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Abstract 

Lung cancer has been the most common and the most deadly cancer in the 

world for several decades. For current 3D-radiotherapy (RT) especially for lung 

cancer patients, respiration motion poses a major challenge. Consequently, 

four-dimensional (3D + time) RT, which involves the use of 4D imaging 

modalities, is developed to address this problem. The overall objective of this 

project is to significantly improve the efficiency and efficacy of RT. Currently, 

the 4D-RT planning of lung cancer is only based on 4D computed tomography 

(CT). However, 4D-CT involves high ionizing radiation and is only able to 

provide an averaged breathing cycle to study respiratory motion. As compared 

to 4D CT, magnetic resonance imaging (MRI) is able to produce images with 

excellent soft tissue contrast. In addition, there is no ionizing radiation involved 

during MRI scanning. Consequently, 4D-MRI is able to continuously scan in 

‘real-time’ for several breathing cycles, which makes 4D-MRI able to cover 

individual changes in breathing. This thesis proposes the development of a 

novel 4D-MRI based system for 4D-RT of lung cancer patients as a 

complement of current 4D-CT based system. The specific aims of this thesis are 

(i) determining suitable 4D-MRI sequences for lung cancer imaging; (ii) 

developing automatic target structure delineation; and (iii) the fusion of 

4D-MRI and 3D-CT for dose calculation. 



 

 

iv 

Ten healthy subjects and six lung cancer patients were recruited and studied 

in this thesis. 4D-MRI sequence TWIST was found to be suitable for dynamic 

lung imaging as it showed good image quality at a faster temporal resolution, 

which is capable of showing the motion path of tumor. A novel automatic 

registration-based segmentation scheme was successfully developed which was 

shown to greatly reduce computation amount/time while maintaining good 

segmentation accuracy. To address the problem of ionizing radiation and dose 

calculation, a novel technique was developed to fuse 4D-MRI and 3D-CT to 

generate simulated 4D-CT datasets. The simulated 4D-CT images were shown 

to be accurate in terms of landmark positions.  

In summary, the evaluation of 4D-MRI sequence, and the developed 

methods for target delineation of 4D datasets and fusion of temporal and spatial 

information from different modalities, provide a basis for the use of 4D-MRI as 

an alternative imaging modality to 4D-CT for 4D-RT of lung cancer patients.
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Chapter 1 Introduction 

11..11  Background 

1.1.1 Lung cancer 

Cancer is a worldwide killer. According to statistics from the International 

Agency for Research on Cancer (IARC), nearly 12.7 million new cancer cases 

and 7.6 million cancer deaths occurred worldwide in 2008. Among the 

numerous kinds of cancer that exist, lung cancer has been the most common 

and most deadly cancer in the world for several decades. About 1.61 million 

new cases occurred in 2008, representing 12.7% of all new cancers, with 1.38 

million deaths (18.2% of the total) [1]. Most lung cancer patients are diagnosed 

when they have symptoms such as coughing, breathing changes, and pain in the 

chest. Instruments such as a chest radiograph need to be used in order to 

determine whether one has lung cancer. Once cancer is confirmed, surgery may 

be performed if the tumor is in its early stages; the purpose of the surgery is to 

remove a part of or the entire lobe of the lung where the tumor is located [2]. 

When surgery is not appropriate for a patient, radiotherapy (RT) and 

chemotherapy are the usual treatment methods. These treatment methods are 
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also usually executed following surgery so as to ensure the complete removal of 

cancerous cells. The focus of this thesis is on RT for lung cancer patients. 

 

1.1.2 Radiotherapy 

Radiotherapy (RT) is one of the most important and standard methods of 

cancer treatment. It uses high-energy ionizing radiation to destroy the 

deoxyribonucleic acid (DNA) of cancer cells, causing them to die or to 

reproduce more slowly. A typical RT process involves five major steps: image 

acquisition, target delineation, therapy planning, treatment delivery, and 

follow-up (Figure 1-1). 

 
Figure 1-1 Major steps involved in RT 
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Conventional RT first acquires images of a patient that show 

three-dimensional (3D) anatomic structures. This involves placing the patient in 

the treatment position that provides the best access to the area requiring 

treatment. An immobilization device, such as a mold or mask, may be used to 

help the patient to maintain his/her same position during the treatment. For 

target delineation, the gross tumor volumes (GTV) and the organs that are at 

risk are defined in three dimensions by drawing contours on the 3D images 

acquired during the first step. This is generally performed in a slice-by-slice 

manner. In order to include regions of subclinical tumor spread adjacent and 

other locations of suspected tumor manifestations, a margin is added to the 

GTV to form the clinical target volume (CTV) [3]. Finally, using the CTV, the 

planning target volume (PTV) is defined. This involves the addition of the 

internal margin and the setup of the uncertainty margin to account for 

intra-fractional and inter-fractional patient motion. An example of GTV, CTV, 

PTV, and organs at risk delineated is shown in Figure 1-2. During treatment 

planning, the PTV together with the prescribed target dose and dose restrictions 

for the risk organs are used to find the treatment beams’ optimal treatment 

angles and positions. Based on the patient’s anatomy and individual treatment 

plan, the calculation of the amount of radiation is then performed in order to 

reach the prescribed dose [4]. The radiation beams have to be planned carefully 

in order to avoid high-risk organs. Once treatment planning is completed, the 

next step is treatment delivery. The treatment session is painless and 

non-invasive. The patient is placed in the linear accelerator coordinate system 

in the same position chosen during the image acquisition step, using the same 

immobilization system. A custom-tailored 3D radiation dose is achieved using 

different beam directions as defined during treatment planning. Based on the 

tumor’s size and location, the patient’s overall health condition, and other 
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medical treatments that the patient has received, 20 to 40 RT treatments may be 

arranged for the patient over a period of 4 to 8 weeks. During the RT period, if 

significant changes such as significant weight loss occur in the patient, which 

causes the initial planning to be inaccurate, re-planning might be necessary. 

Following the entire RT session, follow-up checks are executed regularly in 

order to evaluate the treatment. Patient images are acquired and studied. A set 

of criteria (Response Evaluation Criteria in Solid Tumors (RECIST) [5]) is used 

to evaluate patients’ response to treatment.  

 
Figure 1-2 An example of the target delineation of a tumor and other organs at risk 
(e.g. lungs, spinal cords, esophagus). The CTV and PTV are added to the GTV. 

RT’s greatest challenge is to achieve the highest probability of a cure while 

simultaneously decreasing the morbidity rate [6]. A major problem that RT 

management faces today is the error that occurs as a result of internal organ 

motion, which can occur either inter-fractionally or intra-fractionally [7]. 
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Inter-fractional motion is said to occur when the CTV changes daily due to the 

changes in the tumor size or changes in the patient’s weight. This motion can be 

corrected with bony anatomy and/or internal fiducial markers used to align the 

patient. On the other hand, intra-fractional motion occurs during the irradiation 

process itself. Respiration-induced motion is the most common cause of this 

type of motion and can lead to large errors during RT, especially for lung 

cancer patients. The motion amplitude of lung tumors has been found to 

potentially be larger than 1.0 cm for those located in the lower lobes [8].  

In order to overcome the problem stemming from respiration-induced 

motion, the breath-hold technique has been commonly used [9]. However, it is 

difficult for a patient to maintain the same breathing position. It can also be 

uncomfortable and difficult for a lung cancer patient with poor lung function to 

hold his/her breath for a long time. Another way to overcome the problem 

would be to add geometric margins that are usually population-based or 

experience-based [10]. Such margins are generally not patient-specific. It has 

been reported that lung tumor mobility cannot be reliably predicted based only 

on tumor locations [11]. As a result, normal tissues near the tumor are included 

in the PTV and are exposed to high radiation during treatment delivery. 

Increasing the average lung dose would result in increasing lung complications 

[12]. The sizes of these margins are critical when the tumor is located near 

high-risk organs, such as the spinal cord, heart, or kidneys [7, 13-15]. Restricted 

by the dose allowed for normal tissues, the RT dose that is necessary for 

controlling a tumor is often not delivered [16]. Studies have shown that higher 

tumor doses result in a survival advantage for lung cancer patients [17-19]. This 

problem can be tackled by reducing the safety margin that tightly matches the 

tumor so that less normal tissues are included in the PTV. If we consider a 



 

 

6 

tumor to be the core of an orange and the safety margin to be the skin of the 

orange, one can see that even if the orange skin is not thick, the volume of the 

skin almost equals the volume of the core of the orange (Figure 1-3) [16]. This 

is because the volume of a sphere is the third-power related to its radius 

(� � �
���

�). Consider a PTV that is a sphere and that has a radius of 25 mm; 

the volume of this PTV is 65.4 ml. A small reduction of 5 mm in the safety 

margin would reduce the PTV volume by more than a half, to a high value of 

33.5 ml. The smaller PTV precisely does cover tumor creation geometry that 

would enable higher tumor doses to be applied.  

 
Figure 1-3 The volume of the skin is close to the volume of the core of an orange 
(adapted from [16]). This is to illustrate that a small reduction (e.g. 5 mm) of the 
safety margin could decrease the PTV by half. 

Accurate measurement and quantification of the tumor motion is the key to 

reducing the PTV for lung tumor. With fast acquisition of high resolution and 

multi-dimensional image data, advances in four-dimensional, or 4D (3D + 

time), medical imaging technology (e.g. computed tomography [CT], medical 
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resonance imaging [MRI]) have allowed patients to breathe during image 

acquisition in which the tumor drift during a typical respiratory cycle is 

captured. Recent studies have shown that a lung tumor not only shifts in 

positions but also deforms and rotates during normal respiration [20, 21]. Only 

using 4D imaging techniques, such as tumor movement and deformation during 

respiration, can be visualized and quantified, as 4D imaging not only captures 

the 3D anatomy but also the 3D evolution of organs and tumors overtime.  

Three-dimensional static imaging or two-dimensional (2D) dynamic imaging 

methods cannot provide such information. 

Based on the tumor geometry and motion information that 4D imaging 

provides, the relationship between tumor motion and the respiratory cycle for 

an individual patient can be studied. Further, the development of image-guided 

radiotherapy (IGRT) allows for frequent imaging in the treatment room so that 

the tumor position can be monitored during the delivery of radiation, and 

treatment decisions can be made on the basis of these images [16]. Thus, 

four-dimensional radiotherapy (4D-RT) becomes possible. According to the 

definition from Keall et al. [22], 4D-RT is “the explicit inclusion of the 

temporal changes in anatomy during the imaging, planning and delivery of 

radiotherapy,” which indicates that the 3D geometry evolution of organs and 

tumors over time should be integrated into every step of 3D-RT.  

As shown in Figure 1-4, fundamentally, the major workflow of 4D-RT is 

the same as that of conventional 3D-RT: image acquisition, target delineation, 

treatment planning, treatment delivery, and follow-up. However, the process of 

4D-RT is much more complicated detail-wise. Image acquisition is more 

complex, as a sequence of 3D scans is now required over time. Audio- or 

visual-guided breathing during patient image acquisition is generally used to 
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ensure a regular and reproducible breathing pattern for further treatment 

delivery [23].  

 
Figure 1-4 Comparison between the workflow of 3D-RT (left) and 4D-RT (right) 

For target delineation and treatment planning in 4D-RT, because at least 10 

times more image data are to be dealt with, a significantly greater workload is 

introduced. Segmentation, dose calculation, and beam planning need to be done 

for each phase of breathing cycles. Currently, RT planning using 4D images 

considers the tumor and other organs’ positions at all phases between maximum 

inhalation and exhalation. All of the positions are combined to include all tumor 

and organ motion [24]. 
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Before treatment delivery, the on-board imaging device, such as cone-beam 

CT (Figure 1-5) used in IGRT, allows for better positioning of the patient by 

comparing the on-board images with planning images. Also, thanks to on-board 

imaging, the patient and tumor position can be monitored in real-time. Thus, by 

adapting planning from 4D images to on-board images, it is possible to either 

track the motion of the target tumor with the beam or to gate the beam to turn 

on/off at certain respiratory phases at the linear accelerator in the treatment 

delivery system [25].  

 
Figure 1-5 A linear accelerator that incorporates on-board imaging devices. A 
kilovoltage X-ray source and a flatpanel imaging device is used for cone-beam CT 
acquisition. A flat-panel megavoltage imaging device that is opposite the radiation 
beam enables real-time imaging during treatment [24]. (Permission to reproduce has 
been granted by the American Association of Physicists in Medicine) 
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For follow-up, 4D scans have to be performed to check whether any 

changes exist in not only the geometry but also the moving pattern of the tumor. 

Target delineation and therapy planning have to be re-done if the changes are 

large, which will render the initial plan inaccurate. 

Advanced RT techniques, such as intensity-modulated radiotherapy (IMRT) 

and Cyberknife, can be combined with 4D-RT to further improve treatment. 

The IMRT technique varies intensities across the radiation beam to produce 

sharp dose gradients at the transition between the tumor and adjacent normal 

tissues. As a result, an increased radiation dose can be applied to the tumor 

without increasing the irradiation of nearby normal tissues [3, 26]. The 

Cyberknife approach mounts the linear accelerator on a robotic arm with six 

degrees of freedom, thus enabling the radiation beam to be positioned according 

to the on-board images. Hence, real-time RT delivery that corrects tumor 

motion can be achieved [27].  

 

1.1.3 Medical image processing and radiotherapy 

Today, image processing impacts almost every area and plays an important 

role in our daily life. As previously discussed in Section 1.1.2, medical images 

are the basis of the entire RT process. Clearly, advances in image processing 

can greatly improve RT in many areas.  

Medical imaging’s main goal can be considered the clear visualization of 

specific organs or structures inside the human body. To this purpose, many 

efforts have been made to enhance the quality of medical images. For example, 

algorithms have been developed to remove noise without changing or losing 
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valuable clinical information [28, 29]. Super resolution techniques [30, 31] 

have been employed to improve the images’ spatial resolution. Also, a number 

of algorithms are used in an effort to improve the contrast of medical images 

[32-34]. These processes are often referred to as the pre-processing of the 

images. 

Image segmentation is another fundamental technique in image processing. 

Image segmentation technique separates an image into different regions with 

respect to some characteristic such as gray tone or texture [35]. With the 

development of medical imaging, the delineation of anatomical structures and 

other regions of interest in an automated and accurate manner using computer 

algorithms is becoming increasingly important in assisting with numerous 

clinical applications, such as the quantification of tissue volumes, the study of 

anatomical structure, target delineation in RT, and computer-integrated surgery 

[36]. Automated segmentation improves reproducibility and helps to reduce the 

workload. Many types of segmentation techniques exist, ranging from simple 

ones, such as thresholding, to more advanced methods, such as deformable 

models [37-39]. For a detailed review on image segmentation of the 4D dataset, 

one can refer to Section 2.5.1. 

Image registration is also a fundamental image processing technique that 

aims to align two or more images—for example, at different times, from 

different sensors, or from different viewpoints [40]. This technique is very 

useful when aligning on-board images in the treatment room with the planning 

images in the RT process so that the treatment planning can be adapted based 

on the patient’s treatment position and movement.  



 

 

12 

Another interesting application of image registration is the fusion of 

multiple image modalities [41]. A variety of medical imaging modalities have 

been developed based on different energy sources and focus on different 

aspects of diseases. For example, CT and MRI primarily focus on the 

anatomical structures, while positron emission tomography (PET) focuses on 

the functional processes in the body. These different modalities can be fused 

together. The resulting fused images offer a correlation of anatomical structure 

and functional information, thus providing help in many areas, such as 

diagnosing, tumor staging, and target delineation. For example, MRI and CT 

are fused together for the visualization and delineation of postage cancer, as a 

tumor can be better visualized in MRI due to its excellent soft tissue contrast 

[42]. Image registration techniques need to be used to align the two image sets 

from different modalities that usually have some differences, either differences 

in patient positioning between the different scans at different times, or 

differences due to the movement of internal organs [43, 44]. A detailed review 

on image registration can be found in Section 2.5.3.  

We can see that medical image processing techniques play a vital role in 

many areas of clinical applications. Almost every step in the RT process can 

benefit from advances in medical imaging processing. As a result, this thesis 

will focus on developing advanced image processing techniques in order to 

develop a 4D-MRI-based system for lung cancer RT. 
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11..22  Motivation 

Lagerwaard et al. have shown that lung tumors demonstrate significant 

mobility in all directions, which did not closely correlate with anatomic location 

[45]. Furthermore, the actual tumor motion could vary greatly against expected 

directions during inspiration and expiration [46]. Consequently, it is not 

possible to predict the tumors’ mobility and to establish reliable tumor motion 

models based only on their locations. The individualized assessment of tumor 

mobility is needed. 

Four-dimensional imaging techniques have enabled the individualized 

assessment of tumor mobility. With high spatial resolution and its ability to 

directly provide the electron density for dose calculation, CT is generally 

accepted as the radiological gold standard for visualization of the morphology 

of lung parenchyma [47]. However, CT involves radiation exposure, which is 

undesirable for prolonged imaging such as 4D imaging, particularly when 

applied for frequent follow-up examinations, during pregnancy, in children, and 

in clinical trials. The estimated equivalent dose for a full-body 3D-CT scan is 

about 1–10 mSv [48]. For 4D-CT, the radiation exposure is even larger, with a 

value of 30–40 mSv (average individual background radiation dose: 0.23 µSv/h 

[0.00023 mSv/h]) [49]. Due to its high radiation dose, current 4D-CT is not 

acquired continuously in real-time. It sorts images into respiratory phases 

within a single respiratory cycle based on an external motion indicator, such as 

using a respiratory belt that measures chest or abdomen motion. Thus, 4D-CT 

cannot compensate for interruptions due to coughing and cannot assess 

individual changes in respiration frequency and depth [49].  
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This thesis investigates the use of 4D-MRI for lung tumor imaging as a 

radiation-free alternative to 4D-CT. With recent developments in MRI, such as 

high-field 3 Tesla (3T) MRI and fast parallel imaging, MRI is able to acquire 

time-resolved volumetric images in order to capture the behavior of the lung in 

motion and has the potential to simultaneously provide different aspects of lung 

function data (e.g. perfusion, respiratory motion, ventilation, gas exchange) [50, 

51]. As compared with CT, MRI is capable of producing image data sets in any 

orientations [52]. Due to its excellent soft tissue contrast (Figure 1-6), better 

visualization of tumor can be achieved, and pathologies, such as the fixation of 

a tumor mass to the heart, along with vessels, edema, or infiltrates of the lung 

can be detected [49]. Importantly, MRI does not involve any ionizing radiation, 

which enables the technique to be applicable to scientific work and to a wider 

group of patients, such as young children and pregnant women [47]. Without 

radiation, 4D-MRI can image for a longer period of time so as to cover 

individual changes in respiration depth and frequency, thus providing valuable 

additional information for therapy planning [49]. 

Currently, full 4D-MRI image-based RT is not yet practiced clinically but 

has potential. On-board MRI imaging together with accelerator for treatment 

delivery is under construction [53]. To fully use 4D-MRI to perform 4D-RT, a 

lack of validated, standardized planning tools exists, including accurate and 

automated multiple target structure segmentation, adaptive dose calculation, 

and a motion control delivery mechanism [49, 54]. 
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Figure 1-6 Comparison of thoracic image of MRI (left) and CT (right) of the same 
lung cancer patient. The image of MRI has better soft tissue contrast, given the fact 
that the window/level of the CT image is already adjusted for better visualization of 
soft tissue. 

 

11..33   Objectives  

This thesis focuses on the development of a 4D-MRI-based system for 

4D-RT of lung cancer without excess exposure to radiation. Special attention is 

given to the 4D-MRI image acquisition; automated segmentation; visualization 

of multiple target structures using 4D-MRI; derivation of the respiratory 

motions of tumors and surrounding organs; and dose calculation. To achieve 

these objectives, this project’s specific aims are:  
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(1) Compare and study several 4D-MRI sequences at 3T without the use of a 

contrast agent. 

The acquisition of 4D MR images is the first and important step in the 

proposed system for 4D-RT. A recently developed MRI scanner with 3T field 

strength is believed to have upgraded capabilities in terms of temporal and 

spatial resolution, as compared with 1.5T MRI. Though a few 4D-MRI 

sequences are available for volumetric imaging over time, it is not clear which 

one(s) is suitable for thoracic imaging at 3T. This study’s aim is to compare 

several 4D-MRI sequences at 3T without the use of a contrast agent via 

qualitative and quantitative assessments. Images of 4D-MRI are also compared 

with 4D-CT in order to fully evaluate the performance of 4D-MRI on lung 

cancer. 

The original contribution of this study is that the suitable MRI sequence for 

dynamic thoracic imaging at 3T is determined to be TWIST. The study gains 

insights to the TWIST sequence, discusses the reason why it is capable of fast 

acquisition, which allows further development of MRI sequences. Through 

comparison between 4D-MRI and 4D-CT images, this study confirms that 

4D-MRI is comparable to 4D-CT in both spatial and temporal domain, which 

provides a basis for the application of 4D-MRI as a complementary or 

replacement of 4D-CT.  

 

(2) Develop techniques that enable the automated and more efficient 

segmentation of multiple target structures from 4D-MRI images. 
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One of the central challenges in processing 4D-MRI images is to extract the 

3D shape of the lungs, tumors, and other organs at risk from each 3D image. 

The accuracy of segmentation determines the final success or failure of the 

entire application of RT. The workload of segmentation increases enormously 

when moving from a 3D image to a 4D dataset. Consequently, it is important to 

automatically segment multiple structures in an efficient manner. This study’s 

aim is to develop an automated, accurate, efficient, and reproducible technique 

for the multi-structure segmentation of 4D-MRI images. This will contribute to 

the second step of 4D-RT: target delineation. 

The original contribution of this study is that a novel spatio-temporal based 

registration-based segmentation scheme is developed. This scheme enables fast 

segmentation of 4D thoracic dataset without compromise of segmentation 

accuracy, which makes the quantitative study of large 4D dataset and detailed 

4D-RT planning possible. In this study, we showed that it is possible to use 

repetitive motion (e.g. lung motion) to improve the efficiency of 

registration-based segmentation of large number of 3D datasets. 

 

(3) Fusion of 4D-MRI images and static 3D-CT images 

Compared with 4D-CT, the images of 4D-MRI have a relatively low spatial 

resolution. There is also a lack of a direct way to calculate radiation dose from 

MRI images. In order to overcome these drawbacks, it is proposed in this thesis 

to simulate 4D-CT images using static 3D-CT and 4D-MRI images. This will 

bring the advantages of MRI and CT together, which include high spatial 

resolution and the ability to provide the electron density for the dose calculation 
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of CT as well as the ability to continuously acquire volumetric images over a 

long period of time with MRI. This study’s aim is to develop a novel method 

for transferring motion information in 4D-MRI to static 3D-CT. 

The original contribution of this study is that a novel technique is developed 

that enables generation of simulated 4D-CT datasets without the access of high 

radiation. The simulated 4D-CT dataset is able to provide continuous motion 

information for better motion study and simulation, high spatial resolution for 

better segmentation accuracy, and electron density for the dose calculation. In 

this study, we showed that using lung surface deformation with a FEM lung 

model, it is possible to obtain a reasonably accurate deformation of the internal 

of the lung, even when tumor is present. 

 

11..44  Organization of the thesis 

This thesis aims to develop a 4D-MRI-based system for 4D-RT of lung 

cancer, which includes acquisition of 4D-MRI images, automated segmentation 

and visualization of target structures, and fusion of 4D-MRI and static 3D-CT 

images to aid in visualization and dose calculation. A schematic illustration of 

the proposed system is shown in Figure 1-7. 
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Figure 1-7 The scheme of the proposed 4D-MRI based system for 4D-RT of lung 
cancer. The words in various chapters are included. 

Chapter 2 gives a detailed review of the literature that are closely related to 

this thesis, which includes the anatomy of the lungs and the mechanics of the 

respiratory motion, the causes of the lung cancer and different types of lung 

cancers as well as the treatments, the principals and the state of the arts of 4D 

imaging techniques (i.e. 4D-CT and 4D-MRI), the automated segmentation 

techniques that can be used to segment 4D dataset, and the deformable 

registration technique that is a key technique used in several works in this 

thesis. 

Chapter 3 provides details on the evaluation of 4D-MRI sequences for 

imaging lung cancer patients. The main contributions in this field are the 

identification of a suitable 4D-MRI sequence for lung cancer imaging and 

proving that the information extracted from 4D-MRI images correlates well 
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with that from 4D-CT images, which is the current standard modality for 

4D-RT of lung cancer. 

Chapter 4 describes the development of an automated, accurate, and 

efficient registration-based segmentation scheme for the target delineation in a 

4D-MRI dataset. This scheme saves the computational efforts without the 

expenses of segmentation accuracy. 

Chapter 5 presents the development of a novel method for fusing 4D-MRI 

and static 3D-CT images. This provides new insights into the combination of 

the advantages of multiple modalities.  

Finally, in Chapter 6, the integrated 4D-MRI-based system for 4D-RT of 

lung cancer patients is presented. The significance of the thesis is stated. The 

future research direction is also discussed. 
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Chapter 2 Literature review 

22..11  Chapter overview 

This chapter presents the review of the literature that are closely related to 

this thesis, which focuses on the development of a 4D-MRI-based 4D-RT 

system for lung cancer. The anatomy of the lungs, the mechanics of respiratory 

motion, the causes of lung cancer, and the different types of lung cancer as well 

as the treatment methods are first reviewed. The principals and the state of the 

arts of 4D imaging techniques (i.e. 4D-CT and 4D-MRI) are then introduced, 

and the pros and cons of the 4D-CT and 4D-MRI are discussed. Because 

automated segmentation techniques are critical for improved target delineation 

in 4D-RT, different automated segmentation techniques that can be used to 

segment a 4D dataset are reviewed. Special attention is given to the 

registration-based segmentation approach, as it has been shown to be a suitable 

technique for the segmentation of a 4D dataset. Deformable registration, which 

is a key technique for registration-based segmentation, is reviewed. 
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22..22  The Lungs and Its Respiratory Motion 

The lungs are the essential respiratory organs in the thoracic cavity. Their 

main function is to bring oxygen from the atmosphere into the low-oxygen 

blood and to expel carbon dioxide from the blood to the atmosphere. The lungs 

reside in the thoracic cavity formed by the thoracic wall and the diaphragm and 

are separated by the mediastinum into the left lung and the right lung. Fissures 

divide the lungs into lobes, with two lobes in the left lung and three lobes in the 

right lung. Generally, the right lung is larger, heavier, and wider than the left 

one is because the heart bulges more to the left and forms a deep cardiac notch 

in the left lung. The right lung is also shorter because the right dome of the 

diaphragm is higher [55]. 

The trachea divides into the two primary bronchi (right and left primary 

bronchus) that enter the lungs. The primary bronchi continue to divide within 

the lung several times, forming the bronchioles, which lead to alveolar sacs. An 

alveolar sac consists of many alveoli that are tightly wrapped in blood vessels, 

and it is here that gas exchange actually occurs [56]. One pulmonary artery 

transports low-oxygen blood into each lung. Two pulmonary veins for each 

lung are responsible for draining oxygen-rich blood from it once the gas 

exchange has been completed. Figure 2-1 shows the anatomy of the lungs, the 

bronchi tree, and a zoom-in view of alveolar sacs. 

Pulmonary ventilation, also known as breathing, includes the inhalation 

(inflow) and the exhalation (outflow) of air between the lungs and the 

atmosphere. Pressure changes during pulmonary ventilation stem from changes 

in lung volume and force air to flow into and out of the lungs. Expansion and 
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contraction of lungs change the lung volume and are controlled by the 

diaphragm and external intercostals. For inhalation, the contraction of the 

diaphragm causes the diaphragm to flatten itself, which increases the vertical 

diameter of the thoracic cavity. At the same time, the expanding of external 

intercostals elevates the ribs and increases the anteroposterior and lateral 

diameters of the chest cavity. For exhalation, the diaphragm and the external 

intercostals relax, causing the dome of the diaphragm to move superiorly and 

the ribs to be depressed. Thereby, the vertical, lateral, and anteroposterior 

diameters of the thoracic cavity decrease. The diaphragm and rib cage 

movement during inhalation and exhalation is illustrated in Figure 2-2. 

On average, a healthy adult breathes 12 times a minute (five seconds per 

breathing cycle) at rest, with 500 mL of air moved during each inhalation and 

exhalation [56]. Many different breathing patterns have been observed in inter- 

and intra-subjects [57]. However, a more reproducible breathing pattern can be 

achieved when patients are aurally or visually guided to breathe shallowly [58].  

The respiratory motion of the diaphragm, which is assumed to be 

one-dimensional in the cranial-caudal direction, has been proposed to be 

modeled with a periodic yet asymmetric function, with the majority of time 

spent at the exhale position, as shown in Figure 2-3 [59]. 
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Figure 2-1 The anatomy of the lung, the bronchi tree, and the alveolar sacs [60] 
(permission to reproduce is granted by Wikimedia Commons.) 
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Figure 2-2 Illustrations of the movement of the diaphragm and the rib cage during 
breathing [61]. (Copyright(C) 2013 Yuxin Yang. Permission is granted to copy, 
distribute and/or modify this document under the terms of the GNU Free 
Documentation License, Version 1.3 �or any later version published by the Free 
Software Foundation.) 

 
Figure 2-3 Measured position of diaphragm in fluoroscopic images (triangles) and 
mathematical fitted model (solid line) [59]. (Permission to reproduce is granted by 
American Association of Physicists in Medicine.) 
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Assuming a fixed period for the motion, the position of the diaphragm as a 

function of time can be modeled with a sinusoidal function: 

 � � � �� � � �����
��
� � �  (2.1) 

where �� is the position at exhale, � is the extent or amplitude of the motion, 

�� � � is the position at inhale, � is the period of breathing cycle, � is a 

parameter that determines the general shape of the model in terms of steepness 

and flatness, and � is the starting phase of the breathing cycle. 

 

22..33  Lung cancer 

As mentioned in Section 1.1.1, lung cancer is the leading cause of cancer 

death for both males and females in many countries. The long-term smoking of 

tobacco is the most common cause of lung cancer, directly linked to lung cancer 

in 90% of women and 79% of men [62]. For those never-smokers who 

experience lung cancer occurrence, second-hand smoke exposure is a major risk 

factor. Other common risk factors include exposure to other carcinogens, such 

as asbestos, radon, radiation, and combustion products [63]. Preexisting lung 

diseases, such as chronic obstructive pulmonary disease (COPD), could also 

lead to lung cancer if not properly treated [2]. 

Almost all lung cancers begin at the bronchial epithelium, with uncontrolled 

cells growing into lesions, which are mixtures of mature cartilage, fat, fibrous, 
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and blood vessels in varying proportions. The tumor can also spread into nearby 

tissues and even beyond the thoracic cavity.  

Two main types of lung cancer exist, namely small-cell lung cancer (SCLC) 

and non-small-cell lung cancer (NSCLC). The SCLC is named for the small 

size of cancer cells. SCLCs tend to spread widely at an early stage and hence 

are not curable via surgery. They are best treated with chemotherapy and RT. 

NSCLCs contribute to 85% to 90% of lung cancers. Based on the size of the 

tumor and how it spreads (if any), NSCLC can be classified from stages I to IV 

[64]. They usually respond poorly to chemotherapy. Consequently, they are 

better treated by cutting a part of or the entire affected lung lobe if surgery is 

appropriate for the patient. RT is usually applied after surgery as well as to 

patients who are not surgical candidates due to medical conditions [65]. This 

thesis focuses on the RT of NSCLC patients. 

 

22..44  4D imaging: continuous dynamic 3D images 

over time 

The development of dynamic volume imaging is mainly motivated by RT 

for organs with respiratory motion. As discussed in Section 1.1.2, safety 

margins are currently estimated from population patients. By using 4D-imaging 

techniques, the assessment of patient-specific breathing motion and movement 

of organs and tumors are possible. This allows for the individual, personalized 

definition of safety margins. The generated images can then be correlated with 



 

 

28 

4D therapy planning. Currently, the available options are 4D-CT and 4D-MRI 

[49]. 

 

2.4.1 Computed tomography  

X-ray computed tomography (CT) produces images that show different 

structures of the body based on the structures’ ability to block the X-ray beam. 

When an X-ray beam passes through the body, its energy is lost due to 

scattering and absorption. The X-ray detector can record transmission of beams, 

displaying different intensities on the image. Consider a 2D fan-beam coming 

from a single X-ray tube that covers the entire body (Figure 2-4); when the tube 

rotates, a series of one-dimensional (1D) lines generated at different angles are 

acquired [66]. Different information will be captured in each 1D line because 

each 1D line is exposed at a different angle. Thus, each 1D line is a 1D 

projection of the 2D axial cross-section of the body at each angle. This 

collection of 1D projections can then be transformed using the inverse Radon 

transform [67] to reconstruct the 2D cross-sectional CT image. By moving the 

patient table in the cranial-caudal direction, different 2D axial images can be 

acquired and stacked to form a 3D CT image. 
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Figure 2-4 Generating a series of 1D projections of a 2D axial cross-sectional CT 
image with a fan-beam X-ray tube 

However, when scanning patients under free breathing using conventional 

3D CT, severe artifacts can be introduced via tumor and organ motion and can 

cause serious problems for the therapy planning of RT.  Such artifacts appear 

due to the dynamic interaction between trans-axial image acquisition and the 

asynchronous motion of tumor and normal organs [68]. The motion artifact is 

often observed at the dome of the liver by showing a distorted structure. Slices 

of a tumor with large movement may be imaged in mixed order (Figure 2-5). 

Different artifacts may be obtained when CT data acquisition starts at different 
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positions of the breathing cycle and the variations in artifacts turn out to be 

unpredictable [68]. 

 

 
Figure 2-5 Iso-surface renderings of a spherical object scanned by 3D-CT (top) and 
4D-CT (bottom) at different positions of the motion cycle. Three dimensional CT 
showed a severe motion artifact, and the artifact changed at different positions of 
the motion cycle [68]. (Permission to reproduce has been granted by the American 
Association of Physicists in Medicine.) 

 

Taking scans under breath-hold can significantly reduce artifacts induced by 

respiratory motion. However, the motion information of a tumor and normal 

organs is lost in this case. As discussed in Section 1.1.2, motion information is 

crucial to carrying out 4D-RT. Thus, the time-resolved 3D-CT, i.e. 4D-CT, was 

introduced. An example of a 4D-CT scanner is shown in Figure 2-6. 
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Figure 2-6 An example of a 4D-CT scanner (Brilliance CT Big Bore, Philips, 
Eindhoven, The Netherlands). This 4D-CT scanner was used to acquire the 4D-CT 
dataset of patients who were studied in this thesis. 

Four-dimensional CT images are usually taken using two different methods 

(i.e. prospective and retrospective). Prospective 4D-CT [69, 70] produces a 

single 3D image at the selected respiratory phase by using respiratory-gated 

image acquisition. The process has to be repeated several times in order to 

complete an entire respiratory cycle that covers all of the respiratory phases. On 

the other hand, retrospective 4D-CT [71, 72] continuously acquires 2D slices 

from all respiratory phases and then sorts them into appropriate phases so as to 

form corresponding individual 3D images, as illustrated in Figure 2-7. Both 

approaches need an external motion indicator (Figure 2-8) as the reference of 

the respiratory phases.  
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Figure 2-7 Retrospective acquisition of 4D-CT dataset. Two-dimensional slices are 
continuously imaged from all respiratory phases and are then sorted into 
appropriate phases to form corresponding individual 3D images based on the 
respiratory signal. 
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Figure 2-8 A respiratory belt senses the abdomen movement to generate a 

respiratory signal 

Another approach is the use of cone-beam technology for fast image 

acquisition [73-75]. Instead of a fan-beam and a linear detector, a cone beam 

and an area detector are used. In this case, cone-beam CT is capable of rotating 

the cone-beam source and recording 2D projection images on the area detector 

at different angles. Those 2D projections can then be reconstructed to create a 

3D volumetric image, just as 1D projections can be reconstructed to form 2D 

images. Although cone-beam CT can generate fast 3D images, the quality of 

those images is poor, with lots of artifacts. Currently, cone-beam CT is mainly 

used for on-board imaging during RT so as to position the patient and to 

synchronize planning with the patient’s position.  

Due to the high radiation dose involved, 4D-CT usually covers only one 

averaged full respiratory cycle. Thus, 4D-CT is not capable of examining the 

individual changes during respiration. However, CT is still the current gold 
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standard in pulmonary imaging due to its high spatial resolution. CT is also the 

standard modality for treatment planning in RT because the electron density can 

be directly provided in Hounsfield units through CT images. This allows for the 

calculation of the radiological path length to each voxel for treatment planning 

[76, 77].  

 

2.4.2 Magnetic resonance imaging 

MRI visualizes the detailed internal structures of an object by constructing 

pictures of the nuclear magnetic resonance (NMR) signals from the hydrogen 

atoms. In medical MRI, NMR signals mainly come from water and fat because 

water and fat are the human body’s major hydrogen-containing components 

[78]. To perform a MRI scan, a high magnetic field is first placed around the 

patient. An oscillating electromagnetic field called radiofrequency (RF) pulse is 

supplied to provide the required energy [79]. Hydrogen atoms are then exited 

by the RF pulse and emit signals to be detected forming a MRI image. 

 

2.4.2.1 Imaging sequences 

Many MRI sequences are used for different clinical applications. All of 

these sequences can be categorized into either a spin-echo or 

gradient-echo-based acquisition method. 
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Spin-echo Imaging Sequences 

The spin-echo imaging sequence, shown in Figure 2-9 (a), is often used to 

measure �� values. The spin-echo sequence involves two RF pulses: The first 

90° pulse creates the component of transverse magnetization, and the 180° 

pulse refocuses the ��� relaxation and produces a signal called an echo [80]. 

��- and ��-contrast weighting can be introduced in the image by adjusting echo 

time (TE) and repetition time (TR) of the RF pulse [79].  

 

Gradient-echo Imaging Sequences 

Spin-echo sequences generally generate high contrast-to-noise ratio (CNR) 

and signal-to-noise ratio (SNR) images. However, the acquisition time of 

spin-echo sequences is long. Gradient-echo (GRE) sequences, shown in Figure 

2-9(b), do not have the ��� refocusing pulse. This allows shorter TR and TE to 

be used [78, 81].  

Commonly used GRE sequences include a fast low-angle shot (FLASH), 

fast imaging with steady precession (FISP), gradient-refocused acquisition in 

the steady state (GRASS), and steady-state free precession (SSFP). 
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Figure 2-9 Illustration of MRI sequences (a) spin-echo and (b) gradient-echo 

 

2.4.2.2 Dynamic MRI 

Dynamic MRI is the repeated acquisition of images at the same slice or 

volume location. Compared with 4D-CT, dynamic MRI (Figure 2-10) can 

image respiratory motion over a longer period of time. Thus, the individual 

changes in respiration can be obtained. Acquisition time is an important factor 

in dynamic imaging because fast acquisition of datasets allows for a detailed 

study of motion. 
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Figure 2-10 An example of the 3T MRI scanner (Siemens Trio MRI scanner, Siemens 
Healthcare, Erlangen, Germany). This scanner was used in the studies presented in 
this thesis. 

In order to speed up the acquisition of a volume, a short TR value has to be 

applied, which limits the sequences to be ��-weighted. One simple way to 

reduce the acquisition time is to reduce the spatial resolution of a volume. 

Consequently, the visual quality of the volume is dropped. Thus, the spatial and 

temporal resolutions need to be balanced. A need exists to achieve fast 

acquisition of 3D-MR volumes while maintaining the spatial resolution at a 

relatively high level. 

Several methods have been developed to speed up the acquisition time of 

the dynamic MRI imaging without reducing the spatial resolution. One method 

is called parallel imaging. Parallel imaging skips some of the phase-encoding 

steps but reconstructs the missing signals from combinations of the separate 

coil signals [82]. The speed-up factor � is the number of phase-encoding lines 
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that have been omitted, but it is usually limited to between 2 and 4. This is due 

to the trade-off in terms of decreased signal-to-noise ratio (SNR)s given by: 

 ���� � ���
�  (2.2) 

Another method for reducing the acquisition time is called echo-sharing or 

view-sharing (TREAT/TWIST/TRICKS sequence). It reconstructs a new image 

with the timing being exactly in between two original images. The 

reconstructed image uses the second half of the k-lines from the previous 

original image and the first half of the k-lines from the next original image [83]. 

Fast parallel imaging for 2D dynamic MRI (2D + time) has been achieved using 

sequences of 2D GRE and SSFP on both 1.5T and 3T systems [84]. Similar to 

2D dynamic MRI, 3D dynamic (4D) MRI is acquired by using fast 3D-GRE or 

SSFP sequences. Echo sharing and parallel imaging techniques have achieved a 

fast acquisition time of up to 1 volume per second. A list of representative 

4D-MRI imaging applied for lung imaging in the literature is summarized in 

Table 2-1. 

Recently, new techniques have been developed for the purpose of achieving 

fast acquisition. Compressed sensing is one of them. Compressed sensing aims 

to acquire significantly fewer measurements of the signal values (k-space data 

points) and non-linearly reconstructs them to form a complete k-space with 

good accuracy [85]. However, although the new techniques are promising, 

many unsettled crucial issues exist. Thus, these techniques are yet to be used in 

clinical applications.  

 



 

 

39 

Table 2-1 4D-MRI sequences for lung imaging that has been applied in the literature 

Sequence Tesla 
Spatial res.  
(mm3) 

Temp. res. 
(s/volume) Literature 

FLASH 3D ��� ����������� ��� Plathow et al. 2006 [20] 

TREAT ��� ��������� ��� Biederer et al. 2009 [86] 

TREAT ��� ��������� ��� Dinkel et al. 2009 [87] 

TRICKS ��� ����������� ��� Plathow et al. 2009 [88] 

FLASH 3D: Fast Low-angle SnapsHot 3D imaging; TREAT: Time-resolved 
Echo-shared Angiographic Technique; TRICKS: Time-resolved Imaging of 
Contrast KineticS, equivalent to TWIST from Siemens 

Another way to generate 4D MRI is retrospectively gated with 2D-GRE 

sequences, which are sorted by respiratory phases [89]. This method is similar 

to the 4D-CT acquisition techniques described in Section 2.4.1. Image quality is 

improved via this method, but it is not a “real-time” acquisition. Thus, 4D-CT is 

unable to cover individual changes in respiration frequency. 

Most of the 4D-MRI applications use 1.5T magnetic field strength (Table 

2-2). In recent years, three Tesla (3T) high-field MRI scanners have been 

available for clinical use. With improved signal-to-noise ratios (SNR) due to 

higher magnetic field strength, MRI scanner with 3T field strength has been 

found to have upgraded capabilities in terms of temporal and spatial resolution, 

as compared with 1.5T MRI [90-92], thus allowing a shortened examination 

time and resulting in an improved image quality [93]. However, few studies 

have been done to evaluate the performance of 4D-MRI imaging at 3T. This 

will be discussed in Section 3.2. 
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2.4.3 Comparison of 4D-CT and 4D-MRI 

Generally, 4D-MRI has lower spatial resolution than does 4D-CT, with a 

typical spatial resolution of 3�3�4 mm for 4D-MRI and 

(0.5-1.5)�(0.5-1.5)�(1-5) mm for 4D-CT. 4D-CT also has a faster acquisition 

time than 4D-MRI does. It takes about 200 ms to 500 ms to acquire a single 3D 

image of a 4D-CT dataset, while 4D-MRI takes about 1 s to scan a single 3D 

image. With a faster acquisition time, 4D-CT can image more positions within a 

breathing cycle. Usually, 4D-CT captures 10 breathing phases. 

However, 4D-CT uses a fixed acquisition scheme, and only acquisition in 

axial-plane is possible. Furthermore, 4D-CT averages multiple breathing cycles 

to form images that represent a single breathing cycle, which makes it unable to 

cover the individual changes in respiration frequency and depth. If patients 

experience irregular breathing patterns, a severe motion artifact will appear on 

the images (as shown in Figure 2-11). Due to its high radiation dose, multiple 

repetition of the scan is also prohibited. Four-dimensional MRI, on the other 

hand, is more flexible. One can freely choose the imaging plane (axial, coronal, 

and sagittal) and various breathing maneuvers (e.g. free-breathing, deep 

breathing). Without any radiation involved, 4D-MRI is capable of imaging for a 

prolonged time and of capturing the “real-time” motion. However, due to its 

long acquisition time, current 4D-MRI is more suitable for slow controlled 

breathing. 

In the context of RT, 4D-CT is preferred; as it provides valid radiation 

transmission data directly, while for 4D-MRI, this information needs to be 

estimated. The pros and cons of 4D-CT and 4D-MRI are summarized in Table 

2-2. 
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Figure 2-11 Severe motion artifact at the dome of the diaphragm (white arrow) due 
to irregular breathing during 4D-CT acquisition 

 

Table 2-2 Comparison of 4D-CT and 4D-MRI 

 4D-CT 4D-MRI 

Spatial res. (mm3) (0.5-1.5)�(0.5-1.5)�(1-5) 3�3�4 

Temporal res. (s/volume) 0.2-0.5 1 

Effective dose (mSv) 30-40 None 

Choice of imaging plane Axial 
Axial, Coronal, Sagittal, 

Oblique 

Multiple repetition Prohibited Allowed 

Breathing maneuver Fixed scheme  
Instructed breathing 

maneuvers possible  

Able to cover individual 

changes in respiration 

frequency and depth 

No Yes 
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22..55  Automated segmentation of 4D medical images 

for RT planning 

Precise segmentation of the structures of interests is required in many 

applications, such as the derivation the volumetric measurements for 

quantitative analysis and the delineation of the target structure in RT planning. 

With 4D images, it is now possible to visualize the displacement and 

deformation of a tumor during respiration, which is central in 4D-RT. However, 

the manual segmentation of a 4D dataset that typically contains many 3D 

volumes is extremely tedious and time-consuming. Further, manual 

segmentation could also result in large intra- and inter-user variability. 

Automating the segmentation could reduce the workload largely and decrease 

both intra- and inter-user variability. Consequently, automated segmentation 

techniques for 4D dataset are needed. 

Simple methods such as thresholding, region-growing, watersheds, 

clustering, and classification [94-96] can be useful for the segmentation of 

synthetic images and some real images with well-defined contrast. However, 

they have a number of limitations. Medical images usually are of low contrast 

and tend to be very noisy. It is difficult to choose the correct threshold value for 

thresholding techniques. It is also very hard for the user to define the 

homogeneity criteria in medical images with low contrast when using the 

region-growing approach. All of these methods are sensitive to noise and 

intensity inhomogeneity, especially for the watershed and clustering algorithms, 

which may cause the segmented regions to have holes or to become 
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disconnected and thus result in over-segmentation. As a result, more 

sophisticated methods are needed. 

 

2.5.1 4D Segmentation 

In this thesis, 4D segmentation is defined as the segmentation of a 4D 

dataset (3D volumes of the same subject acquired over time). Hence, 4D 

segmentation techniques refer to segmentation techniques that can be applied to 

segmenting 4D datasets. A few segmentation techniques have been proposed 

for segmenting 4D-CT/MRI cardiac and thoracic images in a more automated 

manner. These techniques include the use of a deformable model, statistical 

shape model, graph/watersheds cuts, and image registration.  

The deformable model method moves surfaces that deform to match any 

kind of shape and detect the surfaces of target objects [97]. The first deformable 

model was proposed by Kass et al. [98] and is generally known as the “snake.” 

The surface can be represented either explicitly [37-39] by listing all of the 

coordinates of surface points or implicitly [99, 100] by representing the surface 

with some functions. The method usually iteratively deforms the surface by 

minimization of the total energy or by using the level set method to search for 

the desired location. The deformable model method can be accurate if the 

model is designed properly. However, it is often difficult to choose appropriate 

parameters. The deformable model method requires manual interaction to place 

an initial model in each 3D volume within a 4D dataset and does not fully use 

the prior information contained in a 4D dataset. 
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The statistical shape model method [101, 102] constructs the prior 

segmented 3D target structures as well as the motion information between them 

into a statistical model. This model is then used to segment structures that have 

the “typical” shape and moving pattern of new datasets. O’Brien et al. [101] 

and Leiner et al. [102] used this technique to segment the left ventricle. A 

limitation of this method is that additional time and interactions are needed to 

accumulate enough segmented target structures and motion information for 

training. The training process can be very tedious because the segmented 3D 

structures are usually acquired manually. 

For the graph/watershed cuts method [103, 104], seeds inside the object 

phase and background phase are first placed. The images are then separated into 

three kinds of nodes: object, background, and image nodes. Then, a 4D graph 

can be constructed to link the object, background, and image nodes spatially 

and temporally in the 4D dataset. Weights of these links are based on image 

intensity as well as spatial and temporal position. Severed links classify each 

image node into either object or background. The cost of a cut is the sum of 

weights of all severed edges. Thus, segmentation is achieved by finding a 

minimum cut. Cousty et al. [104] developed the watershed cut technique to 

segment the left ventricle, and Lombaert et al. [103, 104] employed the graph 

cut method to segment the entire heart. Similar to the statistical shape model 

method, the graph/watershed cuts method also requires many data training 

processes. Also, the training process and the calculation of weights are very 

computational-intensive. 

Other than the techniques discussed above, the registration-based 

segmentation approach has been a popular choice for segmenting the 4D dataset 

because it does not require a training phase and works well for images with 
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similar structures. Using this method, good segmentation results have been 

achieved. Hence, this is the main approach on which this thesis will focus. This 

method is explained in Section 2.5.2. 

 

2.5.2 Registration-based segmentation 

The registration-based segmentation approach uses registration techniques 

to solve the segmentation problem. Registration plays the most crucial role in 

this method, as the registration technique transforms an image in order to 

spatially align the corresponding parts with respect to the target image. The 

basic scheme [105] for performing registration-based segmentation of a 4D 

dataset is illustrated in Figure 2-12. A reference volume (����) is chosen and 

segmented separately. The segmented reference volume will serve as the 

template (�) for propagation. Three dimensional registration is then applied 

between target volumes (��, �� � ��� ����� ��) and the reference volume to get 

the displacement fields from the reference volume to the target volumes 

(����������), together with the registered reference volumes. The corresponding 

displacement fields are then used to deform the template into the corresponding 

segmented target volumes.  

The registration-based segmentation method has been widely used for the 

3D segmentation of structures that are stable in the population being studied, 

such as the brain [106-108]. This is because even with deformable registration 

methods, it is sometimes difficult to find accurate segmentations of complex 

structures due to anatomical variability [36]. In the context of 4D image 

segmentation, registration-based segmentation seems to be the ideal tool 
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compared with other segmentation techniques. For 4D images, the time spacing 

between two 3D scans is generally very small. Consequently, the structures are 

very similar between the scans, with only some minor differences. The 

registration-based segmentation technique can fully exploit this property of 4D 

images because accurate registration can be easily performed with such a small 

difference between two images. Moreover, the registration-based segmentation 

algorithm delineates its deformation of reference segmentation based not only 

on the reference segmentation itself but also on its surrounding structures and 

global transformations [109]. Hence, the registration-based segmentation 

approach can handle complex segmentation problems and also work for images 

with low contrast or with regions where no clear boundaries exist between 

target structures. Unlike segmentation approaches that use statistical prior 

knowledge, the registration-based framework does not require a training phase 

using large dataset; rather, it only requires the prior segmentation of the 

template image/volume for subsequent propagation [110].  

Registration-based segmentation has been employed in a number of 4D 

segmentation problems. For 4D-CT thoracic data, approaches including 

B-spline registration [21, 111-113], calculus of variations method [114], and 

demons registration [115] have being reported. Several works have evaluated 

registration methods including demons and B-spline registration with regard to 

segmentation results and the alignment of anatomical landmarks [116-119]. 

They found that the demons method generated slightly more accurate results 

and can handle local deformations of the lung. Gu et al. implemented demons 

registration and five of its variations on a graphic processing unit (GPU) to 

accelerate the segmentation process [120]. They evaluated the six demons 

algorithms and reported that the original demons algorithm outperformed other 
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variants based on accuracy, efficiency, and ease of implementation. Other 

works implemented the registration-based segmentation of a 4D dataset, 

including 4D cardiac segmentation in MRI [121, 122] and CT [123, 124] as 

well as the segmentation of liver and kidney in a 4D-CT dataset [125]. 

 

 
Figure 2-12 An illustration of the overall basic registration-based segmentation 
scheme 

 

�
��������

���
�
�
�
��
����� ����
���� ����
����

������
�
���
�
�	�

�����������

�
�����
���

��
��
��
	��� ��
��
��
	���

�
��������

���



 

 

48 

2.5.3 Deformable registration 

Registration is a fundamental tool in image processing used to match two or 

more images [126]. It is also the most important step in registration-based 

segmentation. In general, registration can be divided into two main types: rigid 

and deformable. The main difference lies in the transformation. The 

transformation of rigid registration is linear, including rotation, scaling, and 

translation. Deformable registration, also known as non-rigid registration, 

transforms an image in a non-linear manner, such as shape change and warping. 

In the application of 4D medical images, the transformation involved is mainly 

non-linear. Hence, the focus here is on the deformable registration. 

The flowchart of a typical image registration framework is shown in Figure 

2-13. The aim is to transform the moving image by optimizing a cost function 

that embeds a similarity measure and regularization terms. The multi-resolution 

approach is usually performed in order to achieve accurate and fast registration. 

 
Figure 2-13 Registration framework showing the key steps in registration 
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2.5.3.1 Similarity measure 

Similarity measure is used to quantify how similar the two images are. 

Generally, two kinds of similarity measure are commonly used, namely the 

surface-based and intensity-based methods.  

Surface-based, also called geometry-based, similarity measure compares the 

spatial information extracted from images, such as anatomical landmarks, 

curves, and surfaces [127]. With clear features extracted, this measure can lead 

to a precise registration result. However, user intervention is often required to 

get spatial information from images beforehand. The manual intervention 

would incur variability. It is also not suitable for the automated 

registration-based segmentation of 4D images. 

The intensity-based approach measures the degree of similarity between 

intensity patterns of two volumes �� and ��. The simplest method is to use the 

sum of square distance (SSD) manner: 

 ��� � �� ���� � � �� ���� � �

���
 (2.3) 

It is fast but very sensitive to noise. Also, it can only be used with mono-modal 

images.  

A more tolerant measure is cross-correlation (XCOR): 

 ���� � �� ���� � �� ���� ����

�� ���� � ���� �� ���� � ����
�
�
 (2.4) 
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It can work on images with multi-modality but also is sensitive to noise. The 

volume of summation in Equation (2.3) and (2.4) is defined as the union of both 

datasets. 

Another method for multi-modality images is called mutual information 

(MI) [128]: 

 �� � � �� � � �� �-�� ��� ��  (2.5) 

where � ��  and � ��  are the marginal entropies and � ��� ��  is the 

joint entropy of the two volumes. It has been widely used to register images 

from multiple modalities [128-130]. However, it is computation-intensive 

compared with other methods. 

Other than the three commonly used similarity measures discussed above, 

some new similarity measures have been introduced recently, such as phase 

mutual information [131] and Gaussian-windowed similarity measure [132]. 

 

2.5.3.2 Transformation 

Transformation determines how the moving image is being deformed. 

Different transformation methods can be applied with respect to the type of 

applications and the nature of the target images. These methods can be 

generally categorized into two types, namely parametric transformation and 

non-parametric transformation. 
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Parametric Transformation 

Deformable registration can be solved using parametric algorithms, 

including affine transformation, polynomial transformation, and spline-based 

transformation. 

Affine transformation involves translation, rotation, scaling, and shearing 

and can be characterized by affine transformation matrix [126]: 

 ��
��
�

�
��� ��� ���
��� ��� ���
� � �

��
��
�

 (2.6) 

where �� and �� are the coordinates before transformation; �� and �� are 

the coordinates after transformation. Equation (2.6) is in homogeneous 

coordinate system. For the simplicity of illustration, only 2D situation is shown. 

(Same for Equation (2.7) and (2.8).) 

Affine transformation has seven degrees of freedom (DOF) for 2D images 

and 12 DOF in 3D volumes. It is computation-efficient and is easy to 

implement. However, it cannot accommodate local deformations because the 

same transformation is applied consistently to all pixels in the image. 

Another representation of parametric transformation is a polynomial 

function. The polynomial transformation has the form: 

 �� � ���
�

���
�

���  �� � ���
�

���
�

��� (2.7) 

where ��� and ��� are the constant polynomial coefficients to be determined 

[133]. Polynomial transformation can deform an image more than affine 
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transformation can. However, it is still only useful when accounting for 

low-frequency distortions because of its unpredictable behavior [126]. 

Spline-based transformation uses a set of basis functions that represent the 

transformation function: 

 �� � ���� �����
�

  �� � ���� �����
�

 (2.8) 

where �� �����  is the basis function. The advantage of spline-based 

transformation is that it can handle some local deformations. Frequently used 

algorithms include thin-plate spline [134] and B-spline [135]. 

 

Non-parametric Transformation 

Non-parametric transformation is an advanced type of transformation. It is 

not restricted to a finite dimensional space, compared with parametric approach. 

In general, the transformation function �  of the moving image ����  is 

represented as the displacement of each point in ����. The aim is to find the � 

that minimizes the cost function � [136]: 

 ������
�
� � � �� � � ���� � �� �  (2.9) 

where �� is the fixed target image, � is the dissimilarity between the two 

images, � is the regularizing term, and � is a regularizing parameter. 
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Non-parametric transformation can be divided into four categories, 

depending on the smoother �  used: elastic registration, fluid registration, 

diffusion registration, and curvature registration. 

Elastic registration considers the images as an elastic body [137]. It is 

characterized by a spatial smoothing of the displacement field. Elastic 

registration is easy to understand and implement, but it only works for linear 

elastic deformations with only small changes of displacement. This is due to its 

restricted regularizer [136]. 

Compared with elastic registration, fluid registration can be characterized by 

the smoothing of the velocity field [138]. Fluid registration is powerful, and it is 

possible to align any target image to any reference image with the same 

gray-scale range. However, unrealistic solutions are often observed for medical 

images because this method is based on fluid-like bodies, and anatomical 

objects do not deform fully fluid-like in general [136]. 

Unlike elastic and fluid registration, which is based on spatial properties of 

images, diffusion registration is based on the first derivatives of the 

displacement. One special type of diffusion registration is called demons 

registration [139]. It places “demons” at certain locations in the reference 

image, and the “demons” decide the diffusion of the target image by 

minimizing the difference between the two images. The calculation of the 

displacement of “demons” were inspired from the optical flow method [140].  

Variations of the original demons registration have been proposed to utilize 

information from both the moving and reference images [141-144]. Diffusion 
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registration performs best with images with small changes, but it can be 

combined with the fluid registration to allow for larger deformations. 

Curvature registration is based on second-order derivatives. The 

678AD?3F;A@�U7>6�;E�53>5G>3F76�4K�?;@;?;L;@9�3�EG;F34>7�E;?;>3D;FK�?73EGD7�FA�3�

curvature-based constraint [145]. Compared with elastic, fluid, and diffusion 

registration, curvature registration is more sensitive to initial affine linear 

displacements but is less dependent on the initial position of the reference and 

moving images [136]. 

 

2.5.3.3 Optimization 

Optimization determines the final deformation through minimizing the 

similarity score. Popular methods include gradient descent and Newton’s 

method. Gradient descent is a first-order optimization algorithm that finds a 

local minimum through the negative of the gradient of the function at a current 

point. Newton’s method is a second-order iterative method used to find critical 

points of differentiable functions [146].  

In parametric registration, a numerical solution of parameters can be 

obtained by using higher-order methods, such as Newton’s method. In 

non-parametric registration, Equation (2.9) can be solved using the gradient 

descent method [136] or can involve the use of the scheme of demons method, 

which is also based on the gradient. Higher-order schemes, such as Newton’s 

method, are not suitable because they require intensive computations.
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Chapter 3 Evaluation of 4D-MRI 
sequences at 3T for lung cancer 
imaging 

33..11  Chapter overview 

As discussed in Section 2.4, CT images are generally accepted as the 

radiological gold standard for visualization of the morphology of the lung 

parenchyma but the high radiation involved in CT prohibits continuous 

scanning to generate ‘real-time’ volumetric images. MRI, on the other hand, is 

able to generate ‘real-time’ volumetric images that allow the behavior of the 

lung and tumor in motion to be captured. Additionally, MRI has an excellent 

soft tissue contrast and is capable of producing image datasets in any 

orientation [147]. With recent advancements in MRI technology such as 

high-field 3T scanning, MRI has improved in both image quality and temporal 

resolution. However, the performance of 4D-MRI sequences for lung cancer 

imaging at 3T is still unclear. It is necessary to evaluate 4D-MR sequences at 

3T for lung cancer patients. 

Two studies are presented in this chapter for this purpose. The first study 

aims at comparing three 4D-MRI sequences (TWIST, VIBE, and FLASH 3D) 
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at 3T in terms of image quality and their ability to capture lung and lung tumor 

motion. Results showed that FLASH 3D exhibited the best image quality 

among the three sequences while TWIST has a high temporal resolution, which 

makes it sufficient to study the motion of tumor and diaphragm under 

controlled breathing.  

The second study focuses on the comparison between 4D-MRI and 4D-CT 

of lung cancer patients as 4D-CT is generally accepted as the gold standard for 

lung cancer patients. Tumor volume and motion of the volumes from the same 

patients were used for comparison. Analyses showed that 4D-MRI exhibited 

equal ability to present the tumor volume and to describe the tumor motion as 

4D-CT. 

All the volume estimations of MRI images in Chapter 3 use a 

spatio-temporal based registration-based segmentation scheme that will be 

introduced in Chapter 4. 

 

33..22  Comparison of 3D dynamic MR sequences at 3T 

for imaging of lung cancer 

Three Tesla (3T) high-field MRI scanners have been recently available for 

clinical use.  With improved signal-to-noise ratios (SNR) due to higher 

magnetic field strength, MRI scanner with 3T field strength has been found to 

have upgraded capabilities in terms of temporal and spatial resolution as 
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compared to 1.5T MRI [90-92]. This allows a shortened examination time and 

improved image quality [93].  

In the context of lung cancer imaging, limited studies that evaluate thoracic 

MRI image quality and contrast have been reported. Fink et al. evaluated the 

image quality and lesion contrast of lung MRI using 5 different 2D sequences at 

1.5T and 3T under breath-hold with 5 porcine phantoms and 4 healthy subjects 

[148]. They found that the lesion contrast is higher at 3T. Similar study has 

been performed by Fable et al. to compare the image quality of 2D dynamic 

(2D+time) lung MRI with variations of steady-state free- precession (SSFP) and 

gradient echo (GRE) cine techniques at 1.5T and 3T [84]. They proved that 2D 

GRE (FLASH 2D) is better than SSFP at 3T with higher lesion signal intensity 

and contrast. 

However, static images only contain the volumetric information at 

breath-hold and 2D dynamic only provides limited 2D motion information. To 

obtain volumetric 3D anatomic data during respiration, a time-resolved 3D MRI 

data acquisition protocol is needed. To the best knowledge of the author, 

although there are a few 3D dynamic (3D+time) sequences, they have not been 

evaluated at 3T for lung cancer imaging. Thus, it remains unclear which of 

these sequences would give better image quality and contrast for imaging lung 

and lung tumor, and whether they have the ability to capture lung and lung 

tumor motion. Furthermore, the studies of Fink et al. [148] and Fable et al. [84] 

only evaluated sequences using porcine phantoms and healthy subjects. It is 

important to evaluate the performance of the sequences using real lung cancer 

patients. The objective of this study is to compare a few 4D-MRI sequences at 

3T in terms of image quality and their ability to capture lung and lung tumor 

motion. 
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3.2.1 Materials and Methodology 
3.2.1.1 Magnetic resonance imaging 

In order to image the lung in dynamic phases, 4D-MRI sequences with high 

temporal resolution were selected. As T2 weighted sequences cannot allow for 

a high enough temporal resolution, we opted for T1 weighted sequences. As 

recommended by Fink et al., VIBE is good for the depiction of nodules [148] 

and Fable et al. showed that GRE (FLASH) images have higher lesion signal 

intensity and contrast at 3T [84]. Echo-sharing (TREAT/TWIST/TRICKS) 

sequences have also been proved useful for assessing respiratory mechanisms 

dynamically [149]. So in this study three different 3D dynamic sequences 

(VIBE, TWIST, and FLASH 3D) were compared for lung MRI. These are 

volumetric pulse sequences. 

VIBE (Volume Interpolated Body Exam) is a spin-echo sequence typically 

used in the abdomen under breath-hold. Combination with parallel imaging 

technique improves the temporal resolution of VIBE; hence it can be used for 

image acquisition under breathing. TWIST is the acronym for Time-resolved 

angiography With Interleaved Stochastic Trajectories. It is a MR angiography 

(MRA) sequence that was originally designed to image the vascular tree. 

TWIST uses keyhole-imaging technique to speed up imaging time. It acquires 

the central portion of the k-space first then fill in the rest part from subsequent 

scans [150]. FLASH is short for Fast Low Angle Snap sHot. It is a gradient 

echo sequence that has a small flip angle and short TR to ensure fast acquisition 

[151]. 

All the images were acquired by a whole body 3T MR system (Siemens 

Trio MRI scanner, Siemens Healthcare, Erlangen, Germany) in coronal plane as 
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the coronal plane give a clear view of tumor and lungs. Volumes acquired in 

axial plane usually contain more slices and will increase acquisition time. In 

order to improve the temporal resolution, parallel imaging algorithm GRAPPA 

PAT 2 was applied to all the sequences. As there is a tradeoff between temporal 

and spatial resolution, each sequence was optimized to achieve the highest 

possible temporal resolution with a reasonable spatial resolution. All sequences 

generated images with same spatial resolution. Detailed sequence parameters 

are specified in Table 3-1. A controlled-breathing maneuver was applied during 

the scans. All subjects were instructed to start by continuous breathing-in for 3 

seconds and breathing-out for 3 seconds. Each subject repeated this breathing in 

and out maneuver for around 25 s (�4 breathing cycles) and in same manner 

every time. By doing this, a more repeatable breathing manner can be assured 

for the same subject when scanning using different sequences 

 

Table 3-1 Sequence parameters for 3D dynamic lung MRI 

Sequence TR  

(ms) 

TE  

(ms) 

BW  

(Hz/px) 

FA  

�W� 

FOV  

(mm) 

FOV 
Phase 
(%) 

Matrix  

(px) 

Slice 
thickness 
(mm) 

Temporal 
Resolution 
(s/volume) 

TWIST 1.71 0.76 1500 10 360 100 128 4 0.9 
VIBE 1.93 0.70 1502 10 360 100 128 4 3.5 
FLASH 3D 1.96 0.70 1500 10 360 100 128 4 2.9 

TWIST: Time-resolved angiography With Interleaved Stochastic Trajectories; 
VIBE: Volume Interpolated Body Exam; FLASH 3D: Volumetric Fast Low 
Angle Shot 

 

Healthy subjects were scanned first followed by lung cancer patients. After 

studying healthy subjects, the sequence VIBE was taken out of the protocol for 
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lung cancer patients because of its relatively poor image quality and low 

temporal resolution in order to shorten the total scanning time for lung cancer 

patients. 

 

3.2.1.2 Subjects 

Institutional Review Board approval was obtained for this study. Ten 

healthy subjects (7 men, 3 women; mean age: 29.1 years, age range: 21-37 

years) and six lung cancer patients (4 men, 2 women; mean age: 64.0, age 

range: 52-81 years) underwent MR imaging of the lungs. Informed written 

consent was obtained prior to all examinations. Inclusion criteria were 

willingness and ability to provide informed consent. The patients are all with 

non-small cell lung cancer (NSCLC) and were all scheduled for RT. Exclusion 

criteria were contraindications to MRI including claustrophobia, pacemakers 

and other implanted electronic devices and pregnancy. There was no presence 

of other lung diseases such as chronic obstructive pulmonary disease (COPD) 

or other types of lesions for all the patients. The tumor location of each patient 

is shown in Figure 3-1. 
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Figure 3-1 Tumor location of each patient. Tumors are marked with yellow circles. 
Patient 6 is with scoliosis. 

 

3.2.1.3 Image Quality Analysis 

To evaluate the sequences, both quantitative and qualitative analyses were 

performed using the images of healthy subjects and lung cancer patients. 

 

Qualitative analysis  

All images were evaluated by two experienced radiologists with 5 years' 

experience and an experienced radiation oncologist with 6 years’ experience in 
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interpreting MRI. All readers were blinded to sequence type, study time, and 

subject name, age, and gender. Another independent observer displayed images 

in random order for each reader. Each reader reviewed all images 

independently. Criteria for qualitative evaluation were as followed [84]: 

(a) Visualization of structures of interest (SOI) (five-point scale);  

(b) Delineation of anatomical structures (five-point scale);  

(c) Sensitivity of artifacts (three-point scale: 0 = severe artifacts, 
non-diagnostic; 1 = artifacts, diagnostic; 2 = absence of artifacts). Structures of 
interests were tumor, heart, liver, spinal cord, chest wall and lungs. 

Visualization of SOI aims to evaluate the internal anatomy of the structures 

of interest. A feature of each structure of interest was identified to best 

represent its internal anatomy: distinction of (i) myocardium for the heart, (ii) 

hepatic arteries for the liver, (iii) nerve roots for the spinal cord, (iv) 

neurovascular bundle for chest wall, and (v) pulmonary vasculature. Table 3-2 

summarized the criteria for each scale. 

 

Table 3-2 Criteria for visualization of structures of interest 

Scale Criteria 
1 Feature could not be seen 

2 Feature was barely seen but its shape could not be identified 

3 
Location and shape of feature was seen but the distinction from 
neighboring structures was uncertain 

4 
Feature was seen and was moderately distinct from neighboring 
structures 

5 Feature was easily and well identified 
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Delineation of anatomical structures through visual inspection evaluates 

how distinguishable the boundaries of the SOIs are from the surrounding 

structures. It was subjectively graded from 1 to 5 as summarized in Table 3-3. 

The median and mode of the rankings were calculated to statistically 

evaluate the sequences. Median presents the value that is middle of all 

observations while mode shows the most frequently occurring value among the 

observations. 

Table 3-3 Criteria for delineation of anatomical structures 

Scale Criteria 
1 Not visible and non-diagnostic structure outline 

2 Poor structure outline without sufficient visualization 

3 Fairly confident of structure outline 

4 Good structure outline sufficient for delineation 

5 Excellent structure outline with sharply defined margins 

 

Quantitative analysis 

1) Edge sharpness 

Edge sharpness is an important parameter of global visual quality of medical 

images and can be objectively assessed using sigmoid fitting. This technique 

consists of measuring the edge width, or transition width, using a least-square 

fitting to a sigmoid function of the form: 

 � � � �
�� ��� ���  (3.1) 
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where � is the spatial variable, � �  is the image intensity, parameter � is 

inversely proportional to the edge width, and � corresponds to the edge center 

location. Once the optimal curve parameters are obtained, a measure of rise 

length is computed and defined as the width from 10% to 90% of the edge 

height. Based on the assumed shape of the edge given by Equation (3.1), the 

edge width in pixels in defined by: 

 ����� � ���
�  (3.2) 

A significant drop in the edge width can be interpreted as a gain in spatial 

resolution, as object borders are spread over a lower number of pixels. In this 

study, the thicknesses of several edges for different organs of interest were 

computed (Figure 3-2). The same edge locations are used for all sequences to 

compare their respective sharpness. It is expected that the objective assessment 

of edge sharpness correlate with the visual evaluation of "Visualization of SOI" 

and "Delineation of Anatomy". 

 
Figure 3-2 Positions that evaluation of edge sharpness took places for different 
structures of interests (indicated by yellow lines). Structures of interests include 
tumor, heart, liver, chest wall, and lungs. 
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2) Local tissue contrast  

Because of the non-uniform noise distribution in parallel imaging, the 

commonly used method to calculate signal-to-noise ratio (SNR) based on noise 

intensity in background may not be accurate [152]. Local tissue contrast as 

suggested by [66] was determined in this study by  

 �������� � �� � ��
��

 (3.3) 

where �� and �� are the signal intensities of tissue � and � respectively. 

Tissue � was chosen to be the tissue with less signal intensity so that the 

calculated contrast will be a positive value. To obtain the contrast value, 

circular regions with an average number of 50 pixels were positioned in tissues 

(Figure 3-3). All measurements were performed by an independent examiner. 

 

 
Figure 3-3 Examples of positions that local tissue contrast measurements took places 
for different organs: (a) chest wall-to-liver; (b) tumor-to-lung 

 

��� ���
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Motion analysis 

The 3D trajectory of the tumor centroid and diaphragm domes of right and 

left lungs is projected in the craniocaudal (CC) direction as major lung and 

tumor motion are in the CC direction [153]. This is to study whether the 3D 

dynamic sequences are capable of capturing the lung and tumor motion. 

Current RT planning that uses 4D images considers the tumor and other 

organs positions at all phases between maximum inhalation and exhalation. All 

the positions at different breathing phases are combined to include all tumor 

and organ motion [24] (Figure 3-4). In this context, it is important for MRI 

scans to cover as many positions as possible along the path of tumor and organ 

motion. Accumulated volume of lungs and tumor was used to represent such 

ability of sequences in this study. In order to calculate the accumulated volume, 

the union of segmented volumes of lungs and tumor over 25 s were taken to 

form the combined segmented volumes. The accumulated volume was 

calculated by counting the number of voxels contained in this combined 

segmented volume. It is expected that the higher the temporal resolution, the 

higher the possibility that the MRI volumes cover more positions of breathing 

phases, thus the larger the accumulated volume.  

The lungs of four representative healthy subjects and both lungs and tumor 

of six lung cancer patients were segmented using a spatio-temporal based 

registration-based segmentation scheme (will be discussed in detail in Chapter 

4). All the segmented volumes of each subject are combined together to 

calculate the overall accumulated volume covered during controlled-breathing. 
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Figure 3-4 Segmented images of tumor during breathing including all the phases are 
added to form the combined segmented image. Dashed circle in the illustration on 
the left shows all the tumor position and the grey area presents the accumulated 
tumor volume. 

 

3.2.2 Study results 
3.2.2.1 Image quality analysis 

All radiological examinations were performed successfully and there were 

no adverse events observed. Three 4D-MRI sequences (TWIST, VIBE, and 

FLASH 3D) were acquired for each healthy subject while two 4D-MRI 
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sequences (TWIST and FLASH 3D) were acquired for each lung cancer 

patients. 

Qualitative assessments of 4D-MRI sequences are summarized in Table 3-4. 

All three sequences showed some artifacts that did not affect diagnosis (1/1). 

FLASH 3D was rated best for heart (3/3) and chest wall (3/3) followed by 

TWIST, which scored (2/2) and (3/2) for heart and chest wall respectively. 

FLASH 3D and TWIST were better than VIBE for the visual quality of liver 

(3/4).  VIBE provided best visual quality for lungs (3/4). Flash 3D was 

preferred for the delineation of liver (3.5/4) and lungs (4/4), though TWIST and 

VIBE were not far from that. For the delineation of heart, spinal cord, and chest 

wall all three sequences were rated at the same level with scores of (3/3), (2/2), 

and (3/3) respectively. In detection of tumor, FLASH 3D was slightly better 

(3/3). FLASH 3D was also better for the delineation of tumor (3.5/4). 

Representative images of 4D-MRI sequences are shown in Figure 3-5. 

Table 3-4 Qualitative ranking (mean/mode) 

 VIBE TWIST FLASH 3D 
Artifacts 1/1 1/1 1/1 
Visualization of SOI    
Tumor - 3/2 3/3 
Heart 2/2 2/2 3/3 
Liver 3/3 3/4 3/4 
Chest wall 2/2 3/2 3/3 
Lungs 3/4 3/3 3/3 
Delineation of anatomy    
Tumor - 2/2 3.5/4 
Heart 3/3 3/3 3/3 
Liver 3/3 3/3 3/4 
Chest wall 3/3 3/3 3/3 
Lungs 3/3 3/3 4/4 
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Figure 3-5 4D-MRI lung imaging of normal subject (upper row) and lung cancer 
patient (lower row) using three different sequences: TWIST, FLASH 3D, and VIBE. 
VIBE was not acquired for the patients to reduce scan time. 

Edge widths between SOIs and lungs of 3D dynamic sequences are shown 

in Table 5. FLASH 3D had the smallest edge widths for tumor (1.01 mm), heart 

(4.78 mm), and chest wall (4.29 mm). Images acquired by TWIST showed best 

edge sharpness for liver (4.37). Images acquired by VIBE were the worst 

among all the sequences in terms of edge sharpness of all SOIs (heart: 6.31 mm, 

liver: 9.00 mm, chest wall: 6.31 mm).  

Table 3-5 Edge width (mm/pixels) measurements 

 VIBE TWIST FLASH 3D 

Tumor - 1.31/0.47 1.01/0.36 

Heart 6.31/2.24 5.77/2.05 4.78/1.70 

Liver 9.00/3.20 4.37/1.55 4.96/1.76 

Chest wall 6.31/2.24 5.24/1.86 4.29/1.53 
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The local tissue contrasts for 3D dynamic sequences are summarized in 

Table 3-6. FLASH 3D showed the highest contrast for heart-to-liver (0.95), 

chest wall-to-liver (1.76), heart-to-lung (22.18), chest wall-to-lung (23.70), 

liver-to-lung (33.68), and tumor-to-lung (11.69). TWIST showed slightly less 

contrast than FLASH 3D. VIBE is the worst of all three in terms of local tissue 

contrasts. 

Table 3-6 Local tissue contrast measurements 

 VIBE TWIST FLASH 3D 

Heart-Liver 0.35 0.76 0.95 

Chest wall-Liver 0.55 1.34 1.76 

Heart-Lung 9.97 17.26 22.18 

Chest wall-Lung 10.00 17.18 23.70 

Liver-Lung 17.12 23.46 33.68 

Tumor-Lung - 8.65 11.69 

 

 

3.2.2.2 Motion analysis 

The displacement of the diaphragm dome of both lungs in CC direction is 

shown in Figure 3-6 and Figure 3-7 for four representative healthy subjects and 

six lung cancer patients respectively. The tumor trajectory is shown in Figure 

3-8. In 25 s of image acquisition, approximately 3 to 6 breathing cycles were 

recorded. One can see that tumor of Patient 1 has the highest mobility while 

that of Patient 4 has the lowest. With a high temporal resolution, TWIST clearly 

displayed a continuous trajectory of diaphragm and tumor motion. FLASH 3D 
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and VIBE are proved to be unable to present the path of diaphragm and tumor 

motion. However, they almost covered the two extreme positions at maximum 

exhalation and inhalation.  

The accumulated volumes of left lung, right lung, and tumor of six lung 

cancer patients and four healthy subjects are presented in Table 3-7, Table 3-8, 

and Table 3-9 respectively. Due to the relative high temporal resolution, 

segmented images of TWIST showed the largest accumulated volume of left 

lung (1503.2±408.4 ml), right lung (1800.0±350.2 ml), and tumor (164.1±83.5 

ml). If we consider TWIST to be the reference, segmented images of FLASH 

3D showed a reduction of 126.9±101.1 ml (8.4±5.4%) for left lung and 

183.5±184.2 ml (7.7±6.0%) for right lung. A small difference was noticed for 

the accumulated volume of tumor between TWIST and FLASH 3D, with a 

difference of 4.3±5.2 ml (2.4±2.4%). For VIBE, the accumulated volumes were 

even smaller, with a larger difference of 181.8±93.6 ml (11.1±4.2%) for left 

lung and 279.8±55.3 ml (14.6±1.1%) for right lung from those of TWIST. 
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Figure 3-6 Diaphragm dome trajectory of left and right lungs presented by TWIST, 
FLASH 3D (FL3D in short), and VIBE in CC direction of four healthy subjects. 
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Figure 3-7 Diaphragm dome trajectory of left and right lungs presented by TWIST, 
FLASH 3D (FL3D in short), and VIBE in CC direction of six lung cancer patients. 
VIBE was not acquired for the patients to reduce scan time. 

 

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

�� �� ��� ��� ��� ���

��
��
�
��

�	
��
��
��
�
�	
��
��

���
�
���
�	

�
�

��
��
�
��

�	
��
��
��
�
�	
��
��

���
�
���
�
��
��
�

��	�����

�������	����

�����������

�
����	����

�
��������

����

����

����

����

����

�	��

�
��

����

����

��	�

��	�

�		�

�
	�

��	�

��	�

�	�

��	�

��	�

�� 	� ��� �	� ��� �	�

��
��
�
��

�	
��
��
��
�
�	
��
��

���
�
���
�	

�
�

��
��
�
��

�	
��
��
��
�
�	
��
��

���
�
���
�
��
��
�

��	�����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

�� �� ��� ��� ��� ���

��
��
�
��

�	
��
��
��
�
�	
��
��

���
�
���
�	

�
�

��
��
�
��

�	
��
��
��
�
�	
��
��

���
�
���
�
��
��
�

��	�����

�������	����

�����������

�
����	����

�
��������

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

�� �� ��� ��� ��� ���

��
��
�
��

�	
��
��
��
�
�	
��
��

���
�
���
�	

�
�

��
��
�
��

�	
��
��
��
�
�	
��
��

���
�
���
�
��
��
�

��	�����

������	����

����������

�
���	����

�
�������

�
��

����

����

���

����

����

����

����

����

����

����

����

����

�	��

�
��

����

����

���

�� 	� ��� �	� ��� �	�

��
��
�
��

�	
��
��
��
�
�	
��
��

���
�
���
�	

�
�

��
��
�
��

�	
��
��
��
�
�	
��
��

���
�
���
�
��
��
�

��	�����

��	�

��	�

�		�

�
	�

��	�

��	�

�	�

��	�

��	�

�
	�

��	�

��	�

�	�

��	�

��	�

��	�

��	�

��	�

�� 	� ��� �	� ��� �	�

��
��
�
��

�	
��
��
��
�
�	
��
��

���
�
���
�	

�
�

��
��
�
��

�	
��
��
��
�
�	
��
��

���
�
���
�
��
��
�

��	�����

�	�
��� �	�
���

�	�
��� �	�
���

�	�
��� �	�
���

�������	���� ����������� �
����	���� �
��������



74 

 

 

Figure 3-8 Tumor trajectory presented by FLASH 3D and TWIST in CC direction of 
six lung cancer patients. 
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Table 3-7 Accumulated left lung volume of four healthy subjects and six lung cancer 
patients over 3 to 5 breathing cycles. VTWIST, VFLASH, and VVIBE represent the 
accumulated volume for TWIST, FLASH 3D, and VIBE respectively. The unit for all 
the volumes is mL. �VFLASH and �VVIBE are calculated as VTWIST -VFLASH and VTWIST – 
VVIBE respectively. %�VFLASH and %�VVIBE are calculated as �VFLASH/VTWIST and 
�VVIBE/VTWIST respectively. 

 

 

VTWIST 
(ml) 

VFLASH 

(ml) 

VVIBE 

(ml) 

�VFLASH 

(ml) 
%�VFLASH 

�VVIBE 

(ml) 
%�VVIBE 

Healthy 1 1440.4 1432.8 1362.5 7.6 0.5 77.9 5.4 
Healthy 2 1934.7 1713.3 1634.4 221.5 11.5 300.3 15.5 
Healthy 3 1822.8 1626.8 1622.7 195.9 10.7 200.0 11.0 
Healthy 4 1203.0 1114.2 1054.2 88.8 7.4 148.8 12.4 
Patient 1 972.1 861.4  110.7 11.4   
Patient 2 1777.6 1751.2  26.4 1.5   
Patient 3 1064.2 970.5  93.7 8.8   
Patient 4 1800.2 1454.6  345.6 19.2   
Patient 5 1018.2 944.9  73.3 7.2   
Patient 6 1998.5 1892.6  105.9 5.3   
Average 
(stdev) 

1503.2 
(408.4) 

1376.2 
(376.7) 

1418.5 
(273.4) 

126.9 
(101.1) 

8.35  
(5.4) 

181.8 
(93.6) 

11.1 
(4.2) 

 
 
Table 3-8 Accumulated right lung volume of four healthy subjects and six lung 
cancer patients over 3 to 5 breathing cycles. 

 

 

VTWIST 
(ml) 

VFLASH 

(ml) 

VVIBE 

(ml) 

�VFLASH  

(ml) 
%�VFLASH 

�VVIBE 

(ml) 
%�VVIBE 

Healthy 1 1841.4 1821.5 1602.4 19.9 1.1 238.9 13.0 
Healthy 2 2267.4 2015.0 1916.9 252.4 11.1 350.5 15.5 
Healthy 3 2060.8 1866.9 1763.7 193.9 9.4 297.1 14.4 
Healthy 4 1525.2 1345.0 1292.5 80.3 11.8 232.7 15.3 
Patient 1 1274.5 1206.8  67.7 5.3   
Patient 2 2075.4 2041.0  34.5 1.7   
Patient 3 1534.9 1477.9  567.0 3.7   
Patient 4 2064.3 1628.7  435.6 21.1   
Patient 5 1347.5 1259.9  87.6 6.5   
Patient 6 2008.4 1912.0  96.4 4.8   
Average 
(std) 

1800.0
(350.2) 

1657.5 
(316.6) 

1643.9 
(267.1) 

183.5 
(184.2) 

7.7   
(6.0) 

279.8 
(55.3) 

14.6 
(1.1) 
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Table 3-9 Accumulated tumor volume of six lung cancer patients over 3 to 6 
breathing cycles. 

 

 

VTWIST 
(ml) 

VFLASH 

(ml) 

�VFLASH 

(ml) 
%�VFLASH 

Patient 1 63.6 63.5 0.1 0.2 
Patient 2 203.4 202.6 0.8 0.4 
Patient 3 101.0 98.0 3.0 3.0 
Patient 4 198.4 197.3 1.1 0.6 
Patient 5 292.9 279.4 13.5 4.6 
Patient 6 125.3 118.0 7.3 5.8 
Average 
(stdev) 

164.1 
(83.5) 

159.8 
(80.5) 

4.3  
(5.2) 

2.4   
(2.4) 

 

3.2.3 Study discussion 

 With its rapid development in recent years, MRI of the lung has shown 

potential for broad clinical applications. Lung nodules larger than 4–5 mm in 

diameter can be easily detected by MRI with comparable sensitivity to CT [154, 

155]. For lung cancers of the superior sulcus (Pancoast tumor), MRI is 

mandatory to delineate tumor infiltration of the chest wall, brachial plexus and 

vasculature, all of which would strongly influence resection margins and gross 

tumor volume for RT [156]. The planning of RT of lung cancer patients would 

also benefit from dynamic MRI by accurate calculation of the target volume 

without the use of ionizing radiation. 

 The focus of this study is on the evaluation of 4D-MRI sequences for the 

imaging of the chest and lung tumor at 3T. Generally, the results of qualitative 

analysis and quantitative analysis matched well. Images with sharper edges and 

higher local tissue contrast were also rated with higher score by independent 

observers. The delineation of structures were rated the same for TWIST and 
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VIBE sequences although TWIST images have sharper edges. This is largely 

due to the relatively low image resolution. Though large differences between 

edge widths of images were obtained in physical size (mm), the differences are 

less than 2 pixels for pixel size. This makes it hard for observers to distinguish 

the differences between the two images when they were evaluating based on 

delineation of target structures.  

 FLASH 3D has the best image quality and local tissue contrast among 

three sequences at 3T. Fabel et al. [84] found that contrast and image quality of 

GRE sequence (FLASH 2D) improved at 3T. In this study, we further proved 

that 3D GRE sequence (FLASH 3D) is also favored at 3T. FLASH 3D also 

showed sharpest edge for tumor, heart, and chest wall except for liver, while 

TWIST achieved better edge sharpness at liver/lung interface (Table 5). This 

could be due to the relatively low temporal resolution of FLASH 3D. As the 

liver/lung interface has the most prominent motion, it is reasonable to expect 

that faster sequence will have less motion artifact which will result in sharper 

edge.  

TWIST has a slightly poorer image quality (though still acceptable) but 

faster acquisition time as compared to FLASH 3D. With a 0.9 s/volume 

acquisition, which is 3 times faster than FLASH 3D, TWIST is able to capture 

the lung and tumor motion within a breathing cycle, which is typically 5s 

duration. The accumulated volume of segmented images over 3 to 6 breathing 

cycles showed that TWIST had the largest accumulated volume, which 

indicates that TWIST was able to cover more positions along the motion path of 

diaphragm and tumor. This is important for RT. Though the accumulated lung 

volume of FLASH 3D is much less than that of TWIST, the accumulated tumor 

volume of FLASH 3D is similar to that of TWIST in a 25 s’ acquisition time. 
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This is because the magnitude of tumor motion is much smaller than that of 

diaphragm motion. FLASH 3D is thus capable of detecting the extreme 

positions of tumor, although it is not sufficient to cover the range of diaphragm 

motion. 

The reason why TWIST is capable of fast acquisition is that TWIST 

incorporates a keyhole technique for temporal acceleration. Conventionally, 

every point in k-space (������) is sampled. The keyhole technique manipulates 

conventional k-space sampling strategy by dividing ���� space into a central 

and a peripheral sector (Figure 3-9) [157, 158]. The central sector defines the 

main contrast in the image while the peripheral sector defines the detail 

information in the image. The temporal acceleration is achieved by alternatively 

acquiring the full central sector and a portion of the peripheral sector (e.g. half 

of the peripheral sector); data can be borrowed from temporally neighboring 

peripheral sector acquisitions (Figure 3-10). The temporal resolution is defined 

as the repetition time of the center sector. As a result, the acquisition time is 

shortened because the time required for a portion of the peripheral sector is 

clearly shorter than that for a full one. 
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Figure 3-9 k-space is divided into two sectors: the central sector (A) and the 
peripheral sector (B). 

 

 

Figure 3-10 Conventionally, the temporal resolution is A+B. Keyhole technique 
improves the temporal resolution by sampling B half as frequently thus the 
improved temporal resolution is A+B/2. 
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The age group of healthy subjects (29.1 years) and lung cancer patients 

(64.0 years) were not matched. This is due to the difficulty in volunteer 

recruitment. However, in this study, the sequences are compared within the 

subject and not across subjects. Further more, it is not the scope of this study to 

compare the groups of healthy subjects and lung cancer patients. The effect of 

the unmatched age group between healthy subjects and lung cancer patients are 

minimum. A limitation of the study is that the statistical power of the lung 

cancer patient dataset might be insufficient. Nevertheless, in this study coherent 

results were shown for the six patients in this study. It is expected that similar 

results can be observed on other patients. We can clearly observe and evaluate 

the strengths and weaknesses of the different MRI sequences. It would also be 

interesting to compute the contrast between tumor and adjacent other than lung 

tissues (e.g. heart, liver, and chest wall). However, the tumors in our data series 

were not close to other organs. We will focus on the interface between tumor 

and other organs in the future work. 

 

3.2.4 Study conclusion 

In conclusion, this study has compared three 3D dynamic sequences 

performed on clinical MRI scanners for imaging of the lungs at 3T. FLASH 3D 

produces the best image quality whereas TWIST has good image quality at a 

faster temporal resolution, which is capable of showing the motion path of 

tumor. 
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33..33  4D-imaging of lung cancer: comparison of 

4D-MRI and 4D-CT based on tumor volume and 

motion 

As mentioned earlier, CT is the current standard modality for RT. In order 

to investigate the potential for 4D-MRI to serve as an alternative modality to be 

used in 4D-RT, it is necessary to compare 4D-MRI with 4D-CT. Biederer et al. 

evaluated how size and displacement of artificial pulmonary nodules are 

reproduced using 4D-CT and 4D-MRI at 1.5T using porcine phantoms [86]. 

They found that tumor sizes are exactly reproduced using 4D-CT but 

overestimated using 4D-MRI due to its limited temporal and spatial resolution. 

The tumor displacement was underestimated by both 4D-MRI and 4D-CT. 

However, to fully evaluate the performance of 4D-MRI on lung cancer, 

phantom study is insufficient. 4D-MRI of real lung cancer patients needs to be 

studied. Recent studies showed that quantitative assessment of the lung volume 

during breathing could be derived from 4D-MRI data and results correlate well 

with spirometric measurements [159]. In this study, the focus is on the tumor 

volume and motion of 4D-MRI imaging of lung cancer patients. Such 

information cannot be acquired using lung function tests such as spirometry. 

Since 4D-CT currently is the gold standard for RT, 4D-CT images serve as the 

ground truth for 4D-MRI to compare with. The aim of this study is to compare 

4D-MRI and 4D-CT from the same patient in terms of tumor volume and 

motion trajectory and coverage. 
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3.3.1 Materials and methodology 
3.3.1.1 4D-MRI and 4D-CT Data 

As discussed in Section 3.2, 4D-MRI using TWIST sequence is capable of 

showing the motion path of tumor while displaying a good image quality. 

Hence TWIST is selected in this study. The 4D-MRI volumes acquired by 

TWIST sequence at 3T of the same 6 lung cancer patients were used in this 

study. The specifications of the acquired images are the same as in Section 3.2. 

Thoracic 4D-CT datasets of the same 6 lung cancer patients acquired for 

their RT planning were analysed to serve as the ground truth. Images were 

acquired using a large bore, 16-slice dedicated CT simulator with respiratory 

correlated imaging (Brilliance CT Big Bore, Philips, Eindhoven, The 

Netherlands). Each 4D CT dataset comprises a series of 3D volumes in axial 

plane at different phases of the breathing cycle, with a total of nine to ten 

phases across a breathing cycle. Hence, there are nine to ten 3D volumes for 

each patient.  Each of the 3D volume covers the whole thorax. The in-plane 

resolution ranges from 0.57 mm � 0.57 mm to 1.17 mm � 1.17 mm. The 

through-plane resolution ranges from 3 mm to 5 mm. The details of the 4D-CT 

volumes are listed in Table 3-10. 

Table 3-10 Specifications of the 4D-CT dataset for each patient 

 Matrix Spatial resolution (mm3) 
Patient 1 1024 � 1024 � 132 0.57 � 0.57 � 3.00 
Patient 2 512 � 512 � 90 1.16 � 1.16 � 5.00 
Patient 3 512 � 512 � 80 1.17 � 1.17 � 5.00 
Patient 4 512 � 512 � 103 1.18 � 1.18 � 5.00 
Patient 5 512 � 512 � 127 1.19 � 1.19 � 3.00 
Patient 6 512 � 512 � 85 1.14 � 1.14 � 5.00 
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3.3.1.2 Sorting MRI volumes into breathing phases 

The 4D-MRI and 4D-CT used in this study were acquired at two different 

sessions. The acquisition scheme and breathing maneuver for 4D-MRI and 

4D-CT are different as well. Thus, in order to compare 4D-MRI with 4D-CT, it 

is necessary to sort MRI volumes into breathing phases with respect to the 

phases in 4D-CT.  

In this study, the height of tumor-bearing lung is used to sort the MRI 

volumes. It is based on the fact that the diaphragmatic movement is the 

principal movement in the chest and all the lung-related structures move almost 

synchronously [160], which indicates that once the lung height of two thoracic 

images are the same, structures within the lung (blood vessels, tumor, etc.) are 

at the same position. For each volume of 4D-CT and 4D-MRI, coronal plane 

crossing the trachea is first located. Though 4D-CT volumes are acquired in the 

axial plane, it is viewed in the coronal plane for convenience. The lung height is 

measured from the apex of the lung to the diaphragmatic dome in the 

cranialcaudal (CC) plane in the middle of the hemithorax [161] (Figure 3-11). 

For each MRI volume, the breathing state (i.e. inhalation or exhalation) is 

first identified by comparing the lung height with adjacent volumes. 

Subsequently the lung height of this MRI volume is compared to that of 4D-CT 

volumes of similar lung height that are in the same breathing state. The two 

adjacent CT volumes that bound the MRI volume are then located (Figure 

3-12). The corresponding breathing phase of the MRI volume is calculated as: 

 
���� �

���� � ������ ������� � ������
������� � ������

� ������ (3.4) 
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where ���� is the breathing phase of the MRI volume, ������� is the phase of 

CT volume at higher phase, ������ is the phase of CT volume at lower phase, 

HMRI is the lung height of the MRI volume, ������� is the lung height of CT 

volume at higher phase, ������ is the lung height of CT volume at lower phase. 

If the lung height of the MRI volume is equal to a CT volume at the same 

breathing state, the breathing phase of the CT volume is assigned to the MRI 

volume.  

 
Figure 3-11 Illustration of the measurement of lung height using 4D-CT images. The 
lung height is measured from the apex of the lung to the diaphragmatic dome in CC 
direction in the coronal slice that crosses the trachea. 
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Figure 3-12 Illustration of sorting a 4D-MRI volume into corresponding breathing 
phase. 

 

3.3.1.3 Comparison of tumor volume and mobility 

For all the 4D-MRI and 4D-CT volumes of all patients, tumor was 

segmented using a spatio-temporal based registration-based segmentation 

scheme developed in Chapter 4. 

Since lung tumor deforms and rotates during normal respiration [20, 21], it 

is important to compare the tumor volume at the same breathing phase. Thus, 

tumor volumes at maximum exhalation phase (���) of sorted 4D-MRI and 

4D-CT were calculated using segmented volumes for each patient.    

Similar to Section 3.2, the accumulated volume of tumor was used to 

represent whether 4D-MRI is able to cover the motion coverage of the tumor as 

4D-CT does. For each patient, the union of segmented tumor volumes for all 

����
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the sorted MRI volumes was taken to form the combined segmented volume. 

Using the combined segmented volume, the accumulated volume (����) was 

then calculated. The same was done to 4D-CT volumes. The accumulated 

volumes derived using 4D-MRI and 4D-CT were then compared. 

The 3D trajectories of the tumor centroid of all sorted MRI volumes and 

4D-CT were projected in the CC direction as major lung motion and tumor 

mobility is in the CC direction. This is to study whether there is any difference 

in describing tumor motion between 4D-MRI and 4D-CT.  

 

3.3.2 Study results 

Samples images of 4D-MRI and 4D-CT volumes of each patient are shown 

in Figure 3-13. For each patient, nine to eleven MRI volumes were successfully 

sorted into phases with respect to the phases in 4D-CT. 

Tumor volumes of sorted 4D-MRI volume and 4D-CT volume at maximum 

exhalation phase are summarized in Table 3-11. The tumor volume captured by 

4D-CT had an average value of 118.1 ± 59.8 ml while the average volume 

derived using 4D-MRI is 116.8 ± 57.0 ml. Difference was small between the 

two modality, with an average value of 3.2 ± 2.0 ml (3.3 ± 2.4%). In order to 

determine whether the observations in 4D-MRI differs a lot from those in 

4D-CT, a paired t-test is performed as it is known for determining of two sets of 

data are significantly different from each other. The hypothesis is that there is 

significant difference between the observations in 4D-MRI and 4D-CT. The 

paired t-test was applied using SPSS 18.0 for Windows [162]. Results showed 
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that there is no significant difference between the two modalities in terms of 

representation tumor volume (p = 0.46). 

The accumulated tumor volumes of sorted 4D-MRI volumes and 4D-CT 

volumes over one breathing cycle are listed in Table 3-12. The accumulated 

tumor volume presented by 4D-CT had an average value of 139.7 ± 64.3 ml 

while that derived using 4D-MRI is 143.6 ± 64.6 ml. Difference was small 

between the two modalities, with an average difference of 5.4 ± 5.1 ml (4.5 ± 

5.8%). There is no significant difference between the two modalities (paired 

t-Test, p = 0.19). 

 
Figure 3-13 Sample images of 4D-MRI and 4D-CT of 6 patients 

��������� ��������� ���������

��������� ��������� ���������


�	

�


�	
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Table 3-11 Tumor volumes of sorted MRI volume and 4D-CT volume at maximum 
exhalation phase of six lung cancer patients. �����  and ������ represent the tumor 
volume for CT and MRI respectively. ����������  is calculated as ������ � ����� . 
�����������  is calculated as ���������������� . Negative value means MRI has 
underestimated the tumor volume. 

 �����  

(ml) 

������ 
(ml) 

���������� 

(ml) 

����������

(ml) 

�����������  

Patient 1 37.4 38.8 1.4 1.4 3.7 

Patient 2 194.8 189.4 -5.4 5.4 2.8 

Patient 3 110.5 107.1 -3.3 3.3 3 

Patient 4 161.4 161.7 0.2 0.2 0.1 

Patient 5 141.1 136.4 -4.65 4.65 3.3 

Patient 6 63.4 67.7 4.3 4.3 6.7 

Average 

(stdev) 

118.1 

(59.8) 

116.8 

(57.0) 

 3.2   

(2.0) 

3.3     

(2.4) 

 

 
Table 3-12 Accumulated tumor volumes of sorted MRI volumes and 4D-CT volumes 
over one breathing cycle. ������  and ������� represent the accumulated tumor volume 
for CT and MRI respectively. ����������� is calculated as ������� � ������ . ������������ is 
calculated as ������������������ .  Negative value means MRI has underestimated the 
accumulated tumor volume. 

 ������  

(ml) 

������� 
(ml) 

����������� 

(ml) 

�����������

(ml) 

������������  

Patient 1 48.8 50.0 1.2 1.2 2.5 

Patient 2 218.5 221.2 2.7 2.7 1.2 

Patient 3 113.0 109.0 -4.0 4.0 3.6 

Patient 4 168.8 170.9 2.1 2.1 1.3 

Patient 5 192.5 199.3 6.8 6.8 3.5 

Patient 6 96.7 111.3 14.6 14.6 15.1 

Average 

(stdev) 

139.7 

(64.3) 

143.6 

(64.6)  

5.3   

(5.1) 

4.5     

(5.8) 
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Table 3-13 lists the tumor motion coverage in CC direction captured by 

sorted 4D-MRI volumes and 4D-CT volumes over one breathing cycle. The 

tumor volume moving range captured by 4D-CT had an average value of 2.3 ± 

2.6 mm while that displayed in 4D-MRI was 2.3 ± 2.4 mm. Difference is small 

between the two modalities, with an average difference of 0.2 ± 0.2 mm (14.6 ± 

9.5%). There is no significant difference between the two modalities (paired 

t-Test, p = 0.47).  

The tumor trajectories in CC direction of sorted 4D-MRI volumes and 

4D-CT volumes over one breathing cycle for three lung cancer patients are 

displayed in Figure 3-14. The tumor of Patient 1 displayed the highest mobility 

while that of Patient 3 has the lowest. Visually the tumor motion path of sorted 

MRI volumes matches well to that of 4D-CT volumes.  

Table 3-13 Tumor motion coverage of sorted MRI volumes and 4D-CT volumes in 
CC direction over one breathing cycle. ��� and ���� represent the tumor moving 
range for CT and MRI respectively. ��������  is calculated as ���� � ��� . 
���������  is calculated as ������������ . Negative value means MRI has 
underestimated the tumor motion coverage. 

 ��� 

(mm) 

���� 
(mm) 

�������� 

(mm) 

��������

(mm) 

���������  

Patient 1 6.3 5.7 -0.6 0.6 8.9 

Patient 2 0.6 0.7 0.1 0.1 9.8 

Patient 3 0.1 0.1 -0.0 0.0 22.2 

Patient 4 0.1 0.1 0.0 0.0 22.2 

Patient 5 4.5 4.6 0.1 0.1 1.9 

Patient 6 2.1 2.5 0.5 0.5 22.6 

Average 

(stdev) 

2.3 

(2.6) 

2.3 

(2.4) 

 0.2   

(0.2) 

14.6    

(9.5) 
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Figure 3-14 Comparison of tumor trajectories in CC direction between sorted 
4D-MRI volumes and 4D-CT volumes over one breathing cycle. 
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3.3.3 Study discussion 

This study compared 4D-MRI with 4D-CT in terms of tumor volume and 

motion trajectory and coverage. In order to compare 4D-MRI and 4D-CT that 

are not acquired in the same session, a method to sort 4D-MRI volumes into 

corresponding breathing phases in 4D-CT system without the use of external 

breathing signal was developed. It allows the direct quantitative comparison 

between 4D-MRI and 4D-CT. The accuracy of this method is further evaluated 

in Chapter 5. 

Results showed that there is no significant difference between 4D-MRI and 

4D-CT in terms of tumor volume. This is inconsistent with the findings by 

Biederer et al [86]. They scanned 4 porcine lung phantoms with artificial 

tumors under a ventilation rate of 8 cycles per minute using 4D-CT (slice 

thickness: 0.8-1.5 mm; temporal resolution: 0.5 s/volume) and 4D-MRI (1.5T; 

echo-shared FLASH 3D, similar to TWIST used in this study; spatial 

resolution: 2.7 mm � 2.7 mm � 4.0 mm; temporal resolution: 1.4 s/volume). In 

their work, the tumor sizes were exactly reproduced with 4D-CT but 

overestimated by 4D-MRI. They discussed that this could be due to limited 

temporal resolution of 4D-MRI acquisition (1.4 s/volume). The temporal 

resolution could also be the reason why in this study 4D-MRI produced the 

tumor volume similar to that of 4D-CT. In this study, we used a 3T MRI 

scanner instead of 1.5T. Higher magnetic field is able to enable a faster 

scanning time. The temporal resolution of TWIST sequence used in our study is 

0.9 s/volume, which is nearly 36% faster. It is believed that the lower the 

temporal resolution, the more blur a moving object appears on the image. The 

positions of the moving object at different times are integrated and averaged 

during the period of acquisition time. As a result, with higher temporal 
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resolution, the tumor volumes derived using 4D-MRI in this study are similar to 

the ground truth obtained using 4D-CT.  

Visual comparison of tumor motion path in the CC direction (Figure 3-14) 

shows that the sorted 4D-MRI is able to exhibit a complete tumor displacement 

path as 4D-CT. Quantitative evaluation of accumulated tumor volume (Table 

3-12) and tumor motion coverage in the CC direction (Table 3-13) further 

proves that there is no significant difference between the two modalities in 

terms of investigating tumor motion. Despite a lower temporal resolution 

compared with 4D-CT, the advantage of 4D-MRI over 4D-CT is its capability 

of repeated acquisitions over multiple breathing cycles. As a result, more 

positions can be covered to form an average breathing cycle. By averaging from 

multiple breathing cycles, 4D-MRI exhibits comparable ability as 4D-CT to 

describe the tumor motion over one breathing cycle. 

Due to the difficulty of recruiting lung cancer patients, a limitation of the 

study could be the insufficient number of lung cancer patient dataset. However, 

the results generated in this study are very consistent for the six patients. It is 

expected that results would not differ much for other lung cancer patients. 

 

3.3.4 Study conclusion 

This study proposed to sort 4D-MRI volumes into corresponding breathing 

phases in 4D-CT system by comparing the lung height between volumes of 

4D-MRI and 4D-CT. In terms of lung tumor imaging, 4D-MRI exhibited 

comparable ability to capture the tumor volume and to describe the tumor 
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motion as 4D-CT. Thus 4D-MRI has potential to be used in 4D-RT as a 

radiation-free alternative to 4D-CT. 

 

33..44  Chapter discussion and summary 

Three 4D-MRI sequences (FLASH 3D, VIBE, and TWIST) have been 

compared in terms of image quality and their ability to capture lung and tumor 

motion. FLASH 3D exhibited the best image quality among the three 

sequences. FLASH 3D was capable of covering the extreme positions of tumor 

motion path but failed to capture the motion range of lungs due to low temporal 

resolution. With a temporal resolution of 0.9 volume/s, TWIST is sufficient to 

study the motion of tumor and diaphragm under controlled breathing. Volumes 

acquired by TWIST were then used to compare with 4D-CT volumes to see 

whether 4D-MRI is comparable to 4D-CT in terms of presenting tumor volume 

and describing tumor motion. Tumor volume and tumor motion analysis 

showed that there is no significant difference between 4D-MRI and 4D-CT. 

All the 4D-MRI datasets were acquired using a Siemens scanner in this 

study. Although not tested, the author believes the experiments and results can 

be repeated using 3T scanner of other manufactures such as GE and Philips. 

This is because the sequences used in this study all have equivalent ones on GE 

and Philips scanners. Table 3-14 summarizes the equivalent sequences on 

Siemens, Philips, and GE scanners. 

 



94 

 

Table 3-14 Equivalent sequences used by different manufactures 

Manufacture Siemens Philips GE 

Sequence 

(Abbrev.) 

FLASH FFE SPGE 

TWIST TRAK TRICKS 

VIBE THRIVE LAVA 

FFE: Fast Field Echo; SPGE: SPoiled Gradient Recalled acquisition in the 
steady state; TRAK: Time-Resolved Angiography using Keyhole; TRICKS: 
Time-Resolved Imaging of Contrast Kinetics); THRIVE: T1 High Resolution 
Isotropic Volume Excitation; LAVA: Liver Acquisition with Volume 
Acceleration. 

A limitation of the studies in Chapter 3 is that the statistical power of the 

lung cancer patient dataset might be insufficient due to the difficulty in 

volunteer recruitment. The studies are not regarding the race, age, sex and type 

of lung cancers represented by the patients. Nevertheless, coherent results were 

shown for the six patients in this study. It is expected that similar results can be 

observed on other patients regardless of the race, age, sex and type of lung 

cancers. More studies however need to be carried on. The focus of the studies in 

Chapter 3 is to evaluate the performance of 4D-MRI sequences in thoracic 

imaging and to gain insights to the 4D-MRI sequences thus allowing further 

development of the sequences. 
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Chapter 4 Automated 
segmentation of multi-structures 
on 4D-MRI thoracic dataset 

44..11  Chapter overview 

In the second step of 4D-RT (i.e. target delineation), tumor and other target 

structures need to be segmented for every 3D volume within the 4D dataset. 

However, manual segmentation of a 4D dataset that typically contains many 3D 

volumes is extremely tedious and time-consuming. Manual segmentation could 

also result in large intra- and inter-user variability. This requires the 

development of new automated segmentation techniques or schemes for 

4D-MRI thoracic data segmentation. 

This chapter presents the development of a novel automated segmentation 

scheme based on deformable registration for 4D-MRI thoracic dataset. Three 

studies were performed in this chapter. The first study is to apply the basic 

registration-based segmentation scheme to a 4D-MRI thoracic dataset to study 

whether registration-based segmentation approach is suitable. Accurate results 

showed that the registration-based approach is suitable for the segmentation of 

4D-MRI thoracic dataset. However, directly applying registration-based 
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segmentation techniques to segment the whole 4D-MRI dataset will be 

inefficient. One reason for this inefficiency is that the tolerance number to 

terminate registration is usually set as a fixed value that can potentially lead the 

registration to exceed the point beyond what is required. This will result in 

unnecessary computational amount. In the second study, we investigated the 

relationship between the optimal tolerance number and image similarity and 

proposed a manner that is based on spatio-temporal information to adaptive 

adjust registration tolerance. In the third study, using the results obtained in 

earlier stydu, an automated 4D registration-based segmentation scheme that is 

based on spatio-temporal information for the segmentation of thoracic 4D-MRI 

thoracic dataset is proposed. The proposed scheme saved up to 95% of 

computation amount while achieving comparable accurate segmentations 

compared to directly applying registration-based segmentation to 4D dataset. 

The scheme facilitates rapid 3D/4D visualization of the lung and tumor motion 

and, potentially, the tracking of tumor during radiation delivery.  
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44..22  Registration-based segmentation of 4D-MRI 

thoracic dataset1 

As discussed in Section 2.3.2, registration-based segmentation has been 

popular for the segmentation of 4D images compared to other segmentation 

techniques. However, although registration-based segmentation has been 

employed in a number of applications of segmenting 4D dataset, including 

4D-CT of lungs, heart, liver, and kidney, and 4D-MRI cardiac dataset, this 

technique has not been reported to be an accurate method to segment 4D-MRI 

thoracic images. Thus, in this study, the registration-based segmentation 

technique is adopted for the purpose of target delineation of 4D-MRI thoracic 

dataset. This study aims at segmenting multiple structures (lungs) of a 4D-MRI 

thoracic dataset using the basic registration-based segmentation scheme to 

evaluate the accuracy of this method.  

 

4.2.1 Materials and method  
4.2.1.1 Registration-based segmentation  

The overall schema of the registration-based segmentation method is 

illustrated in Figure 4-1. First, a reference volume (����) is manually segmented 

                                                

1 The work in this section is derived from Y. Yang, C.H. Tan, and C.L. Poh. ‘Visualization 
of lung using 4D magnetic resonance imaging.’ Proceedings of the 1st International Symposium 
on Bioengineering (ISOB 2011). pp. 49-55. 2011. Permission of reprint is granted in the 
copyright agreement. 

2 The work in this section is derived from: Y. Yang, E. Van Reeth, and C.L. Poh. 
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to extract the lung structure and tumor that will serve as the template (�). Three 

dimensional B-spline non-rigid registration [163] is then applied between target 

volumes (�� , �� � ��� ����� ��) and the reference volume (���� ). B-spline 

registration deforms an image by manipulating an underlying mesh of control 

points based on B-splines. In this study, a uniform grid of control points was 

automatically constructed with 8 control points along each dimension. By 

calculating displacements of control points, local elastic deformations can be 

found. These control points act as parameters of a free-form deformation model 

based on B-splines. Optimization is performed in a sequence of Quasi-Newton 

iterations with respect to a similarity measure that quantifies the quality of the 

match between the deformed reference scan and the target scans. Mutual 

information is used in this work as the similarity measure. Three-dimensional 

displacement fields from the reference volume to the target volumes 

(����������) can be acquired by modeling with every point within the 3D 

volume using the 3D displacement of each point. The resulting displacement 

fields are vector fields in which each vector is represented by an arrow pointing 

from the point in the reference volume to the same point after its movement in 

the registered reference volume. The corresponding transformations are used to 

deform the template (� ) into deformed segmentation masks (�� ). This 

registration-based segmentation scheme was performed using insight toolkit 

(ITK) [164].  

Manual segmentation was performed by an expert in lung structure and then 

independently verified by an experienced radiologist to ensure the segmentation 

is correct. 
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Figure 4-1 Schematic of the registration based segmentation method. Inputs to the 
scheme are: the reference volume (����), the target volumes (��), and the template 
(�). Intermediate results are the transformation warping (����������). The output of 
the scheme is the deformed binary segmentations of the target scans (��). 

 

4.2.1.2 Validation of the segmentation method 

Each target volume was manually segmented and verified by an experience 

radiologist who is blinded from the automated segmentation results. These 
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manual segmented volumes serve as the ground truth for the validation of the 

automated segmentation. Automatically segmented volumes can be 

quantitatively evaluated by comparing to the ground truth. Three metrics 

sensitivity, specificity and Dice’s coefficient (DSC) were used to quantify how 

well two surfaces match each other.  

Sensitivity shows the proportion of true positives that are correctly 

identified. 

 ����� ��	�������
�
��	�������
� � ���������	�
� (4.1) 

Specificity represents the proportion of negatives that are correctly 

identified. 

 ������ ������������
��	�������
� � ���������	�
� (4.2) 

Dice’s coefficient [165] indicates how well two shapes, � and � match: 

 ��� � � � � �
� � �  (4.3) 

If two segmentations are identical, then all three values will be equal to 1. 

The three values will be 0 if they have no common region. 

 

4.2.1.3 Multi-dimensional visualization 

An important step in analyzing the anatomy and motion of organs is to 

construct 3D models. It is possible to construct the 3D surface models using the 

segmented images of target structures. In this study, 3D models are constructed 
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using the marching cubes algorithm [166] using visualization toolkit (VTK) 

[167] and visualized using Paraview [168] subsequently.  

 

4.2.1.4 Data 

As presented in Chapter 3, TWIST sequence has good image quality while 

being able to show the motion path of diaphragm and tumor. As a result, 

TWIST is selected in this study. A total of seven 3D volumes from a 4D-MRI 

dataset of the thorax of one healthy subject were used. To show the capability 

of the segmentation technique, all seven volumes are either at the maximum 

inhalation phase or at the maximum exhalation phase since this will require the 

largest deformation by the registration method. All the scans were acquired on a 

Siemens Magnetom Trio 3T MR system using a 12-channel phased array coil. 

An in-plane resolution of 320 � 320 pixels and 1.09 � 1.09 mm2 was achieved. 

For each scan, 60 slices were acquired with an out of plane resolution of 1.5 

mm. The resulting acquisition time was 5 seconds per volume. As a preliminary 

study, only odd slices were used for each scan. Hence, the resulting out of plane 

resolution is 3 mm. Time between two scans in this work is approximately 15 

seconds. 

 

4.2.2 Study results 

The proposed registration-based segmentation method was successfully 

applied to all seven 3D thoracic MR volumes with approximately 15 seconds 

between each set. Figure 4-2 shows examples of segmented images. Figure 
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4-2(a) illustrates a typical coronal 2D slice of the reference scan and target 

volume 1 and 2. Figure 4-2(b) shows the registered reference volume to the 

corresponding target volumes. Figure 4-2(c) shows the resulting segmentations 

for the reference volume and target volume 1 and 2 and Figure 4-2(d) shows the 

final contour obtained overlaid with the corresponding MR image. The 

segmentations for target volumes were generated by the registration-based 

approach while the reference volume was manually segmented. Table 4-1 

summarizes the matching indices between the manual and automated 

segmentations of all six target volumes. The results show that the automated 

segmentation results matched well with the ground truth. Acceptable sensitivity 

and DSC (an average of 0.844±0.014 and 0.851±0.005 respectively) were 

achieved, whereas a high specificity was obtained, an average of 0.980±0.003.  

Using the segmented volumes, it is possible to generate the 3D models of 

each target volume and calculate the approximate lung volume at each time 

point. Figure 4-3 shows examples of visualizing the 3D models of the reference 

volume, target volume 1, 2, and 3. Compare with the reference volume, lungs of 

target volume 1 and 3 were expanded while those of target volume 2 were 

contracted. Using the assumption that the approximate lung volume equals the 

multiplication of the total number of identified pixel within the 3D lung 

structure by the size of a pixel, seven sets of lung volumes were calculated. 

Figure 4-3 summaries the approximate lung volume for the reference volume 

and target volume 1, 2, and 3. One can see that target volume 3 has the largest 

volume while target volume 2 has the smallest volume among all seven 

volumes. 
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Figure 4-2 Coronal slices of (a) original volumes: reference volume and target 
volume 1 and 2; (b) registered reference volume corresponding to target volume 1 
and 2; (c) Manual segmentation of reference volume and automated segmentations 
of target volume 1 and 2; (d) volumes with segmented contours. 

 

Table 4-1 Evaluation Results of Automated Segmentation 

�
�
�
�
�����

����
����

����
����

��� ��� ��� �	�

Target scan Sen. Spec. DSC 
1 0.855 0.977 0.851 
2 0.864 0.980 0.860 
3 0.828 0.984 0.854 
4 0.839 0.981 0.849 
5 0.828 0.981 0.846 
6 0.846 0.979 0.845 

Average 0.844 0.980 0.851 
Stdev 0.014 0.003 0.005 



104 

 

 
Figure 4-3 Three-dimensional model and volume calculated for reference volume, 
target volume 1, target volume 2, and target volume 3. 

 

4.2.3 Study discussion  

Images segmented by registration-based segmentation method achieved 

acceptable sensitivity, specificity, and DSC. Standard deviations of all three 

metrics are very low, indicating that the automated segmentation method works 

generally well for all the data sets. From Figure 4-2, it can be clearly seen that 

the automatically generated contours well delineated the boundary of lungs on 

target volumes. These results prove that the registration-based segmentation 

technique is suitable for accurate segmentation of 4D-MRI thoracic data.  

For target volume 1 and 3 shown in Figure 4-3 as examples, comparing with 

the reference scan, the lungs were expanded. For target volume 2, the lungs 

were contracted as compared to the reference volume. This correlates well with 

the lung volume values. In the deformation fields from ���� to the �� and ��, 

the arrows in the lung area are pointing down as expected. Most of the vectors 

with large magnitude are at the dome of the diaphragm, which shows that the 

diaphragm motion is most prominent during breathing. For the deformation 

field from ����  to �� , the arrows point upward because the lungs were 

contracted. It is also noticed that the magnitude of the deformation fields from 

�

�����������
���� ���	�� �	
��� ��
��� �
����
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���� to �� is smaller than those from ����  to �� and ��. This is because the 

volume difference between ���� and �� is much smaller than those between 

����  and �� and ��, as presented in Figure 4-3. Small difference in diaphragm 

position is also shown in Figure 4-3.  

 

4.2.4 Study conclusion 

This section presented a study that investigates an automatic segmentation 

method performed on 4D thoracic MRI dataset. The proposed algorithm is 

based on a registration-based segmentation technique to segment 3D lung 

structures and to reconstruct 3D models. Deformation fields from the reference 

scan to target scans, formed by using the 3D displacements of each point in the 

images, can provide a basis for motion analysis. 
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44..33  Adapting registration-based segmentation for 

efficient segmentation of thoracic 4D-MRI2 

In the earlier Section 4.2, it is shown that the registration-based 

segmentation method is able to accurately segment the 4D-MRI thoracic 

dataset. Generally, registration algorithms are considered to have converged 

when the difference between successive deformation fields are smaller than a 

pre-determined threshold referred as tolerance. The tolerance should be set such 

that enough iterations are performed for accurate registration while registration 

is terminated before the point beyond which computational effort is wasted 

[169]. During registration-based-segmentation progress, though different 

images are registered to the reference image, the tolerance is usually set as a 

fixed value. However, it is known that the larger the difference between two 

image volumes, the more iteration is required for registration to converge. Since 

the tolerance number is inversely proportional to the iteration number, the 

iteration number could potentially drop if the tolerance number is set differently 

with respect to different pairs of registered volumes throughout the whole 

registration-based segmentation progress. 

The hypothesis is that the tolerance number should be related to the 

similarity of two registered images. The more similar the two images are, the 

                                                

2 The work in this section is derived from: Y. Yang, E. Van Reeth, and C.L. Poh. 
‘Adapting registration-based-segmentation for efficient segmentation of thoracic 4D MRI.’ 
Computational Intelligence in Healthcare and e-health (CICARE), 2013 IEEE Symposium on. 
pp. 42-45. IEEE, 2013. Permission of reprint is granted in the copyright agreement. 
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smaller the tolerance is needed for registration to achieve accurate results. In 

this study, this hypothesis is proved using two widely used deformable 

registration methods: the demons algorithm [139] and B-spline registration 

[163]. A new method that is based on spatio-temporal information to indicate 

the similarity of dynamic thoracic images is also introduced. Its usage is 

displayed for the task of segmenting the lung and lung tumor at different 

respiratory phases using thoracic 4D-MRI dataset that comprises a number of 

3D-MRI volumes acquired over time. 

 

4.3.1 Materials and methodology 
4.3.1.1 Common similarity measures 

Similarity measure is used to quantize how similar the two volumes are. 

Please refer to Equation (2.3) (2.4) and (2.5) for the common similarity 

measures used in this study. 

 

4.3.1.2 Relative diaphragm displacement 

The diaphragmatic movement is the principal movement in the chest and all 

the lung-related structures do move almost synchronously [160]. Since our task 

is to segment the lung and lung tumor of 4D-MRI dataset, the diaphragm 

displacement could be a good indicator to evaluate the similarity of two 

volumes. A two-dimensional spatio-temporal (2DST) image shows the 

prominent motion pattern of the diaphragm in cranio-caudal direction [160]. 

The generation of 2DST image in this study is illustrated in Figure 4-4.  
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Figure 4-4 Generation of 2DST image 

The top diaphragm point (� ���� � ) of a 3D volume within the 4D dataset 

is first defined by the user. A spatio-temporal volume (STV) is then constructed 

by stacking coronal slices at the same position z of each 3D volume within the 
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4D dataset. A sagittal plane that passes through this point � ���� �  

orthogonally intersects STV and defines a 2DST image (Figure 4-4). After 

applying a simple hard threshold, the relative diaphragm position is obtained 

from the binary 2DST image. 

 

4.3.1.3 Deformable registration stopping tolerance 

Demons registration 

Demons registration iteratively deforms the reference volume by applying a 

displacement vector �� in a voxel-by-voxel manner, according to (4.7), 

 
������� �

����� � �� ���
����� � ��

�
� ��� �

 (4.7) 

where ���� is the reference volume, �� is the target volume, and n is the 

iteration number. The gradient operator � is calculated spatially in 3D. A 

Gaussian filter is applied to smooth the displacement field, suppress noise and 

preserve the geometric continuity of the deformed image. The overall 

deformation field r is updated iteratively by: 

 ������ � ���� � ������� (4.8) 

Gu et al. [170] defined a term called relative norm: 

 
���� � �������

����  (4.9) 
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Summations are defined over whole volumes. 

In this study, the stopping criterion for demons registration was defined as: 

 ������ � ���� � � (4.10) 

where � is the tolerance for registration to stop. 

 

B-spline registration   

B-spline registration deforms an image by manipulating an underlying mesh 

of control points based on B-splines. It tries to minimize a cost function C 

associated with B-spline control point transformation parameter �: 

 � � � � �� �� ���� � �� �  (4.11) 

where � is the image dissimilarity, � is the regularizing term associated with 

smoothness of the deformation, and � is a regularizing parameter. In this 

study, sum of square difference (SSD) was used for image dissimilarity and thin 

sheet of metal bending energy [171] was used for smoothing. The stopping 

criterion was defined as:  

 �� �
�� � � (4.12) 
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4.3.1.4 Deformable registration stopping tolerance versus 
similarity measures  

It is hypothesized that a smaller tolerance is needed for registration between 

two more similar volumes with same level of registration accuracy. In order to 

prove this, pairs of volumes at different positions of breathing cycle were 

registered. For each pair, automated segmentation of target volume was 

obtained after each iteration during registration. Dice’s similarity coefficient 

(DSC) that indicates the level of match for two segmentations were calculated 

between automated segmentations and the ground truth segmentation of the 

target volume. Ground truth was generated by manual segmentation of the MRI 

data and validated by an independent experienced radiologist who was blinded 

from the registration based segmentation results. It is expected that as the 

iteration goes on, the registration will deform the reference image closer to the 

target image so that the DSC value will increase while the tolerance number e 

will decrease. A sample plot of DSC and tolerance number against the iterations 

is shown in Figure 4-5. When the DSC value hit the ‘plateau’, tolerance number 

at that iteration was noted down. Samples of segmented images are shown in 

Figure 4-6.  

 

4.3.1.5 Data 

4D-MRI scans with TWIST sequence of two patients were used in this 

study. The specificities of the acquired images are the same as in Section 3.2. A 

total of 11 volumes from 2 patients were used to run this test to study the 
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relationship between the optimal tolerance number and the similarities 

measures i.e. SSD, XCOR, MI, and the relative diaphragm displacement. 

 

4.3.2 Study results and discussion 

Plots of optimal tolerance number against SSG, XCOR, MI and relative 

diaphragm displacements are shown in Figure 4-7 and Figure 4-8 for demons 

and B-spline registration respectively. It is found that generally the optimal 

value of tolerance decreases when relative similarity between two volumes 

increases. Fitted power equation was used to quantify the relationship between 

the optimal tolerance number and similarity measures. Image similarity based 

on relative diaphragm displacement achieved the highest ��  values, with 

0.957 for demons registration and 0.772 for B-spline registration. 

 
Figure 4-5 Sample plot of DSC and tolerance number against the iterations 

 

������

������

������

������

������

������

������

������

������

���

����

�� 

�� �

��!

��!�

�

� �� ��� ��� ���

��
�

��
�	

��

��
�

��

��
�

��
�������

�����
��� ����
�������������
���������
���
���	
�����
�



113 

 

 
Figure 4-6 Samples of automatically segmented images of Patient 1 and Patient 2. 
Contours in red: left lung; Contours in green: right lung; Contours in blue: tumor; 
Contours in yellow: ground truth. 

Geometry based similarity measures, such as DSC, are commonly used to 

quantify the accuracy of segmentation. In our study, the optimal tolerance 

numbers chosen for registration to stop were also based on the segmentation 

accuracy. Thus, it is reasonable that the optimal tolerance number is closely 

related to the geometry based relative diaphragm displacement as observed in 

our study, rather than those similarity measures that are image intensity based. 

Other geometry based similarity measures, such as anatomical landmarks, 

curves and surfaces [127] could potentially also relate well with the optimal 

tolerance. But the simple generated relative diaphragm displacement without 

user intervention would be a better choice. 

 

4.3.3 Study conclusion 

This study showed that, the more similar the two images are, the smaller the 

tolerance is needed for registration to achieve accurate results. The results 

suggest that relative diaphragm displacements can a good choice as a guide to 

��	���	�� ��	���	��
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adaptively adjust the tolerance parameter used in 

registration-based-segmentation scheme to reduce the computational 

complexity for the segmentation of 4D thoracic MRI images. This is exploited 

and studied in the development of a spatio-temporal based scheme for efficient 

registration-based segmentation of thoracic 4D-MRI that will be presented in 

the next Section 4.4. 
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Figure 4-7 Plots of optim
al tolerance num

ber against (a) relative diaphragm
 displacem

ent;  (b) cross-correlation; (c) sum
 of squared 

difference; and (d) m
utual inform

ation for dem
ons registration 
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Figure 4-8 Plots of optim
al tolerance num

ber against (a) relative diaphragm
 displacem

ent; (b) cross-correlation; (c) sum
 of squared 

difference; and (d) m
utual inform

ation for B
-spline registration
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44..44  A Spatio-temporal based scheme for efficient 

registration-based segmentation of thoracic 

4D-MRI3 

As discussed in Chapter 2 and Section 4.2 Chapter 4, the general scheme of 

applying registration-based segmentation method to segment 4D images is to 

register a reference volume (���� ) to the other target volumes using 3D 

deformable registration to obtain the respective deformation fields (Figure 

4-9(a)) [105]. The reference volume will be segmented separately and this 

segmented reference volume will then serve as the template for propagation. 

The reference volume is usually segmented in a semi-automatic manner. To 

obtain the final segmented target volumes, the corresponding deformation fields 

are used to deform the template volume to match the target volumes. Figure 

4-10 illustrates the flowchart of this basic registration-based segmentation 

scheme. However, the direct application of registration-based segmentation to 

4D images over several breathing cycles is inefficient. It is shown in Section 

4.3 Chapter 4 that the larger the difference between the two volumes, the more 

numbers of iteration are required for registration to converge. If the reference 

volume is chosen blindly and registered to the other volumes within the 4D 

                                                

3 The work in this section is derived from: Y. Yang, E. Van Reeth, C.L. Poh, C.H. Tan, 
and I. W.K. Tham. ‘A spatio-temporal based scheme for efficient registration-based 
segmentation of thoracic 4D MRI’ Biomedical and Health Informatics, IEEE Journal of 

(Accepted). Permission of reprint granted in the copyright agreement. 
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dataset, the potential difference between volumes to register can be large (e.g. 

for volumes at full-exhale and full-inhale phases). This would lead to large 

computational time. One way to reduce computational time is to sequentially 

register adjacent volumes as illustrated in Figure 4-9(b). Adjacent volumes are 

believed to be similar. Thus, the number of iterations for registrations to 

converge is smaller. However, the propagated and accumulated registration 

error may be very large for volumes at later time frame [172]. Consequently, 

the registration scheme shown in Figure 4-9(a) is more commonly used. 

In this section, a novel spatio-temporal based scheme for 4D 

registration-based segmentation of thoracic 4D MR images is proposed and 

developed. The aim is to improve the efficiency of the basic registration-based 

segmentation scheme. The proposed scheme takes advantage of the periodicity 

of the acquired volumes along the breathing cycles. Spatio-temporal 

information about diaphragm movement is derived directly from the 4D MR 

images to optimally choose the reference volume and to categorize the other 

volumes into sub-groups based on diaphragm positions. The tolerance 

parameter of registration is subsequently adjusted based on the spatio-temporal 

information to speed up the registration convergence by reducing the number of 

iterations required. The proposed scheme is fully automatic after the initial 

segmentation of reference volume to generate the template volume. 
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Figure 4-9 Different registration strategies: (a) Registrations are performed from the 

reference volume (����) to every other target volume; (b) Registrations are performed 

sequentially between adjacent volumes; (c) Similar volumes are grouped into � 

sets ��. The reference volume (����) is registered to each representative �����  of 

volume set �� and to each volume within the reference set ����. Each representative 

�����  is registered to each volume with the corresponding volume set ��. 
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Figure 4-10 Basic registration-based-segmentation scheme 
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4.4.1 Materials and methodology 

4.4.1.1 Proposed scheme 

Limiting the number of iterations required during the registration step is 

central to the proposed approach. The proposed scheme aims at performing 

registration between volumes that are acquired at similar phases of the 

breathing cycle. Thus, the first step of the proposed scheme consists of sorting 

the acquired volumes along the breathing cycle through the generation of 2D 

spatio-temporal (2DST) images, and grouping the volumes that have similar 

diaphragm positions into N sets. Within each set, fast registrations are 

performed. A representative volume is chosen based on relative diaphragm 

position in each set and each representative volume is subsequently registered 

with the reference volume from which the initial segmentation was obtained. 

The overall schematic is illustrated in Figure 4-11. The following sub-sections 

detail each step of the proposed registration-based segmentation scheme. 

 

Generate two-dimensional Spatio-Temporal (2DST) image  

The 2DST image shows the prominent motion pattern of the diaphragm in 

cranio-caudal direction. Generation of 2DST image in this study is the same as 

Section 4.3 Chapter 4 (Figure 4-4). A function � is defined to represent the 

relative diaphragm position. The maximum exhalation position is set as 0 and 

the maximum inhalation position is set as ����. 
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Figure 4-11 Overall illustration of proposed scheme 
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Group volumes based on relative diaphragm position 

All volumes are grouped based on relative diaphragm position derived from 

the previous step. The idea is to group similar volumes into one set (Figure 4-9) 

so that most of the registrations are performed between similar volumes within 

each set (��). The reference volume (����) is selected as the median position of 

all the volumes within a 4D data series: 

 � � ���� if � � � ������ �  (4.13) 

The chosen reference volume is then segmented and the segmented 

reference volume will serve as the template. In this study, we used an 

interactive active contour based segmentation method [98] available in 

'ITK-SNAP' [173], an open-source program developed by Yushkevich et al. for 

semi-automatic segmentation of 3D images, to delineate both lungs and tumor.  

Volumes whose relative diaphragm displacements from ����  are not 

greater than � pixels are grouped together to form the reference set (����).  

 � � ���� if � ���� � � � � � � � ���� � � 
(4.14) 

 AND � � ���� 

All other volumes are grouped into �  sets of volumes ( �� , 

�� � ��� ����� ��) so that within each set, the relative diaphragm displacement 

between any two volumes do not differ more than �� � � pixels. 
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 � � �� if � � � �� � � � � � � � �� � � � � 

(4.15)  AND � � ���� 

 ��� � ��� ����� ��� � � ������� ���� � �
�� � �  

A median volume (����� ) was then selected to be the representative volume 

of each set (��).  

 � � �����  if � � � ������ � ��  (4.16) 

This grouping step is illustrated in Figure 4-12. We set �� � �� in this 

study. 

 

Perform a series of deformable registrations and segment target volumes 

After grouping volumes based on relative diaphragm position, registrations 

are performed. In order to make the process efficient, registrations should be 

performed between similar volumes. Thus the reference volume will be 

registered to each volume within the reference set, and each representative 

volume will then be registered to each volume within its corresponding volume 

set. The only relatively large computational cost will be in the registration of 

reference volume to each representative volume. For this purpose, a number of 

registrations are performed as follows (Figure 4-9and Figure 4-11): 
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Figure 4-12 Detailed steps of grouping similar volumes based on relative diaphragm 

position. 

1) The reference volume (���� ) is registered to each volume within the 

reference set (����). Deformation fields from the reference volume to each 

volume within the reference set (� ��������� � are obtained. 

2) The reference volume (����) is registered to each representative volume 

(����� ) of volume set (��), generating the deformation field (� ���������
� ).  
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3) Each representative volume (����� ) is registered to each volume within its 

corresponding volume set (��). Then we get deformation fields from registering 

representative volume to the volumes within the corresponding volume set 

(� ����
� ��� , �� � �� AND �� � ����� ). 

From the combination of the computed deformation fields, it is now 

possible to propagate the template volume, segmented using ���� , to any 

volume of the 4D dataset. We hypothesize that the deformation from ���� to 

any volume (�� � ����� ) can be computed with a minimal error as: 

 � ������� � � ���������
� � � ����

� ���  
(4.17) 

 �� � �� AND �� � �����  

This hypothesis will be validated using the accuracy of the automated 

segmentation results (see Section 4.4.2.1). 

 

4.4.1.2 Deformable registration and stopping tolerance 

The proposed scheme could be used for any deformable registration method. 

To demonstrate and evaluate the scheme, we implemented two widely used 

deformable registration algorithms (i.e. Demons and B-spline registration). As 

shown in Section 4.3, for both Demons and B-spline registration, the tolerance 

� is approximately inversely related to the relative diaphragm displacement. 

The power function in the plots of tolerance � versus relative diaphragm 

displacement (Figure 4-7 and Figure 4-8) showed good fitting results, with �� 

= 0.957 and 0.772 for Demons and B-spline registration respectively.  As a 
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result, the tolerance �  is adapted with respect to the relative diaphragm 

distances between any two pairs of registered volumes to optimize the iteration 

number using the exponential functions obtained: 

For Demons registration, the function is: 

 � � ������ �� ������ (4.18) 

and for B-spline registration, 

 � � ������ �� ������ (4.19) 

where � is the tolerance value and �� is the relative diaphragm displacement. 

 

4.4.1.3 Evaluation 

The basic registration-based segmentation scheme was implemented to 

benchmark the accuracy and computation amount of our proposed scheme. As 

there is no criterion for the basic scheme to choose the reference volume, two 

test cases were implemented: 

Best case: Choose the reference volume whose relative diaphragm position 

is the median of all the volumes. This is the same way of choosing the reference 

volume as our proposed scheme. The maximum diaphragm displacement 

between two volumes is then: ������. 

Worst case: Choose the reference volume whose relative diaphragm position 

is at the maximum exhalation phase (or maximum inhalation phase) among all 
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volumes. The maximum diaphragm displacement between two volumes in this 

case is: ����. 

 

Accuracy 

To validate our hypothesis of Equation (4.17), the accuracy of the proposed 

and the basic segmentation schemes are evaluated by comparing the 

segmentation results with ground truth. Three volumes within the 4D dataset for 

each subject were randomly chosen and segmented using ‘ITK-SNAP’ to serve 

as the ground truth. These ground truth were verified by an experienced 

clinician and edited where necessary. Dice’s similarity coefficient (DSC) is 

used to quantify how well two segmentations, A and B match each other. If two 

segmentations are identical, then DSC will be equal to 1. It will be 0 if A and B 

have no common voxel. 

 

Computation amount 

Our scheme is designed to limit the computational complexity of applying 

registration-based segmentation for 4D dataset segmentation. In order to 

evaluate the benefit of our scheme, the number of additions and multiplications 

were counted for the proposed scheme and for the basic scheme. The 

percentage reduction of computation amount is calculated as: 

 ���	�������� � ������ � ���������
������

���� (4.20) 
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where ������ and ���������  consists of the number of additions and 

multiplications for the basic scheme and for the proposed scheme, respectively. 

 

4.4.1.4 MRI data 

To evaluate and demonstrate the proposed scheme, 4D MRI scans of the 

thorax of 3 healthy volunteers and 3 lung cancer patients were acquired and 

analyzed using TWIST sequence. The specifics of scans are the same as those 

presented in Chapter 3. 

 

4.4.2 Study results 

Both lungs and the tumor from all 6 subjects (30 volumes per subject) were 

successfully segmented using the proposed scheme.  A total of 180 volumes 

were segmented. Representative segmented images using proposed scheme 

were shown in Figure 4-13. Three-dimensional models were also generated 

from segmented images. The method used to construct 3D models is the same 

as Section. 4.2 Chapter 4. 

 

4.4.2.1 Accuracy 

Figure 4-14 (a) and (b) show the DSC for left lung, right lung, and tumor of 

all subjects for schemes using demons and B-spline registration respectively. 

Proposed scheme achieved good segmentation accuracy, average DSCleft lung = 
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0.96±0.01, DSCright lung = 0.96±0.01, and DSCtumor = 0.83±0.10 using demons 

registration and average DSCleft lung = 0.94±0.02, DSCright lung = 0.95±0.01, and 

DSCtumor = 0.81±0.10 using B-spline registration. Friedman statistical test [174] 

is known for detecting differences in treatments across multiple test samples. 

The test was carried out using SPSS 18.0 for Windows [162]. Results showed 

that there are no significant differences between the three schemes tested in 

terms of segmentation accuracy. This implies that the proposed scheme 

achieved similar accuracy as the basic scheme. 

 

4.4.2.2 Computation time/amount 

All the registration-based segmentations were performed using Windows 

XP, on an Intel Xeon Processor (dual core, 3.00 GHz) with 9 GB RAM. All the 

schemes were implemented using MATLAB version 7.1.1 (The Mathworks, 

Inc, Natick)[175]. As the focus was on evaluating the computational 

improvement of the proposed scheme over the basic scheme, the MATLAB 

implementations used in this study were not particularly optimized for reduced 

computational cost and memory usage. Time for segmenting the entire 4D data 

set of one subject (thirty 3D volumes) was around 35 min for proposed scheme, 

70 min (best case) to 123 min (worst case) for basic scheme. 
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Figure 4-13 Representative sample segmented images using proposed scheme. (a) 2D 

slices and corresponding 3D models. Contours in red: left lung; Contours in green: 

right lung; Contours in blue: tumor; Contours in yellow: ground truth. (b) 

Representative sample 3D models constructed by automated segmented images of 

Patient 1 showing the movement of lungs and tumor over time. 
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Figure 4-14 Accuracy results (average Dice’s coefficient) of target structure 

segmentations for schemes using (a) demons registration and (b) B-spline 

registration 

The average reduction of computation amounts (number of additions and 

multiplications) of schemes using demons and B-spline registration are shown 

in Figure 4-15. When counting the computational amount/time saving, the time 

counted includes pre-processing steps such as generating the 2DST image, 

grouping the volumes, and identifying control points. In the case of demons 

registration, the average reduction of computation amounts ranged from 

44.01±10.42% (best case) to 66.12±12.61% (worst case). Improvement was 
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even better using B-spline registration, with 81.23±8.18% (best case) to 

92.85±5.37% (worst case). The computational amount of the additional steps is 

negligible, for the ratio of computational amount of additional steps against the 

total amount less than 10-9. 

 
Figure 4-15 Percentage reduction of computation amounts (addition and 

multiplication) between proposed scheme and basic scheme (both cases) using 

demons registration and B-spline registration   

The plots of maximum diaphragm displacement of each subject against the 

reduction of total computation amount (number of additions plus number of 

multiplications) are shown in Figure 4-16. 
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Figure 4-16 Plot of maximum diaphragm displacement of each subject against the 

reduction of total computation amount for proposed scheme using (a) demons 

registration and (b) B-spline registration 
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4.4.3 Study discussion 

The proposed scheme has shown to be efficient in segmenting 4D thoracic 

MR images, achieving reduction in computational amount while maintaining 

good accuracy as compared to the basic scheme. Limiting the number of 

iterations by adapting the tolerance number to the relative diaphragm position 

has shown to be effective in reducing the computation amount. Grouping 

volumes based on relative diaphragm position has allowed only similar volumes 

to be registered, preventing registration of volumes with large differences that 

will take longer to converge. 

In the proposed scheme, apart from representative volumes (����� ), which 

are directly registered to the reference volume, the deformation fields used to 

segment target volumes (��) within set �� are combined from two registration 

steps: deformation fields from registering the reference volume to each 

representative volume (� ���������
� ) and deformation fields from registering 

representative volumes to each volume within the corresponding volume set 

(� ����
� ��� ). In the basic scheme, all target volumes are directly registered to 

the reference volume. Therefore, the deformation fields obtained are 

� ������� . Since there is no significant difference between the proposed 

scheme and the basic scheme in terms of segmentation accuracy, it indicates 

that � ���������
� � � ����

� ���  is a good approximation of � ������� . It also 

shows that the propagation and accumulation of the registration error is 

negligible when only two steps of registration are performed. The volumes that 

are close to the reference volume ����  (in terms of relative diaphragm 

displacement) are grouped into the reference set ����. In this way, ���� can be 
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directly registered to each volume within ����. Thus the volumes within ���� 

do not have to go through the process � ���������
� � � ����

� ��� . The 

computational amount can be saved this way. 

For all the schemes, a smaller DSC for the segmentation of tumor was 

obtained, especially for Patient 2 (Figure 4-13). This is likely due to the small 

size of the tumor. The voxel effects [176] become very significant in each step 

of the scheme and in the calculation of DSC. Any error in the deformable 

registration and other procedures results in a relatively significant mismatch.  

The proposed scheme introduces additional steps compared to the basic 

scheme. These steps are the generation of 2DST images and the grouping of 

volumes based on relative diaphragm positions. However, the additional 

number of operations introduced by these steps was largely compensated by the 

computational complexity reduction made during the subsequent registration 

steps.  

From Figure 4-16, it can be seen that when the range of the diaphragm 

movement (����) increases, the reduction in complexity by using the proposed 

scheme increases. For the basic scheme, the reference volume has to be 

registered to every volume with large differences (volumes at full-inhale and 

full-exhale phase), which increases the number of iterations for registration to 

converge. The larger the ����, the more iterations are needed. By using the 

proposed scheme, the reference volume needs to be registered only once to each 

representative (����� ) of volume set (��). The other registrations take place 

between �����  and other volumes within �� that are very similar. When more 

volumes are acquired within one 4D dataset, there will be more volumes with 

large differences from the reference volume (e.g. volumes at full-inhale and 
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full-exhale phase) since the lungs have a periodic motion pattern. Therefore, the 

improvement in terms of computation amount will be larger when the proposed 

scheme is used for 4D dataset with more volumes, which makes the proposed 

scheme especially useful to study the changes of pulmonary motion pattern 

over time. Moreover, the improvement will be greater if the proposed scheme is 

applied on volumes with higher spatial resolution, where the organ 

displacements are spread over a higher number of pixels.  

In this study, when grouping similar volumes into sets we have set the � 

number to be 1 so that the diaphragm position between any two volumes do not 

differ more than 3 pixels. This is due to the relatively low spatial resolution of 

the images used in this study. With one pixel equals to 2.81mm in the physical 

space, we considered one pixel movement a large diaphragm displacement. 

Also, by setting � equals to 1, there are enough number of volumes within 

each set so that the efficiency of the proposed scheme is optimized. For 

different applications, especially for images with higher spatial resolution, one 

can set the x number to be larger than 1 to avoid creating too many sets with 

little differences between volumes within different sets and too few volumes 

within each set. 

The proposed scheme is designed to be suitable for parallel computing. All 

the registrations can be performed independently in a parallel manner. This can 

lead to even faster segmentation of an entire 4D dataset and fall into realistic 

computational times in practice. Finally, the proposed scheme can also be 

potentially used for segmentation of other organs having periodic motion, such 

as heart and liver. For segmentation of 4D cardiac data, new spatio-temporal 

information has to be modeled instead of the relative diaphragm displacement. 
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A limitation of this study is that the tolerance value for registration to stop is 

application dependent. Preliminary training needs to be carried out for other 

applications (e.g. 4D MRI cardiac images, 4D MRI liver images) to acquire 

relationship between tolerance number and spatio-temporal information. 

Nonetheless, once this relationship is established, the scheme is automatic.  

 

4.4.4 Study conclusion 

This study presents an accurate and computational-saving registration-based 

segmentation scheme for 4D thoracic MRI data series. The scheme is fully 

automatic after initial segmentation to obtain the template volume. The 

proposed scheme incorporates spatio-temporal information about diaphragm 

movement to optimally choose the reference volume and to classify the other 

volumes into sub-groups. It also adaptively adjusts the tolerance value based on 

spatio-temporal information in order to lower the iteration number of 

registrations. The proposed scheme does not depend on any particular 

registration method. As demonstrated, it reduces computation amounts by up to 

95% while maintaining accurate segmentations. 
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44..55  Chapter summary 

In this chapter, the basic registration-based segmentation scheme using 

B-spline registration was first studied and shown to be an accurate approach to 

segment 4D-MRI thoracic dataset. However, it is not efficient to just directly 

apply the basic scheme to a 4D-MRI thoracic dataset that contains many 3D 

volumes. The relative diaphragm displacement was introduced as a new 

similarity measure for registration of 3D volumes with a 4D-MRI thoracic 

dataset. This is based on the fact that, for 4D-MRI thoracic dataset, the 

diaphragmatic movement causes the main difference between two 3D volumes. 

It was found that the tolerance value for registration to achieve accurate results 

is closely inversely related to the relative diaphragm displacement. Based on 

this finding, a novel spatio-temporal based scheme for efficient 

registration-based segmentation of thoracic 4D-MRI was proposed. The 

proposed scheme utilizes the relative diaphragm displacement to optimally 

choose the reference volume and to classify the other volumes into sub-groups. 

The tolerance value for registration to stop is also adaptively adjusted based on 

spatio-temporal information in order to lower the iteration number of 

registrations. The proposed scheme does not depend on any particular 

registration method. The proposed scheme saved up to 95% of computation 

amount while achieving comparable accurate segmentations compared to 

directly applying registration-based segmentation to 4D dataset. The scheme 

facilitates rapid 3D/4D visualization of the lung and tumor motion and 

potentially the tracking of tumor during radiation delivery.
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Chapter 5 Fusion of 4D-MRI and 
static 3D-CT: creating simulated 
4D-CT dataset 

55..11  Chapter overview 

Fusion of multiple image modalities is an interesting application as it 

combines different useful information into one image. The study presented in 

this chapter aims at bringing the advantages of MRI and CT, which are the high 

spatial-resolution and the ability to provide the electron density for RT dose 

calculation of CT, and MRI’s ability to continuously acquire volumetric images 

over a long period of time without involving ionizing radiation. In this chapter, 

a novel method based on deformable image registration and Finite Element 

Method (FEM) was developed to fuse a static 3D-CT volume (acquired under 

breath-hold) and the temporal information extracted from 4D-MRI volumes, 

creating a simulated 4D-CT dataset. The study focuses on imaging for lung 

cancer RT. Comparing the simulated 4D-CT with the acquired 4D-CT of lung 

cancer patients based on landmarks, accurate results (error � � 2 mm) were 

achieved using the proposed method. The simulated 4D-CT dataset generated 

has high spatial resolution, can be used for direct dose calculation, and is able to 
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show continuous movement of tumor and organs over multiple breathing 

cycles. 

 

55..22  Introduction 

5.2.1 Motivation 

As discussed in Chapter 2, one of the main advantages of MRI over CT is 

that MRI does not involve any radiation. As a result, 4D-MRI is able to 

continuously image for a prolonged time and to capture ‘real-time’ motion. The 

individual changes in respiration depth and frequency can be captured. 

Different breathing maneuvers can also be studied using 4D-MRI. However, 

visualization of anatomical details (e.g. vascular tree, lung fissures) within the 

lungs is limited in 4D-MRI because of the low proton density inside the lungs 

and the relatively low spatial resolution of MRI images. For special interests in 

RT, MRI lacks the electron density information to directly calculate the 

radiological dose applied to each voxel for treatment planning. On the other 

hand, CT is generally accepted as the gold standard to visualize the lung 

parenchyma because of its high spatial resolution. Furthermore, the Hounsfield 

units in CT images can also be used to calculate the radiation dose for RT. 

However, the high radiation involved in 4D-CT prohibits prolonged imaging. 

Only one averaged breathing cycle can be acquired. As a result, the individual 

changes in respiration frequency and depth cannot be captured. If the patients 

experience irregular breathing patterns, severe motion artifact will appear on the 
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images. Consequently, it would be beneficial if the advantages of MRI and CT 

can be fused together. That is to combine the high spatial resolution and 

intensity of CT and the motion information provided in 4D-MRI. The fused 4D 

dataset will contain 3D volumes over several breathing cycles. As a result, the 

detailed motion pattern of tumor and other organs can be studied. The fused 4D 

dataset will also have a high spatial resolution that could potentially increase 

the accuracy of target delineation for RT. The fused 4D dataset will have the 

Hounsfield units provided in the CT images, allowing the radiological dose to 

be calculated. The radiation during image acquisition will be kept to a 

minimum level, as only one volume of 3D static CT (dose: 1-10 mSv [48]) is 

required instead of using 4D-CT (dose: 30-40 mSv [49]). 

Medical image fusion is an advanced image processing technique to 

integrate the information of multiple image modalities. Positron emission 

tomography (PET) and CT are often fused together as CT provides clear 

anatomical structures but lacks the functional and metabolic changes associated 

with the pathology that can be captured by PET. On the other hand, PET has 

low resolution and lacks anatomical structures for clinicians to reference. 

Fusion CT and PET aids the interpretation of both CT and PET [177-179]. 

Another important application using image fusion technique is the integration 

of the spatial information of CT and MRI. The fusion of CT and MRI was often 

used for the localization and delineation of prostate cancer because MRI has 

better soft tissue contrast than CT when differentiating the prostate gland from 

the periprostatic soft tissues while CT provides electron densities for dose 

calculation [42, 180, 181]. However, most of the image fusion application is 

focused on the combination of spatial information from different imaging 

modalities. A recent study by Miyabe et al. [182] created simulated 4D-CT 
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dataset by deforming a static 3D-CT using motion data extracted from 2D 

fluoroscopy. However, fluoroscopy still involves ionizing radiation and only 

captures 2D motion overtime. Prolonged scanning with fluoroscopy to study 

respiratory motion poses potential risk of radiation-induced injuries to patients 

[183].  

With regards to extracting respiratory motion from images, deformable 

image registration is generally used. Respiratory motion information can be 

obtained by registering either 3D-CT scans acquired at exhale and inhale 

breath-holds (BH) [184, 185] or 3D volumes at different phases of 4D-CT 

dataset [186-188]. Displacement field estimations are directly extracted from 

the image data. However, as discussed in Chapter 2, the deformable registration 

algorithms are generally based on image intensity. For low-contrast regions, 

their intensity metrics are not sensitive to displacement changes, and the 

displacements in these low-contrast regions are usually regularized by 

regularization forces for non-parametric algorithms or by interpolations for 

parametric methods [189]. As a result, the registration accuracy in these regions 

is doubtful. Hence, the displacement fields generated using deformable 

registration in these low-contrast regions can not mimic the true respiratory 

motion [190]. The knowledge about mechanical processes of breathing and 

physical properties of organs are not taken into consideration in which the 

estimated displacement fields can be ‘unrealistic’ [191]. 

Biomechanical model [192-194] can be used to deal with the disadvantage 

of deformable registration, complementing deformable registration. To use 

biomechanical model, surface meshes representing lung structure at exhale and 

inhale phases are first constructed explicitly. Displacement of surface can be 

found by methods such as iterative closest point (ICP) [195] and deformable 
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model (see Section 2.3.1). Then it becomes a boundary value problem which is 

to estimate the internal displacement given the surface displacement of the 

model. This problem can then be solved by finite element method (FEM), 

which is a technique to calculate the displacement without using the image 

intensity. Physical material property is assigned to the elements in the model to 

ensure a realistic displacement of each volume element. 

 

5.2.2 Finite Element Method 

The method presented in this study uses deformable image registration to 

extract respiratory motion of lung surface from 4D-MRI dataset and then 

employs FEM to estimate the motion inside the lung area. A short review on the 

FEM will be presented.  

For most of the practical problems that involve complicated geometries, 

material properties, and loadings (e.g. force, temperature), it is not possible to 

find the exact analytical mathematical solutions. Even the approximate solution 

of a given problem is often not convenient to be found. The Finite Element 

Method (FEM) aims to find the solution of a complicated problem through 

numerical methods by approximating the problem over simple sub-regions and 

then assembling them together [196]. Those interconnected sub-regions are 

called finite elements. These finite elements are connected to each other 

through nodal points. In the FEM, instead of solving the actual variation of 

variables (e.g. velocity, displacement, temperature) inside the entire body in one 

operation, the approximating functions are formulated in terms of the values of 
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the variables at the nodal points and combine them to obtain the solution of the 

whole body [197]. 

The solution of a problem by the FEM can be solved by the following steps 

[197, 198]. The displacement problem is taken as an example to explain each 

step. 

 

1) Discretization of the structure and selection of the Element Types 

The entire body of an object is first divided into many finite elements. This 

process is called discretization. The appropriate type, and arrangement of the 

elements must be assigned properly so that it fits the actual physical behavior. 

The element size and computational effort must be balanced. Smaller element 

size would generate more accurate results but would also result in larger 

computation amount. Typical finite elements used for problems in different 

dimensions are illustrated in Figure 5-1. 

 

2) Selection of displacement model 

A displacement model needs to be defined to use the values of nodal points 

to find suitable solution within the element. Generally, linear, quadratic, or 

cubic polynomials are frequently used functions because they are simple to 

calculate and implement. 
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Figure 5-1 Typical simple finite elements defined for one-, two-, and 

three-dimensional problems. The elements showed here are low-order ones with 

nodal points only located at corners. For high-order finite elements, there are 

intermediate nodal points along edges. 

3) Derivation of individual element stiffness matrices and element equilibrium 

equations 

For each element, the element stiffness matrix �  is defined as: 
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or in a compact form: 
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where �  is the vector of the force applied on each element nodal point, �  

is the corresponding vector of displacement of each nodal point and � is the 

total number of nodal points within the body. Work of forces at equilibrium 

conditions or the energy conservation is frequently used for the purpose of 

deriving the element stiffness matrices and equations of displacement problems 

[199].  

 

4) Assembling the element equations to obtain the global equilibrium equation 

Because the whole body is divided into several finite elements, the global 

stiffness matrix �  and the vector of global forces �  need to be derived 

from individual element stiffness matrices and forces: 

 
� � � �

�

���
  � � � �

�

���
 (5.3) 

where � �  and � �  are the individual stiffness matrices and force 

matrices for element �. The global equilibrium equation is formulated as: 

 � � � �  (5.4) 

 

5) Solving for the unknown displacements of nodal points using boundary 

conditions 

The global stiffness matrix �  is square and symmetric in most situations 

and is usually singular (determinant equals 0). Thus, boundary conditions (e.g. 
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displacements of nodal points at the boundary of the body) of the problem need 

to be incorporated to solve the global equation. The global equilibrium 

equations can be expressed as: 

 ��
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�
��

�
��� ��� � ���
��� ��� � ���
�
���

�
���

� �
� ���

��
��
�
��

 (5.5) 

For linear problems, the vector �  can be easily solved using elimination 

methods such as Gauss’s method or iterative methods such as the Gauss–Seidel 

method [200]. 

 

55..33  Objective 

The objective of this study is to develop a novel method to fuse the temporal 

information in 4D-MRI and the spatial information in static 3D-CT. 

Deformable image registration is used to derive displacement fields of the lung 

surface from 4D-MRI dataset. A FEM based approach is then used to estimate 

the displacements inside the lung area, because the displacement fields 

generated from deformable registration is not reliable is this area due to low 

image intensity. 
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55..44  Materials and methodology 

5.4.1 Proposed scheme 

The key concept of the proposed approach is to use the temporal 

information provided by 4D-MRI dataset to deform a static 3D-CT volume, 

forming a simulated 4D-CT dataset. Deformable registration and FEM are the 

two main techniques used to transfer the temporal information in 4D-MRI to 

the 3D-CT volume. As shown in Chapter 4, the segmented surface generated by 

registration-based segmentation method accurately fit to the target volumes, 

which indicates that deformable registration is accurate in high-contrast regions 

(e.g. lung/chest wall interface, lung/diaphragm interface). Thus, it gives the idea 

of using only the lung surface displacement fields (high-contrast regions) 

generated by deformable registration to serve as the boundary conditions in 

FEM to further estimate the displacement fields inside the lungs. The final 

displacement fields generated are used to transfer the temporal information in 

4D-MRI to the 3D-CT volume. 

The overall schema of the proposed method is illustrated in Figure 5-2. 

Schematically, the workflow of our framework can be summarized as follows: 

1) Deformable registrations are performed between volumes in 4D-MRI dataset 

to extract the displacement fields (����) between them.  

2) A MRI volume in the same breathing phase of the 3D-CT is selected and 

registered to the 3D-CT volume in order to obtain the global displacement 

(�������) between MRI and CT.  
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Figure 5-2 Overall scheme of proposed FEM approach to simulate 4D-CT volumes 
using static 3D-CT volume and 4D-MRI volumes. 

3) The global displacement field (�������) is applied to deform the displacement 

fields between MRI volumes (����) so that the displacement fields can be used 

to deform the 3D-CT volume. The deformed ����  is denoted as ���. 

4) A volumetric tetrahedron mesh representing lung geometry for the finite 

element model is constructed using the 3D-CT volume. 

�����
�
!�� ��

������������
!�� �� ���

����

�����������
������������

�����������
������������

�������������
������
��	��

�������������
���������

�����������

���������
� ������ �� ��

�����������
�
��	��������

�������������
���������������

�����
����������

��������� ���
��� �� ��

	����������

�������������
���������

�����������

�� ���������
���!�� ���

�����
�
!�� ��

�����
�
!�� ��



151 

 

5) The finite element model is used to compute the displacement within the 

lung structure (���� ) using the displacement fields ���  as a prescribed 

displacement boundary condition. 

6) The 3D-CT volume is then deformed by the displacement field generated 

from FEM (����) to form a 4D-CT dataset. 

The following sub-sections detail each step of the proposed scheme of 

generating the simulated 4D-CT dataset. 

 

1) Registration between 4D-MRI volumes 

The registration between 4D-MRI volumes is performed using the 

spatio-temporal based scheme with Demons registration developed in Chapter 

4. A reference volume (����� ) is selected automatically based on its relative 

diaphragm position in the whole 4D-MRI dataset and registered to the rest 

volumes within the 4D-MRI dataset. The displacement fields from the reference 

volume to the rest volumes (����
����� ������

, � � ����� ��) are obtained. 

 

2) Registration between the static 3D-CT volume and one MRI volume 

The MRI volume (����� ) that is at the same breathing phase of the static 

3D-CT volume (������) is first located. (For detailed method on sorting 4D-MRI 

volumes into corresponding phases of 4D-CT volumes, please refer to Section 

3.3 Chapter 3.) Though the selected MRI volume (����� ) is at the same 
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breathing phase as the 3D-CT volume, there would still be some systematic 

differences between the two volumes due to patient positioning, imaging field 

of view (FOV), etc. Deformable registration is used to compensate such 

differences. The MRI volume (����� ) is registered to the CT volume (������) 

using B-spline registration. Since this is the registration between different 

modalities, mutual information is used as the similarity measure (as introduced 

in Chapter 2). The output displacement field is denoted as �������
����� ����

���
. 

 

3) Generation of displacement fields for the static CT volume 

Because the reference volume (����� ) selected in step 1 is based on its 

relative diaphragm position in the whole 4D-MRI dataset, it may not be the 

same volume (����� ) that matches the breathing phase of 3D-CT. It is necessary 

to generate the displacement fields from �����  to the rest of the volumes in 

4D-MRI dataset (����
����� ������

). With ����
����� ������

 generated in step 1, 

����
����� ������

 can be calculated as: 

 ����
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  � � ����� �� (5.6) 

The displacement fields used to deform the 3D-CT volume (���) can be 

finally generated by applying �������  to ����
����� ������

 to compensate the 

global differences between 4D-MRI volumes and the 3D-CT: 
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where ����  are the subsequent CT volumes within the 4D-CT dataset that are to 

be simulated. 

 

4) Construction of volumetric tetrahedron mesh representing lung geometry 

In order to perform finite element modeling, volumetric mesh representing 

lung geometry needs to be constructed first. The geometry of the lung is 

constructed using the 3D-CT volume ������  because the 3D-CT has higher 

spatial resolution. The lung structure of the 3D-CT volume is interactively 

segmented using ‘ITK-SNAP’ [18], which is a software used to segment 3D 

images based on the active contour methods [19]. A surface mesh is also 

generated from the segmented images using ‘ITK-SNAP’. This surface mesh is 

then exported into Meshlab (open-source 3D mesh processing software) [201] 

for successive smoothing and decimation to improve the mesh quality and to 

reduce the number of surface elements for computational efficiency during the 

finite element modeling. These smoothing and decimation steps are necessary 

as the initial surface mesh reconstructed from the segmented images contains (i) 

step-like artefacts that results in a block-like geometry for the lungs and (ii) 

excessive number of poor quality elements that may results in numerical 

instability during the finite element simulation (Figure 5-3). For mesh 

smoothing and decimation, the taubin smoothing and quadric-based edge 

collapse strategy algorithms implemented in Meshlab are used respectively. The 

choice of the two algorithms is based on the need for volume preservation 

during smoothing and maintaining geometrical features during decimation. The 

resultant surface mesh is then imported into Matlab to generate a volumetric 
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mesh for the finite element analysis using the iso2mesh toolbox (free 

Matlab/Octave-based mesh generation and processing toolbox) [202].  

 
Figure 5-3 An example of the initial lung surface mesh and the smooth and 

decimated mesh after processing 
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5) Finite element modeling 

The lung is modeled as an incompressible hyper-elastic Mooney-Rivlin 

solid [203] with the following parameters: elastic modulus (E) = 250 Pa and 

Poisson’s ratio = 0.3 [204]. In this study, it is assumed that the lung tissue 

(including tumor) is homogeneous. Tumor information (location, size, motion, 

etc.) was not included in the FE modeling process. In our preliminary study, it 

was found that assigning different material property to the tumor only had 

minimal effect on the results. As a result, the tumor information is excluded in 

this study for the simplicity of the model construction. 

The displacement fields (��� ) computed in step 3 are then applied as 

prescribed displacement boundary conditions on the surface of the finite 

element model in order to compute the interior deformation. The global 

equilibrium equation of the system (Eq. 5.5) can then be partitioned as: 

 �� ���
���� ��

��
�� � ��

�� � (5.8) 

where ��  are the unknown displacements in the lung interior, ��  are the 

prescribed displacement on the surface of the lung, �� and �� are the external 

forces acting on the lung interior and lung surface respectively (if any) and 

[���������] are partitioning of the global stiffness matrix. The unknown 

displacements �� can then be computed using the following equation: 

 �� �� � �� � ��� �� � (5.9) 
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Essentially, the lung geometry is deformed from the shape of ������ to the 

shapes of the lung in the subsequent CT volumes. The displacement fields in 

the interior of the lung (����
���
�������� ) are then solved using FEBio (an 

open-source, nonlinear finite element solver) [21]. Finally, this interior lung 

deformation computed from the finite element model is then interpolated onto 

the image voxel grid to deform the CT volume. 

 

6) Generation of simulated 4D-CT dataset 

The CT volumes over time are simulated by deforming ������with the 

corresponding displacement fields generated from FE modeling: 

 ���� � ����
���
�������� ������  (5.10) 

 

5.4.2 Data   

Scans of 4D-MRI using TWIST sequence and 4D-CT were acquired for six 

lung cancer patients. For details of image acquisition and image specifications, 

please refer to Chapter 3. 
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5.4.3 Evaluation 

In order to evaluate the accuracy of the proposed scheme, 4D-CT dataset 

acquired of the patients were used. For each patient, CT volume at 

end-expiration (EE) or end-inspiration (EI) was selected as the reference CT 

volume ������ . The CT volumes at EI/EE and mid-inspiration 

(MI)/mid-expiration (ME) whose lung heights matched with 4D-MRI volumes 

were identified to serve as the ground truth for the simulated CT volumes to 

compare with.  

For each patient, landmarks including prominent inner lung vascular and 

bronchial bifurcations are selected at the reference (EE/EI) CT volumes, the 

target CT volumes (EI/EE and MI/ME), and the simulated CT volumes [194]. 

All the landmarks were identified by an expert in lung anatomy and verified by 

an experienced radiation oncologist. The landmarks are located in different 

areas of the lung. For each lung, there are: 

10 - 15 landmarks in the middle of the lung 

10 - 15 landmarks near the lung border  

10 - 15 landmarks close to the tumor (if any). 

The landmarks are selected to be evenly distributed throughout the whole 

lung or tumor in order to access the accuracy of the proposed method 

throughout the whole lung (Figure 5-4). The landmarks are divided into 

different sites to quantify the error in different regions. 
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Figure 5-4 An example of the landmark points selected in the right lung of one 

patient. Landmarks are projected onto a single maximum intensity image for 

visualization. The landmarks are selected to be evenly distributed throughout the 

whole lung. 

The same anatomical landmark that locates in the reference CT volume 

(������), target CT volume (���� ) and synthetically generated target CT volume 

(�������) is denoted as ����, ��, and ���� respectively. All the landmarks are 

selected by an expert in lung anatomy and then independently verified by an 

experienced radiologist to ensure that there is no miss pairing of landmarks. 

The actual displacement of landmarks from ������ �to ����  is calculated as: 

 � � �� � ����  (5.11) 

The error of landmark position in simulated CT volumes is defined by: 

 � � �� � ����  (5.12) 
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The simulation of 4D-CT volumes using only the displacement fields from 

registration (���) was implemented to benchmark the accuracy of the proposed 

FEM approach (Figure 5-5).  

 

 
Figure 5-5 Overall scheme of simulating 4D-CT volumes using the displacement 
fields from registration directly. This is to benchmark the accuracy of the proposed 
FEM approach. 
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55..55  Results 

Proposed FEM-based fusion approach has been successfully implemented 

using MATLAB version 7.1.1 (The Mathworks, Inc, Natick) [175] and 

simulated 4D-CT volumes for six patients were generated. The simulation of 

4D-CT volumes has also been carried out by using only the displacement fields 

from registration (���). Volumes deformed using displacement fields generated 

with or without FEM approach exhibited visually comparable results. However, 

volumes deformed using FEM approach were more similar to the ground truth 

at some locations within the lung (marked by white arrows in Figure 5-6). 

It is observed that the displacement fields generated by the two methods 

were different (Figure 5-7). For both methods, displacements with large 

magnitude were located at the interface between lungs and the diaphragm. 

However, for the displacement fields generated by deformable registration, 

other than the lung/diaphragm interface, the magnitude of the displacements 

inside the lung was quite small and the displacement vectors seem random. On 

the other hand, it is obvious to see a much smoother change of magnitude 

gradually from small to large, from cranial to caudal, in the displacement fields 

generated by the FEM approach. 
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Figure 5-6 A comparison between the ground truth volume and simulated volumes 

deformed from the reference volume (����) with the FEM method (����) and with 

the displacement fields generated from registration (����) of two patients. The 
window and level of the images are adjusted to enhance the visualization of small 

structures inside the lungs. The visible differences are marked by white arrows. 
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Figure 5-7 A comparison between the displacement fields generated by FEM and 

registration approaches. Magnitude of the displacements is color-coded: blue: small 

displacement; red: large displacement up to 15 mm. 

A total of 420 landmarks were used to evaluate the accuracy of the proposed 

FEM approach to simulate the 4D-CT volumes. An example of landmark 

positions is shown in Figure 5-8. For target volumes at EI/EE, the averaged 

landmark displacement of all patients from ������ �to ����  is �  = 4.22 ± 3.12 

mm for reference. The simulation error using proposed FEM approach was 

����  = 1.93 ± 1.23 mm while simulation error using displacement fields 

directly from deformable registration was ����  = 3.28 ± 2.07 mm. The 

landmark distances for target volumes at EI/EE are listed in Table 5-1. Table 

5-2 summarizes the landmark distances for target volumes at MI/ME. As 
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expected, the landmark motion from ������ to ����  is smaller, with a value of 

�  = 2.72 ± 2.22 mm. The error of landmark position using proposed FEM 

approach was ����  = 1.47 ± 1.07 mm while using displacement fields 

directly from deformable registration was ����  = 2.27 ± 1.57 mm.  

 
Figure 5-8 An example of a landmark in ground truth (white), CT volume simulated 

by proposed FEM approach (red), and CT volume simulated by directly applying 

displacement field generated from registration between MRI volumes (blue). 

Table 5-1 Magnitude of the landmark displacement from ���
��� to ���� ( � ), and 

simulation errors using FEM approach ( ���� ) and registration method ( ���� ) 

for ����  at EI/EE. Values are averaged over all the landmarks with standard 
deviation shown in bracket.  

 �  ����  ����  

Patient 1 4.39 (2.26) 3.29 (1.74) 1.85 (0.89) 

Patient 2 3.09 (2.49) 2.67 (1.59) 2.09 (1.38) 

Patient 3 4.44 (3.88) 3.39 (1.86) 1.96 (1.00) 

Patient 4 3.42 (2.76) 2.29 (1.54) 1.42 (1.12) 

Patient 5 5.31 (3.82) 4.54 (2.82) 2.50 (1.67) 

Patient 6 4.52 (3.10) 3.65 (2.36) 1.97 (1.38) 

Average 4.22 (3.12) 3.28 (2.07) 1.93 (1.23) 
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Table 5-2 Magnitude of the landmark displacement from ���
��� to ���� ( � ), and 

simulation errors using FEM approach ( ���� ) and registration method ( ���� ) 

for ����  at MI/ME. Values are averaged over all the landmarks with standard 
deviation shown in bracket. 

 �  ����  ����  

Patient 1 2.16 (1.30) 1.98 (1.00) 1.25 (0.90) 

Patient 2 2.23 (1.77) 2.09 (1.59) 1.38 (1.08) 

Patient 3 2.64 (2.22) 2.44 (1.45) 1.49 (0.87) 

Patient 4 2.86 (2.26) 1.77 (1.47) 1.51 (1.23) 

Patient 5 4.91 (3.09) 3.58 (2.04) 2.16 (0.94) 

Patient 6 2.24 (1.92) 2.20 (1.64) 1.31 (1.29) 

Average 2.72 (2.22) 2.27 (1.57) 1.47 (1.07) 

 

The simulation error in cranio-caudal (CC), lateral direction (RL), and 

antero-posterior (AP) were also calculated for FEM approach, with values of 

���  = 1.03 ± 1.50 mm, ���  = 0.61 ± 0.96 mm, and ���  = 0.91 ± 1.31 

mm respectively for target volumes at EI/EE (Table 5-3). For target volumes at 

MI/ME, the simulation error using FEM approach in CC, RL, and AP were 

���  = 0.85 ± 1.33 mm, ���  = 0.47 ± 0.79 mm, and ���  = 0.56 ± 0.84 

mm respectively (Table 5-4). 
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Table 5-3 Simulation errors using FEM approach at EI/EE in difference directions. 

Values are averaged over all the landmarks with standard deviation shown in 

bracket. Negative values of error in CC, RL, and AP direction mean the motion 

overestimation for the FEM approach in caudal direction, anterior direction, and 

leftwards respectively. 

 ���  ��� ��� ���  ���  ���  

Patient 1 0.38 -0.34 0.77 0.99 (1.21) 0.63 (0.87) 1.04 (1.09) 

Patient 2 -0.08 0.04 -1.04 0.83 (1.38) 0.54 (0.92) 1.37 (1.59) 

Patient 3 0.75 0.37 -0.25 1.47 (1.51) 0.67 (1.04) 0.60 (0.88) 

Patient 4 0.77 -0.32 -0.24 0.82 (1.09) 0.62 (0.96) 0.35 (0.67) 

Patient 5 0.12 -0.00 0.28 1.42 (2.29) 0.73 (1.04) 1.34 (1.68) 

Patient 6 1.01 -0.32 -0.99 1.01 (1.42) 0.45 (0.74) 1.04 (1.06) 

Average    1.03 (1.50) 0.61 (0.96) 0.91 (1.31) 
 

 

Table 5-4 Simulation errors using FEM approach at MI/ME in difference directions. 

Values are averaged over all the landmarks with standard deviation shown in 

bracket. Negative values of error in CC, RL, and AP direction mean the motion 

overestimation for the FEM approach in caudal direction, anterior direction, and 

leftwards respectively. 

 ���  ��� ��� ���  ���  ���  

Patient 1 0.54 -0.03 -0.13 0.66 (0.90) 0.51 (0.80) 0.55 (0.79) 

Patient 2 0.62 0.08 0.00 0.62 (1.12) 0.67 (1.00) 0.42 (0.71) 

Patient 3 -0.02 -0.02 -0.32 0.97 (1.46) 0.22 (0.52) 0.52 (0.72) 

Patient 4 0.77 -0.32 -0.24 0.82 (1.09) 0.62 (0.96) 0.35 (0.67) 

Patient 5 0.25 -0.25 0.00 1.38 (1.85) 0.65 (0.87) 0.81 (1.20) 

Patient 6 0.60 -0.21 -0.75 0.66 (1.26) 0.27 (0.52) 0.75 (0.76) 

Average    0.85 (1.33) 0.47 (0.79) 0.56 (0.84) 
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Small differences are noticed in the accuracy of simulated volumes between 

landmarks in different regions (i.e. in the middle of the lung, near the boarder of 

the lung, and close to the tumor) (Table 5-5 and Table 5-6). For target volumes 

at EI/EE, the averaged errors are 1.99 ± 1.13 mm for landmarks in the middle of 

the lung, 1.95 ± 1.38 mm for landmarks near the boarder of the lung, and 1.73 ± 

1.15 mm for landmarks near the tumor. For target volumes at MI/ME, the 

averaged errors were 1.60 ± 1.00 mm for landmarks in the middle of the lung, 

1.56 ± 1.18 mm for landmarks near the boarder part of the lung, and 1.00 ± 0.82 

mm for landmarks near the tumor. 

The differences between landmark error of lungs with and without tumor are 

also very small (Table 5-5 and Table 5-6). For target volumes at EI/EE, the 

averaged errors were 1.78 ± 1.17 mm for lungs without tumor and 2.01 ± 1.26 

mm for lungs with tumor. For target volumes at MI/ME, the average errors 

were 1.57 ± 1.08 mm and 1.42 ± 1.07 mm for lung without and with tumor 

respectively. 

 

Table 5-5 Simulation errors using FEM approach for lungs with and without tumor 

for target volumes at EI/EE. Values are averaged over landmarks in different regions 

with standard deviation shown in bracket. 

Landmarks  No tumor With tumor Average 

Middle of the lung  1.69 (1.12) 2.22 (1.06) 1.99 (1.13) 

Near the boarder 1.87 (1.20) 2.01 (1.48) 1.95 (1.38) 

Close to the tumor N.A. 1.73 (1.15) 1.73 (1.15) 

Average 1.78 (1.16) 2.01 (1.26)  
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Table 5-6 Simulation errors using FEM approach for lungs with and without tumor 

for target volumes at MI/ME. Values are averaged over landmarks in different 

regions with standard deviation shown in bracket. 

Landmarks  No tumor With tumor Average 

Middle of the lung  1.48 (0.87) 1.70 (1.09) 1.60 (1.00) 

Near the boarder 1.66 (1.25) 1.46 (1.12) 1.56 (1.18) 

Close to the tumor N.A. 1.00 (0.82) 1.00 (0.82) 

Average 1.57 (1.08) 1.42 (1.07)  

 

55..66  Discussion 

The simulated 4D-CT dataset fused using 4D-MRI and 3D-CT combines the 

advantages of both modalities. The temporal information extracted from 

4D-MRI enables studying of respiratory motion in ‘real-time’ instead of 

averaged breathing cycles. In addition, 4D-MRI provides realistic non-linear 

respiratory motion including hysteresis. The spatial information of 3D-CT 

contributes high image resolution and quality so that small structures inside the 

lung can be visualized and analyzed in details. Furthermore, electron density 

information is contained in the simulated 4D-CT dataset, which enables 

adaptive dose calculation for 4D-RT. 

Overall accuracy was clearly better using the FEM approach than using 

displacement fields directly from deformable registration (1.93 vs 3.28 mm for 

target volumes at EI/EE and 1.47 vs 2.27 mm for target volumes at MI/ME). 

This result agrees well with Zhong et al. [189]. They proposed a FEM approach 
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that uses the displacements of the Demons registration in high-contrast regions 

to generate displacement fields over the entire image domain. They only 

focused on CT images and their method was successfully applied on prostate 

and lung CT images. In their study, the FEM correction method reduced the 

average error of the Demons registration by 6 mm. In our study, the larger 

errors produced by directly applying the displacement fields from registration 

can be attributed to the lack of visible structure inside the lung in MR images 

due to low proton density and low spatial resolution. Since the deformable 

registration applied between 4D-MRI volumes is based on image intensity, the 

displacement fields in the entire image domain depends on the intensity 

gradients between voxels. For low-contrast regions (i.e. inside the lungs), the 

difference in intensity between the adjacent voxels is small, resulting small 

displacements. This can be seen in Figure 5-7. In addition, the voxel intensity 

difference in the low-contrast regions derived using image registration may be 

due to noise instead of real differences in structures. Consequently, the 

displacement fields in the low-contrast regions may not be reliable. On the 

other hand, deformable registration in the high-contrast regions (i.e. interface 

between lungs and chest wall, diaphragm, and heart) has been proved to be 

accurate (see Chapter 4, the lung structure is well segmented using 

registration-based segmentation). It is reasonable to take displacements in those 

high-contrast regions as the input to the surface of the FE model. The FE 

method does not suffer from the disadvantage in the low-contrast regions as 

registration does because the internal displacement in FEM is totally based on 

the mechanical property and the final geometry of lungs. The FEM approach 

ensures a physically meaningful displacement. The displacement in the 

low-contrast regions can be estimated (Figure 5-7) and was shown to be 

reasonably accurate in our study. 
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There is no systematic over- or under-estimation noticed in the motion 

estimation in CC, RL, and AP directions in the simulated CT volumes (Table 

5-3 and Table 5-4). The errors in CC direction are slightly larger than those in 

RL and AP direction. This is probably because the lung motion is most 

prominent in CC direction, which makes it harder for FEM to predict the 

motion. Further, one should note that the spatial resolution in CC direction is 

relatively low (3 – 5 mm). It is more difficult to achieve high simulation 

accuracy with such resolution. Nonetheless, the errors using proposed FEM 

approach are less than 0.4 mm in CC direction, which is quite acceptable. 

With regards to the landmarks in different positions, the simulation accuracy 

in the middle of the lung is similar to that near the lung borders. This finding 

agrees well with Werner et al.’s results [194]. They proposed a biomechanical 

model extracted from thoracic 4D-CT dataset to estimate respiratory motion. In 

their work, tumor information was ignored in the biomechanical model. Our 

study further showed that it is reasonable to assume that the lung tissue is 

homogeneous. However, it is surprising to see that excluding tumor does not 

affect the simulation accuracy. The simulation accuracy close to the tumor is 

similar to that in other regions. The difference between lungs with and without 

tumor is also very small. This result is different from what Werner et al. [194] 

reported. In their work, overall modeling accuracy decreased for tumor bearing 

lungs. Such difference in results could be because the patients in this study did 

not suffer loss in lung mobility and change in the elasticity of lungs due to the 

tumor. The assumption on lung homogeneity is still valid for tumor bearing 

lungs. This further indicates that it is not possible to predict the effects of tumor 

only based on its size and location. Patient specific analysis is necessary. 
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In this study, the registration between �����  and ������ was performed by 

moving �����  to ������ . The resulting displacement field �������  was then 

applied to ����
����� ������

 so that it can be used to deform ������. The reason the 

global registration was taken from MRI to CT volume is that 4D-CT volumes at 

other breathing phases can be used as ground truth to validate the simulation 

results. In fact, the global process can be performed in the opposite way, to 

move ������ to ����� . The displacement fields ����
����� ������

 can then be directly 

used to deform the registered ������. However, how to evaluate the accuracy this 

method remains an open question as the lack of ground truth. 

This study showed that it is possible to fuse temporal information from MRI 

and spatial information of CT together. The concept in this study could 

potentially be used to fuse other imaging modalities, e.g. ventilation-weighted 

MRI with CT. The fused image could display dynamic change of gas that is 

contributed by ventilation-weighted MRI and details of structures inside the 

lung from CT. This could be potentially used to study other lung diseases such 

as chronic obstructive pulmonary disease (COPD) in which regional 

information of the lung in motion will be beneficial.  

A limitation of this work could be the validation method. In this work, the 

accuracy of proposed method is validated by comparing the simulated CT 

volumes from 4D-MRI volumes with the 4D-CT volumes at the corresponding 

breathing phases. Though the lung height is matched between the 4D-MRI 

volumes and 4D-CT volumes, the matched MRI and CT volumes are not 

exactly the same. The global registration between MRI and CT volumes could 

not completely eliminate such differences. Thus, there exists a systematic error 



171 

 

due to the differences between MRI and C volumes. However, since currently it 

is not possible to acquire MRI and CT volumes at the same time, the validation 

method used in this study could still be the best way.  

 

55..77  Conclusion 

This chapter presented a novel method to generate simulated 4D-CT 

volumes from a static 3D-CT volume and 4D-MRI volumes. The proposed 

method extracts temporal information about lung movement from 4D-MRI 

volumes through deformable registration. Due to the lack of visible structures 

inside the lungs in MRI volumes, the displacements inside the lungs are not 

reliable. Consequently, only the lung surface displacements are used to serve as 

the boundary conditions in the FEM modeling to estimate the displacements 

inside the lung. The proposed method achieved accurate results, with an 

average error less than 2 mm based on landmark positions. This work 

successfully fused the advantages of 4D-MRI and 3D-CT such that the 

simulated 4D-CT dataset has high spatial resolution, can be used for direct dose 

calculation, and is able to show continuous movement of tumor and organs over 

multiple breathing cycles. 



172 

 

Chapter 6 Summary and future 
work 

66..11  Chapter overview 

In the earlier chapters of this thesis, we have presented the development of 

new methods for the use of 4D-MRI in different stages of 4D-RT. This includes 

determining suitable 4D-MRI sequence for imaging lung cancer for RT, 

developing automatic target structure delineation method, and the fusion of 

4D-MRI and 3D-CT for dose calculation. In this chapter, the complete 

integrated system based on 4D-MRI dataset for 4D-RT planning is presented. 

The significance of this thesis is summarized. This chapter also provides the 

future work of this thesis. 
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66..22  Integration of the 4D-MRI based system for 

4D-RT of lung cancer patients 

In Chapter 1 introduction, we have discussed the importance of 

incorporating the temporal information into RT process for tumors with high 

mobility such as lung cancer. The development of advanced 4D-MRI imaging 

techniques offers enhanced dynamic imaging. Thanks to the nature of MRI, 

which does not involve any radiation, 4D-MRI is capable of providing the 

information about the 3D motion of organs and structures over tens of minutes. 

However, before 4D-MRI can be used in daily clinical practice of 4D-RT, there 

is a lack of validated, standardized planning tools, including accurate and 

automated multiple target structures segmentation, adaptive dose calculation, 

and motion control delivery mechanism. As a result, a complete system that is 

based on 4D-MRI for 4D-RT of lung cancer patients was developed in this 

thesis. The overall scheme of the proposed system is illustrated in Figure 6-1. 

The following sections detail on each step of the proposed system. 

 

1) Image acquisition 

For each lung cancer patient that is suitable for CT, MRI scanning and RT, a 

static 3D-CT volume and a 4D-MRI dataset are acquired. The total acquisition 

time of 4D-MRI is short (< 5 min). Consequently, using 4D-MRI does not 

increase the total scanning time as compared to 4D-CT. In Chapter 3, we have 

shown that the 4D-MRI sequence TWIST exhibited acceptable image quality 

while is sufficient to study the motion of tumor and diaphragm under controlled 
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breathing, owing to its high temporal resolution (0.9 volume/s). In addition, 

volumes acquired by TWIST MRI sequence correlated well with 4D-CT, the 

current gold standard modality of lung imaging, in terms of presenting tumor 

volume and describing tumor motion. Consequently, the MRI sequence TWIST 

is selected to scan the patient. The static 3D-CT acquired is to provide high 

spatial resolution images, detailed structures inside the lungs, and the electron 

density information that can be used for dose calculation. A limitation that 

4D-MRI faced is that it is currently only suitable for slow breathing (6 s/cycle). 

However, with the rapid development, we expect the temporal resolution of 

4D-MRI to improve in the near future which will make it suitable for fast free 

breathing. 

 

2) Registration-based segmentation of 4D-MRI  

After the 4D-MRI dataset is acquired, target structure will be segmented by 

using the spatio-temporal based scheme developed in Chapter 4 for efficient 

registration-based segmentation of thoracic 4D-MRI. This segmentation 

approach is fully automatic after the initial semi-automatic segmentation of the 

reference volume. This scheme utilizes the displacement of the diaphragm 

extracted from the 4D-MRI dataset to optimally select the reference volume and 

to classify the other volumes into sub-groups to perform deformable 

registration. The tolerance value for registration to stop is also adaptively 

adjusted based on spatio-temporal information in order to save the unnecessary 

computation time/amount introduced by excess iteration number of registrations 

without the loss of accuracy. The outputs of this process are the segmented 

volumes representing the geometry of tumor and organs at risk and the 
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displacement fields from the reference volume to the other volumes of the 

4D-MRI dataset. 

 

 
Figure 6-1 Overall schematic of the 4D-MRI based system proposed in this thesis 
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3) Fusion of 4D-MRI and 3D-CT to generate simulated 4D-CT dataset 

A novel method to generate simulated 4D-CT dataset has been developed in 

Chapter 5. A simulated 4D-CT dataset is generated by fusing the spatial 

information of the static 3D-CT volume and the temporal information extracted 

from the 4D-MRI dataset. The spatial information refers to the spatial 

resolution and image intensity of the 3D-CT volume while the temporal 

information is displacement fields between MRI volumes generated in step 2. 

Due to the lack of visible structures inside the lungs in MRI volumes, the 

displacements inside the lungs are not reliable. Consequently, only the lung 

surface displacements are used. The FEM modeling is applied to estimate the 

displacements inside the lung taken the displacement fields of lung surface as 

the boundary condition. The final displacement fields generated by the FEM 

modeling are then used to deform the 3D-CT volume to form a simulated 

4D-CT dataset. The simulated 4D-CT dataset has high spatial resolution, can be 

used for direct dose calculation, and is able to show continuous movement of 

tumor and organs over multiple breathing cycles. 

 

4) Quantitative analysis of tumor and other organs at risk 

With accurately segmented tumor and other organs at risk generated in step 

2, quantitative analysis of these structures can be performed. The quantitative 

analysis includes calculation of the size, volume, and the motion pattern of the 

tumor and other organs at risk. Such quantitative analyses have already been 

employed in Chapter 3 to evaluate the performance of 4D-MRI sequences at 

3T. Combined with the electron density information provided by the simulated 
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4D-CT dataset generated in step 3, a detailed therapy plan for 4D-RT can be 

made. This detailed plan can then be used during 4D-RT treatment. 

 

66..33  Significance of this thesis 

In order to improve the current 4D-RT process, a novel 4D-MRI based 

system for 4D radiotherapy of lung cancer patients is proposed in this thesis. 

This new system can be served as a complement to current CT based RT system 

that involves high ionizing radiation exposure during image scanning.  

With the development of fast and high dimensional imaging techniques such 

as 4D-CT and 4D-MRI, there is increasing interest in understanding the 

uncertainties and variations of the tumor and other organs at risk during 

breathing. Recent development of fast acquisition techniques of MR imaging 

has enabled studying the respiratory motion of organs and tumors. With no 

radiation involved, 4D-MRI can performed continuously in real-time which 

makes it possible to scanning for a longer period of time and to cover individual 

changes of respiratory motion. Recently, the 3T high field MRI scanner has 

been available for clinic. However, the performance of 4D-MRI sequences for 

lung cancer imaging at 3T is still unclear. Hence, three commonly used 

4D-MRI sequences for lung imaging were evaluated in this thesis. Our results 

showed that TWIST is the most suitable sequence among the three sequences 

studied for 4D lung imaging of lung cancer patients. This thesis also 

demonstrated that 4D-MRI exhibited comparable ability to present the tumor 
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volume and to describe the tumor motion as 4D-CT, which shows that 4D-MRI 

could be an alternative option of lung imaging. 4D-MRI fills the gap between 

the short-term and averaged representation of only a few regular breathing 

cycles (in 4DCT), and the long-term investigation of the tumor and organs at 

risk responses to the treatment (a few weeks/months). The ability of 4D-MRI to 

continuously scan over tens of minutes provides valuable 4D information about 

the respiratory motion. 

To manually segment a 4D dataset for RT planning would be extremely 

tedious and time-consuming as a 4D dataset typically contains tens of 3D 

volumes. Manual segmentation could also result in high intra- and inter-user 

variability. In this thesis, a spatio-temporal based scheme for efficient 

registration-based segmentation was developed for the purpose of segmenting 

multiple structures of tens of 3D thoracic MRI volumes. Results showed that 

this novel registration-based segmentation scheme is capable of reducing the 

computation amount/time that is required by the basic scheme while 

maintaining the segmentation accuracy. The scheme is fully automatic after 

initial segmentation to obtain the template volume. Thus, the user intervention 

is kept to a minimum level. This scheme enables fast segmentation of the entire 

4D dataset. As a result, the efficiency of target delineation of multiple structures 

is greatly improved and the manpower is saved.  

The accurately segmented volumes serve as the basis for quantitative 

analysis. The basic information such as size and volume of structures of 

interests can be easily calculated with the segmented volumes. More 

importantly, individualized 4D information of structures of interests, such as 

variations of location, deformation, and rotation overtime, can be derived from 

tens of the segmented volumes overtime of each patient. Such 4D information 
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cannot be retrieved by external respiratory signal or through the population 

based estimation but can only be derived from segmented volumes. 

Well-studied respiratory motion of tumors and other structures of interests will 

provide the 4D-RT treatment with valuable prior knowledge to achieve better 

monitoring and handling of respiratory motion though either respiratory gating 

or tracking. 

This thesis also presented a novel method to fuse the static 3D-CT volume 

and the 4D-MRI dataset of the same patient to generate simulated 4D-CT 

dataset. To the author’s best knowledge, this is the first study that combines the 

temporal information from 4D-MRI and the spatial information from 3D-CT. 

The generated high-resolution 4D-CT enables detailed study of small structures 

within the lungs such as blood vessels and bronchus that are often not visible in 

MRI images while keeping the radiation exposed to patients to a minimum 

level, compared to the use of 4D-CT. Additionally, the simulated 4D-CT 

generated addresses the problem with 4D-MRI based RT planning, which is the 

lack of electron density of MRI images to perform direct dose calculation. With 

the simulated dataset, it is possible to calculate dose by using the information 

contained in the 3D-CT. Together with the segmented target structures, a 4D 

treatment plan including adaptive dose calculation and beam position 

optimization becomes possible. 

Overall, the novel 4D-MRI based system proposed in this thesis can add 

benefits to different steps of the workflow of 4D-RT. Simulated high-resolution 

simulated 4D-CT dataset representing multiple ‘real-time’ breathing cycles can 

be generated. Automatic, efficient, and accurate multiple-targets delineation is 

achieved. Patient specific 4D-RT treatment planning can be generated through 

quantified 4D information of tumor and other organs at risk.  
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66..44  Future work 

The motivation of this thesis comes from the field of RT of lung cancer 

patients. Further research in this area is necessary to achieve a fully integrated 

4D-MRI based RT.  

 

1) Development of a fully automatic segmentation method for tumor and organs 

at risk segmentation using 4D-MRI 

The registration-based segmentation scheme developed in this thesis is fully 

automatic after the initial segmentation of the reference volume. However, the 

initial template of the reference volume is segmented semi-automatically, 

human intervention is still involved. One potential future work is to construct a 

statistical model based on the geometry of all the lung cancer patients. With the 

help of the spatio-temporal based registration-based segmentation scheme, the 

process of constructing statistical model of huge patient database becomes less 

tedious. The population-based statistical model can be further used to improve 

the proposed scheme by automate the segmentation of the reference volume.  

 

2) Improving the temporal and spatial resolution of 4D-MRI using 

super-resolution techniques 

Ideally, a 4D image dataset should have both high temporal and spatial 

resolution. However, a limitation of the current 4D-MRI is that, the high 
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temporal resolution required to correctly characterize the dynamics of the 

motion is reached at the expense of a poor spatial resolution, often resulting in 

highly elongated voxels. Consequently, a potential future work could be to use 

super-resolution techniques [31] to improve the spatial resolution of 4D-MRI 

images. One possible method is to acquire three 4D-MRI datasets of the same 

patient in orthogonal planes (i.e. axial, coronal, and sagittal) that have the same 

high temporal resolution, high in-plane resolution, but large slice thickness. 

After the image acquisition, the three orthogonal 4D anisotropic datasets are 

combined into a super-resolution framework to reconstruct a series of isotropic 

volumes with the spatial resolution equals to the in-plane resolution of the three 

orthogonal images. As a result, the reconstructed 4D-MRI dataset would have 

both high temporal and spatial resolution. 

 

3) Development of patient specific 4D model for tumor tracking during 

treatment delivery 

The 4D-MRI based system presented in this thesis is able to present a 

detailed therapy plan for 4D-RT, including segmented 3D structures of tumor 

and organs at risk over time, size, volume, and motion information of tumor, 

and the necessary dose to apply. However, how to effectively and adaptively 

deliver dose to the tumor in motion during treatment delivery remains a 

challenge. To further improve current 4D-RT, the dose delivery should be 

adaptively adjusted according to the variations of locations and shapes of tumor 

and organs at risk in real-time during treatment delivery. Based on the findings 

and methods developed in this thesis, one potential future work is to construct a 

4D model for each patient using 4D-MRI that contains continuous shifting and 
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deformation of tumor and other organs over time. This 4D model could be 

constructed by using FEM modeling of several breathing cycles and 

considering all the possible locations and shapes of organs and tumors [205]. 

The 4D model could be related to some simple respiratory signals such as 

signals from respiratory belt or image similarity matrices that can be used to 

compare with on-board images. Such relationship could enable fast tumor 

tracking during treatment delivery in real-time. 

Although this thesis is based on the RT of lung cancer, the methods 

proposed in this thesis, such as the spatio-temporal based registration-based 

segmentation scheme and the fusion of CT and 4D-MRI, are not limited to the 

lungs. The methods can potentially be extended for various other applications 

that involve organs with periodic motion such as liver and heart. 

 

66..55  Thesis conclusion 

In this thesis, a novel 4D-MRI based system for 4D-RT planning of lung 

cancer patients was presented. This system explored the use of 4D-MRI in 

different stages of 4D-RT as a radiation-free alternative option of the current 

standard image modality in RT: CT. 4D-MRI sequences were evaluated in this 

thesis to find suitable sequences for lung cancer imaging using an advanced 

high-field 3T scanner that has been available for clinical use recently. TWIST 

sequence has been selected as it showed good image quality at a faster temporal 

resolution, which is capable of showing the motion path of tumor. To address 
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the challenge of segmentation of 4D-MRI, a novel registration-based 

segmentation scheme that incorporates spatio-temporal information about 

diaphragm movement to efficiently segment multiple structures of thoracic 

4D-MRI dataset has been successfully developed. The segmentation scheme 

developed reduced computation amounts by up to 95% while maintaining good 

accuracy. To address the problem of dose calculated due to the use of 4D-MRI, 

a novel method to fuse 4D-MRI and 3D-CT to generate simulated 4D-CT was 

developed. This method combines deformable image registration and FEM to 

extract temporal information from 4D-MRI and transfer it onto 3D-CT to 

generate simulated 4D-CT. Accurate results were achieved in terms of 

landmark positions. The simulated 4D-CT has high spatial resolution, 

represents respiratory motion of multiple breathing cycles, and can be used to 

calculate dose. Overall, the use 4D-MRI has great potential to being an 

alternative to 4D-CT, providing an alternative imaging modality for RT of lung 

cancer patients. 
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