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Abstract 

Delamination has been a subject of concern in engineering applications of layer 

structures because of the resulting reduction in load-bearing capacity, degradation of 

structural integrity and stiffness. The delamination may result from the interlaminar 

stresses created by impacts, eccentricities in structural load paths or from 

discontinuities in the structure. Under in-plane compressive loads the delamination 

may cause local buckling of the delaminated region or global buckling or mixed mode 

buckling. Due to this the delaminated structure has a lower ability to resist 

compressive loads. The reduction in this ability depends on the number, shape and 

positions of the delaminations.  

 

An exact solution is developed for predicting the buckling loads of two-layer 

beams with an asymmetrically located delamination. The delaminated two-layer beam 

is modeled as a combination of four interconnected sub-beams. The characteristic 

equation, governing buckling is derived by using the Euler-Bernoulli beam theory and 

by imposing appropriate equilibrium, kinematic continuity and boundary conditions. 

An excellent agreement is observed between the present and previously published 

data for homogeneous delaminated beam cases. New nondimensionalized parameters, 

nondimensionalized axial and bending stiffnesses and effective-slenderness ratio 

(ESR) are defined and introduced for the first time to study delamination buckling. 

Parametric studies have been conducted in terms of these new nondimensionalized 

parameters on the buckling load for various delamination sizes and locations. A 

monotonic relation is observed between the buckling load and the nondimensionalized 

axial stiffness and between the buckling load and the nondimensionalized bending 

stiffness. The effective-slenderness ratio (ESR) is found to be a controlling parameter 



 II

of the buckling mode configurations, i.e., at higher ESR, global buckling, at lower 

ESR, local buckling and in between mixed-mode buckling are observed. The exact 

solution can serve as a benchmark solution for other numerical schemes. 

 

Buckling loads of three-layer beams having asymmetrically located multiple 

delaminations of various configurations such as equal, enveloping, separating and 

overlapping are predicted by developing exact solutions. Parametric studies have been 

conducted, in terms of the newly introduced nondimensionalized parameters, 

nondimensionalized axial and bending stiffnesses, and effective-slenderness ratio. It is 

observed that each multiple delamination configuration is unique in its influence on 

the buckling load and a detailed analysis is required for each case, independently. It is 

also found that the normalized buckling load is not sensitive to shorter delaminations 

whereas it is strongly influenced by the presence of longer delaminations. Finite 

element analyses are performed to validate the developed exact solutions and a good 

correlation is observed between the theoretical and numerical results. 

 

An approximate solution to obtain the buckling loads of a two-layer 

delaminated beam with bridging is developed by using Rayleigh-Ritz energy method. 

A new nondimensionalized parameter, effective-bridging modulus (BM) is introduced 

to study the bridging effects on delamination buckling. The BM is a function of the 

delamination length, slenderness-ratio and relative bridging modulus, KL/E (K is 

bridging stiffness, E is Young’s modulus and L is beam length). Lower and upper 

bounds of the buckling load are obtained by exact solutions. Results show that the 

bridging is found to be effective for the cases of shallow delamination with moderate 

length and for the deep and long delamination. 
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Chapter 1    Introduction 

 

 

Composite materials are being used in numerous areas (civil, aerospace, 

transportation, marine, electronics and numerous manufacturing industries) because 

of their design flexibility, lightweight, resistance to corrosion, high strength, less 

cost, energy-saving advantages, etc.  Composite structures are designed to withstand 

extreme loading conditions during services which include both static and dynamic 

loads. The life of the structure is determined by a failure criterion defining an 

acceptable level of stiffness or strength. There are several mechanisms that 

contribute to property degradation of the composite structures, such as broken fibers, 

fibre debonding (Reifsnider and Talug, 1980), delaminations (Adams et al., 1987; 

O'Brien, 1984) and micro cracking of the matrix (O'Brien, 1985). For multilayer 

composite materials, delaminations are one of the most common failure modes, 

which can be easily initiated at the interlaminar region by impact loading, fatigue, or 

poor manufacturing process, due to weak interlaminar toughness of composite 

materials. Under compressive loads, the composite delaminated beams may fail by 

delamination buckling and thus greatly reduce their load bearing capacity. As the 

occurrence of delaminations vary in number (single or multiple) or type (enveloping, 

overlapping etc) or locations (axialwise and thicknesswise) or shapes (embedded or 

through-width) and the layer beams are made of different materials, then the 

delamination buckling analyses becomes further intricate, which has been an active 



Chapter 1                                                                                                                                 Introduction 

 2

research area in recent years. Various techniques have been considered to increase 

the resistance to delamination buckling, out of which stitching is found to be an 

effective method. Since no exact solutions have been available on the delamination 

buckling of two- and three-layer beams with and without bridging, mathematical 

models will be developed in the present research work and detailed analyses will be 

carried out. 

  

1.1. Composite materials  

 

Composite materials consist of two or more clearly distinguishable 

constituents working together to achieve a blend of mechanical properties superior to 

the properties of the individual constituent. For example, plywood is a composite 

material consisting of thin birch veneers glued together. There are three commonly 

accepted types of composite materials: 

 

Fibrous composites which consists of fibers in a matrix 

Laminated composites which consists of layers of various materials 

Particulate composites which are composed of particles in a matrix 

 

1.1.1. Fibre-Reinforced Plastic Composites (FRPC) 

 

FRP composites contain stiff long reinforcing materials called fibres held 

together by a binder matrix. The fibres are stiff and strong relative to the matrix. The 

matrix not only holds the fibres together, it also protects them from damage by 
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sharing any stress among them. The purpose of the reinforcement depends on the 

type of reinforcement and the application of the composite it forms. There are mainly 

two types of reinforcement: short fibres or particles and continuous fibres. The 

reinforcement provides the stiffness and strength in the direction of the fibres. For 

example, the fiber materials are E-Glass, S-Glass, Graphite, Carbon, Aramid, Boron, 

and SiC etc. The matrix materials are Polymers, Metals and Ceramics. 

 

1.1.2. Laminated composites 

 

Laminated composites consist of layers of at least two different materials that 

are bonded together. Lamination is used to combine the best aspects of the 

constituent layers in order to achieve a more useful material. Bimetals (laminates of 

two different metals with significantly different coefficients of thermal expansions 

example, thermostat), clad metals (example, copper-clad aluminum wire), laminated 

glass, plastic-based laminates, and laminated fibrous composites are some of the 

examples of laminated composites.  

 

1.1.3. Particulate composites 

 

Particulate composites consist of particles of one or more materials 

suspended in a matrix of other material. The particles can be either metallic or 

nonmetallic as the matrix. Examples include concrete, cold solder, lead particles in 

copper alloys and steel to improve machineability and cermet (a composite of 

ceramics and a metal matrix).  
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1.2. Delaminations  

 

Delaminations are defined as the debonding of two adjacent layers in a 

laminate. The delaminations may result from the interlaminar stresses created by 

impacts, eccentricities in structural load paths or from discontinuities in the structure. 

Some of the design details that may induce the local out-of-plane loads leading to 

interlaminar stresses are: (1) straight or (2) curved (near holes) free edges, (3) ply 

terminations or ply drop for tapering the thickness, (4) bonded or co-cured joints, (5) 

a bolted joint and (6) a cracked lap shear specimen. In all these cases, even if the 

remote loading is in-plane, the local loads near the discontinuities may be out-of 

plane. Besides mechanical loads, the moisture and temperature of the working 

conditions also may cause interlaminar stresses in a laminate. These may be caused 

by (1) residual thermal stresses due to cool down of the laminate from the elevated 

curing temperature or due to the difference between test and stress free temperatures, 

(2) residual stresses created by the moisture absorption in the laminate and (3) 

moisture gradient through thickness of the laminate.  

 

1.3. Delamination buckling of layer structures 

 

Garg (1988) observed that in general the tensile behavior of a laminate is not 

significantly affected by the occurrence of delamination but compressive behavior is 

critical and leads to premature collapse of the laminate. The presence of delamination 

in in-plane compressive loads may cause local buckling of the delaminated region or 

global buckling or mixed mode buckling (combination of local and global buckling) 
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as shown in Fig. 1.1. Buckling can then increase the interlaminar stresses and 

accelerate the propagation of delamination. Therefore the delaminated structure has a 

lower ability to resist compressive loads. The reduction in this ability is dependent on 

the number, shape and positions of the delaminations. If the localized buckling 

propagation in not arrested or the load is not redistributed, the delamination may 

propagate until the structure fails by general instability. Experiments indicated that 

delamination growth always occurs after buckling (Krauss et al., 1981). Hence, even 

after buckling, the delaminated composite structure can still bear increasing load 

until the delamination grows. Critical buckling load represents the ability of the 

delaminated composite structure to represent compressive loads. There is a need to 

assess the buckling load of a delaminated laminate under compressive loads. 

Buckling analysis is used to find critical load factors at which a structure becomes 

elastically unstable. Delaminated composite sandwich beams have gained renewed 

interest though sandwich construction has been used in various structural 

applications for many years due to its light weight and high bending rigidity, etc. For 

composite sandwiches, the interface between the face and core may be weaker than 

those in layered composite laminates. If there is a debond, local buckling of the face 

sheet may occur (Shou-Hsiung et al., 1997). 

 

In addition to the single delamination, multiple delaminations also may be 

caused by impact damages or manufacturing defects. The multiple delamination 

buckling problems have not yet been extensively studied as the single delamination 

problem because of the complexity involved in the buckling analysis. As the number 
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of delaminations increases, the parameters associated with them increases which 

affect the buckling analysis and it becomes cumbersome to obtain the exact solution.  

 

Two- and three-layer composite laminates have been finding their way into 

numerous applications because of their added advantages like good plasticity, impact 

resistance, processibility, light weight and excellent fatigue properties. Prominent 

among them are GLARE (GLAss fibre Reinforced), ARALL (Aramid Reinforced 

ALuminum Laminates) and sandwich beams. GLARE is a specific type of fibre-

metal laminate (FML) made from aluminum and fiber glass composite, which is 

being used in the panels and fuselage of Airbus A380. The material is built from the 

alternating layers of fiber glass and aluminum bonded together. Airbus is planning to 

make double-decked passenger aircrafts because of which the weight of the aircraft 

will increase by 20 tons and the GLARE will be used more in it. GLARE has the 

advantage of taking the loads up to 25% higher than straight aluminum. Engineers 

are reckoning that this material could save hundreds of kilos of the panel’s weight. 

Not only GLARE is light and strong, but it is also damage tolerant. Unlike many 

carbon fiber based composites, GLARE can be repaired if damaged. It is also more 

fire resistant compared with aluminum or other composites. Moreover, it is also 

susceptible to delaminations and in turn delamination buckling.  

 

1.4. Delamination buckling of layer structures with bridging 

 

 Various techniques have been considered to increase the resistance to 

delamination buckling. Some researches have focused on materials improvements, 
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i.e., on the use of tougher matrices or better fiber/matrix interface or interleaving 

concepts (Kim et al., 1992 and 1993). Alternative approaches to get substantial 

improvements in interlaminar fracture toughness of composite structures require 

modifications of the fiber architecture. Weaving, knitting, and braiding have shown 

to achieve considerable enhancement in fracture toughness and impact properties, but 

these methods reduce the proportion of fibers along the in-plane directions and create 

large resin pockets throughout the structure, which tends to deteriorate the in-plane 

properties. The biggest advantage of stitching compared with other methods of 

through-thickness reinforcement is its versatility. Stitching utilizes traditional 

materials and fabrication process using components that can be manufactured from 

either a prepreg or perform layup. Figure 1.2 shows through-thickness stitching of a 

delaminated beam. Two forms of stitching are of interest for structural applications, 

the modified lock stitch and the chain stitch (Cox and Flanagan, 1997). In these 

methods threads are stitched across laminates to hold them together and to increase 

the interlaminar strength. Experiments have shown that delamination may not always 

run exactly between laminae (Hu and Mai, 1992) as a result, some ligaments of 

filament bundles are left between delaminated laminae as a form of fibre bridging. 

Thus, fibre bridging mechanisms, due to fiber crossover, through-thickness 

reinforcements and particle or grain bridging in polymer or ceramic matrix 

laminates, may provide a notable increase in fracture toughness. Bridging and 

stitching between delaminated laminae work together to delay both buckling of the 

composite and further delamination expansion, and therefore have a favorable effect 

on the strength of locally delaminated composites under edgewise compression. A 

bridging law, based on the Winkler foundation model, which connects bridging stress 
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and delamination opening, is able to represent the salient features of the phenomenon 

(Shu and Mai, 1993b). The through-thickness reinforcement does not entirely 

eliminate delamination, especially during impact, but by suppressing buckling under 

subsequent compressive loads, it eliminates the driving force for delamination crack 

growth under in-plane compression; and by bridging the delamination crack, it 

greatly increases resistance to shear loads. Besides stitching, the uses of through-

thickness reinforcement in the form of short rods (also referred as z-fibers) are also 

used (Evans and Boyce, 1989). Short rods have been advocated as a cost-effective 

method of increasing delamination resistance (Freitas et al., 1994; Freitas et al., 

1996). Metallic or fibrous carbon pins of small diameter (0.2-0.6 mm) can be 

inserted through the thickness of the uncured laminates using an ultrasonic insertion 

procedure. The rods can be placed in the structure selectively at areas of high out-of-

plane loads or for integrally forming attachments between laminates. The mechanism 

of z-fiber reinforcement depends on the orientation of the z-fibers with respect to the 

sliding displacement across the delamination plane. This reinforcement bridges 

delamination cracks and keeps them closed, thereby increasing the strength of the 

laminate and possibly changing the mechanism of ultimate failure. 

 

1.5. Motivation 

 

Most of the analyses available in the literature are applicable to the 

homogeneous and isotropic beams having symmetric delaminations. The existing 

studies in the literature for inhomogeneous and anisotropic delaminated beams were 

developed by energy methods and finite element analysis and the delaminations are 
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located symmetrically along the axialwise/spanwise positions of the beams. Only 

half of the delaminated beam was modeled in those analyses and the effects of 

axialwise positions of delaminations on the buckling load have not been studied. Few 

works are available on the buckling mode configurations which are applicable for the 

homogeneous delaminated beam cases. There is a need to develop an exact solution 

for the two-layer beams, made of different materials and having arbitrarily located 

delaminations. This exact solution can serve as a benchmark for other numerical 

schemes.  

 

As the number of delaminations increases and the layers are made of different 

materials, the buckling analysis becomes further complicated due to large number of 

basic variables (geometry and material) which influence the delamination buckling. 

No work has been reported to study the buckling analysis of three-layer beams with 

asymmetrically located multiple delaminations configurations, namely, enveloped, 

overlapped, separated and equal. The present works make an attempt to fill that gap.  

 

In order to understand the complex buckling analysis of two- and three-layer 

delaminated beams, new nondimensionalized parameters, nondimensionalized axial 

and bending stiffnesses are introduced and a detailed investigation is carried out.  

 

Bridging is effective to increase the resistance to delamination buckling but a 

detailed study involving the effects of bridging on delamination buckling for various 

locations and sizes of delamination has not been reported. In the present research an 

attempt is made to study the effects of bridging on delamination buckling of two-
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layer beams for various locations and sizes of delamination by developing an 

approximate solution.  

 

In order to evolve rational solutions to the above-mentioned problems related 

to delamination buckling of layer beams, the objectives of the present research are 

defined in the following section. 

 

1.6. Objectives 

 

The objective of the present research is to obtain the buckling loads of two- 

and three-layer delaminated beams by developing exact solutions. Further, the 

buckling loads of two-layer delaminated beams with bridging will be obtained by 

developing an approximate solution. The research effort combines analytical and 

numerical studies to provide a better understanding of delamination buckling. The 

following are the specific goals of the present research:  

 

1) Buckling analysis of two-layer beams with an asymmetric delamination 

 
An exact solution to the buckling behavior of a two-layer beam with an 

asymmetrically located delamination will be presented for the first time. New 

nondimensionalized parameters, nondimensionalized axial and bending 

stiffnesses are defined and introduced to study delamination buckling. The 

delaminated two-layer beam is modeled as a combination of four interconnected 

sub-beams. The characteristic equation, governing buckling is derived by using 

the Euler-Bernoulli beam theory and by imposing appropriate equilibrium, 
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kinematic continuity and boundary conditions. Effective-slenderness ratio, a new 

nondimensionalized parameter, will be introduced to study the buckling mode 

configurations. A detailed parametric study will be conducted. 

 

2) Buckling analysis of three-layer beams with multiple delaminations  

 
Exact solutions will be developed to obtain the buckling loads of three-layer 

beams with multiple through-width delaminations such as enveloped, overlapped, 

separated and equal. As each configuration of delaminations is unique, separate 

mathematical models will be developed. Detailed parametric studies, in terms of 

the nondimensionalized axial and bending stiffness, effective-slenderness ratio, 

the lengths and locations of the delaminations on the normalized buckling load 

will be carried out.  

 

3) Buckling analysis of two-layer delaminated beams with bridging 

 
An approximate solution to the buckling of two-layer delaminated beams 

with bridging will be developed by using Rayleigh-Ritz energy method. The 

bridging phenomenon will be introduced by means of Winkler foundation model, 

which relates the bridging stress and the delamination opening. A new 

nondimensionalized parameter, effective-bridging modulus (BM) is introduced to 

study the bridging effects on delamination buckling. The BM is a function of the 

delamination length, slenderness-ratio and relative bridging modulus, KL/E (K is 

bridging stiffness, E is Young’s modulus and L is beam length). Effects of 

stitching, delamination sizes and locations of the two-layer beams on the 
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buckling load will be investigated. Exact solutions will be developed to obtain 

the lower and upper bounds of the buckling loads. These bounds will be useful to 

gauge the effective working range of the bridging. 

 

4) Numerical validations  

 
The analytical results of two- and three-layer beams with single and multiple 

delaminations will be validated through numerical analysis. A detailed numerical 

analysis will be carried out using finite element analysis software, ANSYS®. The 

two-layer beams are made of carbon/epoxy and glass/epoxy plies whereas the 

three-layer beams are made of carbon/epoxy, carbon/epoxy and glass/epoxy. The 

delaminations are located at the interfaces of carbon/epoxy and glass/epoxy plies. 

 

1.7. Outline of the report  

 

Chapter 1 presents the objectives and an introduction to the present research 

work. Chapter 2 outlines the detailed literature on the buckling analysis of the 

delaminated layer structures with and without bridging. Chapter 3 covers the 

buckling analysis of two-layer beam with an asymmetric delamination under 

clamped and simple supported end conditions. Chapter 4 presents an in depth 

investigation on buckling analysis of three-layer beams with multiple delaminations 

of various configurations such as equal, enveloping, separating and overlapping. 

Chapter 5 deals with the analysis of bridging effects on delamination buckling of a 

two-layer beam for various locations and sizes of delamination. Chapter 6 concludes 

the present research work and outlines areas of future work.
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(a) Local buckling mode 

 

(b) Mixed buckling mode 

 

(c) Global buckling mode 

 

Fig. 1.1. Three types of delamination buckling mode configurations. 

 

 

 

 

 

 

 

Fig. 1.2. Stitching as through-thickness reinforcement. 

 

  

Delamination Stitching 
thread 
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Chapter 2    Literature Review 

 

The present chapter gives an overview of the literature available on the buckling 

analysis of delaminated layer structures with and without bridging. Besides critically 

reviewing the literature, discussing various assumptions and pros and cons of 

analytical, experimental and finite element approaches, concluding remarks are made 

on the importance of the present analysis. 

 

2.1. Delamination buckling  

 

With the increasing use of composite laminates, the compression behavior of 

delaminated layer structures has received considerable attention in recent years.  

 

2.1.1. Analytical solutions 

 
2.1.1.1. Thin film model 

 

Chai et al. (1981) might be the first investigators to study the buckling 

analysis of delaminated composite laminates that gives an initial insight into 

delamination buckling. Their work dealt with thin film approximation where local 

buckling of a surface delamination was studied analytically. The local delamination 

growth, stability and arrest were governed by a fracture mechanics-based energy 

release rate. The energy-release rate associated with delamination growth was 
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computed by numerical differentiation of the total potential energy with respect to 

delamination length. Thin film approximation neglects any bending deformation in 

the base plate. Kardomateas (1989) modeled the postbuckling deformation of 

composites with thin delaminations based on large deflections of the delaminated 

layer as one-dimension. He used the exact theory of plane deformation of a prismatic 

bar that was restrained elastically at the ends by means of concentrated forces and 

moments. Thin film analysis predicted a stiffer postbuckled configuration and higher 

value of energy release rate. They noted that boundary conditions (clamped or 

simple) played a significant role in the strain energy release rate. Jane and Yin (1992) 

developed an analytical procedure for computing the buckling loads and the 

postbuckling solutions of cross-ply and angle-ply laminates containing the elliptical 

delaminations by thin film approximation. Rayleigh-Ritz method and von Karman’s 

nonlinear theory of plates (von Karman, 1910) have been used. The transverse shear 

effect appreciably reduces the buckling load and significantly increases the energy 

release rate. Although higher-order solutions are desirable for improved accuracy, 

the computing storage and time requirement to evaluate the integrals in the minimum 

potential energy expression are large. 

 

2.1.1.2. Bernoulli-Euler beam theory 

 

Simitses et al. (1985) developed a one-dimensional model for predicting 

buckling loads of homogenous, elastic, laminated clamped and simply-supported 

beams. The delamination was assumed to exist prior to the applying the compressive 

load and it divides the column (or plate) into four regions, each having such 
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dimensions that Euler-Bernoulli beam theory could apply. They observed that 

buckling load decreases as the delamination length increases, for given delamination 

positions. Yin et al. (1986) presented an elastic buckling and post buckling analysis 

of an axially loaded beam-plate with through-width delamination, symmetrically 

located at an arbitrary depth. They found that for a relatively short and thick 

delamination, the buckling load of the delaminated plate is a lower bound of the 

ultimate axial load capacity. Shu and Mai (1993a) modified the classical beam theory 

with the relaxation to the plane-section assumption by introducing rigid connector 

(plane sections at the ends of the delaminations are assumed to be remain plane and 

perpendicular to midplane of the beam during buckling) and soft connector (plane 

sections at the ends of the delaminations are assumed to be remain plane). It is found 

that the soft connector analysis gives lower bound values where as the rigid 

connector analysis gives upper bound values. They have not discussed in details the 

intermediate load values. Wang Lin (1996) studied the buckling behavior of beams 

having single and multiple separated delaminations. The results based on the free-

mode model yield lower buckling load than the constrained model which are similar 

to soft and rigid connectors of Shu and Mai (1993a). Bending-stretching coupling has 

not considered in the analysis. Sheinman et al. (1998) investigated the delamination 

growth during the pre and post-buckling phases in composites with single through-

width delamination. von Karman strains were used in the classical beam theory. The 

nonlinear differential equations for the pre and post-buckling analysis were obtained 

by using a variational principle, with a new set of relations for the decomposition of 

the total energy release rate. The postbuckling behavior and delamination growth 

were modeled same as that of Sheinman and Kardomateas (1997). It was observed 
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that plane stress yields much lower local and global buckling loads than the plane 

strain condition. 

 

Huang and Kardomateas (1998) developed an analytical method for 

predicting the critical buckling loads of a composite beam-plate with double 

enveloped delaminations. They observed that the deeply located delamination affects 

the critical load significantly, when it is close to the nearest-to-the-surface 

delamination or when it is longer. When the two delaminations are too close to each 

other, the middle subplate buckles initially. This model has not studied delaminated 

layers made of different materials. Shu (1998) performed an exact buckling analysis 

for beams with double equal delaminations. Upper and lower bounds of buckling 

loads were obtained and it was observed that the delamination affects the clamped 

beams more than the simply-supported beams. Antisymmetric S-shaped buckling 

mode that is often the second mode of the delamination, which was observed in the 

work of Lim and Parsons (1993) has not observed. The buckling load does not vary 

monotonically with thicknesswise position of the single delamination, which was 

contrary to the observation made by Yin et al. (1986). This theory has not included 

the feasibility for layers having different materials and is applicable for 

symmetrically located delaminations at the center of the beam.  

 

For angle ply laminates, the Euler-Bernoulli beam theory results can be used 

as upper bound solutions, as these models haven't include the bending and extension 

coupling effects. 
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2.1.1.3. Rayleigh-Ritz method 

 

Chai and Babcock (1985) used the Rayleigh-Ritz method to analyze the local 

buckling of a thin orthotropic layer delaminated from a thick isotropic plate and to 

determine whether the delaminations grow based on the calculation of the energy 

release rate. Circular and elliptical delaminations were studied. Fracture mechanics 

based strain energy criterion approach has been used to study the growth mechanism. 

Peck and Springer (1991) investigated the behavior of elliptical sublaminates created 

by delaminations in orthotropic composite plates subjected to in-plane compressive, 

shear and thermal loads. A model was developed to find stresses, strains, and 

displacements of the sublaminates and buckling loads. Experiments were carried out 

on sandwich plates made of Fiberite T300/976 graphite-epoxy laminates bonded to 

an aluminum honeycomb core. Teflon film in either circular or an elliptical shape 

was embedded in the laminate, stimulating the presence of embedded delamination. 

The von Karman (von Karman, 1910) nonlinear strain-displacement relations were 

used for the sublaminate and the sublaminate displacement was expressed by a 

higher order shear deformation theory (Phan and Reddy, 1985; Reddy, 1984a; 

Reddy, 1984b; Reddy and Phan, 1984c). Rayleigh-Ritz energy method was used to 

describe the displacements, strains, and stresses in the sublaminate. The 

displacements in the plate, which provide the displacement boundary condition for 

the sublaminate, were calculated from laminated plate theory (Tsai and Hahn, 1980). 

They observed that the residual thermal stresses affect the predicted buckling load 

and the magnitude of the effect depends on the degree of mismatch between the 

sublaminate layup and the plate layup. Lim and Parsons (1993) developed a 
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mathematical model to predict the buckling load of a composite beam with multiple 

through-width double equal delaminations. Symmetrical delaminations were 

considered and Rayleigh-Ritz method has been employed. Lagrangian multipliers 

were used to enforce constraints arising from the boundary conditions and the 

kinematic continuity requirements between the different sections of the beam. 

Antisymmetric S-shaped buckling mode was observed for clamped single 

delaminated beam at the delamination lengths of 0.35L and 0.4L. They observed that 

for the single delamination case, Euler buckling dominates if the delamination is 

sufficiently short. For longer, shallow delaminations, the thin film buckling 

dominates. The contact between laminae has not considered in this analysis. 

Suemasu (1993) investigated the compressive buckling stability of the clamped 

composite panels with through-width, equally spaced multiple delaminations 

analytically and experimentally. The analytical method was formulated on the basis 

of Rayleigh-Ritz approximation technique. Timoshenko type shear effects were 

included in order to consider the shear deformation. Experiments were carried out on 

plain-woven glass fibre reinforced composite panels. The panel with multiple 

delaminations tends to kink at the delaminated portion under minimum load, even 

when the size of delamination is not long and buckling load decreases when the 

multiple delaminations approach the clamped end. Symmetric and antisymmetric 

buckling modes were observed. Wang et al. (2005a) presented an analytical method 

to investigate hydrothermal effects on locally buckling for an elliptical delamination 

near the surface of cylindrical laminated shells. Rayleigh-Ritz method based on 

second variation of potential energy has been used to obtain the critical strains. It was 

found that the critical strains from non-linear buckling analysis are lower than that of 
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the linear-buckling case. In these analyses, the accuracy of the solution depends on 

the choice of the displacement shape function. 

 

2.1.1.4. Plate theories 

 

 Barbero (1989) used the generalized laminated plate theory (GLPT) of Reddy 

(1987), by modifying the expression for the displacements through the thickness 

(using Heaviside step functions and Lagrange interpolation functions) to model the 

kinematics of multiple through-width delaminations. The geometric nonlinearity of 

von Karman was included to capture the layer buckling. Bruno and Grimaldi (1990) 

studied both symmetric through-width and penny shaped delaminations for 

rectangular and circular plates, respectively. They developed analytical and finite 

element models based on the von Karman thin plate theory in conjunction with the 

unilateral contact approach (in which delamination was modeled by means of elastic 

foundation). Gu and Chattopadhyay (1994) developed a new higher order theory for 

delamination and post-buckling analysis and with the classical laminated plate 

theory. Heaviside step function was used to provide the jumps in displacements 

between the sublaminate and the delaminated layer at delamination interface. The 

von Karman type of nonlinearity was used in the kinetic equations. The minimum 

potential energy principle was used to derive the governing equations and associated 

boundary conditions. The results were compared with experimental results, which 

are conducted on random short-fibre SMC-R50 composites. They observed that 

transverse shear strongly influences the delamination buckling. Yin (1998) 

conducted a thermo mechanical buckling analysis of multilayered laminates with 
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strip delaminations on the basis of the anisotropic thermoelasticty of the constituent 

layers and the Kirchhoff-Love hypothesis of the classical laminate plate theory. The 

temperature load affects the buckling behavior of a strip delamination through the 

axial forces of the debonded sublaminates and the shearing thermal force of the intact 

laminate. It is applicable for symmetrical delaminations only. 

 

Suemasu et al. (1998) studied analytically and experimentally the basic 

mechanics and mechanisms concerning the compressive stability of composite 

laminates with multiple circular delaminations. The equation, governing buckling 

was derived using Rayleigh-Ritz method and solved it as an eigenvalue problem. The 

analytical results were compared with finite element analysis and experiments were 

conducted on two types of quasi-isotropic laminates with a conventional and 

toughened epoxy resin. They observed that the buckling load does not depend on the 

matrix resin toughness but the strength is affected by the toughness. The plates with 

multiple delaminations buckle in a symmetric mode. However, the delamination 

buckling shape gradually changes from symmetric to antisymmetric, with increasing 

load. They further observed that the buckling load does not depend on the buckling 

area, rather depends on the product of number of delaminated portions and the 

delamination radius. The interference between adjacent layers was not considered in 

this analysis. Kim and Kedward (1999) presented a methodology for predicting the 

buckling initiation of embedded circular delaminated composite plates. The 

Rayleigh-Ritz method was used to formulate the eigenvalue buckling problem and to 

predict buckling loads and deformation mode configurations. For rectangular plates 

of any thickness, both global and local sublaminate buckling deformation modes 
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were predicted. Cho and Kim (2001) developed a higher-order zig-zag theory with 

minimal degrees of freedom for laminated composite plates with through-width 

multiple delaminations. The results have showed a good correlation with elasticity 

solutions for the small sized delaminations but provided stiffer buckling loads for 

larger delaminations since, the displacement filed of the present theory do not allow 

sign change of the transverse shear strain at the delamination interfaces. Kim and 

Cho (2003) extended their earlier work to laminated composite shells with multiple 

delaminations. They recommended that the newly developed finite element works as 

an efficient tool for analyzing the behavior of the laminated composites with multiple 

embedded delaminations. 

 

2.1.1.5. Perturbation technique 

 

Bottega and Maewal (1983a) analyzed the axisymmetric buckling and growth 

in a compressively loaded two-layer symmetric isotropic clamped circular plate with 

a concentric penny-shaped delamination. The influence of imperfections in the form 

of transverse loads were also examined and found that the imperfections do not have 

any noticeable effect on the delamination process. They developed an analytical 

model based on asymptotic analysis of post-buckling behavior. They found that 

delamination growth based on a Griffith-type fracture criterion might have occurred 

following the delamination buckling, provided that sufficient bending energy was 

produced at the delamination crack front. In their subsequent work (Bottega and 

Maewal, 1983b) the dynamics of the delamination growth, resulting from the 

delamination buckling has been studied. Yin (1985) pointed out that the second-order 
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perturbation method loses its validity in the range of loading, corresponding to their 

delamination growth path because the expansion parameter in the perturbation series 

becomes unduly large. Kardomateas and Schumueser (1987) extended the works of 

Simitses et al. (1985) and Yin et al. (1986) by considering the effects of transverse 

shear on buckling and post-buckling of beam plates. Perturbation method (Nowinski 

and Ismail, 1965) was used to solve the governing differential equation of the beam 

(Timoshenko and Gere, 1961) for buckling analysis. J-integral was used to compute 

energy release rate. They pointed out that the delamination of composite laminates 

exhibit failure zones that can be considered similar to the plastic hinge formation that 

governs bending induced failure of metallic beams. Kassapoglou (1988) analyzed the 

buckling and postbuckling composite laminates having elliptical delamination by a 

perturbation method. von Karman non-linear strain-displacement equations were 

used in the classical laminated plate theory. The governing differential equations 

were reset into three partial differential equations in three displacements and solved 

as an eigenvalue problem for buckling load. He proposed critical delamination 

length, which was defined as the length below which the panel structure under 

compression was not affected by the presence of delamination. He pointed out that 

the critical delamination length is important in design, since it represents the 

maximum delamination size that can be tolerated in a panel without lowering its 

compression strength. His method has yielded buckling loads with large errors. Adan 

et al. (1994) developed an analytical model for buckling of multiple delaminated 

composite beams. The buckling equations were formulated by the principle of virtual 

displacements and considering von Karman strains which were solved by a 

perturbation method. They observed that when the delamination boundary is located 
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over the mid-span of the other delamination, the decrease in the buckling load is 

maximal and the effect of interaction decays, as the overlapping zone between 

delaminations reduces. The theoretical singularity at the delaminations, plasticity 

effects interlaminar penetrations (contact effects) and end effects, which may occur, 

have not considered in this work. 

 

Wang and Cheng (1995) presented a continuous analysis (Wang et al., 1993) 

and a general solution technique using Fourier series in conjunction with Stokes’s 

transformation to determine the buckling load of multiple delaminated orthotropic 

beams and plates. The delaminated beam was modeled as a beam on a discontinuous 

elastic foundation. The elastic adhesive layer between the buckled-beam plate and 

the undeformed substructure has served as a foundation to the beam-plate and was 

represented by parallel springs. They observed that the buckling load decreases as the 

size of the delaminated region increases. Bruno and Greco (2000) analyzed the 

delamination buckling and growth in compressively loaded through-width 

delaminated laminated plate by an asymptotic technique (Budiansky, 1987), using 

energy and path-integral approaches. They observed that the best way of capturing 

the actual behavior of the delaminated plate was the global approach with the 

variation in the advancing area of the increment of total potential energy. Shan and 

Pelegri (2003) proposed an approximate method to analyze the buckling behavior 

and investigated the effect of contact zone at delamination ends. Experiments were 

conducted on IM7/8552 Hexcel prepreg graphite/epoxy specimen. They observed 

that as the load increases, the specimen experiences pure axial compression, local 

buckling, base bending, global buckling, and delaminating growth. Unless higher 
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order perturbations equations used, the perturbation technique is not a promising 

approach for obtaining accurate solutions beyond an initial stage of postbuckling 

solution (Jane and Yin, 1992). 

 

2.1.1.6. Differential Quadrature Method (DQM) 

 

 Moradi and Taheri (1999a), Moradi and Taheri (1999b) numerically modeled 

the delamination buckling response of a composite panel containing through-width 

delamination by using Differential Quadrature Method (Bellman et al., 1972). In the 

DQM, the Gauss method is used to obtain the derivatives of a function. It follows 

that the partial derivative of a function with respect to a space variable can be 

approximated by a weighted linear combination of function values at some 

intermediate points in that variable. The composite panel with through-width 

delamination was modeled as a general one-dimensional beam-plate, having an 

arbitrarily located through-width delamination. The delamination divides the plate 

into four regions which is similar to that of Simitses et al. (1985). The governing 

postbuckling behavior of the delaminated beam was obtained by applying the axial 

strain compatibility for the upper and lower sublaminates and DQM. The influence 

of the number of the sampling points on the predicted results was investigated. They 

concluded that for obtaining better accurate results, nine to eleven sample pointes are 

sufficient to discretize each section. The postbuckling response of delaminated 

isotropic and anisotropic beams with across-the-width delamination was studied. 

Later the same authors (Moradi and Taheri, 2001) investigated the response of 

laminates composites having a circular or an elliptical delamination for clamped 
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ends. The selection of locations of the sampling points plays a significant role in the 

accuracy of the buckling loads. 

 

The analytical methods developed based on the Euler-Bernoulli beam theory 

gives a closed form solution that can be used as a benchmark solution. The results 

obtained from analytical methods can be used in practical applications, as most of the 

methods are theoretically sound. To examine more detailed and complex 

delamination buckling phenomena involving partial contacts at various delamination 

interfaces, finite element analyses are opted for. The analytical methods give an 

initial introspection of the delamination buckling behavior based on which further 

FEM analyses can be carried out. 

 

2.1.2. Finite Element Analysis (FEA) 

 

It is extremely difficult to employ the analytical methods if the loading is 

dynamic (causing the delaminated plies to repeatedly impact each other), or if the 

beam dimensions are such that certain regions develop plastic zones. According to 

these one and two-dimensional models for the delamination problems, the 

delamination can grow only after the debonded portion of the laminate buckles. 

However, the delamination can also grow due to shear modes. For these 

complicating non-linear effects, it is convenient to use a finite element method 

(FEM). Many researchers have been studied various delamination shapes such as 

through-width, embedded (circular, elliptical, rectangular etc.,) and free-edge 

delaminations using FEM. 
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2.1.2.1. Through-width delaminations 

 

Whitcomb (1981) developed a two-dimensional FEA to analyze a laminated 

plate with through-width delaminations to study the post buckling behavior. Four-

noded isoparametric quadrilateral elements were used in this analysis. The governing 

nonlinear equations for each element were derived from the principle of minimum 

potential energy. Experiments were carried out on four-ply unidirectional 

graphite/epoxy bonded to 2024-T3 aluminum with EA934 adhesive, to compare the 

lateral deflections of the analytical results. The analysis is not valid for higher loads, 

since no provision is made to keep the crack surfaces from overlapping. Kapania and 

Wolfe (1987) used a six degree-of-freedom beam-column element to analyze 

delamination buckling and instability related growth. Later, the same authors 

(Kapania and Wolfe, 1989) studied the buckling behavior of axially loaded 

homogeneous beam plates with through-width double delaminations. They noted that 

for beams with two delaminations, the stability of the beam in compression depends 

on the thinner region, especially when one delaminated region is much thinner than 

the other two. Kutlu and Chang (1992) investigated analytically and experimentally 

the compression response of laminated composites containing multiple through-

width delaminations. A nonlinear finite element code based on the updated 

Lagrangian formulae was developed for the model. Later, the same authors 

investigated the composite panels containing multiple through-width delaminations 

analytically and experimentally (Kutlu and Chang, 1995a; Kutlu and Chang, 1995b). 

Both flat and cylindrical panels were considered. Experiments were carried out on 

Fiberite T300/976 graphite/epoxy composites to verify the model and numerical 
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calculations. The interface friction between the upper and lower surfaces of 

delaminations is not considered in this analysis. Lee et al. (1993) studied the 

buckling of axially loaded composite beam plates with multiple through-width 

delaminations by developing a displacement-based, one-dimensional finite element 

model based on the layer-wise plate theory of Reddy (1987). Governing equations 

were derived from the principle of the stationary value of potential energy. The 

generalized displacements were expressed over each element as a linear combination 

of the one-dimensional Lagrangian interpolation functions. Both symmetric and 

antisymmetric buckling modes were obtained using a half-model of the composite. 

 

Lee et al. (1995) presented a one-dimensional finite element buckling and 

post-buckling analyses of cylindrically orthotropic circular plates containing single 

and multiple through-width delaminations. An axisymmetric finite element model 

based on a layer-wise laminated composite plate theory was developed to formulate 

the problem. von Karman geometric nonlinearity and overlapping between 

delaminated surfaces were considered. The principle of virtual displacements was 

used in variational formulation of the problem. Three distinguishable buckling mode 

configurations (local, global one-wave and global two-wave modes) were obtained. 

Paolo (1997) proposed two- and three-dimensional solid finite elements as an 

effective and practical tools for the prediction of the critical loads for the linearized 

buckling analysis of two and tri-dimensional cases, respectively. The through-width 

delamination was modeled by using eight-noded plane stress elements in ADINA 

FEM software (ADINA-Guide, 1987). He observed that the critical load decreases as 

the distance of the delamination from the top of the plate decreases and its diameter 
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increases. Kyoung et al. (1998 and 1999) studied the buckling and postbuckling 

analysis of multiple through-width delaminated composites by a nonlinear finite 

element analysis. The updated Lagrangian description and modified arc-length 

method were adopted in finite element formulation. Eight-node degenerated shell 

elements located along the mid-plane of these divided regions were used. First order 

shear deformation theory was implemented. The interference of the layers was 

prevented by employing the contact node pair (node-to-node contact was assumed in 

postbuckling behavior) defined by use of virtual beam element. They observed that 

multiple through-width and the multiple embedded delaminations lowers the 

buckling load of the cross-ply laminates due to the reduction of bending stiffness.  

 

 Hwang and Mao (1999) studied the through-width delamination buckling of 

single-fibre system and interply hybrid composites by a nonlinear finite element 

analysis. ANSYS 5.3 FEM software was applied to calculate the buckling loads. 

Two-dimensional quadratic eight-noded plane strain elements were used to mesh the 

whole domain and singular elements were used around the crack tip to describe the 

singularity behavior and to reduce computer time. Contact elements were also used 

on the delamination surface to prevent the overlapping situation. They observed that 

the local symmetry stacking sequence has lower buckling loads than that of the 

global symmetry stacking sequence, because they are more globally unsymmetrical. 

Perugini et al. (1999) analyzed the compressive behavior of composite panels with 

through-width delaminations by two-dimensional FEM code, B2000 (Boer and Riks, 

1988). The contact phenomenon was modeled by means of Penalty Method. They 

noted that at the initiation of the delamination growth, mode I dominates over mode 



Chapter 2                                                                                                                       Literature Review 

 30

II, while, as delamination propagates, mode II becomes dominant than mode I. They 

observed that the increasing of buckling load with the thickness of the buckled 

sublaminate is due to the higher bending stiffness value. The fibre-matrix failure and 

the friction in the contact analysis are not considered in this analysis. Riccio et al. 

(2000) applied the modified virtual crack closure technique (MVCCT) was to 

evaluate the delamination growth phenomena. Hwang and Mao (2001) used non-

linear buckling and post-buckling analyses to study the through-width delamination 

buckling of interply hybrid composite plates under compression. The total strain-

energy release rate and interlaminar-stress criterion were used to predict the 

delamination growth load. ANSYS 5.3 FEM software was used to calculate the 

buckling load. They observed that non-linear buckling analysis values of Kyoung 

and Kim (1995) were close to that of experimental values. For global buckling mode, 

the buckling loads are suggested to represent the failure loads of delaminated 

composites. For mixed and local buckling modes, the failure of the delaminated 

composite is attributed to the growth of delamination. An increase in the number of 

glass-fiber layers within an interply hybrid composite results in a decrease in the 

buckling load and the delamination failure load. Remmers and de Borst (2001) 

developed a numerical model for delamination buckling of fibre-metal laminates 

(GLARE) on a mesoscopic level, based on the experimental observations. From the 

three point bending test, they observed that the outer aluminum layer buckled while 

the prepreg layer was remained undamaged. They observed that the fracture 

toughness of the interface plays an important role in the postbuckling behavior and 

delamination propagation of the model. Hwang and Liu (2001) studied the buckling 

behavior of composite laminates with multiple through-width delaminations under 
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uniaxial compression. The buckling load was determined by solving eigenvalue 

problem and from ANSYS 5.3 FEM software. Two-dimensional quadratic eight-

noded plane strain elements were used to mesh the whole domain except that the 

crack tip region, which was meshed by singular elements to describe the singularity 

behavior and to reduce computer time. They observed that as the length of the 

beneath delaminations is not larger than that of the near-surface delamination, the 

beneath delaminations does not have significant effect on the buckling load and the 

buckling behavior is the same as that of a single delamination case. 

 

2.1.2.2. Embedded delaminations 

 

a) Circular delaminations 

 

Whitecomb (1981) studied delamination buckling by using plate and multi-

point constraints (MPC). The approach is inconvenient in many situations. First, the 

MPC require a large number of nodes to simulate actual contact between laminae. 

Second, a new plate element is added for each delamination. The MPC approach 

becomes too complex for the practical situation of multiple delaminations through 

the thickness. Third, all plate elements have their middle surface on the same plane, 

which is unrealistic for the case of delaminated laminae in that have their middle 

surface at different locations through the thickness of the plate. In his later work, he 

showed that overlapping of the delamination faces could occur over a portion of the 

delamination front if contact constraints are not imposed (Whitecomb, 1989). 

Further, he studied the behavior of a post-buckled embedded circular delamination 

using geometrically non-linear 3-D finite element analysis program (named 
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NONLIN3D, Whitcomb, 1988a and 1988b) and showed that the post buckling 

deformation could lead to matrix cracking and fiber breakage in addition to the 

delamination growth (Whitcomb, 1992). The results showed that the delamination 

growth does not occur until buckling is significantly exceeded. 20-noded 

isoparametric hexahedron elements were used in FEM analysis. Lagrangian 

nonlinear strain-displacement relations were used to calculate the total potential 

energy. A Newton-Raphson method was used to solve the nonlinear equations. In 

contact analysis it is assumed that the contact force on the disk is supplied externally 

rather the nodes contact the base and because of which it will contribute to error. In 

the analysis the base is assumed as thick and rigid.  

 

b) Elliptical delaminations 

 

Shivakumar and Whitcomb (1985) studied the buckling analysis of an 

elliptical delamination embedded in a quasi-isotropic laminate by finite element and 

Rayleigh-Ritz methods. The finite element analysis carried out using STAGS 

(Almroth et al., 1982) computer code. An eighteen degree-of-freedom triangular 

plate element having three displacements and two rotational degrees-of-freedoms at 

the corner nodes and one rotational degree-of-freedom at each mid-side node was 

employed for the analysis. Rayleigh-Ritz analysis based on Trefftz criterion (Dym 

and Shames, 1973) was presented to calculate the buckling modes and strains of 

elliptical sublaminates. The results indicated that the compression buckling strain 

increases with increasing fiber angle for anisotropic sublaminates. Interference 

between the laminates has not considered in this analysis. Yeh and Tan (1994) 
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studied the buckling of laminated plates with elliptic delaminations under 

compressive loading experimentally and analytically. A nonlinear finite element 

program based on the updated Lagrangian formulation was developed to analyze the 

response of the laminated plates. Degenerated shell elements (Ahmad et al., 1970) 

were used in the finite element analysis. The eight-node quadratic isoparametric 

element is used to preserve the assumption that lines originally normal to the shell 

mid-surface remain straight during deformation and that the transverse normal stress 

remains zero. The Newton-Raphson method was used to solve the resulting equation 

for the nonlinear system and a displacement-controlled scheme was used in the 

solution near the buckling load. They observed that as the orientation of the major 

axis of the elliptical delaminated region with the loading axis increases, the buckling 

load decreases. Hu (1999) analyzed the buckling analysis of a delaminated laminate 

with FEM based on the Mindlin plate theory. A sensitivity-based updating algorithm 

incorporating the quadratic programming technique was presented to solve the 

fictitious forces in contacting area. The fictitious forces were transferred into 

artificial springs, which prevent the penetration between two delaminated layers. The 

buckling load increases when the effect of the contact is considered. When the 

buckling mode changes significantly during the contact iteration, the buckling load 

also varies to a great extent. 

 

 Hu et al. (1999a) conducted the buckling analysis of laminates with 

embedded elliptical delaminations by employing FEM based on the Mindlin plate 

theory. Eight-noded isoparametric Mindlin plate elements were used in the FEA 

modeling. They observed that the inclusion of the contact analysis increases the 
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buckling load. They noted that a sublaminate with 00 fibers buckles more easily than 

the 900 fibres and advised to keep the 00 plies far away from the outer surface of the 

laminates. Sekine et al. (2000), and Kouchakzadeh and Sekine (2000) investigated 

the buckling analysis of elliptically delaminated composite laminates under in-plane 

compressive loads by taking into account of partial closure of delamination. A 

penalty function method was proposed to deal with the contact problem for the 

partial closure of the delamination. Fictitious springs were inserted iteratively at all 

of the overlapped points. They observed that the buckling load of a laminate with 

delaminations oblong in the load direction is higher than the buckling load of a 

laminate with delaminations oblong in the direction perpendicular to the load 

direction. They found that the buckling load of a laminate containing small number 

of delaminations is higher than the buckling load of a laminate containing a hole 

 

c) Penny-shaped delaminations 

 

Suemasu and Majima (1996) studied the instability problem of multiple 

penny-shaped interlaminar delaminations in circular axisymmetric plates subjected to 

a transverse point loading. The Kirchhoff hypothesis was assumed to be valid even in 

the neighborhood of the delaminated edges. NISA II FEM program was used and an 

eight-node isoparametric linear axisymmetric element was selected for the analysis. 

At the delamination surface double nodes were introduced while meshing. They 

observed that when the load is constant, the energy release rate is constant regardless 

of the size of the delaminations and increases linearly with the number of the 

delaminations. The history of damage accumulation during impact is not considered 
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in this work. Lee et al. (1996) studied buckling and postbuckling analyses of circular 

laminated composites plates with concentric penny-shaped delaminations by an 

axisymmetric finite element model based on a layer-wise laminated composite plate 

theory. One-dimensional Lagrangian interpolation functions were used to express the 

displacement of each element. The contact algorithm, developed by the same authors 

in their previous work (Lee et al., 1995) was used. They observed that, unlike the 

case of through-width delamination (Lee et al., 1993), the slenderness ratio of the 

plate hardly affects the buckling loads and modes. The postbuckling response of a 

delaminated composite is more sensitive to the amplitude and the direction of initial 

imperfection. The delamination buckling occurs at slightly higher loads than for the 

bifurcation analysis.  

 

d) Rectangular delaminations 

 

Naik and Ramasimha (2001) studied the behavior of typical woven fabric 

composites with central rectangular delamination under uniaxial compressive loading 

by an in-house developed finite element analysis code. The results were compared 

with the experiments on plain weave E-glass/epoxy laminate, GLE-12. They 

observed that as the delamination size increases, damage tolerance decreases. On the 

other hand, as the depth of location of delamination increases i.e., sublaminates 

thickness increases, damage tolerance initially decreases and then increases. This 

method is valid when both laminate and sublaminate are symmetric. Tafreshi (2004) 

dealt with the computational modelling of the delamination in isotropic and 

laminated composite cylindrical shells. He employed combined double-layer and 
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single-layer of shell elements (GAP elements) to study the effect of delamination on 

the global load-carrying capacity of such systems under axial compressive load. 

ABAQUS, FEA software has been used. He observed that by using GAP elements 

and two-dimensional modeling, the computational time has been reduced 

significantly where as the critical buckling load is small for larger delamination area. 

 

2.1.2.3. Free edge delaminations 

 

Hormann and Ramm (2002) described geometrically, the delamination 

process between two adjacent FRP layers as a thin softening process zone. Finite 

shell elements with layer wise Reissner-Mindlin kinematics were used. A cross ply 

laminate with free edge delamination under in plane uniaxial tension and a double 

cantilever beam with delamination were investigated. The model estimates over 

ultimate load compared to the existing data in the literature. 

 

Due to the complex interaction of material, geometry, and various failure 

mechanisms, finite element procedures are widely used in buckling analysis of 

delaminated layer structures. However, FEM has the disadvantages of considerable 

numerical computations and expensive especially, for problems with a large number 

of degrees of freedoms. The FEA solutions are case specific and the solutions are 

sensitive to the element sizes. Furthermore, the element refinements do not guarantee 

the convergence and accuracy of the numerical solutions due to the singular nature of 

boundary layer in the crack tip neighborhood. In the conventional two-dimensional 

finite element model based on Reissner-Mindlin plate theory or classical plate 
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theory, the plate is often divided into three parts to describe the behavior of the 

delaminated plates, with two sublaminates having the size of the debonded area and 

the other being the surrounding undamaged region, called the base laminate. Each 

part is then modeled by using plate elements. At the edge of the delamination the 

nodes of the elements are rigidly connected together using offset vectors. However, 

numerical implementation of these offset vectors cause additional complexity in the 

problems of the laminates with multiple delaminations having an arbitrary shape, 

location, and size. 

 

2.1.3. Experimental analysis 

 

Experimental test results are essential to validate the results of the developed 

mathematical models and FEA. Gillespie and Carlsson (1991) conducted 

compressive testing on Cyanamid’s CYCOM 982 (graphite/epoxy), ICI’s APC-2 

(graphite/PEEK) and on Hercules’ AS4/3501-6 (graphite/epoxy) laminates. 

Delaminations were modeled by inserting two layers of 0.0127 mm thick kapton film 

between the interfaces. The edges of the specimen were painted with a thin film of 

flat white enamel to monitor the crack growth. The higher processing temperatures 

and the rapid solidification of the thermoplastic matrix in the APC-2 material leads to 

higher residual stresses and hence large out-of-plane displacements upon 

delamination than in the thermosetting graphite/epoxy materials (CYCOM 982 and 

AS4/3501-6). It was demonstrated that long and thin delaminations grow in Mode II 

crack tip loading, while short and thick delaminations are also influenced by Mode I 

crack driving force. Lachaud et al. (1998) carried out experimental and numerical 
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shear stress has significant effect on the postbuckling behavior of the composite 

plates.  

 

Gu and Chattopadhyay (1999) studied the mechanics and mechanisms of 

delamination buckling and postbuckling of composites. Compression tests were 

carried out on HYE-3574 OH Graphite/epoxy with built-in-delaminations in order to 

evaluate the critical load and the actual postbuckling load-carrying capacity. Three 

types of flat-plate test specimen with single centered delamination locating at 

midplane and near surfaces with varying ply sequences were used. They found that 

the delamination-buckling mode was closely related to the location and length of the 

delamination. For composites with thinner and longer delaminations, the ultimate 

load obtained through the experiment is as high as three times their critical load. 

Short et al. (2001) studied the effect of size and through thickness position of single 

embedded delamination on the sub-laminate response and compressive failure load 

of GRP specimen. Three dimensional FEA was also carried out and the predicted 

failure load was compared with those measured experimentally. ABAQUS V5.8 

finite-element system was used with PATRAN V8.5, for pre-processing. Depending 

on the delamination geometry, two different modes of buckling were observed: a 

local mode where the sub-laminate above the delamination buckled out of plane and 

a global mode where both the sub-laminates above and below the delamination 

buckled out of plane. More recently, the same authors (Short et al., 2002) studied the 

effect of curvature on the compressive failure load of glass fibre reinforced plastic 

(GFRP) laminates containing embedded delaminations, where the plane of curvature 

was normal to the loading direction. The same buckling mode for a given buckling 
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mode was found for both curved and flat laminates. They observed that the finite 

element results predict higher buckling load than the experimental results, for curved 

laminates and it is due to the sensitivity of the curved laminates to imperfections in 

its geometry and location in the anti-buckling guide. Compression tests on curved 

laminates demonstrates that an asymmetry of failure load with the through thickness 

position of the delamination. A delamination near the outside of the curve has given 

greater strength reduction than a delamination near the inside of the curve, where 

both delaminations are at the same depth. Recently, Wang et al. (2005b) conducted 

compression tests on glass fibre reinforced polymer specimens containing single and 

double equal delaminations and the results were compared with finite element 

results, using ABAQUS, FEA software. Specimens containing artificially created 

delaminations were manufactured from ICI Fiberite 934 unidirectional glass fibre 

prepreg and cured using the vacuum bag method. Finite element prediction of the 

failure loads were made by assuming the maximum fibre direction stress reaches a 

limiting value at failure. It was observed that the maximum reduction in strength for 

double delamination occurs when the delamination splits the laminate into sub-

laminates of similar thickness. 

 

2.1.4. Fracture mechanics analysis 

 

A number of models used fracture mechanics analysis for delamination 

propagation and expressions for energy release rates. Yin and Wang (1984) obtained 

an algebraic expression of the energy release rate in terms of the axial forces and 

bending moments acting across the various cross sections adjacent to the tip of the 
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delamination by means of the path-independent J-integral. They provided curves that 

determines the possibility and the stability characteristics of delamination growth and 

provides a basis for determining the ultimate axial load capacity. Yin (1985) 

investigated the postbuckling behavior of an isotropic circular plate containing thin 

film or mid plane delamination employing the von Karman nonlinear plate equations. 

Runge-Kutta integration formula was used to generate the postbuckling solutions. He 

obtained the energy release rate for the uniform-expansion growth of a circular 

delamination in a compressively loaded laminate using the M-integral. Yin (1986) 

studied cylindrical buckling of delaminated plates using a one-dimensional model 

with general laminate structure (as opposed to the isotropic beam plate assumed by 

Simitses et al., 1985) to do an elastic post-buckling analysis. The path-independent J-

integral was again used to find the energy release rate. The post-buckling analysis 

was done for cross-ply and angel-ply laminates. Chen (1991) studied the elastic 

buckling and post-buckling analysis of an axially loaded orthotropic clamped beam 

with an across-the-width delamination symmetrically located at an arbitrary depth. A 

variational energy principle consistent shear deformation theory coupled with a 

Griffith-type fracture criterion was developed to formulate the problem. He noted 

that the transverse shear effect depends on the delamination location and size and it 

has significant effect on buckling load, post-buckling solution and energy solution. 

After initiation of the delamination buckling, the occurrence of the delamination 

growth depends on the magnitude of the fracture toughness of the material. 

Kardomateas and Pelegri (1994) analyzed the post-buckling and growth behavior of 

a composite plate with through-width delamination under compression by using 

perturbation methods. A Griffith-type fracture criterion was employed and it was 
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assumed that the occurrence of delamination depends on the magnitude of the 

fracture energy, defined, as the energy required producing a unit of new 

delamination. Kyoung and Kim (1995) developed an analytical method to determine 

the buckling load and the growth of one-dimensional delaminated beam plates and 

the results were verified with experiments on delaminated graphite/epoxy 

unidirectional specimen. The delamination was arbitrarily located in the longitudinal 

and thickness directions. The variational principle was applied to calculate the 

buckling load of the axially loaded beam-plate with delaminations. The J-integral 

including shear stress was used to calculate the energy-release rate. For the relatively 

thick delamination, the buckling load of a center located delamination is higher than 

that of an off-center delamination. The shear deformation effect lowers the buckling 

loads and increases the strain energy release rates.  

 

2.2. Delamination buckling with bridging  

 

A volume of work has been demonstrated experimentally and theoretically 

that through-thickness reinforcement greatly improves the damage tolerance of 

composite laminates (Dransfield et al., 1994). The through the thickness 

reinforcement include stitching or weaving continuous fiber tows and inserting 

discontinuous fibrous or metal rods (Roberta and Cox, 1999). Adequate through-

thickness reinforcement prevents the unstable growth of delaminations by bridging 

the delamination cracks. Compressive strength after impact, work of fracture, 

ductility and notch insensitivity are much enhanced due to through-thickness 

reinforcement while in-plane stiffness, fatigue life and strength might be degraded. 
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More information on toughening mechanism can be found in the review work of 

Dransfield et al. (1994), who has outlined the work done to improve the delamination 

resistance of CFRP by stitching process. Mouritz et al. (1997) reviewed the effect of 

stitching on the in-plane mechanical properties of FRP composites. In the present 

section, the work related to delamination buckling involving bridging effects is 

discussed. 

 

Shu and Mai (1993a, 1993b and 1993c) presented results for a thin-film 

model, lower and upper bound values (when there is no bridging and when the 

bridging is infinitely strong, respectively) of the buckling load as well as a 

generalized solution by an energy method. They showed that adequate crack bridging 

by stitching significantly increases the buckling strength of delaminated laminated 

composites under edgewise compression as well as delays the delamination 

propagation. From their results it is observed that the buckling loads decreases 

initially as the delamination length increases, reaches an inflexion point and then 

increases. The reasons behind this complex buckling behavior have not reported in 

their works. Cox (1994) presented a thin film delamination buckling analysis with 

bridging effects. The through-thickness fibers were assumed to provide continuous, 

linear restoring tractions opposing the deflection of the delaminated layer. He 

showed that the delamination buckling occurs only if the delamination length 

increases a particular characteristic length. An analytical formula was given for the 

minimum volume fraction of through-thickness reinforcement required to suppress 

the buckling following delamination. He and Cox (1998) examined the effects of 

through-thickness reinforcement on delamination buckling for curved laminar 
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structures. Finite element calculations using ABAQUS, finite element analyses 

software, have been reported for distribution of stresses and the energy of the 

fracture. The stitches were assumed to have been inserted in a periodic structure of 

uniformly spaced rows and columns. They suggested that for all material systems, 

the stitching is effective if the ratio between the laminate half-thickness and stitch 

radius is above 5. This analysis is applicable for midplane delaminations. Only mode 

I delamination propagation has been studied where as mode II sliding displacements 

were neglected. Roberta and Cox (1999) analyzed Mode II delamination crack 

growth with through-thickness reinforcement in laminate plate by plane-strain plate 

theory.  Maximum and conservative limits for the notched strength have been 

introduced. 

 

Hu et al. (1999b) obtained buckling and postbuckling solutions to circular 

thin-film delamination in a laminate by extending the works of Cox (1994) and using 

von Karman’s geometrically thin plate theory. They observed that the buckling load 

decreases monotonically with delamination radius. This analysis is applicable for 

homogeneous and isotropic plates and having circular thin delamination only. Li et 

al. (2000) studied axisymmetric buckling, initial post-buckling and growth of a 

circular delamination bridged by nonlinear fibers in a laminate by a perturbation 

method. The through-thickness fibers were assumed to provide nonlinear restoring 

traction resisting the deflection of the delaminated layer. They observed that the 

bridging force changes the catastrophic nature of delamination growth and increases 

the stability of the delamination. Further they observed that, for the bridged 

delamination, the higher the material fracture toughness, the higher is the stability of 
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the delamination growth, and the smaller is the range and dynamic effect of its 

unstable growth. Gui and Li (2001) investigated the local buckling analysis of 

stitched composite laminates with an embedded elliptical delamination near the 

surface by Rayleigh-Ritz energy method as an eigenvalue problem. They noted a 

significant effect of stitching thread on buckling strains and buckling mode. They 

observed multiple humps for cases of larger delamination sizes. Daridon and Zidani 

(2002) investigated the influence of fiber bridging at crack tip on the propagation due 

to local buckling of an existing crack in composite plates under compressive load. A 

progressive damage law, in terms of critical stress and critical displacement has been 

incorporated for bridging constitutive behavior. A closed-form solution was obtained 

in terms of the critical stress and critical displacement of the crack opening. An 

abrupt character of the transition was observed as delamination length increases for 

given critical energy release rate, which is due to the schematic linear aspect of the 

fiber bridging modeling. They showed that the fiber bridging has a strong stabilizing 

effect on the crack delamination. Their model has a limitation for complete crack 

propagation and is applicable for mode I delamination only. Recently more 

investigation is focused on crack bridging by metallic rods (Cartie et al., 2004) and z-

fibers (Ivana and Cartié, 2005; Rugg et al., 2002) besides on performance of stitching 

under various loading conditions like, high velocity impact loading (Hosur et al., 

2004), fatigue loading (Larry and Victor, 2005) etc., 
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2.3. Summary 

 

Although many researchers have investigated the buckling analysis of layer 

delaminated structures, there are still significant gaps in knowledge and 

understanding of the complex delamination buckling behavior. As the number of 

delaminations increases or different delamination configurations (enveloping, 

overlapping, equal and separating) exist or various delamination shapes (circular, 

elliptical or rectangular) occur or the layers are made of different materials or the 

delaminations are asymmetrically located, the complexity of the buckling analysis of 

delaminated beams further increases. Most of the analyses available in the literature 

are applicable to the homogeneous and isotropic beams with through-width, 

symmetrically located delaminations. Few literatures are available on the buckling 

mode configurations. There is a need to develop accurate analytical solutions for the 

beams, made of different materials and having arbitrarily located delaminations. 

Similarly the buckling mode configurations have to be studied in detail. Further, the 

effects of bridging on delamination buckling have not investigated for two-layer 

delaminated beams. 

 

In the present work, the delamination buckling of two-layer delaminated 

beams with and without bridging is investigated. Buckling analyses of three-layer 

beams with various through-width multiple delaminations such as enveloped, 

overlapped, separated and equal are studied. The characteristic equation, governing 

buckling is derived by using the Euler-Bernoulli beam theory and by imposing 

appropriate equilibrium, kinematic continuity and boundary conditions. New 
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nondimensionalized parameters, nondimensionalized axial and bending stiffnesses 

are introduced to understand the buckling phenomena. A possibility for each layer 

made of different material is provided in the developed mathematical models. 

Effective-slenderness ratio, another nondimensionalized parameter, has been defined 

and introduced in the analysis. Detailed parametric study has been conducted and the 

results are discussed in detail. This study provides the benchmark solutions for the 

related problems addressed by approximate solutions. The analytical results of two- 

and three-layer beams with single and multiple delaminations will be validated 

through numerical analysis. A detailed numerical analysis will be carried out using 

finite element analysis software, ANSYS®. An approximate solution to obtain the 

buckling loads of a two-layer delaminated beam with bridging is developed by using 

Rayleigh-Ritz energy method. The delaminated beam is assumed to be reinforced in 

the through-thickness direction by stitches having a bridging modulus of K. The 

reinforcement of stitching threads is assumed to provide continuous restoring 

tractions opposing the deflection of the delaminated layer. A new 

nondimensionalized parameter, effective-bridging modulus is introduced to study the 

bridging effects on delamination buckling for various locations and sizes of 

delamination. In order to gauge the range in which the bridging is effective, lower 

and upper bounds of the buckling loads are obtained by developing exact solutions. 
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Chapter 3    Buckling Analysis of Two-Layer 

Delaminated Beams  

 

In order to predict buckling loads of two-layer beams with an asymmetrically located 

delamination, an exact solution is desired. Most of the available analyses in the 

literature are applicable to the homogeneous and isotropic beams with through-width 

symmetric delamination. Further, to understand the complex buckling behavior of 

two-layer delaminated beam, new parameters has to be introduced. In this chapter, an 

exact solution is developed to obtain the buckling load of a two-layer delaminated 

beam. In addition, new nondimensionalized parameters, nondimensionalized axial 

and bending stiffnesses have been introduced to understand the delamination 

buckling of two-layer beams under clamped and simply-supported boundary 

conditions. Effective-slenderness ratio (ESR), another new nondimensionalized 

parameters, has been defined and introduced to study delamination buckling mode 

configurations. The delaminated two-layer beam is modeled as a combination of four 

interconnected sub-beams. The characteristic equation, governing buckling is derived 

by using the Euler-Bernoulli beam theory and by imposing appropriate equilibrium, 

kinematic continuity and boundary conditions. The developed exact solution has the 

added advantage of obtaining buckling loads for homogenous delaminated beams 

under different boundary conditions. Following the exact solution, numerical 

analyses are carried out and these values are compared with the analytical results. An 

excellent agreement is observed among the present, numerical and previously 
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3.1.2. Assumptions 

 

Classical beam theory is applied to the beam model with some assumptions as to 

simplify the present analysis, which are: 

1. Each layer of the beam is homogeneous  

2. Compressive load is uniform and uniaxial 

3. Delamination exists before application of the compressive load which is 

located along the interface only  

4. Beam has unit width 

5. Cross-sections at the delamination ends remains plane and perpendicular to 

the neutral axes of the beams and amongst sub-beams 2 and 3, "slender" 

beam buckles initially. For example, if sub-beam 2 is easier to buckle than 

sub-beam 3, then the whole beam will buckle towards in that direction. As 

sub-beam 2 is more slender and flexible than sub-beam 3, it has larger 

deformation and consequently sub-beams 2 and 3 will not touch each other in 

the initial stage of buckling and 

6. Physical contact at the interface of the delamination is possible during 

postbuckling which is not included here.  

 

The necessary conditions and equations required to derive the governing 

buckling equation are discussed in the following sections. 
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plane elements forming an upper and lower sublaminate, where the nodes are located 

on the mid-surfaces of the laminates or with multiple layers of plane elements, which 

is used in the present study. The close-up view of the two-layer FE beam model with 

two layers of plane elements for (a) an intact beam and for (b) a delaminated beam is 

shown in Fig. 3.6. Gap elements (node-to-node gap elements, CONTA178 of 

ANSYS®) are used to model the delamination. CONTA178 represents contact and 

sliding between any two nodes of any types of elements. The element has two nodes 

with three degrees of freedom at each node with translations in the X, Y, and Z 

directions. The element is capable of supporting compression in the contact normal 

direction and Coulomb friction in the tangential direction. The element may be 

initially preloaded in the normal direction or it may be given a gap specification. The 

element is defined by two nodes, an initial gap or interference (GAP) and an initial 

element status (START). The initial gap defines the gap size (if positive) or the 

displacement interference (if negative). A negative contact force occurs when the 

contact status is closed. A tensile contact force (positive) refers to a separation 

between the contact surfaces, but not necessarily and open contact status. The 

behavior can be described as follows: If the contact status from the previous iteration 

is open and the current calculated penetration is smaller than the maximum allowable 

penetration (TOLN), then contact remains open. Otherwise the contact status 

switches to closed and another iteration is processed. If the contact status from the 

previous iteration is closed and the current calculated contact force is positive, but 

smaller than the maximum allowable tensile contact force (FTOL), then contact 

remains closed. If the tensile contact force is larger than FTOL, then the contact 

status changes from closed to open and ANSYS continues to the next iteration 
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for the same level of accuracy. However, the disadvantage of two-dimensional FE 

analysis is that plane elements are required to model both the delaminated and 

undelaminated regions of the beam. A parametric study in terms of delamination 

lengths and locations has been carried out to validate the present model. The results 

are presented in the following sections. 

 

3.3. Results and Discussion 

 

FORTRAN programs based on the developed mathematical model have been 

written and the computed results were first compared with Simitses et al. (1985) for a 

homogeneous delaminated beam for clamped as well as simply-supported boundary 

conditions. Next, the selected results of the two-layer delaminated beam were 

compared with that of results obtained from ANSYS FEA software. Later, 

parametric studies were conducted in terms of NAS2, NBS2, ESR2, delamination 

lengths (a) and spanwise positions (d) of delaminations. Finally, conclusions were 

drawn from these parametric studies.  

 

3.3.1. Homogeneous delaminated beam 

 

The results of the homogeneous delaminated beam for clamped and simply-

supported boundary conditions were compared with that of Simitses et al. (1985) as 

shown in Fig. 3.8. Horizontal axis represents nondimensionalized delamination 

length and vertical axis represents nondimensionalized buckling load. The 

nondimensionalized buckling loads were obtained by dividing the buckling loads of 



 Chapter 3                                                             Buckling Analysis of Two-Layer Delaminated Beams  

 65

the delaminated two-layer beam with an intact two-layer beam of the same size. 

Excellent agreement between the results was observed. The discrepancy in two data 

points shown in Fig. 3.8 is due to possible numerical error of the previous data. The 

present analysis has the same assumptions as that of the Simitses et al. (1985), and 

therefore it produces identical results. As the delamination length increases the 

buckling load decreases. Further, it is noted that as the delamination is located nearer 

to the center of the beam the buckling load increases. The results also have a good 

agreement with Lim and Parsons (1993) and Huang and Kardomateas (1998). For 

single delamination, the contact between the two delaminated layers has not been 

observed.   

 

3.3.2. Two-layer delaminated beam 

 

Initially, in order to validate the present model for two-layer delaminated 

beam, FEA has been carried out to crosscheck the results. The material properties 

and plies configurations have been given in Tables 3.1 and 3.2, respectively. The 

delamination locates at the interface between glass/epoxy and carbon/epoxy layers. 

Subsequently, the effects of nondimensionalized axial and bending stiffnesses, 

delamination length, spanwise positions of the delamination and effective-

slenderness ratio on the buckling load of a two-layer delaminated beam for clamped 

and simply supported boundary conditions were discussed in the following sections.  
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3.3.2.2. Young’s moduli ratio versus P/Pcr 

 

 Figure 3.9 shows the effects of Young’s moduli ratio on the normalized 

buckling loads for various delamination lengths, when delamination is located at H3 

= 0.3H. As delamination length increases the buckling load decreases but a particular 

conclusion has not derived between the Young’s moduli ratio and normalized 

buckling load. The complexity of this buckling behavior can be clearly understood 

based on the newly introduced nondimensionalized parameters, nondimensionalized 

axial and bending stiffnesses (NAS and NBS), and effective-slenderness ratio (ESR), 

as discussed in the following sections. 

 

3.3.2.3. Nondimensionalized Bending Stiffness (NBS) versus P/Pcr 

 

Figure 3.10a shows the effects of nondimensionalized bending stiffness of 

sub-beam 2 (NBS2) on the nondimensionalized buckling load of a centrally 

delaminated clamped two-layer beam, for various delamination lengths (a/L) and 

nondimensionalized axial stiffnesses (NAS2). The buckling load decreases as NBS2 

increases, for a given NAS2. For shorter delaminations (a/L < 0.3) and beams having 

lower values of NAS2 (NAS2 = 0.2), NBS2 has lesser effect on the buckling load than 

the longer delaminations (a/L > 0.4). The buckling load decreases monotonically 

with increasing NBS2. Figure 3.10b shows the buckling mode configurations (the 

displacements of the individual beam segments, Wi) at different NBS2 values (the 

circled geometries shown in Fig.3.10a) where a/L = 0.4, NAS2 = 0.2. Only half of the 

buckling mode configurations are displayed due to the symmetry of beam 



 Chapter 3                                                             Buckling Analysis of Two-Layer Delaminated Beams  

 68

configuration where d = 0. The symbol ‘|’ shows the length of the sub-beams. As 

NBS increases the buckling mode changes from global (in global buckling mode 

configuration, the whole beams deflects) to mixed (in mixed buckling mode 

configurations, the relative deflection between the sub-beams 2 and 3 is less), then to 

local mode of sub-beam 3 (in local buckling mode configuration, either sub-beam 3 

or 2 deflect more compared to that of the other) thus causing the decrease in the 

buckling load. This is due to the fact that the sub-beam 3 becomes thinner (H3/H < 

0.1) and less stiff compared to that of the sub-beam 2. In the case of sub-beams 

having higher nondimensionalized axial stiffnesses (NAS2 = 0.8), a sudden drop in 

the buckling load is observed for shorter delaminations (a/L < 0.3). For higher NAS2 

values the buckling loads are higher. For NAS2 = 0.2 (Fig. 3.10(i)), as NBS2 

increases from 0.075 to 0.2, the buckling load reduced by as follows: 3% for a/L = 

0.2, 37% for a/L = 0.3, 60% for a/L = 0.4, 70% for a/L = 0.5, 74% for a/L = 0.6, 78% 

for a/L = 0.8 and 81% for a/L = 1.0. For NAS2 = 0.8 (Fig. 3.10(ii), as NBS2 increases 

from 0.275 to 0.6, the buckling load reduced by as follows: 79% for a/L = 0.1, 95% 

for a/L = 0.2, 98% for a/L = 0.3, 99% for a/L = 0.4, 99% for a/L = 0.5, 99% for a/L = 

0.6, 99% for a/L = 0.8 and 99% for a/L = 1.0.  

 

Figure 3.11 shows the effects of nondimensionalized bending stiffness of sub-

beam2 (NBS2) on the nondimensionalized buckling load of a centrally delaminated 

simply supported two-layer beam, for various delamination lengths (a/L) and 

nondimensionalized axial stiffnesses (NAS2). For a given nondimensionalized axial 

stiffness, as the nondimensionalized bending stiffness increases the buckling load 

decreases and the trend is similar to that of the clamped two-layer beam shown in 
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Fig. 3.10. Similarly, higher the NAS2, higher the normalized buckling loads. Simply-

supported ends withstand higher normalized buckling loads than that of the clamped 

ends as shown in Figures 3.10 and 3.11. As NBS2 increases further, the normalized 

buckling load tends towards zero value which is due to the smaller thickness of sub-

beam 3 (i.e.., thin film delamination) and finally local buckling of sub-beam 3 

dominates the delamination buckling. So, an optimum combination of NAS2 and 

NBS2 are essential to design a beam structure to withstand higher loads. For NAS2 = 

0.2 (Fig. 3.11(i)), as NBS2 increases from 0.075 to 0.275, the buckling load reduced 

by as follows: 71% for a/L = 0.2, 87% for a/L = 0.3, 93% for a/L = 0.4, 95% for a/L 

= 0.5, 97% for a/L = 0.6, 98% for a/L = 0.8 and 98% for a/L = 1.0. For NAS2 = 0.8 

(Fig. 3.11(ii)), the buckling load reduced by as follows: 79% for a/L = 0.2, 90% for 

a/L = 0.3, 95% for a/L = 0.4, 97% for a/L = 0.5, 98% for a/L = 0.6, 99% for a/L = 0.8 

and 99% for a/L = 1.0. As the delamination length and nondimensionalized axial 

stiffness increase, the variation of the buckling load with respect to 

nondimensionalized bending stiffness is a linear decrease. The sudden drop in the 

buckling load for shorter delaminations (a/L < 0.3) is due to the relatively higher 

increase of Young’s moduli ratio. The nondimensionalized bending stiffness has 

significant effect on the buckling load for the longer delaminations (a/L >0.4) for 

both the given nondimensionalized axial stiffnesses.  

 

3.3.2.4. Nondimensionalized Axial Stiffness (NAS) versus P/Pcr  

 

Figure 3.12a shows the influence of nondimensionalized axial stiffness of 

sub-beam 2 (NAS2) on the nondimensionalized buckling load, P/Pcr of a centrally 
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delaminated clamped two-layer beam, for given nondimensionalized bending 

stiffness (NBS2). As NAS2 increases, P/Pcr increases. This is due to the decrease of 

the Young’s modulus of the sub-beam 2 and the increase of its thickness (as NAS2 

increases for a given NBS2, Young’s modulus increases and thickness decreases). 

For delamination length a/L = 0.4, as the nondimensionalized axial stiffness 

increases from 0.05 to 0.75, the buckling load increases rapidly for all the 

nondimensionalized bending stiffnesses. Figure 3.12b shows the buckling mode 

configurations at different NAS2 (the circled geometries shown in Fig.3.12a) values 

where a/L = 0.4, NBS2 = 0.25. As NAS2 increases the buckling mode configuration 

changes from local mode of the sub-beam 3 to the global buckling mode thus causing 

the increase in the buckling load. For delamination length a/L = 0.7 (Fig. 3.12(ii)), 

similar trend is observed as that of Fig. 3.12a though, the normalized buckling load 

values are much lower due to longer delamination length. 

 
Figure 3.13 shows the influence of nondimensionalized axial stiffness on the 

nondimensionalized buckling load P/Pcr of a centrally delaminated simply supported 

two-layer beam for various nondimensionalized bending stiffnesses and for 

delamination lengths a/L = 0.4 (Fig. 3.13(i)) and 0.7 (Fig. 3.13(ii)). The trend of the 

buckling load with the axial stiffness is similar to that of the clamped two-layer 

delaminated beam, shown in Fig. 3.12. For a given delamination length, higher 

buckling loads are observed in the present case when compared with that of the 

clamped delaminated beam which is having same geometrical and material 

properties (NAS and NBS). Similar observation was noted by Simitses et al. (1985) 

and Shu (1998) for a homogeneous beam, having single double equal delaminations, 

respectively.  
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3.3.2.5. Delamination lengths (a/L) versus P/Pcr  

 

Figure 3.14 shows the variation of the nondimensionalized buckling load 

P/Pcr with the delamination length a/L of a centrally delaminated clamped two-layer 

beam, for various nondimensionalized axial and bending stiffnesses. P/Pcr decreases 

as the delamination length increases, for given nondimensionalized axial and bending 

stiffnesses. The buckling load is insensitive to shorter delaminations up to the 

threshold value a/L = 0.2. P/Pcr decreases thereafter and the decrease is slower for 

longer delaminations up to a/L > 0.7. It is similar to that of a homogeneous beam 

(Simitses et al., 1985). For NAS2 = 0.2 (Fig. 3.14a), when the delamination length 

increases from 0.0 to 1.0, the buckling load reduced by as follows: 68% for NBS2 

75% for NBS2 = 0.1, 81% for NBS2 = 0.125, 86% for NBS2 = 0.15, 90% for NBS2 = 

0.175 and 94% for NBS2 = 0.2. For nondimensionalized axial stiffness (NAS2) of 0.4 

(Fig. 3.14b), the buckling load reduced by as follows: 79% for NBS2 = 0.125, 90% 

for NBS2 = 0.2, 95% for NBS2 = 0.25, 99% for NBS2 = 0.3, 100% for NBS2 = 0.325 

and 100% for NBS2 = 0.35. For nondimensionalized axial stiffness (NAS2) of 0.6 

(Fig. 3.14c), the buckling load reduced by as follows: 78% for NBS2 = 0.175, 85% 

for NBS2 = 0.225, 91% for NBS2 = 0.275, 95% for NBS2 = 0.325, 98% for NBS2 = 

0.375 99% for NBS2 = 0.4, 100% NBS2 = 0.425 and 100% for NBS2 = 0.45. For 

nondimensionalized axial stiffness (NAS2) of 0.8 (Fig. 13.4d), the buckling load 

reduced by as follows: 75% for NBS2 = 0.325, 82% for NBS2 = 0.375, 88% for NBS2 

= 0.425, 93% for NBS2 = 0.475, 97% for NBS2 = 0.525, 99% for NBS2 = 0.575 and 

100% for NBS2 = 0.95. The effects of delamination length on buckling load had 

shown strong dependence on the nondimensionalized axial and bending stiffnesses as 
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well. From Eq. (3.11), when the nondimensionalized axial stiffness constant, the 

elastic moduli ratio (YR = E2/E3) decreases as the nondimensionalized bending 

stiffness increases. Also the delamination moves away from the neutral axis of the 

two-layer beam i.e., the thickness of the sub-beam 3 decreases. For 

nondimensionalized axial stiffness (NAS2) of 0.2, as the nondimensionalized bending 

stiffness (NBS2) varies from 0.075 to 0.2, the thickness of the sub-beam 2 changes 

from 0.525 to 0.8 and the Young’s moduli ratio YR = E2/E3 changes from 0.23 to 

0.063. For NAS2 of 0.4, as NBS2 varies from 0.125 to 0.35, the thickness of the sub-

beam 2 changes from 0.55 to 0.98 and the Young’s moduli ratio from 0.55 to 0.01. 

For NAS2 of 0.6, as NBS2 varies from 0.175 to 0.45, the thickness of the sub-beam 2 

changes from 0.53 to 0.99 and the Young’s moduli ratio from 1.32 to 0.01. For NAS2 

of 0.8, as NBS2 varies from 0.325 to 0.6, the thickness of the sub-beam 2 changes 

from 0.56 to 0.95 and the Young’s moduli ratio from 3.13 to 0.21. The above results 

indicate that as the nondimensionalized bending stiffness increases the delamination 

moves towards the surface of sub-beam 3. Simultaneously the Young’s modulus of 

sub-beam 3 increases more than that of the sub-beam 2 i.e. sub-beam 3 becomes 

stiffer and thinner. The local buckling mode of sub-beam 3 is observed as the 

nondimensionalized axial and bending stiffnesses increases. 

 

Figure 3.15 shows the variation of the nondimensionalized buckling load 

P/Pcr with the delamination length a/L of a centrally delaminated simply supported 

two-layer beam, for various nondimensionalized axial and bending stiffnesses. As 

the delamination length increases the buckling load decreases. This trend is similar to 

that of the clamped two-layer delaminated beam shown in Fig. 3.14. The buckling 
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load is insensitive to the sub-beams having less nondimensionalized axial and 

bending stiffnesses, for shorter delaminations (up to a/L = 0.3). For 

nondimensionalized axial stiffness (NAS2) of 0.2 (Fig. 3.15a), when the delamination 

length increases from 0.0 to 1.0, the buckling load reduced by: 56% for NBS2 = 

0.150, 67% for NBS2 = 0.175, 78% for NBS2 = 0.2, 87% for NBS2 = 0.225, 94% for 

NBS2 = 0.250 and 99% for NBS2 = 0.275. For nondimensionalized axial stiffness of 

0.4 (Fig. 3.15b), the buckling load reduced by as follows: 67% for NBS2 = 0.2, 75% 

for NBS2 = 0.225, 83% for NBS2 = 0.250, 90% for NBS2 = 0.275, 95% for NBS2 = 

0.3, 98% for NBS2 = 0.325 and 100% for NBS2 = 0.35. For nondimensionalized axial 

stiffness of 0.6 (Fig. 3.15c), the buckling load reduced by as follows: 39% for NBS2 

= 0.175, 50% for NBS2 = 0.225, 67% for NBS2 = 0.275, 82% for NBS2 = 0.325, 93% 

for NBS2 = 0.375, 99% for NBS2 = 0.425 and 100% for NBS2 = 0.45. For 

nondimensionalized axial stiffness of 0.8 (Fig. 3.15d), the buckling load reduced by 

as follows: 29% for NBS2 = 0.325, 56% for NBS2 = 0.425, 74% for NBS2 = 0.475, 

97% for NBS2 = 0.575 and 100% for NBS2 = 0.6. 

 

3.3.2.6. Spanwise delamination locations (d/L) versus P/Pcr  

 

Figure 3.16 illustrates the influence of spanwise position of a delamination 

(d/L) in a clamped two-layer delaminated beam on the nondimensionalized buckling 

load (P/Pcr), for various nondimensionalized axial and bending stiffnesses. 

Delamination length is fixed as 0.1, i.e., a/L = 0.1 which restricts the spanwise 

delamination position up to 0.45. The delamination spanwise position zero, i.e., d/L = 

0.0, means the delamination is locating at the center of the beam as shown in Fig. 
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3.1. The spanwise position of the delamination has lesser effect on the buckling load 

(for given nondimensionalized axial and bending stiffnesses). But for the case of 

NAS = 0.2 and NBS = 0.2, the maximum buckling load is 0.0.997 and the minimum 

is 0.978; for NAS2 = 0.8 and NBS2 = 0.30 the maximum buckling load is 0.998 and 

the minimum is 0.987. This means, in some cases, the spanwise position of the 

delamination is having considerable effect on the nondimensionalized buckling load. 

For NAS2 = 0.2 (Fig. 3.16a), as the nondimensionalized bending stiffness increases, 

the delamination moves away from the neutral axis of the beam to the top surface 

and thereby the beam becomes thinner thus decreasing in the buckling load. Similar 

observation was noted for NAS2 = 0.8 (Fig. 3.16b). It is interesting to know that for a 

given delamination length, NAS2 and NBS2, the minimum buckling load was 

observed at spanwise position of 0.2L, from the center position of the beam. 

Thereafter the buckling load starts increasing and reaching a higher value. 

 
Figure 3.17 illustrates the influence of spanwise position of the delamination 

in a simply supported two-layer delaminated beam on the nondimensionalized 

buckling load for various nondimensionalized axial and bending stiffnesses. The 

trend is different from that of a clamped two-layer delaminated beam. Here, the trend 

is in increasing order whereas for the clamped end case, an inflection point is noted. 

This behavior is also noted by Simitses et al. (1985) for the case of a homogeneous 

delaminated beam. 
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3.3.2.7. Effective-Slenderness Ratio (ESR) versus P/Pcr  

 

Figure 3.18a shows the influences of effective-slenderness ratio of sub-beam 

2 (ESR2) Rc, on the buckling load for various axial and bending stiffnesses for 

clamped two-layer delaminated beam and Fig. 3.18b for simple-supported ends. 

From Fig.3.18, the change in the buckling load with respect to the effective-

slenderness ratio of sub-beam 2 is observed in three regions for both clamped and 

simply supported boundary conditions. In region I (Rc <0.23 for clamped and Rs 

<0.50 for simply supported), the global buckling prevails and the influence of the 

delamination fades. In region II (0.23 < Rc < 0.75, 0.50 < Rs < 1.60), the buckling 

load decreases rapidly. In region III (Rc > 0.75, Rs > 1.60), the decrease of the 

buckling load is less. From the definition of the effective-slenderness ratio of sub-

beam 2 (Eq. 3.15), it can be seen that for a given nondimensionalized axial and 

bending stiffnesses, the delamination length is directly proportional to the effective-

slenderness ratio. Local buckling mode configuration of sub-beam 3 is observed at 

the higher effective-slenderness ratio, for both the boundary conditions. Figures 3.19 

and 3.20 show the buckling configurations of clamped and simply-supported beams 

for various effective-slenderness ratios, for the circled geometries shown in Fig.3.18a 

and Fig. 3.18b respectively. Only half of the configurations are displayed due to the 

symmetry of beam configuration where d = 0. Figures 3.19a and 3.20a show the 

global buckling mode. Figures 3.19b and 3.20b show mixed buckling modes. Figures 

3.19c, 3.19d, 3.20c and 3.20d show local buckling modes of sub-beam 3, at higher 

effective-slenderness ratios. Further studies revealed that for the cases of clamped 

boundary conditions of Fig. 3.18a, the sub-beam 3 has higher ESR values compared 

to that of sub-beam 2 as below (for the given range of ESR2=0.05 to 1.25): 
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ESR3=0.192 to 5.0, for NAS2=0.4 and NBS2=0.26; ESR3=0.178 to 4.46, for 

NAS2=0.4 and NBS2=0.28; ESR3=0.15 to 3.78, for NAS2=0.4 and NBS2=0.33; 

ESR3=0.135 to 3.38, for NAS2=0.6 and NBS2=0.37; ESR3=0.11 to 2.84, for 

NAS2=0.8 and NBS2=0.44; and ESR3=0.102 to 2.55, for NAS2=0.8 and NBS2=0.49. 

Similar observation was noted for the case of simply-supported bam as local 

buckling of sub-beam 3 occurs at higher ESR2. 

 

3.4. Conclusions 

 

1. Normalized buckling load of an asymmetrically located delamination in a 

two-layer beam having different material properties was obtained by using 

classical beam theory and developing an exact solution. This solution 

provides an attractive alternative to the usual lengthy finite element analyses 

for delamination in layer structures and debonding in coated materials. Also, 

the present accurate solution can serve as a benchmark solution for other 

numerical schemes. 

2. The comparison between the computed results of present model to that of 2D-

FEA for various delamination locations and delamination lengths of two-

layer beam made of carbon/epoxy and glass/epoxy showed a close agreement 

with each other. Further accuracy could be obtained by increasing number of 

elements in FE modelling. Also, the comparisons of normalized buckling 

loads, obtained from the present exact solution for homogeneous delaminated 

beam cases with the literature showed a precise agreement between them. 
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3. Nondimensionalized axial and bending stiffnesses were introduced instead of 

the moduli and thicknesses of the individual sub-beams. Consequently, 

buckling load varies monotonically with both the stiffnesses. As 

nondimensionalized axial stiffness increases, the buckling load increases 

whereas, as nondimensionalized bending stiffness increases, the buckling 

load decreases.  

4. It was observed that two-layer delaminated beams with simply-supported 

ends withstand higher normalized buckling loads than with clamped ends. 

5. Effective-slenderness ratio, a new nondimensionalized parameter was 

introduced. The normalized buckling load and the buckling mode 

configurations of the two-layer delaminated beam strongly depend on the 

effective-slenderness ratio. At low effective-slenderness ratios (<0.23 for 

clamped and <0.50 for simply supported), the global buckling prevails and 

the influence of the delamination fades. At higher effective-slenderness ratios 

(>0.75 for clamped and >1.60 for simply supported) local buckling mode was 

observed.  

6. The normalized buckling load decreases with the increase of the delamination 

length and the spanwise positions of the delamination have strong effect on 

the buckling load for certain beam configurations which also depends on the 

delamination length. It is interesting to know that for a given delamination 

length, NAS2 and NBS2, the minimum buckling load was observed at the 

spanwise position of 0.2L, from the center position of the two-layer 

delaminated beam with clamped ends. Whereas for the case of two-layer 

delaminated beam with simply-supported ends, no such behavior is noted. 
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Fig. 3.6. Close-up view of a two-layer FE beam model (a) an intact beam and (b) a 

delaminated beam. 
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Fig. 3.9. Effects of Young’s moduli ratio on normalized buckling loads of a 

delaminated two-layer beam with clamped ends, H3 = 0.3H. 
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Fig. 3.10a. Effects of NBS2 on normalized buckling loads of a delaminated two-layer 

beam with clamped ends. 
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Fig. 3.10b. Buckling mode configurations at different NBS values of a delaminated 

two-layer beam with clamped ends. 
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Fig. 3.11. Effects of NBS2 on normalized buckling loads of a delaminated two-layer 

beam with simply-supported ends. 
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Fig. 3.12a. Effects of NAS2 on normalized buckling loads of a two-layer delaminated 

beam with clamped ends. 
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Fig. 3.12b. Buckling mode configurations at different NAS values of a delaminated 

two-layer beam with clamped ends. 

 

Sub-beam 3 

Sub-beam 2 Virgin-beam 1 

i). At point r 
NAS2 = 0.05 

Sub-beam 3 

Sub-beam 2 Virgin-beam 1 

ii). At point s 
NAS2 = 0.35 

Sub-beam 3 

Sub-beam 2 
Virgin-beam 1 

iii). At point t 
NAS2 = 0.55 

Sub-beam 3 

Sub-beam 2 

Virgin-beam 1 

iv). At point u
NAS2 = 0.75 



 Chapter 3                                                             Buckling Analysis of Two-Layer Delaminated Beams  

 89

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.13. Effects of NAS2 on normalized buckling loads of a two-layer delaminated 

beam with simply-supported ends. 
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Fig. 3.14. Effects of delamination lengths on normalized buckling loads of a two-

layer delaminated beam with clamped ends.
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Fig. 3.15. Effects of delamination lengths on normalized buckling loads of a two-

layer delaminated beam with simply-supported ends. 
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Fig. 3.16. Effects of spanwise delamination locations on normalized buckling loads 

of a delaminated two-layer beam with clamped ends. 
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Fig. 3.17. Effects of spanwise delamination locations on normalized buckling loads 

of a delaminated two-layer beam with simply-supported ends.
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Fig. 3.18. Effects of effective-slenderness ratio on normalized buckling loads of a 

two-layer delaminated beam. 
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(a). At point r, Rc = 0.15    (b). At point s, Rc = 0.45 

 

 

(c). At point t, Rc = 0.75    (d). At point u, Rc = 1.15 
 
 

 

 

 
Fig. 3.19. Buckling configurations at different effective-slenderness ratios of a 

delaminated two-layer beam with clamped ends. 
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Fig. 3.20. Buckling mode configurations at different effective-slenderness ratios of a 

delaminated beam with simply-supported ends. 
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Table 3.1. Material properties of a delaminated two-layer beam (Hwang and Mao, 

2001). 

 
 
 

 

 
 

 

 

 

 

 

Table 3.2. Configuration of a delaminated two-layer beam made of glass/epoxy and 

carbon/epoxy plies for FEA analysis. 

 
H3/H Number of 

plies 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9 

Glass 2 4 6 8 10 12 14 18 

Carbon 18 16 14 12 10 8 6 2 

Total 20 20 20 20 20 20 20 20 

 

 

 

 

 Ex GPa Ey GPa Gxy GPa vxy 

Glass/epoxy 37.9 14.3 5.6 0.29 

Carbon/epoxy 121 9.4 6.2 0.23 
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Chapter 4    Buckling Analysis of Three-Layer 

Delaminated Beams 

 

Buckling analysis of three-layer beams with various multiple delaminations, namely, 

enveloping, overlapping, equal and separating has not been reported in the literature 

and exact solutions are desired to obtain the buckling loads. Most of the analyses 

available in the literature are applicable to the homogeneous and isotropic beams 

with through-width symmetric double and enveloped delaminations. Further, as the 

number of delaminations increases, the three-layer beams are made of different 

materials and the delaminations are asymmetrically located, then the number of basic 

variables (material and geometric) influencing the delamination buckling increases. 

Due to which the buckling analysis of delaminated three-layer beams becomes 

complex. In order to reduce to understand the delamination buckling, new 

nondimensionalized parameters, as functions of basic parameters are needed. In this 

chapter, exact solutions are developed to predict the buckling load of three-layer 

beams with various multiple delaminations. The developed exact solutions have the 

added advantage of obtaining buckling loads for homogenous beams with multiple 

delaminations under different boundary conditions. Following this, buckling loads 

are obtained for enveloped, overlapped, separated and equal multiple delaminations 

by numerical analyses and these values are compared with that of the results obtained 

from exact solutions. Finally, parametric studies are conducted and conclusions are 

drawn from these studies. 
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4.3. Results and Discussion 

 

FORTRAN programs have been developed based on the mathematical theory 

discussed in Section 4.2, to calculate the normalized buckling loads of the three-layer 

beams with various multiple delaminations. The results are initially compared with 

data available in the literature for homogeneous beams having single and multiple 

delaminations. After successful verification of the model for homogeneous cases, the 

analytical results for three-layer beams with multiple delaminations are computed 

and compared with that of FEA results. The three-layer beam is made of 

unidirectional plies of carbon/epoxy (6 plies), glass/epoxy (8 plies) and of 

carbon/epoxy (6 plies). The material properties are given in Table 3.1. Finally, a 

parametric study has been conducted and presented in terms of NAS, NBS, ESR, 

delamination lengths and locations on the normalized buckling loads. 

 

4.3.1. Enveloped delaminations 

 
4.3.1.1. Homogeneous beam 

 

Table 4.1 shows the comparison between the nondimensionalized buckling 

loads (P/Pcr) obtained from the present model with Huang and Kardomateas (1998) 

for three-layer homogeneous beam having enveloped delaminations. The 

delaminations are located at H3 = 0.75H and H4 = 0.125H. A good consensus 

between the results is obtained. The presence of longer delamination-I reduces the 

buckling load drastically. 
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4.3.1.2. Three-layer beam 

 
a) Comparison with FEA results 

 

After successful verification of the present mathematical model for 

homogeneous beam cases, values are computed for three-layer beam cases and 

compared with FEA results. The enveloped delaminations are located at the 

interfaces of the different materials where delamination-II is located at H3 = 0.4H 

whereas delamination-I is at H4 = 0.3H. A close agreement between analytical and 

FEA results is observed as shown in Table 4.2. It is observed that the longer 

delamination of the two delaminations dominates the buckling behavior.  

 

As it is rather difficult to consider all the possible combinations of 

nondimensionalized axial stiffnesses, bending stiffnesses, effective-slenderness 

ratios, delamination lengths and delamination locations and to study their effect on 

the normalized buckling load, attention here will be concentrated on the newly 

introduced parameters. A parametric study in terms of newly introduced 

nondimensionalized parameters has been presented in the following sections. 

 

b) Nondimensionalized bending stiffness versus the normalized buckling load  

  

Figure 4.11 shows the effects of nondimensionalized bending stiffness on the 

P/Pc for various nondimensionalized axial stiffnesses. The delamination lengths are 

a  = 0.4 and b  = 0.6. For sub-beam 4, the nondimensionalized stiffnesses are NAS4 

= 0.15 and NBS4 = 0.05. It is worth noting that P/Pcr does not vary monotonically 
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with the variation of NBS3. The behavior could be divided into three regions. In 

region I of Fig. 4.13a, P/Pcr increases as NBS3 increases, where ESR3>ESR5>ESR4. 

Local buckling mode is observed at lower nondimensionalized bending stiffnesses. 

Region II is called transition region in which the effective-slenderness ratio of sub-

beam 3 reduces and that of sub-beam 5 increases rapidly and reaches a higher value 

i.e., 57.13 for NAS3 = 0.7 at NBS3 = 0.3, which in turn affects the buckling behavior. 

In region III, ESR5>ESR3>ESR4, and the buckling behavior changes from global to 

local buckling mode. As NBS3 increases further, ESR5 increases rapidly and the sub-

beam 5 buckles locally. This is contrary to a beam with single delamination case, 

where the corresponding variation is always monotonic as shown in Fig. 3.10. 

 

c) Nondimensionalized axial stiffness versus the normalized buckling load  

  

Figure 4.12 shows the influence of nondimensionalized axial stiffness on the 

P/Pcr for various nondimensionalized bending stiffnesses. The delamination lengths 

are a  = 0.4 and b  = 0.6. For sub-beam 4, the nondimensionalized stiffnesses are 

NAS4 = 0.05 and NBS4 = 0.05. As the nondimensionalized axial stiffness increases 

the buckling load increases, for given nondimensionalized bending stiffness. P/Pcr 

varies monotonically with the nondimensionalized axial stiffness. This is due to the 

decrease of ESR3 and increase of ESR5 which dominates the buckling behavior. This 

observation is found to be similar to that of the single delaminated beam case. 
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d) Effective-slenderness ratio versus the normalized buckling load  

  

The effective-slenderness ratio is (ESR) chosen to represent the range of 

applicability of the thin-film buckling analysis. For clamped beam, ESR5 = 1.0 

represents the case that sub-beam 5 and the whole beam are geometrically similar.  

For sub-beam 5, ESR is defined as given in Eq. 4.13a. Similarly ESR3, ESR4 are 

defined for sub-beams 3 and 4 as mentioned in Section 4.2.5.3. Figure 4.13 shows 

the strong effect of ESR5 on the P/Pcr for various delamination lengths of 

delamination-I. The length of second delamination, delamination-II is b  = 0.6. In 

Fig. 4.13a, all the curves are merging to a single line, indicating the effect of 

delamination-I is nominal when compared to delamination-II as the length of 

delamination-II is greater than that of the delamination-I for all the cases. Further, 

lower normalized buckling loads are observed as the length of delamination-II is b  = 

0.6. The change in P/Pcr with respect to the effective-slenderness ratio is observed in 

three regions. In the region I (ESR5 <2.3), the global buckling prevails and the 

influence of the delamination fades. In the region II (2.3< ESR5< 3.35), the buckling 

load decreases rapidly, where the mixed mode buckling is observed. The sub-beams 

5 and 3 buckle together. In the region III (ESR5 >3.35), the decrease of the buckling 

load is less significant and local buckling occurs in the sub-beam 5 as its effective-

slenderness ratio is higher than that of the sub-beams 3 and 4. Hence the effective-

slenderness ratio is the measure of global, mixed and local buckling phenomenon. 

The global, mixed and local mode configurations are observed at different effective-

slenderness ratios (2.1, 3.1 and 6.35 respectively) as shown in Fig. 4.13b. 
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e) Effects of enveloped delaminations lengths  

 

 Figure 4.14a shows the variation of the P/Pcr with the delamination length b  

for various nondimensionalized bending stiffnesses. P/Pcr decreases as the 

delamination length increases. The length of delamination-I ( a ), is kept constant at 

0.15 and that of delamination-II (b ) is varied from 0.2 to 1.0. The variation of 

buckling load with delamination-II is observed in three regions, region I, II and III as 

shown in Fig. 4. 14a. In region I, the buckling load is insensitive to the shorter 

delaminations, delamination-I and delamination-II. At shorter enveloped 

delaminations, P/Pcr is not sensitive to delamination lengths a and b, up to b/L = 0.3. 

P/Pcr decreases thereafter, (in region II) and the decrease is slower for longer 

delaminations up to b > 0.75L. Local buckling mode of sub-beam 3 is observed as 

b/L increases further (in region III) as shown in Fig. 4.14b, for various values of 

NBS3 and b/L=0.8. Further, the effects of lengths of enveloped delaminations on the 

normalized buckling loads are computed and plotted as shown in Fig. 4.15, for given 

normalized bending and axial stiffnesses. It can be seen that the normalized buckling 

load is the same as that of the plate with single delamination-I only when the 

delamination-II is shorter. However, critical load decreases as b/L increases further. 

The effects of delamination-II on the normalized buckling load depend on the length 

of the delamination-I and axial and bending stiffnesses, significantly. The curves end 

abruptly in Fig. 4.15 due to the condition of satisfying the enveloped delaminations. 

 

The following section deals with the parametric study of the overlapped 

delaminations case.  



Chapter 4                                                            Buckling Analysis of Three-Layer Delaminated Beams  

 134

4.3.2. Overlapped delaminations 

 
4.3.2.1. Homogeneous beam 

 

 To model the overlapped delaminations as a single delamination case, the 

length of the delamination-II is kept as small as 0.001L as shown in Fig. 4.1 such that 

its effectiveness on the buckling load is nominal. The delamination-II is locating at a 

distance of 0.01H from the bottom surface (i.e. H3 = 0.01H) and d2 = b/2 so that the 

overlapped delaminations formulae are applicable. Now, the delamination-I has same 

effect as that of the single delamination. The computed results of the homogeneous 

single delaminated beam for clamped boundary conditions were compared with 

Simitses et al. (1985) as shown in Table 4.3. An excellent agreement between the 

results is observed.  

 

4.3.2.2. Three-layer beam 

 

a) Comparison with FEA results 

 

A three-layer beam made of carbon/epoxy and glass/epoxy with overlapped 

delaminations is considered to compare the computed analytical results with that of 

FEA. The three-layer beam configuration is considered for the present analysis is 

similar to that of enveloped delamination case. The overlapped delaminations are 

located at the interfaces of the different materials where delamination-II is located at 

H3 = 0.4H whereas delamination-I is at H4 = 0.3H. A good agreement between 

analytical and FEA results is observed as shown in Table 4.4. The longer 
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delamination of the over delaminations dominates the buckling behavior. More 

refinement in FEA results can be obtained by increasing the number of elements 

while meshing the delaminated beam. 

 

b) Nondimensionalized bending stiffness versus normalized buckling loads  

  

Figure 4.16 shows the effects of NBS3 on the normalized buckling load for 

various values of NAS3. The lengths of delaminations-I and II are a  = 0.4 and b  = 

0.6, respectively. Delamination-I is located at an offset distance of 1d  = 0.2 and 

delamination-II is located at the center of the beam, i.e., 2d  = 0. For sub-beam 4, the 

normalized stiffnesses are NAS4 = 0.15 and NBS4 = 0.05. It is worth noting that P/Pcr 

does not vary monotonically with the variation of NBS3. This is contrary to a two-

layer beam with single delamination, where the corresponding variation is always 

monotonic. Whereas the present case is the same as that of the buckling behavior 

observed in the case of enveloped delaminations as shown in Fig. 4.11. P/Pcr varies 

with NBS3 in three regions, region I, II and III, respectively. In region I, P/Pcr 

increases with increasing NBS3. For NAS3 = 0.75 and NBS3 (<0.08625), 

ESR3>ESR4>ESR5, and as NBS3 increases up to 0.09625, ESR5 increases higher 

than that of ESR4, i.e., ESR3>ESR5>ESR4. Mixed buckling mode is observed at 

point r (NBS3 = 0.1, NAS3 = 0.75), as shown in Fig. 4.17. Region II is called 

transition region in which ESR3 reduces further and that of sub-beam 5 increases. 

Local buckling of sub-beam 5 is observed at point s (NBS3 = 0.15, NAS3 = 0.75), as 

shown in Fig. 4.17. In region III, ESR5 increases rapidly as NBS3 increases further 

and in turn local buckling occurs in the sub-beam 5 at point t (NBS3 = 0.20, NAS3 = 
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0.75) and u (NBS3 = 0.275, NAS3 = 0.75), as shown in Fig. 4.17, respectively. At 

point ‘s’ interference of the sub-beams 5 and 3 is noted which is a limitation of the 

present mathematical model. These mode configurations are physically inadmissible. 

The interference among the sub-beams for various beam configurations is possible 

due to the assumption that the sub-beams are allowed to deflect independently which 

is called as ‘free-mode model’ (Shu and Mai, 1993a; Wang and Lin, 1996).  

 

c) Nondimensionalized axial stiffness versus normalized buckling loads  

  

Figure 4.18 shows the influence of NAS3 on the normalized buckling load 

P/Pcr for various values of NBS3. The delamination lengths are a  = 0.4 and b  = 0.6. 

The delamination-I is located at an offset distance of 1d  = 0.2 and delamination-II 

located at center of the beam, i.e., 2d  = 0. For sub-beam 4, the normalized stiffnesses 

are NAS4 = 0.05 and NBS4 = 0.05. P/Pcr varies monotonically with the normalized 

axial stiffness, which is similar to that of a two-layer beam with single delamination 

as well as that of the enveloped delamination case. This is due to the increase of 

ESR3 and simultaneous decrease of ESR5. The buckling configurations changes from 

local buckling mode at points r (NBS3 = 0.175, NAS3 = 0.2) to mixed buckling mode 

at point s (NBS3 = 0.175, NAS3 = 0.55), as shown in Fig. 4.19, respectively. At point 

‘s’ interference of the sub-beams 5 and 3 is noted. These mode configurations are 

physically inadmissible.  
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d) Effective-slenderness ratio versus normalized buckling loads  

  

Figure 4.20 shows the effects of ESR4 on the normalized buckling load P/Pcr 

for various delamination lengths of delamination-II. Pcr is the buckling load of the 

beam without a delamination. The lengths of delamination-II (b ) are varied from 

0.41 to 0.81 by keeping the length of delamination-I as constant. The length of 

delamination-I is a  = 0.6 and is located at an offset distance of 1d  = 0.15. The 

nondimensionalized stiffnesses are NAS3 = 0.1, NBS3 = 0.05 and NAS4 = 0.5. P/Pcr 

varies with the effective-slenderness ratio in three regions, region I, II and III, 

respectively. In region I (ESR4 <1.68), global buckling prevails at point r (b  = 0.41, 

ESR4 = 1.5), as shown in Fig. 4.25. The buckling load is much lower than that of the 

beam without delaminations due to the presence of longer delaminations ( a  = 0.6, b  

= 0.41). In region II (1.68< ESR5<2.50), the buckling load decreases rapidly, where 

the mixed buckling mode is observed at point s (b  = 0.41, ESR4 = 2.0), as shown in 

Fig. 4.21. The sub-beams 4 and 5 buckle together. In region III (ESR5 >2.5), as the 

effective-slenderness increases further, the local buckling of sub-beam 4 prevails at 

point t (b  = 0.41, ESR4 = 3.8), as shown in Fig. 4.21. In region III, all the curves 

merge into a single line indicating the influence of delamination length is nominal 

due to the local buckling of sub-beam 4, as its ESR is higher than that of the sub-

beams 5 and 3. Hence, the effective-slenderness ratio is the measure of global, mixed 

and local buckling phenomena. From the mode configurations it is evident that all 

the beams buckled in one direction, which may not be true under certain conditions 

in which the beams may buckle in opposite directions. This could be due to the 

applied kinematic conditions. 
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4.3.3. Separated delaminations 

 
4.3.3.1. Homogeneous beam 

 

 The accuracy of the method employed in this study is verified by comparing 

the results (P/Pcr) of a homogeneous delaminated beam for clamped boundary 

conditions with Simitses et al. (1985). The length of delamination-I (a/L) is shrunk to 

0.001 and is kept at 1d  = 0.45L as to model as a single delamination case, by always 

ensuring that the developed systematic homogeneous equations are valid in the entire 

analysis. The results are matches with that of the overlapped delaminations case 

when the latter is modeled as a single delamination which is shown in Table 4.3.  

 

4.3.3.2. Three-layer beam 

 

After successful verification of the present model for homogeneous 

delaminated beam case, the analysis is extended to study the delamination buckling 

of tri-layer beams having asymmetrically located separated delaminations.  

 

a) Comparison with FEA results 

 

The three-layer beam configuration is considered for the present analysis is 

similar to that of enveloped delamination case. The separated delaminations are 

located at the interfaces of the different materials where delamination-II is located at 

H6 = 0.4H whereas delamination-I is at H2 = 0.3H. A good agreement between 

analytical and FEA results is observed as shown in Table 4.5. The longer 
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delamination of two delaminations dominates the buckling behavior. More 

refinement in FEA results can be obtained by increasing the number of elements in 

the modeling.  

 

b) Nondimensionalized bending stiffness versus normalized buckling loads  

  

Figure 4.24 shows the effects of normalized bending stiffness on the 

normalized buckling load for various normalized axial stiffnesses. The delamination 

lengths are a = 0.3L and b = 0.4L. The delaminations are locating at a distance of d1 

= 0.2L and d2 = 0.25L. The normalized stiffnesses of the sub-beam 2 are kept as 

NAS2 = 0.15 and NBS2 = 0.05. It is worth noting that P/Pcr does increases 

monotonically with the increase of NBS6. Whereas in the case of enveloped and 

overlapped delaminations case, the variation is not a monotonic, as discussed in 

previous sections. For the present case, as the normalized bending stiffness increases 

the normalized buckling load increases since ESR6 decreases compared to the other 

effective-slenderness ratios.  The buckling mode is still a global buckling mode and 

the variation in the buckling configuration is minimal, as shown in Fig. 4.25. The 

numbers in Fig. 4.25 indicates the individual sub-beams. This behavior is different 

from that of a bimaterial beam having single delamination where the corresponding 

variation is always decreases monotonically. Though, the separated delaminations 

are model as combinations of two individual delaminations the variation is different 

which might be due to presence of the second delamination. 
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c) Nondimensionalized axial stiffness versus normalized buckling loads  

  

Figure 4.26 shows the influence of normalized axial stiffness on the 

normalized buckling load P/Pcr for various normalized bending stiffnesses. The 

delamination lengths are a  = b  = 0.4. The delaminations are locating at a distance 

of d1 = d2 = 0.25L. For sub-beam 6, the normalized stiffnesses are kept as NAS6 = 

0.05 and NBS6 = 0.05. For given NBS2, as the normalized axial stiffness increases 

the buckling load decreases. As NAS2 increases further, the buckling loads reaches a 

minimum value, if NBS2 is small i.e. NBS2 = 0.15. If NBS2 = 0.35, a higher P/Pcr is 

observed than that for the case of NBS2 = 0.15. Further study of buckling behavior 

reveals that rate at ESR2 increases is higher when compared to the other effective-

slenderness ratios and it influences the change in buckling mode, as shown in Fig. 

4.27. This behavior is contrary from that of a bimaterial beam having single 

delamination where it always increases monotonically. Though, the separated double 

delaminations can be model as combinations of two individual delaminations the 

variation is different which might be due to presence of the second delamination. 

Hence it is essential to study the separated delaminations individually. 

 

d) Effective-slenderness ratio versus the normalized buckling loads  

 

Figure 4.28 shows the strong effect of ESR6 on the normalized buckling load 

P/Pcr for various delamination lengths of delamination-II. The length of 

delamination-I a  is 0.2 and d1 is 0.35L. The lengths of delamination-II are varied 

from b = 0.25L to b = 0.65L by keeping the delamination-I as constant. As the 
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delamination length increases the buckling load decreases. The change in P/Pcr with 

respect to the effective-slenderness ratio is observed in three regions. In the region I 

(ESR6 <1.4), the global buckling prevail and the influence of the delamination fades 

for shorter delamination lengths of delamination-II (b < 0.25L). For longer 

delaminations the buckling load is much lower than that of the shorter delaminations, 

even though the buckling mode is a global one. For delamination length b/L of 0.65, 

the mode shape at ESR6 = 1.0 (point r) is shown in Fig. 4.29, which clearly indicates 

the existence of global buckling mode. In the region II (1.4< ESR5< 2.4), the 

buckling load decreases rapidly, where the mixed buckling mode is observed as 

shown in Fig. 4.29, at point s (ESR6 = 1.5). The sub-beams 6 and 5 buckle together. 

In the region III (ESR5 >3.35), the decrease of the buckling load is slighter and local 

buckling occur in the sub-beam 6 as its effective-slenderness ratio is much higher 

than that of the other sub-beams. The local buckling mode configurations are shown 

in Fig. 4.29, at points t and u (ESR6 = 3.2 and 4.5, respectively). Hence the effective-

slenderness ratio is the measure of global, mixed and local buckling modes.  

 

e) Effect of separated delaminations lengths  

 

 Figure 4.30 shows the variation of the normalized buckling load P/Pcr with 

the length of delamination-II (b/L) for various lengths of delamination-I (a/L). The 

normalized stiffnesses are calculated as NAS2 = 0.5562, NBS2 = 0.5249, NAS6 = 

0.3933, and NBS6 = 0.1856 when H2/H6 = 1.4142 and HB/H6 = 0.4096. P/Pcr 

decreases as the b/L increases. The buckling behavior could be observed in three 

regions. In the region I the global buckling mode, in the region II the mixed buckling 
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mode and in the region III local buckling mode are observed as shown in Fig. 4.31. 

For single delamination case, a critical delamination length, proposed by 

(Kassapoglou, 1988) is defined as the length below which the buckling load of the 

structure under compression is not affected by the presence of the delamination. For 

the present case, the ratio of the critical delamination length of delamination-II to the 

beam length (L) varies from 0.12 to 0.23. As the length of the delamination-I 

increases the critical delamination length ratio increases as it is less when both the 

delaminations are shorter (< 0.2L). The longer delamination (a/L or b/L) of the two 

delaminations influences the normalized buckling load more than that of the shorter 

delaminations, though the buckling mode configuration is still global. 

 

The following sections deal with the parametric study of double equal delaminations. 

 

4.3.4. Double equal delaminations 

 
4.3.4.1. Homogeneous beam 

 

 The accuracy of the method employed in this present case is verified with 

Lim and Parsons (1993), Huang and Kardomateas (1998) and Shu (1998) for a 

homogeneous beam having double equal delaminations. The delaminations are 

located at H3 = 0.3H and H4 = 0.4H. There is an excellent agreement between the 

results is observed as shown in the Table 4.6. 
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4.3.4.2. Three-layer beam 

 

After successful verification of the present method for homogeneous beam 

case, the analysis is extended to three-layer beams having double equal 

delaminations. 

 

a) Comparison with FEA results 

 

A three-layer beam of similar configuration, considered for the case of 

enveloped delamination is considered here as well. The double equal delaminations 

are located at the interfaces of the different materials where delamination-II is 

located at H3 = 0.4H whereas delamination-I is at H4 = 0.3H. A good agreement 

between analytical and FEA results is observed as shown in Table 4.7.  

 

b) Nondimensionalized bending stiffness versus the normalized buckling load  

  

Figure 4.32 shows the effects of NBS3 on the normalized buckling load P/Pcr 

for various NAS3 of a beam clamped at each end. The delamination lengths are a = 

0.4L and located at the center of the beam, i.e. d1 = 0.0. For sub-beam 2, NAS4 = 0.15 

and NBS4 = 0.05. It is worth noting that P/Pcr does not vary monotonically with the 

increase of NBS3, which is contrary to a single delamination case, where the 

corresponding variation is always monotonic. As the normalized bending stiffness 

increases the normalized buckling load increases initially, reaches a peak value and 

thereafter decreases rapidly. The behavior could be divided into three regions. In the 
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region I, P/Pcr increases as NBS3 increases, where ESR3>ESR2>ESR4 and local 

buckling of sub-beam 3 is observed. Region II is called transition region in which 

ESR3 starts decreases and at the same time ESR2 increases because of which the 

transition between Euler and thin film buckling is associated with S-shaped buckling 

occurs. In the region III, ESR2 is higher than that of ESR3 and ESR4 i.e., 

ESR2>ESR3>ESR4, because of which the buckling behavior changes from global to 

local buckling mode. As NBS3 increases further, ESR3 decreases and ESR2 increases 

more rapidly, causing local buckling of the sub-beam 2. A similar behavior can be 

observed for the case of simply-supported ends as shown in Fig. 4.33 though there is 

no sharp variation as that of the clamped boundary conditions case. 

 

c) Nondimensionalized axial stiffness versus the normalized buckling load  

  

Figure 4.34 shows the influence of NAS4 on the P/Pcr for various NBS4 of a 

beam clamped at each ends. The delamination lengths are a  = 0.4 and are located at 

the center, i.e. d1 = 0. For sub-beam 2, NAS4 = 0.05 and NBS4 = 0.05. As NAS3 

increases P/Pcr increases monotonically which is due to the increase of ESR2 when 

compared to ESR4 and ESR3. ESR2 dominates the buckling behavior. Further studies 

reveal that the buckling mode changes from mixed to global. A similar behavior is 

observed for the case of simply-supported ends as shown in Fig. 4.35 though the 

buckling loads are higher in magnitude than that of the similar beam configuration of 

clamped ends. 
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a/L = 0.3 and 0.4, which may involve contact between the layers and a contact 

analysis is required to study the postbuckling behavior further.  

 

4.4. Conclusions 

 

For the first time, the buckling loads of an asymmetrically located multiple 

delaminations in a three-layer beams were predicted by developing exact solutions. 

This solution provides an attractive alternative to the usual lengthy FEA for 

delaminations in layer structures. The exact solution can serve as a benchmark 

solution for other numerical schemes. The characteristic equations governing 

buckling of a three-layer beam with multiple asymmetric delaminations such as 

enveloped, overlapped, separated and equal were derived by using Euler-Bernoulli 

beam theory and by imposing appropriate equilibrium, kinematic continuity and 

boundary conditions.. In this manner, the normalized buckling load of a tri-layer 

beam with delaminations of different sizes and locations can be quickly calculated. 

 

Comparisons of results obtained from the present mathematical models with 

the literature for the cases of homogeneous beam cases and with FEA for a three-

layer beam made of carbon/epoxy, glass/epoxy and carbon/epoxy show a close 

agreement and thus validating the developed methodology. 

 

Normalized axial and bending stiffnesses were introduced for the first time to 

study the delamination buckling behavior. Another nondimensionalized parameter, 
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Effective-slenderness ratio was also introduced and defined to control the 

delamination buckling mode configurations i.e. local, global and/or mixed.  

 

For enveloped delaminations, P/Pcr varies monotonically with the normalized 

axial stiffness whereas it is worth noting that P/Pcr does not vary monotonically with 

the normalized bending stiffness and a transition region was observed. This is 

contrary to single delaminated beam case, where the corresponding variation was 

always monotonic. This was due to the presence of the second delamination. Further, 

P/Pcr strongly depends on ESR. At low effective-slenderness ratios (<2.3), the global 

buckling prevails and the influence of the delamination fades. At higher effective-

slenderness ratios (>3.35) local buckling occurs in the sub-beam having higher 

effective-slenderness ratio. Hence the effective-slenderness ratio is the measure of 

global, mixed and local buckling mode configurations. The normalized buckling load 

is not sensitive to shorter enveloped delaminations whereas it is strongly influenced 

by longer enveloped delaminations.  

 

For overlapped delaminations, P/Pcr varies monotonically with the 

normalized axial stiffness. Similar to the enveloped delaminations case, P/Pcr does 

not vary monotonically with the normalized bending stiffness, where a transition 

region was observed. P/Pcr strongly depends on ESR, which is a measure of global, 

mixed and local buckling phenomena. For short delaminations ( a  = b <0.2), P/Pcr 

decreases monotonically with spanwise delamination location whereas for long 

delaminations, P/Pcr increases initially and later decreases. 
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For separated delaminations, P/Pcr varies monotonically with both the 

normalized axial and bending stiffness. The normalized bending stiffness effect on 

P/Pcr is similar to that of the single delamination case and is different from that of the 

enveloped and overlapped delaminations cases. P/Pcr strongly depends on ESR. At 

shorter separated delaminations, P/Pcr is not sensitive to delamination lengths. The 

ratio of the critical delamination length to beam length is varies from 0.12 to 0.22 for 

different lengths of delamination-I, when the three layers are made of unidirectional 

plies of carbon/epoxy, glass/epoxy and carbon/epoxy.  

 

For double equal delaminations, P/Pcr monotonically increases with 

nondimensionalized axial stiffness. P/Pcr varies in three regions with 

nondimensionalized bending stiffness. Effective-slenderness ratio (ESR) strongly 

influences P/Pcr and controls the buckling mode configurations. A transition between 

Euler and thin film buckling, associated with S-shaped buckling was observed for 

longer delaminations which has not observed in the other delaminations 

configurations. 
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Fig. 4.2. Three-layer beams with multiple delaminations: a) Enveloped, b) 

Overlapped, c) Equal and d) Separated delaminations. 
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Fig. 4.3. Equivalent beam models of three-layer beams with multiple delaminations: 

a) Enveloped, b) Overlapped, c) Equal and d) Separated delaminations.
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Fig. 4.8. Deformation due to in-plane compression or extension of the sub-beams 

(enveloped delaminations) 

 
 
 
 
 
 
 

 

 

Fig. 4.9. Deformation due to in-plane compression or extension of the sub-beams 

(overlapped delaminations) 
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Fig. 4.10. Three-layer beam with enveloped delaminations- FEA model. 
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Fig. 4.11. NBS3 versus P/Pcr – Three-layer beam with enveloped delaminations. 
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Fig. 4.12. NAS3 versus P/Pcr - Three-layer beam with enveloped delaminations. 

NBS 3 = 0.125 

NBS 3 = 0.150 

NBS 3 = 0.175 

NBS 3 = 0.225 

I II III 

1

2 

3 

4

5 

    NAS 3 
1:  0.800 
2:  0.775 
3:  0.750 
4:  0.725 
5:  0.700 



Chapter 4                                                            Buckling Analysis of Three-Layer Delaminated Beams  

 157

 

0

0.05

0.1

0.15

0.2

1.85 3.35 4.85 6.35 7.85

ESR  5

P/
P

cr

 
 

 

 

           

 

 

Fig. 4.13. ESR5 versus P/Pcr - Three-layer beam with enveloped delaminations: b  = 

0.6, NAS3 = 0.5, NBS3 = 0.15 and NAS5 = 0.15. 
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Fig. 4.14a. Effects of delamination-II on normalized buckling loads of a three-layer 

beam with enveloped delaminations, a = 0.15L, NAS3=0.2, NAS4=0.4, NBS4=0.1. 
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Fig. 4.14b. Buckling mode configurations of a three-layer beam with enveloped 

delaminations at various lengths of delamination-II and NBS3, a = 0.15L. 
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Fig. 4.15. Effects of delaminations-I and II on normalized buckling loads- Three-

layer beam with enveloped delaminations. 
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Fig. 4.16. NBS3 versus P/Pcr – Three layer beam with overlapped delaminations. 
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Fig. 4.17. Buckling mode configurations at various NBS3 values, NAS3 =0.75, a = 

0.4L, b = 0.6L, d1 = 0.2L, d2 = 0 - Three-layer beam with overlapped delaminations. 
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Fig. 4.18. NAS3 versus P/Pcr - Three-layer beam with overlapped delaminations. 
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Fig. 4.19. Buckling mode configurations at NAS3 values of a three-layer beam with 

overlapped delaminations, NBS3 = 0.175, a = 0.4L, b = 0.6L, d1 = 0.2L, d2 = 0. 
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Fig. 4.20. ESR4 versus P/Pcr - Three-layer beam with overlapped delaminations. 

 

0.0 0.2 0.4 0.6 0.8 1.0
(xi/L)

 

0.0 0.2 0.4 0.6 0.8 1.0
(xi/L)

 

0.0 0.2 0.4 0.6 0.8 1.0
(xi/L)

 
Fig. 4.21. Buckling mode configurations shown at different effective-slenderness 

ratios of a three-layer beam with overlapped delaminations. 
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Fig. 4.24. NBS6 versus P/Pcr - Three-layer beam with separated delaminations. 
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Fig. 4.25. Buckling mode configurations at various NBS6 and NAS6 (L1 = 0.15L; L2 = 

L3 = a = 0.30L; L4 = 0.1L; L5 = L6 = b = 0.40L; L7 = 0.05L) values of a three-layer 

beam with separated delaminations. 

a). NBS 6 = 0.05, NAS 6 = 0.825

1 

2 

3 

4 

5 
6 

7 

b). NBS 6 = 0.27, NAS 6 = 0.825 

1 

2 
3 

4 

5 
6 

7 

   NAS 6 
1:  0.600   
2:  0.650 
3:  0.700   
4:  0.750 
5:  0.800   
6:  0.825 

3 
 4 

5 

6 

1 
 2 



Chapter 4                                                            Buckling Analysis of Three-Layer Delaminated Beams  

 165

 

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
P/

P cr

NAS 2
 

Fig. 4.26. NAS2 versus P/Pcr - Three-layer beam with separated delaminations. 
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Fig. 4.27. Buckling mode configurations for various NAS2 and NBS2 values (L1 = L7 

= 0.05L; L2 = L3 = a = 0.40L; L4 = 0.1L; L5 = L6 = b = 0.40L) of a three-layer beam 

with separated delaminations. 
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Fig. 4.28. ESR6 versus P/Pcr - Three-layer beam with separated delaminations 
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Fig. 4.29. Buckling mode configurations shown at different effective-slenderness 

ratios ( L1 = L4 = L7 = 0.05L; L2 = L3 = a = 0.20L; L5 = L6 = b = 0.65L) of a three-

layer beam with separated delaminations. 
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Fig. 4.30. Effects of delamination-II on normalized buckling loads of a three-layer 

beam with separated delaminations. 
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Fig. 4.31. Buckling mode configurations for various spanwise delamination positions 

of a three-layer beam with separated delaminations (NAS6 = 0.3933; NBS6 = 0.1856, 

NAS2 = 0.5562, NBS2 = 0.5249). 
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Fig. 4.32. NBS3 versus P/Pcr for a three-layer beam with double equal delaminations 

under clamped ends. 
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Fig. 4.33. NBS3 versus P/Pcr for a three-layer beam with double equal delaminations 

under simply-supported ends. 
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Fig. 4.34. NAS3 versus P/Pcr for a three-layer beam with double equal delaminations 

under clamped ends. 

 
 

0.2 0.3 0.4 0.5 0.6 0.7
0.00

0.15

0.30

0.45

0.60

0.75

0.90

P/
P cr

NAS 3
 

Fig. 4.35. NAS3 versus P/Pcr for a three-layer beam with simply-supported ends – 

double equal delaminations. 
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Fig. 4.36. ESR3 versus P/Pcr for a three-layer beam with double equal delaminations 

under clamped ends.  
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Fig. 4.37. ESR3 versus P/Pcr for a three-layer beam with double equal delaminations 

under simply-supported ends.  
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Fig. 4.38. Buckling mode configurations at different effective-slenderness ratios of a 

three-layer beam with equal delaminations under clamped ends. 
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Table 4.1. Comparison between present and Huang & Kardomateas (1998) results of 

P/Pcr of a three-layer beam with enveloped delaminations, H3 = 0.75H and H4 = 

0.125H. 

a/L 

0.1 0.2 0.3 0.6 

b/L 

Present 

Huang & 

Kardomateas 

(1998) 

Present

Huang & 

Kardomateas 

(1998) 

Present

Huang & 

Kardomateas 

(1998) 

Present 

Huang & 

Kardomateas 

(1998) 

0.2 0.9628 0.9628 0.3881 0.3791 0.173 0.1731 0.0433 0.0433 

0.4 0.3754 0.3754 0.2668 0.2668 0.1508 0.1508 0.0433 0.0433 

0.5 0.2442 0.2442 0.2087 0.2114 0.1346 0.1346 0.0433 0.0433 

0.6 0.1709 0.1709 0.1609 0.161 0.1191 0.1191 0.0433 0.0433 

0.7 0.1262 0.1262 0.1228 0.1228 0.1028 0.1028 0.0402 0.0402 

0.8 0.0970 0.097 0.0957 0.0957 0.0852 0.0867 0.0378 0.0378 

0.9 0.0769 0.0769 0.0763 0.0763 0.0722 0.0722 0.0358 0.0358 

 

Table 4.2. Comparison between analytical and FEA results of P/Pcr results of P/Pcr 

of a three-layer beam with overlapped delaminations, H3 = 0.4H and H4 = 0.3H. 

a/L 

0.1 0.2 0.3 b/L 

Present FEA Present FEA Present FEA 

0.1 0.998 0.984 0.748 0.723 0.284 0.279 

0.3 0.593 0.588 0.532 0.527 0.283 0.279 

0.5 0.469 0.462 0.456 0.456 0.28 0.277 

0.6 0.338 0.333 0.337 0.332 0.253 0.252 

0.7 0.254 0.251 0.254 0.251 0.231 0.23 

0.8 0.198 0.196 0.198 0.196 0.197 0.195 

0.9 0.159 0.157 0.159 0.157 0.159 0.157 
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Table 4.3. Comparison between present and Simitses et al. (1985) results of P/Pcr, 

when overlapped delaminations in a three-layer beam are modeled as single 

delamination, H3 = 0.01H and d2 = b/2. 

 
H4 = 0.1H H4 = 0.3H H4 = 0.5H 

a/L 
Present 

Simitses et 

al. (1985) 
Present 

Simitses et 

al. (1985) 
Present 

Simitses et 

al. (1985) 

0.2 0.2495 0.2495 0.9924 0.9924 0.9956 0.9956 

0.4 0.0624 0.0624 0.5314 0.5314 0.8481 0.8481 

0.6 0.0278 0.0278 0.2435 0.2435 0.5411 0.5411 

0.8 0.0156 0.0156 0.1390 0.1390 0.3514 0.3514 

1.0 0.01 0.01 0.09 0.09 0.25 0.25 

 

 

 

Table 4.4. Comparison between analytical and FEA results of P/Pcr of a three-layer 

beam with overlapped delaminations, H3 = 0.4H and H4 = 0.3H.  

 
 Present FEA 

d2 = 0.1L, a = b = 0.3L 0.506795 0.519874 

d2 = 0.1L, a = b = 0.4L 0.371409 0.380308 

d2 = 0.1L, a = b = 0.5L 0.254729 0.255473 

d2 = 0.2L, a = b = 0.4L 0.305769 0.319148 

d2 = 0.2L, a = b = 0.5L 0.225256 0.228226 
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Table 4.5. Comparison between analytical and FEA results of P/Pcr of a three-layer 

beam with separated delaminations, H6 = 0.4H  and H2 = 0.3H . 

a/L 

0.1 0.2 0.3 b/L 

Present FEA Present FEA Present FEA 

0.1 0.9868 0.9776 0.5666 0.5644 0.2849 0.2814 

0.2 0.7874 0.7631 0.5471 0.5355 0.2848 0.2815 

0.3 0.5071 0.5095 0.4366 0.4247 0.2835 0.279 

0.4 0.3971 0.4095 0.3427 0.3404   

0.5 0.3656 0.3639 0.3057 0.2971   

0.6 0.3248 0.3231     

 

Table 4.6. Comparison between the present and literature results of P/Pcr of a 

homogeneous three-layer beam with double equal delaminations, H3 = 0.3H and H4 = 

0.4H. 

a  Present 
Huang and Kardomateas 

(1998) 

Shu 

(1998) 

Lim and 

Parsons (1993) 

0.1 0.96345 0.9996 0.9996 1.000 

0.4 0.49699 0.5057 0.5057 0.505 

0.6 0.23644 0.2374 0.2374 0.237 

0.8 0.13733 0.1374 0.1374 0.137 

 

Table 4.7. Comparison between analytical and FEA results of P/Pcr of a three-layer 

beam with double equal delaminations, H3 = 0.4H and H4 = 0.3H . 

a/L = b/L 
 

0.1 0.2 0.3 0.4 0.5 0.7 0.8 0.9 

Present 0.9911 0.8026 0.5324 0.4285 0.2797 0.1461 0.1129 0.0899

FEA 0.9995 0.7844 0.5273 0.4237 0.2774 0.1453 0.1122 0.0894
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Chapter 5    Buckling Analysis of Two-Layer 

Delaminated Beams with Bridging  

 

In order to study the effects of bridging on delamination buckling of two-layer beams 

for various locations and sizes of delamination, a detailed analysis is desired. The 

existing research work has not dealt with buckling analysis of asymmetrically located 

delamination of two-layer beam. In order to gauge the range in which the bridging is 

effective, lower and upper bounds of the buckling loads have to be obtained. In this 

chapter, initially, lower and upper bounds of the buckling load are obtained by 

developing exact solutions. Later, Rayleigh-Ritz energy method is used to develop a 

mathematical model for studying the delamination buckling of two-layer beams with 

bridging. A new nondimensionalized parameter, effective-bridging modulus (BM) is 

introduced to study the bridging effects on delamination buckling. The BM is a 

function of delamination length, slenderness-ratio and relative bridging modulus, 

KL/E (K is bridging stiffness, E is Young’s modulus and L is beam length). 

Following these solutions, parametric studies in terms of BM, delamination lengths 

and locations (thicknesswise and spanwise positions) on normalized buckling loads 

are conducted and conclusions are drawn from these studies. 
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effective bridging modulus in the mathematical model is set to a nominal value (i.e., 

10-6) as to neglect the bridging and to model it as a delaminated beam without 

bridging. There is an excellent agreement between the present results and that of 

Simitses et al., (1985) is observed for various delamination lengths and locations as 

shown in Table 5.1. 

 

5.2.1.1. Influence of effective-bridging modulus  

 

After successful verification of the present energy method for homogeneous 

delaminated beam case, the method is employed to study the effects of bridging on 

delamination buckling. Figure 5.2 shows the effects of effective-bridging modulus 

(BM) on the nondimensionalized buckling load ( P ) when the delamination is located 

at H3 = 0.1H. P  is the ratio of the buckling load of the delaminated two-layer beam 

with bridging and the buckling load of an intact two-layer beam of the same size. 

Upper bounds of the buckling load have been obtained from the developed 

mathematical model which is discussed in Section 5.1.4. As defined by Eq. (5.54), 

BM is a function of delamination length, slenderness-ratio and relative bridging 

modulus, KL/E. From Fig. 5.2 it is noted that when BM is very low (BM < 0.0001), 

the normalized buckling load values approach that of the lower bounds and the same 

trend follows thereafter. Similarly, when BM is high, the values reach that of the 

upper bounds. As the BM increases, the buckling load increases and is bounded by 

the upper and lower bounds of the buckling load. Similar observation was made by 

Shu and Mai (1993b) but the present research varies significantly from their works, 

once the delamination length increases beyond 0.3L or 0.4L or 0.6L, based on the 
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values of effective-bridging modulus, respectively. In the work of Shu and Mai 

(1993b) it was noted that, for a given delamination location H3 = 0.1H, as 

delamination length increases, the buckling loads decrease gradually, reaches an 

inflexion point and after which the values increases rapidly. The delamination 

buckling mechanism was not clearly understood. In the present work, as shown in 

Fig. 5.2, the buckling load decreases monotonically as the delamination length 

increases and is similar to that of the observation noted for bridged beams with 

circular delamination by Hu et al. (1999). The variations between the two studies (the 

present and Shu and Mai, 1993b) lies at the assumption of the distribution of the 

loads acting on the individual sub-beams, the definition of bridging parameters and 

on the methodology adopted to obtain buckling load. In the work of Shu and Mai 

(1993b), they assumed that the load distribution between the sub-beams 2 and 3 is 

proportional to the ratio of the individual sub-beam’s flexural rigidities whereas in 

the present work it is proportional to the ratio of individual sub-beam’s axial 

stiffnesses. It is interesting to note that in the case of upper bounds of the buckling 

load, the load distribution is proportional to individual sub-beam’s flexural rigidities 

as the sub-beams 2 and 3 deflect together (Eq. 5.9). Whereas for the cases of lower 

bounds of the buckling load, the load distribution is proportional to individual sub-

beam’s axial stiffnesses as sub-beams 2 and 3 deflect independently and a possible 

local, global and/or mixed delamination buckling occurs (Simitses et al., 1985). This 

load distribution raise to an interesting point that in between the lower and upper 

bounds of the buckling load, the load distribution between the individual sub-beams 

may depends on a new parameter, which could be a function of axial stiffnesses and 

flexural rigidities. This new finding (the load distribution as function of either axial 
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stiffnesses or flexural rigidities) lead to possible future works on the delamination 

buckling with and without bridging. Further, the bridging modulus introduced by Shu 

and Mai (1993b) has not included the effects of delamination length and it was 

function of slenderness ratio and relative bridging modulus. But in the present 

research, the effect of delamination length is included in the definition of effective-

bridging modulus. From Fig. 5.2, it is observed that the variation of buckling load is 

divided into two regions. In the region I, the loads decreases rapidly i.e., when 

delamination length is less than 0.3L and BM = 0.01 whereas in the region II, the 

buckling loads decreases gradually.   

 

Figures 5.3-5.5 show the effects of BM on the buckling load when the 

delamination is located at H3 = 0.2H, H3 = 0.3H and H3 = 0.4H, respectively. As the 

delamination moves towards the center of the beam (deep delamination), the 

buckling loads increases. An optimal level of stitching should be sought to maximize 

the compressive strength of the two-layer delaminated beam. For thin delamination, 

H3 = 0.1H, local buckling dominates than the global or mixed-mode buckling hence 

the gap between the upper and lower bounds of the buckling loads is higher and the 

stitching is found to be effective. When the delamination moves towards the center 

of the beam i.e., H3 > 0.3H, global buckling dominates the buckling behavior which 

results in the reduction of the gap between the upper and lower bounds of the 

normalized buckling loads. For shallow delaminations (H3 < 0.2H) of moderate 

lengths (a = 0.25L to 0.65L) and for the deep and longer delaminations (H3 > 0.2H 

and a > 0.65L), the bridging was found to be effective. From these results it is 
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observed that the lower and upper bounds of the buckling load are useful to gauge 

the effective working range of the bridging. 

 

5.2.1.2. Influence of Spanwise positions of delamination  

 

Figures 5.6-5.9 show the influence of spanwise positions of delamination 

(d/L) on the lower and upper bounds of nondimensionalized buckling load for 

various delamination lengths when H3 = 0.1H, H3 = 0.2H, H3 = 0.3H and H3 = 0.4H, 

respectively.  The delamination spanwise position is zero i.e., d/L = 0.0, which means 

that the delamination is locating at the center of the beam as shown in at the bottom 

of Figures 5.6-5.9. From Figure 5.6-5.9it is observed that the spanwise positions of 

delamination have strong influence on the lower and upper bounds of the normalized 

buckling load when the delamination is located deep inside i.e., H3 = 0.4H. Further it 

is observed that the upper bounds of the normalized buckling load are greatest, when 

the delamination is located symmetrically with respect to the midpoint of the beam 

whereas the lower bounds of the normalized buckling load are vary depending upon 

the ratios of a/L and H3/H. When H3 = 0.1H, from Fig. 5.6 it is observed that the 

spanwise positions of delamination have no effect on the lower bounds of the 

normalized buckling loads for all the delamination lengths whereas a notable effect 

on the upper bounds of the normalized buckling loads is observed. When H3/H = 0.2 

and a/L = 0.2, from Fig. 5.7 it is observed that the lower bounds of the normalized 

buckling load are maximum and simultaneously, the upper bounds are minimum at 

d/L = 0.25 i.e., when the delamination is located in such a way that it’s center is at 

the quarter of the beam. When H3/H = 0.3, from Fig. 5.8 it is observed that the lower 



Chapter 5                                       Buckling Analysis of Two-Layer Delaminated Beams with Bridging 

 196

and uppers bounds of the normalized buckling load of a/L = 0.2 and 0.3 follow 

similar trend and the lower bounds of the buckling load are maximum when d/L = 

0.0. Whereas the trends of lower and upper bounds of normalized buckling load for 

a/L = 0.4, 0.5 and 0.6 are different. When H3/H = 0.4, from Fig. 5.9 it is observed 

that the lower and uppers bounds of the normalized buckling load of a/L = 0.2, 0.3, 

0.4 and 0.5 follow similar trend and the lower bounds of the buckling load are 

maximum when d/L = 0.0. Whereas the trends of lower and upper bounds of 

normalized buckling load for a/L = 0.6 are different. This suggests that the lower and 

upper bounds of the normalized buckling load strongly depends on the spanwise 

positions as well as the thicknesswise positions of the delamination besides the 

delamination lengths. 

  

Figure 5.10 shows the effects of bridging on the normalized buckling loads 

for various spanwise delamination locations of a homogeneous delaminated beam 

when H3 = 0.3H and a = 0.5L. As the delamination length is fixed i.e., a = 0.5L, the 

delamination spanwise position is restricted up to 0.25L. From Fig. 5.10 it is noted 

that as BM is small (< 0.0001) and < 0.01, the buckling load has not varied with the 

spanwise delamination locations. This trend is same for the case of lower bound 

solution. Whereas when BM is high ( > 0.1), the values approaches that of the upper 

bounds of the buckling load and similar trend that of upper bounds is noted.  

The following sections deals with the bridging modulus effect on the buckling load 

for a two-layer delaminated beam. 
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5.2.2. Two-layer delaminated beam 

 
5.2.2.1. Influence of effective-bridging modulus  

 

The present mathematical model allows different material properties for the 

two-layer delaminated beams with bridging. This enables to study bridging effects on 

a wide range of bimaterial layer delaminated beams by incorporating the material 

properties accordingly. Figures 5.11-5.13 show the effects of BM on the normalized 

buckling load of a two-layer delaminated beam for given delamination lengths and 

delamination locations. The two-layer beam is assumed to be made of 00 plies of 

glass/epoxy and carbon/epoxy layers and the delamination is locating at the interface 

between them. The material properties of glass/epoxy and carob/epoxy are taken 

from the work of Hwang and Mao (1999). The upper and lower bounds of the 

buckling load are obtained based on the developed mathematical models. Figure 5.11 

shows the variation of the buckling load with respect to the BM when the 

delamination is located at H3 = 0.1H. H3 = 0.1H indicates the thickness of 

glass/epoxy layers and H2 indicates the thickness of carob/epoxy layers. Similar to 

that of the homogeneous beam case, it is observed that the bridging strongly 

influences the normalized buckling load though the gap between lower and upper 

bounds is much higher in the present case, for given beam configurations. For H3 = 

0.1H, the bridging has no effect when the delamination length is short i.e. a/L < 0.1. 

But as the delamination length increases a strong influence of bridging on the 

normalized buckling load has observed. A small variation of BM has a strong 

influence on P . Figure 5.12 shows the variation of the buckling with respect to the 

effective-bridging modulus when the delamination is located at H3 = 0.2H. It is 
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observed that for H3 = 0.2H, the bridging has no effect when the delamination is 

shorter i.e. a/L < 0.15. But as the delamination length increases a strong influence of 

bridging on the normalized buckling load was observed. A sudden variation in the 

buckling behavior is observed when the BM changes from 0.001 to 0.01. This could 

be due to the change in the variation of buckling mode configurations. Figure 5.13 

shows the variation of the buckling with respect to the effective-bridging modulus 

when the delamination is located at H3 = 0.3H. It is observed that for H3 = 0.3H, the 

bridging has no effect when the delamination is short i.e. a/L < 0.25. But as the 

delamination length increases a strong influence of bridging on the normalized 

buckling load was observed as shown in Fig. 5.13. When the effective-bridging 

modulus is small (BM = 0.001) its influence on the longer delaminations (a/L > 0.6) 

is negligible. In that case, the buckling loads match with that of non-bridging 

delaminated beam case. As the effective-bridging modulus increases further (BM = 

0.1), the buckling load bearing capability of the bridged beam increases and the 

values reach that of the upper bound solutions. This indicates that higher BM is 

essential for longer delaminations when the delaminated beam is thicker, .i.e., deeply 

located delaminations of longer length. Lower BM is sufficient to control the 

delamination buckling in the case of thinner delaminated beams if they contain short 

delamination, i.e., shallow delaminations with short length. Hence, bridging has 

strong influence on the delaminated beams based on the delamination locations and 

lengths. 
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5.2.2.2. Influence of Spanwise positions of delamination  

 

Figures 5.14 and 5.15 show the influence of spanwise positions of 

delamination (d/L) on the lower and upper bounds of nondimensionalized buckling 

load for various delamination lengths when H3 = 0.2H and H3 = 0.3H, respectively. 

Similar to the homogeneous delaminated beam case as shown in Figures 5.7-5.8, it is 

observed that the spanwise position of delamination has strong influence on the 

lower and upper bounds of the normalized buckling load. Further it is noted that the 

gap between upper and lower bounds of the normalized buckling load for a/L = 0.2 

and H3 = 0.2H is nominal that shows the less effect of spanwise position of 

delamination on them. For H3 = 0.3H, the spanwise position of delamination has 

strong influence on the lower bounds of the normalized buckling load when a/L < 0.4 

whereas the upper bounds of the normalized buckling load decreases rapidly. Figure 

5.16 shows the effects of bridging on the normalized buckling loads for various 

spanwise delamination locations of a homogeneous delaminated beam when H3 = 

0.3H and a = 0.5L. Similar to the homogeneous delaminated beam case as shown in 

Fig. 5.10, the spanwise positions of delamination strongly influence the normalized 

buckling load for higher BM values (> 0.1). 

 

The following section presents the influence of the effective-slenderness ratio 

(ESR), which is introduced in Chapter 3, on the delaminated beam with bridging 

effects as it was proven earlier that ESR strongly controls the delamination buckling 

phenomenon. 
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5.2.2.3. Influence of effective-slenderness ratio  

 

Figure 5.17 shows the influence of effective-slenderness ratio of sub-beam 2 

(ESR2), on the buckling load for various values of bridging modulus of clamped two-

layer delaminated, for given NAS2 = 0.4 and NBS2 = 0.26. The regions of II and III 

of Fig. 3.19a are considered here as in the region I, local buckling dominates the 

buckling phenomenon and the variations in the normalized buckling loads was 

nominal. As ESR2 increases, the normalized buckling load decreases for delaminated 

beams with and without bridging effects. The curves include a bridging modulus 

(BM) of 10.0, a relative higher value when compared the lower bounds of the 

normalized buckling which indicates a stiffer fiber bridging is essential. For lower 

BM values (BM < 1.0), the buckling load decreases monotonically whereas for higher 

BM values (BM > 1.0), P  decreases at a slower pace initially and later at a rapid rate. 

An inflexion point is observed for BM = 10.0 which could be due to occurrence of 

multiple humps in which case the assumed displacement function given in the Eq. 

(5.50) is not valid. Hence, contact problem should be considered, which is not 

included in the present analysis. However, as ESR2 increases further, the buckling 

load varies monotonically and may reach the lower bounds of the buckling load. 

Similarly, for specified delamination sizes, the normalized buckling loads increases 

with increasing bridging modulus of the stitching thread. 
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5.3. Conclusions 

 

The following conclusions are made based on the detailed results presented in the 

previous sections: 

 

1. Normalized buckling load of an asymmetrically located delamination in a 

two-layer beam with bridging effects has been obtained by using an energy 

method and by solving it as an eigenvalue problem. 

2. The lower and upper bounds of the normalized buckling load have been 

obtained by using Euler-Bernoulli beam theory and developing exact 

solutions. These bounds are useful to gauge the effective working range of 

the bridging. 

3. A newly modified nondimensionalized parameter, effective-bridging modulus 

(BM) is introduced in the analysis to study the bridging effects on the 

normalized buckling load. The BM is a function of the delamination length, 

slenderness-ratio and relative bridging modulus, KL/E (where K is bridging 

modulus and E is Young’s modulus). The buckling load increases 

monotonically as the BM increases. The bridging improves the load bearing 

capability of a delaminated beam and an optimal level of stitching should be 

sought to maximize the compressive strength of laminate composites. 

4. It is worth noting that as the delamination length increases, the buckling load 

of bridged beam decreases monotonically. The bridging was found to be 

effective for the cases of shallow delamination with moderate length and for 

the deep and longer delamination. 
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5. Spanwise positions of delamination strongly influence the normalized 

buckling loads of two-layer delaminated beams with and bridging, based on 

the length and thicknesswise positions of the delamination. Similarly, the 

lower and upper bounds of the normalized buckling load strongly depends on 

the spanwise positions as well as the thicknesswise positions of the 

delamination besides the delamination lengths. 

6. Buckling loads strongly depend on the effective-slenderness ratio of the two-

layer delaminated beam with bridging.  

 












































































































































