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Abstract

This thesis presents a new perspective on the observer design and analysis for a

class of nonlinear uncertain systems in which the uncertainties enter the systems

through unknown-state-dependent distribution vectors, i.e., the systems have non-

matching uncertainties in the observer sense. The main idea lies with exploiting

the observabilities of the unknown states and uncertainties from the measurable

outputs. This allows us to design appropriate robust terms to asymptotically

track the uncertainties and thereby estimating the unmeasurable states so that

precise control and monitoring of control systems can be achieved.

The first part of the thesis addresses the estimation problem of a single input

single output (SISO) nonlinear Lipschitz system with the unknown input being

non-matching in the observer sense. A hybrid observer that combines the high

gain observer with a higher order sliding mode related nonlinear feedback term is

proposed. For such a hybrid observer, the high gain feedback works to constrain

the estimation error to within an invariant set regardless of the initial conditions,

in which the sliding mode condition is satisfied. Then, the sliding mode feedback

ensures that the sliding mode surface is reached in finite time and remained there-

after. As a result, the unknown input can be recovered from the sliding mode

term after all states have converged to their true values. However, the identifi-

ability of the unknown input is strictly related to the stability of the estimation

dynamics on the sliding surface, which is only dependent on the structure of the

nonlinear system and is difficult to be verified.

As an application example, the application of the proposed results to the series

DC motor which is widely used due to its high ratio of torque per ampere of

current, especially in the industrial applications that require high starting torque,
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is studied. The non-matching flux related motor parameter of the series DC

motor is time-varying because of magnetic saturation or imperfect manufacturing.

Together with the effect of an unknown external load disturbance, they often

limit the corresponding control system’s performance. In order to overcome such

limitations, the proposed robust hybrid sliding mode observer that is developed

via the Lie derivatives transformation is applied. With the measurable current

and input voltage, the non-matching parameter can be exactly estimated without

filtering effect, and the identified flux related parameter is then used to enhance

the speed estimation performance in the presence of the external disturbance. The

expected estimation performance is demonstrated through a series of experimental

results.

We explore how the proposed sliding mode observer design can also be applied

to the rotor speed and position estimations of a surface-mounted permanent mag-

net synchronous motor (PMSM), in which the asymptotical stability property of

the reduced order system is not satisfied. Unlike the conventional sliding mode

observers, we treat the position related dynamics as new unknown system states

instead of as a part of the system uncertainties, then the filtering/chattering ef-

fect on the position estimation can be completely avoided. Such methodology can

be used to improve the accuracy of position estimation at low-speed situations

when a one time calibration of the rotor position is available. The results are

demonstrated through simulation studies.

The second part of the thesis focuses on the identifiability of a class of multi-

input-multi-output (MIMO) nonlinear systems with non-matching unknown in-

puts, i.e., without satisfying the involutive condition, but the number of the mea-

surement outputs is assumed to be one more than the number of the unknown

inputs. We shall establish conditions for uniform observability of these uncertain

systems as well as the identifiability of the unknown inputs. For this class of un-

certain systems the original nonlinear system can be divided into two subsystems,

of which one is a square subsystem with the matching unknown inputs appearing

in the corresponding last equation, and the other subsystem has non-matching

unknown inputs.
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To handle such a nonlinear uncertain system, a high gain observer appended

with multiple higher order sliding mode terms is proposed, where the nonlinear

sliding mode feedbacks are designed to track the unknown inputs individually, and

replace them with some nominal dynamics on the sliding mode surfaces. As a

result, the uniform observability for the subsystem with the non-matching inputs

can be guaranteed, and the high gain observer works to ensure that the remaining

dynamics on the sliding mode surfaces is asymptotically stable. Therefore, the

unknown inputs can be reconstructed after all the states have converged to their

true values.

A class of more general MIMO nonlinear uncertain systems in which the un-

known inputs or disturbances appear in both the state dynamics and the mea-

surement outputs, is then considered. With one more output than the number

of unknown inputs, it guarantees that at least one clean output signal can be

achieved in the initial stage. Then, a recursive sliding mode observer with high

gain feedback is developed, in which the sliding mode feedbacks with recursive

structures are designed to ensure that the sliding mode surfaces are reached se-

quentially, and that the valuable signals on the measurement outputs are gradu-

ally extracted by cancelling the unknown inputs in sequence. Then, the high gain

feedback works to guarantee the unknown inputs and the states can be identified

asymptotically.
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Chapter 1

Introduction

1.1 Motivation

Real-time and accurate information of the system state is often necessary for

effective control of a system or monitoring of a process. However, in practice, there

are only partial state and/or input information available through the measurable

outputs, plus the existence of system uncertainties or disturbances that are caused

by parameter deviations or modeling errors. The lack of full state information

and the presence of uncertainties often limit the performance of the controlled

processes. For such situations, a robust observer with high estimation accuracy

is required to estimate the unknown states and recover the uncertainties1.

The sliding mode observer (SMO) has been proven to be an effective approach

for handling uncertain systems, due to its insensitivity to the uncertainties and the

capability of reconstructing the uncertainties based on the equivalent injection in-

put concept. Essentially, the SMO works with a switching feedback mechanism to

control the estimation system’s trajectory towards a predefined manifold (namely

the sliding surface) and staying on it thereafter.

In this context, the motivation for this research arises from the desire to design

a robust estimation method for a class of nonlinear uncertain systems, so as to

provide highly accurate and reliable estimates of the unmeasurable states as well

1Through out the thesis, the terms ’uncertainties’ or ’disturbances’ or ’unknown inputs’ are
used interchangeably. They indicate the presence of unknown dynamics in the system.
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2 Chapter 1. Introduction

as the unknown dynamics present in the systems.

1.2 Earlier Works

An observer is a dynamic system that models a real system in order to provide

on-line estimations of its internal states, or the unknown dynamics itself, based

on the measurements of the inputs and outputs of the real system.

1.2.1 Observers for Linear and Nonlinear Systems

The observer design was first presented by Luenberger in [1]- [3] for deterministic

continuous-time linear time-invariant (LTI) systems, and later extended into time-

varying systems, discrete-time systems, and time-delay systems [4]- [8]. In [9],

the Luenberger observer with adapting parameters was proposed to estimate the

states of an unknown linear system, and the convergence rates can be made

arbitrarily fast by choosing large adaptive gains. Similar works based on Lyapunov

stability theory have been reported in [10]- [12]. Meanwhile, the Kalman filter

based algorithms can provide an optimal estimate with the minimum variance for

a class of stochastic systems with white noise [13,14].

In general, the linear estimation problem for deterministic linear systems with

or without the white noise is almost solved with the development of Luerberger-

like observer and Kalmam filter based algorithms. Their successes and practical

limitations have motivated further research and development of various extensions

for handling uncertain linear and nonlinear dynamic systems, to provide accurate

system state estimation as well as unknown parameter identification [15]- [19], so

that the results can be applied to most practical systems.

Unlike linear systems, the observability of a nonlinear system is input-dependent,

which means the nonlinear system may have singular or bad input that makes it

unobservable [35].

The early attempt to design asymptotic observer for a nonlinear system through

the coordinate transformation was reported in [20] - [22], in which the transformed

dynamic system is linear and observable, and all the previous linear estimation

Nanyang Technological University Singapore



1.2. Earlier Works 3

techniques can be applied by means of inverse mapping. The work in [23] pre-

sented the necessary and sufficient conditions for the existence of such lineariza-

tion transformation for nonlinear systems with or without inputs. Moreover, the

results in [24, 25] provided a general introduction to the geometric methods by

linearizing the error dynamics based on exact nonlinear feedback or correction

terms. However, these observer design methods are hampered by the requirement

of strict existence conditions of the invertibility of the state transformation or the

so-called Jacobian matrix, which is obtained from higher order Lie derivatives of

the system output [26].

The Lyapunov-based approach has also been proposed as an effective observer

design methodology for nonlinear systems [27]- [32]. The early attempt for non-

linear observer design based on Lyapunov function was Thau [27], in which the

sufficient conditions for convergence were also addressed. Later, extensions to

Thau’s work for a class of Lipschitz nonlinear systems were developed based on

the off-line solution of a Riccati equation [30, 31]. However, the feedback gain

design based on Lyapunov method is not straight forward and only sufficient

conditions are available.

In addition to the above mentioned results, the high gain observer, which can

be treated as a kind of extended Luenberger observers, has been given full atten-

tion for its ability to handle nonlinear Lipschitz systems [33]- [37]. In [33], through

the inverse mapping of Lie transformation, a nonlinear observer has been devel-

oped for a class of uniformly observable systems, and exponential convergence

can be achieved in spite of large Lipschitz constants. Later on, the observability

of a general nonlinear systems has been carefully addressed in [35], in which a

nonlinear system with a triangular structure is proven to be uniformly observable

for any arbitrary bounded input, and an exponential observer was developed for

such nonlinear systems. After that, the work in [36] presented an explicit feedback

gain design methodology for a special class of nonlinear system with triangular

structure, which made the high gain observer easier to implement.

Although fruitful results have been reported for linear and nonlinear systems,

the above mentioned observers are only suitable for the nominal dynamic sys-
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4 Chapter 1. Introduction

tems. In other words, the presence of unknown dynamics in the system, such

as variations of the system parameter, uncertainties in modeling or external dis-

turbance, can result in poor estimation performance. Therefore, it is important

and necessary to develop a robust observer for the identification of the unknown

states as well as the system uncertainties.

In order to handle unknown system dynamics, many effective methods and

technologies have been reported during the past few decades [38]- [43], and suc-

cessfully implemented into industrial applications [44]- [50]. The early work on

unknown input observer design was based on the geometric conditions to decou-

ple the uncertainties from the nominal dynamics [38]. The work in [41] presented

a comprehensive analysis on unknown input observability and reconstruction for

LTI systems, and the corresponding necessary and sufficient conditions are also

provided. Based on an adaptive observer design technique, two reduced-order in-

put estimators have been proposed for LTI systems [43], which can also be applied

to certain non-minimum phase systems.

1.2.2 Sliding Mode Observer for Uncertain Systems

The sliding mode control (SMC) has been established as a robust method for

handling system uncertainties [51]- [56]. It forces the system trajectory to move

along a predefined manifold and remain on it thereafter. Based on the same

concept, the sliding mode based observer for the state and disturbance estimations

of uncertain systems became an attractive research field in recent years, due to

its advantages of high state-estimation accuracy, simplicity, robustness and the

capability of reconstructing the uncertainties.

The early works based on Lyapunov method in this area were developed by

Walcott and Zak for dynamic systems with bounded disturbance [57], and ex-

tended to a more general class of nonlinear systems in [58,59].

The idea of sliding mode observer (SMO) design based on the equivalent con-

trol concept was first proposed by Utkin and Drakunov in [52,55], and was applied

into a class of nonlinear system with triangular structure without the knowledge

of the input derivative, in which only the discontinuous term was fed back through
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1.2. Earlier Works 5

properly designed gains [61]. The result in [63] incorporated a sliding mode term

into a high gain observer to realize a robust nonlinear observer for a class of non-

linear Lipschitz uncertain systems, then the unknown disturbance was replaced

with nominal terms on the sliding surface, and reconstructed after all states have

converged. Similar work can be found in [64]. However, these methods were only

applicable to systems where the relative degree between the uncertainty and the

measurement output is one, moreover, the undesirable chattering will degrade the

estimation performance and that a low pass filter is required for the reconstruction

of the uncertainty.

With the development of higher order sliding mode (HOSM) techniques, the

relative degree restriction has been completely relaxed and a better estimation

accuracy can be achieved with proper design [53,66]- [74]. As a result, the HOSM-

based observers have received increasing attention in recent years [75]- [84], and

the second-order sliding mode observers have been successfully applied in many

applications [85]- [92], such as the suboptimal sliding mode observer with the

first derivative of the output was employed to estimate the unknown velocity and

torque in electrical drives systems [85, 89]. Later on, with the modified super-

twisting algorithm the observer was developed without differentiator in [86], and

it has been successfully applied into electromechanical systems [87].

It should be mentioned that the traditional sliding mode techniques are only

robust to uncertainties and disturbances satisfying the matching condition in that

they enter the system via the same channels as the control inputs. In other words,

these sliding mode observers are only suitable for uncertain systems with the un-

certainties appearing only in the corresponding last dynamic equation. In [76], a

traditional Luenberger observer with high order sliding mode differentiator was

developed for a class of LTI systems with the unknown input satisfying the so-

called strong observability or strong detectability condition. The work in [81]

applied a higher order sliding mode observer to a SISO nonlinear system to iden-

tify the unknown disturbance, in which the relative degree between the unknown

disturbance and measurable output is full order or higher order. Similar works

have been extended into the MIMO nonlinear uncertain systems [62,78] based on
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the involutive condition, with which the original uncertain system can be decom-

posed into two subsystems: the first subsystem possesses a strictly differential

structure with the uncertainties in the last dynamic equation, and the other one

has a nominal dynamics. However, the identifiability of the uncertainties are

strongly related to the stability of the nominal subsystem which is difficult to

verify.

Besides the restriction of the matching condition, the chattering effect remains

as another challenging problem in sliding mode observer design, and in order to

alleviate such shortcomings of the sliding mode observers, some researches based

on the integration of SMO with other methodologies (i.e. hybrid sliding mode

designs) have been reported [93]- [100].

1.3 Objectives and Contributions

The focus of this thesis is on robust hybrid sliding mode observer design techniques

for unknown state estimation and disturbance identification of nonlinear uncertain

systems, in which the unknown disturbances enter the system dynamics through

the unknown-state dependent vectors or matrices, i.e., non-matching disturbances

in the observer sense. The main emphasis lies with exploiting the observability

of the system states from the measurement outputs, as well as the identifiability

of the unknown disturbances.

In a controller design, the so-called matching condition of the disturbance

means that it enters the system via the same channel as the control input, and

its corresponding distribution vector is the same as the control input. However,

with regards to observer design, the channels of feedback input can be arbitrarily

chosen, and the corresponding distribution vector can be designed flexibly based

on any known state/output. Therefore, the matching condition in the observer

sense means that the distribution vectors of the uncertainties and disturbances

are independent of any known state 2.

In this thesis, we shall present a new perspective on the design and analysis

2Throughout the thesis, the concept of the non-matching in the observer sense is used for
the system uncertainties or the disturbances or the unknown inputs.
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of robust observers for unknown state estimation and non-matching uncertainties

identification of nonlinear systems. The whole development relies on the idea

that ”the unknown disturbances can be replaced by some nominal dynamics when

the corresponding sliding mode happens”. As a result, the observability of an

uncertain system is related to the reachability of the sliding mode, as well as the

stability of the remaining dynamics on the sliding surface.

The approaches to the robust observer designs in the thesis will be examined

for both single-input-single-output and multi-input-multi-output nonlinear sys-

tems with the input being unknown. The major contributions of this thesis can

be summarized as follows:

(i) A hybrid nonlinear observer that combines a full-order high gain feedback

with a higher-order sliding mode feedback is proposed. With the proposed

observer, the high gain feedback works to constrain the estimation error

to within an invariant set regardless of the initial conditions, in which the

sliding mode condition is satisfied. Then the sliding mode feedback tracks

the unknown input and ensures that the sliding mode surface is reached in

finite time. Finally, both the unknown input and states can be identified

when the remaining dynamics on the sliding surface is self asymptotically

stable. However, it will be pointed out that the stability of the remaining

dynamics is completely independent of the observer gains, and is only related

to the original system structure.

(ii) The proposed hybrid observer design approach is experimentally verified on

a series DC motor. Based on the measurable current and input voltage, a

robust hybrid observer is developed to identify a non-matching time vary-

ing parameter that affects the speed sensorless series DC motor through an

unknown-speed dependent vector. The identified parameter is then used to

enhance the speed estimation performance in the presence of external dis-

turbance. The stability for the developed observers are carefully addressed,

and experimental results are provided to demonstrate the expected esti-

mation performance. Moreover, the sensitivity of the estimated parameter

against variations in resistance and inductance is demonstrated by Monte
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carlo simulations.

(iii) The sliding mode observer design for rotor position and speed estimations

of a surface-mounted permanent magnet synchronous motor (PMSM) is

considered. By separating the rotor position related dynamics from the

back electromotive forces (EMFs) and modeling them as new unknown sys-

tem states, the filtering effect on the position estimation can be completely

avoided. From the observer design point of view, the reduced-order esti-

mation error dynamics is self-stable, but not asymptotically stable. Then,

a one time rotor position calibration is required for accurate position es-

timation. The observability of speed and position estimations is carefully

addressed, and the effectiveness of the proposed method is verified by sim-

ulation studies.

(iv) Robust observer design for a class of MIMO nonlinear systems in which the

number of measurement outputs is one more than the number of unknown

inputs is considered. A new hybrid observer that combines a reduced-order

high gain feedback with multi sliding mode terms is proposed based on the

Lie derivatives transformation. The sliding mode feedbacks work to ensure

the corresponding sliding mode surface will be reached individually and

remained thereafter. Then, with all the sliding mode surfaces being reached,

the high gain feedback designed based on the extra output guarantees that

the remaining dynamics is asymptotically stable on the sliding surfaces.

Therefore, all the unknown inputs and states can be exactly identified.

(v) A general class of MIMO nonlinear systems in which the unknown inputs

appear in both the dynamics of the states and the measurement outputs is

also examined. A novel hybrid observer that combines higher order sliding

mode observers with a reduced-order high gain feedback is proposed. The

sliding mode observer is designed with recursive structures to ensure that

the sliding mode surfaces are reached sequentially, and that the valuable sig-

nals on the measurement outputs are gradually extracted by cancelling the

unknown inputs in sequence. Then, the reduced-order high gain feedback
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designed based on the extra output works to guarantee that the unknown

inputs and the states can be identified asymptotically on the sliding mode

surfaces.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows:

In Chapter 2, a comprehensive review of sliding mode observers is presented.

The methodologies of the high gain observer theory and nonlinear transformation

are also reviewed.

In Chapter 3, a new perspective on the design of robust observer for a class

of SISO nonlinear systems with non-matching unknown input is presented. The

identifiability of the unknown input is carefully addressed, and a hybrid observer

design approach that integrates a full-order high gain feedback with sliding mode

term is proposed.

In Chapter 4, a robust hybrid observer is developed to identify a non-matching

time-varying parameter that affects the speed sensorless series DC motor via an

unknown-speed dependent vector. Based on the measurable current and input

voltage, the non-matching parameter can be exactly identified, as well as the

unknown speed. Then, the identified parameter is applied into another observer

to enhance the speed estimation performance in the presence of external distur-

bance. Experimental results are provided to demonstrate the effectiveness of the

proposed results.

In Chapter 5, a novel perspective on the sliding mode observer design for speed

sensorless estimation of a PMSM is proposed. Based on the idea that the chatter-

ing/filtering effect of the sliding mode observer only affects the reconstruction of

unknown dynamics, but not the system states, the rotor position can be identified

without filtering effect if its related dynamics are considered as new system states

instead of a part of the unknown back-EMFs.

In Chapter 6, a class of MIMO nonlinear uncertain systems where the number
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of measurement outputs is one more than the number of the unknown inputs

is considered. A hybrid observer that combines a reduced-order high gain feed-

back with multiple sliding mode terms is proposed, in which the sliding mode

feedbacks ensure that the corresponding sliding surfaces are reached individually

and remained thereafter. Then the reduced-order high gain feedback guarantees

the asymptotic stability of the reduced-order estimation dynamics on the sliding

mode surface.

In Chapter 7, a class of more general MIMO nonlinear systems is considered,

in which the non-matching unknown inputs appear in both the dynamics of

states and the measurement outputs. A novel nonlinear observer that combines

a reduced-order high gain feedback with a recursive sliding observer is developed.

The number of measurable outputs is assumed to be more than the number of

unknown inputs, so as to guarantee that as least one clean output signal can be

extracted in the initial stages. Then the recursive sliding mode observers ensure

that the sliding mode surfaces are reached sequentially and the valuable signals

on the measurement outputs are gradually extracted as well. Finally, the high

gain feedback guarantees the asymptotic stability of the remaining dynamics on

the sliding surfaces.

In Chapter 8, the thesis is concluded. Several interesting research topics are

also presented as possible future research directions.
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Chapter 2

Sliding Mode Observer: A

Review

In this chapter, a comprehensive review on existing sliding mode techniques will

be conducted. The existing results of high gain observer theory will also be

reviewed, to provide a theoretical framework for the development of new results

in the remainder of the thesis.

The chapter is organized as follows: Section 2.1 presents an overview on the

theory of sliding mode control, as well as sliding mode observer designs. In section

2.2, some existing sliding mode observer techniques will be reviewed according to

the relative degree of the unknown disturbance. In section 2.3, the observability of

nonlinear systems will be discussed, and brief review of a nonlinear state transfor-

mation is also presented. Then the high gain observer theory will be introduced.

Section 2.4 concludes this chapter.

2.1 Sliding Mode Theory

The sliding mode control (SMC) concept was first derived from the varying struc-

ture control (VSC) theory in the early 1990’s by Emelyanov and several co-

researchers, in which a discontinuous control action is adopted to force the system

trajectory onto a prescribed manifold, namely the sliding surface, regardless of

Singapore Singapore



12 Chapter 2. Sliding Mode Observer: A Review

any bounded matching dynamics 1 [54].

In general, the whole trajectory of a sliding mode control system consists of

two modes : the reaching mode, or called nonsliding mode, in which the system

trajectory moves towards the sliding surface from anywhere; and the sliding mode,

in which the trajectory reaches the sliding surface and stays on it thereafter.

Therefore, the corresponding design procedure of sliding mode control can be

divided into two steps: selecting a sliding mode surface, and designing a sliding

control law to ensure the existence of sliding mode.

Consider the control problem of a continuous-time single-input-single-output

system given by

ẋ = f(x) + b(x)u

y = σ(x)
(2.1)

where x ∈ <n is the state, u ∈ < is the input, y ∈ < is the measurable output,

and f,b ∈ <n are smooth functions.

Suppose the relative-degree r between the output σ and the input u is constant

and known. Then the nonlinear system (2.1) can be expressed in the form of the

measurement output as [105]

σ(r) = h(x) + g(x)u (2.2)

where g(x) = L
(r)
f σ(x), h(x) = LbL

(r−1)
f σ(x), with the Lie derivative being de-

fined as Lfσ(x) = [∂σ(x)/∂x]f. Therefore, the control input that could bring

about the sliding mode in system (2.2) would be of the form

u =





u+(x) with σ(r−1) > 0

u−(x) with σ(r−1) < 0
(2.3)

and the functions u+(x) 6= u−(x).

Definition 2.1. [53, 69, 74] Consider a smooth dynamic system with a smooth

output σ, the successive total time derivatives σ, σ̇, . . . , σ(r−1) are continuous func-

tions, and the set σ = σ̇ = · · · = σ(r−1) = 0 is non-empty and consists of locally

1The dynamics can include any nonlinear function, disturbance, and uncertainty.
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2.2. Sliding Mode Observers 13

Filippov trajectories. Then, the motion on the set σ = σ̇ = · · · = σ(r−1) = 0 is

said to exist in the rth-order sliding mode, and the rth derivative σ(r) is mostly

supposed to be discontinuous or non-existent.

It is well-known that the intrinsic robustness of SMC lies with its switching

control mechanism, but it may cause the undesirable chattering issues due to the

limitation of bandwidth in real applications. Such phenomenon is dangerous in a

control system since it may excite the high frequency un-modeled dynamics, which

may degrade the system performance or even dominate the system’s stability. In

order to attenuate or remove the chattering effect, several interesting techniques

to overcome the limitation have been proposed in the past two decades [53,69,78,

101].

With regards to the sliding mode observer (SMO) which is a numerical model

implemented in the computer, the existing sliding mode control techniques can be

seamlessly ported into the observer design. Then, the chattering issues are only

related to the uncertainty of the estimation accuracy because of the requirement

of a low-pass filter, but it has no effect on the state estimation accuracy. Moreover,

the channels of feedback input can be arbitrarily chosen, and the corresponding

distribution vector can be designed flexibly based on any known state or output.

2.2 Sliding Mode Observers

Based on Definition 2.1, it can be found that the sliding control law design (2.3)

is strictly related to the order of the relative degree between the measurement

output and the system input. In other words, with regards to the sliding mode

observer design for uncertain systems, the feedback input design is related to the

relative degree between the system output and the uncertainty/disturbance 2.

In this section, existing sliding mode observers for a class of SISO nonlin-

ear uncertain systems will be reviewed. Moreover, the chattering effect and the

corresponding attenuation methodologies will also be included.

2In the following, the relative degree means it between the system uncertainty and the
measurable output.
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2.2.1 Standard Sliding Mode Observer

Let’s consider the following uncertain system which is expressed in the form of

the measurement output, as given by

ẋ = f(x, u) + d(t) (2.4)

where x ∈ < is measurable state, u ∈ < is known system input, f(·) is a known

continuous function, and d(t) denotes the system uncertainty or disturbance,

which is to be identified.

A sliding mode observer can be designed as

˙̂x = f(x̂, u) + ur (2.5)

where the sliding mode term ur is given by

ur = −ρsign(x̂− x) (2.6)

with sign(·) being a discontinuous signum function, defined by

sign(σ) =





+1 if σ > 0

0 if σ = 0

−1 if σ < 0

(2.7)

Then, the dynamics of the estimation error e = x̂− x can be described as

ė = f(x̂, u)− f(x, u)− d(t)− ρsign(e) (2.8)

Suppose that the disturbance d(t) is bounded, and the system state x is locally

bounded, then the existence is ensured of a positive constant F , such that the

following inequality holds:

|f(x̂, u)− f(x, u)− d(t)| ≤ F (2.9)
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Therefore, the sliding gain ρ can be chosen large enough, i.e., ρ > F , and it has

d

dt
e2 = eė

≤ −{ρ− |f(x̂, u)− f(x, u)− d(t)|}|e|
≤ −(ρ− F )|e|
< 0 (∀e 6= 0)

The above inequality implies the estimation error e will asymptotically converge

to zero provide that the sliding mode gain is chosen large enough, i.e., ρ > F . In

other words, the first order sliding surface e = x̂ − x = 0 will be asymptotically

reached and remained thereafter.

Once the sliding mode occurs, i.e., x̂ = x, f(x̂, u) = f(x, u), the unknown

disturbance d(t) can be recovered based on the equivalent input control concept,

either by using a low-pass filter [52], or by using a small positive scalar δ [59], as

follow:

d̂(t) ≈ {ρsign(e)}eq ≈ ρ
e

(|e|+ δ)
(2.10)

with {·}eq denoting the equivalent signal obtained by the low-pass filter. Clearly,

the accuracy of the disturbance estimation is strictly dependent on the parameter

δ or the low-pass filter parameters.

In order to improve the estimation accuracy of the unknown disturbance by

attenuating the chattering effect, some results in which the sliding mode feedback

ur is designed by replacing the switching function with a continuous function in

a predefined boundary layer have been proposed [102,103]. One common method

is using the following saturation function:

sat(σ, ε) =





σ/ε if |σ| ≤ ε

sign(σ) if |σ| > ε
(2.11)

where ε indicates the thickness of the boundary layer.

It can be found that inside the boundary layer, the signum function will be

Nanyang Technological University Singapore
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approximated by a high gain linear feedback which is a continuous function. As

a result, the sliding feedback ur remains continuous everywhere and the unknown

disturbance can be directly recovered without the filtering effect. However, the

implementation of the boundary layer method will cause a trade-off between the

robustness of observer and the estimation accuracy of disturbance because the

Lyapunov stability cannot be guaranteed inside the boundary layer [104].

The super-twisting algorithm generates a continuous feedback on the sliding

surface [53], which means the unknown disturbance can be recovered on the sliding

surface without the filtering effect, as well as without sacrificing the robustness

of the observer. Then, the sliding mode term ur in (2.5) can be replaced by

ur = −ρ|e|1/2sign(e) + v

v̇ =




−ur, if |ur| > ūr

−Msign(e), if |ur| ≤ ūr

(2.12)

with the positive parameters ρ,M, ūr being properly chosen.

Once the sliding mode occurs, the unknown disturbance can be directly ob-

tained from the sliding mode term, as

d̂(t) ≈ ur (2.13)

Remark 2.1. Note that the sliding mode term ur in (2.12) is a continuous func-

tion on the sliding surface e = 0, then the additional low-pass filter is completely

avoided in the reconstruction of the unknown disturbance, without sacrificing the

robustness of the observer. Moreover, the super-twisting algorithm belongs to the

second order sliding mode family, which implies that the state estimation accuracy

can be improved, as compared with other first order sliding mode observers.

2.2.2 Second-order Sliding Mode Observer

In general, the second order sliding mode observers are used for handling uncertain

systems in which the relative degree between the unknown disturbance and the

measurement output is two. They are mainly designed based on the existing
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second order sliding mode control techniques, such as the twisting-algorithm [53],

the modified super-twisting algorithm [86], the terminal sliding mode algorithm

[66], the sub-optimal sliding mode algorithm [101], etc.

Consider a nonlinear uncertain system in the form of

ẋ1 = x2

ẋ2 = f(x1, x2, u) + d(t)
(2.14)

where x1 is the measurable state, u is the known system input, f(·) is a nominal

continuous function, and d(t) indicates the bounded unknown disturbance. Then,

the purpose is to design a robust observer to estimate the unknown state x2, as

well as the disturbance d(t).

The sliding mode observer can be designed in the form of

˙̂x1 = x̂2

˙̂x2 = f(x̂1, x̂2, u) + ur

(2.15)

where the sliding mode term ur can be designed based on the twisting algorithm

[53], as given by

ur = −ρ1 + ρ2

2
sign(e1)− ρ1 − ρ2

2
sign(ė1) (2.16)

with the sliding gains ρ1 > ρ2 > 0 being chosen large enough, e1 = x̂1 − x1.

Suppose that the disturbance d(t) is bounded, and the system states x1 and

x2 are locally bounded, then the existence is ensured of a positive constant F ,

such that the following inequality holds:

|f(x̂1, x̂2, u)− f(x1, x2, u)− d(t)| ≤ F (2.17)

By defining a Lyapunov function V = (ė1)
2/2 + |e1|(ρ1 + ρ2)/2, which is continu-
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ously differentiable except on e1 = 0, it can be verified that

V̇ = ė1ë1 +
ρ1 + ρ2

2
ė1sign(e1)

= ė1[f(x̂1, x̂2, u)− f(x1, x2, u)− d(t)]− ρ1 − ρ2

2
ė1sign(ė1)

≤
[
ρ1 − ρ2

2
− F

]
|ė1| (2.18)

which implies that it has V̇ < 0 if the sliding gains are chosen large enough, i.e.,

(ρ1−ρ2) > 2F . In other words, the second order sliding surface ė1 = e1 = 0 will be

reached in finite time and remained thereafter. Then, the unknown disturbance

d(t) can be recovered from the sliding mode term ur through a low pass filter.

Similar proof can be found in [126].

Obviously, the nonlinear term ur can also be designed based on other second

order sliding mode techniques, such as the sub-optimal sliding mode algorithm

[70,101], which has the form of

ur = −ρ1 + ρ2

2
sign(e1 − e∗1/2) +

ρ1 − ρ2

2
sign(e∗1) (2.19)

where e∗1 is the value of e1 detected at the closest time in the past when ė1 was 0.

Note that both the twisting algorithm in (2.16) and the sub-optimal algorithm

in (2.19) require the information on the sign of the first time derivative of the

system output. A modified super-twisting algorithm without any differentiator

is developed in [86], and the second order sliding mode observer in (2.15) can be

replaced by
˙̂x1 = x̂2 + z1

˙̂x2 = f(x̂1, x̂2, u) + z2

(2.20)

and the correction variables z1 and z2 are output injections of the form

z1 = −λ|x̂1 − x1|sign(x̂1 − x1)

z2 = −ρsign(x̂1 − x1)
(2.21)

with λ and ρ being two positive and properly chosen parameters.

Remark 2.2. The modified super-twisting algorithm based observer provides a ro-
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bust estimation for the system states without any differentiator, and the unknown

disturbance can be reconstructed from the variable z2 on the sliding surface.

Remark 2.3. Unlike the first order sliding mode techniques, the second order

(including higher order) sliding mode techniques guarantee that the corresponding

sliding surface will be reached in finite time, but not exponential convergence. The

stability analysis can be found in references [53,86,101,126].

2.2.3 Higher-order Sliding Mode Observer

To the best of our understanding, the finite time convergence of arbitrary order

sliding mode techniques is still a challenging issue that has yet to be completely

addressed. So far, there are only one or two families of higher-order (r ≥ 3)

sliding mode algorithms available based on the homogeneity properties that are

proposed by Levant [69,72].

Considering an rth-order SISO nonlinear uncertain system expressed in the

form of measurement output, as described by

ẋ1 = x2

ẋ2 = x3

...

ẋr = f(x, u) + d(t)

(2.22)

where x = [x1, x2, . . . , xr]
T ∈ <r, x1 is the only measurable state, u is the known

system input, the function f(·) is known and assumed to be locally bounded, and

d(t) represents the bounded unknown disturbance that has a relative degree r

with respect to the measurement output x1. Our objective is to design a robust

observer to estimate the unknown states x2, . . . , xr, as well as the disturbance

d(t).

By duplicating the nominal form of the given system (2.22) and replacing the

uncertain part with a feedback term, a nonlinear observer can be designed in the
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form of
˙̂x1 = x̂2

˙̂x2 = x̂3

...

˙̂xr = f(x̂, u) + ur

(2.23)

where x̂ = [x̂1, x̂2, . . . , x̂r]
T ∈ <r indicates the estimate of x, and ur can be

designed based on an rth-order quasi-continuous sliding mode algorithm, as given

by [72]

ur = −ρΨr−1,r(e1, z1, . . . , zr−1), i = 1, . . . , r − 1

ϕ0,r = e1, N0,r = |e1|, Ψ0,r = ϕ0,r/N0,r = sign(e1),

ϕi,r = zi + βiN
(r−i)/(r−i+1)
i−1,r Ψi−1,r, Ni,r = |zi|+ βiN

(r−i)/(r−i+1)
i−1,r ,

Ψi,r = ϕi,r/Ni,r

(2.24)

with e1 = x̂1 − x1, ρ, β1, . . . , βr−1 being positive parameters, and z1, . . . , zr−1

represent the corresponding estimate of derivatives, i.e., ė1, . . . , e
(r−1)
1 , which are

computed via the (r − 1)th-order sliding mode differentiator [69], as

ż0 = w0,

w0 = z1 − a0M
1/r|z0 − e1|r−1/rsign(z0 − e1)

ż1 = w1,

w1 = z2 − a1M
1/(r−1)|z1 − w0|(r−2)/(r−1)sign(z1 − w0)

...

żr−2 = wr−2,

wr−2 = zr−1 − ar−2M
1/2|zr−2 − wr−3|1/2sign(zr−2 − wr−3)

żr = −ar−1Msign(zr−1 − wr−2)

(2.25)

where the positive numbers a0, . . . , ar−1 are chosen in advance, one possible choice

with r ≤ 6 is ar−1 = 1.1, ar−2 = 1.5, ar−3 = 3, ar−4 = 5, ar−5 = 8, ar−6 = 12. And

the parameter M is chosen to satisfy M ≥ |f(x̂, u)− f(x, u)− d(t) + ρ|.

It has been proven in [69,72] that the robust differentiator (2.25) ensures the

derivatives of e1 will be estimated in finite time, i.e., e
(i)
1 = zi, i = 1, . . . , r − 1.
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Then, the quasi-continuous sliding mode term ur given in (2.24) ensures that the

rth-order sliding surface e
(r−1)
1 = · · · = e1 = 0 will be reached and remained

thereafter. Thus, the unknown states x2, . . . , xr can be exactly estimated by

x̂2, . . . , x̂r, and the disturbance can be reconstructed based on the equivalent

input injection concept, as

d̂(t) ≈ {ur}eq (2.26)

2.3 Observability and High Gain Observer

2.3.1 Observability and Nonlinear Transformation

It is well-known that if a linear system is observable or detectable, it means that

the initial states can be identified for any arbitrary control input. However, this is

not true for nonlinear systems. In general, the observability of nonlinear systems

is input-dependent, there may exist some ”bad inputs”, namely singular inputs,

that make the system states unobservable. Therefore, it is important to verify

whether the nonlinear system is observable, independent of input or not, before

the observer design.

Consider a class of SISO nonlinear system in the form of





ẋ(t) = f(x) + b(x)u(t)

y(t) = h(x)
(2.27)

where x = [x1, x2, . . . , xn]T ∈ <n, the nonlinear functions f(x), b(x) are smooth

known vector field in <n, h(x) is a smooth function on <, u(t) is the system

control input and y(t) is the measurable output.

Definition 2.2. (Observability) [35, 104] The system given by (2.27) is said to

be uniformly observable if, for any pair of initial states (x0, x̄0) with x0 6= x̄0, and

for all admissible inputs u(t) during the time t ∈ [0, T ], it has y(x(x0, u, t), u) 6=
y(x(x̄0, u, t), u).

Definition 2.3. (Observability for any input) [35, 104] The system given by

(2.27) is said to be uniformly observable if, for any input u(·) ∈ < and for any
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pair of initial states (x0, x̄0) with x0 6= x̄0, there exists a time t ≥ 0 such that

y(x0, u(·), t) 6= y(x̄0, u(·), t).

The above definitions imply that the uniform observability of a system holds

when the initial states can be recovered based on the data of the measurable

output as well as its derivatives [33]. In order to analyze the observability of the

nonlinear system in (2.27), a nonlinear state transformation is defined as

x → x̃ = [x̃1 x̃2 · · · x̃n]T

= Φ(x) =
[
h(x) Lfh(x) · · · L

(n−1)
f h(x)

]T (2.28)

where the Lie derivative is defined as Lfh(x) = [∂h(x)/∂x] f, and it has

˙̃x1 = Lfh(x) + Lbh(x)u , x̃2 + Lbh(x)u

˙̃x2 = L
(2)
f h(x) + LbLfh(x)u , x̃3 + LbLfh(x)u

... =
...

˙̃xn−1 = L
(n−1)
f h(x) + LbL

(n−2)
f h(x)u , x̃n + LbL

(n−2)
f h(x)u

˙̃xn = Ln
f h(x) + LbL

(n−1)
f h(x)u

(2.29)

Therefore, the original nonlinear system in (2.27) can be transformed into





˙̃x = Ax̃ + α(x̃) + γ(x̃)u

y = Cx̃
(2.30)

with

A =




0 1 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1

0 0 0 · · · 0 0



∈ <n×n, C = [1 0 · · · 0] ∈ <n

α(x̃) = [0 0 · · · 0 Ln
f h(x)]T ∈ <n

γ(x̃) = [Lbh(x) LbLfh(x) · · · LbL
(n−2)
f h(x) LbL

(n−1)
f h(x)]T ∈ <n

Lemma 2.1. [35, 104] For a general nonlinear system in the form of (2.30),
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suppose that the vectors α(x̃) and γ(x̃) have the triangular structures, as given by

α(x̃) = [α1(x̃1) α2(x̃1, x̃2) · · · αn(x̃1, x̃2, . . . , x̃n)]T ∈ <n

γ(x̃) = [γ1(x̃1) γ2(x̃1, x̃2) · · · γn(x̃1, x̃2, . . . , x̃n)]T ∈ <n
(2.31)

Then, the nonlinear system in (2.30) is uniformly observable for any arbitrary

bounded input u.

Compared the dynamics of the system given in (2.30) with Lemma 2.1, it is

clear that the transformed system (2.30) is uniform observable if the vector γ(x̃)

has the triangular structure, i.e., LbL
(i−1)
f h(x) = γi(x̃1, x̃2, . . . , x̃i), i = 1, . . . , n.

Furthermore, the original nonlinear system given in (2.27) is also uniformly ob-

servable in the case when the mapping Φ(x) in (2.28) is a diffeomorphism ∀x.

The work in [35] has proved that the triangular structure condition in Lemma

(2.1) is a sufficient condition, but not necessary, to ensure the uniform observabil-

ity of the system for any system input. In the following subsection, a high gain

observer for handling the state estimation of a nonlinear Lipschitz system with

triangular structures will be reviewed.

2.3.2 High Gain Observer

The high gain observer provides one of the most effective techniques to estimate

the unknown states of Lipschitz systems, and has been widely used due to its

explicit feedback gain design [33, 36]. It was first proposed in [33] to achieve the

exponential convergence of the estimation error dynamics, and was highlighted

in [36] by providing an explicit feedback gain design methodology.

Now, we shall demonstrate the high gain observer design for the nonlinear

transformed system given by (2.30).

Assumption 2.1. For the transformed system (2.30), the vectors α(x̃) and γ(x̃)

are assumed to satisfy the triangular structure condition in (2.31) in Lemma 2.1,
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and their components are global Lipschitz functions with respect to x̃, such that

‖αi(x̃)− αi(x̃
′)‖ ≤ lαi‖x̃− x̃′‖

‖γi(x̃)− γi(x̃
′)‖ ≤ lγi‖x̃− x̃′‖

(2.32)

hold with some positive Lipschitz constants lαi, lγi, i = 1, . . . , n.

Consider the transformed nonlinear system (2.30) satisfying Assumption 2.1,

a high-gain observer can be designed in the form of

˙̂
x̃ = Aˆ̃x + α(ˆ̃x) + γ(ˆ̃x)u− S−1

θ CT (Cˆ̃x− y) (2.33)

where Sθ is the unique solution of the Lyapunov algebraic equation

θSθ + ATSθ + SθA−CTC = 0 (2.34)

with θ being a positive tuning parameter, and the explicit solution of (2.34) can

be obtained as [36]

Sθ(i, j) =
(−1)i+jCj−1

i+j−2

θi+j−1
, 1 < i, j < n, with Cr

n =
n!

(n− r)!r!
(2.35)

Furthermore, Sθ is symmetric positive definite matrix for any θ > 0.

Defining the estimation error e = ˆ̃x − x̃, the corresponding dynamics can be

obtained from (2.30) and (2.33) as

ė = (A− S−1
θ CTC)e + α(ˆ̃x)− α(x̃) + γ(ˆ̃x)u− γ(x̃)u (2.36)

Lemma 2.2. For the transformed system (2.30) satisfying Assumption 2.1, there

exists θ0 > 0 such that ∀θ > max{θ0, 1}, the high gain observer (2.33) ensures

that the estimation error e will asymptotically converge to zero.

Proof. For ease of analysis, the following equalities are given [64]

∆θ = diag(1,
1

θ
, · · · ,

1

θn−1
), Sθ =

1

θ
∆θS1∆θ

∆θA∆−1
θ = θA, C∆θ = C∆−1

θ = C
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Let ξ = ∆θe, a Lyapunov function can be defined as V = ξTS1ξ, in which S1

is a constant matrix of Sθ with θ = 1. Then, it has

V̇ = 2ξTS1∆θė

= 2ξTS1∆θ(A− S−1
θ CTC)e + 2ξTS1∆θ[α(ˆ̃x)− α(x̃) + γ(ˆ̃x)u− γ(x̃)u]

= 2θξTS1Aξ − 2θξTCTCξ + 2ξTS1∆θ[α(ˆ̃x)− α(x̃) + γ(ˆ̃x)u− γ(x̃)u]

(2.37)

Based on the equation in (2.34), it can be obtained that

2ξTS1Aξ = ξTS1Aξ + ξTATS1ξ = −ξTS1ξ + ξTCTCξ (2.38)

With Assumption 2.1 of vectors α(·) and γ(·), and θ > 1, it can be deduced that

‖∆θ[α(ˆ̃x)− α(x̃)]‖ ≤
n∑

i=1

1

θi−1
|αi(ˆ̃x)− αi(x̃)| ≤

n∑
i=1

1

θi−1
lαi‖e‖ ≤ lα‖ξ‖ (2.39)

‖∆θ[γ(ˆ̃x)− γ(x̃)]‖ ≤
n∑

i=1

1

θi−1
|γi(ˆ̃x)− γi(x̃)| ≤

n∑
i=1

1

θi−1
lγi‖e‖ ≤ lγ‖ξ‖ (2.40)

where lα = sup{lα1, . . . , lαn} and lγ = sup{lγ1, . . . , lγn} denote the maximum

Lipschitz constants of αi(·) and γi(·), respectively. In fact, for the transformed

system in (2.30), it has lα = lαn.

Now, by substituting the above inequalities into (2.37), we have

V̇ ≤ −θξTS1ξ − θ‖Cξ‖2 + 2‖ξTS1‖(lα‖ξ‖+ lγū‖ξ‖)
≤ −θξTS1ξ + 2(lα + lγū)‖ξTS1‖‖ξ‖
≤ −[θ − 2σ(S1)(lα + lγū)]V

, −[θ − θ0]V

(2.41)

where θ0 , 2σ(S1)(lα + lγū), with ū denoting the maximum of the modulus of the

system input u, and σ(S1) denoting the condition number of matrix S1.

It is clear that by choosing θ > {θ0, 1}, the derivative of Lyapunov function is

negative, i.e., V̇ < 0, for V 6= 0. This implies that both ξ and e will asymptotically

converge to zero. In other words, the unknown states of the system (2.30) can be

exactly estimated by the observer (2.33), i.e., ˆ̃x = x̃.

Nanyang Technological University Singapore



26 Chapter 2. Sliding Mode Observer: A Review

In order to construct the observer for the original system given by (2.27),

it is necessary to assume that the nonlinear transformation Φ(x) in (2.28) is a

diffeomorphism function with respect to x. In other words, the original system

can be obtained by differentiating the state transformation of x̃ = Φ(x) with

respect to time, i.e.,

ẋ =

[
∂Φ(x)

∂x

]−1

˙̃x =

[
∂Φ(x)

∂x

]−1

[Ax̃ + α(x̃) + γ(x̃)u] = f(x) + b(x)u(t) (2.42)

Therefore, by performing the inverse mapping of ˆ̃x = Φ(x̂) for the high gain

observer in (2.30), we can obtain the estimate state x̂ of the original state x as [64]

˙̂x =

[
∂Φ(x)

∂x

]−1

x=x̂

˙̃̂
x =

[
∂Φ(x)

∂x

]−1

x=x̂

[
Aˆ̃x + α(ˆ̃x) + γ(ˆ̃x)u− S−1

θ CT (Cˆ̃x− y)
]

= f(x̂) + b(x̂)u(t) +

[
∂Φ(x)

∂x

]−1

x=x̂

S−1
θ CT (y − h(x̂)) (2.43)

It can be seen that the high gain observer provides an exponential convergence

of the state estimation for Lipschitz nonlinear systems, and the feedback gain

design is straightforward for any large Lipschitz constant by selecting a large

tuning parameter θ. However, in most practical systems, there may exist system

modeling error or uncertain dynamics due to the effect of parameter variations or

unknown disturbances. For such situations, the high gain observer is not robust

enough, and another well-known issue for high gain observer is the measurement

noise which will be enlarged by the high gain feedback and deteriorate the state

estimation performance.

2.4 Summary

This chapter provided an introduction to the sliding mode observer techniques, as

well as high gain observer design methodologies. It seems that both the high gain

observer and the sliding mode observer have their own characteristics strengths

and weaknesses, which can be summarized as follows:

High gain observer:
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(i) For a Lipschitz nonlinear system, the design of HGO requires the system

to be uniformly observable and with the triangular structures as shown in

(2.31).

(ii) The feedback gain design is straightforward and independent of the initial

conditions.

(iii) However, HGO is sensitive to system uncertainties, as well as measurement

noise.

Sliding Mode Observer:

(iv) SMO is robust to any bounded matching disturbance or uncertainty, and

provides a mechanism to reconstruct it on the sliding surface.

(v) The design of SMO requires the system dynamics to be in the form of a

differentiator, and the last state dynamics in the system should be at least

locally bounded. In other words, the feedback gain design may be related

to the initial conditions.

In the next chapter, we shall develop a hybrid observer that integrates high

gain feedback with sliding mode techniques for the unknown state estimation

and input identification of a class of uncertain nonlinear SISO systems with non-

matching uncertainties. The stability analysis and the observer design procedure

will be carefully addressed.

Nanyang Technological University Singapore



Chapter 3

State and Unknown Input

Estimation: HGO plus HSMO

In this Chapter, we shall consider the estimation problem of a class of single-input-

single-output (SISO) nonlinear Lipscthiz systems with non-matching unknown

input or disturbance, in which the distribution vector of the uncertainty may

include the unknown states. A hybrid nonlinear observer structure that combines

a high gain feedback with a higher order sliding mode term is proposed. The high

gain feedback works to constrain the estimation error to within an invariant set

and the sliding mode term will asymptotically track the uncertainty if the system

satisfies strict structural assumptions. Furthermore, with the higher order sliding

mode, the chattering effect will be effectively attenuated without sacrificing the

robustness, and the system uncertainty can then be recovered without filtering

effect.

The chapter is organized as follows: Section 3.1 introduces some existing slid-

ing mode techniques. In section 3.2, we present the system description and prob-

lem formulation. In section 3.3, a hybrid observer is proposed for a class of

uncertain nonlinear Lipschitz systems, and both the stability analysis and the

design procedure are carefully addressed. In section 3.4, based on a numerical

example, some simulation results are presented to illuminate the effectiveness of

the proposed estimator. Section 3.5 concludes this chapter.
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3.1 Introduction

Unlike linear systems, the observability of a nonlinear system is related to the

system inputs, which means there may exist some singular inputs that make the

system unobservable [35]. Thus, it is necessary to discuss the observability of

nonlinear systems with respect to the system inputs before the observer design.

In [33], it has been proven that a nonlinear single-input-single-output (SISO)

system with triangular structure is uniformly observable for any bounded known

input, and an exponential convergence high gain observer is proposed. Later

on, the work in [36] presented an explicit feedback gain design methodology for

a special class of nonlinear Lipschitz systems with triangular structures, which

made the high gain observer easy to implement. However, these methods are only

applicable for nominal nonlinear systems with triangular structures, of which the

observability of the unknown states is clearly guaranteed.

The sliding mode based observer for state estimation of nonlinear uncertain

systems has been an active research field in the last few decades. This is due to its

insensitivity to uncertainties and the capability of reconstructing the uncertainties

based on the equivalent injection input concept. The early works based on the

Lyapunov method in this area were developed by Walcott and Zak for dynamic

systems with bounded disturbance [57], and extended to a more general class of

nonlinear systems in [59,60].

The idea of sliding mode observer (SMO) design based on the equivalent con-

trol concept was first proposed by Utkin and Drakunov in [52, 55]. It was later

employed into a particular nonlinear system with triangular input form [61], in

which only the discontinuous term was fed back through properly defined gains.

In [62], a robust SMO for nonlinear systems subject to unknown input was de-

veloped. The result in [64] incorporated a sliding mode term into a high gain

observer (HGO) to realize a robust nonlinear observer for a class of nonlinear

Lipschitz systems, and the unknown disturbance can be replaced with nominal

terms on the sliding surface. Similar works can be found in [63]. For the above

methods, they are only applicable for systems where the relative degree between

the uncertainties and system output is one, moreover, the undesirable chattering
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will degrade the estimation performance and that a low pass filter is required for

the reconstruction of the uncertainties.

Higher order sliding mode (HOSM) can remove the relative degree restriction

and achieve a better sliding accuracy [53] - [80]. Based on this idea, HOSM-based

observers have received increasing attention in recent years, especially the second

order sliding mode observers (2SMOs). In [85,89], a suboptimal second order slid-

ing mode observer was adopted to estimate the velocity and torque in electrical

drives systems. A robust modified super-twisting observer without differentiator

was proposed in [86], and successfully applied into electromechanical systems [87].

In the meantime, in [76], a traditional Luenberger observer with high order sliding

mode differentiator was designed for linear time invariant systems with high order

of relative degree of the unknown input with respect to the system output. The

results have been extended to nonlinear systems based on Lie derivative trans-

formation [81], where the relative degree between the unknown disturbance and

measurable output is full order or higher order, i.e., the uncertainty or distur-

bance can only appear in the last dynamic equation. Such restriction is required

because the sliding mode is only robust to matching uncertainty.

The problem of non-matching uncertainty remains a challenging problem both

in the controller design and the observer design. For a controller, the matching

uncertainty means that it enters the system via the same channel as the control in-

put, and they have the same distribution vector. On the other hand, with regards

to observer design, the channel of the feedback input can be chosen arbitrarily

and the corresponding distribution vector can be designed based on any known

state. The matching uncertainty in the observer sense means that its distribution

vector is independent of any unknown state.

In this chapter, we shall consider the state estimation of a class of nonlinear

Lipschitz systems with non-matching uncertainty in the observer sense, and with

higher order sliding mode technique, the system uncertainty can be recovered

without filtering effect.
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3.2 Preliminaries

3.2.1 System Description

In this chapter, the following class of uniformly observable single-input-single-

output (SISO) systems is considered:





ẋ = Ax + α(x, u) + P(x)d(t)

y = Cx
(3.1)

where x = [x1, x2, . . . , xn]T ∈ <n, and

A =


0(n−1)×1 I(n−1)×(n−1)

01×1 01×(n−1)


 ∈ <n×n, C =

[
1 0 · · · 0

]
∈ <n

are constant matrices; the nonlinear functions α(x, u) and P(x) are smooth vec-

tor fields on <n; u is the system input; y is the measurable output; and d(t) ∈ <
denotes the lumped system uncertainty which may include parameters’ deviations

and unknown disturbance.

Assumption 3.1. The smooth vectors α(x) and P(x) have the following trian-

gular structures, 1 ≤ r < n.

α(x) = [0, · · · , 0, αr(x1, . . . , xr), · · · , αn(x1, x2, . . . , xn)]T (3.2)

P(x) = [0, · · · , 0, 1, pr+1(x1, . . . , xr+1), · · · , pn(x1, x2, . . . , xn)]T (3.3)

Moreover, the known functions αi(x) , αi(x1, . . . , xi), pi(x) , pi(x1, . . . , xi);

i = r, . . . , n, are global Lipschitz functions with respect to (w.r.t.) x.

Assumption 3.2. The modulus of distribution vector P(x) is upper bounded

w.r.t. its arguments on <n.

Assumption 3.3. The modulus of lumped system uncertainty d(t) is upper bounded

by d̄.
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Assumption 3.4. The differential of function αr(x) is Lipschitz function w.r.t.

its arguments on <n.

Assumption 3.5. The modulus of the first time derivative of d(t) is bounded by

d̄′.

Remark 3.1. For ease of analysis, the system input u in vector α(·) is omitted.

This is reasonable in the following two cases: First, the distribution vector of

system input u is constant or independent of any unknown state, then it will be

completely canceled and have no effect on the estimation property. Second, the

relative degree between the system input u and the system output y is higher than

or equal to r, then it can be treated as a coefficient of vector α(·) in the form of

(3.2).

In Assumption 3.1, the system given by (3.1) is assumed to satisfy the trian-

gular structure, and such structure is proven in [33] to be one of the sufficient

conditions, but not necessary, to ensure uniform observability for any unknown

input. Assumption 3.2 and Assumption 3.3 are general and necessary to ensure

that the system uncertainty is trackable.

Assumption 3.4 and Assumption 3.5 can be conservative, they are required

to remove the filtering effect without sacrificing the robustness of the observer.

Such assumptions will be satisfied in some practical systems, or at least satisfied

locally almost everywhere. The system uncertainty is assumed to be smooth, this

can be true when it comes from the system parameters’ variations, such as due

to the slowly changing temperature or operating conditions.

The distribution vector P(x) is assumed to be normalized with its first non-

zero component, which means the relative degree between the system uncertainty

d(t) and the system output y is r. In the case when r = n, it is well-known that

the considered system has a complete differentiator structure, and a traditional

rth-order sliding mode differentiator in [69] can be used to handle it. Therefore,

in this chapter, we only consider a general case of r < n.
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3.2.2 Problem Formulation

The problem considered in this chapter is to design a robust observer to guarantee

that the estimates x̂ and krur will respectively track the system state x and the

system uncertainty d(t) within a small bounded set, i.e.,

lim
t→∞

‖x̂− x‖ ≤ ε1 (3.4)

lim
t→∞

‖krur − d(t)‖ ≤ ε2 (3.5)

where ε1 and ε2 are two constant values. Furthermore, the asymptotic stability

conditions will be carefully addressed, i.e., ε1 = ε2 = 0, if an additional assumption

(Assumption 3.6) is satisfied.

Definition 3.1. Matching/Non-matching condition in observer

Consider the distribution vector P(x) ∈ <n of the disturbance/uncertainty d(t) ∈
<, the disturbance d(t) is said to satisfy the matching condition in the observer

sense, if and only if the vector P(x) does not include any unknown state of x.

Otherwise, d(t) is called a non-matching disturbance in the observer sense.

According to the definition above, it can be seen that the nonlinear system

described in (3.1) is with non-matching uncertainty in the observer sense, and

to the best of our understanding, there are few effective existing works that can

handle such a system. In [78], a higher order sliding mode observer is adopted for

the states and unknown inputs estimation of a class of multi-input-multi-output

nonlinear systems, for which the reduced-order dynamics are independent of the

unknown inputs, i.e., pi(·) = 0, ∀i = r + 1, . . . , n. In other words, such unknown

inputs can be considered to satisfy the matching condition in the observer sense.

In the following, a hybrid observer that combines a high gain feedback with

higher order sliding mode term will be proposed for a class of nonlinear system

with non-matching uncertainty in the observer sense, and the stability analysis

and design procedure will be carefully addressed.
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3.3 Main Results

3.3.1 Observer Structure

For the system (3.1) satisfying Assumptions 1-5, a hybrid estimator is designed

in the form of

˙̂x = Ax̂ + α(x̂) + L(y −Cx̂) + P(x̂)krur

u̇r =





0, if ur ≥ ūr

v, if ur < ūr

(3.6)

where L is the linear feedback gain designed based on HGO [33,36], as given by

L = S−1
θ CT = [θC1

n θ2C2
n · · · θnCn

n]T = [l1 l2 · · · ln]T (3.7)

with Sθ being a positive-definite symmetric matrix of parameter θ > 0,

Sθ(i, j) =
(−1)i+jCj−1

i+j−2

θi+j−1
, 1 ≤ i, j ≤ n, Ck

n =
n!

(n− k)!k!
(3.8)

and kr is a positive tuning parameter of nonlinear feedback ur, which is designed

as an integral function of the quasi-continuous (r + 1)th-order sliding mode term

v that is given by [71]

v = −ρΨr,r+1(e1, z1, . . . , zr), i = 1, . . . , r

ϕ0,r+1 = e1, N0,r+1 = |e1|, Ψ0,r+1 = ϕ0,r+1/N0,r+1 = sign(e1),

ϕi,r+1 = zi + βiN
(r+1−i)/(r−i+2)
i−1,r+1 Ψi−1,r+1, Ni,r+1 = |zi|+ βiN

(r+1−i)/(r−i+2)
i−1,r+1 ,

Ψi,r+1 = ϕi,r+1/Ni,r+1

(3.9)

where β1, . . . , βr are positive numbers, and z1, . . . , zr are computed via the rth-

order sliding mode differentiator [69], as
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ż0 = w0 = z1 − a0M
1/(r+1)|z0 − e1|r/(r+1)sign(z0 − e1)

ż1 = w1 = z2 − a1M
1/r|z1 − w1|(r−1)/rsign(z1 − w0)

...

żr−1 = wr−1 = zr − ar−1M
1/2|zr−1 − wr−2|1/2sign(zr−1 − wr−2)

żr = −arMsign(zr − wr−1)

(3.10)

with e1 = x̂1− y, and the positive numbers a0, . . . , ar are chosen in advance. One

possible choice with r ≤ 6 is [71]: ar−1 = 1.1, ar−2 = 1.5, ar−3 = 3, ar−4 = 5,

ar−5 = 8, ar−6 = 12. The choice of the remaining observer parameters θ, kr, ūr,

ρ and M will be discussed in the following subsections.

Remark 3.2. For the nonlinear system (3.1) with rth-order relative degree of the

uncertainty, the (r + 1)th-order sliding mode algorithm (3.9) will attenuate the

chattering effect, and the uncertainty can be directly recovered without filtering

effect. Similar technique can be found in the controller design [101]. Furthermore,

in the case when r = 1, one can use the classical second order sliding mode

algorithms to replace (3.9), such as the twisting algorithm [53], super-twisting

algorithm [53], suboptimal sliding mode [85,89], etc.

3.3.2 High Gain Feedback Design

Define the estimation error e = [e1, . . . , en]T = x̂ − x, then it can be obtained

from (3.1) and (3.6) that

ė = (A− S−1
θ CTC)e + α(x̂)− α(x) + P(x̂)krur −P(x)d(t) (3.11)

Theorem 3.1. Suppose system (3.1) satisfies Assumptions 1-3, with the pro-

posed estimator in (3.6), there exists θ0 such that ∀θ > max{θ0, 1}, the following

inequality holds:

‖∆θe‖ ≤ c1/{(θ − θ0)θ
r−1} (3.12)
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with c1 and θ0 being two positive numbers given by

θ0 = 2σ(S1)(n− r + 1)(lα + krūrlP)

c1 = 2σ(S1)(n− r + 1)(d̄ + krūr)bP
(3.13)

where lα and lP are the largest Lipschitz constants of functions αi(·) and pi(·),
respectively; bP denotes the upper boundary of the modulus of vector P(x); ūr and

d̄ denote the upper boundaries of the modulus of ur and d(t), respectively; S1 is

the matrix of Sθ with θ = 1; σ(S1) denotes the condition number of matrix S1.

Proof. For ease of analysis, the following equalities are defined [64]

∆θ = diag(1, 1
θ
, · · · , 1

θn−1 ), Sθ = 1
θ
∆θS1∆θ,

∆θA∆−1
θ = θA, C∆θ = C∆−1

θ = C,

θSθ + ATSθ + SθA−CTC = 0

(3.14)

Then, by setting ξ = ∆θe and defining a Lyapunov function V = ξTS1ξ, it

can be evaluated that

V̇ = 2ξTS1ξ̇

= 2ξTS1∆θ[(A− S−1
θ CTC)e + α(x̂)− α(x) + P(x̂)krur −P(x)d(t)]

= 2ξTS1θ(A− S−1
1 CTC)ξ + 2ξTS1∆θ[α(x̂)− α(x) + P(x̂)krur −P(x)d(t)]

= 2θξTS1Aξ − 2θ‖Cξ‖2 + 2ξTS1∆θ[α(x̂)− α(x) + P(x̂)krur −P(x)d(t)]

(3.15)

With the equalities in (3.14), it has

2ξTS1Aξ = −ξTS1ξ + ‖Cξ‖2 (3.16)

Under Assumptions 3.1-3.3, vectors α(·) and P(·) are global Lipschitz functions

and have the triangular structures in (3.2) and (3.3), for θ ≥ 1, it can be deduced
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that

‖∆θ[α(x̂)− α(x)]‖ ≤
n∑

i=r

1

θi−1
|αi(x̂)− αi(x)| (3.17)

≤
n∑

i=r

lαi

∥∥∥∥
ēi

θi−1

∥∥∥∥
≤ (n− r + 1)lα‖∆θe‖
= (n− r + 1)lα‖ξ‖

where αi(x) = αi(x1, . . . , xi), αi(x̂) = αi(x̂1, . . . , x̂i), ēi , [e1, . . . , ei, 0, . . . , 0]T ∈
<n; lαi denotes the Lipschitz constant of function αi(·), and lα = max{lαr, · · · , lαn}
is the largest Lipschitz constant. Furthermore, we have

‖∆θ[P(x̂)−P(x)]krur‖ ≤ (n− r + 1)krūrlP‖∆θe‖ (3.18)

‖∆θP(x)[krur − d(t)]‖ ≤ (n− r + 1)(krūr + d̄)bP/θr−1 (3.19)

Therefore, the Lyapunov function in (3.15) can be reduced into

V̇ = −θξTS1ξ − θ‖Cξ‖2 + 2ξTS1∆θ{[α(x̂)− α(x)] + [P(x̂)−P(x)]krur

+ P(x)[krur − d(t)]}
≤ −θξTS1ξ + 2(n− r + 1)(lα + krūrlP)‖ξTS1‖‖ξ‖

+ 2(n− r + 1)(krūr + d̄)bP‖ξTS1‖/θr−1

≤ −σ(S1)
−1‖ξTS1‖{[θ − 2σ(S1)(n− r + 1)(lα + krūrlP)]‖ξ‖

− 2σ(S1)(n− r + 1)(krūr + d̄)bP/θr−1}
= −σ(S1)

−1‖ξTS1‖[(θ − θ0)‖ξ‖ − c1/θ
r−1]

(3.20)

where θ0 , 2σ(S1)(n− r + 1)(lα + krūrlP), c1 , 2σ(S1)(n− r + 1)(d̄ + krūr)bP.

Now, it can be concluded from inequality (3.20) that the variable ξ = ∆θe

will be bounded after a transient process, provided that θ > max{θ0, 1}. In other

words, it has ‖∆θe‖ ≤ c1/{(θ − θ0)θ
r−1}.

Corollary 3.1. For the system (3.1) satisfying Assumptions 1-3, the proposed

estimator in (3.6) will constraint the estimation error within an invariant set after

a transient process and remain inside thereafter, provided that θ > max{θ0, 1}.
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Then, for the partial error dynamic ēi = [e1, . . . , ei, 0, . . . , 0]T ∈ <n, ∀i = 1, . . . , n,

it has

|ei| ≤ ‖ēi‖ ≤ θi−1‖∆θe‖ ≤ c1θ
i−r

θ − θ0

(3.21)

Proof. The above inequality can be readily obtained by substituting the results in

Theorem 1. Then, the boundary for the estimation error e = ēn can be evaluated

as

lim
t→∞

‖x̂− x‖ ≤ c1θ
n−r/(θ − θ0) , ε1 (3.22)

which implies that the estimation error will be restrained to within an invariant set

for a given θ, even when the considered system in (3.1) is unstable. Furthermore,

for the individual estimation error ei, i = 1, . . . , r, it can be made arbitrary small

by selecting a large θ.

From (3.22), it can be found that asymptotic stability property can be achieved

with high gain feedback when the system (3.1) is without uncertainty, i.e., d̄ = 0,

ūr = 0, c1 = 0. Such conclusion is similar to the results in [33, 36]. Besides,

Corollary 3.1 illuminates the infectivity of the system uncertainty in a high gain

observer.

3.3.3 Nonlinear Feedback Design

In this section, we consider the nonlinear feedback design under the condition

ur < ūr, with proper designs of parameters kr, ρ and M , the sliding surface

e
(r)
1 = ė1 = e1 = · · · = 0 will be reached.

Consider e1 as the sliding variable, its (r+1)th-order dynamics can be deduced

from (3.11) as
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e
(r+1)
1 = er+2 −

r+1∑
i=1

lie
(r−i+1)
1 + αr+1(x̂)− αr+1(x) + pr+1(x̂)krur − pr+1(x)d(t)

+ α′r(x̂)− α′r(x)− d′(t) + krv

= φ(x, x̂) + krv (3.23)

with

φ(x, x̂) = er+2 −
∑r+1

i=1 lie
(r−i+1)
1 + αr+1(x̂)− αr+1(x) + pr+1(x̂)krur − pr+1(x)d(t)

+ α′r(x̂)− α′r(x)− d′(t)

where e
(i)
1 denotes the ith-order derivative of e1; φ(x, x̂) represents the dynamics

in the right side of equation (3.11). Clearly, the sliding mode surface is reachable

if the modulus of the nonlinear function φ(x, x̂) can be proven to be bounded.

Corollary 3.2. For the system (1) satisfying Assumptions 3.1-3.5, the proposed

estimator given by (3.6) will ensure that the modulus of the nonlinear function

φ(x, x̂) remains bounded after a transient process for a given θ > max{θ0, 1}.
Furthermore, its upper boundary φ̄ can be represented by

φ̄ = c1[(1 +
∑r+1

i=1 κi)θ
2 + (lα(r+1) + lp(r+1)krūr)θ + l′αr]/(θ − θ0)

+ bP(krūr + d̄) + d̄′
(3.24)

where κi, i = 1, . . . , r+1 are positive numbers that are dependent on the dimension

n and the relative degree r, and independent of θ; lα(r+1), lp(r+1) and l′αr denote

the corresponding Lipschitz constants; d̄′r represents the upper boundary of the

modulus of the first time derivative of d(t).

Proof. As shown in Theorem 3.1 and Corollary 3.1, the proposed estimator in

(3.6) will restrain the estimation error within an invariant boundary for a given

θ > {θ0, 1}, and the following inequalities hold after a transient process,

|ei| ≤ ‖ēi‖ ≤ θi−rc1/(θ − θ0), i = 1, . . . , n. (3.25)
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With Assumptions 3.1-3.5, it can be evaluated that

|er+2| ≤ θ2c1/(θ − θ0)

|α′r(x̂)− α′r(x)| ≤ l′αrc1/(θ − θ0)

|αr+1(x̂)− αr+1(x)| ≤ lα(r+1)θc1/(θ − θ0)

|[pr+1(x̂)− pr+1(x)]krur| ≤ lp(r+1)krūrθc1/(θ − θ0)

(3.26)

where l′αr, lα(r+1) and lp(r+1) denote the Lipschitz constants of functions α′r(·),
αr+1(·) and pr+1(·), respectively.

Based on the structures of vectors α(·) and P(·) in Assumption 1, and the

feedback gains li = θiCi
n in (3.7), one can find positive numbers κi such that

|lr+1e1| ≤ θr+1Cr+1
n θ1−rc1/(θ − θ0) = κ1θ

2c1/(θ − θ0)

|lre(1)
1 | ≤ θrCr

n|e2|+ θrCr
n|θC1

ne1| ≤ Cr
n(1 + C1

n)θ2c1/(θ − θ0) = κ2θ
2c1/(θ − θ0)

...

|l1e(r)
1 | ≤ κr+1θ

2c1/(θ − θ0)

(3.27)

where κi, i = 1, . . . , r+1 are positive numbers dependent on the dimension n and

relative degree r, but independent of the parameter θ.

Therefore, the nonlinear term φ(x, x̂) will be bounded with

|φ(x, x̂)| ≤ |er+2|+
∑r+1

i=1 |lie(r−i+1)
1 |+ |αr+1(x̂)− αr+1(x)|+ |α′r(x̂)− α′r(x)|

+ |[pr+1(x̂)− pr+1(x)]krur|+ |pr+1(x)krur|+ |pr+1(x)d(t)|+ |d′(t)|
≤ c1[(1 +

∑r+1
i=1 κi)θ

2 + (lα(r+1) + lp(r+1)krūr)θ + l′αr]/(θ − θ0) + bP(krūr + d̄) + d̄′

, φ̄

(3.28)

It can be seen that the modulus of the nonlinear function φ(x, x̂) will be

bounded for a given θ, and this boundary is completely independent of the sliding

mode parameters ρ and M .

Theorem 3.2. For the system (3.1) satisfying Assumptions 3.1-3.5, the proposed

estimator given by (3.6) - (3.10) ensures that the sliding surface e1 = ė1 = · · · =
e
(r)
1 = 0 will be reached in finite time, provided that ur < ūr, and the sliding mode
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parameters ρ and M are chosen large enough.

Proof. Consider the (r + 1)th-order sliding variable dynamics in (3.23), the mod-

ulus of nonlinear function φ(x, x̂) will be bounded by φ̄ for a given θ, as shown in

Corollary 3.2. Then, the provided quasi-continuous (r + 1)th-order sliding mode

algorithm (3.9) with the rth-order sliding differentiator (3.10) will ensure that the

sliding surface e1 = ė1 = · · · = e
(r)
1 = 0 is reached in finite time by choosing large

enough sliding parameters ρ and M . More details can be founded in [71].

Once the sliding mode occurs, it can be deduced from (3.11) that

e1 = e2 = · · · = er = 0; er+1 = d(t)− krur (3.29)

The above equations present the relationship between the nonlinear feedback

term krur and the system uncertainty d(t) on the sliding surface. Clearly, the

system uncertainty d(t) will be directly and exactly recovered from krur after all

the system states have converged to their true values, i.e., er+1 = 0, and this

implies that the tuning parameter kr must be chosen large enough such that

kr > d̄/ūr.

Note that the sliding mode surface is reachable under the condition ur <

ūr, together with the sliding parameters ρ and M being chosen large enough.

However, according to the relationship between er+1 and krur given in (3.29), in

the case that the estimation error er+1 is unstable or divergent, the nonlinear

feedback ur will also diverge and reach at ūr after some time. In other words,

one may choose the sliding parameters large enough to ensure that the sliding

surface is reached in a finite time, but not remained thereafter if the estimation

error er+1 is divergent. So, it is significant and important to consider the stability

of the reduced-order estimation error dynamics.

3.3.4 Reduced-order Dynamics

Let e = [es, ed]
T , es = [e1, . . . , er]

T ∈ <r, ed = [er+1, . . . , en]T ∈ <n−r, where ed

denotes the reduced order estimation error on the sliding surface, i.e., es = 0.
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Then, with the equations in (3.29), the estimation error dynamics of ed can be

deduced from (3.11)

ėd = Aded + αd(xs, x̂d)− αd(xs,xd) + Pd(xs, x̂d)krur −Pd(xs,xd)krur

−Pd(xs,xd)er+1

(3.30)

where x = [xs,xd]
T , xs = [x1, . . . , xr]

T ∈ <r, xd = [xr+1, . . . , xn]T ∈ <n−r and

Ad =


0(n−r−1)×1 I(n−r−1)×(n−r−1)

01×1 01×(n−r−1)


 ∈ <(n−r)(n−r)

αd(xs,xd) = [αr+1(xs, xr+1), αr+2(xs, xr+1, xr+2), · · · , αn(xs, xr+1, . . . , xn)]T ∈ <n−r

Pd(xs,xd) = [pr+1(xs, xr+1), pr+2(xs, xr+1, xr+2), · · · , pn(xs, xr+1, . . . , xn)]T ∈ <n−r

with x̂d denotes the estimated vector of xd on the sliding surface.

Similarly, the dynamics of ed in (3.30) can also be rewritten as

ėd = Aded + αd(xs, x̂d)− αd(xs,xd) + Pd(xs, x̂d)d(t)−Pd(xs,xd)d(t)

−Pd(xs, x̂d)er+1

(3.31)

Based on the dynamics in (3.31), it can be seen that both the high gain feed-

back and nonlinear feedback terms disappear, which means the stability of ed

is completely independent of the high gain feedback parameters and nonlinear

feedback parameters, and is only related to the original system structure and the

system uncertainty. In other words, one needs to evaluate the stability of the re-

duced order dynamics for a given system before the estimator design. Meanwhile,

in the case that the distribution vector P(·) includes only the partial state xs, i.e.,

Pd(xs, x̂d) = Pd(xs) = Pd(xs,xd), the system uncertainty d(t) will be canceled,

and the stability of ed is only dependent on the nominal structure of the original

system.

Since the dynamics of ed in (3.31) is only involved with the original system

structure, but independent of the feedback gains, the stability of the reduced-order

estimation error dynamics can be classified into the following three cases:
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1) The reduced-order dynamics of ed in (3.31) is self-asymptotically stable, i.e.,

limt→∞ ‖x̂d − xd‖ = 0.

2) The reduced-order dynamics of ed in (3.31) is self-stable, but not asymptot-

ically stable, i.e., limt→∞ ‖x̂d − xd‖ = ε3, with ε3 being a positive constant.

3) The reduced-order dynamics of ed in (3.31) is unstable/divergent, i.e., it is

not self-stable.

For case 1, which is equivalent to Assumption 3.6, it is quite conservative and

not all systems will satisfy this condition. Moreover, this assumption may be

difficult to check due to the existence of system uncertainty. However, there are

some practical systems that satisfy this requirement, such as the non-matching

parameter identification problem of a series DC motor that will be fully discussed

in Chapter 4.

For case 2, it requires that the reduced-order estimation error ed is self-

bounded, which is general and easy to check for a specified application system,

such as the speed and position estimation problem of a permanent magnet syn-

chronous motor (PMSM) that will be discussed in Chapter 5.

For case 3, it means that the estimation error dynamics on the sliding surface

is divergent. Here, a numerical example is used to illuminate this case.

Consider the following system:

ẋ =


0 1

0 0


x +


 0

0.5x2


 +


1

0


 d(t) (3.32)

y = [1 0]x

where x = [x1, x2]
T ∈ <2, and d(t) denotes the unknown disturbance. It can

be seen that this numerical system satisfies Assumptions 3.1-3.5, and the system

uncertainty satisfies the matching condition in the observer sense, which can be

considered as a special case of the result presented in this chapter. Then, the cor-

responding reduced-order dynamics on the sliding surface can be readily obtained

by the formula in (3.31), as

ė2 = 0.5e2 (3.33)
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with e = [e1, e2]
T = [x̂1−x1, x̂2−x2]

T . Clearly, the dynamics of e2 on the sliding

surface is unstable and divergent.

Assumption 3.6. (Strictly conservative system)

For the system given in (3.1), it is strictly conservative if the reduced order dy-

namics of ed in (3.31) is asymptotically stable, i.e., limt→∞ ‖x̂d − xd‖ = 0.

Theorem 3.3. For the system (3.1) satisfying Assumptions 3.1-3.6, the pro-

posed estimator given by (3.6)-(3.10) ensures that the unknown states and the

system uncertainty will be asymptotically identified in finite time, provided that

θ > max{θ0, 1}, and the parameters kr, ūr, ρ and M are properly chosen.

Proof. It has been proven in Theorem 3.2 that the sliding mode surface will be

reached under the condition ur < ūr, where the nonlinear feedback ur satisfies

equation (3.29), i.e., ur = [d(t) − er+1]/kr. After that, Assumption 6 ensures

that the reduced order dynamics asymptotically converge to zero, in other words,

the modulus of the estimation error er+1 will asymptotically decrease on the

sliding surface. Thus, one can choose the parameter ūr (ūr > d̄) large enough to

guarantee the condition ur < ūr is always satisfied, then the sliding mode surface

will be reached and remained thereafter.

After the reduced order estimation error reaches zero, i.e., ed = x̂d − xd = 0,

the unknown states and the system uncertainty can be obtained from (3.29) as:

x̂ = x, d(t) = krur.

Corollary 3.3. For the system (3.1) satisfying Assumptions 3.1-3.5, and that the

reduced-order estimation error on the sliding surface is bounded by a constant ε3,

then, the proposed estimator given by (3.6)-(3.10) ensures that the sliding surface

will be reached and remained thereafter, i.e., x̂s − xs = 0. In other words, the

proposed estimator can only guarantee the partial system states xs being exactly

estimated.

Proof. Similarly to Theorem 3.3, as the sliding surface will be reached under the

condition ur < ūr, where the nonlinear feedback ur satisfies the equation (3.29),

i.e., krur = [d(t) − er+1]. After that, as the reduced-order dynamics is bounded
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with ε3, i.e., |er+1| ≤ ‖ed‖ ≤ ε3. Thus, one can choose the parameter ūr and

kr large enough to guarantee the condition ur < ūr is always satisfied, then the

sliding surface will be remained forever.

Corollary 3.4. For the system (3.1) satisfying Assumptions 3.1-3.5, and that

the reduced-order estimation error ed is divergent on the sliding surface, then, the

proposed estimator given by (3.6)-(3.10) can only ensure that the sliding surface

will be reached in a finite time, but may not remained forever in the case when

er+1 is divergent.

Proof. According to Theorem 3.2, under the condition ur < ūr and with properly

chosen sliding gains, the sliding surface will be reached in a finite time. Then,

equation (3.29) holds, i.e., krur = [d(t)−er+1]. Therefore, in the case when er+1 is

divergent, the condition ur < ūr will not be satisfied once |er+1| = |d(t)− krur| >
d̄ + krūr. As a result, the partial state xd failed to be identified.

Based on the above analyses, and the stability of es on the sliding surface, the

observability of the unknown input and the states of the system given by (3.1)

can be summarized as

• For case 1, the reduced-order dynamics of ed is asymptotically stable, i.e.,

Assumption 3.6 is satisfied. All system states and the unknown disturbance

can be asymptotically identified with the proposed hybrid observer.

• For case 2, the reduced-order dynamics of ed is stable, but not asymptoti-

cally stable. Then, only the partial system state es can be identified with

the proposed hybrid observer.

• For case 3, the reduced-order dynamics of ed is divergent. Then, all system

states and the unknown input may fail to be identified with the proposed

observer.

3.3.5 Estimator Parameter Design Procedure

The stability of the reduced order estimation error dynamics is only related to

the original system structure and the system uncertainty, but independent of the
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feedback gains. Moreover, it may affect the sliding mode property. Therefore, it

is necessary to check the stability of the reduced order dynamics through equation

(3.31). The estimator parameter design procedure can be classified into two types,

as given below:

Type I: The reduced-order dynamics of ed is divergent

1) Remove the nonlinear feedback, i.e., kr = 0.

2) Choose high gain feedback parameter θ, such that θ > max{θ0, 1}.

3) Compute high gain feedback L, as L = [θC1
n θ2C2

n · · · θnCn
n]T .

Type II: Assumption 3.6 is satisfied or the reduced-order dynamics of ed is stable

1) Choose the tuning parameter kr and the upper boundary ūr, such that

krūr > d̄.

2) Choose high gain feedback parameter θ, such that θ > max{θ0, 1}.

3) Compute high gain feedback L, as L = [θC1
n θ2C2

n · · · θnCn
n]T .

4) Choose the sliding mode parameters ρ and M to be sufficiently large.

Remark 3.3. For a class of well-defined nonlinear systems that can be trans-

formed into the system given in (3.1) through a nonlinear transformation (such

as the Lie transformation), and that all the Assumptions mentioned in this Chap-

ter are satisfied, then a hybrid estimator can be designed by inverse transformation

of the proposed estimator in (3.6)-(3.10). Furthermore, Assumption 3.6 can be

verified in the original domain.

3.4 Simulation Results

In this section, we present the simulation results of the numerical example given

by (3.32), which belongs to case 3. For the other two cases, they will be carefully

illuminated in Chapter 4 and Chapter 5, respectively.
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Based on the observer structure given by (3.6)-(3.10), the proposed hybrid

estimator for the numerical system of (3.32) can be designed in the form of

˙̂x =


0 1

0 0


 x̂ +


 0

0.5x̂2


 +


2θ

θ2


 (y − x̂1) +


1

0


 krur (3.34)

where x̂ = [x̂1, x̂2]
T , and ur is given by

u̇r =





0, if ur ≥ ūr

v, if ur < ūr

v = −ρ[z1 + |e1|1/2sign(z0)]/(|z1|+ |e1|1/2)

ż0 = w0 = z1 − 1.5M1/2|z0 − e1|1/2sign(z0 − e1), ż1 = −1.1Msign(z1 − w0)

(3.35)

The simulation parameters are chosen as: d(t) = 80 sin(5t), x1(0) = 10, x2(0) =

10; x̂1(0) = 0, x̂2(0) = 0; θ = 1.5, ūr = 50, ρ = 150, M = 150. The tuning param-

eter kr is set to kr = 2.5 and kr = 0 to indicate the proposed estimator with and

without nonlinear feedback, respectively. The simulation results with kr = 2.5

are shown in Figure 3.1.

From Figure 3.1c and Figure 3.1d, it can be seen that the sliding surface is

reached and remained during the first 4 seconds, e1 = x̂1 − x1 = 0, because the

nonlinear parameters are chosen large enough, i.e., krūr > ‖krur‖ = ‖d(t) + e2‖.
However, as the estimation error e2 is divergent on the sliding surface, it causes

the nonlinear feedback ur to be divergent and clipped by ūr after 4 second, where

the sliding mode property is lost, as shown in Figure 3.1d.

From Figure 3.2, which is for the case without the nonlinear feedback, the pro-

posed estimator works as a high gain observer, and it will constrain the estimation

error to within an invariant boundary, as shown in Figure 3.2c. Comparing the

estimation error of state x2 in both Figure 3.2c and Figure 3.1d, one can find that

the estimation error may be larger after 4 second in Figure 3.1d, which tallies

with the analysis result on high gain feedback in Theorem 3.1. In other words,

the nonlinear feedback may enlarge the size of the invariant set in the case when

the reduced order dynamics is divergent on the sliding surface. Therefore, the
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Figure 3.1: The estimation performance with the proposed observer: kr = 2.5

nonlinear feedback should be removed if the reduced order dynamics is divergent

on the sliding surface.

3.5 Summary

In this chapter, a hybrid observer has been developed to handle the state es-

timation of a class of SISO nonlinear systems with the so-called non-matching

unknown input. The stability of the developed observer and the design procedure

are carefully addressed. The contributions in this chapter can be summarized as:

(i) A novel hybrid observer that combines a full-order high gain observer with a
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Figure 3.2: The estimation performance with the proposed observer: kr = 0

higher order sliding mode term is proposed, in which the high gain feedback

constrains the estimation error to within an invariant bounded set regardless

of initial conditions, and the sliding mode term is designed to track the non-

matching unknown input.

(ii) The identifiability of the states and unknown input is carefully addressed. It

has been pointed out that the non-matching unknown input can be identified

only if the reduced order estimation error dynamics is asymptotically stable,

which is only related to the original system structure. In other words, the

identifiability can be classified into the following three cases:

a) In the case when the reduced order dynamics is asymptotically stable,
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i.e., Assumption 3.6 is satisfied, then, all system states and unknown

input can be exactly identified with the proposed hybrid observer.

b) In the case when the reduced order dynamics is stable, but not asymp-

totically stable, i.e., limt→∞ ‖x̂d − xd‖ ≤ ε3 with ε3 being a positive

constant, then, only partial states can be exactly identified on the slid-

ing surface, i.e., x̂s = xs, and the remaining states xd and unknown

input d(t) failed to be observable. Such conclusion is similar to the

results in [62].

c) In the case when the reduced order dynamics is unstable/divergent,

then, it is suggested that the sliding mode feedback should be removed,

and the state estimation error can be restrained to within an invariant

set. In other words, all system states and the unknown input may not

be exactly identified.
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Chapter 4

Speed and Parameter

Identification in a Series DC

Motor

In this chapter, two hybrid observers will be developed and implemented on a

series DC motor to identify a non-matching time varying parameter, as well as the

unknown speed. Based on the measurable current and input voltage, the unknown

speed and non-matching parameter can be exactly estimated without filtering

effect. The identified parameter is then used to enhance the speed estimation

performance in the presence of external load disturbance. The stability analyses

for the proposed observers are given, and the results are experimentally tested.

The chapter is organized as follows: Section 4.1 introduces some existing tech-

niques for solving the state and parameter estimation problems of engineering

systems. Section 4.2 presents the mathematical model of a series DC motor, and

some background results plus existing problems are also introduced. In section

4.3, a robust hybrid observer is developed to identify the non-matching motor

parameter, and a detail stability analysis is given. In section 4.4, the estimated

parameter is used in another robust observer to estimate the unknown speed and

external load disturbance. In section 4.5, experimental results are presented to

illuminate the effectiveness of the proposed observers. Section 4.6 presents detail

Monte Carlo studies on the effects of measurement noises in motor resistance and
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52 Chapter 4. Speed and Parameter Identification in a Series DC Motor

inductance on the identification of the non-matching motor parameter. Section

4.7 concludes this chapter.

4.1 Introduction

A dc motor in which the field winding is connected in series with the armature

coil is referred to as a series dc motor. Due to its special electrical structure, it

produces more torque per ampere of current than any other dc motors. And such

a motor is widely used in applications that require high starting torque, such as

hoists, winches and electric traction applications [106].

In most situations, there are only partial state and parameter information

available through the measurement outputs, and these often limit the systems’

performance. For such cases, a robust observer with high estimation accuracy is

required to recover the unknown states and parameters in real time.

The sliding mode based observer is a well-established and effective candidate

to handle the state and parameter estimation problems, due to its robustness,

simplicity, and high state estimation accuracy. However, most existing sliding

mode observers are designed for systems with direct or indirect (i.e. matched

after transformation) matching conditions in the observer sense. In [119, 123],

the speed-dependent back-EMF terms of permanent magnet synchronous motor

(PMSM) are considered as two matching disturbances, which are used to extract

the speed and position information. In [97], an adaptive mechanism appended

with sliding mode observer is proposed to identify the unknown back-EMF terms

and unknown stator resistance Rs. However, the unknown stator resistance is

assumed to be slowly time-changing, and one may treat it as a new unknown

state with dynamic equation Ṙs = 0. Then, the back-EMF terms can be repre-

sented as two matching disturbances. Similarly in [49,124], the unknown constant

parameters or disturbance can be considered as new unknown states, and the iden-

tifiability issue can be discussed in the transformed domain. For such cases, the

systems can be classified as satisfying the indirect matching condition for the

disturbances.
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In this chapter, we shall consider a flux-related parameter estimation problem

in a series DC motor, i.e., KT , which is time-varying and non-matching in the

observer sense. Then a robust hybrid observer will be developed to asymptotically

identify the unknown parameter.

4.2 Preliminaries

4.2.1 Mathematical Model

A series DC motor is configured by connecting the field circuit in series with the

armature circuit, and can be modeled as [106,125]:

İf = −R

L
If − KT

L
Ifω +

U

L

ω̇ = −B

J
ω +

KT

J
I2
f −

TL

J
(4.1)

where

If : Field/armature current (measurable)

ω : Electrical angular speed

U : Voltage input

R : Resistance

L : Inductance

J : Rotor moment of inertia

B : Viscous-friction coefficient

TL : Load torque

KT : Field flux-related coefficient

Here, the motor parameter KT and the load torque TL are assumed to satisfy the

following equations:

KT = KT0 + ∆KT (4.2)

TL = TL0 + ∆TL (4.3)
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where KT0 and TL0 represent the nominal parameter and known load torque,

respectively; ∆KT denotes an unknown time-varying parameter, and ∆TL denotes

the bounded external load disturbance.

Remark 4.1. ∆KT is modeled as a lumped parameter uncertainty on field flux

which may include magnetic saturation effect, imperfect manufacturing effect, etc.

Remark 4.2. The distribution vector [−Ifω/L, I2
f/J ]T of parameter KT includes

the unknown state ω, which implies that KT is a non-matching parameter in the

observer sense.

Remark 4.3. ∆TL is modeled as a lumped external load disturbance. Further-

more, it can also be treated as the parameter variation of rotor inertia J and

viscous-friction coefficient B.

4.2.2 Existing High Gain Observer

In [37], a traditional high gain observer (HGO) is developed for the unknown

speed estimation, in which the flux-related coefficient is assumed to be a known

constant and there is no external disturbance, i.e., ∆KT = 0, ∆TL = 0. Based on

the Lie transformation, it is given as

˙̂
If = −R

L
Îf − KT0

L
Îf ω̂ +

U

L
− 2θe1

˙̂ω = −B

J
ω̂ +

KT0

J
Î2
f −

TL0

J
+

[
2θR

KT0Îf

+
2θω̂

Îf

+
θ2L

KT0Îf

]
e1 (4.4)

where e1 = Îf − If , Îf and ω̂ denote the corresponding estimated current and

speed; θ is a positive design parameter for the feedback gain L = [2θ, θ2]T .

In [125], a linear feedback observer is proposed for speed and load torque

estimation in a series DC motor, however, it requires the exact information of

the magnetization/saturation curve of the field flux, which means the current

dependent parameter KT is exactly known; furthermore, the unknown load torque

is assumed to be constant.
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Figure 4.1: System diagram

4.2.3 Problems Formulation

In this chapter, we shall consider the estimation of the unknown parameter KT

and external disturbance ∆TL in sequence, as well as the unknown speed.

As shown in Figure 4.1, the first observer (observer 1) will identify the un-

known parameter KT with no external disturbance in the initialization stage.

From Remark 4.2, the unknown parameter KT is non-matching in the observer

sense and time-varying. The challenging problem is to guarantee that it can be

estimated asymptotically.

The second observer (observer 2) is designed based on the identified parameter

K̂T to estimate the unknown speed and external disturbance in the main operation

stage. As the identification error of parameter KT may affect the estimation

performance, its effect will be carefully discussed.

4.3 Observer for Non-matching Parameter

In this section, we consider the identification of the non-matching parameter KT

without the external disturbance, i.e., ∆TL = 0. A hybrid observer that combines

high gain observer with robust sliding mode term is proposed, in which the high

gain feedback works to speed up the convergence in the beginning and constrains

the estimation error to a bounded zone, then the sliding mode term ensures that
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the unknown dynamics/disturbance is exactly tracked. The asymptotic stability

of the estimation error will be carefully addressed.

4.3.1 Observer Design

For the original system (4.1) with ∆TL = 0, a hybrid observer can be designed in

the form of

˙̂
If = −R

L
Îf − KT0

L
Îf ω̂ +

U

L
− 2θe1 + ρu1 (4.5)

˙̂ω = −B

J
ω̂ +

KT0

J
Î2
f −

TL

J
+

[
2θR

KT0Îf

+
2θω̂

Îf

+
θ2L

KT0Îf

]
e1 − ÎfL

ω̂J
ρu1

where θ is the high gain feedback parameter, e1 denotes the estimation error of

current, ρ is a positive tuning parameter to adjust the convergence time, and the

robust term u1 is given by

u̇1 = −ρ1sign(e1)− ρ2sign(ė1) (4.6)

with ρ1 and ρ2 being two properly chosen sliding gains that satisfy ρ1 > ρ2 > 0.

Remark 4.4. The feedback term u1 in (4.6) is in fact an integral function of a

second order sliding mode algorithm (namely twisting algorithm in [53]), which

will result in a continuous function.

Remark 4.5. Compared with the existing HGO in (4.4), the proposed observer

in (4.5) adds nonlinear feedback terms related with u1. Such nonlinear feedbacks

are used to handle the parameter uncertainty ∆KT and provide a mechanism to

recover the unknown parameter KT .
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4.3.2 Stability Analysis

Defining estimation error e = [e1, e2]
T = [Îf − If , ω̂ − ω]T , then based on (4.1)

and (4.5), the dynamics of e1 can be described as

ė1 = −R

L
e1 − KT0

L
Îf ω̂ +

KT

L
Ifω − 2θe1 + ρu1 (4.7)

= G(·) + ρu1

where

G(·) = −R

L
e1 − KT0

L
Îf ω̂ +

KT

L
Ifω − 2θe1

Then, by taking derivative on both sides of (4.7), it can be obtained that

ë1 =
d

dt
G(·)− ρρ1sign(e1)− ρρ2sign(ė1) (4.8)

Considering the second order dynamic system in (4.8), one can always find a

positive value ε (independent of ρ1 and ρ2) large enough such that | d
dt

G(·)| ≤ ε.

This is true because in real application the unknown parameter KT is smooth

and differentiable and its first order derivative with time is locally bounded, and

so are the current and speed.

By defining a Lyapunov function V1 = (ė1)
2/2+ρρ1|e1|, which is continuously

differentiable except on e1 = 0, it can be verified that

V̇1 = ė1ë1 + ρρ1ė1sign(e1)

= ė1
d

dt
G(·)− ρρ1ė1sign(e1)− ρρ2|ė1|+ ρρ1ė1sign(e1)

≤ −(ρρ2 − ε)|ė1|
< 0 (with ρ1 > ρ2 > ε/ρ) (4.9)

The above inequality is true because the condition ė = 0 cannot hold for any

finite interval with e 6= 0. In other words, the Lyapunov function V1 will converge

to the origin of the phase plane in finite time, i.e., ė1 = e1 = 0. Similar proofs

can be found in [53] and [126].
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Once the sliding mode occurs, i.e., ė1 = e1 = 0, Îf = If , it can be deduced

from (4.7) that

ρu1 =
Îf

L
(KT0ω̂ −KT ω) (4.10)

The above equation highlights the relationship among the unknown parameter

KT , unknown speed ω and the designed robust term u1 on the sliding surface,

which implies that the parameter KT can be exactly identified after the estimated

speed has converged to its true value, i.e., ω̂ = ω.

Theorem 4.1. For the system given by (4.1) with unknown parameter KT but

∆TL = 0, the proposed observer in (4.5) will ensure that the estimated speed

asymptotically converges to its true value on the sliding surface e1 = 0.

Proof. On the sliding surface e1 = 0, the high gain feedback terms related with θ

go to zero, so the remaining dynamics of e2 can be obtained from (4.1) and (4.5),

as

ė2 = −B

J
e2 +

KT0

J
I2
f −

KT

J
I2
f −

IfL

ω̂J
ρu1 (4.11)

By substituting (4.10) into the above equation, we have

ė2 = −B

J
e2 +

KT0

J
I2
f −

KT

J
I2
f −

I2
f

ω̂J
(KT0ω̂ −KT ω) (4.12)

= −B

J
e2 − KT

J
I2
f +

ω

ω̂

KT

J
I2
f

= −B

J
e2 −

I2
fKT

ω̂J
e2

Since KT is a positive motor parameter, ω̂ can be guaranteed to be positive by

high gain feedback before sliding mode happens. Therefore, a Lyapunov function

can be chosen as V2 = (e2)
2/2, and the following inequality holds:

V̇2 = −(
B

J
+

I2
fKT

ω̂J
)|e2|2 ≤ 0 (4.13)

Thus, the remaining estimation error e2 is asymptotically stable on the sliding
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surface e1 = 0. In other words, with the decaying factor [B/J + I2
fKT /(ω̂J)] and

after a finite time, we have ω̂ = ω.

After all the estimated states have converged to the true values, i.e., Îf = If ,

ω̂ = ω. The unknown parameter can be computed from (4.10), as

K̂T = KT0 − L

Îf ω̂
ρu1 (4.14)

As the robust term u1 is designed based on the integral of a second order

sliding mode algorithm, which results in a continuous function, the filtering effect

is avoided.

Remark 4.6. From (4.13), it can be seen that the decaying factor for the error

e2 is only dependent on the motor parameters and completely independent of the

observer gains. Therefore, the operating procedure of the proposed observer can be

described as one in which the high gain feedback works to constrain the estimation

error into a bounded zone, where the sliding condition is satisfied, the sliding mode

feedback then ensures that the sliding surface is reached in finite time and remains

thereafter. Finally, the system structure guarantees asymptotic convergence of the

remaining error dynamics.

4.4 Observer for External Disturbance

With the identified parameter K̂T , in this section, we shall now consider the

estimation of the unknown speed and external load disturbance. The effect of the

identification error of KT on the estimation accuracy will be carefully addressed.

4.4.1 Observer Design and Stability

The system uncertainty can be expressed as

d(t) =
KT If

JL
∆TL (4.15)
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Then, the original system (4.1) can be rewritten as

İf = −R

L
If − KT

L
Ifω +

U

L

ω̇ = −B

J
ω +

KT

J
I2
f −

TL0

J
− L

KT If

d(t) (4.16)

Note that the relative degree between the uncertainty d(t) and the measurable

variable If is two, so a second order sliding mode algorithm can be used to estimate

the unknown speed and reconstruct the uncertainty, as given by

˙̂
If = −R

L
Îf − K̂T

L
Îf ω̂ +

U

L
− 2θe1 (4.17)

˙̂ω = −B

J
ω̂ +

K̂T

J
Î2
f −

TL0

J
+

[
2θR

K̂T Îf

+
2θω̂

Îf

+
θ2L

K̂T Îf

]
e1 − L

K̂T Îf

u2

where K̂T can be obtained from (4.14), θ is the high gain feedback parameter and

u2 is the robust sliding mode term, given by [69]

u2 = −ρ3sign(z1 + |e1|1/2sign(e1))

ż0 = v0

v0 = z1 − 1.5M1/2|z0 − e1|1/2sign(z0 − e1) (4.18)

ż1 = −1.1Msign(z1 − v0)

Theorem 4.2. For the given system in (4.16), the proposed observer (4.17)-

(4.18) ensures that both the current and speed can be exactly estimated in finite

time provided that K̂T = KT .

Proof. In order to illuminate the stability of the proposed observer, a nonlinear

state transformation will be introduced, which has also been used in [37]. The

stability analysis will be discussed in the transformed domain.

Let x̃ = [If , ω]T , a state transformation function based on Lie derivatives can

be defined as

x =


x1

x2


 = Φ(x̃) =


 If

−R
L
If − KT

L
Ifω


 (4.19)
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with

∂Φ(x̃)

∂x̃
=


 1 0

−R
L
− KT

L
ω −KT

L
If


 ,

[
∂Φ(x̃)

∂x̃

]−1

=


 1 0

− R
KT If

− ω
If

− L
KT If


(4.20)

Then the system in (4.16) can be rewritten in the transformed domain, as

ẋ =
∂Φ(x̃)

∂x̃
˙̃x

=
∂Φ(x̃)

∂x̃






 −R

L
If − KT

L
Ifω + U

L

−B
J
ω + KT

J
I2
f − TL0

J
− L

KT If
d(t)






 (4.21)

=


 x2

f(x1, x2)


 +




U
L

0


 +


 0

d(t)




with the nominal nonlinear function f(x1, x2) being given by

f(x1, x2) = (
R

L
+

KT

L
ω)(

R

L
If +

KT

L
Ifω − U

L
) +

KT

L
If (

B

J
ω − KT

J
I2
f +

TL0

J
)

In other words, the system in (4.16) can be transformed into the following

dynamics with a triangular structure:

ẋ1 = x2 + U/L

ẋ2 = f(x1, x2) + d(t) (4.22)

Note that f(x1, x2) is a nominal nonlinear function of x1 and x2 (or, If and

ω). Together with the system uncertainty d(t), they are locally bounded in real

applications.

Similarly, in the case when K̂T = KT , the proposed observer in (4.17) can

be transformed into the same domain via x̂ = Φ(x̃)|x̃=ˆ̃x, with the superscript ˆ

denoting the corresponding estimated variables. Then, it has

˙̂x1 = x̂2 + U/L− 2θe1

˙̂x2 = f(x̂1, x̂2) + u2 − θ2e1 (4.23)
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where x̂ = [x̂1, x̂2]
T = [Îf , − R

L
Îf − KT

L
Îf ω̂]T , and e = [e1, e2]

T = x̂− x.

Therefore, the dynamics of the estimation error e can be described by

ė1 = e2 − 2θe1

ė2 = f(x̂1, x̂2)− f(x1, x2)− d(t)− θ2e1 + u2 (4.24)

It has been proven that, with such a triangular dynamic system, the high gain

feedback [−θe1, − θ2e1]
T works to restrain the error e into an invariant small

zone. Details can be found in Corollary 3.1 in Chapter 3.

Now, consider e1 as the sliding variable, its dynamics can be presented as

ë1 = ė2 − 2θė1

= f(x̂1, x̂2)− f(x1, x2)− d(t)− 2θe2 + 3θ2e1 + u2 (4.25)

For such a second order dynamics of e1, the dynamics on the right hand side

(without u2) is locally bounded. Then, the provided second order sliding mode

feedback u2 given by (4.18) ensures that the sliding surface ė1 = e1 = 0 will be

reached in finite time and remained thereafter, provided that the parameters ρ3

and M are chosen large enough [69].

Once the sliding surface is reached, it can be deduced from (4.24) that

e1 = Îf − If = 0

e2 = x̂2 − x2 = 0 ⇒ ω̂ − ω = 0 (4.26)

which means both the current and speed can be exactly estimated by the proposed

observer (4.17)-(4.18) in the case when K̂T = KT .

After all the states have converged to the true values, i.e., Îf = If , ω̂ = ω, the

system uncertainty d(t) can be reconstructed from the sliding mode term based

on the equivalent input concept, as

d(t) ≈ {u2}eq (4.27)
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where {u2}eq denotes the equivalent input of u2, reconstructed through a low pass

filter. Thus, the external disturbance can be obtained by

∆TL ≈ JL

KT If

{u2}eq (4.28)

Remark 4.7. The sliding mode algorithm used in (4.18) comes from [69], but

one can choose any other second order sliding mode algorithm to design u2.

Remark 4.8. The proposed observer in (4.17) combines the high gain observer

with sliding mode term, in which the high gain feedback works to speed up the

convergence, and will restrain the estimation error bounded to a small zone (as

shown in Corollary 3.1 in Chapter 3), then the sliding parameters can be chosen

small to reduce the chattering effect on the uncertainty reconstruction.

4.4.2 Effect of Error in Identified Parameter K̂T

The above analysis is based on the assumption that the identified parameter K̂T

is exactly its true value. However, there is inevitable identification error in real

implementation. Thus, it is necessary to discuss the effect of its identification

error on the unknown speed and external disturbance estimations.

Without loss of generality, we assume that K̂T = βKT , where β is a con-

stant value used to indicate the deviation coefficient of the parameter KT in the

identification.

By denoting ω̃ = βω̂, the proposed observer in (4.17) can be rewritten as

˙̂
If = −R

L
Îf − KT

L
Îf ω̃ +

U

L
− 2θe1 (4.29)

˙̃ω = −B

J
ω̃ +

KT

J
Î2
f −

TL0

J
+

[
2θR

KT Îf

+
2θω̃

Îf

+
θ2L

KT Îf

]
e1 − L

KT Îf

u2 + H(β)

where H(β) = (β2 − 1)KT

J
Î2
f − (β − 1)TL0

J
can be considered as an additional

bounded uncertainty.

It is clear that the rewritten observer in (4.29) is similar to the proposed

observer in (4.17), and one can readily verified that the sliding surface ė1 = e1 = 0
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can be reached in finite time and remained thereafter, with the similar procedure

in Theorem 4.2.

On the sliding surface, it can be deduced from (4.15), (4.16) and (4.29) that

ω̂ = ω̃/β = ω/β (4.30)

∆TL =
JL

KT If

u2 − [(β2 − 1)KT I2
f − (β − 1)TL0] (4.31)

Here, the coefficient 1/β in (4.30) denotes the estimation error of speed, and the

residual in the bracket in (4.31) denotes the estimation error of the external load

disturbance.

Remark 4.9. The above analysis results show that with the proposed observer

(4.17)-(4.18), the deviation of non-matching motor parameter KT will directly

affect the estimation accuracy of the unknown speed and external disturbance.

However, one can predict the estimation error with (4.31)-(4.32) in advance, if

the deviation coefficient β is known. This provides the designer with a choice

to make trade-off between the simplified compensation of parameter KT and the

estimation accuracy.

4.5 Experimental Results

4.5.1 Experimental Conditions

As shown in Figure 4.2, the experimental setup consists of a single-pole-pair

series dc motor and a dynamometer machine which is used to simulate the load

torque on the motor. A 1024 pulse/rev optical encoder is fixed on the rotor to

provide the real-time rotor speed for comparison with the estimated value from

the proposed observers. A 32-bit fixed point processor, TMS32F2812@150MHz

(Texas Instruments DSP), is adopted to execute the observer algorithms, and two

12-bit A/D channels are used to convert the real-time current and input voltage

which are measured by sensors. The main motor parameters are summarized in

Table 4.1.
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Figure 4.2: Experimental setup

Table 4.1: A series motor parameters

Rating current I 15 A

Rating speed ω 115 rad/s

Resistance R 0.1 Ω

Inductance L 1.44 mH

Inertia J 0.0018 kg ·m2

Viscous friction coefficient B 0.0008 N ·m/rad/s

Field flux-related coefficient KT N ·m/Wb · A
Load torque TL N ·m

For the firmware programming, in order to optimize the execution-speed and

improve the mathematical operation accuracy, we use the TI IQmath Library

package to seamlessly port the floating-point algorithm into fixed-point code on

the device. For example, the multiplication subroutine ”IQNmpy(x, y)” takes

about 6 execution cycles, the division subroutine ”IQNdiv(x, y)” takes about 63

execution cycles, the square root subroutine ”IQNsqrt(x)” takes about 64 execu-

tion cycles, the absolute value subroutine ”IQNabs(x)” takes about 2 execution

cycles, etc. For more details about the TI IQmath Library package, please refer

to: http://www.ti.com/lit/sw/sprc990/sprc990.pdf. Meanwhile, some intermedi-
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Figure 4.3: Experimental results with the high gain observer, KT0 = 0.003

ate constants are defined to shorten execution time of the proposed observers,

such as c1 = Ts/L, c2 = Ts/J , c3 = L/KT0, c4 = L/J , etc. With Ts being the

sampling interval 0.1ms, as well as the observer execution step.

The following experiments are cataloged in three parts: First, the traditional

high gain observer (HGO) given by (4.4) is applied for current and speed esti-

mations. Second, the proposed observer 1 given by (4.5)-(4.6) is performed for

current and speed estimations, as well as the identification of the unknown param-

eter KT . An indirectly computed KT is also provided for comparison purpose.

Third, the proposed observer 2 given by (4.17)-(4.18) is used to estimate the

current and speed, as well as the unknown external disturbance.

4.5.2 State Estimations with High Gain Observer

For comparison purpose, the high gain observer proposed in [37], as given by (4.4),

is applied. And the observer parameters are given as: KT0 = 0.003 N ·m/Wb·A,

θ = 2, Îf (0) = 3 A, ω̂(0) = 20 rad/s.

The known load torque is set at 0.24 N ·m by the dynamometer machine, and

the input voltage is provided by a DC power supply which is manually operated

to adjust the motor speed. The experimental results are shown in Figure 4.3.

It can be seen that both the estimated current and speed fail to track their
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Figure 4.4: Experimental results with the proposed observer 1, KT0 = 0.003

true values because of the parameter uncertainty ∆KT . Moreover, there is no

mechanism to identify the unknown parameter KT .

4.5.3 Parameter Identification with Proposed Observer 1

Here, the proposed hybrid observer described in (4.5)-(4.6) is employed, with the

additional observer parameters: ρ1 = 7, ρ2 = 3, ρ = 10000. The experimental

conditions are the same as in the above subsection, and the results are shown in

Figure 4.4 and Figure 4.5.

From Figure 4.4, we can see that the estimated current and speed track their

corresponding true values. Moreover, as shown in Figure 4.4d, the estimation

Nanyang Technological University Singapore



68 Chapter 4. Speed and Parameter Identification in a Series DC Motor

0 5 10 15 20
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Time (Sec)

R
ob

us
t t

er
m

 u
1

 

 

Robust term u1

(a) : nonlinear term u1

4 4.1 4.2 4.3 4.4 4.5
−0.16

−0.15

−0.14

−0.13

−0.12

−0.11

−0.1

Time (Sec)

R
ob

us
t t

er
m

 u
1

 

 

Robust term u1

(b) : zoom in of u1

0 5 10 15 20
0

1

2

3

4

5

6

7

8
x 10

−3

Time (Sec)

K
T
 r

ec
on

st
ru

ct
io

n

 

 

Calculated KT

Estimated KT

(c) : estimated parameter K̂T

4 4.1 4.2 4.3 4.4 4.5
5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

x 10
−3

Time (Sec)

Z
oo

m
−

in
 o

f K
T

 

 

Calculated KT
Estimated KT

(d) : zoom in of K̂T

Figure 4.5: Experimental results with the proposed observer 1, KT0 = 0.003

error of speed is restrained to within ±5 rad/s after around 2 seconds.

Note that the estimated KT in Figure 4.5 is a position related function. In

order to provide a comparison that the estimated KT is accurate, an indirectly

computed KT is calculated via

KT ≈ (TL + Bω)/I2
f (4.32)

It should be noted that such calculated KT requires the real-time information

of speed and is only suitable for steady-state, i.e., ω̇ = 0. It is observed that the

estimated KT tallies well with the computed one, see Figure 4.5c and Figure 4.5d.

In order to demonstrate the robustness of the proposed observer 1 against
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the unknown parameter KT , the same experiment is repeated by setting KT0 =

0.009 N ·m/Wb·A. As shown in Figure 4.6, the estimation performance of current

and speed remains good.

Comparing the identified parameter KT in Figure 4.5 and Figure 4.6, they

are quite similar, which are position-related functions with an average value of

around 0.006 N ·m/Wb·A. In other words, these two experiments are conducted

under ±50% variation of KT , and robustness of the proposed observer against the

unknown parameter KT is observed.

It is worth noting that the big difference between these two experimental

results lies with the sliding mode term u1, which is designed to track the uncer-

tainties of the systems. From Figure 4.5b and Figure 4.6d, we can see that the

sliding mode terms are related to the parameter KT0, current If and speed ω,

and such relationship guarantees that the unknown parameter KT can be exactly

estimated all the time (after all states have converged to their true values), as

given by equation (4.14).

4.5.4 Robustness Study with Proposed Observer 1

It is also of interest to study the estimation performance under high rotor speed

and light load condition, but the experimental DC motor we used is not able

to operate under this extreme condition because of the limitations of the motor

parameters. Thus, we resort to simulation studies to examine the performance of

the propose observer under high rotor speed and light load condition.

The real motor parameters are chosen the same as in Table 4.1, except that

KT = 0.006 + sin(100t) N · m, TL = 0.01 N · m, J = 0.0001 kg · m2, B = 0.

The input voltage U is a periodic step function to adjust the speed. The observer

parameter are set as: θ = 2, ρ = 3000, ρ1 = 7, ρ2 = 3, KT0 = 0.003 N ·m/Wb · A.

The simulation results are shown in Figure 4.7. It can be seen that both the

estimated speed ω̂ and parameter K̂T track their true values well even under large

speed variation and light load condition. Meanwhile, a slight estimation mismatch

can be observed in Figures 4.7b and 4.7e from 12 seconds to 14 seconds. This

is because the speed estimation error takes a long time to die out for a small
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Figure 4.6: Experimental results with the proposed observer 1, KT0 = 0.009
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Figure 4.7: Simulation results under high speed and light load condition

decaying factor [B/J + I2
fKT /(ω̂J)] as given in Theorem 4.1.
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Figure 4.8: Experimental results with the proposed observer 2, K̂T = 0.004

4.5.5 Speed Estimation under External Disturbance

Now, we shall consider the estimation of speed and external disturbance with the

proposed observer in (4.17)-(4.18). In order to verify the effect of the identified

parameter KT , we choose K̂T = 0.004 N ·m/Wb·A, which implies the deviation

coefficient β is around 2/3. Then, the additional observer parameters are given

as: ρ3 = 0.5, M = 1, θ = 2.

By keeping the input voltage at a fixed value and manually increasing and

decreasing the load torque through the dynamometer machine controller, to sim-

ulate the external disturbance, we obtained the experimental results as shown in

Figure 4.8. It can be seen that the estimated speed is apparently higher than its

true value, and it has ω̂/ω ≈ 3/2 = 1/β which exactly tally with the analysis

result in (4.31).

With the parameter KT identified in Figure 4.5c, which is a position-related

function, for simplicity, we take its mean as the proposed observer parameter,

i.e., K̂T = 0.006 N ·m/Wb·A. As the deviation coefficient β in Figure 4.5 is β ∈
[0.006/0.0065, 0.006/0.0055] ≈ [0.923, 1.091], we can predict that the estimation

error of speed will lie within ω̂/ω = 1/β ∈ [0.917, 1.083]. The experiment is

repeated with the same conditions above, and the results are shown in Figure 4.9.

It can be seen that both the estimated current and speed are synchronously

varying with their true values, and the tracking errors lie within the above pre-
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Figure 4.9: Experimental results with the proposed observer 2, K̂T = 0.006

dicted range. Moreover, the unknown external disturbance is successfully recon-

structed by a low-pass filter after 1 second.

Small ripples are found on the estimated speed curve. This is normal since

the real deviation coefficient β is a varying function with rotor position.

4.6 Simulation Results on the Effects of R and

L

In order to illuminate the sensitivity of the estimate K̂T with respect to the

variations of resistance R and inductance L, some Monte carlo simulations will

be conducted based on the proposed observer 1.
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The proposed observer 1 given by (4.5)-(4.6) is used for the simulation, but R

and L are replaced by R0 and L0, respectively. The estimated parameter K̂T in

(4.14) is rewritten as

K̂T = KT0 − L0

Îf ω̂
ρu1 (4.33)

The parameters R0 and L0 denote the measured resistance and inductance,

which are assumed to be affected by measurement noises (with uniform distribu-

tion), i.e., R0 = R + αR[2rand(·)− 1], L0 = L + γL[2rand(·)− 1], with α and γ

being two tuning scalars, the rand(·) function in Matlab is used to generate pseu-

dorandom values with uniform distribution on the open interval (0, 1). Then, the

corresponding expected value and variance of R0 and L0 are given as: E[R0] = R,

VAR[R0] = α2R2/3, and E[L0] = L, VAR[L0] = γ2L2/3.

The real motor parameters are chosen the same as in Table 4.1, except that

KT = 0.006 + 0.0005 sin(100t) N ·m/Wb · A, TL = 0.2 N ·m. The input voltage

U is a periodic step function to adjust the speed. The observer parameters are

set as: θ = 2, ρ = 3000, ρ1 = 7, ρ2 = 3, KT0 = 0.003 N · /Wb · A; Îf (0) = 3 A,

ω̂(0) = 20 rad/s.

The other parameters are given as: simulation cycles N = 1000; for each cycle,

the duration time t ∈ (0, 10) in second, and simulation step Ts = 0.5 ms. The

major simulation steps are given as:

1) Choose the tuning parameters α and γ;

2) Use rand(·) to generate N pairs parameter1, as

(R0, L0) = {(R1
0, L

1
0), (R

2
0, L

2
0), · · · , (R1000

0 , L1000
0 )}

3) Use each (Ri
0, L

i
0) as observer parameters in (4.32) and (4.33), i.e., R0 = Ri

0,

L0 = Li
0; do simulation and record the corresponding estimation error at

1For i = 1, . . . , N ; Ri
0 and Li

0 are chosen independently.
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each step, as

ei
I(kTs) = Îf (kTs)− If (kTs), k = 1, 2, . . . , n; (n =

10 sec

0.5 ms
= 20000)

ei
S(kTs) = ω̂(kTs)− ω(kTs)

ei
KT (kTs) = K̂T (kTs)−KT (kTs)

4) Computing the corresponding standard deviation of the estimation error via

σI(kTs) =
√∑N

i=1(e
i
I(kTs))2/N, k = 1, 2, . . . , n;

σS(kTs) =
√∑N

i=1(e
i
S(kTs))2/N

σKT (kTs) =
√∑N

i=1(e
i
KT (kTs))2/N

5) Draw the figures and repeat all the above steps with different values of α

and γ.

The simulation results are shown in Figure 4.10 - Figure 4.14. It seems the

variation of inductance (null expected value) has no obvious effect on the esti-

mation performance of parameter KT and speed ω, see Figure 4.11 and Figure

4.12, Figure 4.13 and Figure 4.14. On the other hand, the variation of resistance

(null expected value) has small effect on the estimation performance, as shown

in Figure 4.13 and Figure 4.14. However, all the estimation error will converge

into an invariant bounded zone after 2 seconds, demonstrating the robustness of

estimate K̂T against R.

4.7 Summary

Based on the measurable current and input voltage, a robust hybrid observer

has been developed for a series DC motor to identify the non-matching param-

eter without filtering effect. The asymptotic stability property is theoretically

proved and also experimental verified. Then, based on the identified parameter,

a second proposed observer is used to handle the unknown external disturbance.

The expected estimation performance is demonstrated via experimental results.
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Figure 4.10: Simulation results with R0 = R, L0 = L, KT0 = 0.003
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Figure 4.11: Monte carlo simulation results with α = 0, γ = 0

Nanyang Technological University Singapore



78 Chapter 4. Speed and Parameter Identification in a Series DC Motor

0 200 400 600 800 1000
−0.1

−0.05

0

0.05

0.1

0.15

0.2

R
es

is
ta

nc
e

 

 

Resistance R0

Resistance R

(a) : R and R0

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5
x 10

−3

In
du

ct
an

ce

 

 

Inductance L0

Inductance L

(b) : L and L0

0 2 4 6 8 10
0

2

4

6

8

10

12

14

Time (Sec)

σ I

 

 

standard deviation of current error

(c) : standard deviation of current error σI

0 2 4 6 8 10
0

10

20

30

40

50

60

70

Time (Sec)

σ S

 

 

standard deviation of speed error

(d) : standard deviation of speed error σS

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Time (Sec)

σ K
T

 

 

standard deviation of KT error

(e) : standard deviation of speed error σKT

Figure 4.12: Monte carlo simulation results with α = 0, γ = 0.5
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Figure 4.13: Monte carlo simulation results with α = 0.5, γ = 0
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Figure 4.14: Monte carlo simulation results with α = 0.5, γ = 0.5

Nanyang Technological University Singapore



4.7. Summary 81

Furthermore, a series of Monte carlo simulations are conducted to illuminate the

parameter identification performance against the variations of resistance and in-

ductance.
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Chapter 5

A New Perspective on Speed

Estimation in a PMSM

In this chapter, a novel perspective on the design of sliding mode observer to

handle the speed sensorless estimation of a permanent magnet synchronous mo-

tor (PMSM) is presented. The novelty lies with extracting the position related

dynamics from the back electromotive forces (EMFs) and modeling them as un-

known system states, so that the unknown speed remains as the only system

uncertainty that is non-matching in the observer sense. With a one time posi-

tion calibration signal, the proposed observer ensures that the desirable position

information can be exactly recovered without filtering effect.

The chapter is organized as follows: Section 5.1 introduces some existing re-

searches on the speed estimator design of permanent magnet (PM) motors without

mechanical sensor. Section 5.2 presents the mathematical model of a surface-

mounted permanent magnet synchronous motor (SPMSM), and some existing

techniques on sliding mode observer design are introduced. In section 5.3, a novel

perspective on the sliding mode observer design for speed and position estima-

tions is developed, and the stability of the estimation error dynamics is carefully

addressed. In section 5.4, simulation results are presented to illuminate the esti-

mation performance of the proposed observer. Section 5.5 concludes this chapter.
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5.1 Introduction

Permanent magnet synchronous motors (PMSM) have been widely used as servo

motors in precision motion control applications due to their high performance

and high power density. In many high-performance PMSM drives, the field-

oriented or vector control scheme which is based on the real-time information

of rotor position/speed, is adopted. However, the presence of physical position

sensors presents several problems, such as increasing the cost, shorten the lifetime,

degrading the whole system’s reliability and so on. Therefore, speed sensorless

techniques remains an attractive research topic.

During the past several decades, extensive speed sensorless approaches have

been reported and widely performed in many industrial applications, which can

be grouped as [127,128]: fundamental model with measured currents and voltages

based algebraic operation methods [129–131], back-EMF sensing based methods

[132–134], and mathematical model based speed estimators [135–141].

On the other hand, the sliding mode observer has been proven to be one of the

effective methods for the speed estimation in electrical drives [143,144], due to its

insensitivity to parameter variations and capability of reconstructing the system

uncertainties. In [123], based on the measurable currents and input voltages, a

sliding mode observer with switching feedbacks has been applied for the speed

estimation of a PM synchronous motor. Once the sliding modes happen, the

back-EMFs signals can be reconstructed from the corresponding switching terms

by low-pass digital filters, from which the unknown speed and position can be

obtained. Similar work can be found in [119] where a first-order low pass filter

was integrated into the sliding mode observer design. However, for such methods,

the estimation performance suffers from the filtering effect, which causes a time

delay and requires extra compensation for rotor position estimation. In order to

eliminate the filtering effect, an adaptive sliding mode observer using a continuous

function to replace the switching form was employed for the sensorless speed

control of a PMSM [97], which results in a trade-off between the robustness of

the observer and the estimation accuracy of the estimates.

In addition, the back-EMFs based sliding mode observers for speed and po-
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sition estimations in electrical motors are mainly based on the one idea that, by

considering the rotor position/speed related back-EMFs as matching uncertain-

ties, the desirable position and position information can be extracted from the

reconstructed back-EMFs on the sliding surfaces. It should be mentioned that

the applications of such methods are strictly limited to the middle or high speed

situations, and can hardly be applicable in low speed situations because of the

small back-EMFs signals.

In this chapter, we shall propose a novel perspective on position and speed es-

timations of a surface-mounted permanent magnet synchronous motor (SPMSM),

which is to consider the unknown position related dynamics as new system states,

the chattering effect on the position estimation is then completely avoided. Fur-

thermore, in order to improve the speed estimation against the filtering effect, a

super-twisting sliding algorithm is applied. The observability of the both speed

and position will be carefully addressed.

5.2 Preliminaries

5.2.1 Mathematical Model

For a surface-mounted PMSM, the mathematical model in the stator fixed-frame,

i.e., the (α-β) frame, can be described as [107,140]

i̇α = −R

L
iα − 1

L
eα +

uα

L

i̇β = −R

L
iβ − 1

L
eβ +

uβ

L
(5.1)
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where

iα, iβ : The currents on α-axis and β-axis, respectively

uα, uβ : The voltages on α-axis and β-axis, respectively

eα, eβ : The back EMFs on α-axis and β-axis, respectively

R : Stator resistance

L : Stator inductance

The back electromotive forces can be represented in the form of

eα = −λfω sin θ

eβ = λfω cos θ (5.2)

where λf , ω and θ represent the magnetic flux parameter of the PM, the electric

angular speed and the rotor angle position, respectively.

In a speed-variable control system with the field-oriented scheme, the rotor

position related information, namely the matrix of the Park’s transformation

[140], is mandatory for the controller design, which is given as

T(θ) =


 cos θ sin θ

− sin θ cos θ


 (5.3)

Therefore, the objective of the speed sensorless observer design is, based on

the measurable currents and input voltages, to provide the estimations of rotor

speed ω, as well as the position related functions sin θ and cos θ.

Remark 5.1. The currents and voltages in the stator fixed frame can be directly

computed from the measurable three phase currents and voltages. For ease of

analysis, in the following, the currents and voltages in the stator fixed framed are

assumed to be known.
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5.2.2 A Conventional Sliding Mode Observer

In general, sliding mode observer design is only based on the dynamic system

given by (5.1), to recover the back-EMF signals eα and eβ. Then, the required

information of speed and position can be extracted from the relationship in (5.2).

In other words, by considering the EMFs as unknown dynamics in (5.1), a con-

ventional sliding mode observer can be designed in the form of

˙̂iα = −R

L
îα +

uα

L
+

1

L
H (̄iα)

˙̂iβ = −R

L
îβ +

uβ

L
− 1

L
H (̄iβ) (5.4)

where īα = îα − iα, and īβ = îβ − iβ represent the estimation errors of currents,

withˆdenoting the corresponding estimate.

H (̄iα) and H (̄iβ) are two properly designed sliding mode terms to ensure that

the sliding surfaces īα = 0 and īβ = 0 are reached in finite time and remained

thereafter. One common choice is given as [123]

H (̄iα) = −ρ1sign(̂iα − iα)

H (̄iβ) = −ρ2sign(̂iβ − iβ) (5.5)

with sliding gains chosen large enough, i.e., ρ1, ρ2 > |eα,β|.
Once the sliding modes happen, i.e., īα = 0, īβ = 0, based on the equivalent

injection input concept of sliding mode [52], the EMFs can be recovered from

(5.1) and (5.4), as

eα = −{H (̄iα)}eq ; eβ = −{H (̄iβ)}eq (5.6)

where {·}eq denotes the equivalent injection signal of the corresponding switching

term, which can be obtained by a low-pass filter. Therefore, the rotor speed and

position can be estimated via

θ̂ ≈ tan−1

(
{H (̄iα)}eq

{H (̄iβ)}eq

)
; ω̂ =

˙̂
θ (5.7)
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On the other hand, the desirable rotor speed and the rotor position related

functions can also be recovered via

sin θ̂ = {H (̄iα)}eq /(λf ω̂), cos θ̂ = − {H (̄iβ)}eq /(λf ω̂) (5.8)

with

ω̂ =
√
{H (̄iα)}2

eq + {H (̄iβ)}2

eq/λf (5.9)

Remark 5.2. With the conventional sliding mode observer in the form of (5.4),

the accuracy of speed and position estimations will be degraded by the filtering

effect caused during the construction of back-EMF signals (5.6), as well as the

computational errors in (5.7) - (5.9), especially at the low-speed situation.

5.3 Observer Design and Stability

Since it is the information of sin θ and cos θ, but not θ, that is required for the

Park’s transformation, we define a new system state vector as x = [x1, x2, x3, x4]
T =

[iα, iβ, sin θ, cos θ]T . Then, the corresponding system dynamics can be obtained

from (5.1) and (5.2), as

ẋ1 = −R

L
x1 +

λf

L
x3ω +

1

L
uα

ẋ2 = −R

L
x2 − λf

L
x4ω +

1

L
uβ (5.10)

ẋ3 = x4ω

ẋ4 = −x3ω

with the states x1 and x2 being measurable. Note that we have relax the identity

condition of sin2 θ + cos2 θ = 1.

Further, an implicit condition θ̇ = ω is applied in the represented dynamic

system (5.10), which results in the unknown speed ω being a non-matching in the
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observer sense. Then, a sliding mode can be designed in the form of

˙̂x1 = −R

L
x̂1 +

1

L
uα +

λf

L
u1

˙̂x2 = −R

L
x̂2 +

1

L
uβ +

λf

L
u2 (5.11)

˙̂x3 = −u2

˙̂x4 = −u1

where x̂ = [x̂1, x̂2, x̂3, x̂4]
T denotes the estimate of x; u1 and u2 are the sliding

mode terms, given by

u1 = −k1sign(x̂1 − x1)

u2 = −k2sign(x̂2 − x2) (5.12)

Theorem 5.1. For the new dynamic system in (5.10), the proposed observer given

by (5.11)-(5.12) ensures that the sliding surfaces x̂1− x1 = 0 and x̂2− x2 = 0 are

reached in finite time and remained thereafter, provided that the sliding gains are

chosen to satisfy k1, k2 > |ω|.

Proof. Let the estimation error e = [e1, e2, e3, e4]
T = [x̂1−x1, x̂2−x2, x̂3−x3, x̂4−

x4]
T , the dynamics of e1 can be obtained from (5.10)-(5.12), as

ė1 = [−Re1 − λk1sign(e1)− λx3ω]/L (5.13)

Then, define a Lyapunov function as V = (e1)
2/2, it can be readily deduced that

V̇ = e1ė1

= [−R(e1)
2 − λ(k1 − x3ωsign(e1))|e1|]/L (5.14)

≤ [−R(e1)
2 − λ(k1 − |ω|)|e1|]/L

< 0, (for V 6= 0)

Therefore, the sliding surface e1 = x̂1 − x1 = 0 will be asymptotically reached

and remained thereafter. Similarly, the sliding surface e2 = x̂2 − x2 = 0 can be
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reached by choosing k2 > |ω|.

Theorem 5.2. For the dynamic system in (5.10) with the stator resistance chang-

ing slowly, the proposed observer given by (5.11)-(5.12) ensures that the reduced-

order estimation errors of x3 and x4 are globally bounded/stable; furthermore,

there exists a time constant T0 such that ∀t ≥ T0, it has

x̂3(t)− x3(t) = ∆1

x̂4(t)− x4(t) = ∆2 (5.15)

with ∆1 and ∆2 being two constant values.

Proof. According to Theorem 5.1, the proposed observer ensure that the sliding

surfaces are reached in a finite time, denoted as T0, and remained thereafter. In

other words, ∀t ≥ T0, it has x̂1 = x1, and x̂2 = x2. Then, it can be deduced from

(5.10) and (5.11) that

x3ω = u1 = − k1sign(x̂1 − x1)

−x4ω = u2 = − k2sign(x̂2 − x2) (5.16)

By substituting (5.16) into the dynamics of e3 = x̂3 − x3 and e4 = x̂4 − x4, it

can be readily obtained that

ė3 = −u2 − x4ω = 0

ė4 = −u1 + x3ω = 0
(5.17)

The above two equations imply that, after the sliding surfaces are reached,

i.e., t ≥ T0, the estimation errors of x3 and x4 are constrained into two constants.

In other words, the two equalities in (5.15) are true.

Corollary 5.1. On the sliding modes surfaces, the unknown rotor position related

states x3 and x4 can be exactly estimated by the proposed observer in (5.11),

provided that there exist two time instants T1 ≥ T0 and T2 ≥ T0 such that x3(t =

T1) and x4(t = T2) are measurable.
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Proof. According to Theorem 5.2, ∆1 and ∆2 are time-independent constants,

then they can be exactly estimated at the time instants T1 and T2, respectively;

i.e., ∆1 = (x̂3−x3)|t=T1 and ∆2 = (x̂4−x4)|t=T2 . Therefore, ∀t ≥ max{T1, T2}, the

states x3 and x4 can be exactly estimated by x̂3 and x̂4 based on the calibration

of ∆1 and ∆2, respectively.

Remark 5.3. In real applications, the calibration time instants can be chosen

while the phase back-EMFs are crossing zeros. For ease of analysis, we assume

that eα|t=T1 = −λfωx3|t=T1 = 0, and eβ|t=T2 = λfωx4|t=T2 = 0. In other words,

together with the back-EMF sensing techniques [132–134], the proposed observer

given by (5.11)-(5.12) provides a novel and robust estimations of the rotor position

related signals sin θ and cos θ for the Park’s transformation (5.3), without filtering

effect.

Remark 5.4. Form the observer design point of view, the proposed sliding mode

observer given by (5.11) ensures that only partial states of the system (5.10) can

be exactly identified on the sliding surfaces (see Theorem 5.1), and the remaining

states and unknown speed failed to be observable (see Theorem 5.2). Compared

with the conclusions in Chapter 3, this can be considered as a practical example

of case 2, in which the reduced order dynamics is stable, but not asymptotically

stable.

For the unknown rotor speed ω estimation, it can be extracted from the iden-

tified rotor position related states x3 and x4 after t ≥ max{T1, T2}, as

ω̂ = tan−1

(
x̂3

x̂4

) ∣∣
t≥max{T1,T2} (5.18)

Besides, it can also be reconstructed from the sliding mode terms once the

sliding surfaces are reached, i.e.,

ω̂ =
√

({u1}eq)2 + ({u2}eq)2 |t≥T0 (5.19)

with ({u1}eq and ({u1}eq being the equivalent injection signals of u1 and u2,

respectively, which can be obtained via low-pass filters.
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Note that the formula in (5.18) involves the division operator which may

case computational error when the denominator is close to zero. For the other

formula in (5.19), the accuracy will be affected by the filtering effect because of

the switching mechanism in u1 and u2.

Remark 5.5. In order to improve the speed estimation performance, the sliding

mode terms u1 and u2 in the proposed observer given by (5.11) can be replaced

with the super-twisting algorithm, which are given in the form of [53]

u1 = −k11|x̂1 − x1|1/2sign(x̂1 − x1) + v1

v̇1 = −k12sign(x̂1 − x1) (5.20)

and

u2 = −k21|x̂2 − x2|1/2sign(x̂2 − x2) + v1

v̇2 = −k22sign(x̂2 − x2) (5.21)

with k11, k12, k13 and k14 being the properly chosen positive sliding gains.

It has been proven by geometrical methods [53], or by means of the Homo-

geneity properties of the algorithm [71], that the super-twisting algorithm given by

(5.20) and (5.21) will ensure the sliding surfaces ė1 = e1 = 0 and ė2 = e2 = 0

are reached in a finite time and remained thereafter. Then, the speed estimation

formula in (5.19) can be updated as

ω̂ =
√

(u1)2 + (u2)2 |t≥T0 (5.22)

Thus, the filtering effect on the speed estimation can be completely avoided.

5.4 Simulation Results

For the simulation purpose, the motor parameters in (5.10) are chosen as [107]:

R = 0.3 ohm, L = 3.366 mH, λf = 0.0776 Wb, and the real rotor speed is

assumed as ω = 3× (1+0.6 sin t), with the initial values of the motor as: Iα(0) =
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Iβ(0) = 10 A, θ(0) = 0.2π.

The following simulations are cataloged in four parts: First, the conventional

sliding mode observer given by (5.4)-(5.5) is applied to estimate the position

related functions and speed via (5.8) and (5.9), respectively. Second, the proposed

sliding mode observer given by (5.11)-(5.12) is performed for the position related

functions and speed estimations. Third, based on Remark 5.5, the proposed

observer (5.11) appended with (5.20)-(5.21) is used for speed estimation, as well as

the position related functions. Last, in order to study the robustness of proposed

observers, similar simulations are repeated with 30 dB current measurement noise.

5.4.1 With Conventional Sliding Mode Observer

For the purpose of comparison, the conventional sliding mode observer given by

(5.4)-(5.5) is applied. The observer parameters are given as: ρ1 = ρ2 = 0.7,

Îα(0) = Îβ(0) = 0, ω̂(0) = 0, θ̂(0) = 0; the simulation step is set to 0.5 ms.

The simulation results are shown in Figure 5.1, in which two low-pass filters

are used for the reconstruction of back-EMFs, so that the unknown speed can be

recovered. However, it causes an undesirable time delay for the speed estimation,

as shown in Figure 5.1e. Similar issues are also involved in the reconstruction of

the rotor position related functions, see Figure 5.1c and Figure 5.1d. Note that

there is no calibration signal required for the conventional sliding mode observer.

5.4.2 With Proposed Sliding Mode Observer 1

Here, the proposed observer described by(5.11)-(5.12) is employed, with observer

parameters k1 = k2 = 7. The other simulation parameters are chosen the same

as in the above subsection.

According to Corollary 5.1, we assume that, at the time instant T1 = T2 =

6 seconds, the back-EMFs signals can be exactly measured for calibration pur-

pose. The simulation results are shown in Figure 5.2. It can be found in Figure

5.2c and Figure 5.2d that the desirable rotor position related signals can be exactly

estimated without filtering effect after the calibration. However, there still exists
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small ripples on the recovered speed signal (via the formula of (5.19)) because of

the requirement of low-pass filters, as shown in Figure 5.2e.

5.4.3 With Proposed Sliding Mode Observer 2

Now, we shall consider the estimation performance with the proposed observer

of (5.11), appended with the sliding mode terms given by (5.20) and (5.21). The

simulation parameters are chosen the same as above, except that the sliding gains

are given as k11 = k21 = 1, k12 = k22 = 20.

The improved performance can be clearly seen in Figure 5.3, and the visible

ripples disappear in speed estimation, as shown in Figure 5.3e.

5.4.4 Robustness Study with Measurement Noise

In order to study the estimation performance in case of measurement noise, the

above simulations are re-conducted by adding 30dB white-noise on the measure-

ment signals, with functions awgn(Iα, 30,′ ′) and awgn(Iβ, 30,′ ′) in Matlab, see

Figure 5.4a, Figure 5.5a and Figure 5.6a.

The simulation parameters are chosen the same as above, except that a simple

digital filter is applied on the currents to handle the measurement noise, i.e.,

Iα(k) =
∑9

i=0 Iα(k − i) and Iβ(k) =
∑9

i=0 Iβ(k − i). Then, the simulation results

are shown in Figure 5.4, Figure 5.5 and Figure 5.6. Clearly, the proposed observer

2 provides a better estimation performance on the speed and rotor position related

functions than both the conventional one and the proposed observer 1.

5.5 Summary

Based on the idea that the chattering/filtering phenomenon of the sliding mode

observer affects only the reconstructed uncertainties, but not the unknown system

states, a novel perspective on the estimation of rotor position related signals in

a surface-mounted PMSM is presented. With a one time calibration of the esti-

mated position information, the real-time position related Park’s transformation

matrix can be exactly identified without filtering effect. Moreover, the rotor speed
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Figure 5.1: The estimation performance with the conventional SMO
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Figure 5.2: The estimation performance with the proposed SMO1
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Figure 5.3: The estimation performance with the proposed SMO2

Nanyang Technological University Singapore



5.5. Summary 97

0 5 10 15 20 25
−15

−10

−5

0

5

10

15

Time (Sec)

C
ur

re
nt

 (
A

)

 

 

Real Iα
Measured Iα

(a) : real Iα and measured Îα
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0 5 10 15 20 25
−15

−10

−5

0

5

10

15

Time (Sec)

 

 

Real Iα
Estimated Iα

(b) : real Iα and estimated Îα
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can be estimated without filtering effect with the application of the super-twisting

algorithm.
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Chapter 6

State and Unknown Input

Estimations in MIMO Systems

In the 3 preceding chapters, we have studied the design of hybrid nonlinear ob-

servers that combine full-order high gain feedback with higher-order sliding mode

feedback, and demonstrated their different characteristics with practical exam-

ples of DC and PM motors, respectively. We showed that the stability of the

reduced-order dynamics is completely independent of the observer gains, and is

only related to the original system structure.

In this chapter, we shall look into the state estimation of a class of multi-input-

multi-output (MIMO) nonlinear systems where the number of output measure-

ments is more than the number of unknown inputs. Then, with less restrictive

system structure assumptions, we are able to ensure asymptotic stability of the

reduced order dynamics. For the systems under consideration, the unknown in-

puts still enter the systems via unknown-state dependent matrices. From the

observer design point of view, such unknown inputs are termed as non-matching

in the observer sense and the systems may not satisfy the strict involutive condi-

tion. For this class of systems, we shall show that the identifiability of both the

unknown inputs and states can be guaranteed. A numerical example is given to

illuminate the effectiveness of the proposed observer.

The organization of this chapter is as follows: Section 6.1 introduces some

existing techniques on the estimation problem of MIMO systems. In section 6.2,

Singapore Singapore
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the system description is presented, as well as some nonlinear transformation

results. In section 6.3, a robust hybrid observer which consists of high order

sliding mode terms and a reduced-order high gain feedback is proposed, and the

observability of the unknown inputs and states is carefully addressed. In section

6.4, a six-order numerical example is used to demonstrate the proposed observer

design. Section 6.5 concludes this chapter.

6.1 Introduction

In general, sliding mode observer design for state and unknown input estimations

of uncertain MIMO nonlinear systems is often based on the requirement of involu-

tive condition [105], with which the original uncertain system can be decomposed

into two subsystems: the first one, which is constructed via Lie derivatives of the

system outputs, has a differential structure with the unknown inputs appearing in

the corresponding last dynamic equation, and the other subsystem has a nominal

dynamics. However, the observability of the unknown inputs can be ensured only

when the nominal subsystem is self asymptotically stable on the sliding surfaces,

which is difficult to verify [78]. It also has been mentioned in [62] that the remain-

ing system states will fail to be identified if the reduced-order nominal subsystem

is unstable.

In addition, another critical obstacle for unknown input estimations of a

MIMO system lies with that the involutive condition only guarantees the ex-

istence of the nominal subsystem, but no explicit formulation has been proposed

on how to construct it. Therefore, the stability of the nominal subsystem is dif-

ficult to check, and the identifiability of the unknown inputs and states of the

original system cannot be guaranteed.

In this chapter, we shall consider a class of uncertain MIMO nonlinear systems,

in which the unknown inputs are non-matching in the observer sense, as defined in

Definition 3.1. With the assumption that the number of measurement outputs is

more than the number of unknown inputs, a hybrid observer that combines higher

order sliding mode feedbacks with a reduced-order high gain feedback is proposed,
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in which the high order sliding mode feedbacks work to ensure the corresponding

sliding mode surfaces are reached individually and remained thereafter, and the

high gain feedback designed based on an extra output guarantees the asymptotic

stability of the remaining estimation dynamics on the sliding surfaces. The iden-

tifiability of the unknown inputs and states can be guaranteed based on the idea

that the unknown inputs can be replaced by some nominal dynamics when the

corresponding sliding mode happens.

6.2 Preliminaries

6.2.1 System Dynamics

Consider the class of locally stable multi-input-multi-output systems that is de-

scribed as

ẋ = f(x) + G(x)ϕ(t)

y = h(x)
(6.1)

where x ∈ <n, y ∈ <m+1, f(x) ∈ <n, h(x) = [h1(x), . . . , hm+1(x)]T ∈ <m+1,

G(x) = [g1(x), . . . ,gm(x)] ∈ <n×m, ϕ(t) = [ϕ1(t), . . . , ϕm(t)]T ∈ <m, and gi(x) ∈
<n, i = 1, . . . , m < n are smooth vector and matrix functions defined on an open

set Ω ⊂ <n. ϕ(t) is the unknown input vector, which is required to be identified,

together with the state vector x.

Assumption 6.1. The first m outputs have a vector relative degree {r1, . . . , rm}
corresponding to G(x) at each point x ∈ Ω, i.e.,

Lgj
Lk

f hi(x) = 0, ∀j = 1, . . . , m, ∀k < ri − 1, ∀i = 1, . . . , m

Lgj
Lri−1

f hi(x) 6= 0 for at least one 1 ≤ j ≤ m

where Lie derivative is defined as Lfhi(x) = [∂hi(x)/∂x]f. Furthermore, the fol-
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lowing m×m matrix

E(x) =




Lg1
Lr1−1

f h1(x) Lg2
Lr1−1

f h1(x) . . . Lgm
Lr1−1

f h1(x)

Lg1
Lr2−1

f h2(x) Lg2
Lr2−1

f h2(x) . . . Lgm
Lr2−1

f h2(x)
...

...
...

...

Lg1
Lrm−1

f hm(x) Lg2
Lrm−1

f hm(x) . . . Lgm
Lrm−1

f hm(x)




is non-singular at each point x ∈ Ω.

Assumption 6.2. The extra output hm+1(x) is said to have a relative degree rm+1

with respect to the unknown inputs at each point x ∈ Ω. i.e.,

Lgi
Lk

f hm+1(x) = 0, ∀j = 1, . . . , m, ∀k < rm+1 − 1,

Lgi
L

rm+1−1
f hm+1(x) 6= 0 for at least one 1 ≤ j ≤ m

with the total relative degree rto =
∑m+1

i=1 ri = rsm + rm+1 ≤ n, where rsm =
∑m

i=1 ri.

Note that Assumption 6.1 on the definition of vector relative degree is firstly

proposed in [105] for a square system, and similar definitions can also be found in

[62,78]. The non-singular matrix E(x) is required to ensure that all the unknown

inputs can be reconstructed individually after all the states have converged to their

true values. Assumption 6.2 is a new definition of the relative degree between the

extra output hm+1(x) and the m unknown inputs ϕi(t), i = 1, . . . , m.
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6.2.2 Coordinate Transformation

Based on the system given by (6.1), a new basis chosen based on Lie derivatives

is given as follows:

[ξT , ηT ]T ∈ <n : i = 1, . . . , m

ξ =




ξ1

ξ2

...

ξm



∈ <rsm , ξi =




ξi
1

ξi
2

...

ξi
ri




=




φi
1(x)

φi
2(x)

...

φi
ri
(x)




=




hi(x)

Lfhi(x)
...

Lri−1
f hi(x)



∈ <ri

η =




η1

η2

...

ηn−rsm




=




φrsm+1(x)

φrsm+2(x)

...

φn(x)




=




hm+1(x)

Lfhm+1(x)

...

Ln−rsm−1
f hm+1(x)



∈ <n−rsm

(6.2)

Assumption 6.3. The mapping function Φ(x) defined below is a local diffeomor-

phism ∀x ∈ Ω, which means x = Φ−1(ξ, η),

Φ(x) = [φ1
1(x), . . . , φ1

r1
(x), φ2

1(x), . . . , φ2
r2

(x), . . . ,

φm
1 (x), . . . , φm

rm
(x), φrsm+1(x), . . . , φn(x)]T ∈ <n

i.e., Φ(ξ, η) = [ξ1
1 , . . . , ξ

1
r1

, ξ2
1 , . . . , ξ

2
r2

, . . . , ξm
1 , . . . , ξm

rm
, η1, . . . , ηn−rsm ]T ∈ <n

It can be seen that the mapping function Φ(ξ, η) is strictly defined based on

the Lie derivatives of the measurement outputs. Assumption 6.3 implies that the

state x can be recovered by means of inverse mapping, so the observer design of

the original system (6.1) can be discussed in the new transformed domain.

Suppose that the original system given by (6.1) satisfies Assumptions 6.1-6.3,

then it can be represented in the form of

ξ̇i = Λiξ
i + Ψi(ξ, η) + λi(ξ, η, ϕ(t)), ∀i = 1, . . . , m

η̇ = Aη + α(ξ, η) + P(ξ, η)ϕ(t)
(6.3)
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where

Λi =




0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1

0 0 0 . . . 0




∈ <ri×ri

Ψi(ξ, η) =




0
...

0

Lri
f hi(x)




=




0
...

0

Lri
f hi(Φ

−1(ξ, η))



∈ <ri

λi(ξ, η, ϕ(t)) =




0
...

0
∑m

j=1 Lgj
Lri−1

f hi(x)ϕj(t)




=




0
...

0
∑m

j=1 Lgj
Lri−1

f hi(Φ
−1(ξ, η))ϕj(t)




and

A =




0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1

0 0 0 . . . 0




∈ <(n−rsm)×(n−rsm), α(ξ, η) =




0
...

0

Ln−rsm
f hm+1(Φ

−1(ξ, η))




P(ξ, η) = [p1(ξ, η),p2(ξ, η), . . . ,pm(ξ, η)] ∈ <(n−rsm)×m

pi(ξ, η) =




0
...

0

Lgi
L

rm+1−1
f hm+1(x)

...

Lgi
L

(n−rsm+1)
f hm+1(x)




=




0
...

0

Lgi
L

rm+1−1
f hm+1(Φ

−1(ξ, η))
...

Lgi
L

(n−rsm+1)
f hm+1(Φ

−1(ξ, η))




∈ <n−rsm
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It can be seen that the original system given in (6.1) has been decomposed into

two subsystems that are both described in the I/O form. As shown in (6.2), for the

ξ subsystem, the dynamics of each ξi has a differentiator structure with unknown

inputs appearing in the corresponding last dynamic equation, respectively. For

the η subsystem, it can be considered as a non-minimum phase dynamics, in

which the distribution matrix P(ξ, η) includes unknown states, i.e., the unknown

input vector ϕ(t) is non-matching in the observer sense.

6.2.3 Problem Formulation and Difficulties

The objective of this chapter is to design a robust observer for the estimation of ξ

and η in the transformed dynamic system (6.3), thereby recovering the state x and

the unknown input ϕ(t) in the original system (6.1). The observer design in the

remaining part of this chapter will be discussed in the context of the transformed

domain, and we address the asymptotic convergence of the estimates ξ̂, η̂ and

ˆϕ(t) to their true values, i.e.,

lim
t→∞

‖ξ̂ − ξ‖ = 0 (6.4)

lim
t→∞

‖η̂ − η‖ = 0 (6.5)

lim
t→∞

‖ϕ̂(t)− ϕ(t)‖ = 0 (6.6)

It should be mentioned that the unknown input observer design for MIMO

nonlinear systems is often based on the involutive condition of the distribution

matrix G(x). As a result, the original uncertain system can be decomposed into

two subsystems, of which only one is affected by the unknown inputs and it has

the same structure of ξ in (6.3). The other subsystem’s dynamics is assumed

to be nominal and self stable which is difficult to check, because the involutive

condition only guarantees the existence of such a nominal subsystem, but no

explicit formulation is available on how to construct it [62,105].

In order to provide an explicit state transformation formulation and to guar-

antee the identifiability of the unknown input, we consider a class of nonlinear

uncertain systems that can be transformed into the I/O form as in (6.3). Unlike
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the nominal dynamic subsystem in [62, 78], the η subsystem in (6.3) is obtained

by the Lie derivatives of an extra measurement output, i.e., η1 = hm+1(x), and

the relative degree between the extra output and unknown inputs is assumed to

be rm+1, as defined in Assumption 2. To obtain the asymptotic stability of the

observer, the following structure assumptions are required.

Assumption 6.4. For the ξ subsystem, the components of vector Ψi(ξ, η) are

assumed to be Lipschitz functions with respect to η, and each component includes

only the upper rm+1 components of vector η, which is more general than the tri-

angular structure, i.e.,

Lri
f hi(Φ

−1(ξ, η)) = ψi(ξ, η1, . . . , ηrm+1), i = 1, . . . , m (6.7)

Assumption 6.5. The Lie derivative function Ln−rsm
f hm+1(Φ

−1(ξ, η)) in the vec-

tor of α(ξ, η) is a Lipschitz function with respect to their arguments, i.e.,

∣∣∣Ln−rsm
f hm+1(Φ

−1(ξ̂, η̂))− Ln−rsm
f hm+1(Φ

−1(ξ, η))
∣∣∣ ≤ lα(‖ξ̂ − ξ‖+ ‖η̂ − η‖)

(6.8)

with lα being a Lipschitz constant.

Assumption 6.6. Consider the matrix P(ξ, η)E−1(Φ−1(ξ̂, η̂)) , P̄(ξ, η), each

column vector has the triangular structure with respect to η, and their moduli are

locally bounded on <; furthermore, their components are all Lipschitz functions.

In other words, let P̄(ξ, η) = [p̄1, . . . , p̄m] ∈ <(n−rsm)×m, it has

p̄i(ξ, η) = [0, . . . , 0, p̄i
rm+1

(ξ, η1, . . . , ηrm+1), . . . ,

p̄i
rm+1

(ξ, η1, . . . , ηn−rsm)]T ∈ <n−rsm , i = 1, . . . , m

(6.9)

with p̄i
rm+1

(ξ, η1, . . . , ηk), ∀i = 1, . . . , m, ∀k = rm+1, . . . , n − rsm, being Lipschitz

functions.

Assumption 6.4 means that the ξ subsystem is only related to the first rm+1

states of the η subsystem, with rm+1 being the relative degree between the un-

known inputs and the measurable output in the η subsystem. In the case when
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the relative degree is full order, i.e, rm+1 = n− rsm, then the new function given

in (6.7) can be rewritten as ψi(ξ, η) which has the similar structure as in [78].

Assumptions 6.5 and 6.6 can be conservative but they are required to ensure

the uniform observability of the η subsystem. It has been proven in [35] that

a nominal nonlinear system with triangular structure is uniformly observer for

any known input. Together with Assumptions 6.4-6.6, they allow us to guarantee

the uniform observability of the η subsystem if the unknown input ϕ(t) can be

replaced by some nominal dynamics. Besides, in Assumption 6.6, the first (rm+1−
1) components of each column vectors p̄i(·) are zeros, because the relative degree

between the extra measurement output η1 = hm+1(x) and the unknown input

vector ϕ(t) is assumed to be rm+1 in Assumption 6.2.

6.3 Robust Hybrid Observer Design

In this section, a robust nonlinear observer that combines the high order sliding

mode feedbacks with a reduced-order high gain feedback is proposed for handling

the state estimation of the transformed dynamic system given by (6.3), and the

unknown input will be reconstructed after all the states have converged to their

true values.

For the ξ subsystem, it can be considered as m dynamics of ξi, i = 1, . . . , m,

with each of them processing the differentiator structure and the unknown input

appearing only in the corresponding last dynamic equation. Then, the quasi-

continuous sliding mode observer with the higher-order sliding mode differentiator

can be used to handle these m dynamics, and the corresponding m sliding surfaces

will be individually reached in finite time.

Once all the sliding surfaces are reached, the unknown inputs in the η sub-

system can be completely replaced with some nominal dynamics and hence the

uniform observability property of the η subsystem can be ensured. Then, the

reduced-order high gain feedback which is designed based on the extra measure-

ment output will guarantee the asymptotic convergence for the remaining estima-

tion error on the sliding surfaces.
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6.3.1 Sliding Mode Feedbacks Design

By defining the m sliding variables σi = ξ̂i
1 − ξi

1 = ξ̂i
1 − hi(x), i = 1, . . . , m, the

derivatives of σi can be estimated in finite time by the higher-order sliding mode

differentiator [69], which can be written in the form of

żi
0 = vi

0,

vi
0 = −λi

0|zi
0 − σi|(ri−1)/risign(zi

0 − σi) + zi
1

żi
1 = vi

1,

vi
1 = −λi

1|zi
1 − vi

0|(ri−2)/(ri−1)sign(zi
1 − vi

0) + zi
2

...

żi
ri−2 = vi

ri−2,

vi
ri−2 = −λi

ri−2|zi
ri−2 − vi

ri−3|1/2sign(zi
ri−2 − vi

ri−3) + zi
ri−1

żi
ri−1 = −λi

ri−1sign(zi
ri−1 − vi

ri−2)

(6.10)

where the positive parameters λi
k, k = 0, . . . , ri − 1, i = 1, . . . , m are properly

chosen. Then, the following equalities are true after a finite time transient process,

zi
k − σ

(k)
i = 0, k = 0, . . . , ri − 1, i = 1, . . . , m (6.11)

where σ
(k)
i denotes the kth-order derivative of σi.

Based on (6.10), the m sliding mode feedbacks can be designed based on the

quasi-continuous high order sliding mode technique [71], as given in the form of

uri
= −ρiΓk,ri

(zi
0, z

i
1, . . . , z

i
ri−1), i = 1, . . . , m (6.12)

where, for k = 0, 1, . . . , ri − 1, Γk,ri
are computed via

γ0,ri
= zi

0, N0,ri
= |zi

0|, Γ0,ri
= γ0,ri

/N0,ri
= sign(zi

0)

γk,ri
= zi

k + βi
kN

(ri−k)/(ri−k+1)
k−1,ri

Γk−1,ri
,

Nk,ri
= |zi

k|+ βi
kN

(ri−k)/(ri−k+1)
k−1,ri

, Γk,ri
= γk,ri

/Nk,ri

(6.13)

Here, the positive tuning parameters βi
k, k = 1, . . . , ri − 1, i = 1, . . . , m are
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chosen in advanced, and the sliding gains ρi should be chosen large enough.

Now, considering the m dynamic systems of ξi in the ξ subsystem (6.3), the

corresponding high order sliding mode observer can be designed as

˙̂
ξi = Λiξ̂

i + Ψ̂i(ξ̂, η̂) + λ̂i(uri
), i = 1, . . . , m (6.14)

where ξ̂ = [ξ̂1, ξ̂2, . . . , ξ̂m]T and η̂ are the estimated vectors of ξ and η respectively.

Furthermore,

ξ̂i =




ξ̂i
1

ξ̂i
2

...

ξ̂i
ri




, Ψ̂i(ξ̂, η̂) =




0
...

0

ψ̂i(ξ̂, η̂)




, λ̂i(uri
) =




0
...

0

uri




Here, the function ψi(·) is exactly the same as Lri
f hi(·), as assumed in Assumption

6.4.

It has been proven in [69] that such sliding mode observer in (6.14) ensures

the sliding surfaces are reached in finite time and remained thereafter, provided

that the sliding parameters are properly chosen. In other words, it has

σ
(ri−1)
i = · · · = σi = 0, i = 1, . . . , m (6.15)

which implies the state ξ can be exactly estimated after a finite time transient:

ξ̂i = ξi, i = 1, . . . , m, i.e., ξ̂ = ξ. Then, based on the equivalent injection input
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concept and together with Assumption 6.4, the following equalities hold:

ur1 + ψ̂1(ξ, η̂1, . . . , η̂rm+1)− ψ1(ξ, η1, . . . , ηrm+1)

=
∑m

j=1 Lgj
Lr1−1

f h1(Φ
−1(ξ, η))ϕj(t)

ur2 + ψ̂2(ξ, η̂1, . . . , η̂rm+1)− ψ2(ξ, η1, . . . , ηrm+1)

=
∑m

j=1 Lgj
Lr2−1

f h2(Φ
−1(ξ, η))ϕj(t)

...

urm + ψ̂m(ξ, η̂1, . . . , η̂rm+1)− ψm(ξ, η1, . . . , ηrm+1)

=
∑m

j=1 Lgj
Lrm−1

f hm(Φ−1(ξ, η))ϕj(t)

(6.16)

With the definition of matrix E(Φ−1(ξ, η)) in Assumption 6.1, the above equalities

can be represented in a vector/matrix form as

u + ∆(η̂, η) = E(Φ−1(ξ, η))ϕ(t) , E(ξ, η)ϕ(t) (6.17)

where

u =




ur1

ur2

...

urm



∈ <m, ∆(η̂, η) =




ψ̂1(ξ, η̂1, . . . , η̂rm+1)− ψ1(ξ, η1, . . . , ηrm+1)

ψ̂2(ξ, η̂1, . . . , η̂rm+1)− ψ2(ξ, η1, . . . , ηrm+1)
...

ψ̂m(ξ, η̂1, . . . , η̂rm+1)− ψm(ξ, η1, . . . , ηrm+1)




Furthermore, as the matrix E(·) is assumed to be non-singular, the unknown

input vector ϕ(t) in (6.17) can be obtained as

ϕ(t) = E−1(ξ, η)[u + ∆(η̂, η)] (6.18)

The above equation (6.18) shows the relationship between the unknown input

vector ϕ(t) and the sliding mode terms related vector u, which implies the un-

known input vector can be recovered from the vector u if all states can converge

to their true values, i.e., ∆(η̂, η) = 0.

In the following section, we shall consider a reduced-order high gain feedback

design to ensure that the remaining states in the η subsystem can be asymptoti-
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cally estimated.

6.3.2 High Gain Feedback Design on the Sliding Surfaces

On the sliding surfaces given by (6.15), the η subsystem can be reduced into the

following form by substituting equation (6.18) into the dynamics in (6.3), as

η̇ = Aη + α(ξ, η) + P(ξ, η)E−1(ξ, η)[u + ∆(η̂, η)] (6.19)

Clearly, the unknown input vector in the η subsystem is completely cancelled

while all the sliding modes occur. Together with the triangular structure assump-

tions in Assumption 6.4 and Assumption 6.6, the uniform observability of the η

subsystem is guaranteed.

Then, an (n−rsm)th-order high gain feedback can be designed for the remain-

ing state estimation of the η subsystem, as given by

˙̂η = Aη̂ + α(ξ̂, η̂) + P(ξ̂, η̂)E−1(ξ̂, η̂)u + L[hm+1(x)−Cη̂] (6.20)

where hm+1(x) denotes the extra measurement output of the original system (6.1),

the constant row vector C is defined as C = [1, 0, · · · , 0] ∈ <n−rsm , and the

feedback gain L is designed based on the high gain theory [36], given as

L = S−1
θ CT = [θC1

n−rsm
, θ2C2

n−rsm
, · · · , θn−rsmCn−rsm

n−rsm
]T ∈ <n−rsm (6.21)

with Sθ being a positive symmetric matrix function of parameter θ, as

Sθ(i, j) =
(−1)i+jCj−1

i+j−2

θi+j−1
, 1 ≤ i, j ≤ n− rsm, Ck

m =
m!

(m− k)!k!

By defining the remaining estimation error eη = η̂ − η = [eη
1, . . . , e

η
n−rsm

]T ∈
<n−rsm , the following Theorem guarantees that the estimation error eη is asymp-

totically stable on the sliding surfaces.

Theorem 6.1. On the sliding surfaces (6.15), the proposed high gain observer

given by (6.20)-(6.21) ensures that the remaining state η can be asymptotically
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identified, provided that Assumptions 6.1-6.6 are satisfied and the high gain feed-

back parameter θ is chosen large enough, i.e., θ > max{θ0, 1}, with θ0 being given

by

θ0 = σ(S1)[2lα + 2(n− rto + 1)lpρ̄ + 2mlψbp] (6.22)

where S1 is equal to the matrix Sθ by setting θ = 1, σ(S1) denotes the condition

number of S1; lα, lp, and lΨ are some positive Lipschitz constants; ρ̄ and bp are

positive constants related to u and P̄(·), respectively; and rto is the total relative

degree.

Proof. On the sliding surfaces, i.e., ξ̂ = ξ, the η subsystem in (6.3) can be rewrit-

ten in the form of (6.19), then the dynamics of the estimation error eη can be

obtained from (6.19) and (6.20), as

ėη = (A− S−1
θ CTC)eη + α(ξ, η̂)− α(ξ, η)− P̄(ξ, η)∆(η̂, η)

+ [P̄(ξ, η̂)− P̄(ξ, η)]u
(6.23)

with P̄(·) = P(·)E−1(·) being defined in Assumption 6.6, u and ∆(η̂, η) being

defined in (6.17). For ease of analysis, the following equalities are introduced [36]:

∆θ = diag{1, 1

θ
, · · · ,

1

θn−rsm−1
}, Sθ =

1

θ
∆θS1∆θ,

∆θA∆−1
θ = θA, C∆θ = C∆−1

θ = C,

θSθ + ATSθ + SθA−CTC = 0

By setting ed = ∆θeη, and define a Lyapunov function as V = eT
d S1ed. Then,

it can be deduced from (6.23) that

V̇ = 2eT
d S1∆θėη

= 2eT
d S1∆θ(A− S−1

θ CTC)eη + 2eT
d S1∆θ[α(ξ, η̂)− α(ξ, η)]

− 2eT
d S1∆θP̄(ξ, η)∆(η̂, η) + 2eT

d S1∆θ[P̄(ξ, η̂)− P̄(ξ, η)]u

= 2θeT
d S1Aed − 2θ‖Ced‖2 + 2eT

d S1∆θ[α(ξ, η̂)− α(ξ, η)]

− 2eT
d S1∆θP̄(ξ, η)∆(η̂, η) + 2eT

d S1∆θ[P̄(ξ, η̂)− P̄(ξ, η)]u

(6.24)
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Furthermore, with the equalities listed above, it has

2eT
d S1Aed = eT

d (S1A + ATS1)ed = − eT
d S1ed + ‖Ced‖2 (6.25)

Based on Assumption 6.5, α(·) is a Lipschitz function vector, and for any

θ > 1, we have

‖∆θ[α(ξ, η̂)− α(ξ, η)]‖ ≤ 1

θn−rsm−1
lα‖η̂ − η‖ ≤ lα‖∆θeη‖ = lα‖ed‖ (6.26)

where lα is the Lipschitz constant of the function Ln−rsm
f hm+1(·) defined in As-

sumption 6.5.

Similarly, Assumption 6.6 assumes that all the column vectors p̄i(·) of the

matrix P̄(·), i = 1, . . . , m, are Lipschitz functions with the triangular structure

in (6.9). Then for any θ > 1, it can be obtained that

‖∆θ[P̄(ξ, η̂)− P̄(ξ, η)]u‖ ≤ ∑m
i=1 ‖∆θ[p̄

i(η̂)− p̄i(η)]uri
‖

≤ ∑m
i=1 ρi

∑n−rsm

k=rm+1

1
θk−1 lp(k,i)

‖ēk‖
≤ ∑m

i=1 ρi(n− rsm − rm+1 + 1)lpi
‖∆θeη‖

≤ (n− rsm − rm+1 + 1)lpρ̄‖ed‖
= (n− rto + 1)lpρ̄‖ed‖

(6.27)

where ēk , [eη
1, . . . , e

η
k, 0, . . . , 0]T ∈ <n−rsm , k = rm+1, . . . , n − rsm, are partial

estimation errors of eη; the constant ρ̄ =
∑m

i=1 ρi denotes the sum of sliding

gains of u; lp(k,i)
denotes the Lipschitz constant of the k-th row and i-th column

component function of matrix P̄(·), lpi
means the maximum Lipschitz constant

number in the i-th column, and lp = max{lp1
, lp2

, . . . , lpm
}; the constant number

of (n − rto + 1) comes up because the relative degree of the unknown input is

assumed to be rm+1 for the η subsystem in Assumption 6.2, and rto denotes the

total relative degree of the original system in (6.1), as defined in Assumption 6.2,

i.e., rto = rsm + rm+1.

According to Assumption 6.4, the functions ψi(·), i = 1, . . . , m, are Lipschitz

functions with respect to η, and only include the upper rm+1 dynamics of η,
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i.e., {η1, η2, . . . , ηrm+1}. Therefore, on the sliding surfaces, i.e., ξ̂ = ξ, it can be

deduced that

∣∣∣ψ̂i(ξ, η̂1, . . . , η̂rm+1)− ψi(ξ, η1, . . . , ηrm+1)
∣∣∣ ≤ lψi

‖ērm+1‖, i = 1, . . . , m

(6.28)

where ērm+1 = [eη
1, . . . , e

η
rm+1

, 0, . . . , 0]T ∈ <n−rsm is a partial estimation error of

eη, and lψi
denotes the Lipschitz constant of the function ψi(·).

Considering the moduli of the vectors p̄i(ξ, η) are locally bounded as assumed

in Assumption 6.6, and they have the triangular structures as shown in (6.9), we

have

‖∆θp̄
i(ξ, η)‖ ≤ 1

θrm+1−1
bpi

, i = 1, . . . , m (6.29)

where bpi
denotes the upper bound of the moduli of vector p̄i(ξ, η).

Therefore, from (6.28) and (6.29), it can be deduced that

‖∆θP̄(ξ, η)∆(η̂, η)‖ ≤ ∑m
i=1 ‖∆θp̄

i(ξ, η)[ψ̂i(ξ, η̂1, . . . , η̂rm+1)− ψi(ξ, η1, . . . , ηrm+1)]‖
≤ ∑m

i=1
1

θrm+1−1 bpi
lψi
‖ērm+1‖

≤ ∑m
i=1 lψi

bpi
‖∆θeη‖

≤ mlψbp‖ed‖
(6.30)

where bp = max{bp1
, . . . , bpm

}, and lψ = max{lψ1 , . . . , lψm}.
Finally, substituting (6.25), (6.26), (6.27) and (6.30) into (6.24), it can be

obtained that

V̇ ≤ −θeT
d S1ed − θ‖Ced‖2 + 2lα‖eT

d S1‖‖ed‖+ 2(n− rto + 1)lpρ̄‖eT
d S1‖‖ed‖

+ 2mlψbp‖eT
d S1‖‖ed‖

≤ −θV + σ(S1)[2lα + 2(n− rto + 1)lpρ̄ + 2mlψbp]V

= −(θ − θ0)V

(6.31)

with θ0 being defined in (6.22).

Therefore, it is clear that by choosing the high gain feedback parameter θ > θ0,
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we have V̇ < 0, which implies the estimation error dynamics of eη is asymptoti-

cally stable. In other words, it has η̂ = η.

6.3.3 Unknown Input Reconstruction

As discussed in the above two subsections, the proposed hybrid observer consists

of two parts: the high order sliding mode observer given by (6.14) which is used

to handle the ξ subsystem, and the (n− rsm)th order high gain observer given by

(6.20) that is used to handle the η subsystem. In essence, the operating procedure

of the proposed observer can be described as one in which the high order sliding

mode observer works individually to ensure the corresponding sliding surfaces are

reached in finite time and remained thereafter, then the reduced-order high gain

observer guarantees the asymptotic stability of the remaining estimation error

dynamics on the sliding surfaces.

Thereafter, after all states have converged to their true values, i.e., ξ̂ = ξ,

η̂ = η, it can be obtained from (6.17) and (6.18) that

∆(η̂, η) = 0, ϕ(t) = E−1(ξ̂, η̂)u (6.32)

which means the unknown input vector can be successfully reconstructed from

the sliding mode terms. For the original system given by (6.1), all the state x can

be estimated by the inverse mapping, i.e., x̂ = Φ−1(ξ̂, η̂) = Φ−1(ξ, η) = x.

Remark 6.1. Note that the components of vector u, i.e., uri
, i = 1, . . . , m,

defined in (6.12) are switching functions, thus proper low-pass filters are required

for the reconstruction of the unknown input vector ϕ(t) via equation (6.32).
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6.4 Numerical Simulations

In this section, the proposed observer is demonstrated for a six-order numerical

example, which is described as

ẋ =




−4x1 + x2x5

x4

x5

−4x4 − x2
2 + 4

x6 + cos x5

−3x6 − 3x5 − x3




︸ ︷︷ ︸

+




1 0

0 0

0 0

0 1

x1 0.4x4

1 0.5x6




︸ ︷︷ ︸




ϕ1(t)

ϕ2(t)




︸ ︷︷ ︸

f(x) G(x) ϕ(t)

(6.33)

y = [h1(x), h2(x), h3(x)]T = [x1, x2, x3]
T (6.34)

where x = [x1, x2, x3, x4, x5, x6]
T ∈ <6 is the system state, y ∈ <3 is the system

measurement output, ϕ(t) = [ϕ1(t), ϕ2(t)]
T ∈ <2 is the system unknown input

which needs to be identified, and G(x) = [g1(x),g2(x)] ∈ <6×2, g1(x),g2(x) ∈ <6

are the distribution matrix and vectors. Note that the distribution matrix G(x)

includes the unknown states x4 and x6, which means the unknown input ϕ(t) is

non-matching in the observer sense.

By direct computation, it follows that

Lg1
h1(x) = 1,

Lg1
h2(x) = Lg2

h2(x) = 0, Lg2
Lfh2(x) = 1,

Lg1
h3(x) = Lg2

h3(x) = 0, Lg1
Lfh3(x) = x1,

(6.35)

It implies that the first two outputs in the system (6.33)-(6.34) have a vector

relative degree {1, 2}, and the extra output h3(x) has relative degree 2 with respect

to the unknown input ϕ(t). Therefore, according to Assumption 6.1, the matrix
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E(x) can be defined as

E(x) =


 Lg1

h1(x) Lg2
h1(x)

Lg1
Lfh2(x) Lg2

Lfh2(x)


 =


1 0

0 1


 (6.36)

which is nonsingular.

Then a coordinate transformation can be chosen as (ξ, η) : ξ1
1 = x1, ξ2

1 = x2,

ξ2
2 = x4, η1 = x3, η2 = x5, η3 = x6 + cos x5. The system (6.33)-(6.34) in the new

basis can be described by

ξ̇1
1 = −4ξ1

1 + ξ2
1η2 + ϕ1(t)

ξ̇2
1 = ξ2

2

ξ̇2
2 = −4ξ2

2 − (ξ2
1)

2 + 4 + ϕ2(t)

η̇1 = η2

η̇2 = η3 + ξ1
1ϕ1(t) + 0.4ξ2

2ϕ2(t)

η̇3 = −3(η3 − cos η2)− 3η2 − η1 − η3 sin η2 + [1− ξ1
1 sin η2]ϕ1(t)

+ [0.5(η3 − cos η2)− 0.4ξ2
2 sin η2]ϕ2(t)

(6.37)

It can be verified that the mapping function Φ(x) = [ξ1
1 , ξ

2
1 , ξ

2
2 , η1, η2, η3]

T is

diffeomorphism ∀x, and Assumptions 6.1-6.6 are all satisfied. Then, by setting

the corresponding estimated dynamics as {ξ̂1
1 , ξ̂

2
1 , ξ̂

2
2 , η̂1, η̂2, η̂3}, a robust observer

can be designed in the form of

˙̂
ξ1
1 = −4ξ̂1

1 + ξ̂2
1 η̂2 + u1

˙̂
ξ2
1 = ξ̂2

2

˙̂
ξ2
2 = −4ξ̂2

2 − (ξ̂2
1)

2 + 4 + u2

˙̂η1 = η̂2 − 3θ[η̂1 − h3(x)]

˙̂η2 = η̂3 + ξ̂1
1u1 + 0.4ξ̂2

2u2 − 3θ2[η̂1 − h3(x)]

˙̂η3 = −3(η̂3 − cos η̂2)− 3η̂2 − η̂1 − η̂3 sin η̂2 + [1− ξ̂1
1 sin η̂2]u1

− θ3[η̂1 − h3(x)] + [0.5(η̂3 − cos η̂2)− 0.4ξ̂2
2 sin η̂2]u2

(6.38)
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where θ is the high gain feedback parameter, u1 and u2 are the first-order and

second-order sliding mode terms, given by [69], [71]

u1 = −ρ1sign(ξ̂1
1 − h1(x))

u2 = −ρ2(z1 + |z0|1/2sign(z0))/(|z1|+ |z0|1/2)

ż0 = v0

v0 = −1.5M1/2|z0 − [ξ̂2
1 − h2(x)]|1/2sign[z0 − (ξ̂2

1 − h2(x))] + z1

ż1 = −1.1Msign(z1 − v0)

(6.39)

with M being a tuning parameter.

For the simulation, we choose ϕ1(t) = 2 sin(5t) and ϕ2(t) = 2 sin(2t) + cos t.

Then, the parameters for observer (6.38)-(6.39) are chosen as: ρ1 = 3, ρ2 =

5, θ = 2,M = 20. The simulation is performed with the initial values x0 =

[6, 6, 6, 6, 6, 6]T , x̂0 = [2, 2, 2, 0, 0, 0]T , z0 = z1 = v0 = 1.

As the mapping function Φ(x) is diffeomorphism ∀x, the estimated states for

the original system in (6.33) can be obtained by inverse mapping, as: x̂1 = ξ̂1
1 ,

x̂2 = ξ̂2
1 , x̂3 = η̂1, x̂4 = ξ̂2

2 , x̂5 = η̂2, x̂6 = η̂3− cos(η̂2). Then the simulation results

are shown in Figure 6.1.

From Figure 6.1d, it shows that all the estimated states converge to their true

values after 5s, then, the unknown inputs ϕ1(t) and ϕ2(t) can be reconstructed

from the sliding mode terms, i.e., ϕ1(t) = u1, ϕ2(t) = u2, as shown in Figure 6.1e

and Figure 6.1f.

6.5 Summary

In this chapter, a robust observer has been developed for a class of uncertain

MIMO nonlinear systems in which the unknown inputs enter the system dynam-

ics via the unknown-state dependent distribution matrix. If the number of mea-

surement outputs is more than the number of unknown inputs, and with proper

structure assumptions, the uniform observability of the states and unknown in-

puts can be guaranteed without the requirement of the involutive property.
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Figure 6.1: The estimation performance with the proposed hybrid observer
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Chapter 7

A Recursive Sliding Mode

Observer for Input Identification

In chapter 6, we have studied the hybrid nonlinear observer design for state and

non-matching unknown input estimation of a class of nonlinear MIMO uncertain

systems, in which the measurement outputs are noiseless (e.g. the uncertainties

are not included in the system measurements). However, in some particular sys-

tems with a direct feedthrough path, the unknown inputs would appear not only

in the state dynamics, but also in the measurement outputs. For such systems,

the difficulty of the state and unknown input observer designs lies with how to

separate the ”clean” state dynamics contaminated by the unknown inputs from

the measurement outputs.

In [84], a high-order sliding mode observer is designed for state estimation of

a class of linear uncertain systems, in which not all the outputs of the system

contain information affected by the unknown inputs, and strong observability or

strong detectability assumption is required.

In this chapter, we shall extend the results in Chapter 6 to study the state

estimation and unknown input identification problems of a class of MIMO non-

linear systems, in which the unknown inputs are non-matching in the observer

sense and that they appear in both the dynamics of states and the measurement

outputs. A hybrid observer that combines higher order sliding mode observers

with a high gain observer is proposed, but we develop a new feature in which
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the sliding mode observers are designed with recursive structures to ensure that

the sliding mode surfaces are reached sequentially, and that the valuable signals

in the measurement outputs are gradually extracted by cancelling the unknown

inputs in sequence. Then, the high gain feedback works to guarantee that the

unknown inputs and the states can be identified asymptotically.

The chapter is organized as follows: Section 7.1 presents the system dynamics

and problem formulation. In section 7.2, a robust observer that combines a novel

recursive high order sliding mode algorithm with high gain feedback is proposed;

and a modified recursive sliding mode algorithm is also developed to improve the

estimation performance. In section 7.3, a six-order numerical example is used

to demonstrate the effectiveness of the proposed observer design. Section 7.4

concludes this chapter.

7.1 Preliminaries

7.1.1 System Dynamics

In this chapter, we shall consider a class of stable uncertain systems with m inputs

and m + 1 outputs, for which the dynamics can be described in the form of

ẋi
1 = xi

2

...

ẋi
ri−1 = xi

ri

ẋi
ri

= fi(x
1
d, . . . ,x

i
d) + bix

i+1
1 + ϕi(t), i = 1, . . . , m

ẋs = Axs + α(xd,xs) + P(xd,xs)ϕ(t)

y = h(x) + Dϕ(t)

(7.1)
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where 1

x =
[
(xd)

T , (xs)
T
]T

, xd =




x1
d

x2
d

...

xm
d



∈ <r , xi

d =




xi
1

xi
2

...

xi
ri



∈ <ri

xm+1
1 , xs

1 , xs =




xs
1

xs
2

...

xs
n−r



∈ <n−r , ϕ(t) =




ϕ1(t)

ϕ2(t)
...

ϕm(t)



∈ <m

A =




0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1

0 0 0 . . . 0




∈ <(n−r)×(n−r) , h(x) =




x1
1

...

xm
1

xs
1



∈ <m+1

with r =
∑m

i=1 ri; x ∈ <n denotes the system state vector, ϕ(t) ∈ <m the un-

known input vector, y = [y1, . . . , ym+1]
T ∈ <m+1 the system measurement output;

bi, i = 1, . . . , m are known constant scalars, α(·) is a known smooth vector on

<n−r, D ∈ <(m+1)×m a constant distribution matrix of unknown inputs of the

system measurements, and P(xd,xs) = [p1, p2, . . . ,pm] ∈ <(n−r)×m the distri-

bution matrix of unknown inputs of the dynamics of xs, with its column vector

component pi ∈ <n−r, i = 1, . . . , m.

Note that the system given by (7.1) has been decomposed into two subsystems.

For the xd subsystem, the dynamics of each xi
d is represented in the I/O form with

differentiator structure, and the unknown inputs appear in the corresponding last

dynamic equation, respectively. For the xs subsystem, it can be considered as a

non-minimum phase dynamics with the distribution matrix P(xd,xs) including

unknown states.

1Through out this chapter, the variables xm+1
1 and xs

1 denote the same variable for notational
simplicity.
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For the measurement output y, it is assumed to be directly affected by the

unknown input ϕ(t) via a constant matrix D. This happens when the system

model has a direct feedthrough, otherwise, D is a zero matrix.

7.1.2 Problem Formulation

The problem considered in this chapter is to design a robust observer for the sys-

tem (7.1) with only the measurement y available, to guarantee that the estimates

x̂(t) and ϕ̂(t) will asymptotically converge to their true values, i.e.,

lim
t→∞

‖x̂− x‖ = 0 (7.2)

lim
t→∞

‖ϕ̂(t)− ϕ(t)‖ = 0 (7.3)

Consider the subsystem of xs, the unknown input ϕ(t) is said to not satisfy

the matching condition in the observer sense, because the distribution matrix

P(xd,xs) includes the unknown states of x. To the best of our knowledge, there

are few effective existing works that can handle such non-matching unknown in-

puts. Although the disturbance considered in [124] is non-matching, it is assumed

to be an unknown constant. In [78], a higher order sliding mode observer is pro-

posed to estimate the unknown states and inputs of a MIMO nonlinear system,

which can be decomposed into two subsystems based on the involutive condition.

Of these two subsystems, only one is affected by the unknown inputs with the

similar structure of xd in (7.1), and the other subsystem’s so-called internal dy-

namics is assumed to be observable and self stable which is difficult to check.

Furthermore, as mentioned in [62], the stability of the internal dynamics plays an

important role on the identifiability of the unknown inputs, and it may also affect

the estimation performance of the remaining states. One illustrative numerical

example is given as

ẋ1 = x2 + ϕ1(t)

ẋ2 = x2 (with y = x1)
(7.4)

It can be seen that the unknown input ϕ1(t) in (7.4) is difficult to be identified
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since the internal dynamics of x2 is unstable/divergent. So, it is necessary to fur-

ther explore the stability of the internal dynamics. The involutive condition used

in [62, 78, 105] only guarantees the existence of the internal dynamics subsystem

that is independent of uncertainties, but no explicit methodology is available on

how to construct such internal dynamics from the original nonlinear system, and

the corresponding stability is difficult to be verified.

For the class of nonlinear uncertain systems that is expressed in the form

as shown in (7.1), if we compare the xs subsystem with the internal dynamical

subsystem mentioned in [62,78], the existence of the distribution matrix P(xd,xs)

means that the involutive condition is not satisfied. Moreover, a feedthrough path

with matrix D is also considered since it often appears in a general control system.

The existence of non-matching unknown inputs in both the xs subsystem and the

measurement outputs y remains a challenging problem for the observer design.

In order to guarantee the identifiability of the unknown inputs, in this paper,

the number of the measurable outputs is assumed to be one more than the number

of the unknown inputs. Such assumption ensures that at least one clean output

signal can be extracted in the initial stages, and the residual measurable output

(i.e., related to xs
1) will be used to handle the observability of the xs subsystem.

In addition, the following additional structural assumptions are required.

Assumption 7.1. The system in (7.1) satisfies, i = 1, . . . , m

α(xd,xs) = [α1(xd, x
s
1), α2(xd, x

s
1, x

s
2), · · · , αn−r(xd, x

s
1, x

s
2, . . . , x

s
n−r)]

T

pi(xd,xs) = [p1i(xd, x
s
1), p2i(xd, x

s
1, x

s
2), · · · , p(n−r)i(xd, x

s
1, x

s
2, . . . , x

s
n−r)]

T

(7.5)

Assumption 7.2. The functions αk(xd, x
s
1, . . . , x

s
k), pki(xd, x

s
1, . . . , x

s
k); i = 1, . . . , m,

k = 1, . . . , n− r are Lipschitz functions with respect to x.

Assumption 7.3. The distribution matrix P(xd,xs) with functions pki(·); k =

1, . . . , n− r, i = 1, . . . , m are bounded with respect to their arguments.

Assumption 7.4. The feedthrough matrix D is a lower triangular matrix in the
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form of

D =




0 0 0 . . . 0

d11 0 0 . . . 0

d21 d22 0 . . . 0
...

...
...

...
...

dm1 dm2 dm3 . . . dmm




∈ <(m+1)×m (7.6)

Assumption 7.5. The coefficients (1− dkkbk), k = 1, . . . , m, are assumed to be

non-zeros.

In Assumption 7.1, the xs subsystem given in (7.1) is assumed to satisfy the

triangular structure, and it has been proven in [33] that such structure guarantees

the uniform observability of the state xs for any known input. This allows us to

design appropriate robust terms to approach the unknown inputs and thereby

ensuring the uniform observability of the xs subsystem. Assumption 7.2 and As-

sumption 7.3 are required in order to achieve asymptotic stability of the estimation

of the state xs.

For the dynamics of each xi
d, i = 1, . . . , m, in (7.1), it can be noticed that

the relative degree between xi
1 and the corresponding unknown input ϕi(t) is ri.

Furthermore, the structural connection between the dynamics xi
d and xi+1

d is made

through a lower triangular form, i.e., fi(x
1
d, . . . ,x

i
d) + bix

i+1
1 . This structure can

be conservative, but together with Assumption 7.4 and Assumption 7.5, they are

required to ensure that the unknown inputs on the measurement outputs can be

cancelled in sequence and thereby the identifiability of all states and unknown

inputs can be guaranteed.

7.2 Robust Nonlinear Observer

In this section, we shall consider the observer design for the nonlinear uncertain

system given in (7.1), and the proposed observer can be decomposed into higher

order sliding mode feedbacks and a high gain feedback, which are used to handle

the two subsystems of (7.1), respectively.
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For the xd subsystem, the m dynamics of xi
d, i = 1, . . . , m, have the differentia-

tor structure, and the uncertainties appear in the corresponding highest dimension

dynamics. Then, the quasi-continuous sliding mode observer with higher-order

sliding mode differentiator can be used to handle such subsystems. However,

unlike the works in [62, 78] and Chapter 6, as the measurable outputs are also

distorted by the uncertainties, a hierarchical observer design method is proposed

to ensure that the sliding surfaces are reached sequentially.

Once all the sliding surfaces are reached and remained thereafter, based on

the equivalent control concept, the unknown inputs in the xs subsystem can be

replaced by some nominal terms. Therefore, the uniform observability of xs can be

guaranteed. Then a high gain feedback can be designed to ensure the asymptotic

stability of the remaining estimation error dynamics on the sliding surfaces.

7.2.1 Higher-order Sliding Mode Observer

Let x̂d and x̂s denote the estimated vectors of xd and xs, respectively. Based

on the structure of the measurable outputs y = [y1, . . . , ym+1]
T in (7.1) with

Assumption 7.4 and Assumption 7.5 being satisfied, A higher order sliding mode

observer for xi
d, i = 1, . . . , m can be designed in the form of

˙̂xi
1 = x̂i

2

...

˙̂xi
ri−1 = x̂i

ri

˙̂xi
ri

= fi(x̂
1
d, . . . , x̂

i
d) + bix̂

i+1
1 + ui (x̂m+1

1 , x̂s
1)

(7.7)

where ui, i = 1, . . . , m are the robust sliding mode terms, designed to deal with

the corresponding unknown inputs ϕi(t). In order to design the sliding mode

terms, the m sliding variables are chosen based on the following algorithm:

σ1 = x̂1
1 − y1

σ2 = [x̂2
1 + d11{u1}eq − y2]/[1− d11b1]

...

σm = [x̂m
1 +

∑m−1
i=1 d(m−1)i{ui}eq − ym]/[1− d(m−1)(m−1)bm−1]

(7.8)
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Here, {ui}eq, i = 1, . . . , m are the equivalent signals of the corresponding sliding

mode terms ui; dki, k = 1, . . . , m − 1 are the elements of matrix D defined in

Assumption 7.4. So, the derivatives of σi, i = 1, . . . , m can be estimated via [69]

żi
0 = vi

0,

vi
0 = −λi

0|zi
0 − σi|(ri−1)/risign(zi

0 − σi) + zi
1

żi
1 = vi

1,

vi
1 = −λi

1|zi
1 − vi

0|(ri−2)/(ri−1)sign(zi
1 − vi

0) + zi
2

...

żi
ri−2 = vi

ri−2,

vi
ri−2 = −λi

ri−2|zi
ri−2 − vi

ri−3|1/2sign(zi
ri−2 − vi

ri−3) + zi
ri−1

żi
ri−1 = −λi

ri−1sign(zi
ri−1 − vi

ri−2)

(7.9)

where the positive parameters λi
k, k = 0, . . . , ri − 1, i = 1, . . . , m are properly

chosen. Then, the following equalities are true after a finite time transient process,

zi
k − σ

(k)
i = 0, k = 0, . . . , ri − 1, i = 1, . . . , m (7.10)

with σ
(k)
i denoting the kth-order derivative of σi for the dynamics of xi. Thus,

the quasi-continuous higher-order sliding mode terms can be designed as [71]

ui = −ρiΓk,ri
(zi

0, z
i
1, . . . , z

i
ri−1), i = 1, . . . , m (7.11)

where, for k = 0, 1, . . . , ri − 1, Γk,ri
are computed via

γ0,ri
= zi

0, N0,ri
= |zi

0|, Γ0,ri
= γ0,ri

/N0,ri
= sign(zi

0)

γk,ri
= zi

k + βi
kN

(ri−k)/(ri−k+1)
k−1,ri

Γk−1,ri
,

Nk,ri
= |zi

k|+ βi
kN

(ri−k)/(ri−k+1)
k−1,ri

, Γk,ri
= γk,ri

/Nk,ri

(7.12)

Here, the positive tuning parameters βi
k, k = 1, . . . , ri − 1, i = 1, . . . , m are

chosen in advanced, and the sliding gains ρi should be chosen large enough to

cover the upper bounds of the unknown inputs.

Theorem 7.1. Suppose that the dynamic subsystem of xd given by (7.1) satisfies
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Assumptions 4 and 5, the proposed higher order sliding mode observer (7.7)-(7.12)

ensures the m sliding surfaces σ
(ri−1)
i = · · · = σi = 0, i = 1, . . . , m are reached

in finite time and remained thereafter. Furthermore, once all the sliding sur-

faces are reached, the variables xi
d can be exactly estimated by x̂i

d, i.e., x̂d = xd.

Furthermore, the unknown inputs can be represented as

ϕ(t) = u + ∆(x̂s
1, x

s
1) (7.13)

where

u =




{u1}eq

{u2}eq

...

{um−1}eq

{um}eq




∈ <m, ∆(η̂1, η1) =




0

0
...

0

bm[x̂s
1 − xs

1]




∈ <m

Proof. Consider the observer structure given by (7.7)-(7.12), the sliding variables

and the sliding mode terms are coupled with each other. In other words, the

sliding mode term uk defined based on σk is also related to the previous robust

term uk−1. i.e., uk ← σk/x
k
1 ← uk−1. The sliding variables are chosen in such a

recursive structure of (7.8), in order to cancel the unknown inputs/disturbances

in the measurable outputs sequentially, and to obtain a clean relationship between

sliding variable σk and its corresponding state estimation error x̂k
1 − xk

1.

With Assumption 7.4, the (m + 1) measurement outputs of y in (7.1) can be

rewritten as

y1 = x1
1

y2 = x2
1 + d11ϕ1(t)

...

ym = xm
1 +

∑m−1
i=1 d(m−1)iϕi(t)

ym+1 = xs
1 +

∑m
i=1 dmiϕi(t)

(7.14)
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Then, the m sliding variables in (7.8) can be expressed as

σ1 = x̂1
1 − x1

1

σ2 = {x̂2
1 − x2

1 + d11[{u1}eq − ϕ1(t)]}/[1− d11b1]
...

σm = {x̂m
1 − xm

1 +
∑m−1

i=1 d(m−1)i[{ui}eq − ϕi(t)]}/[1− d(m−1)(m−1)bm−1]

(7.15)

Clearly, the first sliding variable σ1 is clean with respect to the unknown

inputs, and its dynamic can be obtained from (7.1) and (7.7), as

σ
(r1)
1 = f1(x̂

1
d)− f1(x

1
d) + b1[x̂

2
1 − x2

1]− ϕ1(t) + u1 (7.16)

where u1 is designed based on quasi-continuous sliding mode (7.11)-(7.12). As

proven in [71], by properly choosing sliding gain and tuning parameters, the

sliding surfaces σ
(r1−1)
1 = · · · = σ1 = 0 will be reached in finite time and remained

thereafter, which implies x̂1
k = x1

k, k = 1, . . . , r1, i.e., x̂1
d = x1

d. Thus, based on

the equivalent injection concept, it can be obtained from (7.16) that

{u1}eq − ϕ1(t) = −b1[x̂
2
1 − x2

1] (7.17)

where {u1}eq denotes the equivalent signal of u1. By substituting the above

equation into the sliding variable σ2 in (7.15), then it has

σ2 = x̂2
1 − x2

1
(7.18)

It means that the sliding mode of σ1 will result in the next sliding variable σ2

being without any uncertainty. And the corresponding dynamics can be written

as

σ
(r2)
2 = (x̂2

1)
(r2) − (x2

1)
(r2)

= f2(x
1
d, x̂

2
d)− f2(x

1
d,x

2
d) + b2[x̂

3
1 − x3

1]− ϕ2(t) + u2

(7.19)

Similarly, the sliding mode u2 given in (7.11)-(7.12) ensures the sliding surface

σ
(r2−1)
2 = · · · = σ2 = 0 will be reached in finite time and remained thereafter,
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which implies x̂2
k = x2

k, k = 1, . . . , r2, i.e., x̂2
d = x2

d. Thus, it can be deduced that

{u1}eq − ϕ1(t) = 0

{u2}eq − ϕ2(t) = −b2[x̂
3
1 − x3

1]
(7.20)

Then, the sliding variable σ3 in (7.15), when the sliding mode of σ1 and σ2 occur,

can be simplified into

σ3 = x̂3
1 − x3

1
(7.21)

Compared (7.17) with (7.20), we can extend the above obtained results into more

general cases. Then, in order to complete the proof, the following Lemma 7.1 is

introduced.

Lemma 7.1. Suppose the following two propositions are true for a given k such

that 2 ≤ k ≤ m− 1,

1) x̂i
d = xi

d, σ
(ri−1)
i = · · · = σi = 0; i = 1, . . . , k;

2) {ui}eq − ϕi(t) = 0, i = 1, . . . , k − 1;

{uk}eq − ϕk(t) = −bk[x̂
k+1
1 − xk+1

1 ]

then it will be also true for k + 1.

Proof. First, based on the previous analysis and (7.20), the above two propositions

are true for k = 2. So, we only need to prove these propositions still hold for

k′ = k + 1.

By substituting 2) into the sliding variable σk+1 in (7.15), it can be obtained

that

σk′ = σk+1 = x̂k+1
1 − xk+1

1
(7.22)

From (7.1) and (7.7) the dynamic of σk+1 can be described as

σ
(rk+1)
k+1 = (x̂k+1

1 − xk+1
1 )(rk+1)

= fk+1(x
1
d, . . . ,x

k
d, x̂

k+1
d )− fk+1(x

1
d, . . . ,x

k
d,x

k+1
d )

+bk+1[x̂
k+2
1 − xk+2

1 ]− ϕk+1(t) + uk+1

(7.23)
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Consider this rk+1 order differentiator dynamic of σk+1, the quasi-continuous slid-

ing mode controller uk+1 defined in (7.11)-(7.12) can ensure a new sliding surface

σ
(rk+1−1)
k+1 = · · · = σk+1 = 0 is reached in finite time and remained thereafter.

Together with (7.21), it has x̂k+1
j = xk+1

j , j = 1, . . . , rk+1. i.e., x̂k+1
d = xk+1

d . So,

we can say that the statement 1) is true for i = k + 1.

Now, based on the equivalent injection concept, and substitute x̂k+1
d = xk+1

d

into statement 2), it can be obtained that

{ui}eq − ϕi(t) = 0, i = 1, . . . , k

{uk+1}eq − ϕk+1(t) = −bk+1[x̂
k+2
1 − xk+2

1 ]
(7.24)

Thus, these two statements are also true for k′ = k + 1.

Now, by substituting k = m into Lemma 1, the following equalities hold:

x̂i
d = xi

d, σ
(ri−1)
i = · · · = σi = 0; i = 1, . . . , m;

{ui}eq − ϕi(t) = 0, i = 1, . . . , m− 1;

{um}eq − ϕm(t) = −bm[x̂m+1
1 − xm+1

1 ] = −bm[x̂s
1 − xs

1]

By defining u and ∆(x̂s
1, x

s
1) as in Theorem 7.1. We can obtain the equation

in (7.13).

For the sliding variables given in (7.8), they are chosen in a recursive way

to sequentially cancel the unknown inputs in the system measurement outputs.

Due to the structure of the proposed observer in (7.7)-(7.12), the sliding surfaces

will be approached in a fixed sequential order, and a properly designed low-pass

filter is required to obtain the equivalent signal of the corresponding sliding mode

terms.

Remark 7.1. For such a recursive sliding mode observer structure given in (7.6)-

(7.12), the implementation error of the equivalent signal will be passed down to

the remaining dynamics, so the low-pass filter will affect not just the estimation

performance of the states, but also the performance of unknown inputs identifica-

tion.
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7.2.2 Reduced-order Dynamics on the Sliding Surfaces

Once the sliding mode occurs, the sliding variables will reach the sliding surfaces

and remain on them thereafter, i.e., x̂d = xd. Then according to Theorem 7.1,

the unknown inputs can be rewritten as

ϕ(t) = u + ∆(x̂s
1, x

s
1) (7.25)

Therefore, the dynamics of subsystem xs in (7.1) can be described as

ẋs = Axs + α(xd,xs) + P(xd,xs)[u + ∆(x̂s
1, x

s
1)] (7.26)

Note that the unknown inputs completely disappear in the above dynamics,

and this allows us to design a corresponding observer to ensure the uniform ob-

servability of xs on the sliding surfaces.

Hence, a high gain feedback observer for the xs subsystem can be designed in

the form of

˙̂xs = Ax̂s + α(x̂d, x̂s) + P(x̂d, x̂s)u− Lσm+1 (7.27)

where Lσm+1 denotes the high gain feedback term, with σm+1 being defined as

σm+1 = [x̂s
1 +

∑m
i=1 dmi{ui}eq − ym+1] /[1− dmmbm] (7.28)

and the constant feedback gain L is chosen based on HGO [36], such that

L = S−1
θ CT = [θC1

n−r, θ2C2
n−r, · · · , θn−rCn−r

n−r ]
T

C = [1, 0, · · · , 0] ∈ <n−r
(7.29)

Here, Sθ is a positive symmetric matrix function of parameter θ, and its (i, j)th

element is given by

Sθ(i, j) =
(−1)i+jCj−1

i+j−2

θi+j−1
, 1 ≤ i, j ≤ n− r, Ck

m =
m!

(m− k)!k!

Define the estimation error es = x̂s − xs = [es
1, · · · , es

n−r]
T ∈ <n−r, the
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following Theorem 7.2 guarantees that the estimation error es is asymptotically

stable on the sliding surfaces.

Theorem 7.2. On the sliding surfaces, i.e., x̂d = xd, and with the xs subsystem

given in (7.1) satisfying Assumptions 1, 2 and 3, the proposed high gain observer

(7.27)-(7.29) ensures that the estimation error es is asymptotically stable, pro-

vided that the high gain parameter θ > max{θ0, 1}, with

θ0 = 2σ(S1)[(n− r)lα + (n− r)ρ̄lp + P̄ bm] (7.30)

where S1 is equal to the matrix Sθ by setting θ = 1, σ(S1) denotes the condition

number of S1; lα and lp are the corresponding Lipschitz constants; ρ̄ =
∑m

i=1 ρi,

and P̄ denotes the upper bound of the modulus of distribution matrix P(xd,xs).

Proof. On the sliding surfaces, i.e., x̂d = xd, the feedback σm+1 given in (7.28)

can be simplified into the following equation with Theorem 7.1, as

σm+1 = [x̂s
1 +

∑m
i=1 dmi{ui}eq − (xs

1 +
∑m

i=1 dmiϕi(t))]/[1− dmmbm]

= [x̂s
1 − xs

1 + dmm({um}eq − ϕm(t))]/[1− dmmbm]

= x̂s
1 − xs

1

= Ces

(7.31)

Since the dynamics of the xs subsystem on the sliding surfaces can be rewritten

as in (7.26), the dynamics of the estimation error es can be obtained from (7.26)

and (7.27), as

ės = (A− S−1
θ CTC)es + α(xd, x̂s)− α(xd,xs) + [P(xd, x̂s)−P(xd,xs)]u

−P(xd,xs)∆(x̂s
1, x

s
1)

(7.32)

In order to prove the asymptotic stability of the above dynamics and for ease of
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analysis, the following equalities are introduced:

∆θ = diag(1,
1

θ
, · · · ,

1

θn−1
) Sθ =

1

θ
∆θS1∆θ

∆θA∆−1
θ = θA C∆θ = C∆−1

θ = C

θSθ + ATSθ + SθA−CTC = 0

By setting ξ = ∆θes, and defining a Lyapunov function as V = ξTS1ξ, it can be

deduced from (7.32) that

V̇ = 2ξTS1∆θės

= 2ξTS1∆θ(A− S−1
θ CTC)es + 2ξTS1∆θ[α(xd, x̂s)− α(xd,xs)]

− 2ξTS1∆θP(xd,xs)∆(x̂s
1, x

s
1) + 2ξTS1∆θ[P(xd, x̂s)−P(xd,xs)]u

= 2θξTS1Aξ − 2θ‖Cξ‖2 + 2ξTS1∆θ[α(xd, x̂s)− α(xd,xs)]

− 2ξTS1∆θP(xd,xs)∆(x̂s
1, x

s
1) + 2ξTS1∆θ[P(xd, x̂s)−P(xd,xs)]u

(7.33)

With the equalities listed above, we have

2ξTS1Aξ = −ξTS1ξ + ‖Cξ‖2 (7.34)

Based on Assumption 7.1 and Assumption 7.2, the vector α(·) is a Lipschitz

function with respect to x, and for any θ > 1, it has

‖∆θ [α(xd, x̂s)− α(xd,xs)] ‖ ≤
n−r∑

k=1

1

θk−1
|αk(xd, x̂

s
1, . . . , x̂

s
k)− αk(xd, x

s
1, . . . , x

s
k)|

≤
n−r∑

k=1

1

θk−1
lαk‖es

k‖

≤
n−r∑

k=1

lαk‖∆θes‖

≤ (n− r)lα‖ξ‖ (7.35)

where es
k = [es

1, · · · , es
k, 0, · · · , 0]T ∈ <n−r denotes the partial estimation error

of es; and lα = supk|lαk|, with lαk being the Lipschitz constant of function αk(·).
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Similarly, it can be obtained that

‖∆θ[P(xd, x̂s)−P(xd,xs)]u‖ ≤
m∑

i=1

‖∆θ[p
i(xd, x̂s)− pi(xd,xs)]ui‖

≤
m∑

i=1

n−r∑

k=1

|ui|
θk−1

|pki(xd, x̂
s
1, . . . , x̂

s
k)− pki(xd, x

s
1, . . . , x

s
k)|

≤
m∑

i=1

(n− r)ρilpi‖ξ‖

≤ (n− r)ρ̄lp‖ξ‖ (7.36)

where ρ̄ =
∑m

i=1 ρi, with ρi being the sliding gain of ui in (7.11); lpi denotes

the maximum Lipschitz constant number in the ith-column vector pi(·), and

lp = supi|lpi|.

Considering the bounded distribution matrix P(xd,xs) in Assumption 7.3,

and together with the structure of ∆(x̂s
1, x

s
1) in (7.13), it has

‖∆θP(xd,xs)∆(x̂s
1, x

s
1)‖ ≤ P̄ bm‖ξ‖ (7.37)

where P̄ denotes the upper bound of the modulus of the distribution matrix

P(xd,xs), and bm is the system coefficient in (7.1).

Therefore, substituting (7.34)-(7.34) into (7.33), we can obtain that

V̇ ≤ −θξTS1ξ − θ‖Cξ‖2 + 2‖ξTS1‖‖ξ‖[(n− r)lα + (n− r)ρ̄lp + P̄ bm]

≤ −θV + 2σ(S1)[(n− r)lα + (n− r)ρ̄lp + P̄ bm]V (7.38)

= −(θ − θ0)V

with θ0 being defined as θ0 = 2σ(S1)[(n− r)lα + (n− r)ρ̄lp + P̄ bm].

Now, it can be concluded that the estimation error es and ξ will asymptotically

converge to zero by choosing θ > max{θ0, 1}. In other words, the remaining state

xs can be exactly estimated by the proposed high gain observer in (7.27)-(7.29)

on the sliding mode surfaces, i.e., x̂s = xs.
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7.2.3 Unknown Inputs Reconstruction

Based on the analysis in the above subsections, the proposed observer to han-

dle the nonlinear uncertain system (7.1) consists of two parts: the higher order

sliding mode observers given in (7.7)-(7.12) and a high gain observer given in

(7.27)-(7.29). Then, the operating procedure of the proposed observer can be

described as one in which the sliding mode observers work to ensure the cor-

responding sliding mode surfaces are reached sequentially, then the high gain

observer guarantees the asymptotic stability of the remaining estimation error

dynamics.

After all the states have converged to their true values, i.e., x̂d = xd, x̂s = xs,

it can be obtained from (7.13) that

∆(x̂s
1, x

s
1) = 0, ϕ(t) = u (7.39)

which means the unknown inputs can be reconstructed from their corresponding

sliding mode terms, i.e., ϕi(t) = {ui}eq, i = 1, . . . , m.

7.2.4 Modification of Sliding Mode Observer

As claimed in Remark 7.1, the proposed recursive sliding mode observers in (7.7)-

(7.12) are sensitive to the low pass filters’ parameters which are required to obtain

the equivalent injection signals of the sliding mode terms. As a result, the esti-

mation accuracies of the states and the unknown inputs will be affected. So it is

necessary to consider how to remove or attenuate the low pass filters’ effect.

As mentioned in [78, 82], the unknown inputs may be recovered from the

corresponding equations instead of reconstructing from the additional low pass

filters. This is reasonable since the sliding mode differentiator can be treated as a

robust nonlinear filter. In this section, we shall consider the higher order sliding

mode differentiator design and the most challenging task lies with the definition

of intermediate variables which are used to handle the unknown inputs’ effect on

the measurement outputs.

Assumption 7.6. The unknown input vector ϕ(t) is locally smooth.
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In keeping with the previous sections, the robust terms ūi are chosen based

on the corresponding equations, as

ūi = ˙̂xi
ri
− fi(x̂

1
d, . . . , x̂

i
d)− bix̂

i+1
1 , i = 1, . . . , m (7.40)

where ˙̂xi
ri

indicates the estimated value of ẋi
ri
, and x̂m+1

1 is used to denote x̂s
1 for

notational simplicity.

Then, based on the system measurement outputs y in (7.1), we define new

variables ȳi, i = 1, . . . , m as

ȳ1 = y1

ȳ2 = [y2 − d11ū1 − d11b1x̂
2
1]/[1− d11b1]

...

ȳm = [ym −
∑m−1

i=1 d(m−1)iūi − d(m−1)(m−1)bm−1x̂
m
1 ]/[1− d(m−1)(m−1)bm−1]

(7.41)

Note that only the first m outputs of y are used to construct these new variables

ȳi, which are defined to ensure the clean signals xi
1 can be approached sequentially,

i.e., ȳi → xi, i = 1, . . . , m. Then, the (ri +1)-th order sliding mode differentiator

[69] for the derivatives ȳ
(k)
i , i = 1, . . . , m, k = 1, . . . , ri can be expressed in the

form of
˙̂xi
1 = v̄i

0,

v̄i
0 = −λ̄i

0|x̂i
1 − ȳ1|(ri−1)/risign(x̂i

1 − ȳ1) + x̂i
2

˙̂xi
2 = v̄i

1,

v̄i
1 = −λ̄i

1|x̂i
2 − v̄i

0|(ri−2)/(ri−1)sign(x̂i
2 − v̄i

0) + x̂i
3

...

˙̂xi
ri

= v̄i
ri−1,

v̄i
ri−1 = −λ̄i

ri−1|x̂i
ri
− v̄i

ri−2|1/2sign(x̂i
ri
− v̄i

ri−2) + ˙̂xi
ri

¨̂xi
ri

= −λ̄i
ri
sign( ˙̂xi

ri
− v̄i

ri−1)

(7.42)

where the positive parameters λ̄i
k, k = 0, . . . , ri, i = 1, . . . , m are properly chosen.

Then the following equalities are true after a finite time transient process,

x̂i
1 = ȳi, · · · , x̂i

ri
= ȳ

(ri−1)
i , ˙̂xi

ri
= ȳ

(ri)
i , i = 1, . . . , m (7.43)
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Theorem 7.3. Suppose that the dynamic subsystem of xd given by (7.1) satis-

fies Assumptions 7.4 - 7.6, the higher-order sliding mode differentiators given by

(7.41)-(7.42) ensures that, after a finite time transient, the variables xi
k, i =

1, . . . , m, k = 1, . . . , ri can be exactly estimated by x̂i
k, i.e., x̂d = xd. Further-

more, once the variable xd has been estimated by x̂d, the unknown inputs can be

re-presented as

ϕ(t) = u + ∆(x̂s
1, x

s
1) (7.44)

where

u =




ū1

ū2

...

ūm



∈ <m, ∆(x̂s

1, x
s
1) =




0
...

0

bm[x̂s
1 − xs

1]



∈ <m

Proof. Consider the equations in (7.43) and the differentiator structures of the

xd subsystem given in (7.1), it is clear that this theorem holds if and only if

ȳi = xi
1, i = 1, . . . , m can be reached and remained thereafter.

By substituting (7.14) into the definition of ȳi given by (7.41), it can be de-

duced that

ȳ1 = x1
1

ȳ2 = {x2
1 + d11[ϕ1(t)− ū1]− d11b1x̂

2
1}/[1− d11b1]

...

ȳm = {xm
1 +

∑m−1
i=1 d(m−1)i[ϕi(t)− ūi]− d(m−1)(m−1)bm−1x̂

m
1 }

/[1− d(m−1)(m−1)bm−1]

(7.45)

Clearly, ȳ1 is exactly equal to x1
1 in the initial states, and with the proposed

higher-order sliding mode differentiator in (7.42), the corresponding result in

(7.43) can be described as

x̂1
1 = ȳ1 = x1

1, . . . , x̂1
r1

= ȳ
(r1−1)
1 = x1

r1
, ˙̂x1

r1
= ȳ

(r1)
1 = ẋ1

r1
(7.46)

which implies x̂1
d = x1

d. Together with the dynamics of x1
r1

in (7.1), the robust
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term ū1 defined in (7.40) can be simplified into

ū1 = ẋ1
r1
− f1(x

1
d)− b1x̂

2
1 = b1(x

2
1 − x̂2

1) + ϕ1(t) (7.47)

Then, with (7.45), it can be deduced that

ȳ2 = x2
1

(7.48)

Now, it can be seen that ȳ2 is exactly equal to ξ2
1 once the higher order sliding

mode differentiator reaches its sliding surface, i.e., x̂1
d = x1

d. After that, the

differentiator of ȳ2 in (7.42) kicks in and the following equations will hold after a

finite time:

x̂2
1 = ȳ2 = x2

1, . . . , x̂2
r2

= ȳ
(r2−1)
2 = x2

r2
, ˙̂x2

r2
= ȳ

(r2)
2 = ẋ2

r2
(7.49)

which means x̂2
d = x2

d. Thus, the robust terms ū1 and ū2 can be rewritten as

ū1 = ϕ1(t)

ū2 = b2(x
3
1 − x̂3

1) + ϕ2(t)
(7.50)

In order to complete the proof, we need to introduce the following Lemma 7.2.

Lemma 7.2. Suppose the following proposition is true for a given integer k such

that 2 ≤ k ≤ m− 1,

1) x̂i
d = xi

d , ȳi = xi
1; i = 1, . . . , k;

2) ūi − ϕi(t) = 0, i = 1, . . . , k − 1;

ūk − ϕk(t) = −bk[x̂
k+1
1 − xk+1

1 ]

then it will be also true for k + 1.

Proof. First, based on the previous analysis, the above two propositions are true

for k = 2. Next, we shall prove these propositions still hold for k′ = k + 1.
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By substituting 2) into ȳk+1 given in (7.45), it can be obtained that

ȳk+1 = {xk+1
1 +

∑k
i=1 dki[ϕi(t)− ūi]− dkkbkx̂

k+1
1 }/[1− dkkbk]

= {xk+1
1 + dkk[ϕk(t)− ūk]− dkkbkx̂

k+1
1 }/[1− dkkbk]

= xk+1
1

(7.51)

Then, with the higher-order sliding mode differentiator of ȳk+1 in (7.42), the

following equations will be true in finite time:

x̂k+1
1 = xk+1

1 , · · · , x̂k+1
rk+1

= xk+1
rk+1

, ˙̂xk+1
rk+1

= ẋk+1
rk+1

, (i.e., x̂k+1
d = xk+1

d )

(7.52)

With the dynamic equation of xk+1
rk+1

in (7.1) and the definition of ūk+1 in (7.40),

it can be deduced that

ūk = ϕk(t)

ūk+1 = ẋk+1
rk+1

− fk+1(x
1
d, . . . ,x

k+1
d )− bk+1x̂

k+2
1

= −bk+1[x̂
k+2
1 − xk+2

1 ] + ϕk+1(t)

(7.53)

Thus, these two statements are also true for k′ = k + 1.

Now, by substituting k = m into Lemma 7.2, the following equalities hold:

x̂i
d = xi

d, ȳi = xi
1, i = 1, . . . , m;

ūi = ϕi(t), i = 1, . . . , m− 1;

ūm − ϕm(t) = −bm[x̂m+1
1 − xm+1

1 ] = −bm[x̂s
1 − xs

1]

By defining u and ∆(x̂s
1, x

s
1) as in Theorem 7.3, we can obtain equation (7.44).

Clearly, the result in Theorem 7.3 is similar to Theorem 7.1, so the previous

results on the remaining dynamics and the reconstruction of the unknown inputs

can be directly applied. Moreover, as the new robust terms ūi are obtained by

solving the corresponding equations, the additional low pass filters are successfully

removed, and the unknown inputs can be directly obtained after all the states have

converged to the true values.
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It has been proven in [69] that the sliding accuracy can be improved with the

order of sliding mode algorithm. Thus, this provides a potential to increase the

estimation performance by artificially increase the order of the proposed higher

order sliding mode differentiator in (7.42).

Remark 7.2. In this subsection, the higher order sliding mode differentiator al-

gorithm [69] is used to attenuate the chattering effect, as well as to avoid the

requirement of additional low pass filters. Moreover, in the case when the relative

degree of any dynamic subsystem in (7.1) is one or two, i.e., ri = 1 or ri = 2,

i ∈ {1, . . . , m}, the super-twisting algorithm in [53] or the modified super-twisting

algorithm in [86] can be applied to avoid the requirement of low pass filters, with

slight adjustment of ui given in (7.11).

Remark 7.3. For a given nonlinear uncertain system that can be transformed

into the system given in (7.1) through a nonlinear transformation (such as the Lie

derivatives), and all the mentioned Assumptions are satisfied in the transformed

domain, then an observer design for the original system can be performed by the

means of inverse transformation.

7.3 Numerical Simulations

In this section, a six-order numerical example is used to demonstrate effectiveness

of the the proposed observer. Consider

ẋ =




−4(x1)
2 + 0.2x2 + 10

x4

x5

−4x2 + 0.2x3 + 10

x6

−3x6 − x3x5 − x4




+




1 0

0 0

0 0

0 1

1 0.4

1 0.5x4







ϕ1(t)

ϕ2(t)




(7.54)

Nanyang Technological University Singapore



144 Chapter 7. A Recursive Sliding Mode Observer for Input Identification

y =




y1

y2

y3


 =




x1

x2

x3


 +




0 0

0.3 0

0.5 0.1







ϕ1(t)

ϕ2(t)


 (7.55)

where x = [x1, x2, x3, x4, x5, x6]
T ∈ <6 is the system state, y = [y1, y2, y3]

T ∈ <3

is the system output, ϕ(t) = [ϕ1(t), ϕ2(t)]
T is the system unknown input which

needs to be reconstructed.

Then, under the coordinate transformation: x1
1 = x1, x2

1 = x2, x2
1 = x4,

xs
1 = x3, xs

2 = x5, xs
3 = x6, and x = [(xd)

T , (xs)
T ]T , xd = [x1

d, x
2
1, x

2
2]

T ∈ <3,

xs = [xs
1, x

s
2, x

s
3]

T ∈ <3. The original numerical example can be rewritten in the

form of (7.1), as

ẋ1
1 = −4(x1

1)
2 + 0.2x2

1 + 10 + ϕ1(t)

ẋ2
1 = x2

2

ẋ2
2 = −4x2

1 + 0.2xs
1 + 10 + ϕ2(t)

ẋs
1 = xs

2

ẋs
2 = xs

3 + ϕ1(t) + 0.4ϕ2(t)

ẋs
3 = −3xs

3 − xs
1x

s
2 − x2

2 + ϕ1(t) + 0.5x2
2ϕ2(t)

(7.56)

with the measurable outputs as

y =




y1

y2

y3


 =




x1
1

x2
1 + 0.3ϕ1(t)

xs
1 + 0.5ϕ1(t) + 0.1ϕ2(t)


 , with D =




0 0

0.3 0

0.5 0.1


 (7.57)

It is clear that the transformed nonlinear system has the unknown inputs ap-

pearing not only just in the state dynamics, but also in the measurement outputs,

and that Assumptions 7.1-7.5 are satisfied. Then, the proposed observer can be

used to estimate the states and identify the unknown inputs.
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7.3.1 Proposed Robust Observer

By setting the corresponding estimated variables as {x̂1
1, x̂

2
1, x̂

2
2, x̂

s
1, x̂

s
2, x̂

s
3}, a ro-

bust observer can be designed in the form of

˙̂x1
1 = −4(x̂1

1)
2 + 0.2x̂2

1 + 10 + u1

˙̂x2
1 = x̂2

2

˙̂x2
2 = −4x̂2

1 + 0.2x̂s
1 + 10 + u2

˙̂xs
1 = x̂s

2 − 3θσ3

˙̂xs
2 = x̂s

3 + u1 + 0.4u2 − 3θ2σ3

˙̂xs
3 = −3x̂s

3 − x̂s
1x̂

s
2 − x̂2

2 + u1 + 0.5x̂2
2u2 − θ3σ3

(7.58)

with

σ1 = x̂1
1 − y1

σ2 = [x̂2
1 + 0.3{u1}eq − y2]/0.94

σ3 = [x̂s
1 + 0.5{u1}eq + 0.1{u2}eq − y3]/0.98

(7.59)

where θ is the high gain feedback parameter, u1 and u2 are the first-order and

second-order sliding mode terms. Based on (7.11) and (7.12), we have

u1 = −ρ1sign(σ1)

u2 = −ρ2(z1 + |z0|1/2sign(z0))/(|z1|+ |z0|1/2)

ż0 = v0

v0 = −1.5M1/2|z0 − σ2|1/2sign(z0 − σ2) + z1

ż1 = −1.1Msign(z1 − v0)

(7.60)

with M being a turning parameter, {u1}eq and {u2}eq are the equivalent signals

of u1 and u2, respectively, which are obtained through low-pass filters.

In order to demonstrate the performance of the proposed approach, an ob-

server without any equivalent signal compensation on the measurable outputs,

i.e., {u1}eq = {u2}eq = 0, is also applied.

For simulation purposes, we choose ϕ1(t) = 2 sin(t) and ϕ2(t) = 2 sin(3t) +

1 cos t. Then, the parameters for observer (7.58)-(7.60) are chosen as: ρ1 =

3, ρ2 = 4, θ = 4,M = 65. The simulation is performed with the initial values
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Figure 7.1: The estimation performance without compensation

x0 = [2, 2, 2, 4, 4, 4]T , x̂0 = [0, 0, 0, 0, 0, 0]T , z0 = z1 = v0 = 1. The simulation step

is set to 0.5 ms.

First, the observer without compensation on outputs is employed, and the

performance is shown in Figure 7.1. It is clear that the estimated states fail to

track the true values due to the uncertainties in the system outputs.

Then, the proposed observer described by (7.58)-(7.60) is applied, and the

improved estimation performance can be clearly seen in Figure 7.2. And the

unknown inputs are successfully reconstructed after about 7s, as shown in Figure

7.2e and Figure 7.2e.

However, there exist small ripples in the estimated states and the reconstructed
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unknown inputs, see Figure 7.2c and Figure 7.2f. This is mainly caused by the low

pass filters, which are necessary for the reconstruction of the equivalent signals of

u1 and u2.

7.3.2 Modification of Proposed Observer

In order to eliminate the additional low pass filter’s effect and to improve the

estimation performance, we suggest to use the higher order sliding mode differ-

entiator to replace the previous quasi-sliding mode observer, since the unknown

inputs are assumed to be smooth, i.e., Assumption 7.6 is satisfied.

According to (7.40) and (7.41), we define ūi and ȳi, i = 1, 2 as follows:

ū1 = z1
1 + 4(x̂1

1)
2 − 0.2x̂2

1 − 10

ū2 = z2
1 + 4x̂2

1 − 0.2x̂s
1 − 10

ȳ1 = y1

ȳ2 = [y2 − 0.3ū1 − 0.06x̂2
1]/0.94

(7.61)

Here, z1
1 and z2

2 are used to indicate the estimated values of ˙̂x1
1 and ˙̂x2

2 respectively.

Then, a third order and a forth order sliding mode differentiators are proposed

for x1
1 and x2

1, given as

˙̂x1
1 = v1

0

v1
0 = −3L1/3|x̂1

1 − ȳ1|2/3sign(x̂1
1 − ȳ1) + z1

1

ż1
1 = v1

1

v1
1 = −1.5L1/2|z1

1 − v1
0|1/2sign(z1

1 − v1
0) + z1

2

ż1
2 = −1.1Lsign(z1

2 − v1
1)

(7.62)
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and
˙̂x2
1 = v2

0

v2
0 = −5K1/4|x̂2

1 − ȳ2|3/4sign(x̂2
1 − ȳ2) + x̂2

2

˙̂x2
2 = v2

1

v2
1 = −3K1/3|x̂2

2 − v2
0|2/3sign(x̂2

2 − v2
0) + z2

2

ż2
2 = v2

2

v2
2 = −1.5K1/2|z2

2 − v2
1|1/2sign(z2

2 − v2
1) + z2

3

ż2
3 = −1.1Ksign(z2

3 − v2
2)

(7.63)

with L and M being the tuning parameters.

Then, by defining σ3 similar to (7.59), as

σ3 = [x̂s
1 + 0.5ū1 + 0.1ū2 − y3]/0.98 (7.64)

Similar to (7.58), a high gain observer can be designed for the remaining dynamics

of xs, as
˙̂xs
1 = x̂s

2 − 3θσ3

˙̂xs
2 = x̂s

3 + ū1 + 0.4ū2 − 3θ2σ3

˙̂xs
3 = −3x̂s

3 − x̂s
1x̂

s
2 − x̂2

2 + ū1 + 0.5x̂2
2ū2 − θ3σ3

(7.65)

We choose the same simulation parameters as before except for the tuning

parameters which are set as: L = 45, K = 200. And the simulations results are

shown in Figure 7.3.

Compared with the previous results in Figure 7.2, it can be seen that the

estimation performance is greatly improved. Moreover, the unknown inputs can

be reconstructed with a better accuracy, as seen in Figure 7.3e and Figure 7.3f,

and the visible ripples have been significantly attenuated.

7.4 Summary

In this chapter, a robust observer based on a recursive higher order sliding mode

algorithm has been developed for a class of MIMO nonlinear systems with un-

known inputs in states and measurable outputs. With more output measurements
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than the number of unknown inputs, plus proper assumptions on the system struc-

ture, the restrictive involutive condition is not required, and the states and un-

known inputs can be identified asymptotically. Furthermore, a modified observer

without low pass filtering is also presented to improve the estimation performance

if the unknown inputs are smooth.

The contribution of in this chapter can be summarized as:

(i) A robust hybrid observer is proposed to handle a class of MIMO nonlinear

systems with the unknown inputs appearing in both the states and outputs.

(ii) A novel HSMC based recursive algorithm is developed to track and recover

the unknown inputs.

(iii) The restrictive involutive condition is not imposed because of an unknown-

state dependent distribution matrix of the unknown inputs, and a high gain

feedback is proposed to ensure identifiability of the unknown inputs.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this thesis, we have investigated the state and unknown input estimations

of nonlinear uncertain systems, in which the unknown input enters the systems

through an unknown-state-dependent distribution vector, i.e., we considered the

problem of non-matching disturbance in the observer sense. The identifiability

of the unknown input and system states is carefully addressed based on the idea

that the unknown input can be replaced by some nominal dynamics while the

corresponding sliding mode surface is reached. The contribution of the thesis can

be summarized as follows:

(i) A hybrid observer which integrates a full-order high gain feedback with a

higher-order sliding mode term is developed for a class of SISO uncertain

systems. With the high gain feedback, the state estimation error will con-

verge into an invariant set regardless of the initial conditions, in which the

sliding condition is satisfied thereby ensuring the sliding surface is reached.

However, the identifiability of the unknown input as well as system states is

strictly related to the stability of the reduced-order dynamic system struc-

ture, which can be classified into three categories:

– The reduced-order dynamics is asymptotically stable on the sliding

surface. Then, all states and unknown input can be asymptotically
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identified with the proposed hybrid observer.

– The reduced-order dynamics is stable, but not asymptotically stable.

Then, only partial states can be exactly identified.

– The reduced-order dynamics is divergent. Then, the states estimation

error will fall into an invariant set instead of converging to zeros, and

the unknown input fails to be identified.

(ii) To verify the effectiveness of the proposed hybrid observer design approach,

it was implemented on a series DC motor for a non-matching time-varying

parameter identification. From the experimental results, the non-matching

motor parameter can be successfully identified based on the measurable

current and input voltage, as well as the unknown rotor speed. The iden-

tified parameter is then used to enhance the speed estimation performance

in the presence of external disturbance. Monte carlo simulations are also

conducted to illuminate the identification accuracy with respect to measure-

ment noises of motor resistance and inductance.

(iii) Based on the idea that the sliding mode chattering affects only the accu-

racy of the reconstructed uncertainties, but not the system states, a novel

perspective on the sliding mode observer design for speed and position es-

timations of a surface-mounted PMSM is presented. With a one time cali-

bration of the position estimation, which can be conducted by sensing the

zero-crossing of the back-EMFs, the desirable speed and rotor information

can be exactly estimated without filtering effect.

(iv) To handle the estimation problems of a class of MIMO nonlinear systems

with non-matching inputs, a hybrid observer that combines multiple higher

order sliding mode feedbacks with a reduced-order high gain feedback is

proposed. With proper system structure assumptions and that the num-

ber of measurement outputs is assumed to be one more than the number

of unknown inputs, then the unknown inputs, as well as the full-order sys-

tem state, can be asymptotically estimated without the requirement of the

restrictive involutive condition.
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(v) A more general uncertain MIMO nonlinear system in which the unknown

inputs appear in both the state dynamics and the measurement outputs is

also studied. A recursive sliding mode observer integrated with a reduced-

order high gain feedback is developed, in which a novel recursive sliding

observer ensures that the sliding surfaces are reached sequentially, mean-

while, the valuable signals in the measurement outputs can be gradually

extracted by cancelling the unknown inputs in sequence. The reduced-

order high gain feedback designed based on the extra measurement output

will work to guarantees that both the unknown inputs and states can be

identified asymptotically.

8.2 Future Work

Several interesting research issues that could serve as future research directions

are as follows:

(i) Note that the proposed hybrid observers in this thesis are developed and an-

alyzed in the continuous-time domain. It would be interesting and useful to

extend these works into the discrete-time domain for ease of implementation

in real systems, for example by discretization via Taylor series expansion.

Then, the relationship between stability, estimation error, and sampling

interval need to be carefully addressed.

It should be mentioned that the stability and sliding conditions of discrete-

time sliding mode (DSM) are quite different from its continuous counterpart,

and remained a challenging problem.

(ii) The proposed observer in Chapter 5 for speed and position related dynam-

ics estimations of a surface-mounted PMSM is proved to be robust against

the chattering/filtering effect. It would be necessary and significant to take

motor parameter variations into consideration, especially the variation in

winding resistance due to temperature changing. For such case, an addi-

tional dynamic equation Ṙs = 0 can be used, with Rs denoting the winding

resistance.
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Moreover, experimental verification of speed sensorless control should be

conducted based on the proposed observer, to demonstrate the effectiveness

of the proposed approach.

(iii) In most practical systems, the states as well as system uncertainties are

restrained by some particular conditions (e.g. (sin θ)2 + (cos θ)2 = 1 in

Chapter 5). It would be significant to consider the sliding mode observer

design for these particular systems with the required conditions, since the

intrinsic property of sliding mode approaches is to constrain the system

trajectory towards a predefined manifold and staying on it thereafter.

In fact, the restrained condition, (sin θ)2 + (cos θ)2 = 1, has been partially

included in the modeling of the dynamic systems of (5.10) by taking dif-

ferential operator. As a result, a one time calibration signal that works as

initial conditions is required to recover the real-time system states.

(iv) The proposed hybrid observers in Chapter 6 and Chapter 7 are developed

for state and unknown input estimations of a class of uncertain MIMO

nonlinear systems. It would be significant to extend and apply such results

into some practical engineering systems, such as for observer-based fault

detection or system health diagnosis purposes.

(v) Although the hybrid sliding observer design in this thesis was limited to a

combination of sliding mode techniques with high gain feedback for state

and non-matching unknown input estimations, it would be significant to

extend such design methodology to other research methods, such as by

integrating the sliding mode observer with adaptive techniques to handle

parameter variations [97] or to obtain variable sliding gains for chattering

attenuation [147].

In fact, the integration of sliding mode techniques with some soft-computing

(SC) approaches [98] to achieve higher performance has attracted increasing

attention in recent years, such as neural networks (NNs), fuzzy logic (FL),

and so on.
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[135] M. Schrödl, ”Sensorless control of permanent magnet synchronous motors,”

Electric Machines and Power Systems, vol. 22, pp. 173-185, 1994.

[136] B. J. Brunsbach, G. Henneberger, T. Klepsch, ”Position controlled perma-

nent magnet excited synchronous motor without mechanical sensors,” IEEE

Conference on Power Electronics and Applications, vol. 6, pp. 38-43, 1993.

[137] J. Hu, D. M. Dawson, K. Anderson, ”Position control of a brushless DC

motor without velocity measurements,” IEE Proceedings on Electric Power

Applications, vol. 142, pp. 113-119, Mar. 1995.

[138] J. Lee, J. Hong, K. Nam, R. Ortega, L. Praly, A. Astolfi, ”Sensorless control

of surface-mount permanent-magnet synchronous motors based on a non-

linear observer,” IEEE Transactions on Power Electronics, vol. 25, no. 2,

pp. 290-297, Feb. 2010.

Nanyang Technological University Singapore



172 Bibliography

[139] G. Foo, M. F. Rahman, ”Sensorless direct torque and flux-controlled IPM

synchronous motor drive at very low speed without signal injection,” IEEE

Transactions on Industrial Electronics, vol. 57, no. 1, pp. 395-403, Jan.

2010.

[140] P. Tomei, C. M. Verrelli, ”Observer-based speed tracking control for sen-

sorless permanent magnet synchronous motors with unknown load torque,”

IEEE Transactions on Automatic Control, vol. 56, no. 6, pp. 1484-1488,

Jun. 2011.

[141] M. Hasegawa, S. Yoshioka, K. Matsui, ”Position sensorless control of interior

permanent magnet synchronous motors using unknown input observer for

high-speed drives,” IEEE Transactions on Industry Applications, vol. 45,

no. 3, pp. 938-946, May/Jun. 2009.

[142] Z. Q. Chen, M. Tomita, S. Doki, S. Okuma, ”An extended electromotive

force model for sensorless control of interior permanent-magnet synchronous

motors,” IEEE Transactions on Industrial Electronics, vol. 50, no. 2, pp.

288-235, Apr. 2003.

[143] S. Y. Kim, C. Choi, K. Lee, W. Lee, ”An improved rotor position estimation

with vector-tracking observer in PMSM drives with low-resolution hall-effect

sensors,” IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp.

4078-4086, Sep. 2011.

[144] Z. Xu, M. F. Rahman, ”An adaptive sliding stator flux observer for a direct

torque controlled IPM synchronous motor drive,” – IEEE, pp. 704-709,

2005.

[145] N. Ertugrul, P. Acarnley, ”A new algorithm for sensorless operation of per-

manent magnet motors,” IEEE Transactions on Industry Applications, vol.

30, no. 1, Jan./Feb. 1994.

[146] J. Hu, B. Wu, ”New integration algorithms for estimating motor flux over

a wide speed range,” IEEE Transactions on Power Electronics, vol. 13, no.

5, pp. 969-977, Sep. 1998.

Nanyang Technological University Singapore



Bibliography 173

[147] O. Barambones, P. Alkorta, ”A robust vector control for induction motor

drives with an adaptive sliding-mode control law,” Journal of The Franklin

Institutc 348, pp. 300-314, 2011.

Nanyang Technological University Singapore


