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Abstract 
 

Power and thermal issues are primary design constraints in both stationary and 

portable computing devices. Adverse thermal issues can impact microprocessor 

performance, including computational speed degradation, aging, and unreliable 

system behaviour. These situations are exaggerated in current state-of-the-art 

multiprocessors due to their high power density and the thermal coupling between 

cores. High level thermal-aware scheduling (TAS) is seen as one possible solution to 

optimize and control on-chip temperature. However, after performing an extensive 

review of the literature, a number of shortcomings in current high level TAS 

implementations have been identified. These include, the inaccuracy of thermal sensor 

readings, low computational efficiency of existing time-triggered thermal simulators, 

oversimplified thermal and leakage power models currently used at the system level, 

lack of appropriate thermal constraints used in scheduling analysis in hard real-time 

embedded systems and a lack of appropriate fine-grained dynamic TAS (DTAS). 

These shortcomings have provided suitable motivation for the work described in this 

thesis, which includes the following contributions: 

• A fast event-driven look-up table (LUT) based thermal estimation approach is 

developed. We introduce the concept of power events which capture the 

significant power changes on-chip. These power events induce a temperature 

change which can be easily obtained using the pre-calculated LUTs 

(representing the thermal response of a unit power input). We show that these 

thermal responses, induced by individual power events, satisfy the 

superposition principle and can be accumulated to evaluate the thermal map 

when any event occurs. We also define the necessary optimizations and 

operations for the LUTs. Experimental results show our LUT method is 

accurate, producing thermal estimations of similar quality to an existing open-

source thermal simulator (HotSpot), while providing 2 to 3 orders of 

magnitude reduction in computational complexity. 

• We use our fast LUT approach to analyze the offline schedulability for a real-

time task set on a simulated multiprocessor system under a strict (hard) 

1 
 



 High Level Thermal-Aware Scheduling for Multiprocessors Cui Jin 

thermal constraint. This is very useful for reducing the risk of overheating in 

safety-critical embedded systems. Our schedulability test can also be used as a 

framework to optimize other goals (e.g. maximizing the performance and 

minimizing the peak temperature). We show that we are able to schedule large 

task sets (up to 50 tasks) in reasonable time (less than 12 minutes), which is 2 

to 3 orders of magnitude faster than using scheduling with existing thermal 

simulation tools. 

• For high power multiprocessor (or many-core) systems, it is not possible to 

ignore the temperature-leakage power dependence. Therefore, we modify the 

LUT-based approach to include a temperature-dependent leakage power model. 

The leakage power calibration enables us to accurately predict the near future 

thermal map without needing to resort to a computationally expensive iterative 

approach. Based on this prediction, we develop several heuristic policies for 

dynamic TAS on a simulated many-core system. We show that our proposed 

predictive policies are significantly better, in terms of minimizing 

average/peak temperature, reducing the dynamic thermal management 

overhead and improving other real-time features, than existing TAS schedulers, 

making them highly suitable for heuristically guiding thermal aware task 

allocation and scheduling. 
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Chapter 1  
Introduction 
 

Microprocessor performance has been one of the primary design goals, with 

performance scaling to follow Moore’s law over the last few decades. To facilitate 

these performance advances, the transistor gate length and the dioxide thickness have 

been reduced year on year, thus allowing more and more complex functional units to 

be integrated into a much smaller area. This dimension shrinking in the modern 

integrated circuit (IC) manufacturing process brings a number of advantages such as 

smaller signal delay on shorter wires, lower core voltage, shorter signal edge, smaller 

chip area and more I/O pins on package. However, the function complexity and the 

number of transistors are becoming incredibly high, resulting in a number of 

disadvantages, including extremely high power density, increased design time and 

increased validation complexity. The high power density results in increased energy 

consumption and chip temperature.  

Power/thermal issues in uniprocessor system have been intensively studied by both 

academia and industry [15][45][48][50][55][56][57][58]. The thermal effects 

introduced by the high power density on chip are unavoidable, with heat fluxes (or 

power densities) in state-of-the-art microprocessors currently being in the range of 

200-300W/cm2 [1], and are expected to continue to increase. Power/thermal effects 

can impact the following critical metrics: 

• Computational Speed Degradation: A higher temperature may degrade the 

computational speed due to the current leakage induced by carrier migration at 

the physical level [5][53]. 

• Reliability: Operating the processor at above the thermal designed power 

(TDP) could induce a timing sequence error and even physical damage. A 

timing error is recoverable without destroying the processor, but physical 

damage, such as a transistor fusing, is permanent. Current commercial 

processors usually embed thermal sensors into the core to monitor the 

temperature and control the temperature to within a safe threshold [102][103]. 
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• Accelerated Aging: High temperatures can accelerate aging and shorten the 

life span of the processor. The metal components and wires on die can ablate 

in a long-term hot environment. As such, both the reliability and lifespan are 

reduced [102]. 

• Cost: Better packaging techniques and external cooling devices for heat 

dissipation increase the system cost dramatically. The processors used in 

embedded systems generally depend on natural convection, using the heat 

spreader and package to passively remove excess heat, while desktop and 

server processors depend on active cooling devices [27][35]. 

• Power: Higher temperatures increase the leakage currents which contribute to 

higher static power consumption. The increased static power results in an 

increased temperature, resulting in a positive feedback relationship between 

static power and temperature, which can result in processor failure due to 

“thermal runaway” [77].   

• User Perception: Higher temperatures can result in an uncomfortable feeling 

while using the devices. This is particularly the case with portable devices.  

About a decade ago, processor designers realized that reducing the transistor size was 

not going to produce significant frequency gains, as occurred previously, due to 

adverse power/thermal effects. This launched the multi-core era, as the best way to 

efficiently utilize the available silicon was to duplicate multiple processors on a single 

die. However, this does not solve the thermal problems. In fact, the ITRS [1] have 

identified power and thermal issues as a major design constraint and bottleneck for 

current and future computing devices.  

In the last decade, processor manufactures have introduced a number of multi-core 

processors for mainstream server and desktop market. For example, the modern Intel 

Xeon processor, targeting the server market, has up to 10 processing cores [113]. 

ITRS [1], reproduced here as Figure 1.1, predicts that the number of CPUs will hit 50 

by the 2020s, if not sooner. 
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Figure 1.1: Consumer stationary design complexity trends [1] 

 

1.1 Power and Thermal Optimization  

Power and thermal optimization in microprocessors 1 has been extensively studied 

[2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19] and is applied at 

different levels in the design flow. Different approaches and techniques are applicable 

at each level.  At the lower levels (e.g. the physical [2][3][4][7][8][9][10], logic and 

register transfer levels [15][17][18][19]), the techniques used are relatively mature [1] 

and include: new materials (e.g. High-K dielectric [5] or GeA compounds [1]) and 

new processes (such as, tri-gate [6], FinFET [53] and 3D-ICs [11]). The EDA tools 

used for design at these levels also provide support for power/thermal-aware synthesis, 

mapping [12][13][14], placement and routing [7][8][9].  

Techniques for power/thermal management applicable at the micro-architecture and 

architecture level include: dynamic voltage and frequency scaling (DVFS) [21], clock 

gating [21], pipeline gating [21], stop & go policy [21], I-cache toggling [20][21]. 

There techniques are usually adopted on a global or per-module basis. 

At the higher levels (e.g. the algorithmic and system level), compiler optimization 

techniques [22] and scheduling [21][69][72][81][82][88][89] can help to alleviate the 

power/thermal issues in a high-level (abstracted) way. In fact, according to the ITRS 

1 We use the term multiprocessor in our research to refer to multiple processors, integrated onto a 
single silicon die and tightly coupled to each other.  
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[1], system-level power/thermal management and optimization will be confronted 

with tremendous opportunities and challenges in the coming decades. The ITRS 

predicts that the higher design levels will play an increasingly important role in 

achieving the required levels of system power minimization, as shown in Figure 1.2. 

 
Figure 1.2: Evolving Roles of Different Design Levels in Overall System Power Minimization [1] 

The increasing power densities associated with transistor scaling and the trend 

towards more and more processors on a single IC are likely to significantly impact on 

reliability and performance [1], while decreasing supply voltages worsen leakage 

currents and noise [1]. These trends will require power optimizations that 

simultaneously exploit techniques at all levels in the design process, as well as at the 

operating system and application software levels.  

 

1.2 Motivation of the Research 

Increasing the power/ thermal optimisation efforts at higher design levels will produce 

more efficient circuits, which when mapped to the lower level could obtain better 

results than are possible for optimizations at the lower levels only. Higher level design 

impacts the performance of the whole system, implying that an improvement at the 

high-level could lead to significant overall savings.   
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Thus, examining high-level power/thermal optimisation for multi-core and many-core 

systems would appear to be an important and timely endeavour. In particular, high-

level thermal optimisation and management for delivering power/thermal 

improvements at the system level would provide an appropriate focus for my research. 

However there are a number of challenges, or research questions, that need to be 

addressed. These include: 

• Current thermal management techniques (e.g. DVFS, power gating, etc.) are 

coarse grained (with a relatively long time response from an OS scheduling 

point of view) and they are reactive (in that the system responds to a system 

event, such as the thermal threshold being exceeded). Will a fast proactive 

thermal-aware scheduling technique, such as thermal-aware scheduling (TAS), 

provide a better option for system-level thermal management?  

• Current TAS techniques fall into one of two general categories: 

a. Relatively fast with a very simple, but inaccurate thermal model due to 

the thermal coupling effect between cores [65][92]. 

b. Relatively slow due to a thermal simulator with an accurate but much 

more complex thermal model. 

In a multi-core/many-core TAS scenario, and particularly for dynamic TAS 

(DTAS), both speed and accuracy are important. The scheduling analysis in 

static TAS (STAS), which is an NP-hard problem, would also benefit from an 

accurate but faster thermal estimator, particularly with the expended search 

space associated with multi-core/many-core systems. Is it possible to propose 

a technique for thermal estimation which is able to run orders of magnitude 

faster than a thermal simulator (such as the widely used HotSpot simulator 

[29][35][72][43]) while providing similar accuracy? 

• Leakage power is an important consideration in current IC design, and will 

become more and more significant with transistor scaling. Is it possible to 

extend a fast thermal estimator to include a leakage power model while still 

maintaining accuracy?  

If these questions can be answered, STAS and DTAS could be used to more 

effectively provide high-level thermal optimisation and management in multi-core 
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and many-core systems. 

 

1.3 Thesis Organization 

Chapter 2 presents a detailed literature review where we analyse the strengths and 

weaknesses of the existing research in the area of power/thermal-aware management 

and scheduling.  

In Chapter 3, we develop a fast and accurate technique for thermal estimation, 

applicable to multi-core/many-core systems. The technique is based upon event 

driven power changes and uses a fast look-up table (LUT) to perform the thermal 

estimation. The LUTs are prebuilt and use the same non-leakage model as HotSpot, 

and as such, have the same steady-state accuracy, but with a significantly reduced 

computational overhead.  A number of primary definitions and LUT operations are 

introduced.  

Chapter 4 applies this LUT-based approach to static thermal-aware real-time task 

scheduling in low power multi-core/many-core systems. In this scenario, the effect of 

leakage power is less significant and to some extent can be ignored. A forward search, 

which gives the minimum-time schedule of the task set for a given thermal constraint, 

is introduced. A heuristic peak temperature minimization algorithm is also developed. 

Experiments using both real and synthetic real-time benchmarks show that we are 

able to schedule large task sets (up to 50 tasks) in reasonable time (less than 11 

minutes), which is 2-3 orders of magnitude faster than using scheduling in 

conjunction with the Hotspot thermal simulator. 

Chapter 5 examines DTAS. It firstly extends the simple LUT-based thermal estimator 

developed in chapter 3 to include a temperature dependant leakage power model. To 

minimize the overhead, while maintaining the estimation accuracy, prebuilt look-up-

tables and predefined leakage calibration parameters are used to speed up the thermal 

solution. Based on this refined fast LUT-based thermal estimator, a number of 

heuristic DTAS algorithms are developed for high power multi-core/many-core 

systems. In this scenario, the effect of leakage power is much more significant and 

cannot be ignored. We show that our proposed DTAS policies are better able to 
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minimise the average/peak temperature than existing DTAS schedulers, making them 

highly suitable for heuristically guiding thermal aware task allocation and scheduling. 

We are able to reduce the dynamic thermal management overhead (by 3 orders of 

magnitude compared to using HotSpot) while maintaining comparable accuracy. 

Lastly, in Chapter 6, we summarize and highlight the contributions of this work and 

discuss possible extensions and other future work.  
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Chapter 2  
Power/Thermal-Aware Management and 
Scheduling 
 

The current research examining power/thermal-aware management and scheduling in 

microprocessors is introduced and discussed in this chapter. Based on this review of 

the literature, we are able to summarize the high level thermal management and 

optimization process, as shown in Figure 2.1.  

High Level Thermal Management and Optimization

Power-Thermal Model Based Approach

Uniprocessor or Multiprocessor

Offline Power 
Profiling

(Simulator Based)

Online Power 
Profiling

(Counter Based)

Power-Thermal Model and 
Thermal Simultion

Thermal Aware Scheduling Dynamic Thermal Management

Performance Counter 
or Workload IndicatorCycle-Accurate Simulator for

Uniprocessor or 
Multiprocessor

Training Based 
Approach

Directly build the 
relationship between 
temperature and 
system events and 
workload

Thermal Sensor

Thermal Sensor 
Based Approach

Directly obtain the 
temperature value 
from sensor

Module Activities 
Cycle by Cycle

Number of System 
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Temperature 
Values
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Figure 2.1: The high level management and optimization process 

Thermal aware scheduling (TAS) and dynamic thermal management (DTM) are two 

common techniques used in high level thermal optimization. In general, TAS actively 

works with the OS scheduler, i.e. every time the scheduler is invoked (e.g. on the 
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occurrence of a timer tick interrupt in Round Robin scheduling, at the end of a system 

call or on the occurrence of an interrupt, etc.), to determine where to allocate (or 

migrate) a task according to some temperature criteria (e.g. allocate to the core with 

the lowest temperature or the lowest temperature gradient).  Usually, TAS works in a 

relatively fine-grained time increment2 while DTM is relatively coarse-grained and is 

passively triggered when the temperature exceeds a predefined threshold (resulting in 

the scaling down of the overheated core's frequency or putting the core into a low 

power sleep state).  

Even though these two mechanisms are different, both of them can reduce or inhibit 

the occurrence of adverse thermal effects on-chip. Moreover, both techniques need to 

know the temperature distribution on-chip for proper operation. Therefore, capturing, 

monitoring or estimating the temperature is a vital step for high level thermal 

management and optimization.  

In terms of TAS, there are two main categories in the research domain: static-TAS 

(STAS) and dynamic-TAS (DTAS). In STAS, thermal-aware scheduling is carried out 

offline, usually in design stage. STAS uses a pre-implemented power/thermal model 

and thermal simulator to schedule a set of tasks and simulate their corresponding 

thermal behaviours, without the need for real thermal sensors. DTAS, on the other 

hand, needs to track the temperature changes on-the-fly and schedule a task in, or near 

to, real time. Therefore, DTAS requires a fast thermal simulator, real-time thermal 

sensor information, or both, as the input. The various TAS techniques will be 

discussed in more detail in Section 2.4. 

We classify the temperature measurement or estimation into three classes, as indicated 

in the middle part of Figure 2.1. These methods include: on-chip thermal sensor(s), 

training-based models that combine thermal sensor readings with the occurrence of 

system events; and temperature estimation based on a power profile measured using 

either a simulation based approach or a performance counter based approach. All of 

these methods can provide chip/processor/module temperature information to the 

higher level. However, each method has its own strengths and weaknesses, and will 

be discussed in more detail in Section 2.1 and 2.2. 

2 The typical TAS interval is usually that of two consecutive time ticks in the OS. 
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The procedure for high level thermal optimization and management can be 

summarized as in the following steps: 

• STAS 

a. Perform static power profiling for tasks.  

b. Predetermine a schedule that meets the task constraints (e.g. deadline) 

c. Estimate the temperature induced by the task based on a power-thermal 

model and the results from the thermal simulator. 

d. Determine if the schedule meets the temperature constraints or if 

temperature optimal metrics are achieved 

e. Iterate steps b, c and d if the desired thermal threshold is exceeded. 

• DTAS and DTM 

a. Perform static power profiling for tasks or dynamic power profiling 

using performance counters. This step is not necessary for a training-

based approach or when using direct temperature sensor readings. 

b. Estimate the temperature based on a power-thermal model, a thermal 

simulator or a training-based approach, or direct temperature 

measurement from thermal sensors. 

c. Schedule the task based on the temperature estimation or thermal 

sensor reading. 

d. Repeat steps b and c at runtime. 

In the following sections, we introduce and discuss the literature relating to DTM and 

TAS (including power profiling and thermal measurement/estimation). The strengths 

and weaknesses of the various techniques are highlighted and are then used to form 

the basis for the development of the research focus outlined in subsequent chapters. 

 

2.1 Power Profiling  

The power consumption of the processor is composed of two main parts: the dynamic 

power consumption induced by the charging and discharging of the capacitors during 

signal switching and the static power consumption due to the inherent gate leakage 

and sub-threshold leakage effects in the process technology. The proportion of the 
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static power relative to the total power consumption increases with decreasing 

transistor feature size. Currently, the static power represents a very significant 

proportion of the total power and cannot be ignored, and therefore, high level power 

modelling and analysis must represent both these aspects (Equation 2.1). 

 𝑃𝑃 = 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑃𝑃𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑 (2.1) 

For the dynamic power, an analytical expression for a single transistor is given by 

Equation 2.2: 

 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐶𝐶𝑉𝑉2𝑓𝑓 (2.2) 

where 𝐶𝐶 is the equivalent parasitic capacitance, 𝑉𝑉 is the supply voltage and 𝑓𝑓 denotes 

the frequency of signal switching. At the system/architectural level, a functional unit 

is composed of a large number of transistors with many different signal inputs. As 

such, simulating large scale circuit activity using the single transistor model will 

result in a significant computing overhead. As a result, most high-level power analysis 

and estimation techniques use a module-based approach that stores the different 

categories of power related parameters (e.g. the signal switching probability, 

determined by performing a number of simulations on a functional unit, and the 

equivalent parasitic capacitance, determined by performing circuit and gate level 

simulation, such as using HSPICE [37]) for each module at the architectural level. 

The total dynamic power can then be estimated based on the resource utilization and 

the power parameters. Since the power parameters are predetermined constants, the 

only variable is the switching frequency which can be significantly affected by 

different applications and their processed data. For instance, some computation-

intensive tasks require more ALU or FPU resources, while some data-access-intensive 

applications occupy the load/store queue and memory controller more frequently.  

On the other hand, the static power consumption is related to the inherent transistor 

parameters (e.g. gate length, leakage ratio, voltage etc.), and is not affected greatly by 

the application. Therefore, power profiling firstly examines the resource utilization for 

a task to estimate its dynamic power consumption, and then adds the static power to 

determine the total power consumption. Both online and offline power profiling can 

estimate the resource utilization for the dynamic power component. 
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2.1.1 Offline Power Profiling (Simulator-Based) 

Offline power profiling, also called simulator-based profiling, uses a simulator to 

estimate the power. The simulator can model the different activity details of a specific 

piece of hardware. For example, a circuit simulator emulates the signal switching at 

gate and wire level; a register-transfer-level (RTL) simulator can track the 

input/output and register values for every logical component (e.g. adder, multiplexer, 

flip-flop and so on); and a micro-architecture level simulator can emulate the status 

(e.g. input/output values, idle or busy) for each functional unit on a cycle-by-cycle 

basis. 

Different simulators can provide different details of the signal activities and 

capacitance estimation, as such, affecting the accuracy of power profiling. A low level 

simulator has the best accuracy, but also requires a huge computation overhead, 

particularly if simulating a complex module. For example, while it may be possible to 

carry out a circuit level simulation of an entire processor, the computational resources 

and time required make this infeasible. Even at the higher register-transfer-level, a 

simulation for a common application may last for several days on a high performance 

workstation. Such a huge overhead is not acceptable for higher level optimization, 

especially for the on-line case.  

The highest level of simulation is referred to as behavioural or functional simulation. 

This kind of simulator only analyses the binary instructions one by one in the 

execution file, and simulates their logical (semantic) outcomes and records the 

register and memory status in logical (semantic) order. This level of simulation can 

only reflect the logical correctness of a section of code, and neglects all the activities 

related to the realistic implementation of the instructions in a processor. Therefore, it 

is applicable for debugging software or testing logical behaviour of a code section, 

and is often used in the early developmental stages when a real hardware platform is 

unavailable. It is not suitable for any complex architecture, such as out-of-order 

execution (superscalar), branch prediction and speculation. This level of simulation 

has a relatively low computational overhead, and is able to emulate a full-system with 

a fully functional OS. A behavioural simulator concentrates on the logic, rather than 

on the implementation, and is not able to obtain the necessary cycle-by-cycle 

information relating to module utilization to provide an accurate power profile. 
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QEMU [38] is a very popular open source full-system emulator that supports a range 

of platforms (e.g. X86 PC, ARM Cortex-A9 PandaBoard, etc.). Simics [39] is also 

widely used in academia for multicore functional simulation, but it only supports 

simple in-order pipeline architectures. These simulators also neglect the 

implementation of the real processor, and as a result are unsuitable for power 

estimation. 

GEMS [40] is a well-known execution-driven multiprocessor simulator, which can 

provide full system simulation.  GEMS integrates with Simics, an in-order processor 

behavioural simulator, and Ruby, a customized memory subsystem simulator. 

However, Simics emulates the instruction behaviours one by one without properly 

simulating the processor stalls caused by inter-instruction dependency (e.g. data 

hazards3), and it only captures the stalls caused by the memory requests4 (e.g. the 

memory instruction latency simulated by Ruby, such as L1 and L2 cache hit and miss). 

As such, GEMS is unable to provide an accurate power estimation which reflects the 

realistic power consumption. Subsequently, the GEM5 implementation integrated M5 

[114] as the processor simulator. This supports out-of-order superscalar simulation, 

but doesn’t support the shared-memory-based pthread library for multi-threaded 

applications or provide a power profiler. 

A micro-architecture (MA) level simulator simulates the activities and status (e.g. 

input/output, idle/busy) for the functional units (e.g. load/store queue, instruction 

fetch and decoding unit, ALU, register renaming units and so on). It reflects how 

these functional units work together and intercommunicate (e.g. internal bus, data 

path and instruction path) with each other in each cycle. The most important 

information obtained from a MA simulator is whether one unit is busy or idle in each 

cycle. As such, the cycle-by-cycle resource utilization is profiled so as to estimate the 

power consumption of an entire functional unit as a simulation object, rather than the 

detailed signals and circuits inside the functional unit. As a result, the MA simulator 

can obtain the cycle-accurate information for the functional units, while keeping the 

simulation overhead as low as possible. Thus, it gives a good trade-off between 

efficiency and accuracy.  

3 This refers to data dependency among instructions. 
4 Memory requests include all memory access instructions (e.g. load and store, stack pop and push etc.) 
accessing the data cache and all instruction fetches to the instruction cache. 
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SimpleScalar [41] is one such MA simulator, used for architecture design and research. 

It originally supported the simulation of a single-core Alpha processor with out-of-

order superscalar, and was subsequently extended to support the single-core PowerPC 

and ARM processor (referred to as SimpleScalar-ARM).  However, SimpleScalar only 

simulates a uniprocessor without implementing the privileged instructions5 used by 

the operating system. Moreover, it only supports simple system calls, with many of 

the critical system calls (e.g. process creation/switching (e.g. fork) and inter-process 

communication (IPC)) not being simulated. As such, multi-thread/process applications 

or operating systems cannot be simulated with SimpleScalar. 

Brooks et al. [42] developed a toolset PowerTimer for use in early stage, micro-

architecture level power and performance analysis of microprocessors. The main 

component of the toolset, Wattch [43], is an extension of SimpleScalar. Wattch is a set 

of parameterized power estimation functions (accumulating the resource utilization to 

get the power estimation) that can be integrated into SimpleScalar or any other cycle-

accurate micro-architectural simulator. However, Wattch, is a uniprocessor power 

estimator and is not suitable for the multiprocessor case. 

Eisley et al. [44] examined the high-level power analysis for CMP and MPSoC, which 

are both more complicated than the uniprocessor case as they must also consider the 

power consumption for intercommunication between cores. A power estimator called 

LUNA (link utilization for network power analysis) is used for estimating the power 

consumed by the NoC intercommunication network, which is faster than Orion (a bus 

simulator) and is able to maintain a good relative accuracy. In terms of the NoC power 

estimation, the utilizations of the key parts of the router (e.g. write/read buffer, 

crossbar and the (four directional) link) are recorded. However, only the utilization of 

the link is used (as a proxy for all the other parts), as ignoring the detailed power 

components improves the performance of the power estimator while still maintaining 

a good relative accuracy. Another contribution is that the network graph, used for 

tracking the utilization of the various functional units, allows a segment of code to be 

walked through for obtaining the functional unit utilizations. However, as the network 

graph cannot correctly analyse the instruction path for out-of-order-execution or for 

the speculation architecture, its power profiling is less accurate than that of a micro-

5Control register instructions (e.g. the switch between supervisor mode and user mode) and co-process 
instructions (e.g. control page table, MMU, TLB and cache). 

17 
 

                                                             



 High Level Thermal-Aware Scheduling for Multiprocessors Cui Jin 

architecture level simulator. Moreover, the leakage power in the power analysis is 

always treated as a constant or even ignored, which can be a source of error, as the 

leakage power heavily depends on temperature which inversely impacts power 

consumption.  

In summary, even though several simulators are available for academic research, 

power estimation and profiling for multiprocessor is not mature. These simulators (e.g. 

Simics and GEMS) simplify the processor implementation and do not provide cycle-

accurate information. The inter-core communication in many simulators (e.g. Ruby 

and LUNA) is based on a message passing interface and is not compatible with the 

shared memory architecture used by many current multi-threaded applications.  

 

2.1.2 Online Power Profiling (Counter-based) 

Online power profiling, also referred to as counter-based power profiling, is carried 

out directly on a real processor while an application is running. Since current 

processors do not provide runtime power information and no measuring devices are 

embedded into the package, direct online power profiling is not feasible. If a 

processor can dynamically provide the statistics of key functional units, the utilization 

of these functional units can be used for online power estimation.  The performance 

counter in current state-of-the-art processors is a set of registers recording critical 

system events for different functional units, such as the number of cache hits/misses, 

the number of ALU accesses, and so on. For example, the performance counters in the 

older processors, such as the Compaq Alpha 21164 and the Intel Pentium II were able 

to count monitor 22 and 77 system events [45], respectively. More recent processors, 

such as the Intel Core-i7 [46] and the ARM Cortex-A9 [47] are able to count 97 and 

58 system events, respectively. Based on the number of system events, the utilization 

of a functional unit in a certain period can be determined and hence the power can be 

estimated [48][49].  

Russ et al. [45] proposed a heuristic utilization estimation based on the number of 

system events. As the performance counter can only measure a limited number of 

system events in the same time slot and cannot capture all system events in one cycle, 
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heuristic formulas are used to estimate the utilization. This work showed that accurate 

online power estimation using a counter-based approach was possible. In a similar 

way, Canturk et al. [48] used counter-based power profiling with heuristic estimation, 

on an Intel Pentium 4 processor. The results showed good correlation between the 

proposed counter-based profiling and the direct power measurement, and as such the 

procedure has been adopted by other researchers [49]. 

 

2.1.3 Leakage Power Estimation and Profiling 

The online/offline power profiling mentioned in last two sections are only effective 

for estimating dynamic power consumption on-chip. However, we have emphasized 

the importance of leakage power consumption, which due to reductions in the 

transistor feature size can no longer be neglected in current research. The leakage 

power consumption is usually regarded as a constant in much of the literature 

[51][54][55]. However, this is not the case in practice as the leakage power 

consumption is heavily affected by temperature. In this section, we examine the 

literature relating the relationship between leakage power and temperature. 

The leakage power, also called the static power, consists of two parts: the sub-

threshold leakage and the gate leakage [52], as: 

 
𝐼𝐼𝑙𝑙𝑙𝑙𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙𝑙𝑙 = 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑟𝑟𝑙𝑙𝑠𝑠ℎ𝑜𝑜𝑙𝑙𝑑𝑑 + 𝐼𝐼𝑙𝑙𝑑𝑑𝑠𝑠𝑙𝑙 = 𝐴𝐴𝑠𝑠

𝑊𝑊
𝐿𝐿 �

𝑘𝑘𝑘𝑘
𝑞𝑞 �

2

𝑒𝑒
𝑞𝑞(𝑉𝑉𝐺𝐺𝐺𝐺−𝑉𝑉𝑡𝑡ℎ)

𝑑𝑑𝑙𝑙𝑛𝑛 + 𝐼𝐼𝑙𝑙𝑑𝑑𝑠𝑠𝑙𝑙 (2.3) 

where 𝑘𝑘 and 𝑞𝑞 are thermal voltage constants, 𝑛𝑛 is the sub-threshold swing coefficient 

for the transistor, and 𝐴𝐴𝑠𝑠 is a technology-dependent constant. 𝐿𝐿 and 𝑊𝑊are the device 

effective channel length and width. 𝑉𝑉𝐺𝐺𝐺𝐺  and 𝑉𝑉𝑠𝑠ℎ  are the gate-to-source voltage and 

threshold voltage respectively. 𝑘𝑘 is the temperature. 𝐼𝐼𝑙𝑙𝑑𝑑𝑠𝑠𝑙𝑙 is primarily affected by the 

supply voltage and the dielectric thickness and is relatively insensitive to temperature 

[52][53]. Hence, 𝐼𝐼𝑙𝑙𝑑𝑑𝑠𝑠𝑙𝑙 is usually considered a constant or even negligibl6 (particularly 

in the high temperature case). This leakage model is accurate at the transistor level for 

both MOS and FINFET circuits [53], however is not suitable at the module or system 

6 If the temperature is greater than 50℃, the gate leakage is a small component of the total leakage, and 
the sub-threshold leakage is dominant. 
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level due to the computational overhead, and thus is unable to be applied to high level 

optimization and management.  

Andrei et al. [54] consider the leakage power in their energy-aware scheduling 

process, but the leakage is assumed to be unaffected by temperature. Bao et al. [55] 

also use a similar assumption in their static energy-aware scheduling. However, in 

their later work [50], they improve the leakage calculation for dynamic scheduling 

scenarios. The following equation is used to evaluate the leakage power: 

 𝑃𝑃𝑙𝑙𝑙𝑙𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙𝑙𝑙 = 𝐼𝐼𝑠𝑠𝑟𝑟 ∙ 𝑘𝑘2 ∙ 𝑒𝑒
𝛼𝛼∙𝑉𝑉𝑑𝑑𝑑𝑑+𝛽𝛽∙𝑉𝑉𝑏𝑏𝑏𝑏+𝛾𝛾

𝑛𝑛 ∙ 𝑉𝑉𝑑𝑑𝑑𝑑 + |𝑉𝑉𝑠𝑠𝑠𝑠| ∙ 𝐼𝐼𝑗𝑗𝑠𝑠 (2.4) 

where 𝐼𝐼𝑠𝑠𝑟𝑟  is the reference leakage current at the reference temperature, 𝐼𝐼𝑗𝑗𝑠𝑠  is the 

junction leakage current and 𝑉𝑉𝑠𝑠𝑠𝑠 is the body bias voltage. 𝛼𝛼, 𝛽𝛽 and 𝛾𝛾 are technology 

dependent coefficients determined by curve fitting. These parameters are usually 

determined (or measured) prior to run-time, and only the temperature 𝑘𝑘  and the 

voltage 𝑉𝑉𝑑𝑑𝑑𝑑 are changed dynamically.  

The leakage power and temperature are interrelated, and hence determining the 

leakage power in a temperature-dependent scenario requires an iterative calculation to 

reach convergence between the leakage power and the temperature. This calculation 

usually requires several iterations, and is generally time consuming for an online 

algorithm. As a result, a reference table is built offline and is directly used for the 

online estimation. This leakage power model is used by a number of other researchers 

[52][53] at the micro-architecture level, however, the exponential component of the 

model increases the computational overhead, restricting its applicability for online 

purposes.  

To reduce the exponential calculation, Liu et al. [52] use an efficient linear estimation 

for the leakage power. A piece-wise linear (PWL) function is used to map the 

relationship between the leakage power of a functional unit and its corresponding 

temperature. Experimental results, compared to those from HSPICE, showed that this 

technique was both accurate and reduced the computational overhead. An important 

theorem is developed [52], which states: “for all IC cooling configurations, as long as 

the total power input is constant, the sum of the IC area-temperature product in the 

active layer is also constant, if and only if, each power source has the same impact on 
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the average temperature of the active layer.” Therefore, for CMP (where each core is 

regarded as a separate functional unit, e.g. a core level model for high level analysis) 

each core’s leakage current 𝐼𝐼𝑙𝑙𝑙𝑙𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙𝑙𝑙 can be evaluated as: 

 𝐼𝐼𝑙𝑙𝑙𝑙𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙𝑙𝑙 = 𝐹𝐹𝑠𝑠𝑙𝑙𝑑𝑑ℎ𝑆𝑆𝑠𝑠𝑜𝑜𝑠𝑠(𝑀𝑀𝑘𝑘𝑑𝑑𝑎𝑎𝑙𝑙 + 𝑁𝑁) (2.5) 

where 𝐹𝐹𝑠𝑠𝑙𝑙𝑑𝑑ℎ is the leakage current per unit area, and depends on the design style, the 

supply voltage, the manufacturing technology and the input pattern;  𝑆𝑆𝑠𝑠𝑜𝑜𝑠𝑠 denotes the 

area of the core and 𝑘𝑘𝑑𝑑𝑎𝑎𝑙𝑙  is the average temperature of the core; M and N are 

parameters obtained by curve fitting the piece-wise linear model. The accuracy of the 

estimation improves with an increased number of segments, with the 3-piecewise 

linear function being very close to the HSPICE results. In this work, this PWL is 

verified to have the capability that can replace the exponential part in most leakage 

power modelling and thus, is suitable for online thermal-aware scheduling due to its 

efficiency and accuracy.  

The above research [50][52][53] analyses the leakage power from a pure temperature 

aspect, which means they are only concerned with the circuit itself and its inherent 

properties. In other words, if the physical parameters of the IC and the current 

temperature are known, the leakage power can be estimated. However, other research 

[56] shows that the leakage power is also affected by the dynamic power, i.e. a higher 

dynamic power also increases the leakage power, even at a constant temperature. This 

is because the leakage power changes with the charge/discharge in a circuit.  

Sharon et al. [56] gave an empirical equation that shows the ratio 𝑟𝑟  between the 

dynamic power and the static leakage power induced by the signal activities, as: 

 
𝑟𝑟 =

𝑅𝑅0
𝑉𝑉0𝑘𝑘02

𝑒𝑒
𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡ℎ
𝑛𝑛0 ∙ 𝑉𝑉𝑘𝑘2 ∙ 𝑒𝑒

−𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡ℎ
𝑛𝑛  (2.6) 

where 𝑘𝑘0 is the ambient temperature; 𝑅𝑅0 is the ratio between the dynamic power and 

the static leakage at 𝑘𝑘0  and nominal voltage 𝑉𝑉0 ; and 𝐵𝐵𝑠𝑠𝑙𝑙𝑑𝑑ℎ  is a process technology 

constant that depends on the ratio between the threshold voltage and the sub-threshold 

slope, and is computed using the leakage current and saturation drive current values 

from ITRS 2001.  
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Unfortunately, the above literature does not consider the computational complexity of 

the calculations, and particularly the online calculation overhead associated with the 

power and temperature iterations required for convergence. We have identified this as 

one of our challenges for achieving DTAS, and we will address this problem in more 

detail in Chapter 5. 

 

2.2 Temperature Estimation and Profiling 

As seen earlier in Figure 2.1, there are 3 different techniques to get the temperature 

value needed for high level optimization purposes. These are: 1) estimating the 

temperature using a power/thermal model after profiling the power consumption; 2) 

directly estimating the temperature from the system events recorded in the 

performance counter; and 3) directly reading the digital thermal sensors (DTS) 

integrated on chip. These approaches are discussed in this section. 

 

2.2.1 Power/Thermal Model 

After the power profiling is obtained, by either a simulator-based or counter-based 

approach, the temperature can be estimated using a power/thermal model. In this 

section, several related thermal models are introduced, including the simple 

uniprocessor model, the thermal RC network, the finite element method (FEM) and 

other empirical models.  

Zhang et al. [57] applied the thermal RC model to a uniprocessor. The thermal 

characteristics and the electrical characteristics have a duality, where the voltage, 

current, resistance and capacitance in an electrical circuit are equivalent to 

temperature, power input, thermal resistance (the reciprocal of thermal conductivity) 

and thermal capacitance. The processor is abstracted as one node connecting the 

ambient temperature (abstracted as the ground) via one compact thermal resistance 

and capacitance 7 . This simple model is widely used in other STAS research 

7 The thermal resistance denotes the heat dissipation rate between the core and the ambient temperature, 
while the thermal capacitance reflects the time interval of heating and cooling. 
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[58][51][59]. Since there is only one node with power input in entire thermal RC 

circuit, the core temperature can simply be expressed as: 

 𝑘𝑘 = 𝑘𝑘0 ∙ 𝑒𝑒−𝑅𝑅𝑅𝑅 + 𝑘𝑘𝑠𝑠(1 − 𝑒𝑒−𝑅𝑅𝑅𝑅)
𝑘𝑘𝑠𝑠 = 𝑘𝑘𝑑𝑑𝑑𝑑𝑠𝑠 + 𝑅𝑅𝑃𝑃  (2.7) 

where 𝑘𝑘0 is the initial temperature, 𝑘𝑘𝐺𝐺 is the steady-state temperature which is decided 

by the thermal resistance 𝑅𝑅 and the power input 𝑃𝑃 at the node, and 𝐶𝐶 is the equivalent 

thermal capacitance. However, this single node model is unable to give the detailed 

temperature for each functional unit in the uniprocessor, nor is it suitable for the 

multiprocessor scenario where each core is abstracted as a power input node and the 

inter-core heat transferring should be considered. 

Dhodapkar et al. [60] presented a cycle-accurate, flexible and scalable tool and 

framework for power and performance analysis using SimpleScalar [41] and Wattch 

[43]. Both dynamic power and static power are taken into account. Since static power 

and temperature are tightly coupled (as stated in a previous section), an iterative 

thermal computation is implemented in the analysis. The two main highlights that are 

relevant to our work are: 

• Both an empirical mode and an analytical mode are proposed, allowing the 

user to select between efficiency and accuracy. 

• A temperature factor is introduced into the power/performance evaluation to 

study the thermal management and power-temperature interaction, since sub-

threshold leakage and product reliability are exponentially related to 

temperature. However, this model regards the whole chip as a single uniform 

thermal resistance/capacitance, evaluating only the average temperature of the 

whole chip. Such a coarse-grained model may not be suitable to analyse the 

temporal and spatial thermal distribution on chip for different functional units 

at the micro-architecture level. Several useful equations (shown in Equation 

2.8) are introduced for calculating the thermal distribution: 

 𝐻𝐻𝑒𝑒𝐻𝐻𝐻𝐻𝐻𝐻𝑛𝑛𝐻𝐻: ∆𝑘𝑘+ = �𝑘𝑘𝑑𝑑𝑑𝑑𝑚𝑚 − 𝑘𝑘𝑗𝑗−1� × [1 − 𝑒𝑒𝑒𝑒𝑒𝑒 (−1/𝜏𝜏ℎ𝑙𝑙𝑑𝑑𝑠𝑠)]
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝑛𝑛𝐻𝐻: ∆𝑘𝑘− = 𝑘𝑘𝑗𝑗−1 × [1 − 𝑒𝑒𝑒𝑒𝑒𝑒 (−1/𝜏𝜏𝑑𝑑𝑜𝑜𝑜𝑜𝑙𝑙)]

 (2.8) 

where ∆𝑘𝑘+  is the temperature increment, 𝑘𝑘𝑑𝑑𝑑𝑑𝑚𝑚  is the maximum junction 
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temperature, 𝑘𝑘𝑗𝑗−1 is the temperature of the previous cycle, 𝜏𝜏ℎ𝑙𝑙𝑑𝑑𝑠𝑠 is the thermal 

time constant in heating stage, ∆𝑘𝑘− is the temperature decrement, and 𝜏𝜏𝑑𝑑𝑜𝑜𝑜𝑜𝑙𝑙 is 

the thermal time constant in the cooling stage. If instantaneous temperature 

generated by 𝑘𝑘𝑑𝑑 + 𝑅𝑅𝑠𝑠 ∙ 𝑃𝑃𝑗𝑗 is greater than 𝑘𝑘𝑗𝑗−1, then 𝑘𝑘𝑗𝑗 = 𝑘𝑘𝑗𝑗−1 + ∆𝑘𝑘+, else 𝑘𝑘𝑗𝑗 =

𝑘𝑘𝑗𝑗−1 − ∆𝑘𝑘− , where 𝑘𝑘𝑑𝑑  is the ambient temperature, 𝑘𝑘𝑗𝑗  is the present cycle 

temperature, 𝑅𝑅𝑠𝑠 is the equivalent thermal resistance, and 𝑃𝑃𝑗𝑗 is the present cycle 

power dissipation. 

Skadron et al. [35] developed a compact thermal model for architecture-level thermal 

analysis and optimization. The architecture-level is able to take advantage of the 

runtime knowledge of the application behaviour and the current temperature 

information of different on-chip functional units to adjust the execution and distribute 

the workload in order to optimize thermal behaviour. For the same reason, CMP can 

also benefit from such a model since each core can be regarded as a single coarse-

grained functional unit that can execute a single thread for applications. The allocation 

of the workload at runtime is essential for core-level and high level thermal 

management and optimization. At the architecture level, a reliable thermal model is 

needed to reflect the current and future temperature variation in both temporal and 

spatial scales for the different functional units on chip.  

In terms of the architectural model of a chip, each functional unit can be abstracted 

into a piece of uniform material, with two adjacent units being connected via a 

thermal resistance R and a thermal mass (thermal capacitance) C, which are decided 

by the manufacturing process, the transistor density, the design complexity and the 

shared lateral area between the two adjacent functional units. Another contribution of 

[35] is the derivation of the equation to determine the lumped values of resistances 

and capacitances related to the material thickness and the area. The lumped R and C 

values can be obtained by experimentation or by using a low level simulator, e.g. 

HSPICE. Therefore, the temperature transient behaviour of the whole chip and its 

package can be modelled by a single integrated thermal model. This approach is 

suitable for architecture and higher level thermal estimation and analysis. Figure 2.2 

shows the thermal circuit describing a 4×4 core CMP. 
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Figure 2.2: Thermal model for 4×4 CMP 

Usually, such a model includes several important layers: the silicon layer (the silicon 

layer is the active layer as this is where the heat is generated, represented as a power 

source injected into the thermal circuit), the heat spreader layer and the heat sink layer. 

Power from each functional unit is injected into the circuit at the corresponding node, 

and then the temperature (𝑘𝑘) transient of each node can be described and constrained 

by the differential equations of Equation 2.9: 

 

⎩
⎪
⎨

⎪
⎧𝐶𝐶𝑑𝑑

𝑑𝑑𝑘𝑘𝑑𝑑
𝑑𝑑𝐻𝐻

= 𝑒𝑒𝑑𝑑 + �
𝑘𝑘𝑑𝑑 − 𝑘𝑘𝑗𝑗
𝑅𝑅𝑗𝑗𝑗𝑗∈𝑃𝑃𝑑𝑑𝑠𝑠ℎ

,  node i ∈ silicon layer

𝐶𝐶𝑑𝑑
𝑑𝑑𝑘𝑘𝑑𝑑
𝑑𝑑𝐻𝐻

= �
𝑘𝑘𝑑𝑑 − 𝑘𝑘𝑗𝑗
𝑅𝑅𝑗𝑗𝑗𝑗∈𝑃𝑃𝑑𝑑𝑠𝑠ℎ

,  node  i ∅ silicon layer
 (2.9) 

where 𝐶𝐶𝑑𝑑 is the thermal capacitance of node 𝐻𝐻, 𝑘𝑘𝑑𝑑 is node temperature as a function of 

the time 𝐻𝐻, 𝑒𝑒𝑑𝑑 denotes the instantaneous power input at node 𝐻𝐻, 𝑃𝑃𝐻𝐻𝐻𝐻ℎ is the set of all 

thermal conduction paths that connect with node 𝐻𝐻, 𝑅𝑅𝑗𝑗 denotes the resistance of each 

thermal conduction path in 𝑃𝑃𝐻𝐻𝐻𝐻ℎ, and 𝑘𝑘𝑗𝑗 is the temperature of the adjacent node in 

each thermal conduction path. This equation indicates that the number of nodes 

determines the scale of the differential equation set, since each node represents one 

equation. Therefore, a large system with many functional units (or cores for core-level 

simulation) generates a large differential equation set, which requires a significant 

amount of computation to solve. For example, HotSpot [35] uses a 4th-order Runge-

Kutta solver to process this equation set. 
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HotSpot [35][56] models the heat dissipation at a much finer granularity for different 

functional units at the micro-architecture level. It also considers the lateral resistances 

and the packaging, as well as dividing the heat dissipation layer into heat sink, heat 

spreader and internal layer. This detailed modelling can dramatically increase the 

accuracy of the temperature transient with time. HotSpot and its corresponding 

thermal models, along with SimpleScalar and Wattch, provide a standard platform for 

thermal simulation which is widely used in academia.  As such, Hotspot has become 

an important reference and highly used tool for experiments and comparisons related 

to thermal-aware design and optimization.  

However, while HotSpot is accurate, it has a high computational overhead making it 

unsuitable for use in dynamic (online) thermal optimization scenarios. Two methods 

[61][62] have been proposed that use the same thermal model as HotSpot, but 

improve the computational performance. Liu et al. [62] proposed a method that treats 

the power trace as a piecewise constant power input, and then uses fast spectrum 

analysis and a moment matching algorithm in the frequency domain to determine the 

steady state temperature and the transient temperature respectively. This approach 

gave a 10x-100x speedup, compared to the traditional HotSpot solver. Chen et al. [61] 

used a global adaptive method to optimize the step size of the iterations in HotSpot, 

and achieved a 38x--138x speedup. Paci et al. [27] use two different thermal 

modelling approaches on a 16-core ARM7-based CMP that includes a NoC 

infrastructure for inter-core communication. One of the models is similar to the 

previous thermal RC circuit-based model, and the other exploits the advantages of the 

finite element method (FEM) and corresponding tools (e.g. ANSYS[63] and 

COSMOL[64]) to analyse the temperature variation across the chip. FEM can provide 

a very accurate thermal distribution and a detailed temperature transient analysis, but 

at the cost of a very long computation time. Due to its accuracy, it is ideal as a 

reference for other thermal models or thermal estimation methods. The significant 

contribution is the comparison between FEM and the thermal RC network, which 

shows that the temperature errors of the thermal RC network are small (in the range 

0.1 to 0.6°C).  

Stavrou and Trancoso [65] developed a fully parameterizable tool for CMP thermal 

scheduling simulations, called TSIC, which allows the testing of different 
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configurations, application characteristics and scheduling policies. As TSIC is 

designed for CMP systems, the thermal model must reflect the spatial and temporal 

thermal diversities over the chip, and take into account the inter-core and ambient heat 

transfer, as well as the lateral heat dissipation. Notably, their approach does not use 

the thermal RC network of [35] to obtain an accurate thermal distribution in each time 

interval, but rather an intuitive empirical model, described by Equation 2.10, is 

adopted for updating the temperature of each core. 

 
∆𝑘𝑘𝑑𝑑 = � � 𝑓𝑓𝑑𝑑(𝑘𝑘𝑑𝑑 − 𝑘𝑘𝑑𝑑)

𝑑𝑑

𝑑𝑑=1,𝑑𝑑≠𝑑𝑑

� − [𝑓𝑓𝑑𝑑(𝑘𝑘𝑑𝑑 − 𝑘𝑘𝑑𝑑𝑑𝑑𝑠𝑠𝑑𝑑𝑙𝑙𝑑𝑑𝑠𝑠)] − [𝑓𝑓𝑝𝑝(𝑃𝑃𝑟𝑟𝐶𝐶𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑑𝑑 ,𝑘𝑘𝑑𝑑)] (2.10) 

The first term in Equation 2.10, models the inter-core heat exchange, implying that 

such an exchange exists among any pair of cores on chip. For any pair of cores, 𝐴𝐴 and 

𝐵𝐵, 𝑓𝑓𝑑𝑑(𝑘𝑘𝐴𝐴 − 𝑘𝑘𝐵𝐵) = −𝑓𝑓𝑑𝑑(𝑘𝑘𝐵𝐵 − 𝑘𝑘𝐴𝐴) must be satisfied. The function 𝑓𝑓𝑑𝑑 is dependent on the 

difference in temperature of a pair of cores and the location of these two cores. The 

second term in Equation 2.13 indicates the heat dissipation from a core to the external 

environment (𝑘𝑘𝑑𝑑𝑑𝑑𝑠𝑠𝑑𝑑𝑙𝑙𝑑𝑑𝑠𝑠 ). The function 𝑓𝑓𝑑𝑑  also needs to consider the temperature 

difference and the core’s location. For a core that is not on the chip edge, only the 

vertical thermal path is considered. The lateral thermal path is only considered for the 

outer cores. The last term of Equation 2.10 calculates the temperature change induced 

by executing the application (or process).  

The model proposed in [65] improves the computation efficiency for temperature 

evaluation so as to be applicable for the online scenario. However, the model uses a 

time-driven approach which is only suitable for small-interval updates, using very fine 

granularity scheduling. This is because the temperature error becomes significant 

above 1 millisecond. Contrast this to the analytical model (thermal RC model), where 

any update interval is applicable. 

Zhan et al. [66] proposed a novel approach to rapidly calculate the temperature 

distribution in VLSI chips by using the discrete cosine transform (DCT) and LUT. 

This approach improves on the previous temperature distribution algorithm that uses 

the Green’s function [67] and the unrealistic assumption that the chip is infinitely 

large horizontally. Experimental results show that this approach is accurate, with a 

relative temperature error of less than 1%. The approach is suitable for a fine-grained 
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thermal analysis at the micro-architecture level since the computational overhead does 

not increase with the number of power sources (nodes on the active layer in the 

thermal RC model) and there is no need to solve a large set of differential equations. 

Unfortunately, the approach proposed in this paper only solves the steady state 

temperature distribution, and does not consider the transient profile as only the 

thermal resistance is taken into account while the thermal capacitance is ignored.  

Michaud and Sazeides [68] used analytical methods to develop a temperature model, 

called ATMI. ATMI is based on an idealized microprocessor chip and its packaging. 

Partial differential equations are used to describe the physical model of ATMI (formed 

by two layers: the chip layer and the packaging layer) and its boundary conditions (the 

temperature and its first order differential on the cross-section of the adjacent layers 

and the lateral-section adjacent to the ambient). As ATMI is a linear model, and the 

multi-source power input can be solved by superposition of the individual power 

sources, the model produced accurate results, verified by the thermal sensors on chip. 

However, the convolution operation, used to obtain the temperature transient over 

time, is very time consuming, and thus is not computationally efficient enough for 

online thermal estimation and prediction in the OS, even when using the fast Fourier 

transform (FFT) to accelerate the convolution operation.   

Computational efficiency and the accuracy of the power/thermal model are both 

critical in the thermal simulation, estimation and optimization topics mentioned above. 

The thermal models used in current research have several shortcomings: 1) Some 

thermal models (e.g. TEMPEST) are only used for uniprocessors, and cannot be 

applied to a multi-core scenario; 2) Some thermal models (e.g. TSIC) use  inaccurate 

heuristic or empirical thermal modelling that is hard to adapt for different layouts and 

architectures; 3) Some thermal models [66][93][94] only consider the steady-state 

temperature and ignore the transient temperature because of the limitations in the 

solving algorithm (e.g. linear programming and DCT LUT), and thus the temperature 

error is large; 4) Some thermal models (e.g. HotSpot or the FEM approach) provide 

an accurate temperature estimation when used for offline thermal simulation, but 

require a computational overhead which makes them unsuitable for online thermal 

management; 5) Current thermal models (e.g. TSIC) are time triggered, and update 

the temperature in a fixed fine-grained time step, which adds to the computational 
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overhead; 6) Much of the research related to thermal-aware scheduling [90][92][57] 

assumes that the leakage power is invariant (that is a non-temperature-dependent 

leakage model is assumed). While these assumptions simplify the problem by 

skipping the power-temperature iteration, they can lead to unrealistic thermal results. 

Therefore, current thermal estimation and modelling does not sit well amongst the 

various competing factors: e.g. computational efficiency, estimation accuracy, 

updating period and leakage power. 

 

2.2.2 Direct Readings from Digital Thermal Sensors (DTS) 

The simplest and most intuitive way to get the chip/core temperature is by reading the 

integrated on-chip DTS directly. A number of practical DTM and DTAS techniques 

[29][70][71][72] take advantage of DTS. However, DTS has some inherent 

disadvantages which can affect the high level thermal management and optimization. 

For example, if the DTS reading is lower than the actual temperature, DTM would be 

triggered and activated later than desired, which may result in the degraded reliability 

of the processor since the temperature may exceed the predefined threshold; if the 

DTS reading is higher than actual one, the early activation of DTM can significantly 

reduce the performance and waste computation resources. Even though DTS is widely 

used and accepted, there are some issues, particularly relating to its accuracy. In this 

section, we will focus on those issues. 

Zhang [73], Rotem [74] and Sharifi et al. [75] described that the accuracy of DTS 

readings is a primary limitation. Several reasons can affect the accuracy of DTS 

reading.  

• Noisy behaviour: In reality, on-chip DTSs are affected by a range of noise 

sources. Some of these noise sources include fabrication randomness, power 

grid noise, cross coupling, non-linear dependence between temperatures and 

the circuit parameters and even A/D converter accuracy. Assuming ideal 

thermal sensor operation can either lead to failure to detect overheating or 

false alarms that result in costly and unnecessary responses from the thermal 

management unit [73]. 
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• Placement error: Typically, sensors cannot be placed exactly at the locations 

where monitoring is critical, as these locations are high power density areas 

(e.g. they are accessed frequently or are high performance components) where 

silicon is at a premium. This means that the sensor cannot optimally capture 

the chip hot spot [75]. 

• Calibration error: Many chip manufacturers use un-calibrated DTS due to the 

high cost and overhead associated with the thermal sensor calibration [75]. 

This is particularly the case for systems featuring multiple sensors and can 

result in significant thermal errors [75]. 

Sharifi et al. [75] also indicated that the current trend is that the number of DTSs per 

core is decreasing as the number of cores increases. For example, Intel’s Core 2 Duo 

and AMD’s Quad-Core Opteron processor have multiple DTSs on each core, while 

Intel’s 48-core SCC only has one DTS for each core. However, in many-core systems, 

these sensor based approaches are likely to be even less practical. The future many-

core systems may even group the cores into clusters which share the DTS among 

cores [76]. The reason is that more DTS needs more channels for routing, thus 

increasing the silicon area and test cost.  

In addition, the relative long thermal response latency is another inherent 

disadvantage that limits the usefulness of DTS in high level thermal optimization. 

Most state-of-the-art on-chip DTS need 30--150 milliseconds to reflect the 

temperature change at the measuring point [74]. This may be suitable for passively 

triggered DTM, but is not suitable for DTAS, since TAS needs to work with the 

scheduler in a fairly short time interval (less than that of the OS time tick), while 

DTM (e.g. DVFS or putting the core into sleep mode) requires a larger overhead (it 

requires a lot of cycles to complete these operations at the hardware level) and as such 

should not be triggered too frequently.   

The information from DTS is also limited in that it only reflects the temperature at a 

single point and at the current time instant. This single point on one core cannot be 

regarded as the average temperature or the worst-case temperature, and as such it is 

not possible to build a full thermal map or tell where the hot spots actually are. It is 

also more difficult to use DTS readings to predict the realistic future temperature of 

the core without the assistance of other complicated mathematical models or training 
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methods. DTS is a simple and direct way to get temperature information, but is not 

fast enough and may not have the required accuracy to guide high level thermal 

management and optimization [73][74][75]. Therefore, some researchers [73][74][75] 

have considered both direct and indirect measurements for determining chip 

temperature and use modelling methods to complement  the DTS readings.   

 

2.3 Dynamic Thermal Management at the Micro-Architecture Level 

After obtaining the temperature information on-chip, high level thermal management 

and optimization can be carried out. We have already emphasized that DTM is mainly 

a passive technique triggered by some predefined temperature threshold. DTM 

techniques usually have a higher system overhead, thus are not suitable for high speed 

or frequent activation. As such, in this thesis, we refer to DTM as a coarse-grained 

thermal optimization technique. In this section, we will introduce the different DTM 

technologies appearing in the recent literature.  

Benini et al. [77] investigated system-level dynamic power management (DPM). 

DPM involves selectively turning off (or reducing the performance of) system 

components when they are not used (or only partially used). Generally, the principle 

of DPM can be described by a state machine: RUN, IDLE and SLEEP consume 

different amounts of power and power saving can be achieved by the processor 

moving between states depending on the processing requirements. Different control 

mechanisms and   implementations of DPM are analysed, and a number of examples 

of DPM techniques are presented. The Advanced Configuration and Power Interface 

(ACPI) standard, which is widely used in desktop PC and other embedded 

microprocessors, is described. The ACPI can monitor a set of thermal sensors and the 

CPU load indicator. According to these readings and a predefined power/thermal 

budget, the operating system invoking the ACPI interface can dynamically adjust the 

performance of the CPU, memory and other devices, making them switch between 

different execution states (e.g. working at high speed, sleep, standby or hibernation) to 

reduce the power consumption and heat dissipation.   

Brooks et al. [20] examined dynamic DTM mechanisms in modern microprocessors. 

31 
 



 High Level Thermal-Aware Scheduling for Multiprocessors Cui Jin 

These techniques refer to a range of possible hardware and software strategies which 

work at runtime to control the chip’s operating temperature.  DTM can reliably reduce 

the power and temperature by using inexpensive hardware or software solutions, 

while impacting as little as possible on the processor performance. This reduces the 

need for larger external physical devices, such as larger heat sinks, cooling fans, etc., 

and thus reduces cost. Five DTM mechanisms are discussed in [20]. These include: 

clock gating, DVFS, decode throttling, speculation control and I-cache toggling.  

• Clock Gating and Stop & Go (Sleep):  It is possible to stop driving idle 

modules, by adding an AND gate before the clock input of the module. If this 

technique is applied to a core instead of an individual functional unit, this 

technique is known as “Stop & Go” policy. This means that the processor 

would start to sleep when its temperature reaches the upper-limit threshold and 

then would resume running when the temperature drops to below the lower-

limit threshold. Clock gating is different from the shutdown policy: in the case 

of clock gating, the states of the core are latched into registers similar to a 

freeze operation and only the dynamic power consumption is eliminated; 

however, in the case of a shutdown, the complete circuitry of the core is 

switched off after its state is saved to external memory.  

• Voltage and Frequency Scaling:  The supply voltage and clock frequency are 

adjusted dynamically. When the power consumption, and thus the temperature, 

is higher than desirable the supply voltage or the clock frequency is decreased 

without stopping the processor. The drawback is a noticeable loss in compute 

performance. However, if the application requirements are still satisfied then 

this loss in performance is not really an issue. Almost all current processors 

used in commercial desktop PCs take advantage of DVFS. However, the core 

voltage can usually only be assigned to a set of discrete values (that cannot be 

changed in a continuous range). This is usually done globally, and is referred 

to as global DVFS (distinguished from distributed DVFS that controls the 

voltage on a per-core basis). 

• Decode Throttling:  This technique restricts the flow of instructions from the I-

Cache to the core when DTM is triggered. The fewer instructions that are sent 

to the decoding and execution stage, the less energy consumed. 
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• Speculation Control and Pipeline Gating: Speculation control is the technique 

of arbitrarily restricting the amount of speculation in the pipeline whenever a 

thermal trigger level is reached. This is implemented using a counter which is 

incremented whenever a branch instruction is decoded and is decremented 

when a branch is resolved. If the counter exceeds the limit, the decode stage 

stalls until enough branches have been resolved. Similarly, pipeline gating is 

based on speculation control, where several stages in the pipeline are shut-

down when a stall occurs or some stage is idle. 

• Unit Toggling: To alleviate temperature related problems, some units, like the 

ALU and register file, can be replicated into multiple copies. When one unit is 

overheated, the other can be started so as to allow the overheated unit to cool 

without interrupting execution. I-Cache toggling is a special case of unit 

toggling that stops the instruction fetch unit at the specified interval and uses 

the instruction queue to continuously feed the instructions. 

The above DTM mechanisms can be classified by the range over which they are 

applied in the multiprocessor: global DTM means one global controller controls all 

the cores on chip in a uniform manner, while distributed DTM has multiple 

controllers for each core or a cluster of cores, which are controlled independently.  

Donald and Martonosi [21] explored various thermal management techniques that 

exploit the distributed nature of multi-core. They used Turandot [78] and a HotSpot-

based thermal simulator to simulate a variety of workloads under thermal stress on a 

4-core PowerPC processor. A new high-level DTM designed for multi-core, known as 

“migration” is described. Migration can move the workload among the different 

processors in the system, like unit toggling (described above), except that a unit now 

refers to a single processor. It records the processor state and all the context of the 

running program into temporary memory and then restores this context to another 

processor and resumes execution of the stalled program. When the temperature of one 

core exceeds the threshold, migration can move the task on this core to another cooler 

idle core and put the overheated core into a sleep state. In fact, migration only 

introduces a relatively small overhead (only a context switch at the OS level) 

compared with other DTM methods. Therefore, migration can also be applied in fine-

grained management and optimization, such as DTAS. However, the migration 
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described in [21] is confined to passive triggered mode, which is still a coarse-grained 

DTM technique which is only triggered when the temperature threshold is exceeded.  

Chaparro et al. [79] demonstrated the thermal implications of multi-core and many-

core architectures. They argued that dynamic thermal management for a multi-core 

processor is a relatively new area and will gain more and more visibility in the EDA 

arena. Two important categories for DTM were generalised: 1) Temperature can be 

decreased by reducing the power consumption at the cost of some computational 

speed degradation, so long as this degradation still allows the requirements of the 

application, such as real-time deadlines and computational throughput, to be met. 

DVFS is one such example as it achieves a quadratic energy reduction with only a 

linear speed reduction. 2) The temperature is controlled by distributing the processor 

activity over the chip area, which is similar to workload balancing in a distributed 

system. Many techniques belong to this category: toggling at the granularity of the 

functional unit, pipeline, cache, instruction decoder, etc., and thread migration (TM).  

A significant contribution of [79] is the in-depth analysis of the parameters (e.g. 

number of cores, thermal parameters, the maximum allowed temperature, the 

overhead of different policies, temperature measurement interval, scheduling interval, 

etc.), especially relating the sensitivity of the different thermal control policies to the 

value of these parameters. A number of important observations are made: 

• As the number of cores increases, the temperature of a core depends on the 

global heat dissipation rather than the local heat dissipation. This is because 

the heat spreader and the heat sink gather the heat generated by all the cores. 

• Solving a thermal RC circuit with many nodes is very time consuming. The 

overhead can be decreased by reducing the internal nodes of a core. However, 

modelling different nodes inside a core is important as hot spots usually affect 

small regions in the core and not the whole core homogeneously. 

• The lateral heat exchange between cores and from the core’s free edge to 

ambient should be modelled for accuracy. For the same reason, the multi-node 

heat spreader and heat sink should be modelled as well. Leakage power 

modelling is still implemented as a feedback loop and requires a large number 

of iterations for temperature-power convergence.  
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• In terms of global DVFS and distributed DVFS, it is better to perform 

distributed DVFS in most cases. However, distributed DVFS is significantly 

more difficult to implement. Global DVFS is still useful when used with 

passive thermal dissipation as most cores will trigger DTM shortly after one of 

the cores overheats. Therefore, global DVFS applied to the whole chip helps 

to achieve a faster cool-down time. 

• TM (Thread Migration) only helps distributed DVFS in conjunction with 

active thermal dissipation. For systems with passive thermal dissipation, TM 

actually inhibits the performance of distributed DVFS.  

• The performance of TM + global DVFS is very close to distributed DVFS and 

provides a good trade-off between the number of migrations and the average 

core frequency/voltage level. 

• Different system parameters can lead to different optimal management 

schemes and/or scheme configurations. 

Kumar et al. [69] proposed a hybrid DTM scheme: a hardware–software DTM 

technique using both proactive mechanisms, such as migration, to avert thermal stress, 

and reactive mechanisms, such as clock gating, to deal with overheating. Most 

importantly, they implemented this hybrid DTM, adopting a Pentium 4 as the 

experimental platform and modifying the Linux kernel to make the thermal-aware 

scheduler fit into the OS. Both uniprocessor and simultaneous multi-threading (SMT) 

[80] are analysed in this work. Another important contribution is the novel regression 

thermal model that provides a relatively fast and accurate prediction of the overall 

processor temperature, directly from the hardware performance counters. 

Unfortunately, this work only considers the uniprocessor and SMT cases, and is not 

applied to CMP.  

Mulas et al. [72] proposed a passive migration method for stream computing on 

MPSoC. Generally, DTM is only triggered when the temperature exceeds some 

ceiling threshold, but in this paper, two thresholds are set: a higher and a lower 

threshold. Each time the temperature of a processor reaches the upper/lower threshold, 

task migration is triggered moving a task from one processor to a lower temperature 

processor. To reduce the amount of computation in selecting tasks to migrate, the 

migration process is restricted to two processors at a time, e.g. from one hot core to a 
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cold core. A two phase algorithm is also proposed to implement this policy is used to 

reduce the amount of computation in selecting tasks to migrate. The first phase 

chooses the candidate cores (pair of source and destination) that might need thermal 

balancing by evaluating their current temperatures, clock frequencies and power 

consumptions. After determining the pair of cores, the second phase is to determine 

the number of migrating tasks on the source core and the destination core by 

evaluating and minimizing the migration cost. This approach can effectively limit the 

number of migrating tasks so as to reduce the overhead introduced by the context 

switching. Another contribution in [72] is the middleware implementation of a 

thermal balancing policy in uC/Linux. A comparison is made between the energy 

balancing policies, the stop & go policy and their proposed policy using an FM radio 

benchmark. The results show their proposed policy has advantages in terms of 

deadline miss, migration cost and temperature deviation. 

 

2.4 Thermal-Aware Scheduling 

Thermal-aware scheduling is an active technique for optimizing the system level 

temperature.  Unlike DTM, it is not triggered by a temperature threshold, but instead 

uses proactive thermal reduction measures even though the temperature has not yet 

exceeded the temperature threshold. For instance, the OS scheduler could allocate 

tasks to cooler cores when it is invoked. This can occur over a relatively fine-grained 

interval (e.g. at each timer tick, at a return to user space from an interrupt handler or 

from kernel space, when creating a new task, and so on). Sometimes, the 

workload/task schedule can be pre-determined at the design stage to achieve the 

desired thermal management, by using offline thermal simulation.  

Thermal-Aware Scheduling can be classified into two categories, according to when 

they are applied, as: 1) Static TAS (STAS) and 2) Dynamic TAS (DTAS). With STAS, 

a thermal simulation is carried out offline (during the design stage) and as such does 

not require temperature information on-the-fly. This assumes that a task’s properties 

(e.g. execution time, power consumption etc.) are known and can be used as input to a 

thermal simulator.  The design stage task then reduces to searching for a suitable 

schedule which minimizes the temperature or reduces some other thermal effect. As 
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this thermal simulation is done during the design stage, the computational overhead is 

generally not a constraint. On the other hand, DTAS requires real-time temperature 

information from thermal sensors, thermal models or both. The overhead of thermal 

simulation or optimization is this case must be kept as low as possible so that it can be 

integrated with the task scheduling process. 

 

2.4.1 Power/Energy-aware Scheduling 

Power-aware and energy-aware policies attempt to minimize the power or energy of a 

system. They are somewhat related to TAS, and as such it is appropriate to examine 

and analyse them here, even though they are not a focus of this work.   

Irani and Pruhs [81] surveyed a number of recent works on algorithmic problems 

related to power management. First, the formalization of speed scaling (i.e. dynamic 

frequency scaling) is reviewed as a scheduling problem that is combined with real-

time task features. There are two goals for this problem: 1) minimizing the total 

energy used subject to the deadline feasibility constraints; and 2) minimizing the peak 

temperature subject to the deadline feasibility constraints. This work also details some 

open problems for power management, many of which are related to temperature-

aware issues. Therefore, it is natural to examine these two concepts (e.g. energy-

aware and thermal-aware) together. 

Bansal and Pruhs [82] assumed that the rate of cooling of the device adheres to 

Fourier’s Law, which states that the rate of cooling is proportional to the difference in 

temperature between the object and the environment. An approximation of the rate of 

change 𝑘𝑘′ of the temperature 𝑘𝑘 can be expressed as: 𝑘𝑘′ = 𝐻𝐻𝑒𝑒 − 𝑏𝑏𝑘𝑘, where 𝑒𝑒 is the 

supplied power, and 𝐻𝐻  and 𝑏𝑏  are constants. They also observed that there is a 

relationship between total energy and the maximum temperature, and thus were able 

to simplify the temperature calculation. They found that over an interval, if 𝑏𝑏 = 0, 

then the temperature minimization problem is equivalent to the energy minimization 

problem; whereas, if 𝑏𝑏 = ∞, then the temperature minimization problem is equivalent 

to the peak power minimization problem, or equivalently the peak performance 

minimization problem. However, similar to the power/thermal relationship described 
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in Section 2.2.1, the relationship between maximum temperature and total energy is 

relatively complex, and the simplified empirical relationship used in [82] is unrealistic, 

limiting the technique’s practicality.  

Energy minimization with deadline feasibility is introduced in [83][84][85][86]. An 

offline greedy algorithm, called YDS [83], is used to optimally solve this problem 

iteratively. During each iteration, tasks with the highest periodic frequency are 

scheduled using earliest deadline first (EDF) [83] at a speed equal to that frequency. A 

native implementation of YDS has 𝛩𝛩(𝑛𝑛3)  time complexity. This can be improved to 

𝛩𝛩(𝑛𝑛2)  if the interval has a tree structure. It has been shown that calculating the 

minimum energy schedule for jobs with a fixed priority is NP-hard [84]. Irani and 

Pruhs [81] also give a fully polynomial time approximation scheme for the same 

problem, while [85] gives a polynomial time algorithm for the case of a processor 

with discrete speeds.  

Most energy-aware scheduling regards the energy/power budget as the optimization 

goal [87][88][89]. However, energy-aware scheduling is different to TAS. While it is 

easy to put into practice, it is not as useful as the relationship between energy and 

temperature, particularly for CMP. We do not consider energy-aware scheduling 

further as the energy/power budget is not an explicit constraint limiting the processor 

operation, however temperature is. Energy-aware scheduling cannot achieve the 

required thermal characteristics in many cases [87], because minimizing energy does 

not consider the energy distribution on chip and energy has no explicit relationship 

with temperature. High energy/power is not equivalent to high temperature, as 

temperature is related with power density and thermal dissipation features. For 

example, a high energy/power task might be allocated to a core with large silicon area 

and a location with better heat dissipation (e.g. on the edge of the chip) or to a core 

with a low temperature, and as such, even though it may not meet the required energy 

budget it may still run below the temperature threshold. 

 

2.4.2 Static TAS 

Zhang and Chatha [57] addressed the problem of performance optimization (mainly 
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minimizing the execution latency of a task set) for a set of periodic tasks with discrete 

voltage/frequency states under thermal constraints. They examined performance 

maximization of offline thermal aware scheduling on a uniprocessor under a 

predefined thermal threshold. Both optimal and approximate scheduling algorithms 

for performance optimization were presented. The optimal solution, using restricted 

shortest path, is NP-hard, while for the approximate solution, a fully polynomial-time 

approximation scheme (FPTAS) is proposed to improve the efficiency of the 

scheduling algorithm within a designer specified approximation bound. The 

approximate solution is 24 times faster than the optimal algorithm. The thermal RC 

circuit is used to capture the thermal behaviour, however, the coarse-grained model, 

which treats the uniprocessor as a single node, does not accurately reflect the 

temperature variation and details at the micro-architecture level. Additionally, the 

uniprocessor model uses a very simple thermal model which is not applicable to the 

multi-core scenario.  

Xie and Hung [90] proposed a heuristic static thermal-aware task allocation and 

scheduling method based on hardware/software co-synthesis. HotSpot is used to 

evaluate the maximum and average temperature of the whole chip in the next 

scheduling interval. As this is a static scheduling problem, the off-line overhead 

associated with thermal estimation using Hotspot is not important. This work uses a 

task graph to define the dependency of tasks in the task set, as the task properties 

(such as the average power consumptions and worst case execution times (WCET)) 

are known in advance in STAS.  The temperature is then used as a metric to move the 

tasks among different processing elements to achieve load balancing and in 

calculating the migration schedule offline. However, this heuristic metric does not 

consider dynamic temperature (the temperature evaluation and schedule are pre-

determined offline, and thus lack runtime flexibility), nor does it provide an optimal 

solution for the static scheduling problem. 

Chrobak et al. [91] examined temperature-aware scheduling problems and formalized 

a number of algorithms used in both offline and online scenarios. This is one of the 

first papers to undertake a theoretical analysis of thermal aware scheduling on a 

microprocessor. The objective of offline scheduling is to get a schedule which 

maximizes the number of tasks that meet their deadline. There are several important 
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conclusions: 1) a real-time task set with properties (e.g. the release time, deadline and 

heat contribution) is suitable for studying scheduling problems in real-time embedded 

systems; 2) computing the optimal offline schedule is NP-hard, even when all tasks 

are released at the same time and have equal deadlines. 

This paper was one of the first to formalize thermal-aware scheduling. The premise is 

that hardware thermal management can continuously monitor and control the 

temperature using a feed-back loop policy which simply stopped the processor when 

it overheated and resumed execution after the next fixed-length idle slot without any 

consideration of the overhead. This form of thermal management is even simpler than 

the stop-go policy [20], and is impractical due to an oversimplified model and some 

unrealistic assumptions. The main reasons are: 

• Although a task set with real-time features is used for analysis and discussion, 

all tasks are oversimplified with the same execution time.   

• A simple analytical thermal model is used which does not adequately describe 

the exponential temperature transient during the heating and cooling stages.  

Murali et al. [93] take advantage of convex optimization to solve the optimal 

scheduling for minimizing the peak temperature subject to deadline feasibility. The 

algorithm is completed in two phases: an offline and an online phase. In the off-line 

phase, an optimal frequency assignment for the different processors in order to meet a 

particular workload constraint, while satisfying the thermal constraints, is determined. 

Then, the convex algorithm is used to solve the optimal frequency for different 

workload requirements and initial core temperature values. Lastly, the frequency 

assignments for different cores under different workloads and initial temperature 

combinations are stored in a table for online look-up. In the online phase, the thermal 

management unit tracks both the application workload and temperature on a core, and 

then finds the optimal frequency from the table and applies DFS periodically (they 

refer to this DFS as Pro-Temp).  The main contributions are: 

• Convex optimization is shown to be applicable for this frequency assignment 

in STAS as the frequency constraints are quadratic, rather than linear (if all the 

constraints and objectives are linear, then linear programming can solve the 

optimization problem).  
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• Pro-Temp is shown to be superior to basic DFS in terms of the task waiting 

time and the duration that the temperature exceeds the threshold.  

However, the assumptions and the thermal model used are limiting factors:  

• A core must have one thermal sensor to track the temperature for online use. 

This may limit applicability for future many-core systems. 

• The thermal model only considers the thermal resistance (thermal capacitance 

is ignored). Thus, only a steady state temperature analysis can be used. This is 

not practical as it assumes that the temperature between any two consecutive 

DFS time points reaches steady state without the temperature transient.  

• The power consumption per core is only decided by the core frequency 

irrespective of the task characteristics. This oversimplification is not realistic 

as the power consumption for a core also varies on a cycle by cycle (and task 

by task) basis.   

Chantem et al. [94] examined static thermal aware scheduling to minimize the peak 

temperature. Both an optimal solution and a heuristic solution were proposed. Similar 

to the work of [95] and [57], their optimal solution is obtained using mixed integer 

linear programming (MILP) for a non-preemptive task set based on a task graph. 

Some important observations from their work are: 

• The core power consumption only changes at the beginning or end of task 

execution. 

• The temperature of a core experiences a rapid change with a change in power. 

• The leakage power is significant and cannot be ignored in the calculation due 

to its non-linear relationship with temperature. Leakage power can be 

approximated by a linear function, in the operating temperature ranges of 

integrated circuits, with roughly 5% error. 

• The thermal model can be further refined by using multiple thermal elements 

for each core, where the finer granularity of each core could reflect the thermal 

effects at the micro-architecture level.  

They explicitly state two limitations of their optimal solver: 1) the MILP formulation 

cannot be used to efficiently solve large problem instances and 2) the steady-state 
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analysis used in the MILP-based implementation (a linear optimization problem 

cannot deal with the non-linear transient temperature when thermal capacitance is 

considered) may overestimate the chip peak temperature when the task execution 

times are short compared to the RC thermal time constants of the cores. 

Their heuristic solution uses a scheduling framework where either steady-state or 

transient thermal analysis can be used. This framework takes advantage of a binary-

search based method to iteratively improve the solution. However, the iteration 

process uses HotSpot to carry out the transient temperature calculation, and thus the 

time complexity of the framework depends on the HotSpot overhead. 

Coskun et al. [95] explored the benefits of thermal aware scheduling for MPSoC 

using two different categories: static and dynamic scheduling. Static scheduling is 

modelled using integer linear programming. Different goals (e.g. maximizing 

performance, minimizing thermal hot spots (temperature) and gradients, minimizing 

and balancing thermal hot spots, balancing energy consumption and minimizing total 

energy) are studied for solving the optimal solution. However, a temperature threshold 

is not considered as a constraint in their STAS implementation.  

In terms of STAS, several problems have been identified in this section. These 

problems can be summarized as: 1) Much of the STAS research is only applicable to a 

uniprocessor scenario, and does not consider the complexity of the spatial thermal 

distribution introduced by multiprocessor systems;  2) Linear programming (convex 

optimization) [93][94][95] can be used for STAS, but its linear (quadratic) constraints 

cannot deal with a transient temperature model ; 3) Some of the proposed algorithms 

[95][93], which optimize performance, energy and temperature, allow the core 

temperature to go above the thermal threshold (that is, they do not adhere to a hard 

temperature threshold constraint and instead allow the processor overheat) and then 

only minimize  the overheating duration); 4) To the best of our knowledge, there is no 

STAS schedulability test for multiprocessor in the relevant literature due to the high 

computational overhead of current thermal models (a schedulability test without any 

thermal consideration is an NP problem). 
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2.4.3 Dynamic TAS 

Dynamic TAS (DTAS) is a relatively new research area. Current DTAS approaches in 

the literature fall into three categories, according to the way the temperature 

information is used: 1) Look-current scheduling is based on the temperature at current 

time instance; 2) Look-backward (historical) scheduling uses a historical temperature 

profile to guide scheduling; and 3) Look-forward (predictive) scheduling uses the 

predicted future temperature or predicted temperature trend to guide scheduling. 

 

2.4.3.1 Look-Current 

Stavrou and Trancoso [92] examined TAS on CMP. With CMP, the increasing number 

of cores and the reducing feature size can lead to an extremely high power density and 

high thermal dissipation on chip. Additionally, the thermal distribution on chip can 

have dramatic differences between locations, resulting in a significant temperature 

gradient in both space and time. The contributions are the identification and 

clarification of the thermal issues that arise from these CMP (many-core) chips, as 

well as the proposal and evaluation of several heuristic dynamic thermal-aware 

scheduling policies. These include:   

• The observation that an accurate and efficient thermal model is necessary for 

estimating and evaluating the temperature of each core on chip. It must 

consider the heat exchange between adjacent cores, the lateral heat dissipation 

on the cross-sectional area at the edge of the chip and the vertical heat 

emission from chip to ambient.  

• The reliability problem of CMP is posed here to emphasize the fact that CMP 

has a greater failure rate compared to a single core due to thermal issues. 

Stavrou and Trancoso also state that thermal-aware floorplanning is likely to be less 

efficient when applied to CMP, as core-level decisions are unlikely to be optimal 

when several cores are packed on the same chip due to the interaction among cores. 

The paper also introduces the concept of thermally different locations (TDL). The 

important implication of TDL is that if a task is allocated to a core, it will produce the 

same thermal effects and distribution as it would when allocated to another core of the 
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CMP with the same TDL. Figure 2.3 shows that for a CMP with 𝑛𝑛2 cores, there will 

be ⌈𝑛𝑛 2⁄ ⌉ ∙ (⌈𝑛𝑛 2⁄ ⌉ + 1)/2  different possible TDLs (each TDL has same letters on 

cores). 

A A

A A

A B A

B C B

A B A

(a) n=2, TDL=1 (b) n=3, TDL=3

A B B A

B C C B
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A
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A B C B A

(d) n=5, TDL=6
 

Figure 2.3: A CMP and its corresponding TDL 

A thermal-aware scheduler for CMP, implemented in a real OS, can enable system-

level (high level) thermal optimization without the need for micro-architecture 

changes. Several scheduling policies are mentioned in [92], including:  

• Coolest: The ready task (which could be a process or a thread in the ready-to-

run list) is assigned to the coolest idle core (shown as “C” in Figure 2.4). This 

is the simplest thermal-aware algorithm and the easiest to implement. 

• Neighbour-Aware: For each available core, this algorithm calculates a cost 

function (given in Equation 2.11) and selects the core that has the minimum 

cost (as shown as “N” in Figure 2.4). This cost function takes into 

consideration the following: 1) The temperature of the candidate core (𝑘𝑘𝑑𝑑); 2) 

The average temperature of direct neighbour cores (𝑘𝑘�𝐷𝐷𝐴𝐴 ); 3) The average 

temperature of diagonal neighbour cores (𝑘𝑘�𝑑𝑑𝐴𝐴); 4) The number of non-busy 

direct neighbour cores (𝑁𝑁𝐵𝐵𝐷𝐷𝐴𝐴); 5) The number of “free” edges of the candidate 
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core (𝑁𝑁𝑓𝑓𝑙𝑙). The weight ai (in Equation 2.11) implies the importance of these 

different aspects and its value is determined statistically by experimentation to 

match the characteristics of the layout of a specific CMP. The rationale is that, 

the lower the temperature of the core’s neighbourhood, the easier it will be to 

maintain its temperature at a low level due to inter-core heat exchange. Cores 

at the edge of the chip benefit due to the increased heat loss. 

 𝐶𝐶𝐶𝐶𝑃𝑃𝐻𝐻 = 𝐻𝐻1 ∙ 𝑘𝑘𝑑𝑑 + 𝐻𝐻2 ∙ 𝑘𝑘�𝐷𝐷𝐴𝐴 + 𝐻𝐻3 ∙ 𝑘𝑘�𝑑𝑑𝐴𝐴 + 𝐻𝐻4 ∙ 𝑁𝑁𝐵𝐵𝐷𝐷𝐴𝐴 + 𝐻𝐻5 ∙ 𝑁𝑁𝑓𝑓𝑙𝑙 (2.11) 
 

40 32 30 32

40 12 29 19

30 32 16 18

32 16 15 16

c

N
 

Figure 2.4: Example of TAS polices [48] 

• Threshold neighbourhood: Uses the same cost function as neighbourhood, but 

schedules a task only if the cost function is lower than the pre-defined 

threshold. This means that a task should only be executed on a “thermally 

good” core, thus avoiding greedily choosing an idle, but thermally adverse, 

core. This approach would appear to affect the performance to a certain degree. 

However, in some cases the policy can improve the performance by reducing 

the frequency of DTM.    

• Maximum Scheduling Temperature (MST): MST is not an algorithm by itself, 

but can be used with the previously mentioned algorithms. MST prohibits 

scheduling a task for running on idle cores when their temperature exceeds a 

predefined threshold. The temperature set by MST should be lower than the 

temperature which triggers DTM. The gap between these two critical 

temperature points needs to be carefully tuned by system designers. The 

rationale behind this is to avoid the triggering jitters of DTM, thus allowing 

the idle core to cool down for a sufficient interval.   

The paper also gives some meaningful metrics for evaluating these heuristic policies 
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to verify if these algorithms produce better thermal effects and performance trade-offs. 

These metrics include:  

• Average Temperature: This metric represents the average temperature of the 

cores on chip during the simulation period. The average temperature is given 

by Equation 2.12, where 𝑘𝑘𝑑𝑑𝑠𝑠 is the temperature of core i during the simulation 

interval 𝐻𝐻, 𝑆𝑆𝑛𝑛 is the total number of simulation intervals, and n is the number 

of cores on chip. 

 
𝐴𝐴𝐴𝐴𝑒𝑒𝑟𝑟𝐻𝐻𝐻𝐻𝑒𝑒 𝑘𝑘𝑒𝑒𝑇𝑇𝑒𝑒𝑒𝑒𝑟𝑟𝐻𝐻𝐻𝐻𝑇𝑇𝑟𝑟𝑒𝑒 = 𝑘𝑘� = �[

∑ (𝑘𝑘𝑑𝑑𝑠𝑠)𝑑𝑑
𝑑𝑑=0

𝑛𝑛 ∙ 𝑆𝑆𝑛𝑛
]

𝐺𝐺𝑇𝑇

𝑠𝑠=0

 (2.12) 

• Average Spatial Diversity: The spatial diversity indicates the variation in the 

temperature among the cores at a given time. The average spatial diversity is 

the average of the spatial diversity during the whole simulation period and is 

given by Equation 2.13. The bigger the value, the worse the thermal effects are 

as a large temperature gradient could accelerate the aging of the chip and lead 

to an unreliable state. In the average spatial diversity equation, 𝑘𝑘�𝑠𝑠 = 1/𝑛𝑛 ∙

∑ 𝑘𝑘𝑑𝑑𝑠𝑠𝑑𝑑
𝑑𝑑=0 ,  is the average chip temperature during the interval t. This metric has 

some shortcomings: it cannot reflect the local thermal difference and cannot 

reveal the distribution of hotter and cooler cores. For example, the scattered 

distribution of hotter cores is much better than putting them together, but if the 

temperature of each core is unchanged, this value remains the same.  

 
𝐴𝐴𝐴𝐴𝑒𝑒𝑟𝑟𝐻𝐻𝐻𝐻𝑒𝑒 𝑆𝑆𝑒𝑒𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐶𝐶 𝐷𝐷𝐻𝐻𝐴𝐴𝑒𝑒𝑟𝑟𝑃𝑃𝐻𝐻𝐻𝐻𝐷𝐷 =  �[

∑ |𝑘𝑘𝑑𝑑𝑠𝑠 − 𝑘𝑘�𝑠𝑠|𝑑𝑑
𝑑𝑑=0

𝑛𝑛 ∙ 𝑆𝑆𝑛𝑛
]

𝐺𝐺𝑇𝑇

𝑠𝑠=0

 (2.13) 

• Average Temporal Diversity: The average temporal diversity measures the 

variation of the average chip temperature, across all cores, over the whole 

simulation progress. It is defined by Equation 2.14.  

 
𝐴𝐴𝐴𝐴𝑒𝑒𝑟𝑟𝐻𝐻𝐻𝐻𝑒𝑒 𝑘𝑘𝑒𝑒𝑇𝑇𝑒𝑒𝐶𝐶𝑟𝑟𝐻𝐻𝐶𝐶 𝐷𝐷𝐻𝐻𝐴𝐴𝑒𝑒𝑟𝑟𝑃𝑃𝐻𝐻𝐻𝐻𝐷𝐷 = �[

∑ |𝑘𝑘�𝑠𝑠 − 𝑘𝑘�|𝐺𝐺𝑇𝑇
𝑗𝑗=0

𝑛𝑛 ∙ 𝑆𝑆𝑛𝑛
]

𝐺𝐺𝑇𝑇

𝑑𝑑=0

 (2.14) 
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• Efficiency: Efficiency is a metric relating to the performance that the CMP 

achieves under thermal constraints compared to its full potential. Efficiency is 

defined (Equation 2.15) as the ratio between the time required for the 

execution of the workload (Workload Execution Time) under thermal 

constraints and the execution time required if no thermal constraint existed 

(Potential Execution Time). The maximum value for the Efficiency metric is 1. 

 
𝐸𝐸𝑓𝑓𝑓𝑓𝐻𝐻𝑃𝑃𝐻𝐻𝑒𝑒𝑛𝑛𝑃𝑃𝐷𝐷 =

𝑃𝑃𝐶𝐶𝐻𝐻𝑒𝑒𝑛𝑛𝐻𝐻𝐻𝐻𝐻𝐻𝐶𝐶 𝐸𝐸𝑒𝑒𝑒𝑒𝑃𝑃𝑇𝑇𝐻𝐻𝐻𝐻𝐶𝐶𝑛𝑛 𝑘𝑘𝐻𝐻𝑇𝑇𝑒𝑒
𝑊𝑊𝐶𝐶𝑟𝑟𝑘𝑘𝐶𝐶𝐶𝐶𝐻𝐻𝑑𝑑 𝐸𝐸𝑒𝑒𝑒𝑒𝑃𝑃𝑇𝑇𝐻𝐻𝐻𝐻𝐶𝐶𝑛𝑛 𝑘𝑘𝐻𝐻𝑇𝑇𝑒𝑒

𝑃𝑃𝐶𝐶𝐻𝐻𝑒𝑒𝑛𝑛𝐻𝐻𝐻𝐻𝐻𝐻𝐶𝐶 𝐸𝐸𝑒𝑒𝑒𝑒𝑃𝑃𝑇𝑇𝐻𝐻𝐻𝐻𝐶𝐶𝑛𝑛 𝑘𝑘𝐻𝐻𝑇𝑇𝑒𝑒 = �
𝐿𝐿𝐻𝐻𝑓𝑓𝑒𝑒𝐻𝐻𝐻𝐻𝑇𝑇𝑒𝑒(𝑃𝑃𝑟𝑟𝐶𝐶𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑑𝑑)
𝑁𝑁𝑇𝑇𝑇𝑇𝑏𝑏𝑒𝑒𝑟𝑟 𝐶𝐶𝑓𝑓 𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒𝑃𝑃

#𝑝𝑝𝑟𝑟𝑜𝑜𝑑𝑑𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠

𝑑𝑑=1

 (2.15) 

 

2.4.3.2 Look-Backwards 

Coskun et al. [29] explored the benefits of thermal aware scheduling for MPSoC 

using two different categories: static and dynamic scheduling. The dynamic 

scheduling algorithm is the random policy with temperature-aware adaptation [26] 

(referred to as Adaptive-Random). The Adaptive-Random algorithm uses load 

balancing based on the historical and current temperature to reduce hot spots and 

temperature gradients, with minimal additional complexity in the scheduler. Two 

benefits of Adaptive-Random are highlighted: 1) A low computational overhead 

making the algorithm suitable for use in the operating system; 2) Better load 

balancing than that which is achievable by making a decision based solely on the 

instantaneous temperature. 

Adaptive-Random updates workload core probabilities at each scheduling interval 

based on the recorded temperature history on the chip. For example, given two idle 

cores at the same temperature, the coolest policy (described in Section 2.4.3.1) would 

not differentiate between cores. However, Adaptive-Random would prefer the core 

which had a lower average temperature in its past history window. The rationale is 

that the lower average temperature in the history of one core suggests this core and its 

neighbours have been under lower thermal stress. The probability of allocating the 

task of each core is updated based on these history temperatures: if the temperature is 
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higher than the threshold in the past window, the probability is set to 0; if the 

temperature is a little lower than the threshold, the probability is not updated; and if 

the temperature is low enough (lower than a pre-defined value), the probability is 

increased by 𝛽𝛽/𝑘𝑘𝑑𝑑𝑎𝑎𝑙𝑙  , where 𝑘𝑘𝑑𝑑𝑎𝑎𝑙𝑙  is the core’s average temperature in the history 

window and 𝛽𝛽 is an empirical parameter. Cores with higher probabilities will then be 

randomly chosen for task allocation. 

 

2.4.3.3 Look-Forward 

Coskun et al. [70] proposed an autoregressive moving average (ARMA) predictor to 

estimate the temperature in next time slot based on the current temperature reading 

from thermal sensors and the workloads of the running task. According to the 

estimated temperature in the next time slot, the thermal-aware scheduler can carry out 

the task allocation, migration and DTM on cores to reduce the bad thermal effects. 

A number of observations and assumptions are made: 1) The workload characteristics 

are correlated during short time windows; 2) The temperature changes slowly due to 

the large thermal time constant; 3) The underlying data for the ARMA model is 

stationary. Therefore, a set of workload data with a fixed pattern can train the model 

by correlating the work load data in a short time window.  Three steps are carried out 

to build the model by training: 1) order identification, 2) coefficient calculation and 

estimation and 3) model checking. Test showed that the prediction error of the ARMA 

model is less than 10%.  

If the workload changes and the trained model no longer fit the runtime workload, it 

must be dynamically adapted. Therefore, a method that can detect the workload 

changes over time was developed by using statistical characteristics of the residual 

signals. As a result, this method can predict and detect the future workload changes so 

as to estimate the future temperature trends. 

In addition, proactive thermal-aware scheduling, in both DVFS and migration 

scenarios, was implemented. This proactive scheduling was compared to several 

reactive policies without using prediction. The results (using both a simulator and an 

UltraSPARC T1 processor) demonstrate that their proactive temperature-aware task 
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allocation for MPSoC is able to significantly reduce the adverse thermal effects with a 

low calculation overhead.  

However, there are some disadvantages. Firstly, this approach still relies on the 

thermal sensor on each core. Secondly, the predictive time interval is relatively long, 

usually 500ms, or more, ahead of the current time instant. A long interval is needed as 

building and adapting the ARMA model requires hundreds of milliseconds, and thus 

this technique is not feasible for fine-grained scheduling. Thirdly, the predicted 

temperature is still used to passively trigger the high overhead DTM (e.g. DVFS in 

this case). Lastly, the ARMA model heavily depends on the training data set. It may 

deal well with repeated or fixed workload patterns, but does not perform as well with 

arbitrary workloads. 

Yeo et al. [71] also developed a predictive thermal model (called PDTM) that can be 

used to guide real-time scheduling. Their PDTM is composed of two parts: the 

application-based thermal model (ABTM) and the core-based thermal model (CBTM). 

ABTM is a training model that uses the recursive least square method to estimate the 

coefficients of a linear polynomial which builds the relationship between workloads 

and temperature directly. ABTM is very similar to the linear regression training [69] 

and is used to estimate the temperature according to the system event patterns of the 

training application set. After training, this polynomial can predict the short interval 

temperature 𝑘𝑘𝑑𝑑𝑝𝑝𝑝𝑝 according to task (application) workloads profiled offline. CBTM is 

a simple thermal model that assumes an exponential temperature transient on each 

core in the multiprocessor. This simplified thermal model (given in Equation 2.16) is 

similar to Equation 2.8 and is only applicable to uniprocessors: 

 𝑘𝑘𝑑𝑑𝑜𝑜𝑟𝑟𝑙𝑙(𝐻𝐻) = 𝑘𝑘𝑠𝑠𝑠𝑠 − (𝑘𝑘𝑠𝑠𝑠𝑠 − 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠) × 𝑒𝑒−𝑠𝑠𝑠𝑠 (2.16) 

where 𝑘𝑘𝑑𝑑𝑜𝑜𝑟𝑟𝑙𝑙(𝐻𝐻), 𝑘𝑘𝑠𝑠𝑠𝑠  and 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠  are the transient temperature, steady temperature and 

initial temperature, respectively. 𝑏𝑏 is the temperature time constant.  

ABTM and CBTM are then combined together to predict the temperature in the near 

future using a simple heuristic accumulation, as: 
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 𝑘𝑘𝑝𝑝𝑟𝑟𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 = 𝑤𝑤𝑠𝑠𝑘𝑘𝑑𝑑𝑝𝑝𝑝𝑝 + 𝑤𝑤𝑙𝑙𝑘𝑘𝑑𝑑𝑜𝑜𝑟𝑟𝑙𝑙 
𝑤𝑤𝑠𝑠 + 𝑤𝑤𝑙𝑙 = 1  (2.17) 

where 𝑤𝑤𝑠𝑠 and 𝑤𝑤𝑙𝑙 are the empirical weights to balance between ABTM and CBTM. 

After obtaining the predictive temperature in next time slot, the scheduler can actively 

move a task from a hotter core to a cooler core, or decrease the task’s priority on the 

hot core while increasing the task’s priority on the cold core. It is shown that PDTM 

outperforms the original DTM in reducing the average temperature by about 7%, the 

performance overhead by 0.15%, and the peak temperature by about 3ºC.  

This algorithm has similar disadvantages with [70]: Firstly, it still relies on thermal 

sensor readings and the long predictive time interval is only applicable in a very 

coarse-grained way. Secondly, the accuracy of ABTM heavily depends on the training 

task set. Lastly, CBTM is not accurate as the simplified exponential thermal model 

cannot be applied in a multi-core scenario due to inter-core thermal coupling [92][65].  

DTAS is a relatively new research topic, with little in common with the more mature 

DTM policies. Each of the DTAS techniques in the three categories have some 

weaknesses: 1) Look-current techniques (e.g. coolest and neighbour-aware) only 

consider the present temperature information, and do not try to use future core 

temperature; 2) Look-backwards is based on intuitive and empirical conclusions (that 

a lower temperature in the thermal history would be better for task allocation) and can 

result in an inferior thermal profile compared to Look-current [92]; 3) Current look-

forward implementations (e.g. ARMA and PDTM) require thermal sensors and have a 

long predictive interval making them unsuitable for fine-grained scheduling. The look 

forward prediction relies on the training workload which can impact on accuracy. 

Additionally, the thermal model used in PDTM is oversimplified and is not accurate 

for multiprocessor systems. 

 

2.5 Discussion 

After investigating the related literature on high level thermal optimization and 

management, we have identified several areas that could be further developed. 
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Firstly, the computational efficiency and accuracy of the power/thermal model is very 

critical in all the thermal simulation, estimation and optimization topics mentioned 

above. The thermal models used in current research have several shortcomings: 1) 

Some thermal models (e.g. TEMPEST) are only used for uniprocessors, and cannot be 

applied to a multi-core scenario; 2) Some thermal models (e.g. TSIC) use  inaccurate 

heuristic or empirical thermal modelling that is very hard to adapt for different layouts 

and architectures; 3) Some thermal models [93][94] used in STAS only consider the 

steady-state temperature and ignore the transient temperature because of the 

limitations in the solving algorithm (e.g. linear programming), and thus the 

temperature error is large, even when using a fine-grained time step; 4) Some thermal 

models (e.g. HotSpot or the FEM approach) provide an accurate temperature 

estimation when used for offline thermal simulation, but require a computational 

overhead which makes them completely unsuitable for online simulation (e.g. with 

DTAS); 5) Current thermal models update the temperature in a time-triggered manner 

(that is, with a fixed time step) and thus introduce additional (and possibly 

unnecessary) computational overhead; 6) Much of the research related to thermal-

aware scheduling [90][92][57] assumes that the leakage power is invariant (that is a 

non-temperature-dependent leakage model is assumed). While these assumptions 

simplify the problem by skipping the power-temperature iteration, they can lead to 

unrealistic thermal results. Therefore, current thermal estimation and modelling does 

not sit well amongst the various competing factors: e.g. computational efficiency, 

estimation accuracy, updating period and leakage power. 

Secondly, STAS, while being more mature than DTAS, still suffers from the use of 

inaccurate or overly computationally complex thermal models. The use of inaccurate 

models severely limits STAS’s practicality, while the use of computationally complex 

models limits the size and the types of problems that can be addressed. For example, 

to the best of our knowledge, there is no STAS schedulability test for multiprocessor 

due to the high computational overhead of current thermal models (a schedulability 

test without any thermal consideration is already an NP problem). Simplifying the 

thermal model may allow this to be better addressed. 

Lastly, to be effective, DTAS requires fine grained real-time temperature information 

from either thermal sensors or thermal models. As discussed previously, the relatively 
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long thermal response latency associated with DTS makes them unlikely candidates 

for directly driving DTAS. Thermal models (or thermal models calibrated by DTS) 

may be more appropriate. However, the overhead of these thermal simulators must be 

kept as low as possible so that they can be integrated with the task scheduling process.  

Having reviewed the current research, it is fairly obvious that the main limiting factor 

in high level thermal optimization and management is the thermal feedback. If our 

aim is to improve high level thermal optimization and management, then it is 

important that we address this issue.  

Specifically, in the subsequent chapters, this thesis further develops and addresses the 

following research topics: 

• To improve the performance and accuracy of the power/thermal model, we 

propose a fast event-driven thermal estimator which can be used in both online 

and offline scenarios. This thermal estimator will need to have a very low 

computational overhead, with an acceptable accuracy, to be suitable for fined-

grained DTAS. As leakage power should not be ignored, a temperature-

dependent leakage model should be integrated into the fast thermal estimator 

to achieve better thermal accuracy. Moreover, this fast thermal model should 

be able to be combined and calibrated by direct thermal sensor readings to 

eliminate any long term temperature drift.  

• For STAS, a schedulability test for multiprocessor is investigated by using our 

fast thermal estimator with a full transient temperature analysis. This analysis 

will optimize for different goals (e.g. performance, peak temperature) under a 

strict temperature threshold in a real-time embedded system scenario.  

• For DTAS, we adapt our fast thermal estimator using the temperature-

dependent leakage model into a fine-grained scheduler. This would then allow 

us to quickly predict the future core temperature, and thus enable us to propose 

several look-forward policies to achieve better thermal effects. 
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Chapter 3  
A Fast Event-Driven Thermal Model 
 

Portions of this chapter were previously published in [3][4] of Appendix C, and have 

been reproduced with permission. Copyright on the reproduced portions is held by 

IEEE and ACM.  

As discussed in Chapter 2, the thermal models used in recent research have a number 

of disadvantages that limit how the model can be applied at the system level. These 

include:  

• An oversimplified model: The uniprocessor model [57] and its simple 

exponential thermal function [71] are assumed to be correct for the 

multiprocessor case. Thermal coupling between cores is ignored which can 

introduce significant errors [92][65][35]. 

• No transient temperature calculation: Many high level DTM and TAS 

mechanisms only use the steady-state temperature calculation for guidance, 

constraints and goals, and avoid the complexity of a transient temperature 

analysis [57][93][94][95][102]. Ignoring the thermal capacitance in the RC 

model, particularly when the temperature time constant is large and the task 

duration is relatively small will introduce errors [35].  

• Training-based and empirical analysis: The accuracy of these techniques 

heavily depends on the training data set [70][71] and the empirical parameters 

[92], and generally have a significant overhead.  

• Large overhead for thermal simulation: High accuracy thermal simulation 

requires significant computing resources and compute time. This overhead 

makes the fine-grained online scheduling necessary for both DTAS and STAS 

difficult to implement. 

To solve these problems, we propose an event-based approach that uses a pre-built 

LUT to evaluate the temperature more efficiently. We show that this approach can 

provide similar accuracy to that of a widely-used high accuracy thermal simulator, 

HotSpot [35]. In the next subsections we introduce some of the simplifying 
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assumptions which can further reduce the complexity of our proposed event-based 

approach. We start by introducing the fundamental model of the LUT for non-

leakage-dependent power (dynamic power). We then examine using the LUT-based 

temperature estimator for fast real-time scheduling (in Chapter 4), and then we 

formalise and extend it into a DTAS scenario involving leakage-dependent power (in 

Chapter 5). 

 

3.1 Methodology and Metrics 

We use a combination of both real applications and synthetic task sets to test our fast 

thermal simulator, and in the TAS experiments in following chapters. The real 

applications are first translated to a continuous power profile, and then to atomic 

power events. In all cases, we start with ANSI C source code. This is then compiled to 

the target architecture using GCC (version 2.95.3 for the ARM architecture used in 

the low power scenario in Chapter 4, and version 3.4.6 for the Alpha architecture used 

in the high power scenarios in Chapter 5. These were chosen as they are supported by 

SimpleScalar version 4.0 [41]. The binary image produced by GCC is executed on 

SimpleScalar and Wattch [43] to obtain a continuous power profile. In Chapter 5, we 

use our modified SimpleScalar-ARM for multiple ARM cores as described in 

Appendix A, while in Chapter 6 we use SimpleScalar version 4.0 and Wattch version 

1.2 for the Alpha architecture. 

In Chapter 3.2, we use the continuous power profiles generated above as the power 

input to HotSpot (version 5.0). We then use the highly accurate core-level temperature 

profile produced by HotSpot to compare with our fast LUT-based thermal estimator. 

As our estimator uses atomic power events (rather than a continuous power profile) as 

input, we need to convert the continuous power profile to an atomic power profile.  

The synthetic task sets (used in Chapter 4 and 5) are randomly generated atomic 

power events.  These synthetic power profiles are used as input to both HotSpot and 

our LUT-based thermal estimator for comparison purposes. The synthetic task sets are 

generated using Matlab code.  

To evaluate the accuracy and overhead of our LUT-based approach, we use the 
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following metrics: average temperature error (defined as the sum of the temperature 

differences divided by the number of compared samples), maximum temperature error, 

overall runtime (between other simulators and ours), and the average overhead of a 

thermal map update (this gives an indication of the task schedule overhead).  To 

evaluate TAS performance, we use the following metrics: peak temperature, average 

temperature, and average spatial/temporal diversity, which are defined in [92]. 

 

3.2 Power Events and their Profiling 

In much of the literature relating to TAS [90][92][91][93][94], the average power 

consumption of a task, or the section of a task, is obtained by simulation and is stored 

for later use by the allocation and scheduling algorithms. Based on our power 

profiling observations of a number of different applications, we observe that: 

• The power consumed by a task varies in the short term (it can even be 

different between clock cycles), but rapid power variance in the short term 

(less than several microseconds) is not able to introduce a large change in the 

core temperature due to the thermal mass of the core (usually the time constant 

of a typical CPU core is larger than 10 seconds8. The thermal mass of the core 

means that the core level power consumption of an entire task can be treated 

as a series of averaged power values, delineated by the significant power 

changes.  

• The power consumption changes dramatically only after the occurrence of 

some system event (i.e. allocation, deallocation, context switch, preemption, 

memory access, DVFS, interrupt blocking, etc.), and the temperature of the 

core experiences a temperature change following these significant power 

changes. The same observation is also introduced in [94]. Therefore, it can be 

concluded that the average power of a task, separated by the sudden changes 

in power, may be a good abstraction and assumption to use for high level TAS 

[90][94]. 

8 The duration from initial temperature change to steady-state temperature is usually long. Some chips 
(e.g. Intel Core i7 or Nvidia Fermi 100) take 35-75 seconds. However, the time constant does not 
means that the chip temperature is unchanged during this interval. 
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As a result, a continuous power profile may be able to be simplified to a sequence of 

constant power events. The definition of a power event used in this thesis is: 

Definition 2 (Power Event): A power event is associated with the (relatively 

instantaneous) increase or decrease in power generated by a core. The power profile 

is described by, and converted to, a sequence of these power events. 

We refer to these significant power changes, which can be captured and maintained by 

the OS kernel, as high level power events. The high level power events include: task 

allocation, deallocation, context-switch, migration, preemption, stop-go and DVFS. 

Any high level event can be converted into one or more power events eventually. For 

instance, task allocation and dealloction can be seen as power events, with an 

instantaneous power change at the beginning and end of the task; preemption can also 

be treated as a decrease in power followed by a power increase, while DVFS can be 

regarded as a power increase when the clock frequency or voltage rises and a power 

decrease when they are scaled down. Thus, instead of using a time driven 

methodology which updates the core temperature at fixed time intervals, like HotSpot 

or TSIC, we use an event driven thermal model to update the core temperature only 

when an event occurs. These events are managed dynamically by the scheduler. 

Power events can be determined by profiling the power consumption of an application 

(or task). In Chapter 2, we discussed both the simulator-based and counter-based 

approaches to obtain the power profile of a task. In a conventional simulator, the 

sampling resolution for determining power consumption can be customized by user. 

Usually, the power sampling rate is around 100us to 1ms, as a very fine-grained 

power profile is not necessary for high level optimization due to the thermal mass of 

the system. As we are using an event driven approach, we use the average power 

consumption between consecutive power events. The power events are then the 

critical points where large power variations can induce significant temperature 

changes in the core. We define a threshold value 𝑃𝑃𝐴𝐴𝐴𝐴, to determine power events, with 

a smaller 𝑃𝑃𝐴𝐴𝐴𝐴 resulting in a finer-grained power profile. For example, a more coarse 

grained power profile is likely to be suitable for DTAS, while a finer granularity 

would be more appropriate for thermal simulation. Figure 3.1 shows two different 

power profiles decomposed into atomic events for different 𝑃𝑃𝐴𝐴𝐴𝐴 values. The dashed 

lines represent the original power profile and the solid lines show the power profile 
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approximated as power events.  

 
Figure 3.1: Power event profiling 

Algorithm 3.1 shows how to use 𝑃𝑃𝐴𝐴𝐴𝐴 to segment a continuous power profile. Every 

new sample is compared to the average power, 𝐻𝐻𝐴𝐴𝐻𝐻𝑃𝑃. That is, the average power 

value from the last event, 𝐶𝐶𝐻𝐻𝑃𝑃𝐻𝐻𝐴𝐴𝐸𝐸,  to the current sample point. If the difference 

between the current power sample value 𝑃𝑃𝑠𝑠 and average power value 𝐻𝐻𝐴𝐴𝐻𝐻𝑃𝑃  is larger 

than 𝑃𝑃𝐴𝐴𝐴𝐴, a new power event is generated and recorded, as indicated in Figure 3.1. 

This algorithm is relatively simple and can be easily integrated into either an offline 

or online power profiling application, with no need to traverse the whole sample 

sequence. Therefore, the time complexity of Algorithm 3.1 for offline profiling is 

𝛩𝛩(𝑛𝑛), where 𝑛𝑛 is the number of sampling points, while for the online case, the time 

complexity is 𝛩𝛩(1). In Algorithm 3.1, one power event is denoted by 𝐻𝐻𝑒𝑒(𝐻𝐻,𝑃𝑃, 𝐶𝐶𝐶𝐶𝑃𝑃), 

where 𝐻𝐻𝑒𝑒. 𝐻𝐻 is the time point of event occurrence, 𝐻𝐻𝑒𝑒.𝑃𝑃 is the power increment or 

decrement (a positive number indicates an increment, while a negative number 

indicates a decrement) and 𝐻𝐻𝑒𝑒. 𝐶𝐶𝐶𝐶𝑃𝑃 indicates the location of the power event (usually, 

it represents a core ID or node ID). 
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Algorithm 3.1: Power Event Profiling(𝑷𝑷𝟎𝟎…𝒕𝒕,𝑷𝑷𝑨𝑨𝑨𝑨) 
Input: 𝑃𝑃0…𝑠𝑠 is the power sampling value from start to current time 𝐻𝐻, 𝑃𝑃𝐴𝐴𝐴𝐴 is the threshold  
Output: an array of power events, element is 𝐻𝐻𝑒𝑒(𝐻𝐻𝐻𝐻𝑇𝑇𝑒𝑒,𝑒𝑒𝐶𝐶𝑤𝑤𝑒𝑒𝑟𝑟, 𝐶𝐶𝐶𝐶𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝐶𝐶𝑛𝑛) 
𝐶𝐶𝐻𝐻𝑃𝑃𝐻𝐻𝐴𝐴𝐸𝐸 = 0; 
𝐻𝐻𝐴𝐴𝐻𝐻𝑃𝑃 = 𝑃𝑃0; 
𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃 = 0; 
WHILE 𝐻𝐻 ≥ 0 
      IF |𝑃𝑃𝑠𝑠 − 𝐻𝐻𝐴𝐴𝐻𝐻𝑃𝑃| ≥ 𝑃𝑃𝐴𝐴𝐴𝐴 THEN 
            Generate a power event and record 𝐻𝐻𝑒𝑒(𝐻𝐻,𝑃𝑃𝑠𝑠 , 𝐶𝐶𝐶𝐶𝑃𝑃) in power event array; 
            𝐻𝐻𝐴𝐴𝐻𝐻𝑃𝑃 = 𝑃𝑃𝑠𝑠;  𝐶𝐶𝐻𝐻𝑃𝑃𝐻𝐻𝐴𝐴𝐸𝐸 = 𝐻𝐻; 𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃 = 0; 
      ELSE 
            𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃 = 𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃 + 𝑃𝑃𝑠𝑠; 
            𝐻𝐻𝐴𝐴𝐻𝐻𝑃𝑃 = 𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃 (𝐻𝐻 − 𝐶𝐶𝐻𝐻𝑃𝑃𝐻𝐻𝐴𝐴𝐸𝐸)⁄ ;  
      END IF 
      𝐻𝐻 = 𝐻𝐻 + 1; 
      Sample the next power consumption to 𝐻𝐻; 
END WHILE 

We next examine the effect of using atomic power events on the thermal 

characteristics on a single processor core. To validate that the average atomic power 

profile produces a temperature effect with similar accuracy to that of the original 

power profile, two experiments are carried out: 1) the synthetic continuous power 

input from Figure 3.1 is converted to atomic power events (𝑃𝑃𝐴𝐴𝐴𝐴  =  3𝑊𝑊 ) using 

Algorithm 3.1, and 2) an MPEG2 decoder power profile, using SimpleScalar and 

Wattch for Alpha 21264 [35], is generated and converted to atomic power events 

(𝑃𝑃𝐴𝐴𝐴𝐴  =  1.2𝑊𝑊). Both power profiles are input to HotSpot [35] and the corresponding 

temperature profile is obtained. In both cases, the temperature/leakage power 

dependence is not considered. HotSpot uses the default thermal parameter settings, 

and the die area and heat sink area are 256mm2 (16mm×16mm) and 900mm2 

(30mm×30mm), respectively. Both the original continuous power input and the 

atomic power profile (obtained from Algorithm 3.1) are plotted as the lower two 

curves in Figure 3.2 and Figure 3.3. The two upper curves in Figure 3.2 and Figure 

3.3 show the temperature traces obtained from the original continuous power profile 

and the atomic power profile. Examining the temperature traces of both figures, we 

see that there are instantaneous differences in temperature, but the long term 

characteristic is similar in both cases. The average temperature and worst case 

temperature errors for the first experiment are 0.021°C and 0.08°C, respectively.  

While the average temperature and worst case temperature errors for the second 

experiment are 0.0085°C and 0.081°C, respectively.  These two experiments show 

that converting a power profile, with an appropriate granularity (𝑃𝑃𝐴𝐴𝐴𝐴) produces short 

term inaccuracies, but in the longer term is accurate enough to represent the original 
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continuous power profile.  

  
Figure 3.2: Temperature Trace Comparison for Synthetic Power Input  

 

 
Figure 3.3: Temperature Trace Comparison for MPEG2 decoder power profile  

 

3.3 Thermally Different Location 

A reasonable abstraction suitable for high level thermal-aware optimization, is to treat 
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the multiprocessor chip as several rectangular regions, where each rectangular region 

represents a complete processor (with cache, local memory and an inter-

communication block such as a network-on-chip router), as shown in Figure 3.4 

[57][94][92][90]. Usually, most chip layouts have a symmetrical geometric pattern. 

This is particularly the case for many-core processors. We explicitly define the 

concept of thermally different location (TDL) which is proposed in [92], but has no 

formal definition. 

A
B B

C
B B

A

A B A

A B A

A D

B EC

A B B A
B C C B
B C C B
A B B A

4×4 CMP 2×3 CMP

7Cores MPSoC 5Cores MPSoC  
Figure 3.4: Core/module level abstraction 

Definition 1 (Thermally Different Location): A thermally different location (TDL) is 

defined for sets of homogeneous cores which are symmetrical in their relative location, 

and thus have similar thermal characteristics. The important implication of TDL is 

that if a task is allocated to a core in a TDL, it will produce the same thermal effects 

and thermal distribution as it would when allocated to another core of the CMP (or 

MPSoC) with the same TDL. 

The TDLs for a number of abstracted CMP and MPSoC systems are given in Figure 

3.4. Here, the different characters in the core regions denote the TDLs, with the cores 

having the same TDL (same character) being both symmetrical in layout and having 

identical architectures. We will use this concept when we build the LUT, as the 

number of TDLs in the layout decides the number of LUTs that need to be built. It 

should be noted that in an MPSoC with zero core (PE) regularity, there will be no 

common thermal locations. However this technique is meant to be more general and 

as such, TDLs are a useful means for reducing computational overhead in more 
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regular structures. 

 

3.4 Thermal Model 

The abstracted set of rectangular regions representing the individual cores in a many-

core system can be represented as a thermal RC network, described by a set of 

differential equations. This thermal RC model is a good choice for high level 

estimation for both 2D and 3D ICs due to the accuracy and efficiency of thermal 

estimation [11][35]. HotSpot solves a thermal RC model, at a fixed simulation 

interval, resulting in a large computational overhead. We have already described the 

detailed thermal model (Figure 2.2) and its corresponding differential equation set 

(Equation 2.9) in Chapter 2.2.1. In this work, we use the same thermal RC network 

for building the LUTs.  

Here, we give a simplified example of a 2×2 CMP thermal RC network and its 

equation set, shown in Figure 3.5 and Equation 3.1. In this simplified model, there are 

only 4 power input nodes (black dots in Figure 3.5 representing the cores) in the 

silicon layer which in this case is directly connected to the ambient, without any heat 

sink or heat spreader. Equation 3.1 is easily obtained by Kirchhoff's circuit laws, and 

for any node, the algebraic sum of the currents flowing in or out is zero. 𝑘𝑘𝑑𝑑′ is the first 

order derivative of the temperature versus time, 𝑃𝑃𝑑𝑑 is the power input. 

In the common case, the ambient temperature 𝑘𝑘𝑑𝑑𝑑𝑑𝑠𝑠 is a constant, and the inter-core 

thermal resistances 𝑅𝑅𝑑𝑑,𝑗𝑗  for a homogenous layout with identical material are also 

identical, as are the thermal capacitances 𝐶𝐶𝑑𝑑 and the thermal resistances between core 

and ambient, That is, 𝑅𝑅1,2 = 𝑅𝑅2,3 = 𝑅𝑅3,4 = 𝑅𝑅4,5 , 𝐶𝐶1 = 𝐶𝐶2 = 𝐶𝐶3 = 𝐶𝐶4  and 𝑅𝑅1 = 𝑅𝑅2 =

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝑃𝑃1 +

𝑘𝑘2 − 𝑘𝑘1
𝑅𝑅1,2

+
𝑘𝑘3 − 𝑘𝑘1
𝑅𝑅1,3

+
𝑘𝑘𝑑𝑑𝑑𝑑𝑠𝑠 − 𝑘𝑘1

𝑅𝑅1
+ 𝐶𝐶1𝑘𝑘1′ = 0

𝑃𝑃2 +
𝑘𝑘2 − 𝑘𝑘1
𝑅𝑅1,2

+
𝑘𝑘4 − 𝑘𝑘2
𝑅𝑅2,4

+
𝑘𝑘𝑑𝑑𝑑𝑑𝑠𝑠 − 𝑘𝑘2

𝑅𝑅2
+ 𝐶𝐶2𝑘𝑘2′ = 0

𝑃𝑃3 +
𝑘𝑘3 − 𝑘𝑘1
𝑅𝑅1,3

+
𝑘𝑘4 − 𝑘𝑘3
𝑅𝑅3,4

+
𝑘𝑘𝑑𝑑𝑑𝑑𝑠𝑠 − 𝑘𝑘3

𝑅𝑅3
+ 𝐶𝐶3𝑘𝑘3′ = 0

𝑃𝑃4 +
𝑘𝑘4 − 𝑘𝑘3
𝑅𝑅3,4

+
𝑘𝑘4 − 𝑘𝑘2
𝑅𝑅2,4

+
𝑘𝑘𝑑𝑑𝑑𝑑𝑠𝑠 − 𝑘𝑘4

𝑅𝑅4
+ 𝐶𝐶4𝑘𝑘4′ = 0

 (3.1) 
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𝑅𝑅3 = 𝑅𝑅4. This is identical to the TDL concept in Section 3.3, in that an identical 

power injected into any of the cores will produce the same thermal effect due to the 

symmetrical layout and identical material9.  

R1,2

R3,4

R1,3 R2,4

R3 R4

R2R1

C2

C4

C1

C3

core1 core2

core3 core4

 
Figure 3.5: Thermal RC network for a 2×2 CMP 

If only a steady-state analysis is required, without considering the transient 

temperature, the thermal capacitances of Equation 3.1 can be removed, and the 

equation set becomes a purely linear equation set. However, in most cases, due to the 

large thermal mass, the thermal capacitances in Equation 3.1 cannot be ignored [11]. 

Such an equation set is referred to as a linear ordinary differential equation (LODE) 

set. We introduce the following theorem to clarify our thermal model. 

Theorem 1 (LODE): If the variance of the thermal resistances and capacitances are 

ignored (that is the resistances and capacitances are considered constant 10), the 

thermal RC model for a multiprocessor at the core-level is a linear model that can be 

described by the linear ordinary differential equations (LODE) given in Equation 2.9.  

This means that we can apply the same techniques for LODEs, such as the 

superposition principle, to the thermal RC network. However, the time taken to 

solving a complex LODE makes this thermal simulation very inefficient, and as a 

result we examine an alternative technique for evaluating the thermal model. 

9 Chip manufacturing variation is not considered in this example, but the LODE model can deal with 
these variations which effect the thermal parameters (e.g. R and C values of individual cores). If the 
variation is large, it may no longer be appropriate to use TDLs.  
10 When the chip temperature varies over less than 50℃ (for instance, 50℃--100℃), the assumption 
that the resistance is constant is reasonable [11]. This assumption is also used in Hotspot [11]. 
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At this point, it should be noted that while chip and manufacturing variations are 

important practical issues, this work focuses on using an existing accurate thermal 

model and accelerating the temperature evaluation in a multi-core scenario with 

minimal loss of accuracy.  If chip/manufacturing variations were significant, it would 

be a relatively simple matter to perform a simple experiment to calibrate the model.  

 

3.5 Prebuilding the LUT 

To enable rapid temperature calculation, several LUTs are pre-built offline. For a 

given multicore layout, the equivalent RC network is determined by analysing the 

relationships between adjacent core regions, as presented in the last section. The 

thermal resistances and capacitances are obtained from research experiments or 

technical documents [27][35]. These physical parameters are independent of our 

methodology.  

To build the LUTs, we assume that 1 Watt of power is injected into a core of a TDL, 

with no power being applied to the other cores, and determine the temperature 

transient at each core by solving Equation 2.9 for a fixed time interval (say 10 

milliseconds). A LUT then reflects the temperature increment of each core, relative to 

the initial temperature, after applying 1Watt of power to any core of an individual 

TDL. In fact, the LUT can be regarded as the system response to a unit-step (1 Watt 

Power injection) stimulus. However, one LUT only reflects the response of the stimuli 

on a certain core. If we want to know the full system response, the number of 

generated LUTs should be equal to the number of distinct cores. As a result, a 2×2 

CMP needs four LUTs. Obviously, as the number of cores increases, it would require 

a lot of memory space to store these tables. Thanks to the TDL, the number of 

generated LUTs can be greatly reduced since the same power stimulus on any core in 

a TDL has the same thermal response. The number of distinct TDLs determines the 

number of LUTs that need to be generated. For example, a 2×2 CMP needs only one 

LUT because there is only one TDL associated with this layout, while a 2×3 CMP 

requires two LUTs for the two different TDLs (corresponding to TDLs A and B in 

Figure 3.4). The computation of the LUTs is carried out off-line, using tools such as 

Matlab or Maple, and as such, the efficiency of building the LUTs is not important.  
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Table 3.1 gives an example of the LUT for TDL A in a 2×2 CMP (1 Watt of power 

injected at Core1). The entire heating stage after a 1Watt power input is recorded row 

by row, with the last row of the table indicating the steady temperature of each core. 

In each time interval (10ms in Table 3.1) the relative temperature increment of each 

core is recorded as a row of the LUT. 𝑆𝑆𝐻𝐻𝑒𝑒𝐻𝐻𝑑𝑑𝐷𝐷 is the time point when the temperature 

increment reaches the steady state and stops increasing, and depends on the thermal 

time constant11. It should be noted that the LUT only represents a unit power input, 

the values in the LUT should be multiplied by the actual power input to reflect the 

correct temperature increment.  

TDL A Core1 Core2 Core3 Core4 
0ms 0 0 0 0 

10ms 0.1553 0.0007 0.0007 0.0000 
20ms 0.1788 0.0012 0.0012 0.0000 
30ms 0.1844 0.0016 0.0016 0.0001 
40ms 0.1880 0.0019 0.0019 0.0001 
50ms 0.1912 0.0021 0.0021 0.0001 
60ms 0.1943 0.0024 0.0024 0.0001 
70ms 0.1971 0.0028 0.0028 0.0002 
⋯ ⋯ ⋯ ⋯ ⋯ 

500ms 0.2013 0.0648 0.0648 0.0446 
520ms 0.2014 0.0649 0.0649 0.0447 
540ms 0.2015 0.0650 0.0650 0.0448 
⋯ ⋯ ⋯ ⋯ ⋯ 

1000ms 0.3233 0.0854 0.0854 0.0639 
1050ms 0.3235 0.0856 0.0856 0.0640 
⋯ ⋯ ⋯ ⋯ ⋯ 

2000ms 0.3504 0.1116 0.1116 0.0891 
2100ms 0.3506 0.1118 0.1118 0.0893 
⋯ ⋯ ⋯ ⋯ ⋯ 

Steady 0.3819 0.1428 0.1428 0.1200 

Table 3.1: Look-Up Table for a 2×2 CMP 

If we use a uniform time interval (e.g. 10ms) to record the temperature increment in 

the LUT, a single LUT will require a significant amount of memory, particularly if 

𝑆𝑆𝐻𝐻𝑒𝑒𝐻𝐻𝑑𝑑𝐷𝐷 is large. To reduce the storage requirements for the prebuilt LUTs, Table 3.1 

uses a non-uniform time interval. A smaller time step (we use 10ms)12 is used initially, 

which is increased (e.g. a 20ms time step at 500ms, a 100ms time step at 2000ms, etc.) 

as the temperature gets closer to the steady-state value. This is because the 

11 In a multi-node thermal RC model, the time constant for one core is not as simple as the product of 
the single thermal resistance and capacitance.  
12  A reasonable time interval used to build the LUT is the minimal time interval between two 
consecutive scheduling rounds of the OS kernel, i.e. an OS timer tick. 
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temperature profile of the heating/cooling stage shows a more rapid initial change, 

with the rate of change in temperature slowing with time. By using this storage 

optimization, a large number of duplicated rows can be removed from table. Using a 

non-uniform time step can reduce the amount of storage required, compared with the 

original LUT size. This memory saving is shown in Section 3.8. 

It is then likely that the time instant associated with the occurrence of a power event 

will lie between two consecutive rows (e.g. 35ms or 1020ms). Although it is possible 

to use linear interpolation or some other interpolation to get the temperature between 

time points, we show in Section 3.8 that the results obtained from just rounding to the 

nearest temperature value are sufficient (i.e. the temperature increment at 22ms could 

be rounded to the values in the 20ms row, 37ms rounded to 40ms, etc.). However, if a 

more coarse grained time interval is used, the accuracy will degrade and interpolation 

may need to be considered. 

So far, only a step power increase has been considered. However, due to the 

symmetrical nature of the LODE, an increment and a decrement are treated equally 

and their solutions have an equal magnitude but with the opposite sign. As a result, a 

temperature decrement can simply be considered a negative increment. This is also 

verified in the literature [79]. Thus, just a single LUT can record both the temperature 

increment and decrement.  

Theorem 2 (Symmetrical Temperature Increment and Decrement): The thermal 

responses induced by a power increase and an identical power decrease are 

symmetrical, and the resulting temperature increment and decrement have the same 

absolute values but with the opposite sign. 

 

3.6 Mapping Power Input to the Correct Core 

We have used both TDL and optimized non-uniform interval to save on the storage 

needed for the pre-built LUTs. TDL is used to reduce the number of LUTs, and the 

non-uniform interval is used to reduce the number of rows in a LUT. One LUT 

describes the thermal response for a power injection at a single core. However, the 

power input can be injected into any core (node) in silicon layer. Therefore, we need 
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to map the corresponding thermal response according to power input location [35]. 

The TDL's symmetrical layout can help this mapping by using some transformation 

operation on it. A transformation of the temperature increment values is needed to 

cater for the relative location between the actual power input location (denoted by 

𝐻𝐻𝑒𝑒. 𝐶𝐶𝐶𝐶𝑃𝑃) and the 1 Watt power input location (used when building the LUT) associated 

with the same TDL. We define a function 𝐻𝐻𝑟𝑟𝐻𝐻𝑛𝑛𝑃𝑃(𝐿𝐿𝐿𝐿𝑘𝑘, 𝐻𝐻𝑒𝑒. 𝐶𝐶𝐶𝐶𝑃𝑃) to do this mapping 

operation, where 𝐿𝐿𝐿𝐿𝑘𝑘 is decided by the TDL which 𝐻𝐻𝑒𝑒. 𝐶𝐶𝐶𝐶𝑃𝑃 belongs to.  

Function 𝐻𝐻𝑟𝑟𝐻𝐻𝑛𝑛𝑃𝑃() is relatively simple with eight possible coordinate transformations, 

being: 0: no change; 1: mid-x mirroring; 2: mid-y mirroring; 3: principal diagonal 

mirroring; 4: secondary diagonal mirroring; 5: centre point mirroring; 6: clockwise 

rotation; and 7: counter-clockwise rotation; as shown in Figure 3.6.  

Figure 3.6 also shows an example using a 4×4 CMP. The 4×4 CMP requires 3 LUTs 

for TDL A (1Watt of Power at Core(0,0)), TDL B (1Watt of Power at Core(0,1)) and 

TDL C (1Watt of Power at Core(1,1)). In Figure 3.6, an event, 𝐻𝐻𝑒𝑒(10, 28,𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒(0,2)), 

occurs at Core(0,2). Because the temperature increment values from LUT B reflect 

the case when 1Watt of power is injected at Core(0,1), but 𝐻𝐻𝑒𝑒(10, 28,𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒(0,2)) 

needs the power increment at Core(0,2). Therefore, the function 𝐻𝐻𝑟𝑟𝐻𝐻𝑛𝑛𝑃𝑃() uses mid-y 

mirroring to map the correct thermal increment, as shown in Figure 3.6. In fact, the 

transformation only rearranges the order of the columns in a LUT. For example, 

swapping the column Core1 and Core4 (i.e. secondary diagonal mirroring) in Table 

3.1 would obtain the thermal response for a power injection at Core4. The 

transformation can also be applied for MPSoC with symmetrical cores, such as the 7-

Core MPSoC in Figure 3.4. 
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Figure 3.6: Transformation for Power Input Mapping 

After obtaining the pre-built LUTs and defining the necessary transformation 

operations, any thermal response induced by a single power event can be easily 

determined. Figure 3.7 shows the procedure to get the resultant LUT (the thermal 

response) for any single power event. The obvious question is: if multiple power 

events can occur at any core and at any time, is it possible to determine the entire 

chip's thermal response by adding the individual thermal responses together? We will 

address this issue in the next section. 
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Power Event 
ae(t,P,loc)

get TDL and its LUT 
according to ae.loc

get transformed LUT 
by using trans()

transformed LUT multiplies 
power value ae.P

result LUT
(thermal response)  

Figure 3.7: Thermal response for any single power event 

 

3.7 Superposition Principle of the Thermal Response (LUT) 

We have stated in Theorem 1 in Section 3.4 that a thermal RC network can be 

formalized as a LODE. The entire prebuilt LUT is a solution of LODE with only a 

single non-zero power, 𝑃𝑃𝑑𝑑 = 1, and all other power sources are zero, i.e. 𝑃𝑃𝑗𝑗 = 0, 𝑗𝑗 ≠ 𝐻𝐻, 

and where each row in the LUT represents a specific solution to the LODE at the 

indicated time instant. Regardless of the initial condition of the LODE, any solution 

of the LODE satisfies the superposition principle, and hence the multiple thermal 

response represented by the LUT also satisfies the superposition principle. 

Theorem 3 (Superposition Principle of LUT): The entire thermal RC network's 

thermal response can be treated as the accumulation of every individual response 

induced by each power event. The entire LUT and its rows adhere to the superposition 

principle when power input is not affected by temperature13. 

Proof: Only atomic power events can induce a thermal response. Firstly, the 

temperature in each row of a LUT must be a solution of Equation 2.9 since it is 

13 Leakage power is assumed as a constant. Later we will extend this to include varying leakage power. 
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obtained by solving Equation 2.9 at a specific time interval. Given a row ℜ in the 

prebuilt LUT, its transformed row ℜ∗ is also a solution of Equation 2.9, and thus also 

satisfies the superposition principle. Then, given any two rows, ℜ1
∗  and ℜ2

∗ , in the 

prebuilt LUTs, it follows that  ℜ∗ = 𝑃𝑃1ℜ1
∗ ± 𝑃𝑃2ℜ2

∗ , where 𝑃𝑃1and 𝑃𝑃2  are constants 

(such as 𝐻𝐻𝑒𝑒.𝑃𝑃), must also be a solution of this LODE. This can be expressed more 

generally as: ℜ∗ = ∑ 𝑃𝑃𝑑𝑑ℜ𝑑𝑑
∗

𝑑𝑑 , where ℜ𝑑𝑑
∗ can be seen either as a row or as an entire table.  

According to Theorem 3, a temperature change is induced by the thermal response 

caused by a power event. Therefore, if the leakage power is assumed to be a constant, 

the temperature for each core can be updated when a power event occurs. This event-

driven temperature estimation is different from the conventional time-driven approach 

that updates the temperature at a fixed time step. It is then possible to perform a 

number of different operations on these prebuilt LUTs. 

• Adding several LUTs together (ℜ1
∗ + ℜ2

∗): the LUTs can be aligned to the 

time points of power events, and can then be added together on a row-to-row 

basis. The result of the addition can show the overall thermal increment and 

the entire temperature transient induced by all these power events over time. 

This is referred to as a “table operation” in later chapters. Since the table for 

one power event represents its temperature transient, the tables need to be 

aligned to the absolute time instants before adding them together. If one event 

occurs at 𝐻𝐻1, and another event occurs at  𝐻𝐻2, the first rows of the two tables 

(representing their thermal response) should be aligned at the time points 𝐻𝐻1 

and  𝐻𝐻2, respectively, on the time axis, and then they are added row by row. 

The resultant table (whose length is larger than the individual ones) shows the 

accumulated thermal response induced by the two events. Due to the larger 

memory space needed by the table alignment, this operation cannot be applied 

for long term temperature evaluation. The table operation can be applied 

where the full on-chip thermal distribution is needed, and is more suitable for 

a STAS scenario to check when and where overheating occurs. The detailed 

description of a table operation is formalized in Chapter 4 where we apply it to 

a STAS scenario.  

• Subtracting two rows in one LUT (ℜ1
∗ − ℜ2

∗ ): the result of the subtraction can 

show the temperature increment induced by one power event during the time 
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interval between two corresponding rows. This is referred to as “row operation” 

in later chapters. For an individual power event occurring at time point 𝐻𝐻, if the 

last thermal map update occurs at 𝐻𝐻 + 20𝑇𝑇𝑃𝑃 and the temperature evaluation 

point is set to 𝐻𝐻 + 50𝑇𝑇𝑃𝑃, then the two rows, the 20ms-row and the 50ms-row, 

can be fetched from the LUT and subtracted to obtain the temperature 

increment during the time interval from 𝐻𝐻 + 20𝑇𝑇𝑃𝑃 to 𝐻𝐻 + 50𝑇𝑇𝑃𝑃. Lastly, all of 

these temperature increments induced by the individual power events can be 

accumulated to update the entire thermal map relative to the last updated 

thermal map. This operation has nothing to do with absolute time instances, 

and it is easy to determine the temperature contribution from one power event 

between any two relative time points (e.g. consecutive update time points). 

Thus, it is suitable for continuous temperature evaluation. Moreover, its low 

computational overhead enables online (e.g. dynamic) temperature estimation 

which is ideal for fine grained DTAS. The detailed description of the row 

operation is formalized in Chapter 5 where we apply it to a DTAS scenario. 

Both these operations have a low calculation overhead compared to any of the time-

driven approaches, and thus are ideally suited to STAS and DTAS. While we next 

proceed to examine the accuracy of the LUT-based thermal estimation, the validation 

of these two operations will be carried out after we formalize and detail them in their 

respective STAS and DTAS scenarios.  

 

3.8 Validation of the Generated LUT 

Before we formally introduce our LUT-based thermal estimator in STAS and DTAS 

scenarios, we perform a number of experiments to show how effective our event-

driven approach is compared to HotSpot. 

Firstly, as we have claimed that existing simulator based estimators are too slow for 

TAS scenarios we examine the runtime for our proposed estimator compared to that of 

Hotspot. In this experiment we use a 4×4 CMP layout and a power task set with an 

average power consumption in the range [15W:30W] using a power threshold 𝑃𝑃𝐴𝐴𝐴𝐴 =

5𝑊𝑊, and with execution times in the range [10ms:500ms]. To reduce the required 
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simulation time, we assume that the core has already been heated above ambient 

temperature. That is, we assume that the processor has been operational for some time 

and that the core temperature is at an initial temperature of 45°C (𝑘𝑘𝑠𝑠=0𝑑𝑑𝑠𝑠= 45°C). The 

HotSpot iteration time interval is set to 10ms and we use a non-uniform 10ms 

minimum interval LUT. This experiment is identical to the one conducted in Chapter 

5.7.2, except that the temperature-dependent leakage power is not taken into account. 

The thermal estimation based on atomic power events, along with the Hotspot thermal 

estimation is shown in Figure 3.8. There is good agreement between the two 

estimators with a maximum error of less than 0.4°C. More importantly, there is a 

significant reduction in runtime, from 1.46s for Hotspot to 728μs for the proposed 

LUT based thermal estimator, shown in Table 3.2. This is partially because there are 

only 36 events in the atomic simulation, compared to 500 events in the Hotspot 

simulation for the 5s period, and partially because of the two orders of magnitude 

reduction in the overhead per iteration update, from 2922.4μs per update for Hotspot 

to 20.2μs per update for the proposed method. This represents a 2000 times 

improvement in the overall runtime. 

 
Figure 3.8: Event-driven temperature estimation comparing with HotSpot 
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Thermal Simulation LUT based Simulator HotSpot Simulator 
Overall Runtime  728 μs 1461215 μs 

Number of Iteration Events  36 500 
Average overhead per update  20.2 μs 2922.4 μs 

Table 3.2: Event-driven calculation overhead and runtime comparing with HotSpot 

Next, we compare the temperature from our non-uniform interval LUT-based thermal 

model with the temperature obtained from HotSpot [35] on a 4×4 CMP layout to 

verify that the LUT method is accurate. As the row and table based operations (to be 

used in later chapters) rely on the fundamental accuracy of the LUTs, if the LUT itself 

is inaccurate, the results from the combination of multiple operations will 

significantly affect the overall temperature estimations in both STAS and DTAS. 

In HotSpot, we set a 1ms time interval for transient temperature analysis and inject a 

1Watt power input to Core(1,1) (belonging to TDL C). We use 4 different resolutions 

to generate the non-uniform interval LUTs to test their accuracy. Table 3.3 gives the 

interval details for the non-uniform interval LUTs. In all cases, steady state is 

approximately 12 seconds. The memory for a non-uniform interval LUT is 

dramatically reduced compared to that of a uniform interval LUT.  

 1ms minimum 
interval 

5ms minimum 
interval 

10ms minimum 
interval 

50ms minimum 
interval 

1ms 0ms—10ms - - - 
2ms 10ms—20ms - - - 
5ms 20ms—30ms 0ms—30ms - - 
10ms 30ms—50ms 30ms—50ms 0ms—50ms - 
20ms 50ms—110ms 50ms—110ms 50ms—110ms - 
50ms 110ms—260ms 110ms—260ms 110ms—260ms 110ms—260ms 

100ms 260ms—460ms 260ms—460ms 260ms—460ms 260ms—460ms 
200ms 460ms—860ms 460ms—860ms 460ms—860ms 460ms—860ms 
500ms 860ms—1360ms 860ms—1360ms 860ms—1360ms 860ms—1360ms 

1000ms 1360ms—4360ms 1360ms—4360ms 1360ms—4360ms 1360ms—4360ms 
2000ms 4360ms—Steady 4360ms—Steady 4360ms—Steady 4360ms—Steady 

Memory Utilisation 
(Uniform Interval) 

2.7KBytes 
(450KBytes) 

2.1KBytes 
(90KBytes) 

1.7KBytes 
(45KBytes) 

1.1Kbytes 
(9KBytes) 

Memory Reduction 99.4% 97.7% 96.3% 87.8% 

Table 3.3: Non-uniform interval applied for different resolutions of LUTs 

We use both (a) rounding to the nearest row and (b) linear interpolation to estimate the 

transient temperature at any given time instant. The Figure 3.9 shows the errors in our 

LUT-based approach, compared with HotSpot, over a 10 seconds period. The 

maximum error, average error and steady state (SS) error for the two estimation 

approaches used in the LUT-based method are listed in Table 3.4. The errors are 
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calculated by comparing the continuous thermal profile generated by HotSpot and the 

estimated values (by rounding or interpolating) between the two consecutive rows of 

the LUT. 

 Rounding to nearest row Linear interpolation 
Minimum Interval  1ms 5ms 10ms 50ms 1ms 5ms 10ms 50ms 
Maximum Error(°C) 0.02 0.12 0.16 0.19 0.016 0.053 0.086 0.142 
Average Error (°C) -0.0021 -0.0022 -0.0023 -0.0027 -0.0014 -0.0016 -0.0016 -0.002 
SS Error (°C) 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 

Table 3.4: Errors in the LUT due to different LUT row resolutions 

Firstly, examining Table 3.4 shows that the steady state error between the LUT-based 

method and Hotspot is relatively low (10-5°C). This is not unexpected, as there should 

be no real difference as both Hotspot and the LUT-based method solve an identical set 

of equations. We can also see from Figure 3.9 and Table 3.4 that linear interpolation 

has a higher accuracy compared to the rounding approach, but the average errors 

induced by both methods are similar and small enough to be ignored. As such, while it 

is possible to use either rounding or linear interpolation, we adopt the rounding 

approach for further use as it is simple and has an acceptable average error. 

Additionally, the average errors do not increase much for the different resolutions. 

This is because the maximum error occurs in the first iteration, the larger the interval 

the larger the error. As we are using an event based approach, with a time horizon of 

one OS timer tick, it is unnecessary to consider very small increments at the 

beginning of task execution. As a result, the 10ms-interval LUT is more suitable for 

practical use after balancing between the accuracy and required memory space. If 

needed, we could minimize the maximum error of the 10ms-interval LUT by adding 

additional rows in the 0ms to 10ms interval where the maximum error occurs. 
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Figure 3.9: Errors due to rounding to nearest row, and linear interpolation vs. time for different 

resolutions 

 

3.9 Summary 

In this chapter, a novel event-driven thermal estimation method was proposed to 

update the temperature only when a power event occurs. Firstly, we show how to 

capture the power events from a power profile, and then how a number of LUTs, 

representing the temperature increment of a core for a unit power applied to that core, 

are prebuilt offline. After obtaining the LUT, the TDL concept and a non-uniform time 
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interval are applied to reduce the memory requirements. A transformation function is 

introduced to map the thermal response according to the actual location of the power 

input. Lastly, we show that the thermal response recorded in the LUTs satisfies the 

superposition principle, and as such can be used to accumulate all the individual 

thermal responses induced by the power events.  

We showed by experimentation that using an atomic power profile only resulted in a 

small temperature error, less than 0.1°C. We also examined the accuracy between our 

LUT-based thermal estimator and the temperature profile from HotSpot. These results 

showed that the 10ms interval LUT provided an appropriate balance between 

temperature errors (less than 0.16°C) and storage requirements (1.7KBytes).  This 

leads us to conclude that our proposed LUT-based thermal estimator, using a power 

profile converted into atomic power events, is both accurate enough and simple 

enough to be considered for use in high level TAS. We shall examine this hypothesis 

in subsequent chapters. 

 
 

  

75 
 



 High Level Thermal-Aware Scheduling for Multiprocessors Cui Jin 

  

76 
 



 High Level Thermal-Aware Scheduling for Multiprocessors Cui Jin 

Chapter 4  
Schedulability with Thermal Constraints in a 
Static Thermal-Aware Scheduling Scenario 
 

In Chapter 2, we outlined the lack of a suitable schedulability analysis for 

multiprocessor systems which includes a fixed thermal threshold. In this chapter, we 

attempt to address this problem by considering the temperature threshold (junction 

temperature) as a strict hard scheduling constraint. This is particularly important in 

safety-critical embedded systems where accelerated aging and other thermal related 

stresses can impact on system reliability [103]. With the hard temperature constraint, 

performing an analysis and verification to determine if a set of real-time tasks running 

on a multiprocessor can meet the different timing constraint requirements in a 

mission-critical system becomes even more challenging. This chapter focuses on the 

impact of thermal constraints on real-time task sets running on a multi-core platform. 

The following points, summarized from the existing research literature, provide the 

motivation for our research in STAS. 

• STAS on multiprocessors has been extensively studied [59][93][94][90][104] 

[95][105][93] and is important for analysing real-time systems as well as for 

high-level optimization.  In terms of real-time task sets, this work can be 

classified as: 1) selecting the voltage and frequency to minimize energy 

consumption or temperature [59][94][93]; 2) maximizing or improving the 

performance under a given set of power/thermal constraints[104][105], and; 3) 

finding an optimal schedule to achieve the required thermal performance 

bounds [90][95]. Much of this work uses similar optimization techniques, such 

as linear programming and convex optimization, where the transient 

temperature cannot be applied as the optimal goal, or constraint, due to the 

non-trivial thermal estimation induced by the thermal capacitance and thermal 

coupling amongst cores.  

• Power and thermal issues in multiprocessor systems create much more non-

determinacy at the system design level than before, due to the additional 

complexity of a parallel system. Temperature is an important primary design 
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constraint which cannot be ignored if system safety and reliability is 

considered [27]. It should be regarded as another hard deadline. But most of 

the research literature ignores hard thermal deadlines, because of the extra 

complexity this imposes. For instance, [95] assumes that the core temperature 

can exceed the threshold, and only attempts to minimize the time the 

temperature is above the threshold. To the best of our knowledge, hard real-

time multiprocessor schedulability analysis under predefined thermal 

constraints has not been fully investigated. 

• Several STAS techniques use a thermal simulator (e.g. HotSpot) to obtain the 

accurate thermal profile used to guide the scheduling. HotSpot uses a thermal 

RC network to describe the multiprocessor system, and is able to output an 

accurate transient temperature profile for a given power input, but at the 

expense of an overhead many orders of magnitude greater than the OS 

scheduling interval. This is further complicated as the scheduling process to 

determine a valid schedule is to some extent iterative, and when a scheduling 

iteration fails, another schedule needs be generated and re-simulated against 

the thermal constraints. This iterative process between the schedule solver and 

the thermal simulator is repeated until a schedule is found or all possible 

solutions are tested, is extremely time consuming, and is unsuitable for task 

sets with a large number of tasks. 

In this chapter, we propose a framework for schedulability analysis for hard real-time 

systems under strict thermal constraints. An algorithm for performance and thermal 

optimization which integrates the thermal profile generation into the schedule search 

is developed. This algorithm eliminates the schedule-thermal iterations associated 

with classical thermal simulation. This significantly reduces the run time, resulting in 

an efficient framework for high level static TAS or thermal management.  

 

4.1 Preliminary 

To overcome the computational efficiency/accuracy problem, we have introduced a 

fast event-driven LUT approach in Chapter 3. In this approach, we only consider the 

dynamic power and the non-temperature dependent leakage power (that is, leakage is 
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a constant), rather than the full leakage power model that will be described in the next 

chapter. This simplification, similar to that used in [70][71][58][59][93][94], is 

appropriate, as the processors used in many high performance embedded systems 

consume less power and operate at lower temperatures than current high performance 

processors [27]. The next sections develop this methodology. 

 

4.1.1 The Task Model 

A set of tasks with real-time and thermal constraints can be described by a task graph, 

as shown in Figure 4.1, where each node denotes a task. The task graph is a directed 

acyclic graph which explicitly confines the dependence or priority of the task in the 

task set: e.g. a task can only be released for execution after completion of all its 

parents. Only released tasks are able to be allocated to a core for execution. In a real-

time scenario, a task has several inherent properties, which are listed in Table 4.1. 

These include: the worst case execution time (WCET) 𝐶𝐶𝑑𝑑  , the relative deadline 𝐷𝐷𝑑𝑑 

(relative to the release time 𝐻𝐻𝑑𝑑, which is defined as the latest absolute completion time 

of all parents) and the power consumption14 of a task 𝑃𝑃𝑑𝑑. Several indirect properties of 

a task, which are unknown before runtime, are also listed here. These include: the 

release time 𝐻𝐻𝑑𝑑 , the absolute deadline 𝑑𝑑𝑑𝑑 = 𝐻𝐻𝑑𝑑 + 𝐷𝐷𝑑𝑑  (if Di is known in advance), the 

task slack time 𝑆𝑆𝑑𝑑 = (𝑑𝑑𝑑𝑑 − 𝐻𝐻𝑑𝑑) − 𝐶𝐶𝑑𝑑 = 𝐷𝐷𝑑𝑑 − 𝐶𝐶𝑑𝑑 , while still achieving the deadline 

during 𝐻𝐻𝑑𝑑 and 𝑑𝑑𝑑𝑑, and the latest absolute start time 𝑃𝑃𝑑𝑑 = 𝐻𝐻𝑑𝑑 + 𝑆𝑆𝑑𝑑 for the execution for a 

task. Therefore, a task can only be scheduled for execution (at start time 𝑒𝑒𝑑𝑑) within the 

interval [𝐻𝐻𝑑𝑑 , 𝑃𝑃𝑑𝑑] , which is defined as the problem window. Figure 4.2 shows the 

relationship between the various task parameters over time. 

𝝉𝝉𝒊𝒊 𝑪𝑪𝒊𝒊 𝑫𝑫𝒊𝒊:𝒅𝒅𝒊𝒊 𝑷𝑷𝒊𝒊 
𝜏𝜏1 20 40:40 45 
𝜏𝜏2 25 40:75 50 
𝜏𝜏3 15 30:60 55 
𝜏𝜏4 10 20:95 35 

Table 4.1: The task properties 

14 In the simplest case, a task has a single (average) power consumption over its execution period. The 
task power consists of both the dynamic power and the component of the static power not affected by 
the core temperature. We will later extend this to the more complicated scenario where a task has 
several power values over its execution period. 
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Figure 4.1: A task graph 
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Figure 4.2: The problem window 

 

4.1.2 Power Event and LUT 

In Chapter 3, we showed that a continuous power profile can be simplified to a 

sequence of constant power events with little effect on thermal accuracy. We adopt the 

same power event simplification technique to analyse the schedulability. And we also 

use the predefined threshold, 𝑃𝑃𝐴𝐴𝐴𝐴, to generate power events at the desired granularity 

in this schedulability test framework. This procedure, to convert a continuous task’s 

power profile into a sequence of power events, has been described in Chapter 3, and 

as such will not be considered further in this chapter.  
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Initially, but without loss of generality, we assume that a task corresponds to just two 

power events, a single (increasing) power event and a single (decreasing) power event. 

That is, between two power events, there is only a single power value (average power 

between two events), similar to that shown in Table 4.1. In Section 4.4, we extend our 

framework to include tasks with multiple power event values, as well as power 

management events such as DVFS. 

In Chapter 3, we also showed that the temperature can then be determined by 

accumulating all the temperature increments and decrements induced by individual 

power events, by using an LUT-based approach. This means that a transient 

temperature profile can be quickly obtained by adding all of the individual thermal 

responses. We also described two ways to use the prebuilt LUTs: one with a smaller 

overhead which only involves subtracting two rows, and the other with a slightly 

larger overhead, that accumulates all the LUTs (i.e. accumulates the thermal responses) 

to get the full thermal map with all the individual temperature transients. In the STAS 

scenario described here, we use the latter LUT-based method to perform a fast 

schedulability test, with strict thermal constraints, for STAS in real-time embedded 

systems. In next section, the formalization of the LUT accumulation operation is 

detailed. 

 

4.2 LUT-Based Operations 

In this section, several basic and simplified operations are introduced and formalised 

for one task and multiple task accumulations. 

 

4.2.1 Addition of Two LUTs 

In a multiprocessor scenario, if multiple power events occur both temporally and 

spatially, the temperature transient can be obtained by adding the corresponding 

thermal responses at each core, namely by adding the transformed LUT at the desired 

time points. Given two power events at times 𝐻𝐻𝑑𝑑 and 𝐻𝐻𝑗𝑗, and locations 𝐶𝐶𝐶𝐶𝑃𝑃𝑑𝑑 and 𝐶𝐶𝐶𝐶𝑃𝑃𝑗𝑗, the 

thermal map ∆𝑘𝑘 can be expressed as: 

81 
 



 High Level Thermal-Aware Scheduling for Multiprocessors Cui Jin 

 ∆𝑘𝑘 = 𝐿𝐿𝐿𝐿𝑘𝑘[𝑃𝑃𝑖𝑖,𝑙𝑙𝑜𝑜𝑑𝑑𝑖𝑖]
𝑠𝑠𝑖𝑖 + 𝐿𝐿𝐿𝐿𝑘𝑘[𝑃𝑃𝑗𝑗,𝑙𝑙𝑜𝑜𝑑𝑑𝑗𝑗]

𝑠𝑠𝑗𝑗  (4.1) 

where 𝐿𝐿𝐿𝐿𝑘𝑘[𝑃𝑃𝑖𝑖,𝑙𝑙𝑜𝑜𝑑𝑑𝑖𝑖]
𝑠𝑠𝑖𝑖 is a modified LUT which is obtained by transforming the 

multiprocessor’s single LUT, based on the TDL of 𝐶𝐶𝐶𝐶𝑃𝑃𝑑𝑑 multiplied by the power 𝑃𝑃𝑑𝑑. 

The time 𝐻𝐻𝑑𝑑 denotes that the first row of the modified LUT which should be aligned to 

the absolute time point 𝐻𝐻𝑑𝑑 , and the addition operation '+' defines the cell-by-cell 

addition after the two LUTs are temporally aligned. Figure 4.3 intuitively shows the 

addition of two LUTs. The important point is that the result is still a table, but now 

with length 𝑆𝑆𝐻𝐻𝑒𝑒𝐻𝐻𝑑𝑑𝐷𝐷 + (𝐻𝐻𝑗𝑗 − 𝐻𝐻𝑑𝑑). When a non-uniform interval LUT is used, it should 

be extended into the uniform interval LUT before the addition is applied. These 

extension operations can be done off-line for each task. 
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Figure 4.3: The addition of two LUTs 

 

4.2.2 Simplified LUT Addition for a Single Task 

In Section 4.1.2, we described how a task with a single constant power value can be 

interpreted as two sequential power events: a power increase 𝑃𝑃𝑑𝑑 at the beginning of 

task execution 𝑒𝑒𝑑𝑑 and a power decrease −𝑃𝑃𝑑𝑑 at the end of task execution 𝑒𝑒𝑑𝑑 + 𝐶𝐶𝑑𝑑. Thus, 
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it is relatively easy to construct a thermal table 𝑘𝑘𝐻𝐻𝑏𝑏[𝑅𝑅𝑖𝑖,𝑃𝑃𝑖𝑖,𝑙𝑙𝑜𝑜𝑑𝑑𝑖𝑖]
𝑙𝑙𝑖𝑖  for one task, based on the 

existing LUT approach: 

 𝑘𝑘𝐻𝐻𝑏𝑏[𝑅𝑅𝑖𝑖,𝑃𝑃𝑖𝑖,𝑙𝑙𝑜𝑜𝑑𝑑𝑖𝑖]
𝑙𝑙𝑖𝑖 = 𝐿𝐿𝐿𝐿𝑘𝑘[𝑃𝑃𝑖𝑖,𝑙𝑙𝑜𝑜𝑑𝑑𝑖𝑖]

𝑙𝑙𝑖𝑖 + 𝐿𝐿𝐿𝐿𝑘𝑘[−𝑃𝑃𝑖𝑖,𝑙𝑙𝑜𝑜𝑑𝑑𝑖𝑖]
𝑙𝑙𝑖𝑖+𝑅𝑅𝑖𝑖 = 𝐿𝐿𝐿𝐿𝑘𝑘[𝑃𝑃𝑖𝑖,𝑙𝑙𝑜𝑜𝑑𝑑𝑖𝑖]

𝑙𝑙𝑖𝑖 − 𝐿𝐿𝐿𝐿𝑘𝑘[𝑃𝑃𝑖𝑖,𝑙𝑙𝑜𝑜𝑑𝑑𝑖𝑖]
𝑙𝑙𝑖𝑖+𝑅𝑅𝑖𝑖  (4.2) 

If 𝐶𝐶𝑑𝑑 ≥ 𝑆𝑆𝐻𝐻𝑒𝑒𝐻𝐻𝑑𝑑𝐷𝐷, that is, during the heating stage the core has achieved a steady state 

temperature for the given power input, then the heating and cooling stages in the 

temperature profile will be  symmetrical, and can be represented by a table of length 

2𝐶𝐶𝑑𝑑, as shown in Figure 4.4(a). This is because the heating and cooling response is 

symmetrical in the thermal RC model. However, as the thermal time constant is 

typically around 5s to 10s [35], it is more likely that a task's WCET 𝐶𝐶𝑑𝑑 will be shorter 

than 𝑆𝑆𝐻𝐻𝑒𝑒𝐻𝐻𝑑𝑑𝐷𝐷, and as such, the heating stage does not reach steady state before the task 

completes. Therefore, for a heating stage (which does not reach steady state) followed 

by a cooling stage, at any time instance in the cooling stage, the LUT value 

𝐿𝐿𝐿𝐿𝑘𝑘[𝑃𝑃𝑖𝑖,𝑙𝑙𝑜𝑜𝑑𝑑𝑖𝑖]
𝑙𝑙𝑖𝑖+𝑅𝑅𝑖𝑖  will always be smaller than the LUT value 𝐿𝐿𝐿𝐿𝑘𝑘[𝑃𝑃𝑖𝑖,𝑙𝑙𝑜𝑜𝑑𝑑𝑖𝑖]

𝑙𝑙𝑖𝑖  in the heating stage. 

As a result, the heating stage and the cooling stage in the thermal profile for a single 

task, as shown in Figure 4.4(b) and (c), is asymmetrical. Figure 4.4 shows the thermal 

profile (based on Equation 4.2) for a single core in a simulated ARM-based multi-core 

architecture with a single 5Watt task executing on Core(0,0) (i.e. 𝑃𝑃𝑑𝑑 = 5Watt and 𝐶𝐶𝐶𝐶𝑃𝑃𝑑𝑑 

= Core(0,0))  for (a) 10s, (b) 1s, and (c) 100ms, respectively. In this example, the time 

required for the core to reach a steady state temperature is 9.5s. The bottom two plots 

clearly show that the cooling stage needs a much longer time, relative to the heating 

stage, for the temperature to fall back to the initial temperature. The total time 

required for the addition of the two LUTs (as described by Equation 4.2) is 𝑆𝑆𝐻𝐻𝑒𝑒𝐻𝐻𝑑𝑑𝐷𝐷 +

(𝑒𝑒𝑑𝑑 + 𝐶𝐶𝑑𝑑 − 𝑒𝑒𝑑𝑑)  and thus 𝑘𝑘𝐻𝐻𝑏𝑏[𝑅𝑅𝑖𝑖,𝑃𝑃𝑖𝑖,𝑙𝑙𝑜𝑜𝑑𝑑𝑖𝑖]
𝑙𝑙𝑖𝑖  has length 𝑆𝑆𝐻𝐻𝑒𝑒𝐻𝐻𝑑𝑑𝐷𝐷 + 𝐶𝐶𝑑𝑑  rather than 2𝐶𝐶𝑑𝑑 . As a 

result, the table for a single small duration task, 𝑘𝑘𝐻𝐻𝑏𝑏[𝑅𝑅𝑖𝑖,𝑃𝑃𝑖𝑖,𝑙𝑙𝑜𝑜𝑑𝑑𝑖𝑖]
𝑙𝑙𝑖𝑖 , would require a large 

amount of memory due to the large 𝑆𝑆𝐻𝐻𝑒𝑒𝐻𝐻𝑑𝑑𝐷𝐷 value.  

To reduce this memory requirement, it may be possible to ignore the thermal effect for 

the period after (2 + 𝑛𝑛) ∙ 𝐶𝐶𝑑𝑑, where n is an integer in the range 0 ≤ 𝑛𝑛 ≤ 𝑆𝑆𝐻𝐻𝑒𝑒𝐻𝐻𝑑𝑑𝐷𝐷 𝐶𝐶𝑑𝑑⁄ . 

That is, we simply truncate the table to length (2 + 𝑛𝑛) ∙ 𝐶𝐶𝑑𝑑, and just assume that the 

temperature drops back to the initial temperature. Although this assumption could 

result in an unacceptable error, particularly in very high power processor architectures 
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with 𝑛𝑛 close to zero, it is less severe in the low power architectures typically used in 

embedded systems, due to the lower working temperature [27]. Users should choose 

an appropriate value for n to meet their specific accuracy requirements. A larger n 

will more accurately follow the actual thermal profile, but will need more memory 

space. A smaller n results in a lower overhead for the LUT addition operations and 

thus can increase the speed of the schedulability test. Table 4.2 (and Figure 4.4) show 

the errors for different n for a single 5Watt task on Core(0,0).   

 
Figure 4.4: The core thermal profile for different 𝑪𝑪𝒊𝒊. (a) The core temperature has reached steady state, 

(b) and (c) The core temperature has not reached steady state at the end of task execution. 

 

𝒏𝒏 0 1 2 3 4 
𝐶𝐶𝑑𝑑=100ms 0.08 0.04 0.03 0.02 0.01 
𝐶𝐶𝑑𝑑=1s 0.06 0.05 0.04 0.04 0.03 

(Note: n= 0 is equal to a length of 𝑪𝑪𝒊𝒊, n= 2 is equal to a length of 𝟑𝟑𝑪𝑪𝒊𝒊) 

Table 4.2: The error (in °C) caused by different table truncation lengths 
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To demonstrate the effect of different truncated table lengths on the schedulability test 

runtime and the accumulated error, we use the 15 task and 30 task synthetic task sets, 

described in Section 4.5.2. These tasks have a worst case execution time 𝐶𝐶𝑑𝑑 which is 

randomly generated in the range [2ms:120ms]. The absolute deadline 𝑑𝑑𝑑𝑑 is obtained 

from the randomly generated task slack time 𝑆𝑆𝑑𝑑 which is in the range [8ms:55ms], and 

the power consumption of the tasks 𝑃𝑃𝑑𝑑 is in range [1.5W:6W].   

𝒏𝒏 0 1 2 3 4 
Task Set 15task 30task 15task 30task 15task 30task 15task 30task 15task 30task 

Runtime (s) 1.2 45 1.7 69 2.0 89 2.5 118 3.1 141 
Accu. Error (°C) 0.62 0.94 0.36 0.51 0.21 0.30 0.14 0.19 0.06 0.12 

Table 4.3: Accumulated error and runtime for different length of truncated table 

As seen from above table, 𝑛𝑛 = 2 provides a good balance between accuracy and the 

speed of calculation.  As the focus of this work is TAS for lower power embedded 

systems, we will assume a truncated table length of 3𝐶𝐶𝑑𝑑 , (𝑛𝑛 = 2) unless otherwise 

stated. This simplified (truncated) thermal table (TT) for one task is denoted by 

𝑘𝑘𝑘𝑘[𝑅𝑅𝑖𝑖,𝑃𝑃𝑖𝑖,𝑙𝑙𝑜𝑜𝑑𝑑𝑖𝑖]. 

 

4.2.3 Addition of Task Tables 

As stated in Section 4.2.1, the temperatures induced by different power events 

(determined from the LUT) can be added together to give the complete thermal map 

for the multiprocessor. In a similar way, the task table can also be used to accumulate 

the temperatures induced by different tasks. If we define the task execution start point 

as 𝑒𝑒𝑑𝑑 , then the temperature change resulting from the execution of two tasks 𝜏𝜏𝑑𝑑 and 𝜏𝜏𝑗𝑗 

can be expressed as: 

 ∆𝑘𝑘 = 𝑘𝑘𝑘𝑘[𝑅𝑅𝑖𝑖,𝑃𝑃𝑖𝑖,𝑙𝑙𝑜𝑜𝑑𝑑𝑖𝑖]
𝑙𝑙𝑖𝑖 + 𝑘𝑘𝑘𝑘[𝑅𝑅𝑗𝑗,𝑃𝑃𝑗𝑗,𝑙𝑙𝑜𝑜𝑑𝑑𝑗𝑗]

𝑙𝑙𝑗𝑗  (5.3) 

If 𝑒𝑒𝑗𝑗 ≥ 𝑒𝑒𝑑𝑑 , the resultant table length is (2+𝑛𝑛) ∙ 𝐶𝐶𝑑𝑑 + �𝑒𝑒𝑗𝑗 − 𝑒𝑒𝑑𝑑� . The overall thermal 

map for all tasks in a given task set can be determined by accumulating the individual 

tables, as: 
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 𝑘𝑘ℎ𝑒𝑒𝑟𝑟𝑇𝑇𝐻𝐻𝐶𝐶𝑀𝑀𝐻𝐻𝑒𝑒 = 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 + �𝑘𝑘𝑘𝑘[𝑅𝑅𝑖𝑖,𝑃𝑃𝑖𝑖,𝑙𝑙𝑜𝑜𝑑𝑑𝑖𝑖]
𝑙𝑙𝑖𝑖

𝑑𝑑

 (5.4) 

where 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠  is the initial thermal map temperature. Using the thermal map 

𝑘𝑘ℎ𝑒𝑒𝑟𝑟𝑇𝑇𝐻𝐻𝐶𝐶𝑀𝑀𝐻𝐻𝑒𝑒  allows us to quickly and easily determine when and where core 

overheating occurs (a cell value in 𝑘𝑘ℎ𝑒𝑒𝑟𝑟𝑇𝑇𝐻𝐻𝐶𝐶𝑀𝑀𝐻𝐻𝑒𝑒  is larger than some predefined 

threshold) in the static TAS. Thus, it gives a very quick technique for determining if a 

particular static TAS is successful or not. 

While the LUT based thermal map technique proposed above is fast compared to 

Hotspot (as shown in Chapter 3), its memory requirement, particularly for large task 

sets, may become excessive as each task requires its own table for each possible core 

location. To reduce this memory requirement, we make use of a transformation 

function 𝐻𝐻𝑟𝑟𝐻𝐻𝑛𝑛𝑃𝑃() to convert the table for a particular TDL to a table corresponding to 

an individual core, as in Chapter 3.6. That way, each task only requires a table 

corresponding to each TDL (for example, a 4×4 multiprocessor only needs 3 tables 

for each task). The task TDL tables are calculated prior to the execution of the 

scheduling algorithm. Calculating the task tables dynamically for an individual core 

(from the static task TDL tables) does increase the computational complexity slightly, 

but, as 𝐻𝐻𝑟𝑟𝐻𝐻𝑛𝑛𝑃𝑃() is just a column mapping, it is not overly time consuming.  

 

4.3 Static Thermal Aware Scheduling Algorithm 

A given task should start execution at any time point during the problem window 

defined by Figure 4.2 in Section 4.1.1. If a task is unable to be scheduled within the 

problem window, it must be rejected and the schedule fails. The process of searching 

for the appropriate start point for task execution can be considered to be equivalent to 

that of scheduling the task. The task’s execution start time 𝑒𝑒𝑑𝑑  can be scheduled 

anywhere within its problem window, and accordingly, the task's TT could be moved 

to any point in the problem window along the time axis. As such, our algorithm 

should consider the following objective: 

• Schedulability: That is, determine the start time for task execution, for all tasks 

in the given task set under the predefined temperature threshold constraint. If 
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any task is unable to be scheduled within its problem window, the schedule is 

considered a failure. 

Assuming that the schedulability criterion is satisfied, one of two additional objectives 

can be considered:  

• Maximizing performance: Assuming the schedulability criterion is satisfied, a 

task in a given task set should start as early as possible so that the whole task 

set can complete execution in the shortest possible time. 

• Minimizing peak temperature: Assuming the schedulability criterion is 

satisfied, and then a task in a given task set should be scheduled to minimize 

the peak temperature. 

The temperature increment for a task is described by the TT, and thus, the static TAS 

problem can be considered as simply moving the task tables within their problem 

windows and accumulating the tables. 

  

4.3.1 Schedulability and Performance Maximization 

To make the static TAS problem more efficient in finding an appropriate schedule for 

a given task set, we can use different search strategies according to the different 

optimization objectives. The first two objectives can be achieved by using an identical 

search technique: For each task, we move its TT forward in the problem window, as 

shown in Figure 4.5(a).  

Before executing the static TAS algorithm, we define the thermal threshold for each 

core, as 𝑘𝑘𝑗𝑗𝑑𝑑𝑑𝑑𝑚𝑚, and initialize the 𝑘𝑘ℎ𝑒𝑒𝑟𝑟𝑇𝑇𝐻𝐻𝐶𝐶𝑀𝑀𝐻𝐻𝑒𝑒 using the initial temperature 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 of 

each core. We also pre-construct the static TDL-based thermal table for each task 

before running the scheduling algorithm.  

Because the release time 𝐻𝐻𝑑𝑑 of each task depends on its parents' completion time, we 

use a recursive algorithm, given in Algorithm 4.1, to search all the task problem 

windows to test for schedulability, and thus obtain the optimal solution for 

performance maximization. If schedulability validation is successful for a given task 

set, then the first solution of 𝑒𝑒𝑑𝑑 is the one that will give the highest performance, as 
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searching forward in each task’s problem window will result in the fastest possible 

execution of the task set. Hence the algorithm terminates after the first solution is 

found. As the forward search algorithm gives the highest performance, we refer to 

Algorithm 4.1, later in the text, as the high performance (HP) algorithm. 

Algorithm 4.1: Forward search algorithm for maximizing performance 
Input: 𝐻𝐻,𝐻𝐻𝑑𝑑 , 𝑃𝑃𝑑𝑑 
Output: 𝑒𝑒𝑑𝑑 or unsuccessful 
FUNCTION Solve(𝐻𝐻,𝐻𝐻𝑑𝑑 , 𝑃𝑃𝑑𝑑) 
      IF 𝐻𝐻𝑑𝑑 ≥ 𝑃𝑃𝑑𝑑 THEN 
            Print("Schedulability test is failed!"); 
            Algorithm terminates; 
      END IF 
      IF 𝜏𝜏𝑑𝑑's parents are not visited or not null THEN 
            Choose another start node 𝑗𝑗 in topological sorting; //start nodes means its precedencies have 
all been visited in Directed-Acyclic Graph (DAG)   
            Solve(𝑗𝑗,𝐻𝐻𝑗𝑗 , 𝑃𝑃𝑗𝑗); 
      END IF 
      FOR 𝑒𝑒𝑑𝑑 = 𝐻𝐻𝑑𝑑 to 𝑃𝑃𝑑𝑑 DO 
            FOR each child 𝜏𝜏𝑗𝑗of task 𝜏𝜏𝑑𝑑 DO 
                  Update 𝜏𝜏𝑗𝑗 's problem window [𝐻𝐻𝑗𝑗 = 𝑀𝑀𝐴𝐴𝑀𝑀�𝑒𝑒𝑑𝑑 + 𝐶𝐶𝑑𝑑 ,𝐻𝐻𝑗𝑗�, 𝑃𝑃𝑗𝑗 = 𝐻𝐻𝑗𝑗 + 𝑆𝑆𝑗𝑗] ; //problem window 
has nothing to do with the scheduling location 
            END FOR 
            //Select either 𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃_𝑒𝑒𝐶𝐶𝐶𝐶𝐻𝐻𝑃𝑃𝐷𝐷(); //exhaustive search  is optional 
            {𝐶𝐶𝐶𝐶𝑃𝑃𝑑𝑑} = 𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃_𝑒𝑒𝐶𝐶𝐶𝐶𝐻𝐻𝑃𝑃𝐷𝐷(𝜏𝜏𝑑𝑑 ,𝑘𝑘ℎ𝑒𝑒𝑟𝑟𝑇𝑇𝐻𝐻𝐶𝐶𝑀𝑀𝐻𝐻𝑒𝑒, 𝐼𝐼𝑑𝑑𝐶𝐶𝑒𝑒𝑀𝑀𝐻𝐻𝑒𝑒);  
           //{𝐶𝐶𝐶𝐶𝑃𝑃𝑑𝑑} = 1 to NUMCORE and idle in time slot [𝑒𝑒𝑑𝑑 , 𝑒𝑒𝑑𝑑 + 𝐶𝐶𝑑𝑑]; //This is optional for exhaustive 
search 
            FOR each core in {𝐶𝐶𝐶𝐶𝑃𝑃𝑑𝑑} DO 
                  𝑘𝑘ℎ𝑒𝑒𝑟𝑟𝑇𝑇𝐻𝐻𝐶𝐶𝑀𝑀𝐻𝐻𝑒𝑒 = 𝑘𝑘ℎ𝑒𝑒𝑟𝑟𝑇𝑇𝐻𝐻𝐶𝐶𝑀𝑀𝐻𝐻𝑒𝑒 + 𝑘𝑘𝑘𝑘[𝑅𝑅𝑖𝑖,𝑃𝑃𝑖𝑖,𝑙𝑙𝑜𝑜𝑑𝑑𝑖𝑖]

𝑙𝑙𝑖𝑖 ; 
                  IF any cell in 𝑘𝑘ℎ𝑒𝑒𝑟𝑟𝑇𝑇𝐻𝐻𝐶𝐶𝑀𝑀𝐻𝐻𝑒𝑒 ≥  𝑘𝑘𝑗𝑗𝑑𝑑𝑑𝑑𝑚𝑚  THEN 
                        𝑘𝑘ℎ𝑒𝑒𝑟𝑟𝑇𝑇𝐻𝐻𝐶𝐶𝑀𝑀𝐻𝐻𝑒𝑒 = 𝑘𝑘ℎ𝑒𝑒𝑟𝑟𝑇𝑇𝐻𝐻𝐶𝐶𝑀𝑀𝐻𝐻𝑒𝑒 − 𝑘𝑘𝑘𝑘[𝑅𝑅𝑖𝑖,𝑃𝑃𝑖𝑖,𝑙𝑙𝑜𝑜𝑑𝑑𝑖𝑖]

𝑙𝑙𝑖𝑖 ; // ThermalMap is a global variable 
                        Print("overheat at time and core!"); 
                        RETURN; //returning to other recursive level to continue searching 
                  ELSE 
                        Record 𝐶𝐶𝐶𝐶𝑃𝑃𝑑𝑑 and 𝑒𝑒𝑑𝑑; 
                        IF 𝜏𝜏𝑑𝑑 is the last task in task set THEN 
                              Print("Schedulability test is passed!"); 
                              Algorithm terminates; 
                        END IF 
                        IF using 𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃_𝑒𝑒𝐶𝐶𝐶𝐶𝐻𝐻𝑃𝑃𝐷𝐷() THEN 
                              𝛤𝛤 = 𝑃𝑃𝐻𝐻𝑏𝑏𝐶𝐶𝐻𝐻𝑛𝑛𝐻𝐻_𝑟𝑟𝑒𝑒𝐶𝐶𝑟𝑟𝑑𝑑𝑒𝑒𝑟𝑟(𝜏𝜏𝑑𝑑′𝑃𝑃 𝐻𝐻𝐶𝐶𝐶𝐶 𝑃𝑃ℎ𝐻𝐻𝐶𝐶𝑑𝑑,𝐸𝐸𝐷𝐷𝐹𝐹); 
                        ELSE 
                              𝛤𝛤 is in original order; 
                        END IF 
                        FOR each 𝜏𝜏𝑑𝑑's child 𝜏𝜏𝑗𝑗 according to order 𝛤𝛤 DO 
                              Solve(𝑗𝑗,𝐻𝐻𝑗𝑗 , 𝑃𝑃𝑗𝑗); 
                        END FOR 
                  END IF 
                  𝑘𝑘ℎ𝑒𝑒𝑟𝑟𝑇𝑇𝐻𝐻𝐶𝐶𝑀𝑀𝐻𝐻𝑒𝑒 = 𝑘𝑘ℎ𝑒𝑒𝑟𝑟𝑇𝑇𝐻𝐻𝐶𝐶𝑀𝑀𝐻𝐻𝑒𝑒 − 𝑘𝑘𝑘𝑘[𝑅𝑅𝑖𝑖,𝑃𝑃𝑖𝑖,𝑙𝑙𝑜𝑜𝑑𝑑𝑖𝑖]

𝑙𝑙𝑖𝑖 ; 
            END FOR 
      END FOR 
      Print("Schedulability test is failed!"); 
END FUNCTION 
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Figure 4.5: Searching (a) Forward in time, and (b) Backward in time 

In Algorithm 4.1, the function 𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃_𝑒𝑒𝐶𝐶𝐶𝐶𝐻𝐻𝑃𝑃𝐷𝐷() is a user defined allocation policy that 

determines which core a task is allocated to, and is independent of the scheduling 

algorithm. As a result, Algorithm 4.1 only determines the schedulability of a task set 

with a specific allocation policy. For example, a non-thermal-aware scheduling 

algorithm (e.g. random [92] or minimum core ID [92]) or a heuristic TAS algorithm 

(e.g. coolest-first [92] or neighbour-aware [92]) based on the 𝑘𝑘ℎ𝑒𝑒𝑟𝑟𝑇𝑇𝐻𝐻𝐶𝐶𝑀𝑀𝐻𝐻𝑒𝑒 at release 

time 𝐻𝐻𝑑𝑑, could be used to allocate a task. The thermal simulation is integrated into the 

scheduling algorithm. If an allocation policy is not specified in advance, the 

schedulability validation must be extended to cover every possible idle core at every 

time point in the problem window. This is reflected in Algorithm 4.1 by the need for 

the user to select from either a specific allocation policy or the exhaustive search 

statement, just below the statement “select either 𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃_𝑒𝑒𝐶𝐶𝐶𝐶𝐻𝐻𝑃𝑃𝐷𝐷() or exhaustive search 

from below”. The exhaustive search will find the optimum schedule (if one exists) 

and can be used to analyse the performance of a particular heuristic scheduling 

algorithm.  

The function 𝑃𝑃𝐻𝐻𝑏𝑏𝐶𝐶𝐻𝐻𝑛𝑛𝐻𝐻_𝑟𝑟𝑒𝑒𝐶𝐶𝑟𝑟𝑑𝑑𝑒𝑒𝑟𝑟() determines the schedule order among a task 𝜏𝜏𝑑𝑑 ’s 

children, as the children are all available for scheduling at the same time point. This 

allows well known scheduling policies, such as: first come first served (FCFS), 

earliest deadline first (EDF), shortest problem window (SPW), lowest/highest power 

first or local priority, etc., to be used. It should be noted that 𝑃𝑃𝐻𝐻𝑏𝑏𝐶𝐶𝐻𝐻𝑛𝑛𝐻𝐻_𝑟𝑟𝑒𝑒𝐶𝐶𝑟𝑟𝑑𝑑𝑒𝑒𝑟𝑟() only 

affects the performance maximization solution, and is irrelevant in terms of the 
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schedulability test as all possible locations and starting time points for each task are 

considered in the search scope. That is, 𝑃𝑃𝐻𝐻𝑏𝑏𝐶𝐶𝐻𝐻𝑛𝑛𝐻𝐻_𝑟𝑟𝑒𝑒𝐶𝐶𝑟𝑟𝑑𝑑𝑒𝑒𝑟𝑟()  is only used when a 

specific allocation policy determined by 𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃_𝑒𝑒𝐶𝐶𝐶𝐶𝐻𝐻𝑃𝑃𝐷𝐷() is invoked, as all possible 

sibling orders15 are implicitly included when using the exhaustive search routine. 

If our objective is just testing for schedulability, without considering performance, 

then searching backward (that is moving the table backward along the time axis), as 

shown in Figure 4.5(b) may be more efficient for schedulability validation. Searching 

forward will more likely lead to an overheating condition (that is the temperature 

threshold is exceeded), since searching forward results in a shorter slack time between 

tasks and allows less time for the core temperature to decrease. Searching backward, 

on the other hand, allows us to easily check that at least one schedule is possible for 

the task set. This backward search is similar to Algorithm 4.1, except that the start 

time point 𝑒𝑒𝑑𝑑 is moved from 𝑃𝑃𝑑𝑑 towards 𝐻𝐻𝑑𝑑.  

However, if our purpose is to find the optimal solution with respect to minimizing the 

peak temperature, rather than just to test schedulability, then we need to use an 

exhaustive search strategy to cover all available schedules, not just the first successful 

solution. This is because searching backwards cannot promise that the first solution is 

the global optimal one (as explained in next section). To achieve this, the termination 

statements in Algorithm 4.1 should be removed. 

 

4.3.2 Heuristic Peak Temperature Minimization 

As described above, it is possible to use Algorithm 4.1 with a forward search to 

maximize performance, by making the idle interval (the gap) between the tasks as 

short as possible under the thermal constraints. Alternatively, by using a backward 

search it is possible to make the idle interval between children and their parents as 

long as possible to allow the most time for the chip to cool down. However, this is not 

always true as siblings could be executed in parallel and their tables could overlap on 

the time axis. This would result in both a temporal and spatial contribution to the 

15 If one task has NUMCHILD children, then there are NUMCHILD! possible sibling orders among 
these children. So if global maximum performance is required, all possible sequences should be 
traversed. 
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temperature increment. Intuitively, minimizing the peak temperature can be achieved 

by distributing the sibling tasks along the time axis, whereas a backward search will 

likely cluster the sibling tasks close to their deadlines, which could affect the 

temperature profile of subsequent tasks. Figure 4.6 shows the rationale for distributing 

tasks during a backward search. Figure 4.6(a) shows a likely first solution for a 

backward search, where two sibling tasks are scheduled close to their latest start time. 

This would result in a temperature accumulation due to the two tasks occurring at 

similar times. Figure 4.6(b) solves this by spreading the sibling tasks on the time axis.  

Extending this to the general case for N sibling tasks 𝜏𝜏𝑑𝑑=[1..𝑁𝑁], we consider the sibling 

with the longest problem window and evenly split this into 𝑁𝑁 segments, where the 𝐻𝐻𝑠𝑠ℎ 

time point is denoted by 𝜑𝜑𝑑𝑑. That is, 𝜑𝜑0 corresponds to the siblings’ release time and 

𝜑𝜑𝑁𝑁 corresponds to the endpoint of the longest problem window. We then reduce each 

sibling’s problem window [𝐻𝐻𝑑𝑑 , 𝑃𝑃𝑑𝑑] to [𝐻𝐻𝑑𝑑 ,𝑀𝑀𝐼𝐼𝑁𝑁(𝜑𝜑𝑑𝑑 , 𝑃𝑃𝑑𝑑)]. Figure 4.6(c) shows this when 

using an EDF reordering strategy, where task 𝜏𝜏2’s problem window is shortened to 

[𝐻𝐻2,𝜑𝜑1] . However, EDF cannot necessarily promise a good solution for peak 

temperature minimization. Instead, we introduce a metric, the weighted peak distance 

(WPD), to measure the effectiveness of a sibling task order. Given the distance 𝜉𝜉𝑑𝑑,𝑗𝑗 

between the completion time points of two sibling tasks 𝜏𝜏𝑑𝑑  and 𝜏𝜏𝑗𝑗 , with reduced 

problem windows, defined as: 

 𝜉𝜉𝑑𝑑,𝑗𝑗 = ��𝑀𝑀𝐼𝐼𝑁𝑁(𝜑𝜑𝑗𝑗 , 𝑃𝑃𝑗𝑗) + 𝐶𝐶𝑗𝑗� − (𝑀𝑀𝐼𝐼𝑁𝑁(𝜑𝜑𝑑𝑑 , 𝑃𝑃𝑑𝑑) + 𝐶𝐶𝑑𝑑)� (4.5) 

WPD can then be defined as: 

 
𝑊𝑊𝑃𝑃𝐷𝐷 = � � (𝑃𝑃𝑑𝑑 + 𝑃𝑃𝑗𝑗)

𝑁𝑁

𝑗𝑗=𝑑𝑑+1

𝑁𝑁

𝑑𝑑=1

∙ 𝜉𝜉𝑑𝑑,𝑗𝑗 (4.6) 

A bigger 𝑊𝑊𝑃𝑃𝐷𝐷  value indicates that the temperature peaks for each task would be 

spread further on the time axis. Thus, Figure 4.6(d) is heuristically a better solution 

than Figure 4.6(c), because 𝜉𝜉2,3 is much smaller in Figure 4.6(c). Thus, if we can find 

a sibling order that maximizes 𝑊𝑊𝑃𝑃𝐷𝐷 and the schedule is valid, then we can assume 

that the first solution is the solution we want. The 𝑃𝑃𝐻𝐻𝑏𝑏𝐶𝐶𝐻𝐻𝑛𝑛𝐻𝐻_𝑟𝑟𝑒𝑒𝐶𝐶𝑟𝑟𝑑𝑑𝑒𝑒𝑟𝑟() implementation 

using the WPD metric for minimizing the peak temperature during the backward 

91 
 



 High Level Thermal-Aware Scheduling for Multiprocessors Cui Jin 

search is shown in Algorithm 4.2. We refer to this algorithm as the heuristic peak 

temperature minimization (HPTM) algorithm. 

Algorithm 4.2: Sibling reorder for backward search 
Input: sibling task set 𝜏𝜏1⋯𝑁𝑁, original task order Γ = {1⋯𝑁𝑁} 
Output: new order Γ 
FUNCTION reorder_sibling(𝜏𝜏1⋯𝑁𝑁) 
      FOR 𝐻𝐻 = 1 to 𝑁𝑁 DO 
            FOR 𝑗𝑗 = 1 to 𝑁𝑁 DO 
                  𝑃𝑃𝐶𝐶𝑇𝑇𝑒𝑒𝐶𝐶𝑒𝑒𝐻𝐻𝑒𝑒𝑠𝑠𝑑𝑑𝑠𝑠[𝑑𝑑][𝑗𝑗] =  𝑀𝑀𝐼𝐼𝑁𝑁�𝜑𝜑𝑗𝑗 , 𝑃𝑃𝑑𝑑� + 𝐶𝐶𝑑𝑑; 
            END FOR 
      END FOR 
      𝑀𝑀𝐻𝐻𝑒𝑒𝑊𝑊𝑃𝑃𝐷𝐷 = 0; 
      FUNCTION gen_all_permutation(Γ,𝐻𝐻) 
            IF 𝐻𝐻 < 𝑁𝑁 THEN 
                  FOR 𝑘𝑘 = 𝐻𝐻 to 𝑁𝑁 DO 
                        swap(Γ[𝐻𝐻], Γ[𝑘𝑘]); 
                        gen_all_permutation(Γ,𝐻𝐻 + 1); 
                        swap(Γ[𝐻𝐻], Γ[𝑘𝑘]); 
                  END FOR 
            ELSE 
                  𝑊𝑊𝑃𝑃𝐷𝐷 = 0; 
                  FOR 𝐻𝐻 = 1 to 𝑁𝑁 DO 
                        FOR 𝑗𝑗 = 1 to 𝑁𝑁 DO 

                              𝑊𝑊𝑃𝑃𝐷𝐷 = 𝑊𝑊𝑃𝑃𝐷𝐷 + (𝑃𝑃𝑑𝑑 + 𝑃𝑃𝑗𝑗) ∙ �𝑃𝑃𝐶𝐶𝑇𝑇𝑒𝑒𝐶𝐶𝑒𝑒𝐻𝐻𝑒𝑒_𝐻𝐻𝐻𝐻𝑏𝑏[𝐻𝐻][Γ[𝐻𝐻]] −
𝑃𝑃𝐶𝐶𝑇𝑇𝑒𝑒𝐶𝐶𝑒𝑒𝐻𝐻𝑒𝑒_𝐻𝐻𝐻𝐻𝑏𝑏[𝑗𝑗][Γ[𝑗𝑗]] �; 

                        END FOR 
                  END FOR 
                  IF 𝑊𝑊𝑃𝑃𝐷𝐷 > 𝑀𝑀𝐻𝐻𝑒𝑒𝑊𝑊𝑃𝑃𝐷𝐷 THEN 
                        𝑀𝑀𝐻𝐻𝑒𝑒𝑊𝑊𝑃𝑃𝐷𝐷 = 𝑊𝑊𝑃𝑃𝐷𝐷; 
                        Record Γ; 
                  END IF 
            END IF 
      END FUNCTION 
      Invoke gen_all_permutation(Γ′,1); 
      RETURN Γ; 
END FUNCTION 
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Figure 4.6: A heuristic for minimizing the temperature during a backward search 

 

4.4 Problem Extension 

The algorithms proposed so far give an effective framework to determine constrained 

schedulability in static thermal-aware scheduling. This framework shows that any 

power event on a core in a multiprocessor can be tested and scheduled by moving the 

tasks’ thermal tables and adding them together. This framework can be easily 

extended to more complicated scenarios, so long as they can be converted to a 

sequence of power events. Typical scenarios include: 

• A single task which has several sequential power values. 

• A task which is intermittently put into a sleep state, such as when power-

gating is enabled to cool down the core. 

• Task execution when dynamic frequency scaling is enabled during task 

execution. 
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The above scenarios can be modified to fit into our framework by splitting the task 

into subtasks. That is, a larger task, with time varying properties, can be split into 

several subtasks with static task properties. For, example, in the first scenario, the task 

is split into subtask segments of constant power, each of which execute sequentially 

and, apart from the first subtask, all have a problem window of zero. In the second 

scenario, the WCET is extended and needs to be recalculated. In the last scenario, 

both the power value and the WCET need to be re-calculated and assigned to each 

subtask since frequency scaling can linearly affect both power and execution time. 

Figure 4.7 shows the task graph of Figure 4.1, but with task 𝜏𝜏3 split into 3 subtasks. 

As such, these more complicated scenarios can be converted into a sequence of simple 

tasks which can then be scheduled using Algorithms 4.1 and 4.2.  

τ1

τ2

τ4

τ3.1

τ3.2

τ3.3

 
Figure 4.7: Task splitting for Figure 4.1 

 

4.4.1 Using Slack to Cool Down the Chip  

If a valid schedule exists, under the predefined thermal constraint, we could take 

advantage of power-gating and the available slack (that is, the interval between the 

task completion point and the deadline) to intermittently put the task into a sleep 

mode and further reduce the heat dissipation of a core. In fact this is identical to the 

second and third scenarios mentioned at the beginning of Section 4.4. In Algorithm 

4.1, we can obtain the earliest start point 𝑒𝑒𝑑𝑑  for each task 𝜏𝜏𝑑𝑑  by using the forward 

search algorithm. 
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In terms of power-gating, we predefine a cool-down interval (the duration of the sleep 

state) as 𝐻𝐻𝑠𝑠𝑙𝑙. Hence, the following condition must be satisfied: 

 𝑁𝑁𝑆𝑆𝐿𝐿𝑑𝑑 ∙ 𝐻𝐻𝑠𝑠𝑙𝑙 ≤ 𝑃𝑃𝑑𝑑 − 𝑒𝑒𝑑𝑑 (4.7) 

where 𝑁𝑁𝑆𝑆𝐿𝐿𝑑𝑑   is the number of times that the task is placed into the sleep state. 

Intermittent periods of sleep could help to avoid high temperatures over a short 

temporal scale, while still being able to meet the deadline and the thermal constraint 

since the slack is verified from the previous schedulability test. We refer to this 

scenario as stop-go (S-G) scheduling.  

In a similar way, we could also extend a task’s WCET (that is, slow down task 

execution) by using frequency scaling to fill the slack. To achieve this, we assume that 

a task 𝜏𝜏𝑑𝑑 can be split into several subtasks 𝜏𝜏𝑑𝑑,𝑗𝑗, where each subtask corresponds to a 

constant frequency. If 𝐹𝐹𝑑𝑑 denotes the maximum frequency under which a task's WCET 

is obtained, the following condition must be satisfied: 

 

⎩
⎪
⎨

⎪
⎧ �𝐻𝐻𝑑𝑑,𝑗𝑗

𝑗𝑗

≤ 𝑑𝑑𝑑𝑑 − 𝑒𝑒𝑑𝑑

�𝐻𝐻𝑑𝑑,𝑗𝑗 ∙ 𝑓𝑓𝑑𝑑,𝑗𝑗 ≤ 𝐶𝐶𝑑𝑑 ∙ 𝐹𝐹𝑑𝑑
𝑗𝑗

 (4.8) 

 

where 𝐻𝐻𝑑𝑑,𝑗𝑗 denotes the subtask execution time and 𝑓𝑓𝑑𝑑𝑗𝑗 denotes the subtask frequency. 

Equation 4.8 represents the general multiple subtask case. If task splitting is not used, 

then a task 𝜏𝜏𝑑𝑑’s frequency could be scaled as 𝑓𝑓𝑑𝑑/𝐹𝐹𝑑𝑑 = 𝐶𝐶𝑑𝑑/(𝑑𝑑𝑑𝑑 − 𝑒𝑒𝑑𝑑). We refer to this 

scenario as dynamic frequency scaling (DFS) scheduling.  

 

4.5 Experiment 

We use both actual real-time benchmark applications and synthetic real-time task sets 

to validate the schedulability performance of our framework. We then show that our 

framework can also optimize critical metrics in static TAS, such as performance, peak 

temperature and so on. All experiments are simulated using an Intel Core 2 Duo 

E8500 with 8GB RAM operating at 3.16GHz with the Ubuntu 10.10 OS.  
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4.5.1 Validation of the Framework 

In this section, a real-time embedded benchmark, PapaBench [106], used for WCET 

and scheduling analysis is used to test our framework. This benchmark is part of the 

Paparazzi project [106], a real-time application developed for an unmanned aerial 

vehicle, running on dual ATMEL AVR micro-controllers. PapaBench v0.4 has support 

for ARM architecture processors, and as such we can use a multi-core ARM simulator 

to profile the power consumption for each task. In this experiment, we simulate a dual 

core processor with a shared L2 cache, similar to the Nvidia Tegra 2. Each core has a 

separate L1 cache, included inside the core. The L2 cache is shared and is not 

considered part of the processor core in this simulation. The initial and environmental 

temperature is set to 25°C (for the embedded processor scenario with low power 

consumption) and the temperature threshold is defined as 30°C.   

Figure 4.8 shows the task graph and the corresponding micro-control-units (MCUs) 

abstracted from the PapaBench source code. The power profile for each task in 

PapaBench is generated from the source code using SimpleScalar-ARM (which 

includes Wattch) and is shown in Table 4.4. Note that the deadline of each task is an 

absolute deadline, and as such the problem window 𝑃𝑃𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝐶𝐶𝑑𝑑 for each task can be 

determined before the algorithm runs. The power value of the tasks listed in Table 4.4 

only includes the processor power which is profiled by Wattch [43], and the power 

consumed by I/O and peripherals (e.g. the GPS module, radio module, sensors and 

actuators) is not taken into account. We use the same task set partition as in 

PapaBench to determine which core (MCU0/Core0 or MCU1/Core1) is assigned for 

each task. Thus, this predefined task allocation negates the need for 𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃_𝑒𝑒𝐶𝐶𝐶𝐶𝐻𝐻𝑃𝑃𝐷𝐷() or 

the exhaustive search in Algorithm 4.1.   
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τ4 τ5 τ6 τ7

τ8 τ9 τ10

τ11

τ12

MCU1
MCU1

MCU0

 
Figure 4.8: The task graph for PapaBench 
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Task Description 𝑪𝑪 (ms) 𝒅𝒅 (ms) 𝑷𝑷 (Watt) 
𝜏𝜏1 Receive Radio Command 4 25 3.2 
𝜏𝜏2 Send Radio Command to MCU0 5 25 3.5 
𝜏𝜏3 Receive Radio Command in MCU0 6 25 2.7 
𝜏𝜏4 Receive GPS Data 6 250 3.5 
𝜏𝜏5 Navigation 6 250 3.9 
𝜏𝜏6 Altitude Control 5 250 4.3 
𝜏𝜏7 Pitch Control 4 250 4.1 
𝜏𝜏8 Stabilization 4 50 5.1 
𝜏𝜏9 Send Servo Data to MCU1 6 50 3.8 
𝜏𝜏10 Receive Servo Data in MCU1 3 50 2.9 
𝜏𝜏11 Transmit Servos 6 50 4.9 
𝜏𝜏12 Check Failsafe 5 50 2.5 

Table 4.4: Tasks characteristics from PapaBench after simulation and profiling 

Figure 4.9 shows the resulting schedule obtained from Algorithm 4.1, which shows 

that the PapaBench task set is able to be successfully scheduled within the 

temperature constraints. As Algorithm 4.1 gives a solution which represents the fastest 

possible execution of the task set, the schedule shown in Figure 4.9 indicates the best 

performance. This schedule has a completion time of 47 milliseconds for the 30°C 

temperature constraint.  Furthermore, the temperature profile of the two cores for the 

schedule shown in Figure 4.9 is given in Figure 4.10. The solid line represents the 

thermal profile determined using our proposed thermal-aware scheduling framework, 

with a table length of 3𝐶𝐶𝑑𝑑 , while the dashed line represents the thermal profile 

determined by Hotspot for this particular schedule. The two plots in Figure 4.10 

represent the temperature profile of MCU0 and MCU1 respectively. Figure 4.10 

shows that there is good agreement between the two thermal profiles, and as such, we 

conclude that our truncated table approach is accurate when used to check the thermal 

constraint, while saving a large amount of processing time and memory for task table 

storage.  
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Figure 4.9: A successful thermal schedule for PapaBench 
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Figure 4.10: Thermal Profile Comparison of Figure 4.9 

From this schedulability test, we gain some interesting insights that could be useful 

for improving the fast schedulability analysis even further: 

• The gap between consecutive tasks usually occurs if there is an increase in 

task power (e.g. tasks 𝜏𝜏1, 𝜏𝜏2 and 𝜏𝜏4, 𝜏𝜏5, etc.). If there is a decrease in power 

between two consecutive tasks there is no gap (e.g. tasks 𝜏𝜏2, 𝜏𝜏3 and 𝜏𝜏6, 𝜏𝜏7, 

etc.).  The gap between tasks allows the core to cool down. 

• The sibling tasks usually run in the gaps in the other cores’ task execution (e.g. 

task 𝜏𝜏12 ) as this can avoid the overheating induced by spatial heat 

accumulation. However, it is still possible to overlap sibling task execution as 

the heat transfer between the cores is not dramatic for short task execution. 

 

4.5.2 Effectiveness of the Schedulability Test 

The previous sections used relatively small benchmarks to demonstrate our algorithm 

and to show that the framework is useful for real-time thermal aware scheduling. In 

this section, we use much larger task sets with tighter constraints and a larger 

multiprocessor architecture to demonstrate the effectiveness of our thermal aware 
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scheduling algorithm. Previous schedulability analysis [91] has been limited to 

expressing task properties and their constraints as temporal metrics whose 

interrelationships can be explicitly expressed by a set of analytical equations or 

inequalities. However, due to the non-linearity in the induced temperature, it is not 

possible to directly accumulate temperature into an analytical expression. The only 

way to accurately check the temperature and assure that it is under a specified 

threshold is to use a thermal simulator, such as Hotspot [35], to obtain the temperature 

profile of an entire schedule. That is, the scheduling solver generates a possible 

candidate schedule where each task must meet its deadline, and then sends its 

corresponding power profile to the thermal simulator (in this case: HotSpot) to check 

the temperature. If the schedule exceeds the thermal threshold, the schedule returns as 

a fail and another possible candidate schedule is generated and passed to the thermal 

simulator. This procedure is carried out iteratively, until a successful schedule is found 

or until no possible schedule exists. We refer to this method as the traditional method 

for thermal simulation. As the scheduling algorithm is already an NP-Hard problem 

[91], adding thermal constraints results in an unacceptable runtime. Thus it is 

important to evaluate our proposed thermal-aware scheduling framework to show that 

it can significantly reduce the computational time for static TAS.     

To demonstrate the benefits of our scheduling algorithm (in this case, the HP 

algorithm), we conduct an experiment involving 5 synthetic task sets, which contain 

15, 18, 20, 30 and 50 tasks, respectively. The worst case execution time 𝐶𝐶𝑑𝑑  is 

randomly generated in the range [2ms:120ms], the absolute deadline 𝑑𝑑𝑑𝑑  is obtained 

from the randomly generated task slack time 𝑆𝑆𝑑𝑑 which is in the range [8ms:55ms], and 

the power consumption of the tasks  𝑃𝑃𝑑𝑑  is in range [1.5W:6W].  The first task set 

(containing 15 tasks) has a slightly tight relative deadline for each task (𝑆𝑆𝑑𝑑 is in the 

range [8ms:15ms]).  As the number of tasks increases, the deadline is relaxed (with 𝑆𝑆𝑑𝑑 

in the range [25ms:55ms] for the 50 task set). A task set is restricted so that it only 

allows tasks with at most 5 parents and 5 children.  

We conduct our experiments using two different simulated low power multi-core 

processor layouts. The first has a 2×4 layout, with two rows of four cores, with each 

core having a size of 2mm×4mm. This layout is meant to be representative of current 

high end multi-core processors for embedded applications. The second layout consists 
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of a 4×4 layout. The 2×4 layout has less inter-core thermal coupling, as all cores have 

at least one exterior edge. Additionally, this layout, having fewer cores, will present a 

greater challenge to the scheduler. The 4×4 layout will have a larger inter-core thermal 

coupling, particularly for the 4 cores in the centre. However, the scheduling problem 

will be simplified as there are now more cores to schedule tasks to. In this experiment, 

the initial (and the environment) temperature is 25°C, while the predefined 

temperature threshold for any core is 35°C. 

Table 4.5 shows the runtime to complete the schedulability test for the 5 task sets on 

the 2×4 layout. The “Schedulable?” row indicates if a task set can be successfully 

scheduled under the 35°C temperature constraint. A task set which is not schedulable 

tends to take more time than a task set (of comparable size) which can be successfully 

scheduled as the former must exhaust all possible schedules while the latter will 

terminate as soon as a schedule is successful. In this experiment using the 2×4 layout, 

the task sets with 18 tasks and 20 tasks are not schedulable under the thermal 

constraints, whereas the other task sets all are. The reason these two tasks are 

unschedulable is that they have very tight deadlines which (for the 8 core 

implementation) does not allow enough slack to allow the chip to cool down 

sufficiently. The processing time of the traditional method (using Hotspot as the 

thermal simulator, and referred to as TM in Table 4.5) is very large and does not 

complete in reasonable time for the largest task set. On the other hand, our proposed 

thermal-aware scheduling framework allows for much larger, more complex, task sets 

to be examined within an acceptable time period (only 11.5 minutes for the 50 tasks in 

our largest task set). The proposed algorithm shows a speed up of 2 to 3 orders of 

magnitude compared to the traditional method. Figure 4.11 shows the thermal profile 

for the two hottest cores (Core2 and Core6) in the 2×4 core layout for the successfully 

scheduled 15 task set determined using our proposed thermal-aware scheduling 

framework (compared to Hotspot). Again there is good agreement between the 

thermal profiles. 

Runtime 15 Tasks 18 Tasks 20 Tasks 30 Tasks 50 Tasks 
Schedulable? Y N N Y Y 
Proposed (s) 2 25 43 89 692 

TM (s) 1290 23450 45741 58722 -- 
Speedup 645x 938x 1064x 660x -- 

Table 4.5: The HP algorithm runtime comparison for the 2×4 core layout 
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We also conducted a similar experiment on the 4×4 layout, shown in Table 4.6. The 

task set with 20 tasks is able to be scheduled on the 4×4 layout as it is much easier to 

schedulable with a greater number of cores. The ease in finding a suitable schedule as 

the number of cores increases is reflected in the shorter execution times of our 

proposed framework compared to that of the 2×4 layout. Again, the proposed 

algorithm shows a speed up of almost 3 orders of magnitude compared to the 

traditional method. 

Runtime 15Tasks 18Tasks 20 Tasks 30 Tasks 50Tasks 
Schedulable? Y Y Y Y Y 
Proposed (s) 2 2 9 32 428 

TM (s) 1035 1274 7928 31922 -- 
Speedup 518x 637x 881x 997x -- 

Table 4.6: The HP algorithm runtime comparison for the 4×4 core layout 

 

 
Figure 4.11: The thermal profile of two hottest cores in the 15-task example for the 2×4 core layout 

 

4.5.3 Heuristic Thermal Optimization based on Static TAS 

In this section, we examine the performance of the various scheduling algorithms 

described in Sections 4.3 and 4.4. However, before we test our proposed heuristic 
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algorithms, the non-TAS case is examined to show why a thermal threshold constraint 

and STAS are necessary. In this experiment, we use the same 2×4 multi-core 

processor as in Section 4.5.2, with the three successfully scheduled task sets from 

Section 4.5.2 (i.e. the 15 task, 30 task and 50 task sets). Again, we use an initial core 

temperature of 25°C, but with no thermal constraint. We examine the worst case core 

temperature for a random allocation policy and an earliest deadline first (EDF) policy. 

These are compared to the absolute worst case (that is the hottest scenario for all 

possible scheduling solutions) determined using an exhaustive search.  

Task Set Random Allocation EDF Allocation Exhaustive Search 
15 tasks 37.8 37.9 38.1 
30 tasks 41.1 41.3 41.6 
50 tasks 39.9 40.6 40.8 

Table 4.7: Maximum core temperature (in °C) using non-TAS scheduling  

By comparing the data in Table 4.7 with the results for the HP algorithm using a 

thermal constraint of 35°C (presented in Table 4.8), we can conclude that if a thermal 

threshold is not applied, conventional scheduling algorithms can result in high 

individual core temperatures, approaching that of the worst case temperature. This 

simple experiment shows that thermal aware scheduling may provide additional 

opportunities for controlling core temperature. 

In the remainder of this section, we examine the performance of our proposed 

scheduling algorithms. These include the high performance (HP) forward search 

algorithm (Section 4.3.1), the backward search (BS) algorithm (Section 4.3.1), the 

heuristic peak temperature minimization (HPTM) algorithm (Section 4.3.2), and 

implementations of S-G scheduling (Section 4.4.1) and DFS scheduling (Section 

4.4.1). These algorithms are compared, in terms of the peak core temperature and the 

algorithm execution time, to the optimal solution (determined by an exhaustive 

search). We use the same 2×4 multi-core processor as in Section 4.5.2, with the three 

successfully scheduled task sets from Section 4.5.2 (i.e. the 15 task, 30 task and 50 

task sets). We also use three of the task sets from PapaBench, fir and bs from SNU 

benchmark [108]), but in this case with the dual core architecture described in Section 

4.5.1.   
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The initial and environmental temperature is 25°C and the thermal threshold for the 

2×4 multi-core architecture is set to 35°C, while the threshold for the dual core 

architecture is set to 30°C. The peak core temperature (Temp) and the algorithm 

execution time (Time) for the various scheduling algorithms are presented in Table 

4.8.  

*  Opt. HP BS HPTM S-G DFS 
Temp (Time) Temp (Time) Temp (Time) Temp (Time) Temp (Time) Temp (Time) 

1 15 Tasks 33.7 (36524) 34.9 (2) 34.5 (3) 34.2 (7) 34.2 (13) 34.1 (10) 
2 30 Tasks 32.9 (81781) 34.2 (89) 33.9 (91) 33.4 (116) 33.4 (272) 33.7 (161) 
3 50 Tasks 33.7 (188170) 34.9 (692) 34.7 (705) 34.2 (991) 33.9 (2382) 34 (1011) 
4 PapaBen 28.4 (22679) 29.1 (2) 29.1 (2) 28.9 (4) 28.7 (7) 28.8 (5) 
5 fir 27.9 (40015) 29 (4) 28.9 (4) 28.6 (9) 28.7 (15) 28.7 (10) 
6 bs 28.1 (5612) 28.6 (1) 28.6 (1) 28.6 (2) 28.5 (5) 28.6 (3) 
* Entry 1-3 is for a simulated 2×4 multi-core processor layout with a thermal threshold of 35℃, while 
4-6 is for simulated dual core architecture with a thermal threshold of 30℃. 

Table 4.8: Temperature optimization for the schedulable task sets 

As can be seen from Table 4.8, even using our fast algorithm, calculating the optimal 

schedule (in terms of the minimum core temperature) requires a considerable time 

(almost 52 hours for the 50 task set) because of the need to perform an exhaustive 

search of all schedule possibilities. If only one successful schedule is found using the 

exhaustive search, all other algorithms (e.g. HP, BS, HPTM, S-G, DFS) would also 

eventually find this single schedule, resulting in all columns of the table being almost 

identical (that is an identical temperature and similar algorithm runtime). However, 

this case is expected to be rare, and usually the first successful schedule will not be 

the optimal one.  

It is important to note here, that the in calculating the optimal schedule we use our 

LUT-based TT scheduling technique and not Hotspot. Using Hotspot with an 

exhaustive search for large task sets (such as the 50 task set) would require a 

considerable amount of time to complete. Of the other algorithms, the HP algorithm 

generally has the shortest runtime, but leads to the highest core temperature, as it tries 

to make all tasks complete as early as possible. The shorter gap between consecutive 

tasks cannot guarantee that there is enough time to cool down the chip. The rationale 

behind all the other optimizations listed here is to use the gaps to separate task 

execution or to use the possible slack to de-throttle the chip performance. The BS 

algorithm simply makes a task start as late as possible, but does not appropriately 

cater for the case where sibling tasks run in parallel. This is particularly noticeable in 
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the large task sets (e.g. 30 and 50 tasks) where there is a reasonable high level of 

sibling task parallelism. The HPTM algorithm attempts to evenly distribute the sibling 

tasks, and achieves a lower peak core temperature for the different task sets and 

benchmarks. The algorithms which de-throttle chip performance, such as S-G and 

DFS, perform even better (as would be expected), but at the expense of an increased 

execution time. This thermal improvement is particularly noticeable for the larger task 

sets (e.g. 30 and 50 tasks) as the average slack time is greater. For S-G, this means 

that there are more opportunities for putting the core into intermittent sleep, but 

calculating this is more complex resulting in a lengthy runtime of the scheduling 

algorithm. DFS performs slightly worse than S-G (in general) as de-throttling the 

frequency still results in a significant leakage power component, whereas putting the 

core to sleep consumes very low leakage power. This experiment shows that the core 

temperature can be optimized at the expense of performance, while satisfying a task 

set's schedulability in terms of both deadline and thermal constraints. 

To show that our conclusions are more general, we also changed the task properties of 

the synthetic task sets to reflect two possible basic scenarios: different utilization (task 

execution time/task relative deadline) and different power consumption.   

The higher task utilization scenario is tested by generating tasks with execution times 

in the range [80ms:120ms] and task slack times in the range [8ms:25ms]. The lower 

task utilization scenario is generated with task execution times in the range 

[2ms:60ms] and task slack times in the range [25ms:55ms]. Rows 1-3 in Table 4.9 are 

for the high utilization group and rows 4-6 are for low utilization group. A thermal 

threshold of 35°C is assumed. 

*  Opt. HP BS HPTM S-G DFS 
Temp (Time) Temp (Time) Temp (Time) Temp (Time) Temp (Time) Temp (Time) 

1 15 Tasks 36.7 (15782) - (9) - (10) - (22) - (39) - (25) 
2 30 Tasks 33.6 (41528) 34.9 (92) 34.6 (72) 34.5 (98) 34.5 (184) 34.6 (137) 
3 50 Tasks 34.1 (107201) 34.9 (737) 34.8 (721) 34.7 (921) 34.7 (2875) 34.7 (1595) 
4 15 Tasks 33.2 (49743) 34.8 (3) 33.8 (3) 33.3 (7) 33.5 (12) 33.5 (10) 
5 30 Tasks 32.2 (125151) 34.3 (62) 32.9 (85) 32.4 (78) 32.4 (120) 32.6 (95) 
6 50 Tasks didn’t complete 33.9 (195) 33.3 (301) 32.9 (376) 33.1 (1059) 33 (578) 

Table 4.9: High utilization scenario and low utilization scenario  

In the high utilization group, the 15 task set is not schedulable with a 35°C thermal 

constraint. The runtime for performing an exhaustive search (the optimal solution) is 
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smaller, compared with the optimal group in Table 4.8, due to the smaller search 

space in the high utilization scenario. The runtime for the HP algorithm increases 

implying that finding a solution in the high utilization scenario is much harder using 

the forward search algorithm as the shorter slack time between tasks affects core 

cooling. All temperature values in the high utilization group are much higher than the 

temperatures shown in Table 4.8. This implies that a higher utilization will increase 

the peak temperature. HPTM has similar temperature results to S-G and DFS as a 

shorter slack minimises the advantages of HPTM.  

For the low utilization group, the exhaustive search becomes significantly longer (the 

50 task set does not complete within 2 days) due to the larger size of the problem 

window. Generally, the other runtimes and temperatures are smaller, implying that it 

is easier to determine a schedule without encountering core overheating. In this 

situation, HPTM is close to the optimal solution. 

We also examined high power consumption and low power consumption task sets. 

The high power task set has power consumption in the range [4W:6W], while the low 

power task set has power consumption in the range [1.5W:4W]. The task execution 

time and slack are identical to the task sets described in Section 4.5.2. The results are 

presented in Table 4.10, where rows 1-3 are for the high power task sets and rows 4-6 

are for the low power task sets. 

*  Opt. HP BS HPTM S-G DFS 
Temp (Time) Temp (Time) Temp (Time) Temp (Time) Temp (Time) Temp (Time) 

1 15 Tasks 34.8 (31741) 34.9 (5892) 34.8 (7624) 34.8 (11034) 34.8 (19726) 34.8 (15734) 
2 30 Tasks 37.3 (80245) - - - - - 
3 50 Tasks 37.2 (189650) - - - - - 

4 15 Tasks 31.2 (35289) 32.9 (2) 31.9 (2) 31.5 (6) 31.7 (12) 31.5 (9) 
5 30 Tasks 32.2 (83872) 33.1 (34) 32.9 (46) 32.6 (105) 32.6 (187) 32.7 (121) 
6 50 Tasks 32.7 (181924) 33.8 (167) 33.5 (197) 33.1 (368) 33.3 (2100) 33.2 (1232) 

Table 4.10: High power consumption scenario and low power consumption scenario  

For the high power scenario, the 30 and 50 task sets are not schedulable, while for the 

low power task sets the schedulability test is relatively simple (as the runtimes and 

core temperatures are smaller than those in Table 4.8). The 15 task high power task set 

(shown in row 1) requires much more time to find a valid schedule due to the higher 

temperature induced by the higher power tasks.  
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4.6 Summary 

In this chapter, we propose a framework for thermal-aware scheduling of real-time 

task sets under a predefined thermal constraint. The power events, which contribute to 

a change in core temperature, are determined with the help of a task graph which 

allows us to construct a LUT-based thermal table. These thermal tables allow us to 

accurately and efficiently determine the thermal profile for a core in a multiprocessor 

system using simple table accumulation. This simple accumulation process can be 

integrated into a static task scheduling algorithm, to rapidly test for thermal-aware 

schedulability. We propose a forward search algorithm which determines the 

minimum-time schedule for a given thermal constraint, a backward search algorithm 

to quickly test for schedulability and a peak temperature minimization heuristic for 

performance/thermal optimization. We also discuss how our framework can be 

modified to include sleep functionality or frequency scaling to de-throttle chip 

performance. We demonstrate the performance of our proposed algorithms for thermal 

constrained scheduling using a number of practical and synthetic real-time 

benchmarks. We show that we are able to schedule large task sets (up to 50 tasks) in 

reasonable time (less than 11 minutes), which is 2 to 3 orders of magnitude faster than 

using scheduling with existing thermal simulation tools. 
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Chapter 5  
Predictive Dynamic Thermal-Aware Scheduling 
with Leakage Power Modelling 
 

We have previously classified DTAS into three categories (look-ahead, look-current 

and look-backward) and summarized the common issues in Chapter 2. Additionally, 

we emphasized the difference between DTAS and DTM: the former is a fine-grained 

active technique for thermal management, while the latter is a coarse-grained passive 

approach. The disadvantages of current DTAS research, particularly relating to 

multiprocessor systems, were outlined in Chapter 2 and are again summarized here 

for completeness and as our motivation for improving high level thermal management. 

These disadvantages include: 

• DTAS in most other literature (e.g. ARMA[70] and PDTM[71]) is mainly 

based on the readings from on-chip digital thermal sensors (DTS), because this 

is the easiest and most direct way to determine the temperature on chip. We 

have analysed the inherent disadvantage of DTS in Chapter 2.2.2. Due to the 

long response time of DTS (usually 30-150ms [74]), it is not suitable for fine-

grained DTAS, which needs to operate with the OS scheduler (e.g. the Linux 

default time tick is 10milliseconds [102]). Therefore, the predictive or 

proactive methods, which are proposed in [70][71] based on DTS, are more 

like the coarse-grained DTM policies, rather than DTAS. 

• The training-based approaches used in ARMA and PDTM can efficiently 

obtain the temperature trend estimation. But their accuracies are affected by 

the training application sets, and covering all possible workload patterns for 

different applications is extremely difficult. In terms of DTM, the training-

based approach is acceptable as the time interval between two consecutive 

DTM events is usually quite long and the processor workload of an application 

may change during this interval. However, for DTAS, two consecutive DTAS 

events can be very short but the temperature is unable to change dramatically 
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due to workload variations in this period because of the large thermal mass of 

a core16.  

• Techniques such as, TSIC [65], TEMPEST [60] and PDTM [71] use an 

empirical thermal model to simulate the heat exchange between adjacent cores. 

These models do not fully account for the thermal impact from other cores, 

and are thus these models are less accurate than the models used in thermal 

simulators [35][36][42][56].   

• The more accurate thermal simulators (such as, HotSpot [35] and 3D-ICE 

[109]) cannot be efficiently integrated into the online thermal management and 

optimization process due to their large computational overhead, compared to 

the DTAS interval.  

• Most DTAS research in the literature [71][92] does not use a complex power 

model. Usually, they ignore the leakage power consumption or regard the 

leakage power as a constant value which is not affected by temperature. This 

non-temperature-dependent leakage model eliminates the iterations needed for 

convergence between power and temperature in the thermal estimation. As a 

result, the constant leakage model will lead to the underestimation of 

temperature for each core, which increases the risk of real overheating. 

In this chapter, we present an event driven thermal estimation method suitable for 

DTAS, based on power events and the prebuilt LUT introduced in Chapter 3. 

Moreover, this event-driven LUT approach is extended to include a leakage power 

model with reduced computational overhead, while still providing good accuracy. We 

also propose a technique for using occasional sensor based calibration to eliminate the 

effects of long term temperature drift. The chapter presents: 

• A fast and accurate event-driven thermal estimator with an accuracy 

comparable to that of HotSpot, but with a computational overhead 

approximately three-orders of magnitude less, making it suitable for DTAS or 

fast high level thermal simulation. 

• A temperature-leakage power relationship is added to the LUT-based model 

described in Chapter 3. 

16 This includes the effect of the heat spreader and heat sink. 
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• A technique to provide long term temperature calibration, based on existing 

high latency DTS, is added to eliminate thermal drift. 

• A technique for improving the scalability of the thermal estimator for large 

many-core systems is proposed. 

• Four look-ahead DTAS polices are developed based on a predicted thermal 

map derived using our fast event-driven thermal estimation. These policies are 

compared to existing DTAS policies from the literature. 

Sections of this chapter have previously been published in [4][3] of the publications 

listed in Appendix C, and these sections have been reproduced with permission. 

Copyright on the reproduced portions is held by IEEE and ACM. 

 

5.1 Preliminary 

Leakage power has become an important design consideration in modern processor 

design. In fact, since the 90nm technology node, leakage power and techniques for 

leakage power reduction have become a major concern in both high power and low 

power electronic systems. In the previous chapter we made the assumption that for 

low power embedded solutions, we could ignore the temperature dependent leakage 

component of the total leakage power, as the processor temperature was not extreme. 

However, for high performance processors, such as used in server or desktop 

applications, it is not possible to ignore the temperature dependent leakage component. 

Thus, it is important that a full leakage model is added to our fast LUT-based thermal 

estimator if it is to be used in the more general case. In this section, we introduce the 

leakage power model used with our LUT-based estimator, as well as the necessary 

data structures to support power events in a DTAS scenario. 

 

5.1.1 Leakage Power Modelling in High Level Optimization 

There are several important observations relating to leakage power indicating that 

leakage power should not be ignored in any sensor-less, or reduced sensor, thermal 

estimation. 

109 
 



 High Level Thermal-Aware Scheduling for Multiprocessors Cui Jin 

• The sub-threshold leakage current dominants the total leakage power (gate 

leakage current can be ignored for high level optimization [53]) and the sub-

threshold leakage for a module can be approximated by 𝐴𝐴 ∙ 𝑒𝑒−𝐵𝐵 𝑛𝑛⁄ , where 𝐴𝐴 

and 𝐵𝐵 are constants, and 𝑘𝑘 is the temperature [53]. This exponential function 

can be replaced by a piece-wise linear (PWL) function [52] allowing the fast 

estimation of leakage power. 

• A transistor consumes leakage power when idle (i.e. not switching). This 

leakage component is referred to as inactive leakage power, 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑑𝑑𝑎𝑎𝑙𝑙  [52]. 

This component can be estimated using the PWL or exponential functions 

described earlier. 

• Dynamic power, induced by switching activity, contributes to the transistor 

gate temperature. This affects the leakage power. Leakage induced by 

dynamic power is referred to as active leakage,  𝑃𝑃𝑑𝑑𝑑𝑑𝑠𝑠𝑑𝑑𝑎𝑎𝑙𝑙. The ratio of leakage 

power to dynamic power does not vary significantly with activity [53][56]. For 

example, [53] gives a ratio between static and dynamic power for the 28nm 

FinFET technology node in the range from 30% to 38%, based upon 

benchmarking on different architectures. 

 The total leakage power, 𝑃𝑃𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑 , consists of the inactive and active leakage 

components, as: 

 𝑃𝑃𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑 = 𝑃𝑃𝑑𝑑𝑑𝑑𝑠𝑠𝑑𝑑𝑎𝑎𝑙𝑙 + 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑑𝑑𝑎𝑎𝑙𝑙 (5.1) 

A simple and efficient n-piece-wise linear (PWL) function was proposed in [52] for 

estimating the inactive leakage power-temperature relationship, which has been 

detailed in Chapter 2.1.3. The simple 1-PWL implementation gives sufficient 

accuracy for high level thermal modelling, and is described by: 

 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑑𝑑𝑎𝑎𝑙𝑙(𝑘𝑘) = 𝐹𝐹𝑠𝑠𝑙𝑙𝑑𝑑ℎ𝑆𝑆𝑑𝑑𝑜𝑜𝑟𝑟𝑙𝑙(𝛼𝛼𝑘𝑘 + 𝛽𝛽) ∙ 𝑉𝑉 (5.2) 

where 𝛼𝛼,𝛽𝛽 can be predetermined by HSPICE simulation and experimentation; 𝐹𝐹𝑠𝑠𝑙𝑙𝑑𝑑ℎ is 

the leakage current per unit area, and depends on the manufacturing technology, 

design style and supply voltage 𝑉𝑉; and 𝑆𝑆𝑑𝑑𝑜𝑜𝑟𝑟𝑙𝑙 denotes the area of the core. 

For active leakage, [56] gives an empirical equation that shows the ratio between the 
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dynamic power and the static leakage induced by signal activities, as: 

 
𝑃𝑃𝑑𝑑𝑑𝑑𝑠𝑠𝑑𝑑𝑎𝑎𝑙𝑙(𝑘𝑘) = 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∙ �

𝑅𝑅0
𝑉𝑉0𝑘𝑘02

𝑒𝑒
𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡ℎ
𝑛𝑛0 ∙ 𝑉𝑉𝑘𝑘2 ∙ 𝑒𝑒

−𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡ℎ
𝑛𝑛 � (5.3) 

where 𝑘𝑘0  is the ambient temperature; 𝑅𝑅0  is the ratio between dynamic power and 

static leakage at 𝑘𝑘0  and nominal voltage 𝑉𝑉0 ; and 𝐵𝐵𝑠𝑠𝑙𝑙𝑑𝑑ℎ  is a process technology 

constant that depends on the ratio between the threshold voltage and the sub-threshold 

slope, computed using the leakage current and saturation drive current numbers from 

ITRS 2001. The total static power is then the sum of the inactive and active leakage 

components, both of which are temperature dependent. 

 

5.1.2 Power Events and their Data Structure 

We have already defined the power event concept and explained how to capture 

power events in Chapter 3.2.  In an online scenario, the event-driven LUT approach 

only updates the thermal map (the temperature estimation) every time a power event 

occurs. Thus, an additional data structure is needed to store all the power events 

which can affect the thermal map. The power events 𝐻𝐻𝑒𝑒 are globally recorded for all 

cores on chip, according to their sequence, by an event list ℚ in the OS kernel. ℚ is a 

queue, as shown in Figure 5.1, where new events are enqueued onto the tail of ℚ and 

older ones are dequeued from the head of ℚ. Each element tuple 𝐻𝐻𝑒𝑒(𝐻𝐻,𝑃𝑃, 𝐶𝐶𝐶𝐶𝑃𝑃) in ℚ 

denotes one power event with several properties which have been explained in 

Chapter 3.2. In addition, two global variables 𝐻𝐻𝑑𝑑  and 𝐻𝐻𝑝𝑝  represent the current time 

instant and the time instant of the previous event occurrence (i.e. the last thermal map 

update). As shown in Figure 5.1, a new power event at the current time instant 𝐻𝐻𝑑𝑑 =

90 is appended behind the element representing the last power event occurring at 

𝐻𝐻𝑝𝑝 = 80. In the next section, we show how to use such an event queue, including the 

conditions for event dequeuing, to update the thermal map dynamically. 
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t=3
P=25

Loc=(0,0)

t=10
P=30

Loc=(0,3)

t=30
P=26

Loc=(0,1)

t=36
P=-30

Loc=(0,3)

t=80
P=-26

Loc=(0,1)

t=90
P=32

Loc=(0,0)
...

Enqueue 
into E

Dequeue 
from E

tp=80, tc=90

Event List E

 
Figure 5.1: Data structure related to power events 

 

5.2 Online Thermal Estimation in a Non-Temperature-Dependent 

Leakage Power Scenario 

In Chapter 3.7 we presented two methods for using the prebuilt LUTs: firstly, table 

operations which were used in the schedulability test and STAS (offline) scenario 

described in Chapter 4; and secondly, row operations, with an even lower overhead, 

which are suitable for a DTAS (online) scenario. Both are deduced from the 

superposition principle, described by Theorem 3, which has an important prerequisite: 

the leakage power is constant (that is, a non-temperature-dependent power model).  

In this section, we will firstly develop a leakage power LUT-based model for online 

thermal estimation assuming that the leakage power is not affected by temperature. 

Obviously, as described previously we cannot ignore the temperature-leakage power 

relationship, particularly for high performance processors. Thus, in a subsequent 

section, we will extend this to a non-linear temperature-dependent scenario, which 

represents a full leakage model. 

The thermal map, which records each core’s temperature, is updated each time an 

atomic power event occurs. The current thermal map 𝑘𝑘𝑠𝑠𝑡𝑡 at time 𝐻𝐻𝑑𝑑 can be calculated 

based on the previous thermal map 𝑘𝑘𝑠𝑠𝑝𝑝 at time 𝐻𝐻𝑝𝑝. That is, the current thermal map is 

obtained by adding the temperature increment of each core in the interval 𝛥𝛥𝐻𝐻 to the 

previous thermal map, as: 

 𝑘𝑘𝑠𝑠𝑡𝑡 = 𝑘𝑘𝑠𝑠𝑝𝑝 + ∆𝑘𝑘∆𝑠𝑠=𝑠𝑠𝑡𝑡−𝑠𝑠𝑝𝑝 (5.4) 

where 𝑘𝑘𝑠𝑠𝑡𝑡 , 𝑘𝑘𝑠𝑠𝑝𝑝 and ∆𝑘𝑘∆𝑠𝑠=𝑠𝑠𝑡𝑡−𝑠𝑠𝑝𝑝 are there 𝑁𝑁-element vectors which denote the current 

thermal map, the previous thermal map and the temperature increment of the 𝑁𝑁 cores, 
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respectively. The calculation of the temperature increment in the interval from 𝐻𝐻𝑝𝑝 to 𝐻𝐻𝑑𝑑 

is given as: 

 ∆𝑘𝑘∆𝑠𝑠=𝑠𝑠𝑡𝑡−𝑠𝑠𝑝𝑝 = � 𝐻𝐻𝑒𝑒.𝑃𝑃 × 𝐻𝐻𝑟𝑟𝐻𝐻𝑛𝑛𝑃𝑃(ℜ𝑠𝑠𝑡𝑡−𝑑𝑑𝑙𝑙.𝑠𝑠
𝑠𝑠𝑑𝑑𝑙𝑙(𝑑𝑑𝑙𝑙.𝑙𝑙𝑜𝑜𝑑𝑑) −ℜ𝑠𝑠𝑝𝑝−𝑑𝑑𝑙𝑙.𝑠𝑠

𝑠𝑠𝑑𝑑𝑙𝑙(𝑑𝑑𝑙𝑙.𝑙𝑙𝑜𝑜𝑑𝑑),𝐻𝐻𝑒𝑒. 𝐶𝐶𝐶𝐶𝑃𝑃)
𝑑𝑑𝑙𝑙∈ℚ

 (5.5) 

where ℜ𝑠𝑠𝑡𝑡−𝑑𝑑𝑙𝑙.𝑠𝑠
𝑠𝑠𝑑𝑑𝑙𝑙(𝑑𝑑𝑙𝑙.𝑙𝑙𝑜𝑜𝑑𝑑) represents the row corresponding to the time instant 𝐻𝐻𝑑𝑑  −  𝐻𝐻𝑒𝑒. 𝐻𝐻 in 

the LUT pointed to by the core location 𝐻𝐻𝑒𝑒. 𝐶𝐶𝐶𝐶𝑃𝑃. Similarly, ℜ𝑠𝑠𝑝𝑝−𝑑𝑑𝑙𝑙.𝑠𝑠
𝑠𝑠𝑑𝑑𝑙𝑙(𝑑𝑑𝑙𝑙.𝑙𝑙𝑜𝑜𝑑𝑑) denotes the row 

corresponding to the time instant 𝐻𝐻𝑝𝑝  −  𝐻𝐻𝑒𝑒. 𝐻𝐻 in the same LUT. The function 𝐻𝐻𝑑𝑑𝐶𝐶(), 

that indicates the TDL that the core at location 𝐻𝐻𝑒𝑒. 𝐶𝐶𝐶𝐶𝑃𝑃 belongs to, and the function 

𝐻𝐻𝑟𝑟𝐻𝐻𝑛𝑛𝑃𝑃(), used to simplify the calculation due to layout symmetry, were described in 

Chapter 3.6. In this case, the function 𝐻𝐻𝑟𝑟𝐻𝐻𝑛𝑛𝑃𝑃() transforms the temperature increment 

values ℜ𝑠𝑠𝑡𝑡−𝑑𝑑𝑙𝑙.𝑠𝑠
𝑠𝑠𝑑𝑑𝑙𝑙(𝑑𝑑𝑙𝑙.𝑙𝑙𝑜𝑜𝑑𝑑) −ℜ𝑠𝑠𝑝𝑝−𝑑𝑑𝑙𝑙.𝑠𝑠

𝑠𝑠𝑑𝑑𝑙𝑙(𝑑𝑑𝑙𝑙.𝑙𝑙𝑜𝑜𝑑𝑑)  associated with the first argument, based on the core 

location passed as the second argument. Thus, the temperature increment induced by 

one power event, described by Equation 5.5, can easily be obtained by indexing two 

rows of the LUT, subtracting them (the row operation proposed in Chapter 3.7), 

performing a simple transformation (a column reorder) and then multiplying by the 

power value 𝐻𝐻𝑒𝑒.𝑃𝑃. Lastly, based on Theorem 3, the thermal increments induced by 

every individual power event can be accumulated to give the full thermal response for 

the entire chip. 

When an event occurs, in addition to updating the thermal map, the event list also 

needs to be updated. Older events, which no longer induce a temperature change, 

should be dequeued from ℚ. The criterion 𝐻𝐻𝑑𝑑  −  𝐻𝐻𝑒𝑒. 𝐻𝐻 > 𝑆𝑆𝐻𝐻𝑒𝑒𝐻𝐻𝑑𝑑𝐷𝐷 decides which events 

should be dequeued, where Steady is the time constant from initial state to steady state 

and its value is listed in the last row of the LUT. Deleting older events, which have 

reached steady state, shortens the event list and improves the performance of event 

driven estimation, as once an event reaches steady state it does have any further effect 

on core temperature. An example showing our proposed thermal estimation technique 

is presented in Appendix B. 

Our proposed technique is not only used to update the thermal map, but could also be 

applied to thermal map prediction to estimate the temperature at next time period 𝐻𝐻𝑑𝑑.  

Algorithms for performing a thermal map prediction are presented in Section 5.4. 
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5.3 Online Thermal Estimation on a Temperature-Dependent 

Leakage Power Scenario 

In practice, as mentioned in Section 5, leakage power is a function of temperature and 

cannot be ignored. If the leakage power varies with temperature, the previous 

simplified linear thermal model converts into a non-linear model whose solution 

depends on an iterative procedure [35][53] which is not computationally efficient.  

For example, Hotspot can be modified to include the leakage power model described 

by Equations 5.1—5.3. However this then requires that Hotspot is called using an 

iterative procedure, where the leakage power is updated according to the current 

temperature and added to the dynamic power as a new power input to Hotspot for the 

next iteration. This iterative process, where the leakage power varies with both 

dynamic power and core temperature, needs to be performed at a reasonably fine time 

interval otherwise the temperature errors become significant. Unfortunately, this 

increases the already high computational overhead of HotSpot significantly. However, 

it does allow us to get an accurate transient temperature profile, so that we can 

compare the performance of our LUT-based leakage aware thermal estimator. That is, 

Hotspot, with the leakage power model added, is being used only for comparison 

purposes, and is not used in our online thermal estimation or DTAS implementations. 

This modified Hotspot procedure for the temperature-dependent scenario is shown in 

Figure 5.2. 

P=Pdynamic+Pstatic Temperature, T

Pstatic=Pinactive(T)+Pactive(T)

Invoke Hotspot to update the 
temperature in short interval

 
Figure 5.2: Iterative procedure to use HotSpot in temperature-dependent scenario 

To demonstrate the temperature dependant leakage effect, we compare this procedure 

with the original HotSpot (which has a non-temperature-dependent model described 

by the LODE set in Equation 2.9 and cannot deal with the power-temperature leakage 

relationship) by using a set of power inputs under different initial temperatures. 
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Figure 5.3 shows an example of the temperature difference between the temperature-

dependent and the non-temperature-dependent case for a processor core with different 

initial temperatures and task powers. Several observations can be concluded from this 

comparison:  

 
Figure 5.3: The temperature profile for the temperature-dependent (upper) vs. non-temperature-

dependent (lower) simulations for different initial temperature and power 

• The non-temperature-dependent model underestimates the temperature as it 

ignores the leakage power induced by temperature. 

• A higher initial temperature or a larger initial power input to a core has more 

effect on the final steady state temperature.  

To eliminate the iterative overhead between leakage power and temperature 

evaluation, we propose an empirical calibration factor 𝑟𝑟  to compensate the offset 

between two temperature curves based on the above observations. This calibration 

factor is a function of time 𝐻𝐻, power input 𝑃𝑃 and core temperature 𝑘𝑘, and adjusts the 

thermal response (the LUT values in our case) to account for the temperature leakage 

power dependence. This converts the non-linear problem into an approximately linear 

one, with a small error. For a given architecture, and for various 𝑃𝑃,𝑘𝑘 pairs, we can 

plot the temperature profiles over t for both the non-temperature-dependent case and 

the temperature-dependent case, as shown in Figure 5.3. The ratio between the two 

profiles is 𝑟𝑟. After examining the temperature difference profiles for a number of 

processor architectures, such as Alpha 21264, ARM7TDMI, PowerPC 405, we found 

𝑟𝑟 to be similar to the simplified expression for annealing, 𝑘𝑘(𝐻𝐻) = 𝑛𝑛0
1+𝑙𝑙𝑠𝑠

. We make the 

observation that for any power event the ratio between the non-temperature dependent 

115 
 



 High Level Thermal-Aware Scheduling for Multiprocessors Cui Jin 

leakage-temperature profile and the temperature dependent profile will initially be one 

(both temperature responses start at the same initial temperature) and at steady state 

will exhibit a steady state offset 𝑆𝑆. This offset will be a function of temperature 𝑘𝑘 and 

power 𝑃𝑃. Thus, we determine the calibration factor 𝑟𝑟 as: 

 𝑟𝑟(𝐻𝐻,𝑃𝑃,𝑘𝑘) = 𝑆𝑆 −
𝑆𝑆 − 1
𝑘𝑘𝐻𝐻 + 1

 (5.6) 

where 𝑘𝑘 is the annealing rate and has a hyperbolic characteristic: 

 𝑘𝑘 = 𝐴𝐴 + 𝐵𝐵𝐻𝐻−𝛾𝛾 (5.7) 

The calibration factor at the current time instant is based on the thermal characteristics 

at the previous instant. Thus we introduce a variable change to modify Equation 5.6 as: 

 𝑟𝑟(𝐻𝐻,𝑃𝑃,𝑘𝑘) = 𝑆𝑆 −
𝑆𝑆 − 1

(𝐴𝐴 + 𝐵𝐵𝐻𝐻−𝛾𝛾)(𝐻𝐻 − 1) + 1
 (5.8) 

where 𝑆𝑆, 𝐴𝐴 and 𝐵𝐵 are functions of both the temperature 𝑘𝑘 and the power 𝑃𝑃, and are 

related to the leakage parameters in Section 5. The calibration factor 𝑟𝑟 thus depends 

on the power input .𝑃𝑃 , the core temperature 𝑘𝑘𝑠𝑠𝑝𝑝
𝑑𝑑𝑙𝑙.𝑙𝑙𝑜𝑜𝑑𝑑 at time 𝐻𝐻𝑝𝑝 and the time interval 

𝛥𝛥𝐻𝐻 =  𝐻𝐻𝑑𝑑  −  𝐻𝐻𝑝𝑝  between sequential power events. The core location 𝐻𝐻𝑒𝑒. 𝐶𝐶𝐶𝐶𝑃𝑃  only 

introduces a very small error and can be ignored. 𝛾𝛾  is related to the leakage 

parameters, and is in the range 0.5 ≤ 𝛾𝛾 ≤ 1.417. However, to simplify the calculation 

we let γ =  1. The simplified calibration factor is then given as: 

 𝑟𝑟(𝐻𝐻,𝑃𝑃,𝑘𝑘) = 𝑆𝑆 −
𝑆𝑆 − 1

𝐴𝐴𝐻𝐻 − 𝐵𝐵 𝐻𝐻⁄ − 𝐴𝐴 + 𝐵𝐵 + 1
 (5.9) 

Plotting 𝑆𝑆 , 𝐴𝐴 and 𝐵𝐵  versus temperature 𝑘𝑘  and power 𝑃𝑃  (Figure 5.4) shows that the 

surfaces are close to planar. Thus, for a given architecture, it is possible to use spot 

values for 𝑆𝑆,𝐴𝐴,𝐵𝐵  at three different 𝑃𝑃  and 𝑘𝑘  points and thus define the individual 

planes. This is done offline as shown in Algorithm 5.1. For example, for the 4×4 CMP 

layout, using 𝐹𝐹𝑠𝑠𝑙𝑙𝑑𝑑ℎ  =  0.048 𝐻𝐻𝑇𝑇𝑒𝑒𝐶𝐶𝑒𝑒/𝑇𝑇𝑇𝑇2 , 𝑆𝑆𝑑𝑑𝑜𝑜𝑟𝑟𝑙𝑙  = 16𝑇𝑇𝑇𝑇2 , 𝛼𝛼 = 0.04 , 𝛽𝛽 = 0.2 , 

17 The 𝛾𝛾 value is determined offline by simulation, for a specific processor layout. For the Alpha, 𝛾𝛾 =
0.752; for the 4 × 4 CMP,  𝛾𝛾 = 0.823. 
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𝐵𝐵𝑠𝑠𝑙𝑙𝑑𝑑ℎ = 1.3𝑉𝑉  and 𝑉𝑉 = 1.3𝑉𝑉  [53][56] in the leakage model of Section 5, we can 

determine a 3×3 leakage parameter matrix 𝐿𝐿 offline, where 𝐿𝐿 · [𝑘𝑘 𝑃𝑃 1]𝑛𝑛  =  [𝑆𝑆 𝐴𝐴 𝐵𝐵]𝑛𝑛 , 

as: 

 
Figure 5.4: Plots of S, A, B versus power and temperature for a 4×4 CMP 

𝐿𝐿 = �
0.0013 1.7426 × 10−4 1.0061

−7.03 × 10−7 −6.0070 × 10−6 0.0033
−0.0035 −2.8987 × 10−4 1.7552

� 

Due to the non-linear property of the temperature-dependent leakage model, 

temperature increment in the heating stage and temperature decrement in the cooling 

stage are no longer symmetrical. Because the leakage power in the cooling stage is 

also affected by the temperature, especially by the higher temperature at the end of the 

heating stage, the actual cooling progress is a little slower than that of the non-

temperature-dependent leakage model case. As such, we apply an annealing factor 

(0.99 ≤ 𝜎𝜎 ≤ 1) to account for the difference between heating and cooling. We use: if 

𝐻𝐻𝑒𝑒.𝑃𝑃 < 0, then 𝜎𝜎 = 0: 995; else 𝜎𝜎 = 1. 

In Algorithm 5.1, 𝑃𝑃𝐹𝐹𝑑𝑑𝑜𝑜𝑑𝑑_𝑑𝑑𝑙𝑙𝑝𝑝 and 𝑃𝑃𝐹𝐹𝑑𝑑𝑙𝑙𝑝𝑝 denote the profiles for the non-temperature-

dependent case and the temperature-dependent case respectively. And 𝑒𝑒𝑓𝑓𝑑𝑑𝑜𝑜𝑑𝑑_𝑑𝑑𝑙𝑙𝑝𝑝
𝑠𝑠  and 

𝑒𝑒𝑓𝑓𝑑𝑑𝑙𝑙𝑝𝑝𝑠𝑠 denote the spot temperature on the corresponding profile, at time point 𝐻𝐻. For a 

specific architecture, Algorithm 5.1 only needs to be executed once to generate the 

matrix 𝐿𝐿, describing the S, A and B planes. The online temperature dependant thermal 

estimator uses 𝐿𝐿  to evaluate the calibration factor r to calibrate the linear thermal 

response represented by our prebuilt LUTs. Using this method to calibrate the LUT 

requires a change to the temperature increment calculation (Equation 5.5), as: 
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∆𝑘𝑘∆𝑠𝑠=𝑠𝑠𝑡𝑡−𝑠𝑠𝑝𝑝 = ∑ 𝜎𝜎 × 𝐻𝐻𝑒𝑒.𝑃𝑃 × 𝐻𝐻𝑟𝑟𝐻𝐻𝑛𝑛𝑃𝑃(ℜ𝑠𝑠𝑡𝑡−𝑑𝑑𝑙𝑙.𝑠𝑠
𝑠𝑠𝑑𝑑𝑙𝑙(𝑑𝑑𝑙𝑙.𝑙𝑙𝑜𝑜𝑑𝑑) ∙ 𝑟𝑟(𝐻𝐻𝑑𝑑 − 𝐻𝐻𝑒𝑒. 𝐻𝐻,𝐻𝐻𝑒𝑒.𝑃𝑃,𝑘𝑘𝑠𝑠𝑝𝑝

𝑑𝑑𝑙𝑙.𝑙𝑙𝑜𝑜𝑑𝑑) −𝑑𝑑𝑙𝑙∈ℚ

ℜ𝑠𝑠𝑝𝑝−𝑑𝑑𝑙𝑙.𝑠𝑠
𝑠𝑠𝑑𝑑𝑙𝑙(𝑑𝑑𝑙𝑙.𝑙𝑙𝑜𝑜𝑑𝑑) ∙ 𝑟𝑟(𝐻𝐻𝑝𝑝 − 𝐻𝐻𝑒𝑒. 𝐻𝐻,𝐻𝐻𝑒𝑒.𝑃𝑃,𝑘𝑘𝑠𝑠𝑝𝑝

𝑑𝑑𝑙𝑙.𝑙𝑙𝑜𝑜𝑑𝑑),𝐻𝐻𝑒𝑒. 𝐶𝐶𝐶𝐶𝑃𝑃)       (5.10) 

Algorithm 5.1: Plot S, A, B planes for Different Architecture 
Input: 𝑃𝑃𝑟𝑟𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙 and 𝑘𝑘𝑟𝑟𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙, and leakage parameter 𝐹𝐹𝑠𝑠𝑙𝑙𝑑𝑑ℎ, 𝑆𝑆𝑑𝑑𝑜𝑜𝑟𝑟𝑙𝑙 ,𝛼𝛼,𝛽𝛽,𝐵𝐵𝑠𝑠𝑙𝑙𝑑𝑑ℎ,𝑉𝑉, 𝛾𝛾. 
Output: 𝐿𝐿 denoting S, A, B planes 
FOR 𝑃𝑃 = 𝑃𝑃𝑟𝑟𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙_𝑠𝑠𝑠𝑠𝑑𝑑𝑟𝑟𝑠𝑠 𝐻𝐻𝐶𝐶 𝑃𝑃𝑟𝑟𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙_𝑙𝑙𝑑𝑑𝑑𝑑 DO 
      FOR 𝑘𝑘 = 𝑘𝑘𝑟𝑟𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙_𝑠𝑠𝑠𝑠𝑑𝑑𝑟𝑟𝑠𝑠 𝐻𝐻𝐶𝐶 𝑘𝑘𝑟𝑟𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙_𝑙𝑙𝑑𝑑𝑑𝑑 DO 
            Obtain temperature profile 𝑃𝑃𝐹𝐹𝑑𝑑𝑜𝑜𝑑𝑑_𝑑𝑑𝑙𝑙𝑝𝑝 from original HotSpot according to 𝑃𝑃,𝑘𝑘; 
            Obtain temperature profile 𝑃𝑃𝐹𝐹𝑑𝑑𝑙𝑙𝑝𝑝 from iterative HotSpot according to 𝑃𝑃,𝑘𝑘  
                  and leakage parameters; 
            Find two steady temperature 𝑆𝑆𝑑𝑑𝑜𝑜𝑑𝑑_𝑑𝑑𝑙𝑙𝑝𝑝, 𝑆𝑆𝑑𝑑𝑙𝑙𝑝𝑝 in both profiles; 
            𝑆𝑆 = 𝑆𝑆𝑑𝑑𝑙𝑙𝑝𝑝/𝑆𝑆𝑑𝑑𝑜𝑜𝑑𝑑_𝑑𝑑𝑙𝑙𝑝𝑝; 
            Fetch the temperature values 𝑒𝑒𝑓𝑓𝑑𝑑𝑜𝑜𝑑𝑑_𝑑𝑑𝑙𝑙𝑝𝑝

𝑠𝑠1,𝑠𝑠2 ,𝑒𝑒𝑓𝑓𝑑𝑑𝑙𝑙𝑝𝑝
𝑠𝑠1,𝑠𝑠2 on both profiles at any time 𝐻𝐻1, 𝐻𝐻2; 

            𝑟𝑟1 = 𝑒𝑒𝑓𝑓𝑑𝑑𝑙𝑙𝑝𝑝
𝑠𝑠1 𝑒𝑒𝑓𝑓𝑑𝑑𝑜𝑜𝑑𝑑_𝑑𝑑𝑙𝑙𝑝𝑝

𝑠𝑠1� ; 𝑟𝑟2 = 𝑒𝑒𝑓𝑓𝑑𝑑𝑙𝑙𝑝𝑝
𝑠𝑠2 𝑒𝑒𝑓𝑓𝑑𝑑𝑜𝑜𝑑𝑑_𝑑𝑑𝑙𝑙𝑝𝑝

𝑠𝑠2� ; 
            Substitute 𝑆𝑆, 𝑟𝑟1, 𝑟𝑟2, 𝐻𝐻1, 𝐻𝐻2 into Equation 42 to form an equation set  
                  with two unknowns 𝐴𝐴,𝐵𝐵; 
            Solve 𝐴𝐴,𝐵𝐵; 
            Record 𝑆𝑆,𝐴𝐴,𝐵𝐵 for one combination of 𝑃𝑃,𝑘𝑘; 
      END FOR 
END FOR 
Plot S plane; Plot A plane; Plot B plane; 
RETURN L; 

The two calibration factors are determined at the time instances 𝐻𝐻𝑑𝑑 − 𝐻𝐻𝑒𝑒. 𝐻𝐻 and 𝐻𝐻𝑝𝑝 −

𝐻𝐻𝑒𝑒. 𝐻𝐻, corresponding to the two fetched rows of the LUT. The S, A and B parameters 

are calculated once only, based on the core temperature 𝑘𝑘 𝑠𝑠𝑝𝑝
𝑑𝑑𝑙𝑙.𝑙𝑙𝑜𝑜𝑑𝑑 and the power input 

𝐻𝐻𝑒𝑒.𝑃𝑃 at the previous event instant 𝐻𝐻𝑝𝑝. 

While this approach simplifies the calculation of the temperature leakage power 

dependency, it does have the potential to introduce errors into the temperature 

calculation, such as in a thermal runaway scenario (a very high temperature and 

power combination could make the temperature and power non-convergent) where the 

S, A, and B plots can no longer be approximated by plane surfaces, as shown in Figure 

5.5. For example, at a temperature 𝑘𝑘 ≥ 111℃  and power 𝑃𝑃 ≥ 48𝑊𝑊𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃 , thermal 

runaway occurs (distinguished by the circled regions in Figure 5.5). Once thermal 

runaway occurs, the chip no longer works normally, and in the worst case is 

permanently damaged. However, a task’s DTAS prediction should indicate that the 

temperature threshold for the core would be exceeded and therefore it would not be 

allocated. In the worst case, global DTM would trigger if there was an inappropriate 

DTAS allocation, preventing thermal runaway.  
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Figure 5.5: Thermal runaway described by S, A, B plots 

 

5.4 Algorithms for Thermal Map Monitoring and Prediction 

At each power event, the OS scheduler needs to update the thermal map and the event 

list. The procedure outlined in Algorithm 5.2, takes the previous thermal map 𝑘𝑘𝑠𝑠𝑝𝑝 , the 

event list ℚ, the current time instant 𝐻𝐻𝑑𝑑, the previous time instant 𝐻𝐻𝑝𝑝 and the newly 

arrived tasks 𝐻𝐻𝑒𝑒𝑑𝑑𝑙𝑙𝑛𝑛  as inputs and returns the current thermal map 𝑘𝑘𝑠𝑠𝑡𝑡 . Firstly, the 

algorithm traverses the event list ℚ and for each power event 𝐻𝐻𝑒𝑒 calculates the two 

calibration factors 𝑟𝑟𝑠𝑠𝑡𝑡  and 𝑟𝑟𝑠𝑠𝑝𝑝  and then the temperature increment induced by the 

event (as in Equation 5.10). The temperature increments induced by each event in ℚ 

are accumulated in 𝛥𝛥𝑘𝑘. The current thermal map, 𝑘𝑘𝑠𝑠𝑡𝑡, is then obtained by adding 𝛥𝛥𝑘𝑘 

to the last thermal map 𝑘𝑘𝑠𝑠𝑝𝑝. After updating the thermal map, older events are deleted 

from ℚ based on the criterion: 𝐻𝐻𝑑𝑑  −  𝐻𝐻𝑒𝑒. 𝐻𝐻 > 𝑆𝑆𝐻𝐻𝑒𝑒𝐻𝐻𝑑𝑑𝐷𝐷. Finally, newly arrived events 

𝐻𝐻𝑒𝑒𝑑𝑑𝑙𝑙𝑛𝑛 are enqueued and the last time interval 𝐻𝐻𝑝𝑝 is updated to 𝐻𝐻𝑑𝑑. 

Equations 5.4 and 5.5 can also be used as an estimator for a future thermal map at the 

next time instant 𝐻𝐻𝑑𝑑. Algorithm 5.3 is similar to Algorithm 5.2, except that we use 

current thermal map 𝑘𝑘𝑠𝑠𝑡𝑡, ℚ, 𝐻𝐻𝑑𝑑 and 𝐻𝐻𝑑𝑑 as the four inputs to produce an estimate of the 

thermal map 𝑘𝑘𝑠𝑠𝑛𝑛, at the next (future) time instant. The current thermal map can come 

from Algorithm 5.2 or the readings from thermal sensors. In our simulated system, 

where task arrival is unknown (but can only occur relative to an OS timer tick), the 

event horizon is set to the next OS timer tick. However, the time interval between 𝐻𝐻𝑑𝑑 

and 𝐻𝐻𝑑𝑑 could be any reasonable value decided by user. If the incoming task set was 

well known/defined, this interval could be determined based on the anticipated task 
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arrival times, and could be several OS timer ticks. Predicting the future thermal map 

is useful for guiding a scheduler, and allows various heuristic DTAS algorithms to be 

developed. That way, we could avoid allocating a task which would cause a core to 

overheat (or does not allow the core to cool sufficiently) by favouring a core with a 

smaller temperature increment (or a larger temperature decrement). 

Algorithm 5.2: Event-Driven Thermal Map Monitoring 
Input: 𝑘𝑘𝑠𝑠𝑝𝑝 ,ℚ, 𝐻𝐻𝑑𝑑 , 𝐻𝐻𝑝𝑝,𝐻𝐻𝑒𝑒𝑑𝑑𝑙𝑙𝑛𝑛 
Output: 𝑘𝑘𝑠𝑠𝑡𝑡 
∆𝑘𝑘 = 0; 
FOR each 𝐻𝐻𝑒𝑒 in ℚ DO 
      Index two rows ℜ𝑠𝑠𝑡𝑡−𝑑𝑑𝑙𝑙.𝑠𝑠

𝑠𝑠𝑑𝑑𝑙𝑙(𝑑𝑑𝑙𝑙.𝑙𝑙𝑜𝑜𝑑𝑑) and ℜ𝑠𝑠𝑝𝑝−𝑑𝑑𝑙𝑙.𝑠𝑠
𝑠𝑠𝑑𝑑𝑙𝑙(𝑑𝑑𝑙𝑙.𝑙𝑙𝑜𝑜𝑑𝑑) from LUT; 

      [𝑆𝑆 𝐴𝐴 𝐵𝐵]′ = 𝐿𝐿 ∙ �𝑘𝑘𝑠𝑠𝑝𝑝
𝑑𝑑𝑙𝑙.𝑙𝑙𝑜𝑜𝑑𝑑 𝐻𝐻𝑒𝑒.𝑃𝑃 1�′; 

      𝑟𝑟𝑠𝑠𝑡𝑡 = 𝑟𝑟(𝐻𝐻𝑑𝑑 − 𝐻𝐻𝑒𝑒. 𝐻𝐻, 𝑆𝑆,𝐴𝐴,𝐵𝐵); 𝑟𝑟𝑠𝑠𝑝𝑝 = 𝑟𝑟�𝐻𝐻𝑝𝑝 − 𝐻𝐻𝑒𝑒. 𝐻𝐻, 𝑆𝑆,𝐴𝐴,𝐵𝐵�; 
      𝐻𝐻𝑛𝑛𝑃𝑃 = 𝐻𝐻𝑟𝑟𝐻𝐻𝑛𝑛𝑃𝑃(ℜ𝑠𝑠𝑡𝑡−𝑑𝑑𝑙𝑙.𝑠𝑠

𝑠𝑠𝑑𝑑𝑙𝑙(𝑑𝑑𝑙𝑙.𝑙𝑙𝑜𝑜𝑑𝑑) ∙ 𝑟𝑟𝑠𝑠𝑡𝑡 − ℜ𝑠𝑠𝑝𝑝−𝑑𝑑𝑙𝑙.𝑠𝑠
𝑠𝑠𝑑𝑑𝑙𝑙(𝑑𝑑𝑙𝑙.𝑙𝑙𝑜𝑜𝑑𝑑) ∙ 𝑟𝑟𝑠𝑠𝑝𝑝); 

      ∆𝑘𝑘 = ∆𝑘𝑘 + 𝜎𝜎 × 𝐻𝐻𝑒𝑒.𝑃𝑃 × 𝐻𝐻𝑛𝑛𝑃𝑃; 
END FOR 
𝑘𝑘𝑠𝑠𝑡𝑡 = 𝑘𝑘𝑠𝑠𝑝𝑝 + ∆𝑘𝑘; 
FOR each 𝐻𝐻𝑒𝑒 in ℚ DO 
      IF 𝐻𝐻𝑑𝑑  −  𝐻𝐻𝑒𝑒. 𝐻𝐻 > 𝑆𝑆𝐻𝐻𝑒𝑒𝐻𝐻𝑑𝑑𝐷𝐷 THEN 
            Dequeue 𝐻𝐻𝑒𝑒 from ℚ; 
      END IF 
END FOR 
Enqueue 𝐻𝐻𝑒𝑒𝑑𝑑𝑙𝑙𝑛𝑛 into ℚ; 
𝐻𝐻𝑝𝑝 = 𝐻𝐻𝑑𝑑; 
RETURN 𝑘𝑘𝑠𝑠𝑡𝑡; 

 

Algorithm 5.3: Event-Driven Thermal Map Prediction 
Input: 𝑘𝑘𝑠𝑠𝑡𝑡 ,ℚ, 𝐻𝐻𝑑𝑑, 𝐻𝐻𝑑𝑑 
Output: 𝑘𝑘𝑠𝑠𝑛𝑛 
∆𝑘𝑘 = 0; 
FOR each 𝐻𝐻𝑒𝑒 in ℚ DO 
      Index two rows ℜ𝑠𝑠𝑡𝑡−𝑑𝑑𝑙𝑙.𝑠𝑠

𝑠𝑠𝑑𝑑𝑙𝑙(𝑑𝑑𝑙𝑙.𝑙𝑙𝑜𝑜𝑑𝑑) and ℜ𝑠𝑠𝑛𝑛−𝑑𝑑𝑙𝑙.𝑠𝑠
𝑠𝑠𝑑𝑑𝑙𝑙(𝑑𝑑𝑙𝑙.𝑙𝑙𝑜𝑜𝑑𝑑) from LUT; 

      [𝑆𝑆 𝐴𝐴 𝐵𝐵]′ = 𝐿𝐿 ∙ �𝑘𝑘𝑠𝑠𝑡𝑡
𝑑𝑑𝑙𝑙.𝑙𝑙𝑜𝑜𝑑𝑑 𝐻𝐻𝑒𝑒.𝑃𝑃 1�′; 

      𝑟𝑟𝑠𝑠𝑛𝑛 = 𝑟𝑟(𝐻𝐻𝑑𝑑 − 𝐻𝐻𝑒𝑒. 𝐻𝐻, 𝑆𝑆,𝐴𝐴,𝐵𝐵); 𝑟𝑟𝑠𝑠𝑡𝑡 = 𝑟𝑟(𝐻𝐻𝑑𝑑 − 𝐻𝐻𝑒𝑒. 𝐻𝐻, 𝑆𝑆,𝐴𝐴,𝐵𝐵); 
      𝐻𝐻𝑛𝑛𝑃𝑃 = 𝐻𝐻𝑟𝑟𝐻𝐻𝑛𝑛𝑃𝑃(ℜ𝑠𝑠𝑛𝑛−𝑑𝑑𝑙𝑙.𝑠𝑠

𝑠𝑠𝑑𝑑𝑙𝑙(𝑑𝑑𝑙𝑙.𝑙𝑙𝑜𝑜𝑑𝑑) ∙ 𝑟𝑟𝑠𝑠𝑛𝑛 − ℜ𝑠𝑠𝑡𝑡−𝑑𝑑𝑙𝑙.𝑠𝑠
𝑠𝑠𝑑𝑑𝑙𝑙(𝑑𝑑𝑙𝑙.𝑙𝑙𝑜𝑜𝑑𝑑) ∙ 𝑟𝑟𝑠𝑠𝑡𝑡); 

      ∆𝑘𝑘 = ∆𝑘𝑘 + 𝜎𝜎 × 𝐻𝐻𝑒𝑒.𝑃𝑃 × 𝐻𝐻𝑛𝑛𝑃𝑃; 
END FOR 
𝑘𝑘𝑠𝑠𝑛𝑛 = 𝑘𝑘𝑠𝑠𝑡𝑡 + ∆𝑘𝑘; 
RETURN 𝑘𝑘𝑠𝑠𝑛𝑛; 

 

120 
 



 High Level Thermal-Aware Scheduling for Multiprocessors Cui Jin 

5.5 Algorithm Extension 

Two additional issues relating to the practical implementation of online thermal 

estimation and prediction need to be examined. These are: 1) long term drift or 

accumulated error can affect the accuracy of the temperature estimation. Can some 

calibration method be used to avoid this? 2) In a many-core scenario (with a very 

large number of cores), can the thermal map be updated in an effective (and scalable) 

way? 

 

5.5.1 Thermal Calibration 

Our proposed sensor free thermal estimator, acts like an open-loop system as each 

event point update does not use any temperature feedback from the real chip itself, 

and is just based on the last thermal map. Additionally, it does not account for 

variations in individual core characteristics due to process variations, etc. While this 

could result in accumulated18 errors in the long term, we show in Section 5.7.2 that 

the method is suitable for DTAS and is accurate enough for short to medium term 

thermal estimation. The reason for this minimal error is: 

• Each power event introduces only a small error in the leakage calibration stage 

(as Equation 5.10 provides a good approximation for the effect of leakage 

power). 

• The errors introduced by an increase in power tend to counteract those 

introduced by a decrease in power. 

However, to eliminate any long term temperature drift, we propose using the on-chip 

DTS for coarse grained temperature calibration. These sensors are not suitable for fine 

grained thermal estimation due to their relatively slow access times. For multi-core 

systems with individual sensors on each core, it is relatively easy to use the sensor 

information to directly update the thermal map. However this approach is unlikely to 

scale well to large many-core systems, and instead, we would suggest that a single 

DTS, representative of a core in a cluster, be used to provide long term temperature 

18 It should be noted that DTS also suffers from similar problems. 
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stability. The reading from this sensor would be used to adjust the individual core 

temperature entries in the thermal map based on the difference between the current 

thermal map temperature and the measured temperature, as shown in Figure 5.6. 

Other techniques, such as [75], could be used if additional accuracy of the thermal 

map calibration is required. 

46.6 48.2 52.3 50.5

43.1 51.5 56.7 52.9

47.3 49.8 51.6 48.9

51.5 52.6 57.3 58.2

45.3 40.7
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(c) Calibrated Thermal Map 
for Next Round Estimation

49.652.7

 
Figure 5.6: Example of calibration using real temperature readings 

 

5.5.2 The Scalability of our Online Approach 

The event-driven thermal estimation method, running as part of the scheduler in a 

centralized OS is only suitable for current CMP or small many-core systems. If the 

number of cores becomes large (e.g. several hundreds or even thousands as predicted), 

then a fully centralized algorithm will not be effective, as the event list will grow with 

an increase in the number of cores. To overcome this problem, we propose that the 

event-driven accumulation can be distributed to a single core in a subset of cores. 

That is, calculation is performed in parallel over regions of the processor array, by a 

single core in each region. Figure 5.7 shows a basic framework for a distributed 

version of our event-driven method, for a subset cluster size of one. For each core 

subset, we build an event list to replace the global event list. Similarly, the global 

LUT is no longer useful, and instead each core subset stores the LUT relevant to its 

location. In Figure 5.7, this is equivalent to a single transformed table, specific to the 

core’s TDL, and as such the transformations in Chapter 3.5 and in Equations 5.5 and 

5.10 are not needed. Therefore, each core subset only needs to calculate the 

temperature increments, calibrated by 𝑟𝑟, induced by its own power events. The final 
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step uses a single designated core (globally) to accumulate the results from all the 

cores to complete the thermal estimation. The only significant overhead induced by 

this distributed version is the communication necessary for accumulating the 

individual results from each core. It should be noted that the scheduler will still need 

to control task allocation globally after obtaining the overall thermal map. 
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Event list in Core(0,0)

(0,5)
LUT A 

trans by 
2

Event list in Core(0,5)

9 cores in 
Upper-Left 

Cluster
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Cluster

9 cores in 
Upper-Right 

Cluster

Core(1,1) Core(1,4) Core(4,1) Core(4,4)

Core(0,0)

(a) Basic Framework for 
Distributed Version

(b) Optimization of 
Hierarchy Collection  

Figure 5.7: A distributed version of our online algorithm 

 

5.6 Heuristic Predictive Task Allocation 

If the OS kernel can estimate the temperature, better heuristic task allocation methods 

could be proposed to guide thermally aware DTAS. We propose several predictive 

task allocation policies based on our event driven thermal estimator. 

 

5.6.1 Future Coolest First 

Algorithm 5.3 allows the prediction of the future thermal map at the next time interval. 

Future coolest first simply finds the coolest idle core in the future thermal map and 

allocates the new task to that core. The rationale is that the coolest core is the most 

likely to be able to accommodate the power consumption of the new task and thus 

avoid overheating. This heuristic policy is very simple and efficient, being similar to 

coolest first [92] except that it uses the predicted temperature. 
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5.6.2 Future Neighbour Aware 

Future neighbour aware, similar to neighbour aware [92], considers the future 

temperature of cores in the neighbourhood of the idle candidate. A thermal weight 𝑘𝑘𝑛𝑛 

is calculated as: 

 𝑘𝑘𝑛𝑛 = 𝐻𝐻1𝑘𝑘 + 𝐻𝐻2𝑘𝑘𝑑𝑑𝑑𝑑 + 𝐻𝐻3𝑘𝑘𝑑𝑑𝑑𝑑 +
𝐻𝐻4
𝑁𝑁𝑓𝑓𝑙𝑙

+
𝐻𝐻5
𝑁𝑁𝑑𝑑𝑑𝑑

 (5.11) 

where 𝑘𝑘 is the temperature of the candidate core, 𝑘𝑘𝑑𝑑𝑑𝑑 is the average temperature of 

immediately adjacent cores, 𝑘𝑘𝑑𝑑𝑑𝑑 is the average temperature of the diagonally adjacent 

neighbours, 𝑁𝑁𝑓𝑓𝑙𝑙  is the number of free edges of the candidate core and 𝑁𝑁𝑑𝑑𝑑𝑑  is the 

number of idle cores in the neighborhood, 𝐻𝐻1 , 𝐻𝐻2 , 𝐻𝐻3 , 𝐻𝐻4  and 𝐻𝐻5  are predefined 

constants to adjust the importance of each factor. Then, the idle core with the smallest 

weight indicates the best candidate for task allocation. 

 

5.6.3 Future Task Aware 

This policy considers both the temporal and spatial scale for thermal distribution. For 

each power task, we define a metric 𝑅𝑅𝑛𝑛𝑛𝑛 relating temperature and the remaining task 

runtime, as: 

 𝑅𝑅𝑛𝑛𝑛𝑛 = 𝑘𝑘 × (
𝑒𝑒

𝐻𝐻𝑑𝑑 − 𝐻𝐻𝑠𝑠
− 1) (5.12) 

where 𝑘𝑘 is the is the temperature of the candidate core, 𝑒𝑒 is the execution time, 𝐻𝐻𝑠𝑠 is 

the task start time and 𝐻𝐻𝑑𝑑 is the prediction time instant, and where 𝑅𝑅𝑛𝑛𝑛𝑛 = 0 for an idle 

core. For each idle candidate, we then calculate the weight as: 

 𝑘𝑘𝑛𝑛 =
𝐻𝐻1
𝑁𝑁𝑑𝑑𝑑𝑑

� 𝑅𝑅𝑛𝑛𝑛𝑛𝑎𝑎𝑛𝑛
𝑑𝑑𝑜𝑜𝑟𝑟𝑙𝑙∈𝑑𝑑𝑑𝑑

+
𝐻𝐻1
𝑁𝑁𝑑𝑑𝑑𝑑

� 𝑅𝑅𝑛𝑛𝑛𝑛𝑑𝑑𝑛𝑛
𝑑𝑑𝑜𝑜𝑟𝑟𝑙𝑙∈𝑑𝑑𝑑𝑑

 (5.13) 

where 𝐻𝐻𝑛𝑛  and 𝑑𝑑𝑛𝑛  denote the immediately adjacent core set and the diagonally 

adjacent core set, respectively, 𝑁𝑁𝑑𝑑𝑑𝑑 and 𝑁𝑁𝑑𝑑𝑑𝑑 are the number of cores in the two sets. 

𝐻𝐻1 and 𝐻𝐻2 are predefined constants. Intuitively, we allocate the task to the core with 
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the smallest weight (i.e. the smallest average 𝑅𝑅𝑛𝑛𝑛𝑛  around the neighbourhood). The 

rationale is that the temperature change at the start of a power task is rapid, and slows 

down over time. Also, the smaller the remaining execution time, the shorter the 

interval till the core becomes idle. 

 

5.6.4 Future Temperature Trend 

For each new task, we classify idle cores into two sets based on the difference in the 

current and predicted temperature, as: a temperature-increasing set (𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒+) and a 

temperature decreasing set (𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒−). The weight for each set is: 

 𝑘𝑘𝑛𝑛+ = 𝑘𝑘 × 𝐻𝐻+ 𝐻𝐻𝑓𝑓 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒 ∈ 𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒+

𝑘𝑘𝑛𝑛− =
𝑘𝑘
𝐻𝐻−

𝐻𝐻𝑓𝑓 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒 ∈ 𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒−
       (5.14) 

where 𝐻𝐻+ is the temperature increment and 𝐻𝐻− is the temperature decrement. For each 

set, we choose the core with the smallest weight, giving two possible candidates for 

task allocation: one is from 𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒+ and the other is from 𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒−. We randomly allocate 

the task to one of these cores. The rational here is that a smaller temperature 

increment (or a larger temperature decrement) in the next time interval should be 

better. This policy takes advantage of both the current and the future thermal map. 

 

5.7 Experiments 

In this section, we present the results of performance comparisons between our LUT-

based event driven thermal estimator (both for thermal simulation and for DTAS), the 

HotSpot thermal simulator, and a number of fast thermal estimators [61][62] and 

DTAS algorithms [71][92][105] from the research literature. We use HotSpot in two 

ways: firstly, we use an iterative approach which accounts for the temperature leakage 

power dependence (referred to as variant-P) as described in Section 5.3 and secondly, 

the standard HotSpot approach which does not account for the temperature leakage 

power dependence (referred to as invariant-P). For invariant-P, the power task sets 

used by HotSpot are generated by Wattch at the same resolution as the HotSpot time 
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increment interval. For variant-P the power input to HotSpot is the sum of the power 

input for invariant-P and the static power calculated from Equations 5.1—5.3 at the 

previous time increment. All experiments are conducted on a PC with a 2GHz Intel 

Core 2 Duo, and 2GB of memory. 

 

5.7.1 Validating the Event-Driven Estimator 

To validate the accuracy and efficiency of our fast LUT-based thermal estimator, we 

examine its capabilities for uniprocessor core-level and micro-architectural level 

simulation. Core-level thermal estimation, where a single temperature reading is used 

to represent the core temperature, is suitable for high level thermal optimization, such 

as DTM or DTAS on a per core basis. At the micro-architectural level, thermal 

estimation or simulation must give a detailed thermal distribution on a per module 

basis, to aid thermal-aware floorplanning. 

Firstly, we examine the accuracy of our estimator by examining the effect, on the 

uniprocessor core-level temperature, of categorizing a continuous power trace as a 

sequence of atomic events. Figure 5.8 shows the predicted core temperature, 

determined from an Alpha 21264 uniprocessor simulator using the power event 

profile from Figure 3.1. The lower pair of traces represent a synthetic continuous 

power (solid line) and the atomic power using a 𝑃𝑃𝐴𝐴𝐴𝐴  =  3𝑊𝑊 (dashed line), while the 

upper trace represents the variant-P core temperature determined by HotSpot 

(iteratively called to include the leakage power/temperature relationship). The discrete 

points (dots) overlaying the HotSpot temperature profile represent the core 

temperature determined by our event driven thermal estimator at an atomic event in 

the lower (dashed) power trace. Figure 5.8 shows that there is good agreement 

between the temperatures determined by the two techniques (with a maximum 

temperature error of 0.1%). 
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Figure 5.8: The variant-P thermal simulation of a single core processor using a synthetic power input 

Next we examine a more realistic application, an MPEG2 decoder, running on the 

Alpha simulator over a much longer time period (47 seconds). Figure 5.9 shows that 

our estimated temperature (including the leakage power/temperature relationship), 

based on atomic events, accurately matches the results from HotSpot, but at a much 

reduced computational overhead. The execution time for the HotSpot simulation is 

11372ms (using a 10ms interval), while the total execution time for our LUT-based 

thermal estimator is just 4.36ms (547 atomic events with a 𝑃𝑃𝐴𝐴𝐴𝐴  of 1.2𝑊𝑊 ). This 

represents a runtime improvement of 3 orders of magnitude. 

Our estimator has a significantly reduced computational overhead compared to 

HotSpot as we do not need to solve a large equation set in real-time. The algorithm 

complexity of our method is 𝛩𝛩(𝑒𝑒 · 𝑁𝑁)  =  𝛩𝛩(𝑟𝑟𝑑𝑑𝑙𝑙 ·  𝑆𝑆𝐻𝐻𝑒𝑒𝐻𝐻𝑑𝑑𝐷𝐷 · 𝑁𝑁), where e is the average 

number of atomic power events in the event list (the average numbers of atomic 

power events for the synthetic power input (above) and for MPEG2 are 48 and 92, 

respectively), 𝑟𝑟𝑑𝑑𝑙𝑙 is the average arrival rate of power events, 𝑁𝑁 is the number of cores 

(modules) in the processor. Since 𝑁𝑁 and 𝑆𝑆𝐻𝐻𝑒𝑒𝐻𝐻𝑑𝑑𝐷𝐷 are a constant for a given processor, 

the algorithm complexity only depends on 𝑒𝑒 and 𝑟𝑟𝑑𝑑𝑙𝑙.  
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Figure 5.9: The variant-P thermal simulation for an MPEG2 decoder at the core level 

Lastly, we use the Alpha 21264 simulator to examine the suitability of our estimator 

for uniprocessor core-level and micro-architectural level simulation. This experiment 

consists of 3 separate scenarios. 

In the first scenario (Table 5.1), we perform a variant-P core level simulation 

(including the temperature/leakage power relationship) with a 𝑃𝑃𝐴𝐴𝐴𝐴  =  3𝑊𝑊𝐻𝐻𝐻𝐻𝐻𝐻. In this 

scenario, the HotSpot iteration time is set at 10ms. The average temperature error 

(absolute error relative to the HotSpot temperature), the average computational 

overhead for a single thermal map update, and the actual simulation runtime for each 

benchmark are presented in Table 5.1. Table 5.1 shows that there is good temperature 

agreement with HotSpot, but with a 3 order of magnitude reduction in the simulation 

runtime. It should be noted that the total simulation execution time for the 

benchmarks in Table 5.1 is approximately the product of the overhead for a thermal 

map update by the number of atomic events in the queue, over the whole simulation. 

Scenario Benchmark gcc gzip bzip lucas mesa parser swim vortex mpegdec 

Execution Runtime (s) 9.5 8 18.6 15.5 6.7 10.2 3.7 25.5 47 
           

Scenario 1 
Core Level 
𝑃𝑃𝐴𝐴𝐴𝐴 = 3𝑊𝑊𝐻𝐻𝐻𝐻𝐻𝐻 

Variant-P 

Our Temp. Error (°C) 0.14 0.16 0.06 0.13 0.2 0.16 0.25 0.03 0.07 
Our Overhead (µs) 10 8 9 8 7 6 10 11 8 
Our Runtime (ms) 0.49 0.496 0.803 0.464 0.364 0.312 0.15 1.034 3.36 
HotSpot Runtime (ms) 2175 1923 4378 3879 1769 2472 955 6550 11372 

Table 5.1: Core Level error and overhead in temperature-dependent leakage power scenario 

The second scenario (Table 5.2) is similar to the scenario above, except that we 
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perform a 30 module micro-architectural level simulation with a 𝑃𝑃𝐴𝐴𝐴𝐴 = 1.2𝑊𝑊𝐻𝐻𝐻𝐻𝐻𝐻 . 

Again, there is close agreement between our event driven method and the results from 

HotSpot with a 3 order of magnitude reduction in simulation time. The thermal map 

overhead has increased relative to scenario 1 (above) because of the need to 

accumulate all the events on the 30 modules in the micro-architectural simulation. 

Scenario Benchmark gcc gzip bzip lucas mesa parser swim vortex mpegdec 

Execution Runtime (s) 9.5 8 18.6 15.5 6.7 10.2 3.7 25.5 47 
           

Scenario 2 
MA Level 

𝑃𝑃𝐴𝐴𝐴𝐴 = 1.2𝑊𝑊𝐻𝐻𝐻𝐻𝐻𝐻 
Variant-P 

Our Temp. Error (°C) 0.31 0.22 0.11 0.17 0.34 0.22 0.29 0.12 0.09 
Our Overhead (µs) 285 234 245 221 246 204 292 278 201 
Our Runtime (ms) 27.93 25.74 56.6 43.54 21.4 24.15 15.48 70.9 124.02 
HotSpot Runtime (ms) 77185 62709 145672 121375 52955 80143 29171 197447 386190 

Table 5.2: MA Level error and overhead in temperature-dependent leakage Power scenario 

In the third scenario (Table 5.3), we examine the performance of our LUT-based 

estimator by comparing it with some of the fast thermal estimators [61][62] from the 

literature. FATA [61] implements an improved 4th order Runge-Kutta solver with an 

adaptive step size. TMM [62] takes advantage of moment matching in the frequency 

domain, where temperature can be calculated as the convolution of the power input’s 

response. Since FATA and TMM (and the original HotSpot) do not model the 

temperature/leakage power dependency for transient temperature estimation, we only 

consider the invariant-P case so as to provide a fair comparison (this is why FATA and 

TMM are not included in scenario 1 and scenario 2 above. That is, we have removed 

the temperature/leakage power relationship described by Equations 5.6-5.9 from our 

estimator. We have set the window size of TMM to 10000. The average temperature 

error (as absolute error relative to the HotSpot temperature) and the actual simulation 

runtime for each benchmark are presented in Table 5.3. Our thermal estimation has a 

2000--3000x speedup compared to HotSpot, and is 20--40x faster than FATA and 

TMM while maintaining similar temperature errors. 

Table 5.3: MA Level error and overhead in non-temperature-dependent leakage power scenario 

These experiments show that it is feasible to estimate core/module temperature based 

Scenario Benchmark gcc gzip bzip lucas mesa parser swim vortex mpegdec 

Execution Runtime (s) 9.5 8 18.6 15.5 6.7 10.2 3.7 25.5 47 
           

 
Scenario 3 
MA Level 

𝑃𝑃𝐴𝐴𝐴𝐴 = 1.2𝑊𝑊𝐻𝐻𝐻𝐻𝐻𝐻 
Invariant-P 

Our Temp. Error (°C) 0.145  0.164 0.082 0.132 0.159 0.178 0.251 0.034 0.069 
FATA Temp. Error (°C) 0.097  0.112 0.038 0.135 0.181 0.136 0.182 0.056 0.067 
TMM Temp. Error (°C) 0.08  0.105 0.05 0.062 0.172 0.128 0.091 0.051 0.059 
HotSpot Runtime (ms) 51869         43679 101357 84893 36488 55952 20119 135238 255755 
Our Runtime (ms) 18.94  18.12 37.92 30.15 16.79 20.17 9.32 47.35 87.29 
FATA Runtime (ms) 519.6   487.7 1029.8 763.8 312.6 750.2 193 1274.4 2158.3 
TMM Runtime (ms) 678    651.9 1535.7 1081.4 499.8 799.3 283 1788.9 3148.1 
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on a power trace decomposed into atomic events. This demonstrates that only a few 

power events are sufficient and accurate enough to describe the temperature transient, 

thus suggesting that event driven estimation is likely to be suitable for high level 

DTAS, DTM and fast thermal simulation in a multi/many core environment. 

 

5.7.2 Event Driven Thermal Estimation for CMP systems 

We have developed a 4×4 CMP thermal estimator, which can update the thermal map 

and track atomic power events using our event driven approach. The thermal RC 

model and parameters used for each processor are the same as those used in the 

HotSpot simulations, and thus the LODE used to build the LUTs is identical to that 

used in HotSpot. The leakage parameter matrix, 𝐿𝐿, for the 4×4 CMP is the same as the 

one pre-calculated in Section 5.3. Both the LUTs and the leakage parameter matrix 

are calculated offline. 

To test the performance of our proposed thermal estimator we generate a number of 

artificial power task sets based on power profiling of selected applications in SPEC 

CPU 2000. These power task sets are derived using SimpleScalar Alpha and Wattch, 

which are then converted into consecutive atomic power events. For example, the 

GCC benchmark can be converted into several tasks with an average power 

consumption in the range [15W:30W]19, determined using a power threshold 𝑃𝑃𝐴𝐴𝐴𝐴 =

5𝑊𝑊, and with execution times in the range [10ms:500ms]. Our event driven approach 

is unrelated to the features of a task set, and is applicable to any power profile. We 

assume that the arrival time of the tasks is randomly distributed in the range [0s:30s]. 

Each task set contains around 200 power events (parts of the benchmarks) that are 

randomly distributed among the cores. 

We use these task sets to examine the performance of our estimator, relative to 

HotSpot, on a 4×4 CMP. Here, we examine the contribution of the leakage power to 

the CMP core temperature by examining both the invariant-P (no temperature/leakage 

power dependence) and the variant-P (which accounts for the temperature/leakage 

power dependence) scenarios. In this experiment, to reduce the required simulation 

19 L2 cache power is not included. 
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time, we assume that the core has already been heated above ambient temperature. 

That is, we assume that the processor has been operational for some time and that the 

core temperature is at an initial temperature of 45°C (𝑘𝑘𝑠𝑠=0𝑑𝑑𝑠𝑠= 45°C). This relatively 

high initial temperature has been chosen as it enables us to better illustrate differences 

in the two modelling scenarios and is applicable for the general purpose computing 

domain, where the operational core temperature is significantly higher than ambient 

temperature. The HotSpot time increment is 100µs, and DTM (e.g. DVFS, migration 

and clock gating, etc.) is not triggered. We simply observe whether our estimation of 

the thermal behaviour is similar to that produced by HotSpot. 

Figure 5.10 shows the temperature estimation results for a 5000ms task set subsection 

for selected cores in the CMP. The bottom solid line (grey) shows the invariant-P 

HotSpot temperature transient for cores (0,0), (1,1), (1,3) and (3,3) of the 4×4 CMP, 

while the upper solid line (black) shows the temperature profile for the HotSpot 

variant-P scenario (i.e. the complete leakage power model). The asterisks (*) represent 

our event driven estimation of the core temperature, at each update point where an 

atomic event occurs. Figure 5.10 shows that there is a significant difference between 

the two temperature profiles determined by HotSpot. These results are not unexpected, 

and show that the temperature leakage power dependence cannot be ignored in high 

power processors, thus validating the inclusion of a full leakage model into our event 

driven estimator. As such, we will not consider the HotSpot invariant-P model further. 

Figure 5.10 also shows the accuracy of our proposed fast event driven estimation (the 

asterisks coincide with the HotSpot iterative leakage power (variant-P) model line), 

validating our calibration factor based approach described in Section 5.3. 

To determine the speed-up of our event driven estimator, we compare our algorithm to 

HotSpot, using different time intervals when building the LUTs. To make the 

comparison fairer, we also vary the time increment interval for HotSpot. Table 5.4 

compares the absolute worst case temperature error, the average temperature error and 

the simulation run-time for the 30s task sets described earlier. The worst case error is 

relative to the HotSpot temperature profile determined using a time increment interval 

of 100μs. Table 5.4 shows that the error increases with the granularity of the time 

interval used to build the LUTs (uniform interval LUT). The HotSpot error decreases 

with granularity, but as the HotSpot interval approaches the task execution time, the 

131 
 



 High Level Thermal-Aware Scheduling for Multiprocessors Cui Jin 

error increases significantly. Note that a finer granularity in the LUT also increases 

the memory requirements for our event driven estimator. In most cases, a 10ms time 

interval is a good choice as this gives good accuracy, while keeping the memory 

usage relatively low. The runtime increases with granularity for the LUT-based 

estimator because additional interpolation is required. The overhead for HotSpot 

decreases with increasing increment interval. Table 5.4 also shows that our event 

driven estimator has a significantly reduced runtime compared to HotSpot (3 orders of 

magnitude for a 10ms update). 

 
Figure 5.10: Thermal estimation validation for 4×4 CMP 

 

 1ms-Interval 
LUT 

5ms-Interval 
LUT 

10ms-Interval 
LUT 

50ms-Interval 
LUT 

100ms-Interval 
LUT 

Ours HotSpot Ours HotSpot Ours HotSpot Ours HotSpot Ours HotSpot 
WC Error (°C) 0.82 0.67 1.31 3.52 1.44 4.12 2.25 4.82 3.16 6.17 
Ave Error (°C) 0.65 0.43 0.79 1.24 0.89 1.58 1.21 1.95 1.78 2.66 
Runtime (ms) 20.3 42415 22.5 41374 24.4 39736 26.7 38645 31.1 37221 
Memory (MB) 1.22 -- 0.535 -- 0.136 -- 0.047 -- 0.02 -- 

Table 5.4: Performance, average error, overhead comparison 
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To determine the long term accuracy of our temperature estimator we run the 

simulator for a longer time period (e.g. 2min, 5min, 10min, and 20min). In this 

experiment we do not use calibration from external sensor readings. The power task 

set, from the previous experiment described in the second paragraph of Section 5.7.2, 

is regenerated to contain more power events over a longer time interval. The new task 

set contains 20000 tasks whose arrival instants are randomly distributed in the range 

[0s:20min], and whose execution times are extended to the range [10ms:2min]. A 

10ms-interval LUT and a 𝑃𝑃𝐴𝐴𝐴𝐴  =  5𝑊𝑊 is used for this scenario. Table 5.5 shows the 

average error and the worst case error for the different simulation periods. The long 

term simulation of our open-loop thermal estimator does not result in significant 

errors, compared with HotSpot. As explained in Section 5.5.1., the reasons for this 

accuracy are that each power event introduces only a small error in the leakage 

calibration stage and errors introduced by an increase in power tend to counteract 

those introduced by a decrease in power. The worst case error usually appears at the 

end of power tasks with a long execution time (e.g. larger than 20s). Thus, we can 

conclude that Equation 5.9 is suitable for cases where the power task execution time 

is below 20s, but underestimates the leakage power error closer to the steady state. 

Runtime Length 2min 5min 10min 20min 
Average Temp. Error 1.10%  1.95% 2.97% 2.35% 
Worse Temp. Error 2.65%  4.21% 4.82% 4.63% 

Table 5.5: Algorithm performance for varying runtime 

The next experiment examines how the power threshold value 𝑃𝑃𝐴𝐴𝐴𝐴  (defined in 

Chapter 3 for profiling the power event) affects the error and overhead. As mentioned 

in Chapter 3.2, the 𝑃𝑃𝐴𝐴𝐴𝐴 threshold value is used to define atomic events and thus affects 

the time complexity of our event driven thermal method. While a coarse grained 

power profile is suitable for DTAS, a smaller 𝑃𝑃𝐴𝐴𝐴𝐴 can be used to observe more detail 

in the thermal behaviour (such as for thermal simulation at the architectural level). 

However, very small values of 𝑃𝑃𝐴𝐴𝐴𝐴 result in a fine-grained power profile, generating a 

large number of power events which need to be queued to the event list, resulting in a 

very significant computational overhead. For this experiment, a subset of the task set 

from the first example (described in the second paragraph of Section 5.7.2) is 

regenerated using the different 𝑃𝑃𝐴𝐴𝐴𝐴 threshold values shown in Table 5.6. As expected, 

the temperature error increases with 𝑃𝑃𝐴𝐴𝐴𝐴  while the overhead decreases. We would 
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suggest a 𝑃𝑃𝐴𝐴𝐴𝐴  value of 2W to 5W for DTAS and a 𝑃𝑃𝐴𝐴𝐴𝐴  value of 0.5W to 1W for 

thermal simulation. 

𝑷𝑷𝑨𝑨𝑨𝑨 0.05Watt 0.2Watt 1Watt 5Watt 
Average Temp. Error 0.004%  0.29% 0.46% 1.05% 

Average Overhead (𝜇𝜇𝑃𝑃) 683    379 198 126 

Table 5.6: Algorithm performance for varying input power granularity 

 

5.7.3 Heuristic Predictive Task Allocation for DTAS 

In this section, we examine the performance of our fast event driven thermal estimator, 

in a DTAS scenario, when combined with our proposed heuristic scheduling policies. 

We compare our future coolest first (FC), future neighbour aware (FN), future task 

aware (FTA) and future temperature trend (FTT) policies, all based on the future 

thermal map, with previous dynamic scheduling approaches (e.g. coolest first (C) [92], 

neighbour aware (N) [92], and historical window for possibility of allocation (HWP) 

[29]), which are based on the current thermal map or historical thermal information in 

terms of the peak temperature, the average temperature and the spatial diversity. We 

also examine the non-TAS case with a random core allocation to show the effect on 

core temperature of not using DTAS. In FN we use the same parameters as in [92] 

(𝐻𝐻1 = 0.45, 𝐻𝐻2 = 0.25, 𝐻𝐻3 = 0.15, 𝐻𝐻4 = 5.1 and 𝐻𝐻5 = 2.2) and in FTA we use 𝐻𝐻1 =

0.7 and 𝐻𝐻2 = 0.3. Some existing DTM policies can also be modified to a DTAS 

scenario and thus can also be used for comparison purposes. We have modified the 

incremental task allocation (ITA) algorithm from [105] (and converted from a 3D 

model to a 2D model). Here we assume that the speed for each core is a constant, and 

that tasks arriving simultaneously are sorted in descending power order. We also 

compare our DTAS algorithms with the predictive dynamic thermal management 

(PDTM) algorithm proposed by [71]. Here we use the temperature values from our 

simulator (rather than from DTSs) to generate the historical temperature profile used 

for the recursive application-based thermal prediction. We implement the predictive 

thermal model of [71], let 𝛥𝛥𝐻𝐻𝑑𝑑  =  𝐻𝐻𝑑𝑑 − 𝐻𝐻𝑑𝑑 = 10𝑇𝑇𝑃𝑃, and assume priority adjustment is 

disabled. For this study, we generate 10000 task sets with similar characteristics to 

those described in the second paragraph of Section 5.7.2.  

In the first scenario (Table 5.7), DTM is not used for comparing the peak/average 
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temperature and spatial diversity and we assume that the cores can always work 

normally without any safety threshold. The purpose of this assumption is to exclude 

the effect of DTM (e.g. the use of migration or DVFS when the temperature threshold 

is exceeded) and just observe if the dynamic scheduling policies are efficient in terms 

of minimizing the peak/average temperature and the spatial/temporal diversity on chip. 

Here, spatial/temporal diversity is used to measure the degree of thermal balancing 

among the cores. A lower diversity indicates that the policy has a better ability to 

balance the thermal side effects on chip, thus reducing ageing due to rapid 

heating/cooling and dramatic temperature differences. These two metrics are defined 

in [92].  

Metrics Non-TAS C N HWP PDTM ITA FC FN FTA FTT 
Peak T (°C) 133.7 119.65   104.5 98.57 99.76 110.31 106.12 98.63 95.72 94.35 
Ave T (°C) 121.5 112.13   102.64 96.15 99.45 102.19 102.56 95.04 95.29 91.81 

Ave SD (°C) 15.68 12.37  4.83 3.24 3.35 3.61 8.76 4.32 3.85 4.12 
Ave TD (°C) 20.56 28.75  24.65 14.53 15.75 14.84 28.32 25.51 16.78 18.45 

Overhead (µs) 8 37 98 145 235 25 146 157 172 152 

Table 5.7: Temperature Optimization and Comparison amongst Different DTAS Policies 

Table 5.7 shows that TAS based policies are superior to the non-TAS case. Without 

DTAS, the average temperature significantly higher than even the worst of the TAS 

policies (e.g. coolest first). Additionally, the results for the dynamic scheduling 

polices based on our predictive future thermal map have much better effect on the 

peak temperature (Peak T) and the average temperature (Ave T) minimization. FC and 

FN are superior to the simple C and N schedulers, showing that the look-ahead 

approach is an effective technique for avoiding unpredictable hot cores on chip. In 

terms of minimizing temperature, FN and HWP20 have a similar effect, while the two 

more complex predictive polices FTA and FTT, perform better than HWP and PDTM. 

ITA, with the smallest overhead, is only comparable to the simple C and N schedulers. 

It is notable that HWP and PDTM both achieve better average spatial diversity (Ave 

SD) and average temporal diversity (Ave TD) results than FTA and FTT. The reason is 

that we do not take advantage of the future thermal map to carry out task migration, as 

in [70] and [71], and the future time slot is too short compared to historical windows 

(longer historical windows are more useful to balance the thermal distribution than 

shorter prediction if we don’t use migration or other DTM mechanisms). In other 

20  The temperature history used in our implementation of this algorithm is derived directly from 
HotSpot, rather than simulated thermal sensors. 
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words, our policies only consider how to heuristically optimize the temperature by 

using the instantaneous temperature (e.g. the future thermal map or current thermal 

map), rather than using the temperature transient over a long period. Our proposed 

algorithms have a higher computational overhead (Overhead), determined as the 

interval between the start of the evaluation of the future thermal map to the point 

where a core is identified for allocation of the task, than C, N and ITA, however this 

overhead is still acceptable particularly considering the improvement in thermal 

performance. Compared to HWP, our FTT technique has similar performance (better 

temperature minimization but slightly worse temperature diversity) with only a slight 

increase in complexity. However, it is uncertain if HWP and PDTM, with their 

reliance on sensor data, are able to scale to large many-core systems. 

In the second scenario (Table 5.8), we use the same task set as above, but set a 

thermal safety threshold (we use 80°C) for each core to trigger DTM. Our simulator 

implements task migration in DTM by putting tasks on the hot core back into the 

ready queue and simply shutting the core down for a period of 50ms (during this time 

it consumes no power). The migrated tasks are inserted at the head of the ready queue 

for immediate scheduling to some cooler core. Other DTM mechanisms (e.g. DVFS) 

are not used in this example. We simply count the number of DTM trigger times 

(DTM TT) and observe the overall completion time (Complete T) of all 10000 power 

tasks. Intuitively, a reduced number of DTM trigger times indicates a smaller 

overhead induced by DTM, meaning that the whole task set would finish earlier. 

Table 5.8 shows that the non-TAS case has significantly more DTM trigger events and 

thus leads to more chance of missing a software task deadline, resulting in a much 

longer completion time compared to the DTAS algorithms. Table 5.8 also shows that 

policies based on predictive allocation alleviate the DTM loading and its overhead. 

This is because allocating a task to the right core (before it starts running) is better 

than frequent migration at run-time, in terms of the completion time, as proactive 

allocation can avoid the repeated allocation/de-allocation on the same core and reduce 

the system overhead dramatically. FTA and PDTM performed best in terms of the 

number of DTM trigger events, with FTA having a reduced completion time due to 

the algorithm’s reduced overhead. In fact, when considering all 10000 power tasks, 

we could save as much as 8%--16% off the execution time when using our predictive 
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policies, comparing to the non-predictive policies. We conclude that scheduling, 

guided by the future thermal profile, will improve the overall system performance 

under strict DTM thermal constraints. 

Metrics Non-TAS C N HWP PDTM ITA FC FN FTA FTT 
DTM TT (times) 2321 1873   1625 1478 1357 1646 1573 1512 1377 1407 
Complete T (s) 389.32 312.17  281.99 268.32 264.76 278.12 271.9 270.93 260.62 262.33 

Table 5.8: DTM Times and Overall Task Completion Time amongst Different DTAS Policies 

The last scenario (Table 5.9) shows the efficiency of our heuristic policies for use in a 

soft real-time system which allows tasks to be discarded if a deadline is missed. We 

generate a similar power task set to Scenario 1, with an additional attribute: the 

deadline for each task. The deadline (relative to the start time of the task) is assumed 

to be its execution time multiplied by a factor which is randomly distributed in the 

range [1.3:4]. DTM for migration is still enabled. We investigate the average response 

time (Resp Time) and the rejection ratio (Rejection Ratio) for the task set. The 

average response time is the latency between the arrival time and the start time of a 

task, while the rejection ratio is the number of tasks that are discarded. In evaluating 

how thermal-aware scheduling can affect the key measurements in real-time system 

performance, a lower response time and a lower rejection ratio are better. 

Table 5.9 shows that the non-TAS case has a higher response time and a higher 

rejection ratio than for the DTAS algorithms. Table 5.9 also shows similar trends as in 

Scenario 1 and 2, indicating that policies that reduce DTM events are also better for 

time constrained scenarios. Temperature minimization and thermal balancing means 

that more tasks can be scheduled to be executed simultaneously making it possible to 

schedule a task earlier. FTA outperforms the other methods since it is the only 

heuristic policy to use task attributes in the scheduling decision. While ITA has a 

reduced response time due to its simplicity, it has an unacceptably high rejection ratio 

(~40% of tasks were rejected). 

Metrics Non-TAS C N HWP PDTM ITA FC FN FTA FTT 
Resp Time (ms) 1937 1267  965 872 905 507 987 893 642 728 
Rejection Ratio 62.1 45.7 36.3 32.2 37.8 38.8 39.5 31.7 23.7 25.5 

Table 5.9: Soft Real-Time Performance amongst Different DTAS Policies 

Firstly, these results show that the non-TAS scheduling policy is significantly worse 

than the TAS policies. This demonstrates why DTAS is an important system level 
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process. The results also show that our future task aware (FTA) and future 

temperature trend (FTT) policies are generally superior to existing DTAS techniques 

in terms of core temperature, DTM trigger times, task response times and task 

rejection ratios, and are comparable to HWP and PDTM in terms of spatial and 

temporal diversity. We have not compared our algorithms to algorithms for course-

grained DTM, such as [51][72]. However, our fine-grained DTAS policies could be 

combined with these DTM policies, to decide which core a task is migrated to after a 

DTM event. 

 

5.8 Summary 

In this chapter, a fast event driven thermal estimation method, which includes both the 

dynamic and leakage power models, for monitoring temperature and guiding dynamic 

TAS (DTAS) is proposed. The fast event driven thermal estimation is based upon a 

thermal map, with occasional thermal sensor-based calibration, which is updated only 

when a high level event occurs. To minimize the overhead, while maintaining the 

estimation accuracy, prebuilt look-up-tables and predefined leakage calibration 

parameters are used to speed up the thermal solution. Experimental results show our 

method is accurate, producing thermal estimations of similar quality to an existing 

open-source thermal simulator, while having a considerably reduced computational 

complexity. Based on this predictive approach, we take full advantage of a projected 

future thermal map to develop several heuristic policies for DTAS. We show that our 

proposed predictive policies are significantly better, in terms of minimizing 

average/peak temperature, reducing the dynamic thermal management overhead and 

improving other real-time features, than existing DTAS schedulers, making them 

highly suitable for heuristically guiding thermal aware task allocation and scheduling. 
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Chapter 6  
Conclusions and Future Work 
 

In this chapter, we summarise the contributions presented in this thesis, and discuss 

several unimplemented but promising directions for our future research in high level 

thermal-aware scheduling and management in many-core systems.  

 

6.1 Contributions 

The main contributions of this work have been detailed in Chapters 3 to 5. These 

include: 

• A fast event-driven thermal estimator which uses several pre-calculated LUTs 

(representing the thermal response of a 1 Watt power input to a processor core 

or TDL) to accumulate the temperature increment for the entire multi-core 

chip. Compared to the traditional time-triggered thermal simulation, our 

proposed power event-driven approach can significantly reduce the calculation 

overhead and the frequency of calculation, since we only need to evaluate the 

temperature when an event occurs. To reduce the storage of these LUTs, we 

use the symmetry of a multi-core layout (TDLs) and a non-uniform time 

interval. The accuracy of the LUT approach is also verified by comparing with 

the open source thermal simulator, HotSpot, which has been validated in the 

literature and is widely used in academic research. We also define two 

necessary LUT operations (i.e. table operations and row operations) and 

explain how these could be used in different STAS and DTAS scenarios.  

• The LUT table operations are used in an STAS scenario to test the 

schedulability of a real-time task set under a strict thermal constraint. 

Imposing a strict thermal constraint is important as excessive temperature (and 

temperature fluctuations) can result in computation speed degradation, aging, 

and unreliable system behaviour, but has not been considered as a hard 

constraint in other STAS literature, due to the overhead associated with 

139 
 



 High Level Thermal-Aware Scheduling for Multiprocessors Cui Jin 

conventional thermal estimation. As a result, the schedulability analysis for 

hard real-time task sets in a TAS scenario has not been previously 

implemented. A table representing the thermal response of an individual task 

is essentially moved along the time axis, and can be accumulated with other 

task thermal response tables by aligning to the absolute time instance. This 

approach can efficiently generate an accurate thermal map and thus the 

detailed temperature transient associated with a scheduled task. This fast 

schedulability test for hard real-time task sets can then be used as a framework 

for other thermal optimisations (e.g. performance maximization and peak 

temperature minimization) in STAS. We then propose several performance 

and thermal optimizations which are tested using both practical benchmarks 

and synthetic task sets. The experiments show that we are able to schedule 

large task sets (up to 50 tasks) in reasonable time (less than 11 minutes), 

which is 2-3 orders of magnitude faster than using scheduling with existing 

thermal simulation tools. Our proposed thermal optimizations can also be used 

to reduce the peak temperature, thus keeping temperature below a safe 

threshold thereby enhancing the reliability of the real-time embedded systems.  

• LUT row operations are then used in a DTAS scenario for updating the 

thermal map when a power event occurs. This row operation is fast enough to 

obtain the temperature increment between two consecutive events and is 

suitable for online purposes. However, these operations are only suitable for a 

non-temperature dependent leakage model (based on LODEs that can be 

linearly accumulated). To extend our fast online thermal estimator for realistic 

leakage power modelling, we develop an empirical calibration factor that can 

compensate the temperature offset in a temperature-dependent leakage model 

(a non-linear model) and hence convert this non-linear problem back to an 

approximated linear problem. This calibration factor is then used to eliminate 

the iterative process needed to evaluate the temperature-leakage power 

relationship used by other simulators. Thus, in an online (DTAS) scenario, we 

can still use the calibrated row operation to efficiently evaluate the thermal 

map, making our thermal model accurate and fast enough to guide fine (time) 

grained task allocation. We also proposed several heuristic policies based on 

the (near future) predicted thermal map. Experimental results show that our 

method is accurate, producing thermal estimations of similar quality to an 
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existing open-source thermal simulator, while providing a 3 order of 

magnitude improvement in terms of computational overhead. We show that 

our proposed predictive policies are significantly better, in terms of 

minimizing average/peak temperature, reducing the dynamic thermal 

management overhead and improving other real-time features, compared to 

existing DTAS schedulers, making them highly suitable for heuristically 

guiding thermal aware task allocation and scheduling. 

In summary, we have proposed a fast event-driven LUT-based thermal estimation 

technique, and related thermal optimizations, for both high level STAS and DTAS.   

 

6.2  Future Work 

There are still several important and interesting aspects to our research which have 

not yet been implemented. On-going work includes:   

• Our multi-core ARM simulator needs to be continuously developed and 

improved.  

a. In the current version of the multi-ARM simulator, we have assumed 

that the shared L2 cache and the main memory are combined into a 

single unified memory which can accommodate any application’s code 

section. This assumption and implementation does not reflect the cache 

hierarchy in a real processor, and as such, it is necessary to implement 

the detailed L2 cache behaviour and its communication to main 

memory.  

b. The current version of the multi-ARM power estimator uses the 

original power model for the uniprocessor implementation. This power 

model is accurate enough to evaluate the core’s power consumption, 

but it is unable to model the power consumed by the inter-core 

communications (e.g. SCU and bus). Thus, we need to add an updated 

SCU and bus power model into the simulator. 

c. The current version of the multi-ARM simulator does not support 

supervisor mode, and thus does not support an OS running on it. 
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Implementing supervisor mode and the related CP15 instructions 

would allow multi-threaded programs to run under OS control. This 

would provide a more realistic simulation environment. 

• A counter-based power profiler is needed for offline validation and online 

calibration purposes. We have initially implemented a counter-based 

utilization profiler on an ARM Cortex-A9 dual core processor by using 6 

counters to sample 18 system events (e.g. cache coherency events, execution 

units event, load/store queue events, cache hit and miss, etc.). However, the 

utilization results are not accurate enough due to counter rotating21. We need 

to adjust and improve the accuracy of this counter-based power profiler. After 

obtaining the accurate utilization results, we can validate the simulator-based 

profiler using the counter-based profiler, since similar utilization will result in 

similar power consumption for each functional unit. 

There are a number of other promising projects which would naturally follow on from 

our work on a fast event-driven LUT based thermal estimator for TAS. These include:  

• It would be useful to profile the power consumption and the temperature 

transient directly on the real many-core processor to build an accurate 

power/thermal model and validate both simulator-based and counter-based 

power estimation. To calibrate the actual chip thermal characteristics, we 

would execute (relatively) constant power tasks on individual cores till 

thermal steady state and use the built-in DTS to determine the steady state 

(time averaged) temperature on all cores. By using tasks of different power 

and allocating to different cores, it will be possible to determine the thermal 

characteristics of the chip. We would then implement our proposed framework 

for thermal management by modifying the scheduler in the open source Linux 

OS. We would then run a series of benchmarks and capture the thermal profile 

using a thermal imaging camera. This would then be used to further modify 

the characteristics of the thermal RC network used in the power-thermal 

estimator.  

• In our future STAS and DTAS research, we need to consider the inter-task 

communications in the task set model (particularly for embedded systems), 

21 Because the number of build-in counters is less than the number of profiled events we need to rotate 
the counter to sample the different events in a fixed period.  
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and also take the power consumption and heat dissipation of the inter-core 

communication into account. We would need to determine how the NoC [111] 

heat dissipation affects the adjacent cores in a many-core architecture and the 

communications channels among cores (if the thermal management is enabled 

on NoC) as this will affect the scheduling results. 
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Appendix A  
Multi-ARM Simulator for Power Profiling 
 

As discussed in Section 1, power profiling can be carried out either offline or online 

using a simulator and the on-chip performance counters, respectively. However, after 

investigating the available literature and examining the code sources available on the 

Internet, we found that: 

• No cycle-accurate power profiler is available for current high performance 

multi-core ARM architecture (e.g. ARM Cortex-A9). GEMS [40] is a popular 

and widely-used multi-core simulator but its core only simulates a simple in-

order pipeline that is out of date for most modern high performance 

microprocessors. GEM5 [114] does not have the power model for ARM 

architecture. Additionally, the inter-core communications in GEM5 only 

considers network-on-chip (NoC) or bus architectures, based on a pure 

message passing interface (MPI) [97], without supporting the POSIX multi-

threading library [96] (pthread 22 ) which is mainly used in the current 

mainstream multi-threaded applications. The following table shows the 

strengths and weaknesses for both modes of inter-process communication. 

 MPI pthread 
Communication Architectures NoC or Bus Bus 
Memory Model Distributed Memory Shared Memory 
Programming Difficulty Hard Easy 
Bandwidth of Inter-Core 
Communication 

Low (Data Package) High (Memory Transaction) 

Number of Simultaneous 
Inter-Core Communication  

High Low 

Latency High Low 
Need for Cache Coherency No Yes 
Scalability High Low 

Table A.1: Comparison between MPI and pthread 

As seen from the comparison between the two inter-core mechanisms, both 

have their own advantages, and we can conclude that MPI is more suitable for 

future many-core architecture with full optimization of message passing 

22 POSIX thread library is widely used for multi-threading on the shared memory architecture. 
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techniques in the compiler (like network programming, e.g. the sending and 

receiving of messages between the cores), while pthread is more suitable for 

multi-core architectures, with traditional compilers and a much simpler 

programming model (e.g. using shared memory as a global database in a 

multi-threaded program, and using join, lock and mutex to achieve the 

synchronization and the mutual exclusion). 

• No counter-based power estimator for the ARM architecture is implemented 

so far. So the validation of the utilization estimation for the ARM architecture 

is not able to be carried out and thus the correctness of the simulator-based 

offline power profiling cannot be determined. 

In this appendix, we introduce an extension of SimpleScalar [41] that supports multi-

threaded programming running on a shared-memory scheme on a multi-ARM 

architecture that we used for power profiling in our TAS research. While much of the 

multi-ARM simulator has been completed, there is still some work that needs to be 

done, in terms of the simulator-based and counter-based power estimation. These 

uncompleted extensions are listed in the future work chapter of this thesis.   

 

A.1 Multi-core ARM Simulator 

The SimpleScalar simulator [41] is able to simulate real programs running on modern 

processors and systems, and provides a realistic implementation which is close to that 

of current commercial processors that support ILP, via the out-of-order execution of 

hardware dynamic instruction scheduling provided by SuperScalar. The critical issue 

of SimpleScalar (for any architecture, e.g. Alpha, ARM and PowerPC) is that it only 

exactly simulates a uniprocessor without any multi-thread (multi-process) 

programming allowed. In other words, a multi-threaded application cannot be 

executed on SimpleScalar. In this section, we extend the original SimpleScalar to 

support multi-core simulation and multi-thread applications.  

To provide support for multi-core and multi-threaded applications, we must add the 

following necessary code blocks into the simulator: 

158 
 



 High Level Thermal-Aware Scheduling for Multiprocessors Cui Jin 

• We need to duplicate the uniprocessor in the original SimpleScalar to produce 

a multi-core architecture. However, some parts (e.g. the Load/Store queue) of 

the uniprocessor need to be modified to satisfy the logical correctness of the 

inter-core data dependency. 

• We need to add a snoop control unit (SCU) to the inter-core communication 

bus to implement cache coherency among cores.  

• We need to implement a number of critical system calls used by the multi-

thread library (pthread), such as thread creation (the clone system call), thread 

pending for event (the wait system call), and so on. 

Before introducing our extension, we need to look at the basic structure of the 

uniprocessor simulation in the original SimpleScalar. That will help to understand the 

differences between the architectures in the uniprocessor and multi-core scenarios. 

 

A.1.1 Basic Simulation Procedure in SimpleScalar-ARM 

SimpleScalar is widely used in academia to provide the cycle-accurate information of 

a uniprocessor at the micro-architecture level. It supports several complicated features 

in modern architectures for high performance computing, including: out-of-order 

execution provided by SuperScalar, instruction pre-fetch units, branch predictor and 

speculative execution.  

In a uniprocessor, several critical functional units are simulated: 

• Register File: This simulates the internal register set as an array REGS. The 

system registers that support the supervision mode needed by modern OSs (e.g. 

CP15 and CPSR register set in ARM processor) is not simulated as 

SimpleScalar is not a behavioural level simulator that allows an OS to run on 

it. 

• Instruction fetch unit: This is the basic component that fetches the instruction 

from the L1 cache. The instruction queue used for pre-fetch is implemented, 

and the queue's length can be customized by the user (the default setting is 4). 

This pre-fetch logic is affected by the branch predictor. 
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• Branch predictor: Before the branch conditions are solved, additional 

instructions are predictively fetched according to historical results. 

SimpleScalar implements the predictor in two ways: a bimodal predictor and a 

two-level adaptive predictor (The default setting is the bimodal predictor). 

• Reservation Station (Renaming Unit): This is used to assign the virtual register 

name (or dependent execution unit name) to resolve and encode the data 

dependency among the instructions. This encoding method is important and 

necessary for SuperScalar to dynamically schedule the instructions on multiple 

execution units and thus achieve instruction-level parallelism (ILP). 

• Instruction dispatch and issue unit: The renamed instructions are decoded and 

issued to the corresponding execution unit in this stage. It determines and 

generates the control signal according to the identification of operands and the 

operator of each instruction. It checks whether the execution units are idle or 

busy and allocates the instructions to the idle ones. The issue width (the 

number of instructions to be issued at the same cycle) can be customized. 

• Execution unit: SimpleScalar simulates the 5 classes of resources: integer 

adder and logic operator (bit operator, logic compare and shift operator), 

integer multiplier/divider, floating point adder, floating point 

multiplier/divider, memory ports (the Load/Store queues including the stack 

operator). 

• Load/Store queue: Any memory access operations are passed to this queue for 

further L1 cache, or other level, memory accesses. For the uniprocessor, the 

instructions in the queue can be reordered or optimized according to their 

memory address dependency (e.g. if a memory address read appears in a prior 

write instruction in the queue, it can directly return the value to be written to 

the read instruction without needing to  access the L1 cache). However, for 

multiprocessor systems, the memory value can be affected by another cores' 

access. We will discuss this later. 

• L1, L2 cache and Memory: SimpleScalar has a self-customized multi-layer 

cache structure. The size, instruction or data used or shared between data and 

instruction can be set on the L1 and L2 cache. Memory is assumed to be big 

enough to accommodate any applications without considering a virtual 
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memory implementation on external storage (e.g. a hard disk). The cache 

simulation can be integrated with other cache simulators, e.g. CACTI. 

• Memory management unit (MMU): This unit is used to translate the virtual 

address into a physical address in memory space. SimpleScalar implements a 

2-level address translation. All the addresses in the cache lines are expressed 

as the physical pattern. SimpleScalar does not support multi-threading (context 

switching), and thus the page table base address swap used in context 

switching is not simulated. 

• Translation look-aside buffer (TLB): This unit is used to accelerate the 

memory address translation by recording the latest history of a memory 

translation. The memory translation should firstly compare the addresses in 

the TLB before it actually carries out the translation in the MMU. The TLB 

should be flushed when context switching occurs. 

• Instruction write-back and commit unit: This is to write back the result to the 

register file and solve the dependency among the instructions and predictor 

conditions. If a branch prediction is failed, it needs to roll back and recover to 

the correct execution path and notify the instruction fetch unit to flush. It also 

notifies the renaming and issuing unit to put the pending instruction into 

ready-to-run status. It releases the execution units used by the completed 

instructions and marks them as idle.  The commit width can also be 

customized. 

The above components are the main components simulated by SimpleScalar. As well 

as these components, SimpleScalar uses a number of data structures to support the 

simulation. 
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Figure A.1: The flow chart of SimpleScalar 

Two data structures are used for tracking instruction status, interdependency, 

execution unit category, etc. after decoding. All the instructions in ARM can be 

classified into 3 categories based on their operands (source-to-destination): 1) 

register-to-register; 2) register-to-memory; 3) memory-to-register. The first class of 
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instructions are abstracted to the RUU_station (referred to as RUU in subsequent 

sections) data structure, while the second and third classes (the memory instructions) 

are abstracted to the LSQ_station data structure (referred to as LSQ in subsequent 

sections). However, in SimpleScalar, the basic integer and floating point execution 

units are only simulated for register-to-register style instructions, while memory ports 

support the register-to-memory or memory-to-register style. As a result, any memory 

access instruction or multiple memory access instruction (LDR and STR 

instructions23 can support a set of registers reading\writing from\to a block of memory) 

can be converted into several equivalent single memory access instructions in the 

decoding stage of the dispatch unit. For instance, "ADD mem, R1, R2;" can be 

converted into "ADD Rt, R1, R2; STR mem, Rt;". This conversion is referred to as 

micro-code decoding. Therefore, each micro-code instruction is purely atomic for an 

execution unit and can be assigned to a RUU (register instruction) or a LSQ (memory 

instruction) to resolve the dependency. There are several linked lists that are used to 

link RUU and LSO together to track the instruction state (e.g. ready to be issued since 

all inputs are available or completed after execution to notify the pending instruction). 

After introducing the basic components and data structure in SimpleScalar, we detail 

how the simulator works. Figure A.1 shows the flow chart in each simulated cycle. 

The main loop appears in the left side of Figure A.1. To facilitate resolving the 

dependency among the instructions, the simulation flow is reversed against the normal 

order of the pipeline in the processor (the completed instruction in the write-back 

stage can be to notify the pending instructions in the dispatch stage). Therefore, we 

introduce each sub-procedure in this reversed order. 

• Instruction commit: The completed RUU or LSQ micro-code instruction 

should be retired24 in this stage. The corresponding elements in RUU or LSQ 

should be deleted from the station array (a global RUU and LSQ array is used 

to track which instruction is being processed in current cycle). The completed 

write memory access25 instruction (store instruction) denoted by LSQ should 

23 LDR and STR instructions are the load and store instructions in ARM instruction set. 
24 The commit width decides the number of instructions that are retired in a single cycle. 
25 It is note that in execution stage, a write memory instruction is not really write to the memory, and it 
only submit the write request to the load/store queue (but mark as completed). The true writing happens 
in commit stage to reduce the number of writing to same address (only commit the lasted writing value 
to one address). 
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actually commit the data in load/store queue to the L1 cache. It should be 

noted that for the uniprocessor, this late store instruction commit is feasible 

because the stored value needed by other instructions can be directly sent to 

these instructions before sending it to the memory. However, in the multi-core 

case, the stored value can be changed or rewritten by store instructions from 

other cores.  As such, a store instruction in the multi-core case cannot be 

implemented as a two stage (late commit) process and must be atomically 

completed and synchronized by cache coherency before the next read.  

• Release execution units: Each execution unit's busy cycle should be self-

subtracted by 1. If busy cycle reaches 0, it means the execution unit is idle.  

• Instruction writeback: In this stage, the simulator searches the issued 

instructions in the event queue (the event queue stores the RUU and LSQ 

information in completion order form according to the number of cycles 

needed by an instruction, e.g. ADD needs 1 clock cycle, and MUL needs 3 

clock cycles) and changes the instruction status from "issued" to "completed". 

If the result of branch condition does not match the prior prediction, the 

correct execution path should be recovered by rolling back the index in RUU 

and LSQ array to where the branch occurs. The branch predictor is notified 

and it updates the program counter (PC) to fetch the instructions in another 

path. Lastly, once this instruction is complete, it should be detached from the 

dependency vector which links to other RUUs (or LSQs) which are dependent 

on this instruction. The newly resolved RUUs (or LSQs) are added into the 

ready queue for instruction issue in the next cycle. 

• LSQ refresh: The dependency among the memory access instructions is 

resolved in this stage. A load instruction can directly read the value written by 

a prior instruction from the load/store queue. This is referred to as fast load, 

but is not suitable for the multi-core scenario where the value might be 

changed by a different core's store instruction, as explained in the instruction 

commit stage. Another optimization implemented in the LSQ refresh is that 

multiple store instructions can be combined and only latest store instruction is 

actually committed, since earlier values written to same address in the 

load/store queue would be overwritten. This is referred to as store reduction, 
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which again is not feasible in a multi-core scenario as the earlier value may be 

used by other cores. 

• Instruction issue: The issued RUUs (and LSQs) in the ready queue are 

assigned to the idle execution units26 (with busy cycle equal to 0). The number 

of cycles needed by every issued instruction needs to be calculated. For RUU 

this is fairly easy as each register-to-register operation has a predefined 

number of cycles for each execution unit. However, for LSQ the latency is 

difficult to determine due to the different level caches (either hit or miss), TLB 

and MMU address translation and any necessary memory access. It is noted 

that for a memory access instruction, only a load instruction is simulated 

because the store instruction is simulated in a later commit stage, as mentioned 

previously. After knowing the number of cycles needed, the issued 

instructions can be added into an event queue in the completion order, that is 

the earliest one should be stored at the head of the queue. For the multi-core 

case, the memory access latency should include the cycles needed to ensure 

cache coherence among the cores. 

• Instruction dispatch: The pre-fetched instructions in the pre-fetched array are 

decoded in this stage. Some complex instructions, as mentioned earlier (e.g. 

register-to/from-memory instructions), are also converted into several 

equivalent micro-code instructions in the decoder. After generating the micro-

code instruction, each micro-code instruction can be allocated to a RUU (or a 

LSQ) in the station array, and then the dependency among these instructions is 

generated by analysing the input and output registers in the renaming unit, 

with a dependency vector being used to link the inter-dependent instructions 

together.  Therefore, the RUUs and LSQs in the station array appear in fetched 

order, while the dependency vector stores their inter-dependency that is 

resolved in the writeback stage. The instructions whose input registers are all 

resolved should be put into the ready queue. 

• Instruction fetch: the instructions are fetched from the L1 cache27 (or higher 

level memory if a cache miss is generated) to the pre-fetched array. The fetch 

simulation is similar to the memory load instruction. As the variable latency of 

the memory access (due to a cache or memory miss) might lead to a stall of 

26 The issue width decides the number of instructions that are issued to execution units in a single cycle. 
27 The pre-fetch width decides the number of instructions that are loaded from memory in a single cycle. 
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the pre-fetch unit, all cache levels as well as the main memory must be 

simulated. The pre-fetch unit also needs to interact with the branch predictor28 

to decide which branch the execution should follow upon meeting a branch 

instruction. The predictor might update the new fetch address after being 

notified by the writeback stage due to a missed prediction. 

On a final note, this simulation procedure is carried out by the original SimpleScalar. 

However, we have stated that due to the concurrent access of a shared memory in the 

multi-core scenario, the relevant memory access simulation, in the instruction commit 

and issue stages with LSQ refresh, is not feasible anymore. In other words, if we just 

simply duplicate and integrate the original cores without any modification, the multi-

core simulation will behave incorrectly at the logic level. In the following sections, 

we address these problems in order to fit the original uniprocessor model to the multi-

core scenario. 

 

A.1.2 Transactional Load/Store Instructions 

To solve the problems of accessing shared memory, we require the following criteria 

to implement the memory access instruction: 

• Any store instruction should be completed atomically, i.e. a store operation 

should actually write the value to the cache and then complete the cache 

coherency29 without being interrupted by any other operations on the same 

address. This is to prevent a write-after-write (a dirty write) among the cores: 

we need to be aware that the value in an earlier issued store instruction may be 

rewritten by a later store instruction to the same address. In other words, the 

user should see the latest written value to that address.  

• Any load instruction should be completed atomically, i.e. a load operation 

should actually read the value in the cache, rather than read the latest value in 

the load/store queue. This is to prevent a read-after-write (a true dependency) 

among the cores: we need to be aware that the value at the address may not 

28 Branch condition is regarded as a normal micro-code instruction handled by ALU or FPU. 
29 Whether the value is directly written back to main memory is not important and decided by the cache 
mode: write-back or write-through. 
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only be changed by the core itself, but it may also be changed by the other 

cores. 

• Any store instruction executed on one core should be visible to the other cores.  

This is done by cache coherency, and is discussed in the next section. 

In this section, we address these issues in the uniprocessor and adapt them to the 

multi-core scenario.  

• To implement a transactional store instruction, the store instruction cannot be 

completed in the previously mentioned two stage way: that is, 1) marking the 

store instruction status as “completed” directly in the writeback stage, and then 

2) carrying out the real write operation in the commit stage. Therefore, the late 

commit for a store instruction should be moved and integrated into the issue 

stage where the number of cycles needed by a load instruction is calculated by 

the cache, TLB, MMU and memory simulation. This modification is shown as 

the red dashed boxes in Figure A.1. In other words, all the load/store 

instructions should be atomically issued (within a single stage) to the 

load/store queue (memory port) that actually accesses the L1 cache.  

• To implement a transactional load, a load instruction cannot directly fetch the 

value directly from the load/store queue. The load instruction needs to actually 

access the L1 cache. Hence, the fast load in the LSQ refresh stage should be 

removed.  

• To make all store instructions visible to the others cores, the store reduction in 

LSQ refresh is no longer feasible, as it deletes some store operations on the 

same address. Hence, those value changes do not appear in the cache and the 

main memory, and are invisible to the other cores. Therefore, the store 

reduction in the LSQ refresh stage should be removed. This means that the 

optimizations for memory access in the uniprocessor cannot be applied to the 

multi-core, and thus the entire LSQ refresh stage should be removed, as shown 

by the red cross in Figure A.1. 

After modifying the uniprocessor as stated above, we can duplicate our modified 

uniprocessor to build a multi-core simulator. The duplication is not detailed here since 

it is relatively easy to duplicate all the necessary components and their corresponding 

data structures introduced in the earlier section, using “core_id” to identify the 
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individual cores. An inter-core communication structure is needed to connect the 

cores together. This is described in the next section. 

 

A.1.3 Inter-Core Communication 

The inter-core communication discussed in this section is only applicable for the 

shared memory architecture in current multi-core chips, such as multi-core ARM 

processors. The key component of the inter-core communication infrastructure is the 

snoop control unit (SCU) that has the following main functions: 

• Complete the cache coherency among the cores 

• Complete the communication between cache and the shared memory via bus 

and arbitrator. 

Before examining our implementation of the SCU, we introduce the basic cache 

models and protocols of cache coherency. In terms of the 2-level cache model in most 

modern ARM processor, there are two styles of hierarchy in multi-core architecture: 

private L2 cache (left in Figure A.2) and shared L2 Cache (right in Figure A.2). 

Core Core

L1 Cache L1 Cache

L2 Cache L2 Cache

SCU, Bus and Arbitrator with Buffer and Multiple Ports

Core Core

L1 Cache L1 Cache

L2 Cache L2 Cache

Shared Memory

Core Core

L1 Cache L1 Cache

SCU, Bus and Arbitrator with Buffer and Multiple Ports

Core Core

L1 Cache L1 Cache

Shared Memory

Shared L2 Cache

 
Figure A.2: SCU and Cache Hierarchy 

In terms of the private L2 cache model, the L1 and L2 cache in a single core can be 

seen as a single cache because most modern architectures (x86 and ARM) are using 

the inclusive cache scheme, i.e. any cache line in L1 must exist in L2, in other words, 

L2 includes all the contents of L1 (but also has the cache lines that are not in L1, for 

example, one cache line is retired from L1 but still in L2). Therefore, the cache 
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coherency operations must take care of these two levels: the write operation occurring 

on one core’s L1 not only needs to update its L2 but also needs to update the cache 

line’s status in the other core’s L1 and L2 caches. In terms of the shared L2 cache 

model, one can assume the shared L2 cache and main memory can be combined as a 

unified memory. This makes the L2 cache and the main memory the same as the 

normal cache scheme in a uniprocessor. As a result, these two cache models can be 

similarly designed and treated at the logic level. For simplicity, we adopt the shared 

L2 cache model in this thesis. 

There are several available protocols for cache coherency [98]: MSI, MSEI, MOSI, 

MOESI, etc. In our multi-core simulator, we only concentrate on the two basic cache 

coherency models, MSI and MSEI, which are practically used in ARM Cortex series 

multiprocessors [99]. MSI and MSEI donate the status of a cache line as their names, 

and are explained as below: 

• Modified (M): the cache line is modified by the cores and this cache line is 

“dirty” (meaning its content is different with the content in next level memory 

and needs to written back). For MSEI, the “modified” status is changed to 

“exclusive” when the write back is completed, that means this cache line only 

exists in this core’s cache. For MSI, the “modified” status is changed to 

“shared” when the write back is completed,  triggered by the other cores’ read 

and write on their cache line with the same address. 

• Shared (S): the cache line is shared among the cores (or exists in at least one 

core in the MSI protocol) and its content is never modified by any core (it is 

identical to the content in main memory). In any implementation, if the write 

operation occurs on this “shared” cache line, the written cache line’s status is 

changed to “modified”, and the cache lines with same address on other cores is 

changed from “shared” to “invalid”. 

• Invalid (I): the cache line neither exists nor is “dirty” in the current cache. 

Thus, it needs to be fetched  from the main memory or the other core’s cache 

line, with a status change from “invalid” to “shared/exclusive” (for a read 

operation from another cache line or from main memory, respectively) or 

“modified” (for a write operation). 
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• Exclusive (E): the cache line only exists in one core’s cache and its content is 

“clean” (identical with the main memory). Another core’s read on the same 

address can make the status on this core change from “exclusive” to “shared”. 

Another core’s write to this cache line can change the status from “exclusive” 

to “modified”. 

After introducing the basic protocol, we list the added pseudo code for the 

transactional load/store (read/write) instruction simulation. The initial status for all 

cache lines in our simulator are set to “invalid”. 

Algorithm A.1: Behaviour for Read Hit 
Input: 𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟 is physical address translated by TLB or MMU, 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑  is current core. 
Output: 𝐶𝐶𝐻𝐻𝐻𝐻 is latency of this operation 
IF 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑃𝑃 = 𝑀𝑀 𝐶𝐶𝑟𝑟 𝑆𝑆 (𝐶𝐶𝑟𝑟 𝐸𝐸) THEN     //read hit 
      Directly fetch the content 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝐴𝐴𝐻𝐻𝐶𝐶𝑇𝑇𝑒𝑒; 
      RETURN 𝐶𝐶𝐻𝐻𝐻𝐻 = 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒. 𝑟𝑟𝑒𝑒𝐻𝐻𝑑𝑑_𝐶𝐶𝐻𝐻𝐻𝐻; 
END IF  

 

Algorithm A.2: Behaviour for Read Miss 
Input: 𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟 is physical address translated by TLB or MMU, 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑  is current core. 
Output: 𝐶𝐶𝐻𝐻𝐻𝐻 is latency of this operation 
IF 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑃𝑃 = 𝐼𝐼 THEN     //read miss 
      FOR 𝐻𝐻 = 𝐶𝐶𝐻𝐻ℎ𝑒𝑒𝑟𝑟 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒′𝑃𝑃 𝐻𝐻𝑑𝑑 DO 
            IF 𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟 is existed in 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝐻𝐻] THEN 
                  IF 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝐻𝐻][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑃𝑃 = 𝑆𝑆 THEN 
                         𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟].𝐴𝐴𝐻𝐻𝐶𝐶𝑇𝑇𝑒𝑒 = 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝐻𝐻][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝐴𝐴𝐻𝐻𝐶𝐶𝑇𝑇𝑒𝑒; 
                         𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑃𝑃 = 𝑆𝑆; 
                         IF 𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑙𝑙𝑑𝑑𝑟𝑟𝑙𝑙𝑑𝑑𝑙𝑙𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙 ≥ 𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑑𝑑𝑠𝑠𝑟𝑟𝑟𝑟𝑙𝑙𝑑𝑑𝑠𝑠 THEN 
                               𝐶𝐶𝐻𝐻𝐻𝐻 = 𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑙𝑙𝑑𝑑𝑟𝑟𝑙𝑙𝑑𝑑𝑙𝑙𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙 + 𝐶𝐶𝐻𝐻𝐻𝐻_𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒_𝐻𝐻𝑟𝑟𝐻𝐻𝑛𝑛𝑃𝑃 − 𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑑𝑑𝑠𝑠𝑟𝑟𝑟𝑟𝑙𝑙𝑑𝑑𝑠𝑠; 
                               𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑙𝑙𝑑𝑑𝑟𝑟𝑙𝑙𝑑𝑑𝑙𝑙𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙+= 𝐶𝐶𝐻𝐻𝐻𝐻_𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒_𝐻𝐻𝑟𝑟𝐻𝐻𝑛𝑛𝑃𝑃; 
                         ELSE 
                               𝐶𝐶𝐻𝐻𝐻𝐻 = 𝐶𝐶𝐻𝐻𝐻𝐻_𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒_𝐻𝐻𝑟𝑟𝐻𝐻𝑛𝑛𝑃𝑃; 
                               𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑙𝑙𝑑𝑑𝑟𝑟𝑙𝑙𝑑𝑑𝑙𝑙𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙 = 𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑑𝑑𝑠𝑠𝑟𝑟𝑟𝑟𝑙𝑙𝑑𝑑𝑠𝑠 + 𝐶𝐶𝐻𝐻𝐻𝐻_𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒_𝐻𝐻𝑟𝑟𝐻𝐻𝑛𝑛𝑃𝑃; 
                         END IF 
                         RETURN 𝐶𝐶𝐻𝐻𝐻𝐻; 
                  END IF 
                  IF 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝐻𝐻][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑃𝑃 = 𝑀𝑀 THEN 
                        𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝐴𝐴𝐻𝐻𝐶𝐶𝑇𝑇𝑒𝑒 = 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝐻𝐻][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟].𝐴𝐴𝐻𝐻𝐶𝐶𝑇𝑇𝑒𝑒; 
                        Writeback 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝐻𝐻][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝐴𝐴𝐻𝐻𝐶𝐶𝑇𝑇𝑒𝑒 to lower level memory; 
                        𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑃𝑃 = 𝑆𝑆; 
                        𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝐻𝐻][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑃𝑃 = 𝑆𝑆; 
                        IF 𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑙𝑙𝑑𝑑𝑟𝑟𝑙𝑙𝑑𝑑𝑙𝑙𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙 ≥ 𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑑𝑑𝑠𝑠𝑟𝑟𝑟𝑟𝑙𝑙𝑑𝑑𝑠𝑠 THEN 
                              𝐶𝐶𝐻𝐻𝐻𝐻 = 𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑙𝑙𝑑𝑑𝑟𝑟𝑙𝑙𝑑𝑑𝑙𝑙𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙 + 𝐶𝐶𝐻𝐻𝐻𝐻_𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒_𝐻𝐻𝑟𝑟𝐻𝐻𝑛𝑛𝑃𝑃 + 𝐶𝐶𝐻𝐻𝐻𝐻_𝑤𝑤𝑟𝑟𝐻𝐻𝐻𝐻𝑒𝑒_𝑇𝑇𝑒𝑒𝑇𝑇 − 𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑑𝑑𝑠𝑠𝑟𝑟𝑟𝑟𝑙𝑙𝑑𝑑𝑠𝑠; 
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      Directly write 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝐴𝐴𝐻𝐻𝐶𝐶𝑇𝑇𝑒𝑒; 
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  IF 𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑙𝑙𝑑𝑑𝑟𝑟𝑙𝑙𝑑𝑑𝑙𝑙𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙 ≥ 𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑑𝑑𝑠𝑠𝑟𝑟𝑟𝑟𝑙𝑙𝑑𝑑𝑠𝑠 THEN 
            𝐶𝐶𝐻𝐻𝐻𝐻 = 𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑙𝑙𝑑𝑑𝑟𝑟𝑙𝑙𝑑𝑑𝑙𝑙𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙 + 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒.𝑤𝑤𝑟𝑟𝐻𝐻𝐻𝐻𝑒𝑒_𝐶𝐶𝐻𝐻𝐻𝐻 − 𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑑𝑑𝑠𝑠𝑟𝑟𝑟𝑟𝑙𝑙𝑑𝑑𝑠𝑠; 
            𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑙𝑙𝑑𝑑𝑟𝑟𝑙𝑙𝑑𝑑𝑙𝑙𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙+= 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒.𝑤𝑤𝑟𝑟𝐻𝐻𝐻𝐻𝑒𝑒_𝐶𝐶𝐻𝐻𝐻𝐻; 
      ELSE 
            𝐶𝐶𝐻𝐻𝐻𝐻 = 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒.𝑤𝑤𝑟𝑟𝐻𝐻𝐻𝐻𝑒𝑒_𝐶𝐶𝐻𝐻𝐻𝐻; 
            𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑙𝑙𝑑𝑑𝑟𝑟𝑙𝑙𝑑𝑑𝑙𝑙𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙 = 𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑑𝑑𝑠𝑠𝑟𝑟𝑟𝑟𝑙𝑙𝑑𝑑𝑠𝑠 + 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒.𝑤𝑤𝑟𝑟𝐻𝐻𝐻𝐻𝑒𝑒_𝐶𝐶𝐻𝐻𝐻𝐻; 
      END IF 
      RETURN 𝐶𝐶𝐻𝐻𝐻𝐻; 
END IF 
IF 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑃𝑃 = 𝐸𝐸 THEN     
      Directly write 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝐴𝐴𝐻𝐻𝐶𝐶𝑇𝑇𝑒𝑒; 
      𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑃𝑃 = 𝑀𝑀; 

  IF 𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑙𝑙𝑑𝑑𝑟𝑟𝑙𝑙𝑑𝑑𝑙𝑙𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙 ≥ 𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑑𝑑𝑠𝑠𝑟𝑟𝑟𝑟𝑙𝑙𝑑𝑑𝑠𝑠 THEN 
            𝐶𝐶𝐻𝐻𝐻𝐻 = 𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑙𝑙𝑑𝑑𝑟𝑟𝑙𝑙𝑑𝑑𝑙𝑙𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙 + 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒.𝑤𝑤𝑟𝑟𝐻𝐻𝐻𝐻𝑒𝑒_𝐶𝐶𝐻𝐻𝐻𝐻 − 𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑑𝑑𝑠𝑠𝑟𝑟𝑟𝑟𝑙𝑙𝑑𝑑𝑠𝑠; 
            𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑙𝑙𝑑𝑑𝑟𝑟𝑙𝑙𝑑𝑑𝑙𝑙𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙+= 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒.𝑤𝑤𝑟𝑟𝐻𝐻𝐻𝐻𝑒𝑒_𝐶𝐶𝐻𝐻𝐻𝐻; 
      ELSE 
            𝐶𝐶𝐻𝐻𝐻𝐻 = 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒.𝑤𝑤𝑟𝑟𝐻𝐻𝐻𝐻𝑒𝑒_𝐶𝐶𝐻𝐻𝐻𝐻; 
            𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑙𝑙𝑑𝑑𝑟𝑟𝑙𝑙𝑑𝑑𝑙𝑙𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙 = 𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑑𝑑𝑠𝑠𝑟𝑟𝑟𝑟𝑙𝑙𝑑𝑑𝑠𝑠 + 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒.𝑤𝑤𝑟𝑟𝐻𝐻𝐻𝐻𝑒𝑒_𝐶𝐶𝐻𝐻𝐻𝐻; 
      END IF 
      RETURN 𝐶𝐶𝐻𝐻𝐻𝐻; 
END IF 

 

Algorithm A.4: Behaviour for Write Miss 
Input: 𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟 is physical address translated by TLB or MMU, 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑  is current core. 
Output: 𝐶𝐶𝐻𝐻𝐻𝐻 is latency of this operation 
IF 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑃𝑃 = 𝐼𝐼 THEN     //write miss 
      Directly write 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝐴𝐴𝐻𝐻𝐶𝐶𝑇𝑇𝑒𝑒; 
      𝐶𝐶 = 0; 
      FOR 𝐻𝐻 = 𝐶𝐶𝐻𝐻ℎ𝑒𝑒𝑟𝑟 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒′𝑃𝑃 𝐻𝐻𝑑𝑑 DO 
            IF 𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟 is existed in 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝐻𝐻] THEN 
                  IF 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝐻𝐻][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑃𝑃 = 𝑆𝑆 THEN 
                         𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝐻𝐻][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑃𝑃 = 𝐼𝐼; 
                         𝐶𝐶+= 𝐶𝐶𝐻𝐻𝐻𝐻_𝑏𝑏𝑟𝑟𝐶𝐶𝐻𝐻𝑑𝑑𝑃𝑃𝐻𝐻𝑃𝑃𝐻𝐻; 
                  END IF 
                  IF 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝐻𝐻][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑃𝑃 = 𝑀𝑀 THEN 
                        Writeback 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝐻𝐻][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝐴𝐴𝐻𝐻𝐶𝐶𝑇𝑇𝑒𝑒 to lower level memory; 
                        𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝐻𝐻][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑃𝑃 = 𝐼𝐼; 
                        𝐶𝐶+= 𝐶𝐶𝐻𝐻𝐻𝐻_𝑤𝑤𝑟𝑟𝐻𝐻𝐻𝐻𝑒𝑒_𝑇𝑇𝑒𝑒𝑇𝑇; 
                        BREAK; 
                  END IF 
                  IF 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝐻𝐻][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑃𝑃 = 𝐸𝐸 THEN 
                        𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝐻𝐻][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑃𝑃 = 𝐼𝐼; 
                       BREAK; 
                  END IF 
            END IF 
      END FOR 
      IF write-through mode is enable and MSEI is used THEN 
            Write 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝐴𝐴𝐻𝐻𝐶𝐶𝑇𝑇𝑒𝑒 to lower level memory; 
            𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑃𝑃 = 𝐸𝐸; 
            𝐶𝐶+= 𝐶𝐶𝐻𝐻𝐻𝐻_𝑤𝑤𝑟𝑟𝐻𝐻𝐻𝐻𝑒𝑒𝑏𝑏𝐻𝐻𝑃𝑃𝑘𝑘; 
      ELSE 
            𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑][𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟]. 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑃𝑃 = 𝑀𝑀; 
      END IF 
      IF 𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑙𝑙𝑑𝑑𝑟𝑟𝑙𝑙𝑑𝑑𝑙𝑙𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙 ≥ 𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑑𝑑𝑠𝑠𝑟𝑟𝑟𝑟𝑙𝑙𝑑𝑑𝑠𝑠 THEN 
            𝐶𝐶𝐻𝐻𝐻𝐻 = 𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑙𝑙𝑑𝑑𝑟𝑟𝑙𝑙𝑑𝑑𝑙𝑙𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙 + 𝐶𝐶 − 𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑑𝑑𝑠𝑠𝑟𝑟𝑟𝑟𝑙𝑙𝑑𝑑𝑠𝑠; 
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            𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑙𝑙𝑑𝑑𝑟𝑟𝑙𝑙𝑑𝑑𝑙𝑙𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙+= 𝐶𝐶; 
      ELSE 
            𝐶𝐶𝐻𝐻𝐻𝐻 = 𝐶𝐶; 
            𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑙𝑙𝑑𝑑𝑟𝑟𝑙𝑙𝑑𝑑𝑙𝑙𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙 = 𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑑𝑑𝑠𝑠𝑟𝑟𝑟𝑟𝑙𝑙𝑑𝑑𝑠𝑠 + 𝐶𝐶; 
      END IF 
      RETURN 𝐶𝐶𝐻𝐻𝐻𝐻; 
END IF  

Algorithms A.1 to A.4 describe the cache line status transition process and the latency 

calculation in case of a cache hit/miss induced by a transactional load/store. These 4 

algorithms should complete atomically and cannot be interrupted or disturbed by 

other transactional load/stores.  

The latency 𝐶𝐶𝐻𝐻𝐻𝐻 is expressed as the number of cycles from the current cycle to the 

completion cycle of the transactional read/write. Since the bus and SCU are shared 

resources among the cores, a transitional load/store (including all the operations 

described in any one of the above four algorithms) should exclusively occupy the bus 

and SCU during the entire transaction. Therefore, we use a global variable 

𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑙𝑙𝑑𝑑𝑟𝑟𝑙𝑙𝑑𝑑𝑙𝑙𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙 to track the earliest idle cycle on bus, and this value indicates 

when a transaction can occupy the bus, and should be updated at the end of each 

transaction by adding the number of bus cycles needed by a transaction. To calculate 

the number of bus cycles needed by a transaction, the following latencies needed to be 

pre-calculated or simulated:  

• 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒. 𝑟𝑟𝑒𝑒𝐻𝐻𝑑𝑑_𝐶𝐶𝐻𝐻𝐻𝐻  (and 𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒.𝑤𝑤𝑟𝑟𝐻𝐻𝐻𝐻𝑒𝑒_𝐶𝐶𝐻𝐻𝐻𝐻 ), denote the number of cycles for 

reading (writing) a cache line directly from the core’s own cache. These 

values are not used by updating 𝑃𝑃𝐷𝐷𝑃𝑃𝐶𝐶𝑒𝑒𝑙𝑙𝑑𝑑𝑟𝑟𝑙𝑙𝑑𝑑𝑙𝑙𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙 since it does not access 

the bus, and is only needed for calculating the latency of a transaction. 

• 𝐶𝐶𝐻𝐻𝐻𝐻_𝑏𝑏𝑟𝑟𝐶𝐶𝐻𝐻𝑑𝑑𝑃𝑃𝐻𝐻𝑃𝑃𝑒𝑒 , denotes the number of cycles needed for broadcasting 

“invalid” on the bus to each core, and is a pre-determined constant since the 

broadcasting and snooping behaviours are defined by the bus protocol (e.g. 

AMBA).  

•  𝐶𝐶𝐻𝐻𝐻𝐻_𝑃𝑃𝐻𝐻𝑃𝑃ℎ𝑒𝑒_𝐻𝐻𝑟𝑟𝐻𝐻𝑛𝑛𝑃𝑃 , denotes the number of cycles needed for transferring a 

cache line between the caches of two cores, and is a pre-determined constant 

determined by the size of a cache line and the number of cycles needed for 

transferring data on the bus. 

173 
 



 High Level Thermal-Aware Scheduling for Multiprocessors Cui Jin 

• 𝐶𝐶𝐻𝐻𝐻𝐻_𝑟𝑟𝑒𝑒𝐻𝐻𝑑𝑑_𝑇𝑇𝑒𝑒𝑇𝑇 (and 𝐶𝐶𝐻𝐻𝐻𝐻_𝑤𝑤𝑟𝑟𝐻𝐻𝐻𝐻𝑒𝑒_𝑇𝑇𝑒𝑒𝑇𝑇), denote the number of cycles needed 

for reading (writing) a cache line from (to) the lower level memory, and is a 

variable evaluated by simulating the lower level memory behaviour (i.e. the 

shared L2 cache hit/miss and the data transfer between the L2 cache and the 

main memory). This value is dependent upon the amount of data being 

transferred and the bus working mode (pipelined or burst).  

These constants and variables are evaluated by adopting the AMBA bus protocol [100] 

in our implementation, and not detailed here. After knowing the transactional 

load/store latency, the memory access instruction can be integrated into the instruction 

issue stage mentioned in Section A.1.1.  

 

A.1.4 System Calls and Instructions Needed By Multi-Threading 

In the last two sections, we have detailed the simulated hardware: the core and the 

inter-core communication, but if we want to run a multi-thread program using the 

pthread library, we still need the simulated software components required by pthreads. 

The original SimpleScalar cannot does not support the multi-threading (even multi-

threading on a uniprocessor is impossible) since it only implements several the simple 

system calls needed by a single thread. All the critical system calls for multi-threading, 

such as thread creation, thread blocking, thread communication and so on, are not 

implemented in the original SimpleScalar. As a result, if we want to allow a multi-

thread program to run on our simulator, these missing system calls must be added.  

In fact, the system calls’ implementation30 is dedicated for a certain operating system. 

But we can assume if there is no OS running on the simulator, the critical system calls 

can also be simulated and behave as the system calls in a specific OS (e.g. Linux).  In 

this section, we introduce our implementation of the system calls that support multi-

thread program execution on the multi-core simulator. Our simulated system calls 

have similar logical behaviours and results as in Linux, but the detailed 

implementation and codes are not copied from Linux since some supervisor mode and 

30 The SWI or SVC instruction can trigger a soft IRQ that is called as system service or system call. 
The soft IRQ handler represents the system call’s implementation and can be customized and 
programmed by operating system designer. 
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CP15 instructions are not supported in our current version. The system calls in the 

original SimpleScalar (e.g. file system calls: create/delete, open/close, read/write, 

link/unlink, lseek, etc.; system function calls: time, chmod, chown, geteuid, getgid, 

settimer, writeev, usleep, etc.; network sockets and system statistic calls) are 

unchanged, and are not discussed here. Table A.2 lists all our added or modified 

system calls that are needed by multi-threading in the pthread library. 

Before introducing our implemented system calls, we added the following global data 

structures to support multi-threading: 1) 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑃𝑃 is to record the status 

of a core: IDLE, BUSY and SUSPENDED, that can affect the thread allocation and 

instruction fetching and the execution, or execution pending, for a core (e.g. the core 

with SUSPENDED status must be pending on the instruction fetching, dispatching or 

issuing stage and the execution of this core is suspended, while the core with IDLE 

status can be allocated to a new created thread); 2) signal related structures (e.g. 

𝑃𝑃𝐻𝐻𝐻𝐻𝑇𝑇𝐻𝐻𝑃𝑃𝑘𝑘[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑], 𝑒𝑒𝑒𝑒𝑛𝑛𝑑𝑑𝐻𝐻𝑛𝑛𝐻𝐻_𝑃𝑃𝐻𝐻𝐻𝐻[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑] and 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝐻𝐻𝐻𝐻𝐶𝐶𝑛𝑛[𝑃𝑃𝐶𝐶𝑟𝑟𝑑𝑑_𝐻𝐻𝑑𝑑][𝑛𝑛𝑇𝑇𝑇𝑇_𝑃𝑃𝐻𝐻𝐻𝐻]) are 

used to record the signal masks, the pending signals and signal handler structures of 

the threads running on all cores, and signal is widely used in inter-process 

communication; 3) pipe file descriptor (e.g. 𝑒𝑒𝐻𝐻𝑒𝑒𝑒𝑒_𝑓𝑓𝑑𝑑[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑][0. .1]) are used to 

store the pipe file descriptor for the current thread running on the core, where 0 

denotes the read endpoint and 1 denotes the write endpoint, and the pipe in pthread is 

mainly used to send and receive the management information between parent and 

children; 4) supervision mode indicator (e.g. 𝐻𝐻𝑛𝑛_𝑘𝑘𝑒𝑒𝑟𝑟𝑛𝑛𝑒𝑒𝐶𝐶[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]) shows if the thread 

running on 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑 is trapped inside a system call or not, and this status is used to 

identify a thread is waiting for another thread or pending on some signal.  There is a 

common memory block read/write function appearing in most system 

calls: 𝑇𝑇𝑒𝑒𝑇𝑇_𝑏𝑏𝑃𝑃𝐶𝐶𝑒𝑒𝐷𝐷(𝑇𝑇𝑒𝑒𝑇𝑇_𝑓𝑓𝑛𝑛,𝑇𝑇𝑒𝑒𝑇𝑇, 𝑟𝑟𝑙𝑙𝑑𝑑𝑑𝑑
𝑛𝑛𝑟𝑟𝑑𝑑𝑠𝑠𝑙𝑙

, 𝑃𝑃𝐻𝐻𝑇𝑇𝑇𝑇𝐶𝐶𝐻𝐻𝐻𝐻𝑒𝑒𝑑𝑑 𝑇𝑇𝑒𝑒𝑇𝑇𝐶𝐶𝑟𝑟𝐷𝐷 𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟𝑒𝑒𝑃𝑃𝑃𝑃, 𝑑𝑑𝐻𝐻𝐻𝐻𝐻𝐻 𝑒𝑒𝐶𝐶𝐻𝐻𝑛𝑛𝐻𝐻𝑒𝑒𝑟𝑟, 𝑃𝑃𝐻𝐻𝑠𝑠𝑒𝑒) , 

which is used to copy a block of data (e.g. the content of our internal data structures 

pointed by data pointer) from/to simulated main memory (pointed by the simulated 

memory address). In other words, this function can move the data between our 

simulator and the simulated memory. The pseudo code for the added system calls is 

given below. Comprehensive inline comments, and system calls where only slight 

modifications have been made are omitted. 
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System Calls Added 
or Modified 

Function 

getpid (modified) This is to allow the calling process to get its own process id. 
getppid (added) This is to allow the calling process to get its parent process 

id. 
rt_sigaction and 
sigaction (added) 

This it to allow the calling process to examine and/or specify 
the action to be associated with a specific signal. 

rt_sigpromask and 
sigpromask (added) 

This is to set a mask that indicates which signal events can 
be blocked by the calling process. The blocked signal is not 
responded. 

rt_sigreturn and 
sigreturn (modified) 

This is to allow users to atomically unmask, switch stacks, 
and return from a signal context. 

clone (added) This is to create a child process that shares parts of its 
execution context with the parent. This is also used to create 
a thread that is a light-weight process in Linux. 

kill (added) This is to send a signal to a specified process. 
wait4 (added) This is to wait for state changes in a child of the calling 

process, and obtain information about the child whose state 
has changed. 

rt_sigsuspend and 
sigsuspend (added) 

This is to suspend the thread until delivery of a signal whose 
action is either to execute a signal-catching function or to 
terminate the process. 

nanosleep (added) This is to suspend the execution of the calling thread until 
the specified time has elapsed. 

poll (modified) This is to make a calling process wait for the status changes 
on a file descriptor. This is usually used by block-
reading/writing data from/to a pipe. 

pipe (modified) This is to create a bidirectional message queue that supports 
inter-process communication. It returns two file descriptors, 
allowing the calling process to send and receive data. 

exit (modified) This is to stop the execution of the calling process or thread. 

mmap (modified) This is to map a physical memory address to a virtual 
memory address.  

read (modified) This is to read data from a file (described by the file 
descriptor) to memory. This is also used by reading from a 
pipe.  

write (modified) This is to write data from memory to a file (described by the 
file descriptor). This is also used by sending to a pipe. 

Table A.2: System calls needed by multi-threading 
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Algorithm A.5: clone 
Input: 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0]  is clone flag, 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[1]  is 
child (created) stack pointer, 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[𝑆𝑆𝑃𝑃] is stack pointer of current thread. 
Output: 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] error code 
FOR 𝑛𝑛𝑒𝑒𝑒𝑒𝐻𝐻_𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒 = 1 𝐻𝐻𝐶𝐶 𝑁𝑁𝐿𝐿𝑀𝑀_𝐶𝐶𝐶𝐶𝑅𝑅𝐸𝐸 expect 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑 DO 
      IF 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑛𝑛𝑒𝑒𝑒𝑒𝐻𝐻_𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒]. 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑃𝑃 = 𝐼𝐼𝐷𝐷𝐸𝐸𝐿𝐿 THEN 
            𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑛𝑛𝑒𝑒𝑒𝑒𝐻𝐻_𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒]. 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑃𝑃 = 𝐵𝐵𝐿𝐿𝑆𝑆𝐵𝐵; //allocate new thread to next_core 
            core[next_core]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[𝑆𝑆𝑃𝑃] = 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑛𝑛𝑒𝑒𝑒𝑒𝐻𝐻_𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[1];     //stack 

assign: R1 is an argument of calls to indicate the child’s stack base  
            𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑛𝑛𝑒𝑒𝑒𝑒𝐻𝐻_𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑃𝑃𝐶𝐶 = 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑁𝑁𝑃𝑃𝐶𝐶 ;    //set the start 

address for new thread, that is the next instruction of parent thread 
𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑛𝑛𝑒𝑒𝑒𝑒𝐻𝐻_𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒 ]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑁𝑁𝑃𝑃𝐶𝐶 = 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑛𝑛𝑒𝑒𝑒𝑒𝐻𝐻_𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑃𝑃𝐶𝐶 +

𝑃𝑃𝐻𝐻𝑠𝑠𝑒𝑒𝐶𝐶𝑓𝑓 (𝑇𝑇𝑑𝑑_𝐻𝐻𝑛𝑛𝑃𝑃𝐻𝐻_𝐻𝐻);   //set the next pc for new thread 
            𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑛𝑛𝑒𝑒𝑒𝑒𝐻𝐻_𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[𝑃𝑃𝐶𝐶] = 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑛𝑛𝑒𝑒𝑒𝑒𝐻𝐻_𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑃𝑃𝐶𝐶; 
            𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑛𝑛𝑒𝑒𝑒𝑒𝐻𝐻_𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] = 0; //the return value in child thread is 0 
            𝑒𝑒𝑒𝑒𝐻𝐻𝑑𝑑[𝑛𝑛𝑒𝑒𝑒𝑒𝐻𝐻_𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒] = 1024 + 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑;  //record the child thread’s parent pid 
            𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] = 1024 + 𝑛𝑛𝑒𝑒𝑒𝑒𝐻𝐻_𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒; //the return value in parent thread 

is the child’s pid 
           𝑒𝑒𝐻𝐻𝑒𝑒𝑒𝑒_𝑓𝑓𝑑𝑑[𝑛𝑛𝑒𝑒𝑒𝑒𝐻𝐻_𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒][0. .1] = 𝑒𝑒𝐻𝐻𝑒𝑒𝑒𝑒_𝑓𝑓𝑑𝑑[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑][0. .1] ;   //pipe file descriptor duplication: 

child has the same pipe with its parent 
           FOR i=1 to NUM_SIG DO 
                 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝐻𝐻𝐻𝐻𝐶𝐶𝑛𝑛[𝑛𝑛𝑒𝑒𝑒𝑒𝐻𝐻_𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒][𝐻𝐻] = 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝐻𝐻𝐻𝐻𝐶𝐶𝑛𝑛[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑][𝐻𝐻] ; // signal handler duplication: child 

and parent share the same signal handler at the creation 
           END FOR 
           RETURN 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0]; 
    END 
END FOR 
core[core_id]. regs−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] = −errval; //cannot find available core to run new thread 
RETURN 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0]; 

  

Algorithm A.6: sigaction 
Input: 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] is signal number, 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[1]  is 
the pointer of a new signal handler struct, 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[2] is the pointer of the old 
signal handler struct. 
Output: 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] error code 
𝑃𝑃𝐻𝐻𝐻𝐻𝑛𝑛𝑇𝑇𝑇𝑇 =  𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0]; 
IF 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[2]! = 0 THEN 

𝑇𝑇𝑒𝑒𝑇𝑇_𝑏𝑏𝑃𝑃𝐶𝐶𝑒𝑒𝐷𝐷(𝑇𝑇𝑒𝑒𝑇𝑇_𝑓𝑓𝑛𝑛,𝑇𝑇𝑒𝑒𝑇𝑇,𝑊𝑊𝑟𝑟𝐻𝐻𝐻𝐻𝑒𝑒, 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−>  𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[2],
&(𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝐻𝐻𝐻𝐻𝐶𝐶𝑛𝑛[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑][𝑃𝑃𝐻𝐻𝐻𝐻𝑛𝑛𝑇𝑇𝑇𝑇]), 𝑃𝑃𝐻𝐻𝑠𝑠𝑒𝑒𝐶𝐶𝑓𝑓(𝑃𝑃𝐻𝐻𝑟𝑟𝑇𝑇𝑃𝑃𝐻𝐻 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝐻𝐻𝐻𝐻𝐶𝐶𝑛𝑛)); //write the old 
sigaction struct to the simulated memory pointed by R2 

END IF 
IF 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[1]! = 0 THEN 

𝑇𝑇𝑒𝑒𝑇𝑇_𝑏𝑏𝑃𝑃𝐶𝐶𝑒𝑒𝐷𝐷(𝑇𝑇𝑒𝑒𝑇𝑇_𝑓𝑓𝑛𝑛,𝑇𝑇𝑒𝑒𝑇𝑇,𝑅𝑅𝑒𝑒𝐻𝐻𝑑𝑑, 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−>  𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[1],
&(𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝐻𝐻𝐻𝐻𝐶𝐶𝑛𝑛[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑][𝑃𝑃𝐻𝐻𝐻𝐻𝑛𝑛𝑇𝑇𝑇𝑇]), 𝑃𝑃𝐻𝐻𝑠𝑠𝑒𝑒𝐶𝐶𝑓𝑓(𝑃𝑃𝐻𝐻𝑟𝑟𝑇𝑇𝑃𝑃𝐻𝐻 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝐻𝐻𝐻𝐻𝐶𝐶𝑛𝑛)) ;  //read the 
new sigaction struct from the simulated memory pointed by R1 and store this 
struct in our internal data structure sigaction. 

END IF 
𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] = 0; 
RETURN 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0]; 
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Algorithm A.7: sigprocmask 
Input: 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] is signal flag, 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[1]  is the 
pointer of a new signal mask, 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[2] is the pointer of the old signal 
mask. 
Output: 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] error code 
𝑃𝑃𝐻𝐻𝐻𝐻𝑓𝑓𝐶𝐶𝐻𝐻𝐻𝐻 =  𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0]; 
IF 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[2]! = 0 THEN 
         𝑇𝑇𝑒𝑒𝑇𝑇_𝑏𝑏𝑃𝑃𝐶𝐶𝑒𝑒𝐷𝐷(𝑇𝑇𝑒𝑒𝑇𝑇_𝑓𝑓𝑛𝑛,𝑇𝑇𝑒𝑒𝑇𝑇,𝑊𝑊𝑟𝑟𝐻𝐻𝐻𝐻𝑒𝑒, 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−>  𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[2],

&(𝑃𝑃𝐻𝐻𝐻𝐻𝑇𝑇𝐻𝐻𝑃𝑃𝑘𝑘[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]), 4) ; //write the old signal mask to the simulated 
memory pointed by R2 

END IF 
IF 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[1]! = 0 THEN 
         𝑞𝑞𝑤𝑤𝐶𝐶𝑟𝑟𝑑𝑑_𝐻𝐻 ∗ 𝑛𝑛𝑒𝑒𝑤𝑤_𝑇𝑇𝐻𝐻𝑃𝑃𝑘𝑘 = 𝑇𝑇𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃(4); 
         𝑇𝑇𝑒𝑒𝑇𝑇_𝑏𝑏𝑃𝑃𝐶𝐶𝑒𝑒𝐷𝐷(𝑇𝑇𝑒𝑒𝑇𝑇_𝑓𝑓𝑛𝑛,𝑇𝑇𝑒𝑒𝑇𝑇,𝑅𝑅𝑒𝑒𝐻𝐻𝑑𝑑, 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−>  𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[1], 𝑛𝑛𝑒𝑒𝑤𝑤_𝑇𝑇𝐻𝐻𝑃𝑃𝑘𝑘,

𝑃𝑃𝐻𝐻𝑠𝑠𝑒𝑒𝐶𝐶𝑓𝑓(𝑃𝑃𝐻𝐻𝑟𝑟𝑇𝑇𝑃𝑃𝐻𝐻 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝐻𝐻𝐻𝐻𝐶𝐶𝑛𝑛));  //read the new signal mask from the simulated 
memory pointed by R1 and store this mask in our internal data structure 
sigmask. 

         SWITCH 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒𝑑𝑑𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0]  //set the mask according to flag 
         CASE OSF_SIG_BLOCK: 
               𝑃𝑃𝐻𝐻𝐻𝐻𝑇𝑇𝐻𝐻𝑃𝑃𝑘𝑘[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑] | =∗ 𝑛𝑛𝑒𝑒𝑤𝑤_𝑇𝑇𝐻𝐻𝑃𝑃𝑘𝑘; 
               BREAK; 
         CASE OSF_SIG_UNBLOCK: 
               𝑃𝑃𝐻𝐻𝐻𝐻𝑇𝑇𝐻𝐻𝑃𝑃𝑘𝑘[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑] & =  ~(∗ 𝑛𝑛𝑒𝑒𝑤𝑤_𝑇𝑇𝐻𝐻𝑃𝑃𝑘𝑘); 
               BREAK; 
         CASE OSF_SIG_SETMASK: 
               𝑃𝑃𝐻𝐻𝐻𝐻𝑇𝑇𝐻𝐻𝑃𝑃𝑘𝑘[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]  = ∗ 𝑛𝑛𝑒𝑒𝑤𝑤_𝑇𝑇𝐻𝐻𝑃𝑃𝑘𝑘; 
               BREAK; 
         DEFAULT: 
               core[core_id]. regs−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] = −errval; 
         END SWITCH 
END IF 
𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] = 0; 
RETURN 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0]; 

 

Algorithm A.8: wait4 (partially implemented) 
Input: 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] is the pid of a thread that is waited for. 
Output: 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] the pid of a thread that is waited for. 
IF 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] = −1 THEN 
           𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒𝑑𝑑𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0]; 
           RETURN; 
END IF 
IF 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] − 1024]. 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑃𝑃 = 𝐼𝐼𝐷𝐷𝐿𝐿𝐸𝐸 THEN 
            𝐻𝐻𝑛𝑛_𝑘𝑘𝑒𝑒𝑟𝑟𝑛𝑛𝑒𝑒𝐶𝐶[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑] = 0; //waited thread is not running 
            RETURN; 
END IF 
𝐻𝐻𝑛𝑛_𝑘𝑘𝑒𝑒𝑟𝑟𝑛𝑛𝑒𝑒𝐶𝐶[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑] = 1 ; //suspended in system calls, make PC trap into current instruction to 

simulate the wait 
𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[𝑃𝑃𝐶𝐶] = 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑃𝑃𝐶𝐶; 
𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑁𝑁𝑃𝑃𝐶𝐶 = 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[𝑃𝑃𝐶𝐶]; 
RETURN; 
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Algorithm A.9: sigsuspend 
Input: 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0]  is replaced signal mask, 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−>
𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[1]  is the signal mask size. 
Output: 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] is the error code. 
𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃 𝑞𝑞𝑤𝑤𝐶𝐶𝑟𝑟𝑑𝑑_𝐻𝐻  ∗ 𝑟𝑟𝑒𝑒𝑒𝑒𝐶𝐶_𝑇𝑇𝐻𝐻𝑃𝑃𝑘𝑘; 
IF 𝐻𝐻𝑛𝑛_𝑘𝑘𝑒𝑒𝑟𝑟𝑛𝑛𝑒𝑒𝐶𝐶[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑] = 0 THEN //current thread is not pending in system call 
      𝑟𝑟𝑒𝑒𝑒𝑒𝐶𝐶_𝑇𝑇𝐻𝐻𝑃𝑃𝑘𝑘 = 𝑇𝑇𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃(𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[1]); 
      𝑇𝑇𝑒𝑒𝑇𝑇_𝑏𝑏𝑃𝑃𝐶𝐶𝑒𝑒𝐷𝐷(𝑇𝑇𝑒𝑒𝑇𝑇_𝑓𝑓𝑛𝑛,𝑇𝑇𝑒𝑒𝑇𝑇,𝑅𝑅𝑒𝑒𝐻𝐻𝑑𝑑, 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0], 𝑟𝑟𝑒𝑒𝑒𝑒𝐶𝐶_𝑇𝑇𝐻𝐻𝑃𝑃𝑘𝑘, 4); 
END IF 
IF 𝑒𝑒𝑒𝑒𝑛𝑛𝑑𝑑𝐻𝐻𝑛𝑛𝐻𝐻𝑃𝑃𝐻𝐻𝐻𝐻[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]! = 0 THEN  //current thread has pending signals to process 
      FOR i=1 to 32 DO //check every bit on pending signal 
            IF ((𝑒𝑒𝑒𝑒𝑛𝑛𝑑𝑑𝐻𝐻𝑛𝑛𝐻𝐻𝑃𝑃𝐻𝐻𝐻𝐻[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑] >> 𝐻𝐻) & 1) 𝐀𝐀𝐀𝐀𝐀𝐀 ~(((∗ 𝑟𝑟𝑒𝑒𝑒𝑒𝐶𝐶_𝑇𝑇𝐻𝐻𝑃𝑃𝑘𝑘) >> 𝐻𝐻) & 1)) THEN 
                  //check which signal is pending to be processed 
                  𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑃𝑃 =  𝐵𝐵𝐿𝐿𝑆𝑆𝐵𝐵; 
                   𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] = 𝐻𝐻 + 1; //set signal number 
                   𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[𝐿𝐿𝑅𝑅] = 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑃𝑃𝐶𝐶 ; //store the 

current pc as the later return point after signal handling (like interrupt) 
                     𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[𝑃𝑃𝐶𝐶] = 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝐻𝐻𝐻𝐻𝐶𝐶𝑛𝑛[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑][𝐻𝐻 + 1]. 𝑃𝑃𝐻𝐻_ℎ𝐻𝐻𝑛𝑛𝑑𝑑𝐶𝐶𝑒𝑒𝑟𝑟 ;  //the 

current thread will execute in signal handler 
                     𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑁𝑁𝑃𝑃𝐶𝐶 = 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[𝑃𝑃𝐶𝐶]; 
                     𝑒𝑒𝑒𝑒𝑛𝑛𝑑𝑑𝐻𝐻𝑛𝑛𝐻𝐻𝑃𝑃𝐻𝐻𝐻𝐻[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]& = ~(1 << 𝐻𝐻);  //clear pending signal 
                  𝐻𝐻𝑛𝑛_𝑘𝑘𝑒𝑒𝑟𝑟𝑛𝑛𝑒𝑒𝐶𝐶[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑] = 1; //trap to signal handler that is still a part of system call  
                  RETURN; 
            END IF 
      END FOR 
ELSE IF 𝐻𝐻𝑛𝑛_𝑘𝑘𝑒𝑒𝑟𝑟𝑛𝑛𝑒𝑒𝐶𝐶[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑] = 0 THEN //no pending signal and not trapped in kernel 
      𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑃𝑃 =  𝑆𝑆𝐿𝐿𝑆𝑆𝑃𝑃𝐸𝐸𝑁𝑁𝐷𝐷𝐸𝐸𝐷𝐷; //suspend the current core to wait for signal 
      𝐻𝐻𝑛𝑛_𝑘𝑘𝑒𝑒𝑟𝑟𝑛𝑛𝑒𝑒𝐶𝐶[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑] = 1;  //the suspended core is stopped its own simulation 
      RETURN; 
END IF 
𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] = −𝑒𝑒𝑟𝑟𝑟𝑟𝐴𝐴𝐻𝐻𝐶𝐶; 
𝐻𝐻𝑛𝑛_𝑘𝑘𝑒𝑒𝑟𝑟𝑛𝑛𝑒𝑒𝐶𝐶[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑] = 0; 
RETURN 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0]; 

 

Algorithm A.10: kill 
Input: 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0]  is the pid of a thread that is sent a signal to, 
𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[1] is the signal number. 
Output: 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] the pid of a thread that is waited for. 
𝑤𝑤𝐻𝐻𝑘𝑘𝑒𝑒_𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒 =  𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] − 1024 ; //select the core that has suspended 

thread according to pid 
𝑒𝑒𝑒𝑒𝑛𝑛𝑑𝑑𝐻𝐻𝑛𝑛𝐻𝐻𝑃𝑃𝐻𝐻𝐻𝐻[𝑤𝑤𝐻𝐻𝑘𝑘𝑒𝑒_𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒]| = (1 << ( 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[1] − 1)); //sending signal 
𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑤𝑤𝐻𝐻𝑘𝑘𝑒𝑒_𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒]. 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑃𝑃 = 𝐵𝐵𝐿𝐿𝑆𝑆𝐵𝐵;  //wake up the thread specified by pid 
𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] = 0; 
RETURN 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0]; 

 

Algorithm A.11: nanosleep 
Input: 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] is time struct that indicate how long to sleep. 
Output: 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] is the error value. 
𝑃𝑃𝐻𝐻𝑟𝑟𝑇𝑇𝑃𝑃𝐻𝐻 𝐻𝐻𝐻𝐻𝑇𝑇𝑒𝑒𝑃𝑃𝑒𝑒𝑒𝑒𝑃𝑃 ∗ 𝐻𝐻𝑒𝑒𝑇𝑇𝑒𝑒; 
𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃 𝐶𝐶𝐶𝐶𝑛𝑛𝐻𝐻 𝑃𝑃𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒_𝐻𝐻𝑛𝑛𝐴𝐴 = 0; 
IF 𝐻𝐻𝑛𝑛_𝑘𝑘𝑒𝑒𝑟𝑟𝑛𝑛𝑒𝑒𝐶𝐶[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑] = 0 THEN 
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            𝐻𝐻𝑒𝑒𝑇𝑇𝑒𝑒 = 𝑇𝑇𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃(𝑃𝑃𝐻𝐻𝑠𝑠𝑒𝑒𝐶𝐶𝑓𝑓(𝑃𝑃𝐻𝐻𝑟𝑟𝑇𝑇𝑃𝑃𝐻𝐻 𝐻𝐻𝐻𝐻𝑇𝑇𝑒𝑒𝑃𝑃𝑒𝑒𝑒𝑒𝑃𝑃)); 
𝑇𝑇𝑒𝑒𝑇𝑇_𝑏𝑏𝑃𝑃𝐶𝐶𝑒𝑒𝐷𝐷(𝑇𝑇𝑒𝑒𝑇𝑇_𝑓𝑓𝑛𝑛,𝑇𝑇𝑒𝑒𝑇𝑇,𝑅𝑅𝑒𝑒𝐻𝐻𝑑𝑑, 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0],

𝐻𝐻𝑒𝑒𝑇𝑇𝑒𝑒, 𝑃𝑃𝐻𝐻𝑠𝑠𝑒𝑒𝐶𝐶𝑓𝑓(𝑃𝑃𝐻𝐻𝑟𝑟𝑇𝑇𝑃𝑃𝐻𝐻 𝐻𝐻𝐻𝐻𝑇𝑇𝑒𝑒𝑃𝑃𝑒𝑒𝑒𝑒𝑃𝑃));  //read time struct from simulated memory 
            𝑃𝑃𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒_𝐻𝐻𝑛𝑛𝐴𝐴 = 𝐻𝐻𝑒𝑒𝑇𝑇𝑒𝑒−> 𝐻𝐻𝐴𝐴_𝑃𝑃𝑒𝑒𝑃𝑃 ∗ 10000; //can be calculated by simulated cycle 
            𝑓𝑓𝑟𝑟𝑒𝑒𝑒𝑒(𝐻𝐻𝑒𝑒𝑇𝑇𝑒𝑒); 
END IF 
IF 𝑃𝑃𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒_𝐻𝐻𝑛𝑛𝐴𝐴 > 0 THEN 
            𝐻𝐻𝑛𝑛_𝑘𝑘𝑒𝑒𝑟𝑟𝑛𝑛𝑒𝑒𝐶𝐶[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑] = 1;  //make PC trap in current instruction to simulate the sleep until the 

sleep_inv is equal to 0 
            𝑃𝑃𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒_𝐻𝐻𝑛𝑛𝐴𝐴 − −; //each cycle, the count is self-reduced by 1 
            𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[𝑃𝑃𝐶𝐶] = 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑃𝑃𝐶𝐶; 
            𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑁𝑁𝑃𝑃𝐶𝐶 = 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[𝑃𝑃𝐶𝐶]; 
            RETURN; 
END IF 
𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] = 0;  //the sleep is over 
𝐻𝐻𝑛𝑛_𝑘𝑘𝑒𝑒𝑟𝑟𝑛𝑛𝑒𝑒𝐶𝐶[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑] = 0; 
RETURN 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0]; 

 

Algorithm A.12: pipe 
Input: 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] is the pointer of file descriptors of a pipe. 
Output: 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] is the error number. 
𝑤𝑤𝐶𝐶𝑟𝑟𝑑𝑑_𝐻𝐻 𝑓𝑓𝑑𝑑_𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟 =  𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0]; 
𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] = 𝑒𝑒𝐻𝐻𝑒𝑒𝑒𝑒(𝑒𝑒𝐻𝐻𝑒𝑒𝑒𝑒_𝑓𝑓𝑑𝑑[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]); //generate a real pipe and store the 

pipe's descriptor in our internal data structure pipe_fd 
𝑇𝑇𝑒𝑒𝑇𝑇_𝑏𝑏𝑃𝑃𝐶𝐶𝑒𝑒𝐷𝐷(𝑇𝑇𝑒𝑒𝑇𝑇_𝑓𝑓𝑛𝑛,𝑇𝑇𝑒𝑒𝑇𝑇,𝑊𝑊𝑟𝑟𝐻𝐻𝐻𝐻𝑒𝑒,𝑓𝑓𝑑𝑑_𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟,𝑒𝑒𝐻𝐻𝑒𝑒𝑒𝑒_𝑓𝑓𝑑𝑑[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑] , 2 ∗ 𝑃𝑃𝐻𝐻𝑠𝑠𝑒𝑒𝐶𝐶𝑓𝑓(𝑤𝑤𝐶𝐶𝑟𝑟𝑑𝑑_𝐻𝐻)) ;  //write 

pipe_fd into the simulated memory pointed by R0 
RETURN 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0]; 

 

Algorithm A.13: poll (partially modified) 
Input: 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0]  is the pointer of file descriptors of a pipe, 
𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[1]  is the number of the file descriptor, 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−>
𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[2] is the specified time out of poll operation. 
Output: 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] is the error number. 
FOR 𝐻𝐻 = 1 𝐻𝐻𝐶𝐶 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[1] DO 

𝑇𝑇𝑒𝑒𝑇𝑇_𝑏𝑏𝑃𝑃𝐶𝐶𝑒𝑒𝐷𝐷(𝑇𝑇𝑒𝑒𝑇𝑇_𝑓𝑓𝑛𝑛,𝑇𝑇𝑒𝑒𝑇𝑇,𝑅𝑅𝑒𝑒𝐻𝐻𝑑𝑑, 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] + 𝐻𝐻 ∗
𝑃𝑃𝐻𝐻𝑠𝑠𝑒𝑒𝐶𝐶𝑓𝑓(𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝑑𝑑), &𝑓𝑓𝑑𝑑𝑃𝑃[𝐻𝐻] , 𝑃𝑃𝐻𝐻𝑠𝑠𝑒𝑒𝐶𝐶𝑓𝑓(𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝑑𝑑)) ; //read the pipe descriptor from 
simulated memory pointed by R0+offset 

END FOR 
𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶(𝑓𝑓𝑑𝑑𝑃𝑃, 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[1], 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[2]); //poll data from 

the real pipe created in pipe system call and change the status of pipe descriptor 
FOR 𝐻𝐻 = 1 𝐻𝐻𝐶𝐶 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[1] DO 

𝑇𝑇𝑒𝑒𝑇𝑇_𝑏𝑏𝑃𝑃𝐶𝐶𝑒𝑒𝐷𝐷(𝑇𝑇𝑒𝑒𝑇𝑇_𝑓𝑓𝑛𝑛,𝑇𝑇𝑒𝑒𝑇𝑇,𝑊𝑊𝑟𝑟𝐻𝐻𝐻𝐻𝑒𝑒, 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0] + 𝐻𝐻 ∗
𝑃𝑃𝐻𝐻𝑠𝑠𝑒𝑒𝐶𝐶𝑓𝑓(𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝑑𝑑), &𝑓𝑓𝑑𝑑𝑃𝑃[𝐻𝐻] , 𝑃𝑃𝐻𝐻𝑠𝑠𝑒𝑒𝐶𝐶𝑓𝑓(𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝑑𝑑)); //write the pipe descriptor back to 
simulated memory 

END FOR 
RETURN 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]. 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃−> 𝑟𝑟𝑒𝑒𝐻𝐻𝑃𝑃_𝑅𝑅[0]; 

For the important modifications, we indicate what function we modified to provide 

the support for multi-threading in Table A.3: 
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Modified System Call Highlight of our modification 
exit The status of the core (where a thread exits) is set back 

to “IDLE”.   
mmap We add the MAP_PRIVE and MAP_ANONYMOUS 

mapping mode to correct the original wrong heap 
allocation if using malloc() function in the simulated 
codes. 

read We modify the read to support the reading from the 
modified pipe.  

write We modify the write to support the writing to the 
modified pipe. 

getpid and getppid We re-define the pid number of a thread as 𝑒𝑒𝐻𝐻𝑑𝑑 =
1024 + 𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑. 

Table A.3: The slight modifications to some existing system calls 

In addition to the above system calls, a critical instruction (not implemented in the 

original SimpleScalar) also needs to be added into our simulator. The most important 

object in resource competition is the "lock" which allows multiple threads to access a 

shared resource exclusively. To access a shared resource, we need to firstly check the 

lock (read the lock value from memory), then if it is free, change the lock value (to 

declare the resource belongs to this thread), and then write back the new value to 

memory. These consecutive operations (i.e. read-change-write) need to be completed 

atomically without any interruption. In a specific instruction set architecture, there is 

an atomic instruction for this purpose. In the ARM architecture, the instruction is 

SWP [101], which can swap a value between a register and the specified memory 

address in a single step. We have made the following modifications to add the SWP 

instruction into our simulator. 

• To make the simulator recognize the SWP instruction, we add SWP to the 

decoder and split SWP into three micro-code instructions (MOV Rt, R0; LDR 

R0, mem; STR mem, Rt;). 

• To prevent the order of three instructions being affected by other instructions 

running on the same core, these three instructions must be dispatched and 

issued31 in a single cycle and added into the ready queue in their original order 

(i.e. MOV, LDR and STR are added into RUU and LSQ station consecutively 

without interruption).  

31 Once three instructions' dependencies are all resolved, these three instructions can be issued together. 
This is done by slightly modifying the issue stage. 
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• To prevent the other cores from performing a read/write to the same memory 

address and disturbing the three instructions, we define a global variable, 

𝐻𝐻𝐻𝐻𝐶𝐶𝑇𝑇𝐻𝐻𝑃𝑃_𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟𝑒𝑒𝑃𝑃𝑃𝑃[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑] , to record the memory address mem. All 

load/store instructions on the other cores should check this memory address 

before they are issued to their load/store queues. Once the same (conflict) 

address is verified, the other core's load/store instruction is made pending in its 

issue stage 32 . After SWP instructions finishes the three micro-code 

instructions, 𝐻𝐻𝐻𝐻𝐶𝐶𝑇𝑇𝐻𝐻𝑃𝑃_𝐻𝐻𝑑𝑑𝑑𝑑𝑟𝑟𝑒𝑒𝑃𝑃𝑃𝑃[𝑃𝑃𝐶𝐶𝑟𝑟𝑒𝑒_𝐻𝐻𝑑𝑑]  is reset to 0 so as to allow the 

resumption of the other pending core's execution.  

After adding (modifying) the necessary data structures (e.g. global variables, arrays), 

system calls and the SWP instruction33, we can run a multi-thread program (invoking 

pthread functions) on our multi-core simulator. The common pthread library functions 

tested by us are listed in Table A.4: 

pthread Funtions System Calls Used 
pthread_attr_init/pthread_attr_destroy mmap, free 
pthread_mutex_init/pthread_mutex_destroy mmap, free 
pthread_spin_init/pthread_spin_destroy mmap, free 
pthread_cond_init/pthread_cond_destroy mmap, free 
pthread_create mmap, clone, sigprocmask, pipe, exit, 

sigaction, sigsuspend, kill, write, read, 
getpid, getppid, SWP 

pthread_join/pthread_exit sigsuspend, wait4, kill, write, exit 
pthread_kill kill 
pthread_mutex_lock sigsuspend, kill 
pthread_mutex_unlock kill 
pthread_spin_lock sigsuspend, kill 
pthread_spin_unlock kill 
pthread_cond_wait sigsuspend, kill 
pthread_cond_signal kill 
pthread_cond_broadcast sigsuspend, kill 
signal related functions sigaction, sigprocmask, sigreturn, 

sigsuspend,  kill, write 
semaphore related functions  sigsuspend, kill, pipe, read, write 

Table A.4: Tested pthread functions 

 

32 We set the value of PC and NPC to the same current instruction's address to trap the core, similar to 
that of the wait4 system call. 
33 SWP is included in the function compare_and_swap(), which appears in pthread functions that use 
__pthread_lock().  
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A.2 Summary 

In this section, we introduced our implementation of a multi-core simulator for the 

ARM architecture based on the original SimpleScalar simulator. There are 3 

important modifications that were required: 1) modify the uniprocessor for the multi-

core scenario by implementing transactional memory access; 2) implement the inter-

core communication infrastructure (SCU and bus) to support the full MSEI cache 

coherency protocol; 3) add the critical system calls and SWP instructions that are 

needed by the pthread library. We have successfully tested our simulator using a 

multi-threaded program covering most of the pthread main functions.  

We then use our multi-core simulator for determining core power consumption for a 

number of benchmarks, which we use in subsequent chapters. 
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Appendix B  
An Example of Online Thermal Estimation  
 

To illustrate our thermal estimation technique, we present an example, using a simple 

2×2 CMP. A 2x2 structure is chosen to appropriately simplify the explanation and the 

presentation of results. The single LUT of Table 3.1 (in Chapter 3, and repeated here 

as Table B.1) is used for all calculations due to the thermal symmetry of the 2×2 CMP. 

In this example, we assume that the core has already been heated above ambient 

temperature. That is we assume that the processor has been operational for some time. 

We make an arbitrary assumption that the core temperature is at an initial temperature 

of 45°C, that is 𝑘𝑘𝑠𝑠=0𝑑𝑑𝑠𝑠= 45°C. However, any initial temperature can be chosen. 

TDL A Core1 Core2 Core3 Core4 
0ms 0 0 0 0 

10ms 0.1553 0.0007 0.0007 0.0000 
20ms 0.1788 0.0012 0.0012 0.0000 
30ms 0.1844 0.0016 0.0016 0.0001 
40ms 0.1880 0.0019 0.0019 0.0001 
50ms 0.1912 0.0021 0.0021 0.0001 
60ms 0.1943 0.0024 0.0024 0.0001 
70ms 0.1971 0.0028 0.0028 0.0002 
⋯ ⋯ ⋯ ⋯ ⋯ 

500ms 0.2013 0.0648 0.0648 0.0446 
520ms 0.2014 0.0649 0.0649 0.0447 
540ms 0.2015 0.0650 0.0650 0.0448 
⋯ ⋯ ⋯ ⋯ ⋯ 

1000ms 0.3233 0.0854 0.0854 0.0639 
1050ms 0.3235 0.0856 0.0856 0.0640 
⋯ ⋯ ⋯ ⋯ ⋯ 

2000ms 0.3504 0.1116 0.1116 0.0891 
2100ms 0.3506 0.1118 0.1118 0.0893 
⋯ ⋯ ⋯ ⋯ ⋯ 

Steady 0.3819 0.1428 0.1428 0.1200 

Table B.1: Look-Up Table for a 2×2 CMP 

1. At 𝐻𝐻 = 10𝑇𝑇𝑃𝑃, the first task with 𝐻𝐻𝑒𝑒.𝑃𝑃 = 20 is allocated at 𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒1. Since ℚ is 

empty at the start, the temperature of each core at 𝐻𝐻 = 10𝑇𝑇𝑃𝑃 is not modified. 

Then the atomic power event 𝐻𝐻𝑒𝑒(10, 20,𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒1) is inserted into ℚ with 𝐻𝐻𝑝𝑝 =

10.  
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2. To estimate the temperature at 𝐻𝐻𝑑𝑑 = 40 , we use 𝑘𝑘40  = 𝑘𝑘10  +  20 ×

𝐻𝐻𝑟𝑟𝐻𝐻𝑛𝑛𝑃𝑃(ℜ40−10
𝐿𝐿𝐿𝐿𝑛𝑛 𝐴𝐴 − ℜ10−10

𝐿𝐿𝐿𝐿𝑛𝑛 𝐴𝐴 , 𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒1). The 40 − 10 = 30𝑇𝑇𝑃𝑃 row and 10 − 10 =

0𝑇𝑇𝑃𝑃 row are fetched from Table 0.1 and subtracted. A transformation is not 

needed as 𝐻𝐻𝑟𝑟𝐻𝐻𝑛𝑛𝑃𝑃(,𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒1) = 0. Therefore, the estimated temperature at 40𝑇𝑇𝑃𝑃: 

𝑘𝑘40 = (45,45,45,45) + 20 × {(0.1844,0.0016,0.0016,0.0001) − (0,0,0,0)} =

(48.688,45.032,45.032,45.002)  

3. At 𝐻𝐻 = 50𝑇𝑇𝑃𝑃, a second task with 𝐻𝐻𝑒𝑒.𝑃𝑃 = 30 is assigned to 𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒2. Now, 𝐻𝐻𝑑𝑑 =

50, 𝐻𝐻𝑝𝑝 = 10 and there is one event in ℚ, the thermal map should be updated as: 

𝑘𝑘50 = 𝑘𝑘10 + 20 × 𝐻𝐻𝑟𝑟𝐻𝐻𝑛𝑛𝑃𝑃(ℜ50−10
𝐿𝐿𝐿𝐿𝑛𝑛 𝐴𝐴 − ℜ10−10

𝐿𝐿𝐿𝐿𝑛𝑛 𝐴𝐴 ,𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒1)

= (45,45,45,45) + 20 × {(0.1880,0.0019,0.0019,0.0001) − (0,0,0,0)

= (48.76,45.038,45.038,45.002) 

The second event 𝐻𝐻𝑒𝑒(50, 30,𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒2, 1) is then queued into ℚ and 𝐻𝐻𝑝𝑝 = 50.  

4. To estimate the temperature at 𝐻𝐻𝑑𝑑 = 70, we can accumulate the temperature 

increment induced by the two events in ℚ.  

𝑘𝑘70 = 𝑘𝑘50 + 20 × 𝐻𝐻𝑟𝑟𝐻𝐻𝑛𝑛𝑃𝑃(ℜ70−10
𝐿𝐿𝐿𝐿𝑛𝑛 𝐴𝐴 − ℜ50−10

𝐿𝐿𝐿𝐿𝑛𝑛 𝐴𝐴 ,𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒1) + 30

× 𝐻𝐻𝑟𝑟𝐻𝐻𝑛𝑛𝑃𝑃(ℜ70−50
𝐿𝐿𝐿𝐿𝑛𝑛 𝐴𝐴 − ℜ50−50

𝐿𝐿𝐿𝐿𝑛𝑛 𝐴𝐴 ,𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒2) =

=  (48.76,45.038,45.038,45.002) + 20

× (0.0063,0.0005,0.0005,0.0000) + 30

× (0.0012,0.1788,0.0000,0.0012) = (48.922,50.312,45.048,45.038) 

where 𝐻𝐻𝑟𝑟𝐻𝐻𝑛𝑛𝑃𝑃(,𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒2) corresponds to mid-y mirroring, when calculating the 

temperature increment induced by the second event in ℚ. This procedure is 

illustrated in Figure B.1. 
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Figure B.1: Example of online event driven estimation 
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