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ABSTRACT 
 

The communication bottleneck that currently limits the efficiencies of chip-to-chip and intra-

chip data transfer could be eliminated if the electrical interconnects of the electronic chips inside 

computing devices could be replaced by photonics that can be interrogated by electronic means. In 

fact, in this Information Age where the digital data is expanding at an exponential rate, the synergy 

between integrated photonics and integrated electronics — known as integrated optoelectronics — is 

poised to be the most feasible approach to meet the information demand. However, whether such an 

approach can be fully implemented would depend on the rate of progress of integrated photonics as 

the diversities and complexities of photonic devices are larger than those of electronic devices 

currently supporting our digital world. Investigation into some of the basic component devices of 

integrated photonics, with emphasis on efficient communication applications, is the main thrust of this 

thesis.  

In this thesis, we report on the optimizations and new design proposals of microphotonic 

integrated component devices based on silicon-on-insulator (SOI) waveguides and traveling wave 

microresonators (TWMRs). The results are split into two parts. The first part focuses on the basic 

functionalities of basic microphotonic component devices, while part two focuses on the generation of 

fast light (FL) and slow light (SL) effects in TWMR-based systems. 

Waveguides are the most basic building blocks of photonic integrated circuits (PICs). We thus 

start the first part of the thesis by studying the modal characteristics of different waveguides. 

Attention was given to the single-mode (SM) and polarization-independent (PI) conditions at the 

communication wavelengths of 1.31 μm and 1.55 μm for SOI channel, rib and slab waveguides with 

height and width of less than 1 μm. This is to facilitate the ongoing trend of the scaling of SOI devices 

into the submicron regime. Our results show that submicron SOI waveguides exhibit strong 

dependency on their polarization states. Nevertheless, both SM and PI conditions in submicron SOI 

waveguides are possible under certain circumstances and are restricted by the fabrication process. We 

have identified a matrix of waveguide dimensions that allow both SM and PI operations at the 

submicron scale. This can serve as design rules in the fabrication of submicron SOI waveguides for 

communication applications, whereby SM and PI conditions are highly desirable. 

Another basic component of PICs is the microring resonator (MRR). Like the straight 

waveguide, MRR must also be SM and PI for communication applications. As MRR is a bend-based 

device, it inherently has higher polarization sensitivity and different SM conditions in contrast to a 

straight waveguide. A fundamental question is if it is possible to shrink the size of the MRR and yet 

maintain its overall PI and SM conditions, while ensuring low round-trip losses. We have shown that 

it is possible to achieve this through the use of deeply etched submicron SOI rib waveguides. Our 

results demonstrate that, for a given cladding and core thickness, the radius of a SM and PI MRR 
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based on SOI rib waveguide can be as small as 3 µm, being limited chiefly by the residual 

birefringence of the components of the cavity of the MRR as well as the bend losses. A resonance 

mismatch of only about 0.22 nm between the TE and TM resonance spectra and a free spectral range 

(FSR) of 12 nm can be achieved. This is a large improvement as compared to conventional PI 

resonators that have much larger device size (heigh and width  >  1 μm and bend radius  >  30 μm) 

and smaller FSR (<  2 nm). 

Having analyzed the SM and PI characteristics of the MRR, which is one particular class of 

TWMR, we then look into the use of periodic and aperiodic order to achieve photonic bandgap (PBG) 

engineering of coupled TWMRs, which is also known as coupled-resonator optical waveguides 

(CROWs). In the periodic order case, size-tuned defects are introduced at periodic locations among 

the regular resonators. This results in the formation of mini-defect bands and mini-PBGs within the 

wide PBG of the original defect-free CROW, with the position and number of such mini-defect bands 

and mini-PBGs depending on the size tuning of the defects. In the aperiodic-order case, a single high-

Q localized state will appear and gradually transit to a mini-defect band within a wide photonic stop 

band as the number of unit cells increases. Interestingly, our results also illustrate that there is a strong 

periodic correlation even when the order in the CROW is aperiodic in nature.  

Besides the above work on passive functionalities, we also look into active functionalities based 

on stimulated Raman scattering (SRS) in SOI waveguides. In this study, we have analyzed the 

temperature T effects of SRS in submicron SOI waveguides for 100 K  ≤  T  ≤  500 K in regard to 

three specific types of SRS-based functionalities in the continuous-wave regime: Raman amplification 

and attenuation near the C-band wavelength of 1.55 μm and parametric Raman wavelength 

conversion between the C-band wavelength of 1.55 μm and O-band wavelength of 1.31 μm. Our 

results show that the effects of temperature variation can be harnessed to improve the Raman 

performances in the submicron SOI waveguides. In particular, the use of temperature variation 

provides an additional degree of freedom to tune the conversion efficiency (CE) or amplification 

efficiency (AE) of the SOI waveguides. Also, the CE or AE can be enhanced as compared to that at 

the room temperature.  

In the second part of the thesis, the theme is on the use of degeneracy lifting of the resonator to 

improve the fast light (FL) and slow light (SL) effects. Degeneracy lifting is achieved by the 

excitation of contra-propagating cavity modes through various proposed schemes. The first such 

scheme is the coupler-induced localized backscattering (CILB). It is demonstrated that when there is a 

small net gain in the resonator, weak CILB will allow all three types of light propagation velocity — 

FL with negative group velocity, FL with positive group velocity and SL — to be generated at both 

the through and drop ports. This is in sharp contrast with the conventional TWMR (where CILB is 

negligible), in which only FL with negative group velocity and SL are present at the through port,  

while for the drop port, only SL is produced. Also, weak CILB aided by a small gain in the cavity can 
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produce FL with amplified transmission. This mitigates the constraint of FL with substantial 

attenuation in conventional TWMRs. As change in the strength of the CILB will translate into the 

modulation of the group delay, CILB can thus also provide an extra degree of freedom (besides using 

the physical parameters, such as evanescent coupling strengths) to tune the group delay. 

Another source of contra-propagating cavity modes within the TWMR is the surface 

imperfections-induced distributed backscattering, which is simply termed as intracavity 

backscattering. In our work, the intracavity backscattering can be enhanced and controlled by the 

intentional addition of surface microstructures. It is found that, by adjusting the amplitude and/or 

phase differences between the dual contra-propagating inputs, which are inserted into the TWMR 

circuit, the interaction of the cavity modes with the enhanced intracavity backscattering can be 

controlled. This will then allow the structural dispersion and shape of the resonance spectrum to be 

tuned. Consequently, the transmission and dispersion of the output light can be easily manipulated, 

bringing about continuous tunability in the group delay and transmission. Switching between FL and 

SL can also be attained. This scheme allows tunable FL and SL to be achieved in a passive and linear 

cavity, unlike conventional TWMR systems, which require either the use of active tuning mechanisms 

or nonlinearity in the cavity so as to have tunable group delay and/or transmission.  

Subsequently, we look into the use of intracavity backscattering in a system of twin-coupled 

TWMRs that has only one resonator coupled to the bus waveguide for enhanced coupled resonator 

induced transparency (CRIT) and optical Fano resonance (OFR) effects. In particular, the presence of 

intracavity backscattering in the twin-coupled TWMRs will generate a pair of CRIT peaks. This is in 

contrast to conventional twin-coupled TWMRs systems (intracavity backscattering is not utilized), 

whereby only a single CRIT peak can be realized within one FSR. In addition, FL and SL can be 

simultaneously produced, one at each output port. Note that in conventional twin-coupled TWMRs 

systems, switching between CRIT and OFR is commonly realized through the use of gain and/or 

phase tuning elements in the resonators. In our work, the CRIT peaks can be reshaped into 

asymmetric OFR lineshapes by suitable choice of the intracavity backscattering strength during 

fabrication. If dual inputs are employed, the dual CRIT symmetric peaks of our scheme can be 

reshaped into asymmetric OFR lineshapes simply by modulating the phase and/or amplitude 

differences between the dual inputs, given a fixed intracavity backscattering strength after fabrication. 

Active switching between CRIT and OFR can thus be achieved even in the absence of gain and/or 

phase tuning elements in the resonators, as compared to the conventional twin-coupled TWMRs. 

Last but not least, we have utilized the contra-propagating cavity modes that are excited when 

both the resonators in the above-mentioned twin-coupled TWMRs system are evanescently coupled to 

the bus waveguide to generate flat-band SL. The presence of such contra-propagating cavity modes in 

the twin-coupled TWMRs system (with both of the resonators directly coupled to the bus waveguide) 

will generate multi-peaks in the resonance spectra. Flat-band SL can be generated if such multi-peaks 
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become undistinguishable and merge into one single broadened peak that is maximally flat in the 

resonance spectra. This will only happen if the inter-resonator coupling strength is optimized relative 

to the resonators-to-bus-waveguide coupling strengths. An important figure of merit to quantify the 

(flat-band) usable resonance bandwidth of SL systems is the delay-bandwidth product (DBP). It is 

shown that the DBP of the output light of our propsed scheme is 3- to 24-fold higher than that of 

conventional TWMR-based SL systems. This illustrates that our proposed system is capable of 

providing better SL performances in terms of the (flat-band) usable resonance bandwidth. Fabrication 

tolerance and cavity losses analyses have also revealed that our proposed scheme is rather robust to 

the fabrication errors and limitations of current state-of-the-arts semiconductor processing technology. 

Our proposed SL system will thus be suitable for practical applications in communication systems. 
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Fig. 1.1 Graphical representations of the transistor sizes and counts of Intel microprocessors to 
illustrate the validity of Moore’s law to this date (August 2012). Data is based on Table 
1.1. Note that the vertical scales are logarithmic. 
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Fig. 1.2 The on-chip local clock speed of the microprocessor and the various interconnection 
speeds in the electronic chip of the microprocessor [3]. Note that the vertical scales are 
logarithmic. 
 

3 

Fig. 1.3 Soref’s vision of a photonics super chip [26], where photonics is integrated seamlessly 
with electronics so that the optical devices on the chip can be interrogated by electrical 
means. Note that as the electrical drivers are connected internally (i.e., intra-chip) to the 
photonic components over short paths, the resistance and parasitic capacitance are 
relatively low as compared to electrical interconnections in electronic chips and between 
electronic chips. 
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Fig. 1.4 A 3-D chip [29] proposed by IBM that integrates photonic integrated circuits (top layer) 
with the electronic memories (middle layer) and the electronic processors (bottom layer). 
The photonic integrated circuits (PICs) at the top layer not only connect the various cores 
but also process the incoming and outgoing data. Here, the PIC is shown performing 
optical routing. Other optical functions such as switching, modulating and amplification 
can also be implemented by the PICs before the data is passed to the electronic devices in 
the memory and processor layers or transmitted out of the 3-D chip. 
 

11 

Fig. 2.1 Schematic cross-sections of the three basic types of silicon-on-insulator (SOI) waveguides: 
(a) Slab waveguide, (b) channel waveguide and (c) rib waveguide, with the various design 
parameters shown. Note that light propagates in the z direction. 

26 

Fig. 2.2 Graphical solutions of the dispersion relation of the submicron SOI slab waveguide in Fig. 
2.1(a) for the communication wavelengths of (a) 1.31 μm and (b) 1.55 μm. The vertical 
axis represents the real part of kclad h while the left (right) segment of the horizontal axis 
represents the imaginary (real) part of kcore h. The dashed and solid lines correspond, 
respectively, to the left- and right-hand sides of the dispersion relations in Eqs. (2.10) and 
(2.12)). The three dashed lines in each graph correspond to the SOI waveguide with 
different parameters of ρ(h) (cf. Eq. (2.13) for definition of ρ(h)), which are evaluated at 
three different submicron waveguide dimensions of h = 0.2 μm, 0.6 μm and 1.0 μm. The 
points of intersections of the dashed and solid lines give the modes of the slab waveguide.  
 

34 

Fig. 2.3 Calculated upper limit of the waveguide thickness hc, q =1 for single-mode propagation in 
the symmetric SOI slab waveguide for the communication wavelength window of λ = 1.3 
μm to 1.6 μm. Single-mode condition is fulfilled if the waveguide thickness h is in the 
range of 0 < h < hc, q =1. 

35 

Fig. 2.4 Calculated effective index Neff as a function of waveguide thickness h for the symmetric 
submicron SOI slab waveguide in Fig. 2.1(a) at the communication wavelengths of (a) 
1.31 μm and (b) 1.55 μm. For both wavelengths, the single-mode regime in the SOI slab 
waveguide is limited to a small region of 0 < h < ~ 0.2 μm, in which polarization 
independent behavior is absent. 

36 

Fig. 2.5 The Effective Index Method (EIM) for the channel waveguide. The channel waveguide is 
decomposed into two constituent slab waveguides — SWG-1 and SWG-2. The effective 
index Neff(1) of SWG-1 is first calculated, which will form the refractive index of the 
waveguide core for SWG-2. Solving the effective index Neff(2) of SWG-2 gives the final 
effective index of the channel waveguide. 
 

38 

Fig. 2.6 The Effective Index Method (EIM) for the rib waveguide. The rib waveguide is first 
decomposed into three constituent slab waveguides — SWG-1A, SWG-1B and SWG-1C. 
The effective indices of SWG-1A, SWG-1B and SWG-1C denoted, respectively, as  

Neff(1A), Neff(1B) and Neff(1C) are then calculated, which will form the refractive indices of the 
waveguide core and claddings for SWG-2. Solving the effective index Neff(2) of SWG-2 
gives the final effective index of the rib waveguide. 
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Fig. 2.7 Calculated effective index Neff as a function of waveguide thickness h for the symmetric 
submicron SOI channel waveguide in Fig. 2.1(b) at the communication wavelength of 1.55 
μm at fixed waveguide width of (a) 0.3 μm, (b) 0.4 μm, (c) 0.5 μm and (d) 0.6 μm. The 
points of intersection of the Neff  curves mark the polarization-independent (PI) waveguide 
dimensions as ΔNeff = |Neff (TE) – Neff (TM)| = 0 gives PI operation. 
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Fig. 2.8 
 
 
 

Fig. 2.9 
 
 
 
 

Calculated effective index Neff  as a function of waveguide width w for the symmetric 
submicron SOI rib waveguide in Fig. 2.1(c) at the communication wavelength of 1.55 μm 
at fixed waveguide height h and etch depth d of (a) (h, d) = (0.4 μm, 0.2 μm) (b) (h, d) = 
(0.6 μm, 0.3 μm), (c) (h, d) = (0.8 μm, 0.4 μm) and (d) (h, d) = (1.0 μm, 0.5 μm).  

Illustration of our modal simulation in small SOI rib waveguides using IDBPM, which is 
based on Soref et al.’s model [3]. In our simulation, at z = 0, a Gaussian mode is launched 
off centre to excite the propagation of fundamental and higher order modes. If the designed 
waveguide is single-mode, the higher-order modes under the rib will leak into the slab 
regions as the light propagates, leaving only the fundamental mode remaining in the rib 
waveguide at z =10 000 μm. 
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Fig. 2.10 Boundary lines for single-mode condition cut off dimensions as a function of SOI channel 
waveguide dimensions for operating wavelengths of (a) 1.31 μm and (b) 1.55 μm. Circles 
represent experimental data from [17-19] and squares represent results from [21]. 
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Fig. 2.11 Effective index difference between TE and TM polarized modes for different SOI channel 
waveguide dimensions at operating wavelengths of (a) 1.31 μm and (b) 1.55 μm. Note that 
the H values are in nm. Here, H also means h, which is the symbol used to denote the 
height of the silicon core of the channel waveguide in the discussions. 
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Fig. 2.12 Single-mode condition (SMC) boundaries and zero-birefringence condition (ZBC) loci as a 
function of SOI channel waveguide dimensions at operating wavelengths of (a) 1.31 μm 
and (b) 1.55 μm. 
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Fig. 2.13 Boundary lines for single-mode condition cut off dimensions for SOI submicron rib 
waveguides with (a) h = 0.3 μm and (b) h = 0.4 μm, where h is the height of the silicon 
core. The input wavelength is 1.31 μm. The shaded region indicates single-mode condition 
for both TE and TM polarizations.  

53 

Fig. 2.14 Boundary lines for single-mode condition cut off dimensions for SOI submicron rib 
waveguides with (a) h = 0.3 μm and (b) h = 0.4 μm, where h is the height of the silicon 
core. The input wavelength is 1.55 μm. The shaded region indicates single-mode condition 
for both TE and TM polarizations.  
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Fig. 2.15 Birefringence curves as a function of waveguide width and depth. The effective index 
difference of the TE and TM fundamental modes at various etch depth d or D for different 
wavelengths and h: (a) Wavelength 1.31 μm, h = 0.3 μm, (b) wavelength 1.31 μm, h = 0.4 
μm, (c) wavelength 1.55 μm, h = 0.3 μm, and (d) wavelength 1.55 μm, h = 0.4 μm.  

56 

Fig. 2.16 Trend and boundary lines for single-mode cut off dimensions and zero-birefringence 
condition (ZBC) as a function of waveguide dimensions for h = 0.4 μm and an operating 
wavelength of 1.55 μm. Single-mode and ZBC are simultaneously fulfilled at d = 0.36 μm, 
w = 0.277 μm and d = 0.38 μm, w = 0.318 μm. 

57 

Fig. 2.17 Boundary lines for single-mode condition (SMC) cut off dimensions of submicron SOI rib 
waveguides for wavelength 1.55 µm and at h = 0.4 µm, with a different cladding thickness 
of l1 = l2 = l = 2 µm. The polarization indepndendet (PI) locus that falls into the single-
mode (SM) region signifies dimensions that allow both SM and PI operations. Note that 
the SM region is bounded by the TE1 cut off and TM0 cut off boundaries. 

58 

Fig. 3.1 Cross-sectional view of the straight and bend rib waveguides that are used in the microring 
resonator circuit. To fulfill the single-mode condition, the silicon waveguide is set at height 
h = 0.4 μm and a thickness of 2 μm for both the upper and lower claddings of silicon 
dioxide (i.e., l1 = l2 = 2 μm).  

68 

Fig. 3.2 Birefringence-free (or polarization independent) waveguide dimensions of fundamental 
modes for waveguide height h = 0.4 µm at a wavelength of 1.55 µm. As the rib transforms 
to a channel WG, polarization independent (PI) and single-mode (SM) conditions cannot 
be fulfilled simultaneously. 

69 

Fig. 3.3 Calculated effective indices for the quasi-TE and quasi-TM modes as a function of width 
for straight and curved WGs at bend radii (R) of 2 and 4 µm, all at etch depth of 0.37 µm. 
The dotted line points to the various critical widths wc for each R. The critical width wc of 
the bend decreases and tends to that of the straight WG (marked by a thickened dotted line 
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to the extreme left) with increasing R. 

Fig. 3.4 Plot of effective index of 90° bend as a function of bend radius R at a fixed cross section 
that is based on the PI dimension (d = 0. 37 µm and wc (straight) = 0. 39 µm) of the straight 
WG, whose effective index is also plotted for comparison. Using the PI dimension (d = 0. 
37 µm and wc (straight) = 0. 39 µm), the straight WG is zero birefringent but the bend is 
birefringent. The bend birefringence reduces and approaches zero as R increases. 

71 

Fig. 3.5 The loci of PI critical widths wc at varying bend radius for different etch depths for fixed 
silicon height of 0.4 µm at an input wavelength of 1.55 µm. The inset shows the 
transformation of the radial mode into a WGM as the width w is increased while keeping 
the bend radius fixed at 2 µm and the etch depth at 0.37 µm. 
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Fig. 3.6 Two basic architectures of ring resonator with submicron dimensions. (a) Type 1: 
Directional-coupled race-track resonator. (b) Type 2: Point-coupled circular micro-ring 
resonator. 

73 

Fig. 3.7 Birefringence of straight WGs as a function of the bend radius for various etch depths d 
and fixed h = 0.4 μm and l1 = l2 = 2 μm. The straight WG is designed using the dimensions 
of the PI bend for each bend radius, resulting in birefringence in the straight WG. The 
minimum bend radius (determined solely by birefringence) that can be used is about 3 µm. 

74 

Fig. 3.8 Total bend loss αTBL in a 90o bend as a function of the bend radius for the fundamental 
mode at a wavelength of 1.55 µm (d = 0. 37 µm and wc (bend) = 0. 394 µm).  

75 

Fig. 3.9 Plot of MBRLOSS  as a function of the etch depth. At each etch depth, the bend width wc 

(bend)  for PI operation at R = 3 µm is used to compute this plot. 
 

76 

Fig. 3.10 (a) The proposed submicron PI ring resonator coupled with one bus WG via a 2 × 2 Type I 
MMI coupler. (b)  The Type I MMI coupler used for the racetrack resonator design 
showing the various parameters and the ports labeling. Close up views of the Type I and 
Type II MMI couplers are shown, respectively, in (c) and (d). 

78 

Fig. 3.11 The effective index as a function of wavelength, for straight WG and bend of R = 3 µm, 
both with d = 0. 37 µm and w = wc (bend) = 0.394 µm. At a wavelength of 1.55 µm, bend is 
PI while residual birefringence exists in the straight WG. However, the geometric 
dispersion (gradient of graph) is polarization dependent for both bend and straight WG. 

82 

Fig. 3.12 Simulated transmission (T) spectra of the proposed single-port racetrack resonator design. 
The inset shows the proposed submicron racetrack ring resonator coupled to a 2 × 2 Type I 
MMI coupler that has a coupling length of 8.2 µm. A straight section of 2 µm is added to 
the port at each side of the MMI coupler. The straight and bend WGs in the ring cavity as 
well as the port WGs are all based on silicon-on-insulator rib WG with silicon core h = 0.4 
µm, etch depth d = 0. 37 µm and width w = 0.394 µm. The bend radius of the ring cavity is 
3 µm. 
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Fig. 3.13 Birefringence of the fundamental modes of the straight WG as a function of width w for 
various etch depths d, at fixed h = 400 nm.  
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Fig. 4.1 A traveling wave microresonator-based CROW with N mutually coupled unit cells, 
consisting of defect B at periodic locations.    

94 

Fig. 4.2 The dispersion diagrams of infinite CROW, showing the regions of PBG (shaded) and 
photonic bands (solid curves) for different integral value of the defect size tuning factor γ: 
(a) γ = 1, (b) γ = 2, (c) γ = 3, and (d) γ  = 4. Note that PBG stands for photonic bandgap. 
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Fig. 4.3 The dispersion diagrams of infinite CROW for γ = 1: (a) Weaker inter-unit cell coupling 
(κ2

inter < κ2
intra): κ

2
inter is fixed at 0.3 while varying κ2

intra from 0.3 to 0.5, 0.7 and 0.9. (b) 
Stronger inter-unit cell coupling (κ2

inter > κ2
intra): κ

2
inter is fixed at 0.9 while reducing κ2

intra 
from 0.9 to 0.7, 0.5 and 0.3. Arrows indicate how photonic bands move as | Δκ | increases, 
where Δκ = κ2

inter
 – κ2

intra.  
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Fig. 4.4 The transformation of the state localization within the PBG from a single high-Q resonant 
state to a mini-defect band as the number of periodic defects in the CROW is increased in 
the following sequence: (a) {0 0 0 0 0 0 0 D 0 0 0 0 0 0 0}, (b) {0 0 0 0 0 D 0 D 0 D 0 0 0 
0 0}, (c) {0 0 0 D 0 D 0 D 0 D 0 D 0 0 0} and (d) {0 D 0 D 0 D 0 D 0 D 0 D 0 D 0}. The 
resonator defect is represented as D with twice the cavity size as the size-untuned or 
regular resonator 0, i.e., γ = 2. Note that δ is the round-trip phase shift for the size-untuned 
resonator A. 
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Fig. 4.5 Transmissions and corresponding phase responses for a finite CROW with 7½ unit cells 
for different defect size tuning factor of γ = 1 (leftmost plots), 2 (central plots) and 3 
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(rightmost plots) at κ2
intra = κ2

inter = κ2 = 0.7 and r2
intra = r2

inter = r2
 = 0.3. At γ  = 1, there is 

no defect and thus only 1 wide PBG is formed. Tuning  γ  above 1 forms mini-PBGs and 
mini-defect bands in what was formerly a single wide PBG of the original CROW with γ = 
1. Note that δ is the round-trip phase shift for the size-untuned resonator A. 

Fig. 4.6 Transmission (top graph) for a CROW with 7½ unit cells at κ2
intra = κ2

inter = κ2 = 0.7 and 
r2

intra = r2
inter = r2

 = 0.3 for non-integer size tuning factor γ = 2.3 and 2.7, which is in good 
agreement with the dispersion diagram (bottom graph) of an infinite CROW. Arrows 
indicate directions of movements of defect bands with increasing γ. Similar leftward 
translations also apply to the primary bands. Note that δ is the round-trip phase shift for 
the size-untuned resonator A. 
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Fig. 4.7 The effects of varying coupling strengths on the primary passbands centered at integer 
resonance order δ/2π (at resonance) for a CROW with 7 unit cells for 2 different cases: (a) 
and (b). In (a), all the resonators have similar coupling strength, i.e., κ2

intra = κ2
inter = κ2; κ2 

is tuned from 0.7 to 0.5 and 0.1. In (b), κ2
inter  ≠  κ2

intra; κ
2
inter is fixed at 0.3 while tuning 

κ2
intra from 0.3 to 0.5 and 0.9. Note that δ is the round-trip phase shift for the size-untuned 

resonator A. 
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Fig. 4.8 The origin of the mini-PBG at resonance: (a) The effect of increasing κ2
intra while keeping 

κ2
inter fixed at 0.3 for a single unit cell with 2 identical resonators (γ = 1), and (b) the effect 

of increasing the number of unit cells N of a CROW that has the coupling scheme of κ2
inter

 

= 0.3 and κ2
intra

 = 0.9. Note that δ is the round-trip phase shift for the size-untuned 
resonator A. 
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Fig. 4.9 The transmission of a CROW with 7½ unit cells of configuration ((ABB)7A)) with tuning 
factor: (a) γ = 2 and (b) γ = 3. For each respective γ, the dispersion diagram of infinite 
CROW is shown below the corresponding transmission graph. The PBGs are marked by 
the shaded regions while the photonic bands are represented by solid curves. Note that δ is 
the round-trip phase shift for the size-untuned resonator A. 
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Fig. 4.10 The PBG structure before (in solid lines) and after (in dotted lines) a new defect G is 
added at the center of the periodic CROW. The coupling coefficients are set at κ2

intra = 
κ2

inter = κ2 = 0.7 and r2
intra = r2

inter = r2
 = 0.3. Addition of a new defect G changes the 

CROW sequence from {0 D 0 D 0 D 0 D 0 D 0 D 0} to {0 D 0 D 0 D  G  D 0 D 0 D 0} 
and generates a new localized state (marked as ‘X’) in each of the mini-PBGs. Note that δ 
is the round-trip phase shift for the size-untuned resonator A. 
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Fig. 4.11 A traveling wave microresonator-based quasi-periodic CROW of 5 resonators, following 
the Fibonacci sequence C4 = {A, B, B, A, B}. 
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Fig. 4.12 Transmission spectra of a quasi-periodic CROW following the Fibonacci sequence of (a) 
C3, (b) C4, (c) C5 and (d) C6, all with γ = 2 and using coupling coefficients of κ2 = 0.1 and 
r2 = 0.9. 
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Fig. 4.13 Transmissions of quasi-periodic CROWs following the Fibonacci sequence of C4 at κ2 = 
0.1 and r2 = 0.9 for three different size tuning ratios: γ = 2 (leftmost plot), 3 (central plot) 
and 4 (rightmost plot). There are (γ – 1) localized states within each wide PBG centered at 
half-integer resonance order.  
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Fig. 4.14 The effects of losses on transmissivity: (a) Periodic CROW structure with 3½ unit cells of 
sequence {A, B, A, B, A, B, A}, with γ = 2 at r2 = 0.3, and (b) quasi-periodic CROW 
based on the Fibonacci sequence C4 = {A, B, B, A, B} with γ = 2 and r2 = 0.9. 
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Fig. 4.15 FDTD simulated normalized transmission at the output port of a quasi-periodic CROW 
with the Fibonacci sequence C4 = {A, B, B, A, B} and of γ = 2, using SOI microring 
resonators. The FDTD simulated results are consistent with the general trends of the 
analytical modeling of C4 in Figs. 4.12(b) and Fig. 4.14(b). 
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Fig. 5.1 (a) 3-D view of a submicron silicon-on-insulator (SOI) channel waveguide. The upper 
cladding of silicon dioxide of thickness l1 that covers the silicon core is not shown here. (b) 
Computed TE00 and TM00 modal profiles at λ = 1.55 μm and T = 298 K for the single-
mode SOI channel waveguide with w = 0.445 μm, h = 0.22 μm, l1 = l2 = 3 μm and L = 2 
μm. 
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Fig. 5.2 Energy diagrams illustrating (a) Spontaneous Raman Stokes scattering, (b) Spontaneous 
Raman anti-Stokes scattering, (c) stimulated Raman Stokes scattering and (d) coherent 
anti-Stokes Raman scattering. Here, we use the angular frequency ω instead of the 
frequency f that is employed in the text. 
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Fig. 5.3 Temperature dependence of the parameters that affect Raman scattering: (a) fv(T), (b) 
2Г(T), (c) nsi(λ, T) for λ = 1.3285 μm and λ = 1.5413 μm and (d) geff(λ, T) for λ = 1.3285 
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μm and λ = 1.5413 μm. Note that λ = 1.3285 μm and λ = 1.5413 μm are, respectively, the 
anti-Stokes and Stokes wavelengths at T = 298 K for λp = 1.427 μm. 

Fig. 5.4 Temperature dependence of the real part of the Raman susceptibility Re[χR(Ωd, T)] and the 
imaginary part of the Raman susceptibility Im[χR(Ωd, T)] as a function of the (a) anti-
Stokes wavelength λa and (b) Stokes wavelength λs for the pump wavelength of λp = 1.427 
μm. Raman resonance occurs at the peaks of |Im[χR(Ωd, T)]|, which shift with changes in 
the temperature. Note that the dotted vertical lines in all the graphs mark λa = 1.3285 μm 
and λs = 1.5413 μm, which are, respectively, the initial anti-Stokes and Stokes wavelengths 
for the pump wavelength λp = 1.427 μm when T is set to 298 K. 
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Fig. 5.5 Longitudinal view of the submicron silicon WG of length L, functioning as (a) Raman 
amplifier/attenuator if |Δβ| >> 0 and (b) Raman wavelength convertor if |Δβ|  ≈  0. 
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Fig. 5.6 The effects of varying the pump intensity Ip on the relationship of the propagation constant 
mismatch Δβ with the (a) conversion efficiency (CE) and (b) amplification efficiency (AE) 
of the submicron silicon waveguide at different temperatures T  for Case A (cf. section 
5.3.1 for definition of case A). Note that Ip increases in the direction of the arrows. 

126 

Fig. 5.7 The effects of varying the pump intensity Ip on the relationship of the propagation constant 
mismatch Δβ with the (a) conversion efficiency (CE) and (b) amplification efficiency (AE) 
of the submicron silicon waveguide at different temperatures T  for case B (cf. section 
5.3.1 for definition of case B). Note that Ip increases in the direction of the arrows. 
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Fig. 5.8 Demonstration of harnessing the effects of temperature T variation to enhance and 
improve the flexibility to tune the (a) conversion efficiency (at |Δβ| = 0) and (b) 
amplification efficiency (at |Δβ| = 2000 m–1) of the submicron silicon WG for case A (cf. 
section 5.3.1 for definition of case A). 
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Fig. 5.9 Demonstration of harnessing the effects of temperature T variation to enhance and 
improve the flexibility to tune the (a) conversion efficiency (at |Δβ| = 0) and (b) 
amplification efficiency (at |Δβ| = 2000 m–1) of the submicron silicon WG for case B (cf. 
section 5.3.1 for definition of case B).  
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Fig. 6.1 In (a), (b) and (c), the dotted black lines represent the input Gaussian pulse centred at 
normalized time = 0, the thickened red lines represent the output Gaussian pulse after 
propagating through a linear resonant medium (shown in top inset) of length  while the 
thin blue lines represent the pulse after propagating through vaccum of equal length as the 
resonant medium. The group delay of the pulse traveling through the linear resonant 
medium is denoted as tg while the group delay of the pulse traveling through vaccum of 
similar distance  is denoted as tg(vac). Depending on its dispersion, a resonant medium of 
length  can generate output pulse with (a) fast light with negative tg, (b) fast light with 
positive tg, in which tg < tg(vac) or (c) slow light in which tg > tg(vac). For simplicity, the 
effects of GVD and waveguide losses or gain that are associated with Im[β(ω)] = α(ω) are 
not shown. 
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Fig. 6.2 Schematic of a traveling wave microresonator coupled to two output ports. 143 

Fig. 6.3 (a) Group delay tg (in trt) of the transmitted light at the degenerate resonance frequency ω0  

for the through port of a traveling wave microresonator with κ1 = κ2 = 0.2 as an example. 
Critical coupling (oscillation) occurs at τ = 1 (τ = 1.0417). (b) The pole-zero dynamics on 
the unit circle as τ is varied. The cross (circle) denotes the pole (zero) of the transfer 
function. 
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Fig. 6.4 (a) Group delay tg (in trt) of the transmitted light at the degenerate resonance frequency ω0  
for the drop port of a traveling wave microresonator with κ1 = κ2 = 0.2. Oscillation occurs 
at τ = 1.0417. (b) The pole-zero dynamics on the unit circle as τ is varied. The cross 
(circle) denotes the pole (zero) of the transfer function. 
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Fig. 6.5 The relation between the transmission and the group delay at the degenerate resonance 
frequency ω0 for the output light at the (a) through port and (b) drop port of a conventional 
traveling wave microresonator with κ1 = κ2 = 0.2 as τ is varied. 
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Fig. 6.6 Group delay at the degenerate resonance frequency ω0 for the through port of a traveling 
wave microresonator with κ1 = κ2 = 0.2 as a function of τ at different η. (a) In the inset, the 
group delay curve changes from an increasing function to a deceasing function when η is 
tuned from 0 to 0.0006 or 0.0009. (b) Further increment in η shifts the asymptotes in the 
direction of the arrows. (c) If η becomes too large, the group delay enhancement is 
degraded.  
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Fig. 6.7 Group delay at the degenerate resonance frequency ω0 for the drop port of a traveling 
wave microresonator with κ1 = κ2 = 0.2 as a function of τ at different η. (a) As shown in 
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the inset, the group delay curve changes from an increasing function to a deceasing 
function when η is tuned from 0 to 0.0006 or 0.0009. Further increment in η smoothens the 
group delay curves. (c) At large η, the group delay curves shift in the direction of the 
arrows, without degrading the group delay enhancement, unlike the case at the through 
port in Fig. 6.6(c). 

Fig. 6.8 Evolution in the transmission and group delay spectra around the degenerate resonance 
frequency ω0 of a traveling wave microresonator with κ1 = κ2 = 0.2 for (a) the net loss 
regime (τ = 0.99) and (b) net gain regime (τ = 1.035) as η is varied.  
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Fig. 6.9 The relation between the transmission and the group delay at the degenerate resonance 
frequency ω0 for the output light at the (a) through port and (b) drop port of a non-
degenerate traveling wave microresonator with κ1 = κ2 = 0.2 as τ is varied for η = 0.006.  
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Fig. 6.10 Evolution of the output pulse at the through port for a conventional traveling wave 
microresonator with r1 = r2 = 0.9 and η = 0 (as an example) as τ is being adjusted. For 
convenience, the input Gaussian pulse is only shown in Fig. 6.10(a). Note that critical 
coupling at the resonance frequency occurs at at τ = r1/r2 while oscillation at the resonance 
frequency occurs at τ = 1/(r1r2). For this example, τ = 1 gives critical coupling, which will 
split the input pulse into two output pulses (Fig. 6.10(e)), while τ = 1.2346 gives 
oscillation, which will transform the input pulse into an optical step function ((in Fig. 
6.10(j)). 
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Fig. 7.1 A traveling wave microresonator (TWMR) coupled to one input bus with dual contra-
propagating inputs and outputs via a point coupler at the coupling junction (CJ). The 
intentionally addition of surface microstructures, such as grating ridges, on the cavity will 
lead to enhanced mutual energy coupling (with coefficient um) between the CW and CCW 
cavity modes. Each cavity mode has a net decay rate of Γext + Γint, where Γext is the decay 
rate due to the evanescent energy coupling (with coefficient u0) between the bus 
waveguide mode and the cavity mode while Γint is the decay rate due to the intrinsic losses 
of the cavity. 
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Fig. 7.2 Evolution in the (i) transmission, (ii) effective phase shift and (iii) group delay responses 
for the output light at the (a)-(c) through port and (d)-(f) reflection port of a TWMR in the 
coupling state of Qint < Qext with fixed Qint = 2.1 × 104, Qext = 5.1 × 104and Qmut = 1.5 × 104 
as the phase θ of the control beam S+2 = Aexp(jθ)S+1 (with A = 1) is varied. 

174 

Fig. 7.3 Evolution in the (i) transmission, (ii) effective phase shift and (iii) group delay responses 
for output light at the (a)-(c) through port and (d)-(f) reflection port of a TWMR in the 
coupling state of Qint > Qext with fixed Qint = 5.1 × 104, Qext = 2.1 × 104 and Qmut = 1.5 × 
104 as the phase θ of the control beam S+2 = Aexp(jθ)S+1 (with A  = 1) is varied. 
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Fig. 7.4 Variation of |Qcri, T| and |Qcri, R| with θ for Qint < Qext (Qint = 2.1 × 104, Qext = 5.1 × 104) and 
Qint > Qext (Qint = 5.1 × 104, Qext = 5.1 × 104) of a TWMR. Only Qmut = 1.5 × 104 and A = 1 
apply to Figs. 7.2 and 7.3 while Qmut = 8 × 103 and A = 0.1 are used to show the effects of a 
different Qmut or amplitude A of the control beam. Mode splitting occur if |Qcri|  >>  Qmut. 
This explains the mode splitting trends in Figs. 7.2 and 7.3. 
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Fig. 7.5 Evolution in the transmission for the (a) through and (b) reflection ports of a TWMR in the 
coupling state of Qint < Qext, with Qint = 2.1 × 104, Qext = 5.1 × 104 and Qmut = 8 × 103 for A 
= 1 as the phase θ of the control beam is varied.  
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Fig. 7.6 The transmission and intracavity intensity at the through port of a TWMR (Qint = 2.1×104, 
Qext = 5.1 × 104, Qmut = 1.5 × 104) as the phase θ of the control beam is being varied. The 
dotted vertical line marks the degenerate resonance mode ω0. The mode splitting and 
resonance shift are shown, respectively, in (ai) and (bi), where the resonances located to 
the left (right) of ω0 are denoted as ωs– (ωs+). In (aii) and (bii), at each θ, there are two 
cavity eignemodes, E+ and E–. The sum of E+ and E– gives the transmission in (ai) and 
(bi). If |Qcri(θ)|  >>  Qmut, mode splitting occurs. Otherwise, E+ + E– results in a resonance 
shift from ω0. In this case, |Qcri(θ) |  >>  Qmut  only for (bi). In (aii) and (bii) the peaks 
located to the left (right) of the vertical dotted line (at λ = 1550 nm) corresponds to E+ (E–). 
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Fig. 7.7 Demonstration of the continuous tunability of the transmission and group delay at λ = λ0 = 
1.55 μm for a TWMR with (a) Qint < Qext (Qint = 2.1 × 104, Qext = 5.1 × 104) and (b) Qint > 
Qext (Qint = 5.1 × 104, Qext = 2.1 × 104) as the phase θ of the control beam S+2 = Aexp(jθ)S+1 
(with A = 1). The graphs with dotted lines have Qmut = 8×103 while the graphs with solid 
lines have Qmut = 1.5 × 104. All the blue (red) graphs represent the transmission (group 
delay) on the left (right) axis. 
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Fig. 7.8 (i) The FOMs of tg(min), tg(max), and Δtg, and (ii) the FOM T(min), T(max) and ΔT as a function 
of Qint for a TWMR with Qext = 5.1 × 104 and λ = λ0 = 1.55 μm, with no critical coupling. 
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The value of Qmut is 8.0 × 103 for (a), 1.5 × 104 for (b) and 2.0 × 104 for (c). The region to 
the left (right) of the dotted vertical line is the coupling state of Qint < Qext (Qint > Qext).  

Fig. 7.9 (i) The FOMs of tg, (min), tg, (max), and Δtg, and (ii) the FOM of T(min), T(max) and ΔT as a 
function of Qint  for a TWMR with Qext = 5.1 × 104 and at λ = λ0 = 1.55 μm when critical 
coupling occurs. The value of Qmut is set at 2.2 × 104 for (a) and Qmut  →  ∞  for (b). In (a)-
(b), the region to the left (right) of the dotted vertical line is the coupling state of Qint < Qext 
(Qint > Qext) while the asymptote (black full line) marks the critical coupling (cc) point. 
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Fig. 7.10 The FOMs of BW(min), BW(max), and ΔBW as a function of Qint for a TWMR with Qext = 5.1 
× 104, Qmut = 2.0 × 104 and λ = λ0 = 1.55 μm. Note that (BW(min), BW(max), ΔBW) 
corresponds to (tg, (min), tg, (max), Δtg) in Fig. 7.8(ci) and (T(min), T(max), ΔT) in Fig. 7.8(cii). 
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Fig. 7.11 Demonstration of the effect of amplitude A modulation of the control beam on the 
continuous tunability of the transmission and group delay at a fixed wavelength of λ = λ0 = 
1.55 μm for the through port of a TWMR with (a) Qint < Qext (Qint = 3.2 × 104, Qext = 6.4 × 
104) and (b) Qint > Qext (Qint = 6.4 × 104, Qext = 3.2 × 104) and fixed Qmut of 2.2 × 104. 
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Fig. 7.12 (a) Tunable pulse advancement or delay at the through port by modulating the amplitude 
and phase of the control beam for a TWMR with (ai) Qint < Qext (Qint = 3.2 × 104, Qext = 6.4 
× 104) and (aii) Qint > Qext (Qint = 6.4 × 104, Qext = 3.2 × 104). The input pulse has a pulse 
width of tpw = 8tcav and central wavelength λ0 = 1.55 μm. The dotted vertical line for each 
pulse marks the location of the pulse peak. (b) The effects of adjusting the input pulse 
width tpw on the output pulse at the through port of a TWMR with Qint = 6.4 × 104, Qext = 
3.2×104 and control beam setting of A = 1.0 and θ = 1.5π. Note that Qmut = 2.2 × 104 for 
both (a) and (b). 
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Fig. 8.1 The mechanisms of the different types of quantum interference phenonema in a three-level 
atom, explained using the multiple routes to excitation approach in (a) and (b) and their 
resultant transmission spectra, which are shown in (c) and (d). (a) Illustration of the 
mechanism of electromagnetic induced transparency (EIT). In EIT, the weaker probe field 
ωprob can excite population by the direct pathway |1  - |3 . An alterantive pathway within 
the atom for the population to reach |3  is by the indirect pathway |1  - |3  - |2  - |3  in 
which the population is moved between |2  and |3  by the stroner coupling field ωcou. 
Destructive intereference between the direct and indirect pathways will cancel the original 
absorption |1  - |3  of the weak probe field, leading to a sharp high transmission within a 
narrow frequency window, which is illustrated in (c). Note that transition between states 
|1  and |2  is forbidden. (b) Illustration of the mechanism of Fano resonance (FR). In FR, 
excitation takes place between the lower state |1  and a continuum ionising state |2 . In 
addition, it can also occur between the lower state |1  and an autoionized state |3 . Once in 
state |3 , the atom will relax to the continuum ionising state |2 . In other words, there are 
two routes to the final state |2 .  This, in general, will cause the transition probability 
amplitude to vanish on one side of the resonance, leading to a sharp asymmetric 
transmission spectrum in (d), known as FR. Note that FR spectra with different degree of 
asymmetry are shown in (d). The asymmetry can be tuned by the operating conditions. 
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Fig. 8.2 Schematic of the proposed modified twin-coupled TWMRs structure in which surface 
perturbations in the form of microstructures like grating ridges are intentionally introduced 
on the cavities. This induces mutual coupling between the CW and CCW modes in each 
cavity. Enhanced CRIT and OFR effect can be generated when the CW and CCW modes 
from resonator 1 interact with those from resonator 2 and the single or dual inputs. 
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Fig. 8.3 Evolution in the transmission at the through port of the twin-coupled TWMRs with Qint, 1 = 
Qint, 2 = 6e4 and Qext = 5e4 as the resonator-to-resonator coupling (controlled by Qcou) 
changes in the presence of different magnitude of intracavity backscattering (controlled by 
Qmut). The two resonators have equal Qmut, i.e., Qmut = Qmut, 1 = Qmut, 2. In each row, Qcou is 
varied while Qmut is fixed. Insets shown the blown-up of the regions marked by ‘X’. These 
spectra can be obtained using silicon resonators, each with a radius of 5 µm. 
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Fig. 8.4 Evolution in the transmission at the reflection port of the twin-coupled TWMRs with Qint, 1 
= Qint, 2 = 6e4 and Qext = 5e4 as the resonator-to-resonator coupling (controlled by Qcou) 
changes in the presence of different magnitude of intracavity backscattering (controlled by 
Qmut). The two resonators have equal Qmut, i.e., Qmut = Qmut, 1 = Qmut, 2. In each row, Qcou is 
varied while Qmut is fixed. Insets show the blown-up of the regions marked by ‘X’. All the 
spectra can be obtained using silicon resonators, each with a radius of 5 µm. 
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Fig. 8.5 The transmission, effective phase shift and group delay responses resulting from the CRIT 
effects of the twin-coupled TWMRs with Qint, 1 = Qint, 2 = 6e4, Qext = 5e4 and Qcou = 1.5e5, 
using different magnitude of intracavity backscattering (quantified by Qmut). Evidently, 
adjusting Qmut tunes the separation distance between the CRIT peaks. In all the graphs, the 
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spectra move in the direction of the arrows as Qmut increases. Note that Qmut = Qmut, 1 = 
Qmut, 2. All the spectra can be obtained using silicon resonators, each with a radius of 5 µm. 

Fig. 8.6 The reshaping of the symmetric CRIT peaks in the transmission TT at the through port 
(first column) and the Lorentzian dips  in the transmission TR at the reflection port (second 
column) of the twin-coupled MRs with Qint, 1 = 5.0e4, Qint, 2 = 6.0e8, Qext = 4.0e2 and Qcou 
= 1.2e3. In (a) and (b), Qmut, 1 is adjusted, while fixing Qmut, 2 at 1.0e2. Different 
asymmetric Fano-like lineshapes are produced, with the spectral location of each Fano-like 
lineshape fixed in this case in (a) and (b). On the other hand, in (c) and (d), Qmut,  2  is 
adjusted, while fixing Qmut, 1 at 1.0e2. Different asymmetric Fano-like lineshapes are 
produced like those in (a) and (b). However, the spectral location of each Fano-like 
lineshape changes with Qmut, 2 in (c) and (d). 

210 

Fig. 8.7 The evolution of the transmission TT spectrum at the through port (first column) and the 
transmission TR  spectrum at the reflection port (second column) of the twin-coupled 
TWMRs with Qint, 1 = Qint, 2 = 6e4, Qext = 5e4, Qcou = 1.5e5 and Qmut = Qmut, 1 = Qmut, 2 = 
4.1e3 as dual inputs are employed to interact with the intracavity backscattering. Tuning 
the phase difference θ between the dual inputs (while keeping the amplitude difference A 
fixed) allows active switching between CRIT peaks and sharp asymmetric lineshapes. All 
the spectra can be obtained using silicon resonators, each with a radius of 5 µm. 
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Fig. 9.1 Schematic of the twin-coupled TWMRs structure in which each resonator is directly 
coupled to the bus waveguide as well as to the adjacent resonator. Such coupling 
arrangement inherently sets up contra-propagating modes in the resonators and bus 
waveguide. 
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Fig. 9.2 The transmission, effective phase shift and group delay spectra of different resonator 
systems — (ai) to (aiii): (in solid curves) a single resonator system, i.e., only resonator 1 
exists in Fig. 9.1, with κ2 = 0.08, τ1 = 0.9999  ≈  1, and (in dotted curves) a twin-coupled 
resonators system that has only one resonator coupled to the bus waveguide, i.e., κ3 = 0 in 
Fig. 9.1, and with κ1 = 0.05, κ2 = 0.08, τ = τ1 = τ2 = 0.9999  ≈  1; (bi) to (biii): the through 
port case of our proposed twin-coupled resonators with κ1 = 0.05, κ = κ2 = κ3 = 0.08 and τ = 
τ1 = τ2 = 1; and (ci) to (ciii): the reflection port case of the proposed twin-coupled 
resonators with κ1 = 0.05, κ = κ2 = κ3 = 0.08 and τ = τ1 = τ2 = 1. The cavity and coupler 
losses are assumed to be negligible in this section. 
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Fig. 9.3 Evolution in the resonance spectra towards flat-band slow light (i.e., maximally flat 
transmission with T  ≈  1 and minimal group delay dispersion) for the proposed device 
with κ = κ2 = κ3 = 0.3 as κ1 is decreased progressively, in the direction of the arrows – (ai) 
to (aiii): Resonance spectra at the through port for κ1 = 0.2, κ1 = 0.1135, κ1 = 0.07 and κ1 = 
0.0471; and (bi) to (biii): Resonance spectra at the reflection port for κ1 = 0.2, κ1 = 0.1135, 
κ1 = 0.0471 and κ1 =  0.0195. The cavity and coupler losses are assumed to be negligible in 
this section. 
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Fig. 9.4 Different combinations of inter-resonator coupling coefficient κ1 and resonator-to-bus 
waveguide coupling coefficient κ needed for flat-band slow light at the through and 
reflection ports of the proposed device. The ratio Ѱ = κs, T/κs, R  is also shown, where κs, T  
and κs, R  are the values of κ1 that gives flat-band slow light at the through port and 
reflection ports, respectively, for a given κ. Note that we have used κ = κ2 = κ3 for the 
cavity system. The cavity and coupler losses are assumed to be negligible in this section. 
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Fig. 9.5 
 
 
 
 
 
 
 

Demonstration of tunable flat-band slow light with maximally flat transmission Tq and 
minimal group delay dispersion for the proposed device for different κ1 and κ. The 
resonance spectra at the through port are shown in (ai) to (aiii) while the resonance spectra 
at the reflection port are shown in (bi) to (biii), with κ = 0.3 (blue plots), κ = 0.35 (red 
plots), κ = 0.4 (green plots), κ = 0.45 (pink plots), κ = 0.5 (brown plots), κ = 0.55 (yellow 
plots) and κ = 0.6 (black plots). κ decreases in the direction of the arrow in the graphs. The 
corresponding values of κ1 used for each port can be found from Fig. 9.4 or Eq. (9.19). 
Note that we have used κ = κ2 = κ3 for the cavity system. The cavity and coupler losses are 
assumed to be negligible in this section. 
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Fig. 9.6 The normalized group delay (left axis) and the normalized usable resonance bandwidth 
(right axis) of the region of flat-band slow light for the through port (dotted curves) and 
reflection port (solid curves) of the proposed device at different values of κ. Corresponding 
values of κ1 can be found from Fig. 9.4 or Eq. (9.19). The inset shows the delay-bandwidth 
product (DBP). Note that we have used κ = κ2 = κ3 for the cavity system. 
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Fig. 9.7 The absolute usable resonance bandwidth (left axis) and absolute group delay (right axis) 
of the region of flat-band slow light for a circular microring resonator as a function of bend 
radius R for fixed coupling coefficients of (κ, κ1) = (0.3, 0.0195) in (a) and (κ, κ1) = (0.5, 
0.0594) in (b). These choosen coupling coefficients correspond to the design rules of flat- 
band slow light in Fig. 9.6. Solid (dotted) curves correspond to the performances of the 
through (reflection) port. Note that the microring resonators are based on silicon-on-
insulator channel waveguide with core height = 500 nm and core width = 500 nm. Also, κ 
= κ2 = κ3 for the system of circular microring resonators. 
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Fig. 9.8 The effect of cavity losses (characterized by τ, with τ = 1 for a lossless cavity) on the 
transmission Tq spectrum and group delay tg spectrum of the flat-band slow light at the 
(ai)-(aii) through port and the (bi)-(bii) reflection port of the proposed device with (κ, κ1) = 
(0.3, 0.0471) for the through port and (κ, κ1) = (0.3, 0.0195) for the reflection port. The 
values of τ used are τ = 1, τ = 0.9999, τ = 0.999, τ = 0.99, τ = 0.96, τ = 0.93 and τ = 0.86 as 
shown in the graphs. Note that we have used κ = κ2 = κ3 and τ = τ1 = τ2 for the cavity 
system. Coupler losses are negligible in this case. 
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Fig. 9.9 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9.10 

The effect of cavity losses (characterized by τ, with τ = 1 for a lossless cavity) on the 
transmission Tq and group delay tg at δ = 2πm (which is the centre of the region of the flat-
band slow light) for the (ai)-(aii) through port and the (bi)-(bii) reflection port of the 
proposed device for different κ1 and κ, where κ = κ2 = κ3. The used values of κ are κ = 0.3 
(blue plots), κ = 0.4 (red plots), κ = 0.5 (green plots) and κ = 0.6 (black plots), while the 
corresponding values of κ1 used for each port can be found from Fig. 9.4 or Eq. (9.19). The 
insets in all the graphs show the enlarged region of τ  ≥  0.958. Note that flat-band slow 
light with Tq  ≈  1 is only achieved when τ is in the region to the right of the critical 
coupling (cc) point (cc means T = 0 and group delay is divergent), where τ > ~ 0.99. For τ 
< ~ 0.99, the flat-band slow light has Tq < 1 and progressively transforms into fast or slow 
light with a sharp Lorentzian response. Note that τ = τ1 = τ2 for the cavity system. Coupler 
losses are negligible in this case. 

The effects of varying coupler losses (characterized by σ, with σ = 0 for a lossless coupler) 
on the transmission Tq and group delay tg of the flat-band slow light at the (ai)-(aii) through 
port and the (ai)-(aii) reflection port of the proposed device with (κ, κ1) = (0.3, 0.471) for 
the through port and (κ, κ1) = (0.3, 0.0195) for the reflection port. Propagating losses of 
each cavity is fixed at τ = 0.999. Note that σ = σ1 = σ2 = σ3, κ = κ2 = κ3 and τ = τ1 = τ2 for 
the cavity system. 
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Fig. 9.11 
 
 
 
 
 
 
 
 
 
 

The effect of coupler losses (characterized by σ, with σ = 0 for a lossless cavity) on the 
transmission Tq and group delay tg of the region of flat-band slow light (centered at δ = 
2πm) for the (ai)-(aii) through port and the (bi)-(bii) reflection port of the proposed device 
for different κ1 and κ. The used values of κ are κ = 0.3 (blue plots), κ = 0.4 (red plots), κ = 
0.5 (green plots) and κ = 0.6 (black plots), while the corresponding values of κ1 used for 
each port can be found from Fig. 9.4 or Eq. (9.19). Note that flat-band slow light with Tq  ≈  
1 is only achieved when σ is in the region to the left of the critical coupling (cc) point (cc 
means T = 0 and group delay is divergent), where σ < ~ 0.02. For σ > ~ 0.02, the flat- band 
slow light has Tq < 1 and progressively transforms into fast or slow light with sharp 
Lorentzian response. 
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Chapter 1  

An Overview of the Thesis – 

Research Motivations, Objectives, and 

Significant Contributions 
 

1.1. Research Motivations 

1.1.1. Moore’s Law and Optic Fibers Empower Telecommunication  

The semiconductor micro-fabrication technology first started as a method to create integrated 

circuits (IC) in the electronics industry. A typical semiconductor fabrication process consists of 

patterning a substrate, such as silicon, using lithography, followed by etching, doping, and depositing 

material on the exposed surface. By repeating these steps, many devices of various materials, which 

are normally layered with specific patterns, can be simultaneously fabricated on the same wafer with 

near identical behavior, and interconnected to build complex circuits. The power of such a method of 

semiconductor fabrication is that wafers can be printed with high yield: manufacturability of complex 

microelectronics can be realized with a high degree of reproducibility and at a rather low cost.  

The manufacturability of complex microelectronics has allowed for rapid growth of the IC 

technology. This is best illustrated by the fact that Intel co-founder Gordon E. Moore’s prediction [1], 

which states that the number of transistors would double approximately every two years, has proved 

to be considerably accurate to this date. Due to its validity, Moore’s prediction is now commonly 

known as the “Moore’s law” – a term that is coined by Caltech professor Carver Mead [2] and will 

also be used in this work in reference to Moore’s prediction. As illustrated in Table 1.1 and Fig. 1.1, 

the number of transistors that can be packed onto an IC chip has increased from a mere 2,300 in 1971 

to 2.6 billion by 2011 on a single silicon chip. This accomplishment is due to the shrinking of the 

transistors’ gate lengths (from 10 µm in 1971 to 32 nm in 2011) through advancement in micro-

fabrication process technology. Recently, on April 2012, Intel released its first third-generation core 

microprocessor chip, named Ivy Bridge [3]. Transistors on an Ivy Bridge processor are packed about 

twice as dense (with 1.4 billion on a 160 mm2 die) as compared to its processor 10-Core Xeon. This is 

because Ivy Bridge uses the 22 nm silicon processing technology and tri-gate (or 3-D) transistors. 

Future silicon processing technologies of 16 nm and 11 nm, expected to be developed by 2013 and 

2015, respectively, is predicted to further increase the transistor counts per chip to 10-15 billion [4, 5]. 
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Table 1.1. The specifications of the different microprocessors used in commercially available central processing units 
(CPUs) of computers for year 1971 to 2012 [3-7]  

 
 

†On April 2012, Intel released its first third-generation core microprocessor chip, named Ivy Bridge [3]. Transistors on an Ivy Bridge 
processor are packed roughly twice as dense (with 1.4 billion on a 160 mm2 die) as compared to the 10-Core Xeon because it uses the 22 nm 
silicon processing technology and tri-gate (or 3-D) transistors. However, Ivy Bridge is not listed in this table or in subsequent related graphs 
as most commercially available CPUs (as of September 2012, when this thesis was revised) still uses the 10-Core Xeon processor. 

Name of 
Processor 

Transistor Count 
†Year of 

Introduction 
Manufacturer 

Semi-conductor 
Process Node (or 
~Transistor size) 

Area 

Intel 4004 2,300 1971 Intel 10 µm 12 mm² 
Intel 8008 3,500 1972 Intel 10 µm 14 mm² 

MOS Technology 
6502 

3,510 1975 MOS Technology N/A 21 mm² 

Motorola 6800 4,100 1974 Motorola N/A 16 mm² 
Intel 8080 4,500 1974 Intel 6 μm 20 mm² 
RCA 1802 5,000 1974 RCA 5 μm 27 mm² 
Intel 8085 6,500 1976 Intel 3 μm 20 mm² 
Zilog Z80 8,500 1976 Zilog 4 μm 18 mm² 

Motorola 6809 9,000 1978 Motorola 5 μm 21 mm² 
Intel 8086 29,000 1978 Intel 3 μm 33 mm² 
Intel 8088 29,000 1979 Intel 3 μm 33 mm² 
Intel 80186 55,000 1982 Intel N.A N/A 

Motorola 68000 68,000 1979 Motorola 4 μm 44 mm² 
Intel 80286 134,000 1982 Intel 1.5 µm 49 mm² 
Intel 80386 275,000 1985 Intel 1.5 µm 104 mm² 
Intel 80486 1,180,000 1989 Intel 1 µm N/A 

Pentium 3,100,000 1993 Intel 0.8 µm N/A 
AMD K5 4,300,000 1996 AMD 0.5 µm N/A 
Pentium II 7,500,000 1997 Intel 0.35 µm N/A 
AMD K6 8,800,000 1997 AMD 0.35 µm N/A 

Pentium III 9,500,000 1999 Intel 0.25 µm N/A 
AMD K6-III 21,300,000 1999 AMD 0.25 µm N/A 

AMD K7 22,000,000 1999 AMD 0.25 µm N/A 
Pentium 4 42,000,000 2000 Intel 180 nm N/A 

Atom 47,000,000 2008 Intel 45 nm N/A 
Barton 54,300,000 2003 AMD 130 nm N/A 

AMD K8 105,900,000 2003 AMD 130 nm N/A 
Itanium 2 220,000,000 2003 Intel 130 nm N/A 

Cell 241,000,000 2006 Sony/IBM/Toshiba 90 nm N/A 
Core 2 Duo 291,000,000 2006 Intel 65 nm N/A 
AMD K10 463,000,000 2007 AMD 65 nm N/A 
AMD K10 758,000,000 2008 AMD 45 nm N/A 

Itanium 2 with 
9MB cache 

592,000,000 2004 Intel 130 nm N/A 

Core i7 (Quad) 731,000,000 2008 Intel 45 nm 263 mm² 
Six-Core Xeon 

7400 
1,900,000,000 2008 Intel 45 nm N/A 

POWER6 789,000,000 2007 IBM 65 nm 341 mm² 
Six-Core Opteron 

2400 
904,000,000 2009 AMD 45 nm 346 mm² 

16-Core SPARC 
T3 

1,000,000,000 2010 Sun/Oracle 40 nm 377 mm² 

Six-Core Core i7 1,170,000,000 2010 Intel 32 nm 240 mm² 
8-core POWER7 1,200,000,000 2010 IBM 45 nm 567 mm² 
Quad-core z196 1,400,000,000 2010 IBM 45 nm 512 mm² 

Dual-Core Itanium 
2 

1,700,000,000 2006 Intel 90 nm 596 mm² 

Quad-Core 
Itanium Tukwila 

2,000,000,000 2010 Intel 65 nm 699 mm² 

8-Core Xeon 
Nehalem-EX 

2,300,000,000 2010 Intel 45 nm 684 mm² 
†10-Core Xeon 
Westmere-EX 

2,600,000,000 2011/2012 Intel 32 nm 512 mm² 
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Fig. 1.1. Graphical representations of the transistor sizes and counts of Intel microprocessors to illustrate 

the validity of Moore’s law to this date (August 2011). Data is based on Table 1.1. Note that the vertical 

scales are logarithmic. 
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Fig. 1.2. The on-chip local clock speed of the microprocessor and the various interconnection speeds in the 

electronic chip of the microprocessor [4]. Note that the vertical scales are logarithmic. 

 
Pursuing Moore’s law (i.e., the drive towards more transistors on a chip) is not an end to itself. 

Rather, it is only a means to an end – that end being better computing performances. Moore’s law is 

useful only because we can transform its raw resource (more transistors) into a much more useful 

form (better computing performances). Exploiting Moore’s law can be seen as mining a gold mine or 

any other raw resources for economic dividends. Thus far, as shown in Figs. 1.1-1.2, the dividends 
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(more transistors) from exploiting Moore’s law has been transformed into better computing 

performances. This is because the capabilities of most digital electronic devices are strongly related to 

the chip density (i.e., the number of transistors per chip). Higher chip density means better processing 

speed, memory capacity as well as higher number and larger size of pixels for video processing in 

digital electronic devices. In particular, observe from Fig. 1.2 that the on-chip local clock speed of the 

microprocessor, which is strongly linked to the computing power, has increased from ~1 GHz to ~10 

GHz within the period of 1999 to 2011, due to the increase in the transistor count per chip from 9.5 

million to 2.6 billion in the same time frame. The exponential increment in the chip density has led to 

higher speed microprocessors, thereby enabling high-density information processing, which has 

played an important role in meeting the information demand for the past few decades. 

Besides the high-density information processing of the microprocessors due primarily to 

Moore’s law, another factor that has enabled the field of communications to keep pace with the ever 

increasing demand for information to this date is the high-capability information transmission 

provided by long-haul optic fiber communications networks [8, 9]. In particular, fiber to the x (or 

FFTx) technology are progressively being implemented nationwide in various countries [10-14] in 

recent years to replace existing telecommunication networks that still utilize electrical 

interconnections (typically copper cables) to link the optic fiber networks from the main transmission 

node or central exchange office (CO) to the end-users. Note that the x in the term FFTx is used to 

indicate how close the fiber end point comes to the actual users, before the last mile connection is 

continued by other means, such as electrical interconnections (typically copper cables) or wireless 

networks. In general, the main types of FTTx networks are [15, 16]: 

 FTTN (or Fiber-to-the-node) — the optic fiber is terminated at a communication node in 

the street that is located up to several kilometers away from the premises of the end-users. 

The last mile connection from the node to the premises of the end-users is usually based 

on copper cables.  

 FTTC (or Fiber-to-the-cabinet) — this is very similar to FTTN. However, in this case, the 

communication node in the street is closer to the premises of the end-users, which is 

usually within 300 m. The final connection to the end-users is based on copper cables. 

 FTTB (or Fiber-to-the-building or Fiber-to-the-basement) — the optic fiber reaches the 

common boundary of the premises of a group of end-users, such as the basement in a 

multi-tenant building. The final connection to the premises of the individual end-user can 

then be made via copper, optic fiber or alternative means such as wireless connection. 

 FTTH (or Fiber-to-the-home) — the optic fiber directly reaches the boundary of the 

premises of the individual end-user, such as a communication node on the outside wall of 

a house. The final connection from this communication node to the computers of the end-

user can be made via copper, optic fiber or alternative means such as wireless connection 
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At present, FFTx techology can provide a bandwidth of up to 2.5 Gbps downstream and 1.2 

Gbps upstream at an affordable price in most developed countries, such as Australia [10], Singapore 

[11], the United States [12] and Japan [13]. Note that even at this data transmission rate, the 

bandwidth usage is only a small fraction of the huge optical bandwidth of ~25 THz, if single-mode 

optical fiber is used. With the deployment of wavelength division multiplexing (WDM), in which a 

large number of transmission channels or wavelengths are being combined into one single fiber, the 

transmission capacity can be increased by ~32 times [8] or even by several hundreds of times [8, 9] if 

its more sophisticated counterparts — the dense wavelength division multiplexing (DWDM) and 

ultra-dense wavelength division multiplexing (UDWDM) — are being utilized. These will allow high 

data transmission rate on FTTx networks that is on the order of several Gbps and even Tbps.  

1.1.2.  The Limitations of Moore’s Law and Optic Fibers in this Information Age 

In this Information Age, digital explosion has become a reality, with digital data currently 

growing exponentially at a rate of tenfold every year. It is estimated that the amount of digital 

information being produced and processed will increase to 35,000 exabytes (i.e., 3.5 × 1022 bytes) in 

2020, which is 44 times more than what was being produced in 2009 [17]. This is mainly driven by 

high-bandwidth consuming applications and services, such as high-definition television (HDTV), 

video on demand (VOD), video conferencing, Internet protocol television (IPTV) and file sharing, 

whose compressed bit rate can easily be on the order of Gbps in the future [17-20]. 

To cope with the increasing demand for information, it might seem logical to further improve on 

existing long-haul optic fiber networks and the widespread use of the above-mentioned FTTx 

technology as well as the further scaling of the size of the transistors in order to bring the 

microprocessors to greater information processing speed for higher computing power. However, it is 

not possible to continuously decrease the size of the transistors. The transistors would eventually 

reach the limits of miniaturization at atomic levels due to quantum tunneling effect. Then Moore’s 

law will collapse. This is theoretically predicted to occur around 2020 [21].  

It must be mentioned that the end of Moore’s law does not mean that computing performances 

cannot be improved in the future; rather, it means that we will lose an important raw resource (i.e, 

Moore’s law in terms of more transistors on a chip) for improving computing performances. In fact, 

when mainstream computing hits a wall in 2005 [22] because of the fall in the rate of increase of the 

number of transistors on a chip (which can be observed in Fig. 1.2), the computer industry begins to 

use other schemes, in conjunction with Moore’s law, to improve the computing performances. These 

schemes, which have been rather successful to increase the computing speed (which can be observed 

in Fig. 1.2 for 2005 and subsequent years) include [3, 23-25]: (1) the transition from single-core to 

multi-core central processing units (CPUs) in mainstream computing systems (starting from 2005), (2) 

the use of heterogeneous cores (starting from 2009), (3) the use of elastic compute cloud cores 
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(starting from 2010), (4) the use of network-on-chip (NoC) that focuses on the design and 

optimization of network interfaces, topologies, routing, flow control, and router/memory micro-

architectures, and (5) the use of tri-gate (or 3-D) transistors for third-generation chips (starting from 

2012). Thus far, these schemes are used together with Moore’s law. Whether they will continue to be 

effective in increasing the computing performances after the break down of Moore’s law (i.e., whether 

they can take over Moore’s law as the main resource for improving the computing performances) 

remain to be seen. In addition, alternative technologies, such as quantum computing [26-28], graphene 

and carbon-nanotubes based electronics [27], can also serve as new resources to replace the use of 

Moore’s law to increase the computing performances, provided that these can be adequately 

developed and be matured for commercial applications. 

However, the greatest hurdle in meeting the increasing demand for information lies not so much 

in the speed of the microprocessors that is highly dependent on Moore’s law. In fact, even if Moore’s 

law can be substained using current IC techology, it is still inadequate to effectively cope with the 

high-bandwidth consuming applications and services of the future. Neither will improvement in 

existing optic fiber networks nor the widespread use of FTTx fully solve the problem. This is the 

limitation of Moore’s law and optic fiber networks. The real crux of the problem is in the electrical 

interconnections on the computer boards and in the electronic chips of the servers or computers of the 

end-users. These electrical interconnections are used for information transmission within the 

electronic chips, between electronic chips and between electronic chips and peripheral devices. 

Though optic fibers can be used in the last mile connection to the end-users and even to connect 

different computers of the end-users, the use of electrical interconnections in the computers gives rise 

to what is commonly known as the electrical interconnections bottleneck, which is the very root of the 

problem in meeting the increasing demand for information. This is elaborated in the next subsection. 

1.1.3.    Communication Bottleneck of Electrical Interconnections  

The net computing time in the electronic chips is the sum of two parts: The switching time of 

the logic gates of the microprocessors and the delay time of the electrical interconnections. As the 

elements (i.e., the transistors and electrical interconnects) on an electronic chip are reduced in size so 

as to substain Moore’s law, only the switching time is scaled down while the electrical 

interconnection delay, which determines the number of bits per second (also known as the bit rate 

capacity, B’) that we can get down the interconnects, does not scale down but stays constant. To 

understand this, first note that there are two types of electrical interconnection delay for the electronic 

chips: The R’C’ time delay, which is proportional to R’
 × C’ × L2, and the R’

 L
’ time delay, which is 

proportional to R’
 × L’ × L2, where the symbols R’, C’, L’ and L, respectively, denote the resistance per 

unit length, capacitance per unit length, inductance per unit length and length of the electrical 

interconnects. At the gigahertz frequencies of modern information processing systems, the R’C’ time 
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delay applies to data transmission for intra-chip (i.e., within chips), while the R’
 L

’ time delay applies 

to data transmission for off-chip (i.e., chip-to-chip, chip-to-board or chip-to-peripherals) connections. 

Scaling down the transistors and electrical interconnects by a factor of ś in all three dimensions 

shrinks the cross-sectional area by ś2, reduces the length by ś × L and increases the resistance per unit 

length to R’/ś2. However, the capacitance per unit length and inductance per unit length remains 

relatively constant as they depend chiefly on the shape of the interconnects, not so much on the size 

[29]. As a result, with size scaling, the R’C’ and R’L’ time delays still remain fixed at R’/ś2
 × C’ × (ś × 

L)2 = R’
 × C’ × L2 and R’/ś2

 × L’ × (ś × L)2 = R’
 × L’ × L2, respectively. This is the size scaling limit issue: 

Though size scaling increases the speed of the microprocessor (as more transistors can be packed in a 

chip), the speed of the electrical interconnects stays somewhat constant. Consequently, the speed of 

the electrical interconnection cannot keep up with that of the microprocessor.  

The above-mentioned R’
 C

’ and R’
 L

’ time constant constraints imply that the maximum speed of 

electronic chips will be limited by the electrical interconnection time delay, not by the speed of the 

microprocessors. As shown in Fig. 1.2, though the on-chip local clock speed of microprocessors has 

constantly increased to 10 GHz by 2011, the on-chip and off-chip interconnection speed have been 

expecting slower increasing rate since 2002. The National Technology Roadmap for Semiconductor 

(ITRS) [5] predicted that, even with the employment of copper and materials with lower dielectric 

constant and the optimization of the chip architectural structure, the electrical interconnection speed 

will remain relatively constant and eventually stagnate. It can be seen in Fig. 1.2 that by 2014, the on-

chip and off-chip interconnection speeds are ~3 GHz and ~1 GHz, respectively, even though the 

microprocessor speed has already increased to 16 GHz in the same year. Such low interconnection 

speed is simply inadequate to handle the large information bandwidth in futuristic applications, which 

will easily consume bandwidth on the order of Gbps or even Tbps. This is the so-called electrical 

interconnection bottleneck of this Information Age. Computers will have all the capability to process 

and compute the received information based on Moore’s law but not the adequate means to transmit it 

due to the limited bandwidth or transmission speed of the electrical interconnects in the electronic 

chips. In such a circumstance, the high optical bandwidth of existing optic fiber networks cannot be 

fully utilized. 

It must also be mentioned that the optimization of the cross-sectional area AI and length L of the 

electrical interconnects does not solve the R’
 C’ and R’

 L’ time constants problem as the bit rate 

capacity B’ of electrical interconnection is estimated to be B’  ≤  B’
0AI/L

2, where B’
0 is the bit rate 

capacity constant while AI and L are the cross-sectional area and length of the interconnect, 

respectively [30]. This relation of B’ with AI and length L can be derived by using: (i) R’ L/AI, C
’ L 

and L’ L; and (ii) B’ 1/(R’C’) for on-chip interconnection and B’ 1/(R’L’) for off-chip 

interconnection so that successive bits do not over lap excessively with each other. Do note that  is 

the symbol of proportionality. The bandwidth or bitrate of the electrical interconnects is thus limited 
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by the aspect ratio AI/L
2. In other words, B’ or bandwidth of the electrical interconnects is fixed by the 

aspect ratio limit AI/L
2 and cannot be simply altered by miniaturing the size of the electronic devices 

or making them bigger. Do note that AI  refers not only to just one wire or electrical interconnect but 

also to the total cross-sectional area of all the used wires. This implies that once all the space on a chip 

has been filled up by the different wires and transistors, B’ of the system will not change as the the 

total area AI  remains the same regardless of whether a large number of small wires or a small number 

of large wires are used, assuming that L stays rather constant. 

Apart from the constraint of a constant interconnection speed or bit rate capacity, there are also 

other issues related to the use of electrical interconnections. One of such issue is that each electricial 

interconnection path must be wired individually: Each path can only be used by one distinct data 

stream so as to avoid the mutual interaction of the electrons through the Coulomb force. This will 

imply that a large number of wires (one for each distinct data path) must be used in the electronic 

chip, leading to a complicated chip design. Also, in order to minimize crosstalk due to capacitive and 

inductive coupling between proximate electrical interconnects as well as to avoid electromagnetic 

interference (EMI) of the signals, the wires or electrical interconnects in the electronic chip must be 

evenly spaced out. This will result in in a small interconnection density-bandwidth product or large 

packing density. Another issue is that there is an increase in joule heating of the electricial 

interconnects with smaller transistor size. In addition, it has been found that at data rate approaching 

10 Gbps, microscopic imperfections in the electricial interconnects will begin to weaken and distort 

the signals [19, 20].  

1.1.4.    Photonics Integrated Circuits 

The most feasible solution to eliminate the electrical interconnections bottleneck and other 

electrical interconnects related issues is to replace the electrical interconnections in the electronic 

chips of computing systems with its optical equivalents, i.e., optical interconnects, that transmit data 

through photons rather than electrons [18-20]. A network of optical interconnects and related optical 

component devices will form the photonic analogue of the electronic ICs, known as photonic 

integrated circuits (PICs). The employment of PICs as interconnections in computing system can also 

be seen as mimicking the use of long-haul optic fiber networks to replace cable-based networks. The 

greatest communication strength of using PICs as interconnections is that PICs operate at optical 

frequencies (THz regime) that will result in a much larger bandwidth, bit rate and transmission speed 

as compared to electrical interconnections that use signals at much lower frequencies (GHz regime). 

The size scaling and aspect ratio limits (mentioned in section 1.1.3) that result in a stagnation of the 

interconnection speed and bit rate capacity in electricial interconnects are eliminated when PICs are 

used. Moreover, as photons (at low input intensities) do not interact with each other or with other 

radiation, unlike electrons in electrical interconnections, several other major improved features can 
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also be found in PICs-based interconnections. First, optical interconnects can be packed closely with 

minimal crosstalk and EMI. This result in a much greater interconnection density-bandwidth product 

or packing density in PICs as compared to electronic chips that use electrical interconnects. Second, 

each optical interconnect or waveguide can be utilized by several data channels, unlike the case in 

electrical interconnections in which each data path must be wired individually. In fact, the signal 

bandwidth can be increased by combining or multiplexing a large number of data channels into one 

single optical interconnect, similar to the WDM technology in optic fiber. Such ability of several data 

streams to share one pathway will result in a simpler design in the interconnection layout when PICs 

are used. 

In a PIC, all of the necessary optical component devices, such as photo-detectors, routers, 

switches, filters, buffers and amplifers, to perform both passive and active functions (or signal 

processing) can be found. To perform active optical functions, such as light amplification and 

modulation, the PIC could subsequently be integrated seamlessly with current electrical circuits based 

on complementary metal-oxide-semiconductor (CMOS) technology or any other type of integrated 

electronic technologies, such as metal-oxide semiconductor field-effect transistor (MOSFET), so that 

the active optical devices on the PIC can be interrogated by electronic means and be responsive to any 

external electrical actuation-or-control signal. This marriage between integrated photonics and 

integrated electronics is commonly known as integrated optoelectronics and the resulting chip is 

known as the optoelectronic integrated circuit (OEIC). Such synergy of electronics and photonics will 

greatly boost the performances of current computing and communication systems, allowing the 

possibility to achieve high data transmission rate of  > 10 Gbps [20] that will meet future information 

demand. The high bandwidth of optic fiber can then be better utilized. Computing and 

telecommunication will thus be revolutionized, ushering in the next Information Age. Note that in an 

active PIC (i.e., OEIC), the electrical drivers are connected internally to the photonic components 

(i.e., intra-chip) over a short path such that the R’
 × C’ time delay is relatively low and rather negligible 

as compared to the electrical interconnects of conventional electronic ICs in the microprocessors. 

The vision of a PIC integrating with electronic ICs to form the above-mentioned active PIC or 

OEIC was originally proposed by Abstreitter [31] in 1992 and refined by Soref [32] in 1993. In 

Soref’s vision of such a superchip [32], which is shown in Fig. 1.3, optical fibers are butt-coupled to 

the waveguides on the PIC so that the optical signal can be transmitted into and out of the chip. The 

input optical signal is then detected by a photodiode, after which the data can be used for electrical 

interrogation or simply be transmitted into other devices on the PIC. To compensate for the 

waveguide losses, the input signal can be amplified, before it is re-shaped and/or re-encoded by the 

optical modulator on the PIC. New electronic data can also be encoded on the exiting optical signal by 

the same modulator. All the active fuctionalities are made possible in such a superchip due to the 

integration of photonics with integrated electronics technologies, such as CMOS, as shown in Fig. 1.3. 
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Fig. 1.3. Soref’s vision of a photonics super chip [32], where photonics is integrated seamlessly with 

electronics so that the optical devices on the chip can be interrogated by electrical means. Note that as 

the electrical drivers are connected internally (i.e., intra-chip) to the photonic components over short 

paths, the resistance and parasitic capacitance are relatively low as compared to electrical 

interconnections in electronic chips and between electronic chips.  

 
Thus far, we have only mentioned about replacing the electrical interconnections in existing 

electronic-based microprocessors chips with optical interconnects or OEICs. Do note that the 

computing of the received data from the CO still needs to be done by the electronic-based 

microprocessors, even if PICs or OEICs are used to replace the electrical interconnects in the chips.  

To do so, the optical information in the PICs must first be converted into the electronic domain before 

it is passed into the microprocessors for data computation. The computed data is then converted back 

into the optical domain before it is sent back to the PICs, where it will be transmitted out of the 

servers of the users and subsequently into the optic fiber of the CO. Of course, the ideal case would be 

to operate completely in the optical domain as the conversion of information between the optical and 

electrical domains not only causes OEIC devices to lose ~30% of their energy [26], but also slows 

down the transmission of data. However, the development of the integrated optical analogues of the 

microprocessors that can compute data in the optical (or even quantum) domain, i.e., all-optical 

transistors or computers, for viable commercial applications is still ongoing [26-28]. There are various 

challenges and limitations [33, 34] that must be overcome before all-optical or photonic computing 

can be fully realized on an IC chip. In particular, real-world logic systems require logic-level 

restoration, cascadability, fan-out and input-output isolation, all of which currently cannot be 

adequately met by optical computers, but can be provided by electronic transistors at low cost, low 

power, and high speed [34]. Moreover, the fact that photons do not interact with each other or other 

radiation at low input intensities is a major drawback in the implementation of optical logic, though 

this characteristic is an advantage in the implementation of optical interconnects. For optical 

computers to be truly competitive and move from a few niche applications (which is the current 

situation) into real-world commercial applications would require major breakthroughs in non-linear 
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optic technology. In addition, note that electronic-based microprocessors can be easily programmable 

by software and their accuracy is practically unbounded. All-optical computing is still unable to 

achieve these. As such, for the time being, the best approach is to exploit and combine the 

communication strengths of photonics with the computation strengths of electronics in an optimal 

manner as further elaborated below. 

A photonic/electronic hybrid of the microprocessor chip, in which the transistors of the 

microprocessors are based on electronic ICs, while the data interconnections between the outside 

world and the microprocessor chips are based on photonic technologies that employ OEICs (or active 

PICs) can be deployed in the end-users’ servers or computers, in conjunction with the use of FTTx 

technology. This will effectively meet the demand for information. A 3-D version of such a 

photonic/electronic hybrid of the microprocessor chip has been proposed by American multinational 

consulting and technology firm, International Business Machines or IBM [35]. This is shown in Fig. 

1.4. In IBM’s 3-D photonic/electronic hybrid microprocessor chip, which is a conceptual design of 

future computing networks, the lowest layer is filled with electronic-based microprocessors with  

 

Fig. 1.4. A 3-D chip [35] proposed by IBM that integrates photonic integrated circuits (top layer) with 

the electronic memories (middle layer) and the electronic processors (bottom layer). The photonic 

integrated circuits (PICs) at the top layer not only connect the various cores but also process the 

incoming and outgoing data. Here, the PIC is shown performing optical routing. Other optical functions 

such as switching, modulating and amplification can also be implemented by the PICs before the data is 

passed to the electronic devices in the memory and processor layers or transmitted out of the 3-D chip. 

thousands of individual cores, powered by Moore’s law. The middle layer consists of memory units 

based on electronics while the top layer is the photonic layer, consisting of OEICs that connect the 

various cores of the chip. The optic fiber from the CO (assuming FTTH network is used) is then 

directly linked to the top photonic layer of the 3-D chip. Also, instead of converting the optical data 

(in the 3-D chip) that have just arrived from the external optical fiber into the electrical domain for 

various signal processing functions [36, 37], such as demodulation, differentiation, integration, 

filtering, routing, buffering and switching, the optical data can be directly processed in the optical 

domain, before passing it to the microprocessor for further data computation after it has been 
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converted into the electrical domain by the OEICs. This will greatly increase the transmission rate and 

processing speed as electrical interconnects are not used when performing the signal processing of the 

received data. Also, there is lower energy consumption as the conversion of information between the 

optical and electrical domains causes OEIC devices to lose ~30% of their energy, as mentioned 

earlier.  

The most suitable material upon which PICs or OEICs could be built is silicon [38, 39]. This 

proposal of the use of silicon as an optical material, which is now known as silicon photonics, can be 

traced to the pioneering works of Soref and Petermann [40-43] in the late 1980s and early 1990s. The 

strongest argument in favor of silicon photonics is based on its compatibility with the mature silicon 

IC fabrication technology: the same standard silicon IC production process can be used to create 

optical waveguides onto the silicon surface. Presently, those working with microelectronic devices are 

seeking to move beyond the current state-of-the-art critical dimension of 22 nm. The semiconductor 

processing technologies of 13 nm and 11 nm are expected to be in use by 2013 and 2015, respectively 

[4, 5] (see also Table 1.1). However, most optical devices based on silicon are likely to have critical 

dimensions of ≥ 100 nm for the near future [18, 38]. This means that the infrastructure already exists 

for the next several generations of PICs, if silicon is used. Also, as mentioned earlier, the silicon IC 

production process is able to allow the manufacturability of complex microelectronics to be realized 

with a great degree of reproducibility and at a rather low cost, allowing them to be easily affordable to 

consumers. Hence, by exploiting the technologies of the mature electronic IC industry, low-cost 

photonics for mass-market applications will be possible. The economies of scale that we have seen for 

the electronics industry could easily be applied to the photonics industry.  

Another motivation for the use of silicon is that it is unique from many other semiconductors in 

that it has a natural oxide (SiO2), which is adhering and can thus be used as a passivation layer. This 

can be used to produce silicon-on-insulator (SOI) substrates [18-20]. SOI substrates consist of a thin 

layer of silicon dielectrically separated from the bulk silicon by SiO2. The strong optical confinement 

offered by the high index contrast between silicon (refractive index ≈  3.45) and SiO2 (refractive index 

≈  1.45) makes it possible to scale photonic devices to the hundreds of nanometer level. Many CMOS 

processes use an SOI substrate as a starting point for device fabrication. Hence, using SOI as a 

photonics platform will allow it to seamlessly merge with existing CMOS process technology, 

facilitating the realization of the earlier-mentioned OEICs as well as the 3-D chip. Such monolithic 

integration of optics and electronics onto a single substrate has the capacity to bring together the 

speed and bandwidth of optical systems with the complexity and well-established engineering 

background of current integrated electronic circuits. For this reason, the work in this thesis will focus 

on integrated optical devices based on the SOI platform. 

With silicon photonics scheduled for high-volume market applications in the 2010-2015 

window [20], products and advanced prototypes based on the SOI platform has already been 
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developed by various major industrial players, such as Intel [44], Luxtera [45], IBM [46] and BAE 

systems [47], just to name a few. In particular, Intel Corporation, the dominant market player in 

microprocessors, has demonstrated many breakthroughs in silicon photonics, including the 

demonstration of a silicon laser [48], hybrid silicon laser [49], a high-speed silicon modulator [50] and 

the recent silicon photonics 50 Gbps fiber-to-chip link [51], which link optic fiber directly into the 

electronic chips of the computers. 

1.2.      Research Objectives  

To facilitate the development of PICs that can be used to alleviate the problem of electrical 

interconnection bottleneck as mentioned in section 1.1, this thesis will focus on the theoretical 

optimization and modeling of optical component devices that are typically being used on the PICs. In 

particular, we have focused on two optical devices — the straight waveguides and the travelling wave 

microresonators (TWMRs) [52] — in this thesis. The objectives of this thesis are further outlined as 

follows. 

 The theoretical optimization of the straight waveguide and TWMRs for PICs based on the 

silicon-on-insulator (SOI) platform, with particular emphasis on efficient communications 

applications. Note that there are different types of TWMRs [52], such as the 

microspheres, microtoroids and microring resonators (MRRs). Our theoretical 

optimization for SOI devices in this part will only focus on the MRRs as it is the most 

commonly used TWMR due to their planar structure and relative ease of fabrication. 

 New design proposals based on TWMRs to perform optical functionalities, such as 

photonic bandgap (PBG) engineering and the generation of fast and slow light effects. 

The proposed schemes are generic in nature and can be implemented on different types of 

TWMRs of different material platforms. For convenience, however, the MRR based on 

the SOI platform will be used for specific case studies (if any) in our design proposals. 

1.3.      Significant Contributions  

The research works in this thesis, which are based on the above research objectives, are divided 

into two parts: (i) Part one (chapters 2 to 5); and (ii) Part two (chapters 6 to 9). These works have 

contributed 8 peer-reviewed journals (6 published and 2 submitted) and 2 conference proceedings. 

The main contributions of these works are outlined as follows. 

1.3.1.   Part One: Fundamental Building Blocks 

Part one of the thesis focuses on the basic functionalities of two fundamental microphotonic 

components, namely, the straight waveguides and the traveling wave microresonator (with emphasis 

on the microring resonator).  
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(a) Single-Mode and Polarization-Independent Passsive Silicon-on-Insulator Waveguides of  

Submicron Scale 

Waveguides are the most fundamental building blocks of any PICs. We thus start by studying 

the modal characteristics of different types of waveguides. As there is a trend towards device 

miniaturization and the use of silicon-on-insulator (SOI) for the commercialization of PICs [53], we 

focus our study on the single-mode (SM) and polarization-independent (PI) conditions for SOI channel 

and rib waveguides with height and width of less than 1 μm using rigourous numerical modeling based 

on the 3-D imaginary distance beam propagation method (IDBPM) [54]. Our results show that 

submicron SOI waveguides exhibit strong dependency on their polarization states. Nevertheless, both 

SM and PI conditions are possible under certain circumstances and are restricted by the fabrication 

process, where birefringence is strongly dependent upon the waveguide dimensions. A matrix of 

waveguide parameters for the SOI rib, channel and slab waveguides that can satisfy SM and PI 

conditions simultaneously have been identified for the operating wavelengths of 1.31 μm and 1.55 μm. 

This is useful in providing a general design rule for the fabrication of SOI waveguide of submicron 

dimensions, which is currently lacking in literature. In addition, we have also used analytical modeling 

to study the modal characteristics of SOI slab waveguides and their relation to those of the SOI 

channel and rib waveguides. This has been ignored in most of the literature. Also, we have 

demonstrated that the approximations provided by the analytical modeling matches well with the 

general trends of the results of the numerical modeling via the IDBPM. Such use of both analytical 

and numerical modeling gives a better physical insight into the stringent conditions needed for the 

realization of both SM and PI operations at the submicron level. 

(b)     How Small can a Passive Microring Resonator Be and Yet Be Single-Mode and 

Polarization-Independent? 

Another fundamental block of PICs is the microring resonator (MRR). Like its straight 

waveguide counterpart as mentioned earlier, MRR must also be SM and PI in order for it to be 

suitable for communication applications. As MRRs are bend-based devices, they inherently have 

higher polarization sensitivity and different SM conditions in contrast to straight waveguide (WG) 

based devices. To accommodate the structural polarization independence, the design of SM microring 

resonators has been limited generally to relatively large bend radius (>  30 µm) [55-58]. However, 

there is an increasing need to scale the size of MRR into the submicron regime so as to facilitate high 

density integration. The ultimate question then is: How small can we shrink both the cross sectional 

dimensions and radius, and yet maintain its overall PI and SM conditions, while ensuring low round-

trip losses? This will be objective of this work. We have shown theoretically in this research work of 

the feasibility of simultaneously maintaining the conditions of SM and structural polarization 

independence in a MRR while shrinking the size of both the bend radius and the waveguide cross 
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section via the more robust deeply etched submicron SOI rib waveguides, which are seldom used for 

MRR. It is found that, for a given cladding and core thickness, the radius of a SM and polarization-

independent MRR based on the SOI platform can be as small as 3 µm, being limited chiefly by the 

residual birefringence of the resonator and the bend losses. The results show that a resonance 

mismatch of only about 0.22 nm between the TE and TM resonance spectra and a free spectral range 

(FSR) of 12 nm can be achieved. This small polarization dependence in our submicron MRR (height 

and width < 1 μm, bend radius < 10 μm) represents a large improvement over what can usually be 

achieved with the conventional PI resonators [55-58] that have much larger device size (height and 

width ≥   1 μm, bend radius ≥   30 μm) and very small FSR (in the range of pico-meter). 

(c)       Traveling Wave Microresonators (TWMRs) Based Coupled-Resonator Optical 

Waveguides: Photonic Bandgap Engineering Using Periodic and Quasi-Periodic Orders  

Having studied the properties of a single MRR as described in section 1.3.1(b), which is one 

particular type of traveling wave microresonators (TWMRs), we then proceed to the case of N-

coupled TWMRs (where N is the number of resonators). If N is large, the coupled-resonators structure 

is known as coupled-resonator optical waveguides (CROWs). For this work, we focus on the photonic 

bandgap (PBG) engineering of TWMR-based CROWs using periodic and quasi-periodic orders. For 

the periodic-order case, size-tuned defects are introduced at periodic locations among the regular 

resonators, which are size-untuned, to form a periodic ordered CROW system. The periodic coupled 

defects result in multiple localization states that lead to the formation of mini-defect bands and mini-

PBGs within the wide PBG of the original defect-free CROW. The position and number of such mini-

defect bands and mini-PBGs depend on the size tuning of the defects. These features make the 

deployment of such schemes for PBG engineering very attractive in the absence of active elements to 

achieve tuning. Other possible applications include multi-passband filters. For the quasi-periodic 

order case, the arrangement of the defects and the regular rings is an intermediate between periodic 

order and randomness, forming a quasi-periodic ordered system. This interplay of order and disorder 

is illustrated using the CROW analog of the Fibonacci number sequence, which results in a single 

high-Q localized state to appear that gradually transits to a mini-defect band within a wide photonic 

stop band as N increases. If the total losses are sufficiently low, the high-Q localized state of the 

Fibonacci CROW is highly useful for bio-photonic and chemical sensing applications. Interestingly, 

our results also illustrate that there is a strong periodic correlation even when the order in the CROW 

is aperiodic in nature. 

(d)  Raman Scattering Processes in Submicron Silicon-on-Insulator Waveguides: Harnessing 

Temperature Effects  

To realize active functionalities in SOI waveguides, stimulated Raman scattering (SRS) is 
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widely used. However, existing studies on SRS-based SOI waveguide devices generally assume a 

fixed operating temperature of T = 298 K (room temperature); the temperature effects of SRS in 

submicrometer scale SOI waveguides have generally been neglected. As such, in this work, we have 

studied the temperature T dependence of SRS in submicrometer scale SOI waveguides for 100 K ≤  T 

≤  500 K in regard to three specific types of SRS-based functionalities in the continuous-wave regime: 

Raman amplification and attenuation near the C-band wavelength of 1.55 μm and parametric Raman 

wavelength conversion (PRWC) between the C-band wavelength of 1.55 μm and O-band wavelength 

of 1.31 μm. It is found that the effects of temperature variation can be harnessed to improve the 

Raman performances in the submicron SOI waveguides. In particular, the use of temperature variation 

provides an additional degree of freedom to tune the conversion efficiency (CE) and amplification 

efficiency (AE) of the SOI waveguides, thereby allowing a more dynamical control of the Raman 

performances of the SOI waveguide, as compared to those working at a fixed room temperature. 

Furthermore, the CE and AE can be enhanced as compared to that at the room temperature. The 

detailed research findings in this work can be used as general design rules when engineering 

submicron SOI waveguides for efficient Raman amplification, Raman attenuation and PRWC at 

different temperatures. Most importantly, the results show the numerous advantages of harnessing the 

temperature effects of SRS, which have largely been overlooked in the literature.  

1.3.2.   Part Two: Generating Fast and Slow Light Effects in Photonic Integrated Circuits Using 

Traveling Wave Microresonators 

Part two of the thesis focuses on the fast light (FL) and slow light (SL) effects in either a single 

traveling wave micoresonator (TWMR) or a system of twin-coupled TWMRs. The main emphasis 

here is on the use of degeneracy lifting of the cavity via the excitation of contra-propagating cavity 

modes to improve the fast and slow light effects of TWMRs. A variety of schemes to generate contra-

propagating cavity modes in TWMR-based photonic circuits for enhanced FL and SL effects have 

been proposed and looked into.  

(a)  Harnessing Coupler-Induced Localized Backscattering for Enhanced Fast and Slow 

Light Effects in a Traveling Wave Microresonator  

Degeneracy lifting and mode splitting originating from localized backscattering at the coupling 

junction when a TWMR is coupled to an external port WG has recently been predicted [59] and 

experimentally demonstrated [60, 61]. We term such backscattering that will also excite contra-

propagating cavity modes as coupler-induced localized backscattering (CILB). In our work, we look 

into the effects of CILB on the FL and SL performances of a single TWMR that is coupled to two bus 

waveguide (i.e., add-drop filter configuration). We have found that weak CILB that is aided by a 

small net optical gain in the cavity will enhance the FL and SL performances of a TWMR in the 
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following ways. First, all three types of light propagation velocity — FL with negative group velocity, 

FL with positive group velocity and SL — can be generated at both the through and drop ports at the 

degenerate resonance frequency ω0. This is in contrast to the conventional TWMR (where CILB is 

negligible), in which at the degenerate resonance frequency, only FL with negative group velocity and 

SL are present at the through port, while for the drop port, only SL is produced. Second, the 

possibility to generate stable FL with amplified transmission can be achieved, unlike the case of a 

conventional TWMR, where stable FL always has substantial attenuation. Third, there is an extra 

degree of freedom in addition to the parameters of κ and τ of the cavity (where κ and τ are, 

respectively, the cavity-to-bus-waveguide coupling coefficient and cavity round-trip attenuation 

constant) to control the group delay as any change in the strength of the CILB will change the 

resonance spectrum. However, in the regime of strong CILB, there will be some deleterious effects. In 

particular, the group delay enhancement at the through port is degraded and the width (i.e., the range 

of τ, given fixed κ and magnitude of the CILB) of the FL regime at the drop port is reduced.  

(b)  Tunable Fast and Slow Light via Interaction of Intracavity Backscattering with Dual 

Contra-propagating Inputs  

Besides CILB, another type of backscattering that generates contra-propagating cavity modes is 

the surface imperfections-induced distributed backscattering within the cavity. We will term such 

backscattering simply as intracavity backscattering. In this work, the intracavity backscattering can be 

enhanced and controlled by the intentional addition of surface microstructures. To achieve tunable 

group delay, dual contra-propagating inputs are launched into the TWMR circuit to interact with the 

enhanced intracavity backscattering. It is found that by adjusting the amplitude and/or phase 

differences between the dual contra-propagating inputs, the interaction of the cavity modes with the 

enhanced intracavity backscattering can be controlled and the shape of the resonance spectrum will 

gradually evolve from a single Lorentzian to a two-split Lorentzian and vice versa. Such a change in 

the spectral shape will translate into changes in the transmission and group delay of the output light. 

Consequently, continuous tunability in the group delay and transmission can be achieved. Switching 

between FL and SL can also be realized if the change in the spectral shape is accompanied by a 

change in the dispersion response from anomalous dispersion to normal dispersions or vice versa. 

This proposed scheme offers a more dynamic control of the speed of light, as compared to systems 

that use only a single input. More importantly, it realizes the possibility to achieve tunable fast and 

slow light in a passive and linear cavity. This is in contrast to conventional TWMR systems [62-68], 

which require either the use of active tuning mechanisms, such as p-i-n diode or gain medium, or 

nonlinearity in the cavity so as to have tunable group delay. Also, as the active tunability of the group 

delay of this proposed scheme stems from the use of external dual inputs, the reconfigurability and 
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serviceability of the cavity system are also improved as the external dual inputs can be easily adjusted 

or replaced. 

(c)  Harnessing Intracavity Backscattering for Enhanced Tunable Coupled-Resonator-

Induced Transparency and Optical Fano Resonance 

Having exploited the intracavity backscattering in a single TWMR, which is described in section 

1.3.2(b), we then look into the use of the intracavity backscattering in a system of twin-coupled 

TWMRs that has only one resonator coupled to the external bus waveguide. We have found that by 

intentionally introducing intracavity backscattering in the twin-coupled TWMRs, coupled-resonator- 

induced transparency (CRIT) [69] and optical Fano resonance (OFR) [70] effects can be enhanced, as 

compared to conventional twin-coupled TWMRs systems that do not utilize the intracavity 

backscattering effects. (Note: Due to the strong dispersive property of the CRIT and OFR lineshapes, 

CRIT and OFR are categorized as fast and slow light effects in some literature. We have adopted this 

convention and thus included the study of CRIT and OFR in part two of this thesis that deals with fast 

and slow light effects). In particular, the presence of intracavity backscattering in our modified twin-

coupled TWMRs make it possible to either generate a single sharp CRIT peak or a pair of CRIT peaks 

in the transmission spectrum of the through port, in contrast to the case of the traditional twin-coupled 

TWMRs structure [69, 71], in which only a single sharp CRIT peak can be realized within one FSR. 

The distance between the twin-CRIT peaks can be controlled by adjusting the intracavity 

backscattering magnitude um. In addition, our proposed scheme makes it possible to simultaneously 

produce fast and slow light effects, one at each output port, from a single device. By using different um 

for the two resonators in our proposed modified twin-coupled TWMRs structure, the CRIT peaks can 

be reshaped into sharp asymmetric OFR lineshapes. Finally, if dual inputs are employed, the CRIT 

symmetric peaks of our proposed schem can also be reshaped into asymmetric OFR lineshapes by 

modulating the phase and/or amplitude differences between the inputs. Active switching between 

CRIT and OFR in our proposed scheme can then be achieved in the absence of gain and/or phase 

tuning elements in the resonators. This is unlike the case of the conventional twin-coupled TWMRs, 

which require gain [72] and/or phase tuning elements [73] in the resonators to switch between CRIT 

and OFR. The enhanced CRIT effects can be utilized for fast and slow light applications, while the 

asymmetric OFR lineshape is highly useful for optical switching applications. 

(d)  Tunable Flat-Band Slow Light Using Contra-propagating Cavity Modes 

Finally, we utilize the contra-propagating cavity modes that arise purely from the evanescent 

coupling (but not the surface perturbations-induced intracavity backscattering) of both the resonators 

to the bus waveguide in the twin-coupled TWMRs system to generate flat-band SL. The presence of 

such contra-propagating cavity modes in the twin-coupled TWMRs system will generate multi-peaks 
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in the resonance spectra. Flat-band SL can be generated if such multi-peaks become undistinguishable 

and merge into one single broaden peak that is maximally flat or close-to flat in the resonance spectra, 

which will only happen if the inter-resonator evanescent coupling strength is optimized relative to the 

resonators-to-bus-waveguide coupling strength. The generated flat-band SL from our proposed 

scheme has the characteristics of (1) maximal flat transmission spectrum, (2) near unity transmission 

and (3) minimal group delay dispersion. The bandwidth and the group delay of the region of flat-band 

SL can be tuned by adjusting the coupling coefficients of the TWMRs. A fundamental figure of merit 

to quantify the capability of the SL system to simultaneously fulfill the bandwidth and group delay 

enhancement requirement is the delay-bandwidth product (DBP). We have shown that the DBP of the 

output light at the through port and the reflection port are, respectively, 3- to 12-fold and 6- to 24-fold 

higher than that of conventional TWMR-based SL systems [74-79]. This illustrates that our proposed 

system is capable of providing better SL performances as compared to conventional TWMR-based SL 

systems. Fabrication tolerance and cavity losses analyses have also revealed that our proposed scheme 

is rather robust to the fabrication errors and limitations of current state-of-the-arts semiconductor 

processing technology. Therefore, our proposed device will be highly suitable for practical SL 

applications. It is also a significant contribution to the field of SL as a large usable resonance 

bandwidth with large delay-bandwidth product (i.e., flat-band SL) can be generated, without the need 

for complicated device design, external dispersion compensation devices or a large device footprint 

(as only two resonators are needed in our proposal). 

1.4.      Organization of Thesis 

This thesis consists of 10 chapters. Chapter 1 gives an overview of the background, research 

motivations and major contributions of the completed research works of this thesis. Chapters 2 to 9 

describe in detail of the completed research works as highlighted earlier in section 1.3. Finally, in 

chapter 10, we summarize and conclude all the major contributions of this thesis as well as outlining 

research directions for our future works. 
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Chapter 2  

Single-Mode And Polarization-Independent 

Passive Silicon-On-Insulator Waveguides of 

Submicron Scale 

2.1.  Introduction: Research Motivations and Objectives 

It is envisioned that silicon-on-insulator (SOI) would be one of the most suitable material 

platforms to commercially realize photonic integrated circuits (PICs). The most basic building blocks 

of any SOI-based PICs are the straight SOI passive waveguides. We thus begin the dissertation work 

by looking into the modal properties of such waveguides.  

In general, three types of straight SOI waveguide configurations are possible: The slab (or 

planar) waveguide, the channel (or strip) waveguide and the rib (or ridge) waveguide, which are, 

respectively, shown in Figs. 2.1(a), 2.1(b) and 2.1(c). A SOI slab waveguide is formed by sandwiching 

silicon in between two cladding layers, while etching the core of the slab waveguide completely 

(partially) down to the lower cladding layer gives a channel (rib) waveguide. Evidently, slab 

waveguide is the simplest waveguide configuration as additional fabrication processes are involved for  

 

Fig. 2.1. Schematic cross-sections of the three basic types of silicon-on-insulator (SOI) waveguides: (a) 

Slab waveguide, (b) channel waveguide and (c) rib waveguide, with the various design parameters shown. 

Note that light propagates in the z direction.   

channel and rib waveguides. In spite of this, channel and rib waveguides have been the primary 

building blocks for silicon photonics as they are able to provide a two dimensional confinement of 

light, in contrast to the slab waveguide, in which light can only be confined in one dimension.  
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For any waveguides to be commercial viable, they must preferably be single-mode (SM) as well 

as polarization-independent (PI) at the communication wavelengths [1]. SM means that only the 

lowest order mode, termed as the fundamental mode, is present in the waveguide. Ensuring SM 

propagation is highly desirable as SM waveguide avoids intermodal dispersion and also reduces 

coupling losses that occur when coupling light into a SM fiber, which is commonly used in long-haul 

data transmission. Moreover, among all the possible waveguide modes with different mode orders, the 

fundamental mode of a waveguide (which is the only mode present in a SM waveguide) carries the 

majority of the optical power and is the most well confined field distribution within the waveguide 

core [2]. On the other hand, PI operation means that the response of the optical circuit to any 

incoming optical signal should be the same (or nearly the same) regardless of the polarization state of 

that optical beam. Technically, this means that the propagation constant β and effective index Neff of 

the transverse electric (TE) mode is the same (or nearly the same) as that of the transverse magnetic 

(TM) mode, i.e., ΔNeff  =  |Neff (TE) – Neff (TM)|, where Neff  =  β/k0 and k0 is the free space wave number. 

Note that throughout this thesis, β and Neff  are taken to be purely real, unless otherwise stated. As it is 

highly challenging to design a waveguide to have zero waveguide birefringence (i.e., ΔNeff ≈  0) for all 

the different waveguide mode orders (q = 0, 1, 2…), the term PI in this thesis applies only to the 

fundamental mode order (q = 0) due to the above-mentioned advantages of SM operation. 

The design rules for single-mode SOI rib waveguides at the micron scale have been formulated 

by Soref et al. [3] and later refined by other researchers [4-7]. To achieve PI operation for these SM 

waveguides, polarization management schemes, such as polarization diversity [8, 9], can be 

employed. Alternatively, one can design several optical circuits that serve the same functionality, each 

having the ability to function with a specific polarization. In addition, active tuning [10] can also be 

used to achieve PI operation. We will term these schemes as extrinsic PI schemes. The main 

disadvantage of these extrinsic PI schemes is that additional device space and fabrication processes 

are required. For the case of using active tuning, the energy consumption of the optical circuit will 

inevitably be higher. These problems can essentially be mitigated if the SOI waveguides can be 

designed to be intrinsically PI, which means that polarization independence is attained merely by the 

use of just one single waveguide with its optimized geometrical settings, with no external device or 

aid. The issues of achieving both SM and PI operations at the micron scale for SOI rib waveguides 

have been successfully addressed by Chan et al. [11]. For channel waveguide, the conditions for SM 

and/or PI at the micron level can be easily deduced based on the above-mentioned research work on 

SOI rib by Soref et al. [3] and Chan et al. [11]. 

Recently, there has been a drive towards the miniaturization of silicon photonic devices toward 

the submicron regime (i.e., waveguide width and height < 1 µm) for high-density optical integration 

and improved device performances [11, 12]. Various components have been demonstrated at the 

submicron scale, such as ring resonators [13], modulators [14], arrayed waveguide gratings [15], and 
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one dimensional photonic bandgap microcavity [16]. The general trend (as observed in year 2007 

when this research was started and completed) when designing SOI-based integrated photonic devices 

at the submicron level is that channel waveguides are commonly used, with little emphasis placed on 

submicron rib waveguide structures: SOI rib waveguides are more commonly used at the micron scale 

(i.e., waveguide width and height ≥  1 µm) while channel waveguides are used at the submicron scale 

(i.e., waveguide width and height < 1 µm). It must be noted that: (1) The use of submicron rib 

structures have several advantages, one of which is the implementation of a high-speed modulator 

based on depletion mechanism for high optical confinement and low losses [14]; and (2) even though 

at the submicron scale, channel waveguide-based devices have been widely demonstrated, they are 

usually designed only for single-mode operation at 1.55 μm [17-19]. In view of the above-mentioned 

points (1) and (2), we see the need to look into the conditions to simultaneously satisfy both SM and 

intrinsic PI operations at the communication wavelengths of 1.31 μm and 1.55 μm for the SOI channel 

and rib waveguides at the submicron scale and operating at the room temperature. This will be the 

main research objective of this chapter. In addition, for completeness, the modal characteristics of 

submicron slab waveguides at the communication wavelengths of 1.31 μm and 1.55 μm, which 

generally have been neglected, will also be explored and be related to the properties of the SOI rib and 

channel waveguides. This will provide a much clearer picture of the modal characteristics of the SOI 

waveguides at the submicron level. 

This chapter is organized as follows. We begin with the basic Maxwell equations to analytically 

solve for the dispersion curves and subsequently deduce the general trends of the modal 

characteristics of the SOI submicron slab waveguides in section 2.2 and the SOI submicron 2-D 

channel and rib waveguides in section 2.3. Though such analytical approach is highly useful to give a 

clear insight into the actual physical phenomena involved, it serves only as a general approximation 

for two-dimensional (2-D) waveguides like the channel and rib waveguides. Accurate analysis of the 

2-D waveguides would require the use of numerical or computational modeling via electromagnetic 

algorithms. This is done in section 2.4. Our numerical modeling is based on the 3-D imaginary 

distance beam propagation method (IDBPM) [20]. This approach has been implemented on various 

silicon-on-insulator (SOI) devices [13-15] and showed good agreement with the experimental data in 

[21]. Finally, in section 2.5, we conclude and highlight important contributions of this research work.  

2.2.  Analytical Modeling of Submicron Silicon-on-Insulator Slab Waveguides 

2.2.1.  Theoretical Formulation 

Consider the SOI slab waveguide in Fig. 2.1(a), in which the silicon core with a thickness of h is 

sandwiched between two semi-infinite media of silica (SiO2), which act as the upper and lower 

cladding layers. This renders the slab waveguide to be a symmetric structure. Note that some 

literatures, such as [21], use air as the upper cladding instead of SiO2. We have, however, used SiO2 
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as the cladding layer as this will act as a passivation layer for the silicon core that is needed in most 

practical applications. Assuming that the input electromagnetic fields are time-harmonic, i.e., 

             , , , , exp exp ,  , , , ,  ,E x y z t E x y j t z E j t z E x y z t E E E x y            

                   , , , , exp exp ,  , , , ,  , ,H x y z t H x y j t z H j t z H x y z t H H H x y            (2.1) 

where E is the electric field amplitude, H is the magnitude field amplitude, β is the propagation 

constant, which is defined as the vectorial component of the k-vector along the z direction in the 

optical medium throughout this thesis, ω is the angular frequency, t denotes time and  j = 1 , while 

(x, y, z) is the Cartesian coordinate system employed in Fig. 2.1. Then Maxwell’s equations [22] for a 

source free (i.e., electric charge density and conduction current density are negligible, which is the 

usual case for optical media) and linear (i.e., ε and μ are independent of E and H) medium can be 

recasted as 

                           
   
   

. , , , 0,            , , , ,

. , , , 0,           , , , ,

x y z t E E j x y z t H

x y z t H H j x y z t E

 

 

    

   
                                (2.2) 

where ε and μ are the permittivity and permeability, respectively, while x y z          . Note 

that the SI units (or MKS units), instead of the Gaussian units (or CGS units), are used when dealing 

with the Maxwell’s equations in this thesis. Also, with reference to Fig. 2.1, TE (TM) polarization 

means that the electric (magnetic) field exists only in the y direction. Using Eq. (2.2) and assuming 

that ε and μ are independent of time and position in each type of medium (i.e., either waveguide core 

or claddings) and that the waveguide claddings are effectively infinite in thickness, the wave equation  

for the TE mode of the slab waveguide can be expressed as 
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where Ex, Ey , Ez, Hx, Hy and Hz are, respectively, the x, y and z vectorial components of either E or H , 

c is the speed of light in vacuum, k0 = ω/c is the wave number in vacuum, ki = kcore (ki = kclad) is the 

wave number in the waveguide core (claddings), εi = εcore (εi = εclad) is the permittivity in the 

waveguide core (claddings) and μi = μcore (μi = μ clad) is the permeability in the waveguide core 

(claddings). Likwise, the wave equation for the TM mode of the slab waveguide can be written as 

                                            
2 2
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                          (2.4b) 

Note that the refractive index can be expressed as ni = (εr, i μr, i)
1/2, where εr, i = ε0 / ε i  and μr, i = μ0 / μi , 

in which ε0 and μ0  are, respectively, the permittivity and permeability in vacuum while εr, i and μr, i  are, 

respectively, the relative permittivity and relative permeability of the waveguide core (if i = core) and 

claddings (if i = clad). The general solutions to the wave equation (cf. Eq. (2.3a)) of the TE mode for 

the waveguide core and claddings have the form of 
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with 2 2
clad clad cladk      and 2 2 ,core core corek                                 (2.5b)  

where Ea is the coefficient constant of the evanescent waves in the upper cladding region, Eb is the 

coefficient constant of the evanescent waves in the lower cladding region, while Ee and Eo are, 

respectively, the coefficient constants of the even and odd modes in the waveguide core. The fact that 

the propagating modes in the waveguide core can be split into even and odd modes is a natural 

consequence of the symmetry of the slab waveguide structure in Fig. 2.1 (as the upper cladding and 

lower claddings have the same refractive index). Even (odd) mode simply implies that the field 

distributions in the waveguide core is a cosine (sine) function. We now solve for the even and odd 

modes separately by starting with the TE mode. Even TE modes are the solutions for which Eo = 0 so 

that Ey(x, z) = Eeexp(jβz)cos(kcorexh/2) for – h/2 < x <  h/2. Making use of the fact that Ey is continuous 

across the boundary at x = ± h/2, we express Ee, Eo and Eb in terms of Ea for the even TE modes, with 

the final Ey fields being expressed as 
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(2.6) 

On the other hand, the odd TE modes are the solutions for which Ee = 0 such that Ey(x, z) = 

E0exp(jβz)sin(kcorexh/2) for – h/2 < x <  h/2. This results in the following Ey fields: 
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The corresponding magnetic field H components of the even and odd TE modes can be easily 

obtained from Eq. (2.2) and thus will not be presented here. From Eqs. (2.6) and (2.7), and making use 

of the boundary condition that Hz = j / (ω μi) × ∂Ey / ∂x (cf. Eq. (2.3b)) should be continuous at the 

boundaries at x = ±h / 2, the dispersion relations (or the eigenvalue equation) for the even and odd TE 

modes can be written as 
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(2.8) 

The above two equations can be combined into one single eigenvalue equation: 
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where an even q (i.e., q = 0, 2, 4…) gives an even mode while an odd q (i.e., q = 1, 3, 5…) gives an 

odd mode. Note that q also represents the number of nodes in the field distribution Ey(x) in the slab 

waveguide core. For instance, the fundamental mode TEq = 0 has no nodes in its Ey(x) profile while the 

first higer-order mode TEq = 1 has one node in its Ey(x) profile. Since μr, core = μr, clad = μ0 for 

conventional optical media, Eq. (2.9) reduces to   

                                             

tan .
2 2

core
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k h q
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                                                 (2.10) 

The above procedures can be repeated in a similar manner for the TM modes from duality by 

interchanging (Ey, εi) and (Ea, Eb, Ee, Eo), respectively, with (Hy, μi) and (Ha, Hb, He, Ho) in Eqs. (2.5)- 

(2.7). Subsequently, the dispersion relations for the even and odd TM modes can be written as 
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where an even q (i.e., q = 0, 2, 4…) gives an even mode while an odd q (i.e., q = 1, 3, 5…).  As 

mentioned earlier, μcore = μclad = μ0 for conventional optical media. Also, note that ni = (εr, i μr, i)
1/2. Then 

it is convenient to present Eq. (2.11) in the following form:   
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clad core
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n k h q
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                                             (2.12) 

Evidently, the above dispersion relations of the TE and TM modes of the slab waveguide are 

transcendental equations, which can be solved either by graphical or numerical approaches. Both 

approaches will later be illustrated. These transcendental equations can easily be solved by using the 

earlier Eq. (2.5b) to obtain a direct relation between the parameters kclad and kcore, which is 
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                                        2 2 2 2 2 2 .clad core core core clad cladk h k h h                                        (2.13) 

Having obtained the dispersion relations of the symmetric slab waveguide structure, we now 

proceed to derive the cut off conditions in terms of the waveguide dimensions and propagating 

frequency for the different mode orders, including the fundamental mode. To do so, first note that in 

order for a conventional dielectric waveguide to satisfy the guidance condition, which means that the 

wave energy is confined within the waveguide core and that the propagating waves in the waveguide 

claddings decay exponentially with distance from the waveguide core, kclad and kcore must both be real 

and positive. Applying this constraint on Eq. (2.5b) will yield the following inequality for β: 

                                           ,clad clad core core clad eff coren N n                                      (2.14) 

where Neff = β/k0 is known as the effective index of the propagating modes in the waveguide core. As 

Neff  approaches nclad (i.e., β approaches ω(εcladμclad)1/2), observe that kclad will tend to zero. This means 

that the propagating wave outside the waveguide core is no longer evanescent and the wave energy 

will no longer be guided by the waveguide core. In order words, the condition kclad = 0 will define the 

cut off conditions for each mode order. The cut off frequencies ωc can be obtained by substituting kclad 

= 0 into Eq. (2.13), which gives 

                                                           .core c core core clad cladk                                                     (2.15) 

This means that the wave energy can only be guided in the waveguide if the input light with angular 

frequency ω fulfills the condition of ω > ωc. The specific cut off frequencies for a given mode can be 

determined by substituting Eq. (2.15) and the cut off condition of kclad = 0 into Eq. (2.10) for the TE 

mode and Eq. (2.12) for the TM mode. Consequently, we obtain 
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(2.16) 

for both the TE and TM modes, where hc, q denotes the waveguide thickness that leads to cut off for the 

mode of order q and λ is the input wavelength. It can be observed that, for q = 0, which is the lowest 

order mode or fundamental mode, ωc, q = 0. This means that the fundamental mode can propagate in 

the symmetric slab waveguide of any thickness for both the TE and TM modes. In other words, for a 

symmetric slab waveguide, there will always be at least one guided mode, regardless of the waveguide 

thickness. This is in contrast to the case of the asymmetric waveguide (i.e., the upper and lower 

claddings have different refractive indices) [23], in which it is possible to achieve cut off for all the 

modes if the waveguide is thin enough. For waveguides based on SOI, an asymmetric waveguide 

typically consists of air as the upper cladding while SiO2 forms the lower cladding. We will not be 

looking into the properties of such asymmetric slab waveguide because a symmetric waveguide 

structure with SiO2 as the upper cladding layer has the advantage of passivating the waveguide core, as 
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mentioned earlier. Given a specific input waveguide, single-mode propagation occurs for the 

symmetric waveguide if its thickness h is smaller than hc (q, λ)|q = 1. Based on Eq. (2.16), this means  

  ,  11 2 2
, ,

2
c c qq

core clad

h h q h
n n

 
  

                                        

 (2.17) 

for the symmetric slab waveguide.  

2.2.2.  Modal Characteristics 

Having derived the dispersion relations, we are now ready to analyze the modal characteristics 

of the symmetric SOI slab waveguide at the submicron scale and at the communication wavelengths. 

We first employ the graphical approach to determine the eigensolutions of the transcendental 

dispersion equations of Eqs. (2.10) and (2.12). To analyze all the possible eigensolutions, we followed 

a standard waveguide analysis approach (cf. Ref. [24]) and plotted the Riemann sheets for the SOI 

slab waveguide. In each Riemann sheet, the vertical axis represents the real part of the normalized 

wave number in the waveguide cladding, kcladh, while the left-side (right-side) of the horizontal axis 

represents the imaginary (real) part of the normalized wave number in the waveguide core, kcoreh. The 

TE and TM dispersion relations are plotted in the Riemann sheet in Fig. 2.2(a) for λ = 1.31 μm and in 

Fig. 2.2(b) for λ = 1.55 μm and for three different values of ρ(h) (cf. Eq. 2.13) that correspond to three 

different submicron waveguide dimensions of h = 0.2 μm, 0.6 μm and 1.0 μm. The dashed and solid 

lines in the Riemann sheets correspond, respectively, to the left- and right-hand sides of the TE (TM)  

dispersion relations in Eq. (2.10) (Eq. (2.12)), with the left-hand side of the dispersion relation being 

determined by Eq. (2.13). Note that the points of intersection of the dashed and solid lines will give 

the eigensolutions or roots of the characteristic dispersion equations of the waveguide.  

We now explain the physical significance of the roots found in the Riemann sheets. As 

mentioned earlier, in order for the waveguide to satisfy the guidance condition, the propagating waves 

in the claddings must decay exponentially with distance from the waveguide core. Thus, only the roots 

located in the half top of the Riemann sheet shown in Fig. 2.2(a) and 2.2(b) would give the actual 

physical solutions of the slab waveguide because kclad > 0 in this region, which then brings about 

exponentially decay fields in the claddings. On the other hand, the roots in the half bottom of the 

Riemann sheets are unphysical as the fields in the claddings grow exponentially since kclad  <  0 for this 

region. Note that for the SOI slab waveguide in this chapter, the physical roots that are found in the 

half top of the Riemann sheet, as shown in Fig. 2.2(a) and 2.2(b), are confined to the right half region, 

in which kcore is purely real. This is the case for conventional dielectric waveguide structures like the 

SOI slab waveguide, which can only support oscillatory modes (with real kcore) in the waveguide core. 

The left half of the top region of the Riemann sheets has imaginary kcore that will correspond to 

evanescent or surface plasmon polariton (SPP) modes, which can only be supported if left-hand media  
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Fig. 2.2. Graphical solutions of the dispersion relation of the submicron SOI slab waveguide in Fig. 2.1(a) 

for the communication wavelengths of (a) 1.31 μm and (b) 1.55 μm. The vertical axis represents the real 

part of kclad h while the left (right) segment of the horizontal axis represents the imaginary (real) part of 

kcore h. The dashed and solid lines correspond, respectively, to the left- and right-hand sides of the 

dispersion relations in Eqs. (2.10) and (2.12)). The three dashed lines in each graph correspond to the SOI 

waveguide with different parameters of ρ(h) (cf. Eq. (2.13) for definition of ρ(h)), which are evaluated at 

three different submicron waveguide dimensions of h = 0.2 μm, 0.6 μm and 1.0 μm. The points of 

intersections of the dashed and solid lines give the modes of the slab waveguide.  
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(i.e. media with negative refractive index) or metal is used for the waveguide core and/or claddings 

[25, 26]. Since the SOI slab waveguide for our case is made up entirely of dielectric materials, no such 

physical solutions to such SPP modes will exist in the Riemann sheets in Figs. 2.2(a) and 2.2(b). 

From the Riemann sheets in Figs. 2.2(a) and 2.2(b), we are able to observe the number of 

oscillatory modes that can be supported by the core of the SOI slab waveguide at the submicron scale 

of h  <  1 μm. Up to a total of around five oscillatory modes (q = 0 to 4) is possible at h ≈  1 μm for 

both the TE and TM modes. The number of possible modes that can be supported by the waveguide 

progressively decreases as h is scaled down to the submicron scale. Evidently, single-mode 

propagation is only possible at around h = 0.2 μm for both λ = 1.31 μm and 1.55 μm. To better 

quantify the dimensions of single-mode condition, we have used Eq. (2.17) to calculate the cut off 

waveguide core height hc, q = 1  for the first higher-order mode for the entire communication wavelength 

span of 1.3 μm to 1.6 μm. These will form the upper limit of h that gives single-mode propagation in 

the SOI slab waveguide. This is shown in Fig. 2.3. Note that single-mode propagation can only be 
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Fig. 2.3. Calculated upper limit of the waveguide thickness hc, q =1 for single-mode propagation in the 

symmetric SOI slab waveguide for the communication wavelength window of λ = 1.3 μm to 1.6 μm. 

Single-mode condition is fulfilled if the waveguide thickness h is in the range of 0 < h < hc, q =1. 

achieved at a given wavelength λ for the waveguide dimension range of 0  <  h  <  hc, q=1. As shown in 

Fig. 2.3, 0.20 μm ≤  hc, q = 1 ≤  0.25 μm for the communication wavelength span of 1.3 μm ≤   λ ≤  1.6 

μm. This implies that, at the submicron scale, the range of h dimensions for single-mode operation for 

the symmetric SOI slab waveguide structure is rather limited. 

In order to understand the SM condition of the SOI slab waveguide in conjunction with its 

polarization-dependence behaviors, we need to analyze the effective index Neff  or propagation constant 



Chapter 2: Single-Mode and Polarization-Independent Passive Silicon-on-Insulator Waveguides of Submicron Scale 

 
 

36 

β for both the TE and TM modes for the different mode orders at different h, given a specific fixed 

wavelength. We chose to use Neff = β/k0 for this purpose for convenience as β is a large quantity. To 

solve for Neff, the transcendental characteristic equations in Eqs. (2.10) and (2.12) must be solved 

numerically, which is a relatively straightforward procedure that can be carried out using established 

root-finding algorithms like the Newton-Raphson or the bisection methods [23], with the aid of Eqs. 

(2.5b) and (2.13). The Neff  of the TE and TM modes in the SOI slab waveguide at submicron scale are 

subsequently presented in Figs. 2.4(a) and 2.4(b), respectively, for λ = 1.31 μm and 1.55 μm.  It can be  
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Fig. 2.4. Calculated effective index Neff  as a function of waveguide thickness h for the symmetric 

submicron SOI slab waveguide in Fig. 2.1(a) at the communication wavelengths of (a) 1.31 μm and (b) 

1.55 μm. For both wavelengths, the single-mode regime in the SOI slab waveguide is limited to a small 

region of 0 <  h <  ~ 0.2 μm, in which polarization independent behavior is absent. 
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observed that the waveguide birefringence, ΔNeff = |Neff(TE) – Neff(TM)|, at any mode increases with 

decreasing h, where Neff(TE) and Neff(TM) are the effective indices Neff of the TE and TM modes, 

respectively. In particular, Fig. 2.4 illustrates that as h is scaled into the submicron regime (i.e., h  <  1 

μm), the Neff  curves of the TE and TM modes of any given mode order q move away from each other, 

resulting in an increase of the waveguide birefringence ΔNeff. Conversely, as h expands into the micron 

regime (i.e., h ≥  1 μm), the Neff  curves of the TE and TM modes approach each other such that ΔNeff 

tends to zero at large h for any given mode order q. In other words, it is not possible to achieve PI 

operation (i.e., ΔNeff = |Neff(TE) – Neff(TM)| = 0) in the submicron regime, while close to PI operation is 

possible in the micron regime. It can also be seen that, consistent with earlier conclusions (based on 

Fig. 2.2), at both λ = 1.31 μm and 1.55 μm, the SM regime is limited to a small region of 0 <  h <  ~ 

0.2 μm, in which no PI behavior can be seen. Though we have only plotted the Neff  curves of λ = 1.31 

μm and 1.55 μm, the above trends also apply to other communication wavelengths of 1.3 μm  ≤   λ  ≤  

1.6 μm. Thus it is not necessary to show the Neff  curves of the entire communication wavelength span. 

We thus conclude that it is not possible to simultaneously achieve single-mode and PI (or close 

to PI) operations at the submicron scale at the communication wavelengths using the symmetric SOI 

slab waveguide structure as the waveguide dimensions for PI operation (which has dimensions of the 

micron scale) do not fall within the single-mode regime (which has dimensions of the submicron 

scale).This motivates the use of channel and rib waveguides in the next section. 

2.3.  Analytical Modeling of Submicron Silicon-on-Insulator Channel and Rib Waveguides 

We now look into the SOI channel and rib waveguides. Unlike the slab waveguide, which is a 

one-dimensional (1-D) structure, channel and rib waveguides are two-dimensional (2-D) structures. 

For reasons to be explained later, an accurate analysis of the modal characteristics of 2-D waveguides 

would require the use of rigourous numerical or computational modeling using electromagnetic 

algorithms, such as the beam propagation method (BPM) [20]. The use of analytical modeling via the 

basic Maxwell’s equations can only be used as a general approximation for these 2-D waveguides. 

However, numerical modeling often does not give a clear physical insight as the bulk of the work in 

any accurate numerical modeling is about the optimization of the simulation parameter settings like 

the mesh size so as to ensure the stability and convergence of the numerical solutions. To address this 

fundamental short-coming of numerical modeling, we first employ analytical modeling to take a 

preliminary look into SOI channel and rib waveguides at the submicron scale. Physically speaking, 

the 2-D channel and rib waveguides can generally be decomposed into constituent 1-D slab 

waveguides. The use of analytical modeling will allow us to clearly see this relation of the channel 

and rib waveguides with the earlier discussed slab waveguide. In addition, the analytical results 

obtained will give the general trends of the modal characteristics of the SOI channel and rib 

waveguides. This would serve as the impetus for subsequent numerical modeling in later sections. 
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2.3.1.  Theoretical Formulation 

We employed the Effective Index Method (EIM) [12, 23] to provide an analytical modeling of 

the channel and rib waveguides. In the EIM, a 2-D waveguide is converted into two 1-D slab 

waveguides. Consider the case of the SOI channel waveguide, shown earlier in Fig. 2.1(b). By 

employing the EIM, as illustrated in Fig. 2.5, the SOI channel waveguide is decomposed into two slab 

waveguides. The first slab waveguide, denoted as SWG-1, is oriented along the x direction so that the 

height or thickness h of the channel waveguide is also the thickness of the slab waveguide. On the 

other hand, the second slab waveguide, denoted as SWG-2, is oriented along the y direction so that the 

width w of the channel waveguide becomes the thickness of the slab waveguide. Assuming that the 

input light into the channel waveguide has its electric field orientated in the y direction (i.e., TE), then 

the incoming mode can also be interpreted as a TE mode for the first slab waveguide SWG-1. We can 

then apply the characteristic dispersion equation found earlier for the TE mode for the slab waveguide 

in Eq. (2.10) on the first slab waveguide SWG-1. For convenience, such a dispersion equation is re-

casted as 
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(2.18) 

where an even (odd) qx gives an even (odd) mode in the x direction and Neff(1) represents the effective 

index of the TE mode of the first slab waveguide SWG-1. This newly obtained Neff(1) can be seen as the 

 

 

Fig. 2.5. The Effective Index Method (EIM) for the channel waveguide. The channel waveguide is 

decomposed into two constituent slab waveguides — SWG-1 and SWG-2. The effective index Neff(1) of 

SWG-1 is first calculated, which will form the refractive index of the waveguide core for SWG-2. 

Solving the effective index Neff(2) of SWG-2 gives the final effective index of the channel waveguide. 
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refractive index of the waveguide core of the second slab waveguide SWG-2. By so doing, the 

interaction between SWG-1 and SWG-2 is taken into account. For the second slab waveguide SWG-2, 

the input light  is interpreted as a TM mode. We thus use the TM dispersion equation for the slab 

waveguide in Eq. (2.10) on SWG-2, which is re-casted here as 
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                          (2.19) 

where an even (odd) qy gives an even (odd) mode in the y direction. Note that the refractive index of 

the waveguide core of the second slab is equivalent to Neff(1) of SWG-1 while Neff(2) is used to represent 

the effective index of the TM mode of SWG-2. This parameter of Neff(2) is also the net effective index of 

the incoming TE mode of the original channel waveguide under consideration. For the case in which 

the incoming light into the channel waveguide is a TM mode, the above procedure can also be 

repeated, except that the incoming light is viewed as TM for the first slab waveguide SWG-1 and TE 

for the second slab waveguide SWG-2.  

The EIM can be applied on the rib waveguide in a similar manner as the channel waveguide. As 

illustrated in Fig. 2.6, we decompose the rib waveguide into two groups of slab waveguides. The first  

 

Fig. 2.6. The Effective Index Method (EIM) for the rib waveguide. The rib waveguide is first 

decomposed into three constituent slab waveguides — SWG-1A, SWG-1B and SWG-1C. The effective 

indices of SWG-1A, SWG-1B and SWG-1C denoted, respectively, as  Neff(1A), Neff(1B)  and  Neff(1C)  are then 

calculated, which will form the refractive indices of the waveguide core and claddings for SWG-2. 

Solving the effective index Neff(2) of SWG-2 gives the final effective index of the rib waveguide. 
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group is composed of three slab waveguides that are all oriented along the x direction. These 

waveguides are labeled as SWG-1A, SWG-1B and SWG-1C. On the other hand, there is only one slab 

waveguide in the second group. This slab waveguide is oriented along the y direction and is labeled as 

SWG-2. We then calculate the effective indices of the first set of slab waveguides SWG-1A, SWG-1B 

and SWG-1C. Assuming that the input light is TE polarized for the rib waveguide, the dispersion 

equations for SWG-1A, SWG-1B and SWG-1C can be expressed as follows using the TE dispersion 

equation for a typical slab waveguide in Eq. (2.10): 
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where we have used Neff(1A), Neff(1B) and  Neff(1C) to represent the effective indices of the TE mode of the 

slab waveguides SWG-1A, SWG-1B and SWG-1C, respectively. Note that Eqs. (2.20) to (2.22) are 

solved independently of one another by numerical methods, such as the Newton-Raphson or the 

bisection methods [23]. The dimension (h – d) of the rib waveguide forms the thickness of the slab 

waveguides SWG-1A and SWG-1C, while the dimension h of the rib waveguide will form the 

thickness of the slab waveguide SWG-1B. The above obtained parameters of Neff(1A), Neff(1B) and  Neff(1C) 

will subsequently form the refractive indices of the upper waveguide cladding, waveguide core and 

lower waveguide cladding, respectively, of the second set of slab waveguide SWG-2, where Neff(1A) = 

Neff(1C), since the two claddings are composed of the same material in our SOI waveguides. Using this 

condition, we then utilize the TM dispersion equation for a typical slab waveguide in Eq. (2.12), which 

is expressed as 
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where Neff(O) = Neff(1A) = Neff(1C) and Neff(2) is the effective index of the slab waveguide SWG-2. The final 

effective index of the TE mode of the original rib waveguide will be given by Neff(2). For the case in 

which the input light is TM polarized, the above procedures can also be repeated by using the TM 
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dispersion equation for the slab waveguide on SWG-1A, SWG-1B and SWG-1C and the TE 

dispersion equation for the slab waveguide on SWG-2. 

2.3.2.  Modal Characteristics 

We now proceed to use the analytical models established by the EIM to deduce the general 

trends of the modal characteristics of SOI channel and rib waveguides at the submicron scale for λ = 

1.55 μm. These trends also apply to other communication wavelengths of 1.3 μm ≤   λ  ≤  1.6 μm and 

thus the results for other wavelengths will not be shown for brevity. 

(a) Channel Waveguide 

Using Eqs. (2.18) and (2.19), the effective indices of the TE and TM modes of the channel 

waveguide are plotted in Fig. 2.7 as a function of the waveguide height h for four different waveguide 

w of 0.3 μm, 0.4 μm, 0.5 μm and 0.6 μm, all for the case of λ = 1.55 μm. Note that we will use the 

notations TE0 and TM0 for the TE and TM fundamental modes and the notations TE1 and TM1 for the 

first higher-order TE and TM modes throughout this thesis. Some general observations based on these 

results are summarized below. 
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Fig. 2.7. Calculated effective index Neff as a function of waveguide thickness h for the symmetric 

submicron SOI channel waveguide in Fig. 2.1(b) at the communication wavelength of 1.55 μm at fixed 

waveguide width of (a) 0.3 μm, (b) 0.4 μm, (c) 0.5 μm and (d) 0.6 μm. The points of intersection of the 

Neff   curves mark the polarization-independent (PI) waveguide dimensions as ΔNeff = |Neff (TE) – Neff (TM)| = 

0 gives PI operation. 
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 The upper limit of the SM regime (in terms of h) can be adjusted by the waveguide width w. In 

general, the upper limit for SM condition increases with decreasing w. This can be observed in 

Fig. 2.7, in which the cut off waveguide thickness h for the first higher-order mode (qx, qy = 0, 

1)  increases from ~ 0.34 μm to ~ 0.37 μm, ~ 0.44 μm and ~ 0.69 μm when w decreases from 

0.6 μm to 0.5 μm, 0.4 μm and  0.3 μm. The channel waveguide is thus a more feasible 

candidate for integrated-optics applications at the submicron scale as compared to the slab 

waveguides (cf. section 2.2.2, Fig. 2.4), in which the upper limit of single-mode condition is 

fixed at ~ 0.20 μm to 0.25 μm for the communication wavelengths.  

 The polarization dependence of the waveguide for different mode orders depends on its aspect 

ratio (i.e., ratio of w to h). In general, for the fundamental order mode, polarization- 

independent (PI) operation (i.e. ΔNeff = | Neff(TE) – Neff(TM) | = 0) occurs when the channel 

waveguide is square-like in appearance, i.e., when the aspect ratio is ~ one (i.e., w = h). As the 

channel waveguide becomes rectangular-like, the polarization dependence (ΔNeff) increases. 

 In contrast to the SOI slab waveguide, it is now possible to simultaneously achieve both SM 

and PI conditions at the submicron scale for the SOI channel waveguide by manipulating its 

aspect ratio to engineer the dimensions for PI operation to fall within the SM regime. As 

observed from Fig. 2.7, both SM and PI operations are achieved when the waveguide height h 

that results in cut off for the first higher-order mode is larger than the width w of the 

waveguide. This occurs when the waveguide width w is of w ≤  0.4 μm for λ = 1.55 μm. 

(b) Rib Waveguide 

Next, we analyze the modal characteristics of the rib waveguide. Using Eqs. (2.20) to (2.23), the 

effective indices of the TE and TM modes of the fundamental order (qx, qy = 0, 0) and the first highest 

order (qx, qy = 0, 1) of the rib waveguides are plotted in Fig. 2.8 for the case of λ = 1.55 μm. Unlike 

the channel waveguide in Fig. 2.7, here the Neff  plots are presented as a function of the waveguide 

width w for four different combinations of waveguide height h and etch depth d so as to better 

illustrate the use of the etch depth as an additional control variable. It can be seen from Fig. 2.8 that, 

with the rib waveguide, it is more flexible to control the single-mode condition as there are now three 

geometrical settings — the etch depth, height and width — that can be used to control the overall 

design of the waveguide as compared to the slab and channel waveguides. However, the results of the 

analytical modeling of the rib waveguide in Fig. 2.8 shows that PI operation is not possible at any 

dimensions. This is a fundamental difference from that of the channel waveguide in section 2.3.2(a), 

whereby PI operation is possible when the waveguide height and width are equal or close to each 

other. In fact, we can observe that the rib waveguide behaves somewhat like a slab waveguide: The 

Neff  of the TE and TM modes approach each other as the dimensions of the rib waveguide increases.  



Chapter 2: Single-Mode and Polarization-Independent Passive Silicon-on-Insulator Waveguides of Submicron Scale 

 
 

43 

2.9

3

3.1

3.2

3.3

E
ff

ec
tiv

e 
In

d
ex

 N
ef

f o
f 

R
ib

 W
a

ve
gu

id
e

3.2

3.25

3.3

3.35

3.4

0 200 400 600 800 1000
3.3

3.35

3.4

3.45

Width w (in m) of Rib Waveguide
0 200 400 600 800 1000

3.35

3.4

3.45

Single Mode 
    Regime

Single Mode 
    Regime

TE1

(a) h = 0.4 m, d = 0.2m (b)  h = 0.6 m, d = 0.3m

(c)  h = 0.8 m, d = 0.4m (d)  h = 1.0 m, d = 0.5m

TM
1

TM
1

TE1

TM1

TE1 TE
1

TM
1

Single Mode 
    Regime

Single Mode 
    Regime TE

0

TM0

TE
0

TM0

TE
0

TM
0

TE0

TM
0

 

Fig. 2.8. Calculated effective index Neff  as a function of waveguide width w for the symmetric submicron 

SOI rib waveguide in Fig. 2.1(c) at the communication wavelength of 1.55 μm at fixed waveguide height 

h and etch depth d of (a) (h, d) = (0.4 μm, 0.2 μm) (b) (h, d) = (0.6 μm, 0.3 μm), (c) (h, d) = (0.8 μm, 0.4 

μm) and (d) (h, d) = (1.0 μm, 0.5 μm).  

2.3.3.    Basic Limitations of the Analytical Modeling 

The reason why PI operation is not observed for the above 2-D rib waveguide is due to the 

inherent limitations of the analytical modeling. These limitations will also affect the modal 

characteristics of the channel and slab waveguides, although the impact is much smaller as compared 

to the rib waveguides. In general, the limitations of the analytical modeling can be summarized below. 

 The finite thickness of the claddings is not taken into consideration when using the Maxwell’s 

equations to derive the dispersion relations for the different SOI waveguides in the analytical 

modeling of sections 2.2 and 2.3. The assumption that the claddings is of infinite thickness is 

only valid if the evanescent waves do not penetrate very far into the claddings level. However, 

at the submicron scale, the evanescent waves do extent considerably into the cladding layers. 

In fact, it has been shown that the thickness of the waveguide claddings can be used to adjust 

the waveguide dimensions for SM condition [27] and PI behavior [28].  

 For the 2-D waveguides (rib and channel), the propagation losses (in terms of the substrate 

mode leakage losses and lateral mode leakage losses) can determine the final modal 

characteristics (in terms of whether they are single-mode (SM) or multi-mode (MM)) of the 

waveguides. In particular, for the rib waveguide, the higher-order modes under the rib can leak 

into the slab region as the light propagates, leaving only the fundamental mode in the rib 

waveguide core. This is not taken into account in the analytical modeling. 
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 For pure TE (TM) mode, the field component Ez = 0 (Hz = 0); only the Ey (Hy) field 

component is present. However, strictly speaking, for 2-D waveguides, the modes are not 

pure but are hybrid [22, 23] as all 6 vectorial components of the electric (Ex, Ey, Ez) and 

magnetic (Hx, Hy, Hz) fields are always present. Thus, each hybrid mode inherently exhibits 

both Ex and Ey electric field components and is described as quasi-TE or quasi-TM, depending 

on which E field component is dominant. For the fundamental quasi-TE (TM) mode, the Ey 

(Ex) field is the dominant or majority field, while the Ey (Ex) field is the minority field 

component. The ratio of the minority field to the majority field is defined as the degree of 

modal hybridness. The hybrid nature of such mode is not taken into account in the analytical 

modeling, which we have assumed pure TE or TM mode. For convenience, the terms quasi-

TE and quasi-TM modes will be used interchangeably with the terms TE and TM modes 

when dealing with submicron 2-D waveguides throughout this thesis. 

In the next section, rigorous numerical modelings, which take into consideration of the above 

shortcomings, are used to determine the single-mode condition and polarization-dependence behavior 

of the SOI submicron waveguides. We will only be focusing on the SOI channel and rib waveguides 

as we have found that the above-mentioned limitations of analytical modeling will not severely affect 

the results and conclusion obtained earlier (in section 2.2.2) for the SOI slab waveguides at the 

submicron scale. Moreover, slab waveguides, being 1-D in nature, has less applications as compared 

to 2-D channel and rib waveguides and are thus not widely used in photonic integrated circuits. 

Finally, note that despite of the above-mentioned limitations, the analytical modeling is still useful in 

that it serves to provide a physical insight of the waveguides, which is not possible if numerical 

modeling is directly employed. Also, if we later compare the results of the numerical modeling in 

section 2.4 with the results of the analytical modeling in this section, one can observe similarities in 

the general trends of the modal characteristics of the 2-D SOI waveguides, particularly for the channel 

waveguide. Thus, the analytical modeling in this section is useful as an approximation tool-kit. 

2.4.  Numerical Modeling of Submicron SOI Channel and Rib Waveguides 

2.4.1.  Methodology in Numerical Modeling  

(a) General Simulation Set Up 

Our numerical modeling or simulation is performed using the 3-D imaginary distance beam 

propagation method (IDBPM) [20]. This is an alternative and significantly faster approach than the 

correlation method used in [11]. The IDBPM simulation is set up for both the SOI channel and rib 

waveguides with the configurations shown earlier in Fig. 2.1. The waveguide core is based on silicon 

(Si) whereas the upper and lower claddings are based on silica (SiO2). SOI channel waveguides with 

height h = 0.2 μm to 0.6 μm are analyzed, while rib waveguides are only analyzed at h = 0.3 μm and 
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0.4 μm. Such choice of h is typically used for submicron optical devices and would also match the Si 

core with existing modulator dimension for a homogeneous integration [14] in photonic integrated 

circuits. The thicknesses of the upper and lower claddings, which are termed, respectively, as l1 and l2, 

affect the modal characteristics in SOI waveguides. In our simulation, we define our cladding and 

substrate SiO2 layers for the SOI waveguides to be symmetrical and set l1 = l2 = l. It is worth 

mentioning that the waveguide loss is strongly dependent on l2 due to substrate leakage and has been 

reported elsewhere [29]. Thus, in our simulation, we only consider l = l2    0.7 µm for its low 

substrate leakage loss. We have mentioned earlier that in 2-D waveguides, hybrid modes (quasi-TE or 

quasi-TM), instead of pure modes (TE or TM) are present. Each such hybrid mode can be resolved 

into its constituent TE and TM components. This hybrid nature can be described using the following 

full-vectorial Holmholtz equations [22]:  

                                                   2 ,xx xy x x

yx yy y y

D D E E
q

D D E E

     
     

     
                                            (2.24) 

where q2 is the eigenvalue and Dxx … …Dxy are the differential operators. From Eq. (2.24), it can be 

seen that each hybrid mode is polarization dependent (Dxx  ≠  Dyy) and polarization coupled (Dxy, Dyx  

≠  0). The degree of modal hybridness (cf. section 2.3.3 for definition) generally increases with 

decreasing waveguide dimensions. For large cross-sectional rib structures, the degree of hybridness is 

substantially small such that the minority field components are generally diminutive and can be 

neglected, giving Dxy = Dyx = 0. This allows us to decouple the transverse field components and 

approximate Eq. (2.24) as two semi-vectorial equations: 2
xx x x xD E q E and 2 .yy y y yD E q E Solving 

these equations yields semi-vectorial TE and TM modes, each consisting of only one field component 

in the plane transverse to the z axis. For submicron 2-D waveguides, in which the dimensions shrink 

below the operating wavelength (λ = 1.31 µm or 1.55 µm), the degree of hybridness is significantly 

high and so the minority components cannot be considered as negligible as in the case of large rib 

structures, i.e., Dxy and Dyx ≠  0. The smaller waveguide cross-section also implies the increased 

influence of the boundary conditions. This results in the hybrid modes to be strongly polarization 

dependent [1, 11]. Therefore, for accuracy in results, the full-vectorial method was employed in our 

numerical simulation, though this has substantially increased the computational resources and time. In 

addition to this, computational parameters in the x, y and z directions were carefully optimized to 

include the entire waveguide structure into the simulation domain and to allow the mode field to be 

sufficiently close to zero at the boundaries. Also, the simulation parameters, especially the mesh size, 

were carefully set to ensure that the stringent boundary conditions in submicron waveguides do not 

affect the accuracy of the simulated results. Upon a rigorous mesh optimization exercise, in which 

different mesh size settings are tested for stability and convergence of the numerical modal solutions, 

we have employed a grid mesh of 0.005 μm uniformly in all three directions (x, y, z) so that numerical 
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errors are minimal. To ensure further accuracy in the simulation results, we have also used the finite 

difference method (FDM) [30] to verify the results obtained from the above-mentioned IDBPM. 

Results calculated using the IDBPM are shown to be in good agreement with those using the FDM.  

(b) General Simulation Procedures 

In the simulation, the effective indices Neff  are computed for both the TE and TM modes at 

different waveguide dimensions for λ = 1.31µm and λ = 1.55 µm. To do so, a Gaussian field was 

chosen to approximate an optical fiber mode and it is launched off-centre at one third of the 

waveguide width w and height h in order to excite all the possible modes supported by the structure. 

The propagation length was chosen to be 10 mm, which is long enough to model the effects of 

substrate leakage loss and lateral slab leakage loss of all the modes. Whether the waveguide is SM or 

mulit-mode will depend on the number of waveguide modes that remain in the waveguide core after  

 

Fig. 2.9. Illustration of our modal simulation in small SOI rib waveguides using IDBPM, which is based 

on Soref et al.’s model [3]. In our simulation, at z = 0, a Gaussian mode is launched off centre to excite 

the propagation of fundamental and higher order modes. If the designed waveguide is single-mode (SM), 

the higher-order modes under the rib will leak into the slab regions as the light propagates, leaving only 

the fundamental mode remaining in the rib waveguide at z =10 000 μm. 
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the propagation length. This concept is illustrated in Fig. 2.9 for a SM rib waveguide. Note that mode-

solving in the IDBPM is iteratve in nature; the method will automatically stop if the modal solutions 

converge before the specified length of L = 10 mm. To expedite the computation time, the number of 

computed modes is restricted to two modes — the fundamental mode, with order (qx, qy) = (0, 0) and 

the first higher order mode, with order (qx, qy) = (0, 1) — for both polarizations (TE and TM). Note 

that for simplity, we will use the notations TE0 and TM0 to represent TE00 and TM00 while the 

notations TE1 and TM1 will be used to represent TE01 and TM01throughout this thesis. 

2.4.2.  Submicron Channel Waveguides 

(a)  Single-Mode Condition  

The single-mode (SM) analysis for submicron channel waveguides (cf. Fig. 2.1(b)) is carried 

out for Si overlayer or core of h = 0.2 μm to 0.6 μm, with l1 = l2 = l = 0.75 µm. The simulation is 

carried out at both wavelengths at 1.31 μm and 1.55 μm. In the simulation, whereby the field shape 

and effective index of the propagating modes are computed, the waveguide height (h) is fixed while 

the width (w) is increased in steps of 0.01 μm until the next higher-order mode is supported by the 

waveguide structure. When no effective index is being computed by the IDBPM, it indicates single-

mode cut off condition. If the waveguide structure is single-mode, only the effective index of the 

fundamental mode (q = 0) will be computed by the IDBPM. Otherwise, a second higher order mode 

(q = 1) will be present and its effective index will be computed, indicative of multi-mode. Thus, the 

transition boundary between the single-mode cut off and single-mode regimes can be computed by 

determing the minimum waveguide width, in which no mode is allowed to guide in the waveguide. 

Likewise, the transition boundary between the single-mode and multi-mode regimes can be computed 

by determing the minimum waveguide width, whereby the first-order mode is allowed to guide in the 

waveguide. In these ways, a matrix of waveguide dimensions that fulfill the single-mode condition 

(SMC) can be obtained for the submicron SOI channel waveguides. 

Fig. 2.10 shows the simulated results for SMC at the wavelengths of 1.31 μm and 1.55 μm for 

the submicron SOI channel waveguide. The single-mode region is governed by two distinct 

conditions; (1) TE1 cut off (upper limit) and (2) TM fundamental mode (lower limit) due to the 

differing mode shape of different polarizations. Both TE and TM polarizations are considered because 

the analysis will be later extended to solve for zero birefringence (i.e., PI operation, with ΔNeff  ≈  0). 

If we compare the waveguide dimension of w × h = 0.3 μm × 0.35 μm, the result indicates that the 

waveguide is single-mode at 1.55 μm, with a cut off wavelength longer than 1.31 μm; this implies that 

SMC is more relaxed at a longer wavelength.  To verify the accuracy of our simulation, we compared 

our result with existing experiment data, and plot these data as circles indicated in Fig. 2.10(b). We 

can see that the experiment results fall into their respective region as proposed by various authors [17-

19]. Also, if we compare the results in [21] at h = 0.3 μm and  = 1.55 μm (indicated as squares in  
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      (a) 
 

 
     (b)

  

Fig. 2.10. Boundary lines for single-mode condition cut off dimensions as a function of SOI channel 

waveguide dimensions for operating wavelengths of (a) 1.31 μm and (b) 1.55 μm. Circles represent 

experimental data from [17-19] and squares represent results from [21]. 

Fig. 2.10(b)) with our simulated results, we can note a high degree of similarity. Their results only 

specify single-mode condition (SMC) in TE polarization. From Fig. 2.10, it can be noted that the TE 

polarization is of a more stringent criterion. This is due to the TE polarization having two close 
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boundaries where the tangential E field must be met. If the boundaries of TM0 and TE1 cut offs are 

rigorously fitted, we can obtain an equation that describes the SMC at wavelength 1.55 μm as follows: 

 
 = 1550 nm 

0.2 + 162e–(Height/0.03)    Width    0.3+5.9e (–Height/0.08)                                                           (2.25) 

Eq. (2.25) describes the width (in nm) and height (in nm) for submicron SOI channel waveguides to 

operate in single-mode condition at  = 1.55 μm. Different wavelengths can be solved using the same 

approach. 

(b) Waveguide Birefringence  

In this section, we look into the waveguide birefringence of the submicron SOI channel 

waveguides to determine the zero birefringence condition (ZBC), which will give PI operation. The 

waveguide birefringence of the modes is due to different alignment of the E-fields of the TE and TM 

modes. The index difference between the guiding and cladding regions in the vertical x direction is 

much smaller than the lateral y direction. As a result, the TE and TM modes have difference effective 

indices. The effective indices of the fundamental TE and TM modes for different width and height are 

first computed. Subsequently, the waveguide birefringence ΔNeff  can be obtained from the difference 

between the fundamental TE and TM modes (ΔNeff = Neff(TE) – Neff(TM)). Graphical representations of 

ΔNeff  for different waveguide dimensions for λ = 1.31 μm and λ = 1.55 μm are shown in Fig. 2.11. 

The results in Fig. 2.11 show that the condition for Neff(TE) = Neff(TM) is possible by using an 

appropriate combination of waveguide height and width. The points at which the birefringence curves 

intersect the horizontal axis indicate the zero birefringence condition (ZBC). For each height h, there 

is a possible width w for the waveguide to fufill ZBC. In particular, observe that the dimensions that 

give ZBC occur when the aspect ratio of the channel waveguide is close to one (w  ≈  h). This matches 

closely with our earlier analytical modeling of the channel waveguide (cf. Fig. 2.7), in which ZBC or 

PI operation occurs at ~ w = h for the fundamental modes. We can thus conclude that the trends based 

on the approximations given by the earlier analytical modeling of the channel waveguides are valid. 

Also, it can be deduced that the effects of finite cladding thickness and propagation losses, which are 

only taken into account in this section but not in the earlier analytical modeling, serve to only slightly 

alter the aspect ratio, whereby ZBC occurs in the submicron SOI channel waveguides.  

From the birefringence curves in Fig. 2.11, it can be observed that small variations in the 

channel waveguide dimensions result in a considerable change in the birefringence. For example, a 

±10 nm uncertainty on waveguide width gives a birefringence of 0.02 for channel waveguide height h 

of 300 nm. If we compare the birefringence at this height of 300 nm to a larger height of 600 nm, we 

notice that the birefringence increases by an order of magnitude to 0.002. This clearly demonstrates 

the strong polarization dependency of the submicron SOI channel waveguides. 
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(a) 

(b) 

Fig. 2.11. Effective index difference between TE and TM polarized modes for different SOI channel 

waveguide dimensions with operating wavelengths of (a) 1.31 μm and (b) 1.55 μm. Note that the H 

values are in nm. Here, H also means h, which is the symbol used to denote the height of the silicon core 

of the channel waveguide in the discussions. 

 

Increasing H or h 
 (in direction of arrow) 



Chapter 2: Single-Mode and Polarization-Independent Passive Silicon-on-Insulator Waveguides of Submicron Scale 

 
 

51 

(c) Satisfying Both Single-Mode and Zero-Birefringence Conditions  

We have just illustrated that SMC and ZBC can be achieved individually in submicron SOI 

channel waveguides. Can we achieve both conditions simultaneously? If we extract the ZBC points in 

Fig. 2.11 and form a locus of ZBC for different waveguide dimensions, we effectively obtain a matrix 

of SOI channel waveguide dimensions that can satisfy this condition. This ZBC locus is superimposed 

on the SMC in Fig. 2.10 for both 1.31 μm and 1.55 μm wavelengths and shown in Fig. 2.12. Hence, 

we now acquire a set of device parameters that signify both SMC and ZBC operations.   

Fig. 2.12 show plots of both SMC and ZBC loci at wavelengths of 1.31 μm and 1.55 μm. In 

order to satisfy both requirements of SMC and ZBC, we need to choose a point on the ZBC locus 

where it intersects within the single-mode region.  These results give us a clear indication of the 

device dimensions where SMC and ZBC are found. At longer wavelengths, SOI channel waveguides 

that are able to satisfy both conditions simultaneously can occur at larger dimensions, thus, relaxing 

the fabrication constraints. Moreover, coupling of light at the submicron scale into small waveguides 

may prove to be difficult. It is interesting to note that the intersection between the birefringence loci 

and the TE1 cut off boundary line determines the maximum SOI channel waveguide height that allows 

both conditions to be achieved.  

     
(a)                                                                                               (b) 

Fig. 2.12. Single-mode condition (SMC) boundaries and zero-birefringence condition (ZBC) loci as a 

function of SOI channel waveguide dimensions at operating wavelengths of (a) 1.31 μm and (b) 1.55 μm. 

2.4.3. Submicron Rib Waveguides 

(a)     Single-Mode Condition  

Single-mode analysis for the SOI rib waveguide (cf. Fig. 2.1(c)) uses the same approach as 

described in section 2.4.1. The single-mode analysis for the submicron rib waveguide is restricted to h 
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= 0.3 μm and 0.4 μm for the Si core and are carried out at both wavelengths of 1.31 μm and 1.55 μm. 

In our work, the etch depth d is used as a control parameter to eliminate the presence of higher-order 

modes via differential slab leakage losses between the fundamental mode and higher-order modes. 

This is based on the fact that the slab leakage losses for the higher-order mode are higher than that of 

the fundamental mode with decreasing d due to the coupling of higher-order modes into the 

fundamental slab mode of the rib lateral regions. The loss of each computed mode is associated with 

Im(Neff), which is used to determine whether it is considered as guided or cut off. A waveguide is 

considered as single-mode (SM) if there is less than 1 dB/cm in loss for the fundamental mode and at 

least ten times larger loss for the first higher-order mode so that at the end of the propagation length, 

only the fundamental mode remains (cf. Fig. 2.9). If not, it would be considered multimode (MM) as 

the loss of the higher-order mode would then be too low for it to be considered as well-suppressed. 

In the simulation, for each waveguide height (h) and etch depth (d), the width (w) is increased in 

steps of 0.01 μm until the next higher-order mode is supported by the waveguide structure. Through 

this process, the minimum w dimension at which the first higher-order mode starts to be supported by 

the waveguide is obtained. This sets the SM/MM boundary for different d and h. Our simulation 

results for rib waveguides with h of 0.3 μm and 0.4 μm at 1.31 μm and 1.55 μm are presented in Figs. 

2.13 and 2.14.  It can be noted that a gradual increase of the etch depth d at 0.3 μm at a wavelength of 

1.31 μm creates a wider region for single-mode condition. For h = 0.3 μm, d = 0.28 μm, the range of 

w increases from 0.18 μm to 0.31 μm. If we compare with d at 0.2 μm, this is a significant increase of 

w by 325%. On the contrary, for h = 0.4 μm, the range of w needed to satisfy the single-mode 

condition decreases by 25%, implying that the single-mode condition becomes more stringent with 

increasing d at larger h. A similar trend is observed at both h = 0.3 μm and h = 0.4 μm for wavelength 

1.55 μm as shown in Fig. 2.14. This suggests the increase of the etch depth to achieve a broader 

region of single-mode operation at 1.55 μm.  The differences between SMC for different polarizations 

at submicron waveguides are significant as shown in Figs. 2.13 and 2.14 as compared to [11] due to 

the dominance of the boundary conditions for both TE and TM polarizations at the submicron scale. 

However, the propagation loss increases at these waveguides. It is well-know that the mode-field 

intensity is strongly enhanced at the waveguide edges with increasing waveguide dimensions, causing 

increased light scattering due to sidewall roughness. However, with advances in fabrication 

technology, it is now possible to reduce the sidewall roughness [31, 32]. This will enhance the 

viability of using submicron waveguides for practical applications. 
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       (a) 
 

 

     
    (b) 

 

Fig. 2.13. Boundary lines for single-mode condition cut off dimensions for submicron SOI rib 

waveguides with (a) h = 0.3 μm and (b) h = 0.4 μm, where h is the height of the silicon core. The input 

wavelength is 1.31 μm. The shaded region indicates single-mode condition for both TE and TM 

polarizations.  

    TM1 cut off  

     TE1 cut off  

  TM0 cut off 

TE0 cut off  

        TM1 cut off  

         TE1 cut off 

     TM0 cut off  

 TE0 cut off  

  

  



Chapter 2: Single-Mode and Polarization-Independent Passive Silicon-on-Insulator Waveguides of Submicron Scale 

 
 

54 

 
 

(a) 

 

         (b) 

 

Fig. 2.14. Boundary lines for single-mode condition cut off dimensions for submicron SOI rib 

waveguides with (a) h = 0.3 μm and (b) h = 0.4 μm, where h is the height of the silicon core. The input 

wavelength is 1.55 μm. The shaded region indicates single-mode condition for both TE and TM 

polarizations.  
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(b)    Waveguide Birefringence  

The waveguide birefringence for the rib waveguides is computed in a similar manner as those of 

the channel waveguides described earlier. Figs. 2.15(a) to (d) are the graphical representation of the 

final birefringence curves. It can be observed that, for h = 0.3 μm, the birefringent curves do not cross 

the horizontal axis. The discontinuities of the birefringence curves suggest that beyond the critical 

dimension, no mode is allowed to propagate; hence there will be no equivalent effective indices.  

Therefore, at h = 0.3 μm, the graphs clearly indicate that no possible zero birefringence condition 

(ZBC) is present for this structure for both wavelengths of 1.31 μm and 1.55 μm.  Similarly, for h = 

0.4 μm, ZBC is not possible at wavelength 1.31 μm as shown in Fig. 2.15 (c).   

Fig. 2.15 (d) shows the birefringence curves for h = 0.4 μm at an input wavelength of 1.55 μm. 

Here, a critical width wc is defined where the effective indices of TE and TM polarizations are equal. 

At d = 0.36 μm and d = 0.38 μm, the birefringence curves cross the horizontal axis and continue to 

extend into the negative region. Above the critical width, the TE mode has a higher effective index as 

most power is confined under the rib region. This allows the higher modes to couple to the slab 

region. If the width is reduced, the effective indices of the TE and TM modes become similar. Further 

reducing the width beyond the critical width increases the effective index of TM modes, thus causing 

the effective index difference to become negative. The critical width corresponds to the point where 

the mode profile is nearly symmetrical to both TE and TM polarizations, thereby leading to a ZBC 

waveguide.  Therefore, we can see that, at the submicron scale, realizing ZBC in SOI rib waveguides 

is more difficult than that of SOI channel waveguides (compare Fig. 2.15 with Fig. 2.11). This has 

been also shown in the analytical modeling of the SOI rib waveguides earlier in section 2.3.2(b) (cf. 

Fig. 2.8). Also, comparing the results in this section to that based on analytical modeling (cf. Fig. 2.8), 

in which ZBC was not possible at any waveguide dimensions, one can also conclude that the effects 

of finite cladding thickness and propagation losses (which are modeled in this section, but not in the 

analytical modeling) change the birefringence of the SOI rib waveguide such that ZBC can be 

achieved at least in a limited range of waveguide etch depth d for h = 0.4 μm at λ = 1.55 μm. 
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Fig. 2.15. Birefringence curves as a function of waveguide width and depth. The effective index 

difference of the TE and TM fundamental modes at various etch depth d or D for different wavelengths 

and silicon core thickness h: (a) Wavelength 1.31 μm, h = 0.3 μm, (b) wavelength 1.31 μm, h = 0.4 μm, 

(c) wavelength 1.55 μm, h = 0.3 μm, and (d) wavelength 1.55 μm, h = 0.4 μm.  

(c)     Satisfying Both Single-Mode and Zero Birefringence Conditions  

To identify SOI rib waveguides which are able to fulfill SMC and ZBC simultaneously, the zero 

birefringence points in Fig. 2.15(d) have to be located first.  If we now plot the loci of the points that 

cross the ZBC axis and combine it with the SMC mode-map in Fig. 2.14(b), we can demonstrate that 

both conditions can be met under certain circumstances. It is to be noted that this exercise is only 

applicable for rib waveguides with h = 0.4 μm at 1.55 μm wavelength. For analyses of other rib 

structures done in sections 2.4.3(a) and 2.4.3(b), even though SMC exists in most cases, ZBC is 

largely absent.  

Increasing Etch Depth D or d 
(in direction of arrow) 
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Fig. 2.16 shows the plots of both SMC and the birefringence-free locus for h = 0.4 μm at a 

wavelength of 1.55 μm. Two dimensions that satisfy both SMC and PI operation are identified at d = 

0.36 μm, w = 0.277 μm and d = 0.38 μm, w = 0.318 μm. These figures suggest that it is possible to 

achieve single-mode operation at both polarizations and maintaining polarization independence at 

fixed waveguide height. Theoretically, possible points in the multi-mode region may also exhibit ZBC 

(or polarization independence), hence a point on the birefringence-free locus that is below the single-

mode boundary for both TE and TM modes should be chosen. However, for this particular case, all 

the identified ZBC dimensions are single-mode in both polarizations.  

 

Fig. 2.16. Trend and boundary lines for single-mode cut off dimensions and zero-birefringence condition 

(ZBC) as a function of waveguide dimensions for silicon core thickness h = 0.4 μm and an operating 

wavelength of 1.55 μm. Single-mode and ZBC are simultaneously fulfilled at d = 0.36 μm, w = 0.277 μm 

and d = 0.38 μm, w = 0.318 μm. 

(d)     Varying the Cladding Thickness to Relax the PI conditions 

In the earlier section, it is found that at λ = 1.31 μm, PI operation is not possible at any 

waveguide dimensions for h = 0.3 μm and h = 0.4 μm. On the other hand, it is found that at λ = 1.55 

μm, PI operation is possible at h = 0.4 μm, although the range of dimensions that allows for such PI 

operation is limited to a narrow range of dimensions of etch depth d = 0.36 μm – 0.38 μm. Here, we 

illustrate that, by changing the cladding thickness, the range of d that allows for PI operation can be 

significantly extended for h = 0.4 μm when using λ = 1.55 μm. 

It has been shown in [28] that the birefringence of the waveguide can be tuned by stress 

engineering. In this mechanism, a change in the thickness of the upper cladding alter the stress exerted 

on the waveguide core, which in turn will influence the effective indices of the TE and TM modes,  

thereby manipulating the waveguide birefringence. Thus far, for all the sections in this chapter, we 
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have used an upper cladding thickness of l1 = 0.75 μm. To demonstrate the effect of stress engineering 

on the waveguide core, we change l1 to 2 μm in this section. The thickness of the lower cladding l2 is 

also changed to 2 μm so that we have a symmetric waveguide structure, similar to all the other 

subsections in this chapter. Thereafter, the same simulation procedures described in section 2.4.1 are 

employed to the new SOI rib waveguides. The results are shown in Fig. 2.17. 

 
 

Fig. 2.17. Boundary lines for single-mode condition (SMC) cut off dimensions of submicron SOI rib 

waveguides for wavelength 1.55 µm and at h = 0.4 µm, with a different cladding thickness of l1 = l2 = l = 

2 µm. The polarization indepndendet (PI) locus that falls into the single-mode (SM) region signifies 

dimensions that allow both SM and PI operations. Note that the SM region is bounded by the TE1 cut off 

and TM0 cut off boundaries. 

It can be seen in Fig. 2.17 that the change in the upper cladding thickness effectively relaxes the 

conditions to realize PI conditions. Previously, at λ = 1.55 μm, SM and PI operations at h = 0.4 μm, 

which is shown in Fig. 2.16, are possible only in a narrow range of dimensions of etch depth d = 0.36 

μm-0.38 μm. With the use of a thicker upper cladding, the range of etch depth dimensions that gives 

PI operation is considerably increased to d = 0.28 μm-0.38 μm. This is an increment of fivefold. Also, 

the overall SM region widens as the use of a thicker lower cladding results in: (i) A lower substrate 

leakage losses for the TE and TM fundamental modes; and (ii) the increased in differential substrate 

leakage losses between the fundamental and higher-order modes (with the higher-order modes having 

greater losses than the fundamental modes). Consequently, there is more effective suppression of the 

higher-order modes, resulting in the waveguide to exhibit stronger single-mode behaviors. These 

imply that the cladding thickness can be used to improve the SM as well as the PI conditions. To 
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expediate computational time and resources, we have only demonstrated this method for h = 0.4 μm 

and λ = 1.55 μm. Future work will look into the systematic mapping of the SM and PI conditions at 

different h and λ  values for both the submicron SOI rib and channel waveguides. 

2.5.  Summary and Significant Contributions of this Research Work 

The possibility of achieving single-mode and polarization independent (PI) conditions based on 

submicron SOI channel and rib waveguides has been clearly demonstrated by rigorous numerical 

modeling via the imaginary distance beam propagation method (IDBPM) in this research work. It has 

shown that, three distinctive regions, namely, no modes, single-mode and multimode regimes exist for 

SOI channel and rib waveguides at the submicron scale. The conditions that govern single-mode 

condition is determined by the stringent boundaries of TM0 and TE1. The polarized modes are 

strongly dependent upon waveguide dimensions. This results in an increase in birefringence by an 

order of magnitude if the waveguide height is reduced from 0.6 μm to 0.3 μm in channel waveguide. 

In the rib structure, single-mode and polarization-independent conditions only co-exist at h  >  0.3 μm. 

These results clearly distinguish the dimension of channel and rib waveguides required to satisfy both 

single-mode and polarization independent conditions simultaneously at the submicron scale for the 

communication wavelengths of 1.31 μm and 1.55 μm. In addition, by using analytical modeling, we 

have clearly shown the modal characteristics in SOI slab waveguide and its relation to the SOI 

channel and rib waveguides. This has often been ignored in most literatures. Also, we have 

demonstrated that the approximations provided by the analytical modeling for the submicron SOI 

channel and rib waveguides match well with the general trends of the results of the numerical 

modeling via the IDBPM. Such use of both analytical and numerical modelings in this research work 

has provided a better physical insight into the stringent conditions needed for the realization of both 

single-mode and PI operations at the submicron level. The results in this chapter will be employed in 

later chapters, in which the single-mode and/or polarization-independent dimensions are used to 

design SOI microring resonator and the SOI Raman waveguide. 

Lastly, we mention that part of this research work has been published in the following journal 

and conference proceeding: 

 Soon Thor Lim, Thomas Y.L. Ang, Ching Eng Png and Yong Ann Ong, “Single-mode, 

polarization-independent submicron waveguides using geometrical adjustment,” Optics 

Express 15, 11061–11072 (2007). 

 Soon Thor Lim, Thomas Y.L. Ang, and Ching Eng Png, “Single-mode, polarization- 

independent submicron silicon waveguides,” 7th Pacific Rim Conference on Lasers and 

Electro-Optics, Seoul, Korea, Technical Digest, pp. 1–2 (2007). 
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To date, the above published journal has a total citation count of sixteen (listed in Refs. [33] – 

[48]), excluding self-citations. Previously, SOI submicron rib waveguides are seldom used for 

photonic devices as the SM and PI conditions at the submicron scale are not very well understood. 

However, since the publication of our research work, Ref. [33] has further looked into the modal 

characteristics of submicron SOI rib waveguides via numerical analysis while Refs. [34] and [35] 

have used submicron SOI rib waveguides to fabricate microring resonators. In addition, our work has 

also inspired the use of SOI waveguides at the submicron scale in the design and fabrication of 

polarization independent (PI) couplers [36-40], PI demultiplexer [41], PI chalcogenide glass 

nanowires [42], a slow light device [43], microbends [44], microring resonators based optical 

interconnects [45], SOI interleaver [46], polarization splitter and rotator [47], and last but not least, 

plasmonic waveguide devices [39, 40, 48]. In many of these works, our design rules in this chapter 

have been used to optimize the device peformances. All the above-mentioned points highlight the fact 

that our research work in this chapter is a significant contribution to the field of photonics, in 

particular, silicon photoncs. 
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Chapter 3 

How Small can a Passive Microring 

Resonator be and yet be Single-Mode and 

Polarization-Independent?  

3.1.  Introduction: Research Motivations and Objectives 

In the previous chapter, we have looked into the conditions needed to achieve single-mode (SM) 

and polarization independent (PI) operations in submicron silicon-on-insulator (SOI) waveguides. In 

this chapter, we will utilize some of these results to design a SOI waveguide (WG) based photonic 

device – the microring resonator (MRR) – that is suitable to be deployed in commercial applications. 

This would be of great research significance as the MRR has been proposed by many researchers as 

one of the elemental building blocks of very large scale integrated (VLSI) photonics.  

For microring resonators to be commercially viable, they must be capable of PI operation while 

maintaining SM and low round-trip losses. Without the use of extrinsic polarization management 

schemes, such as polarization diversity [1, 2], which would increase the fabrication cost and 

complexity, the microring resonators must be designed to be intrinsically PI in order to handle input 

optical signals of random polarizations. As microring resonators are bend-based devices, they 

inherently have higher polarization sensitivity in contrast to straight waveguide (WG) based devices. 

Consequently, to accommodate the structural polarization independence, the design of SM microring 

resonators based on SOI has been limited generally to relatively large bend radius (≥  100 µm) [3, 4] 

and large WG dimensions (width and height ≥  1 µm) as it is difficult to maintain both the SM and PI 

behaviours when shrinking the size of the microrings. In addition, we also notice that channel WGs, 

instead of rib WGs, are commonly used when designing small SOI microrings (i.e., bend radius < 10 

µm) [5-8]; rib WGs tend to be used when designing larger microrings (i.e., bend radius ≥  10 µm) [3, 

4, 9]. For microring resonators based on other material platforms, such as InP and GaAs, similar 

trends also apply, although for such cases, SM and PI operations have been demonstrated in rings 

with slightly smaller bend radii of around 30 μm [10, 11]. The above-mentioned trends were first 

observed in 2008 when we started and completed our research in this chapter. To clearly illustrate 

this, we have summarized some of the key experimental results in Table 3.1 for SOI based microrings 

in the literature for the period 2004 to 2008. Note that such trends (as mentioned above and can be  
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Table 3.1. †Representative works from year 2004 to 2008 on microring resonators (MRRs) based on 

silicon-on-insulator waveguides 

†The general trend is that large waveguide cross-sectional dimensions (height and width  ≥  1 μm) and 

large bend radius (radius ≥  100 μm) are used when designing a MRR for single-mode (SM) and 

polarization independent (PI) conditions. In the literature, MRRs with smaller dimensions (height and 

width < 1 μm, radius < 10 μm) are typically not simultaneously SM and PI. The question to be addressed 

in this chapter then is: Can we realize both SM and PI operations in a MRR at small waveguide 

dimensions and bend radius? How small can a MMR be and yet fulfills both SM and PI conditions? 

seen in Table 3.1) in the design of microring resonators have remained largely valid till this date. 

It is highly critical to design intrinsic PI MRR at smaller device footprint in order to minimize 

valuable real estate on photonic integrated circuits (PICs) and to maximize high-density integration 

for increased optical functions per optical chip [12]. This miniaturization of MRR, requires the WG 

cross-sectional dimensions to be reduced to the submicron scale (width and height < 1 µm) and the 

bend radii to be shrunk into the ultrasmall regime (bend radii below 10 µm). However, the smaller 

WG cross section results in enhanced optical confinement that generally exacerbates the polarization 
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sensitivity of the WG, leading to increased difficulty in controlling the polarization properties of the 

submicron device while maintaining SM and low-loss operations. It is challenging to simultaneously 

fulfill both the SM and PI conditions when the WG is scaled down into the submicron regime because 

both birefringence and WG dispersion increases [13]. This is further complicated by the need to use 

ultrasmall bends to miniaturize the MRR for highly dense PICs. At smaller radii, bends have 

significantly different and more stringent PI conditions from the straight WGs. It is therefore 

generally not possible to fulfill the PI conditions for both straight and bend WGs at the same WG 

cross section, without resulting in residual birefringence (or polarization dependence) in the MRR 

intended for PI operation. With reducing bend radius, the residual birefringence becomes increasingly 

significant and cannot be ignored when designing PI MRRs unlike earlier works [3, 4, 10, 11] that are 

based on larger bends. In addition, the reduction of the bend radius is further limited by the bend 

losses that increase exponentially with reducing radius. A legitimate question, then, is: How small can 

a ring resonator be, i.e., how small can we shrink both the cross sectional dimensions and radius, and 

yet maintain its overall polarization-independence and single-mode conditions while ensuring low 

round-trip losses? The objective of this work is to demonstrate theoretically the possibility of 

achieving this and to show that the extent of size miniaturization in MRR while achieving both PI and 

SM conditions is limited primarily by the residual birefringence in the cavity and bend losses. 

However, we do not attempt to find an exact theoretical lower size limit. Only a heuristic formulation 

that provides an approximate but yet reasonably accurate guidelines on the extent of size 

miniaturization of MRR while maintaining PI is the interest of this work.  

The realization of PI side-coupled resonator requires that the resonance wavelength, amplitude, 

linewidth, and even the spectral shape to be the same for both input TE and TM polarizations. PI also 

implies SM, since it is not possible to make all the modes PI simultaneously. These impose very 

stringent constraints on design, requiring identical effective index Neff  as well as identical coupling 

2  between the WG and the ring for all polarizations for a perfect PI design. Due to the presence of 

polarization-dependent losses (PDL), Neff  is inherently complex: Neff  = Re[Neff] + jIm[Neff]. The real 

part of the Neff  is related to the real propagation constant β of the WG mode as β = Neff(2π/λ), where λ 

is the free-space wavelength, while the imaginary part describes the round trip losses. It is generally 

not possible to simultaneously maintain a similar β and round-trip losses for both TE and TM modes 

when designing PI devices. A more feasible approach, which is used in previous PI MRR designs [3, 

4, 10, 11] and also in this work, would be to match Neff(TE) and Neff(TM), while maintaining low PDL. 

Hence, a perfectly PI design is not possible and a PI design is understood to meet the criteria only 

within certain specified tolerance limits. Nevertheless, even theoretical demonstration of nearly PI 

design is of practical significance as it is the most compact and low-cost when compared with 

extrinsic polarization management schemes [1, 2]. 
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It must be noted that several assumptions are made in this work for a more meaningful 

discussion of the extent of PI MRR miniaturization. First, we only focus on MRR that is based on 

conventional dielectric WGs. The use of novel waveguides, such as slot waveguides, to design PI 

microrings has been demonstrated in [14] and will not be the focus of this work. To relax the stringent 

operating conditions of PI and SM in submicron WGs when designing small-size MRRs, we have 

focused on deeply etched rib WGs, instead of the commonly used channel WG. This is in contrast to 

the conventional practice (cf. Table. 4.1) of using channel WG when designing small-size microring 

resonators. The advantage of a rib over a channel WG is that it is more robust for device 

miniaturization as both the etch depth and width can be carefully tailored to achieve both SM and PI 

performances. Also, we are only concerned with the extent of PI ring miniaturization (bend radius and 

WG cross section), given a fixed upper cladding thickness. The use of stress birefringence to balance 

the geometrical birefringence has already been demonstrated [4, 15] and thus will not be the scope of 

this work. In addition, we only consider WG with vertical sidewalls. Finally, we ignore scattering 

losses due to sidewall roughness as it depends on the fabrication process. Moreover, it has been 

shown that such losses can be kept to a very low level [16, 17].  

A modular approach is used for the analysis of the theme of this work, which considers the 

polarization properties of every individual component (namely the straight WG, bend WG and 

couplers) in the MRR. Each component is analyzed to obtain the single-mode (SM) optimum design 

with minimum birefringence. In section 3.2, we first study how PI and SM conditions can be 

simultaneously achieved for straight WGs using deeply etched ribs, which determine the range of 

smallest possible cross-sectional dimensions of the MRR at a specific upper cladding thickness. Using 

this range of WG cross-sectional dimensions, we then analyze how the residual birefringence and the 

bend losses dictate the minimum bend radius of the PI MRR. In section 3.3, we look into the design 

issues of the cavity of the MRR circuit. Subsequently, in section 3.4, we discuss how compact PI 

coupling can be attained by the use of a 2 × 2 multi-mode interference (MMI) coupler. In section 3.5, 

all the PI components are integrated into a single bus-coupled MRR filter configuration and the 

transmittance spectra are simulated for both TE and TM polarizations. Finally, in section 3.6, we 

analyze how fabrication tolerances might affect the PI performance of our modeled device.  

3.2.  Single-Mode and Polarization-Independent Waveguides in Microring Resonator 

The fundamental parameter that determines the polarization sensitivity of the microring 

resonator is the resonance wavelengths λR, which is described by [10, 11] 

                                              ( , ) ( , ) ,rt eff TE TM R TE TML N m                                                       (3.1) 

where Lrt is the round-trip length of the resonator cavity, Neff  is the effective index of the modes of the 

ring cavity and m (= 1, 2, 3,…) is the azimuthal mode number of the resonator. In principle, PI 

implies that the resonant wavelength is the same for both the quasi-TE and quasi-TM modes for an 
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arbitrary value of m. This in turn strictly requires the WGs of the ring cavity as well as the input bus 

to satisfy the zero birefringence condition (ZBC), i.e., ΔNeff = |Neff(TE) – Neff(TM)| = 0, not just at the 

resonance wavelength λR but within a certain range of wavelength centered around λR. The ZBC 

implies the TE and TM modes have the same phase velocity although not necessarily the same modal 

profile, leading to a PI WG in the absence of PDL. In general, the straight and cavity bend WGs have 

different ZBCs. This results in residual birefringence that increases with reducing bend radius. We 

will thus consider the PI as well as single-mode conditions separately for the straight and bend WGs 

of the microring resonator circuit. Deeply etched SOI rib WGs with silicon waveguide height h of 0.4 

μm and a thickness of 2 μm for both the upper and lower cladding of silicon dioxide (l1 = l2 = 2 μm) 

are employed for both the straight and bend WGs of the microring resonator cavity. This is the 

configuration that has been earlier studied in section 2.4.3(d) and is shown again below in Fig. 3.1. 

 

Fig. 3.1. Cross-sectional view of the straight and bend rib waveguides that are used in the microring 

resonator circuit. To fulfill the single-mode condition, the silicon waveguide is set at height h = 0.4 μm 

and a thickness of 2 μm for both the upper and lower claddings of silicon dioxide (i.e., l1 = l2 = 2 μm).  

3.2.1.  Straight Waveguides 

The conditions to simultaneously achieve the SM and PI operations for deeply etched SOI rib 

WGs at λ = 1.55 μm has already been determined in chapter 2.4. We will make use of these results for 

our design work of the straight WGs. The SM and PI waveguide dimensions loci for a SOI rib 

waveguide with h = 0.4 μm, l1 = l2 = 2 μm (cf. section 2.4.3(d)) is reproduced here in Fig. 3.2 for 

convenience. Both PI and single-mode condition (SMC) can be achieved along the locus within the 

proper bounds of WG width indicated by the dotted lines. We will term the width w at which PI 

operation is possible for each etch depth d setting of the straight WG as the critical width wc(straight). At 

the low end of the PI locus in Fig. 3.2, where both w and d are small, the TM0 mode is cut off and 

hence the PI locus is terminated. At the high end where wc(straight) and d both approach h, the deep- 

etched rib WG becomes a channel WG, which tends to be multi-mode, hence violating the single-

mode condition (SMC). Note also that, for our rib WG design with an oxide cladding thickness l1 = l2 

= 2 μm, no SM and PI modes co-exist at h = 0.3 µm. This has been found through simulations in  
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Fig. 3.2. Birefringence-free (or polarization independent) waveguide dimensions of fundamental modes 

for waveguide height h = 0.4 µm at a wavelength of 1.55 µm. As the rib transforms to a channel WG, 

polarization independent (PI) and single-mode (SM) conditions cannot be fulfilled simultaneously. 

section 2.4.3(b) of chapter 2. Hence, for this specific oxide cladding thickness, the smallest possible 

cross sectional WG dimensions for both SM and PI performances can be approximately obtained at h 

= 0.4 µm from Fig. 3.2. 

3.2.2.   Bend Waveguides 

In curved WGs, modal propagation depends additionally on the bend radius R, and hence at the 

same WG cross section, straight and bend WGs have different β and therefore different PI conditions. 

The PI condition for bends is more stringent as the WG curvature distorts the modal symmetry. The 

propagation constant of the bend is complex, with the imaginary part corresponding to radiation 

losses. We will first ignore this PDL, assuming it to be small.  

The solution of effective index Neff(bend) for bend is solved using BeamPROP [18], which first 

applies a coordinate transformation to map a straight WG onto a curved WG with the desired bend 

radius and then employing the 3-D full-vectorial BPM for solving the radial modes. In our 

simulations, the bend radius is defined as the physical radius, R, to the centre of the WG. The Neff(bend)  

plots for the quasi-TE and quasi-TM fundamental radial modes as a function of w at a fixed d of 0.37 

µm, for two bend radii 2 µm and 4 µm are shown in Fig. 3.3, along with the Neff(straight) of the straight 

WG with a similar cross section. At the critical width that occurs at the intersection, the curve WG is 

PI in the absence of PDL. Similar Neff   plots of Fig. 3.3 are also computed for other R and d values. It 

can be observed that, at the same d, curved and straight WG have different critical widths wc, which 
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Fig. 3.3. Calculated effective indices for the quasi-TE and quasi-TM modes as a function of width for 

straight and curved WGs at bend radii (R) of 2 and 4 µm, all at etch depth of 0.37 µm. The dotted line 

points to the various critical widths wc for each R. The critical width wc of the bend decreases and tends to 

that of the straight WG (marked by a thickened dotted line to the extreme left) with increasing R. 

are termed as wc(bend) and wc(straight), respectively, for the bend and straight WGs. For a fixed d and R, 

using wc(bend) for the WG design gives ZBC for the bend but results in a birefringent straight WG. 

With reducing R, the birefringence in the straight WG, with w = wc(bend), increases. Likewise, if 

wc(straight) is used to design the bend, birefringence will be present for all R and will tend to zero as R 

increases, as illustrated in Fig. 3.4. Hence, strictly speaking, for a fixed d, it is not possible to achieve 

PI for both straight and curved WGs by using a common WG width. However, the difference in 

wc(bend) and wc(straight) is negligible at large bend radii as shown in Fig. 3.4.  In the limit of R =  , 

wc(bend) will approach that of wc(straight) and thus at sufficiently large R, both the straight and bend WGs 

in a MRR can be designed to be near-PI, in the absence of PDL, by using a common wc. Any residual 

birefringence present in the MRR is too small to induce any significant misalignment between the TE 

and TM resonance spectra. However, in shrinking R, the difference between wc(straight) and wc(bend) 

widens, resulting in rising residual birefringence if all components of the cavity have the same cross 

section. Then the best approach is to choose an optimized cross-sectional dimensions at a suitably 

small R, which will minimize the residual birefringence. In the absence of bend loss, the minimum 

bend radius (MBR) that can be used is thus limited by the acceptable level of residual birefringence. 

Using the computed wc(bend) data for different bend and WG cross sections, the PI loci as a 

function of R for various d are then plotted in Fig. 3.5. The effective indices of the radial modes 

generally increases with decreasing R because wc(bend) becomes larger at smaller bend curvature, which 

better confines the optical modes in the WG. It is also clearly shown that as R increases for a fixed d,  
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Fig. 3.4. Plot of effective index of 90° bend as a function of bend radius R at a fixed cross section that is 

based on the polarization independent (PI) dimension (d = 0. 37 µm and wc (straight) = 0. 39 µm) of the 

straight WG, whose effective index is also plotted for comparison. Using the PI dimension (d = 0. 37 µm 

and wc (straight) = 0. 39 µm), the straight WG satisfies zero birefringence condition (ZBC) but the bend is 

birefringent. The bend birefringence reduces and approaches zero as R increases.  

the effective indices of the PI radial modes tend asymptotically to that of the straight WG, which 

forms the horizontal asymptote. Conversely, reducing R results in an increasing difference between 

Neff (PI bend) and Neff (PI straight). Achieving PI in bends requires a judicious combination of w, d and R, as 

illustrated in Fig. 3.5. PI bends can be achieved for radius R down to about 1 µm for the given h and 

cladding thickness. For even smaller R, PI operation becomes impossible even with increasing d and 

w due to the transition of the radial mode into a microdisk-like whispering gallery mode (WGM), 

which is highly polarization dependent. The WGM is guided only by the outer WG boundary and is 

insensitive to the inner boundary, as illustrated in the inset in Fig. 3.5. This transition to WGM is 

marked by a sharp increase in wc(bend) that will approach the vertical asymptote, which is the 

theoretical size limit to achieving PI performance in bends. Once the mode is in the WGM regime at 

sufficiently large w, both the loci of the TE and TM bend effective indices become flattened with 

increasing w in Fig. 3.3 and ΔNeff(bend)  remains unaffected for any change in w. For smaller R, this 

trend occurs without any intersection of the Neff(bend)  locus for the TE and TM modes. Hence, PI 

cannot be achieved for smaller R. Without considering bend loss, the WGM regime will result in a 

lower PI bend radius limit, RL, of about 1 µm at our considered h and cladding thickness. For larger h 

and at the same cladding thickness, RL will become larger. For smaller h, RL is not considered as PI 

and SM modes do not co-exist as mentioned earlier.  

 

  Quasi-TE (90o bend) 

Quasi-TM (90o bend) 

PI Straight WG 
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Fig. 3.5. The loci of PI critical widths wc at varying bend radius for different etch depths for fixed silicon 

height of 0.4 µm at an input wavelength of 1.55 µm. The inset shows the transformation of the radial 

mode into a WGM as the width w is increased while keeping the bend radius fixed at 2 µm and the etch 

depth at 0.37 µm. 

 
In addition, d must be increased in bend WG (as compared to the straight WGs) in order to 

ensure SM operation, as the differential loss between the fundamental mode and the higher-order 

mode tends to decrease due to the additional slab leakage loss that depends on d and that increases as 

R is reduced. Based on simulations, it was found that as long as d > 0.3 µm, our modeled PI bends 

will be SM, while for the straight WG, the required d must be smaller than 0.39 µm as concluded 

earlier in sections 2.4.3(d) and 3.2.1. 

3.3.  Design Issues of PI Microring Resonator with Small Bend Radius 

3.3.1.   Ractrack Cavity with Low Birefringence 

Two types of commonly used architectures when designing laterally-coupled compact MRR 

filters are shown in Figs. 3.6(a) and 3.6(b), which are based on directional coupling and point 

coupling, respectively. In the design of MRRs with submicron cross sections, we adhere to the 

principle that the design should be simple and within the limits of practical fabrication tolerances. 

Hence, we will focus on the race-track MRR since it is easier to control the coupling factor simply by 

  Etch Depth = 0.39 µm 

    Etch Depth = 0.37 µm 

Etch Depth = 0.35 µm 

Etch Depth = 0.33 µm 

Etch Depth = 0.31 µm 

   Increasing Etch Depth 
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varying the coupler length without resort to very small gap dimensions [19], although this will result 

in a larger cavity and hence smaller free spectral range (FSR). In addition, we assume all the 

contiguous WGs have the same cross-sectional dimensions and etch depths, hence the combination of  

 

 
Fig. 3.6. Two basic architectures of ring resonator with submicron dimensions. (a) Type 1: Directional-

coupled race-track resonator. (b) Type 2: Point-coupled circular micro-ring resonator. 

straight and curved WGs in a race-track MRR as well as the use of the use of a MMI coupler will 

inevitably result in residual birefringence as well as PDL. The difference in phase shift Δδ between 

the TE and TM modes after propagating through a sub-component of the racetrack cavity is: Δδ = 

2πΔNeffL/λ
 
where ΔNeff and length L are, respectively, the geometrical birefringence and length of the 

specific component. This Δδ induced by each birefringent sub-component would translate to a 

resonant wavelength shift ΔλR between the TE and TM resonance spectra, which can be described as 

  ( )R eff eff PI rtN N L L    ,                                                  (3.2) 

where Neff(PI)  is the effective index of the polarization independent (PI) bus WG and Lrt is the total 

cavity length. To minimize ΔλR, the PI dimensions of the bend instead of that the straight WG is used 

for our design of the WG cross section of the cavity as the four 90o-bends are much longer in length 

than the access straight WGs and the multi-mode interference (MMI) coupler. By using PI 90o bends, 

the residual birefringence in the resonator is minimized to that remaining in the MMI coupler and the 

access straight WGs. The total resonant wavelength shift, ΔλR, is then: ΔλR = ΔλR, MMI + ΔλR, straightWGs. 

The residual birefringence present in each birefringent constituent component of the racetrack cavity 

must be within a specific tolerance limit so as to minimize ΔλR. Without seriously impacting the PI 

response in an actual device, ΔλR should be within 15% of the full-width at half maximum (FWHM) 

[11]. The actual birefringence tolerance limit to meet such ΔλR criteria depends on the actual length of 

each birefringent component as well as the FWHM. For our MRR design, the FWHM is on the order 

of 1-3 nm. Thus, the residual birefringence should be below the tolerance limit of ~ 0.009. We have 

shown in Fig. 3.7 the birefringence that will be present in the straight WG component of a racetrack 

cavity as a function of R. For each R, the ring cavity is designed at w = wc(bend), giving PI bends but 

birefringent straight WG. Note that wc(bend) is the critical width that gives PI bend for a given R and 

etch depth, as mentioned earlier in section 3.2.2 and Fig. 3.5. The birefringence level in the straight 

WG generally rises with reducing R but stabilizes at around 0.006 for R   ≥  3 µm for all etch depths d 
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considered in Fig. 3.7. Thus, without considering bend losses, the minimum bend radius (MBR) that 

can be used for PI operation within our specific tolerance limit for ΔλR is 3 µm. We label this MBR of 

3 µm that is determined solely by the residual birefringence as MBRRB. In other words, MBRRB = 3 µm 

for our waveguide design of h = 0.4 µm and different etch depths d (shown in Fig. 3.7). 

 
Fig. 3.7. Birefringence of straight WGs as a function of the bend radius for various etch depths d and 

fixed h = 0.4 μm and l1 = l2 = 2 μm (cf. Fig. 3.1). The straight WG is designed using the dimensions of 

the PI bend for each bend radius, resulting in birefringence in the straight WG. The minimum bend radius 

(determined solely by birefringence) that can be used is about 3 µm. 

3.3.2.   Ractrack Cavity with Acceptable Round Trip Losses 

The total round trip losses αR of a racetrack MRR is defined as: αR [dB] = 4αB + 4αT + αS, where 

αB is the pure bending loss per 90o bend and αT is the transition loss at each straight to bend WG 

junction. The scattering losses due to side-wall roughness αs is ignored in this work. The pure bending 

loss αB occurs because the radial mode is shifted towards the outer edge of the curvature, resulting in 

the radial mode to couple to the radiation modes. αB is mathematically defined as [20]   

 
  10 ( )[ / 90 ] 20log exp Im 2 ,o

B eff bend odB N k R                                (3.3) 

where k0 = 2π/λ  is the propagation constant in free space and Im(Neff(bend)) is the imaginary component 

of Neff(bend). The transition loss αT at each straight-bend WG junction is due to the coupling loss 

induced by the modal mismatch as the propagating mode couples from the normal mode in the 

straight WG to the radial mode in the bend WG. The magnitude of αT can be computed by employing 

the overlap integrals [21]:  

Increasing Etch Depth 
(in direction of arrow) 
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where NE0 and RE0 are the normal mode of a straight WG and the radial mode of a bend, respectively, 

and the symbol * denotes complex conjugation. The sum of αB and αT gives αTBL, which is the total 

bend losses per 90o turn. Both αB and αT can be computed accurately using the finite-difference time-

domain (FDTD) method [18].  

We now analyze if the earlier defined MBRRB = 3 µm for the racetrack cavity will be affected by 

αTBL and the PDL. There are different sets of PI bend cross sections that correspond to R = MBRRB = 3 

µm as seen from Fig. 3.7. The objective of this section is to determine if the bend with R = 3 µm at 

the respective PI width dimensions for each d will give low αTBL and PDL. If R = 3 µm satisfies these 

conditions, then MBRRB = 3 µm can be used and will thus be the overall MBR, which is denoted as 

MBRNET, for a particular d. Otherwise, MBRRB = 3 µm cannot be used and MBRNET will then be larger 

than the MBRRB for the specific d concerned. Here, we define a maximum acceptable level of αTBL as 

0.2 dB, giving a bend loss tolerance range of αTBL ≤  0.2 dB. 

The αTBL for both quasi-TE and quasi-TM as a function of R are computed and shown in Fig. 3.8  

 

 
Fig. 3.8. Total bend loss αTBL in a 90o bend as a function of the bend radius for the fundamental mode at a 

wavelength of 1.55 µm (d = 0. 37 µm and wc (bend) = 0. 394 µm).  

for one particular bend dimension of wc(bend) = 0.394 µm, d = 0. 37 µm that corresponds to MBRRB = 3 

µm. The bend losses are generally dependent on the optical confinement, which vary with R and the 

polarization state. As shown in Fig. 3.8, αTBL increases with reducing R, with the quasi-TE mode 

having more losses than the quasi-TM mode as it experiences more slab leakages owing to the larger 

  Quasi-TE 

 Quasi-TM
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extent of the electric field in the horizontal direction. Note that for the race-track resonator, αT is the 

dominant component of αTBL for all R. For the case in Fig. 3.8, αTBL ≤  0.2 dB when R ≥  2.5 µm, in 

which low PDL is also observed. We denote the MBR that only considers the bend losses as MBRLOSS. 

Thus, for this WG design of h = 0.4 µm and d = 0.37 µm, MBRLOSS = 2.5 µm. Comparing this value of 

MBRLOSS  with the earlier defined MBRRB of 3 µm in section 3.3.1, we can conclude that MBRLOSS < 

MBRRB. Thus, MBRRB of 3 µm can be used for PI design (i.e., MBRNET = MBRRB) for the bends. 

Similar procedures as mentioned above are also repeated for other PI bend cross-sectional 

dimensions that correspond to MBRRB = 3 µm to determine their MBRLOSS. The locus of MBRLOSS for 

the various etch depths at their respective wc(bend)  that correspond to MBRRB is plotted in Fig. 3.9. It is  

 
Fig. 3.9. Plot of MBRLOSS  as a function of the etch depth. At each etch depth, the bend width wc (bend)  for 

PI operation at R = 3 µm is used to compute this plot. 

observed that MBRLOSS generally increases as etch depth d is being decreased. This is because a 

reduction in d, which also corresponds to smaller wc(bend), will bring about a rise in bend losses. Hence, 

in order to minimize MBRLOSS, d must be sufficiently deep such that MBRLOSS is smaller than MBRRB 

so that R = 3 µm can be used to design the PI racetrack MRR. In Fig. 3.9, the dotted-line marks R 

where MBRLOSS = MBRRB and the locus above (below) it marks MBRLOSS > MBRRB (MBRLOSS < 

MBRRB). Etch depths can be used for PI bend operation at MBRRB with their respective wc(bend)  only if 

MBRLOSS ≤   MBRRB, which also implies MBRNET = MBRRB. This is fulfilled only at larger etch depths, 

which is  ≥   0. 35µm for our case of h = 400 nm. Unless bend loss optimization schemes, such as 

[20], are used to minimize the MBRLOSS  so that it matches MBRRB, the MBRNET for shallower d will 

generally be larger than MBRRB. 
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3.3.3.  Polarization Conversion  

Besides taking into consideration of residual birefringence and bend losses when designing PI 

MRR, it is also important to consider polarization conversion (PC), which will partially or fully 

convert an input polarization state into another polarization state. In general, PC takes place in the 

presence of geometric asymmetry [22-24], which will provide a means for the polarization state to be 

rotated from one orthogonal polarization state to another. Hence, bends and straight WGs (with 

slanted sidewalls) are highly prone to PC. The presence of PC has two main deleterious effects on the 

performance of MRR [25]. First, it would result in a secondary set of resonance minima to appear in 

both the TE and TM spectra. This is due to the extra phase shift accumulated by the converted light 

when it rotates from one polarization state to another and also of its extra propagation distance. 

Secondary, PC will result in a lower Q factor as the resonator will be more lossy. This is because the 

converted light cannot interfere with the unconverted light circulating in the cavity and will thus leak 

out at the coupling region.  

The polarization of an incoming TE or TM mode will be rotated by 90o after a beat length Lπ, 

which is defined as 

    2TE TM eff TE eff TM

L
N N


 

 
 

 
                                                (3.5) 

In order for PC to be significant, the length of the WG must be much larger than Lπ [23, 24]. 

Generally, PC in bends increases with decreasing R and is further enhanced in the presence of slanted 

sidewalls. In our design of MRR, the PI dimensions of the bend instead that of the straight WG is used 

for our design of the WG cross section of the cavity because the four 90o bends are much longer in 

length than the sub-components of the straight WGs, as mentioned earlier. As such, PC is not an issue 

in our designed bends as the two polarization states are degenerate when the bends are tailored to be 

PI [23]. Also, only vertical sidewall WGs have been our focus in all our modeling work to avoid PC. 

However, actual fabrication generally results in dimensional deviations in the WG from its optimal PI 

value, throwing the birefringence off balance in the bend WG, which will affect its beat length. Then  

for PC to be of negligible effect, the total length of each bend must be much smaller than its Lπ. We 

have found that as long as the uncertainties in width w and etch depth d of the bends at h = 400 nm 

and R  ≥  3 µm fall within the maximum possible tolerance of ±2.5%, PC can be ignored. In addition, 

using state-of-the-art technology [16, 17], it is possible to fabricate WGs with almost vertical 

sidewalls, and hence PC can be considered as negligible in straight and bend WGs in our work. 

3.4.  Polarization-Independent (PI) Coupling 

The design of a PI waveguide-coupled micro-resonator requires an additional condition: The 

coupling must be PI in order for the TE and TM resonance spectra to have the same finesse. In 
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general, for a racetrack MRR, it is not easy to achieve a PI coupling length using a directional coupler 

that is insensitive to wavelength and dimensions. Without compromising on the small device 

footprint, a better alternative is the 2 × 2 multi-mode interference (MMI) coupler which has better 

fabrication tolerance and exhibits weaker polarization and wavelength dependences. Hence, the final 

step in realizing a PI resonator is to design the polarization insensitive MMI coupler. The MMI 

coupler is shown together with the racetrack resonator circuit in Fig. 3.10(a). 

Essentially, the split ratios between the output ports 3 and 4 can be controlled and varied by 

adjusting the width wmmi of the MMI coupler relative to the centre-to-centre separation (port pitch) 

Pmmi of the access waveguides. The length of the MMI coupler, L, is then determined depending on 

the split ratio. As found in [10, 11], except for cross coupling (0:100) and 3-dB (50:50) splitting, other 

split ratios are generally sensitive to polarization as well as the MMI coupler’s length. Hence, we will 

design the MMI coupler to be a 3-dB (50:50) coupler, giving a coupling factor of 50%. This relatively 

high coupling factor will be justified after tallying all the round-trip losses in the cavity.  

 

Fig. 3.10. (a) The proposed submicron PI ring resonator coupled with one bus WG via a 2 × 2 Type I 

MMI coupler. (b)  The Type I MMI coupler used for the racetrack resonator design showing the various 

parameters and the ports labeling. Close up views of the Type I and Type II MMI couplers are shown, 

respectively, in (c) and (d). 

The two types of MMI couplers that can be used for PI coupling are illustrated in Figs. 3.10(c) 

and 3.10(d). Type I has the smallest possible width given by wmmi = (Pmmi + w), where w is the width 

of the access waveguides. The restricted interference Type II MMI coupler can be formed by 

expanding the MMI coupler’s width to wmmi = 3Pmmi.  The 3-dB coupler length L3dB is given by (3Lπ)/2 

for Type I, and Lπ/2 for Type II, where Lπ  is the beat length of the MMI coupler [11] given as 

2
4

3
eq

eff
R

w
L N 

 , in which Neff  is the effective index of the slab WG, λR is the resonance wavelegnth and 
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weq is the equivalent MMI coupler’s width, which for the present case is essentially the same as the 

physical width of the rib slab WG.  By substituting the above expression of Lπ and the respective wmmi 

into L3dB for Type I and II, it can be easily derived that the ratio of the 3-dB coupling length of Type I 

to that of Type II is 
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                         (3.6)                           

In our analysis, the port pitch Pmmi is set at 1.0 µm, which is large enough to keep the port WG 

separate from the resonator so that the coupling effect is negligible, and the width of the access WGs 

is fixed at 0.394 µm, corresponding to the PI dimension for a 3 µm radius cavity. Hence, 

TypeIIdBTypeIdB LL ,3,3 = 0.65, implying a shorter L3dB if Type I MMI coupler is used. To verify this 

theoretical calculation, we use simulation [18, 26] to determine the actual 3-dB coupling length L3dB 

for the TE and TM modes and the final PI coupling length. Other device performances such as the 

insertion and coupling losses are also computed. These results are summarized in Table 3.2, in which 

τ2mmi
 = κ2 + r2 is the power attenuation constant of the MMI coupler for the TE or TM mode that 

quantifies the coupler loss of the MMI coupler (τ2mmi = 1 for a lossless coupler), where κ2 and r2 are,  

       Table 3.2. Computed coupling length, losses and birefringence for Type I and Type II MMI couplers 

  
Type I MMI 

 
Type II MMI 

 
wmmi (in μm) 

1.394 3 

 
L3dB (in μm) 

TE TM TE TM 
 

7.76 
 

8.55 
 

12.25 
 

13.27 
 

PI coupling length (in μm) 
 

8.2 
 

12.4 
 

Power splitting ratio r2 at PI 
coupling length 

 
0.493 

 
0.497 

 
Attenuation constant τ2mmi

 of the 
MMI at PI coupling Length 

TE TM TE TM 

 
0.982 

 

 
0.987 

 
0.992 

 

 
0.995 

 
Insertion loss (dB) at PI coupling 

length based on τ2mmi 

TE TM TE TM 
 

0.0789 
 (~1.3%) 

 
0.0568 

(~1.9%) 

 
0.0349 

(~0.6%) 

 
0.0218 

(~0.4%) 
 

PDL (dB) at PI coupling length 
 

0.0221 (~0.6%) 
 

0.0131 (~0.2%) 
 

Birefringence ΔNeff of MMI at PI 
coupling length 

 
 

4.7 × 10-5 

 
 

5.0 × 10-5 
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respectively, the power splitting ratio at port 3 and port 4. For Type I, L3dB = 7.76 µm for TE and 8.55 

µm for TM, while for Type II, it is 12.25 µm for TE and 13.27 µm for TM. These computed figures of 

L3dB are in close agreement with the above theoretical calculated ratio of TypeIIdBTypeIdB LL ,3,3 = 0.65 in 

Eq. (3.6). In between the above two different values of L3dB for the TE and TM modes for each type of 

MMI coupler, one can find a PI coupling length that gives close to 50:50 splitting ratio. As 

highlighted in Table 3.2, these PI coupling lengths are found to be 8.2 and 12.4 µm for Type I and 

Type II MMI coupler, respectively. The corresponding insertion losses (i.e.,10 log(1/τmmi
2)), the PDL 

(i.e., difference between the insertion losses of the TE and TM modes), and the birefringence (ΔNeff = 

|Neff(TE) – Neff(TM)|) of both types of MMI couplers are also given in the table. Note also, from Table 3.2 

that the Type I MMI coupler has a somewhat lower birefringence than Type II MMI coupler although 

its PDL is slightly higher. The Type I MMI coupler is subsequently employed as the 3-dB coupler in 

our PI MRR design as it has a shorter PI coupling length and slightly lower birefringence. 

3.5.  Towards a Polarization-Independent Small Size SOI Microring Resonator 

The ring is normally coupled evanescently to one or two bus WGs. A single ring coupled to two 

bus WGs is analogous to a Fabry-Perot cavity and can serve as an add-drop filter.  The major 

performance characteristics of the filter are the finesse and the maximum drop efficiency (DMAX). 

Here, DMAX is defined as the transmission to the drop port at on-resonance. The finesse is independent 

of the ring size and depends only on the intrinsic and coupling losses. In the simplest case where the 

two coupling coefficients are identical, DMAX is less than one due to the loss-induced imbalance. There 

is an intrinsic trade-off between finesse and DMAX, as the higher the finesse, the higher will also be the 

loss-induced imbalance. To achieve both high finesse and high DMAX, both the round-trip loss and 

coupling factor must be kept small, with the latter several times larger than the former. The actual 

coupling factor employed must be large enough to compensate the ring losses and yet small enough to 

maintain a reasonably high finesse.  

The actual final design of a PI MRR will depend on the silicon core h. At our specified cladding 

thickness (cf. Fig. 3.1), h = 400 nm is the minimum possible WG height in which both SM and PI 

conditions can be fulfilled, as concluded in section 3.2.1. For simplicity, we have focused in this work 

on demonstrating PI operation in a single bus MRR as shown earlier in Fig. 3.10. The design 

methology in this work can be easily extended to coupled-MRR circuits.  For concreteness, we 

assume the resonator to have a PI bend at radius of 3 µm, which is the lower limit with an acceptable 

bend loss and residual birefringence in the straight WGs, and Type I MMI is employed with a 

coupling length of 8.2 µm, having a straight section of 2 µm added to the port at each side of the 

coupler. The total cavity length is thus about 43 µm. The bend losses αTBL are 0.140 dB and 0.110 dB 

per 90o bend for TE and TM modes, respectively. For a racetrack MRR coupled to a single bus, the 

total losses per round trip including that in the MMI coupler’s will be 0.639 dB (~11%) for TE and 
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0.497 dB (~8%) for TM, which implies a total PDL of 3%. This significant round-trip loss means that 

the finesse will be quite small, but does justify the use of 3-dB MMI coupler to give 50% coupling 

coefficient, since the coupling must be larger than the round-trip loss as discussed earlier. To 

minimize residual birefringence, the racetrack cavity is designed using the PI bend’s critical width of 

0.394 µm with the corresponding etch depth of 0.37 µm. The straight WG segments in the cavity (2 

µm added to each port of the MMI coupler) with the same width as the bends, will then have a 

birefringence of around 0.006. The birefringence in the MMI coupler is slightly smaller, at 0.0047. 

The straight bus WG that connects the input and exit ports to the MMI coupler (cf. Fig. 3.10(a)) must 

also be PI and this requires a slightly different w of 0.39 µm. This may taper to 0.394 µm before 

entering the MMI coupler with a negligible effect.  

Achieving PI operation requires close-matching of the output transmission response for both 

quasi-TE and quasi-TM polarizations. The normalized transmittance power or transmission T in port 4 

(cf. Fig. 3.10b) can be easily obtained using the coupling matrix formalism presented in [27]:  

2 2 2
2

2 2 2

2 cos
,

1 2 cos

mmi ring mmi r
mmi

mmi ring mmi r

r r
T

r r

    


    

  
 
   

                                          (3.7) 

where τmmi, τr, r and δ are the coupling attenuation constant of the MMI, round-trip amplitude 

transmission factor of the cavity, the reflectivity of the coupler and the round trip phase shift, 

respectively. For the racetrack cavity that consists of the MMI, bends and straight WGs, δ can be 

expressed as the sum of the phase shift induced by each subcomponent: 

  ( ) ( )

2
,eff bend bends straightWG eff mmi mmieff straightN L N L N L




  
                          

(3.8) 

where L is the total length of each sub-component. PI operation, without considering PDL, thus 

requires similar δ for both TE and TM at all input wavelengths. For our proposed design where 

contiguous WGs have the same cross-sectional dimensions, this is generally not possible due to the 

inherent presence of residual birefringence in the straight WGs and the MMI coupler.  

Note that all the modeled WGs thus far are for SM and PI operations at the communication 

wavelength of λ = λ0 = 1.55 µm. However, it is important for the device to be PI not just at λ0 but also 

in the vicinity of the centre wavelength λ0 = 1.55 µm, especially when the FSR extends over a wide 

wavelength range for MRR with an ultrasmall radius. Moreover, as the WG dimensions are scaled 

down into the submicron regime, WG dispersion increases and must be accounted for in our design. 

The effect of WG dispersion, which is the sum of material and geometrical dispersions around λ0, is 

considered by using the group effective index ng in place of Neff when conputing δ. Group effective 

index ng is related to the WG dispersion by ng(λ) = Neff(PI Bend) – λ(dNeff/dλ + dnsi/dλ), where nsi is the 

wavelength-dependent material refractive index of silicon. The consideration of the group index is a 

more accurate representation of the polarization-dependence response as ng(λ) of the bends may no 
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longer be PI though it is PI for the Neff at λ = 1.55 µm when radius R = 3 µm for our MRR design 

above. Using ng, the round-trip phase shift can then be more accurately represented as 

   ( ) ( )

2
.g bend bends straightWG g mmi mmig straightn L n L n L




  
                      

 (3.9) 

To determine ng for our SOI rib, the material dispersion (dnsi/dλ) of silicon and the WG geometric 

dispersion (dNeff/dλ) must be determined. The material dispersion of silicon dnsi/dλ follows the 

Sellmeier equation and the Sellmeier coefficients for silicon [28] which was found to be –0.0759 µm–1 

at ambient room temperature (298 K). To calculate the geometric dispersion (dNeff/dλ), the Neff of the 

fundamental modes for the TE and TM polarizations as a function of wavelength were simulated 

using the full-vectorial BPM mode solver for both the straight and the bend WGs with w = 0.394 µm 

and d = 0.37 µm. The results for the 3 µm-radius bend and straight WGs are both shown in a single 

plot in Fig. 3.11. Geometric dispersion for each respective component can be calculated from the 

slope of the graph of Neff  against wavelength. For the bend WG, the geometric dispersion is 

calculated to be –1.0135 µm–1 for TE and –0.9426 µm–1 for TM whereas for the straight WG, it is  

–0.9665 µm–1 for TE and –0.9915 µm–1 for TM. It is clearly seen that even though the bends is PI at λ 

= 1.55 µm, as indicated in Fig. 3.11, there is, however, a ~7% difference in its geometric dispersion 

between the TE and TM fundamental modes, resulting in slight polarization dependence in its group 

index. For the straight WG, note the presence of birefringence of around 0.006 even at λ = 1.55µm in  

 
Fig. 3.11. The effective index as a function of wavelength, for straight WG and bend of R = 3 µm, 

both with d = 0. 37 µm and w = wc (bend) = 0.394 µm. At a wavelength of 1.55 µm, bend is PI while 

residual birefringence exists in the straight WG. However, the geometric dispersion (gradient of 

graph) is polarization dependent for both bend and straight WG. 

TM (Bend)

TE (Bend) 

 TE (Straight)

 TM (Straight) 
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Fig. 3.11. This agrees with our earlier results in section 3.3.1. The polarization dependence in 

geometric dispersion of ~3 % for the straight WGs is slightly lower than that of the bends WG due to 

its better optical confinement. The geometric dispersion in the MMI coupler is generally quite small 

and can be neglected [10, 11]. Hence, after taking into account of the polarization dependence of the 

group index, the bends will also contribute to the overall residual birefringence in the cavity, besides 

the straight WGs and MMI. The computed birefringence in terms of group index: 

   g g TE g TMn n n   for the various sub-components of the cavity is 0.1099 for the bend, 0.0328 for 

the straight WG and 0.0047 for the MMI coupler. The sum of the effects of these residual 

birefringences results in a round-trip phase shift difference ΔδR that induces a misalignment ΔλR in the 

resonance spectra of the TE and TM. To determine the extent of ΔλR as well as the effects of the small 

PDL present, Eq. (3.7) can be used after substituting in Eq. (3.9). 

To verify the effects of residual birefringence and PDL, numerical simulation was also carried 

out for our PI MRR design using Apollo APSS2 circuit simulator [26] that shows good agreement 

with the bench mark FDTD method [18]. The APSS2 circuit simulator generally breaks the device 

into its constituent sub-components, which are then simulated individually by suitable numerical 

methods. Each building block segment is then assigned a unique transfer function. These sub-

components are then re-assembled and their unique input-output relations are then used to calculate 

the overall transfer function T. The resulting simulated transmittance or transmission (T) spectra at 

port 4 are shown in Fig. 3.12. The effects of birefringence and dispersion in the whole device are 

taken into consideration in the simulation, giving the overall transmittance mismatch that verifies well 

with our analytic calculations based on Eq. (3.7). Important features of the simulated resonance 

spectra for our proposed PI racetrack resonator are highlighted below. 

First, the resonance spectra are close to being PI, being nearly aligned. Near λ = 1.55 µm, the 

total mismatch ΔλR in the spectra response of about 0.22 nm is due to the sum of the effects of the 

residual birefringence of each component. The net misalignment of 0.22 nm between the TE and TM 

spectra represents only 11% of the full-width half-maximum resonance linewidth, which is about 2 

nm. This small fractional mismatch implies that our proposed MRR design is adequate for PI 

operation. Note that no significant polarization conversion occurs for our PI MRR design as the 

modes remain as either quasi-TE or quasi-TM in the simulation. 

Secondly, the relatively wide FSR of 14 nm is made possible by keeping the cavity length as 

small as possible. The use of submicron high-index contrast WGs has allowed the bend radius to be 

shrunk while keeping the round-trip loss within a tolerable level. The coupling length has also been 

considerably shortened by utilizing a MMI coupler instead of the conventional waveguide-based 

directional coupler. As the FSR must be on the order of 10 nm for it to be effective as a filter in most 

coarse wavelength division multiplexing (CWDM) systems, the proposed ultra-compact device can 

thus be used for SM and intrinsic PI operations in such applications. 
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Fig. 3.12. Simulated transmission (T) spectra of the proposed single-port racetrack resonator design. 

The inset shows the proposed submicron racetrack ring resonator coupled to a 2 × 2 Type I MMI 

coupler that has a coupling length of 8.2 µm. A straight section of 2 µm is added to the port at each 

side of the MMI coupler. The straight and bend WGs in the ring cavity as well as the port WGs are all 

based on silicon-on-insulator rib WG with silicon core h = 0.4 µm, a thickness of 2 μm for both the 

upper and lower claddings of silicon dioxide (cf. Fig. 3.1), etch depth d = 0. 37 µm and width w = 

0.394 µm. The bend radius of the ring cavity is 3 µm. 

Thirdly, as the total round-trip loss is quite considerable for a submicron rib based resonator as 

compared to a channel-based resonator, the finesse and Q factor is only around 8 and 1000 

respectively, for both polarizations. Improvement to the finesse and thus the Q factor may be achieved 

by reducing the round-trip losses by introducing lateral offsets at the straight-bend junctions [20] and 

adding a series of anti-resonant reflecting optical waveguides [29] on the outside of the bends. 

However, no attempt on such loss minimization is made as our focus is to demonstrate the feasibility 

of PI operation in a MRR that is based on deeply etched SOI submicron rib waveguides. 

A final remark is that although the total PDL is around 3% in this work, which results in the TE 

and TM spectra to have slightly different T, actual device fabrication that causes sidewall roughness 

may increase the total PDL to a level high enough to impact PI operation as the TE mode will 

generally have higher sidewall roughness loss. However, such sidewall roughness loss can generally 

be reduced as demonstrated in [16, 17]. Also, other schemes such as WG width optimization and 

mirror bends [30] can be used to further reduce the PDL, which will improve the PI operation. In 

addition, the total PDL could be eliminated by balancing the bend losses with the coupling into the 

cavity. For instance, the higher TE bend losses can be compensated for by using a slightly higher TE 

coupling factor than the TM. We will not further reduce the PDL in this work as the focus of this 

work in to achieve PI in terms of the phase response.  

Quasi-TE

Quasi-TM
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3.6.  Fabrication Tolerance Analysis 

The miniaturization of MRR is not only restricted by the stringent PI conditions and bend losses 

but also relies heavily on the process technology. Fabrication imperfection generally produces 

dimensional uncertainties in the actual device. A primary concern, then, is to determine how wide the 

fabrication tolerances may be, without severely affecting the desired operating performance. In this 

section, the fabrication tolerance of our proposed PI MRR design is looked into. We will, in 

particular, investigate the effects of small changes in the geometrical parameters, etch depth d and rib 

width w, of the WGs of the racetrack resonator from their optimal values on the performance 

variation. We will not look into the fabrication issues of MMI as it has been shown that it generally 

has good fabrication tolerance [31] and low birefringence [11].  

We have computed the birefringence of the fundamental modes of the straight WG as a function 

of w for different d in Fig. 3.13 for our WG design of h = 0.4 µm, where only the SM dimensions are 

shown. The results in Fig. 3.13 show that it might be more advantageous to utilize wider WGs as they 

will result in greater flexibility during fabrication. For example, at d = 0.39 µm, introducing an etch 

depth uncertainty of ± 20 nm gives a change in birefringence ΔNeff  of 2.09 10–2 for w = 0.4 µm. 

However, for a larger WG width of w = 0.9 µm at the same d and uncertainty, ΔNeff is reduced to 3.02 

10–3. In addition, the effect of width uncertainty at a fixed d is also smaller for wider WGs as it is 

evident in Fig. 3.13 that the gradient of the curves decreases and stabilizes as w increases. If we 

consider d = 0.39 µm again, introducing an width uncertainty of ± 20 nm gives a change in 

birefringence ΔNeff  of 2.32 10–2 for w = 0.4 µm whereas ΔNeff  is reduced to 9.29 10–4 for the larger 

w of 0.9 µm. Any uncertainties in d and w will have little impact on the modal birefringence for wider 

WG widths because the TE mode is well-confined under the rib region [12]. Thus, wider WGs have 

better fabrication tolerance.  

The points of intersection with the x axis are the critical widths wc(straight) that indicated the ZBC, 

which can be used for our PI MRR. However, these critical widths are rather narrow and it might be 

difficult to use them as WGs with narrower width have smaller fabrication tolerances, as concluded 

above. This suggests that our design for PI WGs might be difficult to implement. However, in 

general, any fabrication related dimensional uncertainties will meet the criteria for PI ring resonator 

operation if the resultant mismatch ΔλR is still within 15% of the 3-dB resonance bandwidth [11]. To 

fulfill the above criteria for ΔλR, the allowed uncertainty in birefringence ΔNeff for the ZBC 

dimensions is found to be around ± 0.009. For our modeled MRR, the PI input bus WG is designed at 

wc(straight) = 0.39 µm at the corresponding etch depth of 0.37 µm. Using Fig. 3.13, we can determine 

that the largest possible fabrication tolerances for this PI WG design are about d ± 3% and w ± 4%, in 

order for the birefringence uncertainty to be within ± 0.009. The straight WG in the racetrack cavity 

has w of 0.394 µm, which can be adjusted to wc(straight) = 0.39 µm with a negligible effect and thus has 

similar fabrication tolerances as the input bus straight WG. Similarly, the bends with a PI width of 
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Fig. 3.13. Birefringence of the fundamental modes of the straight WG as a function of width w for 

various etch depths d, at fixed h = 400 nm.  

0.394 µm can be adjusted to wc(straight) = 0.39 µm, giving a residual birefringence of 0.005. The 

fabrication tolerances of the bends at R = 3 µm with wc(straight) = 0.39 µm can also be determined by a 

similar approach of plotting the birefringence curves and are found to be slightly smaller at about ±2% 

for both d and w in order to satisfy our defined PI criteria. To date, low-loss SOI rib fabrication using 

deep UV lithography has made it possible to control the WG dimensions within ±1% [32]. This would 

suggest the possibility of realizing our PI MRR design. With better process controllability and 

improved accuracy in fabrication technology, better PI performance can be achieved.  

It must also be mentioned that the bend losses are dependent on the cross-sectional dimensions 

of the WG. Hence, any fabrication induced dimensional uncertainties in the cross section of the WG 

will also affect the bend losses at any fixed bend radius R, which in turn might increase the minimum 

bend radius (MBR) that could be used. However, we have found that the MBR generally increases by 

a factor of ~2 when d is decreased by 0.1 µm and by a factor of ~3 for a similar decrement in w for 

our WG design. This would imply that with an uncertainty of ±1% in d and w, if deep UV lithography 

is used, the MBR would be relatively unaffected.  

3.7. Summary and Significant Contributions of this Research Work 

In summary, we have demonstrated the feasibility of realizing MRRs of sub-micron cross-

sectional dimensions with a small radius of a few microns that have substantially reduced polarization 

sensitivity while maintaining the essential SM and low-loss conditions. We have also provided an 

approximate but reasonably accurate theoretical lower size limit of the MRR for simultaneous SM and 

PI operations, at our considered upper oxide cladding thickness and using the more robust deeply 

etched rib WG. To achieve greater size miniaturization, stress engineering [4, 15] could be employed 

d = 0. 31 µm 

d = 0. 33 µm 

d = 0. 35 µm 

d = 0. 37 µm 

d = 0. 39 µm

Birefringence loci for 
various Etch Depths, d 
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in conjunction to our suggested proposal. Also, slanted WG sidewalls with varying slant angles can be 

used to alter the SM and PI conditions [15]. These schemes are not considered in our work as our 

focus is to determine the extent of PI MRR size miniaturization in an approximate but yet reasonably 

accurate and realistic manner, in the absence of advanced external birefringence compensation 

schemes. It is generally not possible to determine an exact theoretical lower size limit as many factors 

need to be taken into account and unforeseen contingencies might also arise. Our proposed heuristic 

formulation would thus be sufficient for most practical applications. In addition, if further size 

miniaturization is required, novel waveguides, like the slot waveguides [14, 33], can be used in the 

design of the PI MRR.  

Our design approach to achieve SM and PI operations for compact resonators is modular and 

hierarchical. We first show how PI and SM conditions can be achieved for straight waveguides using 

deeply etched ribs, followed by how birefringence-free and low-loss bends and PI MMI coupler can 

be designed as key components for a bus-coupled resonator. All the PI components are then integrated 

into a single-bus filter configuration and the transmittance spectra are simulated for both TE and TM 

polarizations. The results for a specific design where the core thickness is 0.4 µm show that a 

resonance mismatch of about 0.22 nm, which represents only 11% of the FWHM linewidth of 2 nm, 

and a FSR of 12 nm can be achieved. This small polarization dependence represents a large 

improvement over what can usually be achieved with the conventional PI resonators [3, 4, 10, 11] that 

have much larger device size (height and width ≥  1 μm, bend radius ≥  30 μm) and very small FSR 

(in the range of pico-meter). The general conclusion is that compact and intrinsically PI resonator 

devices can be achieved as long as the components have very small birefringence or are PI. The 

intrinsic PI device is relatively simple and compact compared with the extrinsic PI device that 

requires more complex circuit designs based on polarization diversity [1, 2] or polarization 

management architecture [34]. The main limitations of the intrinsic PI design are: (i) The minimum 

bend radius for PI operation is limited to about 3 µm (for the given core thickness and cladding 

thickness) as the total bend loss and residual birefringence would increase exponentially for smaller 

bend radius; (ii) the dimensions of the straight and bend waveguides require very stringent fabrication 

control as any deviation will throw the birefringence off balance; and (iii) the coupling factor between 

the bus and the resonator is restricted to 50% as the 3-dB MMI coupler, or for that matter any other 

coupler, is generally not PI for an arbitrary coupling coefficient. These limitations imply that the 

resonator device may have a low finesse due to a relatively high loss, and a small FSR due to 

relatively large cavity size. An approach to enhance the FSR of a filter is to use the vernier effect by 

cascading several MRRs together [35]. With these extensions, our theoretical design approach could 

be applied to many more applications using resonators with bend radius ≥  3 µm that satisfy the PI, 

SM and low-loss requirements simultaneously. 
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Finally, note that this research work has been published in the following journal and conference 

proceeding: 

 Thomas Y.L. Ang, Soon Thor Lim, Shuh Ying Lee, Ching Eng Png and Mee Koy Chin, 

“How small can a micro-ring resonator be and yet be polarization independent?” Appl. Opt. 

48, 2821-2835 (May 2009). 

 Thomas Y.L. Ang, Soon Thor Lim, Shuh Ying Lee, Ching Eng Png and Mee Koy Chin, 

“Polarization Independent micro-ring resonators on submicron Silicon-on-Insulator (SOI) rib 

waveguides,” IEEE 5th International Conference on Group IV Photonics, September 2008. 

Recently, in July 2011, the above published journal paper has been cited in [36], which looked 

into the design and fabrication of a TE-TM polarization convertor based on the SOI platform. This 

highlights the significance of our research work in this chapter. 
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Chapter 4 

Traveling Wave Microresonators 

(TWMRs) Based Coupled-Resonator 

Optical Waveguides: Photonic Bandgap 

Engineering Using Periodic and Quasi-

Periodic Orders  

4.1.  Introduction and Research Objectives 

We have in chapter 3 looked into the single-mode and polarization-independent behaviours in a 

single microring resonator, which is one particular class of traveling wave microresonators (TWMRs). 

Essentially, a TWMR is a compact waveguide realization of a Fabry-Perot cavity, with the capacity of 

possessing whispering gallery modes (WGMs) with high-quality Q factor and small modal volume. 

By coupling various TWMRs together, many interesting phenomena can occur [1-3] and have been 

used in various applications such as optical filtering [4-7], delay lines [8] and optical buffering [9]. If 

the number of such coupled cavities is large, it can be regarded as a new type of waveguide known as 

coupled-resonator optical waveguide (CROW) [1], in which light propagates via photons hopping 

from one tightly confined mode to the neighboring one due to the weak interaction between them. 

Studies on TWMR-based CROWs have focused mainly on the properties of the photonic bands for 

slowing light [1-3] and optical filtering [4-7], with only some coverage [5, 7, 10, 11] on the 

characteristics of the photonic bandgap (PBG) structures. The PBG structures can generally be 

modified by breaking the lattice periodicity through the introduction of defects to form disorder in the 

periodic system and this will generate localized states within the PBG. Such a process is commonly 

known as PBG engineering. The introduced defect allows light to be localized at the defect cavity, 

forming a localized mode or defect mode. When such a defect mode is coupled to the propagating 

mode in a finite structure, a high-Q transmission appears at the corresponding resonant frequency. 

The nature of light localization via implementing disorder in a periodic system has been widely 
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explored in photonic crystals [12, 13] and has been recently looked into in ring resonator arrays [10], 

where the effect of a single defect on the PBG structures was investigated.  

In this work, we provide an analysis of the effects of PBG structures of direct TWMR-based 

CROWs [3], whereby all the cavities are directly coupled to one another (cf. Fig. 4.1) in the presence 

of multiple defects of similar size. Using such defects, which are size-tuned cavities, we will illustrate 

how PBG engineering can be achieved by implementing either periodic or quasi-periodic order in 

TWMR-based CROW systems in contrast to using disorder [10-13]. The defects are introduced at 

specific locations in the CROW so that together with the regular resonators, which are size-untuned 

cavities, there will be either periodic or quasi-periodic order in the final resonator arrangement of the 

cascade of TWMRs. This is in contrast to traditional TWMR-based CROWs [14] whereby periodic 

order is theoretically implemented by cascade of cavities of similar size, without defects. Note that 

strictly speaking, the normal distribution of defects in real systems is generally neither periodic nor 

quasi-periodic but random [15]. However, for ease of illustration, we loosely use the term “defects” 

throughout this theoretical work to refer to the size-tuned cavities or resonators intentionally 

introduced in the TWMR-based CROW to form either a periodic or quasi-periodic order in the 

resonator arrangement. Such intentional defects can be created either by physically fabricating 

resonators of different sizes or by using active tuning, such as thermal heating [16], to phase tune the 

resonators. A combination of both schemes can also be employed. For the periodic order case, we 

explore how size tuning the defect in each unit cell affects the PBG structures via modes localization. 

It will be shown that (1) the coupling between the periodic size-tuned defects results in mode splitting 

of the single cavity defect mode into multiple distinct localization states that lead to the formation of 

mini-defect bands and mini-PBGs in what was formerly a single PBG in the original defect-free 

CROW, and (2) varying the coupling strengths creates a PBG at each location of resonance in the 

photonic bands.  

In addition, deterministic aperiodic (AP) order in a TWMR-based CROW system is also looked 

into in this work. Traditionally, implementing disorder in a periodic system has been employed to 

achieve light localization, having its origin in the Anderson localization of electron waves in solid- 

state physics. However, it has been found that wave localization can occur not only in disordered or 

absolutely random systems but also in deterministic AP ordered ones [17]. Such AP systems behave 

much like disordered ones but are constructed based on a deterministic procedure and thus possess 

order without periodicity. In photonics, deterministic AP order has already been looked into in optical 

multi-layers [18, 19] and photonic crystals [20-22]. Here, we study the nature of localization using 

one dimensional deterministic AP order in TWMR-based CROWs. There are different classes of 

deterministic AP order, mainly quasi-periodic (QP) and fractal. The main difference between QP and 

fractal-ordered lattices is that the former exhibits two or more incommensurate periods while the latter 

does not [17-19, 23]. To achieve a strong connection with the theme of the work in the first part where 
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the effects of periodic order are studied, we will only analyze deterministic QP order as 

mathematically, quasi-periodic functions can be classified as almost periodic functions [23]. In our 

work, a QP TWMR-based CROW is designed by cascading together resonators of two different sizes, 

namely the defect and regular resonators, according to simple rules based on the Fibonacci series, 

thereby encoding a one dimensional QP order in the resonator arrangement. Note that QP order of 

higher dimensionality can be generated by using photonic crystals in which identical dielectric 

cylinders are arranged according to specific rules in the absence of defects, as demonstrated in [19, 

20], unlike the case of our TWMR-based Fibonacci CROW. It will be shown here that the quasi-

periodicity of the Fibonacci CROWs can also generate mini-PBGs and localized states in what was 

formerly a single PBG of a CROW with identical resonators. This usage of Fibonacci sequences in the 

design of TWMR-based CROW results in the appearance of a single high-Q localized state that 

transits to a mini-band within a wide PBG as the number of unit cells increases. 

We use the transfer matrix formalism [14] in our analysis, which is physically more convenient 

over the tight binding approximation [1] and the coupled mode theory [4, 24] as it can better represent 

the physical parameters such as cavity size and can be easily coupled with the Bloch theorem to study 

the PBG structures of periodic systems. In section 4.2, we use the transfer matrix formalism to 

analyze the PBG structures of periodic CROWs in the presence of defect size tuning as well as 

coupling tuning. The Fibonacci class of quasi-periodic TWMR-based CROWs is then studied in 

section 4.3. Throughout this work, all the resonators are assumed to be lossless so as to better focus on 

the transfer matrix analysis. We only discuss the effects of losses in section 4.4. The transfer matrix 

method is then compared with the finite-difference time domain (FDTD) simulation in section 4.5. 

Finally, we conclude, highlighting important results and possible extension of this work as well as 

discussing possible applications of the proposed ideas in section 4.6.  

4.2.  CROWs with Periodic Order 

4.2.1.  Coupling Matrix Formalism 

The schematic of the CROW with periodic defects is shown in Fig 4.1. We label the layout of 

the unit cells as n = 1, 2, 3…N and the component resonators in each cell as n = 1, 2, 3…N’. In this 

case in Fig. 4.1, N is taken to be arbitrarily large while N’ = 2. The component resonators in each unit 

cell are also termed as intra-resonators (labeled A and B) and the ratio of their cavity lengths is 

defined as the size tuning factor γ = LB/LA = δB/δA, where δA and δB are, respectively, the round-trip 

phase shift in resonators A and B. Here, resonator A is considered as the regular resonator and B as 

the “defect” resonator. The input and output fields to the nth lattice are denoted, respectively, as (an-1, 2, 

dn+1, 1) and (an, 2, dn, 1), where the first number in the subscript refers to the unit cell while the second 

number refers to the intra-resonators (1 for resonator A and 2 for resonator B). The fields in the bus 

waveguides follow the conventions as that of the unit cell as shown in Fig. 4.1. Within each unit cell, 
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Fig. 4.1. A traveling wave microresonator-based CROW with N mutually coupled unit cells, 

consisting of defect B at periodic locations.   

the input field to the 1st intra-resonator is denoted as dn, 2, while that for the 2nd intra resonator is an, 1. 

Following the analysis in [24], each coupler is treated as a partially transmitting mirror with real 

transmittivity (or amplitude cross-coupling cofficient) κ and reflectivity (or amplitude through-

coupling coefficient) r. We then denote (rintra, κ intra) as the coupling scheme between A and B in each 

unit cell, and (rinter, κ inter) as the inter-unit cell as well as the bus-to-unit cell coupling. Using the 

nomenclature in Fig. 4.1, the coupling mechanism from (a0, 2, d1, 1) to (b0, 2, c1, 1), is represented as  

  0, 2 1, 1 0, 2 1, 1 ,
T T

b c g a d                                                  
(4.1)                           

where g11 = g22 = –rinter, g12 = g21 = jκ inter and j = (–1)1/2. The fields in the first intra-resonator in the 

first unit cell can be written as 

 
1/ 2 1/ 2

1, 1 1, 1 1 1 1, 1 1, 1 1 1( ) exp( / 2),   ( ) exp( / 2),a c j d b j                                  (4.2) 

where τn is the intensity attenuation factor due to losses for one round trip in the nth intra-resonator (n 

= 1 for intra-resonator A and 2 for intra-resonator B) of each unit cell. Using (4.1) and (4.2), it can be 

derived that 

           , 2 , 2 -1, 2 -1, 2 -1, 2 -1, 2[  ] [ 2][ 1][  ] [ ][  ] ,T T T
n n n n n na b S S a b U a b                                (4.3) 
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1 2  

 ,  ,  ,  ,

               exp( / 2), exp( / 2).

n n n n n n

n n n n

Sn B j Sn r B j Sn r B j Sn B j

B j B j

   

   

     

  
 

Note that Snlq = S1lq or S2lq denotes for the individual entry of either the matrix [S1] or [S2], where the 

subscripts l (= 1 or 2) and q (= 1 or 2) are used to represent the rows and columns of each matrix, 

respectively. For the reflectivity rn, when n = 1, then rn = rinter and if n = 2, rn = rintra and likewise for 

transmittivity κn. Matrices [S1] and [S2] are the intra-resonator translation matrices that relate the 

complex amplitudes (a, b) between each intra-resonator, while matrix [U] is the unit cell translation 

matrix that relates the complex amplitudes (a, b) in one resonator of a unit cell to those of the 

equivalent resonator in the next unit cell. Matrix U is unitary if the intra-resonators and the couplers 

are lossless. For N unit cells, the field amplitudes (aN, 2, bN, 2) at the last resonator B in the Nth lattice 

can be obtained by iterating the unit cell translation matrix N times via the Chebyshev polynomials 

[25]: 
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             (4.4) 

where x = cos φ = ½(U11 + U22), Ulq is the element or entry of the unit cell translation matrix [U] 

and ' ( ) sin[( 1) ] sinNC x N     are the Chebyshev polynomials of the second kind. Note that l (= 1 or 

2) and q (= 1 or 2) denotes the rows and columns of the matrix [U]. 

4.2.2.  Band Structures of Infinite CROWs with Periodic Defects 

The photonic band of an infinite CROW with periodic defects can be derived by implementing 

the Bloch theorem to the unit cell transfer matrix in Eq. (4.3). For a periodic structure of infinite 

length, the fields are periodic at the lattice constant Λ: 

 , 2 , 2 1, 2 1, 2 exp( )  ,
T T

n n n na b jK a b                                                      (4.5) 

where K is the Bloch wave propagation vector. Combining (4.5) with (4.3) gives 

[ ] exp( ) 0Det U i I   , where I is the identity matrix and Det is the determinant. Noting that 

U11U22 – U12U21 = 1 (for unimodular matrix [U]) and cos ϕ = ½(U11+U22), it can be evaluated that 

  2

11 12 11 12exp( ) 0.5( ) 1 0.5( ) cos sin .j U U j U U j                          (4.6) 

The characteristic equation of the eigenvalue problem of Eq. (4.6) for the lossless case can be 

expressed as 

     1
11 12 1 2 1 2cos( ) 0.5( )  cos 0.5( ) cos 0.5( )  ,u uU U r k                         (4.7) 

where ru = rinter . rintra and κu = κinter . κintra. Eq. (4.7) gives the dispersion relation for a CROW of 

infinite length, with size-tuned periodic defects and is only satisfied if the left most cosine term is 

between –1 and 1. For values outside this range, K is purely imaginary and the corresponding 

frequency range forms the PBG. We now use Eq. (4.7) to analyze the effects of periodic defects on 

the PBG structures of CROWs in the absence of losses. 

4.2.3.  Results and Discussions 

(a)   Effects of Size Tuning the Periodic Defects 

In this section, the effects of size tuning the periodic defects on the photonic bands and PBG 

structures of an infinite CROW with unit cell (AB) are looked into. For simplicity, we first consider 

only small integer values of the tuning factor, γ = 1, 2, 3… (i.e., resonator B is an integer multiple 

larger than resonator A), and subsequently non-integer values. Displayed in Fig. 4.2 are the dispersion 

diagrams for an infinite CROW of different integer size tuning γ  of the defect. All the resonators have 

identical coupling and are assumed to be lossless. As an example, we use κ2
inter

  = κ2
intra

 = 0.7 for Fig. 
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4.2. The resonance order m is defined as m = f /ΔfFSR = δ/2π, where f is the eigen-frequency, ΔfFSR 

denotes the free spectral range and we refer to δA simply as δ for the round-trip phase shift for the 

size-untuned (or regular) resonator A throughout this work. In the absence of losses, K is purely real 

at the photonic bands, which is indicated by the solid curves, and is strictly imaginary at the PBGs, 

represented by the shaded regions in the dispersion diagrams. Initially, when γ = 1 that corresponds to 

LA = LB, the wave propagation takes place within the photonic bands centered at the resonance order 

of integer m. The PBGs, where wave propagation is forbidden, are centered at half-integer m. Tuning 

γ to higher integer values simply increases the number of PBGs. For integer values of γ, the number of 

PBGs within the vicinity of δ = π(2m + 1) is also γ. In Fig. 4.2, we show the full sequence of PBG 
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                                  (a)                                         (b)                                         (c)                                         (d) 
 

Fig. 4.2. The dispersion diagrams of infinite CROW, showing the regions of PBG (shaded) and photonic 

bands (solid curves) for different integral value of the defect size tuning factor γ: (a) γ = 1, (b) γ = 2, (c) γ 

= 3, and (d) γ  = 4. Note that PBG stands for photonic bandgap. 

for = 1 to 4 within the range m = 0.5 to 2.5. Observation of the behaviors of these PBGs shows the 

following general principles. First, due to the equal number of resonators A and B, the sequence of 

PBG is always symmetrically centered at m = 1.5, the half-integer value being required by the anti-

resonance condition for resonator A. Then within the sequence, each of the PBG is roughly located at 

a value of m such that m is a half-integer. This is the anti-resonance condition for resonator B. For 

example, for = 3, the possible m values within the range 1 to 2 are m = 7/6, 9/6 = 1.5, and 11/6. 

Similarly, for = 4, these values are m = 9/8, 11/8, 13/8 and 15/8. However, due to the mutual 

interaction between resonators A and B, the PBGs are not exactly centered at these values but “pulled 

in” slightly towards the center (m = 1.5). These PBGs are not of equal widths, with those near the 

center being much broader. 
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This general principle applies also for non-integer , such as when ranges between 1.5 and 2.5 

(given the way we have defined resonators A and B, it is not necessary to consider the case of < 1). 

We would find that the most obvious difference is that the PBGs are no longer distributed evenly 

about the half-integer m points δ = π(2m + 1), but may shift up or down as decreases or increases 

from the integer value. The location of each PBG is still given roughly by the anti-resonance 

condition m= p + 1/2 (where p is an integer). The physical picture of the formation of these PBGs 

will be more clearly illustrated using the case of finite CROW in section 4.2.4. 

(b)  Effects of Tuning the Intra and Inter-Lattice Coupling Strengths 

In this section, we look into the effects of tuning the coupling strengths such that κ2
intra

 ≠  κ2
inter. 

For a CROW with resonators that have identical coupling (κ2
intra = κ2

inter = κ2), the width of the 

primary bands centered at δ = 2mπ is proportional to the interaction, κ2. When the intra-resonator and 

inter-unit cell coupling strengths are different, i.e. κ2
intra ≠  κ2

inter, it is found that a gap opens up, 

forming a PBG in the middle of each primary band at integer resonance order m, even without size 

tuning, i.e. γ = 1. As shown in Fig 4.3, when |κ2
inter 

 – κ2
intra| = |Δκ| increases, the photonic bands shift  

 
                                                         (a)                                                                                             (b) 

Fig. 4.3. The dispersion diagrams of infinite CROW for γ = 1: (a) Weaker inter-unit cell coupling (κ2
inter < 

κ2
intra): κ

2
inter is fixed at 0.3 while varying κ2

intra from 0.3 to 0.5, 0.7 and 0.9. (b) Stronger inter-unit cell 

coupling (κ2
inter > κ2

intra): κ
2
inter is fixed at 0.9 while reducing κ2

intra from 0.9 to 0.7, 0.5 and 0.3. Arrows 

indicate how photonic bands move as | Δκ | increases, where Δκ = κ2
inter

 – κ2
intra.  

in the direction of the arrows and PBG forms and widens within each resonance location of δ = 2πm. 

The width of the PBG formed is proportional to the absolute magnitude of Δκ and is independent of 

its sign (i.e whether κ2
intra or κ2

inter is larger). The sign only dictates how the photonic bands move as 
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|Δκ| changes. A negative (positive) sign signifies a weaker (stronger) κ2
inter relative to κ2

intra and is 

related to an outward (inward) movement of the photonic bands from the locations of the integer 

resonance order m as |Δκ| increases. Note that in Fig 4.3 we have varied κ2
intra while keeping κ2

inter
 

fixed. Similar band diagrams are obtained if κ2
inter is instead varied with a fixed κ2

intra but with the sign 

of Δκ reversed. An intuitive insight on the dependence of the movement of the photonic bands on Δκ 

and the formation and subsequent widening of PBG at resonance when |Δκ| changes are given in the 

next section in terms of the spectral properties of a single unit cell of (AB). 

4.2.4.  Band Structures of Finite CROWs with Periodic Order 

(a)  Matrix Analysis of Finite CROWs 

The dispersion diagrams shown in Figs. 4.2 to 4.3 based on the dispersion relation of Eq. (4.7) 

strictly apply only for Bloch-wave propagation in an infinite periodic CROW. Any actual physical 

realization of CROW is of finite length. The exact dispersion relation for a finite CROW has been 

derived using the tight binding approximation in [26] and the transfer matrix method in [27]. 

However, it is not necessary to use the exact dispersion relation when modeling finite CROW as the 

general features of the transmission and phase responses of a finite CROW approximately satisfy the 

photonic band properties of the dispersion diagrams for an infinite one. The transmissivity TT of the 

drop port of the finite CROW is defined as TD = cN+1, 1/a0, 2 and can be derived by employing Eq. (4.3) 

and the identity cN+1, 1 = jκaN, 2, where κ = κinter, and assuming that dN+1, 1 = 0, which gives 

 1,1 0,2 int int 12 22exp( ) .D N D er erT c a j j r G G                                        (4.8) 

Making use of the Chebyshev polynomials in Eq. (4.4), the transmissivity expression of Eq. (4.8) for 

the general case of N unit cells, each consisting of dual asymmetrical resonators, can be expressed as 

     2
int 3 int 4 5 6 7 3sin( ) sin( ) sin 1 ,D er u er u uT j B r B r B B B N B N                     (4.9) 

  
     
  

3 2 4 1 2

5 1 2 6 1 2

7 1 2

exp( ),                     exp 0.5 ,  

exp 0.5 ,    exp 0.5 3 ,

exp 0.5 3 .

B j B j

B j B j

B j

  

   

 

   

    

 

 

We use Eqs. (4.8) and (4.9) to analyze the transmissivity and corresponding phase response of a finite 

CROW for different defect size tuning in section 4.3.3.   

 (b)  Formation of Localized Defect Bands in Finite CROWs 

We first give a physical picture of the formation of mini-passbands or defect bands due to the 

presence of multiple periodic defects by using a CROW with 7½ unit cells, i.e., ((AB)7A), with each 

cell having 2 resonators, all with identical coupling strength κ2 = 0.7. The defect resonator, denoted as 
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D, has twice the cavity size of regular resonators (i.e., γ = 2) for this illustration. Initially, when the 

CROW contains only 1 defect, a single high-Q defect mode is localized in the PBG as shown in Fig. 

4.4(a).  

As the number of periodic defects in the CROW increases progressively, the localized states on 

separated defects interact with one another and their mutual coupling causes the splitting of the 

original degenerate eigenmodes. The initial splitting of the single cavity defect mode into symmetric 

and anti-symmetric modes is analogous to the splitting of degenerate atomic levels into bonding and 

anti-bonding orbitals when 2 atoms interact in a diatomic molecule. The extent of this splitting is 

proportional to the overlap of the localized eigenmodes of the periodic defects. The overlapping of  
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                                (a)                                            (b)                                           (c)                                          (d) 

Fig. 4.4. The transformation of the state localization within the PBG from a single high-Q resonant state 

to a mini-defect band as the number of periodic defects in the CROW is increased in the following 

sequence: (a) {0 0 0 0 0 0 0 D 0 0 0 0 0 0 0}, (b) {0 0 0 0 0 D 0 D 0 D 0 0 0 0 0}, (c) {0 0 0 D 0 D 0 D 0 

D 0 D 0 0 0} and (d) {0 D 0 D 0 D 0 D 0 D 0 D 0 D 0}. The resonator defect is represented as D with 

twice the cavity size as the size-untuned or regular resonator 0, i.e., γ = 2. Note that δ is the round-trip 

phase shift for the size-untuned resonator A. 

the localized states will induce the formation of a defect mini-band in what was formerly a PBG in the 

original defect-free CROW. The final defect band in Fig 4.4(d) is thus the result of the N-fold splitting 

of the frequency f0 (which corresponds to δ/2π = 1.5 in Fig. 4.4) of the defect resonator into a band of 

frequencies f. The frequencies f  <  f0 correspond to the symmetric defect modes while f  >  f0 are the 

anti-symmetric defect modes. Note that all the defects in Fig 4.4 have γ = 2. If the defects have other 

integer sizes, such as γ = 3, 4 .., then there will be (γ – 1) mini defect bands, each with N-fold splitting, 

as we shall see in the next section. This physical picture of the formation of defect bands via coupled 

defect states can generally also be applied to the case of quasi-periodic CROWs in the subsequent 
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section, as it will then be observed that there is strong periodic correlation in the quasi-periodic 

resonator sequence. Besides this work, recent works on quasi-periodic structures in [19-22] and 

references therein have also given much detailed treatment on the physical origins of the localized 

states in deterministic aperiodic-ordered systems. 

4.2.5.  Results and Discussions 

(a)  Effects of Size Tuning the Periodic Defects in Finite CROWs 

We consider the effect of size-tuned defects on the case of a periodic CROW structure with 7½ 

unit cells: {(AB)(AB) …. A} for κ2
intra = κ2

inter = κ2 = 0.7 and r2
intra = r2

inter = r2
 = 0.3. Fig. 4.5 shows 

the transmission and phase responses of this CROW configuration for each specific value of γ  at 1, 2 

and 3. It can clearly be seen that the general features of the amplitude responses of this finite CROW 

agree well with the dispersion diagrams for an infinite CROW as shown in Fig 4.2. Size tuning the 

defects γ such that γ is an integer introduces an equal number γ of mini-PBGs instead of a single wide 

PBG. In between the mini-PBGs are passbands with N-fold splitting because of mutual coupling  

between the N defects (where N = 7 for the example in Fig. 4.5). Likewise, there are N-fold ripples, 

each of π phase shift, in the corresponding phase response at δ = π(2m+1). Note that δ is the round- 
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Fig. 4.5. Transmissions and corresponding phase responses for a finite CROW with 7½ unit cells for 

different defect size tuning factor of γ = 1 (leftmost plots), 2 (central plots) and 3 (rightmost plots) at 

κ2
intra = κ2

inter = κ2 = 0.7 and r2
intra = r2

inter = r2
 = 0.3. At γ  = 1, there is no defect and thus only 1 wide 

PBG is formed. Tuning  γ  above 1 forms mini-PBGs and mini-defect bands in what was formerly a 

single wide PBG of the original CROW with γ = 1. Note that δ is the round-trip phase shift for the size-

untuned resonator A. 
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trip phase shift for the size-untuned resonator A. Strictly speaking, the stopbands in a finite CROW 

are only approximately PBG as they exhibit only near-zero amplitude. They occur near where the 

anti-resonance condition is satisfied by resonators B, i.e, mγ = (p + 1/2) (where p is an integer). For 

example, if γ = 3, then m = 7/6, 9/6 (1.5), and 11/6. However, only at m = 1.5 are resonators A also at 

anti-resonance, hence this PBG is the widest and “deepest”. 

Similarly, the passbands in between the PBGs occur where some or all of the resonators 

resonate, i.e., at frequencies where mγ is an integer. For example, for γ = 3, they occur at m = 1, 4/3 

(1.33), 5/3 (1.67) and 2. However, only at m = 1 and 2 are all resonators in resonance and hence these 

passbands are broadest and have 2N resonant peaks, while the other two passbands are associated 

mainly with resonators B and thus narrower with only N peaks. They may be called the “defect” or 

secondary passbands and together with the passbands at δ = 2mπ, which we term as primary 

passbands, give a multi-passband transmission spectrum. 

The transmission of a 7½ unit cells is also illustrated for non-integer γ at γ = 2.3 and 2.7, as 

shown in Fig. 4.6. The primary passbands and defect bands are no longer fixed at δ = 2mπ and δ = 

π(2m+1) but generally move down the wide PBG when γ is tuned up from 2.3 to 2.7. This is in 

agreement with the characteristics of the dispersion graph for an infinite CROW shown below the 

transmission graph in Fig 4.6. Mini-PBGs are also formed within the wide PBG. The width of these 

mini-PBGs can generally be tuned by adjusting the non-integer γ that controls the number and 

position of the defect bands. Non-integer γ thus provides a more dynamic tuning scheme in contrast to 

the integer γ.  
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Fig. 4.6. Transmission (top graph) for a CROW with 7½ unit cells at κ2

intra = κ2
inter = κ2 = 0.7 and r2

intra = 

r2
inter = r2

 = 0.3 for non-integer size tuning factor γ = 2.3 and 2.7, which is in good agreement with the 

dispersion diagram (bottom graph) of an infinite CROW. Arrows indicate directions of movements of 

defect bands with increasing γ. Similar leftward translations also apply to the primary bands. Note that δ 

is the round-trip phase shift for the size-untuned resonator A. 
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 (b)   Effects of Tuning the Coupling Strengths on the Transmission at Resonance 

The effect of tuning the coupling strength in a finite CROW is presented here for two cases: 

κ2
intra = κ2

inter
 and κ2

intra ≠ κ2
inter. To focus only on coupling tuning without the complication of size 

tuning, we first assume γ = 1 in Fig. 4.7. If κ2
intra = κ2

inter, then all the resonators are identical and also 

coupled identically and the whole array behaves as a single CROW.  The passband at resonance order  
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                                                (a)                                                                                           (b)                                                     

Fig. 4.7. The effects of varying coupling strengths on the primary passbands centered at integer resonance 

order δ/2π (at resonance) for a CROW with 7 unit cells for 2 different cases: (a) and (b). In (a), all the 

resonators have similar coupling strength, i.e., κ2
intra = κ2

inter = κ2; κ2 is tuned from 0.7 to 0.5 and 0.1. In 

(b), κ2
inter  ≠  κ2

intra; κ
2
inter is fixed at 0.3 while tuning κ2

intra from 0.3 to 0.5 and 0.9. Note that δ is the 

round-trip phase shift for the size-untuned resonator A. 

m = 1 is shown in Fig. 4.7(a) for a CROW with 7 unit cells. Increasing κ2 enhances the mutual 

interaction between the resonators and results in broader 2N-fold splitting of the resonance. The case 

of κ2
intra  ≠  κ2

inter is shown in Fig. 4.7(b) for κ2
intra > κ2

inter. It can be observed that as | κ2
inter

 – κ2
intra| = 

|Δκ| increases, the primary passband is split into 2 smaller passbands separated by a mini-PBG. The 

mini-gap can be widened by simply increasing the intra-resonator coupling relative to the inter-unit 

cell coupling. The origin of this mini-PBG can be understood as follows: By increasing the difference 

between k2
inter

 and κ2
intra, the CROW is no longer a chain of identical resonators but becomes a chain 

of unit cells, each containing a two-coupled-resonator system, and as the coupling between the 

resonators increases, the characteristic feature of a strongly-coupled two-resonator system, which is a 

split resonance with increased splitting, becomes more and more dominant. This additional feature 

will arise even for the case γ = 2, 3,…(integer values). A similar effect can be achieved by decreasing 

κ2
inter while keeping κ2

intra fixed. In this case, decreasing κ2
inter

 reduces the linewidth, and thus lowers 

and broadens the transmission dip between the symmetric and anti-symmetric modes. With a suitable 
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choice of Δκ for a unit cell so that a stopband forms, a PBG can thus be formed at resonance by 

directly coupling N unit cells together in a CROW. This is illustrated in Fig. 4.8. The transmission for 

a unit cell is shown in Fig. 4.8(a). For the transmission of a CROW shown in Fig. 4.8(b), N unit cells 

are coupled together resulting in two N-split Lorentzians within δ = 2πm that are separated from each 

other by a stopband. As the number of unit cells increases, the stopband deepens and broadens such 

that an approximate PBG results at resonance. Thus, in summary, coupling tuning may be useful, 

along with the earlier discussed size tuning, to introduce more flexibility in generating multi-passband 

transmission as well as PGB engineering at both on and off resonance.   
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Fig. 4.8. The origin of the mini-PBG at resonance: (a) The effect of increasing κ2
intra while keeping κ2

inter 

fixed at 0.3 for a single unit cell with 2 identical resonators (γ = 1), and (b) the effect of increasing the 

number of unit cells N of a CROW that has the coupling scheme of κ2
inter

 = 0.3 and κ2
intra

 = 0.9. Note that  

δ is the round-trip phase shift for the size-untuned resonator A. 

 (c)  Unit Cell with other Configurations 

For this work, we have focused on PBG engineering of CROW based on the unit cell of (A B) 

for simplicity. In principle, it is also possible to change the spectral and PBG properties by using any 

arbitrary combinations of resonators of different size and number in each unit cell. To illustrate this, 

we have shown in Fig. 4.9 the dispersion diagram of an infinite CROW of a different unit cell design 

of (ABB), where γ = LB/LA = 2 in Fig 4.9(a) and γ = 3 in Fig 4.9(b). The corresponding transmission 

for a finite CROW with around 7½ unit cells ((ABB)7 A)) with κ2
intra = κ2

inter = κ2 = 0.7 and r2
intra = 

r2
inter = r2

 = 0.3 are shown at the top of each dispersion diagram. In contrast to the perfect CROW of 

(AAA…A), a CROW with unit cell of (ABB) produces 3-fold splitting in the passband and p-fold 

splitting in the stopband where p depends on γ. For γ = 2, p = 3 while for γ = 3, p = 5. This splitting 

into p mini-PBG occurs for two reasons. First is the splitting similar to that in a CROW with unit cell 
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(AB) as shown earlier in Fig. 4.5. A further splitting occurs in the secondary passbands within the 

stopband because there are actually two coupled B resonators in the unit cell (ABB). The transmission 

of the finite CROW matches well with the dispersion diagram at the defect region around non-integer 

m, except with just 7½ unit cells and the 3-fold splitting, the mini-PBGs in the primary passbands 

around integer m are not fully formed.   
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Fig. 4.9. The transmission of a CROW with 7½ unit cells of configuration ((ABB)7A)) with tuning factor: 

(a) γ = 2 and (b) γ = 3. For each respective γ, the dispersion diagram of infinite CROW is shown below 

the corresponding transmission graph. The PBGs are marked by the shaded regions while the photonic 

bands are represented by solid curves. Note that δ is the round-trip phase shift for the size-untuned 

resonator A. 

(d)  Effects of Addition of New Defects 

Up till now, we have only looked into the effects of periodic defects, all of similar size tuning. It 

is also possible to introduce a new defect, which we denote as G, into the periodic CROW to generate 

additional localized states. We have shown in Fig. 4.10 the PBG at δ = π(2m+1) for a periodic CROW 

of 6½ unit cells before (shown in dotted lines) and after (shown in solid lines) the defect G is added at 

the centre of the CROW. The new defect G is thus embedded between two equal arrays of unit cell of 

dual asymmetrical resonators so that the CROW arrangement becomes: {0 D 0 D 0 D G D 0 D 0 D 

0}, resulting in disorder in the periodic CROW. We set the cavity size D and G to be twice and thrice 

that of the size-untuned resonator 0, respectively. To excite the defect mode of G, we use κ2
intra = 

κ2
inter = κ2 = 0.7 and r2

intra = r2
inter = r2

 = 0.3. This results in a new localized state within each of the 

original mini-PBGs that are generated by the cascade of {0 D}. This shows the possibility of PBG  

    (a)                (b) 
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Fig. 4.10. The PBG structure before (in solid lines) and after (in dotted lines) a new defect G is added at 

the center of the periodic CROW. The coupling coefficients are set at κ2
intra = κ2

inter = κ2 = 0.7 and r2
intra = 

r2
inter = r2

 = 0.3. Addition of a new defect G changes the CROW sequence from {0 D 0 D 0 D 0 D 0 D 0 

D 0} to {0 D 0 D 0 D  G  D 0 D 0 D 0} and generates a new localized state (marked as ‘G’) in each of the 

mini-PBGs. Note that δ is the round-trip phase shift for the size-untuned resonator A. 

engineering within these mini-PBGs by implementing disorder in the original periodic-ordered 

system. As D is twice the size of resonator 0, there is 1 defect band and 2 mini-PBGs within the wide 

PBG around δ = π(2m+1), in accordance with our discussion earlier. The defect band has 6-fold 

splitting corresponding to the total number of defect D. The new localized “defect mode” of G 

appears as a sharp resonance line in the middle of each mini-PBG in this case. More generally, the 

position of the localized state of G can be tuned by its size relative to the regular resonator 0. As 

mentioned earlier, the passbands in between the PBGs occur where some or all of the resonators 

resonate. The localized state within each mini-PBG can thus only be observed if the defect mode of G 

is coupled to the propagating mode of the resonator array. This can only take place if the resonator 

array is finite and when the reflectivity r2
intra = r2

inter = r2 is small enough to excite this new defect 

mode of G. 

4.3.  CROWs with Quasi-Periodic Order 

4.3.1.  Theory and Coupling Matrix Formulation 

So far, we have only considered CROW with periodic size tuning where all unit cells are 

identical. In this section, we consider a deterministic aperiodic array where each “unit cell” is 

different, containing a different number of resonators determined according to a certain design rule. 

Specifically, we consider the case where the sequence of resonators in the array is given by the 
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Fibonacci number sequence Fn  = (1, 1, 2, 3, 5, 8, 13…), where the nth member of the sequence is 

defined by the recursive relation: Fn = Fn –1+ Fn – 2, where we define F0 = 0 and F1 = 1. Using two 

resonators labeled as A and B, the CROW analog of the Fibonacci number sequence can be generated 

by the above-mentioned recursive rule. Starting with C0 = {A} and C1 = {B}, subsequent sequences of 

the Fibonacci CROW can be generated as follows: 
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 (4.10) 

                                            
In this way, we will get resonator CROW arrangement that is perfectly ordered but is not periodic. 

Thus, such CROWs fall in between periodic ordered and disordered systems: Their sequences are 

aperiodic but they are generated by a known ordering rule, thus forming a deterministic aperiodic 

order in the resonator arrangement. The deterministic aperiodic order generated by the rules of the 

Fibonacci sequence is generally known as quasi-periodic [23]. Fig. 4.11 shows a 5-member quasi-

periodic CROW based on the Fibonacci sequence of order 4, or C4.  

 
 
 

 
 

 
 

 

Fig. 4.11. A traveling wave microresonator-based quasi-periodic CROW of 5 resonators, following the 

Fibonacci sequence C4 = {A, B, B, A, B}. 

Using the convention in Fig. 4.11 and following the previous matrix formulation in Eq. (4.3), 

the field amplitudes (aN+1, bN+1) in the Nth lattice of the quasi-periodic CROW can be defined as [aN+1 

bN+1]
T = [HN] [a1 b1]

T, where [HN] is the transfer matrix for the Fibonacci sequence CN of order N, 

which satisfies the same recursive relation: [HN] = [HN – 1] [HN – 2]. Hence, for C4: [H4] = [H3] [H2] = 

[H3] [A] [B] = [A] [B] [B] [A] [B], where [A] and [B] are the transfer matrices of unit cell (A) and 

(B), respectively. The transmissivity TD = CN+1/a1 of the finite quasi-periodic CROW of order N can 

be derived by substituting the matrix elements HNlq for Glq in Eq. (4.8), and we will use it to analyze 
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the transmission spectra of the Fibonacci class of CROWs. For simplicity, all the resonators have 

identical coupling coefficients of r and κ. Note that the subscripts l (= 1 or 2) and q (= 1 or 2) are used 

to represent the rows and columns of each matrix, respectively. 

4.3.2.  Results and Discussions 

It can be seen in Fig. 4.12 that even for such quasi-periodic arrays, PBGs are still formed around 

δ = π(2m+1) and state localizations near these PBGs are still possible. The general trend is that with 

increasing order of the Fibonacci sequence, which leads to more resonators in the CROW, the 

resonance spectrum at δ = π(2m+1) in between the mini-PBGs develops from a single high Q 

localized resonant peak to a mini-band. The spectral shape of the mini-band will evolve to take on 

more complicated and interesting appearance with a higher order of the Fibonacci sequence. At the 

same time, the resonance bands at δ = 2πm become significantly broadened with more transmission 

dips and splittings. It is generally more difficult to excite the localized states centered at δ = π(2m+1)  
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Fig. 4.12. Transmission spectra of a quasi-periodic CROW following the Fibonacci sequence of (a) C3, 

(b) C4, (c) C5 and (d) C6, all with γ = 2 and using coupling coefficients of κ2 = 0.1 and r2 = 0.9. 

when the number of resonators in the quasi-periodic CROW is large as more light is being reflected. 

Thus, r2 is set to 0.3 for the Fibonacci sequences C5 and C6, while for C3 and C4, r
2 can take higher 

value of 0.9 for the resonance centered at δ = π(2m+1) to be noticeable. Note that δ is the round-trip 

phase shift for the size-untuned resonator A. As a general rule, as the number of resonators increases 

for higher order of the Fibonacci sequence, more transmission dips and ripples develop at both the 

primary and secondary passbands, which are also widened, as shown in Fig 4.12. This trend as well as 

the presence of mini-bands and mini-PBGs around δ = π(2m +1) bear close resemblances to the PBG 

structures of periodic CROW discussed earlier in section 4.2, thus relating quasi-periodic ordered 
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resonator systems with periodic ones. It can be suggested that the presence of mini-PBGs and mini-

bands in the PBG structures of quasi-periodic Fibonacci TWMR-based CROWs is a direct result of 

the strong periodic correlation in the Fibonacci sequence, which is also highlighted in [19]. For quasi-

periodic CROW systems like the Fibonacci CROWs, there exist short-range periodic orders among 

the constituent sequences of the resonator cascade while the earlier discussed periodic resonator 

systems in section 4.2 has long-range periodic orders. In their PBG structures, therefore, quasi-

periodic systems will exhibit several spectral properties of their periodic counterparts while at the 

same time have distinctive features, which are the signatures that characterize their quasi-periodic 

nature.  

The results of Fig. 4.12 are for the cavity size ratio of γ = 2. In particular, C3 and C4 each exhibit 

a single high-Q resonant peak, which makes them suitable for ultra-narrow passband applications. The 

number of such ultra-narrow defect modes around δ = π(2m+1) for the Fibonacci CROW of C4 is 

equal to (γ – 1) for integer γ, as illustrated in Fig. 4.13. For order N  > 4, the defect bands will 

generally have more complex shapes, which depend also on γ if other values of γ are used. 
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Fig. 4.13. Transmissions of quasi-periodic CROWs following the Fibonacci sequence of C4 at κ2 = 0.1 

and r2 = 0.9 for three different size tuning ratios: γ = 2 (leftmost plot), 3 (central plot) and 4 (rightmost 

plot). There are (γ – 1) localized states within each wide PBG centered at half-integer resonance order.  

4.4.  Effects of Losses  

Thus far, we have assumed all the resonators to be lossless. In this section, we model the effect 

of losses for a periodic CROW with 3½ unit cells: {(AB)(AB)(AB)A}, and an quasi-periodic CROW 

of C4 as discussed in section 4.3. The resonator losses of a TWMR is defined using the round-trip 

attenuation factor τ (for a lossless resonator, τ  = 1), which is denoted as τA = τ  for the intra-resonator 

A and τB = τ γ for the intra-resonator B, and is mainly due to sidewall roughness induced-scattering 
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losses and bending losses. In the presence of losses, the PBG is not strictly formed or defined as the 

propagation vector will be complex within these entire bands.  

As shown in Fig. 4.14, it is found that even a small loss has a detrimental effect on the 

amplitude response. For satisfactory amplitude response, the round-trip attenuation factor τA must be 

larger than 0.99 for the periodic CROW with 3½ unit cells. With increasing number of resonators, the 

amplitude response also suffers greater attenuation.  
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Fig. 4.14. The effects of losses on transmissivity: (a) Periodic CROW structure with 3½ unit cells of 

sequence {A, B, A, B, A, B, A}, with γ = 2 at r2 = 0.3, and (b) quasi-periodic CROW based on the 

Fibonacci sequence C4 = {A, B, B, A, B} with γ = 2 and r2 = 0.9. 

In conclusion, all CROWs are suitable for most practical applications only if all the resonators 

have very low losses, τ > 0.99. This requirement might severely restrict the practical implementation 

of our proposed CROW designs. However, it has already been experimentally demonstrated [9, 28] 

that very large arrays of high-Q (low losses) microrings resonators with small bend radii for filter 

applications are possible. This implies that it is possible to achieve a round-trip amplitude 

transmission factor of τ > 0.99. Similarly, the ultra-narrow high-Q resonance peak of the Fibonacci 

CROW as shown in Fig. 4.14(b) is very sensitive to and quickly degraded by any slight loss. 

However, as long as the losses can be kept to a minimal, such deterministic aperiodic structure will be 

suitable as a compact sensor due to the presence of sharp, high-Q resonance peaks (cf. Fig. 4.14(b) for 

τ = 1 at δ/2π = 1.5) in the transmission spectrum. 

4.5.  Comparison with FDTD Simulations  

The transfer matrix model used so far is only approximate as it neglects several factors which 

will become apparent when compared with the benchmark Finite Difference Time Domain (FDTD) 
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method [29]. Below we present this comparison for the Fibonacci sequence C4 using traveling wave 

microring resonators. In the FDTD simulation, a Gaussian pulse is launched into the input bus of the 

quasi-periodic CROW. In order to reduce computational resources and time, the CROW is designed 

on high-index contrast silicon-on-insulator photonic wire, which allows each ring to have a relatively 

small footprint of bend radius 2 μm and 1 μm, respectively, for rings A and B. To obtain high-Q 

resonances, the waveguide-ring and ring-ring separations are set to be relatively large such that all the 

rings are weakly coupled (r2 = ~ 0.9). The transmission at the output port, normalized to the input 

power, is shown in Fig. 4.15. 

 

 
 
 

Fig. 4.15. FDTD simulated normalized transmission at the output port of a quasi-periodic CROW with 

the Fibonacci sequence C4 = {A, B, B, A, B} and of γ = 2, using SOI microring resonators. The FDTD 

simulated results are consistent with the general trends of the analytical modeling of C4 in Figs. 4.12(b) 

and Fig. 4.14(b). 

In general, both the FDTD and transfer matrix method give similar trends in the transmission 

spectrum, with localized states generated within a PBG sandwiched between two primary passbands 

with resonance splitting. However, this agreement stops here and there are significant differences, in 

that the output is comparatively lower, and the primary passbands are rather asymmetrical, in the 

FDTD case. These are due mainly to the effect of bend losses. The transmission spectrum is expected 

to improve if larger ring radius (which will give smaller bend losses) and smaller grid size are used. 

This will, however, increase the computational time. We note that the transmission of the localized 

mode is generally lower at lower wavelengths and this is due to the wavelength dependence of the 

coupling strengths and losses, which is not accounted for in our transfer matrix model. 

Also, there is a slight shift of the localized mode away from the centre of the PBG. This is most 

likely due to mesh discretization in the FDTD [4] as well as the effect of self-coupling that will cause 

a frequency shift but is not taken into consideration in the transfer matrix model. Finally, we note that 

FDTD can be used to analyze the effect of small deviations in γ from integer values. In general, the 

results are expected to be more complicated and irregular due to the presence of the Vernier effect.  
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4.6. Summary and Significant Contributions of this Research Work 

In summary, we have studied, to our knowledge, for the first time, the effects on the PBG 

structures of TWMR-based CROWs in the presence of multiple periodic and quasi-periodic “defects”, 

all of similar sizes. Due to space limitation, we have presented only the most basic configurations 

with more intuitive results in this work. In this section, we discuss their potential applications and also 

possible variations and extension for our future work.  

For the periodic case, the interaction of the multiple defects results in splitting of the 

eigenmodes corresponding to distinct localized states, leading to the formation of defects-induced 

mini-passbands within the broader PBG. The number and position of such narrow defect passbands 

can be tuned by adjusting the relative size of the intra-resonators. If the intra and inter unit cell 

coupling strengths are asymmetrical, new PBG forms at resonance. Other possible applications 

include multi-passband filters after the ripples or N-fold splittings in the transmission spectra are 

flattened by apodization techniques highlighted in [30]. To borrow further from the electronic 

analogy, we can consider a random distribution of defects, which is the normal state of defects, 

instead of the periodic distribution, and also “cluster” defects such as 

{AAAABBBAAAAAABBBBAAAAA…}. 

Somewhat more orderly than the random distribution is the quasi-periodic system exemplified 

by the Fibonacci sequence studied in Section 4.3, where we have shown that a sharp localized 

resonant state still exists within the PBG that slowly transforms to a broad passband as the order of 

the Fibonacci sequence is increased. If the total losses are sufficiently low, the ultra-narrow passband 

of the quasi-periodic CROW based on a low-order Fibonacci sequence, such as C4, may be highly 

useful as a compact sensor for bio-photonic and chemical applications. Deterministic aperiodic 

CROWs based on other sequences, such as the Thue–Morse [19, 20] and Cantor [23] sequences, and 

also hybrid ordered system whereby there is a mix of both periodic and quasi-periodic orders are also 

possible and are expected to show interesting spectral properties. As a general rule, systems with a 

perfect order or a complete disorder are simple, and it is in the middle where there is a mix of order 

and disorder that complexity arises that may produce novel properties and applications. Finally, we 

may also consider different types of arrays such as SCISSOR [11] for both the periodic and quasi-

periodic designs considered in this work.  

Note that the focus of this work is on how the PBG structures are affected by periodic and 

quasi-periodic orders, using multiple defects. As such, several other optical behaviors of our proposed 

devices are not covered in this work. One of these is the dispersion of the devices, which besides 

losses, is the primary restriction to the application of these resonator arrays. With suitable choice of 

coupling strengths, the dispersion can generally be reduced. For other applications, the dispersion can 

be turned into an advantage, and hence is an interesting subject for further study. 

Finally, we mention that this research work has been published in the following journal: 
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 Thomas Y. L. Ang and Mee-Koy Chin, “The effects of periodic and quasi-periodic orders on 

the photonic bandgap structures of coupled microring resonators optical waveguides,” Optics 

Express 17, 5176-5192 (January 2009). 

 

In a recent publication [31] dated May 2010, Chremmos et al. used periodic order consisting of 

alternating defects, which is identical to the one in this chapter (cf. Fig. 4.1), to improve the slow light 

behaviours in CROWs that is based on travelling wave microresonators. Though their work did not 

cite our above published paper dated January 2009, this, nevertheless illustrates the significance of 

our work in this chapter and also verified our above prediction (cf. seventh line of this page, which is 

also published in our above paper) that the dispersion of CROWs with periodic or quasi-order can be 

turned into an advantage. However, we have limited our study of CROWs in this thesis merely to the 

area of photonic bandgap engineering and not look further into their uses in slow and fast light 

generation. This is because the ripples in the transmission bands of the CROWs will limit the delay-

bandwidth of the device [32]. Moreover, owning to the substantial length of the CROWs, valuable 

estate space is consumed in the photonic circuit. As such, in part two of this thesis, we look into slow 

and fast light generation in a single TWMR and in twin-coupled TWMRs, which will bring about 

greater simplicity in the design and yet with similar or better (slow and fast light) performances as 

compared to conventional CROWs and the CROWs with periodic and quasi-periodic orders in this 

chapter. 
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Chapter 5 

Raman Scattering Processes in Submicron 

Silicon-on-Insulator Waveguides: 

Harnessing Temperature Effects  

5.1.  Introduction: Research Motivations and Objectives 

In the last few chapters, we have focused our attention on the use of the silicon-on-insulator 

(SOI) (or in short, silicon) platform for passive waveguide (WG) applications at the submicron scale. 

For silicon-based photonic integrated circuits to have widespread commercial applications, both 

passive and active WG devices would be required. However, it is difficult to create active photonic 

WG devices using silicon due chiefly to its unfavourable physical properties, such as the near-absence 

of the Pockel’s effect caused by the centrosymmetric crystal structure and the lack of efficient optical 

transitions due to the indirect band strcture [1, 2]. To circumvent this, Raman scattering (RS) was 

proposed in 2002 [3]. This approach is effective due to: (1) The large Raman gain coefficient of 

silicon (~104 times larger than the silica fiber glass), which, when combined with the small modal area 

in a silicon WG (~100 times smaller than the silica fiber glass), results in a large increase in optical 

intensity in the WG core; and (2) the large first-order RS frequency shift of silicon (±15.6 THz at T = 

298 K), which enables applications in the communication frequency windows [1, 2]. Consequently, a 

variety of RS processes [4-6] in silicon WGs was demonstrated in 2002 to 2004. Since then, RS has 

been extensively studied for optical communications functions, such as lasing [7-9], optical limiting 

[10], amplification [10-12], attenuation [13, 14] and parametric wavelength conversion [15, 16] in 

silicon photonic WG devices. We will focus on the last three optical functions in this chapter. 

In order to simplify the analysis, existing studies on RS-based silicon WG devices have 

generally assumed a fixed operating temperature of T = 298 K (room temperature). Investigations on 

the effects of temperature variation on RS in silicon have been chiefly limited to bulk silicon [17-19]. 

Recently, such studies are extended to silicon nanowires [20-22] and micrometer-scale silicon WGs 

[9, 23], with the emphasis placed on either lasing or the general characteristics of RS. In contrast to 

these works, here we study, for the first time, to the best of our knowledge, the temperature 

dependence of RS in submicrometer-scale silicon WG for 100 K ≤  T ≤  500 K with regard to three 
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specific types of RS-based functionalities in the continuous-wave regime: Raman amplification and 

attenuation near the C-band wavelength of 1.55 μm and parametric Raman wavelength conversion 

(PRWC) between the C-band wavelength of 1.55 μm and O-band wavelength of 1.31 μm. 

Our motivation for this work stems from our belief that instead of viewing temperature change 

in submicron silicon WGs as deleterious [24], it could instead be used to tune the Raman 

performances of the WGs. It will be shown that by suitably detuning the operating temperature away 

from the room temperature and with the appropriate phase-matching condition, three types of Raman-

based functionalities — Raman amplification, Raman attenuation and PRWC — can be achieved in a 

submicron silicon WG. To realize single-mode condition in the submicron WG, our earlier research 

results in chapter 2, which has been published in [25], will be utilized in this chapter. Submicron 

channel WGs (cf. Fig. 5.1) instead of rib WGs in [15] will be the main focus in this chapter as they 

have better modal power confinement, which will enhance the RS. In addition, we will deal 

exclusively with RS in the channel WGs that are fabricated parallel to the [110] direction on a silicon 

[001] surface (cf. Fig. 5.1) as such orientation is the preferred choice in commercial applications due 

its favourable cleaving propery in fabrication. A theoretical approach via the coupled mode formalism 

[7, 15] that considers the various key factors — pump depletion, two-photon absorption, free-carrier 

absorption, sidewall roughness, pump-to-signal-intensity ratio and phase matching conditions — that 

affect RS in submicron silicon WGs, is used to analyze Raman amplification/attenuation and PRWC 

at different temperatures in this work. Design rules for efficient Raman amplification/attenuation and 

PRWC in submicron silicon WGs when harnessing the effects of temperature variation are thereafter 

established.  

 

 

                                          (a)                                                                            (b) 

Fig. 5.1. (a) 3-D view of a submicron silicon-on-insulator (SOI) channel waveguide. The upper cladding 

of silicon dioxide of thickness l1 that covers the silicon core is not shown here. (b) Computed TE00 and 

TM00 modal profiles at λ = 1.55 μm and T = 298 K for the single-mode SOI channel waveguide with w = 

0.445 μm, h = 0.22 μm, l1 = l2 = 3 μm and L = 2 μm. 
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This chapter is organized as follows. In section 5.2, we review the basic theory of Raman 

scattering (RS). In section 5.3, we first analyze the temperature dependence of RS in silicon at the 

microscopic level, followed by a theoretical characterization of Raman amplification/attenuation and 

parametric Raman wavelength conversion (PRWC) in submicron silicon channel WGs at different net 

operating temperatures. In section 5.4, we look into practical design issues pertaining to the tuning of 

the temperature and bandwidth of the proposed Raman WG model. Finally, we conclude and highlight 

the important contributions of this research work in section 5.5. 

5.2. Theoretical Background  

The lowest-order nonlinear effects in silicon stems chiefly from its third-order nonlinear 

susceptibility χ(3) (as silicon is centrosymmetric) [2], which has two main contributions [3, 26]: 

                                                                    
 3 ,NR R
iplq iplq iplq                                                           (5.1) 

where χ in Eq. (5.1) are all fourth-order tensors, the indices (i, p, l, q) are permutations of the 

crystallographic axes (x, y, z), χNR is the electronic-non-resonant susceptibility while χR is the Raman-

resonant susceptibility. In general, nonlinear effects (such as self-phase modulation (SPM), cross-

phase modulation (XPM) and four-wave mixing (FWM)) due to χNR are too weak for practical 

applications in submicron silicon WG devices. Fortunately, χR is much larger than χNR ( R
iplq ≈  44 NR

iplq  

[15]), making Raman scattering (RS) the most suitable mechanism for nonlinear and active 

functionalities in silicon integrated photonics. 

Essentially, Raman scattering is the inelastic scattering of the incident light by optical phonons. 

This is elaborated as follows. When the incident photons, each with energy 2πħfp, frequency fp and 

wavelength λp (ħ is the reduced Planck’s constant), propagate through an optical material, they excite 

vibrational transition of the molecules. Consequently, each incident photon exits the optical material 

at a slightly different frequency (fs or fa) or wavelength (λs or λa) so as to satisfy energy conservation 

with each excited molecule. In other words, 

     1
,s p v s p vf f f T c f f T


    

       
(5.2a)                   1

,a p v a p vf f f T c f f T


      (5.2b) 

Equation (5.2a) applies if the molecule is initially in the ground state (cf. Fig. 5.2(a)). In this case, 

energy is absorbed from the photon to form a phonon (with vibrational energy 2πħfv and Raman 

resonance frequency fv), causing the output photon to exit at a lower frequency fs (or higher 

wavelength λs). This is known as Raman Stokes scattering (RSS) and the output photon (wave) is 

termed as a Stokes photon (wave). On the other hand, if the molecule is already in an excited 

vibrational state (cf. Fig. 5.2(b)), a phonon is annihilated. Then the photon exits at a higher frequency 

fa (or lower wavelength λa), which is described by (5.2b). This is called Raman anti-Stokes scattering 

(RASS) and the output photon (wave) is refered to as anti-Stokes photon (wave). In general, RSS is 
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dominant over RASS as the Stokes to anti-Stokes output intensity ratio, which we term as Ic, is 

described as 

    1 ,c s a v vI I I Z f Z f               (5.3a)                    1
exp 2 1 ,v v BZ f f T K T


       (5.3b) 

where Is and Ia are the intensities of the Stokes and anti-Stokes waves, respectively, KB is the 

Boltzmann’s constant and T is the temperature. Note that all parameters in this work are in SI units, 

unless otherwise stated.  

 
(a)                                          (b)                                          (c)                                            (d)  

Fig. 5.2. Energy diagrams illustrating (a) Spontaneous Raman Stokes scattering, (b) Spontaneous Raman 

anti-Stokes scattering, (c) stimulated Raman Stokes scattering and (d) coherent anti-Stokes Raman 

scattering. Here, we use the angular frequency ω instead of the frequency f that is employed in the text. 

 
The above-mentioned processes of RSS and RASS are usually weak and spontaneous. With an 

intense input laser pump, the stimulated Raman scattering (SRS) can occur. Through this, either 

Raman amplification/attenuation (of the Stokes wave) or parametric Raman wavelength conversion 

(PRWC) (between the Stokes and anti-Stokes wave) can be achieved, depending on the phase 

matching condition Δβ = 2βp – βs – βa, where βq = 2πNeff(q)/λq and Neff(q) are, respectively, the 

propagation constant and effective index of each type of wave, with the subscripts q = p, q = s and q = 

a denoting, respectively, the pump, Stokes and anti-Stokes waves. At large |Δβ|, Raman amplification 

(cf. Fig 5.2(d)) or Raman attenuation of the Stokes wave occurs. However, as |Δβ| tends to zero, 

Raman amplification/attenuation is suppressed and the dominant stimulated Raman scattering process 

is coherent anti-Stokes Raman scattering (CARS) (cf. Fig 5.2(d)), which involves nonlinear four wave 

mixing (FWM): fa = 2fp – fs. In this case, the Stokes, anti-Stokes and pump waves undergo parametric 

coupling through the mediation of coherently generated phonons, leading to the coherent transfer of 

energy and information between the Stokes and anti-Stokes waves. Such a process is termed as 

CARS-assisted parametric Raman wavelength conversion or in short, parametric Raman wavelength 

conversion (PRWC). 
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5.3.  Temperature Effects on Raman Performances in Submicron Silicon Waveguides  

5.3.1.   Microscopic Analysis  

It will be instructive to first analyze the role of temperature in RS in silicon at the microscopic 

level. This can be achieved by noting that the Raman susceptibility tensor  ,R
iplq d T   = 

 Re ,R
iplq d T   +  Im ,R

iplq dj T    =  ' ,R
iplq d T  +  '' ,R

iplq dj T  in Eq. (5.1) can be written as [2, 17-

22, 26, 27] 
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In the above equations, 'Re ( , ) ( , )R R
iplq d iplq dT T       

and ''Im ( , ) ( , )R R
iplq d iplq dT T      are the 

real and imaginary parts of ( , )R
iplq d T  , j2 = –1, 2Г(T) is the full-width at half maximum (FWHM) of 

the optical phonon spectrum, nsi(λ, T) is the refractive index of silicon, geff (fd, T) is the Raman gain 

coefficient, (Rip)g and (Rlq)g in Eq. (5.4) are the ip-th and lq-th components of the g-th Raman tensor 

(i.e., [R]g in Eq. (5.7), with g = 1, 2 or 3), μ0 and ϵ0 are the permeability and permittivity of free space, 

Ωd = fp – fd, fp is the input pump frequency, fd is the detuning frequency, S is the spontaneous 

scattering efficiency, NB(fv(T), T) is the Bose occupancy factor, Δfp is the FWHM of the pump beam 

spectrum, KB is the Boltzmann’s constant, f0 = 528c (in Hz), ħ is the reduced Planck’s constant, fv(T) is 

the resonance frequency of the optical phonon, Δfv(T) is the change in fv(T), while B1 = –399.6c, B2 = 

–23.5c, B3 = 168.3c and B4 = 13.26c are anharmonic constants. The symbol c represents the speed of 

light in vaccum. All parameters are in SI units, unless otherwise stated. For convenience, we will drop 

iplq in ( , )R
iplq d T  . Note that the Raman WG may either operate at on-Raman-resonance (i.e., 

|Im[χR(Ωd, T)]| = maximum) if fv(T) = Ωd or at off-Raman-resonance (i.e., |Im[χR(Ωd, T)]| ≠  maximum) 

if fv(T) ≠  Ωd. It can be seen that, while [R]g are temperature independent, other parameters are not, 

which render χR (Ωd, T)  and any RS processes to be sensitive to temperature variations.  

The temperature T dependence of fv(T), 2Г(T), nsi(Ωd, T) and geff (fd, T) are shown in Fig. 5.3. To 

ensure the accuracy of our modeling, experimental settings in [3] are used in this work: λp = 1.427 μm,   

 

Fig. 5.3. Temperature dependence of the parameters that affect Raman scattering: (a) fv(T), (b) 2Г(T), (c) 

nsi(λ, T) for λ = 1.3285 μm and λ = 1.5413 μm and (d) geff(λ, T) for λ = 1.3285 μm and λ = 1.5413 μm. 

Note that λ = 1.3285 μm and λ = 1.5413 μm are, respectively, the anti-Stokes and Stokes wavelengths at T 

= 298 K for λp = 1.427 μm. 
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S = (4.1 ± 2.5) cm–1Sr –1, Δfp = 70 GHz/W. Also, λp, λs and λa are, respectively, in TE00, TM00 and 

TM00 modes. Some general observations with regard to Fig. 5.3 are summarized below. 

 At the room temperature (T = 298 K), fv(T), 2Г(T) and geff (fd = c/1.5413 μm, T) are, respectively, 

~15.6 THz, 110 GHz and 20 cm/GW, which are consistent with Ref. [3]. 

 The resonance frequency fv(T) of the optical phonon decreases with T as seen in Fig. 5.3(a). 

Based on Eq. (5.2), this implies that, with a fixed fp, fs increases (decreases) when operating 

above (below) the room temperature, while the converse is true for fa. 

 The T dependence of the above-mentioned fv(T)  and 2Г(T) are related to the higher-order terms 

of the anharmonic oscillator model of the optical phonon in Eqs. (5.8)-(5.10). Details can be 

found in [17-22]. Essentially, an increase (decrease) in T results in a larger (smaller) interatomic 

spacing and lower (higher) lifetime of the optical phonon. These in turn decrease (increase) fv(T) 

and broaden (narrow) 2Г(T).  

 On the other hand, 2Г(T) of the optical phonon increases with T in Fig. 5.3(b). The change in 

2Г(T) is much larger than the change in fv(T) for the same increment in T. For example, when 

reducing T from 298 K to 200 K, 2Г(T) increases from 15.6 THz to 15.67 THz while fv(T) 

decreases from 110 GHz to 70 GHz. The former is only a ~ 0.4 % change while the latter is a 

much larger change of ~36 %. 

 The difference in the Raman gain coefficient geff (fd = c/λ, T) for λ = 1.3285 μm and λ = 1.5413 

μm in Fig. 5.3(d) is due to their dispersion in nsi(λ, T) in Fig. 5.3(c) (Note that λ = 1.3285 μm and 

λ = 1.5413 μm are, respectively, the anti-Stokes and Stokes wavelengths at T = 298 K for the 

pump wavelength λp = 1.427 μm). In general, geff (fd, T) decreases as T rises; operating at T < 298 

K (T > 298 K) gives a higher (lower) Raman gain. 

As T varies, the efficiency of any RS processes depends on the interplay of the above discussed 

parameters with Re[χR(Ωd, T)] and Im[χR(Ωd, T)]. We have plotted Re[χR(Ωd = fp – fd, T)] and Im[χR(Ωd 

= fp – fd, T)] as a function of fd near the anti-Stokes wavelength in Fig. 5.4(a) and near the Stokes 

wavelength in Fig. 5.4(b) at different T and with fp fixed at c/(1.427 μm) for our channel WG design 

that is directed along the [110] orientation (cf. Fig. 5.1). Note that such a WG orientation (in Fig. 5.1) 

is used throughout this work in the study of the silicon WG Raman performances as this is the 

preferred choice in silicon WGs fabrication. From Fig. 5.4, we can observe that: 

 Operating below (above) the room temperature blue-shifts (red-shifts) the location of the Raman 

resonance (where |Im[χR(Ωd, T)]| = maximum) for the anti-Stokes wavelength, while the  

converse is true for the Stokes wavelength. This is consistent with the relation of fs = fp – fv(T) 

and fa = fp + fv(T) in Eq. (5.2). 
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 The peaks of |Re[χR(Ωd, T)]| and |Im[χR(Ωd, T)]|  increase with decreasing T. Thus, the strength of 

the Raman resonance increases (decreases) when tuning from the room temperature (T = 298   

K) to T < 298 K (T > 298 K).  

Clearly, temperature variation impacts the location and magnitude of the Raman-resonance. This will 

subsequently affect the Raman performances of the WG. Assuming that we are initially operating at 

the room temperature (T = 298 K) using λp = 1.427 μm. Then based on Eq. (5.2), λs = 1.5413 μm and 

λa = 1.3285 μm (indicated by vertical dashed black lines in Fig. 5.4) will allow the WG to work at on- 

Raman-resonance. As T is reduced or raised from the room temperature while still fixing λp, λa and λs 

 

Fig. 5.4. Temperature dependence of the real part of the Raman susceptibility Re[χR(Ωd, T)] and the 

imaginary part of the Raman susceptibility Im[χR(Ωd, T)] as a function of the (a) anti-Stokes wavelength 

λa and (b) Stokes wavelength λs for the pump wavelength of λp = 1.427 μm. Raman resonance occurs at 

the peaks of |Im[χR(Ωd, T)]|, which shift with changes in the temperature. Note that the dotted vertical 

lines in all the graphs mark λa = 1.3285 μm and λs = 1.5413 μm, which are, respectively, the initial anti-

Stokes and Stokes wavelengths for the pump wavelength λp = 1.427 μm when T is set to 298 K. 

at 1.427 μm, 1.3285 μm and 1.5413 μm, respectively, the WG will move into off-Raman-resonance 

state (compare |Im[χR(Ωd, T)]| at different T along the vertical lines in Fig. 5.4). However, if we tune λs 

and λa (while still fixing λp at 1.427 μm) as T changes such that λs and λa always coincide with the 

maximum of |Im[χR(Ωd, T)]| in Fig. 5.4, then the WG will always be operating at on-Raman-

resonance, with the strength of the Raman resonance increasing with decreasing T. The above-

mentioned two scenarios are termed as case A and case B throughout this work, in which the WG is 

initially at T = 298 K when λp, λa and λs propagate through the WG. Let us formally define each case 

before moving on: 

T increases 
(in direction of arrow) 
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Case A — λp, λa and λs are always fixed at 1.427 μm, 1.3285 μm and 1.5413 μm, respectively, 

for all T. Then only T = 298 K allows operation at on-Raman-resonance state. All other T 

values will result in the WG to work at off-Raman resonance state. 

Case B — λp is always fixed at 1.427 μm but λs and λa are tuned as T changes from 298 K such 

that the WG is always at the on-Raman-resonance state for any net T. 

In the next section, the Raman performances are determined for both case A and case B in terms of 

Raman amplification/attenuation at λs and PRWC between λs and λa. 

5.3.2.   Coupled Mode Analysis  

Fig. 5.5 shows the longitudinal views of the WG, functioning as a Raman amplifier/attenuator 

(if |Δβ| >> 0) or Raman wavelength convertor (if |Δβ| ≈  0), where Δβ can be tuned by stress 

engineering [28-31]. A cross-sectional view of the WG is shown earlier in Fig. 5.1. In our WG design, 

we used width w = 0.445 μm, height h = 0.22 μm and length L = 2 cm, with cladding thickness of l1 = 

l2 = 3 μm, so that the device is single-mode at λ = 1.31 μm and 1.55 μm for T = 298 K [24]. The  

 
Fig. 5.5. Longitudinal view of the submicron silicon WG of length L, functioning as (a) Raman 

amplifier/attenuator if |Δβ| >> 0 and (b) Raman wavelength convertor if |Δβ|  ≈  0. 

design procedures to obtain this set of WG dimensions for single-mode operation are mentioned in 

section 2.4. Letting E–
q (E

+
q) to represent the complex amplitude of the electric field of the backward 

(forward) propagating wave, where q = p, q = s and q = a denote, respectively, the pump, Stokes and 

anti-Stokes waves, the evolution of the different waves along the propagation direction z is described 

as [7, 15] 
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where κ is the coupling coefficient between the propagating waves that can be expressed as 
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while αq (q = p, s or a) is the linear propagation losses due mainly to fabrication-induced sidewall 

roughness, ϒ quantifies the efficiency of the free-carrier absorption, ec is the effective charge density, 

b is the two-photon absorption coefficient and Awg is the modal effective area of our proposed 

submicron channel WG. We can express Awg and ec as [7] 

   
2

2, , ,wg f fA I x y dxdy I x y dxdy                                                   (5.19) 
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(5.20) 

in which B5 = bυ/(4πħfpA
2
wg), υ is the free-carrier lifetime and If (x,y) is the transverse intensity profile 

of the fundamental mode of the WG. In this work, we set b  ≈  0.44 cm/GW, ϒ ≈  6.0 × 10–10 [7], υc ≈ 

0.77 ns, αq ≈  3.0 dB/cm [11] while Awg ≈  0.06 μm2. Two important figures of merit that quantify the 

Raman amplification/attenuation and PRWC of the WG are the conversion efficiency (CE) and 

amplification efficiency (AE): 

    0 ,a sCE I L I

                     

(5.21a)                               0 ,s sAE I L I

                      

(5.21b) 
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where Is(0) is the intensity of the input signal (or Stokes) wave, which is always fixed at 0.1 mW, 

while Ia(L) and Is(L) are, respectively, the intensities of the anti-Stokes and Stokes waves that exit the 

WG. To analyze the CE and AE of the silicon WG, Eqs. (5.12) to (5.18) are numerically solved until 

steady-state solutions are obtained after a sufficiently large number of iterations.  

5.3.3.   Results and Discussions 

(a)   Effects of Temperature on the Phase Matching Condition  

The WG Raman performances, i.e., the CE and AE, depend largely on the phase matching 

condition Δβ. The characteristics of the CE and AE in relation to Δβ of the silicon WG under varying 

pump input intensity Ip (i.e., changing the pump-to-signal-intensity ratio) at different T are illustrated 

in Fig. 5.6 for case A and Fig. 5.7 for case B. For comparison, we have included the CE and AE 

curves at T = 298 K (room temperature) in both case A and case B (though the CE and AE curves at T 

= 298 K are the same for both cases). Let us now first look at the CE and AE at the room temperature 

(T = 298 K). In general, at T = 298 K, each CE curve obeys a Sinc2 dependence. Thus, there is more 

than one solution of Δβ to each CE value. The number of solutions of Δβ for each CE value increases 

(decreases) as the magnitude of CE decreases (increases) with Ip. This is due to the fact that the ripples 

of the CE curves become increasingly flat (pronounced) with increasing (decreasing) Ip. If Ip is low (Ip 

< 50 mW), the maximum CE is at Δβ = 0. Increasing Ip (Ip > 50 mW) forms a notch in each CE curve 

at Δβ = 0 (consistent with [16]). This shifts the maximum CE to |Δβ| > 0. On the other hand, the AE 

curves for T = 298 K are Lorentzian-like. Maximum values of AE are at |Δβ|  >>  0 while the 

minimum is at Δβ = 0. Increasing Ip changes the magnitude of these extrema of the AE curves but not 

their locations (unlike that of the CE curves). At a sufficiently large Ip, the AE at Δβ = 0 rapidly 

decreases. Having analyzed the trends of the CE and AE curves in relation to the Δβ of the silicon 

WG at T = 298 K, we now look into the effects on these curves when the temperature deviates from 

the room temperature (i.e., T  ≠  298 K) for case A and case B. 

(ai)   Case A 

The effects of operating at T < 298 K and T > 298 K for case A on the properties of CE in 

relation to Δβ are shown in Fig. 5.6(ai) and 5.6(aiii). It can be seen that the CE curves are still marked 

by ripples, similar to that at T = 298 K. However, note three main changes: (i) Each CE curve is no 

longer centered at Δβ = 0 but is translated towards Δβ < 0 (Δβ > 0) for T < 298 K (T > 298 K); (ii) no 

notch appears at the maxima of the CE curves at high Ip; and (iii) there is a deepening of the ripples at 

high Ip. Consequently, the maximum CE for T < 298 K (T > 298 K) in case A always occur at Δβ < 0 

(Δβ > 0) for all Ip, unlike at T = 298 K, where the maximum CE occurs at Δβ = 0 (Δβ ≠  0) for low 

(high) Ip.  
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Fig. 5.6. The effects of varying the pump intensity Ip on the relationship of the propagation constant 

mismatch Δβ with the (a) conversion efficiency (CE) and (b) amplification efficiency (AE) of the 

submicron silicon waveguide at different temperatures T  for Case A (cf. section 5.3.1 for definition of 

case A). Note that Ip increases in the direction of the arrows. 
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Fig. 5.7. The effects of varying the pump intensity Ip on the relationship of the propagation constant 

mismatch Δβ with the (a) conversion efficiency (CE) and (b) amplification efficiency (AE) of the 

submicron silicon waveguide at different temperatures T  for case B (cf. section 5.3.1 for definition of 

case B). Note that Ip increases in the direction of the arrows. 

Ip increases 
(in direction of arrow) 
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 The properties of AE in relation to Δβ are also affected when T  ≠  298 K. Comparing Figs. 

5.6(bii) with Figs. 5.6(bi) and 5.6(biii), it can be seen that as T departs from 298 K, the AE curves lose 

their Lorentzian-like shapes and become asymmetric. Consequentially, for each Ip input, the 

maximum AE occurs at one single value of Δβ at Δβ < 0 (Δβ > 0) for T < 298 K (T > 298 K). Also, 

the magnitude of the AE for T ≠  298 K at all Δβ is lower than that at T = 298 K, with the AE at T < 

298 K being larger than that at T > 298 K. This also applies to the CE except for high Ip, in which the 

appearance of a notch at |Δβ| = 0 at T = 298 K results in the CE around |Δβ| = 0 to be smaller than that 

at T < 298 K. 

(aii)   Case B 

For case B, the CE curves are always centered at Δβ = 0 at all T, as shown in Figs. 5.7(i) and 

5.7(ii). Also, note that a notch at the maximum of each AE curve (which is previously observed at T = 

298 K for high Ip), also occurs for case B when T ≠  298 K, provided that Ip is high. These are in 

contrast to the CE curves of case A when T ≠  298 K (in which the CE curves are no longer centered 

at Δβ = 0 and no notch at the maximum or peak can be found in the CE curves). However, there are 

two main differences in the nature of such a notch of case B as compared to that at T = 298 K. First, 

the notch in the CE curves for case B is deeper as compared to that at T = 298 K. For example, at Ip = 

90 mW, the CE at Δβ = 0 is –1 dB for T = 298 K, which falls to –7 dB when T changes to 50 K at the 

same Ip and Δβ. Second, for T > 298 K, the notch at Δβ = 0 for case B occurs at a much higher Ip as 

compared to those at T = 298 K.  As such, in Fig. 5.7(aiii), no notch is observed to occur at T = 500 K 

because for this T setting, the notch at Δβ = 0 occurs at Ip = ~300 mW, which is outside the range of Ip 

≤  90 mW used in the graph. 

Likewise, for the AE curves in Fig. 5.7(b), the general shapes (Lorentzian-dips) stay the same at 

all T, with only change to the AE, particularly that at Δβ = 0. It can be seen that as Ip increases under 

the condition of T < 298 K (T > 298K), the notch at Δβ = 0 deepens at a faster (slower) rate as 

compared to that at T = 298 K. 

(b) Harnessing Temperature Effects for Improved Raman Performances  

In practical applications, λp, λs and λa are typically set in quasi-TE00, quasi-TM00 and quasi-TM00 

modes, respectively, so as to maximize the Raman gain (as mentioned earlier). To tune the phase 

matching condition Δβ = 2βp – βs – βa (where βq = 2πNeff(q)/λq and Neff(q) are, respectively, the 

propagation constant and effective index of each type of wave, with the subscripts q = p, q = s and q = 

a denoting, respectively, the pump, Stokes and anti-Stokes waves) of the three waves to the desired 

value, static stress engineering [28, 29] and/or dynamically tunable stress engineering [30, 31] can be 

used to adjust the WG birefringence ΔβB. This is because Δβ can be approximated as [29]: Δβ ≈  ΔβB 

+ ΔβW + ΔβM, where ΔβB is the phase mismatch due to WG birefringence, ΔβW is the phase mismatch 
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due to WG dispersion and ΔβM  is the phase mismatch due to material dispersion. Thereafter, to have 

active tunability in the Raman performances, all-optical tuning can be employed, in which the CE and 

AE are tuned by adjusting the input pump intensity Ip. We now demonstrate that such tuning of CE 

and AE can be improved and with enhanced magnitude (in the CE and AE) by exploiting the effects 

of T variation that we have uncovered in subsection 5.3.3(a), as compared to the performances of 

conventional Raman devices that operate at a fixed T of 298 K. For both Case A and Case B, we set 

Δβ = 0 (Δβ = 2000 m–1) for the WG to function as a Raman wavelength convertor (Raman 

amplifier/attenuator) while varying Ip at different T. Important results for each case are highlighted 

below. 

(bi)   Case A 

The characteristics of the CE in Fig. 5.8(a) and AE in Fig. 5.8(b) at different T are dependent on 

Ip. In the regime of low Ip (Ip < 20 mW), as shown in Fig. 5.8(ai), the CE at each T increases with Ip. 

Note that in this regime, given a fixed Ip, the CE degrades if T ≠  298 K as the maximum CE occurs at 

T = 298 K. For example, at Ip = 5 mW, the CE falls to –17 dB (–25 dB) when the T drops (rises) to T 

= 100 K (500 K) from T = 298 K, which produces a CE of –13 dB. However, in regime of high Ip (Ip > 

20 mW), the slopes of the CE curves start to decrease as Ip increases, which is shown in Fig. 5.8(aii). 

In particular, the CE curves corresponding to temperatures at and near T = 298 K (in Fig. 5.8(aii)) 

become notch-like. This results in the CE at and near T = 298 K to drop rapidly and degrade as 

compared to those at T ≠  298 K, which is in sharp contrast to the earlier trend in the regime of low Ip 

in Fig. 5.8(ai). Thus, for case A, operating in the regime of low (high) Ip would degrade (enhance) the 

CE when compared to the CE at the room temperature. 

Similar to the CE, the AE, which is shown in Fig. 5.8(b), generally increases sharply with Ip in 

the regime of low Ip (Ip < 100 mW) for all T. In the regime of high Ip (Ip > 100 mW), the AE starts to 

decrease with increasing Ip for T ≤  298 K while for T ≥  298 K, the AE is fairly constant. However, 

unlike the CE curves in Fig. 5.8(a), the maximum AE is always at T = 298 K regardless of the strength 

of Ip. In general, the further the T deviates from T = 298 K, the lower its corresponding AE will be. 

Thus, for case A, the AE degrades at all values of Ip once T ≠  298 K. Nevertheless, practical 

applications can still be obtained from the temperature effects of the AE. It can be seen from Fig. 

5.8(b) that variable attenuation can be realized for T ≤  150 K while for T > 150 K, both variable 

attenuation and amplification are possible. One can also vary T to switch the role of the WG between 

an attenuator and an amplifier at a fixed Ip. For example, at Ip = 50 mW, the WG is an amplifier with 

AE = 3 dB for T = 200 K. Lowering T to 100 K switches the WG to an attenuator with AE = –3 dB.  
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Fig. 5.8. Demonstration of harnessing the effects of temperature T variation to enhance and improve the 

flexibility to tune the (a) conversion efficiency (at |Δβ| = 0) and (b) amplification efficiency (at |Δβ| = 

2000 m–1) of the submicron silicon WG for case A (cf. section 5.3.1 for definition of case A).  
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(bii)   Case B 

For the regime of low Ip (Ip < 25 mW), as seen in Fig. 5.9(ai), the CE also increases with Ip. 

However, unlike case A, the maximum CE is no longer at T = 298 K but at T = 100 K as, in general,  

the CE increases (decreases) as T changes from T = 298 K to T < 298 K (T > 298 K) for a given Ip 

when working in the regime of low Ip. In the regime of high Ip (at Ip > 25 mW), which is shown in Fig. 

5.9(aii), notches form in the CE curves at all T, resulting in the CE to fall rapidly. This is in contrast to 

case A, whereby notches only form in the CE curves for T close to or at T = 298 K. Though notch 

forms at all T for case B once Ip is high, we can still find a range of Ip at each T setting in which the 

AE in Fig. 5.9(aii) is higher or enhanced as compared to that at T = 298 K. Such a range of Ip is, in 

general, wider for the AE curves corresponding to T > 298 K. In conclusion, for case B, the effects of 

temperature variation can be used to enhance the CE at all strengths of Ip. 

Similar trends of the CE curves in Fig. 5.9(ai) can also be observed for the AE curves in the 

regime of low Ip (Ip < 60 mW), which is shown in Fig. 5.9(bi). In the regime of high Ip (Ip > 60 

mW),as shown in Fig. 5.9(bii), the AE for T ≥  298 K decreases with increasing Ip while the AE for T 

≤  298 K stays rather constant for all Ip. This property is directly opposite to that of the AE of case A 

in Fig. 5.8(b). Also, for case B, the WG is able to function both as a variable attenuator and variable 

amplifier at all T, in contrast to case A earlier in Fig. 5.8(b), in which only T > 150 K allows the WG 

to fulfill both functions of optical amplification and attenuation. 

Finally, we mention that, for both case A and case B, the effects of temperature variation can be 

used to provide another degree of freedom (in addition to the input pump Ip) to tune the CE and AE. 

For example, when the WG functions as a Raman wavelength convertor (amplifier) in case B (cf. Fig. 

5.9(a) and 5.9(b)), the CE (AE) can be tuned in the range of –23 dB ≤  CE ≤  –1 dB (4 dB ≤  AE ≤  20 

dB) for the temperature range of 100 K ≤  T ≤  500 K when Ip = 180 mW (40 mW) is used. Also, note 

that all the mentioned trends in the CE and AE of Figs. 5.8 and 5.9 in this subsection as well as the 

trends of Δβ in subsection 5.3.3(a) are due to the temperature dependence of the location and 

magnitude of the Raman-resonance in the frequency response of the Raman susceptibility tensor (cf. 

Fig. 5.4), which is different between case A and case B (as explained in subsection 5.3.1). 

5.4.    Practical Implementation Issues  

In order to vary the net temperature of the WG to above the room temperature (i.e., T > 298 K), 

microheaters [32, 33] can be used. Such microheaters can be deposited on the upper cladding layer of 

the WG [32] and/or oxide buffer layer [33] during fabrication and can be used to adjust the net 

temperature of the WG to 298 K ≤  T ≤  500 K by applying an external actuation-or-control signal 

with a driving power Pc in the range 1 mW ≤  Pc ≤  6mW, with an average response time of ~6 ms, as 

demonstrated in Ref. [32]. For greater tunability in the Raman performances of the WG, it is highly 

desirable that the net temperature of the WG can be adjusted to below the room temperature (i.e., T < 
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Fig. 5.9. Demonstration of harnessing the effects of temperature T variation to enhance and improve the 

flexibility to tune the (a) conversion efficiency (at |Δβ| = 0) and (b) amplification efficiency (at |Δβ| = 

2000 m–1) of the submicron silicon WG for case B (cf. section 5.3.1 for definition of case B).  
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298 K), apart from adjusting it to T > 298, as just discussed. To do so, the microheaters can be used in 

conjunction with heat sinks [34, 35] and/or thermoelectric microcoolers [23, 36, 37]. Such devices, 

which can be deposited on the upper cladding and oxide buffer layers during fabrication, have the 

capability to cool the net temperature of the WG to 100 K ≤  T ≤  298 K. Alternatively, micro-fluidic 

channels [38-40] that are filled with liquid nitrogen [23] can be employed for such cooling purpose. 

Essentially, for this scheme, micro-channels are fabricated along each longitudinal side of the silicon 

WG, similar to that in Ref. [38]. The liquid nitrogen in the micro-channels will then cool the silicon 

WG to 77 K [23]. Thereafter, microheaters can be used to tune or fine tune the net temperature of WG 

to within 100 K ≤ T ≤  298 K or above the room temperature. Therefore, it is feasible that temperature 

variation in the range of 100 K ≤  T ≤  500 K can be achieved.  

Finally, we mention that, though we have limited our modeling to only one particular set of WG 

dimensions and communication wavelengths, the results in this work can also be used to predict the 

general trends of the temperature effects of Raman amplification/attenuation and PRWC in submicron 

silicon WGs of other dimensions and at other wavelengths. Also, it may seem that our Raman 

waveguide might be limited in bandwidth capability as for Case A only one input signal wavelength 

can be amplified/attenuated and one wavelength can be converted. For Case B, the input signal 

wavelength and converted wavelength each has a tuning range of ~2 nm. However, do note that in all 

our cases, the pump wavelength λp is fixed for convenience. For any Raman device, one simply needs 

to adjust λp in order to process different input signal wavelengths λs or convert different wavelengths 

λa (cf. Eq. (5.2)). Static stress engineering [28, 29] and/or dynamically tunable stress engineering [30, 

31] can be used to adjust the WG birefringence so as to achieve the desired phase-matching condition 

Δβ, between the different wavelengths, where Δβ = 2(2πNeff(p)/λp) – 2πNeff(a)/λa – 2πNeff(s)/λs. This will 

mean that it is possible to increase the number of wavelengths that can be amplified/attenuated or 

converted by our Raman WG model presented in this work. For example, if λp is tuned in the range of 

1.417 μm  ≤   λp  ≤  1.427 μm (i.e., tuning range of ~10 nm), then based on Eqs. (5.2), (5.8) and (5.9), 

λs and λa can, respectively, have a tuning range of ~12 nm and ~9 nm at all temperatures for our 

proposed scheme. In other words, our proposed Raman WG model is also suitable for 

communications applications around the C-band wavelength of 1.55 μm and O-band wavelength of 

1.31 μm in dense wavelength division multiplexing (DWDM) and ultra-dense wavelength division 

multiplexing (UDWDM) networks, where the typical channel spacings are, respectively, ~ 0.8 nm (or 

100 GHz) and ~ 0.048 nm (or 6.25 GHz) in the 1.55 μm window [41]. 

5.5.  Summary and Significant Contributions of this Research Work 

We have investigated for the first time, to the best of our knowledge, the temperature T 

dependence of three types of most commonly used Raman scattering processes – Raman 

amplification, Raman attenuation and parametric Raman wavelength conversion (PRWC) – in a 
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submicron silicon waveguide (WG) at the communication wavelengths. It has been shown that the 

effects of temperature variation (100 K  ≤  T  ≤  500 K) can be harnessed to improve the Raman 

performances in the submicron silicon WG. To clearly show this, we have summarized in Table 5.1 

the unique features of the proposed Raman WG model. In particular, the use of temperature variation 

provides an additional degree of freedom to tune the conversion efficiency (CE) or amplification 

efficiency (AE) of the WG, thereby allowing a more dynamical control of the Raman performances of 

the WG, as compared to those working at a fixed room temperature, which is the conventional 

practice. For example, using an input pump intensity of Ip = 10 mW in case A (cf. Fig. 5.8a(i)), the CE 

can be tuned in the range of –19 dB ≤  CE ≤  –7 dB for 100 K ≤  T ≤  500 K. Also, the CE or AE can 

be enhanced as compared to that at the room temperature. For instance, at Ip = 500 mW in case A (cf. 

Fig. 5.8a(ii)), CE = –12 dB if T = 298 K; however at T = 200 K, the CE is increased to 8 dB. These 

research findings can be used as general design rules when engineering submicron silicon WGs for 

efficient Raman amplification, Raman attenuation and PRWC at different temperatures. Also, they are 

significant contributions to the field of Raman-based silicon photonics, which has largely overlooked 

the temperature effects of Raman scattering mechanisms in submicron waveguides. Our proposed 

Raman waveguide model has clearly highlighted the numerous advantages of harnessing the 

temperature effects of Raman scattering. This could have potentiality in revolutionizing the way in 

which Raman scattering is being utilized for active functionalities in silicon waveguide devices in the 

photonics community and industry. 

Table 5.1. Raman performances of a submicron silicon waveguide† via temperature (T) variation 
 

†Based on a submicron silicon channel WG with design specifications stated in this work. * Refer to section 5.3.1 for definition 
of Case A and Case B. 

  
Case A* 

 
Case B* 

 
Conversion Efficiency 

(CE) 
(at Δβ = 0) 

 
Amplification/ 

Attenuation 
Efficiency (AE) 

(at Δβ = 2000 m–1) 

 
Conversion 

Efficiency (CE) 
(at Δβ = 0) 

 
Amplification/ 

Attenuation 
Efficiency (AE) 

(at Δβ = 2000 m–1) 
 

 
 

 
 

General 
unique 
features  

 

 
An additional degree of freedom to tune the conversion or amplification efficiency, besides using the 

input pump intensity Ip to do so. 
 

 
Temperature variation can 

also be used to give an 
enhanced CE and AE as 
compared to the CE and 

AE at a fixed room 
temperature in the regime 

of high Ip. 

 
For T  > 150 K, both 
variable attenuation 

and amplification are 
possible for the WG 

by tuning Ip. 

 
Temperature variation can also be used to give an 
enhanced CE and AE as compared to the CE and 
AE at a fixed room temperature for all strength of 

Ip. 

 
 

For T  ≤  150 K, only 
variable attenuation is 
possible for the WG. 

 

  
For all T, the silicon WG 

can function both as a 
variable attenuator and a 

variable amplifier by 
tuning Ip. 
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Finally, note that this research work has been published in the following journal: 

Thomas Y. L. Ang and Nam Quoc Ngo, "Enhanced tunable Raman amplification/attenuation and 

parametric Raman wavelength conversion in submicrometer silicon waveguides via temperature 

variation," J. Opt. Soc. Am. B 28, 1556–1565 (2011). 
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Chapter 6 

Harnessing Coupler-Induced Localized 

Backscattering for Enhanced Fast and Slow 

Light Effects in a Traveling Wave 

Microresonator  

6.1.  Introduction: Research Motivations and Objectives 

We have ended the last chapter of part one of this thesis by studying the photonic bandgap 

engineering of coupled traveling wave microresonators (TWMRs). For part two of this thesis, we will 

focus exclusively on the fast light (FL) and slow light (SL) performances in TWMRs due to the 

numerous promising applications of FL and SL [1-5] and the current strong interest among the 

photonics community to employ semiconductor TWMR-based devices [6-13] for FL and SL research. 

In particular, FL and SL are envisioned to have profound implications for quantum information 

processing [14] and optical communications [15, 16], whereby the abilities to advance, delay and to 

coherently stop and store data trains are needed in order to enable far more flexible optical networks. 

Though atomic media [5, 17-19] are capable of generating larger pulse advancement or delay than 

semiconductor waveguide (WG) based schemes [6-13, 20-25], it is the ability of semiconductor 

schemes to operate at convenient communication wavelengths, and their compact size and ease of 

integration with other electronic and photonic components on a single chip that make them currently 

more attractive for communications applications. Among the various semiconductor schemes [6-13, 

20-24], TWMRs [25], such as microrings, microspheres and microtorids, have received particular 

emphasis in FL and SL research in recent years [6-13] owning to the fact that TWMRs are highly 

simple but yet effective photonic structures that are relatively easy to fabricate. Most importantly, 

TWMRs provide high dispersion per unit volume [26], which will make them highly suitable for FL 

and SL applications in integrated photonics.  

An azimuthally symmetric TWMR inherently possesses Kramers degeneracy [27, 28]: The two 

possible directions of propagation in the cavity, clockwise (CW) and counterclockwise (CCW), have 

identical resonance frequency (i.e., degenerate resonance frequency). Lifting of this degeneracy will 
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occur in the presence of backscattering, which results in the mutual coupling of the CW and CCW 

modes, consequently altering the dispersive [13] and transmission [27-33] responses of the TWMR. 

Traditionally, studies pertaining to backscattering in TWMR have focused on distributed 

backscattering within the cavity [13, 27-30], ever since backscattering in TWMRs was first 

experimentally observed in [27]. Such distributed backscattering is due to surface perturbations, 

which either results from the intentional addition of surface microstructures, such as gratings [13] or 

surface imperfections [27-30], that are incurred during the fabrication process. Recently, degeneracy 

lifting and mode splitting originating from localized backscattering at the coupling junction when a 

TWMR is coupled to an external port WG has been analytically predicted in [31] and experimentally 

demonstrated in [32, 33]. We term such backscattering as coupler-induced localized backscattering 

(CILB).  To the best of our knowledge, a detailed analytical study on the impacts of CILB on the 

nature of FL and SL in a TWMR is currently lacking in the literature, which will be the main 

objective of this work. In particular, it will be shown that weak CILB improves the FL and SL 

performances of a TWMR when the cavity possesses a small net optical gain.  

This chapter is organized as follows. In section 6.2, we first review the basic theory of fast light 

(FL) and slow light (SL). Then in section 6.3, the FL and SL natures of a conventional TWMR, in 

which CILB effects are negligible, are analytically characterized so as to set the stage for section 6.4. 

In section 6.4, we demonstrate how CILB can be harnessed to improve the FL and SL performances 

of a TWMR. Finally, we conclude in section 6.5. 

6.2.  Basic Theories of Fast and Slow Light  

6.2.1.  Concepts of Pulse Propagation, Group Velocity, Group Index and Group Delay 

A pulse, denoted as U(z, t), with an angular spectral bandwidth Δω around a central angular 

frequency ω0 is formed by the superposition of different monochromatic waves of different angular 

frequencies ω, which are in the interval ω = ω0 ± Δω. This pulse can be mathematically described as 

 
       0 0 0,  ,  exp ,  ,  ,U z t A z t j t z E z t d


   


                                        (6.1) 

where A0 is the amplitude function of the pulse, β0 is the propagation constant at ω0, z is the spatial 

coordinate (directed along the net propagation direction of the incident light in the optical medium), j 

= 1  and t denotes time. Each monochromatic wave E in Eq. (6.1) can be described as 

             ',  ,  exp exp exp ,E z t a j t z a j t z z                                 (6.2) 

where a(ω) and β(ω) are, respectively, the amplitude and propagation constant at ω. Note that β(ω) 

can be expressed as β(ω) = Re[β(ω)] + jIm[β(ω)] = β’(ω) + jα(ω) = Neffω/c = (Re[Neff] + jIm[Neff])ω/c, 

in which Re[β(ω)] = β’(ω) and  Im[β(ω)] = α(ω) are, respectively, the real and imaginary part of  β, 

Neff  is the effective index while Re[Neff] and Im[Neff] are, respectively, the real and imaginary part of  
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Neff. The phase response δ(ω) of the pulse is described by β’(ω) and Re[Neff(ω)] while the amplitude 

response is due to α(ω) and Im[Neff(ω)]. As implied in Kelvin’s method of stationary phase [34], pulse 

propagation is essentially a wave interference phenomenon. When the various Fourier components are 

exactly in phase, constructive interference will occur and a peak appears at the pulse’s envelope. On 

the other hand, if all the Fourier components of the pulse are exactly out of phase, destructive 

interference will occur and points of minima forms in the pulse [1-3]. For a typical Gaussian pulse, 

this corresponds to the wings of the Gaussian curve. Likewise, other points in between the peak and 

minimum of the pulse are formed by the interference of the various Fourier components. In particular, 

at the peak of the pulse, which is typically located at ω = ω0, the rate of the effective phase shift Φ = δ 

= ωt – β’z, which is imparted by the optical medium to the propagating pulse is zero, i.e., dΦ(ω0)/dω = 

0. This can be expanded as 

 
 

' '

'
0 0 ,

oo
o

g o

d z t d z d
z t v

d d t d 

    
  

  
       

 
                      (6.3) 

where the term z/t = dω/dβ’(ω0) = vg(ω0) in Eq. (6.2) gives the speed of the pulse peak. We now 

proceed to show that if Δω is small, the entire pulse will travel at a speed of vg(ω0). If Δω is small, 

β(ω) will vary slowly near the centre frequency ω0 of the pulse. Then β’(ω) can be approximated by 

the first two terms of the Taylor series: β’(ω) ≈  β’(ω0) ± Δωdβ’(ω0)/dω = ω0/v(ω0) ± Δω/vg(ω0). 

Substituting this into E(z, t, ω) in Eq. (6.2) allows us to express the Fourier components of the pulse 

as  

        0 0 0,  ,  exp exp ,gE z t a j t z v j t z                                    (6.4) 

where vg(ω0) is the group velocity of the light in the medium at the central frequency ω0. Making use 

of Eq. (6.3), the pulse envelope in Eq. 6.1 can be recasted as  

      0 0 0 0,  ,  exp .gU z t A z t z v j t z                                          (6.5) 

It is evident from Eqs. (6.4) and (6.5) that all the Fourier components of the pulse, i.e., the entire pulse 

envelope travels at a speed of vg(ω0) when Δω is small. In this context, the Fourier components can be 

regarded as travelling as a group at a speed similar to that at the pulse peak vg(ω0). Thus, vg is called 

the group velocity, which can also be expressed as vg(ω0) = c/Re[ng], where Re[ng] is the real part of 

the group effective index (or simply the group index) ng that can be easily derived from β’: 

 ' Re Re
Re  Re ,

eff eff

g eff
g

d N c d Nc
n c N

v d d

 


 

                                    (6.6) 

where c is the speed of light in vaccum and Neff  is the effective index of the medium. Note that the 

imaginary part of the group index is responsible for the loss of the pulse and is associated with 

Im[β(ω)] = α(ω). The significance of the pulse peak is that it contains intense energy that is used for 
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the actual detection of the pulse’s arrival. For these reasons, the definition of the propagation velocity 

that is commonly used when quantifying the speed of the propagating pulse in any type of medium 

(be it an ordinary optical medium, such as a straight dielectric waveguide, or FL and SL resonant 

media in the next section) is vg(ω0). Alternatively, Re[ng(ω0)] or the group delay tg(ω0) = z/vg(ω0) can 

also be used (note that from here onwards, we refer to Re[ng] simply as ng. Also, all parameters of ng, 

vg and tg are evaluated at ω = ω0). If higher-order terms of the Taylor series are considered in β’(ω) in 

Eq. (6.2), it can be seen that there is group velocity dispersion (GVD), which together with the 

frequency dependence of α, might distort the pulse. Generally, vg loses its original meaning if there is 

substantial pulse distortion [34, 35]. However, there is no clear benchmark on the extent of distortion 

that renders vg, ng or tg to be unsuitable as an optical metric for optical systems; this issue is 

circumvented by minimizing GVD through dispersion compensation [36] or simply by limiting the 

pulse bandwidth to region of linear dispersion within the resonance spectrum. 

6.2.2.   Linear Pulse Propagation in Resonant Medium: Generation of Fast and Slow Light 

To analyze the fast and slow light characteristics of any optical resonant medium, it is much 

more convenient to express Eq. (6.1) as 

  
     ,  ,  0,  ,p T pS H S   

                                                  
(6.7)        

where Sp(z, ω) is the pulse profile in the spectral domain, while HT(z, ω) is the steady-state transfer 

function of the through port, with the spatial coordinate z = 0 and z =  denoting, respectively, the 

entry and exit of the linear resonant medium (cf. inset in Fig. 6.1). The transfer function H, which is a 

complex electric field transmission can be written as 

           ',  ,  exp exp exp .T T eff eff effH H j j                                 (6.8) 

The quantity Φ = β’
eff(ω)  is the effective phase shift of the pulse after propagating through a linear 

resonant medium and gives all the information on the FL or SL. Note that we will use β’
eff  and αeff in 

place of β’ and α (which are used earlier in section 6.2.1 for ordinary optical media) so as to quaifity 

for the resonance effect. It can be seen in Eq. (6.8) that the resonant medium or system imparts a net 

amplitude change of exp(– αeff  ) and effective phase shift of Φ(ω) = β’
eff   to the input pulse. Using 

Φ, the phase delay tp, group delay tg and pulse front delay tf and the corresponding phase velocity vp, 

group velocity vg and pulse front velocity vf of the output pulse can be determined:  

        
' ' ' ,   ,  lim lim .p p eff g g eff f f efft v t d d v d d t v c

 
        

 
            

  
     (6.9)   

As mentioned, pulse propagation is a wave interference phenomenon. The nature of interference 

changes as the pulse propagates through a resonant medium. This modifies the phase relations among 

the Fourier components, resulting in the reshaping of the pulse that temporally shifts the point of 
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constructive interference and thus the pulse peak [1-3]. At the output port, the pulse peak has a 

temporal shift of tg =  /vg with respect to the input pulse peak as the pulse envelope A0(t) becomes 

exp(–αeff  )A0(t –  /vg) after propagating through the optical medium of length  (mentioned earlier). 

Whether a pulse advance (tg < 0) or pulse delay (tg > 0) is generated depends on the dispersion of the 

resonant medium. If the medium is anomalously dispersive, there are two possibilities: (i) ng < 0 and 

vg < 0, which produces a pulse advance (tg < 0) as shown in Fig. 6.1(a), whereby the peak of the pulse 

emerges at the output port even before the peak of the input pulse has entered the medium or (ii) 0 < 

ng  < 1 and 0 < c < vg, resulting in a pulse delay tg that is less than that of vacuum, i.e., tg < tg(vac) =  /c, 

which is shown in Fig. 6.1(b). Both (i) and (ii) are known as fast light (FL), which does not violate 

Einstein’s theory of relatively as the peaks of the input and output pulse are not causally related 

because the pulse undergoes continuous reshaping (through interference of the various Fourier 

components of the pulse) as it propagates throught the optical medium [1-3]. Relativistic causality is 

 

0
0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 A

m
p

lit
u

d
e

 (
in

 a
.u

)

 

 

0
 

 

Normalized Time 
0

 

 

(c)(b)(a)

t
g

t
g

t
g(vac)t

g(vac)
t
gt

g(vac)

 

Fig. 6.1. In (a), (b) and (c), the dotted black lines represent the input Gaussian pulse centred at 

normalized time = 0, the thickened red lines represent the output Gaussian pulse after propagating 

through a linear resonant medium (shown in top inset) of length  while the thin blue lines represent the 

pulse after propagating through vaccum of equal length as the resonant medium. The group delay of the 

pulse traveling through the linear resonant medium is denoted as tg while the group delay of the pulse 

traveling through vaccum of similar distance  is denoted as tg(vac). Depending on its dispersion, a 

resonant medium of length  can generate output pulse with (a) fast light with negative tg, (b) fast light 

with positive tg, in which tg < tg(vac) or (c) slow light in which tg > tg(vac). For simplicity, the effects of 

GVD and waveguide losses or gain are not shown. 
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associated only with the wave (or signal) front, which carries the information and always has a speed 

of c (i.e., vf  = c in Eq. (6.9)). On the other hand, if there is normal dispersion, a pulse delay of 0 < tg < 

tg(vac) is generated. This phenomenon is known as slow light (SL), as illustrated in Fig. 6.1(c). 

Finally, it must be mentioned that FL and SL effects, which are usually associated with the vg of 

the pulse peak, do not change the rate of information transfer vi, which always has a speed of c, as 

mentioned above. Note that vi is associated with the wavefront (but not pulse peak) as the information 

is impressed on each waveform only at the wave front. It is the sharp discontinuous wave front of the 

incoming pulse that carries the information, not the pulse peak. Thus, vi ≠  vg. What FL and SL merely 

do is adjusting the detection latency between the time when the information (at the wave front) is first 

available at the detector and when it is actually detected via the pulse peak [37, 38]. 

6.3.  Fast and Slow Light Performances in a Conventional Traveling Wave Microresonator  

6.3.1.  Theoretical Formulation 

The schematic of the TWMR circuit, which is being studied in this chapter, is illustrated in Fig. 

6.2. We define a conventional TWMR as one in which the cavity is degenerate (i.e., the direction of 

the light propagation in the resonator, be it clockwise or counterclosewise, does not affect the 

resonance frequency and thus the resonance frequency is also termed as the degenerate resonance  

 

Fig. 6.2. Schematic of a traveling wave microresonator coupled to two output ports. 

frequency), has negligible intracavity backscattering and is excited only by one input. For our work, 

we assume that a single input is launched at the left-hand side of the resonator circuit in Fig. 6.2. This 
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means a1
’ = b1

’ = c1
’ = d1

’ = a2
’ = b2

’ = c2
’ = d2

’ = a2 = 0 in Fig. 6.2. Then the electric fields at the 

coupling junctions (CJs) in Fig. 6.2 can be described as [10, 36]:  

                CJ 1:  1 11 1

1 11 1

b ar j

j rd c




    
    
    

,         CJ 2:  2 22 2

2 22 2

b ar j

j rd c




    
    
    

,              (6.10)  

where κi, and ri are, respectively, the forward “cross” amplitude coupling coefficient and forward 

“through” amplitude coupling coefficient of the coupler at the coupling junction i (i = 1 or 2). Also, 

r1
2 + κ1

2 = r2
2 + κ2

2 = 1 as we have assumed a lossless coupler for simpicity. Noting that d2 = 

d1r2τ
1/2exp(jδ/2), the transfer function HT (HD) of the through (drop) port of a conventional TWMR 

can be written as 

1 2 1

1 1 2

exp( )
,

exp( ) 1T T T

b r j r
H H

a r r j

 
 


   

                                     
 (6.11) 
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 (6.12)                           

where τ is the round-trip amplitude attenuation constant, Φ is the effective phase shift of the resonator, 

δ = 2πm + Δω/FSR = (ngω/c)Lrt is the round-trip phase shift, Δω is the detuning angular frequency, 

m = ±1, ±2,… is the resonance order, FSR is the free spectral range, ng is the group effective index 

and Lrt is the round-trip length of the cavity. In filter terminology, the two-port TWMR is known as a 

minimum phase filter (MPF). For MPFs, the amplitude and phase responses are uniquely related by 

the Hilbert transform [36], from which it can be easily deduced that a large enhancement in the group 

delay tg and the transitions between FL to SL (or via versa) occurs near points where there is a large 

change in the transmission response. It is thus useful to locate these points so that the FL and SL of 

the TWMR can be analyzed. Generally, a large and sharp change in the transmission of any TWMR 

will occur near the critical coupling and oscillation conditions. Note that oscillation (critical coupling) 

refers to the phenomenon in which the transmission is infinite (zero) at the resonant frequency and is 

associated with the poles (zeros) of the transfer function. Applying the z-transform operation [36] (z–1 

= exp(jδ) is used) to Eqs. (6.11) and (6.12), the zero zz,T (zz,D) and pole zp,T (zp,D) of the through (drop) 

port of the conventional TWMR that is coupled to two ports can be expressed as 

, 2 1 ,z Tz r r
     

, 1 2z ,p T r r                                                    (6.13) 

 , 0,z Dz       , 1 2z .p D r r                                                    (6.14) 

Note that oscillation (critical coupling) occurs when the pole (zero) lies on the unit circle of the pole-

zero diagram, i.e., |zz| = |zp| = 1. Then it is easy to see from Eqs. (6.13) and (6.14) that, for a 

conventional TWMR, it is possible for critical coupling to take place at the through port, while the 

drop port cannot produce critical coupling as zz, D = 0. On the other hand, oscillation is possible at both 
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ports as zp, T = zp, D ≠  0. We shall analyze in more details in later sections on how the critical 

oscillation and oscillation points relate to the FL and SL natures of the TWMR. From Eqs. (6.11) and 

(6.12), the group delay tg, T (tg, D) at the through (drop) port can be derived, using tg, T = trt∂ΦT/∂δ and tg, 

D = trt ∂ΦD/∂δ, respectively:
 
 

  

2 2 2 2
2 1 1 2 1 1 2 2

, 2 2 2 2 2 2
1 1 2 2 1 2 1 2
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(6.16)                        

where trt is the round-trip time of the cavity. Thus, the resonator is capable of group delay or advance 

enhancement that is a multiplier of trt. Using tg, three different types of light propagation velocity can 

be classified: (i) FL with negative vg if tg < 0, (ii) FL with positive vg if 0 < tg < 1, and (iii) SL if tg > 1, 

where vg is the group velocity. We will use this classification to analyze tg at the degenerate resonance 

frequency ω0, which has δ = 2πm, in this work. Do note that tg is expressed in terms of trt (i.e., tg is 

normalized with trt) for the above classification of light propagation regimes. This convention will be 

used throughout this chapter, unless otherwise stated. 

6.3.2.  Group Delay Classification at the Frequency ω0 

We first analyze the group delay at the through port. At ω0, we can simplify Eq. (6.15) to:  
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                                 (6.17) 

Stable light circulation in the cavity means |zp, T| < 1 [36]. Imposing this on Eq. (6.17) gives: 

1 2 , 0g Tr r t    ,           1 2 , 0g Tr r t                                          (6.18)                           

The inequality τ < r1/r2 (τ > r1/r2) in Eq. (6.18) is termed as under coupling (over coupling) 

condition, which gives FL (SL). To better illustrate Eq. (6.18), we have plotted Eq. (6.17) in Fig. 

6.3(a). It can be seen that the transmitted light at the through port transforms from “fast” to “slow” as 

the coupling condition changes from under-coupling (τ < r1/r2) to over-coupling (τ > r1/r2), with the 

reversal from FL to SL occurring at the first asymptote (at τ = r1/r2), which is the critical-coupling 

point. A second reversal of dispersion occurs at the second asymptote (at τ = 1/(r1r2)), which is the 

oscillation point. This, however, leads to unstable FL. Note that at the critical coupling and oscillation 

points, ∂Φ/∂δ and tg diverges and thus tg (as well as ng and vg) loses its physical significance. The 

existence of the critical coupling and oscillation points at the through port is consistent with the 

presence of the pole and zero in the transfer function of the through port. The influence of the pole 

and zero on tg, T (ω0) can be better illustrated by the pole-zero diagram in Fig. 6.3(b). As seen in Fig. 

6.3(b), when τ < r1/r2, the zero always lies inside the unit circle, giving tg, T < 0  
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Fig. 6.3. (a) Group delay tg (in trt) of the transmitted light at the degenerate resonance frequency ω0  for 

the through port of a traveling wave microresonator with κ1 = κ2 = 0.2 as an example. Critical coupling 

(oscillation) occurs at τ = 1 (τ = 1.0417). (b) The pole-zero dynamics on the unit circle as τ is varied. The 

cross (circle) denotes the pole (zero) of the transfer function. 

that corresponds with the FL regime in Fig. 6.3(a). Subsequent increase in τ moves the zero towards 

the unit circle and produces a rapidly decreasing function of tg, T that is bounded by the asymptote of 

the critical coupling point in Fig. 6.3(a). On the other hand, for τ > r1/r2, the zero is always outside the 

unit circle in Fig. 6.3(b). This gives tg, T > 0, corresponding to the SL regime in Fig. 6.3(a). Initial 

increment in τ moves the zero away from the unit circle, which leads to a sharp drop in tg in Fig. 

6.3(a). As τ is increased further, there is a sharp rise in tg in the SL regime in Fig. 6.3(a) that is 

bounded by the asymptote of the oscillation point. Subsequent increase in τ moves the pole out of the 

unit circle, which corresponds to the unstable FL region in Fig. 6.3(a). 

Next, we analyze the group delay at the drop port. At ω0, Eq. (6.16) is simplified to:  
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                                              (6.19) 

Imposing the stability condition of |zp, D| < 1 on Eq. (6.19) would mean: 

 1 2 , 1 0.g Tr r t                                                             (6.20)                           

To show the implication of Eq. (6.20), we have plotted Eq. (6.19) in Fig. 6.4(a). It can be seen that at 

the drop port, only SL exists in the region of stable operation at τ < 1/(r1r2). Similar to the through 

port case in Fig. 6.3(a), the reversal from stable SL to unstable FL occurs at the asymptote that is 

located at τ = 1/(r1r2), which is also the oscillation point. However, the asymptote of the critical 

coupling, which is present for the through port case in Fig. 6.3(a), is absent for the drop port case in 
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Fig. 6.4(a). This occurs as only the pole, but not the zero, which produces critical coupling, is present 

in tg, D (ω0), as seen in Eq. (6.19). The zero is absent in Eq. (6.19) as the zero = 0 for the transfer 

function of the drop port in Eq. (6.14), which can also be seen in the pole-zero diagram of Fig. 6.4(b). 

The trends of the pole in regards to the FL and SL regimes of the drop port case are similar to those of 

the through port case, which have already been analyzed above and thus will not be repeated. 

We have stated in section 6.2 that FL and SL are wave interference phenomena. Whether the 

transmitted light b1(t) at the through port is “fast” or “slow” depends on the interference b1(t) = r1a1(t) 

+ jκ1c1(t) (based on Eq. (6.10)) at the coupling junction 1 in Fig. 6.2, where  a1
’ = b1

’ = c1
’ = d1

’ = a2
’ = 

b2
’ = c2

’ = d2
’ = a2 = 0 for a conventional TWMR. Note that the ballistic light r1a1(t) is π out of phase 

and time delayed with respect to the circulated light jκ1c1(t) at resonance. In the under (over) coupling  
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Fig. 6.4. (a) Group delay tg (in trt) of the transmitted light at the degenerate resonance frequency ω0  for 

the drop port of a traveling wave microresonator with κ1 = κ2 = 0.2. Oscillation occurs at τ = 1.0417. (b) 

The pole-zero dynamics on the unit circle as τ is varied. The cross (circle) denotes the pole (zero) of the 

transfer function. 

regime, the circulated light is weaker (stronger) than the ballistic light. Thus, when r1a1(t) and jκ1c1(t) 

interfere, the trailing (leading) part of the ballistic (circulated) light vanishes through destructive 

interference, giving fast (slow) light. More details can be found in [8]. On the other hand, at the drop 

port of a conventional TWMR, the output light b2(t) only depends on the time delay incurred by the 

intracavity light circulation as b2(t) = jκ2c2(t). As such, the transmission at the drop port is always 

“slow” in nature. 

From this section, we can conclude that: (i) The group delay tg (ω0) of a TWMR depends on the 

coupling conditions, with a large enhancement in tg (ω0) near the critical coupling or oscillation point; 

(ii) the presence of pole (zero) in the transfer function, which is responsible for oscillation (critical 
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coupling), implies the possibility of stable SL (stable SL and FL); and (iii) the transition from stable 

FL to stable SL or vice versa occurs at the critical coupling point while the transition from stable SL 

to unstable FL or vice versa occurs at the oscillation point. These properties are later used to explain 

the effects of coupler-induced localized backscattering (CILB) on the traveling wave microresonator. 

Finally, note that only cases with zero zz that is not equal to 0 are taken into consideration in our 

discussions as a zero zz that is equal to 0 cannot produce the critical coupling, which is associated with 

SL, when a waveguide is coupled to a resonator. Here, the zero zz refers to the zeros of the transfer 

function after a z-transform operation (see p. 144 and [36] for details). Critical coupling occurs when 

the zero zz lies on the unit circle of the pole-zero diagram, i.e., |zz| = 1. Nevertheless, for completeness, 

we have earlier included a zero that is = 0 in Eq. (6.14). 

6.3.3.   Limitations of Fast and Slow Light Performances  

To realize a practical and versatile FL and SL device, one would require: (i) Continuously 

tunable group delay, with the ability to generate all three types of light propagation velocity (i.e., FL 

with negative vg, FL with positive vg and SL) in the stable operation regime, (ii) minimal insertion 

losses for both FL and SL, and (iii) a constant transmission and group delay over a broad bandwidth. 

We will focus only on (i) and (ii) in this chapter as fulfilling (iii) generally depends on expanding the 

delay-bandwidth product, which will be looked into in this thesis through the use of a twin-coupled 

resonators scheme in chapter 9. The transmission at ω0 is plotted in Fig. 6.5, which is superimposed  
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Fig. 6.5. The relation between the transmission and the group delay at the degenerate resonance frequency 

ω0 for the output light at the (a) through port and (b) drop port of a conventional traveling wave 

microresonator with κ1 = κ2 = 0.2 as τ is varied.  
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with Figs. 6.3 and 6.4. From Fig. 6.5, we can notice the limitations of the conventional TWMR in 

terms of its transmission. In particular, it is evident that at both ports, FL always suffers from 

substantial attenuation, while SL can be generated with high transmission. In fact, we can observe 

from Fig. 6.5 that each port has one specific value of τ that gives a transmission of 0-dB (i.e., lossless) 

for SL propagation. In addition, several limitations in the group delay performances of a conventional 

TWMR can be identified based on our earlier discussions in section 6.3.2. All these observations of 

the limitations of the conventional TWMR, i.e., with no coupler-induced localized backscattering 

(CILB), have been summarized in Table 6.1. Using Table 6.1, it can be concluded that a conventional 

TWMR does not meet (i) and (ii). However, when weak CILB is being harnessed, the FL and SL 

performances are improved, which are also shown in Table 6.1. These allow points (i) and (ii) to be 

met. In the next section, we will elaborate on how the use of weak CILB brings about such improved 

FL and SL performances in the TWMR. 

Table 6.1. Summary of fast light (FL) and slow light (SL) performances at the degenerate resonance 

frequency ω0 in the stable operation regime of a traveling wave microresonator 

 

 Group Delay Transmission 

 

 

 

Through  

Port 

 

Without CILB With Weak CILB Without CILB With Weak CILB 

Only two types of 
propagation 

velocity (FL with vg 
< 0 and SL) can be 

produced. 

All three types of 
propagation 

velocity (FL with 
vg < 0, FL with vg 

> 0 and SL) can be 
produced. 

 

Possible to have SL with 
high transmission. 

 

Possible to have SL with 
high transmission. 

Net loss region (τ < 1) 
can produce only FL 

while the net gain 
region (τ > 1) can 

produce both FL and 
SL. 

Net loss (τ < 1) and 
net gain regions (τ > 
1) can produce both 

FL and SL. 

 

 

Fast light is always 
associated with low 

transmission. 

 

 

 

Fast light is always 
associated with low 

transmission. 

 Limited degree of 
freedom to tune the 

group delay. 

Improved degree of 
freedom to tune the 

group delay 

 

Drop  

Port 

Only one type of 
propagation velocity 

(SL) can be produced. 

All three types of 
propagation velocity 

can be produced. 

Possible to have SL 
with high transmission. 

Possible to have SL with 
high transmission. 

Limited degree of 
freedom to tune the 

group delay. 

Improved degree 
of freedom to tune 
the group delay. 

FL is always associated 
with low transmission. 

FL with amplified 
transmission can be 

generated. 
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6.4.     Fast and Slow Light Performances in a Traveling Wave Microresonator with Coupler-   

Induced Localized Backscattering (CILB) 

6.4.1.   Theoretical Formulation 

In the presence of CILB, both CW and CCW propagating modes will be excited in the resonator 

and the degeneracy is consequently lifted. As such, we will term the TWMR with CILB as a non-

degenerate TWMR for the rest of this work. The coupling between the electric fields of the CW and 

CCW cavity modes in Fig. 6.2 in the presence of CILB can be described as 

     
       ' ' ' ' ' '        ,

T T Ti i
i i i i i i i i i i i i i

i i

P U
b b d d a a c c G a a c c

U P

 
   
 

                     (6.21) 

where    
' '

' '
,   ,   1 or 2.i i i i

i i

i i i i

jr r j
P U i

r jr j

 
 

   
     

     
 

In Eq. (6.21), κi
’ and ri

’ are, respectively, known as the backward “cross” coupling coefficient and 

backward “through” coupling coefficient of the coupler at the coupling junction i (i = 1 or 2), while κi 

and ri are the forward “cross” coupling coefficient and foward “through” coupling coefficient that are 

used earlier for the conventional TWMR. Note that here, the coupling coefficients are used to describe 

the coupling of the electric field amplitudes. For a TWMR with lossless couplers, Gi in Eq (6.21) 

satisfies the unitary condition Gi
† Gi = I (where the dagger † stands for the Hermitian conjugate and I is 

the identity matrix), which can be used to derive important relations between ri, ri
’, κi and κi

’: 

2 22 2 2 2' ' 2 1,i i i i i i ir r r                                           (6.22)          

' '  ,i i i ir r                                                                (6.23) 

2 22 ' ' ,i i ir                                                            (6.24) 

221 ,i i ir                                                              (6.25) 

221 ,i i ir                                                              (6.26) 

' 2
 1 ,i i i ir r                                                              (6.27) 

2' 2 21 1 ,i i i i ir                                                         (6.28) 

where η = (|ri|
2 + |κi|

2)1/2 has been introduced in the above equations to quantify for the CILB at each 

coupling junction. For the conventional TWMR in section 6.3, there is no CILB and thus η = 0. In this 

section, CILB is present in the TWMR. Then η ≠  0. The electric fields in the TWMR can be 

described as
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 1 2 exp 2 ,c d j                      2 1 exp 2 ,c d j                                (6.29)     

                                
 ' '

1 2 exp 2 ,c d j                    ' '
2 1 exp 2 .c d j                                 (6.30)     

Applying the boundary conditions a1
’ = a2

’ = a2 = 0 and with the aid of Eqs. (6.22) to Eq. (6.30), the 

transfer functions for a TWMR with CILB can be derived from Eq. (6.21): 

                                           

2
1 2

4

1 1

1
2

3

exp( 2 ) exp( )

exp( 2 ) 2 exp
,

( ) 1T

B j B j r

B j B j
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                                    (6.31) 
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exp( 2 ) 2 exp( ) 1
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B j B jb
H
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                                 (6.32)      

where 

2
1 1 2 2B r r  ,      2 1 2 1 2 2 2

2 1 2 1 1 1 2 1 2 2 1 12  2 1 ,B r r r r            

   2

3 1 2 1 2B r r   ,    4 1 1 2 2 1 2 2 ,B r r r     

     
 2 2

5 1 2 1 1 2 2 1 2( )( )B r r r r      ,   2 2
6 1 2 1 2 1 1 2 2 1 2( ) ( )( ) ,B r r           

in which    2 2
1 1 2 21  and 1       . Using the z-transform, the zeros zz,T (zz,D) and poles zp,T (zp,D) 

of the through (drop) port can be obtained from Eqs. (6.31) and (6.32): 

                
   2 1

2 2, 1 1 14 2z Tz B B B r r  
    

,        ' ' ' '
1 2 1 2 1 2 1 2, ( ) ,p T r r r r r rz r j r                 (6.33)               

               5 6,z Dz B B                                      ,       ' ' ' '
1 2 1 2 1 2 1 2, ( ) .p D r r r r r rz r j r                  (6.34)   

When η = 0, Eqs. (6.21), (6.31), (6.32), (6.33) and (6.34) will simplify, respectively, to Eqs. (6.10), 

(6.11), (6.12), (6.13) and (6.14), which are the expressions for the TWMR with no CILB (i.e., η = 0). 

This shows the validity of our modeling. It should also be noted that when CILB is present in the 

TWMR, the transmission spectrum at each output port is either a Lorentzian (with degenerate 

resonance frequency ω0 at the peak/dip of the Lorentzian) or a pair of two-split Lorentzian (with the 

split resonance frequencies ω0, 1 and ω0, 2 at the peaks/dips of the two-split Lorentzian). Whether the 

former or latter case occurs depends on the nature of the backscattering (which in this case is CILB) 

in relation to the gain/loss and coupling of the cavity [29]. This is better illustrated later in Fig. 6.8 of 

section 6.4.4. Thus, the poles and zeros in Eqs. (6.33) and (6.34) can either correspond to the the 

degenerate resonance frequency ω0 (at the the Lorentzian peak/dip) or the split resonance frequencies 

ω0, 1 and ω0, 2 (at the peaks/dips of the two-split Lorentzians).  

6.4.2.  Deducing the Impacts of CILB via the Poles and Zeros 

Comparing with Eqs. (6.13) and (6.14), it is evident from Eqs. (6.33) and (6.34) that the 

presence of CILB in the cavity changes the nature as well as the number of poles and zeros of the  
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system. Utilizing the poles and zeros, the impacts of CILB can be deduced. This is highlighted below. 

As seen from Eqs. (6.33) and (6.34), the through and drop ports of the non-degenerate TWMR 

(i.e., with CILB) have poles of the same values. This behavior also applies to the conventional 

degenerate ring (i.e., without CILB) as shown earlier in Eqs. (6.13) and (6.14). However, there are 

two poles in the non-degenerate TWMR (cf. Eqs. (6.33) and (6.34)) in contrast to only one pole for 

the degenerate TWMR (cf. Eqs. (6.13) and (6.14)) at both the through and drop ports. Using Eq. 

(6.33), it can be deduced that the two poles of the through port of the non-degenerate case are always 

symmetrical to each other, i.e., ap1 = ap2 and ϕp1 = – ϕp2 ≠  0, where ap1 and ap2 denote the magnitudes 

of the two poles, while ϕp1 and ϕp2 denote the angles of the poles. This trend also applies to the poles 

of the drop port in Eq. (6.34). The presence of a pair of symmetrical poles indicates the existence of 

resonance splitting. In other words, when CILB is present, the poles will correspond to the split 

resonance frequencies ω0, 1 and ω0, 2 but not ω0. Consequently, oscillation takes place at ω0, 1 and ω0, 2 

rather than at ω0.  

As seen from Eqs. (6.33) and (6.34), the through and drop ports of the non-degenerate TWMR 

(i.e., with CILB) have zeros that are of different values. This property can also be seen in the 

conventional degenerate ring (i.e., without CILB) in Eqs. (6.13) and (6.14). However, we can see 

from Eq. (6.33) that the through port of the TWMR with CILB has two zeros. This is in contrast to the 

conventional TWMR in which there is only one zero as shown in Eq. (6.13). When η is small such 

that B2 ≥  4B1r1 in Eq. (6.33), both the zeros are real and distinct, having different amplitudes, i.e., az1 

≠  az2 and ϕz1 = ϕz2 = 0, where az1 and az2 denote the magnitudes of the two zeros while ϕz1 and ϕz2 

denote the angles of the two zeros. The zeros can only correspond to the split resonance frequencies 

ω0, 1 and ω0, 2 if only they are symmetrical to each other (i.e., az1 = az2 and ϕz1 = – ϕz2 ≠  0). As such, 

these zeros in Eq. (6.33) correspond to ω0. Given fixed η and coupling coefficients, each zero will 

cross the unit circle on the pole-zero diagram at two different values of τ. This means that ω0 has two 

critical coupling points at the through port for small η, in contrast to the degenerate case or 

conventional TWMR, where ω0 has only one critical coupling point. At sufficiently large η such that 

B2 < 4B1r1, the zeros change such that they are complex and are symmetrical to each other. Then the 

two zeros correspond to the split resonance frequencies ω0, 1 and ω0, 2. In this case, critical coupling 

occurs at the split resonances instead at ω0. On the other hand, only one zero is found at the drop port 

of the TWMR when CILB is present (cf. Eq. (6.34)). This property is similar to the case of the 

conventional TWMR (cf. Eq. (6.14)). However, it should be noted that the zero of the drop port is = 0 

for the case of the conventional TWMR (cf. Eq. (6.14)). This is in contrast to the TWMR with CILB 

that has a zero that is ≠  0 at the drop port (cf. Eq. (6.34)). A zero that is = 0 (≠  0) for the drop port 

means that critical coupling is impossible (possible) at the drop port when the waveguide is coupled to 

the resonator. Thus, CILB can be used to bring about critical coupling at the drop port.  
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In this work, the emphasis is on the fast light (FL) and slow light (SL) natures at the degenerate 

resonance frequency ω0 as we have found that the group delay enhancement is generally larger at ω0  

as compared to that at the split resonance frequencies ω0, 1 and ω0, 2. To facilitate this, the number of 

poles and zeros that correspond to the degenerate resonance frequency ω0 for a conventional TWMR 

(without CILB) and a non-degenerate TWMR (with weak CILB) are summarized in Table 6.2. These 

data in Table 6.2 are based on Eqs. (6.13), (6.14), (6.33) and (6.34) and the above-mentioned trends of  

the poles and zeros of the TWMR for the degenerate (i.e., no CILB) and non-degenerate (CILB is 

present) cases at ω0. From Table 6.2, it is clear that at ω0, CILB alters the number of poles and zeros 

(which are ≠  0). In particular, for both ports, the pole vanishes and is replaced by a zero (which is ≠  

0) when moving from the regime of no CILB to regime of weak CILB. As mentioned in section 6.3.2, 

the pole (zero) is associated with oscillation (critical coupling) and the generation of stable SL (stable 

FL and SL). Then it can be deduced that for both ports, the oscillation point at τ > 1 of the through  

Table 6.2. †Number of poles and zeros that correspond to the degenerate resonance frequency ω0 of a traveling wave 

microresonator. 

†For both ports, when moving from the regime of no coupler-induced localized backscattering (CILB) to the regime of 

weak CILB, the number of pole (zero) that corresponds to the degenerate resonance frequency ω0 decreases (increases) 

by one. In other words, the pole of ω0 vanishes and is replaced by a zero. It should be noted that only zero that is ≠  0 is 

taken into consideration in this table and in our discussion as a zero that is = 0 cannot produce critical coupling, which 

is associated with slow light properties, when a waveguide is coupled to a resonator. 

port of a conventional TWMR will be replaced by a critical coupling point in the presence of weak 

CILB. Correspondingly, the stable SL and unstable FL near the oscillation point at τ > 1 (shown 

earlier in Figs. 6.3(a) and 6.4(a)) of a conventional TWMR will transform, respectively, into stable FL 

and stable SL when there is weak CILB. This will be verified in the next section. It should be noted 

that only zero that is ≠  0 is taken into consideration in our discussion as a zero that is = 0 cannot 

produce critical coupling, which is closely linked to the SL properties, when a waveguide is coupled 

to a resonator. 

6.4.3.  Group Delay Classification at the Frequency ω0 

The group delay tg (ω0) at the through and drop ports can be derived from Eqs. (6.31) and 

(6.32):  

 Number of Poles  Number of Zeros (which are ≠  0) 

     Without CILB   With Weak CILB Without CILB     With Weak CILB 
 

Through Port 
 

One Pole 
 

 
No Pole 

 

 
One Zero 

 
Two Zeros 

 
Drop Port 

 
One Pole 

 

 
No Pole 

 
No Zero  

(which is ≠  0) 

 
One Zero 
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(6.36) 

where      ' ' ' ' ' ' ' '
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 29 .B r r r r r r r r              

Using Eqs. (6.35) and (6.36), we have plotted tg (ω0) under different η for the through and drop 

ports in Figs. 6.6 and 6.7, respectively. For comparison, the tg (ω0) curves of a conventional TWMR 

with no CILB (i.e. η = 0), as shown earlier in Figs. 6.3 and 6.4, are also shown in Figs. 6.6 and 6.7. 

The effects of small increment in η on the tg (ω0) curve of a conventional TWMR at the through port 

is shown in the inset in Fig. 6.6(a), in which it can be seen that the tg (ω0) curve transforms from a 

rapidly increasing function (cf. η = 0) to a rapidly decreasing function (cf. η = 0.0006 or η = 0.0009) 

in the net gain region (i.e., τ > 1). Changes in tg(ω0) in the net loss (i.e., τ < 1) region, however, are 

minimal. Consequently, the stable SL (unstable FL) regime to the left (right) of the asymptote (at τ ≈ 

1.04) in the net gain region switches to a stable FL (stable SL) regime when η changes from 0 to 

0.0006 or 0.0009, as observed in the inset in Fig. 6.6(a). Such change in tg (ω0) in the net gain region 

when η ≠  0 is consistent with the deduction made using the poles and zeros of the system in section 

6.4.2. Subsequent increase in η simply translates the hyperbolic curves in the direction of the arrows, 

as shown in Fig. 6.6(b). This will result in the FL and SL regions bounded by the two asymptotes to 

reduce in width. Eventually, at large η, the hyperbolic-like feature of tg(ω0) vanishes, as seen in Fig. 

6.6(c). This degrades the group delay enhancement. 

Similarly, for the case of the drop port, a small change in η will result in the tg (ω0) curve of a 

conventional TWMR to transform from an increasing function (cf. η = 0) to a deceasing function (cf. 

η = 0.0006 or η = 0.0009) in the net gain region, as shown in the inset in Fig. 6.7(a), which then 

correspondingly changes the regime of light propagation velocity. A subsequent increase in η in Fig. 

6.7(b) smoothen the tg curves and widens the FL and SL regions. At larger η, the tg curves shift in the 

direction of the arrows in Fig. 6.7(c). Then the width of the FL (SL) region decreases (increases) as η 

increases. Note that unlike the through port case in Fig. 6.6(c), a large η does not destroy the sharp 

hyperbolic features of the tg (ω0) curves of the drop port, as seen in Fig. 6.7(c). In other words, 

working in the strong CILB regime does not degrade the sharp tg (ω0) enhancement at the drop port, 

while the converse is true for the through port case. 
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Fig. 6.6. Group delay at the degenerate resonance frequency ω0 for the through port of a traveling wave 

microresonator with κ1 = κ2 = 0.2 as a function of τ at different η. (a) In the inset, the group delay curve 

changes from an increasing function to a deceasing function when η is tuned from 0 to 0.0006 or 0.0009. 

(b) Further increment in η shifts the asymptotes in the direction of the arrows. (c) If η becomes too large, 

the group delay enhancement is degraded.  
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Fig. 6.7. Group delay at the degenerate resonance frequency ω0 for the drop port of a traveling wave 

microresonator with κ1 = κ2 = 0.2 as a function of τ at different η. (a) As shown in the inset, the group 

delay curve changes from an increasing function to a deceasing function when η is tuned from 0 to 0.0006 

or 0.0009. Further increment in η smoothens the group delay curves. (c) At large η, the group delay 

curves shift in the direction of the arrows, without degrading the group delay enhancement, unlike the 

case at the through port in Fig. 6.6(c). 
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The above-mentioned changes in the nature of the FL and SL (as well as their associated poles 

and zeros in Table 6.2) as compared to those of the conventional TWMR in section 6.3 are due to the 

modification of the nature of interference at the output ports by the presence of CILB. For the through 

port, the interference process of the TWMR with CILB becomes b1(t) = r1a1(t) + jκ1c1(t) + κ1
’c1

’(t), in 

contrast to the conventional TWMR case of b1(t) = r1a1(t) + jκ1c1(t). With an additional net wave of  

κ1
’c1

’(t) to interact with the ballistic wave r1a1(t), the behaviours of FL and SL at the through port are 

consequently altered. For the drop port, the formation of the transmitted wave of the non-degenerate 

case is described by b2(t) = jκ2c2(t) + κ2c2(t). Then both fast and slow light effects can be achieved at 

the drop port due to the presence of an additional wave k2c2(t) to interfere with jκ2c2(t), unlike the case 

of the conventional TWMR, in which b2(t) = jκ2c2(t), and thus the output light is always “slowed” by 

c2(t) that circulates in the cavity. These deductions are based on Eqs. (6.10) and (6.21). 

6.4.4.  Spectral Characteristics 

In this section, we show the effects of CILB on the spectral responses in order to better explain 

the group delay trends at ω0 in Figs. 6.6 and 6.7. The spectral responses for the through and drop ports 

are shown in Fig. 6.8(a) for the net loss regime and in Fig. 6.8(b) for the net gain regime at various η.  
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Fig. 6.8. Evolution in the transmission and group delay spectra around the degenerate resonance 

frequency ω0 of a traveling wave microresonator with κ1 = κ2 = 0.2 for (a) the net loss regime (τ = 0.99) 

and (b) net gain regime (τ = 1.035) as η is varied.  

To explain the trends of the spectral responses in Fig. 6.8, first note that two eigenmodes are 

formed due to the CILB that breaks the rotational symmetry of the cavity. These eigenmodes are 

clearly resolved in the transmission spectrum in the form of a two-split Lorentzian only if the mode 

(a) Net Loss regime τ  <  1                                                     (b)   Net Gain Regime τ  >  1 
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splitting or frequency separation between the eigenmodes (controlled by η) is much larger than the 

resonance linewidth (controlled by τ and r). Otherwise, the transmission spectrum has the shape of a 

single-Lorentzian near ω0. This is somewhat analogous to the Rayleigh criterion in diffraction optics. 

The above-mentioned occurrence of either a single sharp Lorentzian or a pair of two-split Lorentzian 

in the transmission spectrum has also been mentioned earlier in section 6.4.2. 

For the net loss (τ < 1) regime in Fig. 6.8(a), the presence of small CILB in the range of ~ η  ≤  

0.01 does not significantly affect the spectral responses; the spectral responses of η = 0.006 are nearly 

similar to that of η = 0. As a result, one can see that increasing η from 0 to 0.006 has a negligible 

effect for τ < 1 for the group delay at ω0 in Figs. 6.6(a) and 6.7(a). However, at larger η, the mutual 

coupling between the CW and CCW modes in the TWMR will be strong enough to induce mode 

splitting effects in the transmission spectrum. This can be seen in Fig. 6.8(aii) and Fig. 6.8(aiv), 

respectively, for the through and drop ports at η = 0.06. The occurrence of mode splitting in the 

transmission will then result in the group delay enhancement at the degenerate resonance frequency to 

be considerably reduced at the through port in Fig. 6.8(ai), and this is consistent with the trends in Fig. 

6.6(c) earlier. However, for the drop port, such mode splitting effects will only cause the SL to switch 

to FL when η changes from 0 to 0.06 in Fig. 6.8(aiii), with no degradation to the group delay (or 

advance) enhancement. This matches with the trends in Figs. 6.7(a) to 6.7(c).  

The presence of net optical gain (τ > 1) in the cavity, which is the case in Fig. 6.8(b), will 

translate into amplification of the intracavity standing waves. This then results in observable mode 

splitting in the transmission spectra even at small η, as observed in Figs. 6.8(bii) and 6.8(biv). Such 

phenomenon has been experimentally observed in [32], which thus verifies the validity of our 

research methodology and results. The mode splitting effect in Figs. 6.8(bii) and 6.8(biv) will 

subsequently cause the original normal dispersion (i.e., SL) when η = 0 to be reversed to anomalous 

dispersion (i.e., FL) when η = 0.006, in Figs. 6.8(bi) and 6.8(biii). This accounts for the switch from 

SL (FL) to FL (SL) earlier in the dotted boxes of Figs. 6.6(a) and 6.7(a) when η changes from 0 to 

0.0006 or 0.0009 for τ > 1. Simiar to the case of the net loss regime in Fig. 6.8(a), there will be large 

mode splitting at large η in the net gain regime, as seen in Figs. 6.8(bii) and 6.8(biv) at η = 0.06. This 

results in the group delay enhancement at ω0 to be reduced considerably at the through port in Fig. 

6.8(bi). This is consistent with the trends in Fig. 6.6(c), where the sharp hyperbolic feature vanishes 

and the tg (ω0) curves are degraded. However, for the drop port, a large η do not affect the group delay 

enhancement at ω0 as seen in Fig. 6.8(biii), which is congruent with the trends in Fig. 6.7(c).  

6.4.5.  Improved Fast and Slow Light Performances  

Earlier, we have shown in Table 6.1 on the improved FL and SL performances using weak 

CILB. We now elaborate on these based on the results in sections 6.4.2 to 6.4.4. 
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With weak CILB, the stable SL (unstable FL) regime to the left (right) of the asymptote at τ > 1 

in the tg (ω0, τ) curve switches to a stable FL (stable SL) regime. This can be seen in the insets in Figs. 

6.6(a) and 6.7(a) when η changes from 0 to 0.0006 or 0.0009. Thus, weak CILB gives an additional 

flexibility to generate stable FL. Also, weak CILB makes it possible to observe all three regimes of 

light propagations: FL with negative vg, FL with positive vg and SL at both the through and drop ports 

for both the net loss (τ < 1) and net gain (τ > 1) regions, which can also be seen in Figs. 6.6 and 6.7. 

This increases the versatility of the TWMR as a FL and SL device. Also, CILB offers an extra degree 

of freedom in addition to the parameters of κ and τ of the cavity to control the group delay as any 

change in η will modulate the group delay. 

Finally, weak CILB also improves the transmission of the TWMR. To illustrate this, we have 

plotted the transmission at ω0 for a TWMR with η = 0.006 in Fig. 6.9, which is superimposed with the 

group delay graphs of Figs. 6.6 and 6.7. Comparing Fig. 6.9 with the transmission of a conventional 

TWMR in Fig. 6.5, we can notice that with CILB, FL with amplified transmission can be generated at 

the drop port when there is a small net gain in the cavity. The lower and upper limits of the regions of 

FL with amplified transmission are marked by vertical dotted lines in Fig. 6.9(b). This is in contrast to 

the case of a conventional TWMR, whereby stable FL, which is generated at the through port, always 

has substantial attenuation, as seen in Fig. 6.5(a). Note that even by shifting the critical coupling point 

through adjusting the coupling coefficients (as critical coupling occurs at τ = r1/r2) so that part of the 

FL regime fall into the net gain region (i.e., τ > 1) in Fig. 6.5(a), substantial attenuation will still be 

observed in the transmission response. This is a fundamental constraint of conventional TWMR 

system. However, the constraint of fast light with low output power in a conventional degenerate  
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Fig. 6.9. The relation between the transmission and the group delay at the degenerate resonance frequency 

ω0 for the output light at the (a) through port and (b) drop port of a non-degenerate traveling wave 

microresonator with κ1 = κ2 = 0.2 as τ is varied for η = 0.006.  
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TWMR can be mitigated by harnessing the CILB effects, in conjunction with a small amount of gain 

in the cavity. For example, at τ = 1.037 and η = 0.006, a normalized group delay of tg = –90trt with an 

amplified transmission of 3 dB can be obtained at the drop port, as seen in Fig. 6.9(b). 

To harness the CILB to realize a tunable FL and SL system, two approaches can be taken: (i) 

The round-trip amplitude attenuation constant τ of the cavity can be actively tuned by electrically [39] 

or optically [40] pumping the active material in the waveguide core or cladding, assuming that the 

coupling coefficients are fixed after fabrication in the presence of an optimal η; and/or (ii) 

incorporating reflective optical elements [41, 42] at or near the coupling junctions with value of η. To 

actively tune η after fabrication, integrated micro-electro-mechanical systems (MEMS) can be 

employed at the coupling junctions [43]. This will give an extra degree of freedom to adjust tg. For 

example, for a TWMR with κ1 = κ2 = 0.2 and τ = 0.995, tuning η from 0.003 to 0.009 changes tg from 

–148trt to –52trt at the through port, where trt is the round trip time of the resonator. 

Note that the mode splitting effects as observed in this work are also consistent with that 

produced by distributed backscattering due to surface perturbations in the cavity [13, 27-30], which 

has been assumed to be of negligible effect in this work. This is a valid assumption for unless 

deliberate attempts are made to create perturbating micro-structures, such as gratings ridges [13], on 

the surface of the cavity, distributed backscattering in the cavity are generally minimal as 

advancement in the fabrication technology has made it possible to greatly reduce the sidewall 

roughness [44, 45], which is the dominant source of the distributed backscattering in the cavity. 

Lastly, we emphasize that our results in this work apply strictly to a circular TWMR. If a TWMR 

with other configurations, particularly a racetrack configuration, such as a racetrack microring 

resonator, is used, there will be additional backscattering within the cavity due to modal mismatch 

between the straight waveguide mode and the bend waveguide mode. This generally leads to Fresnel 

reflections at the junctions between the straight and bend waveguides. Such an effect on the 

dispersion of the TWMR can be looked into in a future work. 

6.5.   Evolution of the Output Pulse of the Traveling Wave Microresonator 

For completeness, we give a brief discussion on how the shape of the output pulse evolves as τ 

is tuned to change the time delay or advancement of the pulse propagation. In this example, we use a 

conventional TWMR with no CILB, i.e., η = 0. In Fig. 6.10, the evolution of the shape of the pulse at 

the through port as the operation of the TWMR moves from the FL to the SL regime is shown. In the 

FL regime, in which the resonator is under-coupled, increasing τ brings the TWMR towards the 

critical coupling state. This increases the time advancement and gradually leads to pulse splitting. It is 

seen that at close to critical coupling (which occurs at τ = r1/r2 = 1 for this example) in Fig. 6.10(c), 

pulse splitting starts to take place. The input pulse splits into two output pulses, one with time 

advance, which has a larger intensity, and the another with time delay, which has a lower intensity 
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and is magnified in the inset in Fig. 6.10(c). Moving the resonator closer to the critical coupling 

condition increases (decreases) the intensity of the output pulse with the time delay (advancement) 

such that at the critical coupling condition, the two output pulses have equal intensity. The occurrence 

of pulse splitting at critical coupling clearly validates our concluding paragraph in section 6.3.2 that 

the transition from FL to SL or vice versa occurs at the critical coupling point. As the resonator moves 

into the SL regime, in which the resonator is over-coupled, the intensity of the pulse with the time  
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Fig. 6.10. Evolution of the output pulse at the through port for a conventional traveling wave 

microresonator with r1 = r2 = 0.9 and η = 0 (as an example) as τ is being adjusted. For convenience, the 

input Gaussian pulse is only shown in Fig. 6.10(a). Note that critical coupling at the resonance frequency 

occurs at at τ = r1/r2 while oscillation at the resonance frequency occurs at τ = 1/(r1r2). For this example, 

τ = 1 gives critical coupling, which will split the input pulse into two output pulses (Fig. 6.10(e)), while τ 

= 1.2346 gives oscillation, which will transform the input pulse into an optical step function ((in Fig. 

6.10(j)). 

advance (delay) will decrease so that at sufficiently large τ, only the output pulse with time delay 

remains. These are shown in Figs. 6.10(f) to 6.10(g). Thereafter, as the resonator moves towards the 

oscillation condition in the over coupling regime, the time delayed output pulse will progressively 

transform into an optical step function. This transformation is shown from Figs. 6.10 (g) to 6.10(j). 

The above-mentioned phenonenoma of the splitting of the input pulse into two output pulses (i.e., Fig. 

6.10(e)) and the formation of an optical step function (i.e., Fig. 6.10(j)), respectively, at the critical 

coupling and oscillation conditions are consistent with the divergence of ∂Φ/∂δ and ng at the 

resonance frequency (as mentioned in section 6.3.2). Such splitting of the input pulse has been 

harnessed in optical differentiation [46] while the formation of the optical step function has been used 

in optical integration [47]. Thus, by tuning τ, as shown in Fig. 6.10, a single two-port TWMR device 

can provide dual functions of optical differentiation and integration. Finally, note that the general 
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trend as shown from Figs. 6.10(g) to 6.10(j) can also be applied to the output pulse at the drop port, 

which only produces oscillation but not critical coupling. In addition, we mention that the trends in 

the evolution of the pulse shape in Fig. 6.10 as the coupling state of the TWMR approaches the 

critical coupling and oscillation conditions are also valid for the case of the TWMR with CILB, i.e., η 

≠  0. Changing η from η = 0 to η ≠  0 only changes the value of τ at which critical coupling or 

oscillation take place, but not the nature of the evolution of the output pulse.  

6.6.  Summary and Significant Research Contributions 

With the growing importance of traveling wave microresonators (TWMRs) in fast and slow 

light applications, it is crucial for an evaluation of the impact of coupler-induced localized 

backscattering (CILB) on the dispersion of the TWMRs, which has been achieved in this work. In 

particular, we have demonstrated that weak CILB aided by a small net optical gain in the cavity, will 

enhance the fast light (FL) and slow light (SL) performances of a TWMR in the following ways. First, 

all three types of light propagation velocity can be generated at both the through and drop ports at the 

degenerate resonance frequency ω0. This is in contrast to the conventional TWMR (where CILB is 

negligible), in which at ω0, only FL with negative vg and SL are present at the through port, while for 

the drop port, only SL is produced. Second, the possibility to generate stable FL with amplified 

transmission can be achieved, unlike the case of a conventional TWMR, where stable FL always has 

substantial attenuation. Third, there is an extra degree of freedom in addition to the parameters of 

coupling coefficient κ and round-trip attenuation constant τ of the cavity to control the group delay as 

any change in the strength of the CILB will modulate the group delay. However, do note that in the 

regime of strong CILB, there will be some deleterious effects: (i) The group delay enhancement at the 

through port is degraded; and (ii) the width (i.e., range of τ, given fixed κ and magnitude of CILB) of 

the FL regime at the drop port is reduced. These research results are novel contributions to the field of 

FL and SL in TWMR devices and demonstrate that CILB can be harnessed to improve the FL and SL 

effects. The research results are significant contributions to the fields of FL and SL in TWMRs as 

CILB has generally been overlooked in the study of TWMR in the literature.  

Finally, note that part of this research work has been published in: 

 Thomas Y.L. Ang and Nam Quoc Ngo, “Harnessing coupler-induced localized 

backscattering for enhanced fast and slow light performances in a traveling wave 

microresonator,” J. Opt. Soc. Am. B 27, 2639–2647 (December 2010). 

On a positive note, the above-mentioned paper has been selected for the January 2011 issue of 

The Virtual Journal of Ultrafast Science, which can be found in [48]. This attests strongly to the 

significance and novelty of our research work in this chapter. Our findings in this paper would thus be 

of relevance and importance to the advancement in the science and technolgy of fast and slow light. 
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Chapter 7 

Tunable Fast and Slow Light via 

Interaction of Intracavity Backscattering 

with Dual Contra-propagating Inputs  

7.1.  Introduction: Research Motivations and Objectives 

In the previous chapter, we have shown that coupler-induced localized backscattering (CILB) 

can be exploited to improve the fast light (FL) and slow light (SL) performances of a traveling wave 

microresonator (TWMR). Besides CILB, another type of backscattering in TWMRs is the distributed 

backscattering within the cavity that is induced by surface imperfections. We will term this as 

intracavity backscattering. As mentioned in the previous chapter, intracavity backscattering has been 

the main emphasis in the study of backscattering in TWMRs ever since it was first observed in [1]. 

Here, in this chapter, we will look into the use of intracavity backscattering to tune and enhance the 

FL and SL performances of a TWMR by interacting it with dual contra-propagating inputs. Before 

going into the details, let us first look into the motivations behind this research proposal. 

One of the reasons for the popularity of TWMR based devices is that they are capable of 

possessing whispering gallery modes (WGMs) with high-quality Q factor and small modal volume V, 

i.e., high Q/V ratio. In fact, the highest Q/V ratio to date has been achieved using TWMRs [2]. 

However, this high Q/V ratio of TWMRs also means that extremely small surface perturbations can 

easily lead to significant intracavity backscattering, which will result in: (i) The formation of spectral 

doublets [3, 4] in place of a single resonance peak/dip, which is often used in filtering [5]; (ii) the 

degradation of the Q-factor [6]; and (iii) the destruction of the directionality of the light propagation 

[7]. Due to this, the subject of intracavity backscattering in TWMRs has been studied thoroughly, 

primarily motivated by the goal of reducing surface perturbations due to fabrication-induced surface 

imperfections so as to minimize the above effects of intracavity backscattering in the TWMR devices 

[4, 6, 7]. On the other hand, intracavity backscattering can be put into practical uses. For example, in 

[8], the doublet resonance formed due to the fabrication-induced surface imperfections is used as a 

source of resonance optical feedback for narrowing the linewidth of the semiconductor laser. To 

further exploit the intracavity backscattering effect for more interesting applications, surface 
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perturbations in the TWMRs are sometimes intentionally induced either by deliberately introducing 

surface microstructures on the cavity during fabrication [9, 10, 11, 12] or the incorporation of 

nanoscale particles [13, 14] in the cavity after fabrication so as to enhance the intracavity 

backscattering effects. Thus far, applications that utilize such enhanced intracavity backscattering 

effects in TWMRs include lasing [11], higher-order filtering [12], sensing [13, 14] as well as fast and 

slow light effects [9, 10]. In particular, it is shown in [9, 10] that the enhanced intracavity 

backscattering, due to the addition of grating ridges on a microring resonator, can produce mode 

splitting that is accompanied by the generation of either FL or SL, depending on the coupling 

conditions. This demonstrates the possibility of harnessing the enhanced intracavity effects in a 

TWMR to generate fast light and slow light.  

However, for the fast and slow light scheme based on the above-mentioned enhanced intracavity 

backscattering effect to be viable for practical applications, the group delay must be actively tunable 

(i.e., the group delay is variable and responsive to an external actuation-or-control signal). We have 

summarized in Table 7.1 of the features of the various active tuning schemes in the literature, labeled 

as schemes (a)-(d), which can be used to continuously vary the group delay and transmission of a 

TWMR. Note that thus far, only scheme (d) has been implemented on TWMR with enhanced 

backscattering to realize tunable fast and slow light [10]. Generally speaking, the main drawback of 

schemes (a)-(c), which we term as conventional active tuning (CAT) schemes, is that additional 

procedures and controls are required in the fabrication process so as to incorporate the active tuning 

components, such as p-i-n diodes [15-17], metal oxide semi-conductor (MOS) [18, 19], electrodes 

[20, 21], microheaters [22-24], gain media (like semi conductor optical amplifiers (SOAs) [25] or 

Erbium ions [26]) and integrated micro-electro-mechanical systems (MEMS) [27, 28] in the cavity 

system, which would increase the overall complexity and cost in the production of the cavity for 

practical applications. The use of such active components generally also considerably increases the 

footprint of the cavity, particular for schemes (b) and (c). Moreover, as the active components of the 

CAT schemes are implanted in the cavity system, it would be difficult to reconfigure these active 

components or to replace them after fabrication. In the case in which a passive cavity has already been 

fabricated, it might not be feasible or possible in certain situations to do additional alternation to the 

device so as to render it active. To circumvent these issues, scheme (d), which is all-optical tuning 

(AOT) [10, 29], can be employed.  However, such a scheme is highly dependent on the material 

nonlinearity of the cavity and as a result, it might require larger energy requirement as compared to 

the CAT schemes in some cases. For example, in [10], as the cavity is based on silicon, thermal 

nonlinearity primarily due to two-photon absorption is utilized for all-optical tuning, which consumes 

more energy in contrast to the CAT scheme based on the electro-optic effect in [16].  

In this work, we will demonstrate the possibility to harness the intracavity backscattering in a 

TWMR to realize a fast and slow light system with continuous tunability in the group delay that does 
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Table 7.1. Comparisons between the commonly used active tuning schemes in TWMRs with our proposed dual-

input scheme 

 
Types of active 

tunable 
schemes 

to control group 
gelay (GD) 

 

 
Conventional Active Tuning (CAT) Schemes 

 
 
 

(d) 
All-optical 

tuning (AOT) scheme 
 

 
 
 

(e) 
Our proposed dual- 

input scheme 
 

 
(a) 

Modulation of group 
index ng of cavity  

 

 
(b) 

Modulation of bus 
waveguide-to-cavity 

coupling κ  

 
(c) 

Modulation of 
amplitude attenuation 
constant τ of cavity 

 
Methods 

of  
implementation 

 
Using thermo-optic 
[22] or electro-optic 
[15-20] effect for the 
cavity. 

 
Using MEMS [27, 28] 
or electro-optic [21] / 
thermo-optic [24] 
effect to realize 
tunable couplers. 
 

 

 
Electrically [25] or 
optically [26] 
pumping a cavity, 
which contains active 
media. 

 
Two co-propagating 
beams (control and 
probe) of different 
frequency and power 
are inserted into the 
cavity [10, 29].  

 
Two contra-
propagating beams of 
the same frequency are 
inserted into a cavity 
with backscattering.  

 
 

Operation 
principle 

 
The resonance is 
shifted as ng is 
modulated. This 
tunes the GD. 
 
 
 

 
The linewidth of the 
resonance is changed 
as κ is modulated. This 
tunes the GD. 
 
 

 
The linewidth of the 
resonance is changed 
as τ is modulated. 
This tunes the GD. 

 
Adjusting the power of 
the control beam 
modulates ng. This 
shifts the resonance of 
the probe beam and 
tunes the GD.  

 
Phase and/or 
amplitude (θ and/or A) 
modulation between 
the dual inputs 
changes the shape of 
the resonance. This 
tunes the GD. 

 
 

Compactness of 
cavity system 

 
Fairly compact as 
active tuning 
components (such as 
p-i-n [15-17] and 
MOS [18, 19] 
diodes) occupy extra 
area in the cavity 

 
Reduced compactness 
due to the large area of 
the tunable couplers. 

 
Reduced compactness 
as the cavity must be 
large enough in order 
to have sufficient 
loop gain. 

 
Fairly compact as the active tuning components 
(such as laser diode and phase/amplitude 
modulators) occupy extra area in the port WG. 

 
Fabrication 
complexity 

 
High as additional procedures are required in the fabrication process to 
incorporate the active tuning components (such as microheaters [21], p-i-
n [15-17], MOS [18, 19] diodes, tunable coupler [21, 24, 27, 28] and 
active medium like SOA [25] and Erbium ions [26]) in the cavity. 

 
Low as the cavity is passive. Tuning components 
are attached to the cavity via the bus WG after 
fabrication.  

 
Reconfigurabili

-ty of active 
tuning 

components 

 
Difficult as the active tuning components (as listed above) are implanted 
within the cavity system. They cannot be easily reconfigured or replaced 
after the fabrication process. 

 
Easy as the active tuning components are 
separated from the cavity and thus can be easily 
reconfigured or replaced. 

 
Device cost 

 
High fabrication cost as additional procedures are needed to implant 

active tuning components in the cavity. 

 
Low fabrication cost as only a passive cavity is 
needed. However, the use of dual inputs might 
increase the cost. 

 
Energy 

consumption 

 
Fairly low except for MEMS based schemes, which require considerable 

energy 

 
Higher than most CAT schemes (except MEMS 
scheme) due to use of dual inputs. 

 
Number of 
degree of 

freedom (DOE) 

 
 

One DOE; adjusting ng 
tunes the GD 

 
 

One DOE; adjusting κ 
tunes the GD 

 
 

One DOE; adjusting 
τ tunes the GD 

 
One DOE; 
amplitude 

modulation of 
control beam tunes 

the GD 

 
Two DOE; amplitude 

and/or  phase modulation  
between dual inputs 

tunes the GD 

 
Minima of GD 

function† 

 
–69 ps 

 

 
–2 ps 

 

 
–4 ps 

 

 
–69 ps 

 

 
–223 ps (if A = 0.4) 
+24 ps (if A = 1.0) 

 
Maxima of GD 

function† 

 
+15 ps 

 

 
+10 ps 

 

 
+34 ps 

 

 
+15 ps 

 

 
+15 ps (if A = 0.4) 
+70 ps (if A = 1.0) 

 
GD Tuning 

Range† 

 
+84 ps 

 

 
+12 ps 

 

 
+38 ps 

 

 
+84ps 

 
+238 ps (if A = 0.4) 
   +46 ps (if A = 1.0) 

 
†Applicable to a probe beam (fixed at λ = 1.55 μm) emerging from the through port of a TWMR with Qmut = 2.2 × 104 (i.e., surface-defects are 

intentionally introduced on the cavity) and initial Qint and Qext values of 6.4 × 104 and 3.2 × 104, respectively. 
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not stem from the use of the CAT or AOT scheme listed in Table 7.1. This is achieved by: (i) The 

intentional addition of surface perturbations to enhance and tune the intracavity backscattering; and 

(ii) by launching dual contra-propagating inputs of the same frequency into the TWMR to interact 

with the enhanced intracavity backscattering, as shown in Fig. 7.1. To set the stage, we first present a 

detailed analysis on the unique physical effects, in terms of the transmission and dispersion responses, 

that arise from the presence of dual inputs to interact with the enhanced intracavity backscattering in  

 
Fig. 7.1. A traveling wave microresonator (TWMR) coupled to one input bus with dual contra-

propagating inputs and outputs via a point coupler at the coupling junction (CJ). The intentionally 

addition of surface microstructures, such as grating ridges, on the cavity will lead to enhanced mutual 

energy coupling (with coefficient um) between the CW and CCW cavity modes. Each cavity mode has a 

net decay rate of Γext + Γint, where Γext is the decay rate due to the evanescent energy coupling (with 

coefficient u0) between the bus waveguide mode and the cavity mode while Γint is the decay rate due to 

the intrinsic losses of the cavity. 

the cavity. Subsequently, we will look into exploiting these physical effects for continuous tunable 

fast and slow light applications at the communication wavelength of λ = 1.55 μm. It will be shown 

that by controlling the phase and/or amplitude differences between the external dual inputs (laser 

diodes), which can be achieved through the use of external modulators [15, 30] and/or variable optical 

attenuators [31, 32], the structural dispersion of the TWMR can be tuned and switching between fast 

and slow light can easily be achieved. This will allow the possibility to achieve continuously tunable 

group delay in a passive and linear cavity, without the need to implant active components within the 

cavity system, thereby reducing the fabrication complexity and footprint of the cavity. The 

reconfigurability and serviceability of the proposed cavity system (in terms of its active tunability) are 

also improved as the external active tuning components (laser diodes and modulators) can be easily 

adjusted or replaced. More importantly, as elaborated later in this work, our proposed scheme 

enhances the tunable group delay performance over the commonly used active tuning schemes. These 
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improved features of our proposed scheme are also listed in Table 7.1. The results in this chapter can 

be applied to different types of TWMRs. 

This work is organized as follows. In section 7.2, we present the mathematical modeling of our 

proposed scheme using the temporal coupled mode theory (CMT) [33]. This is followed by an 

analysis of the unique physical effects that result from the use of the dual-input scheme in section 7.3. 

In section 7.4, tunable fast and slow light applications at λ = 1.55 μm are looked into. This is followed 

by a time-domain analysis and a short discussion on potential fast and slow light applications of our 

proposed scheme in section 7.5. In section 7.6, we compare the performances of our proposed scheme 

with other conventional tuning schemes in the literature. Finally, we conclude in section 7.7, 

highlighting the significance and contributions of this work. 

7.2.  Theoretical Formulation  

The proposed TWMR circuit is shown schematically in Fig. 7.1, in which an azimuthally 

symmetric TWMR is evanescently coupled to a bus waveguide (WG) of length L = L1 + L2 via a 

coupling junction (CJ) that is taken to be infinitesimally short. The phase and/or amplitude differences 

between the dual inputs — S+1 at the reflection port and S+2 at the through port— can be controlled 

through the use of external optical phase/amplitude modulators [15, 30] and/or variable optical 

attenuators [31, 32] such that the dual inputs entering the coupling junction (CJ) are related to each 

other by S’+2 = MS’+1 = [Aexp(jθ)]S’+1, where M is the overall modulation factor while A and θ are, 

respectively, the amplitude and phase modulations between S’+1 and S’+2. We will term S+1 (S+2) as 

the signal (control) beam. Surface perturbations in the form of microstructures, such as grating ridges 

[9, 10], which are intentionally introduced on the cavity, will produce enhanced intracavity 

backscattering that results in mutual coupling between the clockwise (CW) and counterclockwise 

(CCW) cavity modes. In Fig. 7.1, the CW and CCW modes, respectively, have normalized field 

amplitudes of Eccw and Ecw. We will assume that S+1 (S+2) only directly generates the CCW (CW) 

mode; localized backscattering at the coupling junction that directly couples S+1 (S+2) with the CW 

(CCW) cavity mode, which has already been analyzed in the previous chapter, is negligible in 

comparison to the intracavity distributed backscattering in this work. Assuming that all the inputs and 

cavity modes have exp(jωt) time dependences, i.e., S+1 =  1S  exp(jωt), S+2 =  2S   exp(jωt), Eccw = 


ccwE exp(jωt) and Ecw =  cwE exp(jωt), the interplay between the coherent coupling of the cavity modes 

and the losses out of the resonator can be described as [33]: 

    
  0 1

ccw
net ccw m cw

dE
j E ju E ju S

dt
        , 

 

  0 2 ,cw
net cw m ccw

dE
j E ju E ju S

dt
                                         (7.1) 
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where j = 1 , ∆ω = ω – ω0 is the (angular) frequency detuning and ω0 is the degenerate (angular) 

resonance frequency of the cavity. The rate of energy coupling between the cavity and the bus 

waveguide (WG) is denoted as u0, which leads to an energy loss at a rate of Γext = u2
0/2 for each cavity 

mode, as shown in Fig. 7.1. Intrinsic losses in the cavity will give rise to additional energy loss at a 

rate of Γint. After taking account of this, the decay rate of each cavity mode becomes Γs = Γext + Γint. In 

addition, the mutual coupling between the cavity modes is quantified by um. We then define four 

different types of quality or Q-factors for each cavity mode: (1) The intrinsic Q-factor Qint = 

ω0/(2Γint); (2) the WG evanescent coupling Q-factor Qext = ω0/(2Γext); (3) the mutual coupling Q-factor 

Qmut = ω0/(2um); and (4) the sum of the effects of the intrinsic and extrinsic Q-factors Qs = ω0/(2Γs) = 

(1/Qext + 1/Qint)
–1. Note that the net Q-factor Qnet of each cavity mode is Qnet = (1/Qint + 1/Qext + 

1/Qmut)
–1. The above energy parameters u0, Γext, and Γint are related to the field parameters κ, r and τ of 

the coupling matrix method in [34] by: u0 = κ/t1/2
rt, Γint = (1 – τ)/(trt τ

1/2) and  Γext = (1 – r)/(trt r
1/2), 

where |κ|2 + |r|2 = 1 (assuming lossless coupler), κ is the amplitude cross-coupling coefficient, r is the 

amplitude through-coupling coefficient, τ is the round-trip amplitude attenuation constant of the 

cavity, trt = ngLc/c is the round-trip time of the cavity, c is the speed of light in vacuum, ng is the group 

effective index and Lc is the length of the cavity. Note that we will focus our attention on light 

propagation in the net loss (i.e. Γint > 0 or τ < 1) regime and for operating wavelengths near λ = 1.55 

μm. Solving the coupled equations in Eq. (7.1), solutions to ccwE and cwE can be obtained: 

 
  

0
1,m s

ccw
m s m s

u M j u
E S

u j u j


  

   
 

       
 

 

  
 

0

12 2 2
,

2

s m

cw

m s s

M j k k
E S

k j



  

   


                                               
 (7.2)  

where M = [A exp(jθ)] is the modulation factor. New cavity eigenmodes (or supermodes) will form in 

the TWMR from the symmetric and anti-symmetric superposition of the degenerate  ccwE and  cwE , 

which are centered around ω0: 

    0
1

11 1
,

2 2
ccw cw

s m

M u
E E E S

j u 


   

   
 

 

    0
1

11 1
,

2 2
ccw cw

s m

M u
E E E S

j u 


   

                                     
 (7.3) 

where E ( E ) is the anti-symmetric (symmetric) eigenmode. For a linear system, the backward 

(forward) transmission in the bus WG, denoted as S-1 (S-2), can be expressed in terms of the incident 

wave and the cavity modes using power conservation theorems [33]: 
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1 2 0 ,wj L

cwS e S ju E
 

                     
2 1 0 ,wj L

ccwS e S ju E
 

                         (7.4) 

where w is the propagation constant of the mode in the bus WG of length L = L1 + L2. Focusing only 

on the artificial dispersion due to the structural resonance of the TWMR, the steady-state forward 

transmission TT (Δωnor) = |TT|exp(ΦT) = S–2/S+1 at the through port and the steady-state backward 

transmission TR (Δωnor) =|TR|exp(ΦR) = S–1/S+1 at the reflection port can then be derived by using Eqs. 

(7.2) and (7.4) and simplified with the aid of the above-mentioned parameters of Qext, Qint  and Qmut: 
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int int
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  int
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nor
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R nor
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j M M
Q Q Q

T M

Q j j
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(7.5)

                          

where Δωnor = (ω – ω0)/ω0 is the normalized detuning. Using Eq. (7.5), we then derive the critical 

coupling condition Qcri, which we define as the complex solution of Qmut to TT = 0 or TR = 0:   

  
  

2 2 2 2
int int int

, 12 2
int int

ext
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jMQ M Q Q Q
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,       
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.
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Q Q Q QM


   


      
  (7.6) 

 
 

Finally, we derive the group delay tg of the TWMR. To do so, the effective phase shifts ΦT  and 

ΦR of the TWMR are first obtained from ΦT = tan–1(Im(TT)/Re(TT)) and ΦR = tan–1(Im(TR)/Re(TR)). 

Then using tg(∆ωnor) = ∂∆ΦT, R(∆ωnor)/∂(∆ωnor), the normalized group delay for the through and 

reflection port, which are, respectively, denoted as tg,T (∆ωnor) and tg, R (∆ωnor), can be expressed as 
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Note that the absolute group delay is tg(ω) = tg(∆ωnor)/ω0. From Eqs. (7.5), it can be seen that the 

control beam (i.e., S’+2 = MS’+1 = [Aexp(jθ)]S’+1) influences the transmission and dispersion by 

altering the numerator (but not the demoninator) of the transfer functions of the TWMR. This is also 

evident by the presence of A and θ only in the first fractional term of the group delay functions of the 

through and drop ports in Eq. (7.7). In fact, we can also observe in Eq. (7.7) that the group delay 

functions of the through and drop port share the same second fractional term while the first fractional 

term is different for both ports. It must be mentioned that the group delay function in Eq. (7.7) is 

expressed as a sum of two fractional terms. We now use Eqs. (7.5) to (7.7) to analyze how such 

changes by the control beam would give unique physical effects.  

7.3.  Physical Effects of the Interaction of Intacavity Backscattering with Dual Inputs 

7.3.1. Phase Modulation of the Control Beam 

The effects of phase θ modulation are looked into for two types of coupling states: (i) The 

under-coupling state Qint < Qext, and (ii) the over-coupling state Qint > Qext. With no loss of generality, 

we set Qint = 2.1 × 104, Qext = 5.1 × 104, Qmut = 1.5 × 104 for case (i) and Qint = 5.1 × 104, Qext = 2.1 × 

104, Qmut = 1.5 × 104 for case (ii), while θ is being varied, with A = 1. These arbitrary chosen physical 

parameters of Qint, Qext and Qmut (as well as other values near these chosen values) can be easily 

implemented by current nanofabrication technology, as shown in the literature. For example, it has 

been experimentally demonstrated in [9] that near an operating wavelength of  λ0 = 1.55 μm, Qint = 4 × 
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104, Qext = 3 × 104 and Qmut = 1.37 × 104  can be easily achieved by using a silicon circular microring 

resonator having a bend radius of  R = 5 μm, waveguide-to-resonator air gap g of 120 nm and cavity 

surface defects in the form of periodic grating ridges (with each grating ridge having a width of ~20 

nm and the separation distances between adjacent ridges range from ~50 nm to ~100 nm). These 

correspond to a round-trip (electric field) amplitude attenuation constant τ of ~ 0.992 and (electric 

field) amplitude cross coupling coefficient κ of ~ 0.146. Note that the conversion from the energy 

parameters of Qext and Qmut (or Γext, and Γint) to the field parameters κ, r and τ of the coupling matrix 

method can be easily done using the formulae mentioned earlier in section 7.2.  

The transmission and dispersive responses of the TWMR at our above-mentioned chosen values 

of Qint, Qext and Qmut are plotted in Fig. 7.2 for the under-coupling state Qint < Qext and in Fig. 7.3 for 

the over-coupling state Qint > Qext. We denote the degenerate resonance frequency as ω0, which has 

been set as ω0/(2π) = 193.55 THz (or λ0 = 1.55 μm) in Figs. 7.2 and 7.3. For the split resonance, we 

label it as ωs+ and ωs-, where ωs+ (ωs–) is the anti-symmetric (symmetric) mode. Note that the anti-

symmetric (symmetric) mode is located at ω > ω0 (ω < ω0) or λ < λ0 (λ > λ0). Also, we mention that all 

the transmission spectra in this work are presented in the wavelength domain near the degenerate 

resonance wavelength λ0 = 1.55 μm, though the (angular) frequency domain are used earlier in the 

analytical expressions (i.e., Eqs. (7.1) to (7.7)) for consistency with the literature. Also, λ0 and ω0 will 

be used interchangeably throughout the discussion, where ω0 = 2πf0 = 2π(c/λ0). 

It can be observed from Figs. 7.2 and 7.3 that as θ is being modulated, the general trend is that 

the transmission spectra of both ports undergo either mode splitting or a shift in resonance from λ0. In 

addition, the trends in the evolution of the mode splitting as θ is being varied are periodic. This 

means: (i) For a given coupling state, the spectra of a particular port at θ are similar to those at θ + 2π; 

and (ii) the spectra of the through port found within the interval pπ ≤  θ ≤  (p + 1)π is symmetrical to 

the spectra at the reflection port at (p +1)π ≤  θ ≤  (p + 2)π, where p is an integer. Note that (i) and (ii) 

apply to any TWMR with mode splitting in the presence of dual inputs, not just for our cases in Fig. 

7.2 and Fig. 7.3; we can see later in Fig. 7.5 that changing the physical parameters will give similar 

trends described in (i) and (ii). 

Let us now take a closer look at the nature of the mode splitting and the resonance shift as θ is 

being modulated. For comparison, we have included the transmission and dispersive responses for the 

case of Qmut  → ∞ , which is the case of a degenerate cavity, in Figs. 7.2 and 7.3. In general, for both 

coupling states of Qint > Qext and Qint < Qext, mode splitting at A = 1 can be observed in the 

transmission spectra of the through and reflection ports only at certain non-integer values of  θ/π (i.e. 

pπ < θ < (p +1)π). Otherwise, the resonance mode is simply shifted from λ0. To determine whether 

mode splitting or resonance shifting takes place for a non-integer θ/π, we utilize the parameter |Qcri, T| 

and |Qcri, R| introduced earlier in Eq. (7.6), which is plotted in Fig. 7.4. Mode splitting occurs at pπ < θ 

< (p +1)π if the criterion of |Qcri| >> Qmut is met. To understand this, first note from Eq. (7.5) that the  
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Fig. 7.2. Evolution in the (i) transmission, (ii) effective phase shift and (iii) group delay responses for the output 

light at the (a)-(c) through port and (d)-(f) reflection port of a TWMR in the coupling state of Qint < Qext with fixed 

Qint = 2.1 × 104, Qext = 5.1 × 104and Qmut = 1.5 × 104 as the phase θ of the control beam S+2 = Aexp(jθ)S+1 (with A = 

1) is varied. 

 

 

Responses at the through port of a resonator in the coupling state of Qint < Qext 

Responses at the reflection port of a resonator in the coupling state of Qint < Qext 
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Fig. 7.3. Evolution in the (i) transmission, (ii) effective phase shift and (iii) group delay responses for output light at 

the (a)-(c) through port and (d)-(f) reflection port of a TWMR in the coupling state of Qint > Qext with fixed Qint = 

5.1 × 104, Qext = 2.1 × 104 and Qmut = 1.5 × 104 as the phase θ of the control beam S+2 = Aexp(jθ)S+1 (with A  = 1) is 

varied.  

 

 

Responses at the through port of a resonator in the coupling state of Qint > Qext 

Responses at the reflection port of a resonator in the coupling state of Qint > Qext 
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Fig. 7.4. Variation of |Qcri, T| and |Qcri, R| with θ for Qint < Qext (Qint = 2.1 × 104, Qext = 5.1 × 104) and Qint 

> Qext (Qint = 5.1 × 104, Qext = 5.1 × 104) of a TWMR. Only Qmut = 1.5 × 104 and A = 1 apply to Figs. 7.2 

and 7.3 while Qmut = 8 × 103 and A = 0.1 are used to show the effects of a different Qmut or amplitude A 

of the control beam. Mode splitting occur if |Qcri|  >>  Qmut. This explains the mode splitting trends in 

Figs. 7.2 and 7.3. 

degenerate mode ω0 is split into two eigenmodes, which are ω0 − ω0/(2Qmut) and ω0 + ω0/(2Qmut), due 

to the backscattering that breaks the rotational symmetry of the cavity. These eigenmodes can only be 

clearly distinguishable in the resonance spectra in the form of a two-split Lorentzian only if the  

frequency separation between the eigenmodes (proportional to 1/Qmut) is much larger than the 

resonance linewidth (proportional to 1/|Qcri|), which translates to |Qcri| >> Qmut. Otherwise, the 

superposition of the eignenmodes is no longer resolvable into two distinct eigenmodes and thus no 

distinguishable mode splitting will appear in the Lorentzian resonance spectra. This is somewhat 

analogous to the Rayleigh criterion in diffraction optics. As shown in Fig. 7.4, |Qcri, T| and |Qcri, R|, 

respectively, have a –sin (X) and +sin (X) relation. Hence, given an arbitrary Qmut, there are two 

possible scenarios whereby |Qcri|  >>  Qmut: (i) p is an even (odd) integer for the reflection (through) 

port, which occurs if Qmut = 1.5 × 104 in Fig. 7.4 and (ii) p is any integer for both ports, which occurs 

if Qmut = 8 × 103 in Fig. 7.4. At a fixed θ/π, scenario (i) means that mode splitting occurs either at the 

through or reflection port but not simultaneously at both ports while scenario (ii) translates into 

simultaneous mode splitting for both ports. For Figs. 7.2 and 7.3, Qmut = 1.5 × 104 and thus scenario (i) 

can be seen: Mode splitting takes place at the through port for π < θ < 2π whereas at the reflection 

port, mode splitting can be observed for 0 < θ < π and 2π < θ < 3π. If Qmut is reduced, for example to 8 

× 103 in Fig. 7.4, scenario (ii) is observed. This is shown in Fig. 7.5, in which mode splitting occurs 

simultaneously at both ports for all non-integer θ/π.  

The mode splitting that occurs at any non-integer θ/π when |Qcri| >> Qmut follows a general 

evolution trend. We have enlarged Fig. 7.2(bi) in Fig. 7.6(ai) to show this. At θ = pπ, the resonance 
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mode is shifted from λ0. As θ is adjusted to a non-integer θ/π within the interval pπ < θ < (p + 1/2)π, 

the Lorentzian becomes an asymmetrical doublet: the split resonances ωs+ and ωs- have different notch 

depths. At odd (even) p, ωs+ (ωs-) will be the split resonance that has a shallower notch depth for the 

interval pπ < θ < pπ/2 while at a later interval pπ/2 < θ < (p + 1)π, the trend reverses and ωs- (ωs+) 

becomes the resonance with a shallower notch depth. As the non-integer θ/π approaches θ = (p + 

1/2)π, there is a redistribution of energy between ωs+ and ωs-, resulting in the difference between the 

notch depths of ωs+ and ωs- to progressively reduce such that at θ = (p + 1/2)π, a symmetrical doublet 

centred at ω0 forms. Essentially, the spectra for pπ ≤  θ <  pπ/2 is symmetrical to those for pπ/2  <  θ  

≤  (p + 1)π with respect to θ = (p + 1/2)π. For example, in Fig. 7.6(ai), the spectrum of θ = 1.3π is 

symmetric to that of θ = 1.7π with respect to the dotted vertical line at θ = 1.5π. This property also 

means that the trends in the evolution of the mode splitting process as θ = pπ is increased to θ = (p + 

1/2)π are symmetric to those as θ = (p +1)π is decreased to θ = (p + 1/2)π. 
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Fig. 7.5. Evolution in the transmission for the (a) through and (b) reflection ports of a TWMR in the 

coupling state of Qint < Qext, with Qint = 2.1 × 104, Qext = 5.1 × 104 and Qmut = 8 × 103 for A = 1 as the 

phase θ of the control beam is varied.  

We now analyze the spectra with no mode splitting, which occurs at: (i) All integer values of 

θ/π, and (ii) at non-integer θ/π where |Qcri|  <<  Qmut. For both cases, the resonance is shifted from λ0 

by about ±f0λ0
2/(2Qmutc). In general, the resonance is red (blue) shifted from λ0 if pπ ≤  θ < pπ/2 (pπ/2 

< θ ≤  (p + 1)π) for even integer of p. Conversely, if p is an odd integer, the resonance mode will be 

blue (red) shifted from λ0 for pπ ≤  θ < pπ/2 (pπ/2 < θ  ≤  (p + 1)π). Also, the set of spectra for pπ ≤  θ 

< pπ/2 are symmetrical to those for pπ/2 < θ ≤  (p + 1)π with respect to θ = (p + 1/2)π, similar to the 

above-mentioned mode splitting case. Finally, for non-integer θ/π, the resonance spectra are 

asymmetric, with the asymmetricity of each resonance reducing as θ approaches either θ = pπ/2, at 
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which the resonance becomes a symmetric Lorentzian with a broadened notch, or at θ = pπ, where a 

sharp symmetric Lorentzian is present. Note that at θ = pπ/2, the resonance is located at ω0. 

The phenomena of mode splitting and resonance shift are due to the interaction between the 

symmetric and anti-symmetric cavity eigenmodes, which are earlier denoted as E+ and E- in Eq. (7.3). 

This is shown in Fig. 7.6(aii) and Fig. 7.6(bii). Essentially, the mutual coupling between the CCW and 

CW modes results in the formation of new cavity eigenmodes E+ and E-. Whether E+ and E- can be 

resolved in the transmission spectrum depends if |Qcri| >> Qmut. In Fig. 7.6(aii), |Qcri|  >>  Qmut  and thus 

mode splitting occurs in Fig. 7.6(ai). For this case, modulation of θ adjusts the intensity of the 

eigenmodes in Fig. 7.6(aii), which in turn shapes the degree of symmetricity of the transmission in 

Fig. 7.6(ai). Initially at θ = pπ, E- (E+) is the dominant mode when p is an odd (even) integer, resulting 

in a blue (red) shifted resonance mode in Fig. 7.6(ai). As θ moves towards (p + 1/2)π, E+ and E- 

change in intensity. Their difference in intensity decreases as θ gets nearer to (p + 1/2)π, with the 

mode splitting being asymmetrical as long as one of the eigenmodes is stronger. Eventually at θ = (p + 

1/2)π, both E+ and E- have similar strength, which results in symmetric mode splitting. On the other 

hand, in Fig. 7.6(bii), |Qcri| << Qmut and thus no mode splitting occurs in Fig. 7.6(bi). Then the effect of 

E+ + E- only results in the Lorentzian resonance to be shifted from ω0. For this case, whether the 

resonance is red or blue shifted from λ0 depends if E+ or E- is the dominant mode; when E+ and E- are  
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Fig. 7.6. The transmission and intracavity intensity at the through port of a TWMR (Qint = 2.1 × 104, Qext = 

5.1 × 104, Qmut = 1.5 × 104) as the phase θ of the control beam is being varied. The dotted vertical line 

marks the degenerate resonance mode ω0. The mode splitting and resonance shift are shown, respectively, 

in (ai) and (bi), where the resonances located to the left (right) of ω0 are denoted as ωs– (ωs+). In (aii) and 

(bii), at each θ, there are two cavity eignemodes, E+ and E–. The sum of E+ and E– gives the transmission 

in (ai) and (bi). If |Qcri(θ)|  >>  Qmut, mode splitting occurs. Otherwise, E+ + E– results in a resonance shift 

from ω0. In this case, |Qcri(θ)|  >>  Qmut  only for (bi). Note that in (aii) and (bii), the peaks located to the 

left (right) of the vertical dotted line (at λ = 1550 nm) corresponds to E+ (E–). 
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of equal strength, which occurs at θ = (p + 1/2)π, a Lorentzian with a slightly broadened notch forms.  

The dispersion of the TWMR depends on the coupling state. For Qint < Qext, anomalous 

dispersion is always present at both the through and reflection ports at all θ, regardless of whether 

there is mode splitting in the transmission. Then only fast light is generated at the output ports, as 

observed in Fig. 7.2(iii). On the other hand, for Qint > Qext, either normal or anomalous dispersion is 

possible, depending if mode splitting can be observed. Normal dispersion, which produces slow light, 

is present at the output ports, when there is no mode splitting. This can be seen in Fig. 7.3 when 0  ≤  

θ ≤  π and 2π ≤  θ ≤  3π for the through port and when π ≤  θ ≤  2π for the reflection port. On the 

contrary, the occurrence of mode splitting will result in a reversal of normal to anomalous dispersion 

at the output ports, thereby switching the subliminal propagation to superluminal propagation. This 

phenomenon can be clearly seen in Fig. 7.3 at the through port when π ≤  θ ≤  2π and at the reflection 

port when 0 ≤  θ ≤  π and 2π ≤  θ ≤  3π. However, do note that such a change in dispersion response is 

observed at the split resonance only if symmetrical or close to symmetrical mode splitting is observed. 

This is evident in Fig. 7.3(b): though mode splitting can be observed at θ = 1.2π, 1.4π, 1.5π and 1.8π 

in Fig. 7.3(bi), fast light is only produced at θ = 1.4π, in which the mode splitting is nearly 

symmetrical and at θ = 1.5π, where the mode splitting is symmetrical, in Fig. 7.3(biii). Another 

important characteristic is that, for both coupling states, the absolute magnitude of the group delay at 

resonance progressively reduces as θ approaches (p + 1/2)π, as seen in Fig. 7.2 and 7.3. 

7.3.2. Amplitude Modulation of the Control Beam 

Thus far, all the discussions are for the case of A = 1. We will now look at the effects of 

modulating A. The characteristics in the transmission and dispersion are summarized in Table 7.2, 

where A > 0 collectively refers to the case of A = 1 in the earlier subsection and the present case of 

amplitude A modulation. Modulating A simply changes the absolute magnitude of |Qcri| and its relation 

to Qmut, which will affect the mode splitting. For example, in Fig. 7.4, when A is decreased to 0.1, the 

locus of |Qcri| is compressed. As a result, for Qmut = 1.5 × 104, the mode splitting criterion |Qcri| >> Qmut 

is then satisfied for all p, resulting in mode splitting at every θ for both ports, in contrast to the case A 

= 1 in Figs. 7.2 and 7.3, where mode splitting occurs at only specific non-integer θ/π. Another main 

effect of A modulation is that at θ = pπ, either mode-splitting or an asymmetric Lorentzian resonance, 

which is shifted from ω0, will be produced, in contrast to the earlier case of A = 1, in which the 

transmission response at θ = pπ is always a symmetric Lorentzian resonance that is shifted from ω0, 

with no mode splitting. This occurs because when A is modulated, the intensity of the eignemodes E+ 

and E-, will be adjusted such that both E+ and E- have influence on how the transmission spectrum is 

being shaped, in comparison to the case of A = 1, in which the intensity of one of the eigenmode is 

negligible at θ = pπ, as shown earlier in Fig. 7.6. As such, depending if |Qcri| >> Qmut, either mode  
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Table 7.2. Transmission and dispersive responses at resonance for various coupling states for a TWMR with dual 

inputs 

 
Coupling 

State 
 

 
Relation 

of 
|Qcri| to 

Qmut 

 
Mode splitting observed in 

transmission spectra? 
 

 
Type of dispersive response 

i.e. fast light (FL) or slow light (SL) 
 

  
Through Port  

 

 
Reflection Port  

 
 

θ = pπ 
 

pπ < θ  
< (p + 1)π 

θ = pπ 
 

 pπ < θ  
< (p + 1)π 

 
θ = pπ 

 
 pπ < θ  

< (p + 1)π 
 

Value of A 
 

Value of A 
 

Value of A 
 

Value of A 
 

Value of A 
 

Value of A 
 
A→0 

 
A > 0 

 
A→0 

 
A > 
0 

 
A→0 

 
A > 0 

 
A→0 

 
A > 0 

 
A→0 

 
A > 0 

 
A→0 

 
A > 0 

 
 

Qext >  
Qint 

 
 

 
|Qcri| << 

Qmut 
 

 
No 

 
No 

 
No 

 
No 

 
FL 

 
FL 

 
FL 

 
FL 

 
SL 

 
FL 

 
SL 

 
FL 

 
|Qcri| >> 

Qmut 
 

 
Yes 

 
No  

(A = 1) 
 

Yes, 
(A≠ 1) 

 
Yes 

 
Yes 

 
FL 

 
FL 

 
FL 

 
FL 

 
SL 

 
FL 

 
SL 

 
FL 

 
 

Qext <  
Qint 

 
 

 
|Qcri| << 

Qmut 
 

 
No 

 
No 

 
No 

 
No 

 
SL 

 
SL 

 
SL 

 
SL 

 
SL 

 
SL 

 
SL 

 
SL 

 
|Qcri| >> 

Qmut 
 

 
Yes 

 
No  

(A = 1) 
 

Yes 
(A≠ 1) 

 
Yes 

 
Yes 

 
FL 

 
SL 

(A = 1) 
 

FL 
(A≠ 1) 

 
FL 

 
†SL/ 
FL 

 

 
SL 

 
SL 

(A = 1) 
 

FL 
(A≠ 1) 

 
SL 

 
†SL/ 
FL 

 

 
†For Qext < Qint, mode splitting for pπ < θ < (p + 1)π produces fast light only when θ is near or at (p + 1/2)π. Further 

away from (p + 1/2)π, the splitting becomes increasingly asymmetrical, which will generate slow light. Note that p is an 

integer. 

splitting or a resonance shift from ω0 occurs at θ = pπ when A is modulated (i.e. A ≠  1). In the event 

of A → 0, only normal dispersion and thus slow light will be generated at the reflection port for both 

coupling states, irrespective of whether there is mode splitting. Other than these changes, all the 

properties in the transmission and dispersive responses when A is tuned are in agreement with those 

mentioned in this section for A = 1. This can also be seen in Table 7.2. 

7.4.  Harnessing the Dual-Input Scheme for Continuously Tunable Fast and Slow Light  

We now look into how we can harness the physical effects arising from the use of dual inputs in 

a TWMR with enhanced surface-perturbations induced backscattering for continuous fast and slow 

light applications. First of all, note that in a conventional TWMR, the surface perturbations due to 

fabrication-induced surface roughness can be made very small due to advances in fabrication 

technology [35, 36]. As such, the intracavity backscattering in most TWMRs is relatively weak, 

resulting in Qmut →  ∞ . Then we have |Qcri|  <<  Qmut, which gives a single sharp Lorentzian resonance 

with no mode splitting as mode splitting occurs only if |Qcri|  >>  Qmut. By intentionally introducing 
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surface perturbations on the TWMR, the intracavity backscattering is enhanced, giving rise to two 

possibilities in the shape of the resonance: (i) A single sharp Lorentzian if |Qcri|  <<  Qmut or (ii) a two-

split Lorentzian (that can be either symmetrical or asymmetrical), i.e., a doublet, if |Qcri|  >> Qmut. In 

the presence of dual inputs, |Qcri| can be adjusted (from |Qcri|  <<  Qmut to |Qcri|  >>  Qmut or vice versa) 

by modulating the phase and/or amplitude differences between the dual inputs. Consequently, the 

shapes of the transmission and group delay resonance spectra will gradually change from a single 

Lorentzian to a two-split Lorentzian and vice versa, which has been shown in Figs. 7.2 and 7.3 for the 

different coupling regimes. By exploiting such a change in the spectral shape and the corresponding 

dispersion response as |Qcri| is adjusted, continuous tunability in the group delay and transmission of 

the output light at a fixed λ can consequently be achieved. Switching between FL and SL can also be 

achieved when the change in spectral shape is accompanied with a change in the nature of the 

structural dispersion from anomalous dispersion to normal dispersions or vice versa. We now analyze 

the properties of such continuous tunability at λ = λ0 = 1.55 μm. 

 The effects of modulating θ on the group delay and transmission for λ0 = 1.55 μm are illustrated 

in Fig. 7.7, where the parameters used are similar to Figs. 7.2 and 7.3. To better describe the tunability 

in the group delay and transmission, several figures-of-merit (FOM) are introduced to quantify for  

the tg(θ) responses: (i) tg(max)  — maximum of the group delay vs θ response, (ii) tg(min) — minimum of 

the group delay vs θ response, (iii) Δtg — tunable range of the group delay vs θ response, which is 
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Fig. 7.7. Demonstration of the continuous tunability of the transmission and group delay at λ = λ0 = 1.55 

μm for a TWMR with (a) Qint < Qext (Qint = 2.1 × 104, Qext = 5.1 × 104) and (b) Qint > Qext (Qint = 5.1 × 104, 

Qext = 2.1 × 104) as the phase θ of the control beam S+2 = Aexp(jθ)S+1 (with A = 1). The graphs with dotted 

lines have Qmut = 8 × 103 while the graphs with solid lines have Qmut = 1.5 × 104. All the blue (red) graphs 

represent the transmission (group delay) on the left (right) axis. 

                  (a) Coupling state of Qint < Qext                                                                   (b) Coupling state of Qint > Qext 
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defined as |tg(max) – tg (min)|, (iv) T(max) — maximum of the transmission vs θ response, (v) T(min) — 

minimum of the transmission vs θ response and (vi) ΔT — tunable range of the transmission vs θ 

response, which is defined as T(max) – T (min). For the through port, tg(max), tg(min), Δtg, T(max), T(min) and ΔT 

are, respectively, denoted as tg, T(max), tg, T(min), Δtg, T, TT(max), TT(min) and ΔTT. Likewise, for the reflection 

port, they are labeled as tg, R(max), tg, R(min), Δtg, R, TR(max), TR(min) and ΔTR. As an example, we have 

illustrated the parameters of tg, T(max), tg, T(min), Δtg, T, TT(max), TT(min) and ΔTT for the through port case in 

Fig. 7.7. In addition, the transmission and group delay responses as a function of θ at a fixed 

wavelength of λ = λ0 will be labeled, respectively, as TT(θ, λ0) and tg, T(θ, λ0) for the through port and as 

TR(θ, λ0) and tg, R(θ, λ0) for the reflection port or collectively as T(θ, λ0) and tg(θ, λ0). 

It is evident from Fig. 7.7 that continuous tunability of both the group delay and transmission 

can be elegantly achieved. Switching between subluminal and superluminal propagation at each port 

can be simply achieved by modulating the control beam. The main features in the tunability of the 

transmission T(θ, λ0) and group delay tg(θ, λ0) are highlighted below. 

 TT(θ, λ0) and tg, T(θ, λ0) are, respectively, out of phase from TR(θ, λ0) and tg, R(θ, λ0) by θ = π, i.e. tg, 

R(θ, λ0) = tg, T(θ + π, λ0) and TR(θ, λ0) = TT(θ + π, λ0), which is due to the periodic characteristic of 

the wavelength spectra in Fig. 7.2 and Fig. 7.3. We could thus adjust the contrast in the 

transmission and dispersion between the two ports simply by tuning θ. However, for fast and 

slow light applications which stringently require minimal power variation accompanying change 

in the group delay, the use of variable optical attenuator and/or gain elements (such as 

semiconductor optical amplifers) at the output ports can be used to adjust the transmission.   

 For the through port, TT(min) (TT(max)) is located at θ = (p +1/2)π, where p is an even (odd) integer. 

As TT(θ, λ0) = TR(θ + π, λ0), the reverse will apply to the reflection port: TR(min) (TR(max)) is located 

at θ = (p +1/2)π, where p is an odd (even) integer.  

 Likewise, the extrema of tg (θ, λ0) are located at θ = (p +1/2)π. However, the nature of p depends 

on the coupling state. For Qint < Qext, p is always even (odd) for tg, T(min) (tg, T(max)) and tg, R(max) (tg, 

R(min)), which also means that tg(min) (tg(max)) occurs at the same δ as T(min) (T(max)). For Qint > Qext, p 

swings between even and odd as the extrema of tg (θ, λ0) might switch between the minima and 

the maxima, as seen in Fig. 7.7(b). This is because for Qint > Qext, any change to the mode 

splitting results in a reversal from normal to anomalous dispersion, as mentioned earlier. In this 

case, for Fig. 7.7(b), the change in the mode splitting when Qmut switches between 1.5 × 104 and 

8.0 × 103 can also be seen earlier in Fig. 7.4.  

To better understand the propagating regime (i.e. fast or slow light) of the output light at the 

extrema of tg (θ, λ0) as well as the tunable range and the trade-off between the group delay, bandwidth 

and transmission, we have shown in Figs. 7.8 and 7.9 the plots of tg(max), tg(min), Δtg, T(max), T(min) and ΔT 

for λ = λ0 = 1.55 μm as a function of Qint for different Qmut. With no loss in generality, Qext is fixed at 

5.1 × 104 to facilitate this discussion. Using the trends in Figs. 7.8 and 7.9, the desired device 
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performances can then be achieved by a proper choice of the physical parameters (Qext, Qint, Qmut), 

which depends on the physical situation under consideration and the fabrication tolerance. Note that 

Qext is determined by the bus WG-to-cavity air gap distance g, Qint depends mainly on the bend radius 

R while the surface defects on the cavity will determine Qmut. For example, as mentioned earlier in 

section 7.3.1, using a silicon microring resonator with R = 5 μm, air gap g of 120 nm and with surface 

defects in the form of grating ridges, with each grating ridge having a width of ~20 nm and the 

separation distances between adjacent ridges range from ~50 nm to ~100 nm, Qext, Qint and Qmut are, 

respectively, 3 × 104, 4 × 104 and 1.37 × 104 near  λ0 = 1.55 μm [9].  

Two different cases are analyzed: (i) Critical coupling is absent, which is shown in Fig. 7.8; and 

(ii) critical coupling occurs as Qmut is increased, which is shown in Fig. 7.9. Note that both Fig. 7.8 

and Fig. 7.9 apply to both the through and reflection ports as tg(max), tg(min), T(max) and T(min) are the same 

for both ports. The general trend in Figs. 7.8 and 7.9 is that increasing Qint has the effect of increasing 

|tg(min)| and |tg(max)| up to a certain critical turning point, which we term as Cp, after which |tg(min)| and 

|tg(max)| start to decrease with any increment in Qint. Consequently, the tunable range of the group delay 

Δtg increases (decreases) with Qint before (after) the critical turning point Cp. For small Qmut such as 

that in Fig. 7.9(a), Cp is located in Qint < Qext. As a result, for small Qmut, both tunable fast and slow 

light are possible at a fixed λ for Qint < Qext as tg(min) and tg(max) can both be of the same or different sign 

while for Qint > Qext, only tunable slow light is possible at a fixed λ  as both tg(min) and tg(max) are 

positive. Increasing Qmut will move Cp towards the regime of Qint > Qext such that at a sufficiently large 
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× 103 for (a), 1.5 × 104 for (b) and 2.0 × 104 for (c). The region to the left (right) of the dotted vertical line 
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Qmut, tg(min) and tg(max) are in different light propagation regime at every Qint, making it possible to have 

tunable fast and slow light for both Qint < Qext and Qint > Qext. This can be seen in Fig. 7.8(ci). Besides 

shifting Cp, increasing Qmut will also increase |tg(min)| and |tg(max)| as well as Δtg. However, such an 

increment is substantially more for |tg(min)| than for |tg(max)|.This is beneficial if the main focus is to 

enhance the tunability of the pulse advancement, rather than the pulse delay. 

As Qmut is increased, critical coupling occurs. This is illustrated in Fig. 7.9, in which critical 

coupling occurs at around Qint = 10 × 104 for Qmut = 2.2 × 104. This has two main effects on the FOM 

of the group delay. First, there is an enhancement in the absolute magnitude of the loci of tg(min) and 

tg(max), which are bounded by the critical coupling asymptote while other portions of tg(min) and tg(max) 

that are not bounded by this asymptote are comparatively smaller in absolute magnitude. This happens 

as divergent dispersion occurs at the critical coupling point; moving towards this point leads to an 

increase in the strength of the dispersion. The second effect is that both tg(min) and tg(max) are in the same  

propagation regime of slow light after the critical coupling asymptote. This occurs in Fig. 7.9(a) for 

Qint > ~12 × 104. Then only tunable pulse delay is possible. As Qmut  → ∞ , which is shown in Fig. 

7.9(b), the cavity will approach degeneracy and behaves like a conventional TWMR that has a typical 

notch-filter Lorentzian resonance response. For the FOM of the transmission, increasing Qmut or Qint 

results in the increment (decrement) of T(max) (T(min) ), which corresponding leads to a rise in ΔT. As 

Qint is increased such that Qint > Qext, T(max), T(min) and ΔT will gradually stabilize.  
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We now relate the trends of the FOM of the transmission with that of the group delay to better 

understand the trade-offs in the device performance. Notice that |tg(max)| generally increases with T(max), 

while increasing |tg(min)| reduces T(min). This has difficult implications for difficult coupling states. For 

the coupling state of Qint < Qext,
 tg(min) and tg(max) always occur at the same θ as T(min) and T(max), 

respectively, as shown earlier in Fig. 7.7(a). This means that the output power can be increased with 

the group delay in the slow light regime. However, a trade-off would exist in the fast light regime: 

Increasing the absolute magnitude in the negative group delay gives a reduction in the output power. 

This is a fundamental constraint of any cavity based system, which is commonly mediated through the 

use of gain at the output ports. For the coupling state of Qint > Qext, tg(min) and tg(max) also occur at the 

same θ as T(min) and T(max), provided that Qint is before the critical coupling point, which is at Qint < ~12 

× 104 in Fig. 7.9(a). Then the above-mentioned properties of slow and fast light for the coupling state 

of Qint < Qext will also apply to the coupling state of Qint > Qext. However, after the occurrence of 

critical coupling (which is at Qint > ~12 × 104 for the case in Fig. 7.9(a)), the locations of tg(min) and 

tg(max) at each port will switch such that tg(min) and tg(max) occur at the same θ as T(max) and T(min), 

respectively. As T(max) is relatively large (and relatively constant as well) while T(min)  ≈  0, it would be 

better to operate around tg(min) though tg(max) has a much larger group delay.  

Finally, we look at the relation between the bandwidth and group delay. To do so, several FOMs 

of the bandwidth are introduced: (i) BW(min) — the full-width at half maximum (FWHM) for the 

resonance spectrum centered at λ = λ0 = 1.55 μm when tg (θ, λ0) = tg(min) and T (θ, λ0) = T(min), (ii) 

BW(max) —  the FWHM for the resonance spectrum centered at λ = λ0 = 1.55 μm when tg (θ, λ0) = tg(max) 

and T (θ, λ0) = T(max) and (iii) ΔBW— the tunable bandwidth, defined as |BW(max) – BW(min)|. In other 

words, (BW(min), BW(max), ΔBW) corresponds to (tg, (min), tg, (max), Δtg) and (T(min), T(max), ΔT). We have 

illustrated in Fig. 7.10 the FOMs of the bandwidth that correspond to the FOMs of the group delay  
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Fig. 7.10. The FOMs of BW(min), BW(max), and ΔBW as a function of Qint for a TWMR with Qext = 5.1 
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and transmission in Fig. 7.8(c). Comparing Fig. 7.10 with Fig. 7.8(ci), the general trend is that an 

increase in |tg, (min)| and |tg, (max)| leads to a decrease in BW(min) and BW(max), while the tunable bandwidth 

ΔBW remains relatively constant. This is the case because the delay-bandwidth product (DBP), which 

is defined as: DBP = tg, R × BW, where tg, R is the time delay at resonance, is approximately constant 

for any system due to causality, which implies that increasing the group delay results in the narrowing 

of the bandwidth. As both |tg(min)| and |tg(max)| generally increase with Qint, BW(min) and BW(max) will thus 

decrease with Qint. For single cavity systems, including our proposed scheme, the bandwidth is 

inherently small (< 1 nm for  tg, R  > 20 ps), which will severely limit fast and slow light applications in 

transmission systems that utilize ultra-short pulses. To increase the DBP and thus the bandwidth, our 

scheme can be extended to coupled-cavity systems [37, 38]. Another method to mitigate the DBP 

constraint would be the use of dynamic tuning mechanism [39] in which the dispersion relation of the 

system is tuned in an adiabatic manner as a function of time after the pulse has entered the system.  

From the above discussion, it is thus evident that a trade-off condition exists between the 

transmission (T(max), T(min), ΔT), bandwidth (BW(min), BW(max), ΔBW ) and group delay (tg, (max), tg, (min), 

Δtg) when utilizing the dual-input scheme. A compromise must therefore be reached depending on 

whether a high transmission, bandwidth or group delay is needed for the specific applications. The 

results in Figs. 7.8 to 7.10 can be used as a general design rule in trading off between the various 

device performances.  

Finally, we mention that modulating the amplitude A of the control beam will further enhance 

the continuous tunability in the transmission and group delay. This is demonstrated in Fig. 7.11, in  
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Fig. 7.11. Demonstration of the effect of amplitude A modulation of the control beam on the continuous 

tunability of the transmission and group delay at a fixed wavelength of λ = λ0 = 1.55 μm for the through 

port of a TWMR with (a) Qint < Qext (Qint = 3.2 × 104, Qext = 6.4 × 104) and (b) Qint > Qext (Qint = 6.4 × 104, 

Qext = 3.2 × 104) and fixed Qmut of 2.2 × 104. 

      (a) Coupling state of Qint < Qext                                                         (b) Coupling state of Qint > Qext 
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which it is shown that additional adjustment of the dispersion and transmission can be made at any 

fixed θ and λ by modulating A. Thus, amplitude modulation of the control beam can be used to 

provide another degree of freedom to manipulate the group delay and output power in the dual-input 

scheme.  

7.5. Time Domain Analysis and Potential Fast and Slow Light Applications  

The pulse propagation through the TWMR near the communication wavelength of 1.55 μm is 

shown in Fig. 7.12. At each input port, a Gaussian pulse U(t) = exp(– [t – t0]
2/[0.72tpw

2]).exp(jωct) is 

launched into the TWMR, with physical parameters similar to those in Fig. 7.11(a). Here, t0 is the 

temporal location of the peak of the input pulse, tpw is the temporal full width at half maximum 

(FWHM) of the pulse and ωc is the frequency of the carrier wave. We have used ωc = ω0/(2π) = 

193.55 THz (or λ0 = 1.55 μm), t0 = 0 and tpw = 8tcav ≈  281 ps in our modeling, where tcav is the photon 

life time of the cavity, which is defined as the average time that a photon will stay in the cavity before 

it is coupled out of the cavity. tpw is set to be longer than tcav so that the output pulse is in steady state.    

Multiplying Eq. (7.5) with the Fourier transform of U(t) will give the spectral profile Sp(ω) of 

the output pulse. The temporal expression of the output pulse follows from the inverse Fourier 

transform of Sp(ω). It can be seen in Fig. 7.12(a) that for slow (fast) light, the pulse experiences delay 
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Fig. 7.12. (a) Tunable pulse advancement or delay at the through port by modulating the amplitude and 

phase of the control beam for a TWMR with (ai) Qint < Qext (Qint = 3.2 × 104, Qext = 6.4 × 104) and (aii) 

Qint > Qext (Qint = 6.4 × 104, Qext = 3.2 × 104). The input pulse has a pulse width of tpw = 8tcav and central 

wavelength λ0 = 1.55 μm. The dotted vertical line for each pulse marks the location of the pulse peak. (b) 

The effects of adjusting the input pulse width tpw on the output pulse at the through port of a TWMR with 

Qint = 6.4 × 104, Qext = 3.2 × 104 and control beam setting of  A = 1.0 and θ = 1.5π. Note that Qmut = 2.2 × 

104 for both (a) and (b). 
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(advancement), where the peak of the output pulse appears later (earlier) than the peak of the input 

pulse. The extent of the pulse advancement and delay can be adjusted by simply modulating the 

amplitude or phase of the control beam. Note that there is no violation of causality for the fast light as 

the leading part of the input pulse always precedes that of the output pulse. Consistent with what we 

have mentioned earlier, it can be seen in Fig. 7.12(a) that the pulse advancement is associated with a 

substantial attenuation whereas a high throughput is possible for the pulse delay.  

Finally, we look at the impacts of the earlier mentioned DBP constraint on our proposed scheme 

regarding pulse propagation. Firstly, to maintain the pulse shape for any cavity based system, be it fast 

or slow light, the temporal pulse width must be larger than the photon life time of the cavity, i.e. tpw > 

tcav, where tcav = 1/Δω1/2 and Δω1/2 is the FWHM (in Hz) of the resonance. Otherwise, higher-order 

dispersions will cause pulse distortion. As we have used tpw = 8tcav in Fig. 7.12(a), the output pulse is 

thus relatively undistorted. However, it can be seen in Figs. 7.12(bi) to 7.12b(iii) that as tpw is 

decreased, pulse distortion starts to occur. If tpw becomes too small, the single input pulse will split 

into two output pulses, one with negative group delay and one with positive group delay, which can 

be observed in Fig. 7.12(biv). Hence, there is a limit to how small tpw can be: the input pulse must be 

made adequately long in time so that its spectral bandwidth is smaller than that of the fast and slow 

light system, consistent with the DBP constraint. 

The DBP constraint also implies a small fractional delay (or advancement) in the output pulse 

for single-cavity systems. Note that the fractional delay Fd is defined as Fd = |tg(ω)|/tpw [40]. For 

example, in Fig. 7.11(b), though using a TWMR with Qint = 6.4 × 104, Qext = 3.2 × 104 and Qmut = 2.2 

× 104 will result in a relatively large negative (positive) group delay of 225 ps (80 ps) when A = 0.4 

and θ = 0.5π (A = 1 and θ = 0.5π) for the control beam, the temporal pulse width tpw must be set to 

around 8tcav in Fig. 7.13(a) in order to avoid pulse distortion, which will correspondingly imply a 

rather small fractional advancement (delay) of Fd = 0.801 (Ft = 0.285) as compared to coupled-

resonators systems [37, 38] where Fd >> 1. However, it must be noted that even fractional variation in 

Ft is beneficial for certain applications. One such example is data stream regeneration [41, 42], which 

requires optical data pulses to be actively centred in their time windows. To perform this function 

well, the abilities to precisely delay and advance the pulse by a fractional amount of Ft is of utmost 

importance. Our dual-input scheme, with the ability to control the group delay by modulating the 

control beam will be suitable for such an operation. In addition, the proposed scheme can also be 

useful in optical-time-division-multiplexing (OTDM) [43, 44], where variable time delay is needed 

for the synchronization of optical signals or buffering of optical data.  

7.6. Comparison of Our Proposed Scheme with Other Commonly Used Tuning Schemes 

We end this work by comparing the performances in the group delay of our proposed dual-input 

scheme with other commonly used active tuning schemes (scheme (a)-(d) in Table 7.1). For a fair 
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comparative analysis, we will compare the group delay performances of these schemes with our 

proposed dual-input scheme by using a TWMR with the same physical parameters of Qmut = 2.2 × 104, 

Qint = 6.4 × 104 and Qext = 3.2 × 104 for all these schemes. Using these physical parameters, the 

maximum achievable group delay tg(max), minimum achievable group delay tg(min) and tunable delay 

range Δtg = |tg(max) – tg (min)| for the probe beam at the fixed degenerate resonance wavelength of 1.55 

μm for the schemes (a)-(d) are then calculated and summarized in Table 7.1. Note that for our 

proposed scheme, tg(min), tg(max) and Δtg for the above chosen parameters of Qmut, Qint and Qext has been 

shown earlier in Fig. 7.11(bi) and they are also listed in Table 7.1 for the cases of A = 0.4 and A = 1.0.  

It is evident from Table 7.1 that our proposed dual-input scheme has a better group delay 

performance as compared to other active tuning schemes. In particular, when the amplitude A 

modulation of the control beam of our proposed beam is fixed at 0.4, the tunable group delay range is 

~239 ps and the minimum group delay is ~ –224 ps. These are major improvements as compared to 

schemes (a)-(d), which, respectively, has a tunable group delay range of around  84 ps, 9 ps, 9 ps and 

84 ps and minimum group delay of around –69 ps, + 1 ps, + 1 ps and –69 ps. A unique feature of the 

dual-input scheme is that it has two degrees of freedom (amplitude A and phase modulation θ of the 

control beam) to tune the group delay. As a result, the maximum achievable group delay (or 

advancement) and the tunable group delay range can be varied as shown in Fig. 7.11 and Table 7.1. 

This is in contrast to conventional tuning schemes that have only one degree of freedom and thus their 

maximum achievable group delay (or advancement) and tunable group delay range are generally fixed 

by their physical parameters. This advantage of the dual-input scheme will allow the optimization of 

the device performance. For example, at A = 0.4, the maximum group delay that can be realized is 

only around +15 ps. This can be improved by tuning A to 1.0, which will increase the maximum group 

delay to around +70 ps, albeit the device performances in terms of the minimum group delay and the 

tunable group delay range are affected.  

7.7.  Summary and Significant Contributions of this Research Work 

We have presented a detailed analysis on the transmission and dispersive behaviours of a 

TWMR with distributed intracavity backscattering in the presence of dual opposing inputs. It is found 

that, by controlling the phase and amplitude differences between the inputs, the transmission and 

dispersion of the TWMR can be controlled. Consequently, continuous tunability in the group delay 

and output spectrum can be achieved. If the physical parameters of the TWMR are properly chosen, a 

wide tunable range and large group delay can be achieved. For example, using a TWMR with Qint = 

6.4 × 104, Qext = 3.2 × 104 and Qmut = 2.2 × 104, a tunable range of 239 ps can be achieved at the 

communication wavelength of 1.55 μm at the through port, with a maximum pulse advancement 

(delay) of 225 ps (15 ps), when the phase difference between the dual inputs S+1 and S+2 is varied from 

0.5π to 1.5π for |S+2|/|S+1| = 0.4, which is shown in Fig. 7.11(bi). Also, by modulating the amplitude 
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and phase differences between the dual inputs, the contrast in the group delay and transmission 

spectra at the different ports of the TWMR can be controlled and switching between fast and slow 

light can be attained. These demonstrate that the dual-input scheme allow us to better capitalize on the 

backscattering effects in a TWMR to generate fast and slow light, offering a more dynamic control of 

the speed of light, as compared to [9, 10], which uses only a single input. More importantly, the 

proposed dual-input scheme realizes the possibility to achieve tunable fast and slow light in a passive 

and linear cavity. This is in contrast to conventional TWMR-based slow and fast light systems [9, 10, 

16, 17, 22, 27, 29], which require either the use of active tuning mechanisms or nonlinearity in the 

cavity so as to have tunable group delay.  

Like the all-optical tuning (AOT) scheme (which is labeled as scheme (d) in Table 7.1), the only 

disadvantages of our proposed scheme as compared to the conventional active tuning (CAT) schemes 

(which are labeled as schemes (a)-(c) in Table 7.1), are higher implementation cost and energy 

requirement due to the use of dual inputs and external active tuning components like modulators and 

laser diodes to control the dual inputs. However, it can be seen in Table 7.1 that the advantages of the 

proposed scheme significantly outweigh these disadvantages. In particular, it offers unique features 

(which have been mentioned in Table 7.1, such as the ability to achieve active tuning by merely using 

a passive cavity that does not require additional fabrication processing) that are often required in 

practical applications, but are absent in the CAT schemes. Comparing with the all-optical tuning 

scheme, labeled as scheme (d) in Table 7.1, the main advantage of our scheme is that the tunability in 

the group delay is not generated via exploiting the nonlinearity of the cavity. This will circumvent the 

issue of weak material nonlinearity in the cavity in certain situations. Moreover, we have shown that 

the tunable group delay range and the maximum achievable pulse delay (or advancement) are 

significantly enhanced. For example in Table 7.1, at the degenerate resonance wavelength, the 

maximum pulse delay achieved is +10 ps when scheme (a), i.e., the CAT scheme, is used as compared 

to a maximum pulse delay of +70 ps offered by our scheme when A = 1.0, which is a sevenfold 

improvement. Thus, our proposed dual-input scheme will be highly attractive for practical fast and 

slow light applications. 

Finally, note that part of this research work has been published in: 

 Thomas Y. L.  Ang and Nam Quoc Ngo, "Tunable fast and slow light in a traveling wave 

microresonator via interaction of intracavity backscattering with dual contrapropagating 

inputs," J. Opt. Soc. Am. B 27, 2774-2783 (December 2010). 
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Chapter 8 

Harnessing Intracavity Backscattering for 

Enhanced Tunable Coupled-Resonator-

Induced Transparency and Optical Fano 

Resonance  

8.1.  Introduction: Research Motivations and Objectives 

In recent years, coupled traveling wave microresonators (TWMRs) structures of various 

configurations [1-12] are used to realize the optical analogues of electromagnetically induced 

transparency (EIT) [13] and Fano resonance (FR) [14], which are known, respectively, as coupled-

resonator-induced transparency (CRIT) and optical Fano resonance (OFR) in photonic systems. This 

ability to mimic such traditional atomic effects via TWMRs is highly useful as it is generally much 

easier to manipulate TWMRs as compared to atomic systems. Characterizing CRIT and OFR in 

TWMRs [1-12] or other integrated photonic devices [15, 16] has attracted tremendous attention as 

CRIT and OFR can be utilized in various applications, such as tunable delay lines [4-7], sensing [8, 

9], optical switching [15] and nonlinear optics [16]. This is due to the high dispersive property, high 

transmission, large Q-factor and enhanced sensitivities of the CRIT and OFR resonance lineshapes. It 

should be noted that due to the strong dispersive property of the CRIT and OFR lineshapes, CRIT and 

OFR have also been categorized as fast and slow light effects in the literature [5, 12]. We have 

adopted this convention in this thesis and thus included the study of CRIT and OFR in part two of this 

thesis that deals with fast and slow light effects. 

Essentially, EIT and FR are quantum interference phenomena. In EIT (cf. Fig. 8.1(a)) [13], the 

quantum interference between the transition amplitudes of the two different excitation pathways to the 

upper |3  state — the direct pathway (|1  - |3 ) that is excited by the probe field ωprob, and the indirect 

pathway (|1  - |3  - |2  - |3 ) that is excited by the coupling field ωcou — leads to the cancellation of the 

original absorption |1  - |3  of the probe field. This results in the formation of a sharp Lorentzian peak 

of high transparency at the resonance frequency ωR in between two resonance dips in the transmission 

T spectrum of the probe field (cf. Fig. 8.1(c)). The sharp peak at ωR also has strong dispersion and  
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Fig. 8.1. The mechanisms of the different types of quantum interference phenonema in a three-level atom, 

explained using the multiple routes to excitation approach in (a) and (b) and their resultant transmission 

spectra, which are shown in (c) and (d). (a) Illustration of the mechanism of electromagnetic induced 

transparency (EIT). In EIT, the weaker probe field ωprob can excite population by the direct pathway |1  - 

|3 . An alterantive pathway within the atom for the population to reach |3  is by the indirect pathway |1  - 

|3  - |2  - |3 , in which the population is moved between |2  and |3  by the stronger coupling field ωcou. 

Destructive intereference between the direct and indirect pathways will cancel the original absorption |1  - 

|3  of the weak probe field, leading to a sharp high transmission within a narrow frequency window, 

which is illustrated in (c). Note that transition between states |1  and |2  is forbidden. (b) Illustration of the 

mechanism of Fano resonance (FR). In FR, excitation takes place between the lower state |1  and a 

continuum ionising state |2 . In addition, it can also occur between the lower state |1  and an autoionized 

state |3 . Once in state |3 , the atom will relax to the continuum ionising state |2 . In other words, there are 

two routes to the final state |2 .  This, in general, will cause the transition probability amplitude to vanish 

on one side of the resonance, leading to a sharp asymmetric transmission spectrum in (d), known as FR. 

Note that FR spectra with different degree of asymmetry are shown in (d). The asymmetry can be tuned 

by the operating conditions. 
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large group delay enhancement. Turning off the coupling field ωcou will result in the disappearance of 

the sharp Lorentzian peak at ωR within the Lorentzian dip. It must be mentioned that the EIT scheme 

(and likewise for the CRIT scheme) is unique in that it simultaneously allows high transmission T and 

large enhancement in the group delay (positive and negative group delay). A somewhat similar 

situation occurs in FR (cf. Fig. 8.1(b)), in which the quantum interference between the transition 

amplitude of the resonance pathway (|1  - |2 ) with that of the coherent background pathway (|1  - |3  - 

|2 ) will result in the atomic absorption to vanish at one side of the resonance frequency ωR, leading to 

a sharp asymmetric resonance line shape (cf. Fig. 8.1(d)) in the transmission spectrum. Note that 

different types of asymmetric lineshapes (cf. Fig. 8.1(d)) can be generated by FR. In photonic 

systems, EIT- and FR-like effects (i.e., CRIT and OFR) can be realized in an analogous manner via 

the coherent interference of electric fields (rather than transition amplitudes in atoms) between the 

whispering gallery modes (WGMs) from different optical resonance pathways in the coupled-

TWMRs structure. Different configurations of coupled-TWMRs structures [1-12] have been 

employed to generate CRIT and OFR, with the most common and simplest configuration being the 

twin coupled-TWMRs structure [5-8, 11, 12], in which two resonators are directly coupled to each 

another, with one of the resonators coupled to an external port waveguide. For such twin coupled-

TWMRs structure (cf. Fig. 8.2), which is the focus of this work, it has been shown that the destructive 

interference between the decaying WGMs from the different resonators will result in an EIT-like 

Lorentzian peak in the output transmission spectrum (similar to Fig. 8.1(c)) when the two resonators 

are weakly coupled and provided that either the loss in the resonator farthest from the port waveguide 

is zero [5] or the net effective loss rate of the coupled-resonators system is zero [7]. By introducing 

gain to one of the resonators [11] or by using resonators of different sizes [12] in the twin-coupled 

TWMRs system, the EIT-like or CRIT symmetric Lorentzian peak in the transmission spectrum will 

be reshaped into a distinctly sharp asymmetric lineshape (similar to Fig. 8.1(d)), which is the optical 

equivalent of FR, known as optical Fano resonance (OFR). However, to the best of our knowledge, 

the study of CRIT and OFR in the above-mentioned twin coupled-TWMRs structure generally does 

not consider intracavity backscattering and dual inputs, which have recently been employed to realize 

tunable fast and slow light in a single TWMR system in our work in chapter 7 and [17]. 

In this chapter, we will explore the possibility of harnessing intracavity backscattering to 

generate enhanced CRIT and OFR in the twin-coupled TWMRs structure (cf. Fig. 8.2). To do so, 

surface perturbations in the form of microstructures, such as grating ridges [18], are intentionally 

introduced into the resonators. Also, either single or dual inputs can be used. We will term our 

TWMR structure as the modified twin-coupled TMWRs structure as it departs from the traditional 

twin-coupled TMWRs [5-8, 11, 12], which neither harnesses intracavity backscattering nor dual 

inputs. It will be shown that the intracavity backscattering modifies the critical coupling conditions 

and the mode-splitting features, which consequently lead to different and enhanced CRIT and OFR 
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Fig. 8.2. Schematic of the proposed modified twin-coupled TWMRs structure in which surface 

perturbations in the form of microstructures like grating ridges are intentionally introduced on the 

cavities. This induces mutual coupling between the CW and CCW modes in each cavity. Enhanced CRIT 

and OFR effects can be generated when the CW and CCW modes from resonator 1 interact with those 

from resonator 2 and the single or dual inputs.  

effects in contrast to the traditional twin-coupled TWMRs. In the event of using dual inputs, the CRIT 

symmetric peak can be reshaped into a sharp asymmetric line shape of OFR simply by controlling the 

phase and/or amplitude differences between the inputs. We can thus switch between CRIT and OFR 

simply by using a second input to interact with the intracavity backscattering. This is in contrast to the 

traditional twin-coupled TWMRs, in which gain [11] or phase detuning [12] is typically employed to 

switch between CRIT and OFR. As mentioned in section 7.1, the main drawback of such gain or 

phase detuning schemes in the cavities, such as [11] and [12], is that additional procedures and 

controls are required in the fabrication process so as to incorporate the active tuning components. 

Moreover, as the active components are implanted in the cavity system, it would be difficult to 

reconfigure or to replace them after fabrication. In the case in which a passive cavity has already been 

fabricated, it might not be feasible or possible in certain situations to do additional alternation to the 

device so as to render it active. By using our proposed dual-input scheme, such constraints are 

eliminated as only external dual inputs (laser diodes) as well as phase modulators [19] and/or variable 

optical attenuators [20] are required to achieve tuning between CRIT and OFR. In other words, a 

passive and linear cavity can be used, without the need to implant active components within the 

cavity. This reduces the fabrication complexity and footprint of the cavity. The reconfigurability and 
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serviceability of the proposed cavity system (in terms of its active tunability) are also improved as the 

external active tuning components can be easily adjusted or replaced. 

This chapter is organized as follows. In section 8.2, we present the theoretical modeling of the 

interplay between the intracavity backscattering and losses out of the resonator in our modified twin 

coupled-TWMR structure. In section 8.3, we show how the presence of intracavity backscattering 

leads to enhanced CRIT as well as modifying the coupling conditions. In section 8.4, the generation of 

sharp asymmetric OFR lineshapes by manipulating the intracavity backscattering is demonstrated. In 

section 8.5, we show that switching between CRIT and OFR can be achieved when dual inputs are 

employed to interact with the backscattering in the TWMRs. Finally, we conclude in section 8.6. 

8.2.     Theoretical Formulation  

The proposed modified twin-coupled TWMR structure is shown schematically in Fig. 8.2, in 

which two azimuthally symmetric TWMRs are evanescently coupled to each other, with one of the 

resonators coupled to an excitation port waveguide of length L = L1 + L2 via a coupling junction (CJ) 

that is taken to be infinitesimally short. In this work, we will assume that all the waveguide based 

components only support the fundamental modes (either TE0 or TM0) and that any backscattering due 

to fabrication-induced sidewall roughness [21] in the bus waveguide or resonators is negligibly small 

due to advancement in fabrication technology [22, 23]. In order to effectively produce the intracavity 

backscattering that will result in mutual coupling between the clockwise (CW) and counterclockwise 

(CCW) cavity modes, surface microstructures [18] are intentionally introduced into the two resonators 

(but not the port waveguide). Also, either a single input or dual inputs can be employed to harness the 

intracavity backscattering effect. In the case of using dual inputs, the phase and/or amplitude 

differences between the dual inputs — S+1 at the reflection port and S+2 at the through port — can be 

controlled through the use of external optical phase modulators [19] and/or variable optical 

attenuators [20] such that the dual inputs entering the coupling junction (CJ) are related to each other 

by S’
+2 = MS’

+1 = [A exp(jθ)]S’
+1, where j = 1 , M = A exp(jθ) is termed as the overall modulation 

factor, while A and θ are, respectively, the amplitude and phase modulations between the dual inputs 

S’
+1 and S’+2. We will term S+1 (S+2) as the signal (control) beam. Do note that the amplitude A and 

phase θ can be varied, respectively, by external amplitude and phase modulators [19, 20]. If only one 

input is employed, M = 0 (i.e. only S+1 is present and S+2 = 0), which will be the case for our 

discussion in sections 8.3 and 8.4 while section 8.5 deals with the case of the dual-input scheme (i.e., 

M  ≠  0). By treating each resonator as a lumped oscillator, with all the inputs and cavity modes 

having exp(jωt) time dependences, i.e., S+1 =  1S  exp(jωt), S+2 =  2S   exp(jωt), Eccw =  ccwE exp(jωt) 

and Ecw =  cwE exp(jωt), the temporal evolution of the instantaneous intracavity electric fields in our 

modified twin-coupled TWMRs structure can be described using the following set of coupled mode 

equations [24]: 
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where Ecw, n (Eccw, n) is the energy amplitude of the CW (CCW) intracavity mode, Δωn = ω – ωn is the 

frequency detuning, ωn is the uncoupled (or degenerate) resonance frequency of each resonator, Γnet, n 

is the net decay rate for each cavity mode, u0 is the rate of energy coupling between resonator 1 and 

the bus waveguide, u1 is the rate of energy coupling between the resonators, um, n is the mutual 

coupling between the cavity modes in each resonator and the subscript n = 1 refers to the resonator 

nearest to the port waveguide while n = 2 refers to the resonator furthest away from the port 

waveguide. Considering both the intrinsic cavity losses and the evanescent coupling, each cavity 

mode in resonator 1 has a decay rate of Γs, 1 = Γint, 1 + Γext, while the decay rate for each cavity mode in 

resonator 2 is simply Γs, 2 = Γint, 2. Note that Γext = u2
0/2 is the decay rate due to the evanescent coupling 

between resonator 1 and the port waveguide and Γint, n (n = 1 or 2) is the decay rate of each resonator 

that arises from the cavity intrinsic losses. We also define five different types of quality or Q-factors 

for each cavity mode: (1) The intrinsic Q-factor Qint, n = ωn/(2Γint, n); (2) the WG evanescent coupling 

Q-factor Qext = ω1/(2Γext); (3) the inter-cavity evanescent coupling Q-factor Qcou = ω2/(2u1); (4) the 

mutual coupling Q-factor Qmut, n = ωn/(2um, n); and (5) the sum of the effects of the intrinsic and 

extrinsic Q-factors Qs, n = ωn/(2Γs, n) = (1/Qext + 1/Qint, n)
–1. Note that the net Q-factor Qnet of each 

cavity mode, which is coupled to the bus WG, is Qnet = (1/Qint, 1 + 1/Qmut, 1 + 1/Qext + 1/Qcou)
–1. For our 

system, the backward (forward) transmission in the bus WG, denoted as S–1 (S–2), can be expressed in 

terms of the incident wave and the cavity modes using power conservation theorems [24]: 

   
1 2 0

wj L
cwS e S ju E

 

  ,                   
2 1 0 ,wj L

ccwS e S ju E
 

                       (8.2) 

where w is the propagation constant of the mode in the bus WG of length L = L1 + L2. Note that the 

artificial dispersion due to the structural resonance of the TWMR is much stronger than the material 

dispersion. As such, the exp (–jwL) term in Eqn 8.2 is considered as negligible because it is a pure 

linear phase term of the two sections of the straight waveguides with lengths L1 and L2 and thus it 

does not affect the structural dispersion characteristics of the microresonator circuit. The steady-state 

complex electric field transmittivities at the through and reflection ports are, respectively, defined as 

ξT(Δωn) = S’
–2/S

’
+1  and ξR(Δωn) = S’

–1/S
’
+1 for the case of two co-resonant coupled-resonators (i.e., ω1 

= ω2 = ω0  and Δω1 = Δω2 = Δω0, where ω0 is the common degenerate resonance frequency for the two 

resonators). Both ξT(Δωn) and ξR(Δωn) can be solved by first, substituting the steady-state solutions 
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Ecw and Eccw of Eqn. (8.1) into Eqn. (8.2) and subsequently arranging Eqn. (8.2) into the form ξT(Δωn) 

= S’
–2/S

’
+1  and ξR(Δωn) = S’

–1/S
’
+1. The final results ξT(Δωn) and ξR(Δωn) can be expressed as: 
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Note that M = [Aexp(jθ)], which is the modulation factor between the dual inputs. Details can be 

found at the beginning of this section. The complex electric field transmittivities ξT and ξR in Eq. (8.3) 

can also be expressed as ξT = |ξT| exp (jΦT) and ξR = |ξR| exp (jΦR), respectively. Here, ΦT  and ΦR are, 

respectively, the effective phase shifts for the through and reflection ports. They contain all the 

necessary information to determine the transmission and dispersive properties of the output lights. In 

particular, the transmission Tq and group delay tg, q  are given by Tq = |ξq|
2 and tg, q(∆ω0) = ∂Φq 

(∆ω0)/∂(∆ω0), where the subscripts q = T and q = R, respectively, denote the through and reflection 

ports. Using Eq. (8.3), we will show in the next section of how the intracavity backscattering alters the 

mode-splitting features, which will lead to different CRIT and OFR properties between our modified 

twin-coupled TWMRs structure and the traditional twin-coupled TWMRs (no backscattering) 

structure in the literature for the case of co-resonant resonators, i.e., ω1 = ω2 = ω0  and Δω1 = Δω2 = 

Δω0, with ω0/(2π) = 193.55 THz (or λ0 = 1.55 μm).  

8.3.  Enhanced CRIT Effects in Proposed Structure  

8.3.1.   General Transmission and Dispersive Properties 

The mutual coupling between the cavity modes in each resonator is described by um, n, where the 

subscript n = 1 refers to the resonator nearest to the port waveguide, while n = 2 refers to the resonator 

furthest away from the port waveguide. The Q-factor describing the mutual coupling of the contra-

propagating cavity modes is denoted as Qmut, 1 for resonator 1 and Qmut, 2 for resonator 2. To clearly 

illustrate how the presence of intracavity backscattering modifies and enhances the CRIT effects, we 

first look into the scenario in which both resonators in our proposed scheme in Fig. 8.2 have the same 

intracavity backscattering strengths. This means um, 1 = um, 2 = um, which also implies Qmut, 1 = Qmut, 2 = 

Qmut. Also, only one single input is launched into the coupled-resonator system, i.e., M = 0 in Eq.  
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Fig. 8.3. Evolution in the transmission at the through port of the twin-coupled TWMRs with Qint, 1 = Qint, 2 = 

6e4 and Qext = 5e4 as the resonator-to-resonator coupling (controlled by Qcou) changes in the presence of 

different magnitude of intracavity backscattering (controlled by Qmut). The two resonators have equal Qmut, 

i.e., Qmut = Qmut, 1 = Qmut, 2. In each row, Qcou is varied while Qmut is fixed. Insets shown the blown-up of the 

regions marked by ‘X’. These spectra can be obtained using silicon resonators, each with a radius of 5 µm. 
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Fig. 8.4. Evolution in the transmission at the reflection port of the twin-coupled TWMRs with Qint, 1 = Qint, 2 = 

6e4 and Qext = 5e4 as the resonator-to-resonator coupling (controlled by Qcou) changes in the presence of 

different magnitude of intracavity backscattering (controlled by Qmut). The two resonators have equal Qmut, 

i.e., Qmut = Qmut, 1 = Qmut, 2. In each row, Qcou is varied while Qmut is fixed. Insets show the blown-up of the 

regions marked by ‘X’. All the spectra can be obtained using silicon resonators, each with a radius of 5 µm. 



                      Chapter 8: Harnessing Intracavity Backscattering for Enhanced Tunable CRIT and OFR 

 
 

202 

(8.3). The situation of um, 1 ≠  um, 2   and M ≠  0 will be dealt with shortly in the next few sections. We 

have shown in Figs. 8.3 and 8.4 the evolution of the transmission responses of the twin-coupled 

TWMRs for different um. Note that all the transmission spectra in this work are presented in the 

wavelength domain near the degenerate resonance wavelength λ0 = 1.55 μm, though the frequency 

domain is used in the analytical expressions and discussions for consistency with the literature. Also, 

λ0 and ω0 will be used interchangeably throughout the discussion. 

Let us start from the very basic — the case of Qmut → ∞  or um → 0. This refers to the traditional 

twin-coupled resonators in the literature that has no intracavity backscattering. For this case, we can 

see from Fig. 8.4a(i) to Fig. 8.4a(iii) that there are no output transmission at the reflection port (i.e., TR 

= 0). On the other hand, for the through port, the transmission at λ0 = 1.55 μm transforms from a 

single Lorentzian dip (cf. Fig. 8.3a(i)) to a sharp CRIT peak with near complete transparency (cf. Fig. 

8.3a(ii)) that is accompanied by strong normal dispersion and finally to a broadened Lorentzian (cf. 

Fig. 8.3a(iii)) as Qcou decreases. To explain these phenomena, first note that the uncoupled resonance 

mode ω0 splits into two eigenmodes — ωspc+ and ωspc– — whenever two resonators are coupled  

together. These eigenmodes ωspc± are clearly resolvable or distinguishable in the transmission 

spectrum in the form of a two-split Lorentzian only if the mode splitting or frequency separation 

between ωspc+ and ωspc– (proportional to 1/Qcou) is much larger than the average resonance linewidth, 

i.e., when ωspc+ – ωspc– > Γave or, in other words, 1/Qcou > ~Γave (or u1 > Γave), where Γave = (Γs, 1 + Γs, 

2)/2. Otherwise, the transmission spectrum has the shape of a single-Lorentzian near ω0. This is 

somewhat analogous to the Rayleigh criterion in diffraction optics. In Fig. 8.3a(i), a single Lorentzian 

dip is formed at ω0 as the split modes ωspc+ and ωspc– are indistinguishable due to the large Qcou (or 

weak u1), which results in 1/Qcou < Γave. Then the two coupled resonators behave like a single 

resonator system. However, for smaller Qcou (or stronger u1), we have 1/Qcou > Γave, which causes ωspc± 

(note that the two split modes ωspc+ and ωspc– are termed collectively as ωspc±) to be clearly resolved 

into a two-split Lorentzian, which can be observed in Figs. 8.3a(ii) and 8.3a(iii). In this regime, if Qcou 

is sufficiently small, CRIT can occur, which is the case in Fig. 8.3a(ii). The conditions for such CRIT 

with complete transparency (i.e., TT =1) at ω0 for um = 0 can be derived by letting um, n  → 0 in Eq. 

(8.3):  
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                (8.4) 

It can be deduced from Eq. (8.4) that CRIT with complete transparency at Δω0 = 0 (or λ = λ0) 

occurs if either there is no net loss in resonator 2 (i.e., Γs, 2 = 0) or the net effective loss rate of the two 

resonators is zero (i.e., u2
1/Γs, 2  + Γint, 1 = 0). Do note that gain can be used to achieve u2

1/Γs, 2 + Γint, 1 = 

0 (as Γs, n < 0 for cavity with net gain). For our case in Fig. 8.3a(ii), Γs, 2  ≈  0 and thus a CRIT peak is 

observed with TT ≈  1 at Δω0 = 0 (or λ = λ0). This is the result of the destructive interference between 
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the optical resonance pathways in resonator 1 and 2, analogous to the EIT effect in atomic system. 

The CRIT peak is sandwiched in between two resonance dips, which are the split modes ωspc+ and 

ωspc– that have Im [ξT] ≈  0 (where Im [ ] denotes the imaginary component) and thus ωspc+ and ωspc– 

can be expressed as 

2 2
0 1 , 2 .spc su                                                         (8.5) 

In the event that Qcou is sufficiently small (or u1 is sufficiently large) for the above-mentioned strong 

coupling regime of 1/Qcou > Γave, there will be a strong mode splitting that pulls ωspc+ and ωspc–  far 

apart, resulting in a broadened Lorentzian at Δω0 = 0 in between the two split Lorentzian, as seen in 

Fig. 8.3a(iii). Note that this is not CRIT even though there is transparency in the transmission at λ = λ0  

as such transparency (which is accompanied by a weak dispersive response) is due to the strong mode 

splitting rather than the destructive interference between the light from the different resonators.  

We now move on to the case of our proposed modified twin-coupled resonators, in which there 

is intracavity backscattering (i.e., Qmut < ∞  and um ≠  0). A unique difference between this case and 

that of Qmut  → ∞  or um = 0 as described above and in Figs. 8.3a(i) to 8.3a(iii) is the presence of 

transmission at the reflection port (in contrast to TR = 0 for um = 0), as seen in Fig. 8.4b and 8.4c. In 

addition, there are also changes in the mode splitting features of the transmission TT spectrum at the 

through port in Fig. 8.3 for um ≠  0, as compared to those of  um = 0. To explain these, first note that 

the presence of intracavity backscattering in the two resonators results in the resonance frequency ωn 

(n = 1 or 2) in each resonator to split into eigenmodes ωn
sps+ and ωn

sps– , where ωn
sps± have frequencies 

of ωn
sps± = ωn ± um, n = ωn ± ωn/(2Qmut, n) (cf. chapter 7 for more details). Note that these eigenmodes or 

split modes are totally different from the earlier mentioned split modes ωspc+ and ωspc– , which results 

from the evanescent coupling between the two resonators, rather than intracavity backscattering. As 

both resonators 1 and 2 have the same backscattering strength (i.e., um, 1 = um, 2   = um) and size (i.e., ω1 

= ω2 = ω0) in this section, the eigenmodes in these resonators are equal (i.e., ω1
sps± = ω2

sps±), which will 

give rise to symmetric splitting in the resonance spectra in Fig. 8.3. Later, in sections 8.4 and 8.5, it 

will be shown that the splitting in the resonance spectra will be unbalanced when um, 1 ≠  um, 2. This 

will give rise to OFR. 

For a sufficiently large Qcou (i.e., weak evanescent coupling), the twin-coupled TWMRs behave 

like a single-resonator system, which is to say that the split modes ω1
sps± in resonator 1 has weak 

interaction with the split modes ω2
sps± in resonator 2. In such a scenario, the transmission spectrum of 

the twin-coupled TWMRs system at the output ports will be chiefly determined by ω1
sps±. Depending 

on the magnitude of the intracavity backscattering, either a single Lorentzian or a two split Lorentzian 

can form in the transmission spectrum, with both types of spectra appearing reproducibly at every free 

spectral range (FSR). This is in contrast to the earlier case for um = 0, where a Lorentzian always 

appears at every FSR in the transmission spectrum. For Figs. 8.3b(i) and 8.4b(i), the intracavity 
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backscattering is weak such that Qmut  >>  Qcri, where Qcri is the value of Qmut that gives critical 

coupling. As mentioned earlier in chapter 7, mode-splitting due to intracavity backscattering can only 

be resolved in the transmission spectrum if Qmut  <<  Qcri. Thus for this case, ω1
sps± cannot be clearly 

distinguishable, thus giving a single-Lorentzian dip (peak) at ω = ω0 in the transmission TT (TR) 

spectrum of the through (reflection) port in Fig. 8.3b(i) (Fig. 8.4b(i)). On the other hand, for Figs. 

8.3c(i) and 8.4c(i), the intracavity backscattering is strong enough such that Qmut  <<  Qcri. This results 

in ω1
sps± to be clearly distinguishable in the form of a two-split Lorentzian dips (peaks) in the 

transmission TT (TR) spectrum of the through (reflection) port in Fig. 8.3c(i) (Fig. 8.4c(i)), with each 

dip (peak) or split mode located at ω = ω0 ± um = ω0 ± ω0/(2Qmut). Whether slow or fast light is 

produced at the resonances at ω = ω0 and ω = ω0 ± um for this case of weak evanescent coupling 

between the resonators is chiefly determined by the coupling state (i.e., relation of Qext to Qint, 1) and 

the intracavity backscattering strength of resonator 1. This has been elaborated in chapter 7 and [12]. 

As Qcou is decreased, the inter-resonator coupling strength becomes much stronger and thus 

ω1
sps± and ω2

sps± can interact with one another. Destructive interference between ω1
sps± and ω2

sps±, 

which will give CRIT with T  ≈  1, is also possible if Γint, 2 ≈  0 for the pair of high-finesse resonators. 

This occurs in Fig. 8.3b(ii) and Fig. 8.3c(ii) when Qcou is decreased to 1.5e5. However, the strength of 

the intracavity backscattering will affect the features of the CRIT. For the case of Qmut = 4.1e8 in Fig. 

8.3b(ii), a sharp CRIT peak at ω = ω0 (similar to that of um = 0 in Fig. 8.3a(ii)) can be seen in the 

transmission TT spectrum of the through port, while a sharp Lorentzian peak with a considerably low 

power can be observed in the transmission TR spectrum of the reflection port in Fig. 8.4b(ii). 

However, for the case of Qmut = 4.1e3 in Fig. 8.3c(ii), we can observe a pair of CRIT peaks within the 

same frequency window in the transmission TT spectrum. This is accompanied by a pair of Lorentzian 

dips or notches in the transmission TR spectrum in Fig. 8.4c(ii). For the former case of Qmut = 4.1e8, 

both the split modes ω1
sps± and ω2

sps± cannot be clearly resolved. In other words, ω1
sps± and ω2

sps± are 

both approximately equal to the uncoupled resonance modes ω1 and ω2, respectively (which is ω1 = ω2 

= ω0 in this section). Then the destructive interference between ω1
sps± and ω2

sps± will lead to a single 

CRIT peak at ω = ω0 in the TT spectrum. On the other hand, for the case of Qmut = 4.1e3 in Fig. 

8.3c(ii), both the split modes ω1
sps± and ω2

sps± are clearly distinguishable in each resonator. Then each 

split mode (ω1
sps+ and ω1

sps–) from resonator 1 will interfere destructively with one of the split modes 

(ω2
sps+ or ω2

sps–) from resonator 2, giving a total of two CRIT peaks at ω = ω0 ± um = ω0 ± ω0/(2Qmut) 

in the same frequency window in the TT spectrum. Each such CRIT peak is sandwiched between two 

split modes that are due to inter-resonator coupling. We will label these split modes due to inter-

resonator coupling in the case of inter-cavity backscattering as ωspc±1 and ωspc±2. They are located at 

 
2 2

1 0 1 , 2 ,spc m su u                     2 2
2 0 1 , 2 ,spc m su u      

                 
 (8.6) 
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while the two split modes that sandwich the single CRIT peak for the case of weak intracavity 

backscattering in Fig. 8.3b(ii) are labeled as ωspc±  and are located at ωspc±  = ω0 ± (u1
2 ˗ Γ2

s, 2)
1/2, similar 

to the case of um = 0 in Fig. 8.3a(ii). As Qcou becomes sufficiently small, the CRIT peaks and 

Lorentzian notches, respectively, in the TT and TR spectra disappear due to the strong mode splitting 

that pulls the split modes further apart, resulting in broad Lorentzians at ω = ω0 in Fig. 8.3b(iii) and 

Fig. 8.4b(iii) and at ω = ω0 ± um in Fig. 8.3c(iii) and Fig. 8.4c(iii).  

From the above discussion, we can see that the presence of intracavity backscattering in the 

twin-coupled TWMRs makes it possible to either generate a single sharp CRIT peak or a pair of CRIT 

peaks in the transmission spectrum of the through port, depending on the magnitude of the 

backscattering, in contrast to the case of the traditional twin-coupled TWMRs (no intracavity 

backscattering) in the literature, in which only a single sharp CRIT peak can be realized within the 

same frequency window. The distance between the twin-CRIT peaks can be controlled by adjusting 

the intracavity backscattering magnitude um or Qmut (as Qmut = ω0/(2um)). This is shown clearly in Fig. 

8.5a(i): The distance between the twin CRIT peaks decreases with increasing Qmut (or decreasing um). 

As um  → 0 or Qmut  → ∞ , the two CRIT peaks will merge into one single CRIT peak at ω = ω0 as the 

split modes ωsps± (which has frequencies ω = ω0 ± um) cannot be clearly resolved in the transmission 

spectrum.This is consistent with the results of the conventional twin-coupled TWMRs in [5-8, 11, 12]. 

Note that in Fig. 8.5 (and in all other Figs), the wavelength λ = 1550 nm corresponds to ω = ω0. 
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Fig. 8.5. The transmission, effective phase shift and group delay responses resulting from the CRIT effects of 

the twin-coupled TWMRs with Qint, 1 = Qint, 2 = 6e4, Qext = 5e4 and Qcou = 1.5e5, using different magnitude of 

intracavity backscattering (quantified by Qmut). Evidently, adjusting Qmut tunes the separation distance 

between the CRIT peaks. In all the graphs, the spectra move in the direction of the arrows as Qmut increases. 

Note that Qmut = Qmut, 1 = Qmut, 2. All the spectra can be obtained using silicon resonators, each with a radius of 

5 µm. 

(a) Through Port                                                              (b)   Reflection Port 
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In addition, another unique feature of the modified twin-coupled TMWRs system is that the 

CRIT peaks at the transmission spectrum of the through port is always accompanied by a notch filter 

transmission spectrum (i.e., Lorentzian dip) at the reflection port, which can be seen in Fig. 8.5b(i). 

This is unlike the traditional twin-coupled TMWRs system, which does not utilize intra-cavity 

backscattering and thus only has forward transmission but no backward transmission (TR = 0). In such 

a circumstance, the CRIT peak and notch filter transmission spectrum cannot be simultaneously 

generated, unlike our proposed modified twin-coupled TWMRs system described above. Thus, the 

presence of intracavity backscattering enhances the CRIT features and improves the versatility of the 

twin-coupled TWMRs system. Note that the intracavity backscattering um can be easily controlled by 

intentionally introducing microstructures (such as grating ridges) on the surfaces of the cavities during 

fabrication. This has been demonstrated in [12], as mentioned earlier. Thus, our proposed modified 

twin-coupled TWMRs system is suitable for practical implementation in integrated optics platform. 

Finally, note that the CRIT peaks at the through port, which are located at ω = ω0 ± um are 

always accompanied by a strong normal dispersion (i.e., slow light), as shown in Fig. 8.5a, while 

anomalous dispersion (i.e., fast light) can be found around the vicinitiy of the CRIT peaks. In general, 

such anomalous dispersion increases in strength as we approach the resonance dips that sandwich the 

CRIT peaks. Note that these resonance dips are the split modes ωspc±1 and ωspc±2 (cf. Eq. (8.6)). 

Reversal from the normal to the anomalous dispersion or vice versa will occur as we move from the 

through port to the reflection port at the same wavelength or frequency. In particular, there is a strong 

anomalous dispersion (i.e., fast light) at the Lorentzian dips or notches, which is accompanied by the 

normal dispersion (i.e., slow light) in the vicinity of these Lorentzian dips. These are shown in Fig. 

8.5b. The strength of such a normal dispersion is strongest at the split modes ωspc±1 and ωspc±2 , which 

are the peaks that sandwich the Lorentzian dips, and decreases as we depart away from these split 

modes. This trend is similar to the case at the through port. Thus, it is evident from Fig. 8.5 that, by 

harnessing intracavity backscattering, it is possible to simultaneously produce both fast and slow light, 

one from each port, at the various resonant modes. For example, at ω = ω0 ± um, a CRIT peak, which 

is accompanied by slow light, can be generated at the through port while a notch filter (i.e., Lorentzian 

dip) response, which is accompanied by fast light, can be simultaneously generated at the reflection 

port of our proposed device. This is in contrast to the case of um = 0 (i.e., traditional twin-coupled 

resonators system), in which there is zero transmission at the reflection port and thus at any one time, 

only slow light can be produced at the through port if ω that corresponds to the CRIT peak is choosen. 

The ability to simultaneously generate fast and slow light will make our proposed scheme highly 

attractive for fast and slow light applications. 
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8.3.2.  Coupling Regimes  

In any resonator-based system, three types of coupling regimes are possible. They are critical 

coupling, which gives TT  = 0, and under-coupling and over-coupling, both of which give 0 < TT < 1. In 

this subsection, we will demonstrate that the presence of intracavity backscattering (i.e., um ≠  0) in the 

modified twin-coupled TWMRs system can alter the effective loss rate of the resonator system, which 

consequently changes the conditions to realize the various coupling regimes for the split modes ωspc± 

that sandwich the CRIT peaks (for example in Figs. 8.3b(ii) and 8.3c(ii)) in comparison to those of the 

traditional twin-coupled TWMRs system (for example in Fig. 8.3a(ii)) where um = 0. For 

completeness, the conditions to realize the various coupling regimes at Δω0 = 0 and the split modes 

ωsps±  at Δω0 = ± um when CRIT is absent (for example in Figs. 8.3b(i) and 8.3c(i)) will also be shown. 

Let us start with the case of um = 0. The condition for critical coupling at Δω0 = 0 can be derived 

by letting ξT = 0 in Eq. (8.3). It is found that critical coupling at Δω0 = 0 occurs if 

2
1 int, 2 int, 1,ext u                                                                 (8.7) 

in which u2
1/Γs, 2 + Γint, 1 is the net effective loss rate of the twin-coupled TWMRs system with um = 0. 

Consequently, at Δω0 = 0 and for um = 0, under-coupling will occur if u2
1/Γs, 2 + Γint, 1 > Γext while over-

coupling will occur if u2
1/Γs, 2 + Γint, 1 < Γext. On the other hand, the condition for critical coupling at 

the split modes ωspc± for um = 0 can be obtained by letting Δω0 ≈  ±(u2
1

 – Γ2
s, 2)

1/2 and ξT = 0 in Eq. 

(8.3), which gives 

int, 1 int, 2 ,ext                                                                     (8.8) 

while under-coupling and over-coupling, respectively, occur at Γint, 1 + Γint, 2 > Γext and Γint, 1 + Γint, 2 < 

Γext, in which the term Γint, 1 + Γint, 2 is the total intrinsic losses of the two resonators. Earlier in Fig. 

8.3(a), we have used Γint, 1 + Γint, 2 = Γext  and thus CRIT with critical coupling (i.e., TT(ωspc±) = 0) at the 

split modes ωspc± , which is due to evanescent coupling between the resonators, is achieved in Fig. 

8.3(aii). We will term CRIT with critical coupling at the split modes simply as critically coupled 

CRIT in this work. 

In the presence of intracavity backscattering (i.e., um ≠  0) in the twin-coupled TWMRs system, 

new split modes ωsps±  are formed. By letting Δω0 = ±um and ξT = 0 in Eq. (8.3), it is found that critical 

coupling at ωsps± is achieved only if 

   
 

, 

1 2
2 2

int, 2 1 int, 2 int, 1 1 int, 2 int, 1 int, 1 int, 2 int, 2

int, 2

2 2
        ,

2

ext eff sps

m m

m

u u u u j j

ju

  

                  
   

  (8.9) 

while under-coupling and over-coupling, respectively, occur at Γeff, sps > Γext and Γeff, sps < Γext, in which 

the term Γeff, sps is the net effective loss rate of the twin-coupled TWMRs system at ωsps± in the 
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presence of intracavity backscattering. For a sufficiently small um, the split mode ωsps± cannot be 

resolved in the transmission spectrum. Then ωsps± ≈  ω0, i.e., a single Lorentzian forms at ω0 in the 

transmission spectrum. In such a situation, the critical coupling condition Γext = Γeff, sps reduces to Γext ≈ 

u2
1/Γs, 2 + Γint, 1, which is the critical coupling condition of the twin-coupled TWMRs system with um = 

0 in Eq. (8.7). Finally, the critical-coupling condition at the split modes ωspc±1 and ωspc±2, which result 

from the splitting of ωsps± due to evanescent coupling between the two resonators, can be derived by 

letting Δω0 = ±um ± (u1
2 – Γ2

s, 2)
1/2 and ξT = 0 in Eq. (8.3): 

     
     

   

, 

2
int,1 int,2 1 int, 2 int, 2 2 int, 2

2
1 int, 1 int, 2 int, 1 int, 2 2 int, 2 int, 2

22
1 int, 2 2 int, 2 int, 2 2

2 2

      4 2 2

2 2

ext eff spc

m m

m m m

m

u ju B j u

u ju ju jB ju

u jB u j B


  

            
              

       

1 2

,









 (8.10) 

where B2 = (u2
1

 – Γ2
s, 2)

1/2, while Γeff, spc is the net effective loss rate of the twin-coupled TWMRs 

system at ωspc±1 and ωspc±2 in the presence of intracavity backscattering. Under-coupling and over-

coupling, respectively, occur at Γeff, spc > Γext and Γeff, spc < Γext. For our example earlier in Fig. 8.3c(ii) in 

which there is intracavity backscattering, the critical coupling condition in Eq. (8.10) is not fulfilled at 

the split modes ωsps± that sandwich each CRIT peak, resulting in TT (ωsps±) > 0. Later on, we will show 

that a critically-coupled CRIT (i.e., TT (ωsps±) = 0) can be generated by employing dual inputs to the 

twin-coupled TWMRs. As mentioned earlier, for a sufficiently small um, the intracavity 

backscattering-induced split modes ωspc± cannot be clearly resolved in the transmission spectrum. This 

will change the frequencies of the inter-resonator coupling-induced split modes ωspc±1 and ωspc±2 from 

ω = ω0 ± um ± (u2
1

 – Γ2
s, 2)

1/2 to ω = ω0 ± (u2
1

 – Γ2
s, 2)

1/2. Then the critical coupling condition Γext = Γeff, spc 

will reduce to Γext = Γint, 1 + Γint, 2, which is the critical coupling condition of the twin-coupled TWMRs 

system with um = 0 in Eq. (8.8). Clearly, it can be seen that the presence of intracavity backscattering 

alter the conditions to realize the various coupling regimes at the different split modes that sandwich 

the CRIT peaks as well as at Δω0 = 0 or at the location Δω0 = ±um, in which CRIT peaks can be 

formed.  

8.4. Generating Optical Fano Resonance (OFR) Using Proposed Scheme 

Thus far, our discussions are based on resonators with equal intracavity backscattering strength (i.e., 

um, 1 = um, 2 = um) and with a single input. As seen in the last section, for such a configuration, if Γs, 2 ≈  0 

and Qcou is sufficiently large, we can either have twin CRIT peaks (each, respectively, located at ω = ω0 + 

um and ω = ω0 – um) when the backscattering magnitude is large (Qmut  <<  Qcri) , or a single CRIT peak at 

ω = ω0 when the backscattering magnitude is small (Qmut  >>  Qcri). In this section, we will show that if 

the resonators have unequal intracavity strength (i.e., um, 1  ≠  um, 2) and with a single input, the symmetric 
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CRIT sharp peaks in the last section will be reshaped into sharp, asymmetric lineshapes, which is known 

as optical Fano resonances (OFRs). Do note that in this section, we use resonators with smaller Qcou and 

Qext than those in the previous sections so that the asymmetric OFR lineshapes can extend over a much 

wider transmission bandwidth. 

We now explain the principle of using our modified twin-coupled TWMRs structure to generate 

asymmetric OFR lineshapes in the transmission spectrum when um, 1 ≠  um, 2, which resemble the Fano 

resonances (FRs) in atomic systems that involve quantum interference between a continuum and a 

discrete energy level [14]. We have earlier mentioned that the presence of intracavity backscattering 

results in the resonance mode ω1 of resonator 1 to split into eignemodes ω1
sps+ and ω1

sps– and the 

resonance mode ω2 of resonator 2 to split into eignemodes ω2
sps+ and ω2

sps–, where ω1 = ω2 = ω0 in this 

work and the split modes ωsps± have frequencies ω = ω0 ± um, n. In this section, um, 1  ≠  um, 2. Then the 

split modes ωsps± in the two resonators have different resonance frequencies:  ω1
sps+ and ω1

sps– have ω 

= ω0 ± um, 1 while ω2
sps+ and ω2

sps– have ω = ω0 ± um, 2. In such a scenario, if the previous conditions 

used to achieve CRIT when um, 1  = um, 2 are used, the Lorentzian resonance fields of the split modes 

ω2
sps± from resonator 2 will interfere with the coherent background (but not with ω1

sps±, unlike the 

CRIT case) that is generated by resonator 2 to form sharp asymmetric OFR lineshapes. The shape and 

location of the OFR will depend on the absolute difference between Qmut, 1 and Qmut, 2 and also on 

whether Qmut, 1 < Qmut, 2  or  Qmut, 1 > Qmut, 2. These are illustrated in Figs. 8.6 and 8.7. 

In Fig. 8.6a(i), a twin CRIT peak is first observed within the given frequency window in the 

transmission TT spectrum of the through port while in Fig. 8.6b(i), a twin Lorentzian dip is found at 

the transmission TR spectrum of the reflection port. However, once we move into the regime of um, 1 ≠ 

um, 2  in Fig. 8.6a(ii) to Fig. 8.6a(iv), each CRIT peak of the through port is reshaped into two sharp, 

asymmetric lineshapes. This also applies to the Lorentzian dips of the reflection port in Fig. 8.6b(ii) to 

Fig. 8.6b(iv). The unique feature of such sharp and asymmetric lineshapes, which is known otherwise 

as OFR, is that the transmission falls abruptly over a narrow frequency range, with the frequency 

range being much narrower than the full width of the resonance itself. In particular, the OFR in the 

transmission TT spectra allows tuning between near-zero to near unity transmission over a narrow 

frequency range. The shape of the OFR changes but the location of the asymmetric lineshapes in the 

transmission spectra is fixed as Qmut, 1 is increased progressively in Fig. 8.6a and 8.6b, while keeping 

Qmut, 2 fixed (note that Qmut, n = ω0/(2um, n)). On the other hand, if Qmut, 2 is increased progressively while 

keeping Qmut, 1  fixed, which occurs in Figs. 8.6(c) and 8.6(d), the change in the shapes of the OFRs is 

accompanied by a frequency or wavelength shift of the resonance spectra. To explain these, first note 

that the two asymmetric lineshapes correspond to the reshaped Lorentzian fields of the split modes 

ω2
sps± (from resonator 2), which has resonance frequency ω = ω0 ± um, 2. Thus, by adjusting um, 2 or 

Qmut, 2, the location of each asymmetric lineshape or OFR in the transmission spectrum is also tuned. 

On the other hand, the broad Lorentzians that are found near the sharp and asymmetric OFR in the  
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Fig. 8.6. The reshaping of the symmetric CRIT peaks in the transmission TT at the through port (first column) and the Lorentzian 

dips  in the transmission TR at the reflection port (second column) of the twin-coupled MRs with Qint, 1 = 5.0e4, Qint, 2 = 6.0e8, Qext 

= 4.0e2 and Qcou = 1.2e3. In (a) and (b), Qmut, 1 is adjusted, while fixing Qmut, 2 at 1.0e2. Different asymmetric Fano-like lineshapes 

are produced, with the spectral location of each Fano-like lineshape fixed in this case in (a) and (b). On the other hand, in (c) and 

(d), Qmut,  2  is adjusted, while fixing Qmut, 1 at 1.0e2. Different asymmetric Fano-like lineshapes are produced like those in (a) and 

(b). However, the spectral location of each Fano-like lineshape changes with Qmut, 2 in (c) and (d). 

 

(a) Through Port                                                                        (b)   Reflection Port 

(c) Through Port                                                                         (d)   Reflection Port 
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transmission spectra corresponds to the split modes ω1
sps± (from resonator 1), which has resonance 

frequency ω = ω0 ± um, 1. Adjusting um, 1 or Qmut, 1 determines the splitting between ω1
sps+ and ω1

sps–: 

Too small a value in Qmut, 1 will result in ω1
sps+ and ω1

sps– to be indistinguishable and thus only a single 

Lorentzian can be found in the transmission spectra (cf. Fig. 8.6a(iv) and Fig. 8.6b(iv)), while a 

sufficiently large Qmut, 1 clearly resolves ω1
sps+ and ω1

sps– into two Lorentzians in the transmission 

spectra (cf. Fig. 8.6a(ii), Fig. 8.6a(iii), Fig. 8.6b(ii) and Fig. 8.6b(iii)). Such control of the nature of 

the mode splitting of ω1
sps± via Qmut, 1, together with the change in the resonance frequency of  ω2

sps± 

via Qmut, 2, leads to a tuning of the spectral shapes and locations of the asymmetric lineshapes of the 

OFRs in Figs. 8.6(c) and 8.6(d).  

In conlusion, our proposed scheme is also capable of generating OFR with asymmetric 

lineshapes. By using two co-resonant resonators with unequal intracavity backscattering strength (um, 1  

≠  um, 2), the symmetric CRIT sharp peaks discussed in the earlier section (i.e., section 8.3) can be 

reshaped into OFR lineshapes. This proposed method of generating OFR is an alternative to 

conventional methods in the literature, which typically involves the introduction of gain into the 

resonators [11] or the phase tuning of the resonators [12], when the traditional twin-coupled TWMRs 

(with um, 1 = um, 2 = 0) scheme is used to generate OFR. Our proposed modified twin-coupled TWMRs 

can thus also be utilized for optical switching applications as it is well known that resonances with 

asymmetric lineshapes will greatly enhance the switching sensitivity and output extinction ratio [9]. 

8.5.    Optically Tunable CRIT and OFR using Proposed Scheme 

We have seen that a twin-CRIT peak can be formed in the transmission TT spectrum of the 

through port for the case of um, 1 = um, 2 in section 8.3.1 and that the twin-CRIT peak can be reshaped 

into asymmetric OFR lineshapes in section 8.4 when um, 1 ≠  um, 2. We can thus choose between CRIT 

and OFR simply by adjusting the magnitude of the intracavity backscattering um, 1  and um, 2 during the 

fabrication process. However, limitation to control the CRIT and OFR will arise after fabrication 

when um, 1 and um, 2 are generally fixed. To overcome this, active tuning can be used to adjust the net 

gain or phase shift of the modes in the cavities. These have been conventionally employed to tune the 

CRIT and OFR features [11, 12] in the transmission spectrum. Though effective, the main 

disadvantage of such method is that gain or phase tuning elements like semiconductor optical 

amplifiers and micro-heaters must be incorporated into the resonators during fabrication, which would 

increase the complexity and cost of the fabrication process. A legitimate question then is: Is it possible 

to actively switch between OFR and CRIT and to adjust the shape of the lineshape, given a fixed um, 1 

and um, 2 after fabrication and in the absence of gain and/or phase detuning elements in the resonators? 

Building upon our work in chapter 7, we will demonstrate in this section that by employing dual 

inputs in the proposed modified twin-coupled TWMRs system, it is possible to switch between OFR 

and CRIT simply by controlling the phase and/or amplitude differences between the dual inputs.  
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We shown in Fig. 8.7 the evolution of the transmission responses of the through and reflection 

ports as the phase θ difference between the dual inputs — S’
+1 and S’

+2 = MS’
+1 = [A exp(jθ)]S’

+1 — is 

adjusted for our proposed modified twin-coupled TWMRs structure in Fig. 8.2. In order for the dual-

input scheme to achieve switching between CRIT and OFR, the split modes ωsps± and ωspc± must be 

clearly distinguishable in the transmission spectrum, which requires Qmut  <<  Qcri and Qcou to be 

sufficiently large, as mentioned earlier in section 8.2. To achieve this, we use Qmut, 1 = Qmut, 2 = Qmut = 

4.1e3 with Qcou = 400, Qext = 900, Qint, 1 = 4000 and Qint, 2 = 900. Do note that the configuration with 

Qmut, 1 ≠  Qmut, 2 can also be employed for the dual-input scheme as long as Qmut << Qcri. It can be 

observed from Fig. 8.7 that as θ changes, the transmission spectra of the through and reflection ports 

transform from symmetric CRIT Lorentzian peaks to asymmetric FR-like lineshapes. Let us now take 

a closer look at such a transformation. 

Initially, when there is only a single input (A = 0), a twin-CRIT peak is observed in the 

transmission TT spectrum for the through in Fig. 8.8a(i), while a twin-Lorentzian peak is observed in 

the transmission TR spectrum for the through in Fig. 8.8b(i). Upon the application of dual inputs with 

A = 1, θ = π in Fig. 8.7a(ii) and 8.7b(ii), there are three noticeable changes: (i) The right CRIT peak 
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Fig. 8.7. The evolution of the transmission TT spectrum at the through port (first column) and the transmission 

TR spectrum at the reflection port (second column) of the twin-coupled TWMRs with Qint, 1 = Qint, 2 = 6e4, Qext 

= 5e4, Qcou = 1.5e5 and Qmut, 1 = Qmut, 2 = Qmut = 4.1e3 as dual inputs are employed to interact with the intra-

cavity backscattering. Tuning the phase difference θ between the dual inputs (while keeping the amplitude 

difference A fixed) allows active switching between CRIT peaks and sharp asymmetric lineshapes. All the 

spectra can be obtained using silicon resonators, each with a radius of 5 µm. 

at the longer wavelength region (i.e., at ω = ω0 – um) in the TT spectrum vanishes, resulting in only 1 

CRIT peak found at the shorter wavelength region (i.e., at ω = ω0 + um); (ii) the split modes ω2
sps+ and 

(a) Through Port                                                                   (b)   Reflection Port 
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ω2
sps– that sandwich the surviving CRIT peak is now critically coupled (TT = 0 for ω2

sps±) as compared 

to the case of a single input in Fig. 8.3c(ii) in which ω2
sps+ and ω2

sps– are not critically coupled. 

However, the transmission of the CRIT peak is slightly reduced from TT = 1 to TT = 0.98; and (iii) the 

transmission TR spectrum of the reflection port is now identical to that of the through port. The case of 

θ = π that we have just analyzed can be generalized as θ = pπ, where p is an odd integer. In other 

words, using dual inputs with A = 1, θ = 3π, 5π or 7π will achieve similar effects as that of θ = π. For 

even integers of p, such as θ = 0, 2π or 4π, as shown in Fig. 8.7 a(vi) and Fig. 8.7b(vi), the above-

mentioned features in points (i) to (iii) can also be found in the transmission spectra of both the 

through and reflection ports except that in these cases, it is the CRIT peak at the shorter wavelength 

region, instead of that at the longer wavelength region, that vanishes in the transmission spectrum, 

resulting in only one CRIT peak found at the longer wavelength region (i.e., at ω = ω0 – um). 

As the phase modulation between the dual inputs is adjusted (with A = 1) such that θ = sπ, 

where s is an non-integer, with p < s < (p +1), the original symmetric lineshape of the single CRIT 

peak (at ω = ω0 – um if p is even and at ω = ω0 + um if p is odd) is reshaped into an asymmetric 

lineshape for both the through and reflection ports. This can be seen in Fig. 8.7a(iii) and Fig. 8.7b(iii) 

for θ = 1.2π, in which the reshaped CRIT peak is found at ω = ω0 + um. In addition to this reshaping of 

the CRIT peak, an asymmetric lineshape appears within the frequency window (at ω = ω0 + um if p is 

even and at ω = ω0 – um if p is odd, which is originally the location of the vanished CRIT peak when θ 

= pπ) adjacent to the reshaped CRIT peak. This can be found at ω = ω0 – um in the transmission 

spectrum of the through and drop ports in Fig. 8.7a(iii) and 8.8b(iii) for θ = 1.2π. The degree of 

asymmetry of each lineshape in the transmission spectra can be tuned by adjusting θ. Such tuning of 

the asymmetry of the lineshapes via θ will also result in the asymmetric lineshapes, which are 

originally dissimilar, to be transformed into two identical asymmetric lineshapes that are symmetrical 

about ω = ω0 at θ = (p +1/2)π or s = p +1/2 (where p is an integer) in each transmission spectrum. This 

is illustrated in Fig. 8.7a(iv) and Fig. 8.7b(iv) for θ = 1.5π. In addition, notice that for all cases of θ = 

sπ in Fig. 8.8, where s is an non-integer, the two asymmetric lineshapes (centered at ω = ω0 ± um) 

found at the through port exhibit a mirror symmetry to that found at the reflection port.  

Besides using θ to tune the shapes of the resonances in the transmission spectrum, one can also 

adjust A to achieve a similar effect, which is not illustrated here. Thus, amplitude modulation between 

the dual inputs can be used to provide an additional degree of freedom to tune the shapes of the 

resonances. Finally, we mention that to further tune the asymmetricity or the modulation depth MD 

(i.e., MD = |Tmax – Tmin|, where Tmax and Tmin are, respectively, the maximum and minimum points of 

the transmission spectrum) of the line-widths of the OFR, the evanescent coupling strengths u0 and u1 

can be adjusted, either during the fabrication process or by using tunable couplers. 

In conclusion, for this section, we have shown that the resonance lineshapes in our proposed 

modified twin-coupled resonators can be tuned between CRIT and OFR simply by adjusting the phase 
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difference between the contra-propagating dual inputs of the resonator circuit. This also means that 

our proposed scheme can generate both CRIT and OFR on a single circuit if dual inputs are used. 

Note that for the case of the traditional twin-coupled resonators (i.e., intracavity backscattering is not 

utilized) in the literature, either active gain [11] or active phase tuning [12] is used to switch the 

lineshape of the resonance spectrum between CRIT and OFR. However, as mentioned in chapter 7, 

such use of active gain or phase tuning requires the incorporation of active elements in the cavities, 

which will often complicate the fabrication process. Also, as the active components of such 

conventional active tuning scheme are implanted in the cavity system, it would be difficult to 

reconfigure these active components or to replace them after fabrication. In the case in which a 

passive cavity has already been fabricated, it might not be feasible or possible in certain situations to 

do additional alternation to the device so as to render it active. Our proposed scheme thus offers a 

better alternative to switch between CRIT and OFR as only passive cavities with external dual inputs 

(which are typically laser diodes as well as phase modulators to tune the phase and/or amplitude 

differences of the inputs) are needed to realize such functionality. This will reduce the fabrication 

complexity of the cavity as well as improving the reconfigurability and serviceability of the cavity 

system as the external active tuning components (laser diodes and phase modulators) can be easily 

adjusted or replaced. 

8.6.    Summary and Significant Contributions of this Research Work 

We have theoretically explored the feasibility of harnessing intracavity backscattering to 

generate enhanced tunable CRIT Lorentzian sharp peaks of high transparency and sharp asymmetric 

OFR lineshapes in a twin-coupled TWMRs structure. This is contrary to the popular assumption that 

backscattering usually brings about deleterious effects. To clearly illustrate this, we have summarized 

our research results in Table 8.1, highlighting the improved CRIT and OFR features of our proposed 

modified twin-coupled TWMRs scheme that exploits intracavity backscattering, as compared to the 

conventional twin-coupled TWMRs system that does not utilize intracavity backscattering. Our 

proposed scheme makes it possible to simultaneously produce fast and slow light effects (one at each 

output port) in a single device. For example, the CRIT peak, which is accompanied by slow light, can 

be generated at the through port while the notch filter (i.e., Lorentzian dip) response, which is 

accompanied by fast light, can be simultaneously generated at the reflection port of our proposed 

device. This is in contrast to the case of um = 0 (i.e., traditional twin-coupled resonators system), in 

which there is zero transmission at the reflection port and thus at any one time, only slow light can be 

produced at the through port at the CRIT peaks. Such ability to simultaneously generate fast and slow 

light from a single device will also make our proposed device highly attractive for fast and slow light 

applications. However, do note that the CRIT peaks, which have large group delay, have small 

usuable resonance bandwidth. This will severely limit fast and slow light applications in transmission 
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systems that utilize ultra-short pulses. To increase the bandwidth, our proposed scheme can be 

implemented on a cascade of N-unit cells (N = 1, 2, 3, 4…) [25], where each cell is formed by our 

proposed modified twin-coupled TWMRs structure in Fig. 8.2. Another method to mitigate the DBP 

constraint would be the use of dynamic tuning mechanism [26] in which the dispersion relation of the 

system is tuned in an adiabatic manner as a function of time after the pulse has entered the system.  

It is also shown that by tailoring um in the two resonators in our proposed modified twin-coupled 

TWMRs structure, the CRIT peaks can be reshaped into sharp asymmetric OFR lineshapes. We can  

Table 8.1. Comparisons of the CRIT and OFR features between the conventional twin-coupled traveling 

wave microresonators (TWMRs) in the literature and our proposed modified twin-coupled TWMRs 

thus choose between CRIT and OFR by an appropriate choice of um during the fabrication process. 

This method of generating OFR is an alternative to the traditional twin-coupled TWMRs with no 

backscattering, in which either gain is introduced to the resonators [11] or by phase tuning [12] in 

 

 

 

Conventional twin-coupled TWMRs 
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order to generate OFR. Our proposed modified twin-coupled TWMRs can thus also be utilized for 

optical switching applications in communication systems as it is well known that resonance with an 

asymmetric lineshape has enhanced switching sensitivity and output extinction ratio [9].  

In addition, we have also shown that if dual inputs are employed to interact with the intracavity 

backscattering in the resonators, the CRIT symmetric peaks of our proposed modified twin-coupled 

TWMRs systems can be reshaped into asymmetric OFR lineshapes simply by controlling the phase 

and/or amplitude differences between the inputs. Active switching between CRIT and OFR can then 

be achieved simply by controlling the dual inputs. This is a highly attractive and useful scheme that 

can be deployed after the fabrication process when the physical parameters are fixed and in the 

absence of active gain and/or phase tuning elements in the resonators. Note that conventional twin-

coupled TWMRs scheme uses either gain [11] or phase tuning [12] to switch between CRIT and OFR. 

As mentioned in section 7.1 and 8.1, the main drawback of such gain or phase detuning schemes in 

the cavities, such as [11] and [12], is that additional procedures and controls are required in the 

fabrication process so as to incorporate the active tuning components. Moreover, as the active 

components are implanted in the cavity system, it would be difficult to reconfigure or to replace them 

after fabrication. In the case in which a passive cavity has already been fabricated, it might not be 

feasible or possible in certain situations to do additional alternation to the device so as to render it 

active. By using our proposed dual-input scheme, such constraints are eliminated as only external dual 

inputs (laser diodes and phase modulators) are required to achieve tuning between CRIT and OFR. In 

other words, a passive and linear cavity can be used, without the need to implant active components 

within the cavity. This reduces the fabrication complexity and footprint of the cavity. The 

reconfigurability and serviceability of the proposed cavity system (in terms of its active tunability) are 

also improved as the external active tuning components can be easily adjusted or replaced. 

The above-mentioned points strongly demonstrate that intracavity backscattering and dual inputs 

can be harnessed for enhanced tunable CRIT and OFR effects in the twin-coupled TWMRs structure. 

Such usage of the intracavity backscattering and dual inputs to generate CRIT and OFR in the twin-

coupled TWMRs structure has previously been overlooked. This work, thus, represents a significant 

contribution to the field of microresonators research regarding CRIT and OFR as well as slow and fast 

light (as CRIT and OFR can be regarded as slow and fast light phenomena). Specific CRIT and OFR 

applications, such as tunable delay line and optical switching, based on our proposed modified twin-

coupled TWMRs will be the subject of our future work.  

Finally, note that this research work has been submitted to the Journal of Optical Society B. 
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Chapter 9 

Tunable Flat-Band Slow Light via Contra-

Propagating Cavity Modes in Twin-

Coupled Resonators 

9.1.  Introduction: Research Motivations and Objectives 

Paradoxically, slow light (SL) holds the key to increase the speed of optical communications [1, 

2] as SL offers the abilities in delaying and coherently stopping and storing data trains [3], which are 

needed for enhanced performances in optical networks. In general, the most simple and compact 

scheme to generate SL in traveling wave microresonators (TWMRs) can be accomplished by using a 

single unit cell of N’-TWMRs in one of two ways (where N’ = 1 or 2): (1) Either by resonance 

enhancement — the group delay tg is increased by forcing the light to circulate many times either in a 

single TWMR that is coupled to one bus waveguide (WG), i.e., 1-cavity-1-bus configuration [4, 5], or 

a single TWMR that is coupled to two bus WGs, i.e., 1-cavity-2-buses configuration [6, 7], which is 

also used earlier in chapter 7; or (2) by optically mimicking the atomic concept of electromagnetically 

induced transparency (EIT) [8, 9] — this is known as coupled-resonator-induced transparency (CRIT) 

and is typically realized by coupling two TWMRs [10-13] such that the coupled TWMRs behave like 

atoms with EIT settings, which then generate a large tg with high transmission at the through port. 

Alternatively, one TWMR can also be used to achieve the same CRIT effects of a two-coupled 

TWMRs system simply by simultaneously exciting two modes in the same resonator [14]. We have 

earlier employed the scheme of resonance enhancement in chapters 6 and 7 while the scheme of CRIT 

was used in chapter 8. Both of these schemes were used in conjunction with intracavity backscattering 

and dual contra-propagating inputs, which have shown to improve the slow and fast light 

performances. However, a fundamental limitation in any SL schemes that uses a single unit cell is the 

inherent small usable resonance bandwidth Δfu. To increase Δfu as well as the group delay tg for the 

above-mentioned schemes of resonance enhancement and CRIT in the literature as well as for our 

work in chapters 6 to 8, a cascade of N-unit cells (N = 1, 2, 3, 4…) can be used, where each unit cell 

consists of N’-resonators (N’ = 1, 2, 3, 4…) [15-21]. However, this approach will consume additional 

estate space on the chip and also does not improve Δfu in an effective manner, as we will show 
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subsequently. Improving Δfu in a manner that does not degrade the system performance and without 

consuming much estate space on the photonic circuit will be the focus of this chapter. 

A practical SL system should ideally have: (1) A large tg enhancement; and (2) flat or minimal 

dispersion in the tg and transmission spectra (preferably with transmission ≈  1) over a large usable 

bandwidth Δfu. One fundamental figure of merit to quantify criteria (1) and (2) is the delay-bandwidth 

product (DBP), defined as DBP = tgm × Δfu ≈  constant [15], where tgm is the maximum group delay at 

resonance. A SL system that fulfills the above criteria (1) and (2) would allow an input pulse to be 

delayed many times its temporal width, without significant distortion and over a large Δfu or in other 

words, a large DBP. For the earlier mentioned TWMRs based SL schemes of resonance enhancement 

and CRIT in a single unit cell, the DBPs are inherently small – the DBPs of the resonance 

enhancement scheme are computed to be ~2/π and ~1/(2π) for the 1-cavity-1-bus and 1-cavity-2-buses 

configurations, respectively, while that of the CRIT scheme with a two coupled TWMRs is ~1/π. 

Thus, the 1-cavity-1-bus configuration has the largest DBP among the single unit cell SL systems 

based on TWMR. Note that these figures of DBP are computed using the full width at half maximum 

(FWHM) as Δfu. In reality, to minimize higher-order dispersion, Δfu  <<  FWHM. This implies a much 

lower DBP than the above computed figures. Though cascading N-unit cells of N’ -TWMRs together 

would increase tg by ~ (N × N’)-times, the DBP remains approximately the same as that of a single 

unit cell, which has a low DBP (as mentioned above), due to the formation of (N × N’)-ripples in the 

resonance spectra. This reduces Δfu by 1/(N × N’), besides decreasing the transmission. Note that N (= 

1, 2, 3…) is the number of unit cells, while N’ (= 1, 2, 3…) is the number of resonators in each unit 

cell. A low DBP means that a large tg results in a small Δfu. In other words, for large tg, the input pulse 

must be made adequately long in time. This will inevitably restrict the use of the SL media in 

transmission systems with ultra-short pulses.  

To mitigate the DBP constraint, one could flatten the above-mentioned ripples in the resonance 

spectra of the coupled TWMRs, either by apodisation of the coupling coefficients between the 

resonators [22] or by using the WG losses to smoothen the ripples [17]. However, it might be difficult 

to accurately control the coupling coefficients in actual fabrication for the former approach, while for 

the latter approach, there is a trade-off of reduced transmission and tgm. Alternatively, the DBP (and 

thus Δfu) can be expanded by using dynamic tuning [23], in which the dispersion relation of the 

system is tuned in an adiabatic manner as a function of time after the pulse has entered the system. 

However, it is generally much easier and cheaper to implement a SL system in a static setting, i.e., 

without using dynamic tuning, which will be the objective of this work. 

In this chapter, we propose using another type of twin-coupled TWMRs structure, as shown in 

Fig. 9.1 (in which both the resonators are coupled to the bus waveguide, in contrast to chapter 8, 

whereby only one resonator is coupled to the bus waveuguide) to realize a SL system that not only has 

large tg and high transmission but the tg and transmission are fairly constant over a wide bandwidth  
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Table 9.1. Comparison of the delay-bandwidth products (DBPs) between the conventional traveling wave 

microresonator (TWMR) based slow light systems and the proposed scheme in this work 

#DBP = maximum group delay at resonance × usable resonance bandwidth, in which the usable resonance bandwidth is taken as the region 
where the slow light has high transmission and minimal dispersion in the group delay and transmission. *N-unit-cells-1-bus configuration: 
A single resonator or a chain of N unit cells of N’ resonators coupled to one bus waveguide. This is also known as all-pass filter 
configuration if all the cavities are lossless. †N-unit-cells-2-buses configuration: A single or a chain of of N unit cells of N’ resonators 
coupled to two bus waveguides. This is also known as add-drop filter configuration. Note that N (= 1, 2, 3…) is the number of unit cells, 
while N’ (= 1, 2, 3…) is the number of resonators in each unit cell. 

(i.e., flat-band). As shown in Table 9.1 (which will be elaborated later), the proposed scheme 

improves the DBP by 3- to 24-fold as compared to the earlier mentioned conventional TWMR based 

SL systems (mentioned in paragraph one), which are either of one or N-unit cells. Though the 

proposed configuration has previously been studied in [11, 24, 25], the analyses in these works are 

chiefly limited to the filtering characteristics, without a detailed study of the SL performances. It must 

also be mentioned that our twin-coupled TWMRs is different from that in [26], which has only one 

resonator being directly coupled to the bus waveguide (WG), while both the resonators are directly 

coupled to the bus WG in this work.  

This chapter is arranged as follows. In section 9.2, we present the theoretical modeling of the 

proposed twin-coupled TWMRs. In section 9.3, the group delay tg and transmission T properties of the 

device are looked into, in which we illustrate how flat-band SL can be achieved for both forward and 

backward light propagations as well as quantifying the characteristics of the flat-band SL. In section 

9.4, we analyze the sensitivity of the device to propagation losses and fabrication errors. Finally, in 

section 9.5, we conclude and highlight the significance of this research work. 
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Fig. 9.1. Schematic of the twin-coupled TWMRs structure in which each resonator is directly coupled to 

the bus waveguide as well as to the adjacent resonator. Such coupling arrangement inherently sets up 

contra-propagating modes in the resonators and bus waveguide. 

9.2. Theoretical Formulation 

The schematic of the twin-coupled TWMRs system is shown schematically in Fig. 9.1, whereby 

two resonators, which are mutually coupled to each other, are both directly coupled to the port 

waveguide (WG) as well. This excites both clockwise (CW) and counter-clockwise (CCW) 

propagating modes in each resonator as well as forward and backward propagations in the bus WG, 

even without the presence of surface perturbations within the cavity, which was employed in our 

earlier work in chapters 7 and 8, or the presence of coupling-induced localized backscattering (CILB) 

effects, which was employed in our earlier work in chapter 6. Thus, this configuration in Fig. 9.1 

provides another alternative to generate and harness the contra-propagating cavity modes. In Fig. 9.1, 

the electric fields of the propagating waves in each resonator are represented by ax
n, b

x
n, c

x
n and dx

n, in 

which x = – (x = +) represents the CW (CCW) mode, while n = 1 (n = 2) denotes the leftmost 

(rightmost) resonator. Likewise, the electric fields in the port WG are denoted as Ax
n, B

x
n, C

x
n and Dx

n, 

with x = – (x = +) representing the backward (forward) propagating mode, while n = 1 (n = 2) denotes 

the side of the waveguide (WG) located below the leftmost (rightmost) resonator. Note that we have 

assumed that the effects of perturbations at the surface of the cavity and at the coupling junctions are 

negligible for the configuration in Fig. 9.1. This is in contrast to our earlier work in chapters 6 to 8, 

whereby perturbations at the surface of the cavity and coupling junctions need to be intentionally 

introduced so that their related effects can be of any sigificance. As such, the contra-propagating 

cavity modes in Fig. 9.1 in this work can only indirectly couple with each other via the evanescent 

coupling at the coupling junctions (CJs). Using the matrix formalism [17, 22], the evanescent 

coupling between the cavity modes and the bus WG at CJ 2 and CJ 3 can be described as 
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1 1 1 1 2 1 1 1 1

T T
a b b a S A B B A              ,                                   (9.1) 

2 2 2 2 3 2 2 2 2 ,
T T

A B B A S a b b a                                                (9.2) 

while the evanescent coupling between the resonators at CJ 1 can be written as 

2 2 2 2 1 1 1 1 1 ,
T T

c d d c S c d d c                                                  (9.3) 

in which Si (i = 1, 2 or 3) is termed as the coupling matrix that is defined as 

 
 

0

0
i

i
i

U
S

U

 
   
 

,   with    
   

     2 2 2

1
,

i i i

i
i i i i i i

r j j
U

r j r j

 

   

 
 
    

                   (9.4) 

where j = 1 , ri and κi are, respectively, the “through” and “cross” coupling coefficients while σi 

quantifies for the coupler loss. The subscript i = 1, 2 or 3 represents the position of the CJs in Fig. 9.1, 

i.e., i = 1, 2 and 3 corresponds to CJ 1, CJ 2 and CJ 3, respectively. Note that ri, κi and σi are real 

values and ri
2 + κi

2 + σi
2 = 1. For a lossless coupler, σi

 = 0. Within the resonators, the electric fields are 

described as 

1 1 1 1 1 1 1 1 1

T T
c d d c P a b b a              ,                                    (9.5) 

 2 2 2 2 2 2 2 2 2 ,
T T

a b b a P c d d c                                                (9.6) 

in which Pn (n = 1 or 2) is termed as the propagation matrix that is defined as 

 
 

0
,

0
n

n
n

X
P

X

 
   
 

      with    
 

 

1 4

3 4

0 exp 4
,

exp 3 4 0
n n

n
n n

j
X

j

 
 

 
    

               (9.7) 

where τn is the round-trip amplitude transmission coefficient (lossless resonator: τn = 1) and δn = 

2πRnβR, n is the round-trip phase shift, in which Rn and βR, n are, respectively, the bend radius and 

propagating constant of the resonator, with n = 1 (n = 2) denoting the leftmost (rightmost) resonator. 

The electric fields in the bus WG can be described as 

2 2 1 1

T T

wA A P A A          ,       with 
 

 
exp 0

0 exp
w

w
w

j L
P

j L




 
   

              (9.8) 

where βw and L are, respectively, the propagating constant of the bus WG and the separation distance 

between the resonators. Note that in this chapter, we will only use one input, unlike chapters 7 and 8, 

in which dual inputs are employed, as we have found that a second input will complicate the 

conditions to achieve flat-band SL. Setting B–
2 = 0 and using Eqs. (9.1) to (9.8), the fields propagating 

in the bus WG can then be described as 
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   1 2 1 1 1 1 1exp 0 exp
T T

w wA j L B A j L Y A B B A               ,   with 3 2 1 1 2 ,Y S P S PS   (9.9) 

where Y is a 4 × 4 matrix. From Eq. (9.9), four simultaneous equations can be obtained: 

  13 1 11 1 12 1 14 1exp ,wY B Y A Y B Y j L A            23 1 21 1 22 1 2 24 1 ,Y B Y A Y B B Y A          

           33 1 31 1 32 1 34 1 ,Y B Y A Y B Y A                 43 1 41 1 42 1 44 1exp .wY B Y j L A Y B Y A               (9.10) 

In particular, we are interested to solve for B+
2/B

+
1 and B–

1/B
+

1, which are, respectively, the complex 

electric field transmittivities (i.e., the ratio of the output field to the input field) at the through and 

reflection ports. To solve for B+
2/B

+
1 and B–

1/B
+

1, we simply recast Eq. (9.10) into a matrix form and 

thereafter, perform the necessary matrix inversion. The final form, which is consistent with the results 

in [24, 25], is shown below: 

 

 

1

41 42 44 432 1

21 22 24 231 1

31 32 34 331 1

11 12 14 131 1

exp 0

1

0

exp 0

w

w

Y j L Y Y YB B

Y Y Y YB B

Y Y Y YA B

Y Y Y j L YA B





 

 

 

 

       
              
             

                (9.11) 

We will term B+
2/B

+
1 and B–

1/B
+

1 as ξT  and ξR, respectively, or collectively as ξq (q = T or R), where 

the subscript T (R) denotes the through (reflection) port. Note that ξq contains all the information 

needed to characterize the SL properties: |ξq|
2 gives the transmittance or transmission Tq, while Φq = 

arg (ξq) is the resonator-induced effective phase shift of the output light that determines the group 

delay tg, q. For convenience of our modeling in this chapter, we use the below relation to derive tg, q, 

instead of  tg, q = [∂∆Φq(ω)/∂(ω)] or trt∂∆Φq/∂δ that is used in the previous chapters: 

, 2

Im Re1
Re Im ,

q qq
g q rt rt q q

q

t t t
 

 
  

                      
                       (9.12) 

where trt = 1/FSR is the cavity round-trip time, FSR = c/(ngLc) is the free spectral range (in Hz), ng is 

the group effective index of the cavity mode, Lc is the length of the cavity, while Re[ ] and Im[ ] 

denote, respectively, the real and imaginary components. Eqs. (9.11) and (9.12) will form the 

theoretical basis of our discussions in subsequent sections. 

9.3.    Generating Flat-Band Slow Light via the Proposed Scheme 

9.3.1. General Operating Mechanism 

To understand the physical mechanism behind the proposed twin-coupled MRs, it is instructive 

to first analyze a single resonator system (i.e., only resonator 1 exists in Fig. 9.1) and a twin-coupled 

resonators system that has only one cavity coupled to the bus WG (i.e., κ3 = 0 in Fig. 9.1). We will 

assume that the losses of the resonators and couplers are negligible (i.e., τn ≈  1 and σn ≈  0 or  ri
2 + κi

2 
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≈ 1) throughout this section; the effects of insertion losses are studied in section 9.4. Also, for 

simplicity, we will focus on the case of co-resonant cavities (i.e., δ1 = δ2 = δ) in this work. This will 

generate flat-band slow light centred at the resonance frequency δ = δ0 = 2πm (where m = 1, 2, 3..) if 

certain physical conditions (governed by Eq. (9.19), as derived below) are met. Although a full study 

of the case of δ1 ≠  δ2 is outside the scope of this work, we have found that δ1 ≠  δ2 or detuning δ1 and 

δ2  simply changes the physical conditions to realize flat-band SL due to the Vernier effects. 

For the single resonator system, the complex transmittivity ξT has the expression ξT = (exp(jδ) – 

r2)/(r2exp(jδ) – 1). Note that for any resonator system, the characteristic roots of the denominator of ξq 

(q = T or R) correspond to the complex eigenmodes (or complex resonance frequencies ω0 = Re[ω0] + 

jIm[ω0]). Each such root or eigenmode can be written as δ’
  = δ0

 + jΓ, where δ0 and Γ are, respectively, 

the real-valued normalized resonance frequency and the half-resonance linewidth, while ng is the 

group effective index and c is the speed of light in vacuum. In the case of the single resonator, there is 

only one eigenmode of the form δ’ = δ0 + jln(1/r2), where δ0 = 2πm. Consequently, a sharp Lorentzian 

resonance lineshape is formed at δ = 2πm, as shown in the transmission and group delay spectra in 

Figs. 9.2(ai) and 9.2(aiii) in solid line plots, with a rapid phase shift of 2π across the resonance in Fig. 

9.2(aii). When a second resonator is coupled to the single resonator such that it is not directly coupled  
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Fig. 9.2. The transmission, effective phase shift and group delay spectra of different resonator systems — 

(ai) to (aiii): (in solid curves) A single resonator system, i.e., only resonator 1 exists in Fig. 9.1, with κ2 = 

0.08, τ1 = 0.9999 ≈  1, and (in dotted curves) a twin-coupled resonators system that has only one resonator 

coupled to the bus waveguide, i.e., κ3 = 0 in Fig. 9.1, and with κ1 = 0.05, κ2 = 0.08, τ = τ1 = τ2 = 0.9999  ≈  

1; (bi) to (biii): The through port case of our proposed twin-coupled resonators with κ1 = 0.05, κ = κ2 = κ3 

= 0.08 and τ = τ1 = τ2 = 1; and (ci) to (ciii): The reflection port case of the proposed twin-coupled 

resonators with κ1 = 0.05, κ = κ2 = κ3 = 0.08 and τ = τ1 = τ2 = 1. The cavity and coupler losses are assumed 

to be negligible in this section. 
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 to the bus WG (i.e., κ3 = 0 in Fig. 9.1), ξT becomes ξT = (ξ2 exp(jδ) – r2)/(r2exp(jδ) – 1), where ξ2 = 

(exp(jδ) – r1)/(r1exp(jδ) – 1) is the loading factor due to the addition of the second resonator. This 

gives two characteristic roots and thus two eigenmodes, which are denoted as δ’
1 and δ’

2, where δ’
1 = 

δ0 + jΓ1 = δ0 + jln{[r1 + r1r2 – (r2
2 r

2
1
 + 2r2 r

2
1
 + r1

2 – 4r2)
1/2]/(2r2)} and δ’

2 = δ0 + jΓ2 = δ0 + jln{[r1 + r1r2 

+ (r2
2 r

2
1

 + 2r2 r
2

1
 + r1

2 – 4r2)
1/2] /(2r2)}. In the limit of κ2

2  <<  1, Im [ξT] ≈  0 at δ’
1 and δ’

2, assuming 

that the change in Re [ξT] is small at these resonance frequenices. Then we have δ’
1 ≈  δ0 + jln [r1 – (r2

1 

– 1)1/2] and δ’
2 ≈  δ0 + jln [r1 + (r2

1
 – 1)1/2], which can be approximated as 

' ' 1
1 0 1sin    ,          ' ' 1

2 0 1sin .                                              (9.13) 

In other words, the real-valued normalized resonance frequency δ’
0 of the single resonator is split into 

δ’
1 and δ’

2, with the mode splitting being controlled by κ1. As a result, the resonance spectra have the 

shape of a two-split Lorentzian, as shown in Figs. 9.2(ai) and 9.2(aiii) in dotted line plots, with the 

effective phase shift being split into two 2π swings in Fig. 9.2(aii). Finally, if both resonators are 

coupled to the bus WG (i.e., κ3 ≠  0) such that one has the proposed twin-coupled resonators in Fig. 

9.1, contra-propagating modes are excited in the cavities. Consequently, both forward and backward 

transmissions, i.e., TT = | ξT |2 and TR = | ξR |2, are observed. Note that throughout this work, the 

coupling junctions 2 and 3 for our system in Fig. 9.1 will have the same evanescent coupling 

strengths, i.e., r = r2 = r3 and κ = κ2 = κ3, so as to simplify the design. Using this assumption and Eq. 

(9.11), the complex transmittivities ξT and ξR can be expressed as 

               

     

2 22 2 2 2 2 2 2 2
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4 cos 1 1 1 1 2 exp 1 2 exp
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exp 2 2 exp 1 exp 3
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exp 2 2 exp 1 exp 3
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         (9.14) 

There are four characteristic roots or eigenmodes for ξq (q = T or R) in Eq. (9.14), which are denoted 

as δ’
1, 1, δ

’
 1, 2, δ

’
2, 1 and δ’

2, 2. These eigenmodes can be written as: δ’
1, 1, = δ’ 

2, 1 = δ0 + jln{r/[r1 + (r2
1

 – 

1)1/2]} and δ’
1, 2 = δ’

2, 2 = δ0 + jln{r/[r1  – (r2
1

 – 1)1/2]}, where δ’
n, m (n, m = 1 or 2) is of the form δ’

n, m = δ0 

+ jΓ±
n. In other words, there are now two repeated roots and thus two pairs of degenerate (or identical) 

eigenmodes. When roots are repeated, an interesting new phenomenon emerges. This is illustrated in 

Figs. 9.2(bi) and 9.2(ci): There are now two (four) sharp peaks and four (two) sharp dips in the 

transmission spectra of the through (reflection) port due to the newly formed split modes δ’
1, 1, δ

’
1, 2, 

δ’
2, 1 and δ’

2, 2, besides the earlier mentioned split modes δ’
1 and δ’

2 that results from the splitting of δ’
0. 

These spectra of Figs. 9.2(bi) and 9.2(ci) are in contrast to the dotted curve of Fig. 9.2(ai), which has 

only two dips (δ’
1 and δ’

2) because κ3 = 0 in Fig. 9.1 for this case. The newly formed split modes δ’
1, 1, 

δ’
1, 2, δ

’
2, 1 and δ’

2, 2 in Figs. 9.2(bi) and 9.2(ci) can be mathematically described as 
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' '
1, 1 1 1, 1 2   ,    ' '

1, 2 1 1, 2 2     ,    ' '
2, 1 2 2, 1 2   ,    ' '

2, 2 2 2, 2 2           (9.15) 

where Γn, m = | Im[δ’
n, m] | is the resonance half-linewidth of the eigenmode δ’

n, m (n, m = 1 or 2) of the 

complex transmittivity ξq, as defined above. In the limit of κ2 << 1, we can approximate Eq. (9.15) as 

' 2 1 2
1, 1 1 0 12 sin 2,              ' 2 1 2

1, 2 1 0 12 sin 2,           

' 2 1 2
2, 1 2 0 12 sin 2,             ' 2 1 2

2, 2 2 0 12 sin 2,                   (9.16) 

where Eq. (9.16) is derived using Eq. (9.13) and the fact that Γn, m = Im [δ’
n, m] ≈  κ2/2, in which κ = κ2 

= κ3. It is then evident from Eq. (9.16) that κ controls the mode splitting of δ’
1 and δ’

2
 that forms the 

multi-peaks or dips of δ’
1, 1, δ

’
1, 2, δ

’
2, 1 and δ’

2, 2, which appear reproducibly at every FSR in the 

transmission Tq spectra of both the through and reflection ports. In particular, these peaks or dips have 

sharper transitions between Tq = 0 and Tq = 1, as compared to those of the single coupled resonator 

and twin-coupled resonators systems that has only 1 cavity coupled to the bus waveguide in Fig. 

9.2(ai). Such sharp transitions in the transmission can be attributed to CRIT [10] for the case of the 

through port and Fano-interference [13] for the case of the reflection port as the cavity modes can 

decay either to the port WG or adjacent resonators for the proposed twin-coupled resonators scheme. 

The mode splitting of δ’
1 and δ’

2
 of the proposed twin-coupled resonators produces strong normal 

dispersion (i.e., large tg) with high transmission Tq: The two (four) sharp peaks of Tq ≈  1 each has a 

rapid π swing for the case of the through (reflection) ports in Fig. 9.2(bii) (Fig. 9.2(cii)). The proposed 

structure can thus be employed in SL applications. However, for practical SL applications utilizing 

ultra-short pulses, the sharp multi-peaks in the resonance spectra of the proposed device must be 

flattened. In general, it is not possible to simultaneously flatten both the transmission and tg spectra of 

any resonator system due to its Hilbert transform properties [15]. Nonetheless, the group delay 

dispersion (GDD) of our proposed device is found to be minimal, being much lower (by ~2 to 10 

times) than those of conventional TWMR-based SL schemes for the same group delay, when the 

transmission spectrum is maximally flat. As such, for practical design considerations in this work, we 

define flat-band SL as one with: (1) Maximally flat transmission Tq (q = T for through port, q = R for 

reflection port) spectrum, (2) Tq ≈  1, and (3) minimal GDD (i.e., close-to flat-band tg). To achieve 

such a flat-band SL at both the through and reflection ports for the proposed device, one only needs to 

control the mode splitting via Eq. (9.16) such that the multi-peaks of the various resonance 

frequencies become undistinguishable and merge into one single broaden peak that is maximally flat 

or close-to flat at around δ = δ0 = 2πm in the resonance spectra (where m is an integer), while at the 

same time producing Tq ≈  1. This is intuitively shown in Fig. 9.3: The multi-peaks of the transmission 

spectra move inwards (in the direction of the arrows), towards δ = δ0 = 2πm and merge into one 

single, flatten peak as the resonator-to-resonator coupling κ1 is progressively decreased, while fixing κ 

(where κ = κ2 = κ3), with the initial effective phase shift of two (four) π swings, converging into one 
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Fig. 9.3. Evolution in the resonance spectra towards flat-band slow light (i.e., maximally flat transmission 

with T  ≈  1 and minimal group delay dispersion) for the proposed device with κ = κ2 = κ3 = 0.3 as κ1 is 

decreased progressively, in the direction of the arrows – (ai) to (aiii): resonance spectra at the through port 

for κ1 = 0.2, κ1 = 0.1135, κ1 = 0.07 and κ1 = 0.0471; and (bi) to (biii): resonance spectra at the reflection port 

for κ1 = 0.2, κ1 = 0.1135, κ1 = 0.0471 and κ1 =  0.0195. The cavity and coupler losses are assumed to be 

negligible in this section. 

single 2π (4π) for the through (reflection) port when flat-band SL is achieved. We now proceed to 

analytically quantify for the conditions needed to achieve the above-mentioned flat-band SL. 

9.3.2.  Optimization for Flat-Band Slow Light 

From Fig. 9.2(a), one can easily observe that, at the through port, there are two peaks at δ’
1 and 

δ’
2, with |ξT(δ’

n) – ξT(δ’
0)| > 0 and |ξT(δ’

n) – ξT(δ’
n, m)| > 0, while at the reflection port, there are four 

peaks at δ’
1, 1, δ

’
1, 2, δ

’
2, 1 and δ’

2, 2, with |ξR(δ’
n) – ξR(δ’

0)| < 0 and |ξR(δ’
n) – ξR(δ’

n, m)| < 0, where δ’
n  refers 

to δ’
1 or δ’

2 while δ’
n, m refers to δ’

1, 1, δ
’
1, 2, δ

’
2, 1 or δ’

2, 2. Flat-band SL for the proposed twin-coupled 

resonators can be generated at the through port if the mode splitting is adjusted such that the two 

peaks of δ’
1 and δ’

2 are converted into a single flatten peak at δ = δ’
0 = 2πm. This can be 

mathematically described as 

' ' ' ' ' 2 ' ' 2
1 2 0 1, 1 2, 1 1, 2 2, 2  2   2 2,   2 2,m m m                        

 

   ' '
0 0,T n T                                                              (9.17) 

with    
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0

2
0,T 
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(a) Through Port                                                             (b)   Reflection Port 
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Likewise, for the reflection port, flat-band SL can be generated by adjusting the mode splitting such 

that the four peaks of δ’
1, 1, δ

’
1, 2, δ

’
2, 1 and δ’

2, 2 are converted into a single flatten peak at δ = δ’
0 = 2πm. 

Mathematically, this means 

   ' ' ' ' ' ' ' ' '
1 2 1, 1 1, 2 2, 1 2, 2 , 0  2     0,R n n m Rm or                   

         
(9.18) 

 

  with   
 2

0

2
0,R 







     where   
 

 
   0 0

0

0

1
. .

R R
R

R

   
 

  

  
        

 

Solving Eqs. (9.17) and (9.18) analytically gives the following solutions: 

2

, 1 2
,

2s T

 


 


                
 

2

, 1
2 2

,
2 2 2 1

s R

 
 

 
     

                (9.19) 

where κs, T  and κs, R gives the conditions need to achieve flat-band SL at the through port and 

reflection port, respectively. Specifically, Eq. (9.19) gives the strength of the inter-resonator 

evanescent coupling (i.e., values of κ1) needed to realize flat-band slow light at each port when the 

evanescent coupling between resonator 1 and the bus waveguide is the same as the evanescent 

coupling between resonator 2 and the bus waveguide (i.e., κ2 = κ3 = κ). Using Eq. (9.19), we have 

plotted the different combinations of κ1 and κ required to achieve flat-band SL in Fig. 9.4, from which  
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Fig. 9.4. Different combinations of inter-resonator coupling coefficient κ1 and resonator-to-bus 

waveguide coupling coefficient κ needed for flat-band slow light at the through and reflection ports 

of the proposed device. The ratio Ѱ = κs, T/κs, R  is also shown, where κs, T  and κs, R  are the values of 

κ1 that gives flat-band slow light at the through port and reflection ports, respectively, for a given κ. 
Note that we have used κ = κ2 = κ3 for the cavity system. The cavity and coupler losses are assumed 

to be negligible in this section. 
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it can be observed that to achieve flat-band SL at either the through or reflection port, we must have κ 

> κ1, i.e., the resonator-to-bus coupling must be larger than the resonator-to-resonator evanescent 

coupling, with κ  >>  κ1 when κ  <<  1. Note also that the inter-resonator coupling strength κ1 needed 

for flat-band SL at the through port is generally larger than that of the reflection port, given the same 

κ, i.e., κs, T  >  κs, R, with κs, T  = Ѱκs, R, where Ѱ = [21/2 + 2r/(1+ r2)]. This translates to κs, T  ≈  2.4κs, R for 

κ <  ~ 0.7, converging to  κs, T   ≈  1.4κs, R in the strong coupling limit, as also illustrated in Fig. 9.4. 

Using different combinations of κ1 and κ from Fig. 9.4, the flat Tq and the close-to flat group 

delay spectra are then plotted in Fig. 9.5(a) for the through port and in Fig. 9.5(b) for the reflection  
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Fig. 9.5. Demonstration of tunable flat-band slow light with maximally flat transmission Tq  and minimal 

group delay dispersion for the proposed device for different κ1 and κ. The resonance spectra at the through 

port are shown in (ai) to (aiii) while the resonance spectra at the reflection port are shown in (bi) to (biii), 

with κ = 0.3 (blue plots), κ = 0.35 (red plots), κ = 0.4 (green plots), κ = 0.45 (pink plots), κ = 0.5 (brown 

plots), κ = 0.55 (yellow plots) and κ = 0.6 (black plots). κ decreases in the direction of the arrow in the 

graphs. The corresponding values of κ1 used for each port can be found from Fig. 9.4 or Eq. (9.19). Note 

that we have used κ = κ2 = κ3 for the cavity system. The cavity and coupler losses are assumed to be 

negligible in this section. 

port. It is evident that maximally flat transmission Tq spectra, which are centered at δ0 = 2πm, can be 

achieved with Tq ≈  1 and minimal GDD by controlling the evanescent coupling coefficients κ1 in 

relation to κ, with the bandwidth of the flat-band region increasing with κ, albeit a smaller group delay 

due to the DBP constraint. Such DBP constraint can also be verified in the effective phase shift 

responses in Figs. 9.5(aii) and 9.5(bii): For all combinations of κ1 and κ, there is a fixed phase swing 

of ~2π for the through port and a slightly higher fixed phase swing of ~4π for the reflection port. 

Comparing these with the effective phase shift (of 2π across the FWHM in Fig. 9.2a(ii)) for the N-

(a) Through Port                                                              (b)   Reflection Port 
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cavities-1-bus system, which has a DBP of 2/π (cf. Table 9.1), we can then conclude that the DBP (in 

terms of the FWHM) of our proposed coupled resonator system for the through port case is 2/π and is 

thus similar to that of the N-cavities-1-bus system, while that of the reflection port is 4/π, which is 

twice that of the N-cavities-1-bus system. However, as mentioned in section 9.1, the actual DBP of 

the N-cavities-1-bus system is much lower than the computed value of 2/π as it has a sharp Lorentzian 

response. Thus, the through port of our proposed device will also outperform the N-cavities-1-bus 

system in terms of the DBP performance. Likewise, the DBP of our proposed device will also 

outperform other TWMR-based SL systems mentioned in section 9.1 (cf. Table 9.1) since these 

systems have lower DBPs than the above-mentioned N-cavities-1-bus system.  

9.4. Characterizing the Flat-Band Slow Light 

Let us now take a closer look at the nature of the flat-band SL in terms of the maximum group 

delay at resonance tgm, q, usable resonance bandwidth Δfu, q (q = T or R) and the trade-off between tgm, q 

and Δfu, q, where the subscript T(R) denotes the through (reflection) port. Both tgm, q and Δfu, q are 

commonly normalized in the literature so as to facilitate fair comparative analyses of the 

performances between slow light devices (especially for cavity-based systems) of different material 

platforms and sizes. Following this approach, we define tgm, q and Δfu, q of the flat-band SL of our 

proposed device at around δ = 2πm as tgm, q = t’
gm, q × trt and Δfu, q = FSR × Δδu, q/(2π), respectively, 

where t’
gm, q is the normalized group delay, trt = 1/FSR is the cavity round-trip time, FSR = c/(ngLc) is 

the free spectral range (in Hz), ng is the group effective index of the cavity mode, Lc is the length of 

the cavity and Δδu, q is the normalized usable bandwidth. Using Eqs. (9.11)-(9.19) and our earlier 

mentioned design specifications of κ = κ2 = κ3 and r = r2 = r3 for our twin-coupled TWMRs system, 

t’
gm, q  can be derived for the through and reflection ports: 
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where  
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Next, we proceed to derive the usable normalized resonance bandwidth Δδu, q (q = T or R). 

Unlike most SL works, which express Δδu, q in terms of the full-width at half maximum (FWHM), 

here we define Δδu, q as the region of bandwidth in which the transmission Tq spectrum is maximally 

flat and there is minimal GDD, so as to minimize dispersion in both the transmission and group delay. 

Using Eqs. (9.11)-(9.19), Δδu, q for our device can be approximated as 
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Using Eqs. (9.20) and (9.21), we have plotted the maximum group delay t’

gm at resonance and the 

normalized usable resonance bandwidth Δδu of the flat-band SL of the propagating light emerging 

from the through and reflection ports in Fig. 9.6. The delay-bandwidth product (DBP) is shown in the 

inset in Fig. 9.6. Some general observations and pertinent points with regard to Fig. 9.6 are 

summarized below. 
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Fig. 9.6. The normalized group delay (left axis) and the normalized usable resonance bandwidth 

(right axis) of the region of flat-band slow light for the through port (dotted curves) and reflection 

port (solid curves) of the proposed device at different values of κ. Corresponding values of κ1 can be 

found from Fig. 9.4 or Eq. (9.19). The inset shows the delay-bandwidth product (DBP). Note that 

we have used κ = κ2 = κ3 for the cavity system.  

   For both the reflection and through ports, the tgm and Δδu characteristics share an inverse 

relationship – tgm increases with decreasing κ, while Δδu increases with increasing κ. This 

occurs as tgm is proportional to the photon lifetime of the cavity tcav, while Δδu is proportional 

to the cavity decay rate 1/tcav, with tcav increasing with decreasing κ. Therefore, a trade-off 

condition exists between tgm and Δδu; one needs to decide whether a large tgm or Δδu is critical 

for the intended SL applications as it is not possible to achieve both. 

   A large κ in the range of κ ≥  0.6 results in a relatively small tgm of tgm ≤   9trt for the through 

port and tgm ≤  16trt for the reflection port, where trt is the round-trip cavity time. However, 

even small group delay is beneficial for certain applications such as data stream regeneration 

[1]. 
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   The inverse relationship between tgm and Δδu (cf. point (i) above) results in the earlier 

mentioned delay-bandwidth product (DBP) constraint. As shown in the inset in Fig. 9.6, the 

DBP stays approximately constant as κ changes with the through port having a DBP of ~ 0.6 

while that of the reflection port is twofold higher, at ~1.2. These match closely with our 

earlier prediction of a DBP of 2/π (≈  0.64) for the through port and a DBP of 4/π (≈  1.27) 

for the reflection port in section 9.3 (using Fig. 9.5). This further verifies the results in Table 

9.1, which shows that our device outperforms the conventional TWMR-based SL systems. 

   It is also worth mentioning that tgm and Δδu for the reflection port are larger than that of the 

through port as the output light at the reflection port spends more time in the cavities. The 

difference between tgm, T and tgm, R increases as tgm, T and tgm, R become larger and likewise for 

the difference between Δδu, T  and Δδu, R.  

In summary, we have demonstrated in this section that the mechanisms of resonance splittings 

and broadenings of our proposed twin-coupled resonators structure can be used to generate flat-band 

SL, i.e., slow light with maximally flat transmission Tq (q = T for through port, q = R for reflection 

port) spectrum, Tq ≈  1 and close-to flat-band group delay tg. The maximum group delay tgm, q = t’
gm, q 

× trt  and usable resonance bandwidth Δfu, q = FSR × Δδu, q/(2π) are tunable by controlling the coupling 

coefficients κ and κ1 (cf. Fig. 9.4 and Fig. 9.6), where κ = κ2 = κ3, t
’
gm, q is the normalized group delay, 

trt = 1/FSR is the cavity round-trip time, FSR = c/(ngLc) is the free spectral range (in Hz), ng is the 

group effective index of the cavity mode, Lc is the round-trip length of the cavity and Δδu, q is the 

normalized usable bandwidth. Design rules to realize the maximum achievable t’
gm, q and Δδu, q, given a 

set of coupling coefficients (κ, κ1), as well as the trade-off between t’
gm, q and Δδu, q have also been 

clearly illustrated (cf. Fig. 9.6).  

Of particular importance is the fact that a range of κ, with its corresponding values of κ1 from 

Fig. 9.4 can be chosen to achieve flat-band SL with normalized values of tgm, q and Δfu, q, i.e., t’
gm, q and 

Δδu, q, that are dictated by the design rules in Fig. 9.6. It should be noted that the absolute values of tgm 

and Δfu  depend on the round-trip length Lc of the cavity and the chosen values of κ and κ1. To show 

this, we have plotted in Fig. 9.7 the absolute values of tgm, q and Δfu, q as a function of the bend radius 

of a circular microring resonator (MRR) that has a cavity length of Lc = 2πR and is based on silicon-

on-insulator (SOI) channel waveguide with width = 500 nm and height = 500 nm. MRRs are used 

here and, in later sections, due to their simplicity in design and ease of fabrication as compared to 

other types of TWMRs, such as the microspheres.  

 Two different set of coupling coefficients (κ, κ1) are arbitrary chosen for the plots in Fig. 9.7: In 

Fig. 9.7(a), we use (κ, κ1) = (0.3, 0.0195), while in Fig. 9.7(b), we use (κ, κ1) = (0.5, 0.0594). Based on 

the design rules in Fig. 9.6, one can see that with (κ, κ1) = (0.3, 0.0195), flat-band SL with t’
gm ≈  73 
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Fig. 9.7. The absolute usable resonance bandwidth (left axis) and absolute group delay (right axis) 

of the region of flat-band slow light for a circular microring resonator as a function of bend radius R 

for fixed coupling coefficients of (κ, κ1) = (0.3, 0.0195) in (a) and (κ, κ1) = (0.5, 0.0594) in (b). 

These choosen coupling coefficients correspond to the design rules of flat-band slow light in Fig. 

9.6. Solid (dotted) curves correspond to the performances of the through (reflection) port. Note that 

the microring resonators are based on silicon-on-insulator channel waveguide with core height = 

500 nm and core width = 500 nm. Also, κ = κ2 = κ3 for the system of circular microring resonators. 

and Δδu/2π ≈  0.0054 can be generated at the reflection port, while using (κ, κ1) = (0.5, 0.0594) gives a 

lower tgm of  ~25trt but with a larger Δδu/2π  of  ~0.017 for the transmitted light at the reflection port.  

For a circular MRR that is based on SOI channel waveguide with width = 500 nm and height = 

500 nm, using (κ, κ1) = (0.3, 0.0195) at a bend radius R of 6 µm in Fig. 9.7(a) would translate into 

flat-band SL with a group delay of  ~46 ps and a bandwidth of  ~10 GHz at the reflection port, while 

using the second set of (κ, κ1) = (0.5, 0.0594) in Fig. 9.7(b) will give SL with a group delay of ~16 ps 

and bandwidth of  ~26 GHz at the reflection port for the same R of 6 µm. In this case, it is evident that 

the actual group delay (bandwidth) decreases (increases) with κ and κ1. On the other hand, if a smaller 

bend radius R of 2 µm for the above-mentioned circular MRR is used, the set of parameters of (κ, κ1) 

= (0.3, 0.0195) in Fig. 9.7(a) will give flat-band SL with a group delay of ~15 ps and bandwidth of 

~26 GHz at the reflection port, while the set of parameters of (κ, κ1) = (0.5, 0.0594) in Fig. 9.7(b) will 

give flat-band SL with a group delay of  ~6 ps and bandwidth of  ~78 GHz at the reflection port. 

Comparing these quantities of group delay and bandwidth with those of the above-mentioned larger R 

of 6 µm, it is easy to see that a smaller bend radius R (or larger FSR) brings about a much broader 

usable bandwidth Δfu, q (as Δfu, q is proportional to the FSR) but at a trade-off of a smaller group delay 

tgm, q (as tgm, q is inversely proportional to the FSR) in actual applications. A compromise must 

therefore be reached depending on whether a large bandwidth or group delay is needed for the specific 
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applications. The results in Figs. 9.6 and 9.7 can be used as general design rules in trading off 

between the various device performances. Generally speaking, the actual R that can be used for 

circular MRRs depends on the available fabrication technology and the minimum allowable cavity 

losses that allow a high transmission Tq to be realized as the dominant component of the cavity losses 

is the bend loss, which increases with decreasing R. On the other hand, if a racetrack MRR is used 

instead of a circular MRR, the group delay will be larger albeit a smaller usable bandwidth. For this 

reason, we will focus on circular MRRs in the next section, which looks into the effects of fabrication 

errors and cavity losses on the slow light (SL) performances of our proposed scheme. Note that SOI 

waveguides are used for the MRRs (in this subsection as well as in the next section) due to their 

compatiability with the mature silicon integrated circuits (ICs) manufacturing techology, as 

mentioned in section 1.1.4. 

9.5.     Effects of Fabrication Errors and Cavity Losses of the Proposed Flat-Band Slow Light 

Scheme Based on Circular Microring Resonators 

The actual performances of the proposed flat-band SL system will depend on two factors: (i) 

The fabrication tolerance (i.e. the sensitivity of the fabricated device to fabrication errors in physical 

parameters, such as the size of the cavities and coupling coefficients); and (ii) the cavity losses of the 

fabricated devices. To date, deep UV lithography and improved fabrication recipes have made it 

possible to control the waveguide dimensions to within ±1% [27] when fabricating MRRs based on 

silicon-on-insulator (SOI) waveguides. We have found that, at such fabrication tolerance of ±1%, the 

flat-band SL of our proposed system is relatively unaffected. Moreover, for small arrays of MRRs, 

any fabrication errors in the size of the cavities can easily be remediated or offset by the use of phase-

shifters [13, 28, 29], such as micro-heaters, in the cavities. The use of phase shifters also allows the 

resonance wavelength or central wavelength of the input pulse to be actively tuned to a desired value, 

which is widely adopted in the development of commercial devices. In other words, fabrication 

tolerance is not much of an issue for our proposed device if MRR based on SOI waveguides are used. 

On the other hand, the cavity losses of the fabricated MRRs based on SOI waveguides are expected to 

be the dominant sources of degradation to the SL performances. Such cavity losses consist of the 

propagation losses and the coupler losses. These are discussed below. 

9.5.1. Propagation Losses  

The chief components of the propagation losses of any MRRs are the fabrication-induced 

sidewall roughness losses and the bending losses. With optimization of the etching recipe and 

improvement in the fabrication technologies, the fabrication-induced sidewall roughness losses can 

generally be reduced to a negligible level [30, 31] for SOI-based WG devices. Then the bend losses 

will be the main source of the propagation losses in the SOI-based MRRs. Note that the propagation 
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losses of each cavity are characterized by the round-trip amplitude transmission coefficient τn, where 

the subscripts n = 1 and n = 2, respectively, denote the leftmost and rightmost resonators in Fig. 9.1. 

As the two MRRs are of equal size (i.e., δ1 = δ2 = δ) in this work, we use τ = τ1 = τ2, where τ < 1 

corresponds to net optical losses, τ = 1 corresponds to a lossless cavity, which is the case in sections 

9.2 to 9.4, while τ > 1 corresponds to net optical gain. We will not be looking into the regime of τ > 1 

as net optical gain results in additional mode-splitting effects in the resonance spectra, as concluded 

earlier in section 6.4.4, thus rendering flat-band SL difficult to be realized.  

Let us first look at the effect of varying τ (while first assuming no coupler loss, i.e., σ1 = σ2 = 0; 

coupler losses are looked into in the next section) on the flat-band SL for one particular example of κ 

= 0.3 for our proposed device (with the corresponding value of κ1 that gives flat-band SL at each port 

from Fig. 9.4). This is shown in Fig. 9.8. For this case in Fig. 9.8, flat-band SL with high transmission 

of 0.8 ≤  Tq ≤  1 can still be realized at both the through and reflection ports in the presence of losses, 

provided that the losses are in the range of 0.999 ≤  τ  ≤  1. For such small losses of 0.999 ≤   τ ≤  1, 

notice that the group delay around the flat-band region of δ = 2πm is rather independent of τ, although 

Tq fluctuates slightly. Increasing the losses to τ < 0.999 results in the transmission Tq around δ = 2πm 

to rapidly decrease (cf. τ = 0.99 and 0.96 for the through port and τ = 0.99 for the reflection port) until 

the critical coupling point is reached (cf. τ  ≈  0.93 for the through port and τ ≈ 0.96 for the reflection 

port), in which Tq = 0. We will term the value of τ where Tq = 0 as τc. Further increasing the losses  
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Fig. 9.8. The effect of cavity losses (characterized by τ, with τ = 1 for a lossless cavity) on the transmission Tq 

spectrum and group delay tg spectrum of the flat-band slow light at the (ai)-(aii) through port and the (bi)-(bii) 

reflection port of the proposed device with (κ, κ1) = (0.3, 0.0471) for the through port and (κ, κ1) = (0.3, 0.0195) 

for the reflection port. The values of τ used are τ = 1, τ = 0.9999, τ = 0.999, τ = 0.99, τ = 0.96, τ = 0.93 and τ = 

0.86 as shown in the graphs. Note that we have used κ = κ2 = κ3  and τ = τ1 = τ2  for the cavity system. Coupler 

losses are negligible in this case. 

(a) Through Port                                                                (b)   Reflection Port 
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such that τc > τ will increase the transmission (cf. τ = 0.86 for the through port and τ = 0.93 and 0.86 

for the reflection port). Note that the MRRs are said to be operating in the under-coupled (over-

coupled) regime when τc > τ (τc < τ) and that the group delay around δ = 2πm is closely related to these 

coupling regimes; τc > τ (τc < τ) gives fast (slow) light, with a large change in the group delay 

occurring when τ is approaching τc, at which the group delay is divergent. As a result, flat-band SL is 

observed in Fig. 9.8 only for  0.999 ≤  τ  ≤  1, in which the MRRs are in the over-coupled regime (i.e., 

τc < τ) and when τ is considerably far away from the critical coupling point τc. For values of τ close to 

τc, there will be a large change in the group delay, giving rise to sharp Lorentzian responses and low 

Tq (though Tq around δ = 2πm is rather flat), which fail our criteria of flat-band SL, as defined in 

section 9.3. 

The above described phenomenon applies to any combinations of κ1 and κ for our proposed 

device, not just for the specific case of (κ, κ1) = (0.3, 0.0471) in Fig. 9.8. However, different 

combinations of κ1 and κ have different critical coupling points τc, which also implies different range 

of values of τ that gives flat-band SL. To show this, we have presented the transmission and group 

delay responses at the resonance frequency δ = 2πm of our proposed device as a function of τ for  
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Fig. 9.9. The effect of cavity losses (characterized by τ, with τ = 1 for a lossless cavity) on the transmission Tq and 

group delay tg at δ = 2πm (which is the centre of the region of flat-band slow light) for the (ai)-(aii) through port 

and the (bi)-(bii) reflection port of the proposed device for different κ1 and κ, where κ = κ2 = κ3. The used values 

of κ are κ = 0.3 (blue plots), κ = 0.4 (red plots), κ = 0.5 (green plots) and κ = 0.6 (black plots), while the 

corresponding values of κ1 used for each port can be found from Fig. 9.4 or Eq. (9.19). The insets in all the graphs 

show the enlarged region of τ  ≥  0.958. Note that flat-band slow light with Tq  ≈  1 is only achieved when τ is in 

the region to the right of the critical coupling (cc) point (cc means T = 0 and group delay is divergent), where τ > 

~ 0.99. For τ <  ~ 0.99, the flat-band slow light has Tq < 1 and progressively transforms into fast or slow light with 

a sharp Lorentzian response. Note that τ = τ1 = τ2  for the cavity system. Coupler losses are negligible in this case. 
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different combinations of κ1 and κ (based on the data in Fig. 9.4 that gives flat-band SL) in Fig. 9.9. 

Evidently, τc  (cf. points of asymptote and Tq = 0 in Fig. 9.9) decreases with increasing κ1 and κ and 

thus the transmission Tq and group delay near the point corresponding to Tq ≈  1 become less sensitive 

to changes in τ at larger κ1 and κ. In particular, it can be seen that the group delay is less sensitive to 

changes in τ than the transmission. This is consistent with the trends in Fig. 9.8. For both ports, the 

group delay is fairly constant for the range of 0.96  ≤  τ ≤  1 for all values of κ in the interval κ > 0.3. 

On the other hand, for 0.1 ≤  κ ≤  0.3 (note that only the plots of κ = 0.3 are shown due to space 

constraint; the properties of the plots of κ < 0.3 can be inferred from those of κ  ≥  0.3), the 

propagation losses must be such that 0.96 ≤  τ ≤  1 (0.98 ≤  τ ≤  1) in order for the group delay to 

remain fairly constant for the through (reflection) port.  However, to achieve flat-band SL with high 

transmission of Tq ≥  0.8 (cf. Fig. 9.9(ai) and 9.9(bi)) for the through (reflection) ports, the allowed 

range of τ would decrease to 0.995  ≤  τ ≤  1 (0.997 ≤  τ ≤  1) for κ > 0.3 while that for 0.1 ≤  κ ≤  0.3 is  

~ 0.999 ≤  τ ≤  1 for both ports. These imply that for our device to be feasible for the generation of 

flat-band SL, any propagating losses present in each cavity must be kept to a level such that τ is at 

least at  ~ 0.999 ≤  τ ≤  1.  

Theoretically speaking, it is possible to achieve τ in the range of  ~ 0.999 ≤  τ ≤  1 for a passive 

microring resonator with bend radius of R ≥  2 μm based on submicron silicon-on-insulator (SOI) 

wires with optimized WG dimensions [32]. Recently, it has been demonstrated that round-trip 

amplitude transmission coefficient as high as τ ≈ 0.9886 can be achieved for a passive microring 

resonator based on submicron SOI channel waveguide with an ultrasmall bend radius of R = 1.0 μm 

by optimizing the aspect ratio of the WG [33]. This implies the technical possibility to realize the 

theoretical limit of  ~ 0.999 ≤  τ ≤  1 for a microring resonator with R ≥  2 μm as τ increases 

exponentially with R. As mentioned earlier, the usable resonance bandwidth Δfu increases with 

decreasing R while the group delay tg increases with increasing R in an actual device. Since MRRs 

with R ≥  2 μm that give low round-trip loss of  ~ 0.999 ≤  τ ≤  1 can be realized, our proposed scheme 

in Fig. 9.1 can thus be used to generate flat-band SL with widely variable Δfu and tg (based on the 

design rules earlier in Figs. 9.4 and 9.6) that are suitable for practical applications (cf. section 9.4 for 

some examples of actual figures of Δfu and tg), such as in wavelength division multiplexing systems 

[34]. For greater versatility, τ can be actively tuned by electrically [35] or optically [36] pumping the 

active material in the WG. 

9.5.2. Coupler Losses at the Coupling Junctions  

Besides the propagation losses, the coupler losses at the coupler junctions of the MRRs would 

also influence the flat-band SL. The coupler loss at each coupler junction is characterized by the 

parameter σi (wherein ri
2 + κi

2 + σi
2 = 1), with σi = 0 corresponding to an ideal lossless coupler, which 

has been the case thus far. For simplicity, we assume equal coupler losses for all the three coupling 
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junctions for our proposed device, i.e., σ = σ1 = σ2 = σ3. In general, coupler losses arise due to the 

coupling of the input light to higher-order modes as well as radiation modes at the coupling junctions. 

Details can be found in Ref. [32, 33, 37]. 

Earlier in section 9.5.1, we have concluded that, to realize flat-band SL with high transmission 

Tq for any given κ at the coupling junctions, any propagating losses present in each cavity must be 

kept to a level such that τ is at least ~ 0.999. We thus set τ = 0.999 to demonstrate the effects of 

varying σ on the flat-band SL of our proposed device in this section. This is shown in Fig. 9.10 for the 

case of κ = 0.3 (with corresponding values of κ1 for each port from Fig. 9.4), in which it can be seen 

that for the through (reflection) port, a coupler loss of σ  ≤  ~ 0.04 (σ ≤  ~ 0.02) at each coupling 

junction will keep the transmission at both ports to a high level of Tq  ≤  0.8 at δ = 2πm. The group  
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Fig. 9.10. The effects of varying coupler losses (characterized by σ, with σ = 0 for a lossless coupler) on the 

transmission Tq and group delay tg of the flat-band slow light at the (ai)-(aii) through port and the (bi)-(bii) 

reflection port of the proposed device with (κ, κ1) = (0.3, 0.471) for the through port and (κ, κ1) = (0.3, 

0.0195) for the reflection port. Propagating loss of each cavity is fixed at τ = 0.999. Note that σ = σ1 = σ2 = 

σ3, κ = κ2 = κ3 and τ = τ1 = τ2  for the cavity system. 

delay, on the other hand, is relatively independent of the coupler losses. This trend is somewhat 

similar to the sensitivity test regarding the propagation losses described earlier in Fig. 9.8.  

The above-observed trends of reduced transmission and rather stable group delay when coupler 

losses are present apply to any values of κ and κ1, not just for the specific case in Fig. 9.10. To show  

this and also to better illustrate the effects of the coupler losses on the flat-band SL, we have presented 

the transmission and group delay responses at δ = 2πm of our proposed device as functions of the 

coupler loss σ for different combinations of κ and κ1 (based on the data in Fig. 9.4 that gives flat-band 

SL) in Fig. 9.11. It can be seen from Figs. 9.11(ai) and 9.11(bi) that, for each distinct combinations of 

(a) Through Port                                                             (b)   Reflection Port 
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κ and κ1, the transmission Tq decreases with increasing coupler loss σ until the critical coupling point 

Tq = 0 is reached. Such critical coupling point at Tq = 0 is reflected as an asymptote in the group delay 

function in Figs. 9.11(aii) and 9.11(bii), in which the group delay changes rapidly around the 

asymptote. These properties are similar to the trends earlier in Figs. 9.9(aii) and 9.9(bii), where τ 

instead of σ is varied. We will term the critical coupling points (points of asymptote and Tq = 0 in Fig. 

9.11) that arise from adjusting the coupler loss σ as σc. In general, σc increases with κ1 and κ and thus 

the transmission Tq and group delay near the point corresponding to Tq ≈  1 becomes less sensitive to 
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Fig. 9.11. The effect of coupler losses (characterized by σ, with σ = 0 for a lossless cavity) on the transmission Tq 

and group delay tg of the region of flat-band slow light (centered at δ = 2πm) for the (ai)-(aii) through port and the 

(bi)-(bii) reflection port of the proposed device for different κ1 and κ. The used values of κ are κ = 0.3 (blue plots), 

κ = 0.4 (red plots), κ = 0.5 (green plots) and κ = 0.6 (black plots), while the corresponding values of κ1 used for 

each port can be found from Fig. 9.4 or Eq. (9.19). Note that flat-band slow light with Tq ≈  1 is only achieved 

when σ is in the region to the left of the critical coupling (cc) point (cc means T = 0 and group delay is divergent), 

where σ <  ~ 0.02. For σ > ~ 0.02, the flat-band slow light has Tq < 1 and progressively transforms into fast or 

slow light with a sharp Lorentzian response. 

changes in σ at larger κ1 and κ. This is also similar to the sensitivity test pertaining to varying τ earlier 

in Fig. 9.9. Also, as shown in Fig. 9.11, the group delay is less sensitive to changes in σ than the 

transmission. This is consistent with the trends in Fig. 9.10. For the through (reflection) port, the 

group delay are fairly constant for all coupling values κ in the range of κ > 0.3 provided that σ  ≤  ~ 

0.3 (σ  ≤  ~ 0.2). On the other hand, for all coupling values κ in the range of 0.1 ≤  κ ≤  0.3, the group 

delay at the through (reflection) port can be kept fairly constant if σ ≤  ~ 0.2 (σ ≤  ~ 0.1). However, to 

achieve flat-band SL with high transmission of Tq ≥  0.8 (cf. Fig. 9.11(ai) and 9.11(bi)) for the through 

(reflection) ports, the allowed range of σ would considerably decrease to σ  ≤  ~ 0.06 (σ ≤  ~ 0.04) for 

(a) Through Port                                                                (b)   Reflection Port 
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all coupling values κ in the range of κ > 0.3, while that for 0.1 ≤  κ ≤  0.3 is σ ≤  ~ 0.04 (σ ≤  ~ 0.02) 

for the through (reflection port). In other words, the coupler loss σ at each coupling junction can at 

most be 0.02 in order for high transmission Tq of 0.8 to be observed at both ports when using our 

proposed device for generating flat-band SL in the presence of propagating losses in the cavity with τ 

= ~ 0.999 (which is the maximum τ that renders the device performances rather insensitive to 

propagating losses, as concluded earlier). Note that σ, in general, increases exponentially with 

decreasing bend radius and the coupling coefficient κi [32, 33]. It has been found that for a circular 

microring resonator with bend radius R, the coupler loss σ at each coupling junction is σ  <  ~ 0.01 for 

R ≥  1 μm [33]. This implies that, in actual fabricated devices, the coupler loss at each coupling 

junction is too low to have any severe degradation on the flat-band SL of our proposed system as the 

maximum allowable coupler loss of our proposed MRRs system is σ = 0.02 (as mentioned above), 

while the bend radius of each resonator is in the range of R ≥  2 μm (cf. subsection 9.5.1). Based on 

the results in this subsection and those in the earlier subsection 9.5.1, we can conclude that our 

proposed twin-coupled TWMRs can be suitable for practical flat-band SL applications when circular 

microring resonator (MRR) based on the SOI platform is being used. 

9.6.       Summary and Significant Contributions of this Research Work 

In summary, we have proposed a scheme of twin-coupled traveling-wave microresonators 

(TWMRs) to generate flat-band slow light (SL) at both the through and reflection ports. Such flat- 

band SL has the characteristics of (1) maximally flat transmission Tq spectrum, (2) high transmission 

of Tq ≈  1 and (3) minimal group delay dispersion. The bandwidth Δfu and the group delay tg (cf. Fig. 

9.6 for magnitudes of Δfu and tg) of the region of flat-band SL can be tuned by adjusting the coupling 

coefficients κ1, κ2 and κ3 of the coupling junctions of the TWMRs such that the design rule that is 

governed by Eq. (9.19) and illustrated in Fig. 9.4 is fulfilled. The coupling coefficients can be actively 

tuned by the use of integrated micro-electromechanical system (MEMS) to adjust the resonator-to-

resonator and waveguide-to-resonators air-gap separations. This has been experimentally been 

demonstrated in [38, 39]. Our proposed device can thus effectively mitigate the constraint of 

conventional TWMR-based SL system, in which large group delay is achieved at the expense of 

narrow usable bandwidth with low transmission Tq (i.e., flat-band SL with high Tq is not possible). A 

fundamental figure of merit to quantify the capability of the SL system to simultaneously fulfill the 

bandwidth and group delay enhancement requirements is the delay-bandwidth product (DBP) that is 

defined as DBP = maximum group delay at resonance × usable resonance bandwidth, in which the 

slow light has high transmission and minimal dispersion in the group delay and transmission. We 

have demonstrated that the DBP (in terms of the FWHM) of our proposed coupled TWMR system for 

the through port case is 2/π while that of the reflection port is 4/π, which are, respectively, 3- to 12-

fold and 6- to 24-fold higher than conventional SL systems (cf. Table 9.1) that typically have DBPs of  
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≤  ~ 0.21, assuming that the usable bandwidth of each conventional TWMR-based SL system 

occupies only one-third of its FWHM due to the high dispersive nature of the Lorentzian resonance 

spectrum. This further illustrates that our proposed system is capable of better SL performances as 

compared to conventional TWMR-based SL systems [4-7, 10-21].   

We have also found that the fabrication errors in the waveguide dimensions must be kept within 

±1% and that the size of the bend radius R used should be R ≥  2 μm so that the flat-band SL is not 

severely degraded by the deviation in the physical parameters (induced by the fabrication errors) and 

the cavity losses (due to propagation and coupler losses, which are dependent on R). These can easily 

be achieved due to advancement in fabrication technology, which has allowed a fabrication tolerance 

of  ≤   ±1% [27] and the fabrication of low-loss TWMRs with R as small as 1 μm [33]. Therefore, our 

proposed device will be highly suitable for practical SL applications. Our work is also a significant 

contribution to the field of SL as a large resonance bandwidth with a large delay-bandwidth product 

can be generated, without the need for either a complicated device design or a large device footprint 

(as only two resonators are needed in our proposal).  

Finally, note that this research work has been submitted to the Journal of Optical Society B. 
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Chapter 10 

Summary, Conclusions and Future Works 

10.1.  Summary and Conclusions 

In summary, in this thesis, theoretical optimizations and new research proposals for efficient 

microphotonic components, with particular emphasis on communication applications, have been 

presented. These research works have been completed in two stages: (i) Stage one, which is part one 

of this thesis (chapters 2 to 5), focuses on basic functionalities of two fundamental microphotonic 

components, namely, the straight waveguide and the microring resonator (MRR); and (ii) stage two, 

which is part two of this thesis (chapters 6 to 9), focuses on more advanced functionalities, namely the 

fast and slow light performances of traveling wave microresonators (TWMRs). Significant research 

results and contributions have been achieved in these two stages of the research work, which are 

highlighted in the following subsections. Note that in chapters 2, 3 and 5, we have focused on the use 

of the silicon-on-insulator (SOI) platform for the optimization and design process of waveguides and 

one particular type of traveling wave microresonators (TWMRs) — the microring resonator. For all 

other chapters, we are concerned with generic ideas that can be applied to any type of TWMRs and 

material platforms, although the microring resonator based on SOI has been used in our case studies. 

10.1.1.  Research Works in Part One of Thesis 

In part one of this thesis, the main focus is on the optimization and design of two fundamental 

microphotonic components — the straight waveguides and the microring resonator — for efficient 

communication applications while shrinking the device size into the submicron scale on the silicon-on-

insulator (SOI) platform.  

To build a good research foundation in this stage, we have first looked into the stringent 

conditions needed to realize both single-mode (SM) and polarization-independent (PI) operations at 

the submicron scale for three types of SOI waveguides, namely, the slab, the channel and rib 

waveguides at the communication wavelengths of 1.31 μm and 1.55 μm. Our research results, as 

presented in chapter 2, clearly distinguish the dimensions of SOI slab, channel and rib waveguides 

required to satisfy both SM and PI conditions simultaneously at the submicron scale for the 

communication wavelengths of 1.31 μm and 1.55 μm. These can be used as design rules when 

fabricating silicon waveguides for SM and PI operations. In fact, Ref. [1] and [2] have used our design 

rules to fabricate microring resonators. In addition, our work has also inspired the use of SOI 
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waveguides at the submicron scale in the design of several PI couplers [3-5], a PI demultiplexer [6], a 

slow light device [7], microbends [8] and hybrid plasmonic waveguide devices [9]. In many of these 

works, our design rules in chapter 2 have been used to optimize the device peformances. Note that 

previously, SOI submicron rib waveguides are seldom used for photonic devices as the SM and PI 

conditions at the submicron scale are not very well understood. Our work has thus, in one way or 

another, led to the trend of using submicron SOI waveguides for SM and PI devices. This highlights 

the fact that our research work in this chapter is a significant contribution to the field of silicon 

photonics. Last, but not least, by using analytical modeling, we have clearly shown the modal 

characteristics in SOI slab waveguides and its relation to the SOI channel and rib waveguides. This has 

often been ignored in most of the literature. Also, we have demonstrated that the approximations 

provided by the analytical modeling for the submicron SOI waveguides matches well with the general 

trends of the results of the numerical modeling. Such use of both analytical and numerical modeling in 

this research work has provided a better physical insight of the stringent conditions needed for the 

realization of both SM and PI operations in the SOI waveguides at the submicron level. 

With the above-mentioned research work as foundations, we have then designed a small SOI-

based microring resonator that is capable of single-mode (SM) and polarization-independent (PI) 

operations at the input wavelgnth of 1.55 μm in chapter 3. To be specific, we are interested to find out 

how small can a SOI-based microring resonator (MRR) be, i.e., how small can we shrink both its 

cross-sectional dimensions and radius, and yet maintain the overall polarization-independence and 

single-mode conditions of the MRR, while ensuring low round-trip losses. Our design approach to 

achieve both SM and PI operations for compact resonators is modular and hierarchical. We have first 

shown how SM and close to birefringence-free conditions can be achieved for straight waveguides 

using deeply etched ribs, followed by how PI and low-loss bends as well as PI multi-mode 

interferometer (MMI) coupler can be designed as key components for a bus-coupled resonator. Note 

that PI also implies SM in our work. All the PI components are then integrated into a single-bus all-

pass filter configuration and the transmittance spectra are simulated for both TE and TM 

polarizations. The results for a specific design where the core thickness is 0.4 µm have shown that a 

resonance mismatch of about 0.22 nm, representing only 11% of the FWHM linewidth of 2 nm, can 

be achieved. This small polarization dependence represents a large improvement over what can 

usually be achieved with the conventional PI resonators [10-13] that have much larger device size and 

very small FSR. Most importantly, we have demonstrated the feasibility of realizing MRRs of sub-

micron cross-sectional dimensions with a small radius of a few microns that have substantially 

reduced polarization sensitivity while maintaining the essential SM and low-loss conditions. We have 

also provided an approximate but reasonably accurate theoretical lower size limit of the MRR for 

simultaneous SM and PI operations, at our considered upper oxide cladding thickness and using the 

more robust deeply etched rib waveguide, which is seldom used for MRR. Recently, in July 2011, this 
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research work in chapter 3 has been cited in [14], which looked into the design and fabrication of a 

TE-TM polarization convertor based on the SOI platform. This shows the significance of our work. 

After analyzing the single-mode and polarization-independent behaviours in a single microring 

resonator, which is one particular class of traveling wave microresonators (TWMRs), we then move 

on in chapter 4 to look into some of the interesting phenomona that emerge when a chain of TWMRs 

are coupled together. In particular, we are interested in the photonic-bandgap (PBG) properties of 

coupled-TWMRs, which are also known as coupled-resonator optical waveguides (CROWs). For the 

first time, to the best of our knowledge, we have proposed the use of periodic and quasi-orders to 

achieve PBG engineering of the resonance spectra of the TWMR-based CROWs. Such periodic and 

quasi-periodic orders are implementated by embedding multiple periodic and quasi-periodic “defects” 

resonators among the regular resonators in the CROWs. For the periodic case, the interaction of the 

multiple defects results in the splitting of the eigenmodes corresponding to distinct localized states, 

leading to the formation of defects-induced mini-passbands within the broader PBG. The number and 

position of such narrow defect passbands can be tuned by adjusting the relative size of the intra-

resonators in each unit cell. If the intra and inter unit cell coupling strengths are asymmetrical, new 

PBG forms at resonance. These features make the deployment of such schemes for practical PBG 

engineering very attractive in the absence of active elements to achieve tuning. Other possible 

applications include multi-passband filters after the ripples are flattened by apodization techniques as 

highlighted in [15]. For the aperiodic or quasi-periodic case, we have shown that a sharp localized 

resonant state still exists within the PBG that slowly transforms to a broad passband as the order of 

the sequence is increased. If the total losses of the constituent unit cells are sufficiently low, the ultra-

narrow passband of the quasi-periodic CROW based on a low-order Fibonacci sequence may be 

highly useful as a compact sensor for bio-photonic and chemical applications. As a general rule, 

systems with a perfect order or a complete disorder are simple, and it is in the middle where there is a 

mix of order and disorder that complexity arises that may produce novel properties and applications.  

Finally, in the last chapter of part one of this thesis, we have studied the temperature T 

dependence of Raman scattering in submicrometer-scale SOI waveguide for 100 K  ≤  T  ≤  500 K in 

regard to three specific types of Raman scattering-based functionalities in the continuous-wave 

regime: Raman amplification and attenuation near the C-band wavelength of 1.55 μm and parametric 

Raman wavelength conversion (PRWC) between the C-band wavelength of 1.55 μm and O-band 

wavelength of 1.31 μm. It has been demonstrated in chapter 5 that the effects of temperature variation 

(100 K  ≤  T  ≤  500 K) can be harnessed to improve the Raman performances in the submicron SOI 

waveguides. In particular, the use of temperature variation provides an additional degree of freedom 

to tune the conversion efficiency (CE) or amplification efficiency (AE) of the SOI waveguide, thereby 

allowing a more dynamical control of the Raman performances of the SOI waveguide, as compared to 

those working at a fixed room temperature, which is the conventional practice. Furthermore, the CE or 
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AE can be enhanced as compared to that at the room temperature. The detailed research findings in 

chapter 5 can be used as general design rules when engineering submicron SOI waveguides for 

efficient Raman amplification, Raman attenuation and PRWC at different temperatures. Most 

importantly, our results have highlighted the numerous advantages of harnessing the temperature 

effects of Raman scattering, which has largely been overlooked in the literature. These could have 

potentiality in revolutionizing the way in which Raman scattering is being employed for active 

functionalities in silicon waveguide devices in the future and are thus important contribution to the 

field of silicon photonics. 

10.1.2.  Research Works in Part Two of Thesis 

In part two of the thesis, the theme is on fast and slow light effects in either a single traveling 

wave micoresonator (TWMR) or a system of twin-coupled TWMRs. The main research objective 

here is on the use of degeneracy lifting of the cavity via the excitation of contra-propagating cavity 

modes to improve the fast and slow light effects in the TWMR-based circuits. Four different schemes 

to generate contra-propagating cavity modes in the TWMRs — the coupler-induced localized 

backscattering (CILB) in chapter 6, the intracavity distributed backscattering that is assisted by the 

use of dual inputs in chapter 7, the intracavity distributed backscattering in a system of twin-coupled 

TWMRs that has only one resonator coupled to the bus waveguide in chapter 8, and finally the contra-

propagating cavity modes that are established due to the evanescent coupling of both the resonators to 

the bus waveguide in the twin-coupled TWMRs system that has a negligible intracavity distributed 

backscattering in chapter 9 — have been looked into for the enhancement of fast and slow light 

effects. These are elaborated as follows. 

We have started part two of the thesis by demonstrating in chapter 6 that weak coupler-induced 

localized backscattering (CILB) that is aided by a small net optical gain in the cavity will enhance the 

fast light (FL) and slow light (SL) performances of a TWMR in the following ways. First, all three 

types of light propagation velocity (which are FL with negative vg, FL with positive vg and SL) can be 

generated at both the through and drop ports at the degenerate resonance frequency ω0. This is in 

contrast to the conventional TWMR (where CILB is negligible), in which at the degenerate resonance 

frequency ω0, only FL with negative vg and SL are present at the through port while, for the drop port, 

only SL is produced. Second, the possibility to generate stable FL with an amplified transmission can 

be achieved, unlike the case of a conventional TWMR, where stable FL always has substantial 

attenuation. Third, there is an extra degree of freedom in addition to the physical parameters of 

coupling coefficient κ and round-trip amplitude attenuation constant τ of the cavity to control the 

group delay as any change in the strength of the CILB will modulate the group delay. However, do 

note that in the regime of strong CILB, there will be some deleterious effects: (i) The group delay 

enhancement at the through port is degraded; and (ii) the width of the FL regime at the drop port is 
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reduced. On a positive note, this research work regarding CILB in chapter 6 has been selected for the 

January 2011 issue of The Virtual Journal of Ultrafast Science [16]. This attests strongly to the 

significance and novelty of this research work. 

Besides CILB, another type of backscattering in TWMRs is the surface imperfections-induced 

distributed backscattering within the cavity, which we have termed as intracavity backscattering. 

Following the fast light (FL) and slow light (SL) work based on the CILB effect in chapter 6, we have 

subsequently proceed to look into the use of intracavity backscattering effects to generate enhanced 

tunable FL and SL in TWMRs. Research in this area is described in chapter 7, in which we have 

harnessed the physical effects that arise from the interaction of the intracavity backscattering with the 

dual contra-propagating inputs to achieve continuously tunable FL and SL from a single TWMR. To 

explain the rationale behind the use of such mechanism, first note that in a conventional TWMR, the 

surface perturbations due to fabrication-induced surface roughness can be made very small due to 

advances in fabrication technology [17, 18]. As such, the intracavity backscattering in most TWMRs 

is relatively weak, resulting in Qmut → ∞ . Then we have |Qcri|  <<  Qmut, which gives a single sharp 

Lorentzian resonance with no mode splitting; mode splitting only occurs if |Qcri|  >>  Qmut, where Qmut 

is the Q-factor that characterizes the intracavity bsackscattering, while Qcri is the Q-factor that 

quantitifies the critical coupling (which is defined as the phenomenon whereby the output 

transmission is zero). By intentionally introducing surface perturbations in the form of surface 

microstructures, such as grating ridges, on the TWMR in our work in chapter 7, the intracavity 

backscattering is enhanced, giving rise to two possibilities in the shape of the resonance: (i) A single 

sharp Lorentzian if |Qcri|  <<  Qmut or (ii) a two-split Lorentzian, i.e., a doublet, if |Qcri|  >>  Qmut. In the 

presence of dual inputs, |Qcri| of the TWMR system can be adjusted (from |Qcri|  <<  Qmut to |Qcri|  >> 

Qmut or vice versa) simply by modulating the phase and/or amplitude differences between the dual 

inputs. This will then allow the shape of the transmission and group delay resonance spectra to be 

switched between a Lorentzian and a doublet. By exploiting such change in the spectral shape as |Qcri| 

is adjusted, continuous tunability in the group delay and transmission of the output light at a fixed λ 

can consequently be achieved. This offers a more dynamic control of the speed of light, as compared 

to systems that use only a single input. More importantly, the proposed dual-input scheme realizes the 

possibility to achieve tunable fast and slow light effects in a passive and linear cavity. This is in 

contrast to conventional TWMR-based FL and SL systems (listed in Table 7.1 of chapter 7), which 

require either the use of active tuning mechanisms, such as p-i-n diodes, gain media or nonlinearity in 

the cavity, so as to have tunable group delay. The fact that the active tunability of the group delay 

stems from the use of external dual inputs also means that the reconfigurability and serviceability of 

the cavity system can be improved as the external dual inputs can be easily adjusted or replaced. 

Having exploited the intracavity backscattering in a single TWMR for enhanced FL and SL 

applications in chapter 7, we have subsequently looked into the use of the intracavity backscattering in 
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a system of dual or twin-coupled TWMRs that has only one resonator coupled to the external bus 

waveguide in chapter 8. By intentionally introducing intracavity backscattering in the twin-coupled 

TWMRs, enhanced coupled-resonator-induced transparency (CRIT) and optical Fano resonance 

(OFR) effects can be generated as compared to conventional twin-coupled TWMRs systems that do 

not utilize the intracavity backscattering effects. In particular, the presence of intracavity 

backscattering in our modified twin-coupled TWMRs makes it possible to either generate a single 

sharp CRIT peak or a pair of CRIT peaks in the transmission spectrum of the through port within one 

free spectral range (FSR), depending on the magnitude of the backscattering, in contrast to the case of 

the traditional twin-coupled TWMRs structure (i.e., intracavity backscattering is not utilized), in 

which only a single sharp CRIT peak can be realized within one FSR. The distance between the twin-

CRIT peaks can be controlled by adjusting the intracavity backscattering magnitude um. In addition, 

our proposed scheme makes it possible to simultaneously produce fast and slow light (one at each 

output port) in a single device. For example, the CRIT peak, which is accompanied by slow light, can 

be generated at the through port while the Lorentzian dip, which is accompanied by fast light, can be 

simultaneously generated at the reflection port of our proposed device. Such ability to simultaneously 

generate fast and slow light in a single device will make our proposed device highly attractive for fast 

and slow light applications. By tailoring um in our proposed modified twin-coupled TWMRs structure, 

the CRIT peaks can be reshaped into sharp asymmetric OFR lineshapes. We can thus switch between 

CRIT and OFR by proper choice of um during the fabrication process. More importantly, the ability to 

generate OFR means that our proposed modified twin-coupled TWMRs can also be utilized for 

optical switching applications in communication systems as it is well known that the sharp 

asymmetric lineshape of OFR is highly desirable for optical switching. In addition, we have 

demonstrated that if dual inputs are employed to interact with the intracavity backscattering in the 

resonators system, the CRIT symmetric peaks of our proposed modified twin-coupled TWMRs 

systems can also be reshaped into asymmetric OFR lineshapes simply by controlling the phase 

differences between the inputs. Active switching between CRIT and OFR can then be achieved 

simply by controlling the external dual inputs. This is a highly attractive and useful scheme that can 

be deployed after the fabrication process when the physical parameters are fixed and in the absence of 

active gain and/orphase tuning elements in the cavities. Note that conventional twin-coupled TWMRs 

scheme uses either gain [19] or phase tuning [20] to switch between CRIT and OFR. Our proposed 

scheme thus offer greater versatility as the external active tuning components can be easily adjusted or 

replaced, as compared to the gain or phase tuning elements, which are integrated into the cavities. 

Finally, in the last chapter (i.e., chapter 9) of part two of this thesis, we have utilized the contra-

propagating cavity modes that arise purely from the evanescent coupling (but not the surface 

perturbations-induced backscattering) of both the resonators to the bus waveguide in the twin-coupled 

TWMRs system to generate flat-band slow light (SL) at both the through and reflection ports. The 
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presence of such contra-propagating cavity modes in the twin-coupled TWMRs system will generate  

multi-peaks in the resonance spectra. Flat-band SL can be generated if such multi-peaks become 

undistinguishable and merge into one single broadened peak that is maximally flat or almost flat in 

the resonance spectra, which will only happen if the inter-resonator evanescent coupling strength is 

optimized relative to the resonators-to-bus-waveguide coupling strength, as shown in chapter 9. The 

generated flat-band SL from our proposed scheme has the characteristics of (1) maximal flat 

transmission Tq spectrum, (2) high transmission of Tq ≈  1, and (3) minimal group delay dispersion. 

The bandwidth Δfu and the group delay tg of the region of flat-band SL can be tuned by adjusting the 

coupling coefficients of the TWMRs. These mitigate the constraint of a conventional TWMR-based 

SL system, in which large group delay is achieved at the expense of a narrow usable bandwidth with 

low transmission. A fundamental figure of merit to quantify the capability of the SL system to 

simultaneously fulfill the large bandwidth and group delay enhancement requirements is the delay- 

bandwidth product (DBP), which is defined as DBP = maximum group delay at resonance × usable 

resonance bandwidth. We have demonstrated that the DBP of our proposed twin-coupled TWMRs 

system for the output light at the through port case is 2/π while that of the reflection port is 4/π. These 

DBPs of our device are 3 to 24-fold higher than those of the conventional SL systems based on 

TWMRs (cf. Table 9.1) that typically have DBP of  ≤  ~ 0.21, assuming that the usable bandwidth of 

each conventional TWMR-based SL system occupies only one-third of its full width at half maximum 

(FWHM) due to the high dispersive nature of the sharp or ripples-like Lorentzian resonance spectrum. 

This illustrate that our proposed system is capable of better SL performances as compared to the 

conventional TWMR-based SL systems. Fabrication tolerance and cavity losses analyses have also 

revealed that our proposed scheme is rather robust to the fabrication errors and limitations of current 

state-of-the-arts semiconductor processing technology. 

10.2.  Future Works 

We will now elaborate on our future work, which are extensions of our current achievements in 

this thesis. 

First and foremost, the design of the single-mode (SM) and polarization-independent (PI) SOI 

submicron rib in chapter 2 has only focused on waveguides with a fixed cladding thickness and at two 

specific communication wavelengths of λ = 1.31 μm and 1.55 μm in order to expendite the simulation 

time and to save computational resources. For a complete understanding of the modal characteristics 

at the submicron scale, the waveguide analysis in chapter 2 can be extended to different cladding 

thickness and the entire communication wavelength spectrum. This extension is critical as: (i) Studies 

have shown that the cladding thickness can affect the modal characteristics [21], which is also 

illustrated in our earlier work in chapters 2 and 3; and (ii) moreover, if a pulse with a large spectral 

width (i.e., ultra-fast pulse) is used, the design rule that we have formulated specifically for λ = 1.31 
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μm and 1.55 μm would be insufficient to ensure that the transmission of the pulse can also be SM and 

PI. Also, waveguides with slant sidewalls [22] can also be used to achieve SM and PI conditions. The 

slant sidewalls angle will give an additional degree of freedom in the design process when used with 

other geometrical parameters, such as etch depth and width, which have been considered in our work 

in chapter 2 and 3. Likewise, the design of the SM and PI microring resonator (MRR) in chapter 3 can 

also be extended for different wavelengths and slant sidewalls angles, so as to improve the 

versatibility of the MRR. In addition, our present SM and PI research work for both the submicron 

straight waveguides and MRR are based on passive media. The case of active media can also be 

considered for future work in the design of SM and PI submicron SOI waveguides and MRR. 

For our work on photonic bandgap engineering in chapter 4, we may also consider different 

types of arrays such as SCISSOR [23] for both the periodic and quasi-periodic designs considered as 

we have limited our studies to only CROWs with a typical add-drop filter configuration (i.e., the chain 

of N-resonators is coupled to two bus waveguides, one at the first resonator and the other at the Nth 

resonator). Also, we have only focused on the Fibonacci CROWs in the section on the aperiodic 

order. Deterministic aperiodic CROWs based on other sequences, such as the Cantor [24] and Thue–

Morse sequences [25], and hybrid ordered systems (with a mix of both periodic and quasi-periodic 

orders) are also possible and are expected to show interesting spectral properties. In addition, note that 

the focus of this work is on how the PBG structures are affected by periodic and quasi-periodic orders 

using multiple defects. As such, several other optical behaviors of our proposed devices have not been 

investigated. One of these is the dispersion of the device. In particular, the presence of multiple 

defects in both the periodic and quasi-periodic ordered ring systems would influence the slow wave 

characteristics of the device. This would in turn affect the non-linear phase sensitivity because of the 

relation: dΦ/dI = LS2
s × (2πnkerr/λ), where dΦ/dI is the non-linear phase sensitivity, L is the length of 

the device, Ss is the slowing ratio, nkerr is the Kerr coefficient of the material and I is the input 

intensity. In addition, the presence of multiple coupled defects will impact the ring intensity build-up 

factor and this could enhance the bistable and multi-bistable performances of our proposed device. 

These mentioned issues can be analyzed in future works. 

In chapter 5, our investigation of the temperature effects of the various Raman scattering-based 

processes of Raman amplification, Raman attenuation and parametric Raman wavelength conversion 

are limited to the continuous wave (CW) regime. Future work can be on the effects of temperature 

variation on different types of pulses in the Raman waveguide. In addition, the pump wavelength can 

also be varied in order to improve the tunability and versatility of the Raman waveguide. Also, instead 

of using a simple straight waveguide as a Raman medium, we could alternatively use a microring 

resonator or any type of resonant cavity. It would then be interesting to study how the resonance 

effects of the resonant cavity influence the different types of Raman scattering processes in the cavity 

at different operating temperatures. 
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In addition, we emphasize that our results in chapter 6 regarding enhanced fast and slow light 

effects based on the coupler-induced localized backscattering (CILB) apply strictly to a circular 

TWMR. If a TWMR with other configurations, particularly a racetrack configuration, such as a 

racetrack microring resonator, is used, there will be additional backscattering within the cavity due to 

the modal mismatch between the straight waveguide mode and the bend waveguide mode. This 

generally leads to Fresnel reflections at the junctions between the straight and bend waveguides. Such 

an effect on the fast and slow light behaviors of the TWMR can also be looked into in a future work. 

Finally, for chapter 8, we have proposed the use of intracavity backscattering to enhance the 

CRIT and OFR effects in the twin-coupled TWMRs system. However, the analysis in chapter 8 

regarding this proposed scheme is only limited to the general characteristics of the CRIT and OFR. 

Specific CRIT and OFR applications, such as tunable delay line and optical switching, based on our 

proposed modified twin-coupled TWMRs scheme can also be considered in our future work. 
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