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Contributions

This thesis mainly contributes to the area of secret sharing and focuses on two
main problems in secret sharing: the characterization of the ideal access structures
and the optimization of the length of the shares. It covers the results from all the
publications except the last one, since my main work during PhD studies focuses
on secret sharing. Every chapter includes results from one of our papers according
to the order of the above list, but the content is well-organized and written as a
whole.

In Chapter 3, we present some novel and useful families of ideal multipartite
access structures. They are among the most natural generalization of threshold
access structures. We notice that the previous proposals of ideal multipartite
secret sharing schemes are associated to families of relatively simple integer
polymatroids that are obtained from Boolean polymatroids. By this clue new
families of multipartite access structures are discovered. They are ideal, linear
and described by a small number of parameters. Moreover, the representation
of those access structures over large enough finite fields are guaranteed, as a
result, constructing ideal multipartite secret sharing schemes for them are possible.
Actually, in the last section of Chapter 3 we abstract a unified framework to
construct ideal linear secret sharing schemes based on the result from [41], and
from this framework, previous works are highly explicit.

In Chapter 4 information ratios in particular access structures are studied.
Namely, we generalize a way by linear programming to determine the lower
bounds of information ratio for any access structure with small number of
participants. This method gives the best lower bounds by using polymatroids
and information inequalities. In the same way, two other examples of non-ideal
access structures induced from non-representable matroids are found. Although
this method is powerful, lower bounds are not tight, while two examples in the
last section of Chapter 4 explain this well.

iii



In Chapter 5 the asymptotic information ratio is studied. This topic is at a
standstill after Ito, Saito, Nishizeki [55] and Benaloh, Leichter [13] gave upper
bounds, and Csirmaz [30] gave a lower bound. Recently Beimel and Orlov [10]
gave a negative result, namely, information inequalities on four and five variables
known up to date can only help to improve lower bounds of information ratio
for general access structures at most linear on the number of participants. We
generalize Beimel and Orlov’s result in Chapter 5 to all information inequalities
derived from one or two common informations. On the other hand, we prove that
all information inequalities on a bounded number of variables only can provide
lower bounds that are polynomial on the number of participants. Our two negative
results are not constrained to known information inequalities, and provide a better
understanding on the limitations of the use of those inequalities in secret sharing.
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Abstract

Secret sharing, which refers to methods of distributing a secret value among

a group of participants, is a very important primitive in cryptology. This thesis

contains some contribution to this topic. The results that are presented herein deal

with two of the main open problems in secret sharing: the characterization of the

ideal access structures and the optimization of the length of the shares.

For both open problems, polymatroids are a powerful tool. On one hand, ideal

multipartite secret sharing schemes are strongly connected to polymatroids. On

the other hand, the entropies of shares of a scheme determine a polymatroid, and

because of that, they are fundamental in the search of lower bounds of the length

of the shares.

For the first open problem, some new and useful families of ideal multipartite

access structures are found by using integer polymatroids. As a result the

proofs for the existence of ideal secret sharing schemes for them are simplified

in great measure. Regarding the second open problem, we present positive and

negative results about the only known technique to find lower bounds: linear

programming. The positive result are obtained by strengthening this method. The

negative ones show the limitation of this method trying to improve the asymptotic

lower bounds.

vii



Chapter 1

Introduction

1.1 Overview

With the wide use of Internet, too many illogical passwords are challenging your

memory. Obviously, it is not safe to write all them down. One easy way to store

those passwords is to separate them to pieces and save every piece in a different

file. In such a way, you are using the idea of secret sharing. Secret sharing refers to

a method of distributing a secret to shares among a set of participants in such a way

that only qualified subsets of participants can recover the secret. The collection of

qualified subsets are called access structure. The aim of secret sharing schemes is to

keep highly sensitive information confidential and reliable. Reliability comes from

the pool of qualified subsets which allows recovery of the secret even if several

shares are lost.

Secret sharing is one of the most important primitives in cryptography. The

natural use of secret sharing, and the one for which it was invented, is to safely
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store cryptographic keys. Moreover, a number of much less obvious applications

of secret sharing to different kinds of cryptographic protocols have appeared,

such as Byzantine agreement [76], secure multiparty computation [14, 26, 34],

generalized oblivious transfer [83, 91] and so on. Arguably, secure multiparty

computation is the most remarkable application of secret sharing, while secret

sharing is an essential building block for secure multiparty computation. A large-

scale and practical application of multi-party computation took place in Denmark

in January 2008, which is described in [21] as ”Secure Multiparty Computation

Goes Live”.

The first proposed secret sharing schemes by Blakley [16] and Shamir [82] in

1979 have threshold access structure, that is, the qualified subsets are those having

at least a certain number of participants. Both constructions are unconditionally

secure, that is, their security is independent from the computational power of the

adversary. In addition, they are perfect, in the sense that unqualified subsets cannot

get any information about the secret.

Moreover, both Shamir’s and Blakley’s schemes are efficient, since the com-

plexity of secret distribution and reconstruction algorithms are polynomial on the

number of participants. In contrast, for general access structures, efficiency is far

to be attained. Ito, Saito and Nishizeki [55] proved that there exists a secret sharing

scheme for every access structure, but the schemes are very inefficient because the

length of the shares grows exponential on the number of participants. Csirmaz [30]

gave a lower bound Ω(n/ log n) on the length of shares where n is the number

of participants. There is a huge gap between the best known lower and upper

bounds. Actually, the optimization of secret sharing schemes for general access
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structures has appeared to be an extremely difficult problem and not much is

known about it.

Nevertheless, this does not mean that efficient secret sharing schemes exist only

for threshold access structures. Actually, constructions of efficient secret sharing

schemes have drawn a lot of attention, especially ideal secret sharing schemes, in

which the share of every participant has the same length as the secret. Due to

the seminal work by Brickell and Davenport [23], ideal secret sharing schemes are

strongly connected with matroids. One important and outstanding open problem

is to characterize ideal access structures, the ones admitting ideal secret sharing

schemes.

In the study of secret sharing, miscellaneous tools are employed from mathe-

matics, information theory and computer science. We list here several important

tools involved in the exploration. Shannon entropy function, a measure of

uncertainty in information theory is used to define secret sharing schemes. As

a result, information inequalities should be satisfied by secret sharing schemes.

Linear programming is generally used to find the optimal solution of lengths of

shares. Matroids and polymatroids, well-studied combinatorial objects are widely

used.

Many fruitful results in secret sharing schemes have appeared. However, many

open problems in this field are far from solved. In this thesis, we discuss the

open problems mentioned above mainly employing a powerful tool: polymatroids.

Polymatroids are a generalization of matroids. Fujishige [45, 46] pointed out that

we can get a polymatroid by assigning entropy function to subsets of a finite set of

random variables. Csirmaz [30] proved that the entropies of the secret and shares
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of a secret sharing scheme determine a polymatroid.

Polymatroids have been used to find bounds on the (average) information ratio

of secret sharing schemes [10, 30, 63, 68], which is the ratio of the maximum (or

average) length of the shares to the length of the secret. Martı́-Farré and Padró [63]

generalized and gave a better understanding of combinatorial methods of finding

bounds on information ratio both for secret sharing schemes and linear schemes.

Farràs, Martı́-Farré and Padró [41] firstly used integer polymatroids to characterize

ideal multipartite access structures, which means that the participants are divided

into several parts and the participants in the same part play an equivalent role.

They gave a necessary and a (different) sufficient conditions for a multipartite

access structure to be ideal, which can be seen as an extension of the result by

Brickell and Davenport [23].

This thesis continues to explore the bond between secret sharing schemes and

polymatroids. It contributes to the solutions of those open problems on secret

sharing schemes and provides some enlightening ideas and directions. A sketch

of our contributions will be presented in the end of this chapter.

1.2 Secret Sharing Schemes

In a secret sharing scheme, we have a set of participants P and shares are

distributed to all participants in P. Only the subsets of participants in the

access structure can use their shares to recover the key. Every access structure is

monotone increasing, that is, every superset of a qualified subset is also qualified.

Then an access structure is completely determined by the family of its minimal

4



qualified subsets. In this thesis we only study unconditionally secure perfect secret

sharing schemes.

The first proposed family of secret sharing schemes is the (t, n)–threshold secret

sharing by Shamir [82] and Blakley [16], where t is the threshold and n is the

number of participants, 0 < t ≤ n. While the construction by Shamir [82] is based

on polynomial interpolation, the one by Blakley [16] uses finite geometries.

A simple example is when t = n, and the case is trivial. To construct this

scheme, we can give every participant a random share over a finite field and let

the secret key be the sum of all the shares. Clearly, this defines a perfect secret

sharing scheme in which a set of all n participants P is the only qualified set. And

obviously, the length of every share has the same length of the secret, which also

gives an example of an ideal secret sharing scheme.

It was noticed by Bloom [17] and by Karnin, Greene and Hellman [59] that

Shamir’s and Blakley’s constructions are linear, which implies that both the compu-

tation of the shares and the reconstruction of the secret can be performed by using

basic linear algebra operations. Linear secret sharing schemes have homomorphic

properties that are very interesting for cryptographic applications. Moreover, due

to the linearity, the computation of the shares and the reconstruction of the secret

in a linear secret sharing scheme are efficient. Linear schemes have been also called

geometric schemes [56, 87], or monotone span programs [58].

Secret sharing schemes for non-threshold access structures were first consid-

ered in the seminal paper by Shamir [82], where weighted threshold secret sharing

schemes were introduced. However, the information ratio of this scheme depends

on the maximum weight, which is at least 2. In 1987, Ito, Saito and Nishizeki [55]
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proved, in a constructive way, that there exists a secret sharing scheme for

every access structure. Subsequently, Benaloh and Leichter [13] improve the

construction, but in both constructions the length of shares is exponential on the

number of participants.

So it is worthwhile to construct efficient secret sharing schemes. The construc-

tions of ideal and linear schemes for non-threshold access structures has attracted

a lot of attention.

1.2.1 Ideal secret sharing schemes

The pioneer and remarkable work on characterizing ideal secret sharing schemes

is by Brickell [22] and by Brickell, Davenport [23]. They give a tight connection

between ideal secret sharing schemes and matroids. Namely, every linear rep-

resentation of a matroid defines an ideal secret sharing scheme [22] and every

ideal secret sharing scheme determines a matroid [23]. Even though Brickell and

Davenport did not use the term matroid port, their result can be represented as the

connection between ideal access structures and matroid port, that is, the access

structure of every ideal secret sharing is a matroid port; the ports of representable

matroids are ideal access structures. Actually, matroid ports were introduced by

Lehman [61] in 1964 to solve the Shannon switching game before the invention of

secret sharing schemes. But the introduction of matroid port allows direct research

on access structures induced by matroids.

As seen, the necessary condition for a secret sharing scheme to be ideal is not

sufficient and the sufficient condition is not necessary. Seymour [81] gave the first

6



example, Vámos matroid which does not admit any ideal secret sharing scheme.

Matúš [67] presented an infinite family of such matroids. On the other direction,

Simonis and Ashikhmin [86] firstly proved that non-Pappus matroid admits an

ideal secret sharing scheme but not representable.

The actual methods of constructing ideal secret sharing schemes were con-

sidered. Many studies are dedicated to explore new constructions of particular

access structures or some families of ideal access structures. Threshold secret

sharing schemes are the first such constructions [16,82]. Subsequently, Kothari [60]

posed the open problem of constructing ideal linear secret sharing schemes with

hierarchical properties. Simmons [87] introduced the multilevel and compartmented

access structures, and presented geometric constructions of ideal linear secret

sharing schemes for some of them. The multilevel and compartmented access

structures are multipartite, which is a natural generalization of threshold access

structure, particularly, allowing numerical expansion of one part and also different

relation between parts.

The first multipartite scheme is weighted threshold schemes by Shamir [82],

but it is not ideal. Brickell [22] firstly proposed methods to construct ideal

hierarchical and compartmented schemes, which can be seen as a generalization

of Shamir’s threshold schemes [82]. Moreover, Tassa [90] and Tassa and Dyn [92]

gave probabilistic algorithms to construct ideal hierarchical and compartmented

schemes. Particular cases for hierarchical schemes are studied in [11, 49].

Based on results by Brickell [22] and Brickell, Davenport [23], an advanced

result was presented by Farràs, Martı́-Farré and Padró in [41]. They introduced

integer polymatroids to study ideal multipartite secret sharing schemes. Necessary
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and sufficient conditions for multipartite secret sharing schemes to be ideal are

presented, while multipartite matroid port is defined. The power of this new

mathematical tool was demonstrated in the same work by using it to characterize

the ideal tripartite access structures. Subsequently, the use of integer polymatroids

made it possible to characterize the ideal hierarchical access structure [43].

1.3 Efficiency in secret sharing

When constructing secret sharing schemes, several efficiency issues should be

taken into account:

1. The computational complexity of the distributing and reconstructing algo-

rithms. The computation time should be polynomial in the number of

participants;

2. The size of the secret value. Sometimes, sharing a short secret value

is required, but some constructions of secret sharing schemes only work

for sufficiently large secret values. In the case of linear secret sharing

schemes, the problem is determining over which finite fields a scheme can

be constructed.

3. The information ratio. For perfect secret sharing schemes, the smallest

possible information ratio is 1, which is attained by the ideal schemes. But

most access structures do not admit an ideal scheme, and these cases, we try

to minimize the information ratio.

8



All these considerations matter from the point of practicability of scheme con-

structions. Among them, information ratio received much attention. Specifically,

trying to determine the optimal information ratio of every given access structure

or, at least, to find lower and upper bounds on this parameter.

This is a very difficult open problem, and there is a huge gap between the best

known lower and upper bounds of general access structures. The length of the

shares in the known constructions for general access structures is exponential in

the number of participants. The general opinion among the researchers in the

area is that this is unavoidable. Specifically, the following conjecture, which was

formalized by Beimel [5], is generally believed to be true. It poses one of the main

open problems in secret sharing, surely the most difficult and intriguing one.

Conjecture 1.3.1. There exists an ϵ > 0 such that for every integer n there is an access

structure on n participants, for which every secret sharing scheme distributes shares of

length 2ϵn, that is, exponential in the number of participants.

Nevertheless, not many results supporting this conjecture have been proved.

No proof for the existence of access structures requiring shares of superpolynomial

size has been found. Moreover, the best of the known lower bounds is the one

given by Csirmaz [30], who presented a family of access structures on an arbitrary

number n of participants that require shares of size Ω(n/ log n) times the size of

the secret. On the negative side, Csirmaz [30] proved that by only using Shannon

information inequalities one cannot prove a lower bound of O(n) on the share size.

And recently Beimel and Orlov [10] showed that all the information inequalities up

to date can only improve the lower bound at linearity.
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Due to the difficulty of finding general results, information ratio on particular

cases are studied in [19, 31–33, 35, 37, 56]. Given a secret sharing scheme Σ, we

denote σ(Σ) as the information ratio of secret sharing scheme Σ. If an access

structure Γ is given, the optimal information ratio of Γ, σ(Γ) is defined as the

infimum of σ(Σ) for all the secret sharing schemes Σ admitting Γ.

A way to determine σ is to find lower bounds and upper bounds of σ and once

they meet, the value of σ is settled. Two more parameters are introduced: κ and λ,

while κ is the ratio value when access structure and Shannon basic inequalities are

satisfied, and λ is the information ratio of linear secret sharing schemes. Naturally,

the value of κ can be seen as the lower bound of σ, and the upper bound of λ as

the upper bound of σ. Csirmaz proved that κ is less or equal to the number of

participants [30]. By using linear programming in our work [75], the value of κ

can be determined, but constrained to the complexity of linear programming, this

method for access structures on large number of participants will not work. In [56],

most of σ for 5 participants are determined while lower and upper bounds meet.

1.4 Contributions

In this section we summarize our main results of this thesis. Results on ideal

secret sharing are presented in Chapter 3, and results on information ratio of secret

sharing schemes in Chapter 4 and 5.

In Chapter 3 we present several new and useful families of ideal multipartite

access structures, which are natural generalizations of hierarchical and com-

partmented access structures in previous works. Namely, they admit an ideal

10



linear secret sharing schemes over every large enough finite field, they can be

described by a small number of parameters, and they have useful properties

for the applications of secret sharing. While no strong connection between all

those families was previously known, a remarkable common feature is made

apparent by identifying the integer polymatroids that are associated to those ideal

multipartite access structures. Namely, they are Boolean polymatroids or basic

transformations and combinations of Boolean polymatroids. The use of integer

polymatroids, especially Boolean polymatroids and uniform polymatroids, makes

it possible to find many new such families and it simplifies in great measure the

proofs for the existence of ideal secret sharing schemes for them. Some of the

results in this chapter appeared previously in Dr. Farràs’ PhD thesis, specifically,

the ones in Subsection 3.4.1 about compartmented access structures with upper and

lower bounds. The other results are contributions of this thesis. Namely, more new

families of multipartite access structures are presented in this thesis and moreover,

we analyze the efficiency of previous constructions of ideal multipartite secret

sharing schemes in a unified framework stated in [41], which gives a uniform scope

of efficiency of constructions of ideal multipartite secret sharing schemes.

On the other hand, based on the definition of secret sharing schemes by

polymatroids and the representation of information inequalities and rank inequal-

ities by polymatroids, the computation of bounds of information ratio can be

quantified.

In Chapter 4 we employ linear programming to give a general way to deter-

mine the best lower bounds of information ratio of any given access structure by

using combinatorial methods. By applying this linear programming approach, we
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give some examples of better lower bounds on the optimal information ratio and

the optimal average information ratio of several access structures. In particular,

Jackson and Martin [57] determined the optimal (average) information ratio of all

access structures on five participants except a few ones, for which upper and lower

bounds were given. By our method, most of the lower bounds are improved for

unsolved cases, and some of optimal average information ratio are settled down.

Van Dijk [35] listed all 112 non-isomorphic graph access structures on six vertices

and combined several combinatorial methods to determine the information ratio

of them. We determine 5 cases among 18 unsolved ones. And by adding the

Ingleton inequalities to the previous linear programming approach, we present

some access structures for which there is a gap between the optimal information

ratio and the combinatorial lower bound of linear secret sharing schemes. Some of

the results in this chapter were previously showed in Dr. Vázquez’s PhD thesis.

In this thesis, further explorations by using that linear programming method

have been carried out. For instance, in Section 4.5, lower bounds on information

ratio of (linear) secret sharing schemes for the access structures induced by non-

representable matroids are presented. However, the lower bounds we can get by

linear programming are not tight in all cases or even not able to reach. This is

proved by the negative result in Section 4.6, which is also a contribution of this

thesis. We give an impossibility result that there do not exist linear secret sharing

schemes with the best lower bound of complexity known until now.

In Chapter 5 we deal with Conjecture 1.3.1, that is, we study asymptotic

behavior of information ratio. We show the limitation of improving lower bound

by non-Shannon inequalities under the method of linear programming. Csirmaz
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published his result on lower bound Ω(n/ log n) [30], and he also gave that

information inequalities can at most improve this bound to O(n), while only

Shannon basic inequalities were known at that time. Up to now, infinite non-

Shannon inequalities are discovered. It looks that it is a good chance to improve

lower bound, however, we prove negative results that those inequalities only

help to improve at most linearly on the number of participants. In particular,

Beimel and Orlov [10] proved that all information inequalities on four or five

variables, together with all information inequalities on more than five variables

that are known to date, provide lower bounds on the size of the shares in secret

sharing schemes that are at most linear on the number of participants. We present

here another negative result about the power of information inequalities in the

search for lower bounds in secret sharing. Namely, we prove that all information

inequalities on a bounded number of variables only can provide lower bounds

that are polynomial on the number of participants. And the proof is quite simple

by using a special Boolean and uniform polymatroid. Moreover, we prove that

a family of inequalities derived from one or two common informations cannot

provide lower bounds that are better than cubic on the number of participants.

This family of inequalities at least includes all information inequalities on four

and five participants [39]. In addition, our proof does not require computer

explorations and more importantly, it provides an explanation to the limitations

of non-Shannon information inequalities, and hence we shed some light on the

search of better asymptotic lower bounds.
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Chapter 2

Preliminaries

In this chapter we will give some background on secret sharing schemes and tools

we use through the context.

2.1 Basics on Information Theory

Before giving the definition of secret sharing, we need to introduce some basic

concepts of information theory, which will be used to give one definition of secret

sharing and also involved in the next discussion frequently. Readers who are not

familiar with this subject can refer to [29, 93].

Let S be a discrete random variable on a finite set E and p(s) = Pr(S = s) be

the probability of S = s, s ∈ E.

Definition 2.1.1. The Shannon entropy or shortly entropy of S is

H(S) = − ∑
s∈E

p(s) log p(s)
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where the logarithm is binary and we take p(s) log p(s) = 0 if p(s) = 0.

In information theory, the entropy function measures uncertainty of a random

variable and it can be proved that 0 ≤ H(S) ≤ log |E|. The upper bound log |E|

is attained if and only if S is uniform on E and the lower bound is attained if and

only if S is deterministic.

Let Λ be a finite index set and (Si)i∈Λ be a tuple of random variables. The

joint random variables (Si)i∈X is denoted by SX for any X ⊆ Λ, which has a joint

probability distribution on ∏i⊆X Ei. For two random variables S1 and S2 on S1

and S2 respectively, similarly we have the entropy of (S1, S2):

H(S1S2) = − ∑
(s1,s2)∈E1×E2

p(s1, s2) log p(s1, s2).

Definition 2.1.2 (Shannon’s Information Measures). Let S1, S2 and S3 be random

variables on E1, E2 and E3 respectively. The conditional entropy of S1 given S3 is

defined as

H(S1|S3) = H(S1S3)− H(S3).

The mutual information between S1 and S2 is defined as

I(S1; S2) = H(S1)− H(S1|S2).

And the conditional mutual information between S1 and S2 given S3 is defined as

I(S1; S2|S3) = H(S1|S3)− H(S1|S2S3).
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Notice that, S1 and S2 are symmetric in the formulas above, that is, I(S1; S2) =

I(S2; S1) and I(S1; S2|S3) = I(S2; S1|S3). In addition, the conditional entropy

and mutual information are special cases of conditional mutual information , i.e.

I(S1; S2|S3) = H(S1|S3) if S1 = S2, and I(S1; S2|S3) = I(S1; S2) if S3 is a degenerate

random variable (i.e., S3 takes a constant value). Thus, the following proposition,

the proof of which can be found in [93, Theorem 2.34], tell us all Shannon’s

information measures are nonnegative.

Proposition 2.1.3. (Shannon’s basic inequality [84]) For the conditional mutual informa-

tion between S1 and S2 given S3, the following inequality always holds.

I(S1; S2|S3) ≥ 0 (2.1.1)

2.2 Information Inequalities and Rank Inequalities

Definition 2.2.1. Let Λ be a finite index set. An information inequality is defined as a

tuple {αX}X⊆Λ of real numbers such that the inequality

∑
X⊆Λ

αX H(SX) ≥ 0

holds for every collection of random variables {Si}i∈Λ.

For example, the inequality 2.1.1, which can be expressed as H(S1S3) +

H(S2S3)− H(S3)− H(S1S2S3) ≥ 0, is an information inequality. The inequalities

derived from 2.1.1, that is, the non-negative linear combination of Shannon’s basic

inequalities, are called Shannon inequalities, and all the information inequalities that
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cannot derive from 2.1.1 are called non-Shannon inequalities. It is known that all

information inequalities involving three or fewer random variables are Shannon

inequalities [93]. The first non-Shannon inequality was discovered by Zhang and

Yeung [95] in 1998, and it is the following one:

3H(S1S2) + 3H(S1S3) + 3H(S2S3) + H(S2S4) + H(S3S4)− H(S1)− 2H(S2)

−2H(S3)− H(S1S4)− 4H(S1S2S3)− H(S2S3S4) ≥ 0 (2.2.1)

Afterwards, many other non-Shannon inequalities have been found, for exam-

ple, in [38, 40, 62, 69]. Matúš [69] found an infinite number of independent non-

Shannon inequalities over four random variables and [40] expanded the list.

Next we will introduce rank inequalities, which deal with configurations of

vector subspaces. The connection with information inequalities is described next.

Let V be a vector space over a field F, and {Vi}i∈Λ be finite-dimensional

subspaces of V, where Λ is a finite index set. The sum of subspaces ∑i∈Y Vi is

denoted by VY for any Y ⊆ Λ.

Definition 2.2.2. Let Λ be a finite index set. A rank inequality is defined as a tuple

{βY}Y⊆Λ of real numbers such that the inequality

∑
Y⊆Λ

βY dim(VY) ≥ 0

holds for every collection of vector subspaces {Vi}i∈Λ of a vector space V with finite

dimension.
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The inequality below is a rank inequality.

dim(VX) + dim(VY) ≥ dim(VX∪Y) + dim(VX∩Y), X, Y ⊆ Λ.

Dougherty, Freing and Zeger pointed out in [39] that, Rado [77] proved

that every representable matroid can be represented over a finite field, and

hence any configuration of finite-dimensional vector spaces over any field has

a corresponding configuration over some finite field. So {βY}Y⊆Λ is a rank

inequality if this is satisfied for finite fields.

Proposition 2.2.3. Every information inequality is a rank inequality.

Proof. Let F be a finite field and V be a F-vector space with finite dimension. And

let V∗ be the dual space of V, which is formed by all linear function θ : V → F.

Claim that every subspace of V can be turned into a random variable. Consider

a random variable S given by the uniform probability distribution on V∗. Clearly,

H(S) = dim(V) · log |F|. For any subspace Vi ⊂ V, i ∈ Λ, consider the linear

random variable associated to the subspace Vi, is Yi = Y|Vi , the restriction of Y

to Vi. The joint random variable SY = (Si)i∈Y = S|(Vi)i∈Y
for any Y ⊆ I. We have

H(SY) = dim(VY) · log |F|, where VY = ∑i∈Y Vi. So we can rewrite the information

inequality 2.2.1 in dimensions up to a factor log |F|:

∑
Y⊆Λ

αY dim(VY) ≥ 0.

This means that all information inequalities are rank inequalities.

However, the converse is not true. There exist rank inequalities which are not
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information inequalities, and the first such example is the well-known Ingleton

inequality [54]:

dim(V1 + V2) + dim(V1 + V3) + dim(V1 + V4) + dim(V2 + V3)

+dim(V2 + V4)− dim(V1)− dim(V2)− dim(V3 + V4)

−dim(V1 + V2 + V3)− dim(V1 + V2 + V4) ≥ 0

As a consequence, every collection of four random variables satisfies

H(S1S2) + H(S1S3) + H(S1S4) + H(S2S3) + H(S2S4)

−H(S1)− H(S2)− H(S3S4)− H(S1S2S3)− H(S1S2S4) ≥ 0 (2.2.2)

But there exist non-linear random variables that do not satisfy 2.2.2.

Hammer et al. [50] also showed that all rank inequalities on 4 random variables

can be derived from Shannon inequalities and Ingleton inequality together. And

Dougherty, Freiling, and Zeger [39] gave a list of 24 inequalities, which together

with all 4-variables inequalities, generate all rank inequalities on five variables.

However for r > 5, to find all rank inequalities on r random variables is still an

open problem.

2.3 Polymatroids and Matroids

Let Q be a finite set and (Sx)x∈Q be a family of random variables. Consider the

entropy function on (Sx)x∈Q with H(∅) = 0, which has the following properties.
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• H(∅) = 0

• Monotonicity: H(SX|SY) ≥ 0, then H(SXSY)− H(SY) = H(SX)− H(SY) ≥ 0

when Y ⊆ X

• Submodularity: To prove the entropy function is submodular, we only need

to show H(SXSZ) + H(SYSZ) ≥ H(SXSYSZ) + H(SZ) with any disjoint

subsets X, Y, Z. Observe that this inequality is just I(SX; SY|SZ) ≥ 0.

These are called polymatroids axioms. Any function satisfying all three polyma-

troids axioms defines a polymatroid.

Definition 2.3.1. A polymatroid S is a pair (Q, f ) formed by a finite set Q, the ground

set, and a rank function f : P(Q) → R satisfying

1. f (∅) = 0, and

2. f is monotone increasing: if X ⊆ Y ⊆ Q, then f (X) ≤ f (Y), and

3. f is submodular: if X, Y ⊆ Q, then f (X ∪ Y) + f (X ∩ Y) ≤ f (X) + f (Y).

If the rank function f is integer-valued, we say that S is an integer polymatroid.

An integer polymatroid such that f (X) ≤ |X| for every X ⊆ Q is a matroid.

Consider a matroid M = (Q, r). The independent sets of M are the subsets

A ⊆ Q with r(A) = |A|, and the sets that are not independent are called dependent.

A basis is a maximal independent set and a circuit is a minimal dependent set. A

matroid is said to be connected if, for any two elements in Q, there is at least one

circuit containing them.
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Since a matroid can be uniquely determined by its independent sets, bases or

circuits, alternative definitions of matroids are possible. In the following we give a

definition of matroids by bases.

Definition 2.3.2. A family B ⊆ P(Q) is the family of bases of a matroid with ground set

Q if and only if B is nonempty and the following exchange condition is satisfied.

• For every B1, B2 ∈ B and x ∈ B1 \ B2, there exists y ∈ B2 \ B1 such that (B1 \

{x}) ∪ {y} is in B.

From the exchange condition, a useful property is derived, that is, all the bases

of a matroid have the same number of elements, which is the rank of M, denoted

by r(M). Actually, r(M) = r(Q).

Next we introduce poly-entropic polymatroids and poly-linear polymatroids.

Fujishige [45, 46] firstly found that these axioms are equivalent to Shannon’s basic

inequality (in Proposition 2.1.3), so we have the following theorem.

Theorem 2.3.3. Let (Sx)x∈Q be a family of random variables. Consider the mapping

h : P(Q) → R defined by h(∅) = 0 and h(X) = H(SX) if ∅ ̸= X ⊆ Q. Then h is the

rank function of a polymatroid with ground set Q.

Any polymatroid defined in such a way is called an entropic polymatroid.

A poly-entropic polymatroid is a multiple of an entropic polymatroid. Since

poly-entropic polymatroids are defined by entropy function, all information

inequalities are satisfied. If (αA)A⊆Q defines an information inequality, then we

have ∑A⊆Q αAh(A) ≥ 0.

Definition 2.3.4. A polymatroid S = (Q, f ) is said to be linear or K-representable if

there is a vector space V and a finite collection of subspaces (Vi)i∈Q over a finite field K
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and f (X) = dim(VX) for any X ⊆ Q. A poly-linear polymatroid is a multiple of a linear

polymatroid.

Since a linear polymatroid is defined over a vector space, rank inequalities must

be satisfied by this polymatroid. We have the following proposition about poly-

entropic polymatroids and poly-linear polymatroids, and the proof can be derived

similarly to the analysis that every information inequality is a rank inequality.

Proposition 2.3.5. Every linear polymatroid is a poly-entropic polymatroid.

But the converse is not true. Ingleton inequality is a rank inequality, and it is not

always true for entropic polymatroids. See Theorem 4 in [50] as a counterexample.

If every Vi is spanned by at most one vector, then f ({i}) ≤ 1, i ∈ Q, and f

is a rank function of a K-representable matroid. In the next example we will use

Zhang and Yeung inequality( 2.2.1) to prove Vámos matroid is not poly-entropic,

and not poly-linear or representable either according to Proposition 2.3.5.

Example 2.3.6. Vámos matroid is defined on the set V = {v1, v2, . . . , v8}. Its

independent sets are all the sets of cardinality not more than 4, but except {v1, v2, v3, v4},

{v1, v2, v5, v6}, {v3, v4, v5, v6}, {v3, v4, v7, v8} and {v5, v6, v7, v8}. This is the smallest

matroid which is not representable over any field [73].

Proof. Set X1 = {v1, v2}, X2 = {v3, v4}, X3 = {v5, v6} and X4 = {v7, v8}. Let f be

a rank function on V. We will prove that this polymatroid does not satisfy Zhang
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and Yeung inequality 2.2.1.

3 f (X1X2) + 3 f (X1X3) + 3 f (X2X3) + f (X2X4) + f (X3X4)− f (X1)− 2 f (X2)

−2 f (X3)− f (X1X4)− 4 f (X1X2X3)− f (X2X3X4)

= 3 ∗ 3 + 3 ∗ 3 + 3 ∗ 3 + 3 + 3 − 2 − 2 ∗ 2 − 2 ∗ 2 − 4 − 4 ∗ 4 − 4 = −1 < 0

A detailed presentation about polymatroids can be found in [79, Chapter 44]

or [52]. The following characterization of rank functions of polymatroids is a

straightforward consequence of [79, Theorem 44.1]. Since the rank function can

totally determine the polymatroid, this proposition can also be viewed as another

definition of polymatroid.

Proposition 2.3.7. A map f : P(Q) → R is the rank function of a polymatroid with

ground set Q if and only if the following properties are satisfied.

• f (∅) = 0.

• If X ⊆ Q and y ∈ Q, then f (X) ≤ f (X ∪ {y}).

• If X ⊆ Q and y, z ∈ Q, then f (X ∪ {y, z}) + f (X) ≤ f (X ∪ {y}) + f (X ∪ {z}).

Duality

The dual of a matroid M = (Q, r) is a matroid M∗ = (Q, r∗) with

r∗(X) = |X| − r(Q) + r(Q \ X), for any X ⊆ Q.
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Proposition 2.3.8. Let B be the family of bases of the matroid M, then B∗ = {Q \ B : B ∈

B} is the family of bases of the dual matroid M∗.

The proof of this proposition can be found in [73] naturally by using exchange

condition. As discussed before, a matroid can uniquely determined by its bases

and so it is easy to get M∗∗ = M.

Example 2.3.9. Consider the uniform matroid Ur,m whose bases are size r subsets of Q

with size m. By Proposition 2.3.8, we have U∗
r,m = Um−r,m.

Similar to matroids, the dual of a polymatroid S = (Q, f ) is defined as S∗ =

(Q, f ∗) with

f ∗(X) = ∑
x∈X

f ({x})− f (Q) + f (Q \ X), for any X ⊆ Q.

Proposition 2.3.10. If S = (Q, f ) is a polymatroid, then its dual S∗ = (Q, f ∗) is also a

polymatroid.

Proof. According to the definition of dual polymatroid, it is easy to check all three

conditions for polymatroids.

1. f ∗(∅) = − f (Q) + f (Q) = 0

2. If Y ⊆ X ⊆ Q, then f ∗(X) − f ∗(Y) = ∑x∈X−Y f ({x}) + f (Q \ X) − f (Q \

Y) ≥ f (X \ Y) + f (Q \ X)− f (Q \ Y) ≥ 0

3. For any X, Y ⊆ Q, f ∗(X) + f ∗(Y) − f ∗(X ∪ Y) − f ∗(X ∩ Y) = f (Q \ X) +

f (Q \ Y)− f (Q \ (X ∪ Y))− f (Q \ (X ∩ Y)) ≥ 0.

This completes the proof.

24



2.3.1 Boolean Polymatroids and Uniform Polymatroids

Next we will introduce two important types of integer polymatroids, Boolean and

uniform polymatroids, which are both representable and have nice form.

Boolean polymatroids are very simple integer polymatroids that are repre-

sentable over every finite field. Consider a finite set B and a family (Bi)i∈Q of

subsets of B. Clearly, the map f (X) = |
∪

i∈X Bi| for X ⊆ Q is the rank function

of an integer polymatroid S with ground set Q. A Boolean polymatroid is an

integer polymatroid that can be defined in this way. Boolean polymatroids are

representable over every field K. If |B| = r, we can assume that B is a basis

of the vector space V = Kr. For every i ∈ Q, consider the vector subspace

Vi = ⟨Bi⟩. Obviously, these subspaces form a K-representation of S . The modular

polymatroids are those having a modular rank function, that is, f (X∪Y)+ f (X∩Y) =

f (X) + f (Y) for every X, Y ⊆ Q. Every integer modular polymatroid is Boolean,

and hence it is representable over every finite field. A Boolean polymatroid is

modular if and only if the sets (Bi)i∈Q are disjoint. Observe that the rank function

of an integer modular polymatroid is of the form f (X) = ∑i∈X bi for some vector

b ∈ Z
Q
+.

We say that a polymatroid S with ground set Q is uniform if every permutation

on Q is an automorphism of S . In this situation, the rank h(X) of a set X ⊆ Q

depends only on its cardinality, that is, there exist values 0 = h0 ≤ h1 ≤ · · · ≤ hm,

where m = |Q|, such that f (X) = fi for every X ⊆ Q with |X| = i. It is easy to

see that such a sequence of values fi defines a uniform polymatroid if and only if

fi − fi−1 ≥ fi+1 − fi for every i = 1, 2, . . . , m − 1. Clearly, a uniform polymatroid is
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univocally determined by its increment vector δ = (δ1, . . . , δm), where δi = fi − fi−1.

Observe that δ ∈ Rm is the increment vector of a uniform polymatroid if and only

if δ1 ≥ · · · ≥ δm ≥ 0. A uniform polymatroid is a matroid if and only if δi ∈ {0, 1}

for every i = 1, 2, . . . , m. In this case, we obtain the uniform matroid Ur,m, where

r = max{i : δi = 1, 1 ≤ i ≤ m}. It is well known that Ur,m is K-representable

whenever |K| ≥ m.

2.4 Secret Sharing Schemes

In this section we will give the definition and some classic examples of secret

sharing schemes. Readers who are not familiar with secret sharing can refer to

a survey [5] for an overview. As mentioned in the introduction, we just consider

unconditionally secure perfect secret sharing schemes.

Let P be a finite set of participants, and p0 /∈ P be the dealer who distributes the

shares. And let Q = P ∪ {p0} and these notations are generally used henceforth in

this thesis.

We will first give a combinatorial description of secret sharing schemes and

then we introduce a formal definition of secret sharing schemes based on Shannon

entropies.

We take P = {1, 2, . . . , n} and p0 = 0. Consider a finite set E with a probability

distribution on it and, for every i ∈ Q, consider a finite set Ei and a surjective map
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πi : E → Ei. A secret sharing scheme Σ on Q is a mapping Π = (πi)i∈Q :

Π : E → E0 × E1 × · · · × En

x 7→ (π0(x), π1(x), . . . , πn(x))

such that

(i) there exist x, y ∈ E with Pr(x), Pr(y) > 0 and π0(x) ̸= π0(y)

(ii) for any two distinct elements x, y ∈ E, if (π1(x), . . . , πn(x)) = (π1(y), . . . , πn(y)),

then π0(x) = π0(y)

Here π0(x) ∈ E0 is the secret key and πi(x) ∈ Ei is the share for participant i, 1 ≤

i ≤ n. According to probability theory, E with its underlying probability function

defines a probability space, and so is E0 × E1 × · · · × En with the probability

distribution induced by Π. Thus every map πi naturally derives a random

variable, denoted by Si, 0 ≤ i ≤ n. Given x ∈ E, let πi(x) = si for 0 ≤ i ≤ n.

Then the tuple (s0, s1, . . . , sn) ∈ E0 × E1 × · · · × En satisfies

Pr[S0 = s0, S1 = s1, . . . , Sn = sn] > 0

and

Pr[S0 = s0|S1 = s1, . . . , Sn = sn] = 1.

The access structure Γ of a secret sharing scheme Σ can be described as

Γ = {A ⊆ P : there exists an s0 ∈ E0 such thatPr[S0 = s0|Si = si, i ∈ A] = 1}.
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Since we study perfect secret sharing schemes, for every set B ⊆ P that is not in Γ,

we have Pr[S0 = s0|Si = si, i ∈ B] = Pr[S0 = s0] for every s0 ∈ E0.

Example 2.4.1 (Shamir Secret Sharing [82]). A (t, n)-threshold access structure is

defined as

Γ = {A ⊆ P : |A| ≥ t}.

In [82], Shamir constructed a secret sharing scheme by using polynomials for this Γ and

we restate the construction here.

Let K be a finite field with at least n + 1 elements. Take E = Kt−1[x], all the

polynomials over K with degree at most t − 1, and Ei = K for every i ∈ Q. The dealer

picks a tuple (xi)i∈Q of distinct elements in K and then the scheme is

Σ : f → ( f (xi))i∈Q.

In this scheme f (x0) is the secret and f (xi) is the share for participant i ∈ P.

For a collection of random variables {Si}i∈Q we introduce a function h(·) to

define secret sharing scheme such that h(A) = H(SA) and h(A|B) = H(SA|SB)

for every A, B ⊆ Q. This notation will be used through this thesis since its clear

connection with polymatroids.

Definition 2.4.2. Let P be a finite set and Q = P ∪ {p0}. A secret sharing scheme Σ is

a collection (Si)i∈Q of discrete random variables such that h({p0}) > 0 and h({p0}|P) =

0. The access structure Γ is defined as Γ = {A ⊆ P : h({p0}|A) = 0}.

If the subset B ⊆ P is not in Γ, we have h({p0}|B) = h({p0}) which implies that

the set of participants, that is not qualified, can get no information about secret.

28



This fact corresponds with the requirement of perfect secret sharing schemes. The

access structures are monotone increasing since every superset of a qualified set is

qualified. Thus every access structure is fully determined by the minimal qualified

sets, denoted by min Γ.

An access structure is connected if each participant is at least in one minimal

qualified set. Only connected access structures are studied here. We say a secret

sharing scheme is connected if it realizes a connected access structure. Karnin,

Greene and Hellman [59] have showed that h({i}) ≥ h({p0}), that is, the

information ratio of any connected and perfect secret sharing scheme is at least

1.

On the other hand, from the definition of secret sharing schemes and Theo-

rem 2.3.3, we can easily get that entropies of secret and shares of a secret sharing

scheme form a polymatroid.

Next we will give a definition of linear secret sharing schemes based on the

definition of secret sharing scheme.

Definition 2.4.3. For a secret sharing scheme Σ = (Si)i∈Q, it is linear if all the random

variables Si, i ∈ Q are linear on some finite field.

Dual of access structures

Next we introduce the concepts of dual of an access structure. The dual of an access

structure Γ on P is defined as Γ∗ = {A ⊆ P : P \ A /∈ Γ}. It is clear that the dual of

a connected access structure is connected as well.

Proposition 2.4.4. Γ = Γ∗∗.
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Proof. This proposition is directly derived from Γ∗ = Γc, where Γc is the comple-

ment of Γ on P, and Γc is the complement of Γc on P(P).

Example 2.4.5. Suppose P = {1, 2, 3, 4, 5} and

min Γ = {{1, 2}, {1, 3}, {2, 3, 4}, {2, 3, 5}, {1, 4, 5}}.

According to the definition of dual of Γ,

min Γ∗ = {{1, 2}, {1, 3}, {2, 3, 4}, {2, 3, 5}, {1, 4, 5}}.

Since an access structure is determined by its minimal set, we have Γ = Γ∗. It is called

self-dual if Γ = Γ∗ under a permutation on P. For this example, no permutation is needed.

2.5 Polymatroids and Secret Sharing

In this section we mainly introduce the connection between polymatroids and

secret sharing schemes.

Refer to the connection between polymatroids and secret sharing schemes, the

bond is more obvious as a result of Theorem 2.3.3. Every secret sharing scheme Σ

with Γ(Σ) defines a polymatroid S = (Q, h). And the access structure Γ(Σ) can be

written as

Γ(Σ) = Γp0(S) = {A ⊆ P : h(A ∪ {p0}) = h(A)}.
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For a matroid M = (Q, r), define the port of the matroid M at point p0 as

Γp0(M) = {A ⊆ P : r(A ∪ {p0} = r(A))}.

And in [23] Brickell and Davenport pointed out the connections between matroids

ports and ideal access structures. The result is summarized in the following

theorem.

Theorem 2.5.1 ( [23]). Any ports of representable matroids are ideal access structure; The

access structure of ideal secret sharing scheme is a matroid port.

For a general polymatroid S = (Q, f ), we define Γ-polymatroid as following.

An element p0 ∈ Q is said to be an atomic point of the polymatroid S = (Q, f ) if

f ({p0}) = 1 and, for every A ⊆ Q, either f (A ∪ {p0}) = f (A) or f (A ∪ {p0}) =

f (A) + 1. For a polymatroid S = (Q, f ) with an atomic point p0 ∈ Q, the access

structure on the set P = Q \ {p0}, that is, Γp0(S) = {A ⊆ P : f (A ∪ {p0}) =

f (A)}, is clearly a monotone increasing family of subsets of P. For an access

structure Γ on P, a polymatroid S with ground set Q = P ∪ {p0} is said to be a

Γ-polymatroid if p0 is an atomic point of S and Γ = Γp0(S).

Next we will give an important property, which is useful when we study the

dual of secret sharing schemes.

Lemma 2.5.2. Let Γ be an access structure on P = Q \ {p0} and S = (Q, f ) be a

Γ-polymatroid, then S∗ = (Q, f ∗) is a Γ∗-polymatroid. Moreover, Γ(S∗) = Γ(S)∗.
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Proof. For every X ⊆ P,

f ∗(X ∪ {p0}) = f ({p0}) + ∑
x∈X

f ({x})− f (Q) + f (P \ X)

If X ∈ Γ∗, that is, P − X /∈ Γ, then f (Q \ X) = f ({p0}) + f (P \ X). This means

f ∗(X ∪ {p0}) = f ∗(X). If X /∈ Γ∗, that is, P \ X ∈ Γ, then f (Q \ X) = f (P \ X).

Thus, f ∗(X ∪ {p0}) = f ({p0}) + f ∗(X) = f ∗({p0}) + f ∗(X).

From the proof, it directly derives that Γ(S∗) = Γ(S)∗.

Given an access structure Γ, a polymatroid SP = (P, f ) is said to be compatible

with Γ if there exists a Γ-polymatroid S = (Q, f ) with Q = P ∪ {p0} and S|P = SP.

As noticed, every Γ-polymatroid S = (Q, h) has h({p0}) = 1. The polymatroid

S(Σ) = (Q, f ) defined by f (A) = h(A)/h({p0}) for every A ⊆ Q is called

polymatroid associated to the secret sharing scheme Σ. Obviously, the associated

polymatroid S(Σ) = (Q, f ) is a Γ-polymatroid.

Proposition 2.5.3. An access structure Γ on P is compatible with a polymatroid SP =

(P, f ) if and only if the following conditions are satisfied.

1. If X ⊆ P and y ∈ P are such that X /∈ Γ and X ∪ {y} ∈ Γ, then f (X) ≤

f (X ∪ {y})− 1.

2. If X ⊆ P and y, z ∈ P are such that X /∈ Γ while both X ∪ {y} and X ∪ {z} are

qualified, then f (X ∪ {y, z}) + f (X) ≤ f (X ∪ {y}) + f (X ∪ {z})− 1.

Proof. Suppose that SP can be extended to a Γ-polymatroid S(Γ) = (Q, f ). If X /∈ Γ

and X ∪ {y} ∈ Γ, then f (X ∪ {y}) ≥ f (X ∪ {y, p0}) ≥ f (X ∪ {p0}) = f (X) +
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1. If X /∈ Γ and X ∪ {y} and X ∪ {z} are qualified, then f (X ∪ {y}) + f (X ∪

{z}) = f (X ∪ {y, p0}) + f (X ∪ {z, p0}) ≥ f (X ∪ {y, z, p0}) + f (X ∪ {p0}) = f (X ∪

{y, z}) + f (X) + 1.

We prove now the converse. Assume that SP = (P, f ) satisfies the conditions

in the statement and consider the extension f : P(Q) → R of f determined by

f (X ∪ {p0}) = f (X) if X ∈ Γ and f (X ∪ {p0}) = f (X) + 1 otherwise. We have

to prove that (Q, f ) is a polymatroid. Clearly, f (X) ≤ f (X ∪ {p0}) and f (X ∪

{p0}) ≤ f (X ∪ {p0, y}) for every X ⊆ P and y ∈ P. Therefore, the first condition

in Proposition 2.3.7 is satisfied. Moreover, it is not difficult to prove that the second

condition holds as well by checking that f (X ∪ {y, p0}) + f (X) ≤ f (X ∪ {y}) +

f (X ∪{p0}) and f (X ∪{p0, y, z})+ f (X ∪{p0}) ≤ f (X ∪{p0, y})+ f (X ∪{p0, z})

for every X ⊆ P and y, z ∈ P.

As a consequence, the result by Csirmaz [30] in the following proposition can be

got. Both propositions give a sufficient and necessary condition for a polymatroid

that is compatible with a given access structure. Moreover, they are practical.

Proposition 2.5.4 ( [30]). A polymatroid SP = (P, f ) is compatible with an access

structure Γ on P if and only if the following conditions are satisfied.

1. If A ⊆ B ⊆ P, A /∈ Γ and B ∈ Γ, then f (A) ≤ f (B)− 1.

2. If A, B ∈ Γ and A ∩ B /∈ Γ, then f (A ∪ B) + f (A ∩ B) ≤ f (A) + f (B)− 1.
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2.5.1 Information ratio of secret sharing schemes

For a polymatroid S = (Q, f ) and p0 ∈ Q, we define σp0(S) = max{ f ({i}) :

i ∈ P} and σ̃p0(S) = (1/n)∑i∈P f ({i}), where P = Q − {p0} and n = |P|. The

information ratio or complexity of a secret sharing scheme Σ is defined as σ(Σ) =

maxi∈P h({i})/h({p0}), that is, the maximum length of the shares in relation to the

length of the secret. The average information ratio or average complexity is defined by

σ̃(Σ) = (1/n)∑i∈P h({i})/h({p0}), where n = |P| is the number of participants.

It is not difficult to check that h({i}) ≥ h({p0}) for every participant i ∈ P, and

hence σ(Σ) ≥ σ̃(Σ) ≥ 1. Secret sharing schemes with σ(Σ) = 1 are said to be ideal

and their access structures are called ideal as well. Clearly, σ(Σ) = σp0(S(Σ)) and

σ̃(Σ) = σ̃p0(S(Σ)) for every secret sharing scheme Σ.

For every access structure Γ,

σ(Γ) = inf{σp0(S) : S is a poly-entropic Γ-polymatroid} (2.5.1)

and

λ(Γ) = inf{σp0(S) : S is a poly-linear Γ-polymatroid}, (2.5.2)

and the analogous properties apply to σ̃(Γ) and λ̃(Γ). Obviously, σ(Γ) is the

infimum of information ratio of secret sharing schemes for given Γ.

If S is a poly-linear polymatroid, then the corresponding secret sharing scheme

must be linear too. Thus, λ(Γ) can be viewed as the infimum of the information

ratio of linear secret sharing schemes for given Γ. At this point, we have λ(Γ) ≤

σ(Γ). However, a formal proof for this formula will present in the next theorem.
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The parameter

κ(Γ) = inf{σp0(S) : S is a Γ-polymatroid}, (2.5.3)

which was introduced in [63], is a lower bound on the optimal complexity or

information ratio. Moreover, it is the best lower bound that can be obtained by

the combinatorial technique that has been used to compute most of the known

lower bounds. The parameter κ̃(Γ), is defined analogously and it is a lower bound

on the optimal average information ratio.

Theorem 2.5.5. For a given access structure Γ, we have κ(Γ) ≤ σ(Γ) ≤ λ(Γ).

A generalized result of Theorem 2.5.1 is stated by Martı́-Farré and Padró in [63],

which gives a tighter criterion whether an access structure is a matroid port.

Theorem 2.5.6 ( [63]). An access structure Γ is a matroid port if σ(Γ) < 3/2.

Some other results are given in [63], which will be used in Chapter 4. We

present them here without proofs which can be found in [63] or [56].

Proposition 2.5.7. Let Γ be an access structure and Γ∗ be its dual, then κ(Γ) = κ(Γ∗).

This proof in [63] used Lemma 2.5.2. Besides this result, we also have λ(Γ) =

λ(Γ∗) because if there is a linear secret sharing scheme Σ with access structure

Γ, then there exists a linear dual secret sharing scheme Σ∗ for Γ∗ with σ(Σ) =

σ(Σ∗) [56].
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Chapter 3

New Families of Ideal Access

Structures

3.1 Introduction

In this chapter, we will give some new and useful families of access structures,

which are mainly included in our paper [44].

The Shamir secret sharing scheme presented in Example 2.4.1 is ideal and

linear, in addition, the construction is efficient, that is, the distribution and

reconstruction secrets algorithms are polynomial on the number of participants

n. One problem pops up on efficiently constructing ideal linear secret sharing

schemes for non-threshold access structures.

This line of research was initiated by Kothari [60], who presented some ideas

to construct ideal linear secret sharing schemes with hierarchical properties.

Simmons [87] introduced the multilevel and compartmented access structures,
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and presented geometric constructions of ideal linear secret sharing schemes for

some of them. Brickell [22] formalized the ideas in previous works [17, 59, 60, 87]

and introduced a powerful linear-algebraic method to construct ideal linear secret

sharing schemes for non-threshold access structures. In addition, he used that

method to construct such schemes for the families of access structures introduced

by Simmons [87]. Tassa [90] and Tassa and Dyn [92] combined Brickell’s [22]

method with different kinds of polynomial interpolation to construct ideal linear

secret sharing schemes for more general families of multilevel and compartmented

access structures. Constructions for other interesting variants of compartmented

access structures are given in [51, 72]. All these families of access structures have

some common features that are enumerated in the following.

1. They are natural and useful generalizations of threshold access structures. In

the threshold case, all participants are equivalent, while the access structures

in those families are multipartite. In addition, they have some interesting

properties for the applications of secret sharing. Some of them are useful for

hierarchical organizations, while others can be used in situations requiring

the agreement of several parties.

2. Similarly to the threshold ones, the access structures in those families admit

a very compact description. Typically, they can be described by using a small

number of parameters, at most linear on the number of parts.

3. They are ideal access structures. Actually, every one of those access structures

admits a vector space secret sharing scheme, that is, an ideal linear secret

sharing scheme constructed by using the method proposed by Brickell [22].
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Moreover, the only restriction on the fields over which these schemes are

constructed is their size, and hence there is no required condition about

their characteristic. Observe that this is also the case for threshold access

structures, which admit vector space secret sharing schemes over every finite

field with at least as many elements as the number of participants.

4. Even though the existence of efficient ideal linear secret sharing schemes for

those access structures has been proved, the known methods to construct

such schemes are not efficient in general. This is an important difference to

the threshold case, in which the construction proposed by Shamir [82] solves

the problem. Exceptionally, Brickell [22] gave an algorithm for hierarchical

threshold access structures that is efficient by using Shoup’s algorithm [85]

to compute a primitive polynomial over a finite field. Another efficient

algorithm for the same class of access structures was presented by Tassa [90,

Section 3.3]. Recently, efficient methods to construct ideal secret sharing

schemes for some bipartite access structures have been given [4].

5. Determining the minimum size of the fields over which those schemes can be

constructed is another open problem. It is unsolved even for threshold access

structures, in which case the problem is equivalent to the main conjecture for

maximum distance separable codes [3, 53], or to determine over which fields

uniform matroids are representable [73, Problem 6.5.12], or to determine the

size of maximum arcs in projective spaces [80]. Much less is known for the

general case. Differently to the threshold case, there is a huge gap between

the known lower and upper bounds.
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Two questions naturally arise at this point. The first one is the search for

new families of access structures with the properties above. The second one is to

determine the existence of efficient methods to construct ideal linear secret sharing

schemes for them, and to find better bounds on the minimum size of the fields over

which such schemes can be found.

Another related line of work deals with the characterization of the ideal access

structures in several families of multipartite access structures. The bipartite

access structures [74] and the weighted threshold access structures [12] were

the first families for which such a characterization was given. Some partial

results about the tripartite case were presented in [28, 51]. On the basis of the

well known connection between ideal secret sharing schemes and matroids [23],

integer polymatroids were introduced in [41] for the study ideal multipartite secret

sharing schemes. The power of this new mathematical tool was demonstrated

in the same work by using it to characterize the ideal tripartite access structures.

Subsequently, the use of integer polymatroids made it possible to characterize the

ideal hierarchical access structures [43].

This chapter is devoted to the search for new families of ideal access structures

that are among the most natural generalizations of threshold secret sharing, and to

the efficiency analysis of the methods to construct ideal secret sharing schemes for

them.

Our results strongly rely on the connection between integer polymatroids and

ideal multipartite secret sharing presented in [41], which is summarized here

in Theorem 3.2.4. The concepts, notation and related facts that are required

to understand this result are recalled Section 3.2. Actually, the use of this
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tool provides important advantages in comparison to the techniques applied in

previous constructions of ideal multipartite secret sharing schemes [22, 51, 72, 74,

87, 90, 92].

While no strong connection between all those families was previously known,

a remarkable common feature is made apparent by identifying the integer polyma-

troids that are associated to those ideal multipartite access structures. Namely, they

are Boolean polymatroids or basic transformations and combinations of Boolean

polymatroids. This is of course a useful clue when trying to find new families of

ideal access structures satisfying the aforementioned requirements.

By using other Boolean polymatroids, and by combining them in several

different ways, we present a number of new families of ideal multipartite access

structures. Specifically, we present in Section 3.4 several generalizations of the

compartmented access structures introduced in [22, 87, 92]. Section 3.5 deals with

some families of partially hierarchical access structures that can be defined from

Boolean polymatroids. For instance, we present a family of compartmented access

structures in which every compartment has a hierarchy. Ideal (totally) hierarchical

access structures, which were completely characterized in [43], are associated as

well to a special class of Boolean polymatroids. Finally, we use another family of

integer polymatroids, the uniform ones, to characterize in Section 3.6 the ideal

members of another family of multipartite access structures: the ones that are

invariant under every permutation of the parts.

All integer polymatroids that we use to find new families of ideal multipartite

access structures can be defined by a small number of parameters, linear on the

size of the ground set, and they are representable over every large enough finite
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field. Actually, these requirements are implied by the conditions we imposed on

the access structures to be simple generalizations of threshold secret sharing. In

Section 3.3 the basic integer polymatroids as well as the operations to modify and

combine them that are used in our constructions. In particular, the result we prove

in Proposition 3.3.5 is extremely useful.

We focus in this chapter on a few examples that can be useful for the

applications of secret sharing, but many other families can be described by using

other integer polymatroids with those properties, and surely some other useful

families will be found in future works. For the sake of completeness, we give in

Section 3.4.2 a detailed description of the process for constructing these schemes,

and we illustrate it with an explicit example.

Differently from the aforementioned previous works, our proofs that the

structures in these new families are ideal are extremely concise. Of course, this

is due to the use of integer polymatroids. In addition, some easily checkable

necessary conditions that are derived from the results in [41] make it possible to

prove that certain given multipartite access structures are not ideal. An example

of such a situation is given in Section 3.4.4. This simplifies as well the search for

new families.

Even though the efficiency of the methods to construct actual ideal linear secret

sharing schemes for those families of access structures has not been significantly

improved by using the results from [41], they provide a unified framework in

which the open problems related to that issue can be precisely stated. These open

problems and some possible strategies to attack them are discussed in Section 3.7.
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3.2 Multipartite Access Structures and Integer Poly-

matroids

3.2.1 Multipartite Access Structures and Their Representation

Here we recall the compact and useful representation of multipartite access

structures that was introduced in [74] for the bipartite case.

We use Z+ to denote the set of the non-negative integers. For every i, j ∈ Z we

write [i, j] = {i, i + 1, . . . , j} if i < j, while [i, i] = {i} and [i, j] = ∅ if i > j. For

a positive integer m, we put J′m = [0, m] and Jm = [1, m]. Consider a finite set J.

We notate J′ for a set of the form J′ = J ∪ {j0} for some j0 /∈ J. For every two

vectors u = (ui)i∈J and v = (vi)i∈J in ZJ , the vector w = u ∨ v ∈ ZJ is defined

by wi = max{ui, vi}, while we put wi = min{ui, vi} for w = u ∧ v. Given two

vectors u = (ui)i∈J and v = (vi)i∈J in ZJ , we write u ≤ v if ui ≤ vi for every

i ∈ J. The modulus |u| of a vector u ∈ Z
J
+ is defined by |u| = ∑i∈J ui. For every

subset X ⊆ J, we notate u(X) = (ui)i∈X ∈ ZX. The support of u ∈ ZJ is defined

as supp(u) = {i ∈ J : ui ̸= 0}. Finally, we consider the vectors ei ∈ ZJ such that

ei
j = 1 if j = i and ei

j = 0 otherwise. A family Π = (Πi)i∈J of subsets of P is called

here a partition of P if P =
∪

i∈J Πi and Πi ∩ Πj = ∅ whenever i ̸= j. Observe that

some of the parts may be empty. If |J| = m, we say that Π is an m-partition of P.

For a partition Π of a set P, we consider the mapping Π : P(P) → Z
J
+ defined by

Π(A) = (|A ∩ Πi|)i∈J . We write P = Π(P(P)) = {u ∈ Z
J
+ : u ≤ (|Πi|)i∈J}.

For a partition Π of a set P, a Π-permutation is a permutation σ on P such that

σ(Πi) = Πi for every part Πi of Π. An access structure on P is said to be Π-partite
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if every Π-permutation is an automorphism of it. If the number of parts in Π is m,

such an access structure is called m-partite.

A multipartite access structure can be described in a compact way by taking

into account that its members are determined by the number of elements they have

in each part. If an access structure Γ on P is Π-partite, then A ∈ Γ if and only if

Π(A) ∈ Π(Γ). That is, Γ is completely determined by the partition Π and set of

vectors Π(Γ) ⊆ P ⊆ Z
J
+. Moreover, the set Π(Γ) ⊆ P is monotone increasing, that

is, if u ∈ Π(Γ) and v ∈ P are such that u ≤ v, then v ∈ Π(Γ). Therefore, Π(Γ)

is univocally determined by min Π(Γ), the family of its minimal vectors, that is,

those representing the minimal qualified subsets of Γ. By an abuse of notation, we

will use Γ to denote both a Π-partite access structure on P and the corresponding

set Π(Γ) of points in P, and the same applies to min Γ.

Example 3.2.1. For a bipartition Π = (Π1, Π2) of the set P of participants, consider the

access structure Γ formed by all subsets of P with at least 6 participants such that at least

one of them is in Π1, together with all subsets containing at least 4 participants from Π1.

This is obviously a Π-partite access structure. A vector (u1, u2) ∈ P is in Π(Γ) if and only

if u1 ≥ 4 or |u| ≥ 6 and u1 ≥ 1. Therefore, min Π(Γ) = {(1, 5), (2, 4), (3, 3), (4, 0)} ∩

P.

Let Z be an integer polymatroid with ground set J. Consider the set D of the

integer independent vectors of Z , which is defined as

D = {u ∈ Z
J
+ : |u(X)| ≤ h(X) for every X ⊆ J}.

Integer polymatroids can be characterized by its integer bases, which are the
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maximal integer independent vectors. A nonempty subset B ⊆ Z
J
+ is the family

of integer bases of an integer polymatroid if and only if it satisfies the following

exchange condition.

• For every u ∈ B and v ∈ B with ui > vi, there exists j ∈ J such that uj < vj

and u − ei + ej ∈ B.

In particular, all bases have the same modulus. Every integer polymatroid is

univocally determined by the family of its integer bases. Indeed, the rank function

of Z is determined by h(X) = max{|u(X)| : u ∈ B}.

Since only integer polymatroids and integer vectors will be considered, we

will omit the term “integer” most of the times when dealing with the integer

independent vectors or the integer bases of an integer polymatroid.

Example 3.2.2. An integer polymatroid Z = (J, h) with ground set J = {1, 2} is

determined by the integer values s = h(J) and ri = h({i}) for i = 1, 2. These triplets

of integers are characterized by the inequalities 0 ≤ ri ≤ s ≤ r1 + r2. The family of

independent vectors of such a polymatroid is formed by the vectors u ∈ Z2
+ such that

u ≤ (r1, r2) and |u| ≤ s. The basis are precisely the independent vectors with |u| = s.

Every integer polymatroid with ground set J = {1, 2} is representable over every field K.

Indeed, a representation is given by two subspaces V1, V2 ⊆ Ks such that dim Vi = ri and

V1 + V2 = Ks.

If D is the family of independent vectors of an integer polymatroid Z on J,

then, for every X ⊆ J, the set D|X = {u(X) : u ∈ D} ⊆ ZX
+ is the family of

independent vectors of an integer polymatroid Z|X with ground set X. Clearly, the

rank function h|X of this polymatroid satisfies (h|X)(Y) = h(Y) for every Y ⊆ X.
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Because of that, we will use the same symbol to denote both rank functions. Given

two integer polymatroids Z and Z ′, we say that Z ′ is an extension of Z is Z ′|X = Z

for some subset X of the ground set of Z ′.

For an integer polymatroid Z and a subset X ⊆ J of the ground set, we

write B(Z , X) to denote the family of the independent vectors u ∈ D such that

supp(u) ⊆ X and |u| = h(X). Observe that there is a natural bijection between

B(Z , X) and the family of bases of the integer polymatroid Z|X.

3.2.2 Integer Polymatroids and Multipartite Matroid Ports

The aim of this section is to summarize the results in [41] about ideal multipartite

secret sharing schemes and their connection to integer polymatroids.

For a polymatroid S with ground set J′ = J ∪ {j0}, the family

Γj0(S) = {A ⊆ J : h(A ∪ {j0}) = h(A)}

of subsets of J is monotone increasing, and hence it is an access structure on

J. If S is a matroid, then the access structure Γj0(S) is called the port of the

matroid S at the point j0. As a consequence of the results by Brickell [22] and by

Brickell and Davenport [23], matroid ports play a very important role in secret

sharing. Specifically, the ports of representable matroids admit ideal secret sharing

schemes [22] and the access structure of every ideal secret sharing scheme is a

matroid port [23]. This latter result was generalized in [63] by proving that the

access structure of a secret sharing scheme is a matroid port if the length of every

share is less than 3/2 times the length of the secret. A detailed presentation of
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these results can be found in [88].

Brickell [22] provided a method to construct ideal schemes for ports of K-

representable matroids. These schemes are called a K-vector space secret sharing

schemes, and their access structures are K-vector space access structures. In the

following, we present this method as described by Massey [65,66] in terms of linear

codes.

Consider a set P of n participants and P′ = P∪{p0} where p0 /∈ P is considered

as a special participant, usually called dealer. Let K be a finite field. Every K-linear

code C with length n + 1 defines an ideal secret sharing scheme on P. Indeed,

suppose that the entries of the codewords in C are indexed by the elements in

P′. Then every random choice of a codeword (cx)x∈P′ ∈ C corresponds to a

distribution of shares for the secret value cp0 ∈ K. Let M be a generator matrix of C,

that is, a matrix over K whose rows span C. The columns of M, which are in one-to-

one correspondence with the elements in P′, determine a K-representable matroid

M with ground set P′. All generator matrices of C define the same matroid. A set

A ⊆ P is qualified if and only if the column of M corresponding to p0 is a linear

combination of the columns corresponding to the participants in A. Because of

that, the access structure of the scheme is the matroid port of Γp0(M).

Given a partition Π = (Πi)i∈J of the set P, consider Πj0 = {p0} and the

partition Π′ = (Πi)i∈J′ of P′ = P ∪ {p0}. Let M be a matroid with ground set

P′. Then the matroid port Γp0(M) is Π-partite if and only if the matroid M is Π′-

partite [41] (that is, every Π′-permutation is an automorphism of M). In addition,

every Π′-partite matroid M is associated to an integer polymatroid with ground

set J′ that, together with the partition Π′, determines M [41]. A characterization
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of multipartite matroid ports in terms of integer polymatroids, which is given here

in Theorem 3.2.4, is derived from these facts. An access structure is said to be

connected if all participants are in at least one minimal qualified subset.

Definition 3.2.3. Let Π = (Πi)i∈J be a partition of a set P of participants. Consider an

integer polymatroid Z ′ on J′ with h({j0}) = 1 and h({i}) ≤ |Πi| for every i ∈ J, and

take Z = Z ′|J. We define a Π-partite access structure Γj0(Z ′, Π) in the following way: a

vector u ∈ P is in Γj0(Z ′, Π) if and only if there exist a subset X ∈ Γj0(Z ′) and a vector

v ∈ B(Z , X) such that v ≤ u.

Theorem 3.2.4 ( [41]). Let Π = (Πi)i∈J be a partition of a set P. A Π-partite access

structure Γ on P is a matroid port if and only if it is of the form Γj0(Z ′, Π) for some

integer polymatroid Z ′ on J′ with h({j0}) = 1 and h({i}) ≤ |Πi| for every i ∈ J. In

addition, if Z ′ is K-representable, then Γj0(Z ′, Π) is an L-vector space access structure

for every large enough finite extension L of K. Moreover, if Γ is connected, the integer

polymatroid Z ′ is univocally determined by Γ.

Example 3.2.5. Let Γ be the Π-access structure defined in Example 3.2.1, with (|Π1|, |Π2|) ≥

(4, 5). By using Theorem 3.2.4, we show that Γ is ideal. Namely, we prove that it is a K-

vector space access structure for every large enough field K. Consider J = {1, 2} and

the integer polymatroid Z = (J, h) described in Example 3.2.2 with r1 = 4, r2 = 5,

and s = 6. Consider the only polymatroid Z ′ = (J′, h) such that Z ′|J = Z , and

h({j0}) = 1, h({j0, 1}) = r1, h({j0, 2}) = r2 + 1 and h(J′) = s. Observe that

Γj0(Z ′) = {{1}, J} and B(Z , {1}) = {(r1, 0)}. Hence Γ = Γp0(Z ′, Π) and Γ is a

matroid port by Theorem 3.2.4. Given a finite field K, Consider the K-representation

(V1, V2) of Z described in Example 3.2.2, a vector v ∈ V1 r V2, and Vj0 = ⟨v⟩. Then
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(Vj0 , V1, V2) is a K-representation of Z ′. If K is large enough, Γ is a K-vector space access

structure by Theorem 3.2.4.

3.3 Operations on Integer Polymatroids

In order to find families of ideal multipartite access structures with the required

properties, we need to find families of integer polymatroids that are representable

over every large enough finite field and can be described in a compact way. To this

end, we mainly use Boolean polymatroids and uniform polymatroids (Chapter 2),

and several operations to obtain new polymatroids from given ones. Also some

propositions of these polymatroids are presented here.

Two operations on polymatroids are presented here: the sum and the trunca-

tion. The first one is a binary operation, while the second one is unitary.

The sum Z1 + Z2 of two polymatroids Z1,Z2 on the same ground set J and with

rank functions h1, h2, respectively, is the polymatroid on J with rank function h =

h1 + h2. If Z1,Z2 are K-representable integer polymatroids, then their sum is K-

representable too. Clearly, if Z1 is represented by the vector subspaces (Vi)i∈J of

V and Z2 is represented by the vector subspaces (Wi)i∈J of W, then the subspaces

(Vi ×Wi)i∈J of V ×W form a representation of the sum Z1 +Z2. If D1,D2 ⊆ Z
J
+ are

the sets of independent vectors of Z1 and Z2, respectively, then, as a consequence

of [79, Theorem 44.6 and Corollary 46.2c], the independent vectors of Z1 +Z2 are

the ones in D1 + D2 = {u1 + u2 : u1 ∈ D1, u2 ∈ D2}. Therefore, the bases of

Z1 +Z2 are the vectors in B1 + B2, where B1,B2 ⊆ Z
J
+ are the families of bases of

those polymatroids.
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For an integer polymatroid Z on J with rank function h and a positive integer

t with t ≤ h(J), it is not difficult to prove that the map h′ defined by h′(X) =

min{h(X), t} is the rank function of an integer polymatroid on J, which is called

the t-truncation of Z . Observe that a vector x ∈ Z
J
+ is a basis of the t-truncation of

Z if and only if x is an independent vector of Z and |x| = t.

Proposition 3.3.1. Every truncation of a Boolean polymatroid is representable over every

large enough finite field.

Proof. For a field K and a positive integer t, we consider the map ψt : K → Kt

defined by ψt(x) = (1, x, . . . , xt−1). Observe that, for every t different field

elements x1, . . . , xt ∈ K, the set of vectors {ψt(xi) : i = 1, . . . , t} is linearly

independent. Let Z be a Boolean polymatroid with ground set J, take r = h(J),

and consider a field K with |K| ≥ r. Take B ⊆ K with |B| = r and a family (Bi)i∈J

of subsets of B such that h(X) = |
∪

i∈X Bi| for every X ⊆ J. For a positive integer

t ≤ r and for every i ∈ J, consider the vector subspace Vi ⊆ Kt spanned by the

vectors in {ψt(x) : x ∈ Bi}. Clearly, these subspaces form a K-representation of

the t-truncation of the Boolean polymatroid Z .

The sum of uniform polymatroids is a uniform polymatroid whose increment

vector is obtained by summing up the corresponding increment vectors. The next

result was proved in [42], but we present its proof here because we are going to

use it later.

Proposition 3.3.2 ( [42], Proposition 10). Every uniform integer polymatroid is a sum

of uniform matroids. In particular, every uniform integer polymatroid with ground set J is

representable over every field K with |K| ≥ |J|.
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Proof. Consider a uniform integer polymatroid Z on J with increment vector δ =

(δ1, δ2, . . . , δm). For every k ∈ [0, δ1], take rk = max{i ∈ [1, m] : δi ≥ k}. Observe

that m = r0 ≥ r1 ≥ · · · ≥ rδ1 ≥ 1. Clearly δi = max{k ∈ [0, δ1] : rk ≥ i} for every

i ∈ [1, m], and hence δi = δ1
i + · · · + δδ1

i , where δk is the increment vector of the

uniform matroid Urk,m. Therefore, Z = Ur1,m + · · ·+ Urδ1
,m.

3.3.1 Multipartite Access Structures from Bases of Integer Poly-

matroids

We present in the following a consequence of Theorem 3.2.4 that is very useful in

the search of new ideal multipartite access structures. Namely, we prove that a

multipartite access structure is ideal if its minimal vectors coincide with the bases

of a representable integer polymatroid. We need the following two results. The

first one is another version of Proposition 2.5.4 on integer polymatroids, while the

second one is a basic linear algebra fact.

Proposition 3.3.3 ( [30],Proposition 2.3). Let Z be an integer polymatroid with ground

set J and let Λ be an access structure on J. Then there exists an integer polymatroid Z ′ on

J′ with h({j0}) = 1 and Z = Z ′|J such that Λ = Γj0(Z ′) if and only if the following

conditions are satisfied.

1. If X ⊆ Y ⊆ J and X /∈ Λ while Y ∈ Λ, then h(X) ≤ h(Y)− 1.

2. If X, Y ∈ Λ and X ∩ Y /∈ Λ, then h(X ∪ Y) + h(X ∩ Y) ≤ h(X) + h(Y)− 1.

Lemma 3.3.4. Let V be a vector space over a finite field K and let V1, . . . , VN be proper

subspaces of V. Then V1 ∪ · · · ∪ VN ̸= V if N < |K|.
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Proposition 3.3.5. Let Z be an integer polymatroid on J and let Γ be a Π-partite access

structure whose minimal vectors coincide with the bases of Z . Then Γ is a matroid port.

Moreover, if Z is K-representable, then Γ is an L-vector space access structure for every

large enough finite extension L of K.

Proof. The polymatroid Z = (J, h) and access structure Λ = {X ⊆ J :

h(X) = h(J)} satisfy the conditions in Proposition 3.3.3. Let Z ′ be the integer

polymatroid whose existence is given by Proposition 3.3.3. The minimal vectors

of Γj0(Z ′, Π) coincide with the bases of Z , and hence Γ is a matroid port by

Theorem 3.2.4. Moreover, if Z is K-representable, and K is large enough, then

Z ′ is K-representable. Indeed, consider a K-vector space V and vector subspaces

(Vi)i∈J forming a K-representation of Z . A representation of Z ′ is obtained by

finding a vector v0 ∈ V such that v0 /∈ ∑i∈X Vi for every X ⊆ J with h(X) < h(J).

Since ∑i∈X Vi ̸= V if h(X) < h(J), by Lemma 3.3.4 such a vector exists if K is large

enough. Applying Theorem 3.2.4 again, Γ = Γj0(Z ′, Π) is an L-vector space access

structure if L is a large enough finite extension of K.

3.4 Compartmented Access Structures

3.4.1 Compartmented Access Structures with Upper and Lower

Bounds

Simmons [87] introduced the compartmented access structures in opposition to

the hierarchical ones. Basically, compartmented access structures can be seen as a

modification of threshold access structures to be used in situations that require the
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agreement of several parties. In a compartmented structure, all minimal qualified

subsets have the same size, but other requirements are added about the number of

participants in every part, or the number of involved parts.

The first examples of compartmented access structures were introduced by

Simmons [87]. Brickell [22] introduced a more general family, the so-called

compartmented access structures with lower bounds, and showed how to construct

ideal secret sharing schemes for them. These are the Π-partite access structures

defined by min Γ = {u ∈ P : |u| = t and u ≥ a} for some vector a ∈ Z
J
+ and some

positive integer t with t ≥ |a|. The compartmented access structures with upper bounds

are the Π-partite access structures with min Γ = {u ∈ P : |u| = t and u ≤ b},

where b ∈ Z
J
+ and t ∈ Z+ are such that bi ≤ t ≤ |b| for every i ∈ J. They were

introduced by Tassa and Dyn [92], who constructed ideal secret sharing schemes

for them.

We introduce in the following a new family of compartmented access structures

that generalize the previous ones. Namely, we prove that the compartmented

access structures that are defined by imposing both upper and lower bounds on

the number of participants in every part are ideal.

For a positive integer t and a pair of vectors a, b ∈ Z
J
+ with a ≤ b ≤ Π(P), and

|a| ≤ t ≤ |b|, and bi ≤ t, consider the Π-partite access structure Γ defined by

min Γ = {u ∈ P : |u| = t and a ≤ u ≤ b}. (3.4.1)

The compartmented access structures with upper bounds and the ones with lower

bounds correspond to the compartmented access structures defined above with
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a = 0 and with b = Π(P), respectively.

We prove in the following that the access structures (3.4.1) are ideal by checking

that they are of the form Γj0(Z ′, Π) for a certain family of representable integer

polymatroids. Given a positive integer t and two vectors a, b ∈ Z
J
+ with a ≤ b and

|a| ≤ t ≤ |b|, consider the vector c = b − a ∈ Z
J
+ and the integer s = t − |a| ∈ Z+.

Let Z1 be the integer modular polymatroid defined by the vector a, and let Z2

be the s-truncation of the integer modular polymatroid defined by the vector c.

Then the integer polymatroid Z = (J, h) = Z1 + Z2 is representable over every

large enough finite field. Since the family of bases of Z1 and Z2 are, respectively,

B1 = {a} and B2 = {u ∈ Z
J
+ : u ≤ c and |u| = s}, the family of bases of Z

is B = B1 + B2 = {u ∈ Z
J
+ : |u| = t and a ≤ u ≤ b}. By Proposition 3.3.5,

this proves that the compartmented access structures of the form (3.4.1) are vector

space access structures over every large enough finite field.

3.4.2 A Construction of an Ideal Compartmented Secret Sharing

Scheme

The previous proof does not provide a method to construct an ideal secret sharing

scheme for the compartmented access structures with upper and lower bounds.

The same applies to the proofs for the other families that are considered in

this paper. As it is discussed in Section 3.7, for most of those families, no

efficient method is known to construct ideal schemes. Nevertheless, non-efficient

methods can be derived from the results in [41]. In order to illustrate them, we

present an actual construction of an ideal secret sharing scheme for a particular
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compartmented access structure.

Consider a set of participants P and a 3-partition Π = (Π1, Π2, Π3) with |Πi| =

4 for i = 1, 2, 3. Let Γ be the compartmented access structure with

min Γ = {u ∈ P : |u| = 5 and (2, 0, 1) ≤ u ≤ (3, 2, 2)}

= {(3, 0, 2), (3, 1, 1), (2, 1, 2), (2, 2, 1)}.

That is, Γ is of the form (3.4.1) for a = (2, 0, 1), b = (3, 2, 2) and t = 5. This

access structure does not belong to any of the families of compartmented structures

described in [22, 87, 92].

From Section 3.4.1, we know that Γ is a vector space access structure. Therefore,

Γ = Γj0(Z ′, Π) for some representable integer polymatroid Z ′. Our first step is to

determine Z ′ and to find a representation for it. This is done by using the ideas and

results from Section 3.4.1. Take c = b − a = (1, 2, 1) and s = t − |a| = 2. Let Z1 be

the integer modular polymatroid defined by the vector a and Z2 the s-truncation

of the integer modular polymatroid defined by the vector c. The minimal vectors

of Γ are the bases of the integer polymatroid Z = Z1 +Z2. Indeed, the families of

bases of Z1 and Z2 are respectively, B1 = {(2, 0, 1)} and

B2 = {u ∈ Z3
+ : u ≤ (1, 2, 1) and |u| = 2} = {(1, 0, 1), (1, 1, 0), (0, 1, 1), (0, 2, 0)}.

Then the family B = B1 + B2 of bases of Z coincides with min Γ. Consider the

extension Z ′ = (J′, h) of Z such that, for every X ⊆ J = {1, 2, 3},

• h(X ∪ {j0}) = h(X) if h(X) = h(J), and
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• h(X ∪ {j0}) = h(X) + 1 otherwise.

By Proposition 3.3.5, Γ = Γj0(Z ′, Π).

The proof of Proposition 3.3.5 provides the tools to find a representation of

Z ′. A representation of Z is needed and, since Z = Z1 + Z2, it is obtained from

representations from these two polymatroids. Let K be a large enough finite field.

More specific requirements on the size of K will be given in the following. The

subspaces W1 = ⟨(1, 0, 0), (0, 1, 0)⟩, W2 = {0}, and W3 = ⟨(0, 0, 1)⟩ of K3 form

a K-representation of the modular polymatroid Z1. Since Z2 is a 2-truncation

of a modular polymatroid, a representation for it can be found from the proof

of Proposition 3.3.1. Namely, given four different elements x1, x2, x3, x4 in K,

the vector spaces W ′
1 = ⟨ψ2(x1)⟩, W ′

2 = ⟨ψ2(x2), ψ2(x3)⟩, and W ′
3 = ⟨ψ2(x4)⟩

of K2 form a K-representation of Z2. Nevertheless, in this case we can find a

simpler representation for Z2 that works over every field. Namely, the one given

by the vector spaces W ′′
1 = ⟨(1, 0)⟩, W ′′

2 = K2, and W ′′
3 = ⟨(0, 1)⟩ Therefore,

the subspaces Vi = Wi × W ′′
i of K5 form a K-representation of Z , At this point,

we use this representation of Z to construct a K-representation of Z ′. Since

h({1, 3}) = h(J) = 5 and h({1, 2}), h({2, 3}) < 5, we have to find a vector in

K5 that is neither in V1 + V2 nor in V2 + V3. The vector (1, 1, 1, 0, 0) satisfies these

requirements. Summarizing, the subspaces

• Vj0 = ⟨(1, 1, 1, 0, 0)⟩,

• V1 = ⟨(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 0, 1, 0)⟩,

• V2 = ⟨(0, 0, 0, 1, 0), (0, 0, 0, 0, 1)⟩, and
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• V3 = ⟨(0, 0, 1, 0, 0), (0, 0, 0, 0, 1)⟩

form a K-representation of Z ′.

The second step is to construct a K-vector space secret sharing scheme for Γ

from the representation (Vi)i∈J′ of Z ′. This is done by using the results in [41,

Section 6]. Namely, given Πj0 = {p0} and the partition Π′ = (Πj0 , Π1, Π2, Π3)

of P′ = P ∪ {p0}, we have to find a K-representation for the Π′-partite matroid

M = (P′, r) such that Γ = Γp0(M). Such a representation consists of a 5 × 13

matrix M = (Mj0 |M1|M2|M3) over K, in which, for every i ∈ J′, the columns

of Mi correspond to the players in Πi. The matrix M must have the following

properties.

1. Mi is a 5 × |Πi| whose columns are vectors in Vi.

2. If u = (uj0 , u1, u2, u3) is a basis of Z ′, every 5 × 5 submatrix of M formed by

ui columns in every Mi is nonsingular.

The linear code generated by such a matrix defines a K-vector space secret sharing

scheme for Γ. According to [41, Corollary 6.7], such a matrix exists if |K| >

(13
5 ) = 1287, but we show next that it exists as well over much smaller fields.

The submatrix Mj0 , which has only one column, is given by a nonzero vector

in Vj0 . Since every 3 columns of M1 must be linearly independent, they can be

Vandermonde-like linear combinations of the vector in the above basis of V1. We

do the same for the columns of M2 and M3. Therefore, we take the columns of M1,

M2 and M3 of the forms (1, λ, 0, λ2, 0), (0, 0, 0, 1, µ), and (0, 0, 1, 0, γ), respectively.

At this point, we have to find values (λi)1≤i≤4, (µi)1≤i≤4, and (γi)1≤i≤4 in some
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finite field K such that the matrix

M =



1 1 1 1 1 0 0 0 0 0 0 0 0

1 λ1 λ2 λ3 λ4 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 1 1 1

0 λ2
1 λ2

2 λ2
3 λ2

4 1 1 1 1 0 0 0 0

0 0 0 0 0 µ1 µ2 µ3 µ4 γ1 γ2 γ3 γ4


satisfies the second property above. The bases of Z ′ are (0, 2, 1, 2), (0, 2, 2, 1),

(0, 3, 0, 2), (0, 3, 1, 1), (1, 1, 1, 2), (1, 2, 0, 2), (1, 2, 1, 1), (1, 1, 2, 1), (1, 2, 2, 0), (1, 3, 0, 1),

and (1, 3, 1, 0). By using a simple computer program, one can check different sets

of values of the parameters until a satisfactory one is found. A possible solution is

the following matrix over F23.

M =



1 1 1 1 1 0 0 0 0 0 0 0 0

1 0 −1 2 6 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 1 1 1

0 0 1 4 −10 1 1 1 1 0 0 0 0

0 0 0 0 0 1 −1 2 −2 5 −5 7 9


Therefore, M is the generator matrix of a linear code that defines an F23-vector

space secret sharing scheme with access structure Γ.
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3.4.3 Compartmented Compartments

We introduce next another family of compartmented access structures. In this case,

instead of an upper bound for every compartment, we have upper bounds for

groups of compartments. Take J = [1, m]× [1, n] and a partition Π = (Πij)(i,j)∈J of

the set P of participants. Take vectors a ∈ Z
J
+ and b ∈ Zm

+, and an integer t with

|a| ≤ t ≤ |b| and ∑n
j=1 aij ≤ bi ≤ t for every i ∈ [1, m]. Consider the Π-partite

access structure Γ defined by

min Γ =

{
u ∈ P : |u| = t, and a ≤ u, and

n

∑
j=1

uij ≤ bi for every i ∈ [1, m]

}
.

That is, the compartments are distributed into m groups and we have an upper

bound for the number of participants in every group of compartments, while we

have a lower bound for every compartment.

We prove next that these access structures admit a vector space secret sharing

scheme over every large enough finite field. Consider the vector c ∈ Zm
+ defined

by ci = bi − ∑n
j=1 aij and the integer s = t − |a| ∈ Z+. Let Z1 be the integer

modular polymatroid with ground set J defined by the vector a. Let Z3 the integer

polymatroid with ground set J and family of bases

B3 =

{
u ∈ Z

J
+ :

n

∑
j=1

uij = ci for every i ∈ [1, m]

}
,

and let Z2 be the s-truncation of Z3. Finally, take Z = Z1 +Z2.

Lemma 3.4.1. The minimal qualified sets of Γ coincide with the bases of Z .

Proof. Let B and B2 be the families of bases of Z and Z2, respectively. The bases of
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Z are precisely the vectors of the form u = a+ v with v ∈ B2. Observe that a vector

v ∈ Z
J
+ is in B2 if and only if |v| = s and ∑n

j=1 vij ≤ ci for every i ∈ [1, m].

Lemma 3.4.2. The integer polymatroid Z is representable over every large enough finite

field.

Proof. We only have to prove that this holds for Z2. By Proposition 3.3.1, for every

large enough finite field K there exist subspaces (Vi)i∈[1,m] of a K-vector space V

that form a representation of the s-truncation of the modular polymatroid with

ground set [1, m] defined by the vector c. Then the subspaces (Wij)(i,j)∈J of V with

Wij = Vi for every j ∈ [1, n] form a representation of Z2.

3.4.4 Other Compartmented Access Structures

The dual Γ∗ of an access structure Γ on P is the access structure on the same set

defined by Γ∗ = {A ⊆ P : Pr A /∈ Γ}. Observe that Γ∗∗ = Γ, and that Γ is Π-

partite for some partition Π if and only if Γ∗ is so. Moreover, Γ admits a K-vector

space secret sharing scheme for some finite field K if and only if Γ∗ does [56].

Let Π be an m-partition of a set P of participants. Given t′ ∈ Z+ and a′ ∈ Z
J
+

with |a′| ≤ t′, consider the compartmented access structure with lower bounds

Γ = {u ∈ P : |u| ≥ t′ and u ≥ a′}.

Take t = |P| − t′ + 1 and the vector a ∈ Z
J
+ defined by ai = |Πi| − a′i + 1. Then the

dual of Γ is the access structure

Γ∗ = {u ∈ P |u| ≥ t or ui ≥ ai for some i ∈ J}. (3.4.2)
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Therefore, for every t ∈ Z+ and a ∈ Z
J
+ with |a| ≥ t + m − 1, the access struc-

ture (3.4.2) admits a K-vector space secret sharing scheme for every large enough

field K. This can be proved as well by checking that the access structure (3.4.2) is

of the form Γj0(Z ′, Π), being Z ′ the truncation of a Boolean polymatroid. Indeed,

let B be a set with |B| = |a| −m+ 1 and take subsets (Bi)i∈J′ of B such that |Bj0 | = 1

and |Bi| = ai for every i ∈ J, and Bi ∩ Bj = Bj0 for every i, j ∈ J with i ̸= j. Let Z ′

be the t-truncation of the Boolean polymatroid defined by this family of subsets.

Clearly Γj0(Z ′, Π) is equal to the access structure (3.4.2).

Simmons [87] introduced another family of compartmented access structures,

in which the authorized subsets must have at least a certain number of participants

in a certain number of the parts. Specifically, given s ∈ Z+ with 1 ≤ s ≤ m

and a vector a ∈ Z
J
+, consider the m-partite access structure Γ such that a vector

u ∈ P is in Γ if and only if |{i ∈ J : ui ≥ ai}| ≥ s. This access structure is

in fact a composition of threshold structures, and hence it admits a K-vector space

secret sharing scheme for every K with |K| ≥ max{m, |Π1|, . . . , |Πm|}. Indeed, this

is done by computing shares of the secret value according to an (s, m)-threshold

scheme and redistributing each of the m shares according to an (ai, |Πi|)-threshold

scheme.

We consider now a slightly modification of these structures, in which we

additionally require the authorized subsets to have at least t participants. The

resulting access structures are not ideal in general, and we can prove that by using

as well the connection between ideal multipartite access structures and integer

polymatroids. For instance, consider such an access structure Γ given by m = 3,

s = 2, t = 7, and a = (3, 3, 3). Suppose that it is ideal, and let Z ′ be the integer
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polymatroid such that Γ = Γj0(Z ′, Π). Since (3, 3, 1) and (3, 1, 3) are in min Γ, they

are bases of Z = Z ′|J. By the exchange property, (3, 2, 2) is a basis of Z ′ too, a

contradiction because (3, 2, 2) /∈ Γ.

3.5 Ideal Partially Hierarchical Access Structures

3.5.1 Ideal Hierarchical Access Structures

For an access structure Γ on a set P, we say that a participant p ∈ P is hierarchically

superior in Γ to a participant q ∈ P, and we write q ≼ p, if A ∪ {p} ∈ Γ for every

A ⊆ Pr {p, q} with A ∪ {q} ∈ Γ. Two participants are hierarchically equivalent if

q ≼ p and p ≼ q. Observe that, if Γ is Π-partite, every pair of participants in the

same part Πi are hierarchically equivalent. Because of that, the relation ≼ induces

a partial order on Π.

An access structure is hierarchical if every pair of participants are hierarchically

comparable. In this situation, the hierarchical order ≼ is a total order on

Π. Weighted threshold access structures, which were introduced by Shamir [82]

in his seminal work, are hierarchical, but they are not ideal in general. The

ideal weighted threshold access structures were characterized by Beimel, Tassa

and Weinreb [12]. Other examples of hierarchical access structures are the the

multilevel access structures introduced by Simmons [87], which were proved

to be ideal by Brickell [22], and the hierarchical threshold access structures

presented by Tassa [90]. These were the only known families of ideal hierarchical

access structures before the connection between integer polymatroids and ideal
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multipartite secret sharing presented in [41] made it possible to characterize the

ideal hierarchical access structures [43]. Actually, all ideal hierarchical access

structures are obtained from a special class of Boolean polymatroids [43] and,

because of that, they are vector space access structures over every large enough

finite field. Moreover, they admit a very compact description, as we see in the

following.

Consider two sequences a = (a0, . . . , am) and b = (b0, . . . , bm) of integer

numbers such that a0 = a1 = b0 = 1 and ai ≤ ai+1 ≤ bi ≤ bi+1 for every

i ∈ [0, m − 1]. Take J = [1, m] and j0 = 0. Consider the Boolean polymatroid

Z ′ = Z ′(a, b) with ground set J′ = [0, m], given the sets Bi = [ai, bi] for i ∈ [0, m]

of the set B = [1, bm]. It is proved in [43] that a vector u ∈ P ⊆ Zm
+ is in the Π-

partite access structure Γ = Γ0(Z ′, Π) if and only if there exists i0 ∈ [1, m] such

that ∑i0
j=1 uj ≥ bi0 , and ∑i

j=1 uj ≥ ai+1 − 1 for all i ∈ [1, i0 − 1]. Therefore, the

participants in Πi are hierarchically superior to the participants in Πj if i ≤ j, and

hence every access structure of the form Γ0(Z ′(a, b), Π) is hierarchical. Moreover,

every ideal hierarchical access structure is of this form or it can be obtained from a

structure of this form by removing some participants [43].

In particular, if ai = 1 for all i ∈ [0, m] and 1 = b0 ≤ b1 < · · · < bm, then u ∈

Γ0(Z ′(a, b), Π) if and only if ∑i0
j=1 uj ≥ bi0 for some i0 ∈ [1, m]. These are precisely

the multilevel access structures introduced by Simmons [87], also called disjunctive

hierarchical threshold access structures by other authors [90]. They were proved to be

ideal by Brickell [22]. On the other hand, the conjunctive hierarchical threshold access

structures for which Tassa [90] constructs ideal secret sharing schemes are obtained

by considering 1 = a0 = a1 < · · · < am and 1 = b0 < b1 = · · · = bm. In this
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case, u ∈ Γ0(Z ′(a, b), Π) if and only if ∑i
j=1 uj ≥ ai+1 − 1 for all i ∈ [1, m − 1] and

∑m
j=1 uj ≥ bm. Observe that, in an access structure in the first family there may be

qualified subsets involving only participants in the lowest level. This is not the

case in any access structure in the second family, because every qualified subset

must contain participants in the highest level.

By using the results in [43], we can find other ideal hierarchical access structures

with more flexible properties. If we take, for instance, a = (1, 1, 1, 5, 5) and

b = (1, 4, 6, 10, 12), every qualified subset in the hierarchical access structure

Γ0(Z ′(a, b), Π) must contain participants in the first two levels, but some of them

do not have any participant in the first level.

3.5.2 Partial Hierarchies from Boolean Polymatroids

Moreover, by considering other Boolean polymatroids, we can find other families

of ideal access structures satisfying some given partial hierarchy, that is, Π-partite

access structures in which the hierarchical relation ≼ on Π is a partial order.

We present next an example of such a family of ideal partially hierarchical access

structures. Consider a family of subsets (Bi)i∈[0,m] of a finite set B satisfying:

• |B0| = 1 and B0 ⊆ B1, while B0 ∩ Bi = ∅ if i ∈ [2, m], and

• B1 ∩ Bi ̸= ∅ for every i ∈ [2, m], and

• Bi ∩ Bj = ∅ for every i, j ∈ [2, m] with i ̸= j.

Let Z ′ be the Boolean polymatroid with ground set J′ = [0, m] defined from this

family of subsets, and consider the Π-partite access structure Γ = Γ0(Z ′, Π). Take
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t1 = |B1|, and ti = |Bi r B1| and si = |Bi ∩ B1| for i ∈ [2, m]. Then a vector x ∈ P is

in the access structure Γ if and only if there exist a vector u ∈ P such that

• u ≤ x,

• 1 ∈ supp(u) = X, |u| = ∑i∈X ti,

• for every Y ⊆ X, |u(Y)| ≤ ∑i∈Y(ti + si), where s1 = 0.

Clearly, q ≼ p if p ∈ Π1 and q ∈ Πi for some i ∈ [2, m]. On the other hand, any two

participants in two different parts Πi, Πj with i, j ∈ [2, m] are not hierarchically

related.

3.5.3 Compartmented Access Structures with Hierarchical Com-

partments

We can consider as well compartmented access structures with hierarchical com-

partments. Take J = [1, m] × [1, n] and a partition Π = (Πij)(i,j)∈J of the set P

of participants. Consider a finite set B and a family of subsets (Bij)(i,j)∈J such

that Bin ⊆ · · · ⊆ Bi2 ⊆ Bi1 for every i ∈ [1, m], and B11 ∪ · · · ∪ Bm1 = B, and

Bi1 ∩ Bj1 = ∅ if i ̸= j. Let Z be the t-truncation of the Boolean polymatroid

defined by this family of subsets. If Γ is a Π-partite access structure such that

its minimal vectors coincide with the bases of Z , then Γ is a vector space access

structure over every large enough finite field. We now describe Γ. For (i, j) ∈ J,

take bij = |Bij|. Consider the vector b = (b11, . . . , bm1) ∈ Zm
+. Of course, |b| = |B|.

Suppose bi1 ≤ t ≤ |b| for every i ∈ [1, m]. It is not difficult to check that a vector

u ∈ Z
J
+ is a basis of Z , and hence a minimal vector of Γ, if and only if |u| = t and
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∑n
k=j uik ≤ bij for every (i, j) ∈ J. Observe that Γ can be seen as a compartmented

access structure with compartments Πi =
∪n

j=1 Πij for i ∈ [1, m], because every

minimal qualified subset has exactly t participants, and at most bi1 of them in

compartment Πi. In addition, we have a hierarchy within every compartment.

Actually, q ≼ p if p ∈ Πij and q ∈ Πik with j ≤ k.

The ideal compartmented access structures introduced in Section 3.4.4 can be

modified in a similar way to introduce a hierarchy in every compartment. Take

J = [1, m] × [1, n], J′ = J ∪ {0}, and a partition Π = (Πij)(i,j)∈J of the set P of

participants. Consider a finite set B, a family of subsets (Bij)(i,j)∈J and B0 such that

|B0| = 1, B0 ⊆ Bi1 ⊆ · · · ⊆ Bin for every i ∈ [1, m], and Bin ∩ Bjn = B0 for i ̸= j.

For (i, j) ∈ J, take bij = |Bij|. Let Z ′ be the t-truncation of the Boolean polymatroid

on J′ defined by this family of subsets. Then the access structure Γ = Γ0(Z ′, Π) is

a vector space access structure over every large enough finite field. In this case, a

vector u ∈ Z
J
+ is a basis of Z = Z ′|J if and only if |u| = t and ∑n

k=j xik ≤ bij for

every (i, j) ∈ J. Observe that B(Z , X) ⊆ Γ for every nonempty subset X ⊆ J, so Γ

can be described as follows

Γ =

{
u ∈ ZJ : |u| ≥ t or

k

∑
j=1

uij ≥ bik for some (i, k) ∈ J

}
.

3.6 Ideal Uniform Multipartite Access Structures

Herranz and Sáez [51, Section 3.2] introduced a family of ideal multipartite access

structures that can be seen as a variant of the compartmented ones. Specifically,
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given integers 1 ≤ k ≤ t, consider the Π-partite access structure defined by

Γ = {u ∈ P : |u| ≥ t and | supp(u)| ≥ k}. (3.6.1)

It is proved in [51] that Γ is a vector space access structure over every large enough

finite field. Observe that the parts in the partition Π = (Πi)i∈J are symmetrical

in Γ. That is, the minimal vectors of Γ are invariant under any permutation on J.

In the following, we characterize all ideal multipartite access structures with this

property.

A Π-partite access structure Γ is said to be uniform if the set min Γ ⊆ Z
J
+ of

its minimal vectors is symmetric, that is, if u = (ui)i∈J ∈ min Γ, then σu =

(uσi)i∈J ∈ min Γ for every permutation σ on J. In this section, we characterize

the uniform multipartite access structures that admit an ideal secret sharing

scheme. Moreover, we prove that all such access structures are vector space access

structures over every large enough finite field. This is done by using the uniform

integer polymatroids described in Section 2.3.1 to construct a family of uniform

multipartite access structures that admit a vector space secret sharing scheme over

every large enough finite field. Then we prove in Theorem 3.6.3 that every ideal

uniform multipartite access structure is a member of this family.

Let Z be a uniform integer polymatroid with increment vector δ on a ground

set J with |J| = m. For i ∈ [1, m], consider hi = ∑i
j=1 δj and h0 = 0, the values of the

rank function of Z . Recall that the (k, m)-threshold access structure on J consists

of all subsets of J with at least k elements.

Lemma 3.6.1. For an integer k ∈ [1, m], there exists an integer polymatroid Z ′
k on J′ =
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J ∪ {j0} with h({j0}) = 1 and Z = Z ′
k|J such that Γj0(Z ′

k) is the (k, m)-threshold access

structure on J if and only if 1 ≤ k ≤ m − 1 and δk > δk+1, or k = m and δm > 0.

Proof. If there exists a polymatroid Z ′ with the required properties, then the first

condition in Proposition 3.3.3 implies that hk−1 < hk, while hk+1 + hk−1 < 2hk if

1 ≤ k ≤ m − 1 by the second one. Therefore, our condition is necessary. We prove

now sufficiency. Let Λ be the (k, m)-threshold access structure on J. Observe that

hk > hk−1 because δk > 0, and hence h(X) < h(Y) if X ⊆ Y ⊆ J and X /∈ Λ while

Y ∈ Λ. Consider now two subsets X, Y ∈ Λ such that X ∩ Y /∈ Λ. This implies in

particular that k < m. Take r1 = |X| ≥ k, r2 = |Y| ≥ k, and s = |X ∩ Y| < k. Then

hr1+r2−s − hr2 =
r1−s

∑
i=1

δr2+i <
r1−s

∑
i=1

δs+i = hr1 − hs.

The inequality holds because k = s + i0 for some i0 ∈ [1, r1 − s], and hence δs+i0 >

δr2+i0 . Therefore, h(X ∪ Y) + h(X ∩ Y) < h(X) + h(Y). By Proposition 3.3.3, this

concludes the proof.

Consider an integer k ∈ [1, m] in the conditions of Lemma 3.6.1 and the

corresponding integer polymatroid Z ′
k. For a partition Π = (Πi)i∈J of a set P

of participants, consider the Π-partite access structure Γ = Γj0(Z ′
k, Π). A vector

v ∈ P is in Γ if and only if there exists a vector u with 0 ≤ u ≤ v such that

• s = | supp(u)| ≥ k and |u| = hs, and

• |u(Y)| ≤ hi for every i ∈ [1, m] and for every Y ⊆ J with |Y| = i.

As a consequence of the next lemma, Γ = Γj0(Z ′
k, Π) is a vector space access

structure over every large enough finite field.
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Lemma 3.6.2. The integer polymatroid Z ′
k is representable over every large enough finite

field.

Proof. The integer polymatroid Z = Z ′
k|J is uniform, and hence it is representable

over every finite field with at least m elements. By the proof of Proposition 3.3.2,

this polymatroid is of the form Z = Ur1,m + · · · + Urδ1
,m, where rj = max{i ∈

Jm : δi ≥ j}. Consider a finite field K with |K| ≥ ( m
k−1). For an integer

r > 0, consider the mapping ψr : K → Kr defined by ψr(x) = (1, x, . . . , xr−1).

For every i ∈ J take xi ∈ K such that xi ̸= xj if i ̸= j. Consider the vector

space V = Khm = Kr1 × · · · × K
rδ1 and, for every i ∈ J, the subspace Vi ⊆ V

spanned by the vectors (ψr1(xi), 0, . . . 0), . . . , (0, . . . , 0, ψrδ1
(xi)). These subspaces

form a representation of Z . We have to find now a vector v0 ∈ V to complete it to

a representation of Z ′
k. This vector must satisfy that v0 ∈ ∑i∈X Vi for every X ⊆ J

with |X| = k, while v0 /∈ ∑i∈X Vi for every X ⊆ Jm with |X| = k − 1. Clearly, δk > 0

and rδk = k. For every X ⊆ J, consider the subspace WX ⊆ Kt spanned by the

vectors (ψk(xi))i∈X. Then WX  Kk if |X| = k − 1. By Lemma 3.3.4, there exists a

vector v ∈ Kt such that v /∈ WX for every X ⊆ J with |X| = t − 1. Then the vector

v0 = (0, . . . , 0, uδk , 0 . . . , 0) ∈ V with uδk = v satisfies the required conditions.

Theorem 3.6.3. Let Π = (Πi)i∈J with |J| = m be a partition of a set P of participants and

let Γ be a uniform Π-partite access structure. Then Γ is a matroid port if and only if there

exist a uniform integer polymatroid Z on J and an integer k ∈ [1, m] in the conditions of

Lemma 3.6.1 such that Γ = Γj0(Z ′
k, Π). In particular, every uniform multipartite matroid

port is a vector space access structure over every large enough finite field.

Proof. Without loss of generality, we can assume that all parts Πi have the same
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cardinality. By Theorem 3.2.4, if Γ is a matroid port, there exists an integer

polymatroid Z ′ with ground set J′ = J ∪ {j0} such that Γ = Γj0(Z ′, Π). Consider

Z = Z ′|J. Every permutation τ on P such that for every i ∈ J there is j ∈ J

with τ(Πi) = Πj is an automorphism of Γ. This implies that every permutation σ

on J is an automorphism of Z , and hence Z is a uniform integer polymatroid.

Clearly, every permutation σ on J is also an automorphism of the access structure

Γj0(Z ′) on J, and hence Γj0(Z ′) is the (k, m)-threshold access structure on J for

some k ∈ [1, m]. This implies that the uniform integer polymatroid Z and the

integer k satisfy the conditions in Lemma 3.6.1 and that Z ′ = Z ′
k.

The uniform multipartite access structures of the form (3.6.1) were proved to be

ideal in [51]. By using the previous characterization, we obtain a shorter proof for

this fact. Consider the uniform integer polymatroid Z on J with increment vector

δ defined by δ1 = t − k + 1, and δi = 1 if i ∈ [2, k], and δi = 0 if i ∈ [k + 1, m].

Consider the integer polymatroid Z ′
k whose existence is given by Lemma 3.6.1.

We claim that every Π-partite access structure Γ of the form (3.6.1) is equal to

Γj0(Z ′
k, Π). Indeed, a vector v ∈ P is in Γj0(Z ′

k, Π) if and only if there exists a

vector u with 0 ≤ u ≤ v such that

• s = | supp(u)| ≥ k and |u| = hs = t, and

• |u(Y)| ≤ hi for every i ∈ [1, m] and for every Y ⊆ J with |Y| = i.

Since hi = t − k + i for every i ∈ [1, k], it is clear that every vector u ∈ P satisfying

the first condition satisfies the second as well.
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3.7 Efficiency of the Constructions of Ideal Multipar-

tite Secret Sharing Schemes

Several families of ideal multipartite access structures have been presented in the

previous sections. We proved that every one of these structures admits a vector

space secret sharing scheme over every large enough finite field. Our proofs are

not constructive, but a general method to construct vector space secret sharing

schemes for multipartite access structures that are associated to representable

integer polymatroids was given in [41]. Unfortunately, this method is not efficient,

and no general efficient method is known.

Some issues related to the efficiency of the constructions of ideal schemes

for several particular families of multipartite access structures have been con-

sidered [15, 22, 49, 90, 92]. We describe in the following a unified framework,

derived from the general results in [41], in which those open problems can be more

precisely stated.

Take J = [1, m] and let (Πi)i∈J be a partition of the set P of participants, where

|Πi| = ni and |P| = n. Take J′ = J ∪ {0}, that is, j0 = 0 and consider an integer

polymatroid Z ′ = (J′, h) with ki = h({i}) ≤ ni for every i ∈ J and k0 = h({0}) =

1, and take k = h(J′). Consider as well a finite field K and a K-representation

(Vi)i∈J′ of Z ′. In this situation, one has to find a matrix M = (M0|M1| · · · |Mm)

over K with the following properties:

1. Mi is a k × ni matrix (n0 = 1) whose columns are vectors in Vi.

2. If u = (u0, u1, . . . , um) is a basis of Z ′, every k × k submatrix of M formed by
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ui columns in every Mi is nonsingular.

As a consequence of the results in [41], every such a matrix M defines a vector

space secret sharing scheme for the multipartite access structure Γ0(Z ′, Π).

One of the unsolved questions is to determine the minimum size of the fields

over which there exists a vector space secret sharing scheme for Γ0(Z ′, Π). An

upper bound can be derived from [41, Corollary 6.7]. Namely, such a matrix M

exists if |K| > (n+1
k ). The best known lower bound is linear on the number of

participants, and it can be derived from the known results about the existence of

maximum distance separable codes. Even though very large fields are required

in general to find such a matrix by using the known methods, the number of

bits to represent the elements in the base field is polynomial on the number of

participants, and hence the computation of the shares and the the reconstruction

of the secret value can be efficiently performed in such a vector space secret sharing

scheme.

Another open problem is the existence of efficient methods to construct a vector

space secret sharing scheme for Γ = Γ0(Z ′, Π), that is, the existence of polynomial-

time algorithms to compute a matrix M with the properties above. One important

drawback is that no efficient method is known to check whether a matrix M

satisfying Property 1 satisfies as well Property 2. Moreover, this seems to be related

to some problems about representability of matroids that have been proved to be

co-NP-hard [78].

We discuss in the following some general construction methods that can be

derived from the techniques introduced in previous works [15,22,49,74,90,92] for
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particular families of multipartite access structures.

The first method, which was used in [22,74] and other works, consists basically

in constructing the matrix M column by column, checking at every step that all

submatrices that must be nonsingular are so. Arbitrary vectors from the subspaces

Vi can be selected at every step, but maybe a wiser procedure is to take vectors

of some special form as, for instance, Vandermonde linear combinations of some

basis of Vi. In any case, an exponential number of determinants have to be

computed.

A probabilistic algorithm was proposed in [90, 92] for multilevel and compart-

mented access structures. Namely, the vectors from the subspaces Vi are selected

at random. This method applies as well to the general case and the success

probability is at least 1− (n+1
k )N|K|−1, where N = ∑i∈J kini. By using this method,

a matrix M that, with high probability, defines a secret sharing scheme for the given

access structure can be obtained in polynomial time. Nevertheless, no efficient

methods to check the validity of the output matrix are known.

Brickell [22] and by Tassa [90] proposed efficient construction methods for

the hierarchical threshold access structures. Other related solutions appeared

in [15, 49] for very particular cases of hierarchical threshold access structures. To

better understand these methods, let us consider first the case of the threshold

access structures. If the field |K| is very large, n + 1 randomly chosen vectors

from Kk will define with high probability an ideal (k, n)-threshold scheme.

Nevertheless, no efficient algorithm to check the validity of the output is available.

One can instead choose n + 1 vectors of the Vandermonde form, and in this

case an ideal (k, n)-threshold scheme is obtained, and of course we can check its
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validity in polynomial time. The solutions proposed in those works are based on

the same idea. Namely, the vectors from the subspaces Vi have to be of some

special form such that a matrix with the required properties is obtained and,

in addition, the validity of the output can be efficiently checked. The solution

proposed by Brickell [22], which requires to compute a primitive element in an

extension field whose extension degree increases with the number of participants,

is efficient by using Shoup’s algorithm [85]. The one proposed in [90, Section

3.3], which works only for prime fields, provides a polynomial time algorithm

to construct a vector space secret sharing scheme for every hierarchical threshold

access structure. Recently, similar efficient constructions of representations for all

bipartite matroids have been presented [4]. The existence of efficient methods for

other families of multipartite access structures is an open problem.
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Chapter 4

Lower Bounds on Information Ratio

by Linear Programming

4.1 Introduction

In this chapter we focus on the information ratio of a secret sharing scheme Σ, that

is σ(Σ) defined in the Section 2.5, which is an important parameter for efficiency

of constructing secret sharing schemes. We prefer ideal secret sharing scheme,

whose information ratio is 1. However, there are much more access structures that

does not admit any ideal access structure. We will give a general method by using

linear programming to obtain the lower bounds of secret sharing schemes for a

given access structure. This method is effectively done for access structures on a

small number of participants and through this method we can get the best lower

bound that can be found by combinatorial method.

Recall the definition of information ratio in Section 2.5. The optimal information
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ratio σ(Γ) of an access structure Γ is defined as the infimum of the information

ratios of all secret sharing schemes for Γ. The optimal average information ratios σ̃(Γ)

is defined analogously. Moreover, in every secret sharing scheme, the length of

every share is at least the length of the secret [59]. Clearly, 1 ≤ σ̃(Γ) ≤ σ(Γ).

Determining the values of these parameters is one of the main open problems

in secret sharing. Even though many partial results have been found, important

questions remain unsolved. In particular, the asymptotic behavior of these

parameters is unknown and there is a huge gap between the best known upper

and lower bounds. Because of the difficulty of finding general results, this

problem has been considered for several particular families of access structures

in [19, 31–33, 35, 42, 57, 64] among other works. And a great achievement has

been obtained recently by Csirmaz and Tardos [33] by determining the optimal

information ratio of all access structures defined by trees.

In a linear secret sharing scheme, the secret value and the shares are vectors

over some finite field, and every share is the value of a given linear map on some

random vector. The homomorphic properties of linear secret sharing schemes

are very important for some of the main applications of secret sharing as, for

instance, secure multiparty computation. On the other hand, linear secret sharing

schemes are obtained when applying the best known techniques to construct

efficient schemes, as the decomposition method by Stinson [89]. Because of that,

it is also interesting to consider the parameters λ(Γ) and λ̃(Γ), the infimum of the

(average) information ratios of all linear secret sharing schemes for Γ. Obviously,

σ(Γ) ≤ λ(Γ) (We also prove it in Proposition 2.5.5). In fact, almost all known

upper bounds on the optimal information ratio are upper bounds on λ, and the
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same applies to the corresponding parameters for the average optimal information

ratio. Even though non-linear secret sharing schemes have been proved to be in

general more efficient than the linear ones [7, 11], not many examples of access

structures with σ(Γ) < λ(Γ) are known.

On the other hand, Csirmaz [30] explained how most of the known lower

bounds on the optimal information ratio have been found by implicitly or explic-

itly using a combinatorial method based on the connection between the Shannon

entropy and polymatroids presented by Fujishige [46]. The best known asymptotic

lower bound [30] was obtained by using this method. The parameter κ(Γ) was

introduced in [63] to denote the best lower bound on σ(Γ) that can be obtained

by this method. We introduce here the corresponding parameter κ̃(Γ) for the

combinatorial lower bounds on the optimal average information ratio.

As far as we know, κ(Γ) = λ(Γ) for all access structures whose optimal

information ratio σ(Γ) has been determined. This is due of course to the techniques

that have been most used until now. Namely, the combinatorial method, which

provide lower bounds on κ, and several decomposition methods, which provide

almost always linear secret sharing schemes, and hence upper bounds on λ. In

particular, these are the methods used by Jackson and Martin [57] to determine

the optimal (average) information ratios of almost all 180 non-isomorphic access

structures on five participants. The same techniques were used by van Dijk [35]

to find the the optimal information ratios of almost all 112 non-isomorphic graph

access structures on six participants. Some improvements in the upper bounds for

the unsolved cases were presented in [27, 37].

Determining the values of κ(Γ) and κ̃(Γ) for a given access structure Γ is a linear
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program. Both the number of variables and of constraints grow exponentially in

the number of participants. Moreover, Csirmaz [32, Section 1.2] pointed out that

the system of constraints is overdetermined. Nevertheless, linear programming

can be used to compute κ(Γ) and κ̃(Γ) for access structures on a small number of

participants. This method has been applied on access structures with four minimal

qualified subsets [64] and on bipartite access structures [42].

The use of linear programming, whenever it is possible, to compute κ(Γ) and

κ̃(Γ) has two useful advantages. First, it does not only provide a lower bound on

the optimal (average) information ratio, but the best bound that can be obtained

by using that combinatorial method. That is, other techniques are needed if the

obtained lower bound is not tight. And second, after solving the linear program,

a polymatroid attaining the optimal value of κ(Γ) and κ̃(Γ) is given, which may

facilitate the search for optimal secret sharing schemes.

In this paper, we present the results of such a computation on the access

structures on five participants and the graph access structures on six participants

whose optimal information ratios have not been previously determined. Several

known lower bounds are improved and, in a few cases, the value of the optimal

(average) information ratio is determined. After the publication of the previous

version of this paper [75], Gharahi and Dehkordi [48] presented lower bounds

on the optimal information ratios of some graph access structures. Their bounds

coincide with the values of κ(Γ) that we computed by linear programming, but

a different proof is given. For one of those access structures, an upper bound is

given in [48] that makes it possible to determine σ(Γ).

The lower bound κ(Γ) on the optimal information ratio is not tight in general.
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The first found examples of access structures with κ(Γ) < σ(Γ) were the ports

of the Vámos matroid [8]. An infinite family of graph access structures with

κ(Γ) < λ(Γ) was presented by Csirmaz [32]. These results are proved, respectively,

by using the non-Shannon information inequality by Zhang and Yeung [95] and

the Ingleton inequality [54]. These and other known information inequalities, as

for instance the ones in [38–40, 69], are linear inequalities, and hence they can

be added as constraints to the linear program computing κ(Γ). For some access

structures, better lower bounds on σ(Γ) (or on λ(Γ) if the Ingleton inequality is

used) are obtained in this way. Nevertheless, Beimel and Orlov [9] proved that all

known non-Shannon information inequalities cannot improve our knowledge on

the asymptotic behavior of the optimal (average) information ratio.

We checked that, for the aforementioned access structures on five participants

and graph access structures on six participants, no better lower bounds on λ(Γ) can

be obtained by adding the Ingleton inequality to the linear program. Nevertheless,

we found in this way three graph access structures on eight participants with

κ(λ) < λ(Γ). By using in the same way the non-Shannon information inequalities

from [38,95], we present other examples of access structures with κ(Γ) < σ(Γ). As

in [8], they are ports of non-representable matroids.

Finally, we analyze in more detail two of the access structures on five partici-

pants and we prove, by using other techniques, that there is no linear secret sharing

scheme for those access structures with information ratio equal to κ(Γ). For one of

them, we prove the same result for the average information ratio. In particular,

this implies that the techniques used by Jackson and Martin [57] are not sufficient

to determine the optimal (average) information ratios of all access structures on
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five participants.

4.2 Linear Programming Approach

First we recall the definition of κ(Γ) and κ̃(Γ) in Section 2.5. For a polymatroid

S = (Q, f ) with Q = P ∪ {p0} and |P| = n. Define σp0 = max{ f ({i}) : i ∈ P} and

σ̃(S) = (1/n)∑i∈P f ({i}). Then for every access structure Γ,

κ(Γ) = inf{σp0(S) : S is a Γ-polymatroid}, (4.2.1)

and

κ̃(Γ) = inf{σ̃p0(S) : S is a Γ-polymatroid}. (4.2.2)

We discuss here how the values κ(Γ) and κ̃(Γ) can be obtained by solving linear

programming problems. Nevertheless, the number of variables and of constraints

is exponential in the number of participants, and hence, this only can be done if

the set of participants is not too large.

Observe that, by ordering in some way the elements in P(Q), the rank function

of a polymatroid S = (Q, f ) can be seen as a vector f = ( f (A))A⊆Q ∈ Rk, where

k = |P(Q)| = 2n+1. The polymatroid axioms imply a number of linear constraints

on this vector. If, in addition, we assume that S is a Γ-polymatroid for some access

structure Γ on P = Q − {p0}, other linear constraints appear. Since σ̃p0(S) is also

a linear function on the vector f , one can determine κ̃(Γ) by solving the linear

programming problem
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Minimize (1/n)∑i∈P f ({i})

subject to f is the rank function of a Γ-polymatroid.

Observe that σp0(S) is not linear. Because of that, we introduce a new variable v.

Obviously, κ(Γ) is the solution of the linear program

Minimize v

subject to f is the rank function of a Γ-polymatroid and

v ≥ f ({i}) for every i ∈ Q.

The feasible region for the first linear programming problem is

Ω = Ω(Γ) = { f ∈ Rk : f is the rank function of a Γ-polymatroid}.

Since there exist Γ-polymatroids for every access structure, Ω ̸= ∅. For the other

linear programming problem, the feasible region is

Ω′ = {( f , v) ∈ Rk+1 : f ∈ Ω and v ≥ f ({i}) for every i ∈ Q},

which is obviously nonempty as well. Therefore, both linear programs are feasible

and bounded, and hence κ(Γ) = min{σp0(S) : S is a Γ-polymatroid} and κ(Γ) is

a rational number. The same applies to κ̃(Γ).

The number of constraints to define these feasible regions can be reduced by

using the following characterization of polymatroids given by Matúš [68]. Namely,

f : P(Q) → R is the rank function of a polymatroid with ground set Q if and only
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if

1. f (∅) = 0,

2. f (Q − {i}) ≤ f (Q) for every i ∈ Q, and

3. f (A ∪ {i}) + f (A ∪ {j}) ≥ f (A ∪ {i, j}) + f (A) for every i, j ∈ Q with i ̸= j

and for every A ⊆ Q − {i, j}.

Moreover, we can further reduce the number of constraints by taking into account

that a polymatroid S = (Q, f ) is a Γ-polymatroid if and only if

4. f ({p0}) = 1,

5. f (A ∪ {p0}) = f (A) if A ⊆ P is a minimal qualified subset of Γ, and

6. f (B ∪ {p0}) = f (B) + 1 if B ⊆ P is a maximal unqualified subset of Γ.

For every A ⊆ Q, we consider the vector eA ∈ Rk with eA(A) = 1 and eA(B) = 0

for every B ∈ P(Q)− {A}. At this point, we can present a set of linear constraints

defining the feasible region Ω (vectors are considered as columns).

1. eT
∅ f = 0.

2. (eQ−{i} − eQ)
T f ≤ 0 for every i ∈ Q.

3. (eA∪{i,j} + eA − eA∪{i} − eA∪{j})
T f ≤ 0 for every i, j ∈ Q with i ̸= j and for

every A ⊆ Q − {i, j}.

4. eT
{p0} f = 1.

5. (eA∪{p0} − eA)
T f = 0 for every A ∈ min Γ.
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6. (eB∪{p0} − eB)
T f = 1 for every maximal unqualified subset B.

Both the number of variables and the number of constraints grow exponentially

on the number n of participants. The number of variables is k = 2n+1. If m =

|min Γ| and m′ is the number of maximal unqualified subsets, then the number Nc

of constraints is Nc = (n+1
2 ) · 2n−1 + n + 2(m + m′) + 5. In addition, m, m′ ≤ ( n

⌊n/2⌋)

by Sperner’s Theorem [1].

4.3 New Bounds

Jackson and Martin [57] determined the optimal (average) information ratios of all

access structures on five participants except a few ones, for which upper and lower

bounds were given. Specifically, there are 180 non-isomorphic access structures

with five participants, and they found the optimal information ratios of 170 of them

and the optimal average information ratios of 165 of them. The techniques used

in [57] provide lower bounds on κ(Γ) and upper bounds on λ(Γ). The value of σ(Γ)

is determined only if these bounds imply that κ(Γ) = λ(Γ). The same applies to

the corresponding parameters for the optimal average information ratio. Because

of that, the results that are obtained for an access structure apply as well to its dual.

Taking this into account, the unsolved cases in [57] reduce to the 13 ones that are

listed in Table 4.1, which involve access structures on P = {1, 2, 3, 4, 5} described

in the following and their duals. They are enumerated as in [57]. The lower bound

on σ̃(Γ73) was improved by van Dijk [36]. From now on, we unburden the notation

by writing the subsets of P in compact form, that is, 12 instead of {1, 2}.

• min Γ73 = {12, 13, 24, 35, 145}.
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• min Γ80 = {12, 13, 234, 235, 45}.

• min Γ82 = {12, 13, 234, 235, 145, 245}.

• min Γ83 = {12, 13, 234, 235, 145, 245, 345}.

• min Γ86 = {12, 13, 234, 45}.

• min Γ88 = {12, 13, 234, 145, 245}.

• min Γ89 = {12, 13, 234, 145, 245, 345}.

• min Γ150 = {123, 124, 134, 125, 235}.

• min Γ152 = {123, 124, 134, 125, 345}.

• min Γ153 = {123, 124, 134, 125, 2345}.

Table 4.1: Our results for access structures on five participants

Access σ from σ̃ from κ with κ̃ with Current Number of
structure [57] [36, 57] LP LP σ̃ constraints

Γ73
∼= Γ∗

151 [3/2, 5/3] [3/2, 8/5] 3/2 3/2 [3/2, 8/5] 272
Γ80

∼= Γ∗
18 3/2 [6/5, 7/5] 13/10 [13/10, 7/5] 274

Γ82
∼= Γ∗

107 [3/2, 5/3] [6/5, 7/5] 3/2 13/10 [13/10, 7/5] 274
Γ83

∼= Γ∗
136 3/2 [6/5, 7/5] 13/10 [13/10, 7/5] 280

Γ86
∼= Γ∗

123 3/2 [6/5, 7/5] 13/10 [13/10, 7/5] 268
Γ88

∼= Γ∗
88 3/2 [6/5, 7/5] 7/5 7/5 270

Γ89
∼= Γ∗

113 3/2 [6/5, 7/5] 13/10 [13/10, 7/5] 274
Γ150

∼= Γ∗
40 [3/2, 12/7] 7/5 3/2 7/5 272

Γ152
∼= Γ∗

53 [3/2, 5/3] [7/5, 8/5] 3/2 3/2 [3/2, 8/5] 272
Γ153

∼= Γ∗
30 [3/2, 5/3] 7/5 3/2 7/5 274

By using our linear programming approach, we are able to improve the results

in [57] by determining the values of κ(Γ) and κ̃(Γ) for all those access structures.
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The obtained results are given in Table 4.1. The entries with an interval correspond

to a lower and an upper bound. Observe that we improved some of the lower

bounds on σ̃(Γ) but we could not improve the lower bounds on σ(Γ) for any of

these access structures. Nevertheless, the exact values of κ(Γ) and κ̃(Γ) have been

determined. Therefore, we know now that no better lower bounds can be obtained

by the combinatorial techniques used in [57]. That is, whether better constructions

of secret sharing schemes are obtained for those structures, or better lower bounds

have to be searched by considering information inequalities other than the basic

Shannon inequalities, as discussed in Section 4.4. We also included in the table the

number of constraints that define the feasible region.
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Figure 4.1: Graph access structures with six vertices.

The optimal information ratios of 94 of the 112 non-isomorphic graph access

structures on six participants were determined by van Dijk [35], while lower and

upper bounds were given for the remaining ones. Some of these upper bounds

were improved in [27, 37]. By using linear programming, we have computed

the values of κ(Γ) for the 18 unsolved cases from [35], which improve the lower

bounds for six of them, namely the ones in Figure 4.1. The results are shown in

Table 4.2. We notice that, by mistake, we did not include the results about Γ6,22 in

the previous version of this paper [75]. Except for Γ6,61, these new lower bounds
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determine the values of σ(Γ). After the publication of the previous version of this

paper [75], Gharahi and Dehkordi [48] presented lower bounds on the optimal

information ratios of all access structures in Figure 4.1 except Γ6,9. Their bounds

coincide with the values of κ(Γ) that are given in Table 4.2, but they are proved

by using the same techniques as in [35]. Moreover, they present a decomposition

construction of a linear secret sharing scheme for Γ6,61 that makes it possible to

determine the optimal information ratio of this access structure.

Table 4.2: Our results for graph access structures on six vertices

Access σ σ κ Current Number of
structure from [35] from [27] with LP σ constraints

Γ6,9 [5/3, 2] [5/3, 7/4] 7/4 7/4 703
Γ6,22 [5/3, 9/5] [5/3, 7/4] 7/4 7/4 705
Γ6,40 [5/3, 9/5] [5/3, 7/4] 7/4 7/4 707
Γ6,42 [5/3, 7/4] no improvement 7/4 7/4 707
Γ6,43 [5/3, 7/4] no improvement 7/4 7/4 707
Γ6,61 [5/3, 2] [5/3, 16/9] 7/4 7/4 ( [48]) 707

4.4 Sharpening the Feasible Region

The lower bounds on the optimal (average) information ratio given by κ(Γ) and

κ̃(Γ) are not tight in general. This is due to the fact that the sets in (2.5.1), (2.5.2)

and (4.2.1) are different.

This is due to the existence of the so-called non-Shannon information inequalities.

The polymatroid axioms correspond to the basic Shannon information inequalities

(namely, the mutual information is nonnegative). Zhang and Yeung [95] presented
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an information inequality that must be satisfied by the rank function of every

poly-entropic polymatroid but is independent from the polymatroid axioms.

Many other such non-Shannon information inequalities have been found since

then [38, 40, 69]. Moreover, Zhang-Yeung inequality was used in [8] to present

the first examples of access structures with κ(Γ) < σ(Γ). The bounds in [8]

were improved in [71] by using the inequalities from [38]. In addition, there exist

several rank inequalities, which are satisfied by the rank function of every poly-

linear polymatroid. The first one was presented by Ingleton [54], and other such

inequalities were given by Dougherty, Freiling and Zeger [39].

Beimel and Orlov [9] proved that all known non-Shannon information inequal-

ities cannot improve our knowledge on the asymptotic behavior of the optimal

(average) information ratio. Nevertheless, since all these inequalities are linear,

they can be added to the linear programs that are discussed in Section 4.2. In this

way, better lower bounds on σ(Γ), or on λ(Γ) if rank inequalities are used, can be

found for some access structures. Differently to the one in (4.2.1), the sets in (2.5.1)

and (2.5.2) cannot be described by a finite number of linear inequalities [39, 69],

and hence the values of σ(Γ) and λ(Γ) cannot be only determined by linear

programming.

In this section, we explain how to use the Ingleton inequality to obtain a linear

program providing better lower bounds on λ(Γ). For a polymatroid S = (Q, f )

and A, B, C, D ⊆ Q, consider

I( f ; A, B, C, D) = f (A) + f (B) + f (C ∪ D) + f (A ∪ B ∪ C) + f (A ∪ B ∪ D)

− f (A ∪ B)− f (A ∪ C)− f (A ∪ D)− f (B ∪ C)− f (B ∪ D).
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Specifically, Ingleton inequality states that, if S = (Q, f ) is a poly-linear polyma-

troid, then

I( f ; A, B, C, D) ≤ 0 for every A, B, C, D ⊆ Q. (4.4.1)

Moreover, according to the main result of [25], a polymatroid S = (Q, f )

satisfies (4.4.1) if and only if

I( f ; A ∪ X, B ∪ X, C ∪ X, D ∪ X) ≤ 0

for all disjoint sets A, B, C, D, X ⊆ Q with A, B, C, D nonempty. For an access

structure Γ, consider the linear program

Minimize v

subject to f is the rank function of a Γ-polymatroid,

I( f ; A ∪ X, B ∪ X, C ∪ X, D ∪ X) ≤ 0

for all disjoint sets A, B, C, D, X ⊆ Q with A, B, C, D nonempty, and

v ≥ f ({i}) for every i ∈ Q.

Since there exists a linear secret sharing scheme for Γ, this linear program is feasible

and bounded. The solution λIN(Γ) is a lower bound on λ(Γ). Moreover, it is

the best lower bound on λ(Γ) that can be obtained by adding only the Ingleton

inequality to the Shannon information inequalities.

By solving this linear program, we obtained that λIN(Γ) = κ(Γ) for the 5

access structures on five participants and the 12 graph access structures on six

participants whose optimal information ratios are still undetermined. Therefore,

the Ingleton inequality does not improve the lower bounds on λ(Γ) for these
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access structures. Nevertheless, we explored graph access structures on more

than 6 participants and we found three examples, the graphs in Figure 4.2, with

λIN(Γ) > κ(Γ), and hence they are new examples of access structures with

κ(Γ) < λ(Γ). Specifically, λIN(Γ1) = 19/10 and λIN(Γ2) = λIN(Γ3) = 13/7,

while κ(Γ1) = 11/6 and κ(Γ2) = κ(Γ3) = 9/5.
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Figure 4.2: Graph access structures on 8 participants with κ(Γ) < λ(Γ).

4.5 Ports of Non-representable Matroids

In this section, we use linear programming to extend the results in [8, 71, 81]

about the ports of the Vámos matroid to the ports of other non-linear matroids.

Seymour [81] proved that the Vámos matroid is not poly-entropic, and hence the

two non-isomorphic ports V1 and V6 of the Vámos matroid do not admit any ideal

secret sharing scheme. By using the non-Shannon information inequality by Zhang

and Yeung [95], lower bounds on the optimal information ratios of those access

structures proving that σ(Vi) > κ(Vi) = 1 were presented in [8]. These bounds

were improved in [71] by using some of the non-Shannon information inequalities
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given by Dougherty, Freiling and Zeger [38] (DFZ inequalities from now on). In

addition, a lower bound on λ(Vi) (the same for both structures, because they are

dual of each other) are obtained in [8] from the Ingleton inequality. A construction

given in [63] provides an upper bound on λ(Vi). Specifically, the results in [8,63,71]

are summarized as follows.

• κ(V1) = 1 < 19/17 ≤ σ(V1) ≤ λ(V1) ≤ 4/3.

• κ(V6) = 1 < 21/19 ≤ σ(V6) ≤ λ(V6) ≤ 4/3.

• 5/4 ≤ λ(V1) = λ(V6) ≤ 4/3.

These results were obtained without using linear programming. Nevertheless,

linear programming was used in [71] to prove that no better lower bounds on

σ(Vi) can be obtained by using only the Zhang-Yeung and DFZ inequalities. In

the Appendix of [73], we find two matroids, AG(3, 2)′ and Q8, that, similarly to

the Vámos matroid, are among the smallest non-linear matroids. By using linear

programming, we prove similar results for the ports of these matroids.

1 
2 

3 
4 

5 6 

7 8 

Figure 4.3: AG(3, 2)′ and Q8

Definition 4.5.1. The matroid AG(3, 2)′ is defined on the set V = {1, . . . , 8}. Its
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independent sets are all the sets with at most 4 elements except the six faces, the six diagonal

planes and the twisted plane {1, 3, 6, 8} of the cube in Figure 4.3.

Definition 4.5.2. The matroid Q8 is defined on the set V = {1, . . . , 8}. Its independent

sets are all the sets of cardinality at most 4 except the six faces and exactly five of the six

diagonal planes of the cube in Figure 4.3. Assume that the diagonal plane {1, 3, 5, 7} is the

independent one.

It is not difficult to check that there are only two non-isomorphic ports of

the matroid AG(3, 2)′, namely AG1 = Γ1(AG(3, 2)′) and AG2 = Γ2(AG(3, 2)′).

Moreover, AG∗
1 = AG2. Similarly, the two non-isomorphic ports of the matroid Q8

are Q1 = Γ1(Q8) and Q2 = Γ2(Q8). As before, Q∗
1 = Q2. The minimal qualified

sets of these access structures are listed in the following.

• minAG1 = {234, 256, 458, 357, 278, 467, 368, 2457}.

• minAG2 = {134, 367, 156, 178, 358, 468, 4578, 4567, 3457, 1457}.

• minQ1 = {234, 256, 458, 278, 467, 2368, 2457, 3468, 3568, 3678, 2357, 3457,

3567, 3578}.

• minQ2 = {156, 367, 134, 468, 178, 358, 1357, 4567, 1457, 3567, 1567, 1368}.

Zhang-Yeung inequality [95] implies that, for every poly-entropic polymatroid

(Q, f ) and for every A, B, C, D ⊆ Q,

ZY( f ; A, B, C, D) = f (A) + 2 f (B) + 2 f (C) + f (A ∪ D) + 4 f (A ∪ B ∪ C)

+ f (B ∪ C ∪ D)− 3 f (A ∪ B)− 3 f (A ∪ C)− 3 f (B ∪ C)

− f (B ∪ D)− f (C ∪ D) ≤ 0
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If we set {A, B, C, D} = {18, 36, 27, 45} for AG(3, 2)′ and {A, B, C, D} = {15, 26, 37,

48} for Q8, then ZY( f ; A, B, C, D) > 0. Therefore, the matroids AG(3, 2)′ and

Q8 are not poly-entropic, and hence their ports do not admit any ideal secret

sharing scheme. By adding to the corresponding linear program the Zhang-Yeung

inequality, or the DFZ inequalities, or the Ingleton inequality, with the previous

choices of the sets A, B, C, D, we obtain the lower bounds in Table 4.3. In particular,

these are new examples of access structures with κ(Γ) < σ(Γ).

Table 4.3: Result for AG(3, 2)′ and Q8

Access Lower bound Lower bound Lower bound
structure of σ by ZY of σ by DFZ of λ by Ingleton
AG1 10/9 19/17 5/4
AG2 9/8 9/8 5/4
Q1 9/8 9/8 5/4
Q2 10/9 19/17 5/4

4.6 An Impossibility Result

Since no better bounds on λ(Γ) can be obtained for the access structures in

Tables 4.1 and 4.2 by using Ingleton inequality, one could expect that there exist

for those access structures linear secret sharing schemes with information ratio

equal to the lower bound κ(Γ). We prove in this section that, at least for two of

those access structures, this is not the case.

If Γ is an access structure with κ(Γ) = κ̃(Γ) and S = (Q, f ) is a Γ-polymatroid

with σp0(S) = κ(Γ), then h({i}) = κ(Γ) for every i ∈ P. This simplifies the search
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for linear schemes with information ratio equal to κ(Γ). We find in Table 4.1 two

access structures with that property. Namely κ(Γ) = κ̃(Γ) = 3/2 if Γ = Γ73 or

Γ = Γ152. We prove in the following that the information ratio of every linear

secret sharing scheme for one of these structures is larger than 3/2. Moreover, for

Γ73, the same applies to the average information ratio. Here we consider Γ53 = Γ∗
152

instead of Γ152. The minimal qualified sets of Γ73 and Γ53, which are represented in

Figure 4.4, are

• min Γ73 = {12, 13, 24, 35, 145}, and

• min Γ53 = {12, 13, 24, 34, 35, 145} = min Γ73 ∪ {34}.

The remaining of this section is devoted to prove the following impossibility result.

The proof is quite long and it is divided into several partial results.
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Figure 4.4: Access Structures Γ73 and Γ53

Proposition 4.6.1. There does not exist any linear secret sharing scheme Σ with access

structure Γ53 or Γ73 with information ratio σ(Σ) = 3/2. There does not exist any linear

secret sharing scheme Σ with access structure Γ73 with average information ratio σ̃(Σ) =

3/2.
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When using linear programming to compute the value of κ(Γ) for Γ = Γ53

or Γ = Γ73, we always obtain as an optimal solution the polymatroid S1 and,

respectively, S2 that are described in Definition 4.6.2. We prove in Lemma 4.6.4

that these polymatroids are not poly-linear.

Definition 4.6.2. The polymatroids S1 and S2 are defined as the only Γ53-polymatroid

and, respectively, the only Γ73-polymatroid satisfying the following properties.

1. f (i) = 3/2 for every i ∈ P.

2. f (A) = 5/2 for every unqualified set A ⊆ P with |A| = 2.

3. f (A) = 3 for every qualified set A ⊆ P with |A| = 2.

4. f (A) = 7/2 for every A ⊆ P with |A| ≥ 3.

Lemma 4.6.3. Let V1, V2, V3 be subspaces of a vector space E. Then,

max
{

0, s − ∑ si + ∑ ri
}
≤ dim(V1 ∩ V2 ∩ V3) ≤ min{t1, t2, t3},

where s = dim(V1 +V2 +V3), si = dim(Vj +Vk), ri = dim Vi, and ti = dim(Vj ∩Vk)

for every {i, j, k} = {1, 2, 3}.

Proof. Put t = dim(V1 ∩ V2 ∩ V3). Since (V1 ∩ V3) + (V2 ∩ V3) ⊆ (V1 + V2)∩ V3, we

have that

dim((V1 + V2) ∩ V3)− dim((V1 ∩ V3) + (V2 ∩ V3)) = ∑ si − ∑ ri − s + t ≥ 0.

Obviously, t ≤ ti.
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Lemma 4.6.4. The polymatroids S1 and S2 are not poly-linear.

Proof. Take Q = {0, 1, 2, 3, 4, 5} with p0 = 0. Let S = (Q, f ) be one of these

polymatroids and suppose that it is poly-linear. Then there must exist a positive

integer c and subspaces (Vi)i∈Q of a vector space E such that dim ∑i∈A Vi = 2c f (A)

for every A ⊆ Q.

Clearly, dim(V1 ∩V4) = dim(V1 ∩V5) = dim(V4 ∩V5) = c, and hence dim(V1 ∩

V4 ∩ V5) = c by Lemma 4.6.3. Therefore V1 ∩ V4 = V1 ∩ V5 = V4 ∩ V5 , U0.

Since dim[(V2 + V3) ∩ V5] = dim(V2 + V3) + dim V5 − dim(V2 + V3 + V5) =

5c + 3c − 7c = c and dim(V2 ∩ V5) = c, we have that U0 ∩ (V2 + V3) ⊆ V5 ∩ (V2 +

V3) = V5 ∩ V2. Therefore, U0 ∩ (V2 + V3) = {0} because V1 ∩ V2 = {0}.

The subspace V0 corresponding to the dealer is contained in VA for every A ∈ Γ.

Therefore,

V0 ⊆ (V1 + V2) ∩ (V1 + V3) ∩ (V2 + V4) ∩ (V3 + V5) = W
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We prove in the following that 3c ≤ dim W ≤ 4c. Indeed, on one hand,

dim W = dim{[(V1 + V2) ∩ (V2 + V4)] ∩ [(V1 + V3) ∩ (V3 + V5)]}

= dim[(V1 + V2) ∩ (V2 + V4)] + dim[(V1 + V3) ∩ (V3 + V5)]

−dim{[(V1 + V2) ∩ (V2 + V4)] + [(V1 + V3) ∩ (V3 + V5)]}

≤ 5c + 5c − dim[V2 + (V1 ∩ V4)] + [V3 + (V1 ∩ V5)]

= 5c + 5c − dim(V2 + V3 + U0)

= 5c + 5c − 6c

= 4c. (4.6.1)

On the other hand, dim{[(V1 + V2) ∩ (V2 + V4)] + [(V1 + V3) ∩ (V3 + V5)]} ≤ 7c,

and hence dim W ≥ 5c + 5c − 7c = 3c.

The next step is to prove that dim[W ∩ (V2 + V5)] = 2c.

dim[W ∩ (V2 + V5)] = dim W + dim(V2 + V5)− dim(W + V2 + V5)

≤ dim W + dim(V2 + V5)− dim(V0 + V2 + V5)

≤ 4c + 5c − 7c

= 2c. (4.6.2)
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The other inequality is obtained by

dim[W ∩ (V2 + V5)] = dim{(V1 + V2) ∩ (V1 + V3) ∩ (V2 + V4)

∩(V3 + V5) ∩ (V2 + V5)}

= dim{[(V1 + V2) ∩ (V2 + V5) ∩ (V2 + V4)]

∩[(V1 + V3) ∩ (V3 + V5)]}

≥ dim[(V2 + U0) ∩ (V3 + U0)]

= dim(V2 + U0) + dim(V3 + U0)− dim(V2 + V3 + U0)

= 4c + 4c − 6c

= 2c (4.6.3)

In particular, all inequalities in (4.6.2) must be equalities, which implies that

dim W = 4c. Moreover, the inequality in (4.6.1) must be also an equality, and

hence

[(V1 + V2) ∩(V2 + V4)] + [(V1 + V3) ∩ (V3 + V5)]

= [V2 + (V1 ∩ V4)] + [V3 + (V1 ∩ V5)]

= V2 + V3 + U0.

Therefore, (V1 + V2) ∩ (V2 + V4) ⊆ V2 + V3 + U0 and (V1 + V3) ∩ (V3 + V5) ⊆

V2 + V3 + U0.
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dim(W ∩ V2) = dim[(V1 + V3) ∩ (V3 + V5) ∩ V2]

= dim[(V1 + V3) ∩ (V3 + V5)] + dim V2

−dim{[(V1 + V3) ∩ (V3 + V5)] + V2}

≥ dim[(V1 + V3) ∩ (V3 + V5)] + dim V2 − dim(V2 + V3 + U0)

= 5c + 3c − 6c

= 2c

Analogously, dim(W ∩ V3) ≥ 2c. Therefore,

dim[W ∩ (V2 + V3)] ≥ dim[(W ∩ V2) + (W ∩ V3)]

= dim(W ∩ V2) + dim(W ∩ V3)− dim(W ∩ V2 ∩ V3)

≥ 2c + 2c − c

= 3c (4.6.4)

Finally, since V0 ⊆ W,

dim[V0 ∩ (V2 + V3)] = dim[V0 ∩ W ∩ (V2 + V3)]

≥ dim(V0) + dim[W ∩ (V2 + V3)]− dim(W)

≥ 2c + 3c − 4c

= c,
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a contradiction with the fact that {2, 3} is not qualified.

We prove in Lemma 4.6.7 that the polymatroids S1 and S2 are the only optimal

solutions of the linear programs computing κ(Γ53) and κ(Γ73), respectively. We

need two technical results. The first one is due to Csirmaz [30], while the second

one is proved by using the independent sequence technique [19].

Lemma 4.6.5. Let Γ be an access structure. The following properties are satisfied by every

Γ-polymatroid S = (Q, f ).

1. If B ∈ Γ, and A ⊆ B and A /∈ Γ, then f (A) ≤ f (B)− 1.

2. If A, B ∈ Γ but A ∩ B /∈ Γ, then f (A ∪ B) + f (A ∩ B) ≤ f (A) + f (B)− 1.

Lemma 4.6.6. Let Γ be an access structure and S = (Q, f ) a Γ-polymatroid. If a, b, c, d ∈

P are such that ab, bc, acd ∈ Γ and b, ac, ad /∈ Γ, then f (bc) ≥ 3.

Lemma 4.6.7. If Γ = Γ53 or Γ = Γ73, there exists a unique Γ-polymatroid S with

σp0(S) = 3/2.

Proof. Let S = (Q, f ) be such a polymatroid. Obviously, f (i) = 3/2 for every

i ∈ P since κ(Γ) = κ̃(Γ) = 3/2. If ij ∈ Γ, then f (ij) = 3 by Lemma 4.6.6 and

f (ij) ≤ f (i) + f (j). Clearly, every 3-subset of P is qualified. Take three different

participants i, j, k ∈ P such that ij, jk /∈ Γ. By Lemma 4.6.5,

f (jk) + 1 ≤ f (ijk) ≤ f (ij) + f (jk)− f (j),

which implies that f (ij) ≥ 5/2. Symmetrically, f (jk) ≥ 5/2, and hence f (ijk) ≥

7/2. Obviously, this implies that f (ij) ≥ 5/2 for every pair ij /∈ Γ. In addition,

98



since every 3-subset contains at least one unqualified 2-subset, f (A) ≥ 7/2 for

every A ⊆ P with |A| = 3. Consider now three different participants i, j, k ∈ P

such that ij, jk ∈ Γ. Applying Lemma 4.6.5 again,

f (ijk) ≤ f (ij) + f (jk)− f (j)− 1 = 7/2,

and hence f (ik) = 5/2. This implies that f (ij) = 5/2 for every pair ij /∈ Γ except

for 45 for Γ73. Therefore,

f (145) ≤ f (14) + f (15)− f (1) = 7/2,

and hence f (45) ≤ f (145)− 1 = 5/2. Analogously, f (A) = 7/2 for every A ⊆ P

with |A| = 3, and f (A) = 5/2 for every A ⊆ P with |A| = 2 and A /∈ Γ. Let A be

a 4-subset of P, and let B ⊆ A be an unqualified 2-subset. Then A = B ∪ ij and

f (A) ≤ f (B ∪ i) + f (B ∪ j)− f (B)− 1 = 7/2,

and hence f (A) = 7/2. One can prove in the same way that f (P) = 7/2. All these

facts determine a unique Γ-polymatroid S .

Lemmas 4.6.4 and 4.6.7 suffice to prove the first statement in Proposition 4.6.1.

In order to prove the impossibility result about the average information ratio, we

need to analyze in more detail the properties of the Γ73-polymatroids that are

optimal solutions for the linear program determining κ̃(Γ73).

Let τ be the permutation on Q that interchanges 2 with 3 and 4 with 5 and
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leaves 1 and p0 fixed. Clearly, τ induces an automorphism of the access structure

Γ73. Therefore, if S = (Q, f ) is a Γ73-polymatroid, then τS = (Q, f τ) is also a

Γ73-polymatroid. Moreover, if S is poly-linear over some finite field K, the same

applies to τS . Consider the polymatroid S ′ = (Q, f ′) with f ′ = ( f + f τ)/2.

Clearly, S ′ is a Γ73-polymatroid. Moreover, τS ′ = S ′ because τ2 is the identity

map. Finally, if there exists a linear secret sharing scheme Σ for Γ73 that is

associated to the polymatroid S , then there exists a linear secret sharing scheme Σ′

for Γ73 that is associated to the polymatroid S ′, and both schemes have the same

average information ratio. By taking this into account, Lemma 4.6.8 concludes the

proof of Proposition 4.6.1.

Lemma 4.6.8. There exists a unique Γ73-polymatroid S = (Q, f ) such that τS = S and

σ̃p0(S) = 3/2.

Proof. By Lemma 4.6.6, f (ij) ≥ 3 if ij ∈ Γ. Then,

• f (1) + f (3) = f (1) + f (2) ≥ 3, and

• f (2) + f (4) = f (3) + f (5) ≥ 3.

We have used here that τS = S . Combining these inequalities with ∑5
i=1 f (i) =

15/2, we obtain f (4) = f (5) ≤ 3/2, and f (2) = f (3) ≥ 3/2, and f (1) ≤ 3/2.

By Lemma 4.6.5,

f (23) + 1 ≤ f (234) ≤ f (23) + f (34)− f (3), (4.6.5)

and hence f (34) ≥ 5/2. Similarly, f (23) ≥ 5/2 and f (234) ≥ 7/2. In addition, by

using again that τ is an automorphism of the polymatroid, f (235) = f (234) ≥ 7/2
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and f (25) = f (34) ≥ 5/2. Moreover, f (345) = f (245) ≥ f (25) + 1 ≥ 7/2, and

similarly f (134) = f (125) ≥ 7/2 and f (123) ≥ 7/2.

We claim f (124) = f (135) ≤ 7/2 and f (145) ≤ 7/2. Indeed,

f (124) ≤ f (12) + f (24)− f (2)− 1

≤ f (1) + f (2) + f (4)− 1

= 1/2 × 15/2 + f (1)/2 − 1 (4.6.6)

≤ 7/2.

And

f (145) ≤ f (14) + f (15)− f (1)

= 2 f (14)− f (1)

≤ 2[ f (124)− 1]− f (1)

≤ 2[ f (12) + f (24)− f (2)− 2]− f (1)

= 2[ f (12)− f (2)− f (1)] + 2 f (24) + f (1)− 4

≤ 2 f (24) + f (1)− 4

≤ 2 f (2) + 2 f (4) + f (1)− 4

= 15/2 − 4 = 7/2.

The next step is to prove that f (124)− f (14) = f (135)− f (15) = 1. Observe

that f (124)− f (14) = 1 + ϵ for some ϵ ≥ 0, and hence f (14) = f (15) ≤ 5/2 − ϵ.
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Since 1 + f (14) + f (1245) ≤ f (124) + f (145), we have that

7/2 ≤ f (1245) ≤ ϵ + f (145) ≤ ϵ + f (14) + f (15)− f (1) ≤ 5 − ϵ − f (1), (4.6.7)

and hence f (1) ≤ 3/2 − ϵ. Now, inequality (4.6.6) implies that f (124) ≤ 7/2 −

1/2ϵ, and hence f (15) = f (14) ≤ 5/2 − 3/2ϵ. By using this last inequality

in (4.6.7), we have that f (1) ≤ 3/2 − 2ϵ. By repeating this argument, f (1) ≤

3/2 − nϵ for every positive integer n, which implies that ϵ = 0.

Therefore, f (145) ≥ f (1245) by (4.6.7), and hence f (145) = f (1245) =

f (1345) = 7/2. Moreover, f (245) = f (345) = 7/2 and f (134) = f (125) = 7/2,

which implies that f (25) = f (34) = 5/2. We can now use (4.6.5) to obtain

f (2) = f (3) = 3/2, and hence f (i) = 3/2 for all i ∈ P. By far, we conclude

the proof of Proposition 4.6.1.
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Chapter 5

Secret Sharing, Rank Inequalities and

Information Inequalities

5.1 Introduction

This chapter deals with the problem of the size of the shares in secret sharing

schemes for general access structures. The reader is referred to [5] for an up-to-

date survey on this topic.

In this survey, Beimel put up with a conjecture represented in Conjecture 1.3.1,

Chapter 1. However, not many results supporting this conjecture have been

presented. No proof for the existence of access structures requiring shares

of superpolynomial size has been found. In contrast, superpolynomial lower

bounds on the size of the shares have been obtained for linear secret sharing

schemes [2, 6, 47]. Because of their homomorphic properties, linear schemes are

needed for many applications of secret sharing. Moreover, most of the known
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constructions of secret sharing schemes yield linear schemes.

Similarly to the works by Csirmaz [30] and by Beimel and Orlov [10], we

analyze here the limitations of the technique that has been almost exclusively used

to find lower bounds on the size of the shares. This is the case of the bounds

in [18,24,30,57] and many other papers. Even though it was implicitly used before,

the method was formalized by Csirmaz [30]. Basically, it consists of finding lower

bounds on the solutions of certain linear programs. We have to mention that this

method provides lower bounds on the information ratio of secret sharing schemes.

These bound imply of course bounds on the size of the shares, but the converse

does not hold. For instance, the bounds in [2, 6, 47] on the size of the shares in

linear secret sharing schemes do not imply bounds on the information ratio of

such schemes.

The constraints of those linear programs are derived from the fact that certain

linear combinations of the values of the joint entropies of the random variables

defining a secret sharing scheme must be nonnegative. These constraints can be

divided into two classes.

1. The first class is formed by the constraints that are derived from the access

structure. Namely, from the fact that the qualified subsets can recover the

secret while the unqualified ones have no information about it.

2. The second class is formed by constraints derived from information inequal-

ities that hold for every collection of random variables.

In the second class, the constraints derived from the Shannon inequalities 2.1.3

are always considered. These basic information inequalities are equivalent to
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the conditional mutual information being nonnegative, and equivalent as well

to the fact that the joint entropies of a collection of random variables define a

polymatroid [45, 46].

Csirmaz [30] proved that, by taking only the Shannon inequalities in the

second class, one obtains lower bounds that are at most linear on the number of

participants. This was proved by showing that every such linear program admits

a small solution.

One may expect that better lower bounds should be obtained by adding

to the second class new constraints derived from the non-Shannon information

inequalities. The existence of such inequalities was unknown when Csirmaz [30]

formalized that method. When dealing with linear secret sharing schemes,

one can improve the linear program by using rank inequalities, which apply

to configurations of vector subspaces or, equivalently, to the joint entropies of

collections of random variables defined from linear maps. It is well-known that

every information inequality is also a rank inequality. Indeed, better lower bounds

on the information ratio have been found for some families of access structures by

using non-Shannon information and rank inequalities [8, 32, 71, 75].

Nevertheless, Beimel and Orlov [10] presented a negative result about the

power of non-Shannon information inequalities to provide better general lower

bounds on the size of the shares. Specifically, they proved that the best lower

bound that can be obtained by using all information inequalities on four and five

variables, together with all inequalities on more than five variables that are known

to date, is at most linear on the number of participants. Specifically, they proved

that every linear program that is obtained by using these inequalities admits a
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small solution that is related to the solution used by Csirmaz [30] to prove his

negative result. They used the fact that there exists a finite set of rank inequalities

that, together with the Shannon inequalities, span all rank inequalities, and hence

all information inequalities, on four or five variables [39,50]. By executing a brute-

force algorithm using a computer program, they checked that Csirmaz’s solution is

compatible with every rank inequality in that finite set. In addition, they manually

executed their algorithm on a symbolic representation of the infinite sequence of

information inequalities given by Zhang [94]. This sequence contains inequalities

on arbitrarily many variables and generalizes the infinite sequences from previous

works.

In particular, the results in [10] imply that all rank inequalities on four or five

variables cannot provide lower bounds on the size of shares in linear secret sharing

schemes that are better than linear on the number of participants. Unfortunately,

their algorithm is not efficient enough to be applied on the known rank inequalities

on six variables.

We present here another negative result about the power of information

inequalities to provide general lower bounds on the size of the shares in secret

sharing schemes. Namely, we prove that, for every r ≥ 3, the best lower bound

that can be obtained by using all rank inequalities on at most r variables is

polynomial on the number of participants. Since all information inequalities are

rank inequalities, this negative result applies to the search of lower bounds for both

linear and general secret sharing schemes. Therefore, information inequalities on

arbitrarily many variables are needed to find superpolynomial lower bounds by

using the method described above.
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The proof is extremely simple and concise. Similarly to the proofs in [10, 30],

it is based on finding small solutions to the linear programs that are obtained by

using rank inequalities on a bounded number of variables. These solutions are

obtained from a family of polymatroids that are uniform and Boolean. This family

contains the polymatroids that were used in [10, 30].

In some sense, our results are weaker than the ones in [10], because for r = 4

and r = 5, our solutions to the linear programs do not prove that the lower bounds

must be linear on the number of participants, but instead quadratic and cubic,

respectively. Nevertheless, our result is much more general because it applies to

all (known or unknown) rank inequalities.

In addition, we present another proof of Beimel and Orlov’s result [10] on the

limitations of non-Shannon information inequalities. We use the fact that many of

the known rank inequalities can be derived from the so-called common information

property of linear polymatroids, as it is mentioned in [39]. We prove that a wider

family of inequalities cannot provide lower bounds that are better than cubic on

the number of participants. Our proof does not require computer explorations and,

more importantly, it provides an explanation to the limitations of non-Shannon

information inequalities, and hence we shed some light on the search of better

asymptotic lower bounds.

5.2 A Family of Uniform Boolean Polymatroids

We present a family of polymatroids that are uniform and Boolean. In addition,

every member of this family is compatible to all access structure on its ground set.
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The following results are straightforward consequences of Proposition 2.5.3.

Proposition 5.2.1. A polymatroid SP = (P, f ) is compatible with all access structures

on P if and only if the following conditions are satisfied.

1. If X ⊆ P and z ∈ Pr X, then f (X) ≤ f (X ∪ {z})− 1.

2. If X ⊆ P and y, z ∈ Pr X, then f (X ∪ {y, z}) + f (X) ≤ f (X ∪ {y}) + f (X ∪

{z})− 1.

Proposition 5.2.2. Let P be a set with |P| = n and let SP be a uniform polymatroid on

P. Then SP is compatible with all access structures on P if and only if its increment vector

(δ1, . . . , δn) is such that δi ≥ δi+1 + 1 for i = 1, . . . , n − 1 and δn ≥ 1.

Given a set P and an integer r ≥ 2, let M(P, r) be the set of all multisets of size

r from the set P. For example, if P = {a, b, c}, then

M(P, 3) = {aaa, aab, aac, abb, abc, acc, bbb, bbc, bcc, ccc}.

Observe that |M(P, r)| = (n+r−1
r ) if |P| = n. For every x ∈ P, let Mx(P, r) be the

set of the multisets in M(P, r) that contain x. In the previous example,

Ma(P, 3) = {aaa, aab, aac, abb, abc, acc}.

Finally, we define Z(P, r) = (P, f ) as the Boolean polymatroid on P defined by

the family (Mx(P, r))x∈P of subsets of M(P, r). As usual, we notate MX(P, r) =∪
x∈X Mx(P, r) for every X ⊆ Q.
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Clearly, every permutation on P is an automorphism of Z(P, r), and hence this

polymatroid is uniform. For every X ⊆ P, the multisets in M(P, r) r MX(P, r)

are the ones involving only elements in P r X. That is, M(P, r) r MX(P, r) =

M(Pr X, r), and hence

f (X) = |MX(P, r)| = |M(P, r)| − |M(Pr X, r)|

=

(
|P|+ r − 1

r

)
−

(
|P| − |X|+ r − 1

r

)
.

Therefore, if |P| = n, the increment vector (δ1, . . . , δn) of Z(P, r) is given by

δi =

(
n − i + r

r

)
−

(
n − i + r − 1

r

)
=

(
n − i + r − 1

r − 1

)

for every i = 1, . . . , n. Observe that δ1 > · · · > δn > 0, and hence Z(P, r) is

compatible with all access structures on P. In particular, δi = n − i + 1 if r =

2, and hence κ(Γ) ≤ n for every access structure Γ on n participants [30]. The

Csirmaz function introduced in [10, Definition 3.10] coincides with the rank function

of Z(P, 2). The rank function of Z(P, 2) is the smallest among the rank functions

of all uniform polymatroids on P that are compatible with all access structures

on P [10, Lemma 3.11]. Finally, observe that [10, Lemma 6.2] is a straightforward

consequence of the fact that Z(P, 2) is a Boolean polymatroid.
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5.3 On Rank Inequalities on a Bounded Number of

Variables

This section is devoted to prove our main result, Theorem 5.3.3.

We need the following technical result, which is a consequence of [10, Lemma 4.3].

Recall Definition 2.2.2 of rank inequality, first define [r] = {1, 2, . . . , r} as a finite

index, and then(αI)I∈P([r]) defines a rank inequality.

Lemma 5.3.1. Let (αI)I∈P([r]) be a rank inequality. Then ∑I : I∩J ̸=∅ αI ≥ 0 for every

J ⊆ [r].

Proof. Take J ⊆ [r] and the family (Mi)i∈[r] of sets given by Mi = {0} if i ∈ J and

Mi = ∅ otherwise. Let ([r], f ) be the Boolean polymatroid defined by this family.

Then ∑I : I∩J ̸=∅ αI = ∑I⊆[r] αI f (I) ≥ 0 because Boolean polymatroids are linearly

representable.

Proposition 5.3.2. Let P be a set of n participants, Γ an access structure on P, r ≥ 3 an

integer, and Zr−1 = Z(P, r − 1). Then the Γ-polymatroid Zr−1(Γ) that is an extension

of Zr−1 to Q = P ∪ {p0} satisfies all rank inequalities on r variables.

Proof. Let f be the rank function of Zr−1(Γ) and (αI)I∈P([r]) a rank inequality on

r variables. We have to prove that ∑I⊆[r] αI f (AI) ≥ 0 for every r subsets (Ai)i∈[r]

of Q. Take Bi = Ai r {p0}. If Bi ∈ Γ for every i ∈ [r], then ∑I⊆[r] αI f (AI) =

∑I⊆[r] αI f (BI) ≥ 0 because Zr−1 is Boolean. If B[r] /∈ Γ, then

∑
I⊆[r]

αI f (AI) = ∑
I⊆[r]

αI f (BI) + ∑
I : p0∈AI

αI ≥ 0
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by Lemma 5.3.1 with J = {i ∈ [r] : p0 ∈ Ai}. From now on, we assume that

B[r] ∈ Γ and that Bi /∈ Γ for some i ∈ [r].

Consider the polymatroid S = ([r], g) determined by g(I) = f (BI) for every

I ⊆ [r]. In addition, consider the access structure Λ on [r] formed by the sets I ⊆ [r]

such that BI ∈ Γ. We prove next that S can be extended to a linearly representable

Λ-polymatroid S(Λ) = ([r] ∪ {0}, g). This concludes the proof. Indeed, since

S(Λ) is a Λ-polymatroid, f (AI) = g(I ∪ {0}) if p0 ∈ AI , and hence

∑
I⊆[r]

αI f (AI) = ∑
I : p0 /∈AI

αI f (BI) + ∑
I : p0∈AI

αI f (AI)

= ∑
I : p0 /∈AI

αI g(I) + ∑
I : p0∈AI

αI g(I ∪ {0}).

Consider the family (Ci)i∈[r] of subsets of [r] ∪ {0} given by Ci = {i, 0} if p0 ∈ Ai

and Ci = {i} otherwise. Then

∑
I : p0 /∈AI

αI g(I) + ∑
I : p0∈AI

αI g(I ∪ {0}) = ∑
I⊆[r]

αI g(CI) ≥ 0

because S(Λ) is linearly representable.

The polymatroid S is Boolean. Indeed, take M = M(P, r − 1) and MX =

MX(P, r − 1) for every X ⊆ P. Then (MBi)i∈[r] is a Boolean representation of S .

Therefore, this polymatroid is linearly representable over every field, as proved in

Subsection 2.3.1. For a field K, take a basis (ew)w∈M of KM. Then the subspaces

(Vi)i∈[r] with Vi = ⟨ew : w ∈ MBi⟩ form a K-linear representation of S .

Consider the dual access structure Λ∗ = {J ⊆ [r] : [r]r J /∈ Λ}. Take J ∈

min Λ∗ and I = [r] r J. Observe that BI /∈ Γ and BI ∪ Bj ∈ Γ for every j ∈ J.
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In particular, this implies that J ̸= ∅, [r]. Therefore, we can take an element xj ∈

Bj r BI for every j ∈ J. Consider a multiset wJ ∈ M(P, r − 1) containing exactly

the elements in {xj : j ∈ J}, repeating some of them if necessary. Take the vector

v0 = ∑
J∈min Λ∗

ewJ ∈ KM

and the subspace V0 = ⟨v0⟩. By adding this subspace to the collection (Vi)i∈[r], an

extension S(Λ) = ([r] ∪ {0}, g) of S is obtained. Obviously, S(Λ) is K-linearly

representable.

Finally, we prove that S(Λ) is a Λ-polymatroid. Clearly, I ∈ Λ if and only if

I ∩ J ̸= ∅ for every J ∈ min Λ∗. If I ∈ Λ, then wJ ∈ MBI (P, r − 1) for every J ∈

min Λ∗. Indeed, if j ∈ I ∩ J, the element xj in the multiset wJ is also in BI . Therefore,

ewJ ∈ VI for every J ∈ min Λ∗, and hence v0 ∈ VI and g(I ∪ {0}) = g(I). Suppose

now that I /∈ Λ and take J ∈ min Λ∗ with I ∩ J = ∅. Then wJ /∈ MBI (P, r − 1)

because xj /∈ BI for every j ∈ J. Therefore, v0 /∈ VI and g(I ∪ {0}) = g(I) + 1.

Theorem 5.3.3. For an access structure Γ on n participants, the best lower bound on λ(Γ)

that can be obtained by using rank inequalities on r variables is at most

(
n + r − 3

r − 2

)
, (5.3.1)

and hence O(nr−2). As an immediate consequence, the same applies to the lower bounds

on the optimal information ratio σ(Γ) that are obtained by using information inequalities

on r variables.

Proof. By Proposition 5.3.2, the polymatroid Zr−1(Γ) is a feasible solution to any
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linear program that is obtained from rank inequalities on r variables. Therefore,

every lower bound on λ(Γ) derived from such a linear program is at most

σp0(Zr−1(Γ)) = δ1, where δ1 is the first component of the increment vector of

Z(P, r − 1).

Observe that we are not assuming r ≤ n in Theorem 5.3.3. A smaller value

for the bound (5.3.1) can be proved for the case r ≤ n by using in the same way

the uniform Boolean polymatroid defined by the set M of all subsets (instead of

multisets) of P with at most r − 1 participants and the subsets (Mx)x∈P, where Mx

consists of the subsets in M that contain x. Nevertheless, asymptotically the new

bound is not better than O(nr−2).

5.4 On Rank Inequalities Derived from Common In-

formations

In this section, we introduce common information first, and then devote to prove

main result Theorem 5.4.8. From now on, we use a more compact notation for

unions of sets. So, we write XY for X ∪ Y Xx for X ∪ {x}, and also xy for {x, y}.

5.4.1 Common Information Defined on Polymatroids

Given two random variables S1 and S2, We say that a random variable S3 conveys

the common information of the random variables S1 and S2 if H(S3|S2) = H(S3|S1) =

0 and H(S3) = I(S1; S2). In general, it is not possible to find a random variable

conveying the common information of two given random variables. Nevertheless,
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if S1 = S|V1 and S2 = S|V2 for some vector subspaces V1, V2 ⊆ E, then S3 = S|V1∩V2

conveys the common information of S1 and S2.

Because of the connection between polymatroids and the Shannon entropy

given by Theorem 2.3.3 and by analogy to the conditional entropy, we write

f (X|Y) = f (X ∪ Y)− f (Y) if f is the rank function of a polymatroid. Clearly,

f (X1 ∪ · · · ∪ Xr) =
r

∑
i=1

f (Xi|X1 ∪ · · · ∪ Xi−1) (5.4.1)

for all X1, . . . , Xr ⊆ Q. Obviously, f (X|Y) ≥ 0 and submodularity implies that

f (X|Y ∪ Z) ≤ f (X|Y). Moreover, f (X|Y ∪ Z) = f (X|Y) if f (Z|Y) = 0. The

following definition is motivated by the concept of common information of a pair

of random variables. Some basic properties that will be used later are given in

Proposition 5.4.2.

Definition 5.4.1. Consider a polymatroid S = (Q, f ) and two sets A, B ⊆ Q. Then

every x0 ∈ Q such that

• f ({x0}|A) = f ({x0}|B) = 0 and

• f ({x0}) = f (A) + f (B)− f (A ∪ B)

is called a common information of the pair (A, B).

Proposition 5.4.2. Let S = (Q, f ) be a polymatroid, A, B ⊆ Q, and x0 ∈ Q a common

information of (A, B). Consider a subset Y ⊆ Q such that f (Y|A) = f (Y|B) = 0. Then

f (Y) ≤ f ({x0}) and f (Y|{x0}) = 0.
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Proof. By Equation (5.4.1), each of the following quantities is equal to f (ABY).

f (A) + f (Y|A) + f (B|AY) (5.4.2)

f (B) + f (Y|B) + f (A|BY) (5.4.3)

f (A ∪ B) + f (Y|AB) (5.4.4)

f (Y) + f (AB|Y) (5.4.5)

By equaling the sum of (5.4.2) and (5.4.3) to the sum of (5.4.4) and (5.4.5),

f (Y) = f (A) + f (B)− f (AB) + f (B|AY) + f (A|BY)− f (AB|Y).

Therefore, f (Y) ≤ f ({x0}) because f (AB|Y) = f (B|Y) + f (A|BY) ≥ f (B|AY) +

f (A|BY). Finally, f (Yx0) ≤ f ({x0}) because f (Yx0|A) = f (Yx0|B) = 0, and hence

f (Y|{x0}) = 0.

Let (Vx)x∈Q be a collection of vector subspaces representing a K-linear poly-

matroid S = (Q, f ), and consider two subsets A, B ⊆ Q. By taking Vx0 = VA ∩ VB,

an extension of S to Q ∪ {x0} is obtained in which x0 is a common information

of A and B. Obviously, this new polymatroid is K-linear as well. In particular, if

S = (Q, f ) is a Boolean polymatroid defined by a family (Mx)x∈Q of sets, then the

extension of S to Q ∪ {x0} given by Mx0 = MA ∩ MB is a Boolean polymatroid in

which x0 is a common information of A and B.

Definition 5.4.3. Let k be a positive integer. A polymatroid S = (Q, f ) satisfies the k-

common information property if, for every k pairs (Ai0, Ai1)i∈[k] of subsets of Q, there
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exists an extension (Qy1 . . . yk, f ) of S such that yi is a common information of (Ai0, Ai1)

for every i ∈ [k].

Clearly, a poly-linear polymatroid satisfies the k-common information property

for every k. Every rank inequality on four variables is a combination of the

Shannon inequalities and the Ingleton inequality [50]. If a polymatroid satisfies

the 1-common information property, then it satisfies the Ingleton inequality [39],

and hence it satisfies all information inequalities on 4 variables. Moreover, there

exist 24 rank inequalities on five variables that, together with the Ingleton and

Shannon inequalities, generate all rank inequalities on five variables [39]. All these

inequalities are satisfied by every polymatroid with the 2-common information

property [39], and hence such polymatroids satisfy all information inequalities on 5

variables. In addition, this holds for all known infinite families of rank inequalities

on an arbitrary number of variables [39]. Moreover, according to [39], all known

rank inequalities are derived from the 2-common information property.

5.4.2 On Rank Inequalities Derived from 2-Common Information

Property

Let P be a set of n participants, Γ an access structure on P, and Z = Z(P, 4).

Consider the Γ-polymatroid Z(Γ) that is an extension of Z to Q = P ∪ {p0}. Take

M = M(P, 4) and Mx = Mx(P, 4) for every x ∈ P. Then (Mx)x∈P is a boolean

representation of Z = Z(P, 4) = (P, f ). Consider a collection (Bi0, Bi1)i∈[k] of pairs

of subsets of P Consider the Boolean extension S = (P ∪ {y1, . . . , yk}, f ) of Z that

is given by the sets Myi = MBi0 ∩ MBi1 for i ∈ [k]. Then yi is a common information
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of (Bi0, Bi1) in S . Consider the extension of Γ to P ∪ {y1, . . . , yk} such that, for

every X ⊆ P and {i1, . . . , is} ⊆ [k], the set Xyi1 . . . yis is qualified if and only if

XBi1 j1 . . . Bis js ∈ Γ for every (j1, . . . , js) ∈ {0, 1}s. We use Γ to denote as well this

extended access structure.

Lemma 5.4.4. Let (Mx)x∈Q be a Boolean representation of a polymatroid (Q, f ) and

X, Y, Z disjoint subsets of Q. Then f (XYZ) + f (X) = f (XY) + f (XZ) if and only

if MY ∩ MZ ⊆ MX

Proof. Observe that MY ∩ MZ ⊆ MX if and only if MX ∩ MZ = MXY ∩ MZ. In

addition, |MX ∩ MZ| = f (X) + f (Z) − f (XZ) while |MXY ∩ MZ| = f (XY) +

f (Z)− f (XYZ).

Lemma 5.4.5. The polymatroid S and the access structure Γ on P ∪ {y1, . . . , yk} are

compatible.

Proof. We begin by checking that the first condition in Proposition 2.5.3 is satisfied.

Take P̂ = P ∪ {y1, . . . , yk} and consider X ⊆ P̂ and y ∈ P̂ such that X /∈ Γ and

Xy ∈ Γ. Without loss of generality, we can assume that X = Yy1 . . . ys for some

Y ⊆ P and 0 ≤ s ≤ k, and that YB10 . . . Bs0 /∈ Γ. If y ∈ P, then y /∈ YB10 . . . Bs0,

and hence yyyy ∈ Mz rMX. If y /∈ P, then s < k and we can assume y = yk. Then

YB10 . . . Bs0Bkj is qualified for j = 0, 1. Therefore, there exist uj ∈ BkjrYA10 . . . As0

for j = 0, 1 and u0u0u1u1 ∈ My rMX. Therefore, f (X) ≤ f (Xy)− 1.

We proceed now to check the second condition in Proposition 2.5.3. Consider

X ⊆ P̂ and y, z ∈ P̂ are such that X /∈ Γ and Xy, Xz ∈ Γ, As before, we can assume

that X = Yy1 . . . ys for some Y ⊆ P and 0 ≤ s ≤ k, and that YB10 . . . Bs0 /∈ Γ. If

y, z ∈ P, then y, z /∈ YB10 . . . Bs0, and hence yyzz ∈ (My ∩ Mz)r MX. If y /∈ P
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and z ∈ P, we can assume that y = yk. Then there exist uj ∈ Bkj r YB10 . . . Bs0

for j = 0, 1 and u0u1zz ∈ (My ∩ Mz) r MX. If y, z /∈ P, we can assume that

y = yk−1 and z = yk Then u0u1v0v1 ∈ (My ∩ Mz)rMX if uj ∈ B(k−1)jrYB10 . . . Bs0

and vj ∈ Bkj r YB10 . . . Bs0. Therefore, f (Xyz) + f (X) ≤ f (Xy) + f (Xz) − 1 by

Lemma 5.4.4.

Proposition 5.4.6. Let Γ be an access structure on P and (Bi0, Bi1)i∈[k] a collection of pairs

of subsets of P. Take Z = Z(P, 4). Then there exists a polymatroid (Q ∪ {y1, . . . , yk}, f ),

extension of Z(Γ), such that yi is a common information of (Bi0, Bi1) for every i ∈ [k].

Proof. The polymatroid S(Γ) satisfies the required properties.

Observe that Proposition 5.4.6 does not imply that Z(Γ) satisfies the k-common

information property, because the existence of common informations is guaranteed

only for pairs of subsets of P but not for pairs of subsets of Q. Some additional

difficulties appear when dealing with pairs of subsets involving the element p0.

We discuss this issue in the following.

For a subset X ⊆ Q, a polymatroid (Q, f ) can be extended to (Qx, f ) by taking

f (Yx) = f (YX) for every Y ⊆ Q. In this case, we say that the element x is identified

to the subset X.

Lemma 5.4.7. Consider a pair (A0, A1) of subsets of Q with p0 ∈ A0 ∩ A1 and take

Bj = Aj r {p0}. Let (Q, g) be a Γ-polymatroid and let (Qy, g) be an extension such that

y is a common information of (B0, B1). Finally, consider the polymatroid (Qyx, g), where

x is identified to yp0.

1. If both B0 and B1 are qualified, then y is a common information of the pairs (A0, B1),

(A1, B0), and (A0, A1).
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2. If B0 ∈ Γ and B1 /∈ Γ, then y is a common information of (A0, B1) and x is a

common information of both (B0, A1) and (A0, A1).

3. If B0 ∪ B1 /∈ Γ, then y is a common information of both (A0, B1) and (A1, B0), while

x is a common information of (A0, A1).

Proof. Take ∆ = g(A0)+ g(A1)− g(A0A1)− (g(B0)+ g(B1)− g(B0B1)). If B0, B1 ∈

Γ, then ∆ = 0, and hence y is a common information of (A0, A1). Clearly, this

implies that y is as well a common information of (A0, B1) and (A1, B0). On the

other hand, ∆ = 1 if B0 ∈ Γ and B1 /∈ Γ. Obviously, f ({x}|Aj) = f (yp0|Aj) = 0 for

j = 0, 1. In addition, f ({x}) = f ({y}) + 1 because f ({x}) = f (yp0) = f ({y}) +

f ({p0}|{y}) and f ({p0}|{y}) ≥ f ({p0}|B1) = 1. Therefore, x is a common

information of (A0, A1). The other statements are proved analogously.

One situation is missing in in Lemma 5.4.7, namely B0, B1 /∈ Γ and B0 ∪ B1 ∈ Γ.

In this case, none of the elements y, x considered in Lemma 5.4.7 is a common

information of (A0, A1). A method to find such a common information is given in

the proof of Theorem 5.4.8, the main result in this section. Observe that, for every

α ≥ 1, the polymatroid αZ(P, 4) is compatible with all access structures on P.

Theorem 5.4.8. Take Z ′ = αZ(P, 4) for some large enough integer α ≥ 1. For

every access structure Γ on P, the polymatroid Z ′(Γ) satisfies the 2-common information

property.

Proof. Consider two pairs (Ai0, Ai1)i∈[2] of subsets of Q and take Bij = Aij r

{p0}. For the pairs (Bi0, Bi1)i∈[2], consider the extension S = (Py1y2, f ) of Z =

Z(P, 4) = (P, f ) and the extension of Γ to Py1y2 as defined at the beginning of
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this section. Recall that yi is a common information of (Bi0, Bi1) for i = 1, 2 and

that the polymatroid S is compatible with the access structure Γ. Obviously, these

properties hold as well for the polymatroid T = αS = (Py1y2, g), which is an

an extension of Z ′ = αZ = (P, g). If each of the pairs (Bi0, Bi1)i∈[2] is in one of

the cases considered in Lemma 5.4.7 (or the symmetric ones), then there exists an

extension (Qx1x2, g) of Z ′(Γ) such that xi is a common information of (Ai0, Ai1)

for i = 1, 2.

Assume that p0 ∈ A10 and B10, B11 /∈ Γ while B10 ∪ B11 ∈ Γ. Assume as well

that p0 /∈ A2j for j = 0, 1, or B20 ∈ Γ, or B20 ∪ B21 /∈ Γ. Then, by Lemma 5.4.7, we

can extend Z ′(Γ) to Qy1x2, being x2 a common information of (A20, A21). Extend

Z ′ to Pz1y2 by taking, for every X ⊆ Py2,

• g(Xz1) = g(Xy1) if XB10 ∈ Γ, and

• g(Xz1) = g(Xy1) + 1 otherwise.

In addition, consider the extension of Γ to Pz1y2 such that, for every X ⊆ Py2, the

set Xz1 is qualified if and only if XB11 ∈ Γ. We prove next that (Pz1y2, g) is indeed

a polymatroid and that it is compatible with Γ. By combining Propositions 2.3.7

and 2.5.3, we have to prove the following claim.

Claim 5.4.9. For every X ⊆ Pz1y2 and y, z ∈ Pz1y2r X,

g(Xyz) + g(X) ≤ g(Xy) + g(Xz)− δ,

where δ = 1 if X /∈ Γ and Xy, Xz ∈ Γ, and δ = 0 otherwise.
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Once this claim is proved, it is not difficult to check that z1 is a common

information of (A10, B11). Indeed, since B10z1 ∈ Γ, we have that g(A10z1) =

g(B10z1) = g(B10y1) + 1 = g(B10) + 1 = g(A10). In addition, g(B11z1) =

g(B11y1) = g(B11). Moreover, g({z1}) = g({y1}) + 1 = g(B10) + g(B11) −

g(B10B11) + 1 = g(A10) + g(B11) − g(A10B11). In conclusion, z1 is a common

information of (A10, B11). In addition, if p0 ∈ A11, a common information x1 of

(A10, A11) is obtained by identifying x1 to z1p0.

Assume now that p0 ∈ Ai0 and Bi0, Bi1 /∈ Γ while Bi0 ∪ Bi1 ∈ Γ for i = 1, 2. An

element z2 that is a common information of (A20, B21) in (Qy1z2, g) is obtained by

symmetry. At this point, we have to extend Z ′ and Γ to Pz1z2 in some way that

is compatible with the previous extensions. This is done as follows. For each set

X ⊆ P, Let N(X) be the number of pairs (j, k) ∈ {0, 1}2 such that XB1jB2k ∈ Γ. The

following requirements define extensions of Z ′ and Γ to Pz1z2.

• If N(X) = 0, 1, then g(Xz1z2) = g(Xy1y2) + 2 and Xz1z2 /∈ Γ.

• If N(X) = 2 and XB11B21 /∈ Γ, then g(Xz1z2) = g(Xy1y2) + 1 and Xz1z2 /∈ Γ.

• If N(X) = 2 and XB11B21 ∈ Γ, then g(Xz1z2) = g(Xy1y2) + 2 and Xz1z2 ∈ Γ.

• If N(X) = 3 and XB11B21 /∈ Γ, then g(Xz1z2) = g(Xy1y2) and Xz1z2 /∈ Γ.

• If N(X) = 3 and XB11B21 ∈ Γ, then g(Xz1z2) = g(Xy1y2) + 1 and Xz1z2 ∈ Γ.

• If N(X) = 4, then g(Xz1z2) = g(Xy1y2) and Xz1z2 ∈ Γ.

The last step in the proof is to check that (Pz1z2, g) is a polymatroid that is

compatible with Γ. That is, we have to prove the following claim.
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Claim 5.4.10. For every X ⊆ Pz1z2 and y, z ∈ Pz1z2r X,

g(Xyz) + g(X) ≤ g(Xy) + g(Xz)− δ,

where δ = 1 if X /∈ Γ and Xy, Xz ∈ Γ, and δ = 0 otherwise.

In order to proof the two claims, we follow the same strategy. For a subset

X ⊆ Py1y2z1z2, we notate X for the subset of Py1y2 that is obtaining by substituting

zi by yi. We consider

• ∆g(X, y, z) = g(Xy) + g(Xz)− g(Xyz)− g(X), and

• ε = ∆g(X, y, z)− ∆g(X, y, z).

Then ∆g(X, y, z) = ∆g(X, y, z) + ε = α∆ f (X, y, z) + ε. Since ∆ f (X, y, z) ≥ 0,

the claims are proved by checking that ε ≥ δ if ∆ f (X, y, z) = 0. Recall that

∆ f (X, y, z) = 0, if and only if My ∩ Mz ⊆ MX.

First, we prove Claim 5.4.9 by considering three cases.

Case 1. y = z = z1. Then ε = g(Xz1)− g(Xy1) ≥ 0. If δ = 1 and ε = 0, then

X /∈ Γ and Xy1 ∈ Γ, and hence ∆ f (X, y1, y1) ≥ 1.

Case 2. y ̸= z = z1. Then ε = g(Xz1)− g(Xy1)− (g(Xyz1)− g(Xyy1)) ≥ 0 and

ε = 0 if and only if XyB10 /∈ Γ or XB10 ∈ Γ. If δ = 1 and ε = 0, then X /∈ Γ while

Xy ∈ Γ and Xy1 ∈ Γ, which implies that ∆ f (X, y, y1) ≥ 1.

Case 3. X = Yz1 with Y ⊆ Py2. Then ε ≥ −1. If ε = −1, then YB10 /∈ Γ while

YyB10, YzB10 ∈ Γ. This implies that My ∩ Mz ̸⊆ MYB10 , and hence ∆ f (X, y, z) ≥ 1
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because MYy1 ⊆ MYB10 . If δ = 1, then YB11 /∈ Γ while YyB11, YzB11 ∈ Γ and, as

before, ∆ f (X, y, z) ≥ 1.

We proceed now to prove Claim 5.4.10. We have to distinguish several cases.

Case 1. y = z1 and z = z2. For i = 1, 2, take εi = g(Xzi) − g(Xyi), and also

ε3 = g(Xz1z2)− g(Xy1y2). Then ε = ε1 + ε2 − ε3. If ε3 = 2, then ε1 = ε2 = 1. In

addition, ε3 = 0 if ε1 = ε2 = 0. Therefore, ε ≥ 0. Suppose now that δ = 1. In

this case ε3 ≤ 1 because XB11, XB21 ∈ Γ. If ε1 = ε2 = 0, then XB10, XB20 ∈ Γ, And

hence Xy1, Xy2 ∈ Γ. Since X /∈ Γ, this implies that ∆ f (X, y1, y2) ≥ 1. If ε3 = 1, then

XB10B20 /∈ Γ, and hence ε1 = ε2 = 1 and ε = 1.

Case 2. X = Yz1 and y = z = z2, where Y ⊆ P. In this case, ε = ε1 − ε0, where

ε0 = g(Yz1) − g(Yy1) and ε1 = g(Yz1z2) − g(Yy1y2). If ε < 0, then ε1 = 0 and

ε0 = 1, and hence YB10 /∈ Γ while YB10B2k ∈ Γ for k = 0, 1. This implies that My2 ̸⊆

MYy1 , and hence ∆ f (Yy1, y2, y2) ≥ 1. Suppose now that δ = 1, that is, YB11 /∈ Γ

and Yz1z2 ∈ Γ. If ε0 = ε1 = 0, then Yy1y2 ∈ Γ, and hence ∆ f (Yy1, y2, y2) ≥ 1.

If ε0 = ε1 = 1, then N(Y) = 3 and YB1j /∈ Γ for j = 0, 1. This implies that

∆ f (Yy1, y2, y2) ≥ 1.

Case 3. X = Yz1 and y ̸= z = z2, where Yy ⊆ P. Take ε0 = g(Yz1)− g(Yy1), ε1 =

g(Yyz1) − g(Yyy1), ε2 = g(Yz1z2) − g(Yy1y2) and ε3 = g(Yyz1z2) − g(Yyy1y2).

Then ε = ε1 + ε2 − ε3 − ε0. Observe that 0 ≤ ε1 ≤ ε0 ≤ 1 and 0 ≤ ε3 ≤ ε2 ≤ 2.

Suppose that ε < 0. Then ε0 = 1, ε1 = 0, and ε2 = ε3. In particular, YB10 /∈ Γ

and YyB10 ∈ Γ, and hence ε3 ≤ 1. If ε2 = ε3 = 1, then YyB11B20 /∈ Γ, and hence
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YB10B2k ∈ Γ for k = 0, 1. Since YB10 /∈ Γ, this implies that ∆ f (Yy1, y, y2) ≥ 1.

Similarly, ∆ f (Yy1, y, y2) ≥ 1 if ε2 = ε3 = 0. Suppose now that ε = 0 and δ =

1. Then YB11 /∈ Γ while YyB11 ∈ Γ and Yz1z2 ∈ Γ. If ε1 = 0, then Yyy1 ∈

Γ, and hence ε3 = 0. If, in addition, ε0 = 1, we have that ε2 = 1 and, since

Yz1z2 ∈ Γ, we have that YB10B2k ∈ Γ for k = 0, 1 or YB11B2k ∈ Γ for k = 0, 1.

Therefore, ∆ f (Yy1, y, y2) ≥ 1. If ε1 = ε0 = 0, Then Yy1y2 ∈ Γ. This implies that

∆ f (Yy1, y, y2) ≥ 1 because YB11 /∈ Γ while YyB11 ∈ Γ and YB11B2k ∈ Γ for k = 0, 1.

Case 4. X = Yz1z2, where Yyz ⊆ P. Take ε0 = g(Yz1z2) − g(Yy1y2), ε1 =

g(Yz1z2y) − g(Yy1y2y), ε2 = g(Yz1z2z) − g(Yy1y2z) and ε3 = g(Yz1z2yz) −

g(Yy1y2yz). Then ε = ε1 + ε2 − ε3 − ε0. Observe that 0 ≤ ε3 ≤ ε1, ε2 ≤ ε0. Suppose

that ∆ f (Yy1y2, y, z) = 0, that is, My ∩ Mz ⊆ MYy1y2 . Without loss of generality, we

can assume that y ∈ B10 ∩ B11 or y ∈ B10 and z ∈ B11. Suppose that y ∈ B10 ∩ B11

(observe that this covers the case y = z). Then ε1 = ε0 and ε3 = ε2, and hence

ε = 0. Moreover, δ = 0 because Yy1y2y /∈ Γ if Yy1y2 /∈ Γ.

Suppose now that y ∈ B10 and z ∈ B11. We prove first that ε ≥ 0. Three cases

are considered.

1. If ε1 = 0, then YyB10B2k ∈ Γ for k = 0, 1, and hence YB10B2k ∈ Γ for k = 0, 1,

which implies that ε0 ≤ 1. If ε1 = 0 and ε0 = 1, then YB11B20 /∈ Γ and

YzB11B20 /∈ Γ, which implies that ε2 = 1. Therefore, ε = 0 if ε1 = 0.

2. Suppose now that ε1 = 1 and ε2 = 0. Then YzB11B20 ∈ Γ, and hence

YB11B20 ∈ Γ. If ε < 0, then ε0 = 2, and hence YB10B2k /∈ Γ for k = 0, 1, a

contradiction with ε1 = 1.
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3. Consider now the case ε1 = ε2 = 1, and suppose that ε < 0. Then ε0 = 2

and ε3 = 1. Since ε1 = 1, exactly one of the sets YB10B20, YB10B21 is in Γ.

Moreover, YB11B20 /∈ Γ while YyB11B20 ∈ Γ. and YzB10B21 ∈ Γ. This implies

that ε3 = 0, a contradiction.

Now, we have to prove that ε ≥ 1 if δ = 1. Suppose that, on the contrary, ε = 0

and δ = 1. As before, we distinguish three cases.

1. If ε1 = 0, then YB10B2k ∈ Γ for k = 0, 1, and hence Yz1z2 ∈ Γ, a contradiction.

Therefore, we assume from now on that ε1 ≥ 1, and hence ε0 ≥ 1.

2. If ε0 = 1, then N(Y) = 2 and YB11B21 /∈ Γ because Yz1z2 /∈ Γ. This implies

that Yzz1z2 /∈ Γ, a contradiction.

3. If ε0 = 2, then N(Y) = 1 and YB11B21 ∈ Γ because Yzz1z2 ∈ Γ. Therefore,

YyB10B2k /∈ Γ for k = 0, 1, and hence ε1 = 2. Moreover, N(Yz) ≥ 2 and

YzB11B20 /∈ Γ. If YzB10B20 /∈ Γ or YzB10B21 /∈ Γ, then ε2 = 2, and hence ε3 =

2. This implies that YyB11B20 /∈ Γ, and hence Yyz1z2 /∈ Γ, a contradiction. If

YzB10B2k ∈ Γ for k = 0, 1, then ε2 = 1, and hence ε3 = 1. Again, this implies

that Yyz1z2 /∈ Γ, a contradiction.
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Chapter 6

Conclusion

In this thesis we have explored two main open problems in secret sharing schemes:

the characterization of ideal access structures and the optimization of the length of

shares.

6.1 New families of ideal access structures and secret

sharing schemes

In Chapter 3 we devoted to study ideal multipartite secret sharing, in the way

that new families of ideal multipartite access structures are found by different

representable integer polymatroids. And due to the use of integer polymatroids,

our proofs that the structures in these new families are ideal are extremely concise.

Notice that we summarize common features of existing constructions of ideal

linear secret sharing schemes, while a remarkable common feature is that they are

associated to Boolean polymatroids. To say the least, we use linear polymatroids,
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which are representable on every large enough finite fields. Due to Farràs, Martı́-

Farré and Padró’s work [41], our research focuses on ideal multipartite access

structures. Obviously, there remains many interesting work to do at every point

of specializing. The study on any family of secret sharing schemes satisfying any

common features mentioned in Section 3.1 or a few together will be interesting.

On the other hand, it is still an open problem to efficiently construct ideal

linear secret sharing schemes for those families of access structures. This problem

in general cases is connected the representability of matroids, which is an open

problem.

The method to construct ideal multipartite secret sharing schemes firstly

proposed by Brickell [22] is a linear algebra reformulation of the geometric

ideas by Blakley [16] and Simmons [87]. Next the search for ideal multipartite

secret sharing centered on interesting families of access structures also by other

authors [12, 51, 72, 90, 92]. All these constructions give vector space secret sharing

schemes, while in Section 3.7 we have represented them in a unified way.

Though a general method to construct those ideal multipartite access structures

is presented in [41], an efficient method is unknown. Further work can be on

constructing ideal secret sharing schemes for mentioned ideal access structure in

Chapter 3 or other ones, and general constructions are more welcome.

6.2 Bounds on information ratio

In Chapter 4 and 5, optimization of the length of shares is discussed from particular

cases and asymptotic behavior.
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In Chapter 4 the information ratio of some access structures with small number

of participants are studied, particularly, unsettled bounds of 5-participant access

structures [57] and 6-participant graph access structures [48], while we give a

general way to compute out the lower bounds of any small access structure; also

we try to use information inequalities and rank inequalities to sharpen the known

information ratio region, however, in most cases we tried those inequalities are

helpless.

There are a few cases that are still open, that is, the optimal (average)

information ratios are unsettled for some 5-participant access structures and 6-

participant graph access structures. The impossibility result in Section 4.6 shows

the difficulty of solving this problem. For linear secret sharing schemes, we can use

rank inequalities to improve lower bounds and construct the schemes to improve

upper bounds. However, for non-linear schemes, this problem becomes harder.

Moreover, even if all information and rank inequalities are known, we are not sure

that the cases discussed in Section 4.6 can be solved. Neither do we for other access

structures.

In Chapter 5 we give two negative results, both of which show the limitation

of the use of information inequalities and rank inequalities. We proved that all

information inequalities on a bounded number r of variables only can provide

lower bounds (n+r−3
r−2 ) that are polynomial on the number of participants n. On the

other hand, we proved theoretically all the rank inequalities derived from one or

two common informations cannot get better lower bounds than O((n+2
3 )) = O(n3).

For general access structures, the gap between lower bounds and upper bounds

is quite large. So far we are lack of techniques to solve this problem. Beimel probed
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into this difficult problem at the end of [5], and brought forward questions in

order to settle Conjecture 1.3.1. And Beimel and Weinreb [11] presented infinite

family (Γn) of access structures for which σ(Γn) is polynomial on the number

of participants while λ(Γn) is superpolynomial. This separation result shows the

gap between σ and λ for general access structures is at least from polynomial to

superpolynomial. However, to narrow the gap between lower bounds and upper

bounds for general access structure is a long way to go.

Observe that the method we use to study information ratio in both Chapter 4

and Chapter 5 actually is linear programming, which is the only method known.

However, this method has entered a bottleneck due to two main limitations. One

is many undiscovered information inequalities and rank inequalities and the other

one is the limitation of those inequalities as Beimel and Orlov [10] and Chapter 5

showed. It is clear that new techniques are needed to significatively advance this

area.
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