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Abstract In this report, we use Fourier analysis and Dio-

phantine analysis to study functions associated to polyhedral cones and finite

point sets. We present a close relationship between the function associated to

integral cones and the classical Dedekind sums. The theory of the polytope

algebra—the universal group for translation-invariant valuations—was developed

by many mathematicians (see [MS83], [Bri97]). In this report, we employed forms

of evaluation, namely rational function valuation, which lead us to Dedekind

sums.

The report is constructed as follows. The first chapter is served as an intro-

duction to the whole thesis. In Chapter 2, we consider the decomposition of the

first quadrant cone into integral cones and study the asymptotic behavior of an

infinite sum:

f(c, d) =
1

4π2
lim

ǫ→0+

X
(m,n)∈Z2

m(cm+dn)6=0

e−πǫ(m2+n2)

m(cm + dn)
.

The motivation for us to study this function arises from the Fourier transform

of indicator function of cones. Decomposition of the first quadrant cone leads

to an identity: the indicator function of the first quadrant cone is equal to the

sum of indicator functions of the two cones after decomposition. In order to

apply harmonic analysis in our work, we first smooth out indicator function of

cones by Gaussian function. By doing so we may apply certain identities such as

the Poisson Summation Formula to the modified indicator function. These facts

combined grant us to explore the limit of an infinite sum f(c, d) where the integral

vector (c, d) ∈ Z2 is the common edge shared by two cones after decomposition of

the first quadrant cone. In the end of Chapter 2, we discovered a nice relationship

between f(c, d) and the classical Dedekind sum s(c, d) which is the main research

object of Chapter 4.

In Chapter 3, we continue to use a similar technique which appeared earlier in

Chapter 2 to investigate an infinite sum defined over cones. The main difference

is here we focus on real cones while earlier in Chapter 2, we are interested in
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integral cones. We managed to generalize our argument from integral cones to

real cones. We studied the convergent property of the sum:X
(m,n)∈Z2

(αm+n)(m+βn)6=0

f(ǫ, α, β) =
X

(m,n)∈Z2

(αm+n)(m+βn)6=0

e−πǫ(m2+n2)

(αm + n)(m + βn)
,

which is defined on real cones. Our conclusion is when α and β are both quadratic

irrationals, this infinite series will converge absolutely. Meanwhile we also gave a

sufficient condition for the existence of the limit:

lim
ǫ→0+

f(ǫ, α, β).

In the following two chapters, our main interest lies in Dedekind sums. In

Chapter 4, we focus on the classical Dedekind sum:

s(c, d) =
d−1X
k=0

��
kc

d

����
k

d

��
and answer the question of when two Dedekind sums are equal to each other.

We have found a necessary condition which is b|(1 − a1a2)(a1 − a2) in order for

s(a1, b) to be equal to s(a2, b). A parallel analysis for the Dedekind-Rademacher

sum, namely

rn(a, b) =
b−1X
k=0

��
ka + n

b

����
k

b

��
,

is also given in Chapter 4. We include part of the content from this chapter in our

paper [JRW11]. In Chapter 5, our focus is on Zagier-Dedekind sums, or higher

dimensional Dedekind sums:

d(p; a1, · · · , an) = (−1)n/2
p−1X
k=1

cot
πka1

p
· · · cot

πkan

p
,

where p is a positive integer, a1, · · · , an are integers relatively prime to p and

n even. The condition for two Zagier-Dedekind sums to be equal to each other

is slightly more complicated than the one we gave for classical Dedekind sums.

An interesting fact about Zagier-Dedekind sums is that there is a nice relation
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between d(p; a1, · · · , an) and counting lattice points whose definition depends on

a1, a2, · · · , an and p.

In Chapter 6, we study a curve which is defined as a set of generalized centers

of a finite point set. We call it µ-curve for short. This curve is infinitely smooth,

and it captures the symmetrical properties of the original point set such as ra-

dial symmetry, reflectional symmetry, and rotational symmetry. We generalize

Weiszfeld’s algorithm to find µ(r) through an iteration process for r ≥ 1. We

prove that the µ-curve is invariant under rigid motions, and we conjecture that

the nondegenerate µ-curve is uniquely determined by a point set. An example is

given to support this conjecture. We also give plenty of examples of the µ-curve

for different point sets in the end of this chapter.
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Chapter 1
Introduction and Outline

We aim to establish a connection between the well studied geometrical object

called polyhedral cones and the classical number theoretic object called Dedekind

sums. This chapter is informal, and therefore we do not define all the terms

mentioned here. We will give the formal definitions carefully in the main body

of this thesis, and focus on the intuition instead. We set off the pursuit of this

connection by studying the decomposition of cones.

Figure 1.1: Decomposition of the first quadrant into three cones

1



2 Chapter 1. Introduction and Outline

To avoid overlap between adjacent cones, we define all cones here to be half-

open. As shown in Figure 1.1, we decompose the first quadrant K1st into a

disjoint union of three half-open cones: Ky, K and Kx.

K1st = Ky

[
K
[

Kx. (1.1)

We will utilize the concept of indicator functions, seeking a nice mathematical in-

terpretation of decompositions of cones. From (1.1), by using indicator functions

of cones, we obtain:

1K1st(x) = 1Ky(x) + 1K(x) + 1Kx(x), (1.2)

where x ∈ R2.

It is tempting for us to apply Fourier transforms to indicator functions at

this point. But after examining the definition of the Fourier transform, we find

out that the integral defined by the Fourier transform of a cone is divergent. In

order to guarantee convergence, we multiply the indicator functions by a complex

factor e2πi〈x,s〉 first, that is,

1K1st(x)e2πi〈x,s〉 = 1Ky(x)e2πi〈x,s〉 + 1K(x)e2πi〈x,s〉 + 1Kx(x)e2πi〈x,s〉, (1.3)

where x, s ∈ R2.

Next we will convolve these “modified” indicator functions with Gaussian func-

tions. The main reason is because we would like to apply Poisson Summation

later and convolution makes sure all functions involved will lie in the space of

Schwartz functions. Let

Gǫ(x) =
1

ǫ
e−

π
ǫ
‖x‖2

,

where ǫ > 0, x ∈ R2, and ‖ · ‖ denotes the Euclidean norm. Its Fourier transform

is: ÓGǫ(s) = e−πǫ‖s‖2

.

Then (1.3) becomes:

1K1st(x)e2πi〈x,s〉∗Gǫ(x) = 1Ky(x)e2πi〈x,s〉∗Gǫ(x)+1K(x)e2πi〈x,s〉∗Gǫ(x)+1Kx(x)e2πi〈x,s〉∗Gǫ(x).

(1.4)
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Now we can take Fourier transform of (1.4) on both sides:

F
�
1K1st(x)e2πi〈x,s〉 ∗ Gǫ(x)

�
= F

�
1Ky(x)e2πi〈x,s〉 ∗ Gǫ(x)

�
+ F

�
1K(x)e2πi〈x,s〉 ∗ Gǫ(x)

�
+ F

�
1Kx(x)e2πi〈x,s〉 ∗ Gǫ(x)

�
. (1.5)

We use both F(f(x)) and bf(x) interchangeably to denote the Fourier transform

of f(x). If h(x) = (f ∗ g)(x), then bh(ξ) = bf(ξ)bg(ξ). As a result, (1.5) becomes:

F
�
1K1st(x)e2πi〈x,s〉�F (Gǫ(x)) = F

�
1Ky(x)e2πi〈x,s〉�F (Gǫ(x))

+ F
�
1K(x)e2πi〈x,s〉�F (Gǫ(x))

+ F
�
1Kx(x)e2πi〈x,s〉�F (Gǫ(x)) . (1.6)

Or equivalently:Û1K1st(x)e2πi〈x,s〉ÓGǫ(x) = Û1Ky(x)e2πi〈x,s〉ÓGǫ(x) + Û1K(x)e2πi〈x,s〉ÓGǫ(x)

+ Û1Kx(x)e2πi〈x,s〉ÓGǫ(x). (1.7)

Now we can apply the Stretch Theorem of Fourier transforms: Theorem B.1

mentioned in Appendix B , and (1.7) becomes:Õ1K1st(x + is)e−πǫ‖x‖2

= Ô1Ky(x + is)e−πǫ‖x‖2

+ Ó1K(x + is)e−πǫ‖x‖2

+ Ô1Kx(x + is)e−πǫ‖x‖2

. (1.8)

We will denote x + is as z = m + is from now on. Then (1.8) is equivalent to:Õ1K1st(m + is)e−πǫ‖m‖2

= Ô1Ky(m + is)e−πǫ‖m‖2

+ Ó1K(m + is)e−πǫ‖m‖2

+ Ô1Kx(m + is)e−πǫ‖m‖2

. (1.9)

We now consider the case of Z2. Our next step will be summing over every term

in (1.9) over the whole lattice Z2:X
m∈Z2

Õ1K1st(m + is)e−πǫ‖m‖2

=
X

m∈Z2

�Ô1Ky(m + is)e−πǫ‖m‖2

+ Ó1K(m + is)e−πǫ‖m‖2

+ Ô1Kx(m + is)e−πǫ‖m‖2�
. (1.10)
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Denote z = m + is = (m1 + is1, m2 + is2) = (z1, z2).

Applying results that we will prove in Chapter 2, (1.10) becomes:X
m∈Z2

1

z1z2
e−πǫ‖m‖2

=
X

m∈Z2

� α

z2(αz1 + βz2)
e−πǫ‖m‖2

+
| detM |

〈ω1, z〉 〈ω2, z〉
e−πǫ‖m‖2

+
γ

z1(δz1 + γz2)
e−πǫ‖m‖2

�
, (1.11)

where

M =
�

ω1 ω2

�
=

�
α δ

β γ

Ǒ
.

The motivation of us looking at these infinite sums mainly comes from papers

written by Bruce C. Berndt, Paul Gunnells and Robert Sczech. In [Ber76], the

author investigated the infinite sumX
(m,n)∈Z2

m(cm+dn)6=0

1

m(cm + dn)
.

In [GS03], Gunnells and Sczech defined an infinite sum on a lattice which becomes

one of the motivations of what we are going to do next besides [Ber76]. Let L be

a rank l sublattice of Zd satisfying L = SatL where SatL = {m ∈ Zn : km ∈
L for some k ∈ Z} denotes the saturation of L. In other words, any Z-basis of L
can be extended to a Z-basis of Zn. Here

σ =
�

σ1 σ2 · · · σd

�
denotes an integral (d×d)-matrix with primitive columns σ1, · · · , σd.1 For v ∈ Rd,

define the Dedekind sum:

S(L, σ,v) = (2πi)−d
X′

x∈L

e2πi〈x,v〉

〈x, σ1〉 · · · 〈x, σd〉
.

This series only converges conditionally and Sczech discussed the convergence of

it in detail in [Scz93]. The dimensional one version of S(L, σ,v) is:X′

x∈Z

e2πivx

x
= B1(v) = v − [v] − 1

2
,

1the coordinates of σi are relatively prime as a d-tuple.
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which is the Sawtooth function we will encounter in Chapter 2.

We will continue our argument by letting (s1, s2) = (0, 0) in (1.11), and we

will get four infinite sums. For each of them, we will sum it over the whole lattice

Z2 excluding those points that make the denominators of the summands vanish.

Note that in our infinite sums defined over cones, there is an extra e−ǫ‖m‖2
in the

numerator which is absent from Gunnells and Sczech’s work. The existence of

this ǫ relaxed the condition for the series to converge, but allows us to investigate

the situation when ǫ → 0+. We denote m ∈ Z2 by (m, n) ∈ Z2 from this point

on. In conclusion, we get the following four different infinite sums:

⋄

S1(ǫ) =
X

(m,n)∈Z2

mn 6=0

1

mn
e−πǫ(m2+n2).

⋄

S2(ǫ, α, β) =
X

(m,n)∈Z2

n(αm+βn)6=0

α

n(αm + βn)
e−πǫ(m2+n2).

⋄

S3(ǫ, α, β, δ, γ) =
X

(m,n)∈Z2

(αm+βn)(δm+γn)6=0

| det M |
(αm + βn)(δm + γn)

e−πǫ(m2+n2),

where

M = (ω1, ω2) =

�
α δ

β γ

Ǒ
.

⋄

S4(ǫ, δ, γ) =
X

(m,n)∈Z2

m(δm+γn)6=0

γ

m(δm + γn)
e−πǫ(m2+n2).

Our research path splits into two different directions based on whether the

infinite sums are defined over integral cones or real cones:



6 Chapter 1. Introduction and Outline

1. When the cones are integral, we mainly investigate the sum:

f(ǫ, c, d) =
X

(m,n)∈Z2

m(cm+dn)6=0

ÓGǫ(m, n)

m(cm + dn)
=

X
(m,n)∈Z2

m(cm+dn)6=0

e−πǫ(m2+n2)

m(cm + dn)
,

and the following limit:

f(c, d) =
1

4π2
lim

ǫ→0+
f(ǫ, c, d) =

1

4π2
lim

ǫ→0+

X
(m,n)∈Z2

m(cm+dn)6=0

e−πǫ(m2+n2)

m(cm + dn)
.

Note that, f(ǫ, c, d) is essentially S4(ǫ, c, d). We proved a relationship be-

tween f(c, d) and the classical Dedekind sum s(c, d) in Chapter 2:

df(c, d) + cf(d, c) = s(c, d) + s(d, c) − arctan(d/c)

2π
− arctan(c/d)

2π
+

1

2
.

Note that there are several different representations for the classical Dedekind

sums. One of them involves the Sawtooth function:

s(c, d) =
d−1X
k=0

��
kc

d

����
k

d

��
.

Another representation uses cotangent functions. Let (h, k) = 1. Then

s(h, k) =
1

2π

∞X
n=1

n 6≡0(modk)

cot(πhn/k)

n
.

Historically, Dedekind sums are named after Richard Dedekind. He intro-

duced them to express the functional equation of the Dedekind eta function

in 1877 which we can find in [Ded53]. It has many other connections besides

the one we mentioned here. In 1951, Mordell published a paper [Mor51] in

J. Indian Math Soc. which first connected lattice points in a tetrahedron

with Dedekind sums, and thereafter led discrete geometry into a new era.

In [BR], Dedekind sums arise from the study of lattice point enumera-

tion of rational polytopes. Another interesting connection is mentioned in

[Pom93], the author found an expression for the codimension two part of
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the Todd class of an arbitrary toric variety given in terms of Dedekind sums.

In [GP00], Garoufalidis and Pommersheim used toric geometry to explain

properties of the values of zeta functions and Dedekind sums. The authors

also relate cones with Dedekind sums, but their approach is fundamentally

different from what we are doing here. Dedekins sums are also connected

to random number generating. In The Art of Computer Programming, vol-

ume 2 [Knu77], Donald Knuth pointed out that Dedekind sums happen to

be exactly the standard deviation of pseudo random number generators.

2. When the cones are real, we focus on the following sum:

f(ǫ, α, β) =
X

(m,n)∈Z2

(αm+n)(m+βn)6=0

e−πǫ(m2+n2)

(αm + n)(m + βn)
,

and the following limit:

lim
ǫ→0+

f(ǫ, α, β).

Note that f(ǫ, α, β) is essentially S3(ǫ, α, 1, 1, β). We proved that the infinite

series

f(ǫ, α, β) =
X

(m,n)∈Z2

(αm+n)(m+βn)6=0

e−πǫ(m2+n2)

(αm + n)(m + βn)

converges absolutely for each fixed ǫ > 0, where both α and β are quadratic

irrationals in Chapter 3.

We also look into another infinite sum:

f(ǫ, α, β, δ, γ) =
X

(m,n)∈Z2

(αm+βn)(δm+γn)6=0

e−πǫ(m2+n2)

(αm + βn)(δm + γn)
,

which is S3(ǫ, α, β, δ, γ) in essence. We prove that if αδ + βγ = 0, then the

infinite series limǫ→0+ f(ǫ, α, β, δ, γ) exists.

In Chapter 4, we answered the question: when are two Dedekind sums equal

to each other? Let b be a positive integer, and a1, a2 any two integers that are
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relatively prime to b. If the Dedekind sum s(a1, b) is equal to s(a2, b), then

b | (1 − a1a2)(a1 − a2).

In Chapter 5, we partially answered the following question: when are two

Zagier-Dedekind sums equal? We adopted the same technique used in Chapter 4

in our proof.

In the last part of this report, Chapter 6, we define a curve of generalized

centers for a finite point set. Given any finite point set S ⊆ Rd, and given r ≥ 1,

we define

µ(r) = arg min
x∈Rd

X
a∈S

||a − x||r,

so that µ : [1,∞) → Rd.

The motivation for us to define our µ-curve goes way back to Fermat. The

curve µ(r) is a generalization of the Fermat point. We generalize Weiszfeld’s

algorithm to find µ(r) by an iteration process. We prove that to a certain extent,

this curve captures the symmetric property of the original point set. We also

prove that the µ-curve is invariant under rigid motions. We conjecture that

nondegenerate µ-curves are uniquely determined by the point sets. An example

is given in support of this conjecture. In the end of this chapter, we give several

examples for the µ-curve both in two-dimension and three-dimension.



Chapter 2
Integral cones and classical Dedekind

sums

2.1 Cone decompositions

Dedekind sums arise naturally from decompositions of cones. Our main goal

in this chapter is to study a Dedekind–like function defined on two-dimensional

integral cones, and to interpret the reciprocity law of Dedekind sums as the

interplay of two adjacent integral cones.

Definition 2.1. A pointed polyhedral cone Kv ⊆ Rd is a set of the form

Kv = {v +
mX

k=1

λkωk |v ∈ R
d, all ωk ∈ R

d, all λk ≥ 0},

where v, ω1, · · · , ωm are such that there exists a hyperplane H for which H
TK =

{v}. Or equivalently, K does not contain an infinite line. The vector v is called

the apex of K.

All cones mentioned in this dissertation are pointed polyhedral cones unless

stated otherwise.

9
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Definition 2.2. For a pointed polyhedral cone Kv ⊆ Rd, we call a finite set

{ω1, ω2, · · · , ωm} generators of Kv if every element in K can be written as

{v +
mX

k=1

λkωk |v ∈ R
d, all ωk ∈ R

d, all λk ≥ 0}

where v is the vertex of K.

Definition 2.3. Let the finite set {ω1, ω2, · · · , ωm} be generators of a pointed

polyhedral cone Kv. The collection of vectors {e1, · · · , ed} is a minimal set of

generators for Kv provided that:

1. {e1, · · · , ed} are also generators of Kv.

2. m ≥ d.

3. If another collection of vectors {y1, · · · ,yd} generates the pointed cone Kv,

then up to reordering, it must be the case that yj is a scalar multiple of ej

for all j = 1, 2, · · · , d.

Any vector in a minimal set of generators for Kv is called an edge.

Definition 2.4. Define the first orthant cone to be:

K1st = R
d
≥0 = {(x1, x2, · · · , xd) ∈ R

d|x1 ≥ 0, x2 ≥ 0, · · · , xd ≥ 0}.

When the dimension is clear, we also use K1st to denote the first quadrant

cone:

K1st = R
2
≥0 = {(x, y) ∈ R

2|x ≥ 0, y ≥ 0}.

Let a pointed cone K be an integral cone in the first quadrant as shown in

Figure 2.1.

Let the two generators of K be ω1 = (a, b) ∈ Z2
>0 and ω2 = (c, d) ∈ Z2

>0.

Denote the pointed cone with generators ωy = (0, 1) and ω1 by Ky. Denote
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Figure 2.1: Decomposition of the first quadrant into three integral cones

the pointed cone with generators ω2 and ωx = (1, 0) by Kx. To avoid overlap,

we let every cone be half-open. For example, the first quadrant cone becomes

K1st = {(x, y) ∈ R2|x ≥ 0, y > 0}. From Figure 2.1, we can decompose the first

quadrant cone K1st into a disjoint union of three half-open cones:

K1st = Ky ∪ K ∪ Kx.

We can place the two generators of the pointed cone K as column vectors of

a matrix M :

M =
�

ω1 ω2

�
=

�
a c

b d

Ǒ
.

Note that the four entries of M are all positive integers.

Definition 2.5. For any cone K ⊆ Rd, we can associate an indicator function

1K to K which indicates membership of an element in K. Specifically,
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1K(x) =

8><>:1 if x ∈ K

0 otherwise.

From Figure 2.1 and the decomposition of the first quadrant cone K1st, we

get a nice identity about the indicator functions of the four cones K1st, Ky, K
and Kx :

1K1st = 1Ky + 1K + 1Kx. (2.1)

The presence of the indicator function of a cone allows us to apply Fourier trans-

forms to cones and thus leads to many amazing properties.

Definition 2.6. We define the Fourier transform of any compact set P ∈ Rd

as follows: Ó1P(y) =
Z

Rd
e−2πi〈x,y〉1P(x)dx =

Z
P

e−2πi〈x,y〉dx.

This integral converges for compact bodies P, but if we replace P with an

unbounded cone K, the convergence of the integral will not be guaranteed any-

more. In order to employ the methods of harmonic analysis, we need to consider

functions of complex variables. For this reason, we will let the variable y in the

above Fourier transform be a complex vector:

y = (z1, z2, · · · , zd) = m + is = (m1 + is1, m2 + is2, · · · , md + isd).

Definition 2.7. Let K ∈ R
d be a pointed cone with apex at the origin. The polar

cone K∗ is defined as

K∗ = {x ∈ R
d| 〈x,y〉 < 0 for all y ∈ K}.

Example 2.1. We give two examples of polar cones here.
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Figure 2.2: Cones and their polar cones

Lemma 2.1. The Fourier transform of the first orthant K1st ⊆ Rd
≥0 isÕ1K1st(m + is) =

�
1

2πi

�d dY
j=1

1

mj + isj
.

Proof. By Definition 2.6, we have:Õ1K1st(m + is) =
Z

R
d
≥0

e−2πi〈x,m+is〉dx, (2.2)

=
Z ∞

0
· · ·

Z ∞

0
e−2πix1(m1+is1) · · · e−2πixd(md+isd)dx1dx2 · · · dxd, (2.3)

=
e−2πix1(m1+is1)

−2πi(m1 + is1)
|∞0 · · · e−2πixd(md+isd)

−2πi(md + isd)
|∞0 , (2.4)

=
1

2πi(m1 + is1)
· · · 1

2πi(md + isd)
, (2.5)

=
�

1

2πi

�d dY
j=1

1

(mj + isj)
. (2.6)

In (2.3), as long as s1, s2, · · · , sd < 0, or equivalently, when s = (s1, s2, · · · , sd) ∈
K∗

1st, the integral will converge.

An example of Lemma 2.1 in R2 is as follows.
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Example 2.2. The Fourier transform of the first quadrant K1st ⊆ R2
≥0 isÕ1K1st(m + is) =

�
1

2πi

�2 1

(m1 + is1)(m2 + is2)
,

where s = (s1, s2) ∈ K∗
1st.

We will define simple cones and then give a general result of the Fourier

transform of simple cones in R2. To set off, we need to introduce the definition

of tangent cones.

Definition 2.8. Let P ∈ R
d be a non-empty polyhedron and let v ∈ P be a point.

We define the tangent cone of P at v by:

tcone(P,v) = {v + y : v + ǫy ∈ P for some ǫ > 0}.

This definition is given in [Bar08]. Here is an illustration of a polyhedron

P ∈ R2 and its tangent cones at three different points in P.

Figure 2.3: A polyhedron P and its tangent cones

Notice that the tangent cone tcone(P, B) is a half plane, and tcone(P, C) is

the whole plane R2.
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Definition 2.9. For a tangent cone K ⊆ Rd, if the number of its generators is

equal to the dimension of K, then we call K a simple cone .

Lemma 2.2. For any simple tangent cone K ⊆ R2 with generators ω1 = (a, b) ∈
Z2

>0 and ω2 = (c, d) ∈ Z2
>0, the Fourier transform of K is:Ó1K(m + is) =

�
1

2πi

�2 | det(M)|
〈ω1,m + is〉 〈ω2,m + is〉 ,

where (s1, s2) ∈ K∗ and

M =
�

ω1 ω2

�
=

�
a c

b d

Ǒ
.

Proof. The main idea is to find a linear transformation which could map the

simple tangent cone K ⊆ R2 bijectively onto the positive quadrant K1st, then by

applying Corollary 2.2, we can find the Fourier transform of any simple tangent

cone without much difficulty. According to Definition 2.6, we have:Ó1K(m + is) =
Z
K

e−2πi〈x,m+is〉dx, (2.7)

=
Z
K1st

e−2πi〈My,m+is〉| det(M)|dy, (2.8)

=
Z
K1st

e−2πi〈y,MT (m+is)〉| det(M)|dy, (2.9)

=
Z
K1st

e−2πi〈y,(〈ω1,m+is〉,〈ω2,m+is〉)〉| det(M)|dy, (2.10)

=
�

1

2πi

�2 | det(M)|
〈ω1,m + is〉 〈ω2,m + is〉 . (2.11)

In (2.8), we mapped K to K1st by letting K = MK1st where

M = (ω1, ω2) =

�
a c

b d

Ǒ
.

The reason for (2.10) to hold is because we have

MT =

�
a b

c d

Ǒ
,
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and

MT (m + is) =

�
a b

c d

Ǒ
(m + is),

= 〈(a, b),m + is〉 〈(c, d),m + is〉 ,

= 〈ω1,m + is〉 〈ω2,m + is〉 .

= (am1 + bm2 + i(as1 + bs2))(cm1 + dm2 + i(cs1 + ds2)).

Since (s1, s2) ∈ K∗, we always have as1 + bs2 < 0 and cs1 + ds2 < 0. Therefore

the convergence of the Fourier transform of K is guaranteed.Ó1K(m+ is) is in fact a rational function of s1 and s2, so it has a meromorphic

continuation of all vectors (s1, s2) ∈ C2.

Example 2.3. The Fourier transform of the cone Ky with generators ωy = (0, 1)

and ω1 = (a, b) is:Ô1Ky(m + is) =
�

1

2πi

�2 a

(m2 + is2)(a(m1 + is1) + b(m2 + is2))
,

where s = (s1, s2) ∈ K∗
y.

This is a direct application of Lemma 2.2 by letting

M = (ωy, ω1) =

�
0 a

1 b

Ǒ
.

Example 2.4. The Fourier transform of the cone Kx with generators ω2 =

(c, d) ∈ Z2
≥0 and ωx = (1, 0) is:Ô1Kx(m + is) =

�
1

2πi

�2 d

(m1 + is1)(c(m1 + is1) + d(m2 + is2))
,

where s = (s1, s2) ∈ K∗
x.
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This is also a direct application of Lemma 2.2, with

M = (ω2, ωx) =

�
c 1

d 0

Ǒ
.

Now let us go back to equation (2.1):

1K1st = 1Ky + 1K + 1Kx.

If we apply the Fourier transform to both sides of this equation, we will get

1

2πiz1

1

2πiz2

=
�

1

2πi

�2 a

z2(az1 + bz2)

+
�

1

2πi

�2 | det(M)|
(az1 + bz2)(cz1 + dz2)

+
�

1

2πi

�2 d

z1(cz1 + dz2)
. (2.12)

Further simplification of (2.12) gives us:

1

z1z2
=

a

z2(az1 + bz2)
+

| det(M)|
(az1 + bz2)(cz1 + dz2)

+
d

z1(cz1 + dz2)
,

where z = m + is = (m1 + is1, m2 + is2) = (z1, z2). We can view it as taking the

transforms on both sides of (2.1), or a “valuation” at any z = (m1+is1, m2+is2) ∈
C

2, therefore sending cones to rational functions[DR10].

Next we will introduce a class of rapidly decreasing functions: Schwartz func-

tions.

Definition 2.10. Let S be the collection of rapidly decreasing continuous func-

tions:

S(Rd) = {f ∈ C
∞(Rd)| ‖f‖α,β < ∞, ∀α, β},

where α, β ∈ Nd
0 are multi-indices, C∞(Rd) is the set of smooth functions from

Rd → C, and

‖f‖α,β = supx∈Rd|xαDβf(x)|.

When the dimension d is clear, we can also write S = S(Rd). In words, these are

the infinitely differentiable functions whose derivatives decrease faster than any

power of x at infinity. These functions have the properties that:
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1. If f(x) is in S, then the Fourier transform Ff(s) is in S.

2. If f(x) is in S, then F−1Ff = f .

We also refer to the functions in S simply as Schwartz functions . Here F
denotes the Fourier transform of a function:

Ff(s) =
Z

Rd
e−2πi〈s,t〉f(t)dt,

and F−1 denotes the inverse Fourier transform of a function:

F−1g(t) =
Z

Rd
e2πi〈s,t〉g(s)ds.

Definition 2.11. Let φ be a Schwartz function in Rd. ThenX
k∈Zd

Fφ(k) =
X
k∈Zd

φ(k).

This is called the Poisson Summation Formula.

This result also holds for some more subtle classes of functions (see Theo-

rem 3.1.7 in [Gra09] for a more detailed description of the Poisson Summation

Formula). An example is the function f(x) = e−2π‖x‖ where x ∈ Rn, and ‖ · ‖
denotes the Euclidean norm. This function does not belong to S, but the Poisson

Summation Formula is true for f and its Fourier transform.

The Poisson Summation Formula is an idea certainly at the heart of Fourier

analysis (the interested reader may consult the book [Osg07]). Indicator functions

of cones do not belong to S because they are not continuous in Rd, let alone

infinitely differentiable. If we want to apply the Poisson Summation Formula

in our analysis of cones, we need to modify the indicator function of a cone by

smoothing it out.

Definition 2.12. Let (S, σ, µ) be a measure space. Consider the set of all mea-

surable functions from S to C (or R) whose absolute value has finite integral, or

equivalently, that

||f ||1 :=
Z

S
|f |dµ < ∞.

The set of such functions form a vector space, which is denoted by L1(R).
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Definition 2.13 ([Sta05]). If g is in L1(R) and has mass 1 and g[ǫ] satisfies

g[ǫ](y) = ǫ−1g(ǫ−1y),

then the collection

{g[ǫ] : ǫ > 0}

of functions is called the approximate identity for convolution —or simply

the approximate identity—generated by g.

In light of this, we can smooth the indicator function of cones by convolving it

with Gaussian functions. The main reason for us to choose them as the candidates

of smoothing functions is because their Fourier transform is essentially themselves.

There are several different ways to define Gaussian functions. The reason why

we choose the following definition for a Gaussian function is because its Fourier

transform is relatively simpler than those of other Gaussians.

Definition 2.14. Define a Gaussian function Gǫ(x) on R
d as follows:

Gǫ(x) =
1

ǫd/2
e−

π
ǫ
‖x‖2

,

where ǫ > 0, x ∈ Rd, and ‖ · ‖ denotes the Euclidean norm.

Example 2.5. For example, a Gaussian function in R2 would be:

Gǫ(m, n) =
1

ǫ
e−

π
ǫ
(m2+n2),

where ǫ ∈ R>0. It has Fourier transform:ÓGǫ(m, n) = e−πǫ(m2+n2).

In Lemma 2.2, for any simple cone K ⊂ R2 with generators ω1 = (a, b) and

ω2 = (c, d), we can interpret the Fourier transform of K in a different way.



20 Chapter 2. Integral cones and classical Dedekind sums

Let z = (z1, z2) = (m + is1, n + is2) ∈ C2. We can write Ó1K(z) as:Ó1K(z) = Ó1K(m, n), (2.13)

=
�

1

2πi

�2 | detM |
〈ω1, z〉 〈ω2, z〉

, (2.14)

=
�

1

2πi

�2 | detM |
〈ω1, (m + is1, n + is2)〉 〈ω2, (m + is1, n + is2)〉

, (2.15)

=
�

1

2πi

�2 | detM |
(am + bn + i(as1 + bs2))(cm + dn + i(cs1 + ds2))

. (2.16)

Following this interpretation of the Fourier transform of a cone, the convolu-

tion of the Gaussian function Gǫ(m, n) and the indicator functions in (2.1) will

give us the modified indicator functions:

(1K1st ∗Gǫ)(m, n) = (1Ky ∗Gǫ)(m, n)+ (1K ∗Gǫ)(m, n)+ (1Kx ∗Gǫ)(m, n), (2.17)

where (m, n) ∈ R
2. The modified functions 1K ∗ Gǫ will fall in the category of

“nice” functions for any cone K. In other words, (1K ∗ Gǫ) ∈ S.

Now take the Fourier transform of (2.17) on both sides:

(Û1K1st ∗ Gǫ)(m, n) = (Ù1Ky ∗ Gǫ)(m, n)+(Ø1K ∗ Gǫ)(m, n)+(Ù1Kx ∗ Gǫ)(m, n). (2.18)

We know that if h(x) = (f ∗ g)(x), then bh(ξ) = bf(ξ)bg(ξ). As a result, (2.18)

becomes:Õ1K1st(m, n)ÓGǫ(m, n) = Ô1Ky(m, n)ÓGǫ(m, n)+Ó1K(m, n)ÓGǫ(m, n)+Ô1Kx(m, n)ÓGǫ(m, n).

(2.19)

We can sum both sides of (2.19) over the whole lattice Z2:X
(m,n)∈Z2

ÓGǫ(m, n)

(m + is1)(n + is2)
= a

X
(m,n)∈Z2

ÓGǫ(m, n)

(n + is2)(a(m + is1) + b(n + is2))

+ d
X

(m,n)∈Z2

ÓGǫ(m, n)

(m + is1)(c(m + is1) + d(n + is2))

+ | det(M)|
X

(m,n)∈Z2

ÓGǫ(m, n)

(a(m + is1) + b(n + is2))(c(m + is1) + d(n + is2))
.

(2.20)
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Here we applied the results from Example 2.2, Lemma 2.2 ,Example 2.3,

and Example 2.4 which give us the Fourier transforms of indicator functions.

2.2 Fourier transform of integral cones in R
2 and

classical Dedekind sums

To simplify our argument later, instead of analyzing the decomposition of the

first quadrant into three half-open cones as shown in Figure 2.1, we decompose

the first quadrant into a disjoint union of two half-open cones where the edge

belonging to K1 and adjacent to K2 is ω = (c, d) ∈ Z2
>0.

Figure 2.4: Decomposition of the first quadrant into two integral cones

Imagine that we squeeze the cone K in Figure 2.1 until it becomes a line ray.

We will then get a new decomposition of the first quadrant cone as is shown in

Figure 2.4. The decomposition of K1st becomes:

K1st = K1

[
K2.
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The relationship between the indicator functions of the three cones in Figure

2.4 is:

1K1st = 1K1 + 1K2.

By applying Lemma 2.2, Example 2.3 and Example 2.4, we have:

1

z1z2
=

c

z2(cz1 + dz2)
+

d

z1(cz1 + dz2)
, (2.21)

where z = (z1, z2) = (m + is1, n + is2) ∈ C
2. Now we fix (s1, s2) ∈ R

2. Following

the argument used previously in Section 2.1, we will get:X
(m,n)∈Z2

ÓGǫ(m, n)

(m + is1)(n + is2)
= c

X
(m,n)∈Z2

ÓGǫ(m, n)

(n + is2)(c(m + is1) + d(n + is2))

+ d
X

(m,n)∈Z2

ÓGǫ(m, n)

(m + is1)(c(m + is1) + d(n + is2))
.

(2.22)

We now turn our attention to the second sum on the right hand side of (2.22):X
(m,n)∈Z2

ÓGǫ(m, n)

(m + is1)(c(m + is1) + d(n + is2))
. (2.23)

In [Ber76], the author investigated the infinite sumX
(m,n)∈Z2

m(cm+dn)6=0

1

m(cm + dn)
,

which is one of the motivations for what we are going to do next. Another

motivation for us to choose the direction of our work comes from [GS03]. The

authors defined an infinite sum on a lattice which looks very similar to what

we have here. Let L be a rank l sublattice of Z
d satisfying L = SatL where

SatL = {m ∈ Zn : dm ∈ L for some d ∈ Z} denotes the saturation of L. In

other words, any Z-basis of L can be extended to a Z-basis of Zn. Note that σ

denotes an integral (d×d)-matrix with primitive columns σ1, · · · , σd.1 For v ∈ Rd,

define

S(L, σ,v) = (2πi)−d
X
x∈L

e〈x,v〉

〈x, σ1〉 · · · 〈x, σd〉
.

1the coordinates of σi are relatively prime as a d-tuple.
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Due to the above reasons, we define the following infinite sum based on (2.23).

Definition 2.15. Define an infinite series f(ǫ, c, d) by letting (s1, s2) = (0, 0) in

(2.23). We will remove two lines m = 0 and cm + dn = 0 from the whole lattice

Z2 :

f(ǫ, c, d) =
X

(m,n)∈Z2

m(cm+dn)6=0

ÓGǫ(m, n)

m(cm + dn)
=

X
(m,n)∈Z2

m(cm+dn)6=0

e−πǫ(m2+n2)

m(cm + dn)
.

We wish to exclude the two straight lines m = 0, and cm + dn = 0 in the

definition of f(ǫ, c, d) because the denominator of all summands vanish at points

on those two lines. We are interested in the asymptotic behavior of f(ǫ, c, d) when

ǫ → 0+.

Definition 2.16. Define

f(c, d) =
1

4π2
lim

ǫ→0+
f(ǫ, c, d) =

1

4π2
lim

ǫ→0+

X
(m,n)∈Z2

m(cm+dn)6=0

e−πǫ(m2+n2)

m(cm + dn)
.

We will find out later that f(c, d) defined here is closely related to the classical

Dedekind sums s(c, d). A nice relationship between these two functions is given

later and we would like to remind the reader that the technique introduced by

Q. N. Le and S. Robins [LR11] plays a pivotal rule.

Definition 2.17. Define the first Bernoulli polynomial

B1(x) =

8><>:x − 1
2

if x ∈ [0, 1],

0 otherwise.

The Fourier transform of B1 is:ÓB1(ξ) =
Z 1

0
(x − 1

2
)e−2πixξdx,

=
e2πiξ − 1

4π2ξ2
+

e2πiξ + 1

−4πiξ
.
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When ξ ∈ Z6=0, we have ÓB1(ξ) = − 1

2πiξ
. (2.24)

When ξ = 0, it is easy to see that ÓB1(ξ) = 0. If B
′

1(x) = B1(x − x0) for some

x0 ∈ R, then B
′

1 lives on the interval [x0, x0 + 1]. The translation property of the

Fourier transform says: ÓB′

1(ξ) = e−2πix0ξÓB1(ξ).

Definition 2.18. Define a two-dimension function F as follows:

F (x1, x2) =

8><>:B1(x1)B1(x2) if x1 ∈ [0, 1] and x2 ∈ [0, 1],

0 otherwise.

=

8><>:(x1 − 1
2
)(x2 − 1

2
) if x1 ∈ [0, 1] and x2 ∈ [0, 1],

0 otherwise.

F is a product of two Bernoulli polynomials of independent variables. The

Fourier transform of F is:ÒF (ξ1, ξ2) =
Z 1

0

Z 1

0

�
x1 −

1

2

��
x2 −

1

2

�
e−2πix1ξ1e−2πix2ξ2dx1dx2,

=
Z 1

0

�
x1 −

1

2

�
e−2πix1ξ1dx1

Z 1

0

�
x2 −

1

2

�
e−2πix2ξ2dx2,

=

 
e2πiξ1−1

4π2ξ2
1

+
e2πiξ1+1

−4πiξ1

! 
e2πiξ2−1

4π2ξ2
2

+
e2πiξ2+1

−4πiξ2

!
.

When ξ1 ∈ Z6=0 and ξ2 ∈ Z6=0, we have:ÒF (ξ1, ξ2) = − 1

4π2ξ1ξ2

.

When ξ1 = 0 or ξ2 = 0, we have:ÒF (ξ1, ξ2) = 0.

Lemma 2.3. Let ω1 = (α, β) ∈ Z2, and ω2 = (δ, γ) ∈ Z2. Let

K =

�
ωT

1

ωT
2

Ǒ
=

�
α β

δ γ

Ǒ
∈ GL2(Z).
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Denote the inverse transpose of K by K−T . Let ξ ∈ Z2
6=0. Denote F ◦ K−T (ξ) by

F(ξ). Then we have:

bF(ξ) = (ÚF ◦ K−T )(ξ) =

8>><>>:− | detK|
4π2 〈ωT

1 , ξ〉 〈ωT
2 , ξ〉 if

¬
ω1

T , ξ
¶ ¬

ω2
T , ξ

¶
6= 0,

0 otherwise.

The proof of this lemma follows from Theorem B.1 in Appendix B.

Our goal is to study

f(c, d) =
1

4π2
lim

ǫ→0+

X
(m,n)∈Z2

m(cm+dn)6=0

e−πǫ(m2+n2)

m(cm + dn)
.

The denominator in the summand of f(c, d) is a product of two inner products:

m(cm + dn) = 〈(1, 0), (m, n)〉 × 〈(c, d), (m, n)〉 .

As shown in Figure 2.4, we denote ω = (c, d) ∈ Z2
>0 and ωx = (1, 0). Let

J =

�
ωT

ωT
x

Ǒ
=

�
c d

1 0

Ǒ
.

We have det J = −d, and J−T =

�
0 1/d

1 −c/d

Ǒ
. From the definition of F in

Lemma 2.3, we have

F(ξ1, ξ2) = F
�
J−T (ξ1, ξ2)

�
= F

�
ξ2

d
, ξ1 −

cξ2

d

�
, (2.25)

where ξ = (ξ1, ξ2) ∈ Z2
6=0.

Lemma 2.3 also tells us thatbF(ξ1, ξ2) =

8>><>>:− | det J |
4π2ξ1(cξ1 + dξ2)

= − d

4π2ξ1(cξ1 + dξ2)
if ξ1(cξ1 + dξ2) 6= 0,

0 otherwise.
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On the one hand,

lim
ǫ→0+

X
(m,n)∈Z2

bF(m, n)ÓGǫ(m, n)

= lim
ǫ→0+

X
(m,n)∈Z2

bF(m, n)e−πǫ(m2+n2), (2.26)

= lim
ǫ→0+

X
(m,n)∈Z2

m(cm+dn)6=0

�
− d

4π2

�
e−πǫ(m2+n2)

m(cm + dn)
, (2.27)

= −df(c, d). (2.28)

By Lemma 2.3, when m(cm + dn) = 0, we have bF(m, n) = 0. Therefore the

equality in (2.27) holds.

On the other hand, the Poisson summation formula guarantees that:X
(m,n)∈Z2

bF(m, n)ÓGǫ(m, n) =
X

(m,n)∈Z2

×F ∗ Gǫ(m, n) =
X

(m,n)∈Z2

(F ∗ Gǫ) (m, n).

So we hope to give another identity of limǫ→0+

P
(m,n)∈Z2

bF(m, n)ÓGǫ(m, n) by an-

alyzing
P

(m,n)∈Z2 (F ∗ Gǫ) (m, n) more carefully.

The function F(m, n) = F ◦ J−T (m, n) lives on a region where F(m, n) 6=
0. The definition of F implies that J−T (m, n) ∈ [0, 1] × [0, 1] (or equivalently

(m, n) ∈ JT ([0, 1] × [0, 1])) if and only if F(m, n) 6= 0. Thus the support of F is

the parallelogram H with vertices (0, 0), (1, 0), (c + 1, d), and (c, d). The reason

is as follows:

J =

�
c d

1 0

Ǒ
,

then we have

JT

�
1

0

Ǒ
=

�
c 1

d 0

Ǒ�
1

0

Ǒ
=

�
c

d

Ǒ
,

and similarly, JT

�
0

1

Ǒ
=

�
1

0

Ǒ
, JT

�
1

1

Ǒ
=

�
c + 1

d

Ǒ
.

Hence,
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Figure 2.5: The parallelogram where F lives

supp(F ) = H = {(m, n) ∈ R
2| (m, n) ∈ JT ([0, 1] × [0, 1])}, (2.29)

= {(cm + n, dm) ∈ R
2| (m, n) ∈ [0, 1] × [0, 1]}, (2.30)

= {(x1, x2) ∈ R
2| x1 ∈

�cx2

d
,
cx2

d
+ 1

�
, x2 ∈ [0, d]}. (2.31)

Our aim here is to analyze
P

(m,n)∈Z2 (F ∗ Gǫ) (m, n). We will introduce a

lemma [LR11] which incorporates a class of functions defined on a polytope P
and the solid angle defined on P.

Lemma 2.4. If f is a continuous function on the polytope P in Rd, and is zero

outside P, then for all x ∈ Rd,

lim
ǫ→0+

(f ∗ Gǫ)(x) = f(x)ωP(x).
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Here ωP(x) denotes the solid angle of P at x.

Proof. We can compute (f ∗ Gǫ) according to the definition of convolution in

Fourier analysis. We remind our reader of the definition of Gaussian functions

given by Definition 2.14:

Gǫ(x) =
1

ǫd/2
e−

π
ǫ
‖x‖2

.

(f ∗ Gǫ)(x) =
Z

Rd
f(y)Gǫ(x − y)dy, (2.32)

=
Z
P

f(y)Gǫ(x − y)dy, (2.33)

=
Z
P

f(y)Gǫ(y − x)dy, (2.34)

let u = y − x

=
Z

T−x(P)
f(u + x)Gǫ(u)du, (2.35)

=
Z

1
ǫ
T−x(P)

f(x + v
√

ǫ)G1(v)dv. (2.36)

Here T−x(P) denotes the translation of P by the vector −x. Since the polytope

P is closed and bounded, the function f is uniformly continuous. Thus, when ǫ

approaches 0, the limit of f ∗ Gǫ(x) is:

lim
ǫ→0+

(f ∗ Gǫ)(x) = f(x)
Z
K

G1(v)dv,

= f(x)ωKx
(0),

= f(x)ωP(x),

where Kx is the tangent cone of P at the vertex x.



2.2 Fourier transform of integral cones in R2 and classical Dedekind

sums 29

We can interpret limǫ→0+

P
(m,n)∈Z2

bF(m, n)ÓGǫ(m, n) from this point of view.

lim
ǫ→0+

X
(m,n)∈Z2

m(cm+dn)6=0

bF(m, n)ÓGǫ(m, n) = lim
ǫ→0+

X
(m,n)∈Z2

bF(m, n)ÓGǫ(m, n), (2.37)

= lim
ǫ→0+

X
(m,n)∈Z2

×F ∗ Gǫ(m, n), (2.38)

= lim
ǫ→0+

X
(m,n)∈Z2

(F ∗ Gǫ)(m, n), (2.39)

=
X

(x1,x2)∈Z2∩H

F(x1, x2)ωH(x1, x2), (2.40)

=
dX

x2=0

� X
x1∈Z∩[

cx2
d

,
cx2
d

+1]

F(x1, x2)ωH(x1, x2)

Ǒ
.

(2.41)

Here (2.39) is true due to the Poisson Summation Formula, and (2.40) holds

because of Lemma 2.4.

Let the inner sum in (2.41) be:

f(x2) =
X

x1∈Z∩[
cx2
d

,
cx2
d

+1]

F(x1, x2)ωH(x1, x2).

⋄ We consider the case when x2 6= 0 and x2 6= d first.

1. If
cx2

d
is an integer, then

f(x2) =
1

2

�
F

�cx2

d
, x2

�
+ F

�cx2

d
+ 1, x2

��
,

=
1

2

�
F
�x2

d
, 0
�

+ F
�x2

d
, 1
��

,

=
1

2

�
B1

�x2

d

��
−1

2

�
+ B1

�x2

d

��1

2

��
,

= 0 =
��cx2

d

��
= −

��x2

d

�� ��cx2

d

��
.
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2. If
cx2

d
is not an integer, then

f(x2) = 1 · F
��cx2

d

�
+ 1, x2

�
,

= F
�x2

d
,
�cx2

d

�
+ 1 − cx2

d

�
,

=
��x2

d

�� ��
1 − {cx2

d
}
��

,

= −
��x2

d

�� ��cx2

d

��
.

Here we use the following identities of Sawtooth functions :

((−x)) = ((1 − x)) = − ((x))

and

(({x})) = ((x)),

for all x /∈ Z.

Figure 2.6: Sawtooth function

In conclusion, when x2 6= 0 and x2 6= d, we have:X
x1∈Z∩[

cx2
d

,
cx2
d

+1]

F(x1, x2)ωH(x1, x2) = −
��x2

d

�� ��cx2

d

��
.

⋄ When x2 = 0. Let θ = ωH(0, 0), then from Figure 2.5 we have ωH(0, 0) =

ωH(c + 1, d) =
arctan(d/c)

2π
. And we have ωH(1, 0) = ωH(c, d) = 1

2
− θ.
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When x2 = 0, we have:

f(x2) = f(0) = F(0, 0) · ωH(0, 0) + F(1, 0) · ωH(1, 0), (2.42)

= F (0, 0)θ + F (0, 1)(
1

2
− θ), (2.43)

=
1

4
θ +

�
−1

4

��
1

2
− θ

�
, (2.44)

=
1

2
θ − 1

8
. (2.45)

Here (2.43) is due to the definition of F in (2.25).

⋄ When x2 = d, we have:

f(x2) = f(d) = F(c, d) · ωH(c, d) + F(c + 1, d) · ωH(c + 1, d), (2.46)

= F (1, 0)
�

1

2
− θ

�
+ F (1, 1)θ, (2.47)

=
�
−1

4

��
1

2
− θ

�
+

1

4
θ, (2.48)

=
1

2
θ − 1

8
. (2.49)

Here (2.46) is due to the definition of F in (2.25) as well.

Therefore (2.41) becomes:

lim
ǫ→0+

X
(m,n)∈Z2

m(cm+dn)6=0

bF(m, n)ÓGǫ(m, n) (2.50)

= −
d−1X
x2=1

��x2

d

�� ��cx2

d

��
+
�

1

2
θ − 1

8

�
+
�

1

2
θ − 1

8

�
, (2.51)

= −
d−1X
x2=1

��x2

d

�� ��cx2

d

��
+ θ − 1

4
, (2.52)

= −
dX

x2=1

��x2

d

�� ��cx2

d

��
+

arctan(d/c)

2π
− 1

4
, (2.53)

= −s(c, d) +
arctan(d/c)

2π
− 1

4
. (2.54)

So (2.28) becomes:

−s(c, d) +
arctan(d/c)

2π
− 1

4
= −df(c, d), (2.55)
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or equivalently:

df(c, d) = s(c, d) − arctan(d/c)

2π
+

1

4
. (2.56)

This result gives us the main theorem in this chapter.

Theorem 2.1. (Wang) Let c and d be positive integers. Define

f(c, d) =
1

4π2
lim

ǫ→0+

X
(m,n)∈Z2

m(cm+dn)6=0

e−πǫ(m2+n2)

m(cm + dn)
,

then we have:

df(c, d) = s(c, d) − arctan(d/c)

2π
+

1

4
.

Corollary 2.1. (Wang)

cf(d, c) = s(d, c) − arctan(c/d)

2π
+

1

4
. (2.57)

This is a direct corollary of Theorem 2.1 by exchanging c and d.

Adding up the two equations (2.56) and (2.57) gives us:

df(c, d)+cf(d, c) = s(c, d)+s(d, c)− arctan(d/c)

2π
− arctan(c/d)

2π
+

1

2
. (2.58)

Now let’s take a look at a right triangle with leg lengths equal to c and d.

From Figure 2.7, we have

θ1 =
arctan(c/d)

2π
,

θ2 =
arctan(d/c)

2π
,

and

θ1 + θ2 =
arctan(c/d)

2π
+

arctan(d/c)

2π
=

π

2
=

1

4
. (2.59)
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Figure 2.7: A right triangle

The equality (2.59) together with (2.58) lead us to a very nice relationship

between f(c, d) and s(c, d).

Corollary 2.2. (Wang) Let

f(c, d) =
1

4π2
lim

ǫ→0+

X
(m,n)∈Z2

m(cm+dn)6=0

e−πǫ(m2+n2)

m(cm + dn)
,

for (c, d) ∈ Z2
>0. Then the following identity holds:

df(c, d) + cf(d, c) = s(c, d) + s(d, c) +
1

4
,

where s(c, d) is the classical Dedekind sum.

This result follows directly from (2.58) and (2.59).

Corollary 2.3. (Wang) Let

f(c, d) =
1

4π2
lim

ǫ→0+

X
(m,n)∈Z2

m(cm+dn)6=0

e−πǫ(m2+n2)

m(cm + dn)
,

for (c, d) ∈ Z2
>0. Then the following identity is true:

df(c, d) + cf(d, c) =
1

12

�
c

d
+

d

c
+

1

cd

�
.
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Before we proceed to our next chapter, we would like to mention another

representation of classical Dedekind sums [Ber76]. Let (h, k) = 1. Then

s(h, k) =
1

2π

∞X
n=1

n 6≡0(modk)

cot(πhn/k)

n
.

What is worth mentioning here is in [Ber76], the sum

f(θ) = lim
N→∞

1

2π
{

X
0<m/h<RN
m6≡0(modh)

cot(πm/θ)

m
+

X
0<n/k<RN
n 6≡0(modk)

cot(πnθ)

n
}

converges for any irrational θ, but the individual two sums diverge. When θ is

irrational, then

f(θ) =
1

12

�
θ +

1

θ

�
− 1

4
.

Recall the infinite sum defined in Definition 2.15:

f(ǫ, c, d) =
X

(m,n)∈Z2

m(cm+dn)6=0

e−πǫ(m2+n2)

m(cm + dn)
.

and its limit defined by Definition 2.16:

f(c, d) =
1

4π2
lim

ǫ→0+

X
(m,n)∈Z2

m(cm+dn)6=0

e−πǫ(m2+n2)

m(cm + dn)
.

We will extend the infinite sum f(ǫ, c, d) from integer parameters to real pa-

rameters in Chapter 3. We will look at a more general sum:

f(ǫ, α, β, δ, γ) =
X

(m,n)∈Z2

(αm+βn)(δm+γn)6=0

e−πǫ(m2+n2)

(αm + βn)(δm + γn)
,

and prove this extended infinite sum converges when both
α

β
and

γ

δ
are quadratic

irrational numbers. Furthermore, we will prove that the limit limǫ→0+ f(ǫ, α, β, δ, γ)

exists when
βγ

αδ
= −1.



Chapter 3
Real cones and a certain infinite series

3.1 Fourier transform of real cones

Our main goal in this chapter is to discuss the convergence of an infinite series

defined over real cones. In Chapter 2, we investigated an infinite sum defined

over integral cones which is closely related to the classical Dedekind sums. Here

we will extend the sum and proceed over real cones using the same argument,

developed earlier in Chapter 2.

Figure 3.1: Decomposition of the first quadrant into three real cones

35
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As in Chapter 2, we decompose the first quadrant K1st into a disjoint union

of three half-open real cones as shown in Figure 3.1: Ky, K, and Kx. We have

the following decomposition:

K1st = Ky

[
K
[

Kx. (3.1)

Denote the generators of K by ω1 = (α, β) ∈ R2
>0 and ω2 = (γ, δ) ∈ R2

>0. Then

we have the generators of Ky are ωy = (0, 1) and ω1. The generators of Kx are

ω2 and ωx = (1, 0).

From (3.1), we find a relationship involving the indicator functions of three

real cones:

1K1st(x) = 1Ky(x) + 1K(x) + 1Kx(x), (3.2)

where x ∈ R
2, and 1K is the indicator function defined in Definition 2.5. Next

we multiply both sides of (3.2) by a factor e2π<x,s>:

1K1st(x)e2π<x,s> = 1Ky(x)e2π<x,s> + 1K(x)e2π<x,s> + 1Kx(x)e2π<x,s>, (3.3)

where s ∈ R2. The reason for us to do so is to guarantee the convergence of

Fourier transform (see Definition 2.6) of indicator functions.

Taking the convolution of 1K(x)e2π<x,s> in (3.3) with Gaussian gives us:

1K1st(x)e2π<x,s> ∗ Gǫ(x) = 1Ky(x)e2π<x,s> ∗ Gǫ(x) + 1K(x)e2π<x,s> ∗ Gǫ(x)

+ 1Kx(x)e2π<x,s> ∗ Gǫ(x), (3.4)

where

Gǫ(x) =
1

ǫ
e−

π
ǫ
‖x‖2

,

for x ∈ R2, and its Fourier transform is:ÓGǫ(s) = e−πǫ‖s‖2

.

Then we take the Fourier transform of both sides in (3.4):

F
�
1K1st(x)e2π<x,s> ∗ Gǫ(x)

�
= F

�
1Ky(x)e2π<x,s> ∗ Gǫ(x)

�
+ F

�
1K(x)e2π<x,s> ∗ Gǫ(x)

�
+ F

�
1Kx(x)e2π<x,s> ∗ Gǫ(x)

�
,
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We know that if h(x) = (f ∗ g)(x), then bh(ξ) = bf(ξ)bg(ξ). Following this property

of convolution in Fourier analysis, the above equation is equivalent to:Û1K1st(x)e2π<x,s>e−πǫ‖x‖2

= Û1Ky(x)e2π<x,s>e−πǫ‖x‖2

+ Û1K(x)e2π<x,s>e−πǫ‖x‖2

+ Û1Kx(x)e2π<x,s>e−πǫ‖x‖2

. (3.5)

Theorem B.3 in Appendix B allows us to simplify (3.5) to:Õ1K1st(x + is)e−πǫ‖x‖2

= Ô1Ky(x + is)e−πǫ‖x‖2

+ Ó1K(x + is)e−πǫ‖x‖2

+ Ô1Kx(x + is)e−πǫ‖x‖2

. (3.6)

We will use m + is instead of x + is from now on.

Now we sum both sides of (3.6) over the whole lattice Z
2:X

m∈Z2

Õ1K1st(m + is)e−πǫ‖m‖2

=
X

m∈Z2

Ô1Ky(m + is)e−πǫ‖m‖2

+
X

m∈Z2

Ó1K(m + is)e−πǫ‖m‖2

+
X

m∈Z2

Ô1Kx(m + is)e−πǫ‖m‖2

. (3.7)

Let z = (z1, z2) = m + is = (m + is1, n + is2) ∈ C2. According to Example

2.2, Lemma 2.2, Example 2.3, and Example 2.4, we have:

e−πǫ(m2+n2)

z1z2
=

αe−πǫ(m2+n2)

〈ωy,m + is〉 〈ω1,m + is〉 +
γe−πǫ(m2+n2)

〈ωx,m + is〉 〈ω2,m + is〉

+
| detM |e−πǫ(m2+n2)

〈ω1,m + is〉 〈ω2,m + is〉 ,

which can also be written as:X
(m,n)∈Z2

e−πǫ(m2+n2)

(m + is1)(n + is2)

= α
X

(m,n)∈Z2

e−πǫ(m2+n2)

(n + is2)(αm + βn + i(αs1 + βs2))

+ γ
X

(m,n)∈Z2

e−πǫ(m2+n2)

(m + is1)(δm + γn + i(δs1 + γs2))

+ | det M |
X

(m,n)∈Z2

e−πǫ(m2+n2)

(αm + βn + i(αs1 + βs2))(δm + γn + i(δs1 + γs2))
.

(3.8)
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Here the matrix M is defined as :

M =

�
ωT

1

ωT
2

Ǒ
=

�
α β

δ γ

Ǒ
,

where ω1 = (α, β) and ω2 = (δ, γ) are the two generators of cone K.

We will focus on an infinite sum by letting (s1, s2) = (0, 0) in the following

sum appearing on the right hand side of (3.8):X
(m,n)∈Z2

ÓGǫ(m, n)

(αm + βn + i(αs1 + βs2))(δm + γn + i(δs1 + γs2))
.

We will define a new infinite sum based on it excluding two lines: αm + βn = 0

and δm + γn = 0. As mentioned in Chapter 2, the motivation for us to focus on

the following sum comes from [Ber76] and [GS03].

Definition 3.1. Define

f(ǫ, α, β, δ, γ) =
X

(m,n)∈Z2

(αm+βn)(δm+γn)6=0

e−πǫ(m2+n2)

(αm + βn)(δm + γn)
,

where ǫ ∈ R>0, α, β, δ, γ ∈ R.

We would like to mention the fact that f(ǫ, α, β, δ, γ) in Definition 3.1 is an

extension of f(ǫ, c, d) in Definition 2.15. If we let α = 1, β = 0, δ = c, and γ = d,

then f(ǫ, α, β, δ, γ) = f(ǫ, 1, 0, c, d) = f(ǫ, c, d).

We will answer the following two questions with respect to f(ǫ, α, β, δ, γ):

1. Is the infinite sum f(ǫ, α, β, δ, γ) convergent?

2. What is the asymptotic behavior of f(ǫ, α, β, δ, γ)? In other words, does the

limit limǫ→0+ f(ǫ, α, β, δ, γ) exist?

We first introduce some formal definitions [Grü03] related to polytopes and

tangent cones.
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Definition 3.2. Let K be a convex subset of Rd. A point x ∈ K is an extreme

point of K provided given any y, z ∈ K, and any 0 < λ < 1, such that x =

λy + (1 − λ)z, we must have x = y = z.

In other words, x is an extreme point of K if it does not belong to the relative

interior of any segment contained in K.

Definition 3.3. Let K be a convex subset of R
d. A set F ∈ K is a face of K if

either F = φ or F = K, or if there exists a supporting hyperplane H of K such

that F = K
T

H.

Definition 3.4. A compact convex set K ∈ Rd is a polytope provided K has

finitely many extreme points.

Definition 3.5. We can attach a cone to each face F of a polytope P, namely

its tangent cone , defined by

KF = {x + λ(y − x) : x ∈ F,y ∈ P, λ ≥ 0}.

The tangent cone of F is the union of all rays that have a base point in F and

point “towards” P.

Recall that in Chapter 2, we defined a tangent cone of a polyhedron at some

point v in Definition 2.8. Let P ∈ Rd be a non-empty polyhedron and let v ∈ P
be a point. We define the tangent cone of P at v by:

tcone(P,v) = {v + y : v + ǫy ∈ P for some ǫ > 0}.

In other words, the tangent cone of P at v is the union of all rays that share the

base point v and point “towards” P, which is consistent with Definition 3.5.

Definition 3.6 ([DR10],[BR07]). Suppose P ∈ Rd is a convex d−polytope. The

solid angle ωP(x) of a point x with respect to P equals the proportion of a small

ball centered at x that is contained in P.
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Consider the solid angle ωP(n) at a lattice point n ∈ Zd in a polytope P :

ωP(n) = lim
ǫ→0+

1

ǫd/2

Z
P

e−
π
ǫ
||t−n||2dt.

This definition arises from a Gaussian function centering at n with respect to

l2-norm that is normalized to have a total mass of 1 and then integrating to

calculate the proportion of mass contained in P.

For ǫ > 0, and t ∈ Rd, we define

φǫ(t) =
1

ǫd/2
e−

π
ǫ
||t||2.

Therefore, ωP(n) becomes the convolution of the indicator function 1P and φǫ:

ωP(n) = lim
ǫ→0+

Z
P

φǫ(t − n)dt, (3.9)

= lim
ǫ→0+

Z
P

φǫ(n− t)dt, (3.10)

= lim
ǫ→0+

Z
t∈Rd

1P(t)φǫ(n − t)dt, (3.11)

= lim
ǫ→0+

(1P ∗ φǫ)(n). (3.12)

Now we introduce a discrete volume AP =
P

n∈Zd ωP(n), which is an approx-

imation of the volume of P [DeS].

Definition 3.7. For any pointed polyhedral cone Kv ∈ Rd, we define a deter-

minant of the cone as:

| detKv| = | det(w1(v),w2(v), · · · ,wd)|,

where wk(v) (k = 1, 2, · · · , d) denote the generators of Kv.

Suppose a polytope P ∈ Rd has N many vertices v1,v2, · · · ,vN . Denote the



3.1 Fourier transform of real cones 41

tangent cone at each vertex vj by Kvj
(j = 1, 2, · · · , N). Then we have:

AP =
X
n∈Zd

ωP(n), (3.13)

=
X
n∈Zd

lim
ǫ→0+

(1P ∗ φǫ)(n), (3.14)

= lim
ǫ→0+

X
n∈Zd

(1P ∗ φǫ)(n), (3.15)

= lim
ǫ→0+

X
n∈Zd

Ø1P ∗ φǫ(n), (3.16)

= lim
ǫ→0+

X
n∈Zd

Ó1P(n)φǫ(n), (3.17)

= lim
ǫ→0+

X
n∈Zd\V

�
| detKv1

|e〈v1,n〉Qd
k=1 〈wk(v1),n〉

+ · · · +
| detKvN

|e〈vN,n〉Qd
k=1 〈wk(vN),n〉

�
e−ǫπ||n||2

+ lim
ǫ→0+

X
n∈V

b1P(n)e−ǫπ||n||2. (3.18)

where wk(vj)(k = 1, 2, · · · , d) denote the generators of the tangent cone Kvj
, and

V denotes the set of vectors which are orthogonal to any wk(vj), j = 1, 2, · · · , N.

In (3.15) we exchanged summation and limit. The reason is as follows: we know

that 1P ∗φǫ(n) ∈ L1(R), therefore dominated convergence theorem guarantees us

that we can interchange the sum and limit 1; (3.16) is due to Poisson-summation

formula [Osg07]; (3.17) is due to a well-known identity: the Fourier transform of

a convolution of two functions is equal to the product of the Fourier transform

of both functions; the last equality (3.18) is due to Brion’s theorem (the proof

of Brion’s theorem can be found in [BR07] or Theorem A.3 in Attachment A).

Note that when vj is the origin, then the term e〈vj ,n〉 in (3.18) is equal to 1.

Example 3.1. To illustrate AP , we look at an example where P is a triangle in

R2 with vertices v1 = (0, 0), v2 = (0, 1) and v3 = (
√

2, 0).

1 we know that 1P ∗ φǫ(n) =
R
P

1

ǫd/2 e−
π
ǫ ‖n−t‖dt. When ǫ is very small, we have

limǫ→0+(1P ∗φǫ(n)) = ωP(n), which is the solid angle at n in P ; when ǫ is big enough, we haveR
P

1

ǫd/2 e−
π
ǫ ‖n−t‖dt ≤

R
P

1

ǫd/2 e−π‖n−t‖dt ≤
R
P e−π‖n−t‖dt, and the latter integral is convergent.
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Figure 3.2: The triangle P and its real tangent cones

We have

| detKv1 | = | det

�
1 0

0 1

Ǒ
| = 1,

| detKv2 | = | det

�
0

√
2

−1 −1

Ǒ
| =

√
2,

| detKv3 | = | det

�
−
√

2 −1

1 0

Ǒ
| = 1.

For the cones Kv1 ,Kv2 and Kv3 , the denominator in (3.18) becomes:

dY
k=1

〈wk(v1),n〉 = n1n2,

dY
k=1

〈wk(v2),n〉 = (−n2)(
√

2n1 − n2),

and
dY

k=1

〈wk(v3),n〉 = (−n1)(−
√

2n1 + n2).
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Remark 3.1. Note that for any cone in R2 with generators ω1 = (a, b) and

ω2 = (c, d), as long as b, c 6= 0, we can always write
Q2

k=1 〈wk(vi),n〉 in the form

of C(αm + n)(m + βn) where C ∈ R is some constant, and α, β ∈ R.

There is an infinite series arising from (3.18):

f(ǫ, α, β) =
X

(m,n)∈Z2

(αm+n)(m+βn)6=0

e−πǫ(m2+n2)

(αm + n)(m + βn)
,

assuming the vertex of the cone is identical with the origin. This infinite series

is a simplified version of the infinite series defined in Definition 3.1. From now

on we focus on the convergence of this series and the existance of the limit:

lim
ǫ→0+

f(ǫ, α, β).

Theorem 3.2. (Wang)

The infinite series

f(ǫ, α, β) =
X

(m,n)∈Z2

(αm+n)(m+βn)6=0

e−πǫ(m2+n2)

(αm + n)(m + βn)

converges absolutely for each fixed ǫ > 0, where both α and β are quadratic irra-

tionals.

3.2 Proof of the convergence property of an infi-

nite sum defined on real cones, and Diophan-

tine analysis

Before we proceed to the proof of Theorem 3.2, we recall the definition of

quadratic irrationals first, and then give another definition describing how near a

point and a straight line is. We will also introduce Liouville’s theorem as it will

become the main tool in the proof of Theorem 3.2.
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Definition 3.8. Suppose α ∈ R is an irrational number, it is called a quadratic

irrational if it satisfies a quadratic equation

aα2 + bα + c = 0

with a, b, c ∈ Z and a 6= 0.

Definition 3.9. Given two straight lines: l1 : αx + y = 0 ∈ R
2 and l2 : x + βy =

0 ∈ R2, a point P = (m, n) ∈ Z2 is said to be near to one of them if the distance

between P and li (i = 1, 2) is less than ǫ∗ with

0 < ǫ∗ < min

(����� 1 − αβ

β
√

1 + α2

����� , ����� 1 − αβ

α
√

1 + β2

�����) .

If the two given lines are of more general form, say l1 : αm + βn = 0, and

l2 : γm + δn = 0, we can always use elementary computation to transform them

into the form mentioned above as long as β, γ 6= 0.

Lemma 3.1. If α is an irrational number which is the root of a polynomial f of

degree n > 0, with integer coefficients, then there exists a real number A > 0 such

that, for all integers p and q with q > 0,�����α − p

q

����� > A

qn
.

This lemma is also known as Liouville’s theorem (on diophantine approxi-

mation). The proof of this lemma can be found in [Sch80] (also see [Oxt80]).

Now we come to prove our main result Theorem 3.2. Without loss of gen-

erality, we assume α, β > 0.

Proof. In order to prove the convergence of this series, we classify the points in

Z2 into 3 classes:

1. Points near to the straight line l1 : αm + n = 0;

2. Points near to the straight line l2 : m + βn = 0;
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3. All other lattice points except the origin.

We can prove that

f(ǫ, α, β) =
X

(m,n)∈Z2

(αm+n)(m+βn)6=0

e−πǫ(m2+n2)

(αm + n)(m + βn)

converges for points “away” from l1 and l2 without too much trouble. Then we

only need to take care of those points near to l1 and l2.

⋄ Case 1. When points P = (m, n) are near to l1 : αm + n = 0, we have

dist(P, l1) =
|αm + n|√

α2 + 1
< ǫ∗,

i.e. |αm + n| <
√

1 + α2ǫ∗, which is equivalent to −
√

1 + α2ǫ∗ < αm + n <
√

1 + α2ǫ∗. Then we’ll have the following inequalities:

−
√

1 + α2ǫ∗ − αm < n <
√

1 + α2ǫ∗ − αm,

−β
√

1 + α2ǫ∗ − αβm < βn < β
√

1 + α2ǫ∗ − αβm,

−β
√

1 + α2ǫ∗ − αβm + m < βn + m < β
√

1 + α2ǫ∗ − αβm + m,

i.e. |βn + m − (1 − αβ)m| < β
√

1 + α2ǫ∗. (3.19)

Meanwhile we have

||βn + m| − |(1 − αβ)m|| ≤ |βn + m − (1 − αβ)m|, (3.20)

(3.19) and (3.20) give us:

||βn + m| − |(1 − αβ)m|| < β
√

1 + α2ǫ∗,

−β
√

1 + α2ǫ∗ < |βn + m| − |(1 − αβ)m| < β
√

1 + α2ǫ∗,

−β
√

1 + α2ǫ∗ + |(1 − αβ)m| < |βn + m| < β
√

1 + α2ǫ∗ + |(1 − αβ)m|.
(3.21)
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Since βǫ∗ > 0, we have βǫ∗ < βǫ∗|m| for all m ∈ Z6=0, then from (3.21) we

get:

|βn + m| > −β
√

1 + α2ǫ∗ + |(1 − αβ)m|,

> −β
√

1 + α2ǫ∗|m| + |1 − αβ||m| = (|1 − αβ| − β
√

1 + α2ǫ∗)|m|.

Therefore,

|(αm + n)(m + βn)| = |αm + n||m + βn|,

= |m||α +
n

m
||m + βn|,

≥ |m| A

m2
(|1 − αβ| − β

√
1 + α2ǫ∗)|m|, (3.22)

= A(|1 − αβ| − β
√

1 + α2ǫ∗). (3.23)

Note: Since 0 < ǫ∗ < |1−αβ|
β
√

1+α2 , we can always make sure that |1 − αβ| −
β
√

1 + α2ǫ∗ is positive. In (3.22), A is some positive constant. The reason

why (3.22) holds is due to the fact that α is a quadratic irrational. It

follows from Definition 3.8 that α is the root of some polynomial f(x) =

ax2 + bx + c where a, b, c ∈ Z and a 6= 0. By Lemma 3.1, or Liouville’s

theorem (on Diophantine approximation), we know that����α − n

m

���� > A

m2
,

where A is some positive constant. Thus when ǫ > 0, (3.23) implies

e−πǫ(m2+n2)

|(αm + n)(m + βn)| ≤
e−πǫ(m2+n2)

A(|1 − αβ| − β
√

1 + α2ǫ∗)
,

where ǫ∗ is defined in Definition 3.9.
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As a result,

|f(ǫ, α, β)| =
X

(m,n)∈Z2

(αm+n)(m+βn)6=0

e−πǫ(m2+n2)

|(αm + n)(m + βn)| ,

≤
X

(m,n)∈Z2

(αm+n)(m+βn)6=0

e−πǫ(m2+n2)

A(|1 − αβ| − β
√

1 + α2ǫ∗)
,

=
X

(m,n)∈Z2

(αm+n)(m+βn)6=0

g(m, n, ǫ, A, α, β),

where we define g(m, n, ǫ, A, α, β) =
e−πǫ(m2+n2)

A(|1 − αβ| − β
√

1 + α2ǫ∗)
. Without

much effort we can see that
X

(m,n)∈Z2

(αm+n)(m+βn)6=0

g(m, n, ǫ, A, α, β) converges for

fixed ǫ > 0, A > 0 and α, β both quadratic irrationals. We conclude from

the comparison test that for any ǫ > 0, the infinite series

f(ǫ, α, β) =
X

(m,n)∈Z2

(αm+n)(m+βn)6=0

e−πǫ(m2+n2)

(αm + n)(m + βn)

converges absolutely when points P = (m, n) are near to l1.

⋄ Case 2. When points P = (m, n) are near to l2 : m + βn = 0, we have

dist(P, l2) =
|m + βn|√

β2 + 1
< ǫ∗,

i.e. |m + βn| <
√

β2 + 1ǫ∗, which is equivalent to −
√

β2 + 1ǫ∗ < m + βn <
√

β2 + 1ǫ∗. Therefore we have the following inequalities:

−
È

β2 + 1ǫ∗ − βn < m <
È

β2 + 1ǫ∗ − βn,

−α
È

β2 + 1ǫ∗ − αβn < αm < α
È

β2 + 1ǫ∗ − αβn,

−α
È

β2 + 1ǫ∗ + n − αβn < αm + n < α
È

β2 + 1ǫ∗ + n − αβn,

i.e.|αm + n − (1 − αβ)n| < α
È

β2 + 1ǫ∗. (3.24)

Meanwhile we have:

||αm + n| − |(1 − αβ)n|| ≤ |αm + n − (1 − αβ)n|. (3.25)
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It follows from (3.24) and (3.25) that

||αm + n| − |(1 − αβ)n|| < α
È

β2 + 1ǫ∗,

−α
È

β2 + 1ǫ∗ < |αm + n| − |(1 − αβ)n| < α
È

β2 + 1ǫ∗,

−α
È

β2 + 1ǫ∗ + |(1 − αβ)n| < |αm + n| < α
È

β2 + 1ǫ∗ + |(1 − αβ)n|.
(3.26)

Since αǫ∗ > 0, we have αǫ∗ < αǫ∗|n| for all n ∈ Z6=0, then from (3.26) we

get

|αm + n| > −α
È

β2 + 1ǫ∗ + |1 − αβ||n|,

> −α
È

β2 + 1ǫ∗|n| + |1 − αβ||n|,

= (|1 − αβ| − α
È

β2 + 1ǫ∗)|n|. (3.27)

Therefore,

|(αm + n)(m + βn)| = |αm + n||m + βn|,

= |αm + n||n||β +
m

n
|,

≥ (|1 − αβ| − α
È

β2 + 1ǫ∗)|n||n|B
n2

, (3.28)

= B(|1 − αβ| − α
È

β2 + 1ǫ∗), (3.29)

where B is some positive constant.

Since 0 < ǫ∗ < |1−αβ|
α
√

1+β2
, we always have |1 − αβ| − α

√
β2 + 1ǫ∗ > 0. The

reason why (3.28) holds is due to the fact that β is a quadratic irrational. It

follows from Definition 3.8 that β is the root of some polynomial g(x) =

a′x2 + b′x + c′ where a′, b′, c′ ∈ Z and a′ 6= 0. Lemma 3.1 or Liouville’s

theorem (on diophantine approximation) gives us that����β − m

n

���� > B

n2
,

where B > 0.
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Then when ǫ > 0,(3.29) implies:

|f(ǫ, α, β)| =
X

(m,n)∈Z2

(αm+n)(m+βn)6=0

e−πǫ(m2+n2)

|(αm + n)(m + βn)| ,

≤
X

(m,n)∈Z2

(αm+n)(m+βn)6=0

e−πǫ(m2+n2)

B(|1 − αβ| − α
√

β2 + 1ǫ∗)
, (3.30)

=
X

(m,n)∈Z2

(αm+n)(m+βn)6=0

g′(m, n, ǫ, B, α, β), (3.31)

where ǫ∗ is defined as in Definition 3.9, and we define g′(m, n, ǫ, B, α, β) =

e−πǫ(m2+n2)

B(|1 − αβ| − α
√

β2 + 1ǫ∗)
. SinceX

(m,n)∈Z2

(αm+n)(m+βn)6=0

g′(m, n, ǫ, B, α, β)

converges, we conclude from the comparison test that for any ǫ > 0, and

α, β both quadratic irrationals, f(ǫ, α, β) converges absolutely when points

P = (m, n) are near to l2.

⋄ Case 3. When lattice points (m, n) are not near to l1 and l2, according to

Definition 3.9, we have

8><>:|αm + n| ≥ ǫ∗,

|m + βn| ≥ ǫ∗.

As a result,

|f(ǫ, α, β)| =
X

(m,n)∈Z2

(αm+n)(m+βn)6=0

e−πǫ(m2+n2)

|(αm + n)(m + βn)| , (3.32)

≤
X

(m,n)∈Z2

(αm+n)(m+βn)6=0

e−πǫ(m2+n2)

ǫ∗2
, (3.33)

=
X

(m,n)∈Z2

(αm+n)(m+βn)6=0

h(m, n, ǫ), (3.34)
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where ǫ > 0, ǫ∗ is defined in Definition 3.9, and h(m, n, ǫ) is defined as

e−πǫ(m2+n2)

ǫ∗2
. It is a fact that

X
(m,n)∈Z2

(αm+n)(m+βn)6=0

h(m, n, ǫ) converges, hence by

the comparison test we have for any ǫ > 0,

f(ǫ, α, β) =
X

(m,n)∈Z2

(αm+n)(m+βn)6=0

e−πǫ(m2+n2)

(αm + n)(m + βn)

is absolutely convergent under this situation. This completes our proof.

Corollary 3.1. (Wang) Suppose

M =

�
α β

δ γ

Ǒ
∈ GL2(R).

Then the infinite series

f(ǫ, α, β, δ, γ) =
X

(m,n)∈Z2

(αm+βn)(δm+γn)6=0

e−πǫ(m2+n2)

(αm + βn)(δm + γn)

converges absolutely for each fixed ǫ > 0, where both α/β and γ/δ are quadratic

irrationals (β, δ 6= 0).

The proof of Corollary 3.1 follows from the proof of Theorem 3.2, but we

need to define the range of ǫ more carefully. We can rewrite the denominator in

the summand of f(ǫ, α, β, δ, γ) as:

(αm + βn)(δm + γn) = βδ(
α

β
m + n)(m +

γ

δ
n).

Therefore, in this case, we need to define 0 < ǫ <

�����1 − αγ

βδ

����� =
| det(M)|

βδ
in the

proof.
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3.3 Asymptotic analysis of the infinite series de-

fined over real cones

We will prove the limit of the infinite sum:

f(ǫ, α, β, δ, γ) =
X

(m,n)∈Z2

(αm+βn)(δm+γn)6=0

e−πǫ(m2+n2)

(αm + βn)(δm + γn)
,

where ǫ ∈ R>0 exists under a certain condition .

Theorem 3.3. (Wang) If αδ+βγ = 0, and α, γ 6= 0, then the limit of the infinite

series limǫ→0+ f(ǫ, α, β, δ, γ) exists.

Define s(α, β, δ, γ, m, n) =
1

(αm + βn)(δm + γn)
. We will find the partial

fraction of s first.

s(α, β, δ, γ, m, n) =
1

(αm + βn)(δm + γn)
,

=
1

αδ(m + β
α
n)(m + γ

δ
n)

,

=
1

αδ

 
1

m + β
α
n
− 1

m + γ
δ
n

!
1

(γ
δ
− β

α
)n

,

=

 
1

m + β
α
n
− 1

m + γ
δ
n

!
1

(αγ − βδ)n
,

=

 
1

m + β
α
n
− 1

m + γ
δ
n

!
1

det(M)n
,

where

M =

�
α β

δ γ

Ǒ
∈ GL2(R).

This result will assist us in our future proof of the existence of limǫ→0+ f. Next

we introduce a lemma before proceeding to the main proof.
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Lemma 3.5. Let CN be a positively oriented circle of radius RN ,1 ≤ N < ∞,

centered at the origin. Assume the sequence of radii RN is increasing to ∞,for

irrational θ = h
k
,

f(θ) = lim
N→∞

1

2π
{

X
0<m/h<RN

cot(πm/θ)

m
+

X
0<n/k<RN

cot(πnθ)

n
}

converges.

The proof of this lemma can be found in [Ber76].

Lemma 3.6. Let ǫ > 0. For ∀z ∈ C,

π cot(πz) = lim
ǫ→0

X
m∈Z

e−ǫm2

m + z
. (3.35)

There is a series representation as a partial fraction expansion for the trigono-

metric function cot(z), where just translated reciprocal functions are summed up,

such that the poles of the cotangent function and the reciprocal functions match

[Rem91] [NP69]. It’s a standard fact that

π cot(πz) = lim
n→∞

v=nX
v=−n

1

z + a
, (3.36)

where z ∈ C.

Proof of Lemma 3.6. For any fixed ǫ > 0, we have:

lim
ǫ→0+

 X
m∈Z

e−ǫm2

m + z

!
= lim

ǫ→0+
lim

n→∞

nX
v=−n

e−ǫv2

v + z
, (3.37)

= lim
n→∞

lim
ǫ→0+

nX
v=−n

e−ǫv2

v + z
, (3.38)

= lim
n→∞

nX
v=−n

1

v + z
, (3.39)

= π cot(πz). (3.40)

The reason why in (3.38) we can exchange the two limits is due to Lebesgue’s

dominated convergence theorem. Define fn(ǫ, z) =
nX

v=−n

e−ǫv2

v + z
. As long as we can
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prove that fn(ǫ, z) is uniform convergent, then it is safe for us to exchange the

two limits.

fn(ǫ, z) =
nX

v=−n

e−ǫv2

v + z
,

=
e−ǫ(−n)2

−n + z
+

e−ǫ(−n+1)2

−(n − 1) + z
+ · · ·+ 1

z
+ · · ·+ e−ǫn2

n + z
,

pair the j-th term and the (2n + 2 − j)-th term:

= e−ǫn2
�

1

−n + z
+

1

n + z

�
+ e−ǫ(1−n)2

�
1

−(n − 1) + z
+

1

n − 1 + z

�
+

· · ·+ e−ǫ
�

1

−1 + z
+

1

1 + z

�
+

1

z
,

= e−ǫn2 2z

z2 − n2
+ e−ǫ(n−1)2 2z

z2 − (n − 1)2
+ · · ·+ e−ǫ 2z

z2 − 1
+

1

z
,

= 2z
nX

k=1

e−ǫk2

z2 − k2
+

1

z
.

Since ǫ > 0, we have ����� e−ǫk2

z2 − k2

����� ≤ ���� 1

z2 − k2

���� .
And we know that

nX
k=1

1

|z2 − k2| converges absolutely for any fixed z ∈ C. There-

fore,we proved the uniform convergence of fn(ǫ, z).

Proof of Theorem 3.3. We recall that by the definition of f,

lim
ǫ→0+

f(ǫ, α, β, δ, γ) = lim
ǫ→0+

X
(m,n)∈Z2

(αm+βn)(δm+γn)6=0

e−πǫ(m2+n2)

(αm + βn)(δm + γn)
.

In order to find limǫ→0+ f(ǫ, α, β, δ, γ), we will sum over m first, and then sum
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over n.

lim
ǫ→0+

f(ǫ, α, β, δ, γ) = lim
ǫ→0+

X
m∈Z

(αm+βn)(δm+γn)6=0

e−πǫ(m2+n2)

(αm + βn)(δm + γn)
, (3.41)

= lim
ǫ→0+

X
m∈Z

(αm+βn)(δm+γn)6=0

e−πǫ(m2+n2)

det(M)n

 
1

m + β
α
n
− 1

m + γ
δ
n

!
, (3.42)

= lim
ǫ→0+

X
m∈Z

(αm+βn)(δm+γn)6=0

e−πǫn2

det(M)n

 
e−πǫm2

m + β
α
n
− e−πǫm2

m + γ
δ
n

!
, (3.43)

= lim
ǫ→0+

X
n∈Z∗

 
e−πǫn2

π

det(M)n
cot

�
πn

β

α

�
− e−πǫn2

π

det(M)n
cot

�
πn

γ

δ

�!
, (3.44)

= lim
ǫ→0+

X
n∈Z∗

e−πǫn2
π

det(M)

 
cot(πnβ

α
)

n
− cot(πnγ

δ
)

n

!
. (3.45)

Here Z∗ signifies Z \ {0}.
Define

cn(ǫ, α, β, δ, γ, n) =
e−πǫn2

π

det(M)

 
cot(πnβ

α
)

n
− cot(πnγ

δ
)

n

!
.

Then we have:

lim
ǫ→0+

f(ǫ, α, β, δ, γ) = lim
ǫ→0+

X
n∈Z∗

cn(ǫ, α, β, δ, γ, n), (3.46)

= lim
ǫ→0+

X
n∈Z∗

e−πǫn2
π

det(M)

 
cot(πnβ

α
)

n
− cot(πnγ

δ
)

n

!
. (3.47)

When
β

α

γ

δ
= −1, and

β

α
,

γ

δ
both irrationals, Lemma 3.5 tells us that

lim
ǫ→0+

f(ǫ, α, β, δ, γ) =
1

det(M)

X
n∈Z∗

�
cot

�
πnβ

α

�
n

− cot
�
πnγ

δ

�
n

�
,

=
1

det(M)

X
n∈Z∗

 
cot(πnθ)

n
+

cot(πn1
θ
)

n

!
,

exists, where θ =
β

α
= − δ

γ
.
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When
β

α

γ

δ
= −1 and β

α
, γ

δ
are both rational numbers, we can prove the limit

lim
ǫ→0+

f(ǫ, α, β, δ, γ) = lim
ǫ→0+

X
(m,n)∈Z2

(αm+βn)(δm+γn)6=0

e−πǫ(m2+n2)

(αm + βn)(δm + γn)
,

exists without much difficulty since we only need to take care of few points which

are near to the two straight lines: αm + βn = 0 and δm + γn = 0.

In conclusion, limǫ→0+ f exists when
β

α

γ

δ
= −1.

We remind the reader that in general, for a polytope P ∈ Rd, the discrete

volume of P is:

AP =
X
n∈Zd

ωP(n),

= lim
ǫ→0+

X
n∈Zd\V

�
| detKv1 |e〈v1,n〉Qd
k=1 〈wk(v1),n〉

+ · · · +
| detKvN

|e〈vN ,n〉Qd
k=1 〈wk(vN ),n〉

�
e−ǫπ||n||2

+ lim
ǫ→0+

X
n∈V

b1P(n)e−ǫπ||n||2.

Here V denotes the set of vectors which are orthogonal to any wk(vi), for

1 ≤ i ≤ N. These infinite lattice sums extend the f functions as defined in

Definition 3.1. When vi is not the origin, the former part of AP will be different

from f, and it will be a very interesting research problem in our future work.





Chapter 4
When are two Dedekind sums equal?

4.1 An observation about Dedekind sums and a

question arising from it

Dedekind sums arise naturally in many fields, most prominently in combina-

torial geometry [BR07] and in the theory of modular forms [RG72]. We also see

the classical Dedekind sums in Chapter 2 when we analyze an infinite sum defined

on integral cones. Recall that the classical Dedekind sum is defined by:

s(a, b) =
b−1X
k=0

��
ka

b

����
k

b

��
,

where a and b are any two relatively prime integers, and where the Sawtooth

function is defined by

((x)) =

8><>:{x} − 1
2

if x /∈ Z,

0 if x ∈ Z.

The Dedekind sum enjoys two important properties. The first of these prop-

erties is the periodicity of the Dedekind sums in the first variable, namely

s(a + kb, b) = s(a, b) for all k ∈ Z. The second, and deeper, of these properties is

57
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the famous reciprocity law for Dedekind sums :

s(a, b) + s(b, a) = −1

4
+

1

12

�
a

b
+

1

ab
+

b

a

�
,

valid for any two relatively prime integers a and b.

We made a quite interesting observation with respect to the values of Dedekind

sums s(a, b) for certain b. Here are some examples illustrating what we discovered.

Note that we used the same color to indicate the same value of Dedekind sum

s(a, b) when gcd(a, b) = 1.

Example 4.1. Here we give a table of values of Dedekind sums s(a, 11).

a 1 2 3 4 5

s(a, 11) 15
22

5
11

3
22

3
22

− 5
22

a 6 7 8 9 10

s(a, 11) 5
22

− 3
22

− 3
22

− 5
22

−15
22

Table 4.1: Dedekind sum s(a, 11)

Example 4.2. Here we give a table of values of Dedekind sums s(a, 15).

a 1 2 3 4 5 6 7

s(a, 15) 91
90

7
18

1
5

19
90

− 1
18

0 − 7
18

a 8 9 10 11 12 13 14

s(a, 15) 7
18

0 − 1
18

−19
90

−1
5

− 7
18

−91
90

Table 4.2: Dedekind sum s(a, 15)

Example 4.3. Here we give a table of values of Dedekind sums s(a, 19).
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a 1 2 3 4 5 6 7 8 9

s(a, 19) 51
38

21
38

9
38

11
38

11
38

− 9
38

3
38

− 3
38

−21
38

a 10 11 12 13 14 15 16 17 18

s(a, 19) 21
38

3
38

− 3
38

9
38

−11
38

−11
38

− 9
38

−21
38

−51
38

Table 4.3: Dedekind sum s(a, 19)

It is very natural to ask under what conditions on the integers a1, a2, and b is

it true that

s(a1, b) = s(a2, b)?

We answer this question with the following results.

Theorem 4.4. (Wang) Let b be a positive integer, and a1, a2 any two integers

that are relatively prime to b. If s(a1, b) = s(a2, b), then

b | (1 − a1a2)(a1 − a2).

An immediate corollary of this theorem is the following result:

Corollary 4.1. (Wang) Let p be a prime. Then s(a1, p) = s(a2, p) if and only if

a1 ≡ a2 mod p, or a1a2 ≡ 1 mod p.

We note that the converse of Theorem 4.4 is false in general. Consider, for

example, b = 40, and a1 = 37, a2 = 33. Then b | (1 − 37 · 33)(37 − 33) = 20 · 4,

and yet s(37, 40) = −0.8125 and s(33, 40) = −0.3125, so that s(a1, b) 6= s(a2, b)

in this case.

We also study an analogous question for the Dedekind-Rademacher sums,

which arise in Donald Knuth’s work [Knu77] on pseudo-random number genera-

tors. Given any non-negative integer n, and any two relatively prime integers a

and b, we define the Dedekind-Rademacher sum by:

rn(a, b) =
b−1X
k=0

��
ka + n

b

����
k

b

��
.
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In order to state the corresponding reciprocity law for the Dedekind-Rademacher

sums, we define

χa(n) =

8><>:1 if a|n,

0 otherwise.

Lemma 4.1 (Reciprocity law for Dedekind-Rademacher sums). Let a and b be

relatively prime positive integers. Then for n = 1, 2, · · · , a + b,

rn(a, b) + rn(b, a) =
n2

2ab
− n

2

�
1

a
+

1

b
+

1

ab

�
+

1

12

�
b

a
+

a

b
+

1

ab

�
+

1

2

���
a−1n

b

��
+

��
b−1n

a

��
+
��n

a

��
+
��n

b

���
+

1

4
(1 + χa(n) + χb(n)) ,

where aa−1 ≡ 1 mod b and bb−1 ≡ 1 mod a.

The proof of Lemma 4.1 can be found, for example, in [BR07]. For the

Dedekind-Rademacher sums, we have the following two results.

Here are some examples of Dedekind-Rademacher sums rn(a, b) for certain

values of n and b. By observing the values of rn(a, b) in the examples, we ask

the question what is the relationship between a, b, and n given two Dedekind-

Rademacher sums are equal.

Example 4.5. Here we give a table of values of Dedekind-Rademacher sums

r4(a, 11).

a 1 2 3 4 5

r4(a, 11) −15
44

− 7
44

− 9
44

3
44

3
44

a 6 7 8 9 10

r4(a, 11) − 3
44

− 3
44

9
44

7
44

15
44

Table 4.4: Dedekind-Rademacher sum r4(a, 11)
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Example 4.6. Here we give a table of values of Dedekind-Rademacher sums

r4(a, 15).

a 1 2 3 4 5 6 7

r4(a, 15) − 37
180

− 17
180

− 1
10

17
180

1
18

1
10

53
180

a 8 9 10 11 12 13 14

r6(a, 17) − 53
180

− 1
10

− 1
18

− 17
180

1
10

17
180

37
180

Table 4.5: Dedekind-Rademacher sum r4(a, 15)

Example 4.7. Here we give a table of values of Dedekind-Rademacher sums

r6(a, 17).

a 1 2 3 4 5 6 7 8

r6(a, 17) −35
68

−1
4

− 7
68

1
68

−19
68

15
68

7
68

11
68

a 9 10 11 12 13 14 15 16

r6(a, 17) −11
68

− 7
68

−15
68

19
68

− 1
68

7
68

1
4

35
68

Table 4.6: Dedekind-Rademacher sum r6(a, 17)

The examples here give us a clue of what the relationship between a1, a2, b,

and n is given rn(a1, b) = rn(a2, b).

Theorem 4.8. (Wang) Fix a non-negative integer n and a positive integer b. Let

a1 and a2 be any two integers that are relatively prime to b.

If rn(a1, b) = rn(a2, b), then

b | (6n2 + 1 − a1a2)(a2 − a1).

An immediate corollary for prime moduli follows from Theorem 4.8.
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Corollary 4.2. (Wang) Let p be a prime. If rn(a1, p) = rn(a2, p), then it follows

that a1 ≡ a2 mod p, or

a1a2 ≡ 1 + 6n2 mod p.

We note that here the results are a bit different than the corresponding results

for the classical Dedekind sums. Namely, not only is the converse of Theorem

4.8 false in the case of the Dedekind-Rademacher sums, but even the converse

of Corollary 4.2 is false in this case. The best way to elucidate this is by an

example.

Example 4.9. Consider the Dedekind-Rademacher sum rn(a, b) when n = 6,

b = 23, a1 = 3, and a2 = 11. We have

r6(3, 23) = − 3

92
,

and

r6(11, 23) =
43

92
.

Although 3 · 11 ≡ 1 + 6 · 62 mod 23, we don’t have r6(3, 23) = r6(11, 23).

One direction for our further research will be to investigate the number of

solutions to the equation s(x, b) = c and what the solutions are. Note that when

b is composite and c is rational, the equation s(x, b) = c might have more than

2 solutions in x ∈ Z. In fact, Corollary 4.1 shows that if b has r distinct prime

divisors, then the number of solutions to s(x, b) = c is greater than or equal to

2r, by the usual elementary modular arithmetic arguments. It would be quite

interesting to study how many integer solutions in x ∈ Z the equation s(x, b) = c

has in general. The same question also arises from topological considerations, and

the correction terms of the Heegaard Floer Homology [BL90] is closely related to

it.



4.2 How Reciprocity Law of Dedekind sums leads to the proof of the

identity s(a1, b) = s(a2, b), and more 63

4.2 How Reciprocity Law of Dedekind sums leads

to the proof of the identity s(a1, b) = s(a2, b),

and more

We first introduce some lesser-known but useful properties of Dedekind sums.

It is proved in [Gri74] that

6b s(a, b) ∈ Z, (4.1)

for any two relatively prime integer a and b. This property of Dedekind sums

gives us a nice upper bound on the denominators that any Dedekind sum s(a, b)

may have, and it plays an interesting role in the proof of Theorem 4.4.

Now we come to the proofs of our results in the previous section.

Proof of Theorem 4.4. For any integers a1 relatively prime to b, and a2 relatively

prime to b, Dedekind’s Reciprocity law implies that we have the following two

identities:

12a1b (s(a1, b) + s(b, a1)) = −3a1b + a2
1 + b2 + 1, (4.2)

12a2b (s(a2, b) + s(b, a2)) = −3a2b + a2
2 + b2 + 1. (4.3)

Multiplying (4.2) with a2, and multiplying (4.3) with a1, we get

12a1a2b(s(a1, b) + s(b, a1)) = a2

�
−3a1b + a2

1 + b2 + 1
�
, (4.4)

12a1a2b(s(a2, b) + s(b, a2)) = a1

�
−3a2b + a2

2 + b2 + 1
�
. (4.5)

Subtracting (4.5) from (4.4) gives us

12a1a2b(s(a1, b) + s(b, a1)) − 12a1a2b(s(a2, b) + s(b, a2)) (4.6)

= a2

�
−3a1b + a2

1 + b2 + 1
�
− a1

�
−3a2b + a2

2 + b2 + 1
�
.

We know, by assumption, that s(a1, b) = s(a2, b), and therefore

12a1a2bs(b, a1) − 12a1a2bs(b, a2) = a2
1a2 + b2a2 − b2a1 + a2 − a2

2a1 − a1. (4.7)
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Using the fact (4.1) that (6a1)s(b, a1) and (6a2)s(b, a2) are both integers, we may

reduce (4.7) mod b to obtain the result

(a2 − a1)(1 − a1a2) ≡ 0 mod b. (4.8)

Lemma 4.2. For any relatively prime integers a and b, we have

12b rn(a, b) ∈ Z.

Proof. Note that for relatively prime numbers a and b, there’s always a solution

to the equation ka+n ≡ 0 (mod b), while k ∈ {0, 1, · · · , b− 1}. We consider two

different situations.

⋄ When k = 0, or equivalently if n ≡ 0 (mod b), then rn(a, b) = r0(a, b) =

s(a, b) and it was pointed out in [RG72] that 6b s(a, b) ∈ Z.

⋄ When k = k0a + n ≡ 0 (mod b) where k0 ∈ {1, · · · , b − 1}.

12brn(a, b) = 12b
b−1X
k=0

��
ka + n

b

����
k

b

��
,

= 12b
b−1X

k=1,k 6=k0

�
ka + n

b
−
�
ka + n

b

�
− 1

2

��
k

b
− 1

2

�
,

= 12b
b−1X

k=1,k 6=k0

�
k(ka + n)

b2
− A

2b
+

1

4

�
,

= 12b

�
a(b − 1)(2b − 1)

6b
+

n(b − 1)

2b
− A(b − 2)

2b
+

b − 2

4
− Ck0

b

�
,

= 2a(b − 1)(2b − 1) + 6n(b − 1) − 6A(b − 2) + 3b(b − 2) − 12Ck0.

where A, C ∈ Z, and immediately we have 12brn(a, b) ∈ Z.
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Proof of Theorem 4.8. From the reciprocity law for the Dedekind-Rademacher

sums, we know that when a1, a2 are relatively prime to b, we have:

12a1b (rn(a1, b) + rn(b, a1)) = 6n2 + a2
1 + b2 + 1 − 9a1b

− 6a1b

 "
a−1

1 n

b

#
+

�
b−1n

a1

�
+
�n
b

�
+
�

n

a1

�!
+ 3a1b(χa1(n) + χb(n)), (4.9)

12a2b (rn(a2, b) + rn(b, a2)) = 6n2 + a2
2 + b2 + 1 − 9a2b

− 6a2b

 "
a−1

2 n

b

#
+

�
b−1n

a2

�
+
�n
b

�
+
�

n

a2

�!
+ 3a2b(χa2(n) + χb(n)). (4.10)

To simplify the ensuing algebra, we let

Sa1 =

"
a−1

1 n

b

#
+

�
b−1n

a1

�
+
�n
b

�
+
�

n

a1

�
∈ Z,

Sa2 =

"
a−1

2 n

b

#
+

�
b−1n

a2

�
+
�n
b

�
+
�

n

a2

�
∈ Z,

Ta1 = χa1(n) + χb(n) ∈ Z,

Ta2 = χa2(n) + χb(n) ∈ Z,

we can rewrite (4.9) and (4.10) as follows:

12a1b (rn(a1, b) + rn(b, a1)) = 6n2 + a2
1 + b2 + 1 − 9a1b − 6a1bSa1 + 3a1bTa1 ,

(4.11)

12a2b (rn(a2, b) + rn(b, a2)) = 6n2 + a2
2 + b2 + 1 − 9a2b − 6a2bSa2 + 3a2bTa2 .

(4.12)
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Multiplying (4.11) with a2 gives us

12a1a2b (rn(a1, b) + rn(b, a1)) (4.13)

= a2

�
6n2 + a2

1 + b2 + 1 − 9a1b − 6a1bSa1 + 3a1bTa1

�
.

Multiplying (4.12) with a1 gives us

12a1a2b (rn(a2, b) + rn(b, a2)) (4.14)

= a1

�
6n2 + a2

2 + b2 + 1 − 9a2b − 6a2bSa2 + 3a2bTa2

�
.

Since rn(a1, b) = rn(a2, b) , subtracting (4.14) from (4.13) we get

12a1a2b (rn(b, a1) − rn(b, a2)) (4.15)

= (a2 − a1)(6n
2 + 1 − a1a2) + b2(a2 − a1)

− 6a1a2b(Sa1 + Sa2) + 3a1a2b(Ta1 + Ta2).

We notice that, by Lemma (4.1), we have 12a1rn(b, a1) ∈ Z and 12a2rn(b, a2) ∈
Z. We may therefore reduce both sides of (4.15) modulo b to obtain the result:

0 ≡ (6n2 + 1 − a1a2)(a2 − a1) mod b.



Chapter 5
When are two Zagier-Dedekind sums

equal?

5.1 Properties of Zagier-Dedekind sums and a con-

dition for two such sums to be equal

In Don Zagier’s 1973 paper [Zag73], the author introduced the following

Zagier-Dedekind sum:

d(p; a1, · · · , an) = (−1)n/2
p−1X
k=1

cot
πka1

p
· · · cot

πkan

p
,

where p is a positive integer, n is an even integer, and a1, · · · , an are integers

relatively prime to p.

We will partially answer the question of when two Zagier-Dedekind sums are

equal in this chapter. These Zagier-Dedekind sums enjoy very nice properties

which are essential for us to prove our results later.

Theorem 5.1 (Zagier). Let a0, a1, · · · , an (n even) be pairwise coprime positive

integers. Then

nX
j=0

1

aj
d(aj; a0, · · · ,aj, · · · , an) = 1 − ln(a0, · · · , an)

a0 · · ·an
,

67
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where ln(a0, · · · , an) is the polynomial defined as the coefficient of tn in the power

series expansion of

nY
j=0

ajt

tanh(ajt)
=

nY
j=0

�
1 +

1

3
aj

2t2 − 1

45
aj

4t4 +
2

945
aj

6t6 − · · ·
�

.

The proof of this theorem can be found in [Zag73]. These polynomials are

recognized as Hirzebruch L−polynomials [Hir66] by topologists. The first values

of ln(a0, · · · , an) are:

l0(a) = 1, (5.1)

l2(a, b, c) = (a2 + b2 + c2)/3, (5.2)

l4(a, b, c, d, e) = (5(a2 + b2 + c2 + d2 + e2)2

− 7(a4 + b4 + c4 + d4 + e4))/90. (5.3)

Each ln is even in every variable, symmetric under interchange of the variables,

and homogeneous of total degree n. ln can also be written as:

ln(a0, · · · , an) = Lk(p1, · · · , pk),

where k = n/2 and pi (i = 1, · · · , k) is the ith elementary symmetric polynomial

in a0
2, · · · , an

2. Then the first few polynomials Lk are:

L0 = 1, (5.4)

L1(p1) = p1/3, (5.5)

L2(p1, p2) = (−p1
2 + 7p2)/45, (5.6)

L3(p1, p2, p3) = (2p1
3 − 13p1p2 + 62p3)/945. (5.7)

Let

µk = the denominator of Lk(p1, · · · , pk).
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From (5.4) to (5.7), we have:

µ0 = 1,

µ1 = 3,

µ2 = 45,

µ3 = 945.

The general result of µk can be found in [Ati61]:

µk =
Y

l prime

l odd

l[
n

l−1
].

Theorem 5.2 (Zagier). Let p be a positive integer and a1, · · · , an(neven) be in-

tegers prime to p. Then d(p; a1, · · · , an) is a rational number whose denominator

divides Y
l prime

l>2
l|p

l[
n

l−1
].

Theorem 5.3 (Zagier). Let p be a positive integer and a1, a2, · · · , an odd integers

prime to p. Then

d(2p; a1, · · · , an) − d(p; a1, · · · , an) = ptp(a1, · · · , an),

where tp(a1, · · · , an) is the integer

Card{k1, · · · , kn|0 < k1, · · · , kn < p and
a1k1 + · · ·+ ankn

p
an even integer}

−Card{k1, · · · , kn|0 < k1, · · · , kn < p and
a1k1 + · · · + ankn

p
an odd integer}

The proof of Theorem 5.2 and Theorem 5.3 can be found in [Zag73].

If we have two higher dimensional Dedekind sums with the same value, what

can we say about the variables? Here we find a relationship between ai and bj

provided d(a0; a1, · · · , an) = d(b0; b1, · · · , bn) and a0 = b0.

We now state the main result of this chapter.
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Theorem 5.4. (Wang) Let a0, · · · , an be pairwise coprime positive integers, and

let b0, · · · , bn be pairwise coprime positive integers. If we have p = a0 = b0 and

d(a0; a1, · · · , an) = d(b0; b1, · · · , bn), then the following equality holds:

µ

 
nY

i=0

ailn(p, · · · , bn) −
nY

i=0

biln(p, · · · , an)

!
≡ 0 mod p,

where µ = lcm(µ1, µ2), µ1 and µ2 are defined as follows.

Denote the denominator of the Dedekind sum d(ai; a0, · · · , Òai, · · · , an) by µn,ai
,

and denote the denominator of the Dedekind sum d(bi; b0, · · · , Òbi, · · · , bn) by µn,bi
.

Then µ1
def
= lcm(µn,a0, µn,a1, · · · , µn,an), µ2

def
= lcm(µn,b0, µn,b1, · · · , µn,bn).

We can state the result of Theorem 5.4 in a slightly different way. Let

A = µ (
Qn

i=0 ai) , and B = µ (
Qn

i=0 bi) . Then we have:

Aln(p, b1, · · · , bn) ≡ Bln(p, a1, · · · , an) mod p.

Corollary 5.1. (Wang) If d(a0; a1, a2, a3, a4) = d(b0; b1, b2, b3, b4), where p = a0 =

b0 is a positive integer, p, a1, · · · , a4 are pairwise coprime, and p, b1, · · · , b4 are

also pairwise coprime to each other, then we have

µ

 
4Y

i=1

ail4(p, b1, b2, b3, b4) −
4Y

i=1

bil4(p, a1, a2, a3, a4)

!
≡ 0 mod p,

or

µ
� 4Y

i=1

ai

�
5(p2 + b1

2 + b2
2 + b3

2 + b4
2)2 − 7(p4 + b1

4 + b2
4 + b3

4 + b4
4)
�
/90

−
4Y

i=1

bi

�
5(p2 + a1

2 + a2
2 + a3

2 + a4
2)2 − 7(p4 + a1

4 + a2
4 + a3

4 + a4
4)
�
/90

�
≡ 0 mod p,

where µ = lcm(µ1, µ2). We define µ1 and µ2 in the following way: denote the de-

nominator of the Dedekind sum d(ai; a0, · · · , Òai, · · · , a4) by µ4,ai
; similarly, denote

the denominator of the Dedekind sum d(bi; b0, · · · ,Òbi, · · · , b4) by µ4,bi
, then

µ1 = lcm(µ4,a0 , µ4,a1 , · · · , µ4,a4), µ2 = lcm(µ4,b0, µ4,b1, · · · , µ4,b4).
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5.2 Proofs of properties of Zagier-Dedekind sums

and some experimental data of their values

Proof of Theorem 5.4. The reciprocity law for higher dimensional Zagier-Dedekind

sums gives us:

nX
i=0

1

ai
d(ai; a0, · · · , Òai, an) = 1 − ln(a0, · · · , an)

a0 · · ·an
, (5.8)

nX
i=0

1

bi
d(bi; b0, · · · , Òbi, bn) = 1 − ln(b0, · · · , bn)

b0 · · · bn
. (5.9)

Denote the denominator of the Dedekind sum d(ai; a0, · · · , Òai, · · · , an) by µn,ai
;

denote the denominator of the Dedekind sum d(bi; b0, · · · , Òbi, · · · , bn) by µn,bi
.

Let µ1 = lcm(µn,a0 , µn,a1, · · · , µn,an), µ2 = lcm(µn,b0, µn,b1, · · · , µn,bn). Let µ =

lcm(µ1, µ2).

Multiplying (5.8) with µ
Qn

i=0 ai
Qn

j=1 bj :

µ
nY

j=1

bj

nX
k=0

a0 · · ·ak · · ·and(ak; a0, · · · , an) =

µ
nY

i=0

ai

nY
j=1

bj − µln(a0, · · · , an)
nY

j=1

bj . (5.10)

Multiplying (5.9) with µ
Qn

i=0 bi
Qn

j=1 aj :

µ
nY

j=1

aj

nX
k=0

b0 · · ·bk · · · bnd(bk; b0, · · · , bn) =

µ
nY

i=0

bi

nY
j=1

aj − µln(b0, · · · , bn)
nY

j=1

aj. (5.11)

Note the first term in the LHS of (5.10) is µ
Qn

i=1 ai
Qn

j=1 bjd(a0; a1, · · · , an),

and the first term in the LHS of (5.11) is µ
Qn

i=1 bi
Qn

j=1 ajd(b0; b1, · · · , bn). Since

we know that d(a0; a1, · · · , an) = d(b0; b1, · · · , bn), these two terms are, in fact,

equal to each other. All the other terms in the LHS of (5.10) are of the form

pT1 = a0T1 where T1 ∈ Z, while all the other terms in the LHS of (5.11) are of

the form pT2 = b0T2 where T2 ∈ Z.
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Subtract (5.11) from (5.10), and take modulus p both sides, we have

µ

 
nY

i=1

ailn(p, b1, · · · , bn) −
nY

i=1

biln(p, a1, · · · , an)

!
≡ 0 mod p.

Proof of Corollary 5.1. The reciprocity law tells us that:

4X
i=0

1

ai

d(ai; a0, · · · , Òai, · · · , a4) = 1 − l4(a0, · · · , an)

a0 · · ·an

, (5.12)

4X
i=0

1

bi
d(bi; b0, · · · ,Òbi, · · · , b4) = 1 − l4(b0, · · · , bn)

b0 · · · bn
, (5.13)

where

l4(a, b, c, d, e) = (5(a2 + b2 + c2 + d2 + e2)2 − 7(a4 + b4 + c4 + d4 + e4))/90.

Applying the same technique used in the proof of Theorem 5.4, we can finally

get:

µ

 
4Y

i=1

ail4(p, b1, b2, b3, b4) −
4Y

i=1

bil4(p, a1, a2, a3, a4)

!
≡ 0 mod p,

where µ is defined as in Theorem 5.4.

5.3 Table of 4-dimensional Zagier-Dedekind Sums

We give a table of four-dimensional Dedekind sums for our reader’s interest.

Table 5.1: 4-dimensional Zagier-Dedekind Sums

d(n; a, b, c, d) d(n; a, b, c, d)

d(7;1,1,1,3)= 2 d(7;1,1,3,3)= 6

d(7;1,1,2,3)= 2 d(7;2,3,4,5)= 6

d(7;1,2,3,4)= 2 d(7;1,2,5,6)= 6

Continued on next page
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Table 5.1 – continued from previous page

d(n; a, b, c, d) d(n; a, b, c, d)

d(7;1,2,4,5)= 2 d(7;4,4,5,5)= 6

d(7;3,4,5,6)= 2 d(7;5,5,6,6)= 6

d(7;1,3,5,6)= 2 d(7;1,3,4,6)= 6

d(13;1,1,2,6)= –12 d(13;1,2,3,5)= 12

d(13;2,3,4,6)= –12 d(13;2,3,4,7)= 12

d(13;1,2,3,4)= 16 d(13;1,1,1,6)= –40

d(13;2,4,5,7)= 16 d(13;3,5,6,8)= –40

d(13;2,3,5,6)= 16 d(13;3,5,5,7)= –40

d(13;3,5,6,7)= 8 d(16;3,3,5,7)= 2

d(13;4,5,6,8)= 8 d(16;1,1,5,7)= 2

d(13;1,1,3,5)= 8 d(16;1,1,3,3)= 142

d(13;1,1,3,6)= 8 d(16;5,5,7,7)= 142

d(17;1,3,4,5) = 24 d(17;1,2,3,5) = 32

d(17;2,3,4,5) = 24 d(17;1,4,5,6) = 32

d(17;1,2,3,4) = 52 d(17;2,3,6,7) = –4

d(17;2,3,5,7) = 52 d(17;2,5,6,7) = –4

d(17;3,4,6,7) = 52 d(17;3,4,5,6) = –4

d(17;2,7,9,11) = –24 d(17;2,3,11,12) = 28

d(17;4,7,9,11) = –24 d(17;3,5,7,9) = 28

d(17;2,3,8,10) = –24 d(17;4,5,10,11) = 28

d(17;1,1,2,3) = 244 d(17;5,5,6,7) = 64

d(17;2,5,5,7) = 244 d(17;3,5,7,7) = 64





Chapter 6
The curve of centers of a finite point set

6.1 Introduction to the µ-curve: generalized centers of a finite point

set

In the 17’th century, Pierre De Fermat proposed the following problem, which

has attracted the attention of the mathematical community ever since Fermat

breathed fresh life into this problem. Given three points in the plane, find a

fourth point p in R2 such that the sum of the distances from p to the three given

points is minimized.

Pierre de Fermat received a letter from R. Descartes in August 1638, in which

he was asked to investigate the following curves:

{x ∈ R
2 |

4X
i=1

||pi − x|| = c},

for given points p1, p2, p3, p4 ∈ R2, and where c is a constant. He was probably

inspired by it and asked another related question in 1643: “Given three points

in the place, find the point having the minimal sum of distances to these three

points.” Many mathematicians have given answers to this very interesting ques-

tion, and E. Torricelli gave the initial solution due to which this special point

earns the name “Fermat–Torricelli point” [KM97]. This problem is also called

the “Steiner problem” named after Jacob Steiner. In 1937, the 16-year-old Endre

75
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Weiszfeld (later also known as Emil Varshony) published a celebrated algorithm

that has been successfully used to solve the Steiner problem. The original pa-

per of the Hungarian Jewish Weiszfeld was written in French, and published in a

Japanese journal (Tohoku). This problem was historically known by many names:

the “facility location problem”, the “Fermat-Weber problem”, and the “Torricelli

problem” (see [Cle88],[Dal00],[dF43],[Kuh73],[Wei37]).

Among one of the generalized problems of the Steiner problem was to find a

point p ∈ Rd minimizing the sum of weighted Euclidean distances from p to N

given points. Weiszfeld is the first one who discovered an iterative algorithm to

tackle it. In this chapter, our focus is on a generalization of the Steiner problem.

Definition 6.1. Given any finite point set S ⊆ Rd, and given r ≥ 1, we define

µ(r) = arg min
x∈Rd

X
a∈S

||a − x||r.

We note that µ : [1,∞) → Rd.

In other words, we associate a certain continuous curve µ to any finite point set

S ⊆ Rd, and we will show that the µ-curve embodies many symmetry properties

of S. The reason we restrict our attention to r ≥ 1 is that in this range of r, the

function ‖a − x‖r is a convex function of r. If r < 1, we may not necessarily get

a unique point for the minimization problem above.

We generalize the Fermat-Weber problem by finding a series of points µ(r) ∈
Rd(r ∈ [1,∞)), each of which minimizes the sum of the r-th power of the distances

from µ(r) to N many given points in S. It is an easy fact that µ(2) gives the

traditional mean of the point set S; in other words, the center of mass of the point

set S. Moreover, µ(1) gives us a nice definition for the multidimensional median

of S. There are various competing definitions for multidimensional medians, but

the definition given here is often used in the literature on facility location. It is

also a standard fact that µ(∞) is the center of the smallest sphere that contains

all of the points of S [DLMZ07].
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set 77

The µ-curve unifies all of these natural choices of centers of a finite point set

S ∈ Rd into one curve, and gives us a new kind of “signature” for the point set S.

Definition 6.2. Call the curve comprising of the points µ(r) the curve of cen-

ters or simply the µ-curve.

We will extend Weiszfeld’s algorithm to find µ(r) for 1 ≤ r < ∞.

We first study geometric meanings of some special points on the µ-curve and

the relationship between it and hyperplane(s) of the point set. Next, we proceed

to expand Weiszfeld’s algorithm to find µ(r) and prove that the µ-curve is C∞.

Then we find an equivalent condition for µ-curve to be degenerate, in other words,

a single point. Then we conjecture an upper bound for the distance between any

two points on the µ-curve using moments of S. In the end, we illustrate the µ-

curve of several point sets and show that we can use µ-curve to detect approximate

reflective symmetry and radial symmetry of finite point sets.

Note that there’s another way to interpret our µ-curve.

Definition 6.3. We define the t-th moment of our given point set S ⊂ Rd as

follows:

Mt(x) =
X
a∈S

||a − x||t,

for each real t ≥ 1.

Then

µ(r) = arg min
x∈Rd

Mr(x).

In words, each point on our µ-curve minimizes the r-th moment of our point set

among all possible points x ∈ Rd.

Throughout the paper, S is any fixed, finite set of points in Rd. We will

sometimes treat the case of two-dimension d = 2 separately. For the sake of

clarity we first recall some standard definitions.

Definition 6.4. A set is called radially symmetric (about the origin) if when-

ever a point p ∈ S, then −p ∈ S.
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We also recall the definition of symmetry about a hyperplane H for any set

S.

Definition 6.5. Given a point p ∈ R
d, consider the perpendicular line L to H

that passes through x, and call p′ the reflected point about the hyperplane H if p′

is on the line L, but on the other side of H, and located the same distance from

H as the distance that p is away from H. We say that S is symmetric about

the hyperplane H if for every p ∈ S, we also have the reflected point p′ ∈ S.

Some natural intuitive questions immediately arise:

1. What does the length of µ-curve say about the point set S? If the µ-curve

is short (but not zero) relative to the diameter of S, does this mean that S is in

some sense “random”?

2. Can we bound the length of µ-curve in terms of certain moments of S?

3. To what extent does the µ-curve uniquely capture information about the

point set S?

Theorem 6.4. (Wang) If the point set S has a hyperplane H of symmetry, then

the µ-curve lies on the hyperplane H.

Proof. Suppose to the contrary that for a certain r there exists a point p = µ(r)

that lies off the hyperplane H . Construct the perpendicular line L to H , from p,

and reflect the point p about the hyperplane H . In other words, we walk from p

along the perpendicular line L to H until we get to the other side of H , a distance

equal to the distance that p is away from H . Call the reflected point q. Now

it’s clear from the hypothesis concerning the symmetry that the set of distances

||q−ai|| is equal to the set of distances ||p−ai||. This means that both the point

p and the point q lie on the µ-curve for the same r, contradicting the uniqueness

of the point p = µ(r) that is guaranteed by convexity of the µ-curve, because

r ≥ 1.
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Note that the µ-curve is not a straight line segment in general. However, in

R2, if S does possess a line of symmetry, then it follows that the µ-curve is indeed

a line segment which lies on the line of symmetry of S.

Corollary 6.1. (Wang) If a finite point set S ∈ Rd has at least d different

hyperplanes of symmetry whose normal vectors are linearly independent, then

µ = {0}.

Proof. From Theorem 6.4, we know that the µ-curve lies simultaneously on the

d linearly independent hyperplanes H1, . . . , Hd. But these hyperplanes only

intersect simultaneously at the origin.

6.2 Weiszfeld’s algorithm

Weiszfeld’s algorithm solves the Steiner problem, which corresponds to µ(1) on

the µ-curve. We now expand this algorithm to find µ(r) for any 1 ≤ r < ∞ in R2.

Suppose we are given a set S of N points in R2, namely S = {(x1, y1), . . . , (xN , yN)},
and we wish to find a point (P, Q) that minimizes the sum of the Euclidean dis-

tances from (P, Q) to each of the given points (xi, yi). This magical point (P, Q)

is called the Steiner point of the point set S.

Pick an initial point in R2, call it (P0, Q0), making sure that it does not

coincide with any point of S. Weiszfeld’s algorithm is then defined as follows.

Let
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Pk+1 =

NX
i=1

�
xi

||(Pk, Qk) − (xi, yi)||

�
NX

i=1

�
1

||(Pk, Qk) − (xi, yi)||

� ,

Qk+1 =

NX
i=1

�
yi

||(Pk, Qk) − (xi, yi)||

�
NX

i=1

�
1

||(Pk, Qk) − (xi, yi)||

� .

Here || · || denotes the Euclidean norm. The sequence (Pk, Qk) converging to a

point (P, Q) for any initial choice (P0, Q0) is now a theorem of Weiszfeld [Wei37]

that it does indeed converge to the Seiner point (P, Q) of the point set S on

condition that during the evolution of the algorithm, none of the points (Pk, Qk)

coincides with any point of S.

6.3 An extension of Weiszfeld’s algorithm, and the smoothness of

the µ-curve

For our problem, we again suppose the points form a finite point set S =

{a1, . . . , aN}. Our goal is to find a point µ(r) ∈ Rd, for each given r ∈ [1,∞),

that minimizes the sum
Pn

i=1 ‖x − ai‖r over all x ∈ R. Let

F (x) =
nX

i=1

||x − ai||r.

The gradient of F can be calculated as

∇F (x) =
nX

i=1

r(x − ai)||x − ai||r−2

when x does not coincide with any of the ai’s. Solving the equation ∇F (x) = 0

yields the optimality condition

µ(r) =

Pn
i=1 rai||µ(r) − ai||r−2

λ(µ(r))
, (6.1)
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where

λ(µ(r)) =
nX

i=1

r||µ(r) − ai||r−2.

We assume that, unless otherwise specified, the µ-curve does not meet any of

the points in S. The reason for this assumption is because µ(1) is generally not

uniquely defined.

Similar in spirit to Weiszfeld’s algorithm, we define the following point se-

quence, which will yield the optimal point µ(r) for any r in the range r ∈ [1,∞):

µ(r)k+1 =

P
ai∈S aid

r−2
i,kP

ai∈S dr−2
i,k

,

where di,k is the distance from ai ∈ S to µ(r)k.

Theorem 6.5. (Wang) Given any (µ(r)0) ∈ Rd,define µ(r)k+1 =

P
ai∈S aid

r−2
i,kP

ai∈S dr−2
i,k

as

above, k = 1, 2, . . . .If no µ(r)k is a point from the point set S, then limk→∞ µ(r)k =

µ(r).

The proof follows exactly from the one for Weiszfeld’s algorithm. We now

give a structure theorem that tells us the µ-curve is infinitely smooth.

Theorem 6.6. (Wang) The unique solution to the minimization problem

arg min
x∈R

nX
i=1

‖x − ai‖r,

as a function of the parameter r ∈ (1,∞), is C∞ at all r for which µ(r) does not

coincide with any of the ai’s.

Proof. Let r be fixed, and let µ(r) /∈ {a1, . . . , an}. Since µ(r) solves the uncon-

strained minimization problem, then the gradient

nX
i=1

r(x − ai)‖x − ai‖r−2

must vanish at µ(r). By viewing the above gradient as a C∞-function g of the

pair (x, r), the Implicit Function Theorem will prove the theorem if the Jacobian
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of g with respect to x is nonsingular at all (µ(r), r), with r > 1, and µ(r) 6= ai.

Indeed, the Jacobian is

Jxg(x, r) : h 7→ r
nX

i=1

�
(r − 2)‖x − ai‖r−4(x − ai)(x − ai)

T h − ‖x − ai‖r−2h
�

= r‖x − ai‖r−4
nX

i=1

�
(r − 2)(x − ai)(x − ai)

T h + ‖x − ai‖2h
�
,

which is positive definite since

hT Jxg(x, r)h

= r‖ai − x‖r−4
nX

i=1

�
(r − 2)((ai − x)T h)2 + ‖ai − x‖2‖h‖2

�
≥

8><>:r‖ai − x‖r−4P‖ai − x‖2‖h‖2 when r ≥ 2,

r‖ai − x‖r−4P ((r − 2)‖ai − x‖2‖h‖2 + ‖ai − x‖2‖h‖2) when r ∈ (1, 2)

=

8><>:r‖ai − x‖r−4P‖ai − x‖2‖h‖2 when r ≥ 2,

r(r − 1)‖ai − x‖r−4P‖ai − x‖2‖h‖2 when r ∈ (1, 2)

> 0 whenever h 6= 0.

Remark 6.1. When µ(r) coincides with one of the given points aj, then the

gradient

g(x) =
X

i∈{1,...,n}\{j}
r(x − ai)‖x − ai‖r−2 + r sgn(x − aj)‖x − aj‖r−1,

where

sgn(x) =

8><>:x/‖x‖ if x 6= 0,

0 otherwise,

is no longer C∞ at (µ(r), r). In fact it should generally just be Ck, where k is

the least integer no less than r − 1, since the term r sgn(x − aj)‖x − aj‖r−1 is

only Ck while the other summands are C∞ at (µ(r), r). In this case, the Implicit

Function Theorem can only conclude that µ(r) is Ck-smooth at r. The exception

is when r is an even integer, in which case the gradient is still C∞.
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6.4 Invariance of the µ-curve under rigid motions and uniqueness

of the µ-curve

A natural question that arises from the definition of the µ-curve is what will

happen to the curve after an orthogonal transformation to the point set. Here we

prove that our µ-curve bears very nice invariance property under rigid motions.

Theorem 6.1. (Wang) Let S be a finite point set in Rd, and µ(r) = arg minx∈Rd

P
a∈S ||a−

x||r.

(i) Fix any α ∈ R 6=0. Dilate S by a factor α, and denote the dilated point set

by αS = {αa|a ∈ S}. Then µαS(r) = αµS(r) for ∀r ∈ [1,∞).

(ii) Let M ∈ O(d) be a d × d orthogonal matrix, then µMS(r) = M(µS(r)) for

∀r ∈ [1,∞).

Proof. (i) Define

µS(r) = arg min
x∈Rd

X
a∈S

||a − x||r,

then we have

µαS(r) = arg min
x∈Rd

X
b∈αS

||b − x||r,

= arg min
x∈Rd

X
a∈S

||αa − x||r,

= arg min
x∈Rd

X
a∈S

αr||a − x/α||r,

= arg min
x∈Rd

X
a∈S

||a − x/α||r,

= αµS(r).
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(ii)

µMS = arg min
x∈Rd

X
b∈MS

||b − x||r,

= arg min
x∈Rd

X
a∈S

||Ma − x||r,

= arg min
x∈Rd

X
a∈S

〈Ma − x, Ma − x〉
r
2 ,

= arg min
x∈Rd

X
a∈S

¬
M t(Ma − x), M t(Ma − x)

¶ r
2 , (6.2)

= arg min
x∈Rd

X
a∈S

¬
a − M tx, a − M tx

¶ r
2 ,

= arg min
x∈Rd

X
a∈S

||a − M−1x||r,

= MµS(r).

Here equation (6.2) holds due to the fact that 〈x, y〉 = 〈M tx, M ty〉 where

M therefor M t is an orthogonal matrix.

Another question that we can ask about our µ-curve is whether it is uniquely

determined by the point set or not. Asides from degenerate cases where µ-curve

is a single point, we conjecture that our µ-curve is uniquely determined by the

point set, in other words, given a µ-curve, we can always find out what the

original point set is assuming we know the number of points in S. The intuition

comes from the Hilbert Basis Theorem[CLO97] which tells us that every ideal

I ⊂ k[x1, · · · , xn] has a finite generating set. That is, I =< g1, · · · , gs > for

some g1, · · · , gs ∈ I, where k is a field, and k[x1, · · · , xn] denotes the set of all

polynomials in x1, · · · , xn with coefficients in k.

By using this result, we conjecture that the nondegenerate µ-curve is uniquely

determined by the point set.

Conjecture 6.1. The nondegenerate µ-curve is uniquely determined by a point

set S.
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Suppose we are give a µ-curve, and assume the point set which the µ-curve

is defined on is S = {a1, a2, · · · , an}, from our previous argument, we have the

following formula:

µ(r) =

Pn
i=1 ai||µ(r) − ai||r−2Pn
i=1 ||µ(r) − ai||r−2

,

which is essentially a set of infinitely many equations about the coordinates of ai.

According to Hilbert Basis Theorem, we know that every ideal in a polynomial

ring over R is finitely generated, therefore, these equations are also finitely gen-

erated and there exists a solution. In other words, we can find what the original

point set S is by solving these equations.

Example 6.2. In order to show how a µ-curve is determined by a finite point set,

we give an example here. Suppose we are given a µ-curve of some point set which

has 3 points in R2. We denote this point set by S = {(a, b), (c, d), (e, f)} ∈ R2.

And suppose we know some of the points on the µ-curve with respect to dif-

ferent r. For example, assume µ(2) = (3, 3), µ(4) = (3.1984, 2.8016), and

µ(6) = (3.2502, 2.7498)(In fact, these points are on the µ-curve of point set

S0 = {(1, 3), (5, 1), (3, 5)}). We will try to recover S0 from three points on its

µ-curve. According to

µ(r) =

Pn
i=1 ai||µ(r) − ai||r−2Pn
i=1 ||µ(r) − ai||r−2

,

we will be able to get 6 equations for r = 2, 4, 6.

⋄ When r = 2, we have: 8><>:3 =
a + c + e

3
,

3 =
b + d + e

3
.

⋄ When r = 4, we denote the distance between (a, b) and µ(4) = (3.1984, 2.8016)

by D1, the distance between (c, d) and µ(4) = (3.1984, 2.8016) by D2, and
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the distance between (e, f) and µ(4) = (3.1984, 2.8016) by D3, then we have:8>><>>:3.1984 =
a · D2

1 + c · D2
2 + e · D2

3

D2
1 + D2

2 + D2
3

,

2.8016 =
b · D2

1 + d · D2
2 + f · D2

3

D2
1 + D2

2 + D2
3

.

Here D1 =
È

(3.1984 − a)2 + (2.8016 − b)2, D2 =
È

(3.1984 − c)2 + (2.8016 − d)2,

and D3 =
È

(3.1984 − e)2 + (2.8016 − f)2.

⋄ When r = 6, we denote the distance between (a, b) and µ(6) = (3.2502, 2.7498)

by D4, the distance between (a, b) and µ(6) = (3.2502, 2.7498) by D5, and

the distance between (a, b) and µ(6) = (3.2502, 2.7498) by D6, then we have:8>><>>:3.2502 =
a · D4

4 + c · D4
5 + e · D4

6

D4
4 + D4

5 + D4
6

,

2.7498 =
b · D4

4 + d · D4
5 + f · D4

6

D4
4 + D4

5 + D4
6

.

Here D4 =
È

(3.2502 − a)2 + (2.7498 − b)2, D5 =
È

(3.2502 − c)2 + (2.7498 − d)2,

and D6 =
È

(3.2502 − e)2 + (2.7498 − f)2.

Put these 6 equations together:8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
3 =

a + c + e

3
,

3 =
b + d + e

3
,

3.1984 =
a · D2

1 + c · D2
2 + e · D2

3

D2
1 + D2

2 + D2
3

,

2.8016 =
b · D2

1 + d · D2
2 + f · D2

3

D2
1 + D2

2 + D2
3

,

3.2502 =
a · D4

4 + c · D4
5 + e · D4

6

D4
4 + D4

5 + D4
6

,

2.7498 =
b · D4

4 + d · D4
5 + f · D4

6

D4
4 + D4

5 + D4
6

.
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The solution is 1: 8>>>>>>>>>>>><>>>>>>>>>>>>:
a = 0.725 ≈ 1,

b = 2.859 ≈ 3,

c = 5.259 ≈ 5,

d = 0.893 ≈ 1,

e = 3.016 ≈ 3,

f = 5.249 ≈ 5.

From this example, we conjecture that nondegenerate µ-curves are uniquely de-

termined by point sets.

6.5 Degeneracy of the µ-curve and symmetric properties of a point

set

The following result gives a necessary and sufficient condition for the µ-curve

to consist only of the origin.

Theorem 6.7. (Wang) The µ-curve is {0} if and only if the point set S lies on a

finite union of concentric spheres centered at the origin, and satisfies the following

property: those points lying on each sphere have the origin as their center of mass.

Proof. By the definition of µ-curve, we know that

µ(r) =

Pn
i=1 rai||µ(r) − ai||r−2

λ(µ(r))
,

where

λ(µ(r)) =
nX

i=1

r||µ(r) − ai||r−2.

1We used Mathcad to solve the above nonlinear equation system. The method used

is Newton–Raphson method, therefore the result is sensitive to initial guess. Here we set

(a0, b0, c0, d0, e0, f0) = (0, 4, 6, 0, 4, 6).
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When µ(r) = 0 for ∀ r ∈ (1,∞), we have

0 =

Pn
i=1 ai||ai||r−2Pn
i=1 ||ai||r−2

,

i.e.

0 =
nX

i=1

ai

||ai||
||ai||r−1.

Let S1 = {ai ∈ S : ai has the longest norm L among all points in S }, the above

equation can be written as

0 =
X

ai∈S1

ai

||ai||
Lr−1 +

X
ai∈S−S1

ai

||ai||
||ai||r−1,

divide both sides by Lr−1, we get

0 =
X

ai∈S1

ai

||ai||
+

X
ai∈S−S1

ai

||ai||
(
||ai||
L

)r−1.

Let r approach ∞,notice that limr→∞( ||ai||
L

)r−1 = 0 for ∀r ∈ (1,∞), we have

0 =
X

ai∈S1

ai

||ai||
.

In other words, for those points with the longest norm L, their center of mass is

the origin. The same argument can apply to all the points that are left. Thus we

get our conclusion that if µ-curve is {0} for a point set S, then S lies on a finite

union of concentric spheres whose center is the origin and for those points lying

on the same sphere, their center of mass is the origin.

Sufficiency follows by checking the (sufficient) optimality condition that de-

fines our µ-curve; in other words, checking the gradient:

G(x) = −r
nX

i=1

‖ai − x‖r−2(ai − x) = 0.

Notice that G(x) can be written as:

G(x) = −r
nX

i=1

ai − x

||ai − x|| ||ai − x||r−1.
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If S satisfies the property given in the theorem, we can classify all the points in

S according to their norms then G(x) = 0 becomes obvious.

Another way to prove necessity is to use Vandermonde matrix defined by the

coefficients of the equation

0 =
nX

i=1

�
ai

||ai||

�
||ai||r−1

by letting r be 1, 2, 3, · · · , l where l is the number of classes of ai due to the length

of their norms.

Corollary 6.2. (Wang) If the point set S ⊂ Rd has radial symmetry about the

origin, then the curve µ = {0}.

Proof. For any point p ∈ S, by assumption we also have −p ∈ S. Thus, the

sphere that passes through p and −p has the origin as the center of mass of the

subcollection of two points {p,−p}. If we think of S as a finite union of such

antipodal pairs of points, each pair lying on its own sphere, then Theorem 6.7

shows that µ = {0}.

To illustrate Corollary 6.7, the following figure shows a point set S that is

comprised of three subsets, where each of these subsets lies on a circle with the

center of mass of that subset being the origin. We notice that the µ-curve for

this point set S being exclusively {0} which is fully explained by Theorem 6.7.
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Figure 6.1: Example of the µ-curve for a point set on concentric circles

If we wish to connect the ideas of radial symmetry to rotational symmetry,

we can use Corollary 6.2, but only for R
2. In the case of R

2, we have radial

symmetry if and only if we have a rotation by an angle equal to π radians.

However, if dimension d ≥ 3, this equivalence is no longer valid. The two notions

are now distinct, and further research is required to find more connections between

rotationally symmetric point sets and the µ-curve.

Corollary 6.3. (Wang) Let S be any finite set of points in Rd. If S has d linearly

independent hyperplanes of symmetry, then the points of S must lie on spherical

shells, all centered at the point of intersection of the hyperplanes, such that the

center of mass of the points on each shell is this point of intersection.
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Proof. If S has d linearly independent hyperplanes of symmetry, then by Corol-

lary 6.4, our µ-curve must consist of only the point of intersection. But by

Theorem 6.7, the µ-curve is this point if and only if S has the desired property

above, namely the “shell” property.

6.6 The moments of S and their relation with the distance between

any two points on the µ-curve

We know for any point set in R1, the following inequality is true:

||µ(2)− µ(1)|| ≤ σ,

where σ is the usual standard deviation of the point set S.

We will extend the inequality above in a very general way. As mentioned in

the beginning of our paper, define the t-th moment of a given point set S ⊂ R
d

as follows:

Mt(x) =
X
ai∈S

||ai − x||t,

for each real t ≥ 1. With this definition, the µ-curve can be interpreted as follows:

µ(r) = arg min
x∈Rd

Mr(x).

Or equivalently, each point on our curve minimizes the r-th moment of the point

set S among all possible points x ∈ Rd.

We can also give the following interpretation to σ in terms of the second

moment of our point set: σ2 =
M2(0)

‖S‖ , where M2(x) =
P

ai∈S ||ai − x||2 is the

second moment of the point set S, and ‖S‖ denotes the number of points in S.

In [GL00], there is a whole chapter dedicated to moments related theory and we

found a strong connection between our µ-curve and the center of P of order r

defined there. We give a brief idea of what the center of P of order r means.

Definition 6.6. Let X = (X1, · · · , Xd) be a Rd–valued random variable with

distribution P. Let 1 ≤ r < ∞ and assume that E(‖X‖r) < ∞, where ‖ · ‖
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denotes any norm on Rd. Define a center of P of order r by a point a ∈ Rd

such that

E‖X− a‖r = inf
b∈Rd

E‖X − b‖r.

The r-th absolute moment of P about the center is defined by

Vr(P ) = inf
a∈Rd

E‖X− a‖r.

If S is a finite point set with S = {X1,X2, · · · ,XN} with distribution P ,

then E(S) =
PN

i=1 XiP (Xi). If all points in S are uniformly distributed, then

P (Xi) = 1
N

, and E(S) = 1
N

PN
i=1 Xi. In this case, the above Vr(P ) can be written

as

Vr(P ) = inf
a∈Rd

1

N

NX
i=1

‖Xi − a‖r,

which is actually 1
N

inf Mr(x), while our focus is on arg min Mr(x). They are

closely related in the sense that once we know what µ(r) = arg min Mr(x) is, it

will naturally leads us to Vr(P ).

In order to prove our main theorem, we need Conjecture 6.2. Experimental

results show the correctness of it though at this point, we still have no idea of

how to prove it.

Conjecture 6.2. ‖(µ(r) − µ(1))‖ ≤
PN

i=1 ‖(µ(r) − Xi)‖
N

.

If this conjecture is true, then we can find a nice bound for the r-th moment

defined above.

Theorem 6.8.

||µ(r) − µ(1)|| ≤
�

Mk(µ(r))

N

� 1
k

,

where k ∈ (1,∞).
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Proof.

‖µ(r) − µ(1)‖ ≤ E(‖(Xi − µ(r))‖ , (6.3)

=

PN
i=1 ‖Xi − µ(r)‖

N
,

=

PN
i=1

�
‖Xi − µ(r)‖k

� 1
k

N
,

≤
 PN

i=1 ‖Xi − µ(r)‖k

N

! 1
k

, (6.4)

=

�
Mk(µ(r))

N

� 1
k

.

(6.3) holds due to Conjecture 6.2, since

NX
i=1

‖(µ(r) − µ(1))‖ ≤
NX

i=1

‖(µ(r) − Xi)‖ ,

therefore we have

‖µ(r) − µ(1)‖ =

PN
i=1 ‖(µ(r) − µ(1))‖

N
,

≤
PN

i=1 ‖(µ(r) − Xi)‖
N

,

= E(‖(Xi − µ(r))‖).

(6.4) is true because the function f(x) = x
1
k , k > 1 is concave, and Jensen’s

inequality tells us that when a function f is concave, we’ll have f
�P

xi

N

�
≥P

f(xi)

N
, and in our case xi = ||Xi − µ(r)||k. When k = 1, this theorem is

identical with Conjecture 6.2.

6.7 Examples of some µ-curves

Here we obtain experimental information about the shape and other charac-

teristics of some µ-curves.

In the following example, the point set given by blue ‘*’ consists of {(0,0,),(–

1,2),(3,0)}. The µ-curve is plotted with step size 0.01 and r ∈ [1, 3]. The first few
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values of r are plotted with green ‘O’, while the last few values of r are plotted

with magenta ‘*’ to distinguish the beginning and the end of the curve. The same

rules also apply to other examples followed.
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Figure 6.2: the µ-curve for S = {(0, 0), (−1, 2), (3, 0)}

In this example, the way we plot out µ-curve is to use iteration to approach

to the best possible solution µ(r) in finite many steps. MATLAB also gives us

another option to draw µ(r) directly for any given r. For any given r, in order to

find µ(r), we can solve an equation system given by the extension of Weiszfeld’s

algorithm. In R2, we can suppose the coordinates of µ(r) are x and y, and call

the two equations given by (6.1) F (x, y, r) and G(x, y, r). We can plot the curves

F (x, y, r) and G(x, y, r) in R2 when r is fixed. An example when r = 6 for the
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point set S = {(0, 0, ), (−1, 2), (3, 0)} is given below. Denote µ(6) by (x, y). Then

F (x, y, 6) and G(x, y, 6) is shown as follows:8>><>>:F (x, y, 6) = x −
P3

i=1
ai‖µ(6)−ai‖4P3

i=1
‖µ(6)−ai‖4

= 0,

G(x, y, 6) = y −
P3

i=1
ai‖µ(6)−ai‖4P3

i=1
‖µ(6)−ai‖4

= 0.

We can write these two equations explicitly:8>><>>:F (x, y, 6) = x − −1 · ((x + 1)2 + (y − 2)2)2 + 3 · ((x − 3)2 + y2)2

(x2 + y2)2 + ((x + 1)2 + (y − 2)2)2 + ((x − 3)2 + y2)2
= 0,

G(x, y, 6) = y − 2 · ((x + 1)2 + (y − 2)2)2

(x2 + y2)2 + ((x + 1)2 + (y − 2)2)2 + ((x − 3)2 + y2)2
= 0.

we can get µ(6) = (0.9595, 0.9317) by iteration process. The numerical result

is consistent with the graphic result shown below.

Figure 6.3: µ(6) as the solution to an equation system
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In the following example, the point set given by blue ‘*’ consists of {(–0.8,–

0.2),(0.7,–0.4),(0.3,0.5)}. The µ-curve is plotted with step size 0.01 and r ∈ [1, 3].

−1 −0.5 0 0.5 1

−0.4

−0.2

0
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Figure 6.4: the µ-curve for S = {(−0.8,−0.2), (0.7,−0.4), (0.3, 0.5)}
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In the following example, the point set given by blue ‘*’ consists of {(0,0),(3,3),(4,0)}.

The µ-curve is plotted with step size 0.05 and r ∈ [1, 15].
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Figure 6.5: the µ-curve for S = {(0, 0), (3, 3), (4, 0)}
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In the following example, the point set given by blue ‘*’ consists of {(0,0),(3,0),(0,2)}.

The µ-curve is plotted with step size 0.05 and r ∈ [1, 15].
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Figure 6.6: the µ-curve for S = {(0, 0), (3, 0), (0, 2)}
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In the following example, the point set given by blue ‘*’ consists of

{(–0.6,–0.2),(0.4,0),(–0.3,0.5),(0.2,0.7)}. The µ-curve is plotted with step size

0.01 and r ∈ [1, 3].

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4
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Figure 6.7: the µ-curve for S = {(−0.6,−0.2), (0.4, 0), (−0.3, 0.5), (0.2, 0.7)}
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In the following example, the point set given by blue ‘*’ consists of {(1,3),(2,0),(4,4),(4,1)}.

The µ-curve is plotted with step size 0.05 and r ∈ [1, 15].
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Figure 6.8: the µ-curve for S = {(1, 3), (2, 0), (4, 4), (4, 1)}
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In the following example, the point set given by blue ‘*’ consists of

{(1,4),(2,0),(3,2),(5,4)}. The µ-curve is plotted with step size 0.05 and r ∈ [1, 15].
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Figure 6.9: the µ-curve for S = {(1, 4), (2, 0), (3, 2), (5, 4)}
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In the following example, the point set given by blue ‘*’ consists of {(1,1),(1,3),(4,4),(5,1),(2,0)}.

The µ-curve is plotted with step size 0.05 and r ∈ [1, 15].
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Figure 6.10: the µ-curve for S = {(1, 1), (1, 3), (4, 4), (5, 1), (2, 0)}
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In the following example, the point set S = {(1, 1), (1, 3), (4, 4), (2, 1), (2, 0)}
is shown as blue ‘*’. The µ-curve is plotted with step size 0.05 and r ∈ [1, 15].
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Figure 6.11: the µ-curve for S = {(1, 1), (1, 3), (4, 4), (2, 1), (2, 0)}
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In the following example, the point set S = {(2, 3, 7), (4, 1, 5), (1, 6, 4)} is in

three dimension, shown as blue ‘*’. The µ-curve is plotted with step size 0.05

and r ∈ [1, 30].
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Figure 6.12: the µ-curve for S = {(2, 3, 7), (4, 1, 5), (1, 6, 4)}
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In the following example, the point set is in three dimension, given by blue ‘*’

consists of {(0,0,0),(3,2,6),(2,2,0),(6,2,5)}. The µ-curve is plotted with step size

0.05 and r ∈ [1, 30].
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Figure 6.13: the µ-curve for S = {(0, 0, 0), (3, 2, 6), (2, 2, 0), (6, 2, 5)}
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In the following example, the point set is in 3 dimension, given by blue ‘*’

consists of {(1,3,2),(4,0,5),(2,6,7),(5,3,1)}. The µ-curve is plotted with step size

0.05 and r ∈ [1, 30].
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Figure 6.14: the µ-curve for S = {(1, 3, 2), (4, 0, 5), (2, 6, 7), (5, 3, 1)}

In conclusion, µ-curve tends to be degenerate if the point set has symmetric

property to some extent; otherwise µ-curve is just a nondegenerate curve lying

inside the convex hull of the point set.



Appendix A
Brion’s theorem

The following theorems and their proofs can be found in [BR07]. A convex d-

polytope with exactly d + 1 vertices is called a d-simplex.

Theorem A.1 (Brianchon-Gram identity for simplices). Let ∆ be a d dimen-

sional polytope. Then

1∆(x) =
X
F⊆∆

(−1)dimF1KF
(x),

where the sum is taken over all nonempty faces F of ∆. 1∆(x) denotes the indi-

cator function of simplex ∆ as defined in the first chapter.

Let S be any subset of Rd, define

σS(z) = σS(z1, · · · , zd) :=
X

m∈S∩Zd

zm.

We call σS the integer-point transform of S.

Corollary A.1 (Brion’s theorem for simplices). Suppose ∆ ⊆ Rd is a rational

polytope, and z ∈ Cd. Then we have the following identity of rational functions:

σ∆(z) =
X

v a vertex of ∆

σKv
(z).
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108 Chapter A. Brion’s theorem

Theorem A.2 (Brion’s theorem: discrete form). Suppose P is a rational convex

polytope in Rd, and z ∈ Cd. Then we have the following identity of rational

functions:

σP(z) =
X

v: a vertex of P
σKv

(z). (A.1)

Theorem A.3 (Brion’s theorem: continuous form). Suppose P is a simple ra-

tional convex d-polytope. For a vertex cone Kv of P, fix a set of generators

w1(v),w2(v), · · · ,wd(v) ∈ Z
d.

ThenZ
P

exp(x · z)dx = (−1)d
X

v a vertex of P

exp(v · z)| det(w1(v),w2(v), · · · ,wd(v))|Qd
k=1(wk(v) · z)

,

(A.2)

= (−1)d
X

v a vertex of P

exp(v · z)| detKv|Qd
k=1(wk(v) · z)

. (A.3)

for all z such that the denominators on the right-hand side do not vanish.

Note that the left hand side of (A.2) is the Fourier transform of polytope P,

and it’s equal to the sum of the Fourier transform of its tangent cones at their

vertices v.



Appendix B
The Stretch Theorem and Shift Theorem

for the Fourier transform on Rd

Consider real- or complex-valued functions f ∈ L1(R) defined on Rd. Let

x = (x1, · · · , xd) ∈ Rd. The Fourier transform of f(x) for ∀ξ = (ξ1, · · · , ξd) ∈ Rd

is defined by [Osg07]: bf(ξ) =
Z

Rd
f(x)e−2πi〈x,ξ〉dx.

We will introduce a few basic facts about higher dimensional Fourier transform

here.

Theorem B.1 (Stretch Theorem). Let M ∈ GLn(R), the general linear group

over R. For any function f ∈ L1(R), and ∀ξ = (ξ1, · · · , ξd) ∈ Rd, the following

identity holds: ×f ◦ M(ξ) =
1

| detM |
bf(M−T ξ).

Theorem B.2 (Shift Theorem). Suppose ξ = (ξ1, · · · , ξd) ∈ Rd and

b = (b1, b2, · · · , bd) ∈ Rd is a constant vector. For any function f ∈ L1(R), if

f(x) ⇋ F (ξ), or in other words, the Fourier transform of f(x) is denoted by

F (ξ), then the following identity holds:

f(x + b) ⇋ e2πib·ξF (ξ).
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Chapter B. The Stretch Theorem and Shift Theorem for the Fourier

transform on Rd

Theorem B.3 (Frequency Shift Theorem). Suppose ξ = (ξ1, · · · , ξd) ∈ Rd and

ξ0 = (ξ0
1 , ξ

0
2, · · · , ξ0

d) ∈ Rd is a constant vector. For any function f ∈ L1(R),

if f(x) ⇋ F (ξ), or in other words, the Fourier transform of f(x) is denoted by

F (ξ), then the following identity holds:

F (ξ − ξ0) ⇋ e2πiξ0·xf(x).

Proof of Theorem B.1.×f ◦ M(ξ) =
Z

Rd
f(Mx)e−2πi〈x,ξ〉dx, (B.1)

=
1

| detM |
Z

Rd
f(y)e−2πi〈M−1y,ξ〉dy, (B.2)

=
1

| detM |
Z

Rd
f(y)e−2πi〈y,M−T ξ〉dy, (B.3)

=
1

| detM |
bf(M−T ξ). (B.4)

In (B.2), we let Mx = y, or equivalently, x = M−1y, and the Jacobian

determinant is
1

| detM | .

Proof of Theorem B.2 .Z
Rd

f(x + b)e−2πiξxdx =
Z

Rd
f(u)e−2πiξ(u−b)du,

( substituting u = x + b )

=
Z

Rd
f(u)e−2πiξue−2πiξ(−b)du,

= e−2πiξ(−b)
Z

Rd
f(u)e−2πiξudu,

= e−2πiξ(−b)F (ξ),

= e2πiξbF (ξ).
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Proof of Theorem B.3 .

F (ξ − ξ0) =
Z

Rd
f(x)e−2πiξ−ξ0·xdx,

=
Z

Rd
f(x)e−2πiξ·xe−2πi−ξ0·xdx,

=
Z

Rd
f(x)e−2πiξ·xe2πiξ0·xdx.

Therefore we have

F (ξ − ξ0) ⇋ e2πiξ0·xf(x).
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