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Abstract 

To meet the explosive demand of high-speed Internet access, future-proofing 

infrastructure for access networks which are capable of being fully scalable in capacity to 

each subscriber is vital. Wavelength-division-multiplexed passive optical network 

(WDM-PON) is considered as the ultimate solution for next-generation access networks 

thanks to the unlimited bandwidth guaranteed by a dedicated wavelength (or a pair of 

wavelength) for each subscriber. However, some challenging issues are still blocking the 

way of mass deployment of WDM-PON systems. This dissertation is devoted to 

developing some enabling solutions for these challenging issues in WDM-PON 

technologies, including 1) implementation of cost-effective colorless optical network 

units (ONUs) and 2) delivery of broadcast service over WDM-PON architectures. 

The primary concern in WDM-PON implementation is the cost-efficiency of ONUs. 

Self-seeding of reflective semiconductor optical amplifiers (RSOAs) has been 

demonstrated as a cost-effective method to realize colorless ONUs in WDM-PONs. This 

dissertation first provides an in-depth study of the transmission performance of self-

seeded RSOA-based WDM-PONs. The impact of various system parameters on the 

system performance are investigated through experiments. The bit rate of a self-seeded 

RSOA is increased by boosting the seeding power as well as employing electronic 

equalization. A low-cost colorless WDM-PON system is proposed where 5-Gb/s 

downstream transmission is enabled using self-seeded RSOAs and 1.25-Gb/s upstream 

transmission is achieved using remote-seeded RSOAs.   
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Another work dedicated to develop low-cost colorless ONUs is to utilize a 

multimode-injected Fabry-Perot laser diode (FP-LD) as the remote seeding light in 

carrier-distributed WDM-PON architectures. The feasibility of the proposed scheme is 

demonstrated by the improved transmission performance when compared to the system in 

which an amplified spontaneous emission source is adopted as the remote seeding light. 

The latter part of the dissertation discusses two new techniques to enable broadcast 

service over WDM-PON architectures. One of the broadcast-capable WDM-PONs is 

based on polarization multiplexing technique. The downstream unicast and broadcast 

data are carried by two orthogonally polarized optical beams. Not only does this 

technique support broadcast services without allocating additional wavelength channels 

and using high-frequency subcarrier multiplexing, but it also depolarizes the seeding light 

to FP-LDs for upstream transmission. However, active polarization tracking is required to 

demultiplex the two polarization-multiplexed signals at each ONU, which may hinder the 

real deployment of such a system.  

To improve the cost-effectiveness, another broadcast-capable WDM-PON based on 

offset polarization multiplexing is proposed and demonstrated. In this WDM-PON 

architecture, the downstream differential phase-shift keying (DPSK)-formatted unicast 

and broadcast signals are offset polarization-multiplexed at the central office and 

demultiplexed and detected at the ONUs without resorting to any polarization tracking. 

Meanwhile, the offset polarization-multiplexed downstream signals could also facilitate 

the external injection of polarization-sensitive FP-LDs for colorless operation. Successful 

transmissions of 10-Gb/s downstream unicast and broadcast DPSK signals as well as 2.5-
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Gb/s upstream signal over a 20-km standard single-mode fiber are experimentally 

demonstrated. 
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CHAPTER 1  

Introduction 

 

The purpose of this dissertation is to provide potential solutions for addressing two 

technical issues in wavelength-division-multiplexed passive optical network (WDM-PON) 

systems, including 1) the implementation of cost-effective colorless optical network units 

(ONUs) and 2) broadcast service delivery over WDM-PON architectures. This chapter 

introduces the background and motivation for the studies elaborated in this dissertation. It 

also includes the research contributions and the organization of this dissertation. 

1.1 Background and motivation 

This section introduces bandwidth drivers in access networks and the corresponding 

evolution of access network solutions. It explains why WDM-PON is regarded as the 

ultimate solution for next-generation access networks and summarizes the ongoing 

research aspects in WDM-PON technologies. 

1.1.1 Bandwidth drivers in access networks 

The access network, also known as the “first-mile network”, connects the service 

provider central offices (COs) to businesses and residential subscribers. The bandwidth 

demand in the access network has been increasing rapidly over the past several years [1]. 

Communication and Internet services being offered to residential homes have undergone 

rapid expansion in the last two decades. Customers are no longer only interested in voice 

telephony, broadcast television, and radio; they are also increasingly asking for always-
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the traffic demands. DSL techniques and cable modem techniques are evolving into 

higher speeds but at the cost of a shorter reach. 

The unique properties of optical fibers, low loss and extremely wide bandwidth, 

make it the ideal candidate to meet the capacity challenges for now and the foreseeable 

future. Single-mode fiber has already been adopted in the core and metropolitan networks, 

and is increasingly penetrating the access domain as well. There is a common 

understanding that the various Fiber-to-the-X (FTTX, where X can mean home, curb, 

cabinet, or building) will overcome the bandwidth limitation of today’s copper-based and 

hybrid fiber access solutions [6]. FTTH is seen as the ultimate and most future-proof 

access solution leading to the next generation optical access network. 

Basically, three architectures can be deployed for fiber access networks. They are 

point-to-point architecture, active star architecture, and passive star architecture, also 

known as passive optical network (PON). A PON is a point-to-multipoint optical network, 

where an optical line terminal (OLT) at the central office is connected to many ONUs 

through remote nodes by one or multiple 1×N optical power splitters or wavelength 

multiplexer/demultiplexers. The network between the OLT and the ONUs is passive 

because no power supply is required. 

1.1.2 PON evolution: from TDM-PON to WDM-PON 

Since a common feeder fiber is shared among all ONUs in a PON architecture, accurate 

multiple access techniques are needed to avoid collisions among the traffic streams 

generated by different ONUs. The most traditional multiple access technology is time 

division multiple access (TDMA) and TDMA-based optical access networks have been 

deployed widely. In a typical time-division-multiplexed (TDM) PON, all ONUs use the 
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Although various architectures for WDM-PONs have been proposed as early as the 

mid-1990s, WDM-PONs have not been widely deployed throughout the world. To the 

knowledge of the author, only Korea Telecom has deployed an early implementation of a 

WDM-PON which delivers 100 Mb/s symmetric bandwidth to each subscriber in 2005 

[17].The lack of further installations is mostly attributed to low cost-efficiency and lack 

of international standardization. This situation is expected to change once the 

International Telecommunication Union (ITU) or IEEE provides relevant standards. 

Increased deployment enabled by standardization will in turn lead to decreased WDM-

PON cost. Recently the Full Service Access Network (FSAN) is working on white paper 

for NG-PON2 where various kinds of WDM-PON technologies including external 

seeding, tunable laser, and wavelength reuse are considered as candidate technologies. 

Current TDM-PON architectures are economically feasible and are being deployed 

rapidly around the world [7, 15]. However, they are bandwidth-limited and cannot meet 

the continuously increasing bandwidth demands of subscribers. WDM-PONs can be 

combined with additional TDMA techniques, in particular those already used by the 

EPON and GPON standards [18, 19]. This leads to hybrid WDM/TDM PONs (TWDM-

PON) which provide a smooth migration from current TDM-PONs to future WDM-

PONs. 

A TWDM-PON combines the flexibility of TDM-PON with the increased overall 

capacity of WDM technology. The advantages of a TWDM-PON over a pure WDM-

PON are its high fan out, easy migration from the existing network deployment, and 

ability to provide higher peak data rates [20, 21]. The TWDM-PON variants can be 

generally classified into three categories: 1) wavelength selected TWDM-PON with 
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power splitters at the remote node; 2) wavelength split TWDM-PON with an arrayed 

waveguide grating (AWG) at the remote node; and 3) wavelength switched TWDM-PON 

with wavelength selective switches at the remote node.  

The wavelength selected TWDM-PON offers the highest flexibility in terms of 

bandwidth utilization but has a high insertion loss and poor security since the power 

splitter broadcasts all wavelengths to all users. The poor power budget restricts its overall 

reach. The wavelength split TWDM-PON combines wavelength splitters and power 

splitters in the remote node. It has a fixed wavelength allocation and thus reduced 

flexibility. The advantages of this architecture are the improved data security and power 

budget. The wavelength switched TWDM-PON employs wavelength selective switches 

in the remote node. One wavelength selective switch feeds wavelengths to multiple 

AWGs so that the architecture has a higher fan out. Due to the switching functionality, it 

improves the data security without compromising flexibility. 

1.1.3 WDM-PON research and road ahead 

WDM-PONs have received tremendous attention from research groups all over the world. 

Fig. 1.5 shows the statistic data about the number of publications with the topic of WDM-

PONs in each year from the Web of Knowledge [22]. The concept of WDM-PON 

architecture first appeared in the mid-1990s [23]. The relevant research works have 

increased remarkably from the beginning of the 21th century and hit the peak between 

2008 and 2011. They cover a wide range of aspects in WDM-PON technologies 

including devices, architectures, services, and protocols. 
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eventually prove the necessity of WDM-PON technology. A lack of suitable network 

protocols and software to support the architecture would be no longer a problem as long 

as WDM-PON gets standardized. It is predicted that the standardization of WDM-PON 

will eventually come up around 2020 when the bandwidth demand per subscriber is 

expected to reach 1 Gb/s [25]. 

The key bottleneck in developing practical WDM-PON systems is the costs of 

upgrading existing access networks to support WDM-PON technologies. These costs not 

only include the obvious capital expenditure including land and buildings, network 

infrastructure, installation, software, customer premise equipment and project 

management cost, but also the hidden operational expenditure including renting, energy 

consumption, failure reparation, network operation, marketing, pricing, billing and 

service provisioning cost [26]. 

The point-to-point connection through dedicated wavelengths in WDM-PON 

systems requires that each ONU operates on a specific wavelength, which is in turn 

decided by the particular port of the wavelength multiplexer (located in the remote node) 

the ONU is connected to. An obvious solution is to use wavelength-specific light sources, 

e.g. DFB lasers, in ONUs. The laser diode usually comes with a thermo-electric cooler 

for stable operation as a WDM source. In addition, a wavelength locker, which helps the 

laser diode to lock exactly to its assigned wavelength, is needed [27]. Although a 

wavelength-specific DFB laser can support high-speed modulation, it is regarded as a 

costly way to implement a WDM-PON because a number of DFB laser diodes would be 

required and moreover each of them should be managed separately. To keep in the 

inventory all different wavelength lasers needed for each channel of a WDM-PON and to 
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install ONUs with different wavelength lasers at different homes is costly and not easy to 

maintain. End users would welcome unlimited bandwidth but they would be reluctant to 

pay much more than what they are paying for current DSL and TDM-PON technologies. 

An important factor that will reduce the cost of WDM-PON to meet the needs of FTTH 

as well as those of the enterprise will be the introduction of standard and colorless ONUs.  

Colorless (also termed as color-free or wavelength-independent) operation of 

ONUs in WDM-PONs is considered to be the key to reduce the installation and 

maintenance cost significantly since in a colorless WDM-PON identical light sources are 

adopted in ONUs and the wavelength assignment can be controlled by the OLT or the 

remote node (RN). A colorless ONU can be realized by employing light sources which 

could cover a wide spectrum range. Tunable lasers have superior performance in terms of 

data rate and transmission distance but are too expensive to be adopted in cost-sensitive 

ONUs. Low-cost broadband light sources such as light-emitting diodes (LEDs), amplified 

spontaneous emission (ASE) from erbium-doped fiber amplifiers (EDFAs) are 

economically feasible to be utilized as the light sources at ONUs of WDM-PONs [28-30].  

A more advanced scheme for colorless operation is carrier distribution in which the 

upstream carriers are generated in the OLT and distributed to corresponding ONUs 

through the logical point-to-point architecture [31-33]. Fabry-Perot laser diodes (FP-LDs) 

and reflective semiconductor optical amplifiers (RSOAs) are considered as promising 

candidates employed at ONUs of the carrier-distributed WDM-PONs. The fact that a FP-

LD and a RSOA can act as an optical amplifier and at the same time as a modulator 

makes them a cost-effective solution.  In addition to external seeding/injection, the RSOA 
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and FP-LD could also be self-seeded/injected [34, 35]. This scheme further reduces the 

cost by eliminating the remote seeding light.  

The use of standard colorless ONUs will result in higher production volumes that 

will translate into significant cost reduction for manufacturers. More importantly, it 

reduces the inventory management cost [36, 37]. This standardization will also reduce the 

complexity and cost of deployment, maintenance, and sparing, helping further decrease 

operation expenditure [38]. 

Another challenging issue in WDM-PON is the delivery of broadcast/multicast 

services. Unlike the point-to-multi-point TDM-PON in which downstream data is 

broadcast to all attached ONUs, the logical point-to-point WDM-PON architecture is not 

well suited for broadcast service delivery. Special techniques are needed to enable 

broadcast/multicast service delivery over conventional WDM-PON architectures.  

Other research aspects in WDM-PON technologies include WDM radio-over-fiber 

(RoF) PON in which wired and wireless services are converged in WDM-PON systems, 

long-reach WDM-PON which merges the access and metro networks, fiber fault 

protection with the capacity of detecting and localizing the fiber failures without delay, 

and energy-saving issue in WDM-PONs. 

1.2 Research contributions 

The research work presented in this dissertation puts an effort in making WDM-PON a 

viable technology for the next-generation access network by addressing two major 

technical issues in WDM-PON systems, low-cost colorless ONUs and broadcast service 

delivery. The major contributions include: 
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 In-depth experimental investigation and analysis on transmission performance of 

a colorless WDM-PON based on directly modulated self-seeded RSOAs are 

carried out. The impact of several important system parameters on upstream 

transmission performance are characterized and investigated through experiments. 

The findings in this work provide a better understanding of the mechanism and 

limitations of the directly modulated self-seeded RSOAs. Hence, they serve as a 

guide on designing WDM-PON systems using self-seeded RSOAs. (Chapter 3) 

 

 The transmission capacity of a directly modulated self-seeded RSOA, which is 

primarily limited by the modulation bandwidth of the RSOA itself, is enhanced by 

increasing the seeding power through inserting an optical amplifier in the self-

seeding cavity. And it is further increased by electronic equalization after 

detection. A low-cost colorless WDM-PON system based on self-seeded RSOAs 

for downstream transmission and remote-seeded RSOAs for upstream 

transmission is demonstrated and its transmission performance is investigated. 

This scheme serves as an alternative solution for future low-cost WDM-PON 

systems. (Chapter 3) 

 

 A multimode-injected FP-LD is proposed as the remote seeding light in carrier-

distributed WDM-PON systems. By feeding ASE spectrum slices into a common 

FP-LD used as a noise suppressor in the OLT instead of seeding them into FP-

LDs in corresponding ONUs directly, the noise of the remote seeding light is 

suppressed. Improved transmission performance of a WDM-PON based on FP-
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LDs injection-locked by a spectrum-sliced multimode-injected FP-LD is observed. 

(Chapter 4) 

 

 Polarization multiplexing technique is exploited to enable broadcast service 

delivery over WDM-PON architectures. Although automatic polarization tracking 

is required in each ONU to demultiplex the downstream unicast and broadcast 

data, the polarization-multiplexed downstream signals facilitate the external 

injection of polarization-sensitive FP-LDs for upstream remodulation. 

Transmission performance of the proposed WDM-PON system is investigated in 

detail. The work provides an alternative solution for broadcast-capable WDM-

PONs. (Chapter 5) 

 

 Another broadcast-enabling scheme for WDM-PON systems based on offset 

polarization multiplexing is proposed and demonstrated. This new scheme not 

only preserves the advantages of the previous proposed broadcast-enabling 

scheme based on polarization multiplexing but also brings improved cost-

efficiency. More specifically, the technique eliminates the necessity of automatic 

polarization tracking in each ONU by employing two separate differential phase 

shift keying (DPSK) receivers for downstream unicast and broadcast signals 

detection. Meanwhile, the offset polarization-multiplexed downstream signals 

could also facilitate the external injection of polarization-sensitive FP-LDs for 

colorless upstream transmission. (Chapter 6) 
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1.3 Thesis organization 

The rest of this dissertation consists of six chapters. 

Chapter 2 reviews the progress of several research aspects in WDM-PON 

technologies. Various proposed schemes for colorless operation of ONUs and broadcast 

service delivery over WDM-PON architectures are reviewed in detail. Development in 

other research directions including WDM-RoF-PONs, long reach WDM-PONs, fiber 

fault protection, and energy saving in WDM-PONs are briefly discussed. 

Chapter 3 focuses on low-cost colorless WDM-PONs based on self-seeded RSOAs. 

Firstly, the impact of various system parameters on the transmission performance is 

experimentally investigated. Secondly, the data rate of a directly modulated self-seeded 

RSOA is enhanced by increasing the seeding power and electronic equalization. Lastly, a 

low-cost full-duplex bidirectional colorless WDM-PON based on bit-rate-enhanced self-

seeded and remote-seeded RSOAs is demonstrated. 

Chapter 4 explores another type of prevalent low-cost light sources, FP-LDs, for 

colorless WDM-PONs. A theoretical mode of injection-locked FP-LDs is introduced, 

based on which the steady and dynamic characteristics of the free-running and injection-

locked FP-LDs are simulated. A multimode-injected FP-LD is proposed as the remote 

seeding light in carrier-distributed WDM-PONs. The feasibility is demonstrated by 

comparing its transmission performance to that based on a spectrum-sliced ASE through 

simulation. 

Chapter 5 introduces a broadcast-capable WDM-PON system using polarization 

multiplexing technique. Experimental demonstration of successful transmission of 10 

Gb/s downstream unicast and broadcast signals with low extinction ratio as well as 2.5 
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Gb/s upstream signal with forward error correction (FEC) confirms the feasibility of the 

proposed architecture. The impact of polarization dependence, injection-locking range, 

and signal extinction ratio on the transmission performance are investigated detailedly. 

Chapter 6 discusses another WDM-PON architecture with broadcast capability 

utilizing offset polarization multiplexing technique. Successful transmissions of 10-Gb/s 

downstream unicast and broadcast DPSK signals as well as 2.5-Gb/s upstream on-off 

keying (OOK) signal over a 20-km standard single-mode fiber are experimentally 

demonstrated. The robustness of the proposed scheme against polarization fluctuation 

along the link, relative bit delay between the unicast and broadcast signals, frequency 

deviation of the downstream signals from the delay interferometer (DI), and imperfection 

of the DI is investigated. 

Chapter 7 draws conclusions on the research work presented in this dissertation and 

also discusses some future research work in the area of WDM-PON technologies. 
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CHAPTER 2  

A Review on the Development of WDM-PON Technologies 

 

As a promising candidate for the next-generation optical access network, WDM-PON has 

attracted remarkable research attention for more than ten years. Researchers around the 

world have made significant efforts to develop viable WDM-PON technologies in 

various aspects. This chapter gives a detailed review on those topics which are related to 

the author’s work, including colorless light sources for ONU and broadcast/multicast 

service delivery over WDM-PON architectures. Other topics in WDM-PON technologies 

are also briefly summarized in this chapter.  

2.1 Colorless operation of ONUs 

In the WDM-PON system, each ONU is virtually point-to-point connected to the OLT by 

assigning a specific wavelength for downstream/upstream transmission. This could be 

realized by adopting wavelength-specific optical light sources, e.g. an array of distributed 

feedback (DFB) lasers in the OLT and one wavelength-specific DFB laser in each ONU. 

However, this brings about the cost issue. Firstly, the cost of the wavelength-specific 

DFB lasers is still high; secondly, such WDM-PON management induces high operating 

and inventory costs. In order to reduce cost and complexity, service providers would 

strongly prefer all ONUs to be identical, so that any ONU can be connected to any port of 

the arrayed waveguide grating (AWG) in the remote node. In other words, there should 
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be one light source that can be operated over the entire wavelength range covering all 

ONUs. Finally, the ONU light source must be inexpensive [39]. 

Colorless operation of ONUs in WDM-PONs will significantly reduce the high 

costs of installation, operation and maintenance of WDM-PON systems. Hence, 

developing reliable wavelength-independent light sources used as colorless transmitters 

in ONUs is the prerequisite of the wide deployment of WDM-PON systems. Tunable 

lasers followed by external modulators are considered to provide the best performance in 

terms of data rate and transmission reach but are regarded to be too expensive to be used 

for cost-sensitive optical access networks [40]. Several techniques are proposed and 

investigated to achieve colorless operation of ONUs with low-cost light sources such as 

RSOAs and FP-LDs. Each of them is introduced and discussed in detail in this section. A 

summative evaluation of the techniques enabling colorless ONUs is given in Table 3.2. 

2.1.1 Spectrum-sliced broadband light sources 

Spectrum-slicing of broadband light sources (BLS) has been proposed as a potential 

technique which could meet the requirement of cost-effective colorless light sources for 

WDM-PON systems. The broadband light sources could be LEDs, superluminescent 

diodes (SLD), FP-LDs, and ASE sources such as EDFA or SOA/RSOA [28, 39, 41, 42]. 

As Fig. 2.1 shows, with a BLS such as an LED, some fraction of the emitted light will 

match the optical passbands of the AWG in the RN. The exact wavelengths that pass 

through the AWG will depend on the AWG port to which the LED is attached. Identical 

LEDs could be applied to all ONUs and hence colorless operation is achieved. Spectrum 

slicing is attractive because LEDs are simple sources compared to widely tunable single 

frequency lasers. 
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As shown in Fig. 2.2, the broadband light source could replace an array of DFB 

lasers in the OLT as the downstream carriers since its broad spectrum could cover many 

transmission channels. The cost induced by the special techniques to improve the data 

rate and power margin for each channel would be justified since it is shared among all the 

end users. However, if it is employed as a colorless light source for upstream 

transmission, a BLS is required in each ONU and any cost induced by improving the BLS 

performance shall be covered by one end user, which makes the spectrum-sliced BLS 

technique less attractive to upstream operation than it is to downstream operation. In fact, 

researchers have already come up with solutions in which the BLS could be shared 

among end users for upstream transmission and meanwhile the colorless operation of 

ONUs could be satisfied. In the next subsection, this technique–carrier distribution–is 

discussed.  

2.1.2 Carrier distribution 

Colorless ONUs mean that all the ONUs connected to one WDM-PON are identical and 

they can be operated over the entire wavelength range of this network. Inventory cost is 

significantly reduced since each ONU can be connected to any port of the wavelength 

MUX/DEMUX in the RN. No record about the operating wavelength of each specific 

ONU needs to be made, and the end user would not need to concern about the operation 

wavelength of their installed ONUs. The wavelength assignment for uplink should be 

decided by the OLT in the central office or the RN. Like all the downstream transmitters 

are allocated in the OLT uniformly, if the upstream optical carriers could be also placed 

in the central office and distributed to the corresponding ONUs by the wavelength 

multiplexer in the RN, then the ONUs would be color-free.  
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2.1.2.1 System structure 

Fig. 2.3 illustrates the schematic of a carrier-distributed WDM-PON system. The 

upstream carrier module located in the OLT could be an array of DFB lasers, a multi-

wavelength light source, or an incoherent BLS. If DFB lasers or a multi-wavelength light 

source is employed, the wavelength and channel spacing should match the AWG in the 

RN. When the upstream optical carriers are transmitted to the RN, they will be routed to 

different ports according to the AWG and distributed to the corresponding ONUs 

attached to the AWG. If the upstream carrier module is a BLS, some fractions of the 

emitted light which match the optical passbands of the AWG in the RN are routed to the 

attached ONUs. 

 
Fig. 2.3.  Schematic of a carrier-distributed WDM-PON. 

 

In the ONU, a loopback configuration is needed for upstream transmission. Several 

configurations for the ONUs in a carrier-distributed WDM-PON are shown in Fig. 2.4. 

The upstream optical carrier will be first encoded by an external modulator driven by 

upstream data and then looped back through a circulator as Fig. 2.4 (a) shows. The 

transmission reach is limited by the power of the upstream optical carrier since it would 

undergo twice of the link loss from the OLT to ONUs. The power insufficiency could be 
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alleviated by providing optical gain in the ONU [31]. As shown in Fig. 2.4 (b), the SOA 

after the modulator would boost the power of the upstream signal. Transmission capacity 

will be limited if a BLS is employed as the upstream optical carriers as discussed in 

Section 2.1.1. Coherent CW lasers are usually employed as the distributed upstream 

carriers for high-speed operation. For data modulation, a polarization-insensitive optical 

modulator such as an electro-absorption modulator is preferred [32]. Moreover, a 

monolithic integrated device consisting of an EAM and a SOA could support data rate as 

high as 40 Gb/s with relative low cost and high compactness [33]. 

Since the functions of an ONU in a carrier-distributed WDM-PON system include 

modulation and amplification, the most cost-effective choice for such an ONU would be 

RSOAs. The front facet of the RSOA is anti-reflection coated. The upstream optical 

carrier could be fed into the RSOA with negligible power loss. This seeding light is 

amplified while traveling in the RSOA until it hits the rear facet of the RSOA. Most of 

the seeding light is reflected since the rear facet is high-reflection coated. At the same 

time, the amplified optical carrier is encoded with upstream data by electrically driving 

the bias current of the RSOA, as shown in Fig. 2.4 (c). RSOAs would be promising 

candidates for wavelength-independent ONUs in WDM-PONs as long as its main 

drawback, limited electrical bandwidth, is overcome.  

 
Fig. 2.4.  Different configurations of ONUs in a carrier-distributed WDM-PON system. 
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2.1.2.2 High-speed operation of RSOAs 

The typical 1~2-GHz electrical bandwidth has become the primary drawback of a RSOA 

and hinders its deployment in high-speed WDM-PON applications. Exhaustive studies 

have been carried out to demonstrate 10-Gb/s or higher operation of RSOAs for WDM-

PON system. Various proposed techniques will be summarized in this part. Some works 

employ more than one technique to achieve high-speed operation of RSOAs. 

A fundamental method is to increase the modulation bandwidth of a RSOA by 

improving the device and/or package design. The modulation speed of a RSOA is limited 

by carrier lifetime. By increasing the RSOA length to 850 µm, 3-GHz modulation 

bandwidth was obtained. Transmission over a 2-km SMF at 10 Gb/s below the FEC limit 

without any electronic processing was demonstrated in [44]. The chirp generated by high-

speed direct modulation of the RSOA becomes a limiting factor. However, chirp 

reduction in RSOAs has been demonstrated using multi-electrode devices [45]. In [46], a 

butterfly-packaged RSOA was developed to minimize the electrical parasitics. As a result, 

the modulation bandwidth of RSOA was improved from 2.2 to 3.2 GHz. Error-free 

transmission of 25.78-Gb/s signal obtained from a directly modulated RSOA was 

demonstrated by electrical equalization in conjunction with the use of FEC. A 

compressively strained multi-quantum-well RSOA was designed and an electro/optical 

(E/O) bandwidth of approximately 4 GHz was achieved. Up to 10.7-Gb/s data rate was 

demonstrated [47]. 

Another attractive method to increase the data rate supported by directly modulated 

RSOAs would be electronic equalization. The frequency response of a RSOA has a 
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smooth roll-off with no relaxation oscillation peak while its modulation has a good 

linearity. These properties are almost ideal for the electronic equalization using the 

decision feedback equalizer (DFE) that consists of feedforward and feedback filters.  A 

RSOA with 2.2-GHz modulation bandwidth was operated at 10 Gb/s by using the 

electronic equalizer consisting of half-symbol-spaced DFE (17, 3), i.e., 17-tap 

feedforward equalizer (FFE) and 3-tap DFE. The maximum reach could be extended to 

greater than 20 km with the help of FEC code [48]. The same authors extended their 

study by increasing the data rate to 25.78 Gb/s with a butterfly-packaged RSOA whose 

modulation bandwidth was around 3.2 GHz [49]. In [50], error-free transmission of 20-

Gb/s over 20 km SMF was achieved for a WDM-PON based on a 1-GHz RSOA by using 

partial-response maximum likelihood equalizer together with optical filter detuning and 

FEC. Ref. [51] demonstrated a 10-Gb/s extended-reach WDM-PON with low-bandwidth 

RSOA using a conventional maximum-likelihood sequence estimation (MLSE) receiver. 

The MLSE helped to recover from the inter-symbol interference (ISI) and Rayleigh 

backscattering (RBS) allowing the signal from a directly modulated RSOA to reach up to 

19-km bidirectional fiber and 125-km unidirectional fiber with a BER = 10-3. In addition 

to post-equalization, pre-equalization was also demonstrated for improving the data rate 

of directly modulated RSOAs [52].  

Besides equalization in electrical domain, the signal distortion due to chirp 

generated by direct modulation and chromatic dispersion can also be smoothed in the 

optical domain by detuned optical filtering. The positive chirp factor of RSOAs varies the 

frequency of the signal during direct modulation. The frequency is blue-shifted at the 

leading edge and red-shifted at the trailing edge. Thus reducing (blue-shifting) the center 
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wavelength of the optical bandpass filter (BPF) placed before the photodiode causes more 

attenuation for the trailing edge than the leading edge. The phase modulation generated 

by the chirp of the RSOA would be transformed into constructive amplitude modulation 

[53-56]. Detuned optical filtering is usually applied together with electrical equalization 

for high-speed operation of RSOAs. Error-free symmetrical 10-Gb/s full-duplex 

bidirectional transmission over 25-km SMF by modulating a strongly bandwidth-limited 

RSOA was experimentally demonstrated. The optimal filter position was 0.16 nm blue-

shifted with respect to the central wavelength of the transmitted signal and the detected 

signal was post-processed with DFE (5, 2) [53, 54]. By using duobinary partial response 

equalization and detuned optical filtering techniques, a WDM-PON system operating at 

10 Gb/s with only 1-GHz-bandwidth RSOA over 10-km transmission was achieved [55]. 

Ref. [56] proposed an improved detuned filtering approach based on the use of a single 

narrow-bandwidth AWG detuned in respect to the WDM grid. The narrow-bandwidth 

AWG acted both as a WDM demultiplexer and a detuned optical filter. 10-Gb/s operation 

of a RSOA with < 1 GHz bandwidth was investigated and error-free transmission was 

obtained after a 20-km SMF without the use of electronic equalization.  

H. Kim proposed and demonstrated 10-Gb/s operation of the RSOA using an 

optical delay interferometer (DI) [57-59], where the DI acts as an optical equalizer as 

well as a vestigial sideband filter. As shown in Fig. 2.5, a DI having a 25-GHz free-

spectral range (FSR) was employed before the photodetector. The transmission null of 

the DI was red-shifted by 3 GHz to the central frequency of the RSOA output. 

Transmission of 10-Gb/s directly modulated RSOA signals over 20-km SSMF in a 

carrier-distributed WDM-PON system was demonstrated [58]. The use of the 25-GHz DI 
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implemented by using directly modulated RSOAs and digital coherent receivers together 

with the electronic phase equalization techniques. The data rate was further increased to 

40-Gb/s by utilizing the QPSK format and the offset polarization division multiplexing 

technique in which two RSOAs was directly modulated with two 20-Gb/s QPSK signals 

separately [62]. 8-phase shift keying (PSK) optical signal generation technique by 

directly modulating RSOA using sophisticated optimization process of the instantaneous 

injection/depletion current was proposed in [63]. By compensating the patterning effect 

through optimizing the instantaneous injection/depleting current according to all the 

symbol patterns, 10.5-Gb/s 8-PSK signal by directly modulating a RSOA with a 

bandwidth of only 0.9 GHz was demonstrated. Discrete Multi-Tone (DMT) modulation 

allows maximizing the capacity of a communication system by measuring the available 

SNR of the link and then performing optimal bit and power loading on each subcarrier. 

This technique results in advantages in systems where the transmitter is bandwidth-

limited. In case of RSOAs, DMT could significantly increase the transmission capacity 

compared to the NRZ modulation format. 25-Gb/s transmission by using a DMT 

modulated 1-GHz RSOA in combination with optical detuned filtering was demonstrated 

[64].  

2.1.2.3 Backreflection in carrier-distributed WDM-PONs 

The major technical issue for a single-fiber carrier-distributed (or loopback) WDM-PON 

which supports bidirectional transmission of the same wavelength is SNR degradation by 

the backreflection-induced crosstalk in the fiber link. The backreflection would include 

RBS and discrete Fresnel reflection induced by reflection points such as splices and 

connectors. The discrete Fresnel reflection could be minimized by using angled 
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For coherent CW distributed carriers, the interferometric crosstalk could be reduced 

by broadening the optical spectrum, i.e., decreasing the coherent time, of the CW carrier 

or the modulated upstream signal. This can be done by external phase modulation of the 

CW carrier or by bias dithering of RSOA in the ONU [67, 68]. Single-tone bias dithering 

of a RSOA with a frequency outside the data bandwidth will move the noise from 

baseband to higher harmonics out of the receiver bandwidth. Reduction of reflection-

induced crosstalk in a link employing RSOAs achieved by applying bias dithering at 

RSOAs and phase modulation at the carrier source gave 6 dB and 7 dB improvement in 

power penalty, respectively [69]. 

The interferometric crosstalk could be also mitigated by reducing the spectra 

overlap between the modulated signal and the backreflection noise so that most of the 

electrical beat frequency will fall outside the receiver bandwidth. This could be realized 

by employing techniques such as line coding and subcarrier multiplexing (SCM). The 

purpose of line coding applied to the upstream transmitter, e.g. RSOAs, is to spectrum-

shape the power spectral density and up-shift the signal spectrum compared with the 

NRZ signal. A system demonstration of 6-dB enhanced tolerance to backreflection for 

WDM-PON based on 8B10B coding and high-pass electrical filtering was reported in 

[70]. Two correlative level codes, dicode and modified duobinary, were implemented to 

reduce the RB-induced interferometric crosstalk. At 10 Gb/s, the minimal allowable 

optical signal-to-RB ratio at the BER of 10-4 was reduced to16.5 dB by dicode coding, 

which was 4.3 dB better than the uncoded transmission. Experiments also demonstrated 

that 10 Gb/s and 20 Gb/s uplink could reach up to 70 km and 35 km using dicode and 

modified duobinary signaling, respectively [71]. 
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By applying SCM, the upstream signal would be shifted away from the 

backreflection noise and therefore the RB-induced power penalty could be eliminated. 

The SCM could be applied at ONU or RN where the distributed carrier was externally 

modulated with a subcarrier frequency. The upstream data was encoded onto the resulted 

subcarrier and transmitted back to the OLT. Since there was no overlap between the 

upstream signal and the backreflection noise, the high-frequency beat noise could be 

removed by the low-pass filter (LPF) at the receiver [72, 73]. 

2.1.3 Injection-locked FP-LDs 

To achieve colorless operation of ONUs in WDM-PONs, another cost-effective method 

is based on injection-locked FP-LDs. External seeding light required for injection-locking 

the FP-LDs in ONUs are distributed from the OLT. Compared to the carrier-distributed 

WDM-PONs introduced in the previous subsection, in which the ONU based on a RSOA 

or an EAM-SOA acts simply as a modulator and an amplifier, the ONU based on a FP-

LD will work as a directly-modulated laser subject to the injection-locking mechanism.  

A free-running FP-LD exhibits multiple longitudinal modes decided by the length 

of the Fabry-Perot (FP) cavity and the refractive index of the gain media. Strong mode 

partition noise (MPN) will be exhibited if any longitudinal mode is filtered out. The large 

relative intensity noise (RIN) makes the spectrum-sliced free-running FP-LD unsuitable 

to be transmission carrier [74]. However, if an external light source is fed into a free-

running FP-LD, the cavity mode located near the injection wavelength can be injection-

locked and enhanced in intensity while other cavity modes are suppressed. When the 

side-mode suppression ratio (SMSR) is greater than 30 dB, the FP-LD is supposed to lead 

quasi-single-mode operation. 
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2.1.3.1 External seeding sources 

The external seeding light can be incoherent spectrum-sliced ASE sources or coherent 

CW lasers. The advantages of incoherent spectrum-sliced ASE sources are low cost and 

more importantly it is unpolarized which is a desirable feature when working with 

polarization-dependent devices, e.g. polarization-dependent FP-LDs. However, the data 

rate of a spectrum-sliced ASE injection-locked FP-LD is limited by the RIN of the 

spectrum-sliced ASE seeding source. Although the total power of an ASE source is 

relatively stable, the RIN of any spectrum-sliced narrow-band spectrum is quite large. 

This intensity noise will be transferred to the injection-locked mode of the FP-LD and 

degrade the output performance of the injection-locked FP-LD [75]. The SNR of the 

directly modulated spectrum-sliced ASE injection-locked FP-LD would be determined by 

the ratio of optical bandwidth to electrical bandwidth, which is similar to a spectrum-

sliced ASE source used as a carrier as described by (2.1). The self-filtering effect and the 

additional phase noise of an injection-locked FP-LD would limit the system performance 

for high-capacity (beyond 1.25 Gb/s) long-reach WDM-PONs [76, 77]. Return-to-zero 

(RZ) modulation was utilized to improve the system dispersion tolerance and 1.25-Gb/s 

signal over 45 km of SSMF based on incoherent light injection-locked FP-LD was 

demonstrated [78]. With a noise suppressor after the external seeding light, the data rate 

of a spectrum-sliced ASE injection-locked FP-LD was increased up to 2.5 Gb/s in [79]. 

To improve the transmission capacity of injection-locked FP-LDs, coherent CW 

light is used as the external seeding source. For coherent seeding light, the required 

seeding power is smaller than that of incoherent seeding light. Thanks to the low RIN in 

the coherent seeding light, the data rate of directly-modulated coherent light injection-
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locked FP-LD has been increased to 10 Gb/s [80]. However, the injection-locking range 

to achieve 10-Gb/s operation was very tight. The detuning ranges between the CW 

seeding light and the targeted longitudinal mode was about 0.029 nm (3.6 GHz) to 

guarantee the BER smaller than 10-9. Moreover, the fact that low-cost FP-LDs are 

polarization-sensitive makes the polarized laser source unsuitable for the role of external 

seeding source [81]. 

An external seeding source whose performance is between the incoherent 

spectrum-sliced ASE and the coherent CW laser would be a spectrum-sliced FP-LD. 

Although the large MPN exhibited in a spectrum-sliced FP-LD makes it unsuitable for 

being an optical carrier, a spectrum-sliced FP-LD (master FP-LD) could be used as the 

external seeding source to injection-locked another FP-LD (slave FP-LD). Simultaneous 

transmission of four channel 2.5-Gb/s over 25 km SMF was demonstrated with injection-

locked FP-LDs by another spectrum-sliced FP-LD [82]. 

A multimode-injected FP-LD is proposed and used as the external seeding light for 

a carrier-distributed WDM-PON [83]. The multimode-injected FP-LD performs as a 

noise suppressor to reduce the RIN of the injected ASE spectrum slices. It is verified by 

simulation that based on the proposed remote seeding light the transmission performance 

of the injection-locked FP-LD for upstream transmission is improved. The details of the 

simulation architecture and results will be introduced in Section 4.4. 

2.1.3.2 Technical issues in injection-locked FP-LDs 

Since the external seeding sources are distributed from the OLT, a colorless WDM-PON 

based on injection-locked FP-LDs would also suffer RBS-induced performance 

degradation. Similar to external-seeded RSOAs, the RBS-induced penalty could be 
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reduced as the linewidth of the seeding light increases. A FP-LD injection-locked by a 

spectrum-sliced ASE source would show high robustness on the backreflection, while a 

coherent seeding light results in high backreflection-induced penalty [84]. Some 

techniques reviewed in Section 2.1.2.3, which are applied to mitigate the backreflection-

induced penalty in carrier-distributed WDM-PONs with RSOAs, are also applicable to 

injection-locked FP-LDs. 

In practical systems, the wavelengths of both the seeding light source and the FP-

LD fluctuate with the temperature and bias current. Even with a temperature controller, 

the central wavelength may still fluctuate slightly and randomly. So a large injection-

locking range would be desirable for real implementation. By reducing the reflectivity of 

the front facet to a relative low value, e.g. 1%, the FP-LD would exhibit weak resonance 

and hence weak-mode lasing. The weak-resonant-cavity (WRC) FP-LD has a wider 

injection-locking range compared to conventional FP-LDs [85]. The WRC FP-LD could 

enable a nearly uncooled operation of injection-locking, i.e., the external seeding light 

would no longer need to be carefully aligned to the longitudinal mode. Even the external 

seeding light aligned with the valleys of a free-running FP-LD could injection-lock the 

corresponding WRC FP-LD. This operation is similar to an external-seeded RSOA in 

which no wavelength alignment is required [86, 87].  

For a conventional polarization-sensitive FP-LD, injection-locking by a coherent 

source strongly depends on the polarization state of the injected light. For example, if the 

FP-LD favors the transverse-electric (TE) mode, the FP-LD makes light by lasing on the 

TE mode when the FP-LD is driven over a threshold current. On the other hand, the 

transverse-magnetic (TM) mode in the FP-LD shows only absorption nulls instead of 
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lasing, due to the very small TM gain inside the FP resonator [88]. When the seeding 

light is linear-polarized and it is aligned to the TE mode of the FP-LD, the FP-LD will be 

injection-locked at the longitudinal mode located closest to the seeding light at the shorter 

wavelength side; when the seeding light is aligned to the TM mode of the FP-LD, it is 

absorbed by the FP-LD instead of injection-locking the FP-LD. To tackle this, a two 

section FP-LD was designed by using a polarization-insensitive gain material as the 

active section and a strained InGaAsP material as the birefringence compensating section. 

As a result, the optical emission spectrum shows superimposed TE and TM modes after 

the proper amount of electrical currents are injected into both sections. In this case, TE 

and/or TM mode will be locked to the incoming signal whatever its polarization state [89]. 

2.1.4 Wavelength remodulation 

All the schemes discussed so far for fulfilling colorless operation of ONUs require 

separate wavelength channels for upstream and downstream transmission. To increase 

spectral efficiency, carrier reuse or downstream wavelength remodulation, has been 

proposed. In such a scheme, the downstream signal is divided into two portions in the 

ONU. One portion is detected by the downstream receiver and the other portion is fed 

into a RSOA or a FP-LD where it is encoded with upstream data and transmitted back to 

the OLT. Fig. 2.7 depicts the typical configuration of the ONU in a wavelength-

remodulated WDM-PON. Since each ONU requires only one wavelength channel for 

simultaneous upstream and downstream transmission, the number of end users served by 

one WDM-PON can be doubled and the implementation cost can be shared by more end 

users. 
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Fig. 2.7.  The typical configuration of ONUs in a wavelength-remodulated WDM-PON. 

 

Similar to carrier-distributed WDM-PONs, bidirectional WDM-PONs with 

remodulation scheme suffer backreflection-induced performance degradation. Moreover, 

the performance of wavelength-remodulated WDM-PONs is also degraded by 

remodulation crosstalk, i.e., the residue downstream modulation on the upstream signal. 

Some techniques proposed to mitigate the remodulation crosstalk-induce penalty are 

reviewed here.  

The NRZ format is preferred for both downstream and upstream transmission due 

to its simple implementation. However, the extinction ratio (ER) of downstream signal 

shall be compromised to facilitate upstream remodulation. In the case of using a FP-LD 

for upstream remodulation, the downstream ER should be carefully controlled to 

guarantee the power at spaces (binary “0”s) is well above the injection-locking threshold. 

The data rate of downlink is usually higher than that of uplink and the injection-locked 

FP-LD would function as a high-pass filter to remove most of the downstream 

modulation in the low-frequency region [90]. If an RSOA is employed as the upstream 

transmitter, it should be operated in the saturation region to suppress the power 

fluctuation resulted from downstream modulation in the seeding light. If the RSOA is 

operated in the unsaturated region, the performance of the upstream signal could be 
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seriously degraded by the thick ‘1-level’ induced by power fluctuation in the seeding 

light [91]. Similarly, the downstream ER should be optimized to keep some residual 

power during its space bits for remodulation with upstream data. A too low downstream 

ER results in an unacceptable high penalty for its detection, while a too high downstream 

ER degrades the upstream performance. 

To alleviate the constraint on the downstream ER, several modulation schemes for 

downlink were proposed, including inverse-return-to-zero (IRZ) and spectrum-shaping 

coding such as Manchester coding, miller coding, and dicode [92-95]. The Manchester-

encoded signal had a negligible amount of low-frequency components. Thus, the residual 

downstream signal superimposed on the upstream signal could be washed out by the 

limited bandwidth of the upstream receiver. However, Manchester coding needs to 

double electrical receiver bandwidth which increases the cost of ONUs [93]. The Miller 

signal follows the similar scheme as Manchester signal since they both belong to 1B/2B 

coding. The frequency spectrum of this signal contains less energy in low frequency than 

a conventional NRZ signal and less energy in high frequency than Manchester signal. It 

not only preserves the advantages of Manchester coding but also features an added 

advantage of reduced bandwidth as most of the power resides within the range of 0.5 

times the bit rate [95]. An alternative modulation format for downstream signal in 

wavelength-remodulated WDM-PONs is DPSK due to its constant-intensity nature. The 

DPSK-formatted downstream signal can be appropriately controlled to substantially 

suppress the crosstalk between the upstream and the downstream data [96]. However, the 

phase-to-intensity conversion would still introduce crosstalk to upstream signal. 
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2.1.5 Self-seeding of FP-LDs or RSOAs 

The carrier-distributed WDM-PONs and wavelength-remodulated WDM-PONs suffer 

from backreflection-induced power penalty. The backreflection noise could be reduced or 

eliminated by allocating the distributed carrier sources at the RN, however the RN would 

be no long passive. Self-seeding technique can remove the need of remote seeding light 

and therefore avoid the crosstalk induced by backreflection noise and at the same time 

achieve colorless operation of ONUs. Fig. 2.9 illustrates the schematic of a WDM-PON 

architecture with self-seeding technique and two feasible configurations of the reflection 

module (RM) located at the RN. 
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Fig. 2.9.  Schematic of a colorless WDM-PON architecture based on self-seeding technique. 

 

The self-seeding cavity is formed by the rear facet of the FP-LD or RSOA and the 

RM in the RN. The downstream and upstream wavelength channels for each ONU are 

located at different wavebands which are separated by one or multiple FSRs of the cyclic 

AWG. They could be separated by the coarse wavelength division multiplexers (CWDMs) 

in each ONU and the OLT. Not only does the AWG in the RN multiplex the upstream 

wavelength channels and demultiplex the downstream wavelength channels, but each 
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channel of the AWG is also utilized as a filter in the self-seeding cavity to determine the 

lasing wavelength. The output of the upstream transmitter, i.e., FP-LD or RSOA, is 

spectrum-sliced by one AWG channel within the cavity and then looped back to feed the 

same transmitter. The light is reflected back and forth between the RM in the RN and the 

FP-LD or RSOA in the corresponding ONU. 

2.1.5.1 Self-injected FP-LDs 

Self-injection of FP-LDs has been widely studied as a method to generate tunable single-

frequency fiber Fabry-Perot lasers [100-102]. When a FP-LD is utilized as the upstream 

transmitter in a self-seeded WDM-PON, one of the free-running longitudinal modes of 

the FP-LD should be aligned with the central wavelength of the AWG channel to which 

the ONU is attached.  

In [34], the self-injected FP-LD was directly modulated at 2.5 Gb/s and error-free 

transmission over 85-km SMF was achieved. Due to the large polarization dependent 

gain (PDG) of FP-LDs, the polarization of the seeding light should be carefully adjusted 

to align with the favored polarization mode of the FP-LD. Ref. [103] proposed stable 

1.25-Gb/s self-seeding operation of a directly modulated FP-LD without polarization 

control. The polarization independence of the self-seeding operation was fulfilled by 

adopting a 90° Faraday rotator mirror (FRM) as the RM and placing an in-line non-

reciprocal 45° Faraday rotator (FR) at the output of the FP-LD. In a later work, the same 

authors demonstrated uncooled and polarization independent operation of self-seeded FP-

LDs [104]. The uncooled operation in the temperature range of 0–60 °C was realized by 

utilizing an automatic power control circuit which would keep the FP-LD output power 

constant over temperature variations. However, about 2-dB periodic oscillation of the 
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receiver sensitivity was observed and this was attributed to the fact that the wavelength 

offset between the FP-LD longitudinal mode and the central wavelength of the AWG 

channel changes with temperature. 

2.1.5.2 Self-seeded RSOAs 

Compared to a self-seeded RSOA, a self-injected FP-LD shows narrower emission 

linewidth, resulting in improved resilience to chromatic dispersion. However, a self-

seeded FP-LD could not tolerate a large wavelength offset between the longitudinal mode 

of the FP-LD and the AWG channel whereas a self-seeded RSOA does not require 

wavelength alignment. 

Self-seeded RSOAs directly modulated at 1.25 Gb/s with a reflection module same 

to RM-1 in Fig. 2.9 was demonstrated with negligible transmission and crosstalk 

penalties after traversing 21-km SMF [35]. The polarization-independent RSOAs are 

preferred since the need for controlling the polarization of the seeding light could be 

eliminated. For a RSOA with a small PDG of 1~2 dB, the system instability induced by 

the polarization dependence of self-seeding operation could be overcome by employing a 

90° FRM as the RM in the RN [105, 106]. In [107], stable performance of a self-seeded 

RSOA was observed when the operating wavelength was tuned from 1530 nm to 1595 

nm. The signal sensitivities were similar and almost no power penalty was induced. The 

data rate of self-seeded RSOA was increased to 2.5 Gb/s by using a low-PDG RSOA 

with the E/O bandwidth > 2 GHz [108]. A similar self-seeding configuration applied to 

polarization-sensitive FP-LDs was exploited to work with high-PDG RSOAs. With the 

proposed technique, the polarization at the RSOA input was stable and aligned with the 

high gain transverse mode of the RSOA. Since the RSOA had a large E/O bandwidth of 
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approximately 4 GHz, the bit rate of the directly modulated self-seeded RSOA was 

enhanced to 10 Gb/s. The FEC threshold was met with the help of post-electronic 

equalization [45]. 

Although these research works provide valuable knowledge of the feasibility of 

utilizing self-seeded RSOAs as colorless transmitters in WDM-PON systems, these 

investigations are not comprehensive enough to give an in-depth understanding of the 

characteristics of the directly modulated self-seeded RSOA-based transmission systems. 

The influences of several system parameters on the transmission performance remain 

unexplored, including the signal extinction ratio, the stable seeding power to the self-

seeded RSOA, the pattern length dependency, the bandwidth and shape factor of the 

wavelength multiplexer within the self-seeding cavity, and the length of the self-seeding 

cavity. These issues will be addressed in detail in Section 3.1. 

2.2 Broadcast/multicast delivery over WDM-PONs 

Along with the growing bandwidth requirement of each end user, the demand for the 

flexibility and variety of services over a certain network is ever-increasing. Therefore, 

providing both unicast and broadcast/multicast services simultaneously is highly 

desirable for viable access network architectures. Fig. 2.10 illustrates the concepts of 

unicast, broadcast, and multicast deliveries over a WDM-PON architecture. Unicast in a 

WDM-PON refers to a point-to-point transmission through a dedicated wavelength 

channel. Broadcast is the term used to describe communication where a piece of 

information is sent from one point to all connected points. Multicast is the term used to 

describe communication where a piece of information is sent from one or more points to 

a set of other points. Compared to broadcast, multicast is more attractive as it allows 
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One obvious method would be employing additional light source to deliver 

broadcast/multicast services [110-113]. In [110], a broadband incoherent light source was 

modulated with broadcast data and distributed to individual ONU after being spectrum-

sliced by the wavelength demultiplexer at the remote node. However, the incoherent light 

source suffered low SNR due to large RIN. An ASE-injected FP-LD and mutually-

injected FP-LDs have been proposed to act as the BLS for broadcast delivery [111, 112]. 

By ASE injection, the noise characteristic of FP-LD was improved and the bit rate 

supported by spectrum-sliced ASE-injected FP-LD was increased to 622 Mb/s. By 

reducing the external cavity length between the two mutually-injected FP-LDs, the FSR 

was increased to 6.1 GHz. A Manchester modulation format was used to locate signal 

spectrum within the low-noise region between two noise peaks. 10-Gb/s NRZ broadcast 

signal transmission with the FEC was demonstrated. The drawback of employing a BLS 

or multi-wavelength light source for broadcast delivery is that it requires a dedicated 

wavelength channel for transmitting broadcast data to each ONU. In [113], only one 

wavelength channel was employed to deliver broadcast signal to all end users by utilizing 

an AWG and a power splitter in the RN. However, a high-power broadcast signal is 

required to compensate for power loss induced by the large splitting ratio. 

Subcarrier multiplexing technique was utilized to support broadcast/multicast 

capability, whereby an optical carrier is modulated with unicast or multicast baseband 

data while subcarriers operating far beyond the frequency range of the baseband data 

carry multicast or unicast data. In [114], the 1.25-Gb/s unicast data was modulated at the 

baseband while the 155-Mb/s broadcast digital video signal was modulated at 2.5-GHz 

RF carrier. The selective broadcasting was fulfilled by controlling the DFB laser bias. 
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When the laser is set below the threshold current, the video signal is badly distorted and 

cannot be recovered by the ONU. In [115], a dual-drive Mach-Zehnder modulator (MZM) 

is used to generate a sub-carrier double-sideband (DSB) DPSK signal in the OLT for 

each WDM channel. All central carriers are separated and subsequently modulated to 

deliver the multicast data, while the remaining sub-carrier DPSK signals carry the 

downstream unicast traffic. The presence of multicast services was controlled by 

switching the modulation format of unicast signal between DSB-DPSK and optical 

carrier suppressed (OCS) DPSK. In such schemes, high-speed optoelectronic components 

are needed in both OLT and ONUs.  

Another method exploited to enable broadcast/multicast service would be 

orthogonal modulation [116-120]. The frequently-used combination of two modulation 

formats are phase shift keying (PSK) and amplitude shift keying (ASK). The DPSK-

formatted multicast signal could be overlaid on the NRZ on-off keying (OOK) or IRZ-

OOK unicast signal. The availability of the multicast service was controlled by adjusting 

the extinction ratio of the NRZ-OOK unicast data [116] or by switching the modulation 

format of the unicast signal between IRZ and NRZ [117]. Inversely, the unicast data 

could be in DPSK format while the multicast data was NRZ-OOK-modulated [118]. 

Optical orthogonal frequency division multiplexing (OFDM) was adopted for multicast 

overlay services with different rate requirement. A total 40-Gb/s frequency shift keying 

(FSK) point-to-point signal and 6.3-Gb/s OFDM overlay with three kinds of variable-rate 

multicast services were experimentally demonstrated [119]. In [120], the 2.5-Gb/s 

broadcast data was encoded on the 10-Gb/s 16 quadrature amplitude modulation (QAM)-

OFDM unicast signal by polarization shift keying. In general, a trade-off between the 
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downlink unicast data and multicast data exists in these overlay schemes. The downlink 

unicast data would suffer from system penalty in order to enable the multicast service. 

Time-interleaving the unicast and broadcast data was proposed in [121]. The 

broadcast and unicast DPSK signals with the same bit rate were temporally offset by T/2, 

with T being the bit period. Error-free transmission of 5-Gb/s bidirectional unicast data 

and 5-Gb/s broadcast data was experimentally demonstrated at the same carrier 

wavelength over a 20-km SMF. Besides all the methods discussed above, the nonlinear 

effect-cross gain modulation (XGM)-in a SOA was utilized to generate multiple 

wavelength signals for broadcast delivery [122]. 

We have proposed and demonstrated two new schemes to enable broadcast 

capability over WDM-PONs based on polarization multiplexing and offset polarization 

multiplexing, respectively. The proposed WDM-PON architectures and the experiment 

results will be discussed in detail in Chapters 5 and 6. 

2.3 Other research aspects in WDM-PON technologies 

Besides colorless ONUs and broadcast/multicast delivery for WDM-PON systems, other 

technical issues, including integration of wired and wireless signal in WDM-PONs, 

extension of WDM-PON reach, and protection and fault management, have been 

intensively studied. This section gives a brief summary of existing research work in these 

fields. 

2.3.1 Convergence of wired and wireless: WDM-RoF-PONs 

There is an increasing demand from broadband telecommunication end-users to have 

instant access to high-capacity information services, whether from a fixed or a mobile 
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terminal. Recently, radio-over-fiber technology has attracted more and more attention to 

provide wireless connectivity due to its advantages of low transmission loss and high 

bandwidth of optical fibers. Therefore, the consolidation of RoF and high-speed baseband 

signals been delivered over a common optical infrastructure is foreseen to pave the way 

for a seamless broadband experience for the end-users [123]. 

RoF refers to a technology where light is modulated by a radio signal and 

transmitted over an optical fiber link to facilitate wireless access. RoF system operating at 

60-GHz has gained much attention for the huge bandwidth availability over 7-GHz 

unlicensed millimeter-wave (MMW) band set aside by the Federal Communications 

Commission in 2001. The radio signals in MMW band, especially in 60-GHz region, are 

extremely prone to atmospheric attenuation, making them of very little use over longer 

wireless distances. Thus, numerous antenna base stations (BS) are needed to cover a 

larger service area. In this respect, integrating MMW RoF system with WDM-PON (i.e., 

WDM-RoF-PON) is a very attractive solution to significantly increase the overall 

capacity and coverage area of the RoF access networks [124]. Nonetheless, the successful 

implementation of such WDM-RoF-PON systems considerably depends on the 

spectrally-efficient multiplexing and demultiplexing of the optical channels carrying 

MMW radio signals. The generation and detection of the MMW is the key issue in RoF 

systems.  

The MMW can be generated through an external intensity or phase modulator 

driven by the required radio frequency (RF) [125, 126]. By controlling the bias voltage 

and modulation index, several modulation formats can be realized such as double 

sideband modulation with/without suppressed carrier, single sideband (SSB) modulation 
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2.3.2 Long-reach WDM-PONs 

Network operators are currently looking for valid solutions to deploy long-reach PONs. 

The access and metro networks can be merged into one by extending the back-haul fiber 

possibly to 100 km in length to incorporate protection path and mechanisms [134]. The 

overall network would be simplified due to the reducing of the amount of equipment, 

network elements, and central offices. However, for the prevalent colorless WDM-PONs 

based on external-seeded RSOAs or external-injected FP-LDs, extending the link would 

pose power budget issue, especially for upstream transmission since the seeding power 

may not be sufficient to injection-lock FP-LDs or drive RSOAs into saturation region.  

The link loss could be compensated by adding a bidirectional EDFA in the RN. 

While the traditional way of electrically powering the EDFA violates the rule of being 

fully passive in the RN, a remote pumping scheme is proposed [135]. Distributed Raman 

amplification is also employed to boost the power in long-reach WDM-PONs [136]. The 

fiber link could be extended by adopting coherent detection. For example, error-free 

transmission of the 5-Gbps QPSK signal over 100-km long fiber link without using any 

optical amplifiers and electronic equalizers was demonstrated in [137]. A novel line 

coding combination (IRZ for downlink and RZ for uplink) was proved to extend the 

reach of WDM-PON to 80 km [138]. Self-seeding of FP-LDs or RSOAs removes the 

need of remote seeding light and therefore partially alleviates the insufficient power 

budget induced by extending the transmission link. Directly modulation of self-injected 

FP-LDs at 2.5 Gb/s and transmission of 85-km SMF was demonstrated in [34]. 
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By utilizing the routing characteristics of an N×N AWG, automatic protection against 

any fiber cut between central office and ONUs was guaranteed in [145]. Beside tree 

topology, a dual-ring architecture was proposed to protect and restore any fiber fault in a 

ring-based WDM-PON [146]. 

2.3.4 Energy-saving in WDM-PONs 

Environmental sustainability has become an important social and business movement in 

the past years. Energy consumption of the information and communication technologies 

(ICT) is increasing at a high rate since more computers, networks, and communication 

equipment are being deployed every year. It is estimated that ICT consumes around 8% 

of total electricity all over the world [147]. Telecom networks constitute a significant part 

of ICT. It is estimated that access network consumes around 70% of overall telecom 

network energy consumption due to the presence of huge number of active devices [148]. 

In addition, estimation shows that access networking equipment are less than 15% 

utilized and a large portion of energy is therefore consumed by the idle devices, as the 

networks are engineered for satisfying the peak traffic load requirement. Hence, reducing 

energy consumption in access networks can lead to major saving in Internet energy 

consumption. 

A monitoring technique with the modulation of the ASE generated by free-running 

RSOA by the pilot-tone monitoring signal at the ONU was demonstrated to achieve 

power saving in RSOA-based WDM-PONs [149]. In [150], a polling scheme of a 

supervisor transceiver in a WDM-PON was proposed to build a power saving structure. It 

is suitable for the PON system in which traffic is relatively concentrated during certain 

times. An efficient energy-saving scheme incorporating dozing and sleep modes for 
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WDM-PONs with centralized light sources was proposed in [151]. The scheme was 

based on simple power detection and local transmission request. Two logic control units 

were designed to switch the operation modes of the respective ONUs and their associated 

transceivers in the OLT. 

2.4 Summary 

In this chapter, the existing technologies enabling colorless operation of ONUs in WDM-

PONs have been thoroughly summarized. Their characteristics, advantages, and 

corresponding technical issues are briefly introduced. These schemes will be evaluated 

and compared in terms of cost-effectiveness, transmission capacity, and operation 

complexity in Section 3.3. Various existing broadcast/multicast-enabling schemes are 

also discussed in this chapter. Together with our two proposed broadcast-enabling 

schemes, they will be evaluated in terms of cost-effectiveness, spectral efficiency, 

operation complexity, and system transparency in Section 6.5. Other related research 

aspects are briefly mentioned in order to give a comprehensive understanding of the 

current development of WDM-PON technologies. Our investigation on self-seeded 

RSOAs, multimode-injected FP-LDs, and the two proposed broadcast-enabling 

techniques will be presented and discussed individually in the following chapters.  
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CHAPTER 3  

Self-Seeded RSOAs—Low-Cost Colorless Light Sources for 

WDM-PONs 

 

The self-seeding technique provides a cost-efficient solution for colorless operation of 

ONUs in WDM-PONs. Colorless WDM-PONs based on self-seeding scheme could avoid 

the backreflection-induced performance degradation, which is the primary drawback for 

the prevalent carrier-distributed or wavelength-remodulated WDM-PONs. As discussed 

in Section 2.1.5, several studies have been contributed to investigate the technical issues 

in self-seeded RSOAs such as polarization dependence [105], operating wavelength 

range [107], and multi-channel operation [152]. However, the influences of several 

crucial system parameters on the transmission performance of WDM-PONs based on 

self-seeded RSOAs remain unexplored. Furthermore, except for [47], no effort is made to 

increase the bit rate of self-seeded RSOAs which is primarily limited by the RSOA 

modulation bandwidth. 

This chapter first investigates the effects of several system parameters on the 

transmission performance of a WDM-PON based on self-seeded RSOAs. Then, some 

feasible techniques to increase the bit rate of self-seeded RSOAs are proposed and 

studied. Finally, various schemes for colorless operation of ONUs in WDM-PONs are 

compared. 
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3.1 Characterization of self-seeded RSOAs in WDM-PONs 

In this section, the influences of several system parameters including the signal extinction 

ratio, the stable seeding power to the self-seeded RSOA, the pattern length dependency, 

the bandwidth and shape factor of the wavelength multiplexer within the self-seeding 

cavity, and the length of the self-seeding cavity, on the transmission performance of a 

colorless WDM-PON based on directly modulated self-seeded RSOAs are investigated 

through experiments. Besides, the polarization evolution of the light circulated in the self-

seeding cavity with a low- or high-PDG RSOA is analyzed intuitively. The power 

evolution in the establishment of the self-seeding operation is also discussed through 

simulation.  

3.1.1 System architecture and experimental setup 

The WDM-PON architecture with directly modulated self-seeded RSOAs as the colorless 

upstream transmitters is shown in Fig. 3.1. The downstream and upstream wavelength 

channels for each ONU are separated by one or multiple FSRs of the cyclic AWG. They 

could be separated by CWDMs in each ONU and the OLT. The output of a RSOA is 

spectrum-sliced by the AWG channel which the RSOA is connected to and the resultant 

spectrum slice is reflected back and forth between the RM in the RN and the RSOA in 

the corresponding ONU.  

The RM is composed of an FRM providing 90° rotation of polarization at 1550 nm 

to the reflected signal with respect to the coming signal. The RM based on an FRM 

instead of a circulator has been proved to successfully stabilize the system performance 

of the directly modulated self-seeded RSOA by addressing the system polarization 

dependence [105]. A bandpass filter with a pass band comparable to the FSR of the AWG 
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seeding power, which is the seeding power to the RSOA when the stable lasing is 

established, by measuring the optical power at point ‘B’, the coupling ratio of the optical 

coupler, and the insertion losses of the multiplexer and distribution fiber. The power of 

the transmitted signal from the RN to the OLT, Pt, could be measured at point ‘A’. 

3.1.2 Analysis of polarization evolution in self-seeding scheme 

The nonzero PDG of RSOAs results in instability of the self-seeding operation. In [105], 

the authors demonstrated that the system performance of a self-seeded RSOA with a low 

PDG could be stabilized by employing a 90° FRM as the RM in the RN. In this 

subsection, the polarization evolution in the self-seeding cavity is analyzed and illustrated 

graphically. It explains how a 90° FRM could help to stabilize the system performance of 

a self-seeded RSOA with a low (1~2 dB) or much higher (20 dB) PDG. 

Fig 3.5 shows the experimental setup to investigate the polarization evolution in the 

self-seeding scheme. An inline polarimeter is inserted in the self-seeding cavity to 

measure the state of polarization (SOP) and degree of polarization (DOP) of the self-

seeded RSOA output. A 90° FRM is employed as the reflection module. A bandpass 

filter is used to simulate the AWG in the RN. Besides, a 1-km SMF and a polarization 

controller (PC) are inserted in the self-seeding cavity.  

 
Fig. 3.5.  Experimental setup to measure the SOP and DOP of the self-seeded RSOA output. 
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Fig. 3.6 illustrates the polarization evolution in the self-seeding cavity with a self-

seeded low-PDG RSOA. For the RSOA with a low PDG, the output of the self-seeded 

RSOA always consists of two orthogonal polarization beams with comparable powers. 

Due to the small nonzero PDG of the RSOA, one polarization mode (e.g. TE mode) is a 

bit stronger than the other (TM mode). The FRM simply provides 90° rotation of 

polarization to the reflected light (②) with respect to the incoming light (①). As a result, 

the incoming TE becomes TM and the incoming TM becomes TE after reflection. 

Therefore, the resultant TM is now a bit stronger than the resultant TE. When the light 

travel from ‘P’ to ‘Q’, the two polarizations experience same cavity loss (including the 

insertion losses of various components in the self-seeding cavity) but the RSOA provides 

slightly larger gain for the TE mode, therefore TE and TM become comparable in power 

(③).  

FRM Loss Gain
RSOA

P Q

Polarization mode:

TE

TM

: TE is a bit stronger than TM

: After 90 degree rotation, TM is a bit stronger than TE

: Same losses for TE and TM but a larger gain for TE, therefore TE and TM now have 
similar power 

:

/

Rotated by 90 degree; TE and TM are similar

: Same to        TE is a bit stronger than TM since TE and TM endure same loss but TE has a 
larger gain

;

 
Fig. 3.6.  Analysis of polarization evolution in the self-seeding cavity with a low-PDG RSOA. 
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Because of the coexistence of the two orthogonal polarizations, the DOP measured 

by the inline polarimeter is small (~10%). Self-seeding could be established in both 

polarizations. In fact, no matter whether a FRM or a simple fiber mirror is used, self-

seeding operation could always be built due to the considerable gain in both TE and TM. 

Fig. 3.7 illustrates the polarization evolution in the self-seeding cavity with a self-

seeded high-PDG RSOA. For a RSOA with high PDG, the output is dominated by one 

polarization, e.g. TE (①). The DOP measured by the inline polarimeter is near 100%. 

After being reflected by the FRM, the polarization direction is changed to TM (②). 

When the light travels to ‘Q’, it is simply reflected back by the RSOA without being 

amplified since it is perpendicular to the polarization direction which the RSOA favors. 

Therefore, the power is reduced significantly when it arrives at ‘P’ (③) due to the cavity 

loss. The light is again reflected by the FRM with 90° polarization rotation and turns to 

TE-polarized (④). When it travels to ‘Q’, it obtains a large gain provided by the RSOA. 

In short, the light could only be amplified by the RSOA once after it is circulated in the 

cavity twice. That is to say, the self-seeding operation could be established when the gain 

provided by the RSOA is larger than twice of the cavity loss. 
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Fig. 3.7.  Analysis of polarization evolution in the self-seeding cavity with a high-PDG RSOA. 

 

One method enabling stable self-seeding operation with a high-PDG RSOA is to 

insert a 45° Faraday rotator before the RSOA, as proposed in [155]. The light would be 

rotated by a 90° in total through propagating the FR in the forward and reserve direction 

in one loop. By inserting an additional FR in the self-seeding cavity, the light would 

acquire gain in each loop. Self-seeding operation could be established as long as the 

RSOA gain is larger than the cavity loss. 

For RSOAs with a low PDG, a Faraday rotator mirror and a simple fiber mirror 

bring little difference in establishing the self-seeding operation. However, when a fiber 

mirror is adopted, the BER would change dramatically by rotating the PC, which 

emulating the possible polarization perturbation in the cavity. Instead, a FRM would 

bring a more stable BER performance.  

For RSOAs with a high PDG, as long as the RSOA gain is larger than twice of the 

cavity loss, self-seeding operation could be established. An open eye could be observed 
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inserted before the RSOA and disrupts the closed cavity.  The initial seeding power could 

be measured at point ‘C’ shown in Fig. 3.9. When the RSOA is biased at 80 mA, the 

initial seeding power is measured to be -22.1 dBm. 

 
Fig. 3.9.  Measurement of the initial seeding power. 

 

Fig. 3.10 gives the simulated power evolution in the establishment of self-seeding 

operation. It shows that self-seeding operation becomes stable only after the light 

circulates in the cavity for five loops. At the beginning, the initial seeding power is low 

and the gain provided by the RSOA is high. Consequently, the gain is larger than the 

cavity loss and therefore the seeding power is increased in the next loop. As a result, the 

RSOA gain is dropped due to the increased seeding power. After around five loops, the 

RSOA output power and the seeding power become stable when the gain provided by the 

RSOA equals to the cavity loss. As shown in Fig. 3.10, the stable seeding power is about 

-3.5 dBm which could drive the RSOA into the deep gain saturation region. Since stable 

self-seeding operation could be established after the light is circulated in the cavity for a 

few loops, the establishment of stable self-seeding operation would take up to one 

microsecond considering that the cavity length is usually several kilometers long. 
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3.1.4.1 Impact of ER, seeding power, and pattern length 

Since the RSOA is directly modulated with the upstream data, the reflected seeding light 

that continuously feeds the RSOA is also modulated. However, thanks to the high-pass 

characteristic of the RSOA operating in the saturation region [35], the modulation on the 

seeding light, especially the low-frequency components, could be suppressed to some 

degree and therefore error-free transmission (defined as bit error rate (BER) < 10-9) of the 

directly modulated self-seeded RSOAs could be achieved. Nevertheless, the transmission 

performance of the directly modulated self-seeded RSOAs is sensitive to the ER of the 

RSOA output signal. This is because a low ER will degrade the upstream receiver 

sensitivity and may fail the error-free transmission, whereas a high ER will increase the 

remodulation crosstalk and jeopardize the self-seeding operation due to the inadequate 

seeding power during the spaces (binary “0”s) of the modulated seeding light. Therefore, 

there exists an optimal ER which results in the best transmission performance.  

The attenuation of the VOA is tuned to be 3.0 dB to simulate the insertion loss of 

the BPF in the RM in Fig. 3.1. Fig. 3.11 (a) shows the upstream receiver sensitivities at a 

BER of 10-9 under different ERs of the upstream signal. The best upstream receiver 

sensitivity is measured to be -31.5 dBm when the ER is 5.8 dB. Based on the power 

measured at point ‘B’ in Fig. 3.4, the stable seeding power is calculated to be -10.0 dBm, 

which could drive the RSOA into the saturation region. The inset in Fig. 3.11 (a) shows 

the eye diagram with the optimal ER. When the ER is larger than 7.5 dB, a BER of 10-9 

could not be achieved due to the unacceptable remodulation crosstalk.  
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could be explained that the increase in the stable seeding power would drive the RSOA 

into deeper saturation which in turn suppresses stronger modulation on the seeding light. 

Further increase in the attenuation of the VOA would fail the error-free transmission 

resulting from the increased remodulation crosstalk and would eventually lead to the 

failure of initiating the self-seeding operation. 

For the transmission system employing the remodulation technique in which the 

upstream OOK data are overlaid onto the downstream OOK data, the upstream 

transmission performance will be affected by the downstream ER as well as the 

downstream pattern length [87, 116]. The transmission system based on the directly 

modulated self-seeded RSOAs may also suffer the same problems since the output of the 

directly modulated RSOA self-seeds itself and the modulated seeding light is 

remodulated with the subsequent upstream data.  

Next, the pattern dependence of the directly modulated self-seeded RSOAs is 

studied by increasing the PRBS pattern length from 27-1 to 231-1 and the ER is readjusted 

to optimize the transmission performance. As shown in Fig. 3.12, the receiver sensitivity 

at a BER of 10-9 is degraded by 1.2 dB when the pattern length is increased from 27-1 to 

231-1. The corresponding optimal ER is reduced from 6.0 to 4.9 dB. To demonstrate that 

the pattern dependence observed in the directly modulated self-seeded RSOA is not 

induced by device imperfection, the transmission performances of the CW-seeded RSOA 

are also plotted in Fig. 3.12. Negligible power penalties are observed when the pattern 

length is increased. Hence, the pattern dependence is an intrinsic characteristic of the 

directly modulated self-seeded RSOA-based systems and the signal ER should be 

decreased to accommodate a long PRBS.   
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is improved as the coupling ratio increases considering the enhanced suppression of the 

modulation on the seeding light by the saturated RSOA. However, as shown in Fig. 3.13, 

the improvement of the receiver sensitivity slows down when the coupling ratio reaches 

80/20. Further increase in the coupling ratio does not bring a significant improvement of 

the upstream receiver sensitivity since the RSOA has been already in deep saturation, but 

it reduces the transmitted power Pt remarkably as the loss of the upstream transmission 

link is increased significantly. Meanwhile, error-free transmission cannot be achieved 

when the coupling ratio is smaller than 50/50 due to the high cavity loss.  

The experimental results show that the power budget for upstream transmission 

reaches its maximum value, i.e., 26.6 dB, when the coupling ratio is around 63/37. 

Considering the link loss after the RN, including the insertion losses of the 20-km SSMF 

feeder fiber, the CWDM, and the AWG in the OLT, a considerable power margin is 

guaranteed. The optimal coupling ratio shall be determined by both the gain properties of 

the RSOA and the insertion losses of other passive components within the self-seeding 

cavity. 

3.1.4.3 Impact of the wavelength multiplexer 

The wavelength multiplexer located in the RN acts as a filter for each upstream 

wavelength channel. It spectrum-slices the output of the RSOAs and determines the 

shape and bandwidth of the seeding light. The influences of the filter characteristics, 

including the 3-dB bandwidth and the shape factor, on the upstream receiver sensitivity 

are studied in this subsection. A programmable optical processor (Finisar WaveShaper) 

whose bandwidth and shape factor could be varied flexibly was utilized to simulate one 

channel of the wavelength multiplexer [156]. The insertion loss at the central wavelength 
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of the programmable filter remains unchanged when its bandwidth or shape factor is 

varied. Hence, the cavity loss or the stable seeding power stays almost the same and its 

impact on the receiver sensitivity could be excluded. The stable seeding power is 

calculated to be about -10.7 dBm. 

Two most common passbands, flat-top and Gaussian-shaped, are studied and their 

3-dB bandwidths are varied. The various spectra of the filter passbands and the 

corresponding output spectra of the directly modulated self-seeded RSOAs measured at 

point ‘A’ are depicted in Fig. 3.14. As shown, the 3-dB spectral width of the directly 

modulated self-seeded RSOA is much narrower than the 3-dB bandwidth of the 

corresponding filter. The most notable feature of the spectra is that the peak of the RSOA 

output is shifted to a longer wavelength with respect to the center wavelength of the 

corresponding filter. This is because of the self-phase modulation caused by the carrier-

induced index change in the RSOA [107, 157]. The self-phase modulation results in 

frequency chirp which is imposed on the seeding light. Since the frequency chirp is 

negative, the center frequency of the seeding light is downshifted (the red shift). 
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explain the better transmission performance compared to the one with the Gaussian-

shaped filter. Based on these observations, we can conclude that a flat-top passband is a 

desirable feature for the AWG used in the self-seeding scheme. The inferior performance 

of the Gaussian-shaped filter might be attributed to the contradiction between the red-

shifted peak of the self-seeding RSOA output and the incremental attenuation from the 

filter center to longer wavelength. 

3.1.4.4 Impact of the length of self-seeding cavity 

Since the reflection module is located in the RN, the length of the self-seeding cavity, 

defined as the distance between the reflection module in the RN and the rear facet of the 

RSOA, could be several kilometers long considering the length of the distribution fiber 

connecting the RN and ONUs in typical WDM-PONs. In the following analysis, the 

cavity length is varied from meters to kilometers by adopting different lengths of the 

distribution fibers and its impact on the transmission performance of the directly 

modulated self-seeded RSOAs is studied.  

The VOA is tuned to keep the cavity loss unchanged when the length of the 

distribution fiber is varied. The stable seeding power is kept at around -10.0 dBm. The 

ER is readjusted to optimize the transmission performance after the length of the 

distribution fiber is changed. Fig. 3.17 shows the upstream transmission performances 

with various lengths of the distribution fiber. The experiment results indicate that the 

transmission performance of the directly modulated self-seeded RSOA is deteriorated by 

extending the length of the self-seeding cavity. The receiver sensitivity is -31.5 dBm at a 

BER of 10-9 when the length of the distribution fiber is 1 km. It is degraded by 1.8 dB 
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However, this feature can be utilized in the self-seeding scheme in which RBS is avoided 

by removing the remote seeding light. 

The self-seeding schemes with two different refection modules are shown in Fig. 

3.22. The RSOA is biased at 80 mA and directly modulated with 2.5-Gb/s NRZ PRBS. 

The filter inside the cavity for selecting the circulated wavelength spectrum is a 1×4 

wavelength multiplexer with 0.6-nm 3-dB-bandwidth flat-top passbands. The coupling 

ratio of the optical coupler is 90/10 where 90% of the light entered into the coupler is 

reflected by reflection modules. In order to boost the stable seeding power to the RSOA, 

the FRM is replaced by a reflection module composed of an optical circulator and an 

EDFA, as shown in Fig. 3.22 (b). 

 
Fig. 3.22.  Self-seeding with two different reflection modules; (a) Structure I based on a FRM and (b) 

Structure II based on a circulator. 

 

When stable self-seeding is established, the gain and loss in the cavity become 

equal. For Structure I, it has 1 1
RSOAloss gain ; while for Structure II, the equation becomes

2 2 2
RSOA EDFAloss gain gain  . Since the cavity losses of the two structures are similar, the 

fact that the gain is partially contributed by the EDFA in Structure II would result in
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modulation bandwidth of the corresponding RSOA and therefore enable direct 

modulation of the self-seeded RSOA with a higher bit rate. This scheme may not be 

suitable for uplink which is based on self-seeded RSOAs in ONUs since the remote node 

is no longer passive due to the presence of an active optical amplifier in the reflection 

module. However, this scheme could be applied in the OLT for downstream transmission. 

3.2.2 Bit rate enhancement by electronic equalization 

It has been widely demonstrated that electronic equalization could compensate the 

limited bandwidth of RSOAs so that the bit rate of RSOAs seeded by coherent CW light 

can achieve 10 Gb/s or even higher [48, 50, 51]. The frequency response of a RSOA 

exhibits a smooth roll-off without a relaxation oscillation peak while its modulation has a 

good linearity. These properties are ideal for the electronic equalization using the 

decision feedback equalizer consisting of feed-forward and feedback filters. 

The idea behind equalization is to use the voltage levels of the other bits to correct 

the voltage level of a given bit [159]. A feed-forward equalizer is the simplest structure 

and the most cost-effective solution, which is shown in Fig. 3.24. It is given by the sum 

of the voltage levels of the bits received prior to the bit of interest multiplied by 

correction factors. It is linear and only uses information from previously received bits. 

The limitation of a FFE can be improved by introducing a delay so that both previous and 

current bits can be used in the correction.  
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3.2.3 A low-cost bidirectional WDM-PON system based on RSOAs  

Fig. 3.26 shows a cost-effective bidirectional 5/1.25-Gb/s WDM-PON based on self-

seeded RSOAs for downlink and remote-seeded RSOAs for uplink.  The self-seeding 

scheme with an optical amplifier in the reflection module is adopted for downstream 

transmission and located in the OLT. The optical amplifier can be shared among all the 

downstream channels. The downstream signal distributed to the corresponding ONU is 

divided into two portions. One is for downstream detection and the other is fed into the 

RSOA at the ONU for upstream remodulation.  

 
Fig. 3.26.  A cost-effective bidirectional WDM-PON based on self- and remote-seeded RSOAs. 

 

Unlike conventional WDM-PONs in which an arrays of DFB lasers are employed 

for high-speed downstream transmission (e.g. 10 Gb/s), the proposed WDM-PON 

architecture simply based on RSOAs has a limited downstream data rate (e.g. 5 Gb/s with 

electronic equalization). However, its high cost-effectiveness makes it a potential solution 

for access networks with end users having moderate bandwidth requirement. Fig. 3.27 

shows the experimental setup to investigate the system transmission performance.  
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remodulation. Although the cavity loss is increased due to the reduced coupling ratio, the 

stable seeding power could be maintained by increasing the pump current of the EDFA. 

When the pump current of the EDFA is 120 mA, the transmitted power Pt is 

measured to be -0.8 dBm. The downstream signal is transmitted over 20-km SMF feeder 

fiber. BPF2 is another 1×4 wavelength multiplexer having the same parameters as BPF1. 

The downstream signal distributed to the corresponding ONU is divided by a 50/50 

optical coupler. One portion is detected by a 12.5-GHz PIN photodetector. Then the 

received electrical signal is sampled by a 6-GHz real-time oscilloscope at 10 GSamples/s 

giving 2 samples/bit. 2×106 samples stored by the oscilloscope are post-processed by a 

Matlab program functioning as a decision feedback equalizer consisting of half-symbol-

spaced 11-tap FFE and 3-tap DFE. After changing the number of taps for FFE and DFE, 

a (11, 3) FFE-DFE is found to be the optimal choice. The adaptive tap coefficients are 

determined according to the least mean square algorithm. Fig. 3.28 shows the BER 

curves of 5-Gb/s self-seeded RSOA with electronic equalization before and after 

transmission over a 20-km SMF. Assuming a proper FEC code (e.g. the second 

generation FEC―concatenated RS(239,223)+RS(255,239)) is adopted, a coded BER of 

1×10-12 could be achieved [161]. 
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The back-to-back BER performance of the upstream external-seeded RSOA can be 

measured with Setup 1. The receiver sensitivity at a BER of 10-9 is -36.3 dBm for the 

back-to-back case. In Setup 2, the upstream signal is transmitted over a 20-km SMF and 

the receiver sensitivity at a BER of 10-9 is measured to be -32.9 dBm. Therefore, the 

power penalty induced by the chromatic dispersion is 3.4 dB. Setup 3 corresponds to the 

practical implementation in which the seeding light is delivered from the central office 

and the remodulated upstream signal is transmitted back to the OLT through the same 

feeder fiber. Due to the bidirectional loopback configuration, the upstream signal would 

be degraded by RBS-induced crosstalk. The receiver sensitivity at a BER of 10-9 is -32.2 

dBm. Compared to the BER measurement of Setup 2, the power penalty induced by RBS 

is 0.7 dB. 

The power penalty induced by the remodulation crosstalk is also investigated by 

turning off the downstream modulation. The CW light generated by the self-seeded 

RSOA is externally fed into the upstream RSOA. As Fig. 3.29 (b) shows, the receiver 

sensitivity at a BER of 10-9 is -34.0 dBm when the downstream modulation is turned off. 

Compared to the BER measured when the downstream modulation is turned on, the 

remodulation crosstalk induces a power penalty of 1.8 dB. When the remodulation 

scheme is involved, the downstream ER is a critical value which should be determined by 

considering the trade-off between downstream and upstream transmission performances. 

Usually the downstream ER is set to be within a range of 3-6 dB [87, 163]. A lower or 

higher ER would result in unacceptable power penalty in downstream or upstream 

transmission, respectively. In the WDM-PON architecture discussed here, the 

downstream signal comes from the directly modulated self-seeded RSOA and therefore it 
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naturally has an appropriate ER for upstream remodulation. For downstream transmission 

based on self-seeded RSOA, a higher ER will not improve but degrade the downstream 

performance, as discussed in Section 3.1.4.1. Reference [162] has studied the effect of 

downstream ER on both self-seeded RSOA-based downstream and remote-seeded 

RSOA-based upstream transmission performances. 

3.3 Comparison of schemes for colorless ONUs in WDM-PONs 

Various proposed schemes for colorless operation of ONUs, including broadband light 

sources, incoherent remote-seeded RSOAs or injection-locked FP-LDs, coherent remote-

seeded RSOAs or injection-locked FP-LDs, and self-seeded RSOAs or FP-LDs, are 

compared in terms of their cost-effectiveness, bit-rate capacity, and operation complexity. 

The technical issues in implementing each of the schemes are also listed in the table. A 

reasonable choice could be made only by considering the requirements and constraints in 

real deployment in conjunction with the pros and cons of each scheme.  

Table 3.2.  Comparison of schemes for colorless operation of ONUs 

 
Cost-

effectiveness 
Bit-rate capacity 

Operation complexity 
and technical issues 

References 

① Broadband 
light sources 
(BLS) 

★★★★ 

A BLS (LED, 
SLD, or EDFA) 
in each ONU. 

★ 
Suffer from spontaneous-
spontaneous beat noise, 
bit rate limited to 1.25 
Gb/s.   

★ 
Simple operation; 
transmission distance 
limited by the BLS output 
power. 

[28], [31], 
[41] 

②Incoherent 
remote-seeded 
RSOAs  

★★★ 
A RSOA at each 
ONU and a BLS 
in OLT. 

★★ 
Suffer from spontaneous-
spontaneous beat noise, 
typical bit rate 1.25 Gb/s. 

★★★ 
Suffer from 
backreflection-induced 
crosstalk. 

[164] 

③Incoherent 
injection-
locked FP-
LDs  

★★★ 
A FP-LD at each 
ONU and a BLS 
in OLT. 

★★★ 
Suffer from spontaneous-
spontaneous beat noise, 
typical bit rate 1.25/2.5 
Gb/s. 

★★★★ 
Suffer from 
backreflection-induced 
crosstalk; wavelength 
alignment between FP-
LD and AWG needed.  

[75-77] 
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④ Coherent 
remote-seeded 
RSOAs  

★★ 
A RSOA at each 
ONU and an 
array of DFB 
lasers in OLT. 

★★★★ 
Bit rate limited by RSOA 
modulation bandwidth 
(typically 1-2 GHz); 10 
Gb/s or ever higher data 
rate achieved by utilizing 
other techniques.  

★★★ 
More sensitive to 
backreflection-induced 
crosstalk than ②;  

[44], [46] 

⑤Coherent 
injection-
locked FP-
LDs 

★★ 
A FP-LD at each 
ONU and an 
array of DFB 
lasers in OLT. 

★★★★★ 
Up to 10 Gb/s 
demonstrated with a 
butterfly-packaged FP-
LD having high 
modulation bandwidth. 

★★★★★ 
More sensitive to 
backreflection-induced 
crosstalk than ③; 
accurate wavelength 
alignment needed for 
high-speed operation. 

[80], [87] 

⑥ Self-seeded 
RSOAs  

★★★★★ 

A RSOA at each 
ONU 

★★ 
1.25 Gb/s typically; bit 
rate limited by RSOA 
modulation bandwidth as 
well as self-seeding 
characteristics. 

★★ 
Suffer from remodulation 
crosstalk; 

[35], [105] 
[107] 

⑦ Self-
injected FP-
LDs 

★★★★★ 
A FP-LD at each 
ONU 

★★★ 
Up to 2.5 Gb/s; bit rate 
limited by self-seeding 
characteristics. 

★★★ 
Suffer from remodulation 
crosstalk; wavelength 
alignment between FP-
LD and AWG needed.  

[34], [103] 

★★★★★indicates the highest grade of cost-effectiveness, bit rate, and operation complexity. 

3.4 Summary 

Performance characterization of self-seeded RSOAs utilized as the colorless light sources 

for WDM-PONs was carried out. An optimal ER existed for each fixed cavity loss since 

remodulation is involved in the self-seeding operation. Either by tuning the attenuation of 

the VOA or by varying the coupling ratio of the optical coupler in the reflection module, 

the cavity loss and the resultant stable seeding power could be modified. The results 

showed that low cavity loss or the resultant high stable seeding power brought better 

transmission performances. Considering the trade-off between the upstream link loss and 

the self-seeding cavity loss, the power budget for upstream transmission could be 

optimized with a certain coupling ratio of the optical coupler.  
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The RSOA with a high signal gain, high saturated output power, and a low PDG 

was preferred for the self-seeding application. For other passive components in the self-

seeding cavity, e.g. the AWG, low insertion loss was a desirable feature. The experiment 

results also showed that the AWG with flat-top passband outperformed the one with 

Gaussian-shaped passband in terms of transmission performance and the minimum 3-dB 

bandwidth. Therefore, a low-loss flat-top AWG met all the requirements on the 

wavelength multiplexer for the WDM-PON system based on the directly modulated self-

seeded RSOAs. The system transmission performance was robust against the phase 

perturbation but degraded by extending the length of the self-seeding cavity. Nonetheless, 

error-free transmission was guaranteed for the typical WDM-PON system with the length 

of the distribution fiber up to 4 km. 

The performances of the systems based on the directly modulated self-seeded 

RSOAs are strongly dependent on the intrinsic characteristics of the RSOA, e.g. gain 

dynamics and saturation property. The quantitative results presented in Section 3.1 may 

only be applied to the RSOA used in our experiments but the qualitative analyses 

extracted from the experiment data are applicable to all RSOAs with variant 

characteristics.  

Bidirectional transmission of the upstream signal based on a self-seeded RSOA and 

the downstream signal based on an externally modulated laser source has been 

investigated and the crosstalk-induced power penalty is negligible [106]. The wavelength 

operating range of a self-seeded RSOA is decided by the gain profile of the RSOA. 

RSOAs with flat and high gain spectra are desirable for self-seeding application to cover 

a wide wavelength range. For example in [107], experiment results show the wavelength 
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of the self-seeded RSOA output could be tuned from 1530 to 1595 nm. The fluctuation of 

the receiver sensitivity at a BER of 10-9 is around 1 dB. Simultaneous upstream 

transmission of 16 or 32 channels of self-seeded RSOAs has been demonstrated in [152]. 

After 20 km transmission, the power penalty is only 0.5 dB and 0.3 dB at a BER of 10-10 

for the 32- and 16-channel systems, respectively.  

Self-seeded RSOA is a promising solution for low-cost colorless WDM-PONs. 

When it is applied to upstream transmission, remote seeding sources are not required and 

therefore the RBS-induced crosstalk is avoided. When it is applied to downstream 

transmission, it is more cost-efficient than an array of DFB lasers in conventional WDM-

PONs. The data rate of self-seeded RSOAs is not only limited by the modulation 

bandwidth of RSOAs but also by the remodulation crosstalk and incoherent characteristic 

involved in the self-seeding scheme. In Section 3.2, we demonstrated a cost-effective 

bidirectional 5/1.25-Gb/s WDM-PON based on self-seeded RSOAs for downlink and 

remote-seeded RSOAs for uplink. The bit rate of a directly modulated self-seeded RSOA 

with a modulation bandwidth < 1GHz could be enhanced to 5 Gb/s by increasing the 

seeding power and employing offline electronic equalization. So far, 10.7-Gb/s self-

seeded RSOA was demonstrated with a RSOA having 4-GHz E/O bandwidth and the 

help of electronic equalization [47]. All the above have shown that self-seeded and 

external-seeded RSOAs are very promising for the future deployment of low-cost 

colorless WDM-PONs.  
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CHAPTER 4  

A Multimode-Injected FP-LD―a Common Noise Suppressor 

for Multiple Injected ASE Spectrum Slices 

 

In addition to RSOAs, FP-LDs are considered as low-cost light sources for wavelength-

independent ONUs in WDM-PONs. FP-LDs located at ONUs are injection-locked by 

remote seeding light sent from the central office. The seeding light can be a coherent CW 

laser, whereby a free-running multi-wavelength FP-LD is converted to a quasi-single-

wavelength light source. However, this may not be cost-effective as an array of CW 

lasers is required for uplink. Spectrum-sliced ASE source has been proposed as a low-

cost seeding light but its noise characteristic severely limits the modulation bandwidth of 

injection-locked FP-LDs. To improve the transmission performance of incoherent light 

injection-locked FP-LDs, we propose a new remote seeding light scheme and verify it by 

simulations. Instead of a spectrum-sliced ASE source, we use a spectrum-sliced 

multimode-injected FP-LD as the remote seeding light.  

In this chapter, a theoretical model of injection-locked FP-LDs is first introduced. 

Based on this model, the transient response and the steady-state longitudinal-mode 

spectrum of a FP-LD before and after external injection are examined by simulation. 

Then the characteristics of free-running and injection-locked FP-LDs are explored 

through experiments. A multimode-injected (MI) FP-LD is proposed as a broadband light 

source. After being spectrum-sliced (SS), the resultant SS-MI FP-LD is employed as an 
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optical carrier and its performance is compared with a spectrum-sliced ASE source. At 

last, the SS-MI FP-LD is proposed as a seeding light to injection-lock another FP-LD 

located at the ONU. The corresponding transmission performance is investigated through 

simulations. 

4.1 Theoretical analysis of injection-locked FP-LDs 

The theoretical models to describe the dynamic behaviors of injection-locked lasers have 

been developed in [165, 166]. In-depth investigations have been carried out to analyze 

the significant benefits of injection-locking technique, including relative intensity noise 

reduction [167], suppression of nonlinear effects [168], and modulation bandwidth 

enhancement [169]. In the free-running state, a FP-LD will generate multiple longitudinal 

modes. The theoretical model of injection-locked lasers is further developed to describe 

an injection-locked FP-LD. 

4.1.1 Rate equations of injection-locked FP-LDs 

The differential rate equation governing a free-running laser, neglecting spontaneous 

emission, is [170]: 

 
     1

1
2

dE t
g N j E t

dt
    (4.1) 

where E(t) is the complex electric field, g is the linear gain coefficient, ΔN is the carrier 

number above threshold, and α is the linewidth enhancement factor.   thN N t N   , 

where N is the carrier number and Nth is the threshold carrier number. 

A theoretical model of the injection-locked FP-LD based on the rate equations for 

semiconductor laser diodes was proposed in [171]. The dynamics of a FP-LD with the 
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external injection can be described with the following rate equations for carrier density 

inside the active region N and the electric field of the active region E which is 

normalized, such that   2
E t corresponds to the photon density: 

          00
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where iE is the complex amplitude of the thi  mode, 0
thf the frequency of the zeroth mode 

at the threshold, finj the frequency of the external injection light, Gi the gain of the thi  

mode,  the loss of the cavity, α the linewidth enhancement factor, kc the coupling 
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efficiency, Δf the frequency offset between the free-running longitudinal mode and the 

injection light, αm the facet loss, and γe is the carrier recombination rate. The gain of the 

thi  mode Gi is approximated by the Lorentzian function with the gain compression effect. 

 i
EF t is the spontaneous emission noise coupled into the thi  mode. The values of various 

physical parameters adopted in the simulation are summarized in Table 4.1. 

Table 4.1.  Physical parameters used in simulation of injection-locked FP-LDs [171, 172] 

  Peak wavelength (main mode) 1550 nm 

L  Cavity length 250 μm 

w  Width of the active region 2.0 μm 

d  Depth of the active region 0.2 μm 

e  Carrier lifetime 2.2 ns 

p  Photon lifetime 1.6e-3 ns 

  Confinement factor 0.3 

gn  Group index 4.0 

k  Coupling efficiency 100ns-1 

  Linewidth enhancement factor 5 

sp  Spontaneous emission factor 1e-4 

int  Internal loss 30 cm-1 

αm Facet loss 45 cm-1 

a  Gain constant 2.5e-16 cm2 

0N  Transparent carrier density 1e18 cm-3 

nrA  Non-radiative recombination rate 1e8 s-1 

B  Radiative recombination coefficient 1e-10cm3/s 

C  Auger recombination coefficient 4e-29 cm6/s 

  Gain compression factor 6e-19 cm3 

h  Planck constant 6.626e-25J∙ns 

c  Speed of light 30 cm/ns 

mod  Mode spacing of FP-LD 0.8 nm 
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thermoelectric cooling (TEC) module may be required to control the operating 

temperature of the FP-LD in some applications. 

4.2.2 Injection-locked FP-LDs 

When a semiconductor laser is strongly injection-locked in a stable locking state, the 

benefits of a significantly enhanced modulation bandwidth, a broadband noise reduction, 

and a large modulation dynamic range can be attained [174]. Although a free-running FP-

LD is not a suitable light source for high-speed data transmission, injection-locked FP-

LDs play an important role in colorless WDM-PON systems. 

The mode frequencies will shift to the longer wavelength side after injection-

locking due to the carrier-induced refractive index change [175]. Therefore, stable 

injection-locking can be achieved by tuning the wavelength of seeding light slightly 

longer than that of the target longitudinal mode of free-running FP-LD. A FP-LD will not 

be injection-locked beyond certain detuning range (locking range) between the seeding 

light and the target longitudinal mode exists. A larger locking range is observed for a 

lower bias current [176]. The injection-locking threshold is also affected by bias current. 

A higher seeding power is needed when the bias current of the FP-LD is increased. The 

reason for the increase of the required seeding power with an increase of the bias current 

is related to the ratio of number of photons in the free-running regime and the number of 

injected photons. The injected photons can prevail and sustain stimulated emission at a 

certain mode much easier if the number of existing free-running photons is smaller, 

which means the bias current is lower [177]. 
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4.3.1 Configuration of a multimode-injected FP-LD 

As shown in Fig. 4.15, an ASE source is firstly spectrum-sliced by a wavelength 

demultiplexer (DEMUX_1) and then the spectrum slices coming out from different 

channels are combined by a wavelength multiplexer (MUX_1). The combined spectrum 

slices are injected into a FP-LD which is used as the common noise suppressor for all 

injected spectrum slices. The channel spacing of DEMUX_1 and MUX_1 should be same 

as the longitudinal mode spacing of the FP-LD. More importantly, the longitudinal modes 

of the free-running FP-LD should be aligned to the center frequencies of the spectrum 

slices. 

 
Fig. 4.15.  Configuration of a multimode-injected FP-LD. 
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4.3.2 Transmission performance of the multimode-injected FP-LD 

To demonstrate that the RIN of the ASE spectrum slices is suppressed after being fed into 

a FP-LD (i.e. the RIN of a spectrum-sliced multimode-injected FP-LD is smaller than 

that of a spectrum-sliced ASE), we investigate the transmission performance of the 

system shown in Fig. 4.17. The broadband ASE source is a two-stage EDFA, whereas the 

multimode-injected FP-LD is obtained by the configuration shown in Fig. 4.15. The 3-dB 

bandwidth of the filter is 0.48 nm. The optical power after the filter is kept the same for 

the two types of sources. After spectrum-slicing, the optical carrier is externally 

modulated by a polarization-insensitive MZM with 622-Mb/s data. The signal is detected 

by a PIN receiver after being transmitted over a 20-km SMF followed by a 4-km 

dispersion compensation fiber (DCF). The dispersion-induced intensity noise might 

diminish the benefit of the noise suppression offered by the multimode-injected FP-LD 

when the output of the multimode-injected FP-LD was transmitted over a 20-km SMF 

[179]. Thus, a 4-km DCF is added in the feeder fiber to reduce the dispersion-induced 

intensity noise of the signal and improve the BER performance. 

 
Fig. 4.17.  Setup to investigate the transmission performance of a spectrum-sliced ASE and a spectrum-

sliced multimode-injected FP-LD used as the optical carrier. 
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4.4.1 Proposed WDM-PON structure 

The schematic of the proposed WDM-PON architecture is shown in Fig. 4.19. Since the 

proposed scheme is intended to improve the upstream transmission performance, the 

downlink is not included in Fig. 4.19. The downstream transmission scheme should be 

same with any conventional WDM-PONs. 

A multimode-injected FP-LD is employed in the OLT as the remote seeding light 

for colorless upstream operation. The output of the multimode-injected FP-LD is 

delivered to the RN where the injected-locked modes from the FP-LD are separated by an 

AWG. The spectrum of the multimode-injected FP-LD and the AWG channels should be 

aligned with each other. This ensures that each of the injection-locked modes of the MI 

FP-LD could pass the AWG with minimum insertion loss. After being separated by the 

AWG, each spectrum slice is distributed to the attached ONU to injection-lock the FP-LD 

(FP-LD_B) resided there. 

 
Fig. 4.19.  Proposed WDM-PON architecture with the multimode-injected FP-LD as the remote seeding 

light (upstream transmission only). 
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4.4.2 Transmission performance analysis 

In order to demonstrate the feasibility of using the spectrum-sliced multimode-injected 

FP-LD as the seeding light, the transmission performances of upstream signals generated 

by the directly-modulated injection-locked FP-LD with different seeding light sources are 

analyzed and compared. The simulation is based on the architecture shown in Fig. 4.19. 

Eight consecutive longitudinal modes of FP-LD_A are injection-locked by eight 

spectrum slices of an ASE source, which is given in Fig. 4.16 (b). The output of 

multimode-injected FP-LD is shown in Fig. 4.16 (c). For comparison, the transmission 

performance of the spectrum-sliced ASE injection-locked FP-LD is also examined by 

simply replacing the multimode-injected FP-LD with an ASE source. The FP-LD_B is 

injection-locked by a spectrum-sliced ASE or a spectrum-sliced multimode-injected FP-

LD and directly modulated with 1.25 Gb/s 231-1 PRBS. The upstream signal is 

transmitted back to the OLT and detected by a PIN receiver after being demultiplexed by 

a wavelength multiplexer (DEMUX_2).  

Fig. 4.20 shows the BER performance of the upstream signal. At the BER of 10-9, 

the receiver sensitivity is -17.3 dBm when an ASE source is used as the remote seeding 

light, but this is improved to -21.2 dBm when the remote seeding light is a multimode-

injected FP-LD.  Thus, a 3.9-dB sensitivity improvement is achieved by using the 

proposed seeding light. Error floor at BER < 10-9 is observed for both cases, which is 

mainly attributed to the unsuppressed relative intensity noise originated from the ASE 

source and the back-reflection noise. 
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AWG located at the RN should be a bit larger than that of the wavelength 

multiplexer/demultiplexer used to generate the multimode-injected FP-LD. 
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CHAPTER 5  

Broadcast Service Delivery over a WDM-PON Based on 

Polarization Multiplexing 

 

Chapters 3 and 4 focus on developing low-cost colorless light sources for WDM-PON 

systems. Another important research aspect is to improve the viability of WDM-PON 

systems by addressing issues like delivery of broadcast/multicast service. Chapters 5 and 

6 are devoted to introduce two feasible techniques that enable broadcast delivery over 

WDM-PON architectures.   

The capability of delivering broadcast/multicast services over a WDM-PON system 

is a desirable feature for next-generation optical access network. In this chapter, a 

colorless WDM-PON with broadcast capability based on polarization multiplexing 

(PolMUX) technique is proposed and experimentally demonstrated. The downstream 

unicast and broadcast data are respectively carried by two orthogonally polarized optical 

beams from a single light source. At each ONU, the downstream signals are injected into 

a FP-LD for the uplink remodulation. Unlike the scheme in [80] where the CW seeding 

light had to be depolarized before being injected into a polarization-sensitive FP-LD, the 

seeding light in our scheme consists of  two uncorrelated orthogonally polarized beams 

which acts as a depolarized light source and hence it can constantly injection-lock the FP-

LD without any polarization control. Simultaneous transmissions of 10-Gb/s downstream 

unicast and broadcast signals as well as the 2.5-Gb/s upstream signal are demonstrated 
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through experiment. Detailed analyses of injection polarization dependence, injection-

locking range, and power budget are provided. 

5.1 Polarization multiplexing and demultiplexing 

PolMUX technique has been employed to double the capacity of long-haul transmission 

systems [181]. Two independent data streams could be polarization-multiplexed into the 

same wavelength channel by two orthogonally polarized optical beams. Due to the 

doubled spectral efficiency and the convenience to separate different data services, 

PolMUX is a potential and attractive candidate for dual-service fiber-based access 

networks [182]. Although polarization-mode dispersion and polarization-dependent loss 

(PDL) during propagation may induce the loss of orthogonality of the polarization-

multiplexed signals, the signal crosstalk for a short-haul distance (e.g. 20 km) would be 

insignificant if optical components are carefully chosen to have low PDL.  

In practical implementations, automatic polarization demultiplexing is required to 

separate the two polarization-multiplexed data streams at the receiver side. Automatic 

polarization demultiplexing is generally realized by a feedback control system, which 

analyzes the SOP of the incoming optical signal and generates a control signal 

accordingly for an electronically driven polarization controller to track the SOP of the 

incoming optical signal and achieve desired polarization transformation. 

 Recently, several potentially cost-effective automatic polarization demultiplexing 

schemes have been proposed and demonstrated, including (i) utilizing the radio frequency 

power of the detected incoming signal from a low frequency RF power detector as the 

control signal [183], and (ii) employing the power imbalance between the two 

polarization-multiplexed channels as the feedback signal [184]. These schemes simplify 
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the structure of the feedback systems and reduce the implementation cost by avoiding 

using high-speed photodetectors and electronics. A relatively low-cost electronically 

driven PC with response time of tens of microseconds would be enough to track the 

fastest polarization perturbation which is on the order of milliseconds in installed buried 

or aerial fibers [185-188].  

Furthermore, polarization-multiplexing is a modulation format and line-rate 

transparent technique compared to other broadcast/multicast-enabling techniques 

introduced in Section 2.2. Therefore, it is a potential and attractive solution to provide 

broadcast services in access networks considering the doubled spectral efficiency and the 

flexible upgradability in both the line-rate and the modulation format of the unicast or 

broadcast signals. 

 
Fig. 5.1.  Polarization multiplexing and demultiplexing 

 

Fig. 5.1 illustrates the optical polarization multiplexing and demultiplexing concept. 

The electrical field emitted by TX1 and TX2 can be expressed as [189]: 

  1

1 1 ˆi tE Ae x


 (5.1) 

  2

2 2 ˆi tE A e y


 (5.2) 

where the parameters A1 and A2 are the time varying amplitudes and are different from 

each other, i.e., they represent different data sequences. The parameters φ1 and φ2 are the 
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time-varying phases of the two signals, respectively. Since the two signals are 

orthogonally polarized to each other, the output signal after transmission over a short 

distance can be expressed as (the attenuation is neglected): 

    1 2

1 2ˆ ˆi t i tE Ae x A e y  


 (5.3) 

The transmission functions of the two output ports of the polarization beam splitter 

(PBS) are: 

 1 ˆ ˆcos sinT x y  


 (5.4) 

 2 ˆ ˆsin cosT x y  


 (5.5) 

where the angle θ is the relative angle between the polarization of the incoming light and 

the polarization direction of the PBS. The output powers at the two output arms of the 

PBS can be expressed as: 

 
      

    

1 2
22

1 1 1 2

2 2 2 2
1 2 1 2 1 2

ˆ ˆ ˆ ˆcos sin

cos sin sin 2 cos

i t i tP E T A e x A e y x y

A A A A t t

   

    

     

   

 

 (5.6) 

 
      

    

1 2
22

2 2 1 2

2 2 2 2
1 2 1 2 1 2

ˆ ˆ ˆ ˆsin cos

sin cos sin 2 cos

i t i tP E T A e x A e y x y

A A A A t t

   

    

     

   

 

 (5.7) 

When θ = 0°, P1 = A1
2 and P2 = A2

2; when θ = 90°, P1 = A2
2 and P2 = A1

2. The two 

cases correspond to the scenario when the polarizations of the orthogonally polarized 

signals are exactly aligned to the polarization directions of the PBS. The only difference 

is the two signals are switched between the two output ports. 
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However, θ is not always perfectly controlled to be 0° or 90° in real implementation. 

A slightly deviation from the perfect alignment would induce crosstalk to the 

demultiplexed signals from one another. Furthermore, when sin 2θ 	 0, the output 

powers P1 and P2 will fluctuate significantly if the phases of the two electrical fields, φ1 

and φ2, are correlated. The crosstalk induced by imperfect polarization demultiplexing 

could be tolerated since it is usually small when compared to the signal power. However, 

the severe power fluctuation resulted from the correlation between the two signals is 

devastating for signal detection. Therefore, it is necessary to decorrelate the two electrical 

fields in polarization multiplexing applications. In another word, the optical phases of the 

two beams should be independent from each other without a fixed phase relationship. 

Decorrelation is naturally satisfied when two different light sources are adopted. If 

the two beams are extracted from the same laser source, the phase of one beam should be 

scrambled relative to the other beam. Alternatively, one of the beams should be delayed 

with respect to the other with a relative delay larger than the coherence length of the laser. 

When the two beams are uncorrelated, φ1 and φ2 have no phase relationship. The term 

    1 2cos t t  varies rapidly and averages to zero in a slow photodetector. 

Consequently, the powers in the two arms are: 

 2 2 2 2
1 1 2cos sinP A A    (5.8) 

 2 2 2 2
2 1 2sin cosP A A    (5.9) 

5.2 Proposed WDM-PON architecture 

This subsection describes how the polarization multiplexing technique can be applied to 

WDM-PON systems to enable the broadcast capability. Fig 5.2 shows the schematic of 
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It is noted that in this architecture the FP-LD is injection-locked by the 

polarization-multiplexed depolarized light rather than by the polarization-demultiplexed 

polarized light from one of the PBS outputs. A question may be raised that why not 

utilize the polarized light from one of the two PBS outputs as the external injection light. 

Although the FP-LD is polarization-sensitive, the polarization of the light coming out 

from the PBS could be controlled with the existence of the automatic polarization 

demultiplexing device in the ONU.  

The reason of adopting the polarization-multiplexed depolarized light as the 

injection light is to decouple the upstream operation from the downstream operation and 

also to avoid the power loss induced by automatic polarization demultiplexing. As will be 

discussed later, the power budget of the proposed scheme is limited by the minimum 

required seeding power of the FP-LD and thus the proposed scheme is designed to 

maximize the injection power into the FP-LD. Another reason lies in that the proposed 

scheme allows us to utilize FP-LDs pigtailed with conventional SSMF instead of 

polarization-maintaining fiber (PMF). Since the use of PMF always involves complicated 

alignment procedure during device packaging, the proposed scheme will help to lower 

the implementation costs of FP-LDs. 

5.3 Experimental setup and results 

The feasibility of the proposed scheme is demonstrated by the experimental setup shown 

in Fig. 5.3. A CW light from a DFB laser at 1545.1 nm is split into two equal portions by 

a 50/50 optical coupler. The two beams are modulated with 10-Gb/s PRBS data streams 

with a pattern length of 231-1, representing the respective unicast and broadcast data, 

through two separate MZMs. A polarization controller (denoted as PC1 or PC2 in Fig. 
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is -13 dBm from each polarization component and therefore the total injection power is    

-10 dBm. 

After injection, the upstream signal is transmitted back to the OLT through the 

same feeder fiber and detected by a 2.5-Gb/s APD receiver. The depolarized seeding light 

helps to reduce the Rayleigh backscattering-induced crosstalk in the single-fiber loopback 

configured network since the beating between the signal and the Rayleigh backscattering 

is polarization-sensitive. An optical filter with a flat-top passband whose 3-dB bandwidth 

is 0.4 nm is used before the receiver to emulate an AWG in the OLT. The insertion loss 

of the BPF is around 1.5 dB. 

5.3.1 Analysis of polarization dependence 

When an external light is injected into a polarization-sensitive FP-LD, the output of the 

FP-LD is dependent on the SOP of the seeding light [88]. Thus, the seeding light should 

be depolarized before entering the FP-LD to achieve stable injection-locking. A 

polarimeter is employed to measure the DOP of various light sources. The DOP of the 

DFB laser is around 100%; whereas the DOP of an ASE source generated by an EDFA 

fluctuates between 2-5%.  

The setup shown in Fig. 5.4 is used to measure the DOP of the seeding light in our 

proposed scheme. When the 1-km optical fiber delay line is removed, the two input light 

of the PBC are still correlated and therefore the DOP of the combined light is nearly 100% 

and the SOP changes dramatically. When the 1-km optical fiber delay line is present, 

since it decorrelates the two polarization-multiplexed optical beams, the DOP of the 

combined light is reduced to ~4%.  
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Fig. 5.4.  Setup for DOP measurement. 

 

A spectral comparison of the FP-LD injection-locked by different seeding sources 

is carried out. The corresponding optical spectra are shown in Fig. 5.5. Fig. 5.5 (a) is the 

optical spectrum of the free-running FP-LD and Fig. 5.5 (b) shows the optical spectra of 

the polarized (solid line) and depolarized (dash line) seeding light, respectively. Fig. 5.5 

(c) and (d) show the measured optical spectra of the FP-LD output when the SOP of the 

seeding light is changed from TE-aligned to TM-aligned, confirming high polarization 

dependence when a polarized light is used as the seeding source. When the linearly 

polarized seeding light is aligned to the TE mode of the FP-LD, it would injection-lock 

the FP-LD. The injection-locked mode is amplified and the others are suppressed as 

shown in Fig. 5.5 (c); when the linearly polarized seeding light is aligned to the TM mode 

of the FP-LD, it is absorbed by the FP-LD, as shown in Fig. 5.5 (d). 
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As each subplot demonstrated, the wavelength spectrum would shift to the longer 

wavelength side after injection-locking. A relative larger SMSR is obtained when the 

wavelength offset is between 0.2-0.4 nm approximately and thus results in a better BER 

performance. When the seeding light locates close to one of the free-running longitudinal 

modes, i.e., the wavelength offset is smaller than 0.2 nm or larger than 0.4 nm, the SMSR 

becomes smaller and the BER performance is degraded. 

The power penalties of the upstream signal at BER of 10-4 as a function of 

wavelength offset are measured with best and worst polarization alignment, respectively. 

As illustrated in Fig. 5.9, the best receiver sensitivity is obtained when the wavelength 

offset is 0.21 nm whereas the largest sensitivity penalty is observed at a wavelength 

offset of 0.52 nm. Nevertheless, the power penalties are less than 3.5 dB throughout the 

whole detuning range regardless of the polarization alignment. Note that the worst 

polarization alignment has a receiver sensitivity 2.1 dB poorer than the best polarization 

alignment. Therefore, the worst case (i.e., a wavelength offset of 0.52 nm with the worst 

polarization alignment) gives rise to a maximum power penalty of 5.6 dB, which still 

makes the uncooled operation of the FP-LD feasible since the upstream power margin at 

BER of 10-4 is more than 20 dB as discussed later. 
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broadcast signal from the OLT should be around -0.8 dBm considering the 9.2 dB link 

loss, including the wavelength multiplexer, the feeder fiber, and others. 

For uplink, the launch power of injection-locked FP-LD is measured to be 2.4 dBm 

(with worst polarization alignment) and the link loss is around 16 dB. We could obtain 

20.4-dB power margin for upstream transmission when the worst case of upstream BER 

performance at the FEC threshold (10-4) is considered. 

Table 5.1.  Power budget analysis of the proposed WDM-PON scheme 

Downstream (unicast or broadcast signal) Upstream 

Minimum required power reaching ONU -10 dBm 
Receiver sensitivity 
(worst case at BER of 

10-4) 
-34.0 dBm Receiver sensitivity (-21 dBm) 

90/10 coupler           (10 dB) 
PC & PBS                (1 dB) 

Seeding power per 
polarization      (-13 dBm) 
90/10 coupler    (0.5 dB) 

Total link loss 
(excluding loss in OLT and ONU) 

9.2 dB 
FP-LD launch power 
(worst case) 

2.4 dBm 

Total loss 16 dB 
Mux/Demux (in remote node) 4 Mux/DeMux 

Fiber 
Circulator 
Connectors and others 

4×2 
4.2 

0.6×3 
2 

Fiber 4.2 
Connectors and others 1 

Minimum launch power of unicast or 
broadcast signal from the OLT 

-0.8 dBm 
Power Margin 20.4 dB 

 

5.4 Summary 

This chapter introduced a full-duplex WDM-PON architecture providing both unicast and 

broadcast services by employing polarization multiplexing technique. The downlink 

signals consisting of two uncorrelated, orthogonally polarized beams were used as the 

seeding light to injection-lock a polarization-sensitive FP-LD for upstream remodulation 

without any polarization control. Experimental demonstration of successful transmission 

of 10-Gb/s downstream unicast and broadcast signals with low ER as well as 2.5-Gb/s 

upstream signal with FEC confirmed the feasibility of the proposed architecture. Several 

technical issues including injection-locking polarization dependence, wavelength offset, 
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and performance tradeoff between downlink and uplink were investigated. The power 

budget might be constrained by the required seeding power of FP-LDs. This could be 

overcome by using an optical amplifier to amplify the downstream signals or improving 

the seeding efficiency of FP-LDs. It was also experimentally verified that the weak-

resonant-cavity FP-LD possessed a wide injection-locking range which enabled uncooled 

operation of ONUs. 
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CHAPTER 6  

A Broadcast-Capable WDM-PON Based on Offset Polarization 

Multiplexing with Improved Cost-Effectiveness 

 

We have introduced a WDM-PON architecture providing broadcast overlay by exploiting 

polarization multiplexing technique in Chapter 5 [87]. In this WDM-PON architecture, 

the downlink unicast and broadcast data are carried by two orthogonally polarized optical 

beams from a single light source, respectively. Not only does this technique support 

broadcast services without allocating additional wavelength channels and using high-

frequency SCM modulation, but it also depolarizes the seeding light which can constantly 

injection-lock the FP-LD in the ONU for upstream transmission. Therefore, the proposed 

scheme can be applied to low-cost polarization-sensitive colorless upstream optical 

transmitters. However, active polarization tracking is required to demultiplex the two 

polarization-multiplexed signals at each ONU, which may hinder the real deployment of 

such a system. 

To eliminate the need for active polarization tracking, a new WDM-PON 

architecture in which offset polarization multiplexing is exploited to support broadcast 

capability has been proposed. This chapter gives a thorough introduction to the proposed 

scheme. The DPSK-formatted downstream unicast and broadcast signals whose 

wavelengths are slightly different from each other are combined through polarization 

multiplexing. At each ONU, the downstream DPSK-formatted unicast and broadcast 
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signals are demultiplexed and demodulated by two DPSK demodulators without any need 

of active polarization tracking. The scheme also completely depolarizes the seeding light 

for the upstream FP-LDs, which enables constant injection-locking of the polarization-

sensitive FP-LDs.  

Simultaneous transmissions of 10-Gb/s downstream unicast and broadcast DPSK 

signals as well as 2.5-Gb/s upstream OOK signal are experimentally demonstrated. The 

effects of Rayleigh backscattering, remodulation crosstalk, polarization fluctuation along 

the link, relative bit delay between the unicast and broadcast signals, frequency deviation 

of the downstream signals from the delay interferometer (DI), and imperfection of the DI 

on the transmission performances of the downstream and upstream signals are 

investigated in detail by both experiments and simulations. 

6.1 Offset polarization multiplexing and demultiplexing 

In the offset polarization multiplexing scheme, two DPSK-formatted optical signals 

separated by a frequency offset, foffset, are polarization-multiplexed at the transmitter. At 

the receiver, they are demultiplexed and demodulated by two delay interferometers 

preceded by an optical coupler, without using any active polarization tracking and 

polarization beam splitters [192].  

In DPSK reception, a sensitivity penalty arises when the laser frequency deviates 

from the DI frequency (i.e., the frequency at a transmission peak or transmission null). 

The frequency deviation (f) between the input signal and the DI is related to the phase 

deviation through =2fTDI, where TDI is the time delay within the DI [193]. Penalty-

free detection of DPSK signal is achieved when the phase deviation is a integer multiple 
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of , whereas phase deviation of an odd multiple of /2 completely closes eye opening of 

the detected signal, leading to infinite power penalty, as depicted in Fig. 6.1.  

Therefore, if two offset polarization-multiplexed DPSK-formatted signals are 

separated by odd multiples of 1/(4TDI) in frequency (i.e., foffset = (2N-1)/(4TDI), where N is 

an integer) and one of the optical DPSK signals is aligned to a DI having a FSR of 1/TDI, 

then this optical DPSK signal can be demodulated by the DI with zero power penalty 

induced by frequency deviation, whereas the other optical DPSK signal, whose phase 

deviation from the DI equals to an odd multiples of /2, would experience infinite power 

penalty and a complete eye closure is observed at the DI output consequently.   

As illustrated in Fig. 6.1, the optical signal with phase deviation of zero 

(represented by the solid arrow) can be detected with minimum crosstalk from the other 

optical signal located 1/(4TDI) away (represented by the dot-dashed arrow). It is noted 

that the orthogonality between the two optical signals resulted from the polarization 

multiplexing technique helps to make the crosstalk added in power rather than in E-field. 

This substantially reduces the deleterious effects of crosstalk. For the detection of the 

other optical signal, we need another DI which is aligned to this optical signal with a zero 

phase deviation. 
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The powers of the two signals are equalized at the output of the PBC by a variable 

optical attenuator. It would balance the BER performance of the downstream unicast and 

broadcast signals and also help to minimize the DOP of the offset polarization-

multiplexed downstream signals to facilitate the external seeding of the polarization-

sensitive FP-LD used for upstream transmission. 

The offset polarization-multiplexed downstream signals are transmitted through a 

20-km SSMF. At the ONU, the downstream signals are divided into two portions by a 

50/50 optical coupler, one for downstream detection and the other for upstream 

remodulation. The DPSK receiver is composed of a DI with a 10-GHz FSR and a10-Gb/s 

APD single-ended receiver. A single DPSK receiver is used to detect either the unicast or 

broadcast data. In a real implementation, two DPSK receivers are needed for each ONU 

to detect the unicast and broadcast signals simultaneously.  

The other portion of the downstream signal is fed into a polarization-sensitive FP-

LD which is directly-modulated by a 2.5-Gb/s NRZ PRBS with a pattern length of 231-1. 

The FP-LD is an uncooled device housed in a transistor-outlook-can package. The 

seeding power is -10 dBm and there is no polarization controller inserted between the 

optical coupler and the FP-LD. After injection, the upstream signal is transmitted back to 

the OLT through the same feeder fiber and detected by a 2.5-Gb/s APD receiver. An 

optical BPF having a 3-dB bandwidth of 40 GHz is utilized before the upstream receiver 

to emulate an AWG at the OLT. 

6.3.1 Effect of the frequency offset 

In our single-ended detection, we utilize the destructive port of the DI. This is because 

the return-to-zero-like waveform from the destructive port exhibits better receiver 
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BER of less than 10-9 and the receiver sensitivities are measured to be -19.4 and -18.6 

dBm for the downstream unicast and broadcast signals, respectively. The slight 

difference between the unicast and broadcast BER performance is mainly due to the 

different characteristics of the two Mach-Zehnder modulators used in the experiment. 

A power penalty of ~8 dB is incurred in the presence of the offset polarization-

multiplexed signals. Experiment and simulation results show the orthogonality between 

the unicast and broadcast signals is crucial for downstream detection. The eye opening of 

the detected unicast (broadcast) signal would be completely closed due to the crosstalk 

from the broadcast (unicast) signal if the two parallelly polarized downstream signals 

were combined by an optical coupler instead of a PBC. 

It is interesting to note that further increasing the frequency offset will reduce the 

power penalty; however, it will lower the spectral efficiency. The downstream unicast 

and broadcast carriers for each ONU should be symmetric about the ITU grid frequency 

and stay within one DWDM channel. This avoids allocating additional wavelength 

channels for broadcast services in DWDM system with channel spacing of 50 GHz or 

even 25 GHz. 
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6.3.2 Effect of Rayleigh backscattering and remodulation crosstalk 

For uplink, polarization dependence of the FP-LD requires a depolarized seeding source 

if no polarization control is provided at the ONU. The polarization-multiplexed 

downstream signals with a frequency offset of 7.5 GHz naturally meet this requirement 

and are reused as the seeding light to injection-lock the FP-LD for upstream transmission. 

The DOP of the seeding source is measured to be 2~4%.  

The depolarized seeding light also helps to reduce the RBS-induced crosstalk in the 

single-fiber loopback configured network since the beating between the signal and the 

RBS is polarization sensitive [198]. Furthermore, the linewidth of the seeding light is 

widened due to the frequency offset between the two polarization beams, as shown in Fig. 

6.6. This also helps to reduce the RBS-induced penalty. As demonstrated in [81], the 

backreflection-induced penalty is reduced as the linewidth of the seeding light is 

increased. Therefore, the proposed scheme exhibits an improved robustness against the 

Rayleigh backscattering compared to the CW-injected FP-LDs. 

The signal-to-backscattering-power ratio in our experimental demonstration is 

measured to be around 29.5 dB. The upstream BER performance is shown in Fig. 6.7. 

The receiver sensitivity at a BER of 10-9 is -30.5 dBm in the single-fiber loopback 

configuration and -31.7 dBm in the unidirectional configuration with two feeder fibers 

(refer to Fig. 6.4 for the experimental setup). Therefore, the power penalty induced by the 

RBS is 1.2 dB.  

Another advantage of the seeding source composed of NRZ-DPSK signals is the 

relative constant intensity of phase modulation except for the transition-induced intensity 

dips from MZM-based DPSK transmitters when compared to OOK modulation [199]. 
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6.4 Simulation results 

The robustness of the proposed scheme against the relative bit delay between the two 

downstream data, the frequency deviation of the downstream signals from the DI, and the 

mismatched interferometer delay is investigated through simulation in which the 

downstream DPSK signals are detected by a balanced receiver. In the following analyses, 

the balanced receiver is tuned to detect one of the offset polarization-multiplexed signals, 

the unicast signal. Thus, the broadcast signal, which is 7.5 GHz away in frequency, is 

regarded as crosstalk. The same analyses and conclusions made in this section also apply 

to the detection of the broadcast signal. The simulation is implemented by the 

commercial software OptiSystem 9.0 [200]. 

6.4.1 Effect of the relative bit delay 

Although the two offset polarization-multiplexed signals are independent and orthogonal 

to each other in polarization, the detection of one signal would still experience the 

crosstalk from the other signal. The crosstalk suppression of the DI could not be perfect 

throughout the entire bit duration and thus the relative bit delay between the unicast and 

broadcast data affects the transmission performance of the downstream unicast and 

broadcast signals.  

By tuning the relative bit delay between the two signals, the peak of the crosstalk 

can be located to different positions of the eye diagram of the detected signal. The 

deleterious effect of the crosstalk becomes largest when the peak of the crosstalk falls on 

the sampling instance of the detected signal. Fig. 6.11 shows the receiver power penalty 

versus the relative bit delay between the two offset polarization-multiplexed signals. 



 

Fig

perf

of co

two 

the 

perf

asym

corr

Fig. 

6.4.2

In D

degr

base

. 6.11.  Power

It shows 

formance. T

ontrolling th

data are bi

relative bit

formance th

mmetry of s

responding e

6.11. 

2 Effect of 

DPSK recept

radation [19

ed on this fa

r penalty (at a 
bit

that the r

he penalties

he relative b

it-aligned (i

t delays of 

han when th

signal eyes

eye diagram

the frequen

tion, the dev

93]. The fe

fact, as grap

BER of 10-9) 
t delay betwee

elative bit 

s are always

bit delay. N

.e., delay =

30 and 70

he two data 

, which is 

ms with diff

ncy deviatio

viation of th

easibility of

phically illus

160 

of the downstr
en the unicast a

 

delay has 

s less than 1

evertheless,

= 0 or 100 p

0 ps. At the

are half-bi

caused by t

ferent relativ

on 

he laser freq

f the offset 

strated by F

ream unicast s
and broadcast 

a marginal

.3 dB, whic

, the worst p

ps). The bes

ese bit dela

it delayed. W

the electric

ve bit delay

quency from

polarizatio

Fig. 6.1. Ho

signal as a fun
data. 

l effect on 

ch can elimi

performance

st performan

ays, we hav

We ascribe 

al filter at 

ys are includ

m the DI lead

on multiplex

owever, due

 
nction of the re

the downs

inate the nec

e occurs wh

nce is obtai

ve slightly 

this to the 

the receive

ded in the in

ds to perform

xing techni

e to the freq

elative 

stream 

cessity 

hen the 

ined at 

better 

 small 

r. The 

nset in 

mance 

que is 

quency 



 

drift

phas

broa

mult

cons

repr

freq

freq

sign

from

F

 

devi

devi

t of both the

se deviation

adcast signa

tiples of 

sequently in

Fig. 6.12 

resents the 

quency (i.e. 

quency (i.e. 

nal is exactly

m the penalty

Fig. 6.12.  Pow

It shows 

iation of th

iation of the

e laser sour

n with the 

al may not h

/2. Such 

nduce power

depicts the

case when

 



y aligned to

y-free frequ

wer penalty (a
dev

that the per

he broadcas

e broadcast 

rces and the

DI in the 

have an exa

misalignme

r penalty. 

 frequency 

n the unica

but the br

; the 

o the infinit

uency.  

at a BER of 10
viation of the 

rformance o

st signal. F

signal shou

161 

e DI, the un

unicast DP

act phase de

ents are in

deviation-in

ast signal i

roadcast sig

solid curve 

te-penalty fr

0-9) of the dow
downstream s

of the unica

For a penalt

uld be kept 

nicast signal

PSK receive

eviation fro

nevitable in

nduced pow

is exactly 

gnal deviate

represents 

requency bu

wnstream unica
signals from th

ast signal is

ty of less 

below 250 

l may not h

er and at th

om the DI e

n real imp

wer penalties

aligned to 

es from th

the case wh

ut the unica

 
ast signal vers
he DI. 

s much mor

than 1.0 dB

MHz. This

ave an exac

he same tim

equaled to a

plementation

s. The dash

the penalt

e infinite-p

hen the bro

ast signal de

us the frequen

re sensitive 

B, the freq

s frequency 

ct zero 

me the 

an odd 

n and 

h curve 

ty-free 

penalty 

oadcast 

eviates 

ncy 

to the 

quency 

offset 



162 
 

tolerance could be achieved by using temperature-stabilized DIs. A feedback servo loop 

would be required to stabilize the DI and track the laser wavelength drift. 

Another aspect closely related to the frequency deviation is the polarization 

dependence of the DI, which can be characterized by polarization-dependent wavelength 

shift (PD). PD is the wavelength shift of the DI wavelength response depending upon 

the state of polarization of the input signal. Although the offset polarization-multiplexed 

downstream signals may remain orthogonally polarized during transmission, the SOP of 

each signal is generally unknown and changes over time. Since no polarization control is 

provided at the receiver side in our scheme, the power penalty induced by polarization 

dependence of the DI is inevitable.  

As discussed before, the deviation of the broadcast signal has a stronger effect on 

the detection of the unicast signal, so the worst performance of the unicast signal 

detection which could be caused by polarization dependence of the DI is that the 

broadcast signal deviates from the infinite-penalty frequency for an amount of PD. For a 

penalty of less than 1.0 dB, the polarization-dependent frequency shift of the DI should 

be kept below 250 MHz and therefore, the PD should be smaller than 2 picometers. 

Most commercially available 10-GHz DIs could satisfy this requirement [201, 202]. 

6.4.3 Effect of interferometer delay-to-bit rate mismatch 

The mismatch between the interferometer delay and the data rate of the downstream 

signals would induce the receiver sensitivity degradation. The mismatch is denoted by the 

ratio between the interferometer delay and the data rate. As shown in Fig. 6.13, when the 

broadcast service is disabled (i.e., LD2 is turned OFF), a 5% mismatch leads to less than 
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6.5 Comparison of broadcast/multicast-enabling schemes for WDM-

PONs 

Various schemes for enabling broadcast/multicast service in WDM-PON systems are 

listed in Table 6.1, including those introduced in Section 2.2 and the two schemes 

demonstrated and analyzed in Chapters 5 and 6. They are compared in terms of cost-

effectiveness-the primary concern in WDM-PON technologies, spectral efficiency, 

operation complexity as well as the line-rate and modulation format transparency. 

 

Table 6.1.  Comparison of different schemes for enabling broadcast/multicast delivery over WDM-
PON architectures 

 

Cost-
effectiveness 

Spectral 
efficiency 

Operation 
complexity 

Line-rate & 
modulation 

format 
transparency 

References 

Additional 
light sources 

★★★★★ 

Additional light 
sources for 
broadcast service 

★★ 
Low; dedicated 
wavelength 
channel for 
broadcast service 

★★

Simple; assign 
different 
wavebands for 
unicast and 
broadcast  

Yes 
[110], 
[111], 
[113] 

Subcarrier 
multiplexing 

★★ 
High-speed 
modulators to 
generate 
subcarriers; 
devices to 
separate carriers 
and subcarriers 
in optical or 
electrical domain  

★★★ 
Relative high; 
Unicast and 
broadcast 
confined in one 
wavelength 
channel but they 
occupy dedicated  
frequency bands 

★★★★★ 
Two sets of feeder 
and distribution 
fibers needed to 
deliver carrier and 
subcarrier 
separately 

Yes [114], [115] 

Orthogonal 
modulation 

★★★★ 
Different 
receivers at each 
ONU for two 
orthogonal 
formats 

★★★★★ 
High; unicast 
and broadcast 
occupy same 
frequency band 

★★★★ 
Performance 
tradeoff between 
unicast and 
broadcast; 
accurate bit 
alignment might 
needed 

No 
[116], [117] 

[120] 
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Time-
interleaving 

★★★★ 
Devices for time 
control in OLT 
and ONUs 

★★★★ 
High; unicast 
and broadcast 
occupy same 
frequency band 

★★★★ 
Timing control 
needed in both 
OLT and ONUs 

Yes [121] 

Polarization 
multiplexing 

★★ 
Automatic 
polarization 
tracking needed 
at each ONU 

★★★★★ 
High; unicast 
and broadcast 
occupy same 
frequency band 

★★★ 
Automatic 
polarization 
tracking needed to 
demultiplex 
unicast and 
broadcast signals 

Yes [87] 

Offset 
polarization 
multiplexing 

★★★ 
Two DPSK 
receivers needed 
at each ONU 

★★★★ 
High; unicast 
and broadcast 
occupy same 
frequency band 

★★★★ 
Wavelength 
alignment 
between signals 
and DPSK 
receivers needed 

No [203] 

★★★★★indicates the highest grade of cost-effectiveness, spectral efficiency and operation complexity. 

6.6 Summary 

In this chapter, a WDM-PON system with a downstream broadcast overlay using the 

offset polarization multiplexing technique was introduced. The downstream DPSK-

formatted unicast and broadcast signals, which were separated by a quarter or three 

quarters of the data rate in frequency, were polarization-multiplexed at the transmitter. 

The offset polarization-multiplexed signals were demultiplexed and demodulated by a 

pair of delay interferometers without any polarization tracking at the receiver.  

The offset polarization-multiplexed downstream signals were also exploited to 

facilitate the constant injection-locking of polarization-sensitive Fabry-Perot laser diodes 

for upstream transmission. Therefore, no polarization control or tracking was needed for 

both downstream and upstream transmissions. Based on the proposed scheme, 

bidirectional transmissions of 10-Gb/s unicast and 10-Gb/s broadcast signals for 

downlink and 2.5-Gb/s signal for uplink were successfully demonstrated. 
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The experimental results and simulation studies showed that the proposed scheme 

was very robust against the polarization fluctuation on the link and the relative bit delay 

between the downstream unicast and broadcast signals. The simulation study also 

revealed that the downstream performance was sensitive to the frequency deviation of the 

downstream signals from the DI. However, the frequency deviation could be controlled 

within an acceptable range with commercially available DIs and wavelength-stabilized 

laser sources. A feedback servo loop would be needed to stabilize the DIs and track the 

laser wavelength drift at the ONU. 

Due to the device and equipment constraint, investigation on transmission 

performance of multiple wavelength channels and the effect of interchannel crosstalk 

cannot be conducted. However, such studies have been reported by other research works 

which employ the injection-locked FP-LDs as the colorless transmitters.  In [204], it is 

demonstrated that colorless operation by an injection-locked FP-LD could be achieved 

over the wavelength range of 1530-1560 nm, which implies 32 channels can be 

accommodated in the WDM-PON system based on injection-locked FP-LDs. A 3-

channel and 12-channel WDM transmission using injection-locked FP-LDs are studied in 

[205, 206]. Both of them have shown a negligible crosstalk induced by WDM 

transmission. Therefore, it can be concluded that the power penalty induced by 

interchannel crosstalk in WDM transmission systems is negligible thanks to the channel 

isolation of standard wavelength multiplexer/demultiplexer.    
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CHAPTER 7  

Conclusions and Future Work 

 

7.1 Conclusions 

Wavelength-division-multiplexed passive optical network has been considered as a 

promising technology for access networks to meet the ever-increasing bandwidth 

demand. However, mass deployment of WDM-PONs is hindered by the higher 

installation and maintenance cost compared to the TDM-based technologies. It will take 

time for WDM-PONs to mature and progress down the cost curve. The time will come 

when the access network needs to support high-capacity symmetric traffic and cost 

reduction enables WDM-PONs to become commercially viable in the cost-sensitive 

access network market. While this dissertation is devoted to developing and investigating 

enabling techniques for cost-effective and viable WDM-PON systems, two major 

research aspects in WDM-PON technologies are addressed, including1) implementation 

of cost-effective colorless ONUs and 2) delivery of broadcast service over WDM-PON 

architectures. 

In Chapter 3, in-depth analyses of directly modulated self-seeded RSOAs which are 

used as the colorless light sources at ONUs in a WDM-PON system are carried out. The 

impact of various system parameters on the transmission performance is investigated. 

Because of the inevitable remodulation crosstalk existing in the self-seeding operation, 

the signal extinction ratio of the self-seeded RSOA should be carefully adjusted to 
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optimize the transmission performance. Since low cavity loss (or high seeding power) is 

desirable, a RSOA with high gain, high saturated output power, and low PDG is preferred 

for the self-seeding application. It also shows that self-seeded RSOAs favor a flat-top 

instead of Gaussian-shaped filter (i.e., the AWG) located within the self-seeding cavity. 

The system transmission performance is robust against the phase perturbation but 

degraded by extending the length of the self-seeding cavity. Based on the characterization 

results, a cost-effective bidirectional 5/1.25-Gb/s WDM-PON based on self-seeded 

RSOAs for downlink and remote-seeded RSOAs for uplink is demonstrated. Despite the 

RSOA has a limited E/O bandwidth < 1 GHz, the data rate of the self-seeded RSOA is 

enhanced to 5 Gb/s by increasing the seeding power and employing offline electronic 

equalization. The study provides a better understanding of the mechanism of the directly 

modulated self-seeded RSOAs and also guidance on designing the WDM-PON systems 

using the self-seeded RSOAs. 

In Chapter 4, another type of prevalent colorless light sources, FP-LDs, for WDM-

PON systems is investigated in detail. The injection-locking of a FP-LD is theoretically 

analyzed and simulated. Some basic properties of FP-LDs including frequency response 

and polarization dependency are experimentally characterized. Based on the fact that the 

RIN of a spectrum-sliced ASE could be suppressed by being injected into a FP-LD, a 

multimode-injected FP-LD is proposed where the FP-LD acts as a common noise 

suppressor for multiple injected ASE spectrum slices. Simulation results show that the 

receiver sensitivities at a BER of 10-9 are improved by 3.6 dB and 3.9 dB, respectively, 

when the spectrum-sliced multimode-injected FP-LD is employed as an optical carrier 
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and a remote seeding light source for carrier-distributed WDM-PONs, compared to a 

spectrum-sliced ASE source.  

Chapters 5 and 6 discuss two feasible techniques to enable broadcast service 

delivery over WDM-PON architectures. In Chapter 5, polarization multiplexing 

technique is exploited to achieve simultaneous delivery of downstream unicast and 

broadcast signals without allocating additional wavelength channels and using high-

frequency SCM modulation. The downstream signals consisting of two uncorrelated, 

orthogonally polarized beams are used as the seeding light to injection-lock a 

polarization-sensitive FP-LD for upstream remodulation without any polarization control. 

Experimental demonstration of successful transmission of 10-Gb/s downstream unicast 

and broadcast signals with low ER as well as 2.5-Gb/s upstream signal with FEC 

confirmed the feasibility of the proposed architecture. Several technical issues including 

injection-locking polarization dependence, wavelength offset, and performance tradeoff 

between downlink and uplink are investigated. It is demonstrated that the weak-resonant-

cavity FP-LD possesses a wide injection-locking range which could enable uncooled 

operation of ONUs. For practical implementations, active polarization tracking is 

required to demultiplex the downstream unicast and broadcast signals at each ONU. 

Therefore, mass deployment of the proposed WDM-PON would count on cost-effective 

automatic polarization demultiplexing techniques. 

Chapter 6 introduces another broadcast-capable WDM-PON system developed 

based on the method discussed in Chapter 5. It not only preserves the advantages of the 

former scheme but also improves the cost-efficiency by eliminating the need of automatic 

polarization tracking at ONUs. This broadcast-capable WDM-PON system utilizes offset 
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polarization multiplexing technique. The offset polarization-multiplexed downstream 

unicast and broadcast DPSK signals are demultiplexed and demodulated by a pair of 

delay interferometers without resorting to polarization tracking. The offset polarization-

multiplexed downstream signals also facilitate the constant injection-locking of 

polarization-sensitive Fabry-Perot laser diodes for upstream transmission. Moreover, the 

constant intensity of the downstream DPSK signals avoids the performance trade-off 

between downlink and uplink in a wavelength-remodulated WDM-PON system. 

Bidirectional transmissions of 10-Gb/s unicast and 10-Gb/s broadcast signals for 

downlink and 2.5-Gb/s signal for uplink are successfully demonstrated. The proposed 

scheme is very robust against the polarization fluctuation on the link and the relative bit 

delay between the downstream unicast and broadcast signals. However, the downstream 

performance is sensitive to the frequency deviation of the downstream signals from the 

DI.  

7.2 Future work 

Self-seeding of RSOAs is an attractive solution for colorless operation of ONUs in 

WDM-PON systems but it is less explored compared to external-seeding of RSOAs. 

Similar to an external-seeded RSOA, the data rate of a directly modulated self-seeded 

RSOA is primarily limited by the modulation bandwidth of the RSOA itself. Therefore, 

the techniques used to achieve high-speed operation of external-seeded RSOAs, e.g. 

electronic equalization, detuned optical filtering, and bandwidth-efficient modulation 

format, might be also applicable to enhance the data rate of self-seeded RSOAs. Unlike 

external-seeded RSOAs, self-seeded RSOAs inevitably suffer from remodulation 

crosstalk. The output of a self-seeded RSOA has a low degree of coherence. These 
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characteristics also limit the bit rate supported by self-seeded RSOAs. Special techniques 

should be developed to suppress the remodulation crosstalk and improve the degree of 

coherence. All in all, high-speed operation of self-seeded RSOAs is a research direction 

worthy of further exploration. 

With the deepening penetration of DSP into conventional optical communication, 

complex spectrally-efficient modulation formats such as M-ary PSK and quadrature 

amplitude modulation (QAM) have been introduced into PON applications. Moreover, 

optical orthogonal frequency division multiplexing (OFDM), due to its high spectral 

efficiency and adaptability to various advanced modulation formats, is considered as a 

powerful technique to achieve high capacity symmetric WDM-PONs in which the 

upstream transmission rate is limited by the modulation bandwidth of the colorless light 

sources, i.e., RSOAs and FP-LDs. Optical coherent detection has also been applied to 

PON applications to enable supporting of advanced modulation formats. In short, 

symmetric high-speed operation of WDM-PONs with cost-effective bandwidth-limited 

colorless light sources is a promising research topic. 

Another significant research aspect is to establish models for analyzing the 

economic feasibility of implementing WDM-PON systems in areas with different density 

of population. With the availability of various WDM-PON technologies in future, the 

model could help to determine which specific WDM-PON system including the colorless 

light sources, downstream and upstream data rate and transmission reach should be 

implemented according to the bandwidth demand and geographic distribution of end 

users. It is also worthwhile to develop reliable techniques to reduce the energy 

consumption of the WDM-PON system, especially ONUs for end users. For example, the 
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ONUs could be switched to sleep mode automatically when there is data to transmit or 

receive and be recovered to active mode without losing data when there is a transmission 

request. 

After more than ten years’ extensive studies on WDM-PON technologies, almost 

every technical issue in WDM-PON systems has been or is being addressed. WDM-PON 

has become a ready-to-use technology which would be possibly deployed massively in 

the next ten or twenty years. While preparing for real implementation, efforts should be 

made to tailor the characteristics of devices, especially colorless light sources, to meet the 

exact requirements and needs in the future WDM-PON systems.  
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