or PKA) were measured at 48 h post-transfection. Error bar represent 

the standard deviation of three independent experiments. Rlu: Relative 

luciferase. Adapted from Goh et al 2009. 
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Figure 5 Knockdown of CRTCs prevents PKA-mediated activation of the 

MEIS1A C-terminus 

Upper panel, effect of CRTC2 shRNA or control (CTRL) shRNA on GAL-

MEIS1A-(335–390) luciferase transcription augmented by CRTC2. The 

indicated plasmids were co-transfected with the pML5xUAS reporter in 

HEK293T cells. Error bar represent the standard deviation of three independent 

experiments. Rlu: Relative luciferase. 

Lower panel, knockdown of FLAG-CRTC2 protein levels in CRTC2 or control 

shRNA treated cells was verified by immunoprecipitation with M2 beads 

followed by Western blot (WB) analysis with an anti-FLAG antibody. Cell 

extracts were probed for tubulin, confirming equivalent protein concentrations 

in each sample. FLAG-CRTC2(Wobble) served as an RNA interference-

resistant control. Adapted from Goh et al 2009. Adapted from Goh et al 2009. 
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Figure 6 Role of CRTC2 on transcriptional activation at the MEIS1A C-

terminus in response to PKA signaling 

Cells were transfected with the pML5xUAS reporter and expression vectors for 

either the GAL DBD or GAL-MEIS1A-(335–390), along with a PKA 

expression vector or empty plasmid. Transcriptional activation by PKA through 

the MEIS1A C-terminus was abrogated by coexpression with the CRTC2-

specific shRNA but not the control (CTRL) shRNA. Error bar represent the 

standard deviation of three independent experiments. Rlu: Relative luciferase. 

Adapted from Goh et al 2009. 
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2.6 Association of MEIS1A and CRTCs 

Given the role of CRTCs in transcriptional activation through the MEIS1A C-

terminus, it would be of interest to determine if CRTC1 binds to MEIS1A in 

vivo. Co-immunoprecipitation was performed using whole cell extracts from 

HEK293T cells overexpressing MEIS1A and/or Flag-CRTC1. Figure 7 shows a 

co-precipitation of MEIS1A with Flag-tagged CRTC1 using anti-Flag M2 

agarose beads (Lane1. Diagram in Figure 7). The specificity of the co-

immunoprecipitation is supported when no MEIS1A co-immunoprecipitation 

was seen from cells transfected with MEIS1A or Flag-CRTC1 alone (Lane 2 

and 3. Diagram in Figure 7). Neither MEIS nor CRTC1 protein were detected 

in the control immunoprecipitation in the absence of overexpression or stimulus 

(Lane 4. Diagram in Figure 7). 

The MEIS-CRTC complex was further examined in vivo with HEK293T cells 

using antibody against endogenous CRTC2 proteins (Lanes 8-13. Diagram in 

Figure 8). MEIS1A was also detected from extracts of CRTC2 from cells 

overexpressing MEIS1A (Lanes 8-10. Diagram in Figure 8). Importantly, we 

found a 10% co-precipitation of endogenous MEIS1A protein with endogenous 

CRTC2 (Lanes 11-13. Diagram in Figure 8). Once again, specificity was 

verified as no MEIS1A protein was detected in the control immunoprecipitation 

using an anti-GAL4 antibody (Lane 14. Diagram in Figure 8). The MEIS1A 

mutant contains a mutation where the extreme last six residues (GQWHYM) 

are changed to alanine (AAAAAA). Such mutation renders it non-responsive to 

PKA signalling as well as CRTC1 signalling. Stable complexes between this 
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MEIS1A mutant and Flag-CRTC1 were also detected suggesting that while 

these six residues are required for the PKA responsiveness of the MEIS1A C-

terminus, they are dispensable for interaction with CRTC1 (H. Shen, data not 

shown).  

In addition, co-immunoprecipitation was performed using wild type MEIS1A 

and a MEIS1A mutant lacking the entire C-terminus (Δ334-390). Figure 9 Lane 

6 shows that in the absence of the C-terminus, MEIS1A is unable to co-

immunoprecipitate with CRTC1. The same was shown for MEIS1A (Δ334-390) 

and CRTC2 (H. Shen, data not shown). A possible explanation for such 

observation is that the C-terminus act to stabilize the MEIS protein as well as its 

binding to other protein. Experiments were thus set out to verify this possibility. 

Figure 9 has identified that the destabilization of the MEIS1A (Δ334-390)  

protein and its interaction with CRTC1 was due to a result of proteasome-

mediated degradation, since the addition of proteasome inhibitor MG132 was 

able to recover the mutant protein levels, though its interaction with CRTC is 

still impaired (H. Shen, data not shown). This result further strengthens the 

importance of the MEIS1A C-terminus for interaction with the CRTC family.  

However, the MEIS C-terminus was found required but not sufficient for 

binding with CRTC1 as co-immunoprecipitation complex was not detected for 

Flag-CRCT1 with either GAL-MEIS C-terminus alone nor with GAL-MEIS C-

terminus with the last six residues mutated to alanine (H. Shen, data not shown).  

These data by far are suggestive of the requirement of MEIS1A C-terminus, 

including though not only restricted to, at mediating interactions with CRTC1. 
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2.7 Characterizing the MEIS1A binding domain on CRTCs 

To characterize the MEIS1A binding domain on CRTCs, multiple CRTC1 

deletion mutants were constructed and their associations with MEIS1A in vivo 

were accessed. Whole cell lysates from HEK293T cells were used and co-

transfected with plasmids expressing MEIS1A or various Flag-tagged deletion 

mutants. Associations were seen with MEIS1A and Flag-CRTC1 (1-627) (Lane 

4 Figure 10), Flag-CRTC1 (1-518) (Lane 10 Figure 10), Flag-CRTC1 (1-493) 

(Lane 14 Figure 10), and Flag-CRTC1 (1-431) (Lane 8. Diagram in Figure 10). 

These interaction studies provided an indication that the CRTC1 C-terminus is 

dispensable for MEIS1A binding.  

A CRTC1 fragment consisting of amino acid 47-634 was able to complex with 

MEIS1A, however with weaker affinity due to the lack of its conserved N-

terminal coiled coil domain (Lane 6 vs Lane 1 Figure 10). Reducing the 

fragment to 47-290 still retains its binding to MEIS1A, albeit at a weaker 

affinity (Lane 16 Figure 10). A further truncation of the N-terminal end of 

CRTC1 to 148-290 abolishes binding to MEIS1A (Lane 18 Figure 10). A 

deletion mutant consisting of residues 1-147 mediates weak binding of CRTC1 

(H. Shen, data not shown). Strong binding requires a minimum of residues 1-

290, which includes, but is more extensive than, the coiled coil domain at the 

CRTC1 N-terminus (residues 1-45) (H. Shen, data not shown). 
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Figure 7 Physical interactions of MEIS1A and Flag-tagged CRTC1 

Co-immunoprecipitation assay of FLAG-tagged CRTC1 and untagged MEIS1A 

in transfected HEK293T cells. Anti-MEIS NT and anti-FLAG Western blot 

(WB) analyses were performed on FLAG-CRTC1 immunoprecipitates (IP) 

prepared with anti-FLAG M2 affinity agarose. 10% input levels of MEIS1A 

and FLAG-CRTC1 are indicated. Adapted from Goh et al 2009. 
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Figure 8 Physical interactions of endogenous MEIS1A and CRTC2 

Upper panel, Western blot analysis of transfected and endogenous MEIS1A 

detected in immunoprecipitates of endogenous CRTC2 from HEK293T cells.  

Lower panel, anti-CRTC2 Western blot analysis showing immunoprecipitated 

CRTC2 by the anti-CRTC2 antibody but not the control anti-GAL4 antibody. 

10% input levels of MEIS1A and CRTC2 are shown. Adapted from Goh et al 

2009. 
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Figure 9 MEIS1A mutant lacking the C-terminus fails to co-

immunoprecipitate with CRTC1 

HEK293T cells were co-transfected with a FLAG-tagged CRTC1 expression 

vector and a vector encoding either wild-type MEIS1A or a mutant lacking the 

CRTC-responsive C-terminus (MEIS1A-(Δ334–390)). Adapted from Goh et al 

2009. 
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Figure 10 MEIS1 interaction maps to the N-terminus coiled coil region of 

CRTC1 

Upper panel, co-immunoprecipitation between untagged MEIS1A and full-

length FLAG-tagged CRTC1 (Flag-CRTC1) or its deletion derivatives in 

transfected HEK293T cells. MEIS1A proteins co-precipitated with FLAG- 

CRTC1 derivatives prepared using anti-FLAG M2 affinity agarose were 

revealed by Western blot (WB) analysis with anti-MEIS N-terminus antibody. 

The bottom two panels show inputs of MEIS1A and FLAG- CRTC1 derivatives, 

respectively.  

Lower panel, schematic diagram of CRTC1 constructs and their MEIS1A 

binding activities. WB, Western blot; IP, immunoprecipitation. The plus and 

minus signs below Binding to MEIS1A correlate with the extent of binding to 

MEIS1A by the various CRTC1 mutants. Adapted from Goh et al 2009. 
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2.8 Recruitment of MEIS1, PBX1, and CRTC2 to MEIS1 targets 

The involvement of CRTC for transcriptional activation at the MEIS1 C-

terminus was then assessed at the in vivo level on its recruitment to various 

MEIS1 target genes alongside with MEIS and PBX. ChIP assay on 

differentiating mouse P19 embryonic carcinoma cells with or without Forskolin 

treatment were performed. Real-time PCR was carried out on 

immunoprecipitated DNA using primers spanning the Hoxb1 ARE and Hoxb2 

r4 enhancer and Meis1 promoter. Values obtained were normalized and 

expressed as relative occupancy.  Immunoprecipitates of the forskolin treated 

cells revealed a higher recruitment to all three enhancers (Figure 11a-c). 

Endogenous proteins were found to occupy the Meis1 promoter (Figure 11a). 

Upon stimulation, CRTC2 was also found to be recruited to the Meis1 promoter 

and the Hoxb2 r4 enhancer (Figure 11a and b). Housekeeping gene gapdh 

served as a control and showed no significant recruitment on any targets (Figure 

11d). These results revealed the co-recruitment of CRTC2 and MEIS1 on some 

MEIS1 target genes in vivo, supporting a physical and functional role of these 

proteins in transcriptional regulation.  
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Figure 11 Recruitment of MEIS1, PBX1, and CRTC2 to endogenous 

MEIS1 targets 

The results of ChIP assays in untreated (-FSK) or forskolin-treated (+FSK) 

mouse P19 cells were presented. Values obtained by LightCycler quantification 

were normalized and expressed as relative occupancy. A, the Meis1 promoter, 

which harbors a consensus PBX-MEIS binding site. B, the Hoxb2 r4 enhancer. 

C, the Hoxb1 ARE.D, glyceraldehyde-3-phosphate dehydrogenase (gapdh) 

PBX1     MEIS1     CRTC2 

PBX1     MEIS1     CRTC2 

PBX1     MEIS1     CRTC2 

PBX1     MEIS1     CRTC2 
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served as an internal control. Error bar represent the standard deviation of three 

independent experiments. Adapted from Goh et al 2009. 

 

3 DISCUSSION 
Previous studies by the lab have established that the MEIS1A C-terminus 

harbors a transactivation domain that is responsive to PKA signaling. 

Supporting studies have also mapped a conserved transcriptional function to the 

C-terminus of MEIS1A which is required for accelerating leukemogenesis 

(Mamo et al, 2006; Wang et al, 2005). In this chapter we have further supported 

these data to establish the physical involvement of the CREB coactivator 

CRTC1 and CRTC2 in mediating the transcriptional function at the MEIS1A C-

terminus. The authenticity of the effect of CRTC1 has also been observed 

strongly in the well-established CRE-reporter assay as well as in in vivo assays. 

 

3.1 CRTCs bypass the need for PKA to activate transcription by the 

MEIS1A via physical association  

I first tested with success the functionality of the PKA and CRTC1 expression 

vectors using the CRE luciferase reporter (Figure 1). The mechanism behind the 

transcriptional activity of the MEIS1A C-terminus (residues 335-390) was then 

tested using a 5XUAS luciferase reporter. Results from the assay revealed that 

the CREB coactivator CRTC1 and CRTC2 bypass PKA signaling to activate 

transcription of the luciferase gene driven by the 5XUAS luciferase reporter 

(Figure 2).  Since activity of CRTC is determined by its dephosphorylation state 

which in turns determines its nuclear localization. This suggests that the ability 
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of the overexpressed CRTCs to bypass PKA for activation through MEIS1A 

could be due to the accumulation of CRTC protein within the nucleus. 

Immunofluorescence was thus performed to examine if the localization of 

CRTC correlates with its ability to bypass PKA for activation through MEIS1A. 

Both endogenous CRTCs showed even accumulation within the nucleus and 

cytoplasm (Figure 3). Following overexpression, CRTC2 was observed strongly 

in the nucleus while CRTC1 was found to be both nuclear and cytoplasmic.  

Thus, the quantity of nuclear CRTC2 may constitute its activation in the 

nucleus, whereas for CRTC1, a low level of CRTC1 may be sufficient for 

binding. 

Multiple truncated mutants of CRTC1 have identified two regions contributing 

to the effect on MEIS1A (Figure 10). The first region resides within the N-

terminal 46 residues of the CRTC1 conserved coiled coil domain required for 

tetramer formation and binding to CREB, without which impedes CRTC1 

function (Lane 6. Figure 10) (Conkright et al, 2003). In addition, the CRTC1 C-

terminal harboring an overlapping transcriptional activation domain has been 

previously suggested to coordinate assembly of the transcriptional apparatus 

was also shown to be required for MEIS1A activity (Conkright et al, 2003).  

 

3.2 Role of CRTC on transcriptional activation at the MEIS1A C-

terminus in response to PKA signaling 

CRTC2 shares 32% similarity with CRTC1 and have been shown to emulate 

CRTC1 in potentiating the activity of MEIS1A (Iourgenko et al, 2003). Results 
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from the lab have observed notably weaker activity generated by CRTC2 than 

CRTC1, an observation that was consistent with previous findings (Figure 4) 

(Conkright et al, 2003). Thus, most of the experiments performed by me are 

performed using CRTC1 if not both CRTCs. The knockdown of CRTC2 and 

ChIP were performed by previous PhD student Siew Lee Goh. Knockdown of 

overexpressed and endogenous CRTC2 with shRNA confirmed a specific 

inhibition of activity at the MEIS1A C-terminus (Figure 5). Such impairment 

was also observed in response to PKA signaling, further supporting the role of 

CRTC in mediating MEIS1A transactivation (Figure 6).  

Co-immunoprecipitation results demonstrate for the first time physical 

interaction of MEIS1A with Flag-tagged CRTC1 (Figure 7). Significantly, we 

have also identified co-precipitation of endogenous MEIS1A protein with 

endogenous CRTC2 in HEK293T cells (Figure 8). Endogenous interactions 

between CRTC1 and MEIS should have been tested as well. It would be a 

complete approach to have both CRTC1 and 2 tested in parallel to these sets of 

data. 

 

3.3 Contribution of CRTC1 to MEIS1A on authentic MEIS1 target 

promoter 

Previous results have reported strong activation of the MEIS-PBX-HOX ternary 

complex in the presence of PKAα (Figure 4). Reporter assay have identified 

that CRTC1 and also CRTC2 confers transcriptional activation by the ternary 

complex to the same extend as PKAα alone (Figure 4). 
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3.4 Characterizing MEIS1A binding domain on CRTC 

The interaction domain on CRTC1 has been narrowed to residues 1-147 which 

mediate binding albeit weak to MEIS1A, this domain prove to be critical for 

without which binding was not feasible (Figure 10). Strong binding requires a 

minimal of residues 1-290, which includes, but is more extensive than the 

coiled coil domain N-terminus of CRTC1 (residues 1-45). 

 

3.5 Characterizing CRTC1 interaction domain on MEIS1A  

MEIS1A mutant with the last six residues extreme C-terminal mutated to 

alanine abolishes its response to PKA. Stable complexes were detected between 

this MEIS1A mutant and Flag-CRTC1. While co-immunoprecipitation was 

performed using wild type MEIS1A and a MEIS1A mutant lacking the C-

terminus (Δ334-390) showed that in the absence of the C-terminus, MEIS1A is 

unable to co-immunoprecipitate with CRTC1 (Figure 9). Results thus hinted 

that the MEIS1A C-terminus is required for interaction with CRTC1 while the 

PKA responsive residues at the C-terminus of MEIS1A are dispensable in 

CRTC1-MEIS1A interaction.  

Further observations suggest for the importance of the MEIS1A C-terminus in 

mediating CRTC1 interaction. The GAL-MEIS1A C-terminus reporter 

consisting of just the C-terminal 56 residue fragment of MEIS1A was sufficient 

to activate transcription in the presence of CRTC1 and CRTC2 while mutations 

within the MEIS1A C-terminus abolished activation by CRTC1 and CRTC2 

(SL. Goh, data not shown). By comparison with the full length MEIS1A, 
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MEIS1A (Δ334-390) mutant lacking the C-terminus showed impaired 

activation of a Hoxb1 ARE reporter in the presence of CRTC1 and CRTC2 

(Figure 4). This reduction in activity can be supported by binding impairment 

of the proteins as a result of a lack of binding between MEIS1A (Δ334-390) 

with CRTC1/CRTC2 (Figure 9 and H. Shen, data not shown).  

 

3.6 Contribution of CRTC1 on authentic MEIS1 target enhancers in 

vivo 

The involvement of CRTC for transcriptional activation at the MEIS1 C-

terminus was then accessed at the in vivo level on its recruitment to various 

MEIS1 target genes alongside with MEIS and PBX. ChIP assay demonstrate 

co-occupancy of endogenous MEIS1, CRTC2 and PBX1 on the Hoxb2 r4 

enhancer and Meis1 promoter upon cAMP stimulus, confirming the biological 

relevance of the findings (Figure 11). These results revealed the recruitment 

CRTC2 and its role with MEIS1 on MEIS1 target genes in vivo, providing a 

strong physical and functional role of these proteins in transcriptional regulation. 

The in vitro studies showed that the MEIS1A C-terminus fulfils its key role as a 

transactivation domain by recruitment of CRTCs and stabilizing the interaction. 

These results presented here as well as results from other previous studies 

suggest that the CRTC component of a CRTC-MEIS complex may act to 

stabilize the interaction and promote the assembly of transcription complex by 

recruitment of the TFIID-associated factor TAFII30 and CBP (Conkright et al, 

2003; Johannessen et al, 2004). These data together with the in vivo results 
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imply that HOX, MEIS, PBX and CRTC collaborate and converge in pathways 

that induce subsets of genes involved in embryonic development as well as in 

normal hematopoiesis or in leukemogenesis. 
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CHAPTER 4  

 
 

THE EFFECTS OF CREB AND ITS MUTANTS (ACREB 

AND ACREBR314A), CBP AND OTHER PROTEIN 

INTERACTIONS AT THE MEIS1A C-TERMINUS 
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1 ABSTRACT 
 

Given the previously identified role of CREB in the PKA responsiveness of the 

MEIS1A C-terminus, we further explored CREB’s role through the use of non-

DNA binding dominant negative CREB: ACREB and a derivative of ACREB, 

ACREB R314A, that cannot bind CRTCs. Results showed a reduction in the 

PKA responsiveness of the MEIS1A C-terminus reporter in the presence of 

ACREBR314A, supporting the contribution of CREB to PKA-induced 

transcriptional activation through the MEIS C-terminus. However, in my hands, 

the CREB mutants ACREB and ACREBR314A still showed activation at the 

MEIS1A C-terminus, an indication of a nonspecific effect at the reporter. 

Knockdown studies as well as proximity ligation assay were used to access and 

validate the effect of CREB at mediating MEIS1A transactivation and 

interaction. In my hands, no observable effect was observed for serine/threonine 

kinase GSK3 at the MEIS1A C-terminus, contrary to published data (Wang et 

al 2010). Studies with the CREB mutants CREBS133A and CREBR314A 

hinted at a crucial role of the CREB-CBP and CREB-CRTC interactions in 

stimulating transcriptional activity by the MEIS1A C-terminus. These results 

bolstered a role for CREB in regulating MEIS1A C-terminus activity in a 

manner that depends on its association with CRTC and CBP but independent of 

its DNA binding activity. The interaction found between MEIS and the CREB 

coactivator CBP as well as MEIS with the CREB coactivator CRTC were 

further verified using proximity ligation assays. No conclusive data could be 
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drawn from the PLA interaction studies with the MEIS1A and MEIS1A (Δ334) 

(MEIS1A lacking the C-terminus) expression plasmids.  
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2 RESULTS 
 

2.1 CRE reporter is modestly responsive to overexpressed CREB, but 

strongly responsive to PKA and CRTC1  

Two approaches were taken to investigate the role for CREB in PKA- and 

CRTC- induced transcriptional activation by the MEIS1A C-terminus. The first 

approach was to interfere with wild type CREB through the use of the dominant 

negative mutants of CREB. The second approach involved testing the effects of 

reduced wild type CREB expression.  

The first CREB mutant is the ACREB construct which consist of an acidic 

amphipathic sequence that replaces the N-terminus of the CREB dimerization 

domain thus masking the N-terminus of the leucine zipper domain of the wild-

type CREB that binds DNA (Ahn et al, 1998). The second dominant negative 

CREB mutant is the ACREBR314A, a construct of ACREB with a point 

mutation at the CRTC binding site of Arginine 314, disabling its ability to bind 

CRTC. 

In order to validate the inhibitory activity of the dominant negative constructs 

of CREB, the robust cAMP response element (CRE) reporter was first used. 

Co-transfection of expression vectors for CRE-luciferase reporter and wild type 

CREB in HEK293T cells did not alter the activity in the absence or presence of 

PKA (Figure 1). In contrast, a strong PKA response was detected for the CRE 

luciferase reporter. The effect of CRTC was also validated for the CRE reporter 

as, when overexpressed, CRTC1 alone generated a strong response for the 
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CRE-reporter (Figure 2). Thus, these tests validated the appropriate 

responsiveness to PKA and CRTC1. 

 

 

Figure 1 CRE reporter is modestly responsive to overexpressed CREB, but 

strongly responsive to PKA 

HEK293T cells were transiently transfected with the cAMP response element 

(CRE) luciferase reporter and the effect of the CREB and PKA catalytic domain 

were shown. Luciferase activity was measured at 48 h post-transfection. Error 

bar represent the standard deviation of three independent experiments. Rlu: 

Relative luciferase activity. 
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2.2 CREB mutants ACREB and ACREBR314A inhibit activation of a 

CRE reporter by PKA and CRTC1 

Having validated the effect of CRE reporter at mediating the activities of CREB, 

PKA and CRTCs, the ability of the dominant negatives constructs to inhibit 

these functions were subsequently determined. An inhibitory effect of ACREB 

was observed by CRTC1 overexpression, and ACREBR314A overexpression 

inhibited activation by both PKA and CRTC1 (Figure 2). In parallel, physical 

properties of the dominant negative constructs were determined. As expected, 

both ACREB and ACREBR314A physically interact with wild type CREB in 

co-immunoprecipitation assay (Figure 3).  

 

2.3 CREB mediates PKA-responsiveness of the 5XUAS luciferase 

reporter  

Given the responsiveness of MEIS1A C-terminus to PKA and the PKA 

dependent activation of CREB via the cAMP signaling pathway, the 

mechanism by which the MEIS1A C-terminus responds to PKA signaling was 

investigated. Consistent with the observations for the CRE reporter, expression 

of wild type CREB341 did not alter the activity for the MEIS1A C-terminus in 

the absence or presence of PKA suggesting a high endogenous level of CREB 

in the HEK293T cells tested (Figure 4).  
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Figure 2 CREB mutants ACREB and ACREBR314A inhibit activation of a 

CRE reporter by PKA and CRTC1 

HEK293T cells were transiently transfected with the cAMP response element 

(CRE) luciferase reporter and the effects of the CREB  mtuants (ACREB an 

ACREBR314A), CRTC1 and PKA were shown. Luciferase activity was 

measured at 48 h post-transfection. Error bar represent the standard deviation of 

three independent experiments. Rlu: Relative luciferase activity. 
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Figure 3 CREB mutants ACREB and ACREBR314A physically interact 

with wild type CREB  

Co-immunoprecipitation assay of FLAG-tagged ACREB and FLAG-tagged 

ACREBR314A and untagged CREB in transfected HEK293T cells. Anti-CREB 

and anti-FLAG Western blot (WB) analyses were performed on FLAG-ACREB 

and ACREBR314A immunoprecipitates (IP) prepared with anti-FLAG M2  

affinity agarose. 10% input levels of all three forms of CREB were indicated. 
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Figure 4 CREB mediates PKA-responsiveness of the MEIS1A C-terminus 

HEK293T cells were transiently transfected with expression vectors for GAL-

MEIS1A-C-terminus (335-390) alongside the pML5xUAS luciferase reporter. 

The effect of CREB and the PKA catalytic domain were shown. Luciferase 

activity was measured at 48 h post-transfection. Error bars represent the 

standard deviation of three independent experiments. 

 

 

2.4 ACREB and ACREBR314A strongly and non-specifically 

activated the 5XUAS luciferase reporter 

Both ACREB and ACREBR314A strongly induce transcription activation 

through a mutated MEIS1A C-terminus (GQWHYM) that is non-responsive to 

PKA (data not shown) and CRTC1 (Huang et al, 2005) (Figure 5). This 

strongly suggests a non-specific effect at the 5XUAS luciferase reporter and 

hence no insights into the role of CREB can be obtained through the use of 

these dominant negative constructs.  
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2.5 Efficacy of CREB knockdown using siRNA 

Next we investigated whether the role of CREB in PKA- and CRTC- mediated 

activation through the MEIS1A C-terminus can be revealed by decreasing 

levels of wild type CREB expression. This was assessed using small interfering 

RNA-induced gene knockdown (siRNA) against CREB1. siRNA were 

delivered into HEK293T cells, which were transfected with expression 

plasmids before the cells were harvested to determine the efficacy and results of 

the knockdown. Western blot analysis was used to verify the efficacy of the 

knockdown in CREB protein levels using endogenous, overexpressed and 

negative control for siRNA as comparison. Results showed that the siRNA 

efficiently knocks down endogenous CREB expression (Figure 6). 

 

2.6 Efficacy of CREB knockdown on CRE luciferase reporter 

Next, the functionality of the knockdown was validated by examining the effect 

of CREB on a known CREB dependent transcriptional mechanism, the 

activation of a CRE reporter by PKA and CRTC. Indeed results showed that 

CREB knockdown impaired PKA- and CRTC-mediated transcriptional 

activation of the CRE reporter, though with modest effect (Figure 7). This could 

be due to the compensatory effect of ATF family for CREB function.  
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Figure 5 Strong activation seen at MEIS C-terminus reporter with ACREB 

and ACREBR314 in the presence of CRTC1 

HEK293T cells were transfected with expression vectors for GAL-

MEIS1A(GQWHYM), GAL-MEIS1A-(335–390) shown as CT, alongside the 

pML5xUAS luciferase reporter. The effects of the CREB  mutants (ACREB an 

ACREBR314A) in the presence and absence of CRTC1 are shown. Luciferase 

activity was measured at 48 h post-transfection. Error bar represent the standard 

deviation of three independent experiments and p signifies the results of the 

Student’s t test applied to values through the MEIS1A C-terminus versus the 

MEIS1A C-terminus mutant in the presence of the ACREB mutants.  
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Figure 6 Efficacy of CREB knockdown using siRNA 

Protein levels of siRNA CREB knockdown were verified in HEK293T cells, 

alongside with endogenous and overexpressed CREB341 using Western blot 

analyses with Anti-CREB antibody and Anti actin as control. 
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Figure 7 Effect of CREB knockdown at the CRE luciferase reporter 

Upper panel, HEK293T cells were transfected with expression vectors for  

CRE-luciferase reporter in control cells or cells with CREB siRNA. The effect 

of and the PKA catalytic domain and/or CRTC1 are shown. Luciferase 

activities were measured at 48 h post-transfection. Error bar represent the 

standard deviation of three independent experiments. Rlu: Relative luciferase 

activity. 

 

Lower panel, following transfection, protein levels of control and siRNA CREB 

knockdown cells were verified. Western blot analysis was performed using 

anti-CREB antibody and anti-actin serves as control. 
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2.7 CREB knockdown impairs PKA-induced transcriptional 

activation through the MEIS1A C-terminus 

 

Having validated the appropriate controls in the system, I now test the effect of 

CREB knockdown on transcriptional activation through the MEIS1A C-

terminus. Results in Figure 8 showed that transcriptional activation by the 

MEIS1A C-terminus in response to PKA is indeed dependent on CREB. 

However, for CRTC1 the effect appeared weak.  

 

2.8 No observable effect was observed for the serine/threonine kinase 

GSK3 at the MEIS1A C-terminus 

Given a recent report about the interaction between MEIS and the 

multifunctional serine/threonine kinase GSK3, the effect of GSK3 at the 

MEIS1A C-terminus was also accessed (Wang et al 2010). Three forms of 

GSK3 were tested, the wild type GSK3, which had been reported to promote 

transcription of the MEIS containing complex; two GSK mutants: GSKS9A, a 

mutant version of GSK3 that lacks the inhibitory phosphorylation site, as well 

as the kinase-dead mutant GSKK85A. GSK3beta had been reported to promote 

the conditional association of CREB and its coactivators CRTC and CBP with 

MEIS1, thus wild type GSK was expected to increase activity at the MEIS1A 

C-terminus while the mutant should reduce the association and hence reduce 

activity at the reporter. No change in transcription at the MEIS1A C-terminus 

was observed following expression of any of the three GSK plasmids (Figure 9 

Upper panel). To verify the protein expression levels of the plasmids, western 
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blotting was performed to determine the levels of all three GSK derivatives in 

the HEK293T cells (Figure 9 Lower panel). A faint endogenous GSK3 band 

was detected in the control (untransfected) lane and distinct bands of various 

GSK proteins were detected upon overexpression, which validated the identity 

and efficacy of the plasmids (Figure 9 Lower panel). Actin served as a loading 

control for all lanes (Figure 9 Lower panel). This discrepency could possibly 

stem from a result of a different cell line.  

 

2.9 Additional evidence of MEIS and CRTC interactions  

Interactions between MEIS1 and CRTC1 were further supported using 

immunofluorescence staining.  Figure 10 showed the localization of the MEIS1 

and CRTC1 proteins in HEK293T cells. Both CRTC1 and MEIS1/2/3 antibody 

revealed a nuclear and cytoplasmic localization of both proteins, with a high 

degree of overlap, a prerequisite for their cooperative activity (Figure 10).  

 

2.10 Validation of protein-protein interactions between MEIS, CREB, 

CRTC and CBP using proximity ligation assay 

Proximity ligation assay (PLA) was used as an independent assay to quantify 

interactions down to single protein-protein level. Controls were performed 

where negative control consisted of only the MEIS1 antibody as the primary 

probe, while known interactions between MEIS and PBX proteins served as 

positive control (Figure 11).  
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2.11 Validation of PLA using controls and known CREB-CRTC 

interactions  

The physical association between MEIS and CREB coactivator CRTC 

prompted us to independently validate the interactions by means of the 

proximity ligation assay (PLA) (Figure 11). Cells were treated with forskolin 

for 1 h at a concentration of 3 uM just prior to fixing. Having validated the PLA 

techniques with the recommended positive and negative controls, known 

interaction were tested as controls. As expected, interactions were observed 

between CREB and CRTC (Figure 11).  

 

2.12 Association of MEIS and CRTC using proximity ligation assay 

Having validated the PLA assay, I then proceeded to use this technique as an 

independent test of the novel protein-protein interactions involving MEIS-

CREB, MEIS-CRTC and MEIS-CBP. Interactions between MEIS and CRTC1, 

MEIS and CRTC2 were detected by PLA as shown in a representative image in 

Figure 11, where each interaction corresponds to one red dot in the image.  

Forskolin (FSK), which has been shown to activate the CREB signaling 

pathway, was used to stimulate CREB activity. Exposure to forskolin has been 

shown to promote forskolin stimulated cAMP accumulation of nuclear CRTCs 

(Conkright et al, 2003). However, no noticeable increase between endogenous 

MEIS1 and CRTC1 or CRTC2 interaction were observed in the nucleus upon 

stimulus treatment with forskolin. Having failed to observe increase in nuclear 

MEIS-CRTC interactions in forskolin stimulated HEK293T cells, effect of 

forskolin was tested on other cell lines with known response to forskolin. 
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Endogenous nuclear CRTC1 was successfully detected in CAD neuroblastoma 

cells, validating the efficacy of the FSK used (Figure 12).  

 

2.13 Association of MEIS-CBP using PLA 

The Featherstone lab has previously shown that transcriptional activation 

through the MEIS1A C-terminus is dependent on the co-activator CBP (Huang 

et al, 2005). This prompted us to assess the interactions between MEIS and 

CBP independently via PLA. Using PLA, I have identified interaction between 

endogenous MEIS and CBP in HEK293T cells (Figure 11). Consistent with its 

inability to promote nuclear CRTC in HEK293T, no increase in interactions 

were observed upon FSK stimulus (Figure 11). 
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Figure 8 Transcriptional activation generated by PKA and CRTC1 at the 

GAL-MEIS1A C-terminus reporter was hampered by CREB knockdown 

Upper panel, HEK293T cells were transfected with expression vectors for  

GAL-MEIS1A-(335–390) plus the pML5xUAS luciferase reporter in control 

cells or cells with CREB siRNA. The effects of and the PKA catalytic domain 

and/or CRTC1 were shown. Luciferase activities were measured at 48 h post-

transfection. Error bar represent the standard deviation of three independent 

experiments. 

 

Lower panel, following transfection, protein levels of control and siRNA CREB 

knockdown cells were verified. Western blot analysis was performed using 

anti-CREB antibody and anti-actin serves as control. 
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Figure 9 Effect of GSK at the GAL-MEISCT reporter 

Upper panel, HEK293T cells were transfected with expression vectors for 

GAL-DBD, GAL-MEIS1A-(335–390) plus the pML5xUAS luciferase 

reporter. The effect of various GSK expression vectors in the 

presence/absence of CREB, PKA and CRTC1 are shown. Luciferase 

activities were measured at 48 h post-transfection. Error bar represent the 

standard deviation of three independent experiments. Rlu: Relative luciferase 

activity. 

Lower panel, Protein levels of all three GSK3β alongside the endogenous 

GSK3β level (control) in HEK293T cells were verified using Western blot 

analyses using anti- GSK3β antibody and anti-actin as control. 
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Figure 10 Co-localization of endogenous CRTC1 and MEIS1/2/3 

proteins in HEK293T cells  

Immunofluorescence assay showing cellular co-localization of endogenous 

CRTC1 and MEIS proteins in HEK293T cells with anti-CRTC1 and anti-

MEIS1/2/3 antibodies. DAPI staining served to visualize nuclear staining. 
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Figure 11 Protein interactions in wild type and FSK stimulated 

HEK293T cells using PLA 

Confocal microscopy in combination with PLA, which detects protein-

protein complexes, was used to explore interactions between MEIS, CREB, 

CRTC and CBP. Interactions between forskolin stimulated cells were 

indicated. A representation of the interactions are shown, where DAPI 

staining served to visualize nuclear staining. 
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Figure 12 Localization of endogenous CRTC1 in wild type and FSK 

stimulated CAD cells 

Immunofluorescence assay showing cellular localization of endogenous 

CRTC1 proteins in wild type CAD cells and forskolin (100um for 1 h) 

stimulated CAD cells using anti-CRTC1 antibodies. DAPI staining served to 

visualize nuclear staining.  
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2.14 The role of the MEIS1A C-terminus in mediating protein 

interactions 

Various GFP-tagged MEIS1A constructs were made by me and as control, cells 

were transfected with GFP which showed an even distribution of the green 

fluorescent protein throughout the transfected cells. Expression o the full length 

GFP-tagged MEIS1A expression plasmid was included as a control with 

regards to a MEIS1A plasmid lacking the C-terminus MEIS1A (Δ 334). 

Nuclear expression of GFP-MEIS1A and GFP-MEIS1A (Δ 334) protein were 

observed (Figure 13).  

Having distinguished the population of transfected HEK293T cells using the 

auto-fluorescence property of GFP, PLA interactions between endogenous 

protein and the GFP-tagged MEIS1A protein was subsequently identified 

(Figure 14). Having validated the expression of the plasmids, the role of 

MEIS1A and its C-terminus in mediating protein interactions between CREB, 

CRTC and CBP was further assessed using PLA. A similar set of assays was 

performed to investigate the role of the C-terminus in endogenous interactions 

with CRTC and CBP, as well as its role in mediating interactions between 

CREB-CBP and CBP-CRTC proteins (Figure 14). Interactions were detected in 

all GFP-tagged MEIS1A and GFP-tagged MEIS1A (Δ 334) expressing cells 

with CRTC1 and CBP. Endogenous interactions were also observed for CREB-

CBP and CBP-CRTC1 within the GFP-tagged MEIS constructs. Given that 

interactions were observed in all scenarios, this set of PLA data thus cannot at 

this point shed much further light on the mode of interactions regarding the 
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MEIS1A C-terminus. 

 

 

Figure 13 Localization of GFP containing expression plasmids in 

HEK293T cells 

Cells were shown alongside GFP as control. Green signals correspond to the 

GFP expressing proteins and MERGE corresponds to an overlay with the 

nuclear DAPI stain. All images were captured at 63X magnification; image for 

pXJ-GFP-Meis1a was captured in 63X magnification and enlarged digitally for 

a clearer view. 
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Figure 14 Importance of the MEIS1A C-terminus for interaction with 

CRTC1 

A representation of interactions between MEIS1A and CRTC1, MEIS1A (Δ 

334) and CRTC1 in HEK293T cells are shown. 

Red signals indicate interactions; green signal indicates GFP-transfected hence 

MEIS transfected cells and DAPI staining served to visualize nuclear staining. 

All images are taken at a magnification of 63X and enlarged digitally for a 

clearer view. 
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3 DISCUSSION 
 

3.1 CRE reporter is modestly responsive to overexpressed CREB, but 

strongly responsive to PKA and CRTC1  

In this chapter, I seek to further reveal the role of CREB in PKA- and CRTC- 

induced transcriptional activation by the MEIS1A C-terminus. Using dominant 

negative mutants of CREB: ACREB and ACREBR314A. The robust cAMP 

response element (CRE) luciferase reporter was first used to validate the effects 

of CREB, PKA and CRTC. As expected, a strong PKA response was detected 

at the CRE luciferase reporter (Figure1). Overexpressed CREB did not alter the 

activity at the CRE reporter in HEK293T cells in the presence or absence of 

PKA (Figure1). A possible explanation for that could be due to the low levels 

of endogenous PKA activity within HEK293T cells, leading to a moderately 

low activity seen upon overexpression of CREB, where the major portion of 

over-expressed CREB remains unphosphorylated.  

Upon exogenous stimulus of PKA, high endogenous CREB within the 

HEK293T cells would be phosphorylated, bind to and saturate the binding sites, 

thus no significant level of increase in activity could be observed in the 

presence of exogenous CREB and PKA. Western blot with lysates from the 

various phosphorylated levels of endogenous and overexpressed CREB in the 

assays to determine their phosphorylated state at Serine133 (by PKA) could be 

used to verify this.  

The CREB coactivator CRTC1 generated a strong response at the CRE-reporter 

when expressed alone (Figure 2). Thus, these tests validated the appropriate 
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responsiveness to PKA and CRTC1. 

 

3.2 CREB mutants ACREB and ACREBR314A inhibit activation of a 

CRE reporter by PKA and CRTC1 

Having validated the effect of CRE reporter at mediating the activities of 

CREB, PKA and CRTCs in my hands, I then moved on to determine the ability 

of the dominant negative constructs to inhibit these functions. Both dominant 

CREB mutants showed an inhibitory effect at the CRE reporter. ACREB was 

seen to have an inhibitory effect on the CRTC1 activation but not on PKA, 

while the ACREBR314A inhibited activation by both PKA and CRTC1 (Figure 

2). Published data have indicated that ACREB heterodimerize with CREB in 

the nuclear extracts and prevented them from binding to the CRE probe. Thus, 

the presence of ACREB was expected to have an inhibitory effect for both PKA 

and CRTC at the CRE promoter. The inhibitory effect of ACREB in the 

presence of CRTC1 is evident; however the effect at PKA is not as distinct due 

to the large error bar in the lane for both ACREB and PKA. Another possibility 

why the inhibitory effect of ACREB is not as strong in the presence of PKA can 

be inferred from published studies, which have shown that heterodimerization 

of unphosphorylated CREB with ACREB triggers CREB protein degradation, 

whereas phosphorylation prevents CREB from such degradation. Thus, the 

presence of exogenous PKA act to stabilize phosphorylated CREB homodimer 

(though less as stable as the ACREB-CREB heterodimer).  

Physical properties of the dominant negative constructs were confirmed using 
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co-immunoprecipitation assay, which demonstrated the expected physical 

interaction of both ACREB and ACREBR314A with wild type CREB (Figure 

3). 

 

3.3 CREB mediates PKA-responsiveness of the 5XUAS luciferase 

reporter  

Results have suggested that CREB plays an important role in facilitating 

MEIS1A C-terminus transcriptional activity in response to PKA signaling. This 

prompted us to investigate the mechanism by which the MEIS1A C-terminus 

responds to PKA signaling via the 5XUAS luciferase reporter. Consistent to the 

CRE reporter activity, overexpression of wild type CREB341 only modestly 

increase the activity at the 5XUAS reporter in the absence or presence of PKA 

(Figure 4). A reason for this modest response of CREB observed at the CRE 

luciferase reporter is possibly due to an existing high level of endogenous 

CREB within the HEK293T cells (own observations). 

 

3.4 ACREB and ACREBR314A strongly and non-specifically 

activated the 5XUAS luciferase reporter 

Both the CREB mutants showed strong transcription activated at the MEIS1A 

C-terminus 5XUAS luciferase reporter (Figure 5). However, for both mutants 

strongly induction of was observed through a mutated MEIS1A C-terminus 

(GQWHYM) that is non-responsive to PKA (SL. Goh, data not shown) and 

CRTC1 (Huang et al, 2005) (Figure 5).  Thus, no insights into the role of CREB 

can be obtained through the use of these dominant negative constructs. 
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3.5 Efficacy of CREB knockdown on CRE luciferase reporter 

To confirm the contribution of CREB at MEIS1A transactivation, knockdown 

studies using shRNA vector against endogenous CREB were used. Having 

verified the efficacy of the knockdown, the effect of CREB depletion on CRE 

luciferase reporter was assessed (Figure 6). Functionality of CREB knockdown 

was validated on the CRE luciferase reporter, an impairment of PKA- and 

CRTC- mediated transcriptional activation was seen, though with modest effect 

(Figure 7). Such modest reduction in the activity at the CRE reporter upon 

CREB knockdown could be due to the functional compensatory effect of 

another CRE-binding protein the ATF family, which had been shown to 

compensate for CREB function in vivo (Hummler et al, 1994). 

 

3.6 CREB knockdown impairs PKA-induced transcriptional 

activation through the MEIS1A C-terminus 

The system was then tested using CREB-specific shRNA for the effect of 

endogenous CREB depletion on transcriptional activation through the MEIS1A 

C-terminus. The knockdown studies revealed that the transcriptional activation 

by the MEIS1A C-terminus in response to PKA is indeed dependent on CREB 

(Figure 8). However, the effect of CREB knockdown for CRTC1 at the 

MEIS1A C-terminus appeared weak (Figure 8). 

This non-specificity could arise from an off-target effect or a specific effect on 

the expression of the GAL4/UAS reporter since this effect was not observed at 

the CRE luciferase reporter (Figure 7). Thus, the non-specific effect could 

possibly arise from the 5XUAS reporter. Indeed, various proteins have to 
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shown to interact with the GAL4 activation domain lending possibilities to the 

non-specific effect of the CREB mutants at the 5XUAS luciferase reporter 

(Traven et al, 2006).  

 

3.7 No observable effect was observed for the serine/threonine kinase 

GSK3 at the MEIS1A C-terminus 

No observable change in transcription at the MEIS1A C-terminus with GSK3 

beta, a serine/threonine kinase which has been promoting the conditional 

association of CREB and its coactivators CRTC and CBP with MEIS1 despite 

attempts at verifying the identity and expression levels of all three proteins 

(Figure 9 Upper panel) (Wang et al, 2010b). A possible explanation for this 

discrepency which could arise form a difference in cell line tested:  leukemia 

cell lines versus embryonic kidney cell line, an explanation to the different 

response.  

 

3.8 Additional evidence of MEIS and CRTC interactions  

The success in co-immunoprecipitation between MEIS1 and CRTC1 in the 

previous chapter prompted much testing on the effect of CRTC1 at the MEIS1 

C-terminus. However, the depletion of CREB at the effect of CRTC1 at the 

MEIS1A C-terminus did not prove significant in this case. Despite this, further 

evidence of the cooperative activity between MEIS and CRTC was further 

supported by immunofluorescence staining, revealing a highly overlapping 

nuclear and cytoplasmic CRTC1 and MEIS1/2/3 (Figure 10).   
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3.9 Validation of proximity ligation assay via CREB-CRTC 

interaction 

PLA was employed to test for novel protein interactions involving MEIS-

CREB, MEIS-CRTC and MEIS-CBP. Controls were carefully verified prior to 

verifying the interactions (Figure 11). In addition to the positive and negative 

control, the known interaction between CREB-CRTC was also tested. As 

expected, interactions were observed between CREB and CRTC (Figure 11). 

 

3.10 Association of MEIS and CRTC using proximity ligation assay 

Interactions between MEIS and CRTC1, MEIS and CRTC2 were successfully 

detected by PLA as shown in a representative image in Figure 11 providing 

another independent support to the MEIS-CRTC interaction. However, no 

visible increase between endogenous MEIS1 and CRTC1 or CRTC2 interaction 

were observed in the nucleus upon stimulus treatment with forskolin in 

HEK293T cells. When tested on other cell lines for the effect of forskolin, 

endogenous nuclear CRTC1 was successfully detected in CAD neuroblastoma 

cells, validating the efficacy of the FSK used as well as the technique used 

(Figure 12).  

 

3.11 Association of MEIS and CBP using proximity ligation assay 

Previous observation has established that the the role of CREB in regulating 

MEIS1A C-terminus activity is dependent on its association with CRTC as well 

as CBP (Choe et al, 2009). Supporting this, PLA interactions have identified 

interaction between endogenous MEIS and CBP in HEK293T cells (Figure 11). 
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Consistent with its inability to promote nuclear CRTC in HEK293T in my 

hands, no noticeable increase in interactions were observed upon FSK stimulus 

(Figure 11).  

 

3.12 Association of MEIS andCREB using proximity ligation assay 

Previous observation by the lab using CREB point mutation mutants 

CREBR314A and CREBS133A established that the the role of CREB in 

regulating MEIS1A C-terminus activity (Screaton et al 2004, Huang et al 

2005). Fortifying the role of CREB on MEIS1A activity, association between 

endogenous MEIS and CREB proteins by proximity ligation assay (PLA) was 

shown (Figure 11), coinciding with a recent paper demonstrating an interaction 

between endogenous MEIS and CREB (Wang et al, 2010b).  

 

3.13 The role of MEIS1A C-terminus at mediating protein interactions 

GFP-tagged constructs of full length MEIS1A and MEIS1A (Δ334) lacking its 

C-terminus were generated, GFP provided a simple and direct means to identify 

MEIS1A transfected cells (Figure 13). The role of MEIS1A and its C-terminus 

at mediating protein interactions between CREB, CRTC and CBP was then 

identified from the MEIS1A transfected GFP expressing cells (Figure 14). It 

would be of interest to determine if the C-terminus of MEIS1A is required to 

mediate CREB-CRTC, CREB-CBP and CRTC-CBP interaction.  

Previous observations by the Featherstone’s lab have shown that CREBS133A 

is able to hinder the MEIS1A C-terminus response to PKA signaling. When co-
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expressed with CRTC1, CREBR314A has been shown to block transcription by 

the MEIS1A C-terminus, suggesting a crucial role of the CREB-CRTC 

interaction in stimulating transcriptional activity by the MEIS1A C-terminus. 

Phosphorylation of CREB at position 133 has been shown to promote 

association with its co-activator CBP (Chrivia et al 1993). In addition, without 

phosphorylation by PKA and thus unable to bind CBP, CREBS133A impeded 

the CRTC1 mediated MEIS1A C-terminal activity. These results suggest an 

involvement of MEIS1A C-terminus in mediating interactions between CREB, 

CRTC and CBP interactions.  

However, no conclusion could be drawn with the C-terminal deleted MEIS1A 

(Δ334) mutant where interactions were seen in all GFP-tagged assays even in 

the absence of the C-terminus. Some explanations could involve the possibility 

of the CRTC1 interaction domain on MEIS1A, which was hinted to reside 

within the MEIS1A C-terminus and hence removed in the MEIS1A (Δ334) 

mutant, the interactions visualized could hence be mediated instead by the 

homodimer formation of MEIS1A mutant with the endogenous MEIS1A. 

Another possibly reason could suggest that the interacting region of MEIS1A 

with the examined proteins as well as heterodimerization ability require other 

domains apart from the C-terminus, thus explaining the interaction seen within 

the MEIS1A(Δ334) overexpressed cells.  
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CHAPTER 5 

 

 

TO DETERMINE THE NATURE OF THE MEIS-CRTC-

CREB COMPLEX AND THE STRUCTURAL CHANGES 

ACCOMPANYING THE INTERACTIONS  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 ABSTRACT 
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We attempted to purify MEIS1A in significant quantities in order to determine 

its structure and to ascertain whether interactions with CRTC and CREB are 

direct. Despite numerous attempts using bacterial and baculoviral systems, as 

well as a collaboration with a protein platform facilities, success was limited. 

Even truncated forms of the proteins showed proved largely intractable, with 

both the quantity and quality of pure proteins not meeting the requirements for 

structural studies.  

The furthest progress was obtained with PREP2, a TALE class homeodomain-

containing protein with homology at the N-terminal regions to MEIS1. Protein 

purification yielded high quantities of a soluble PREP2 (49-230) fragment 

consisting of the N-terminal regions homologous to MEIS. However, the 

presence of a heterogeneous population of conformers within the purified 

samples again thwarted structural determination.  

 

 

 

 

 

 

 

 

 

 

 

2 RESULTS  
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To ascertain the direct interactions between MEIS1A, CRTC and CREB and to 

determine the structure of MEIS1A and CRTC, pure proteins are required. 

Bacterial overexpression of His-tagged proteins were induced and examined by 

SDS-PAGE as well as in western blot prior to purification via chromatographic 

techniques. Protein expression and purification was performed in collaboration 

with the Gruber lab, NTU. Generous expertise and advice were offered by Dr 

Gerhard Gruber as well as lab member Dr Conelia Hunke.  

 

2.1 Expression of MEIS1A, CREB341 and Flag-CRTC1 proteins 

Coding regions for MEIS1A, CRTC1 and CREB341 were amplified by PCR 

and cloned into the bacterial vector pET15b and pSUMO both carrying a 6XHis 

tag. Bacteria (BL21 strain) harboring these vector were grown in LB broth to 

OD 600 between 0.4-0.6 at 37 °C. IPTG was then used to induce expression. 

Figure 1 shows the expression profile of MEIS1A protein where control 

indicates the expression of MEIS1A at time zero versus an IPTG-induced 

MEIS1A culture after 2.5 h. Western blotting for MEIS1A detected a dominant 

band (arrow) alongside several weaker and non-specific bands (Figure 1).  

Figures 2 and 3 show the expression profile of CREB and CRTC1 upon IPTG 

induction. A strong band of CREB protein was seen following SDS-PAGE 

which correlates with a clean specific band (arrow) in the western blot (Figure 

2).  No obvious Flag-CRTC1 protein band could be detected in the SDS-PAGE 

and no distinct band was detected in the western blot probing for the Flag-

tagged protein (Figure 3). Instead, a series of smaller bands were detected with 
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the Flag-tagged antibody (Figure 3, right panel).  

The induced cell lysate consists of two fractions, the soluble proteins as well as 

the insoluble proteins. Following centrifugation, the insoluble fraction resides 

within the pellet while the supernatant contains the soluble fraction. Only the 

soluble fraction is suitable for further purification. As such, a solubility test was 

conducted where the solubility of the protein can be used to determine the 

maximal soluble protein possible under various buffer conditions. One fifth the 

amount of pellet was loaded for comparison with the supernatant. As visualized 

by SDS–PAGE, the proportion of protein within the supernatant, an indication 

of the soluble fraction of the expressed protein, was highest under buffer 

condition of 50 mM Tris, 200 mM NaCl at pH 8.5 (Figure 4). 

 

 

 

Figure 1 Protein expression for MEIS1A protein 

The SDS-PAGE (left panel) and Western Blot (right panel) showed a visible 

induction of MEIS1A protein after 2.5 h of 1 mM IPTG induction. Protein 

identity and integrity were verified with anti-MEIS1/2/3 antibody. 
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Figure 2 Protein expression for CREB protein 

The SDS-PAGE (left panel) and Western Blot (right panel) showed a visible 

induction of CREB protein after 2.5 h of 1 mM IPTG induction. Protein identity 

and integrity were verified with anti-CREB antibody. 

 

Figure 3 Protein expression for Flag-CRTC1 protein 

The SDS-PAGE (left panel) and Western Blot (right panel) showed a visible 

induction of Flag-CRTC1 protein after 2.5 h of 1 mM IPTG induction. Protein 

identity and integrity were verified using an anti-Flag antibody. 
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Figure 4 Solubility test for MEIS1A protein 

SDS-PAGE (left panel) shows the solubility of MEIS1A protein at buffer 

conditions of 50 mM Tris, 200 mM NaCl, pH 8.5. Identity and integrity of the 

protein were verified in Western Blot using anti-MEIS1/2/3 antibody (right 

panel). The samples were re-suspended, P is a representation of 2 ul of the re-

resuspended sample whilst S is a representation of 10 ul of the re-resuspended 

(P: Pellet; S: Supernatant). 

 

2.2 Purification of MEIS1A protein 

The recombinant pET15b-MEIS1A vector possessed six histidine-tags at the N-

terminus of pET15b which binds to Nickel tagged resins, thereby allowing 

purification of the tagged protein. Lysates from the induced MEIS1A protein 

were incubated with Ni2+-NTA resin column, proteins were then purified using 

an Imidazole-gradient. Untagged proteins that do not specifically interact with 

nickel ion were first eluded with low concentration of Imidazole. Tagged-

proteins of interest were usually eluted with 150 to 300 mM of Imidazole. 

Eluded samples were concentrated and loaded on a SDS-PAGE according to 

the eluded Imidazole concentration. Pellet represents the insoluble fraction of 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



171 

 

MEIS1A protein and flow through indicates the proteins unbound to the Nickel 

resins. Optimal elution of soluble MEIS1A was found between 100-200 mM 

Imidazole (Figure 5). The purity and amount of protein can be assessed by 

SDS-PAGE and Western blotting. Imidazole concentration labeled blue were 

pooled and subjected to further purification steps.  

 

2.3 Size exclusion chromatography purification of MEIS1A 

Proteins from the elution (100-200 mM Imidazole) as detected from the SDS-

PAGE in Figure 5 were pooled together and applied to either a size exclusion 

column (Superdex 75, 200) or ion exchange column for further purification via 

size or charge respectively. The Superdex columns were pre-packed glass 

columns for size fractionation and analysis of proteins to check for protein 

homogeneity. The optimum separation size for Superdex 75 is 3-70 kD while 

the Superdex 200 is 10-600 kD. With a protein size of 45 kD, both the columns 

were appropriate and hence used for MEIS1A purification. Chromatogram of 

MEIS1A proteins off the nickel column applied to Superdex 75 revealed 4 

peaks, each with a different quantity of protein and with peak 1 containing most 

of the protein (Figure 6). However, the chromatogram from Superdex 200 

revealed 4 peaks with a thin protein band detected only in peak 2 (Figure 7).  
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Figure 5 Nickel-NTA purification of MEIS1A protein 

SDS-PAGE showed the elution pattern of MEIS1A protein at a gradient of 

increasing Imidazole. The insoluble fraction of MEIS1A protein and flow 

through indicated in the pellet lane represents the proteins unbound to the 

Nickel resins. Optimal elution of soluble MEIS1A was found between 100-200 

mM Imidazole. Imidazole concentration labeled blue were pooled and subjected 

to further purification steps. 
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Figure 6 Protein purification of MEIS1A via size exclusion column 

Superdex 75 

Chromatogram off the size exclusion column (Superdex 75) where the number 

1 and 4 represent the 2 prominent elution peaks (Top panel). Samples from 

Peaks 1 to 4 were concentrated and ran on the SDS-PAGE (Lower panel). 

Sample represents the loading MEIS1A proteins off the Nickel column. Buffer 

conditions: 50 mM Tris, 200 mM NaCl, pH 8.5, 10 mM EDTA. 
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Figure 7 Protein purification of MEIS1A via size exclusion column 

Superdex 200 

Chromatogram off the size exclusion column (Superdex 200) where the number 

2 represent the prominent elution peak (Top panel). Samples from Peaks 1 to 4 

were concentrated and ran on the SDS-PAGE (Lower panel). Sample represents 

the loading MEIS1A proteins off the Nickel column. Buffer conditions: 50 mM 

Tris, 200 mM NaCl, pH 8.5, 10 mM EDTA. 

 

2.4 Ion exchange chromatography purification of MEIS1A protein 

Concurrently, proteins eluded from Imidazole gradient were pooled and applied 

to an ion exchange chromatography column.  Ion exchange chromatography is 

often use for the separation and purification of proteins on the basis of charge 

and it works on the basis that charged amino acids on the surface of a protein 

binds oppositely charged ligands of the ion exchanger. An anion exchanger 

(Resource Q) with a pH range from 6.5 to 9 was used where negatively charged 
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molecules were attracted to a positively charged solid support. When injected 

into the column, MEIS1A proteins with a pI of 6.13 were thus adsorbed on the 

support. A gradient of increasing salt concentration was then applied to elute 

the sample from the column. The elution profile can be divided into 4 peaks in 

which MEIS1A protein at salt concentrations of 19 % and 22.5 % was seen as 

thin bands by Coomassie staining (Figure 8).  

 

 

Figure 8 Protein purification of MEIS1A via ion-exchanger 

SDS-PAGE showed the elution pattern of MEIS1A protein. Elution profile can 

be divided into 4 peaks, the quality and quantity of each elution peak can be 

seen in the SDS-PAGE. MEIS1A proteins were eluded at peak 3 and peak 4. 

Buffer conditions: 50 mM Tris, 200 mM NaCl, pH 8.5, 10 mM EDTA. 
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2.5 Baculovirus expression of Flag-CRTC1 protein 

The baculovirus expression system has been shown to provide high levels of 

properly folded post-translationally modified, active and functional 

recombinant proteins. Given the poor protein expression of CRTC1 in bacterial 

culture, the baculovirus expression system was used to express CRTC1 protein 

for large scale expression of the recombinant protein of Flag-CRTC1. The 

expression of Flag-CRTC1 as recombinant baculovirus was verified in sf9 

insect cells by immunoflorescence using anti-flag and anti-CRTC1 antibody. 

Figure 9 showed the successful expression of Flag-tagged CRTC1 in the 

otherwise CRTC null insect cells after six rounds of viral amplification. The 

identity of Flag-CRTC1 was also verified by Western blot (Figure 10). Given 

the low titer count of the baculovirus stock, insect cells were re-infected several 

more rounds. However, upon further amplification, SDS-page still failed to 

show any observable band of induction. SDS-PAGE and the Western blot 

showed Flag-tagged proteins of various smaller sizes suggestive of cleavage of 

the Flag-tagged protein at the C-terminus since the CRTC1 harbors an N-

terminus Flag-tag (Figure 11). 

 

2.6 Expression of Flag-CRTC1 (1-290) protein 

Due to the lack of pure CRTC1 protein expressed at higher titer count in insect 

cells, truncated versions of the CRTC1 protein were constructed and expressed 

according to the binding studies with MEIS1A in Chapter 3. As seen in Figure 

12, the CRTC1 (1-290) consisting of the N-terminal minimal region of CRTC1 
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was sufficient and able to retain binding to MEIS1A. Thus, a pSUMO-Flag-

CRTC1 (1-290) vector, also harboring an N-terminus 6xHis-tag was generated 

and expressed in BL21 cells. However, the expression profile of the truncated 

version of CRTC1 revealed persistent problems with expression level and 

multiple cleavage products (Figure 13). 

 

 

Figure 9 Baculovirus expression of Flag-CRTC1 protein in sf9 cells 

Overexpressed Flag-tagged CRTC1 proteins in sf9 were shown after the 6
th
 

baculoviral infection. Red signals correspond to Flag-tagged CRTC1 expressing 

sf9 cells and MERGE corresponds to an overlay with the nuclear DAPI stain. 

Green signals correspond to CRTC1 expressing sf9 cells and MERGE 

corresponds to an overlay with the nuclear DAPI stain. 
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Figure 10 Detection of Flag-CRTC1 protein identity and levels in induced 

sf9 cells after 6 rounds of infection 

Western Blotting using anti-Flag antibody detection of Flag-CRTC1 induced 

sf9 cells after six rounds of amplification C: control, I: Baculovirus induction of 

Flag-CRTC1 protein expression. 

 

 

 

Figure 11 Detection of Flag-CRTC1 protein identity and levels in induced 

sf9 cells after 12 rounds of infection 

SDS-PAGE and Western Blotting detection of Flag-CRTC1 induced sf9 cells 

after twelve rounds of amplification C: control, 24 h, 48 h, 72 h, 96 h: Detection 

of baculovirus induction timing post infection. 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



179 

 

 

Figure 12 Binding of MEIS1A with various truncations of Flag-CRTC1 

Schematic diagram of various CRTC1 mutants and their binding to MEIS1A. 

The plus and minus signs below Binding to MEIS1A correlate with the extent 

of binding of MEIS1A by the various CRTC1 mutants.  

 

 

Figure 13 Expression profile of Flag-CRTC1 (1-290) in HEK293T cells 

The SDS-PAGE (left panel) and Western Blot (right panel) showed a visible 

induction of Flag-CRTC1 (1-290) protein after 2.5 h of 1mM IPTG induction in 

LB broth. Protein levels were detected and verified with Anti-Flag antibody. C: 

control, I: IPTG induced.  

CRTC1 deletion mutants 
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3 DISCUSSION  
3.1 Expression of MEIS1A, CREB341, Flag-CRTC1 proteins 

To identify the mode of interaction between MEIS1A, CRTC and CREB 

proteins and to ultimately reveal their structures, proteins were expressed in 

bacterial strains (Figure 1, 2 and 3). Given that the structure of CREB has been 

known, effort was focused on MEIS1A and CRTC1 with no known structures 

(Chrivia et al, 1993; Gonzalez et al, 1991; Parker et al, 1996; Radhakrishnan et 

al, 1997). Protein expression level of MEIS1A appeared promising with a 

proportion of soluble proteins (Figure 1 and 4) while no distinct expression of 

Flag-CRTC1 could be detected (Figure 3).  

 

3.2 Purification of MEIS1A protein 

The histidine-tagged MEIS1A proteins were further purified using Nickle 

column (Figure 5) followed by size exclusion chromatography or Ion exchange 

chromatography to separate the pure MEIS1A proteins from other 

contaminating proteins. Following chromatography purification, the expressed 

MEIS1A proteins appeared to be significantly purer; however the quantity is 

too low for any structural determination (Figure 6 to 8). 

 

3.3 Baculovirus expression of Flag-CRTC1 protein 

The initial baculoviral expression of Flag-tagged CRTC1 appeared promising 

during infection in the insect cells (Figure 9 and 10). However, upon further re-

infection, the same problem surfaced in that no significant nor pure CRTC1 
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band could be detected (Figure 11). 

One alternative would be to attempt to recover the insoluble CRTC1 protein.   

The multiple bands seen on SDS-PAGE and Western blot could arise from 

partial degradation of fusion proteins by proteases, or denaturation due to over-

sonication. Since protease inhibitor has been added to the lysis solution, 

addition of lysozyme and a care to reduce frothing during sonication may also 

improve results. Increase flow rates may also reduce degradation and 

denaturation of protein. Another approach could be to try to tag the protein at 

the C-terminus instead to remove the possibility of degradation/cleavage 

occurring from the C-terminal end.  

 

3.4 Expression of Flag-CRTC1 (1-290) protein 

A third attempt was made at obtaining decent protein levels by using a 

truncated CRTC1 consisting of only the N-terminal 1-290 amino acids which 

have been shown in our binding studies (Figure 12) to be sufficient for binding 

to MEIS1A. However the same outcome persisted with various bands of 

truncated proteins products (Figure 13). 
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MEIS1, a cofactor of HOX and PBX proteins has been implicated in embryonic 

patterning and oncogenesis. Previous studies by our lab established that 

MEIS1A harbors a C-terminal transcriptional activation domain that responds 

to PKA signaling. Supporting studies have also mapped a conserved 

transcriptional function to the C-terminus of MEIS1A which is required for 

accelerating leukemogenesis, particularly in collaboration with HOXA9 (Mamo 

et al, 2006; Wang et al, 2005).  In Chapter 3, I discussed how the mechanism 

behind the transcriptional activity of MEIS1A at the C-terminus involves the 

CREB coactivator CRTCs. Chapter 4 assessed the effects of CREB using 

CREB mutants, CBP and other protein interactions at the MEIS1A C-terminus. 

Finally in Chapter 5 I discussed my attempts to determine the nature of the 

MEIS-CRTC-CREB complex in order to reveal the structural changes 

accompanying their interactions. This thesis thus describes the mechanism by 

which the MEIS1A C-terminus achieves its transcriptional function as well as 

elucidates its interactions involving CREB and its co-activators CRTC. In this 

chapter, I present the role of phosphorylation in the regulation of CREB, CRTC 

and MEIS proteins. I also provide preliminary data for cooperative interaction 

of these proteins in vivo and in vitro. In addition, I propose experiments to 

further understand the role of MEIS1, CRTC and CREB in transcriptional 

regulation and in developmental and oncogenic processes. 
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1 Role of phosphorylation in the regulation of CREB, 

CRTC and MEIS proteins 
 

Protein kinase A (PKA) has been known to phosphorylate CREB at Serine 133 

and promote interaction with its coactivator CBP. Recently, a new role for 

PKA-mediated CREB activation has been identified (Bittinger et al, 2004; 

Conkright et al, 2003; Iourgenko et al, 2003; Screaton et al, 2004). In this 

pathway, the CRTC family has been shown to be directed from the cytoplasm 

into the nucleus via PKA or calcium signaling. Once in the nucleus, CRTC 

interacts with CREB in a phosphorylation-independent manner. This interaction 

between CRTC and CREB acts to stabilize CREB in at least two ways. Firstly, 

CRTC stabilizes the binding of phosphorylated CREB and CBP, an important 

role for the transcriptional activation by CREB in response to PKA (Ravnskjaer 

et al, 2007). Secondly, CRTC has also been shown to stabilize the DNA binding 

ability of CREB (Wang et al, 2010a).   

In addition, deregulation of PKA and CREB have both been implicated in 

human and rodent cancers (Kinjo et al, 2005; Rosenberg et al, 2002; Shankar et 

al, 2005a; Shankar et al, 2005b; Shankar & Sakamoto, 2004). PKA 

phosphorylation sites within PBX have been shown to induce nuclear 

localization (Kilstrup-Nielsen et al, 2003). In addition, evidence of 

phosphorylation in various HOX functions have been reported (Bei et al, 2005; 

Eklund et al, 2000; Vijapurkar et al, 2004; Yaron et al, 2001).  While no known 

PKA sites reside within MEIS, data by our lab showed a highly overlapped 

localization between MEIS and CRTC upon Forskolin treatment. In addition, 
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data from our lab showed a doublet in the western blot of MEIS1A further 

hinting at the possibility of a phosphorylated form of MEIS1A protein. Taken 

together with the collective phosphorylation information of its partners, MEIS 

may thus be the substrate of an intermediate kinase that is responsive to PKA 

which might be responsible for regulating nuclear localization of MEIS1. 

Phosphorylation is the most widespread form of post translational modification 

and usually occurs on serine, threonine and tyrosine residues in eukaryotic 

proteins (Ciesla et al, 2011). To validate the modification status of MEIS, 

phospho-specific (anti-phosphoserine, anti-phosphothreonine, anti-

phosphotyrosine) antibodies can be tested on immunoprecipitated MEIS1 as 

well as forskolin stimulated MEIS1A. A kinase assay can also be used to 

determine the phosphorylation state on purified MES1A protein. Having 

identified the phosphorylation residues, PLA can be used once more to verify 

whether its nuclear localization activity of MEIS correlates with its 

phosphorylation state.  

 

2 Examination of the nature of interactions between 

MEIS and CRTC in zebrafish development 
 

Collective findings by my lab as well as in this thesis provided evidence of the 

physical and functional association between MEIS and CRTC. Using the 

zebrafish system, I have begun exploring the physiological as well as 

developmental impact of both MEIS and CRTC interactions. Using probes 

designed against zebrafish crtc (named: crtc1 and crtc1b), which most closely 
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resemble human CRTC1 and mouse Crtc1; I seek to determine the expression 

of crtc during early zebrafish development. Zygotic transcription of crtc1b is 

low at 12 hpf, peaks at 24 hpf and maintains at 48 hpf (Appendix 8). What is 

significant is that the domains of expression of crtc1b overlap the known 

expression domain of meis1.1, an ortholog of the Meis1 (Appendix 6 and data 

from zfin).  The overlapping regions include the eye, the tectum and the 

hindbrain, all which are known to be patterned by Meis family members (Bessa 

et al, 2008; Choe et al, 2002; Heine et al, 2008; Hisa et al, 2004; Stedman et al, 

2009; Vlachakis et al, 2001; Zhang et al, 2002). Preliminary evidence for 

coexpression of crtc1b and meis1.1 is thus consistent for their concerted action 

in patterning of these tissues. Studies of crtc expression during early zebrafish 

development will be completed with a set of expression data ranging from as 

early as 20 min post fertilization up to 48 hpf, with complements and 

comparison to the expression of meis1.1. 

In addition, the shared and concerted action of crtc1 and meis1.1 could be 

further tested using complementary knockdown approaches. Morpholinos (MO) 

directed against splice donors and acceptors could be designed to knock down 

the crtc and meis genes. First, levels of MO against meis1.1 could be reduced 

down to a concentration at which no abnormalities could be detected. Using this 

concentration of meis1.1 MO, crtc1 MO would then be injected. By reducing 

the meis1.1 expression to a minimum during development, it would not be able 

to tolerate any more reduction in its interacting proteins. Thus, should meis and 

crtc work together as partners in development, the knockdown of crtc at the 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



187 

 

minimum required level of meis should lead to defects during the zebrafish 

development. Such defects could be detected visually or assessed using genetic 

markers against specific organs patterned by meis and crtc (eyes, hindbrain, 

tectum). 

 

3 Examination the role of MEIS and CRTC proteins 

in oncogenic processes 
 

Given the recent demonstration of high levels of Meis expression in 

neuroblastoma cell lines, as well as our physical and functional association of 

MEIS and CRTC, it would be of interest to investigate the contribution of 

MEIS and CRTC in the context of neuroblastoma. I have previously detected 

high levels of endogenous Meis1, Crtc2 and Crtc3 expression in the two 

neuroblastoma cell lines N2A and CAD (Appendix 9).  Having established the 

expression of Meis and Crtc2 and Crtc3 in the two neuroblastoma cell lines, 

future work could head in the direction of determining a concerted action of 

MEIS and CRTC in neuroblastoma phenotype. Such work could involve 

dominant negative constructs which will then be used to screen for oncogenic 

phenotype such as migration assay, growth rate and tumor formation. In 

addition, RT-PCR could be used to assess the change in levels of certain key 

regulators, which have also been identified as MEIS1 targets.  
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4 The nature of interactions between MEIS, CRTC 

and CREB  
 

We have had some successful in bringing to light the physical and functional 

interactions between MEIS and CRTC, however, no structures for MEIS 

beyond the homedomain and no structure for CRTC have been determined. As 

such, it is our goal to understand the molecular conformations that allow MEIS, 

CRTC and their partners to interact to perform their function in development as 

well as in cancer.  

Several assays could be applied to verify the interactions between MEIS, 

CRTC, CREB and CBP complex. Crosslinking assays in combination with a 

pull-down assay could be applied to verify the transient protein interactions as 

well as to identify novel protein proteins. Other attempts to assess protein 

interactions could be the use of sucrose density gradients, in which the semi 

pure proteins were quantified in each fraction by mass spectrometry. Given that 

proteins in the same complex should generally co-sediment, physically 

associated proteins should contain correlated elution profiles. Gel staining and 

western blot detection could then be used to assess the identity as well as the 

ratio of each protein in the complex.  

As terminal tags can become buried/blocked and inaccessible within the 

protein, future possible work could involve another collaboration with the 

SBS/NTU protein platform facility located at A*STAR, Biopolis to generate 

other batches of bacterially expressing vectors of different N- and C-terminal 

His-tag fusions with the aim to obtain highest overall yield. In addition, a series 
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of truncated proteins could be assessed in parallel in the hope of reduce the 

incidence of proteolytic cleavage as well as optimising the levels of protein 

expression for protein crystallization. Once the proteins are successfully 

purified and optimised, physical characterization of MEIS and CRTC would be 

assessed by using one-dimensional NMR and circular diochroism, which would 

provide the first information of the folded stated of the proteins. Small angle X-

ray scattering (SAXS) in solution would also provide valuable information on 

the protein’s propensity for homodimerization as well as formation of higher 

order oligomers. The crystal structure of MEIS and CRTC at high resolution 

would be useful to determine the structural basis for their interactions on and 

off DNA and help promote our understanding of transcriptional regulation, 

development and oncogenesis.  

 

 

 

 

 

 

 

 

 

 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



190 

 

5 A word about the Appendix 
The results chapters preceding the appendix have established a strong 

association for functional and physical interactions between MEIS1A, CREB 

and CRTCs. By means of in-situ hybridization and RT-PCR, part of the 

appendix seeks to further refine this association. Data obtained has further 

revealed multiple domains of overlapping expression between zfcrtc1b and 

meis1.1 present at the same developmental stages. This is consistent with the 

suggestion of a shared role in patterning during embryogenesis, at least within 

the tissues identified. Endogenous MEIS, CRTC2 and CRTC3 proteins were 

detected in neuroblastoma cell lines which provided a promising future 

direction for their cooperative effect in oncogenesis. In addition data generated 

by the protein platform facility as well as my work on determining the 

homogeneity of PREP2 at the zetasizer can also serve to build upon future 

work.  
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PERSPECTIVE 
The broad and cross species expression of MEIS, CREB and CRTC family 

members and their control of HOX expression and function, combined with 

numerous roles for PKA in cellular and developmental processes suggest that 

the functions of these factors will converge in many such events. In conclusion, 

our work thus points towards both functional and physical evidence implicating 

the PKA-dependent complex formation of MEIS1A C-terminus with the 

cAMP-inducible transcription factor CREB and its coactivator CRTC. Refining 

the initial view in which MEIS1A mediates its oncogenicity by interaction of its 

C-terminus with CREB and CRTC.  

 

SCIENTIFIC CONTRIBUTION 
 

During the course of this PhD program, a scientific publication was released by 

the Featherstone lab:  

J Biol Chem. 2009 Jul 10;284(28):18904-12. Epub 2009 May 27. 

Transcriptional activation by MEIS1A in response to protein kinase A 

signaling requires the transducers of regulated CREB family of CREB co-

activators 

Goh* SL, Looi* Y, Shen H, Fang J, Bodner C, Houle M, Ng AC, Screaton 

RA, Featherstone M. 

*co-first authors 
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APPENDIX 

1 EXPRESSION OF CRTC IN ZEBRAFISH 
1.1 Detection of zebrafish crtc1 and crtc1b in early embryogenesis in 

similar regions of the embryo which expresses meis genes 

By means of in situ hybridization, expression of zebrafish crtc1 and crtc1b 

were detected in embryogenesis as early as 8 to 24 hours of zebrafish 

development. Sequence analysis of the genome database demonstrates three 

crtc homologs in zebrafish. Since two of the three genes resemble the human 

and mouse CRTC1/crtc1, we designate them as zfcrtc1 and zfcrtc1b (zfcrtc1 

accession: XM_001331969, zfcrtc1b accession: NM_001077457 and zfcrtc3 

accession: XM_693452). The sequence of zfcrtc1 and zfcrtc1b bears higher 

similarities at the N and the C-terminus while zfcrtc3 sequence differs from the 

other two crtc homologs. The probes for detecting regions within zfcrtc1 and 

zfcrtc1b were successfully synthesized but not the sequence divergent zfcrtc3. 

Hence in-situ data in this appendix will only cover the expression of zfcrtc1 and 

zfcrtc1b.  

Zebrafish in situ staining for several stages of early embryogenesis were 

performed: blastula period extends from 2.25 to 5.25 hpf, gastrula period 

extends from 5.25-10 hpf and Prim-5 stage extends from 12-24 hpf.  Zebrafish 

embryos from oblong stage (3 hpf) of the blastula period were used for 

detection and expression of zfcrtc1 could be detected within the cell nuclei as 

seen in Appendix 1. The blastula stage observed is characterized by the 

migrating layer of multople rows of nuclei yolk syncytial layer (YSL) directed 
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along the animal-vegetal axis of the embryo. Zebrafish embryos from 80% 

epiboly (8 hpf) were used for detection of expression of zfcrtc1. Expression of 

zfcrtc1 could be detected as seen in Appendix 2 where the embryonic shield 

along the animal-vegetal axis extends almost enveloping the yolk.  

At 24 hpf (Prim-5 stage), expression of zfcrtc1 can be distinctly detected in the 

eyes, midbrain tectum and hindbrain. Image taken at magnification of 49.5 

times (Appendix 3). This expression pattern was highly indicative of known 

meis1 expression in zebrafish, with common expression domain at the tectum, 

hindbrain and eyes (Kudoh et al, 2001; Minehata et al, 2008; Wu et al, 2006a). 

The specificity of the probes can be seen in the absence of expression was 

detected in the sense crtc1 probe at the same embryonic stage (Appendix 4). An 

interesting observation of the zebrafish crtc1 expression found in some 24 hpf 

embryos was observed in Appendix 5 whereby an expression at the pectoral fin 

bud is observed, a time coinciding with the developing of fin buds.  

Expression of zebrafish crtc1b also bears similar expression to zebrafish crtc1 

as distinctively expression can be seen in 24 hpf developing embryos 

particularly in the eyes, midbrain tectum and hindbrain (Appendix 6). The 

specificity of the crtc1b probe can also be seen in the absence of expression was 

detected in the sense crtc1b probe at the same embryonic stage (Appendix 7). In 

addition to the in vitro data on the association between meis and crtc, these 

highly overlapping in vivo studies of zfcrtc and meis expression is thus an 

indicative of the collaborative effort involve in embryonic development.  
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Note: The sequence of the predicted zfcrtc1 (accession: XM_001331969) has 

been removed from the database during the writing of the thesis.  

 

 

 

Appendix 1 Expression pattern of antisense zebrafish crtc1 probe at 3 hpf 

Expression pattern of zfcrtc1 during blastula  period of zebrafish development. 

Nuclear staining were observed in embryos at 3 hpf during 1000 cells stage. 

Note the expression in expanding cells as well as the migrating nuclei of the 

YSL. 
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Appendix 2 Expression pattern of antisense zebrafish crtc1 probe at 8 hpf 

Expression pattern of zfcrtc1 during gastrula period of zebrafish development. 

Nuclear staining were observed in embryos at 8 hpf during 80% epiboly. Note 

the embryonic shield along the animal-vegetal axis extends almost enveloping 

the yolk. 
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Appendix 3 Expression pattern of antisense zebrafish crtc1 probe at 24 hpf 

At 24 hpf (Prim-5 stage) with an antisense probe, expression of zfcrtc1 can be 

distinctly detected in the eyes, midbrain tectum and hindbrain. Image taken at 

magnification of 49.5 times. 
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Appendix 4 Expression pattern of sense zebrafish crtc1 probe at 24 hpf 

At 24 hpf (Prim-5 stage) with a sense probe, no expression of zfcrtc1 can be 

detected in the eyes, midbrain tectum and hindbrain. Image taken at 

magnification of 49.5 times. 
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Appendix 5 Expression pattern of antisense zebrafish crtc1 probe at 24 hpf 

In situ staining for zfcrtc1 antisense as probe at 24 hpf (dorsal view anterior to 

left). Image taken at magnification of 80 times. 

 

 

 

Appendix 6 Expression pattern of antisense zebrafish crtc1b probe at 24 

hpf 

Flat mount In situ staining for crtc1b antisense probe at 24 hpf (Prim-5 stage), 

(dorsal view anterior to left). Expression of zfcrtc1b can be distinctly detected 

in the eyes, midbrain tectum and hindbrain. Image taken at magnification of 80 

times. 
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Appendix 7 Expression pattern of sense zebrafish crtc1b probe at 24 hpf 

Flat mount in situ staining for crtc1b sense probe at 24 hpf (Prim-5 stage), 

(dorsal view anterior to left). No expression of zfcrtc1b can be detected in the 

eyes, midbrain tectum and hindbrain. Image taken at magnification of 80 times. 

 

1.2 Expression of meis1, crtc1, 1b in zebrafish at oh, 12h and 24h  

Relevant primers detecting various zebrafish meis1.1, crtc1 and 1b were 

designed for RT-PCR amplification. Transcript of zfcrtc1b within the zebrafish 

embryo is low at 12 hpf and increases with expression by 24 hpf, continuing 

through 48 hpf (Appendix 8). The transcript of zfcrtc1 was hardly detected and 

alongside its removal from the database suggestive of it not being a true 

homolog (Appendix 8). Beta-actin was used alongside as an internal control 

(Appendix 8). Transcripts of meis1.1 were also detected at various stages when 

the zfcrtc1b was expressed (Appendix 8).  

Thus, the study on zebrafish in this appendix have by means of in-situ 

hybridization and RT-PCR further revealed multiple domains of overlapping 

expression between zfcrtc1b and meis1.1 present at similar developmental 

stages.   
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Appendix 8 Expression of zebrafish crtc1, crtc1b and meis1.1 by RT-PCR 

Primers were chosen to span an intron. Only spliced mRNA will give the 

expected sized band. Expected size for the amplicons: MEIS1 173 bp, CRTC1 

166 bp, CRTC1b 119 bp, actin 124 bp. C is a control RT-PCR reaction with no 

template added. 12, 24, 48 correspond to the CDNA from embryos harvested at 

various hpf.  
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2 Expression of endogenous MEIS1/2/3, CRTC2 and 

CRTC3 in N2A and CAD cells 
 

 

 

Appendix 9 Levels of endogenous MEIS1/2/3, CRTC2 and CRTC3 in CAD 

and N2A neuroblastoma cell lines 

(A) Detection of endogenous MEIS1/2/3 in CAD and N2A cells. 

Overexpressed MEIS1A in HEk293T cells is shown alongside as comparison. 

(B) Endogenous MEIS1/2/3 in HEK293T cells. (C) Expression of CRTC2 cells 

in HEK293T, CAD and N2A cells. (D) Expression of CRTC3 cells in 

HEK293T, CAD and N2A cells.   

 

3 Protein expressions of MEIS1A, PREP2 and 

CRTC1 via a protein production platform 
In addition to the efforts at the Featherstone lab, protein expression and 

purification expertise by the protein production platform at A*STAR were also 

requested with the aim at structural determination of the proteins of interest 

using NMR. MEIS1A, PREP2 and CRTC1 proteins were submitted for 

expression and purification. Nine constructs each were selected for protein 
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expression.  

 

3.1 Protein expressions of MEIS1A via the protein production 

platform 

As there are no known protein structures of MEIS1A, nine constructs for mouse 

MEIS1A were selected based on the known interacting regions of MEIS1A 

which include, the homeodomain which mediates DNA binding, the PBX 

interacting motif (HR1 and HR2) and the MEIS1A C-terminus, which has been 

shown to mediate PKA as well as CRTC-responsiveness and confers 

transcriptional activity (Figure 10). Only proteins with high expression levels 

will be subjected to solubility test and further purified via gel filtration 

columns. Results from protein expression and purification column showed a 

MEIS1A construct MEIS1A (65-390) with a high expression level of 4 out of 5 

and with a 3 out of 5 rating for soluble proteins (data not shown).  Amino acid 

64-390 contained the known regions of MEIS1A (the PBX-interacting domain, 

the homeodomain and the C-terminus). Chromatogram of MEIS1A (64-390) 

revealed broad inseparable peaks (Figure 11). The SDS-page profile of 

MEIS1A (64-390) revealed the presence of additional bands apart from the 36 

kD MEIS1A (64-390) protein which also appeared larger on gel (Lane 8. Figure 

12). The inseparable peaks along with the large additional protein bands are 

indicative of the presence of multimer within the purified protein.  

 

3.2 Protein expressions of CRTC2 via the protein production platform 

The known interaction domains of human CRTC1 include the coiled coil N-
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terminus 56 amino acid which mediates CREB binding. The same N-terminus 

is also important in CRTC tetramer formation. The C-terminus of CRTC 

comprises a transactivation domain which is constitutively active (Figure 13). 

The SDS-PAGE profile of CRTC1 (2-315) and CRTC1 (4-295), CRTC1 (4-

315) and CRTC1 (2-295) with an average protein size of 34 kD revealed a 

series of multiple inseparable bands (Figure 12 Lanes 3-7). 

 

3.3 Protein expression of PREP2 via the protein production platform 

The MEIS and PREP family proteins exhibit sequence similarities at the 

homeodomain and the PBX interacting motif. Based on the information, nine 

constructs for mouse PREP2 were selected based on the PBX-interacting motif 

(HR1 and HR2). Only proteins with high expression levels will be subjected to 

solubility test and further purified via gel filtration columns. Results from 

protein expression and purification column showed a PREP2 (49-230) construct 

with a high expression level of 3 out of 5 and with a 3 out of 5 rating for soluble 

proteins (data not shown). Chromatogram of PREP2 (49-230) showed a single 

asymmetrical peak (Figure 15). Its SDS-page profile revealed presence of weak 

bands of larger weight apart from the expected dominant band of 20kD PREP2 

(49-230) protein which also appeared larger on gel (Lane 1. Figure 12). The 

broad peak along with the large additional protein bands present is suggestive 

of multimer formation (Figure 15). A second construct with a similar range as 

the first PREP2 construct with a relatively viable protein expression and 

solubility profile of 3 out of 5 for both rating was the PREP2 (43-230) construct 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



204 

 

(Figure 16). Its chromatogram and SDS-page profile revealed a highly similar 

profile to PREP2 (49-230) (Lane 2. Figure 12). 

 

Figure 10 Schematic diagram of the interaction domains of MEIS1A 

Schematic diagram of MEIS1A and its known interaction domains. HD 

represents the DNA binding homeodomain HR1 and HR2 indicate the 

conserved PBX-interacting motif of MEIS1. MEIS1A C-terminus contains a 

transcriptional activation domain (amino acid 335-390). 

 

 

Figure 11 Chromatogram profile of MEIS1A protein 

Chromatogram from gel filtration column for MEIS1A (64-390) protein 

revealed broad inseparable peaks, suggestive of the presence of multimers 

within the purified fractions. 
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Figure 12 Protein expression profile of MEIS1A, PREP2 and CRTC1 

SDS-page revealed the elution pattern of various proteins following gel 

filtration purification. Lane 1 and 2 represent PREP2 (49-230) and PREP2 (43-

230) respectively. Lane 3 and 4 represent CRTC1 (2-315) as duplicates. Lane 5 

and 6 represent CRTC1 (4-295) and CRTC1 (4-315) respectively. Lane 7 

represents CRTC1 (2-295) and Lane 8 represents MEIS1A (64-390).  
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Figure 13 Schematic diagram of the interaction domains of CRTC1 

Schematic diagram of CRTC1 and its known interaction domains. The N-

terminus end mediates binding to CREB as well as CRCT1 tetramer (amino 

acid 1-56). The C-terminus of CRTC1 harbors a transactivation domain. 

 

 

Figure 14 Schematic diagram of the interaction domains of PREP2 

Schematic diagram of PREP2 and its known interaction domains. HD 

represents the DNA binding homeodomain. HR1 and HR2 indicate the 

conserved PBX-interacting motif of PREP2.  
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Figure 15 Chromatogram profile of PREP2 (49-230) protein 

Chromatogram from gel filtration column for PREP2 (49-230) revealed a single 

asymmetrical peak, suggestive of the presence of tetramer within the purified 

complex. 

 

Figure 16 Chromatogram profile of PREP2 (43-230) protein 

Chromatogram from gel filtration column for PREP2 (43-230) revealed a single 

asymmetrical peak, suggestive of the presence of tetramer within the purified 

complex. 

 

3.4 Characterization of gel filtration purified PREP2 (49-230)                     

Amongst the three protein submitted for protein platform expression, PREP2 

(49-230) and PREP2 (43-230) proteins appeared as single peak on the 
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chromatogram with a dominant band of PREP2 protein. The quality of each 

protein off the gel filtration column was also relative pure with a total protein 

quantity of 36 mg each.  

Structural studies generally require protein samples to be mostly homogenous 

monodispersed ie: when a protein consists of only one molecular mass. A 

native gel and dynamic light scattering was thus applied to the PREP2 (49-230) 

proteins to distinguish the forms of proteins present within the purified samples. 

The PREP2 (49-230) was first ran on a native gel electrophoresis where the 

proteins were not denatured and thus separated base on their charge, size and 

shape (Lane 1 and 2 Figure 17). Migration pattern showed a larger non-

dominant band of PREP2 (49-230) proteins (arrow) which appeared reduced 

upon addition of DTT, and could be indicative of multimer formation (Lane 3 

and 4 Figure 17). 

Given the favor for monodispersed proteins for structural studies, dynamic light 

scattering technique (DLS) was used to determine the distribution of the protein 

population. Dynamic light scattering technique measures time-dependent 

fluctuations in the intensity of scattered light which occurs due to the random 

Brownian motion of the protein, which are then converted into a size 

distribution. Figure 18 showed the intensity size distribution graph of PREP2 

(49-230). In all DLS assays, samples were read three times with the second and 

third run indicated in the graphs. The wide bell curve hinted at various forms of 

PREP2 proteins which are unresolved and masked under the wide curve.  
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Lithium chloride (LiCl) treatment of 10 min was applied onto the sample to 

separate the protein complex. Observation from the data off the DLS detection 

showed that one of the bands appeared to separate upon treatment (Figure 19). 

DTT concentration of 0.05 M to 0.5 M appeared to continually promote 

distribution of the complexes (Figure 20-23). However, upon higher salt 

concentration of 0.8 to 1 M, the integrity of the complex started to fall and 

multiple bands were observed (Figure 24 and 25).  

Given the suggested range of DTT on proteins were around 40-50 mM, 

separation of the protein complex would have happened at the earlier 

concentration of 0.05 M DTT. The data from DLS indicated a non-homogeneity 

of the purified complex which cannot be separated despite several attempts. 

Without homogeneity, structural studies such as 1D NMR would not be 

feasible.  
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Figure 17 Characterization of PREP2 (49-230) homogeneity on native gel 

A sample of 20 ug and 40 ug of PREP2 (49-230) protein was loaded onto a 

15% native gel. Prior to loading, the samples were treated without/with 0.1 M 

of DTT for 10 mins at room temperature. Lane 1 and 2 revealed migration 

pattern of 20 ug and 40 ug of PREP2 (49-230) protein while Lane 3 and 4 

indicated migration pattern of 20 ug and 40 ug of PREP2 (49-230) protein upon 

DTT treatment. 
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Figure 18 Intensity size distribution of PREP2 (49-230)  

Intensity size distribution graph of PREP2 (49-230). The two lines on the graph 

represent two separate runs.  

 

 

Figure 19 Intensity size distribution of PREP2 (49-230) following LiCl 

treatment 

Intensity size distribution graph of PREP2 (49-230). The two lines on the graph 

represent two separate runs after 10 mins treatment with 20 mM LiCl.  
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Figure 20 Intensity size distribution of PREP2 (49-230) following LiCl and 

0.05 M DTT treatment 

Intensity size distribution graph of PREP2 (49-230). The two lines on the graph 

represent two separate runs after 20 mins treatment with 20 mM LiCl and 0.05 

M DTT.  

 

 

Figure 21 Intensity size distribution of PREP2 (49-230) following LiCl and 

0.2 M DTT treatment 

Intensity size distribution graph of PREP2 (49-230). The two lines on the graph 

represent two separate runs after 20 mins treatment with 20 mM LiCl and 0.2 M 

DTT.  
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Figure 22 Intensity size distribution of PREP2 (49-230) following LiCl and 

0.4 M DTT treatment 

Intensity size distribution graph of PREP2 (49-230). The two lines on the graph 

representstwo separate runs after 20 mins treatment with 20 mM LiCl and 0.4 

M DTT 

 

 

Figure 23 Intensity size distribution of PREP2 (49-230) following LiCl and 

0.5 M DTT treatment 

Intensity size distribution graph of PREP2 (49-230). The two lines on the graph 

represent two separate runs after 20 mins treatment with 20 mM LiCl and 0.5 M 

DTT. 
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Figure 24 Intensity size distribution of PREP2 (49-230) following LiCl and 

0.8 M DTT treatment 

Intensity size distribution graph of PREP2 (49-230). The two lines on the graph 

representstwo separate runs after 20 mins treatment with 20 mM LiCl and 0.8 

M DTT. 

 

 

Figure 25 Intensity size distribution of PREP2 (49-230) following LiCl and 

1.0 M DTT treatment 

Intensity size distribution graph of PREP2 (49-230). The two lines on the graph 

represents two separate runs after 20 min treatment with 20 mM LiCl and 1.0 M 

DTT.  
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