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Abstract

In this thesis, we study the problem of face recognition based on image sets. The main

objective of our work is to develop set-based distance metrics that are able to measure

the similarity between image sets, rather than conventional distance metrics that can

only measure the distance between samples.

The face images obtained from real-life impose great challenges to the conventional

face recognition systems. Large variations in appearances and various imperfections

such as occlusions and misalignments in the face images severely degrade the recognition

performance. One possible solution is to utilize more face images of each person for

testing, e.g., a collection of photos from personal galleries or frames extracted from a

video clip. Under such circumstances, the face recognition task becomes the process

of modeling and matching image sets. Our investigation then focuses on developing

appropriate models and set-based distance metrics for representing and matching different

image sets.

In general, the methods for solving the problem of face recognition based on image

sets can be divided into two predominant categories, namely the single model-based

methods and the multi-model based methods. Firstly, we investigate the single model-

based methods to exploit its nice properties such as computational efficiency. Through a

close look into the existing methods, we propose a generalized subspace distance (GSD)

framework to illustrate the underlying relationships among the existing methods, which

can be considered as special cases of the proposed framework. In view of the unsupervised

vii



matching adopted in the existing single model-based methods, we introduce a parameter,

which is learned from a discriminative learning procedure, into the proposed subspace

distances, namely fractional order weighted subspace distance (FOWSD) and exponential

weighted subspace distance (EWSD). Furthermore, we extend the proposed FOWSD and

EWSD to their affine versions such that each image set can be better represented.

Subsequently we proceed to investigate the multi-model based methods, which have

stronger capabilities to describe image sets with more complex distributions than the

single model-based methods. Generally, the multi-model based methods consist of two

steps: the local model construction and the manifold-to-manifold distance measure. We

first propose a novel co-learned multi-view spectral clustering (CMSC) approach, which

integrates information from multiple views of the same image set to enhance the per-

formance of the local model construction. Then we propose a new manifold-to-manifold

distance measure (CRMMD) that computes the distance between the local model and its

approximation in a collaborative manner, which is more robust to the distortions caused

by outliers.

Similarly, the multi-model based methods that we investigated are based on unsuper-

vised matching. To exploit the advantage of supervised learning where the discriminative

information provided by class labels are fully utilized in the training phase, we propose a

novel multi-manifold metric learning method (MMML) that adds a discriminative learn-

ing stage before proceeding to image set matching. Different from the existing supervised

learning approaches that learn only one subspace for all the image sets, the proposed

MMML method learns a collection of person-specific distance metrics, one for each class,

to match manifolds in different classes, such that the recognition performance can be

significantly improved.

To verify the effectiveness of all the proposed methods, we have conducted extensive

experiments using several popular face databases.
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Chapter 1

Introduction

Our research work in this thesis focuses on face recognition based on image sets (FRBIS).

In this chapter, we first discuss the motivation of our research in a holistic and systematic

manner, where our objectives are established. Then the main contributions of our work

will be summarized.

1.1 Motivations and Objectives

• Why automatic face recognition? — Human ability to distinguish dif-

ferent faces is not perfect.

Adults have the ability of recognizing the face of a special person from thousands

of other faces from different individuals even under challenging conditions, e.g.,

human faces look alike compared with other general objects and there are usually

large variations in the expression, pose, illumination and occlusion that affect the

appearance of the same person. However, such attractive ability is associated with

some limitations, e.g.,

(i) The robust abilities of adults require not only specialized perceptual processes

and neural mechanisms [1], but also accumulated experiences during many

years (from infancy to adolescence) [2] [3].

(ii) The limitation of the human brain is that the human brain can only remem-

ber the faces of limited number of individuals accurately and is not able to

remember every detail in a face.
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To break the limitations described above, researchers attempted to imitate the ex-

cellent face recognition ability of humans by utilizing computer system that has

such characteristics as powerful computational capability and large storage capac-

ity. In the 1970’s, the earliest work on automatic face recognition [4] [5] appeared

and succeeded. Since then, the automatic face recognition techniques exhibit great

potentials in a wide range covering commercial and security applications. Over the

past few decades, automatic face recognition has attracted great research interest

and grown quickly across many disciplines such as artificial intelligence, computer

vision, pattern recognition, image processing, neural network, etc. A large number

of classical methods of face recognition based on single images have been proposed

in the literature [6] [7] [8] [9] [10] [11], which have significantly improved the per-

formance of face recognition systems under controlled conditions. The controlled

condition means that the variables that affect the acquirement of visual informa-

tion of faces are fixed or constrained in a small range, e.g., indoor environment with

satisfied lighting (neither too weak nor too strong) or slight variations in pose and

expression of an individual.

• Why face recognition based on image sets? — Challenging conditions

require more information.

With the rapidly developing Internet and constantly increasing online social in-

teractions, a large number of social media sharing websites have emerged, such as

Facebook, YouTube, Flickr, etc. Everyday hundreds of millions of people are post-

ing their personal photos and videos to these social media networks. With massive

data, video sequences and multiple still images of an individual are much easier

to be obtained than before. However, these personal images including faces are

usually acquired under unconstrained conditions where there are large variations in

illumination, expression, pose, resolution, etc. In such practical environments, it is

still very difficult for the conventional face recognition approaches to provide a reli-

able and acceptable recognition performance. In the conventional face recognition

scenario shown in Fig. 1.1, given a gallery set where each reference is a single-shot

face image, a probe (or query) is also a single-shot image and the similarity between

a gallery and a probe is obtained by calculating the image-to-image distance.
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To enhance the performance of conventional face recognition approaches under un-

constrained conditions, a possible solution is to exploit more face images for each

Figure 1.1: Conventional face recognition techniques recognize a person from a single-shot
image.

Figure 1.2: Scenario of face recognition based on image sets.

3
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person in classification tasks. Compared with a single-shot face image, an image

set of a person is able to provide more complete information that covers variations

in the individual’s appearance. Generally, an image set could comprise multiple

still images that are captured under various circumstances, or frames cropped from

a video clip (sometimes these frames are not in continuous sequence). These image

sets can be easily acquired through various social media networks as mentioned

above. Since more discriminative information can be extracted from an image set

and utilized to model the appearance of an individual’s face, the face recognition

approaches based on image sets have the potential of achieving a better face recog-

nition performance than the conventional methods. Inspired by this observation,

our investigations in this thesis mainly focus on the topic of face recognition based

on image sets, which recognizes an individual by utilizing a set of his/her face

images. Fig. 1.2 illustrates a typical scenario of face recognition based on image

sets. Given a gallery set where each reference is an image set, a probe (or query) is

also an image set and the similarity between a gallery and a probe is obtained by

calculating the set-to-set distance.

• Objectives

The main objectives of our research work in this thesis are to better understand the

problem of face recognition based on image sets in a comprehensive and systematic

manner, and to develop the set-based distance metrics that are able to measure

the similarity between image sets rather than the conventional distance metrics

that can only measure the distance between single-shot samples. The scope of this

thesis covers topics from the single-model based methods to the multi-model based

methods, from the single-view based clustering methods to the methods based on

multi-view data, from the unsupervised methods to the supervised-learning meth-

ods, etc. To achieve these objectives, the issues that need to be addressed are

summarized in the following:

(i) Analyze and better understand the characteristics of the problem of face recog-

nition based on image sets that aims to enhance the performance of conven-

tional face recognition approaches under challenging conditions.
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(ii) Investigate and propose novel methods to enhance the performance of face

recognition based on image sets, which includes: the single-model based meth-

ods, multi-model based methods, unsupervised set-based matching methods,

supervised learning methods and multi-view based methods.

(iii) Evaluate the performance of the state of the arts and demonstrate the effec-

tiveness of the proposed methods through extensive empirical comparisons.

1.2 Main Contributions

In this thesis, we focus on the problem of face recognition based on image sets. Relating

to this problem, there are issues need to be addressed from two aspects: (1) the model

that is utilized to describe an image set and (2) the distance metric that measures the

similarity between two such models.

In terms of the models, we group the existing approaches into three categories: the

model-free methods, the single-model based methods and the multi-model based meth-

ods, among which the single-model based methods and the multi-model based methods

are predominant. We will start our research from the single model-based methods that

will be discussed in Chapter 3. Although our proposed methods benefit from the efficient

property of the single model-based methods, it will be observed that the single model has

limited ability to capture the underlying structure of a data set with complex distribution

[12]. Thus, a more appropriate way to describe such an image set is to utilize multiple

models. As shown in Fig. 1.3, our investigation moves from the single model-based

methods in Chapter 3 to the multi-model based methods in Chapter 4, 5 and 6.

Towards the issue of designing the distance metrics, we study the unsupervised meth-

ods for matching face image sets in Chapters 4 and 5. It is well known that the unsuper-

vised matching methods are computationally efficient but not discriminative enough for

classification. Thus, we further investigate the supervised-learning methods for matching

face image sets in Chapter 6.

The whole framework of this thesis is illustrated in Fig.1.3, which demonstrates the

progressive relationships among the four pieces of work investigated in Chapter 3, Chapter

4, Chapter 5 and Chapter 6. Based on the above framework, we further summarize the

contributions of our work in this thesis by answering the questions below:
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Figure 1.3: The whole framework of this thesis.

• For the single-model based methods, is it possible to discriminatively

measure the similarity between two image sets?

Among the single-model based methods, a predominant subcategory is the correla-

tion -based method that models an image set by using linear representations such

that these methods are usually computationally efficient and robust to outliers.

There are various linear representations proposed in the literature, e.g., linear sub-

spaces, affine representations and convex hulls. However, some limitations appear

in existing methods: (1) Most existing methods for measuring subspace distances

ignore the label information of training image sets; (2) the conventional distances

between convex hulls or affine hulls require high computational complexity. To

solve the above problems, a novel distance metric called generalized subspace dis-

tance (GSD) framework is proposed to provide an explicit rule for measuring dis-

tances between subspaces. Furthermore, we make the GSD more discriminative

by adding some pre-learned coefficients to improve the recognition rate and extend

6



Chapter 1. Introduction

the proposed subspace distances to their affine versions. The efficacy of the pro-

posed method will be shown later in Chapter 3 through extensive evaluations and

comparisons.

• For the multi-model based methods, how to construct more representa-

tive local models?

The multi-model based methods consists of two stages: (1) local model construc-

tion and (2) manifold-to-manifold distance measure. We investigate the first stage

in Chapter 4 and the second stage in Chapter 5. To construct a local model, a

clustering method such as K-means algorithm should be adopted. However, the

current clustering methods only utilize the intensity values of an image set. Ac-

tually, multiple views of an image set can be easily obtained, e.g., we can extract

the local binary pattern (LBP) [13] [14] descriptors or the scale-invariant feature

transform (SIFT) [15] descriptors from a given image set. Based on this obser-

vation, we propose a Co-learned Multi-view Spectral Clustering (CMSC) method

in Chapter 4 that combines more types of information to enhance the clustering

performance such that a more representative cluster and its corresponding local

model can be obtained. The improved performance of the proposed CMSC method

will be demonstrated through experiments.

• For the multi-model based methods, is there a more robust measure-

ment for calculating the manifold-to-manifold distance?

In the multi-model based methods, an image set with complex distribution is often

considered as a nonlinear manifold. To describe this manifold, an image set is often

divided into several subsets, each of which is described using a local model such

that a manifold can be represented by a collection of local models. Since the multi-

model based methods just emerged recently, the problem of how to measure the

similarity between two manifolds has received less attention. An existing manifold-

to-manifold distance (MMD) was proposed by Wang et al. [16]. In their method,

the pairwise distances among all the local models are calculated from which the

minimum value is selected as the manifold-to-manifold distance. However, comput-

ing MMD in this way may lead to unstable recognition performance due to the fact
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that MMD method is usually sensitive to outliers. To solve this problem, we pro-

pose a collaborative Reconstruction-based Manifold-Manifold Distance (CRMMD)

method that calculates the distance between a local model and its collaborative ap-

proximation, thus avoiding the unstable recognition performance. The efficacy and

robustness of the proposed method will be illustrated later in Chapter 5 through

experiments.

• For the multi-model based methods, is it possible to further strengthen

the discriminability of the existing supervised learning methods for

measuring the similarity between image sets?

Upon investigating the unsupervised methods for matching image sets in Chapters

4 and 5, we naturally proceed to the supervised learning methods that explore

more discriminative information of the training datasets for enhancing the perfor-

mance of image set matching. It is observed that the existing discriminant analysis

approaches utilize label information and seek only one common space for all the

training data from different persons. In contrast, we propose a discriminative learn-

ing method called Multi-Manifold Metric Learning method (MMML) that adopts

a person-specific manner to learn a collection of distance metrics, one for each

class. The improved performance of the proposed method will be demonstrated in

Chapter 6.

1.3 Thesis Organization

The rest of this thesis is organized as follows.

In Chapter 2, the problem formulation, structure of the system, possible applications

and challenges on automatic face recognition techniques are introduced, and the research

achievements in this area are summarized. Specifically, the related works on the problem

of face recognition based on image sets (FRBIS) are reviewed.

Chapter 3 first reviews several popular single-model based methods. Motivated by

these methods, we propose a Generalized Subspace Distance (GSD) framework and show

that most existing subspace similarity measures can be considered as its special cases.

Within the GSD framework, we further propose a Fractional Order Weighted Subspace
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Distance (FOWSD) method and an Exponential Weighted Subspace Distance (EWSD).

Furthermore, the proposed FOWSD and EWSD methods are extended to their affine

versions. Experimental results on two set-based classification tasks, including face recog-

nition/object recognition based on image sets, are presented to show the effectiveness of

the proposed method.

Motivated by the discussion about single-model based methods, we proceed to inves-

tigate the multi-model based methods in Chapters 4 and 5. To obtain a more representa-

tive local model for each subset, we propose a Co-learned Multi-view Spectral Clustering

(CMSC) approach in Chapter 4 to fully exploit the multiple types of information for an

image set. By modeling a manifold (an image set) as a collection of local models, we

first discuss the existing achievements on the manifold-to-manifold distance in Chapter

5. Then we propose a Collaborative Reconstruction-based Manifold-Manifold Distance

(CRMMD) method to handle some challenging conditions where the image sets contain

severe noises. Experimental results are illustrated to show the efficiency of the proposed

method.

Based on the unsupervised method proposed in Chapters 4 and 5, we proceed to

investigate the supervised learning methods in Chapter 6. To enhance the discriminabil-

ity of the supervised learning methods for measuring the similarity between manifolds,

a Multi-Manifold Metric Learning method (MMML) is proposed. Our method is ex-

tensively evaluated on three popular face databases and compared to the state of the

arts.

Chapter 7 concludes this thesis. Several directions of the future work are also dis-

cussed.
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Chapter 2

Background and Literature Review

2.1 Automatic Face Recognition

2.1.1 Problem Statement

• Why use face for recognition?

Before biometric-based techniques appeared, a person usually visits an area with

protected information by utilizing a password, key, token, national ID, driver li-

cense, passport or smart card. However, the key, national ID, driver license, pass-

port or smart card might be stolen or damaged, and the password might be forgot-

ten. Compared with these physical passes, a more reliable way to access privacy

is to utilize the biometric-based identity recognition techniques that determine a

specific person through his/her physiological characteristics or behavioral patterns

such as face, fingerprint, iris, palm, ear, voice and gait. These biological charac-

teristics of a person are unique, irreplaceable and available all the time. Among

the biometric-based identification techniques, face recognition shows more potential

merits over others. That is, most biometric-based methods such as iris, fingerprint,

palm and ear, need the cooperation of users, putting their thumbprints or scanning

the irises. In contrast, there is no strict collaboration requirement for face recog-

nition systems where face images can be captured by public video surveillance or

even taken by hidden cameras at a distance. Furthermore, iris images and voices

are usually collected through special or expensive equipments or under specific con-

ditions such as a place without much noise. In contrast, face images can be easily
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obtained from any video surveillance or camera at a reasonable price. Compared

with other biometric-based techniques, the inherent advantages of face recognition

have made an profound impact on various applications.

• Problem Statement of face recognition

The problem of face recognition through visual information of faces can be formu-

lated as follows: given a still image/a video clip that contains human faces and a

gallery of face database available for comparison, how to verify or determine the

identities of persons through their faces cropped from the image or video clip?

• Applications

Over the past several decades, face recognition has attracted great research interest

and become a hot research topic in the field of visual recognition due to its vast

commercial values and security applications.

(i) Information security: For security purposes, a captured frontal face photo is

usually required by the access control to checkpoint, buildings, even computers

and smart handphone logon [17] [18] [19].

(ii) Smart cards: Photographs on national IDs, driver’s licenses, passports, visa

cards, students’ matriculation cards.

(iii) Multi-media applications: Video games such as kinect, training programs,

monitoring patients who need to do rehabilitative exercises in health center,

monitoring the behaviors of babies or senior people whose self-care abilities

are poor, monitoring and analyzing customers’ preferences [20] [21].

(iv) Law enforcement and surveillance: Video surveillance is a very impor-

tant way to search criminals and suspects for maintaining social stability and

protecting people’s lives and properties [22].

(v) Other applications: Searching missing persons through mugshot albums or

videos, forensics, witness face reconstruction, post-event analysis, etc. Re-

cently, face recognition techniques have developed rapidly and been applied
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into many related areas such as gender recognition/classification, age estima-

tion, emotion recognition, local feature location/detection (e.g. patches of

eyes, nose and mouth) [23] [24] [25] [26] [27] [28] [29] [30].

The above applications of face recognition cover various research fields including

pattern recognition, computer vision, image processing, video indexing, analysis,

etc. The achievements in face recognition techniques will promote the development

of many other related subjects and benefit from these disciplines at the same time.

• Challenges

Face recognition is a special case of pattern recognition problems. However, since

most of the face images (such as frontal view) of different persons are alike to

each other in the appearances, the conventional pattern recognition techniques,

e.g. object recognition techniques, cannot be directly performed to discriminate

a person through his/her face images [31]. Moreover, the appearances of faces

change easily due to many factors. In [32] [33], these factors are divided into

two categories: intrinsic factors and extrinsic factors. In the category of intrinsic

factors, the geometrical structure of a 3D face changes due to facial expression

and aging of the same person, and that varies between different persons. In the

category of extrinsic factors, the appearance of a face is sensitive to the variations in

illumination, imaging, noise, pose (e.g. scarf, hair style and make-up), resolution,

misalignment, etc. Through a thorough review of the state of the arts, e.g., FERET

evaluations [34] [35], FRVT2000 [36], FRVT2002 [37], FAT2004 [38], FRGC [39] and

FRVT2006 [40], etc., the following issues are suggested as the major difficulties in

the field of face recognition by most researchers.

(i) Illumination variations: In many practical applications, the problem of

illumination-invariant face recognition is still challenging and difficult under

complex lighting environments. In a face recognition system, it may be dif-

ficult to obtain the accurate visual information of faces under an unsatisfied

direction of lighting source [41] [42]. Furthermore, a face usually appears to

be very different under varying lighting conditions, which results in the larger
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intra-person appearance variations than the inter-person appearance varia-

tions. The advantages of illumination-invariant face recognition techniques

have potentials in many applications, such as outdoor environments under

strong sunlight or under low lighting at night.

(ii) Pose variations: Recognizing a face with an arbitrary rotation is another

challenging issue confronted by researchers. For a conventional face recog-

nition system, it is a challenging task to extract the intrinsic characteristics

that are independent on the varying poses from faces with large appearance

variations due to varying view-points and 3D-2D transformations. The pose-

invariant face recognition techniques aim to solve the problem of recognizing

uncooperative individuals under unconstrained conditions in real life [43].

(iii) Misalignment: In order to obtain a good classification performance, it is

a critical step to align faces to a unified template according to their facial

features [44] [45] [46]. However, the existing work on facial feature detection

are still struggling in producing accurate locations of such features. Thus, the

performance of most face recognition techniques still suffer from the problems

of misalignment. The face recognition techniques for misalignment have the

ability of dealing with face images obtained from unconstrained conditions

where faces are not easy to be aligned due to variations in pose, occlusion,

etc.

2.1.2 System Structure

Fig. 2.1 illustrates the flowchart of a face recognition system that contains four key mod-

ules: (1) face detection, (2) face alignment/normalization, (3) face representation (includ-

ing feature extraction and learning procedures), and (4) face classification/identification.

Sometimes the functions of these four modules are not totally independent, e.g., face

detection and facial feature detections (i.e. eyes, mouth and nose) can be achieved si-

multaneously. Next, we describe the respective functions of these four modules in detail.

• Face Detection
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Figure 2.1: The flowchart of a face recognition system.

Given an input image, it needs to be determined whether there exists any face. If

a face does exist, the position of this face and its size need to be detected.

Having evolved over the past few decades, the face detection techniques become

the most mature component among the four modules of a face recognition system.

Numerous algorithms have been developed and applied to various practical applica-

tion scenarios such as the face detection and tracking functions of a digital camera.

The most popular face detection technique is the Viola-Jones algorithm [47], which

concatenates a series of weak classifiers to construct a strong cascaded classifier.

Based on this classic approach, many improved algorithms have been proposed to

enhance the performance of face detection recently.

• Face Alignment

The performance of most face recognition algorithms rely on the module of face

alignment, i.e., accurately transforming faces into the same canonical template

through a series operations such as scaling, rotation, segmentation, etc. Generally,

face alignment requires known positions of important facial features, e.g. eyes, nose

and mouth, which can be manually labeled or learned through a class-specified

learning procedure.

The challenges of face alignment techniques exist in using a unified mathematic

model to match various types of faces. To achieve this goal, numerous algorithms
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have emerged recently. Among them, some typical methods are widely recognized

to be of high qualities and able to provide good performance, such as Active Shape

Model (ASM) [48], Active Appearance Model (AAM) [49], 3D Morphable Model

[50], etc. For a better illustration, some exemplar face images before and after

alignment are demonstrated in Fig. 2.2.

• Face Representation

Before proceeding to the classification step, a face needs to be well represented.

Generally, there are two different ways to represent a face: (1) Pre-define a template

for calculating the descriptors of a face, e.g. the Local Binary Pattern (LBP) [14]

feature and the Scale-Invariant Feature Transform (SIFT) [15] feature, as shown in

Fig. 2.3; (2) According to a certain criterion, parameters are learned from training

faces for optimally representing both gallery and probe faces, e.g. the Principal

Canonical Analysis (PCA) [6] method and Linear Discriminant Analysis (LDA) [7]

method, as shown in Fig. 2.4.

• Face Classification

upon the completion of the above steps, both the probe face image and the gallery of

face database are represented by utilizing the parameters learned from the training

faces. Then comparisons between these representations are conducted to determine

Figure 2.2: Some exemplar face images before and after the face alignment.
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Figure 2.3: Calculating the descriptor of a face image through pre-defined templates.

Figure 2.4: Calculating the descriptor of a face image through learned parameters.
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the identities of individuals. From the above analysis, the face classification module

is closely related to the face representation module, and the approaches adopted

for face classification vary according to different representations of faces.

2.2 Literature Reviews

For a face recognition system, the face representation module is the most important com-

ponent that attracts great research interest in recent years. A large number of achieve-

ments in face recognition techniques mainly contribute to the representation of faces. In

this section, we divide the face recognition approaches into two categories: (1) feature-

based methods and (2) appearance-based holistic methods. Some classic methods will

be extensively evaluated.

2.2.1 Feature-Based Approaches

Given an input face image, the feature-based methods first detect the salient facial fea-

tures, e.g. eyes, nose, mouth and head outline, and then extract the geometric infor-

mation and topological structures of these facial features, e.g. the positions of eyes, the

width of head, the angles of corners, the distances and ratios among these feature points,

etc. Then these parameters are concatenated to constitute a low-dimensional feature

vector to describe the high-dimensional input face images. Most of the feature-based

approaches have been proposed before the year 2000.

• Feature-based face recognition techniques in the 1970s

The earliest work on automatic face recognition appeared in the early 1970s [51] [4].

Generally, the early work utilized the measurements of facial attributes as facial

descriptors that can be classified by using general pattern classification techniques.

In Kanade’s method [51], 16 measurements, such as the distances between corners

and the ratios of distances, etc., were extracted to describe a face image and the

Euclidean distance was utilized to measure the similarity between two face images.

A small face database containing only 20 persons with 2 face images per person was

used to evaluate the performance and a recognition rate of 75% was achieved on this
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database. Similarly, in the method proposed by Kelly [4], the distances between

important facial feature points were employed to represent each face image.

• Feature-based face recognition techniques in the 1980s

During the 1980s, the development of face recognition techniques confronted a

dormant period. There was not much improvement achieved in the performance of

face recognition systems.

• Feature-based face recognition techniques from the 1990s till now

During this period, various techniques were used in the feature-based face recogni-

tion systems to extract facial descriptors, such as Hough transform [52], deformable

templates [53] [54] [55], etc. However, these algorithms share some common draw-

backs as following: (1) They were heavily dependent on the heuristic conceptions;

(2) It was difficult for these methods to adjust their parameters for conforming

a facial structure perfectly; (3) Many of these algorithms detected and extracted

facial features manually, e.g., a mixture-distance based method proposed by Cox

et al. [56]. If these algorithms performed fully automatically, the recognition rates

might drop significantly due to the low accuracies of the facial feature extraction

techniques.

To overcome the above drawbacks, methods based on the Hidden Markov Model

(HMM) have been proposed to improve the performance of face recognition systems

[57] [58] [59] [60]. In these methods, a face image was partitioned into multiple local

patches, each of which was assigned with a state of the HMM. Then a probe face

image was represented by a one-dimensional observation sequence and compared

with each HMM in the gallery face database. Thus the best match with the highest

likelihood was confirmed as the identity of the probe face. Furthermore, by utilizing

the Principal Component Analysis (PCA) to extract the features of each region

instead of directly using the intensity values, the method proposed by Nefian and

Hayes [61] enhanced the recognition performance of HMM-based methods.

A popular face recognition algorithm is the Elastic Bunch Graph Matching (EBGM)

[62] [63] that is based on a well-known technique called Dynamic Link Architecture
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(DLA) [64] [65]. Given the fiducial points of a face image, the EBGM method

constructed a graph for this face based on these fiducial points, where each node in

the graph was described by a jet that consists of a set of Gabor wavelet coefficients

extracted from a window area centered at a fiducial point. The value of each arc

is the distance between the corresponding fiducial points. Thus, a face image was

described by a full connected graph. Furthermore, a set of jets, i.e., a face bunch

graph, was attached to each node instead of a single jet. In the FERET evaluation

[66] [34], the EBGM algorithm was one of the best performing methods in terms of

the recognition rate due to imitating human visual system [67]. This motivated the

EBGM-based face recognition systems to be applied to various practical scenarios,

including face detection, gender recognition, pose estimation, etc.

In the feature-based face recognition techniques, another typical method was pro-

posed in [68], which extended the self-organizing map (SOM) method for learning

and utilized the convolutional neural network (CNN) method for robust feature

extraction.

From the above analysis, there are some advantages of the feature-based approaches:

(1) These algorithms show robust performance when face images contain large variations

of misalignment, e.g. scaling, rotation and translation, which are common conditions in

our real lives; (2) Instead of using all the pixels of a face image, it is much more concise and

compact to represent a face by using features only from several important fiducial points;

(3) Accordingly, the computational complexity of matching faces decreases significantly.

On the other hand, the feature-based approaches heavily depend on the performance

of facial feature detection techniques. And the automatic and accurate detection of

important points is still a difficulty. Moreover, the recognition performance might degrade

when the detected fiducial points are less discriminative to represent a face.

2.2.2 Appearance-Based Holistic Approaches

In [69], Brunelli and Poggio showed their experimental results and concluded that the

template-matching based methods outperform the feature-based matching approaches.
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Although this conclusion stopped numerous researchers to plunge into the area of feature-

based face recognition, it did start many new opportunities for the research of appearance-

based face recognition techniques.

In the appearance-based holistic approaches, people attempted to describe a face

image in a holistic manner, e.g., utilizing all the pixel values of a face rather than us-

ing several important fiducial points or local features. Generally, the appearance-based

holistic approaches convert a two-dimensional face image into a one-dimensional vector

(a sample point) in a high-dimensional space. In such a high-dimensional space sample

points show sparsity due to the large volume of the space; However, the computations

among vectors become a difficulty. This motivated the rapid development of dimension

reduction approaches that have a positive impact on removing the curse of dimensionality.

Our discussions on the appearance-based holistic approaches can be chronologically

summarized as four stages: (1) learning linear transformations, (2) learning nonlinear

transformations, (3) using linear transformations to approximate nonlinear transforma-

tions and (4) new trends.

• Learning linear transformations—PCA, LDA, ICA, etc.

PCA: The first attempt to use Principal Component Analysis (PCA) [70] [71] to

compactly describe and reconstruct a face image was proposed in the references

[72] [73]. In their work, it was indicated that the reconstruction of a face image

could be approximated by linearly combing a small set of coefficients and the cor-

responding principal components. On this basis, a landmark called eigenfaces [74]

[75] was proposed by Turk and Pentland to represent face images for detection and

identification.

PCA first calculates a set of linearly uncorrelated bases, i.e., the principal compo-

nents, based on a set of sparse and correlated training data. These principal com-

ponents are then used to compactly describe an image data, which can efficiently

remove the statistical redundancies in the nature images, especially face images.

Thus one advantage of using PCA to represent a face image is that the projection co-

efficients are much more insensitive to the noise than the original high-dimensional

vector. Suppose that there is a training set of face images X = {x1,x2, · · · ,xN}
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in a high-dimensional space RD, the objective of PCA is to seek a low-dimension

linear subspace, i.e., a set of orthonormal bases, in which the sum of scatters of all

the projected training data is maximized:

w∗ = argmax
w

(XTw)T(XTw) = argmax
w

wT(XXT)w

s.t. wTw = 1, (2.1)

where wTw = 1 is only for a scaling factor and will not affect the optimization

process.

As an extension of the eigenface method, Moghaddam and Pentland proposed a

Bayesian method [76] that used the probability distance rather than the Euclidean

distance to measure the similarities between images. The difficulty of this method

lies in the probability estimation from limited training samples per person in such a

high-dimensional space. To solve this problem, they designed an efficient approach

to estimate the probability distribution by splitting the original space into two

complementary spaces, i.e., a principal space and its orthogonal space.

ICA: The unsupervised statistical method PCA only explores the second-order

moments of the face images, i.e., the pairwise relationships among pixels. However,

it is possible that some important information lies in the high-order statistical

relationships of face images, which could provide a better face recognition perfor-

mance. In view of this, Independent Component Analysis (ICA) was proposed in

references [77] [78] where the objective was to seek independent components rather

than uncorrelated ones for representing face images.

LDA: Another well-known holistic method named Fisherface was proposed by Bel-

humeur et al. [79]. In this method, the authors observed that PCA could not effec-

tively remove the variations caused by the changes of lighting conditions and facial

expressions, such that the intra-class variations are often larger than the inter-class

variations. Thus they utilized the Fisher’s Linear Discriminant Analysis [80] to

enhance the discriminability of the learned low-dimensional subspaces, where the

ratio between the determinant of the inter-class scatter and that of the intra-class
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scatter is maximized:

w∗ = argmax
w

|wTSBw|
|wTSWw|

s.t. wTw = 1, (2.2)

where SB and SW are the between-class scatter matrix and within-class scatter

matrix respectively. Similarly, wTw = 1 is only for a scaling factor and will not

affect the optimization process.

A comparison between the PCA and LDA methods was conducted in references

[81] [82]. Experiment results demonstrate that LDA performs better than PCA

when the number of the training images per class is sufficiently large, and PCA

outperforms LDA only when the number of the training data per class is limited.

Although LDA illustrated a good recognition performance, a drawback cannot be

ignored that the performance of LDA was often degraded due to the singularity of

SW. To avoid this, many extensions based on the LDA method were proposed such

as Nullspace LDA [83] [84], Regularized Discriminant Analysis [85], 2D-LDA [86]

[87], Enhanced FLD [88], Generalized Singular Value Decomposition [89] [90] etc.

All these enhanced algorithms provide better recognition rates and more robust

performance than the LDA baseline.

Summary: The main drawback of the above linear dimension reduction algo-

rithms, such as PCA, ICA and LDA, is the limited capability of linearly capturing

the characteristics of the underlying structure of data that lie on a nonlinear mani-

fold. To efficiently describe the data with nonlinear distributions, many techniques

were proposed to nonlinearly learn the transformations for dimension reduction and

better face representation, including Isometric Feature Mapping (ISOMAP) [91],

Laplacian Eigenmap (LE) [92], Locally Linear Embedding (LLE) [93] etc. This mo-

tivated a paradigm shift from learning linear transformations to learning nonlinear

transformations of face images.

• Learning nonlinear transformations—ISOMAP, LE, LLE, etc.

ISOMAP: A successful attempt to recognize objects and human faces in a non-

linear manner was proposed in a manifold learning method [91] called Isometric
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Feature Mapping (ISOMAP), which aims to find the underlying low-dimensional

structure with nonlinear distributions of a data set. Generally, the data set is

considered as a nonlinear manifold that is a topological space with Euclidean lo-

cality. In ISOMAP, the authors first constructed a neighborhood graph where the

pairwise geodesic distances, i.e., the shortest distance between two sample points

along the surface of a nonlinear manifold, was computed and stored. Based on this

neighborhood graph, the classical Multidimensional scaling method (MDS) [94] was

applied to seek an embedding that preserves the pairwise geodesic distances in the

low-dimensional space. Suppose X = {x1,x2, · · · ,xN} is a data set in the high-

dimensional space, for which the matrix of the geodesic distance graph is given as

DG(i, j) = {dG(xi,xj)}. Then the embedded data set Y = {y1,y2, · · · ,yN} can

be obtained by embedding the data set X in a low-dimensional Euclidean space.

In the low-dimensional space, the matrix of the Euclidean distance graph is given

as DE(i, j) = {dE(yi,yj)}. Thus the objective of ISOMAP is to keep the differ-

ence between the geodesic distance and the Euclidean distance of the corresponding

points as small as possible after embedding, i.e.

min ∥τ(DG)− τ(DE)∥L2 , (2.3)

where τ is an operator that transforms distances to inner products, and ∥ · ∥L2

denotes the L2 matrix norm.

LLE: In contrast to ISOMAP that learns an embedding by constraining the global

geometric relationships, the Locally linear embedding method proposed in (LLE)

[93] aims to seek the embedding through restricting only the locality. By locality,

a point and its neighbors span a low-dimensional Euclidean space on the surface of

a manifold. In view of this, LLE combines the global topological relationships, i.e.

the connections among neighbor points, and linear locality of a manifold to learn

the nonlinear embedding. In stead of computing the geodesic distances between

one point and all the other points on the manifold, LLE only calculates the linear

reconstruction coefficients of one point from its neighbors and stored them in a

graph. The objective of LLE is to keep the coefficients unchanged after embedding,
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i.e.

w∗
i = argmin

wi

∑
i

|xi −
∑
j

wijxj|2, s.t.
∑
j

wij = 1, (2.4)

min
yi

∑
i

|yi −
∑
j

w∗
ijyj|2, (2.5)

where wi is the coefficients of the linear reconstruction of point xi.

LE: Similar to ISOMAP and LLE, the Laplacian eigenmap (LE) method [92] also

explores the topological relationships among data to construct a graph. The core

idea of LE is to find a nonlinear embedding that puts the points as close as possible

if they are neighbors to each other in the original space, i.e.

min
∑
ij

Sij∥yi − yj∥2, (2.6)

where S is the affinity graph obtained by calculating the heat kernels Sij = exp(−∥xi−
xj∥2/δ) if xj belongs to the k nearest neighbors of xi; otherwise Sij = 0. This is

equivalent to solving a generalized eigen-decomposition problem

min tr(YTLY), s.t. YTDY = I, (2.7)

where the Laplacian matrix L = D−1/2SD−1/2 and Di,i =
∑n

j=1 Si,j and Di,j = 0

for i ̸= j. To avoid trivial solutions, LE imposes a constraint YTDY = I on this

objective function.

Summary: To exploit much more compact description of a manifold meanwhile

avoid the curse of dimensionality, a nonlinear dimension reduction procedure is

usually applied on a manifold. However, the main drawback of these manifold

learning approaches is the poor capability of generalization due to the fact that

there is no explicit mapping functions found for new input samples.

• Using linear transformations to approximate nonlinear transformations—

Graph Embedding approaches such as LPP
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LPP: Based on the proof [95] that the Laplacian of a graph can be considered as

a good approximation of Laplace-Beltrami operator defined on the manifold, many

graph embedding algorithms have been proposed to linearly map a manifold to a

low dimensional subspace, such that the embedding is defined everywhere. Among

these methods, Locality Preserving Projections (LPP) [95] is the first attempt to

prove and linearize the underlying nonlinear mapping and represent it explicitly.

As a good linear approximation of LE, LPP shares the similar idea and greatly

extends the generalization ability of LE. Suppose that a unknown linear projec-

tion w (a column vector) maps the original data set X = [x1,x2, · · · ,xN ] from

the high-dimensional space to the projected data set y = [y1, y2, · · · , yN ] in the

low-dimensional space, i.e., y = wTX, then the generalized eigen-decomposition

problem becomes

min(wTX)L(wTX)T , s.t. (wTX)D(wTX)T = 1. (2.8)

Through this linear transformation w, the locality characteristic of a manifold can

be optimally preserved and a new input sample can be directly projected and used

for classification without re-learning.

Graph Embedding: For the purpose of dimension reduction, Yan et al. proposed

a general framework known as graph embedding [96].

y∗ = arg min
yTPy=β

yTLy, (2.9)

where L is the Laplacian matrix of an intrinsic graph and P is a constraint matrix,

which can be either a diagonal matrix or the Laplacian matrix of a penalty graph.

Within this framework, some classic subspace learning approaches such as PCA,

LDA, LPP, ISOMAP, LLE and LE can be considered as special cases. These

algorithms have different motivations but share the common form in mathematics.

Furthermore, the graph embedding framework explains the intrinsic implication of

each graph so that an explicit way to design the graphs according to special purposes

is provided. With different objectives, we can thus design different intrinsic graphs

and penalty graphs accordingly.
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• New trends—Sparse representations

Recently, sparse coding has shown promising properties for face reconstruction,

representation and recognition. A representative face recognition method, which

utilizes the advantages of sparse representation, is the sparse representation-based

classification (SRC) method [97]. By exploiting the fact that the errors caused

by occlusion and corruption are often sparse in a face image, the SRC method is

tolerant to these sparse errors and can achieve a more robust face recognition per-

formance. Furthermore, the SRC method is restricted to seeking sparse coefficients

such that it naturally emphasizes the bases of a class to which the test image be-

longs. Thus the sparse representations obtained from SRC are discriminative and

suitable for classification.

It has been shown in the literature that the holistic information is crucial for humans

to recognize faces. In the appearance-based holistic approaches, the global information

of each face image is preserved rather than using only the pixels in certain positions or

local regions. However, the holistic representation-based methods would be affected by

the variations in terms of scale and misalignments, which might be better handled by

the local feature-based methods.

2.3 Face Recognition Based on Image Sets

2.3.1 Motivation

• Difficulties confronted by the conventional face recognition systems

As shown in Fig. 1.1 in Chapter 1, the conventional face recognition systems are

usually based on image-to-image matching that treats each face image as an iso-

lated individual. This matching mode may bring about some practical problems to

the complex recognition systems that usually consist of face detection/ segmenta-

tion/ tracking, face alignment, face representation and face identification. For high

quality face images such as drivers’ licenses, passports and IC photos, face segmen-

tation and recognition are rather easy procedures since the face images are acquired

under a controlled condition. However, in practical scenarios there is considerable
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variations in face images that are collected from a wide range of sources and set-

tings, e.g., images contain faces in arbitrary poses, clutter surroundings with low

resolutions or occlusions. Under these uncontrolled conditions, face detection and

recognition will confront serious challenges. The performance of many techniques

might be degraded heavily when multiple variations are present simultaneously,

e.g., a pose-invariant face recognition approach may not work properly when the

face images also contain variations in expression or illumination. There is no uni-

versal technique that can deal with all practical situations. Moreover, there is no

evidence to prove that a complex situation can be handled by the combinations of

different techniques. Thus the conventional face recognition systems under the un-

constrained conditions are struggling in providing robust and reliable performance.

Compared to a single-shot image, an image set is able to provide more useful in-

formation to cover more variations in the individuals’ appearances. Hence, it can

provide more discriminative information to model the appearances of human faces.

• Sources of face image sets

Generally, the image set can be a collection of unordered images from different views

or image frames harvested from a video clip, even the video clip is not continuous.

As important applications of face recognition techniques, systems for surveillance,

information security, and access control are widely used in our daily lives. More-

over, a large number of social media sharing websites, such as Facebook, YouTube

and Flickr, have emerged with the rapidly developing internet and constantly in-

creasing online social interactions. Everyday hundreds of millions of people post

their personal photos and videos onto these social media networks. With the mas-

sive data, video sequences and multiple still images of an individual are much easier

to obtain than before.

From the above analysis, we decided to focus our research on the topic of face recog-

nition based on image set (FRBIS). Through extensive analysis and experiments, we

attempt to evaluate our proposed methods in some practical environments.
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Figure 2.5: Two steps involved in the set-based classification tasks.

2.3.2 Problem Statement

Different from the conventional face recognition systems based on image-to-image match-

ing, FRBIS attempts to recognize an individual from a set of face images. In this scenario,

both the gallery and probe samples are face image sets rather than single-shot image in-

stances and a probe set of a person needs to be classified as one of the known identities.

The similarity between a gallery and a probe is obtained by calculating the set-to-set

distance as shown in Fig. 1.2 in Chapter 1. As mentioned in reference [98], the task of

FRBIS mainly consists of two steps: (1) the modeling of image set and (2) the similarity

measuring between image sets. The modeling of image set aims to extract some features

to characterize each image set and the similarity measuring between image sets aims to

compute the similarity between two models of two image sets respectively, as illustrated

in Fig. 2.5.
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2.3.3 Related Work

There has been a growing research interest in the topic of visual recognition based on

image sets where each image set contains variation information that is unavailable in a

single image. As mentioned above, the FRBIS problem contains two steps, i.e., modeling

an image set and measuring the similarity between such models. Once the model of

an image set is designed, the corresponding similarity measure is roughly fixed. For

example, the Kullback-Leibler divergence is used to measure the similarity between two

statistical densities, while the principal angle is always used to measure the subspace

distances. Thus, in terms of the model adopted to describe an image set, the existing

FRBIS methods [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111]

[112] [113] [16] can be grouped into three categories: model-free methods, single-model

based methods and multi-model based methods.

• Model-free methods

As proposed in [114] [115], it is reasonable to compare two image sets by directly

calculating the distances between pair-wise samples across these two sets. However,

a limitation of these methods is that the recognition results may drop severely when

outliers are involved in calculating the distance between two image sets.

• Single-model based methods

In the single-model based methods, an image set is always formulated as a pre-

defined parametric distribution [99] [100] [101], such as multivariate Gaussian dis-

tribution or Gaussian Mixture Models (GMM), where the parameters are esti-

mated from the corresponding data set. Then a probability metric such as the

Kullback-Leibler divergence is utilized to measure the set similarity by calculat-

ing the distance between two estimated distributions. However, the multivariate

Gaussian distribution is an insufficient representation of an image set due to its

insufficient ability of modeling nonlinear and low dimensional intrinsic structures

[12]. In contrast, the GMM distribution is a more principled model than the Gaus-

sian distribution and its kernel versions, but the better performance is achieved at

the cost of high computational complexity from a Monte Carlo algorithm. A main
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shortcoming of these parametric methods is that they may fail when there are weak

statistical relationships between the training and test image sets. Furthermore, the

classification performance could be affected if the practical data sets do not follow

the predefined density.

To reduce the computational complexity of the face recognition systems, an image

set can be modeled by using a linear subspace with low computational complexity

where the missing data can be filled in, thus effectively eliminating the effects of

outliers. In this scenario, the whole dataset is a collection of such linear subspaces

[102] [103] [104] [105] [106] [107] [108]. One way to efficiently calculate the dis-

tance between two subspaces is utilizing the principal angles or orthonormal bases,

such as Mutual Subspace Method (MSM) [105], Subspace Distance (SD) [102] and

a Weighted Subspace Distance (WSD) [103]. Among these approaches, mutual

subspace method (MSM) [105] is one of the first attempts to calculate the dis-

tance between two subspaces where the first (smallest) principal angle of the two

subspaces was calculated as the set distance, while the discriminative information

within other bases are ignored. More recently, a subspace distance (SD) method

[102] was proposed to treat all the orthogonal bases of a subspace equally. However,

this may result in a loss of discriminative information since the variation in each di-

mension is different. To prevent such a loss, a weighted subspace distance (WSD)

measure [103] was proposed subsequently, which achieved a better performance

than the SD method by characterizing the distribution in each dimension.

Another way to measure the similarity between subspaces is embedding a linear sub-

space from a Grassmann manifold to a data point in the Euclidean space through

Grassmann kernels [111], based on which the distance between points in the Eu-

clidean space can be computed as the subspace similarity. However, a major disad-

vantage of these subspace based methods is that their modeling abilities are insuf-

ficient to represent a nonlinear manifold. Furthermore, on a Grassmann manifold,

the dimensionality of all subspaces is required to be the same.

Some novel geometric models such as affine hull and convex hull were exploited

to more compactly describe an image set in the reference [98]. In these methods,
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each image set was represented by a convex hull and the distance between the

nearest points on the two convex hulls was calculated as the similarity between a

pair of convex hulls. A support vector machine (SVM) [116] classifier was used to

accomplish the set-to-set matching. However, one disadvantage of this method is

its high computational complexity.

Recently, a method known as Sparse Approximated Nearest Point (SANP) [117]

was proposed to measure the similarity between face image sets. In this method,

each image set was modeled using an affine hull and the sparse reconstruction error

was defined between two affine hulls as the distance between image sets. Although

this method was able to achieve the state of the arts, the computational complexity

was relatively high in solving the l1-norm objective function.

From the above analysis, a major disadvantage of the single-model based methods is

the insufficient ability to represent a nonlinearly distributed image set that contains

considerable variations in face images collected from a wide range of sources and

settings, e.g., images contain faces in arbitrary poses, clutter surroundings with low

resolutions, occlusions, etc.

• Multi-model based methods

Recently, several multi-model based methods [16] [118] have been proposed to mea-

sure the similarity between two image sets by describing each image set as a non-

linear manifold. In these methods, a nonlinear manifold was usually characterized

by using multiple local models. Manifold-to-Manifold distance (MMD) [16] was the

first attempt to define the distance between manifolds that characterized a mani-

fold by using several local linear patches, each of which was a local model. Owing

to the unbalanced clustering method used in MMD, an enhanced version of MMD

called Manifold Discriminant Analysis (MDA) [118] was proposed that modified

the clustering procedures. Furthermore, a discriminative learning procedure was

introduced before the manifold-to-manifold matching stage.

The advantage of the multi-model based methods lies in the strong capability of

characterizing an image set with complex distribution. However, how to efficiently

compute the dissimilarity between such image sets remains a challenging problem.
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2.4 Conclusion

In this Chapter, we first introduced the problem of automatic face recognition, including

the advantages, problem statement, possible applications and challenges, after which a

comprehensive literature review of the classic/popular methods was provided. In the rest

of this thesis, we shall focus our attention on face recognition techniques based on image

set (FRBIS) that was introduced in Section 2.2.
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Chapter 3

Generalized Subspace Distance

3.1 Introduction

Normally, a single face image has limited capability to capture and reflect the true struc-

ture of a 3D human face, especially a low quality face image that contains a large number

of variations such as occlusions, misalignments, shadows, etc. This leads to unreliable

performance of the conventional face recognition techniques that recognize a person us-

ing only a single-shot image as shown in Fig. 1.1 in Chapter 1. However, a desirable

property of a successful face recognition system is the capability of processing the low

quality face images that are acquired and used in real-life applications. Since an image

set of a person is able to provide more complete information that covers variations in an

individual’s appearance, one way to reduce the challenges for the current face recognition

systems is to recognize a person using a set of face images instead of a single-shot image.

Furthermore, a set of face images of an individual are much easier to be obtained than

before due to the rapidly developing social networks. In general, a face image set of a

person can be multiple shots from different viewpoints, a collection of unordered images

from a personal gallery, or frames from a video clip (sometimes these frames are not in

continuous sequence), as shown in Fig. 3.1.

The problem of recognizing a person based on image sets has attractive more and

more research interest to achieve a practical face recognition system. As reviewed in

Chapter 2, these FRBIS techniques can be grouped into three categories: model-free

methods, single-model based methods and multi-model based methods. Our discussions

start with the single-model based methods in this chapter, and the multi-model based
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Figure 3.1: A face image set of a person might be multiple shots from different viewpoints,
a collection of unordered images from a personal gallery or frames from a video clip
(sometimes these frames are not in continuous sequence).

methods will be further investigated in the following chapters to compose a relatively

complete study on the FRBIS problem. The model-free methods are beyond the scope

of our work due to the straightforward concept and costly computational expenditures.

In the category of single-model based methods, researchers usually use a single model

to describe an image set. For example, a single model can be a linear representation

or a probabilistic density. One main shortcoming of the probabilistic density model is

that the classification performance will be affected if the actual data sets do not follow

the predefined density. Due to the limitation, the linear representation-based methods,

which have been referred to as the correlation-based methods in this thesis, become

more popular in image sets-based face recognition techniques. There are various linear

representations proposed in the literatures, e.g., linear subspaces, affine representations

and convex hulls. Among these correlation-based methods, mutual subspace method

(MSM) [105] was the first attempt to model an image set by using a linear subspace where

an efficient way was proposed to calculate the distance between subspaces. Following the
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linear subspace model, another correlation-based method known as the subspace distance

(SD) method was proposed in [102] that further explored the information of correlations

among orthonormal bases for computing the distance between subspaces. As an extension

of SD, a weighted subspace distance (WSD) [103] measure was proposed subsequently

to improve the performance of the SD method. These correlation-based methods share

a common advantage in computational efficiency, including the rapid computation of

principal angles and the rapid estimation of the linear subspaces by using PCA or some

incremental learning methods. In order to bring this advantage into full play, our work

in this chapter focuses on how to enhance the recognition performance of the correlation-

based methods.

In the rest of this chapter, we first give a brief introduction on the state of the arts,

e.g., the MSM, SD, and WSD methods, where the properties and disadvantages of these

methods are discussed in Section 3.2. From MSM, SD and WSD, we observe that the

similarity between subspaces is always related with orthonormal bases. Thus we hope to

find an explicit rule to measure the subspace distance. We observe that the weighting

function of each basis is the key that leads to various subspace distances. Thus the gen-

eralized subspace distance (GSD) framework is proposed in Section 3.3 and illustrates

this observation. Based on the GSD framework, in Section 3.4 we propose two distance

measurements for image set matching, namely fractional order weighted subspace dis-

tance (FOWSD) and exponential weighted subspace distance (EWSD). Furthermore, the

affine versions of FOWSD and EWSD are proposed in Section 3.5, which leads to a better

recognition performance. In Section 3.6, extensive experiments are conducted to illus-

trate the effectiveness of the proposed FOWSD, EWSD and their affine versions through

comparisons with the state of the arts.

3.2 Correlation-Based Methods

3.2.1 Principal Angles

To describe the relationship between two different linear subspaces, the principal angles

or canonical angles, were first introduced by Hotelling in reference [112]. Suppose there

are two linear subspaces S1 and S2, and dim{S1} = dim{S2} = l. The minimal angles
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0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θl ≤ (π/2) between vectors of two subspaces are defined as the

principal angles, for which we have

cos(θi) = max
ui∈S1

max
vi∈S2

uT
i vi

s.t. uT
i ui = vT

i vi = 1 and uT
i uj = vT

i vj = 0, where j = 1, · · · , i− 1. (3.1)

The vectors ui and vi are usually called a pair of principal vectors. The smallest

angle θ1 between two subspaces is obtained from the first pair of principal vectors u1

and v1. And the second pair of principal vectors u2 and v2, which is orthogonal to the

first pair, corresponds to the second smallest angle θ2, so on and so forth, with the next

pair of principal vectors orthogonal to all the previous pairs. For ease of exposition, we

use a set of orthonormal bases P1 = [p1,p2, · · · ,pl] to represent the subspace S1 and

P2 = [q1,q2, · · · ,ql] to represent the subspace S2. Then an easy way to stably compute

a set of principal angles between S1 and S2 can be found in reference [109], which utilized

the Singular Value Decomposition (SVD)

(P1)
TP2 = Q12ΛQ

T
21

s.t. Λ = diag(σ1, σ2, · · · , σl), (3.2)

where Q12 and Q21 are orthonormal matrices, and the canonical correlations are obtained

as cos(θ1) = σ1, · · · , cos(θl) = σl. Usually, P1 and P2 are formed by eigenvectors of the

data covariance matrices through a PCA algorithm.

3.2.2 Mutual Subspace Method (MSM)

Mutual Subspace Method (MSM) is the first attempt to apply the concept of principal

angles to set-based face recognition techniques [105]. In this method, each image set is

represented by a linear subspace and then the smallest angle between the input and the

reference subspaces is used as the subspace similarity:

dMSM(S1,S2) = cos(θ1), (3.3)

where θ1 is the smallest principal angle obtained from (3.1).

It is noted that the MSM method uses the most similar pair of principal vectors to

describe the relative positions of two subspaces S1 and S2. Due to the high tolerance
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of a subspace, the performance of MSM is insensitive to the varying facial expressions

and poses. Furthermore, only the first principal angle cos(θ1) = σ1 is used for computing

the subspace distance, thus MSM brings an inherent advantage in the computational

efficiency.

3.2.3 Subspace Distance (SD)

Although the MSM is an efficient distance metric for measuring the similarity between

linear subspaces, it ignores much useful information carried by other pairs of orthonormal

bases. Furthermore, the distance between subspaces becomes unreliable when the first

principal angle is affected by some variations. In order to put the information carried by

all the orthonormal bases of S1 and S2 into full play, a subspace distance (SD) was pro-

posed in [102] where the subspace distance (SD) can be computed between two subspaces

with different dimensions. Given an m-dimensional subspace S1 and an n-dimensional

subspace S2 where m and n denote the numbers of orthonormal bases in subspace S1 and

S2 respectively, we assume m < n without losing generality. Then the subspace distance

(SD) is defined as

dSD(S1,S2) =

√√√√max(m,n)−
m∑
i=1

n∑
j=1

(pT
i qj)

2. (3.4)

It is observed that all the orthonormal bases pi and qj are involved in the measurement

of subspace distance. In [102], the subspace distance (SD) was proved to be invariant to

the choice of orthonormal bases, thus the eigenvectors of data covariance matrices are

usually an intuitive choice to represent subspaces.

3.2.4 Weighted Subspace Distance (WSD)

It is observed that the SD method treats all the orthogonal bases of a subspace equally.

However, the variation of a data set in each dimension is different. To capture the

different data distributions of an image set, a weighted subspace distance was proposed

in reference [103] where each orthonormal basis is assigned with a weight

dWSD(S1,S2) =

√√√√1−
m∑
i=1

n∑
j=1

√
λiµj(pT

i qj)
2, (3.5)
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Figure 3.2: From the upper-left to lower-right: the illustrations of MSM, SD, WSD and
notations. The MSM method uses a principal vector to describe an image set, the SD
method uses a square region to describe an image set and the WSD method uses a
rectangular region to describe an image set.

where λi and µj are the eigenvalues corresponding to the orthonormal bases pi and qj

respectively.

3.2.5 Comparisons Between MSM, SD and WSD

As shown in Fig. 3.2, we illustrate the basic concept of the MSM, SD and WSD methods

geometrically. For each method shown in Fig. 3.2, a valid vector or region is chosen to

illustrate the actually used part of each subspace, i.e., the valid vector or region is the

actual representation of an image set for calculating the set-to-set distance. In Fig. 3.2,

the upper-left part shows that the MSMmethod only uses the first principal vector u1 as a

representation of the image data set for computing the subspace distance measurement.
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This is a rather weak representation that loses most information of an image set. In

contrast, the SD method exploits all the orthonormal bases, which constructs a valid

square region for measuring the similarity between image sets, as shown in the upper-

right part of Fig. 3.2. However, We can observe that the square region used in the SD

method does not successfully capture the actual distribution of an image set due to the

fact that SD treats all the orthonormal bases equally. To characterize the distribution

of an image set more reasonably, a rectangular region is used in the WSD method,

which assigns eigenvalues to the corresponding bases. It is observed that the weighting

functions of WSD are eigenvalues that are fixed values and cannot be changed even if it

is not optimal for classification.

3.3 Proposed Generalized Subspace Distance (GSD)

Framework

From the above analysis, all the distance measures MSM, SD and WSD are designed

for measuring the dissimilarity between two subspaces by using the orthonormal bases.

Next, we summarize the common properties of these measures and propose a generalized

subspace distance (GSD) framework, within which the SD and WSD distance measures

can be considered as special cases.

As defined in Section 3.2, we use P1 = [p1,p2, · · · ,pm] to represent the subspace

S1 and P2 = [q1,q2, · · · ,qn] to represent the subspace S2 respectively and we let

{λ1, λ2, · · · , λm} and {µ1, µ2, · · · , µn} be the corresponding eigenvalues of P1 and P2.

Taking into account the different importance of the bases, all the orthogonal bases are

utilized by the proposed generalized subspace distance (GSD) to calculate the subspace

distance

dGSD(S1,S2) =

√√√√√√1−
m∑
i=1

n∑
j=1

[
f(λi)

m∑
i=1

f(λi)

]1/2[
f(µj)
n∑

j=1

f(µj)

]1/2

(pT
i qj)

2, (3.6)

where each of the bases is assigned with a weighting function f(λi) and f(µj), 1 ≤ i ≤ m

and 1 ≤ j ≤ n, such that an unique weight is produced for each basis. The weighting

function can be flexibly designed for different purposes.
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It is obvious that the key procedure of the GSD is how to design a weighting function

that makes the GSD a valid distance metric and better for classification. With different

weighting functions f , the existing subspace distance measures such as SD and WSD can

be readily derived from our proposed GSD framework as following:

(1) when f = 1 ∀ i, j, the proposed GSD degenerates into the conventional SD, which

assigns equal weights to all bases;

(2) when f(λi) = λi and f(µj) = µj, ∀ i, j, the proposed GSD degenerates into the

WSD;

As a valid distance metric, the proposed GSD also needs to satisfy several properties

such as nonnegativity, symmetry, triangle inequality, etc. Most of these properties are

straightforward to justify, thus we only prove the validity and triangle inequality as below.

• Validity:

Proof : Let {p1,p2, · · · ,pm} and {q1,q2, · · · ,qn} be the orthonormal bases of sub-

spaces S1 and S2 respectively, then we have

n∑
j=1

(pT
i qj)

2 ≤ ∥pi∥2 = 1, (3.7)

m∑
i=1

(pT
i qj)

2 ≤ ∥qj∥2 = 1. (3.8)

For ease of exposition, we let f̃(λi) =
f(λi)

m∑
i=1

f(λi)
and f̃(µj) =

f(µj)
n∑

j=1
f(µj)

, then we have

m∑
i=1

n∑
j=1

√
f̃(λi)f̃(µj)(p

T
i qj)

2 ≤
m∑
i=1

n∑
j=1

f̃(λi) + f̃(µj)

2
(pT

i qj)
2

=
1

2

m∑
i=1

f̃(λi)
n∑

j=1

(pT
i qj)

2 +
1

2

n∑
j=1

f̃(µj)
m∑
i=1

(pT
i qj)

2

≤ 1

2

m∑
i=1

f̃(λi) +
1

2

n∑
j=1

f̃(µj) = 1. (3.9)

Thus, dGSD is a valid distance metric provided that the radicand is nonnegative.
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• Triangle inequality: Next, we prove the triangle inequality of dGSD in a similar

way to the references [102] [103].

Proof : Let P, Q and R be m, n and k-dimensional subspaces of ℜD. Let [p1, p2,

· · · , pm] be the orthonormal bases of P, [q1,q2, · · · ,qn] be the orthonormal bases

of Q and [r1, r2, · · · , rk] be the orthonormal bases of R. Then we construct D×D

matrix MP :

MP =
m∑
i=1

MP (i) =
m∑
i=1

√
f̃(λi)(pip

T
i ). (3.10)

Since

∥MP (i)∥2F = tr{MT
P (i)MP (i)}

= f̃(λi)tr{pip
T
i pip

T
i }

= f̃(λi), (3.11)

and for i ̸= j:

tr{MT
P (i)MP (j)} =

√
f̃(λi)f̃(λj)tr{pip

T
i pjp

T
j } = 0, (3.12)

thus we have

∥MP∥2F =
m∑
i=1

∥MP (i)∥2F =
m∑
i=1

f̃(λi) = 1. (3.13)

Similarly, we have ∥MQ∥2F = ∥MR∥2F = 1. Then the Frobenius norm of (MP −MQ)

can be derived as

∥MP −MQ∥F =

√
∥MP∥2F + ∥MQ∥2F − 2 · tr(MT

PMQ)

=

√√√√2− 2
m∑
i=1

n∑
j=1

[
f̃(λi)

]1/2[
f̃(µj)

]1/2
(pTi qj)

2

=
√
2 · dGSD(P,Q). (3.14)

Thus, it is obvious that

∥MP −MQ∥F ≤ ∥MP −MR∥F + ∥MR −MQ∥F (3.15)

=⇒ dGSD(P,Q) ≤ dGSD(P,R) + dGSD(R,Q). (3.16)
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Figure 3.3: The rose-colored region is used in the FOWSD and EWSD methods to
approximate an image set for calculating the set-to-set distances. Compared with the
vector and regions used in SD and WSD, the rose-colored region is more suitable and
flexible.

3.4 Proposed FOWSD and EWSD

It is observed that the weighting function f in the GSD framework is what distinguishes

one distance measure from another and is probably the key to further improving the

classification performance. Based on this GSD framework, we design some simple but

effective distance metrics to further improve the performance of the conventional SD and

WSD. By introducing a parameter α that is obtained from a learning stage, a fractional

order weighted subspace distance (FOWSD) and an exponential weighted subspace dis-

tance (EWSD) are proposed to discriminatively measure the distance between image

sets. Compared with the SD and the WSD methods where the valid regions do not fit

an image set appropriately, the parameter α enables FOWSD and EWSD to use a more

flexible and compact valid region to approximate an image set, as illustrated in Fig. 3.3.
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3.4.1 Weighting Functions

Based on the geometric concept illustrated in Fig. 3.3, we define the weighting functions

of FOWSD as

f(λi) = λα
i , (3.17)

f(µj) = µα
j . (3.18)

As will be shown later in the experiments, the optimal α always reside between 0 and

2, with a sharp deterioration below 0 and a more moderate one above 2. With this

observation, we set a finite range for α to be searched in, i.e., α ∈ [0, 2], which makes

the proposed distance take fractional ordered weights. Similarly, we define the weighting

functions of EWSD as

f(λi) = eαλi , (3.19)

f(µj) = eαµj , (3.20)

where 1 ≤ i ≤ m and 1 ≤ j ≤ n, and α is a parameter that is obtained in a learning

stage from the training data. Similar to the WSD method, the original terms λα
i , µ

α
j ,

eαλi and eαµj are normalized for constructing an image brightness-invariant distance in

(3.6). This distance makes use of the eigenvalues to reflect the sample variance along

different dimensions. The spread of the classes within their respective subspaces can be

manipulated by adjusting α. Thus, a more suitable and flexible region is obtained in the

FOWSD and EWSD methods to measure the image set-to-set dissimilarity.

3.4.2 Finding the Optimal Parameter

To determine an appropriate value for the parameter α, we have designed a discriminative

learning procedure through which the within-class distances among image sets from the

same class can be reduced. In conventional discriminant analysis algorithms, the within-

class compactness is usually characterized by the average of all within-class distances.

However, minimizing this average distance cannot guarantee the compactness for every

class due to the heterogeneities of different classes. In order to make the within-class

distance of every class as small as possible, we have designed a discriminative learning
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method to search the optimal parameter α by minimizing the maximum within-class

distance for FOWSD and EWSD, as shown in Fig. 3.4.

We assume that there are C training image sets from C classes respectively. We

randomly divide all the available training images in each class into two subsets, which

are characterized by subspaces s1 and s2 respectively by applying PCA. Hence, s1i denotes

one subset from the i-th class and s2i denotes the other subset from the i-th class, where

i ∈ {1, 2, · · · , C}. Then the within-class distance between these two subsets is defined as

Dw(i, α) = dFOWSD(s
1
i , s

2
i ), i ∈ {1, · · · , C}, (3.21)

which indicates the compactness of the class i. Instead of minimizing the average over all

within-class distances, we attempt to minimize the maximum within-class distance over

all classes. Then the optimal α∗ is given as

α∗ = argmin
α

max
i

Dw(i, α), i ∈ {1, · · · , C}. (3.22)

Figure 3.4: The three steps for discriminatively searching the optimal parameter α.
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With the optimal α∗, the compactness of all classes can be attained.

However, through some preliminary experiments, we observed that the solution of

the objective function defined in (3.22) does not always lead to the best performance

of classification tasks due to disturbances, such as outliers and multiple instances with

the same maximum within-class distance. To overcome this problem and improve the

robustness of our method, we define the maximum within-class distance Dw(k1, α) and

the second maximum within-class distance Dw(k2, α) respectively

Dw(k1, α) = max
i

Dw(i, α), i ∈ {1, · · · , C}, (3.23)

Dw(k2, α) = max
i

Dw(i, α), i ∈ {1, · · · , C} and i ̸= k1. (3.24)

Hence, our objective function is to minimize the sum of the two maximum within-class

distances

α∗ = min
α

[Dw(k1, α) +Dw(k2, α)] . (3.25)

Since the maximization in (3.23) and (3.24) is over discrete variable i, the minimization

in (3.25) is discontinuous and thus cannot be solved analytically. In our preliminary

experiments, we have observed that the optimal α always resides between 0 and 2, with a

sharp deterioration below zero and a more moderate one above 2. In view of this, we set

a finite range for α to be searched in, i.e., α ∈ [0, 2], which makes our proposed distance

take fractional ordered weights. In this given range, an optimal α can be obtained by

enumerating the sum of the two maximum within-class distance defined in (3.25) with

a small but finite step size. If the search were to result in an optimal α around the

boundary, we would further extend the search range in anticipation of a better α beyond.

The effectiveness of this discriminative learning procedure will be demonstrated later in

Section 3.6.

3.5 Proposed Affine-FOWSD and Affine-EWSD

We have observed from experiments that when we perform PCA on each image set

to obtain its orthonormal bases, the SVD algorithm is actually performed after each

image set is centered. This means that we lose one dimension information (the mean

vector) of each image set. Thus we have made a little modification to the FOWSD and
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Figure 3.5: The upper subfigure shows an image set. The bottom-left subfigure is the
linear subspace representation of this image set. The orthonormal bases of the linear
subspace are obtained from PCA where SVD is usually performed after data centered.
The bottom-right subfigure is the affine subspace representation of this image set, which
contains orthonormal bases and a mean vector.

EWSD by adding the mean vector of each image set, and the resulted subspace distances

are denoted as Affine-FOWSD and Affine-EWSD since they can be considered as the

distances between affine subspaces. We illustrate the idea in Fig. 3.5.

The upper part of Fig. 3.5 shows an image set. In the bottom-left subfigure, the

X − Z plane is the linear subspace representation of this image set. Generally, the

orthonormal bases of a linear subspace can be obtained using PCA. As a common practice

in PCA, SVD is usually performed after the image set is centered. Thus the one-dimension

information (the mean vector) is discarded by the linear subspace representation. In the

bottom-right subfigure, the flat surface parallelled to theX−Z plane is the affine subspace

representation of this image set, which contains orthonormal bases and a mean vector.

Hence, due to the affine representations, the proposed Affine-FOWSD and Affine-EWSD

are more discriminative for classification.

Suppose there are two image sets S1 and S2, and m1 and m2 denote the mean vectors

of S1 and S2 respectively. Following the idea illustrated in Fig. 3.5, we define the
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Affine-FOWSD as

daffFOWSD = β∥m1 −m2∥22 + (1− β) · dFOWSD(S1,S2). (3.26)

Similarly, the Affine-EWSD is defined as

daffEWSD = β∥m1 −m2∥22 + (1− β) · dEWSD(S1,S2). (3.27)

The principal vectors of set S1 can be considered as a coordinate system with respect

to its mean vector m1, the same applies for set S2. Thus, the term ∥m1 − m2∥22 in

(3.26) and (3.27) quantifies how far away the origins of the two coordinate systems are

from each other. And the term dFOWSD or dEWSD indicates that when the centers of the

two coordinate systems are both shifted to the same origin, how relevant the two linear

subspaces are. Then β is a parameter for balancing the importance between the two

terms.

3.6 Experiments

In this section, we conduct experiments towards the following objectives: (1) Illustrating

the effectiveness of the proposed discriminative learning procedure that is designed to

search the optimal parameter α; (2) Evaluating the performance of the proposed FOWSD

and EWSD and comparing them with the state of the arts to demonstrate the effective-

ness; (3) Evaluating the performance of the proposed Affine-FOWSD and Affine-EWSD

and comparing them with FOWSD and EWSD to show the improvements brought by

the affine representations.

3.6.1 Experimental Settings

In the following experiments, two image classification tasks, i.e., object recognition and

face recognition, are conducted on the CMU MoBo database [119], the ALOI database

[120], the YaleB database [121], and the ETH80 database [122], respectively.

ALOI database: The Amsterdam Library of Object Images (ALOI) database [120]

is a collection of 110, 250 images captured from 1000 different objects, including toys,

Rubik’s cube, cups, clocks, etc. From the first image of each object, a fixed incremental
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Figure 3.6: The object images inside an image set from the ALOI database.

value of variations in viewing angle, illumination angle and color, is uniformly added

to the next image. In our experiments, we use the gray version of this database and

randomly select 200 objects from the 1000 objects to conduct our evaluations. In the

selected subset of ALOI, each image set of an object contains 72 images in different

viewing angles (0◦, 5◦, · · · , 355◦). In the experiments, we resize each image to the size of

32 by 24 pixels. An image set from ALOI database is illustrated in Fig. 3.6.

ETH80 database: The ETH80 database, which contains 3280 images, was created

by Bastian Leibe and Bernt Schiele in reference [122] for object categorization. There

are 80 objects from 8 categories. For each category, high-resolution color images of 10

objects are carefully collected that contain large within-class variations of this category.

For each object, 41 images were captured from evenly varying viewing angles. For each

image, a high-quality segmentation mask was also provided to facilitate the comparisons

between appearance and contour based methods. In our experiments, we resize each

image to the size of 64 by 64 pixels. Some exemplar images of the objects from each

category in the ETH80 database are illustrated in Fig. 3.7, which is drawn based on the

original paper [122].
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Figure 3.7: Some example object images from the ETH80 database.

The YaleB database: The Yale Face Database B (YaleB database) [121] is a collec-

tion of face images from 38 different individuals under 579 viewing conditions, including

9 different poses combined with 64 different illumination conditions. Following the ex-

periment configurations adopted in the WSD method, we only select all the frontal face

images of each person from the YaleB database, where 64 face images are selected for

each of the 38 individuals. Then we resize each image to the size of 32 by 32 pixels. Some

exemplar face images from the YaleB database are shown in Fig. 3.8.

CMU MoBo database: The CMU Motion of body (MoBo) database [119] was

created for biometric identification of humans based on the characteristics of subjects,

which contains 96 video sequences from 24 different persons. For each person, there are

4 video clips corresponding to four walk patterns, i.e., slow walk, fast walk, incline walk

and walk with a ball. This results in a large number of variations in pose and expression

in the face images. By applying the Viola-Jones algorithm [47], the gray scale face images

can be detected and cropped to the size of 40 by 40 pixels as described in [117]. Some

exemplar face images from the CMU MoBo database are shown in Fig. 3.9. Then each
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Figure 3.8: Some exemplar face images from the YaleB database.

Figure 3.9: Some exemplar face images from the CMU MoBo database.

histogram equalized face image is divided into patches of size 8 by 8 pixels and a uniform

Local Binary Pattern feature can be extracted from each patch as the local descriptor.

Methods for comparisons: For the state of the arts of the correlation-based meth-

ods, i.e., the MSM, SD, and WSD methods, will be evaluated and compared with our

proposed methods in the following experiments. To ensure fair comparisons, the principal

component analysis (PCA) algorithm is performed to each image set to obtain a collec-

tion of orthonormal bases. Based on these bases, MSM, SD, WSD, and the proposed
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Figure 3.10: The relationship between (Dw(k1, α) +Dw(k2, α)) and α.

FOWSD and EWSD are performed to calculate the set-to-set distance. Then the gallery

set with the highest matching core is considered as the best match with the probe set.

3.6.2 Finding the Optimal Parameter

In this experiment, we select a small subset of the ALOI database on which the proposed

FOWSD is conducted as an exemplar to demonstrate the effectiveness of the proposed

discriminative learning procedure that is designed to search the optimal parameter α.

We randomly select 200 objects from the ALOI database and each object consists of four

image sets, whose segregation arises naturally through data collection. Two image sets

of each object are used for learning the parameter α (training) and the remaining two

sets are used for evaluating the recognition performance (testing). In each image set, 8

images are selected and each of them is aligned and scaled to 20× 20 pixels.

Applying the minimization procedures introduced earlier in Section 3.4.2 by using a

step-size of 0.05, we first present the relationship between the sum of the two maximum

within-class distances (Dw(k1, α) + Dw(k2, α)) and the parameter α in Fig. 3.10. It is

apparent that α = 0.4 corresponds to the minimum value of (Dw(k1, α) + Dw(k2, α)).

Thus the optimal value of α learned from the minimization procedure is 0.4.
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To test the optimality of the α learned from the previous step, then we use the

remaining two image sets of each object to perform the object recognition task. The

relationship between the recognition performance and the parameter α is shown in Fig.

3.11. It is obvious that the highest recognition rate is also achieved at α = 0.4. This

result verifies that the optimal α obtained through the proposed discriminative learning

procedure enables the FOWSD method to achieve the best classification performance.
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Figure 3.11: The relationship between the recognition rate and α.

3.6.3 Experimental Results of FOWSD and EWSD

We evaluate the performance of the proposed FOWSD and EWSD methods and com-

pare them with the MSM, SD and WSD methods on four databases, i.e., the CMU

MoBo database [119], the ALOI database [120], the YaleB database [121] and the ETH80

database [122], for face recognition and object recognition tasks respectively.

Face Recognition on the YaleB Database: There are 38 face image sets from

38 distinguishing in the YaleB database where each image set contains all the 64 near

frontal face images. We divide each image set into 4 non-overlapped subsets. Each time

we randomly select one subset per person as the gallery set and another subset per person

as the probe set. Thus there are altogether 6 combinations in selecting the gallery and
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probe sets for each person. The recognition results averaged over all these combinations

are shown in Table 3.1.

Table 3.1: Face recognition results of the five comparable methods on the YaleB database.

Methods Average Recognition Rate
MSM 94.30%± 1.06%
SD 98.25%± 0.10%
WSD 87.72%± 6.31%
Proposed FOWSD 99.12%± 0.00%
Proposed EWSD 98.68%± 0.00%

It is noticed that the largest principal component in YaleB database is caused by

the illumination variations in all subjects and it has nothing to do with the identity

of the subjects. Thus we remove the first principal component from each image set in

this experiment and obtain the experimental results in Table 3.1. From this table, it is

observed that the proposed FOWSD method achieves the best recognition performance

(99.12%), which outperforms the proposed EWSD (98.68%) and all other three existing

methods. The improvements achieved by FOWSD over EWSD, WSD, SD, and MSM are

0.44, 11.40, 0.87 and 4.82 percentage points, respectively.

Face Recognition on the CMU MoBo Database: There are 4 face image sets

for each of the 24 different persons in the CMU MoBo database. For each person, we

randomly select two image sets, one is used as the gallery set and the other is used as

the probe set. Similar to the configurations on the YaleB database, there are altogether

6 combinations of the gallery and probe sets. Then we illustrate the recognition rates

averaged over all these 6 combinations in Table 3.2.

We can observe from Table 3.2 that the proposed FOWSD achieves the best recogni-

tion performance (93.75%) that outperforms all the other four reference methods. The

improvements achieved by FOWSD over EWSD, WSD, SD, and MSM are 2.08, 2.78,

2.08 and 2.78 percentage points, respectively.

Object Recognition on the ETH80 Database: The ETH80 database contains

object images from 8 categories and in each category, there are 10 image sets from 10

objects. Each time we randomly select one image set per category as the gallery set and
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Table 3.2: Face recognition results of the five comparable methods on the CMU MoBo
database.

Methods Average Recognition Rate
MSM 90.97%± 0.65%
SD 91.67%± 0.14%
WSD 90.97%± 0.58%
Proposed FOWSD 93.75%± 0.26%
Proposed EWSD 91.67%± 0.14%

Table 3.3: Object recognition results of the five comparable methods on the ETH80
database.

Methods Average Recognition Rate
MSM 72.08%± 2.44%
SD 80.00%± 1.47%
WSD 74.58%± 2.53%
Proposed FOWSD 79.17%± 1.73%
Proposed EWSD 84.58%± 1.26%

select another image set per category as the probe set. We repeat this process 30 times

and summarize the averaged recognition results in Table 3.3.

From Table 3.3, it is observed that the proposed EWSD method achieves the best

recognition rate (84.58%), which outperforms the proposed FOWSD (79.17%) and all

other three methods. The improvements achieved by FOWSD over EWSD, WSD, SD,

and MSM are 5.41, 10.00, 4.58 and 12.50 percentage points, respectively. From Table 3.3,

we can see that the proposed FOWSD and EWSD methods are also effective in general

object classification tasks.

Object Recognition on the ALOI Database: In this experiment, we randomly

select 200 different objects from the ALOI database. For each object, the 72 object

images are divided into 4 subsets following the same way as mentioned in reference [103].

Hence, each object contains four subsets that are characterized by the subspaces learned

by PCA. Again, each time we randomly select two subsets per object, one of them is used

as the gallery set and the other is used as the probe set. Similarly, there are altogether 6

combinations and the recognition results averaged over all these combinations are shown

in Table 3.4.
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Table 3.4: Object recognition results of the five comparable methods on the ALOI
database.

Methods Average Recognition Rate
MSM 51.25%± 2.61%
SD 48.58%± 1.13%
WSD 49.12%± 1.5%
Proposed FOWSD 55.79%± 1.54%
Proposed EWSD 52.75%± 1.93%

Similarly, we can observe from Table 3.4 that the proposed FOWSD achieves the best

recognition rate (55.79%), which outperforms all the other four methods with perfor-

mance gains of 3.04, 6.67, 7.21 and 4.54 percentage points, respectively. On the other

hand, it is observed that the performance of all the five methods is around 50% on the

ALOI database. This is reasonable as each image set is divided into four non-overlapping

subsets, such that each subset contains totally different poses from the other three sub-

sets.

Discussions on the Experimental Results:

• The key reason that the proposed FOWSD and EWSD consistently outperform the

other methods is an optimal parameter α obtained through a discriminative learning

procedure. As described in the previous sections, the parameter α is obtained by

minimizing the within-class distances, making the sets within a class closer and the

margin between classes wider by contrast. Thus adding a new parameter α into the

subspace distance measure better exploits the discriminative information, which in

return improves the classification performance.

• It is observed from the experimental results that the recognition performance of the

SD method is better than that of the WSD method at most of the time. Although

the WSD method provides us an efficacy way to exploit more data information

based on the SD method, the performance of the WSD is sometimes not as good as

expected. A possible reason is that the eigenvalues are not the optimal weights of

the principal vectors for the set-based image classification task. This motivates us

to investigate what type of coefficients are suitable to be assigned to each principal

vector as a weight and we propose a discriminative learning procedure for searching

the optimal weight for each principal vector.
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• Although a learning procedure is introduced in the proposed FOWSD and EWSD

methods to obtain a suitable parameter α, this learning stage can be carried out off-

line, without increasing the testing time required for classifying each probe image

set.

3.6.4 Experimental Results of Affine-FOWSD and Affine-EWSD
Methods

In this experiment, we evaluate the performance of the proposed Affine-FOWSD and

Affine-EWSD methods. To illustrate the performance improvements brought by the

affine subspaces, we compare the proposed Affine-FOWSD and Affine-EWSD methods

with the existing MSM, SD and WSD methods on two databases, i.e., the CMU MoBo

database [119] and the ALOI database [120].

Face Recognition on the CMU MoBo Database: The experimental config-

urations here are similar to the previous experiments where the FOWSD and EWSD

methods were tested on the CMU MoBo database. Then the recognition results from all

6 combinations are averaged and summarized in Table 3.5.

Table 3.5: Face recognition results of the five comparative methods on the CMU MoBo
database.

Methods Average Recognition Rate
MSM 90.97%± 0.65%
SD 91.67%± 0.14%
WSD 90.97%± 0.58%
Proposed FOWSD 93.75%± 0.26%
Proposed EWSD 91.67%± 0.14%
Proposed Affine-FOWSD 93.75%± 0.24%
Proposed Affine-EWSD 93.06%± 0.32%

From Table 3.5, it is observed that both the proposed FOWSD and the Affine-FOWSD

achieve the best recognition rate of 93.75%. The recognition performance of the Affine-

EWSD reaches 93.06% that outperforms its corresponding original version 91.67% by

1.39 percentage points.

Object Recognition on the ALOI Database: The experimental configurations

here are similar to the previous experiments where the FOWSD and EWSD methods were
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tested on the ALOI database. Then the averaged recognition results are summarized in

Table 3.6.

Table 3.6: Object recognition results of the five comparative methods on the ALOI
database.

Methods Average Recognition Rate
MSM 51.25%± 2.61%
SD 48.58%± 1.13%
WSD 49.12%± 1.5%
Proposed FOWSD 55.79%± 1.54%
Proposed EWSD 52.75%± 1.93%
Proposed Affine-FOWSD 59.75%± 0.71%
Proposed Affine-EWSD 59.75%± 0.60%

In Table 3.6, both the proposed Affine-FOWSD and Affine-EWSD methods achieve

the best recognition performance of 59.75%, outperforming the original FOWSD and

EWSD by 3.96 and 7.00 percentage points, respectively.

3.7 Conclusion

In this chapter, we investigated the single-model based methods for the face recognition

problems based on image sets. We first introduced the motivations and the organization

of this chapter in Section 3.1. For comparison purposes, the MSM, SD and WSD meth-

ods were discussed in Section 3.2 to illustrate the advantages and disadvantages of the

existing correlation-based methods. We noticed that most of the existing methods failed

to take into account the different importance of the individual basis of each subspace.

To consolidate this family of correlation-based measures, we proposed a generalized sub-

space distance (GSD) framework in Section 3.3 and showed that most existing subspace

similarity measures can be considered as its special cases. To better exploit the different

importance of the bases, we further proposed a fractional order weighted subspace dis-

tance (FOWSD) method and an exponential weighted subspace distance (EWSD) method

within the GSD framework in Section 3.4, where discriminative weights were assigned

to the bases of each subspace for characterizing their different importance in the simi-

larity measurement. Moreover, in Section 3.5, we also proposed the Affine-FOWSD and
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Affine-EWSD to further improve the recognition performance. Owing to the proposed

discriminative learning procedure for searching the optimal parameter, the discriminabil-

ity of the proposed subspace distances was improved and the corresponding recognition

performance was enhanced in a series of experiments. Experimental results on two im-

age classification tasks including face recognition and object recognition were presented

to show the effectiveness of the proposed scheme in Section 3.6. Next, we will proceed

to explore other possible forms of data distribution information to further improve the

recognition performance.
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Co-Learned Multi-View Spectral
Clustering Approach

4.1 Introduction

In the previous chapter, we discussed the single-model based methods for the task of

face recognition with image sets. To benefit from the nice properties such as efficiency in

representation and robustness to noises, we investigated the correlation-based methods

and proposed subspace distance metrics for measuring the distance between image sets.

Although we have strived to explore the potential of the single-model based meth-

ods, their performance seems to encounter a bottleneck, e.g., the best recognition results

appear to be stable around 93% on the CMU MoBo database. This phenomenon is prob-

ably due to the fact that the single-model based methods, including the linear subspace

model and the multivariate Gaussian distribution model, fail to capture the underlying

structure of image data with arbitrary nonlinear distributions [12]. In this thesis, we give

the explanations/definitions of the image set with “linear distribution” and “nonlinear

distribution” respectively as follows:

• An image set with a “linear distribution”: Images in this set are distributed in a

convex region, thus such two sets can be linearly separated. A Guassian density or

a linear subspace can efficiently describe such an image set that corresponds to a

convex region.

• An image set with a “nonlinear distribution”: Images in this set are distributed in
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an arbitrary region (complex and non-convex), thus such two sets cannot be linear

separated. A nonlinear manifold is a better representation of such an image set.

It is noted that image sets acquired from real-life environments where facial appearances

are of large variations in misalignments, illumination, expression, pose, occlusion, etc.,

are usually with complex distributions.

Thus more flexible models are required to describe an image set with an intrinsic

nonlinear structure. Recently, Wang et al. proposed a multi-model based method known

as Manifold-Manifold Distance (MMD) [16]. They considered each image set as a non-

linear manifold that is described by using a collection of local models. This corresponds

to a method based on multiple models, each of which is described by using a linear

subspace. To measure the similarity between two different manifolds, a manifold-to-

manifold distance (MMD) was designed that is known as the first attempt to define a

distance measure for matching manifolds. Through a series of comparisons with existing

single-model based methods, the multi-model based method demonstrated an advantage

in describing an image set with intrinsic nonlinear structure, thus resulting in a better

recognition performance, as reported in [16]. Motivated by this work, we further explore

the multi-model based methods in this chapter in order to better utilize the strong ability

of describing an image set.

The rest of this chapter is organized as follows. First, we briefly introduce the MMD

method, based on which the motivations of our work are discussed in Section 4.2. Then

we propose a Co-learned Multi-view Spectral Clustering (CMSC) method in Section 4.3.

The CMSC method integrates multi-view information to divide each image set into mul-

tiple clusters. These clusters are more representative and precise to describe a manifold.

Based on these improved representations, MMD is applied to match the distances be-

tween manifolds. In Section 4.4, the performance of the proposed CMSC method is

evaluated. Experimental results show the effectiveness of the proposed CMSC method

through comparisons with the state of the arts. Finally, this chapter is summarized in

Section 4.5.
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Figure 4.1: The flowchart of the MMD method that consists of two steps: 1. Local
model construction; 2. Manifold-to-manifold distance measure. Our work in Chapter
4 focuses on improving the step of local model construction and the enhancement of
manifold-to-manifold distance measure will be investigated in Chapter 5.

4.2 Motivations

To better illustrate the motivations and highlight the contributions of our work, we first

give a brief introduction on the MMD method [16]. As shown in Fig. 4.1, a flowchart

of the MMD method is given, which consists of two steps sequentially, i.e., local model

construction and manifold-to-manifold distance measure. In this chapter we will focus

on improving the step of local model construction, the enhancement of the manifold-to-

manifold distance measure will be investigated in Chapter 5.

Local Model Construction: To facilitate the computation of manifold-to-manifold

distance, each image set with nonlinear structure was described by using a collection of

local models in the MMD method. A one-shot clustering algorithm was designed that

constructs a Maximal Linear Patch (MLP) for each local model such that the linearity

property of these local models can be explicitly guaranteed. That is, each local model

can be described by using a linear subspace. Then an image set with nearly arbitrary
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distributions can be represented by using a collection of linear subspaces.

• Motivation:

(i) A key step of set-based face recognition is how to describe an image set by using

a model that exploits the information of this set as much as possible. However,

there is a severe under-utilization of image sets in the existing work, where

only single view information of each image set is utilized, e.g., the intensity

information. In our daily lives, it is common that many real-world datasets

naturally consist of multiple views, e.g., multiple different languages of the

same article, web pages including contents and hyperlinks, videos including

frames and audio information, etc. Even for an image set that only consists of

a collection of images, plenty information is still able to be exploited by using

some image preprocessing steps, e.g., the SIFT feature [15] and LBP feature

[13] [14] can be extracted from an image set and provide complementary in-

formation to each other. In view of this, we propose a Co-learned Multi-view

Spectral Clustering (CMSC) method to cluster each image set into several

clusters by using the information from multiple views simultaneously.

(ii) We have observed from some preliminary experiments that constructing a

linear subspace for a local model is very time-consuming. Furthermore, com-

puting the distance between two manifolds also becomes a costly procedure

due to the large computational complexity incurred in the linear subspace

matching. In view of these limitations, we adopt a simple but efficient local

model, i.e., the mean vector of each local model, to represent image sets. Then

a nonlinearly distributed image set can be described by using a collection of

mean vectors and the distance between two collections of mean vectors can be

easily computed.

• Contribution:

(i) The existing set-based face recognition methods only utilize a single view of

a dataset to recognize individuals. In contrast, our proposed CMSC method

integrates multiple views of a dataset to enhance the performance.
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(ii) Different from the existing multi-view clustering algorithms that divide each

image set in an iterative manner [123], the proposed CMSC method solves

the optimization function immediately after a relaxation of the constraints.

This provides an efficient and robust division of each image set according to

its multi-view information.

Manifold-to-Manifold Distance Measure: To compare two collections of linear

subspaces, the most efficient way is to compute the distance between the most similar pair

of linear subspaces from the two manifolds. This distance was defined as the manifold-

to-manifold distance in the MMD method. In Chapter 5, we will proceed to explore more

possibilities to calculate the distance between manifolds both efficiently and robustly.

4.3 The Proposed CMSC Method

Among the numerous clustering methods, k-means clustering [124] is one of the most

popular algorithms that classify a given data set into a fixed number (the number is pre-

defined) of clusters by involving an EM procedure. However, k-means algorithm confronts

some limitations, e.g., k-means algorithm cannot produce a satisfactory clustering when

the natural clusters do not correspond to convex regions. To solve this problem, we can

transform the original data points through an embedding into a low-dimensional subspace

where the natural clusters correspond to convex regions and can be linearly separated.

This idea was proposed and used in the spectral clustering [125] [126], which clusters

the data points based on the first k eigenvectors of a normalized Laplacian matrix of a

graph, whose edges denote the similarities between data points.

The Single View Spectral Clustering [126]: Assuming there is a data set X =

[x1,x2, · · · ,xn], from which an adjacency matrix S that stores the similarities between

pairwise points of the data set X can be computed, i.e., Si,j = exp
(
− ||xi−xj ||2

σ2

)
. Then

the Laplacian matrix of this graph can be obtained through L = D−1/2SD−1/2, where

Dii =
∑n

j=1 Si,j and Di,j = 0 for i ̸= j. Based on the normalized Laplacian matrix

L, the single view spectral clustering algorithm aims to find the optimal embedding

matrix denoted as V, which consists of the embedding coordinates of data points in the
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low-dimensional subspace:

max
V∈Rn×k

tr
(
VTLV

)
s.t. VTV = I. (4.1)

The optimal V consists of the first k eigenvectors of the symmetric normalized Lapla-

cian matrix L as its columns. The i-th row vector of V provides the embedding coor-

dinates of the i-th data point in the low-dimensional subspace, i ∈ {1, 2, · · · , n}. Thus

row vectors of V can be considered as the relaxations of the indicator vectors and are

assigned to one of the k clusters through the k-means algorithm.

The single view spectral clustering has some nice properties such as the well-defined

mathematic framework, the more discriminative nature for clustering, good performance

on clusters with arbitrary shapes, etc. To exploit these merits, a co-regularized multi-view

spectral clustering (Co-regularized MSC) approach was proposed [123] that extended

the single view spectral clustering method to the multi-view case through co-training

the relaxations of the indicator vectors by using different representations of a data set

corresponding to its multiple views. However, some limitations can be observed for this

method. For example, the Co-regularized MSC [123] aims to seek a matrix V for each

view of the data set in an iterative manner, which results in only an approximation of

the actual solution to the objective function (4.1). Moreover, a kernel matrix was pre-

defined for each matrix V, which was used in the last term of the objective function

(4.1) as an additional constraint. Although it facilitates the solving of this optimization,

the geometric intuition of the multiplication among these kernel matrices is not clear.

Furthermore, although the number of iterations can be pre-defined, the analysis on the

convergence of this iterative algorithm was absent.

To overcome the limitations mentioned above, we propose a Co-learned Multi-view

Spectral Clustering (CMSC) approach to collaboratively learn the embedding matrix Vi

for each view i of the data set, from which the co-learned embeddings can be used to

obtain more accurate clusters. The basic idea of the proposed method is illustrated in

Fig. 4.2. Compared with the Co-regularized MSC approach, the proposed CMSC method

demonstrates some advantages that are given in the following.

• To expose the geometric intuition explicitly, we use the between-view correlation as

a constraint such that the embeddings obtained from different views get closer to
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Figure 4.2: The proposed CMSC method clusters an image set into several subsets
through a co-learning stage, which enforces the graphs from multiple views to be consis-
tent with each other.

each other. This is consistent with our objective that representations of the same

data point in different views should be assigned to the same cluster.

• Instead of an iterative learning procedure, our proposed CMSC method solves the

objective function (4.1) through a generalized eigen-decomposition, which leads to

a closed-form solution rather than an approximation obtained by Co-regularized

MSC. After the generalized eigen-decomposition, the embedding matrices V1, · · · ,

Vm for all views of the data set can be obtained simultaneously, which is more

efficient and accurate than updating only one matrix in each iteration.

In the following, we first propose two methods for two-view spectral clustering, namely

pairwise-based CMSC method and centroid-based CMSC method, and then extend these

two methods to the multi-view case respectively.
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4.3.1 Pairwise-based CMSC

4.3.1.1 Pairwise-based Two-view Spectral Clustering

Assuming there are n sample points in an image data set. Xi = [xi
1,x

i
2, · · · ,xi

n] and

Xj = [xj
1,x

j
2, · · · ,xj

n] denote different representations of this data set under two views

i, j. Then the normalized Laplacian matrix Li can be obtained through D
−1/2
i SiD

−1/2
i

and the same applies for Lj.

Since the representation in each single view of the data set is sufficient for clustering

independently, we attempt to maximize both tr(VT
i LiVi) and tr(VT

j LjVj) such that the

embedding matrix Vi and Vj, i.e., the approximations of the cluster indicator vectors,

can be optimized for view i and view j. Meanwhile, the embeddings obtained from

different views of the same data point should be assigned to the same cluster. Thus,

the learned embedding matrices Vi and Vj should get closer to each other in the low-

dimensional subspace. In view of this, we attempt to minimize the distance between the

two embedding matrices Vi and Vj in our objective function:

min
Vi,Vj∈Rn×k

∥Vi −Vj∥22 = tr
(
VT

i Vi −VT
j Vi −VT

i Vj +VT
j Vj

)
= 2 · k − 2 · tr(VT

i Vj), (4.2)

where tr(VT
i Vi) = tr(VT

j Vj) = k. Ignoring the constant term 2 · k and the scaling term

2, the optimization problem in (4.2) can be rewritten as:

max
Vi,Vj∈Rn×k

tr(VT
i Vj). (4.3)

That is, upon maximizing the similarity between two embedding matrices Vi and Vj in

(4.3), the two graphs get closer to each other in the low-dimensional subspace.

In order to find two embedding matrices Vi and Vj that most facilitate the two-

view spectral clustering, we attempt to optimize the above three objective functions

simultaneously, which can be integrated as below:

max
Vi,Vj∈Rn×k

λ1

[
tr(VT

i LiVi) + tr(VT
j LjVj)

]
+ λ2 · tr(VT

i Vj)

s.t. VT
i Vi = I, VT

j Vj = I, (4.4)
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where parameters λ1 and λ2 are introduced to balance the importance between the in-

dependent spectral clustering terms and their correlations.

However, both the constrains in (4.4) are nonlinear, which is intractable to obtain

closed-form solutions to this optimization problem. Thus we relax them to a single

constraint as:

s.t. βiV
T
i Vi + βjV

T
j Vj = I, (4.5)

where βi and βj are introduced to balance the power of constraints in two different views.

For ease of exposition, we let V =

[
Vi

Vj

]
, then the objective function in (4.4) can

be rewritten in a matrix form as:

max
V∈R2n×k

tr(VTLV),

s.t. VTBV = I, (4.6)

where

L =

[
λ1Li λ2I

n×n

0 λ1Lj

]
(4.7)

B =

[
βiI

n×n 0
0 βjI

n×n

]
, (4.8)

and In×n denotes an identity matrix with the size of n× n. Then it is observed that the

optimization problem in (4.4) becomes a generalized eigen-decomposition of matrices L

and B, i.e.,

LV = λBV. (4.9)

4.3.1.2 Pairwise-based Multi-view Spectral Clustering

Next we extend the proposed two-view spectral clustering method to the multi-view

case. In the multi-view scenario, we assume that there are representations of a data

set in m views, i.e., X1,X2, · · · ,Xm, for which the Laplacian matrices L1,L2, · · · ,Lm

can be calculated respectively. Then the proposed objective function aims to seek the

low-dimensional embeddings V1,V2, · · · ,Vm to maximize both the individual spectral

clustering terms and their correlations:

max
V1,V2,··· ,Vm∈Rn×k

λ1

[ m∑
i=1

tr(VT
i LiVi)

]
+ λ2

[ ∑
1≤i,j≤m,i ̸=j

tr(VT
i Vj)

]
s.t. VT

i Vi = I, ∀i ∈ {1, 2, · · · ,m}, (4.10)
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where λ1 and λ2 are introduced to balance the importance between the individual spec-

tral clustering terms and their correlations, and
∑

1≤i,j≤m,i̸=j tr(V
T
i Vj) denotes the sum-

mation of all the pairwise correlations between graphs in multiple views. To obtain a

closed-form solution to this optimization problem, similarly we combine the m nonlinear

constraints into a single one as follows:

s.t.
m∑
i=1

βiV
T
i Vi = I, (4.11)

where β1, β2, · · · , βm are introduced to balance the power of constraints in the m different

views.

Similarly, let VT =
[
VT

1 VT
2 · · · VT

m

]
, the objective function in (4.10) can be

rewritten in a matrix form as:

max
V∈R(m·n)×k

tr(VTLV),

s.t. VTBV = I, (4.12)

where

L =


λ1L1 λ2I

n×n · · · λ2I
n×n

0 λ1L2
. . .

...
...

. . . . . . λ2I
n×n

0 · · · 0 λ1Lm

 , (4.13)

B =


β1I

n×n 0 · · · 0

0 β2I
n×n . . .

...
...

. . . . . . 0
0 · · · 0 βmI

n×n

 . (4.14)

The constraint VTBV = I imposes a scale normalization on this objective function such

that a trivial solution can be avoided. In the same way, we can solve the optimization

problem in (4.12) by performing a generalized eigen-decomposition LV = λBV.

4.3.2 Centroid-based CMSC

In the pairwise-based CMSC discussed previously, we assume that all the embedding ma-

trices V1,V2, · · · ,Vm tend to each other in the low-dimensional subspace, which requires
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computation of the pairwise correlations among m embedding matrices in different views.

From (4.10), it is noted that altogether m(m−1)
2

multiplications are conducted, which is

very time-consuming. In view of this, a centroid-based scenario is considered where we

assume that all the embedding matrices V1,V2, · · · ,Vm move towards a centroid matrix

V∗ in the low-dimensional subspace. Thus, there are only m comparisons between each

embedding matrix Vi, i ∈ {1, · · · ,m}, and the centroid matrix V∗ need to be calculated,

which significantly reduces the computational complexity of the correlation terms.

In the following, with an extra embedding matrix V∗ called centroid matrix as a

reference, we propose a centroid-based CMSC approach that significantly simplifies the

computation of the correlation terms. Again, we begin with the case of two-view spectral

clustering and then extend it to the multi-view case.

4.3.2.1 Centroid-based Two-view Spectral Clustering

By introducing a centroid matrix V∗, we attempt to seek three embedding matrices Vi,

Vj and V∗ that maximize the objective function as follows:

maxVi,Vj,V
∗∈Rn×k λ1

[
tr(VT

i LiVi) + tr(VT
j LjVj) + tr(V∗TL∗V∗)

]
+λ2 · tr(VT

i V
∗ +VT

j V
∗)

s.t. VT
i Vi = I, VT

j Vj = I, V∗TV∗ = I, (4.15)

where λ1 and λ2 are introduced to balance the importance between the individual spectral

clustering terms and the correlation terms. Similar to the pairwise-based case, to obtain

a closed-form solution, we relax the three nonlinear constraints by combining them into

a single one:

s.t. βiV
T
i Vi + βjV

T
j Vj + β∗V∗TV∗ = I, (4.16)

where βi, βj and β∗ are pre-defined according to the prior knowledge and are used to

balance the power of constraints in two different views. This constraint imposes a scale

normalization on the objective function such that a trivial solution can be avoided.

Similarly, to facilitate the solving of the objective function, we letVT = [VT
i VT

j V∗T],

then the optimization problem restricted by the relaxed constraint in (4.16) can be rewrit-

ten in a matrix form as:

max
V∈R3n×k

tr(VTLV),

s.t. VTBV = I, (4.17)
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where

L =

 λ1Li 0 λ2I
n×n

0 λ1Lj λ2I
n×n

0 0 λ1L
∗

 , (4.18)

B =

 βiI
n×n 0 0

0 βjI
n×n 0

0 0 β∗In×n

 , (4.19)

and L∗ is the Laplacian matrix of the centroid graph S∗. To reasonably initialize

the centroid graph S∗, we let S∗ =
Si+Sj

2
, then we have the Laplacian matrix L∗ =

D∗−1/2S∗D∗−1/2.

Similarly, this optimization problem becomes a generalized eigen-decomposition of

matrices L and B, i.e., LV = λBV.

4.3.2.2 Centroid-based Multi-view Spectral Clustering

Next we extend the proposed centroid-based two-view spectral clustering method to the

multi-view case. In the multi-view scenario, the proposed objective function aims to seek

m+1 low-dimensional embeddings V1,V2, · · · ,Vm,V
∗ to maximize both the individual

spectral clustering terms and their correlations:

max
V1,V2,··· ,Vm,V∗∈Rn×k

λ1

[ m∑
i=1

tr(VT
i LiVi) + tr(V∗TL∗V∗)

]
+ λ2

[ m∑
i=1

tr(VT
i V

∗)
]

s.t. VT
i Vi = I, ∀i ∈ {1, 2, · · · ,m}, V∗TV∗ = I, (4.20)

where λ1, λ2 are introduced to balance the importance between the individual spectral

clustering terms and their correlations, and
∑m

i=1 tr(V
T
i V

∗) denotes the summation of all

the correlations that are computed between each embedding matrixVi, i ∈ {1, 2, · · · ,m},
and the centroid matrix V∗.

Similarly, to obtain a closed-form solution, the multiple nonlinear constraints in (4.20)

can be combined into a single one:

s.t.
m∑
i=1

βiV
T
i Vi + β∗V∗TV∗ = I, (4.21)

where β1, β2, · · · , βm and β∗ are used to balance the power of constraints in them different

views and the centroid embeddings. Again, we let VT =
[
VT

1 VT
2 · · · VT

m V∗T
]
,

72



Chapter 4. Co-Learned Multi-View Spectral Clustering Approach

then the objective function in (4.20) restricted by the relaxed constraint in (4.21) can be

rewritten in a matrix form as:

max
V∈R(m+1)·n×k

tr(VTLV),

s.t. VTBV = I, (4.22)

where

L =


λ1L1 0 · · · 0 λ2I

n×n

0 λ1L2
. . .

...
...

...
. . . . . . 0

...
...

. . . . . . λ1Lm λ2I
n×n

0 · · · · · · 0 λ1L
∗

 , (4.23)

B =


β1I

n×n 0 · · · · · · 0

0 β2I
n×n . . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . βmI

n×n 0
0 · · · · · · 0 β∗In×n

 , (4.24)

L∗ = D∗−1/2S∗D∗−1/2, and S∗ = 1
m

∑m
i=1 Si.

Similarly, the optimization problem becomes a generalized eigen-decomposition where

LV = λBV. And by imposing the constraint VTBV = I, we avoid a trivial solution to

the objective function.

4.3.3 Discussions

From the above analysis, there are some issues that we should pay attention to for the

proposed approaches to work properly.

• It is noticed that the large Laplacian matrices obtained in (4.7), (4.13), (4.18)

and (4.23), i.e., L, are not symmetric matrices. Then the eigenvectors that are

calculated through the generalized eigen-decomposition of matrices L and B are

only linear independent but not guaranteed to be orthogonal to each other. To deal

with this, we apply symmetrization on the large Laplacian matrix L for obtaining

a set of orthogonal eigenvectors:

L = (LT + L)/2. (4.25)
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• After obtaining the m low-dimensional embeddings V1,V2, · · · ,Vm, we normalize

each row of the embedding matrix Vi, i ∈ {1, · · · ,m}. Then a k-means clustering

algorithm is applied to each normalized matrix Vi to accomplish the assignments,

i.e., the pth data point is assigned to one of the clusters according to the clustering

result of the pth row of the embedding matrix Vi. In this way, a image set is

clustered into several subsets, each of which is represented by a local model. Thus,

a nonlinearly distributed manifold can be described by using a collection of local

models in our proposed method.

• When the number of views m ≤ 3, the computational complexity of the pairwise-

based CMSC method is equivalent or slightly lower than that of the centroid-based

CMSC method. To be specific, it is suggested to use the pairwise-based CMSC

method when m = 2. However, when the number of views m > 3, the computa-

tional complexity of the pairwise-based CMSC method becomes much higher than

that of the centroid-based CMSC approach. In this case, the centroid-based CMSC

approach is preferred.

• Once the matrix V is obtained, the embedding matrix V1 can be derived from the

first n rows of V, and the embedding matrix V2 can be obtained from the second

n rows of V, so on and so forth.

4.3.4 The Whole Procedure

In this section, we describe the whole procedure of the proposed CMSC approaches for

face recognition with image sets.

(i) Image Set Modeling: Assuming there are N face image sets stored in the gallery

dataset. For each image set, it is supposed that the face images (data points) lie

on an underlying nonlinear low dimensional manifold M. For the image sets in the

gallery dataset, we apply the proposed CMSC approaches to exploit the information

in multiple views of data sets such that more accurate clusters can be obtained for

each image set. In this way, a nonlinear manifold M can be divided into multiple

subsets (clusters) and each subset is described by its mean vector mi, i.e., a mean
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vector denotes a local model. Taking into account the fact that the number of

samples in each image set is usually not sufficient enough to be precisely modeled

by using a Gaussian distribution, a linear subspace or an affine hull, we adopt

the mean vector of the limited samples as a more appropriate and representative

descriptor to describe each subset. In this way, a manifold M can be modeled by

using a collection of mean vectors {m1,m2, · · · ,mr}.

(ii) Manifolds Matching: As pointed out in [104] [16], the most effective way to

measure the similarity between two manifolds is to compute the distance between

their most similar parts. Inspired by this conclusion, we first model each manifold

as a collection of mean vectors, then we compute the nearest distance between local

models from different manifolds as the distance measure between the two manifolds

MX =
{
mX

1 ,m
X
2 , · · · ,mX

nX

}
and MY =

{
mY

1 ,m
Y
2 , · · · ,mY

nY

}
, which is given as

d(MX ,MY ) = min

{
min

i
d(mX

i ,M
Y ),min

j
d(mY

j ,M
X)

}
, (4.26)

where

d(mX
i ,M

Y ) = min
1≤j≤nY

d(mX
i ,m

Y
j ) = ∥mX

i −mY
j ∥22, (4.27)

d(mY
j ,M

X) = min
1≤i≤nX

d(mX
i ,m

Y
j ) = ∥mX

i −mY
j ∥22, (4.28)

or

d(mX
i ,M

Y ) = min
1≤j≤nY

d(mX
i ,m

Y
j ) =

(mX
i )

TmY
j

∥mX
i ∥2∥mY

j ∥2
, (4.29)

d(mY
j ,M

X) = min
1≤i≤nX

d(mX
i ,m

Y
j ) =

(mX
i )

TmY
j

∥mX
i ∥2∥mY

j ∥2
, (4.30)

alternatively, where i ∈ {1, 2, · · · , nX}, j ∈ {1, 2, · · · , nY }, d(mX
i ,M

Y ) denotes the

distance between local model mX
i and manifold MY , and d(mX

i ,m
Y
j ) denotes the

pairwise distance between the local models mX
i and mY

j .

(iii) Recognition: Given a gallery set containing N face image sets, each image set is

represented by a collection of local models as described above. Then a probe set

MP is compared with every image set MG
g in the gallery set and assigned to the

class g∗ with the highest similarity score

g∗ = argmin
g∈G

d(MG
g ,M

P ). (4.31)
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4.4 Experiments

In this section, we evaluate the two proposed approaches, namely the pairwise-based

co-learned multi-view spectral clustering method (PW-CMSC) and the centroid-based

co-learned multi-view spectral clustering method (CT-CMSC), on two widely used face

video databases, i.e., the Honda/UCSD database [127] and the Youtube Celebrities [128]

database.

4.4.1 Experimental Settings

In the experiments, we aim to evaluate the performance of the proposed PW-CMSC and

CT-CMSC under some system configurations that are introduced in the following.

1. Local Models: As introduced in Section 4.2, the multi-model based approaches

often consist of two steps: 1. local model construction; 2. manifold-to-manifold distance

measure. In our experiments, to better illustrate the effectiveness of the proposed CMSC

method, we use 5 different methods to model each face image set.

• MLP:

Maximal Linear Patch (MLP) is a local linear model that was proposed in the

reference [16]. In this method, each nonlinear manifold is represented by using

a collection of MLPs. Each MLP originates from a seed data point that utilizes

the neighboring points to increase itself according to a linear constraint. Then the

increased set of data points can be used to span a linear subspace where the linearity

of the subspace is controlled by the ratio between Euclidean distance and geodesic

distance of the two neighbor points. The points that span the linear subspace keep

increasing until the linearity of the subspace is broken. Then we can obtain the

maximal linear subspace as the MLP.

• k-means Clustering:

k-means clustering [124] is one of the most popular and the simplest learning al-

gorithms that classifies a given data set into a fixed number (the number is pre-

defined) of clusters by involving an EM procedure. However, k-means algorithm

also faces some limitations such as unspecified initialization, dependence on the
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value of k, convergence into local minima, etc. In view of these limitations, the

value of k can be adaptively set according to the number of face images in each

data set. Preliminary experiments demonstrate that with the number of face images

in a data set varying from 8 to 1000, k takes values in range of [3, 29].

• Single View Spectral Clustering:

The standard spectral clustering approach was proposed in [125] [126], where the

data points are clustered into several subsets by utilizing the single view representa-

tion of the data set. In our experiments, the number of eigenvectors obtained is set

to be the same or 1.5 times of the number of clusters. In the experiments, this single

view spectral clustering method is denoted as “Single-view-SC” for simplicity.

• Co-regularized Multi-view Spectral Clustering:

This method was proposed in reference [123] recently. By using different represen-

tations of a data set corresponding to its multiple views, this method extended the

single view spectral clustering method to the multi-view case through co-training

the relaxations of the indicator vectors. In our experiments, we consider the same

configurations where the number of iterations for solving the optimization problem

is set around 5 and tuned to the optimal value according to the recognition results.

For simplicity, this Co-regularized multi-view spectral clustering method is denoted

as “Co-regularized-MS”.

• Proposed PW-CMSC and CT-CMSC:

For ease of analysis, for the two proposed CMSC methods, we enforce β1 + β2 +

· · · + βm = 1, and set the number of eigenvectors of each embedding matrix Vi to

be 40.

2. Manifold-to-manifold Distance Measure: For fair comparisons, we utilize

the same manifold-to-manifold distance measure for all the approaches mentioned above,

through which the efficiency of the proposed PW-CMSC and CT-CMSC methods is

illustrated in modeling an image set. Since it is very efficient to compute the distance

only between the most similar parts of two differen manifolds, we use the manifold-

to-manifold distance defined in (4.26), where the distance between the nearest pair of
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local models from two different manifolds is used as the dissimilarity between the two

manifolds.

3. Databases: In our experiments, we evaluate all the approaches mentioned above

on two widely used video face databases, where each video sequence is saved as an image

set.

• The Honda/UCSD Database:

The Honda/UCSD database [127] was built for evaluating algorithms on the video

based face tracking and face recognition tasks. All the video sequences in this

database were captured in indoor environment where the noises and the variations

in lighting conditions are limited. However, the person in each video rotates his/her

head and makes different expressions, which may lead to large variations in pose,

expression, occlusion and scaling. In the Honda/UCSD database, there are 59 video

sequences from 20 persons. The length of each video sequence is around 15 seconds.

The original resolution of the frame of each video sequence is 640× 480 pixels.

• The Youtube Celebrities Database:

The YouTube Celebrities database [128] was built for evaluating algorithms on the

tasks of face tracking and recognition. 1910 video sequences were collected from

47 celebrities from the Youtube website. These videos were captured from famous

persons including actors/actresses and politicians. Compared to Honda/UCSD and

CMU MoBo databases where the videos are captured under controlled conditions,

the videos in Youtube Celebrities database are obtained in real life environments

where there are very large variations in face appearances, poses and expressions,

together with low quality, misalignments and occlusions. The size of each frame of

a video sequence varies from 180× 240 pixels to 240× 320 pixels.

4. Multiple Views: In our experiments, we use both the intensity value and the local

LBP features to describe an image set, where each image set is clustered by applying the

proposed PW-CMSC, CT-CMSC, and the Co-regularized multi-view spectral clustering

approaches. For each face image, we first divide it into multiple 50% overlapped local

patches. The size of each local patch is 10 × 10 pixels for the Honda/UCSD database
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Figure 4.3: Some examples of the cropped face images from the Honda/UCSD database.

and is 20×20 pixels for the Youtube Celebrities Database, respectively. Then we extract

a LBP descriptor from each local patch and concatenate them into a high-dimensional

feature vector to represent the whole face image.

4.4.2 Experimental Results on the Honda/UCSD Database

In this experiment, each video sequence is fragmented into a set of frames, based on which

we apply the Viola-Jones face detection algorithm [47] to detect face regions. Then each

face image is cropped to 20×20 pixels to facilitate the computation as well as reduce the

memory requirement. Some examples of cropped face image sets in the Honda/UCSD

database are shown in Fig. 4.3.

It is noted that the clustering algorithms only produce the cluster label for each data

point. Based on the label information, the local model construction can be accomplished

under two situations: based on the intensity images or based on the LBP descriptors.

For both situations, we evaluate different methods under the same configurations as

considered in references [117] [98] [127] where 20 video sequences are selected from 20

different subjects as the gallery image sets, with the remaining 39 video sequences used

for testing.
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When there are large variations in pose and occlusion in the video, the face tracking

algorithms may lose the face target, which results in non-continuous face images tracked

in real-life applications. In view of this, we evaluate the performance of different methods

in three scenarios respectively: 1. the first 50 frames of each video sequence are used;

2. the first 100 frames of each video sequence are used; 3. the full length of a video

sequence are used. The experimental results based on the intensity images are shown

in Table 4.1 and Table 4.2 respectively for these three scenarios. The average results of

the three scenarios are also presented in Table 4.2. Similarly, the experimental results

based on the LBP descriptors are shown in Table 4.3 and Table 4.4 respectively, with the

average results of the three scenarios given in Table 4.4.

Table 4.1: Face recognition results of the six comparable methods on the intensity images
of the Honda/UCSD database, where 50 and 100 frames are selected from each video
respectively.

Methods 50 frames 100 frames
MLP [16] 82.05%± 0.00% 82.05%± 0.00%
K-means [124] 83.85%± 2.14% 91.11%± 2.91%
Single-view-SC [126] 84.62%± 2.56% 93.59%± 1.48%
Co-regularized-MSC [123] 84.62%± 1.81% 94.02%± 1.81%
Proposed PW-CMSC 85.64%± 2.19% 94.87%± 1.48%
Proposed CT-CMSC 86.15%± 2.29% 94.36%± 1.24%

Table 4.2: Face recognition results of the six comparable methods on the intensity images
of the Honda/UCSD database where all frames of each video are used, together with the
average results of all three scenarios.

Methods Full length Averages
MLP [16] 94.87%± 0.00% 86.32%± 0.00%
K-means [124] 92.74%± 2.53% 89.24%± 2.53%
Single-view-SC [126] 92.74%± 2.16% 90.31%± 2.07%
Co-regularized-MSC [123] 94.02%± 3.02% 90.89%± 1.61%
Proposed PW-CMSC 95.56%± 2.42% 92.02%± 1.54%
Proposed CT-CMSC 97.44%± 2.81% 92.65%± 2.11%

From Table 4.1-Table 4.4, some observations can be obtained as follows. (1) In

terms of the average results over all three scenarios, the proposed CT-CMSC method
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Table 4.3: Face recognition results of the six comparable methods on the LBP descriptors
of the Honda/UCSD database, where 50 and 100 frames are selected from each video
respectively.

Methods 50 frames 100 frames
MLP [16] 84.62%± 0.00% 92.31%± 0.00%
K-means [124] 86.32%± 5.33% 90.60%± 2.96%
Single-view-SC [126] 89.91%± 2.23% 97.44%± 3.63%
Co-regularized-MSC [123] 89.74%± 2.56% 97.44%± 2.56%
Proposed PW-CMSC 89.23%± 1.15% 97.95%± 1.14%
Proposed CT-CMSC 90.26%± 2.15% 96.92%± 1.14%

Table 4.4: Face recognition results of the six comparable methods on the LBP descriptors
of the Honda/UCSD database where all frames of each video are used, together with the
average results of all three scenarios.

Methods Full length Averages
MLP [16] 94.87%± 0.00% 90.60%± 0.00%
K-means [124] 94.02%± 1.48% 90.33%± 3.26%
Single-view-SC [126] 96.50%± 2.82% 94.62%± 2.89%
Co-regularized-MSC [123] 97.44%± 2.56% 94.87%± 2.56%
Proposed PW-CMSC 98.46%± 2.29% 95.21%± 1.53%
Proposed CT-CMSC 99.48%± 1.15% 95.55%± 1.48%

outperforms all the other methods, which reaches the average recognition rate of 92.65%

and 95.55% based on the intensity images and the LBP descriptors respectively. (2) It is

observed that the recognition performance of the CT-CMSC method is better than that

of the PW-CMSC method. A possible reason is that the CT-CMSC method applies the

k-means clustering on the centroid embedding matrix V∗, rather than the concatenated

VT = [VT
1V

T
2 · · ·VT

m] used in the PW-CMSC method. (3) When the number of face

images selected from each image set is insufficient (50 or 100), the proposed methods

demonstrate better performance than the others. This implies that the proposed methods

are able to better process the noisy videos in real-life applications where some videos are

not continuous or with very short length. This is because when the number of samples in

each image set is limited, it is more suitable to use the mean vector to describe a subset

than a complex model such as a Gaussian density or a linear subspace. (4) It is noted

that there is no variance for the performance of the method using MLP model. Different

from the k-means based approaches that start the clustering from k randomly selected
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Figure 4.4: Some examples of the cropped face images from the Youtube Celebrities
database.

points, a MLP model only starts from one seed point to construct local models. This

makes the MLP much more robust than the k-means based approaches. Whereas the

other 5 clustering methods, which are based on the k-means clustering algorithm, cannot

achieve a recognition performance with zero-variance.

4.4.3 Experimental Results on the Youtube Celebrities Database

Due to the low quality of the Youtube Celebrities Database, the Viola-Jones face detection

algorithm [47], which has strong ability to detect frontal faces, often fails to detect the

face regions of the noisy videos in this database. Fortunately, the initials that contain

the position information of the face region in the first frame of each video are provided

together with the Youtube Celebrities Database. Then we can apply the incremental

visual tracking algorithm [129] to track face regions across frames of each video by using

the initials that are manually labeled. As shown in Fig. 4.4, some examples of the well-

tracked faces are given where the tracked face region of each frame is cropped and resized

to 50× 50 pixels.

Similarly, we conduct the experiments on the Youtube Celebrities Database under
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Table 4.5: Averaged results of the six comparable methods on the intensity images of the
Youtube Celebrities database.

Methods Recognition Rates
MLP [16] 54.78%± 2.16%
K-means [124] 55.52%± 2.33%
Single-view-SC [126] 55.32%± 1.25%
Co-regularized-MSC [123] 55.32%± 1.25%
Proposed PW-CMSC 56.74%± 0.50%
Proposed CT-CMSC 56.74%± 0.50%

Table 4.6: Averaged results of the six comparable methods on the LBP descriptors of
the Youtube Celebrities database.

Methods Recognition Rates
MLP [16] 60.41%± 2.16%
K-means [124] 60.11%± 0.75%
Single-view-SC [126] 60.99%± 1.26%
Co-regularized-MSC [123] 61.35%± 2.02%
Proposed PW-CMSC 62.77%± 1.01%
Proposed CT-CMSC 63.12%± 0.50%

two situations, i.e., based on the intensity images and based on the LBP descriptors

respectively. For both situations, we consider the same configurations as adopted in

reference [117]. We conduct 5-fold cross validation experiments, where the whole database

is divided into 5 folds and each of them contains 423 videos from 47 persons with 9 videos

per person. In each fold, 3 image sets per person are randomly selected to constitute the

gallery set, with the remaining 6 videos per person used as the probe sets. We repeat

the random division 50 times, from which the averaged recognition rates based on the

intensity images and based on the LBP descriptors are summarized in Table 4.5 and

Table 4.6 respectively.

From Table 4.5 and 4.6, some observations can be obtained as follows. (1) Both

the proposed PW-CMSC and CT-CMSC methods achieve the best recognition rate of

56.74% based on the intensity images, which is averaged over all 5 folds and outperforms

all the other methods. The proposed CT-CMSC method achieves the best recognition

rate of 63.12% based on the LBP descriptors and outperforms all the other methods by

around 3%. (2) It is noted that the performance improvements of the proposed methods
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on the Honda/UCSD database is larger than that on the Youtube Celebrities database.

A possible reason is that the images in Honda/UCSD database are of good qualities

such that the intensity values and the LBP descriptors are able to describe the database

more completely. In contrast, the images in the Youtube Celebrities database are usually

obtained in real-life environment that contain severe noises. Thus both intensity and LBP

information is not sufficient to capture enough information for recognition. (3) Since the

results shown in Table 4.5 and 4.6 are obtained by averaging the recognition rates of

5 folds where the training data and testing data are randomly selected, the recognition

performance of the MLP method is no longer of zero-variance.

4.4.4 Computational Complexity

To illustrate the computational efficiency of the proposed CMSC method, we have done

some comparisons between the computational complexities of the CMSC and Co- regu-

larized MSC. To illustrate the timing or time consumption of the algorithms, we have

conducted new experiments on a workstation equipped with Intel(R) Xeon(TM) MV

CPU 3.20 GHz (2 processors) and 20.0 GB RAM. On the Honda/UCSD database, the

computation times of the Co-regularized MSC is 15 minutes and 37 seconds, the proposed

CT-CMSC and the proposed PW-CMSC is 4 minutes and 13 seconds, and 2 minutes and

19 seconds, respectively. Thus, our proposed algorithms (PW-CMSC and CT-CMSC)

are more efficient than the iterative algorithm (Co-regularized MSC) in terms of timing

or computational complexity.

4.5 Conclusion

In this chapter, we investigated the multi-model based approaches on face recognition

with image sets. In Section 4.1 and 4.2, we introduced the framework of the multi-model

based approaches that consists of two procedures, i.e., local model construction and

manifold-to-manifold distance measure. In this chapter, we attempted to improve the

procedure of local model construction. A pairwise-based multi-view spectral clustering

approach and a centroid-based multi-view spectral clustering approach were proposed in

Section 4.3 to utilize the information provided by multiple views of each image set. Based
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on the improved clusters, the mean vectors become more representative, which leads to

improvements on the recognition performance of the proposed methods, as verified by

the experimental results in Section 4.4. As a continuation, we will proceed to investigate

the multi-model based approaches in the next chapter, where the manifold-to-manifold

distance measure will be further studied.
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Chapter 5

Collaborative Reconstruction-Based
Manifold-to-Manifold Distance

5.1 Introduction

In the previous chapter, we began to discuss the multi-model based methods for match-

ing image sets with nonlinear distributions and investigated the stage of local model

construction. In this chapter, we will focus on the stage of manifold-to-manifold distance

measure, as a continuous of the discussion in Chapter 4.

In the face recognition based on image sets scenario, the task of comparing the

gallery image sets and a probe image set becomes the problem of defining an appro-

priate manifold-to-manifold distance, as demonstrated in Fig. 5.1. The first attempt to

explicitly define the manifold-to-manifold distance is the method called MMD proposed

in reference [16]. In their method, the authors considered that the most efficient way

to measure the similarity of two manifolds is finding the most similar parts of the two

manifolds. Thus, the pairwise distances between local models from two different mani-

folds are computed and the distance with the smallest value is selected and considered as

the dissimilarity of the two manifolds. For easy of explanation, we denote the manifold-

to-manifold distance described above as the Nearest Neighbor-based MMD (NN-MMD).

Obviously, NN-MMD is a straightforward design of the manifold-to-manifold distance

and has several limitations. For example, it cannot guarantee a reliable recognition re-

sult when an face image set contains outliers, since the minimal pairwise distance of local

models may be computed based on the outliers of the two manifolds.
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Figure 5.1: For face recognition based on image sets scenario, the problem of compar-
ing the gallery image sets and a probe image set becomes the problem of defining an
appropriate manifold-to-manifold distance.

To handle this problem, we propose a robust and flexible manifold-to-manifold dis-

tance measure called Collaborative Reconstruction-Based Manifold-to-Manifold Distance

(CRMMD) for face recognition based on image sets. In our proposed method, we first

divide each manifold (one image set) into multiple clusters through a clustering approach

that could be the k-means clustering algorithm [130] or one of the CMSC methods pro-

posed in the previous chapter. Then a manifold is described by a collection of mean

vectors. Based on these mean vectors, designing the manifold-to-manifold distance be-

comes easier than based on other complex local models. Instead of computing the pairwise

distance between local models, we calculate the distance between a local model and its

approximation, which is collaboratively reconstructed from several local models on other

manifolds. Hence, the proposed CRMMD reduces its sensitivity to random variations in

local models and provides more accurate classification results.

The rest of this chapter is organized as follows: The proposed Collaborative Recon-

struction Based Manifold-to-Manifold Distance (CRMMD) will be discussed in Section
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5.2, which focuses on the second stage of the multi-model based methods, i.e., measuring

the similarity between different manifolds. Section 5.3 evaluates the proposed CRMMD

method and compared it with several popular methods that are based on unsupervised

image set matching. Experimental results shows the efficacy of the proposed CRMMD

method. Section 5.4 conclusions our investigation on the two stages of the multi-model

based methods in this chapter.

5.2 Proposed CRMMD

Assuming there are N image sets in the gallery dataset. For each set, we consider that

face samples lie on an underlying nonlinear and intrinsic low dimensional manifold M.

We first divide a nonlinear manifold M into several subsets by adopt a certain clustering

approach that can be the k-means clustering algorithm [130] or one of the CMSC meth-

ods proposed in the previous chapter. These clustering approaches are able to provide a

stable and representative mean vector for each cluster such that we use the mean vector

mi to describe each subset i. In this way, a mean vector denotes a local model. There are

several advantages of using mean vectors to describe local models. For example, when

the number of faec images in each subset is very limited, we cannot precisely model them

using Gaussian distribution, linear subspace or affine hull, thus the mean vector of the

limited face images becomes a more appropriate and representative descriptor adopted

to describe each subset. Furthermore, when a manifold is described by using a collection

of mean vectors, the distance between two collections of mean vectors can be computed

rapidly and flexibly as the manifold-to-manifold distance. Moreover, it provides us more

possibilities to design an appropriate manifold-to-manifold distance based on the collec-

tions of mean vectors. Thus, a collection of mean vectors {m1,m2, · · · ,mr} is used in

our work to model the manifold M.

As discussed in Section 5.1, the existing manifold-to-manifold distance measure (NN-

MMD) may be sensitive to outliers that are often obtained under the unconstrained condi-

tions. To solve this problem, we propose a robust and flexible manifold-manifold distance

measure called Collaborative Reconstruction-Based Manifold-Manifold Distance(CRMMD)

defined as follows:
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Given two manifolds Mp = {mp
1,m

p
2, · · · ,mp

m} and Mq = {mq
1,m

q
2, · · · ,mq

n}, the
proposed CRMMD between Mp and Mq is defined as:

dCRMMD(M
p,Mq) = min

{
min

i
d(mp

i ,M
q),min

j
d(mq

j ,M
p)

}
, (5.1)

where i ∈ {1, 2, · · · ,m}, j ∈ {1, 2, · · · , n} and d(mp
i ,M

q) is the distance between local

model mp
i and manifold Mq, which can be obtained by solving a constraint least square

fitting problem:

d(mp
i ,M

q) = min
wi

||mp
i − m̂p

i ||2

= min
wi

||mp
i −Mq ·wi||2,

s.t. 1Twi = 1, ||wi||l0 = k (5.2)

where mp
i denotes the i-th local model from manifold Mp, m̂p

i = Mq ·wi is an approxi-

mation of mp
i which is reconstructed by using the local models located on manifold Mq.

From the viewpoint of mp
i , M

q is a codebook consisting of a set of local models as ba-

sis and wi is the code for reconstructing mp
i . We define 1 = [1, 1, · · · , 1]T ∈ Rn, thus

1Twi = 1 means the summation across all elements in wi equals to 1. This balances the

importance among different basis that are used for the reconstruction. ||wi||l0 = k means

that there are k non-zero elements in wi.

Depending on different values of k, we consider three conditions as follows:

(i) When k = 1, m̂p
i is the nearest one of all the local models that are located on

manifold Mq;

(ii) When 1 < k < n, m̂p
i is the collaborative reconstruction from the k nearest neigh-

bors of all the local models that are located on manifold Mq;

(iii) When k = n, m̂p
i is the collaborative reconstruction from all the local models

located on manifold Mq.

In the following, we analyze the properties of the proposed Collaborative Reconstruction-

Based Manifold-Manifold Distance (CRMMD) approach under the three different condi-

tions.
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Figure 5.2: Illustration of calculating the CRMMD between manifolds {Mp, Mq} and
the CRMMD between manifolds {Mp, Mr} when k = 1. mq

j and mr
l are the approxima-

tions of mp
i on manifold Mp and manifold Mr respectively. Thus, dCRMMD(M

p,Mq) =
d(mp

i ,m
q
j) = d1. Similarly, dCRMMD(M

p,Mr) = d(mp
i ,m

r
l ) = d2. However, the CR-

MMD is sensitive to outliers when k = 1, e.g., manifold Mp and manifold Mr are from
different classes but the inter-class distance d2 is smaller than the intra-class distance d1
due to the outlier mr

l .

5.2.1 Approximation 1 : the Nearest Neighbor

When k = 1, the CRMMD becomes:

dCRMMD(M
p,Mq) = min

i,j
d(mp

i ,m
q
j) = min

i,j
||mp

i −mq
j ||2, (5.3)

In this case, the approximation m̂p
i of the local model mp

i is represented by using only

one single basis in the codebookMq. The single basis is the nearest one of all local models

that are located on manifold Mq. We illustrate the scenario of the CRMMD when k = 1

in Fig. 5.2. Under this condition, the CRMMD measures the similarity between two

manifolds through computing the distance of their most similar parts, i.e., the minimal

distance of all the pairwise distances among local models from the two manifolds is
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selected as the CRMMD. It is observed that the manifold-to-manifold distance utilized

in the popular method MMD [16] can be considered as the special case of our proposed

CRMMD method when k = 1.

However, the CRMMD may be sensitive to outliers when k = 1. We illustrate this in

Fig. 5.2. On the manifold Mp, the local model mq
j is the nearest neighbor of the local

model mp
i . On the manifold Mr, the local model mr

l is the nearest neighbor of the local

model mp
i . Thus we use the mq

j and mr
l as the approximations of the local model mp

i .

Then the CRMMD between manifolds Mp and Mq becomes:

dCRMMD(M
p,Mq) = d(mp

i ,m
q
j) = ||mp

i −mq
j ||2 = d1, (5.4)

and the CRMMD between manifolds Mp and Mr becomes:

dCRMMD(M
p,Mr) = d(mp

i ,m
r
l ) = ||mp

i −ml
r||2 = d2, (5.5)

Since the manifold Mp and manifold Mq are from the same class and the manifoldMp

and manifold Mr are from different classes, the intra-class distance dCRMMD(M
p,Mq)

should be smaller than the inter-class distance dCRMMD(M
p,Mr). However, as illustrated

in Fig. 5.2, the dCRMMD(M
p,Mq) is greater than the dCRMMD(M

p,Mr). This may be

caused by the outlier ml
r that reduces the inter-class distance between the manifolds Mp

and Mr.

5.2.2 Approximation 2 : Reconstruction from the k Nearest
Neighbors

When 1 < k < n, the approximation m̂p
i of the local model mp

i is collaboratively re-

constructed from the k nearest neighbors of all the local models that are located on

manifold Mq. Thus, we solving the constrained least square fitting problem involved in

the d(mp
i ,M

q) of the CRMMD as follows:

d(mp
i ,M

q) = min
wi

||mp
i − m̂p

i ||2

= min
wi

||mp
i −

k∑
l=1

wi,lm
q
l ||

2,

s.t. 1Twi = 1. (5.6)
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Figure 5.3: Illustration of calculating the CRMMD between manifolds {Mp, Mq} and
the CRMMD between manifolds {Mp, Mr} when 1 < k < n. The approximations of
mp

i on manifold Mp and manifold Mr are linear combinations of multiple bases. Thus,
in the CRMMD, d1, d2 = d(mp

i , m̂
p
i ). In this case, the CRMMD becomes more robust to

outliers such that the intra-class distance d1 is smaller than the inter-class distance d2.

In this case, each local model mp
i is approximated by the linear combination of the k

nearest basis in the codebook Mq. The correlation information across the multiple basis

can be used to provide a more robust approximation m̂p
i , since the local models with

good qualities are able to alleviate the perturbations introduced by noisy local models.

As shown in Fig. 5.3, the approximations of mp
i on manifold Mp and manifold Mr are

linear combinations of multiple basis in each codebook. It can be observed that the

proposed CRMMD becomes more robust to outliers such that the intra-class distance d1

is smaller than inter-class distance d2.

Under this condition, the CRMMD has an analytical solution which can be derived

as follows:
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wi =

[(
M̃

q

s

)T

M̃
q

s + µI

]
\ 1, (5.7)

w∗
i = wi/(1

Twi), (5.8)

where µ is the regularization parameter, I is the identity matrix, M̃
q

s = Mq
s −mp

i · 1T ,

and Mq
s contains the k nearest neighbors of mp

i located on Mq.

5.2.3 Approximation 3 :Reconstruction from All the Local Mod-
els

When k = n, the approximation m̂p
i of the local modelmp

i is collaboratively reconstructed

from all the local models mq
j that are located on manifold Mq. Thus, the d(mp

i ,M
q) of

the CRMMD can be obtained through solving the least square fitting problem with less

constraint as follows:

d(mp
i ,M

q) = min
wi

||mp
i −Mq ·wi||2,

s.t. 1Twi = 1. (5.9)

In this case, each local model mp
i is approximated by collaboratively combining all

the basis in the codebook Mq. Similarly, the analytical solution of the CRMMD when

k = n can be obtained as below:

wi =

[(
M̃

q
)T

M̃
q
+ µI

]
\ 1, (5.10)

w∗
i = wi/(1

Twi), (5.11)

where µ is the regularization parameter and M̃
q
= Mq −mp

i · 1T .

Under this condition, the CRMMD becomes not only a robust distance measure since

all the basis are utilized in the collaborative reconstruction which provides correlation

information across multiple basis, but also an efficient distance measure because there is

no pre-procedure for searching the k nearest neighbors of mp
i in the codebook Mq.
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5.3 Experiments

In the experimental section, we evaluate the proposed Collaborative Reconstruction-

Based Manifold-to-Manifold Distance (CRMMD) method on the task of face recognition

based on image sets under three conditions: k = 1, 1 < k < n and k = n.

5.3.1 Experimental Setup

We conduct the experiments under several configurations described as follows:

1. Types of local models: We use 2 different approaches to describe a local model

in our experiments.

• MLP: Similar to the local models introduced in Section 4.4.1, the Maximal Linear

Patch (MLP) proposed in the reference [16] is a linear subspace that is spanned by

data points in the subset. Thus, each nonlinear manifold is represented by using a

collection of MLPs.

• k-means clustering: k-means clustering [124] is also utilized in our experiments,

since it is able to provide stable and representative mean vectors for describing local

models. We set the value of k similar to the experimental settings in the previous

chapter: With the number of face images in a set changing from 8 to 1000, the

value of k varies in the range of [3, 29] in our experiments.

2. Types of manifold-to-manifold distance: To illustrate the efficacy of our pro-

posed CRMMD method, we compare it with the existing manifold-to-manifold distance,

i.e., NN-MMD.

• NN-MMD: When each manifold has been represented by using multiple local

models, the pairwise distances between local models from two different manifolds

are computed and the distance with the smallest value is selected and considered

as the dissimilarity of the two manifolds. For easy of explanation, we denote this

manifold-to-manifold distance as the Nearest Neighbor-based MMD (NN-MMD).
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• Proposed CRMMD: We test the performance of the proposed CRMMD under

three conditions: k = 1, 1 < k < n and k = n. In the experiments, we divided

each image set into around 20 subsets (local models). When 1 < k < n, we

adopt k = n/2 which is selected through a series of experiments with varying k

(k = 1, n/10, 2n/10, · · · , 9n/10, n).

3. Other unsupervised set-based matching methods: In this chapter, all

the methods we have investigated are unsupervised approaches that only consist of two

stages: the modeling stage and the matching stage. Thus, in the experimental section,

we compare the proposed the CRMMD method with some state of the arts that adopt

the unsupervised matching stage based on image sets.

• The AHISD method: The Affine hull-based Image Set Distance (AHISD) was

proposed in reference [98]. In their approach, they model each image set by using

the face images in each set to span a convex hull or an affine hull. Based on

these representations, the distance between two image sets can be obtained by

computing the distance between the closest points from the two convex geometric

regions. The source code of the AHISD approaches is provided by original authors.

In the implementations of the AHISD method, there is no parameter to be tuned.

• The MMD method: In the previous chapter, the framework of the Manifold-

to-Manifold Distance method (MMD) [16] has been introduced in Section 4.2. As

one of the unsupervised set-based matching methods, MMD is utilized in our ex-

periments to compare with the proposed CRMMD method. It is noted that the

MMD is a special case of the proposed CRMMD, i.e., MMD equals to CRMMD

when k = 1. The source code of the MMD approach is provided by original au-

thors and we follow the parameter settings as those in their papers to conduct our

experiments.

4. The three databases: In the following experiments, we will conduct all the

approaches as mentioned above on three widely used video face databases, where each

video sequence is saved as an image set.
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• The Honda/UCSD Database: As introduced in Section 4.4.1, there are 59 video

sequences from 20 different individuals in the Honda/UCSD Database [127], where

each individual has at least two video sequences. The qualities of videos is the best

among the three databases due to it is obtained under controlled conditions. There

are some exemplar cropped face images from the Honda/UCSD database are shown

in Fig. 4.3.

• The CMU MoBo Database: As introduced in Chapter 3, there are 96 videos

sequences from 24 different persons in the CMU MoBo database [119]. Each person

has 4 video sequences containing a large number of variations in poses and expres-

sions. Some exemplar face images from the CMU MoBo database are shown in Fig.

3.9.

• The Youtube Celebrities Database: As introduced in Section 4.4.1, the Youtube

Celebrities Database [128] contains 1910 video sequences from 47 different individ-

uals. The videos in Youtube Celebrities database are with low qualities due to

obtained from the real-life scenarios. Some well-cropped face images from the

Youtube Celebrities database are shown in Fig. 4.4.

5.3.2 Experimental Results and Analysis

We conduct 3 sets of experiments as follows: 1. Using the MLP to construct each subset

for all the methods; 2. Using the k-means clustering to construct each subset for all the

methods; 3. Studying the effect of k.

5.3.2.1 Experimental Results of Methods Using MLP

The experimental results on the Honda/UCSD Database: To conduct fair com-

parisons, we use the MLP method to construct each subset for the two different manifold-

to-manifold distance measures: the NN-MMD and the proposed CRMMD. On the Honda/

UCSD database, We apply the Viola-Jones face detection algorithm [47] to detect face

regions. Then each face image is cropped to 20× 20 pixels. We adopt the same settings

as described in Section 4.4.2 where 50 frames, 100 frames and full length of each video
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sequence are used in the experiments respectively. Table 5.1 illustrates the experimen-

tal results of the two different distance measures based on MLP on the Honda/UCSD

database.

Table 5.1: Face recognition results of two manifold-to-manifold distance measures using
MLP on the Honda/UCSD database.

Methods 50 frames 100 frames Full length Average
MLP+NN-MMD [16] 82.05% 82.05% 94.87% 86.32%
MLP+CRMMD 82.05% 84.62% 94.87% 87.20%

Without analyzing the experimental results, we compare the above two manifold-

to-manifold distance measures on the CMU MoBo database and Youtube Celebrities

Database as follows. After that, we will discuss about the observations obtained from

these experimental results together.

The experimental results on the CMU MoBo Database: Similar to the previ-

ous experiment, we compare the NN-MMD method and the proposed CRMMD method

on the CMU MoBo database. In this database, each person has 4 video sequences and

the Viola-Jones face detection algorithm [47] is applied to detect and crop faces in each

frame. Each time we randomly select one image set per person to used as gallery sets

and the rest three image sets per person are used as probe sets. The experiments are

repeated 30 times and the averaged results are summarized in Table 5.2.

Table 5.2: Face recognition results of two manifold-to-manifold distance measures using
MLP on the CMU MoBo database.

Methods Recognition Results
MLP+NN-MMD [16] 93.05%± 1.48%
MLP+CRMMD 94.44%± 1.81%

The experimental results on the Youtube Celebrity Database: We first apply

the incremental visual tracking algorithm [129] to track face regions across frames of each

video by using the initials that are manually labeled. We crop the tracked face region of

each frames and resize it to 50 × 50 pixels. Then we conduct five-fold cross validation

experiments that described in Section 4.4.3. We repeat the random division of five folds

50 times and record the averaged recognition rates and standard deviations in Table 5.3.
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Table 5.3: Face recognition results of two manifold-to-manifold distance measures using
MLP on the Youtube Celebrity database.

Methods Recognition Results
MLP+NN-MMD [16] 54.78%± 2.16%
MLP+CRMMD 56.03%± 1.59%

Analysis of the experimental results on the three databases: From the ex-

perimental results on the above three databases, it is observed that the recognition per-

formance of the proposed CRMMD only slightly outperforms the NN-MMD method.

The phenomenons are consistent across different databases where the MLP is used to

construct subsets. The reason may be that the MLP is not an appropriate way to cluster

the subsets for CRMMD. The MLP aims to find a subset that is able to strictly span a

linear subspace. However, we describe this subset by using its mean vector, not a linear

subspace. This leads to that the advantage of the MLP is not utilized in our CRMMD

method. Due to the high computational complexities of linear subspace construction and

matching, we use the mean vector as the local model instead of using a linear subspace.

Thus we need adopt a clustering method that is able to divide an image set into several

subsets, each of which is suitable for computing a stable and representative mean vector.

Based on these analysis, we adopt the k-means clustering method to divide each image

set in the following experiments.

5.3.2.2 Experimental Results of Methods Using k-means

The experimental results on the Honda/UCSD Database: In this experiment, we

adopt the configuration described in [117] [98] [127] where there are 20 video sequences

are selected to be stored in the gallery dataset and the remaining 39 videos are used for

testing. We evaluate the AHISD, MMD and the proposed CRMMD method under three

settings: randomly selecting 50 frames from each video, randomly selecting 100 frames

from each video and using all the frames of each video. Under each setting, we repeat

the random selection 50 times and average all the results as the final recognition rate.

The performances of the three methods are shown in Table 5.4.

In the Table 5.4, the average performance of the proposed CRMMD (1 < k < n)

achieves 89.20% which outperforms those of MMD and AHISD methods. Comparing with
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Table 5.4: Experimental results of the three comparative methods using k-means clus-
tering on the Honda/UCSD database.

Methods Average
MMD 86.53%± 7.25%
AHISD 87.17%± 2.60%
CRMMD (k = 1) 85.23%± 7.78%
CRMMD (1 < k < n) 89.20%± 5.75%
CRMMD (k = n) 88.46%± 5.46%
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Figure 5.4: The rank r recognition rates of the five comparative approaches on the
Honda/UCSD database.

AHISD method, CRMMD models each manifold by using multiple local models which

describes an image set better than a single model. Comparing with MMD, CRMMD

(1 < k < n and k = n) adopts multiple bases to reconstruct a local model instead of

using a single basis as approximation. The performance of CRMMD (k = 1) shows the

lowest recognition rate, since it is sensitive to outliers when CRMMD uses the nearest

neighbor as the approximation.

We also illustrate the rank r recognition rates of the five comparative approaches in

Fig. 5.4 where the rank r ∈ [1, 14]. We can observe from this figure that the proposed
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Table 5.5: Experimental results of the three comparative methods using k-means clus-
tering on the CMU MoBo database.

Methods Average
MMD 94.40%± 3.00%
AHISD 94.39%± 1.90%
CRMMD (k = 1) 97.10%± 4.04%
CRMMD (1 < k < n) 97.78%± 3.94%
CRMMD (k = n) 98.52%± 3.05%

CRMMD methods consistently outperform the other methods when the rank r ≥ 2.

The experimental results on the CMU MoBo Database: On the CMU MoBo

Database, we divide each face image into multiple patches (size of 8× 8 pixels) and then

extract the uniform LBP feature from each patch. A face image is represented by using

a feature vector that is concatenated by the LBP descriptors extracted from each local

patch. Then we adopt the experimental configuration as follows: for each person, one

image set is randomly selected to be stored in the gallery set and the other three image

sets are used as probe sets. We repeat the random divisions 30 times for each method.

The average results are recorded in Table 5.5.

From the results shown in Table 5.5, the average performance of our proposed CR-

MMD method (k = n) achieves the best recognition rate 98.52% which outperforms

MMD by 4.12% and AHISD by 4.13%. Comparing with the Honda/UCSD database,

videos in the CMU MoBo database contain more noises and larger variations in pose

which leads to outliers in manifolds. Under this situation, the proposed CRMMD shows

its efficacy and robustness to outliers.

As investigated in Chapter 3, the best recognition results of the single model-based

methods, including the MSM method, the SD method, the WSD method, the proposed

FOWSD and EWSD methods, is stable around 93% on the CMU MoBo database. In

this chapter where we adopt the multi-model based framework, it is noted that the best

recognition performance of the multi-model based methods (the MMD method and the

proposed CRMMD method) achieves 98.52% on the CMU MoBo database, which is

much better the performance of the single model-based methods. Thus, it is better to

describe an image set by using multiple local models when this image set is with nonlinear

distribution.
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Table 5.6: Experimental results of the three comparative methods using k-means clus-
tering on the YouTube Celebrities database.

Methods Average
MMD 54.78%± 4.66%
AHISD 57.13%± 5.43%
CRMMD (k = 1) 55.52%± 5.63%
CRMMD (1 < k < n) 57.40%± 5.62%
CRMMD (k = n) 57.22%± 6.02%

The experimental results on the YouTube Celebrities Database: By applying

a tracking algorithm [129], we successfully tracked over 80% faces of the videos and resized

the face to 50× 50 for each frame. We follow the experimental configuration mentioned

in [117] to conduct five-fold cross validation experiments. The 1910 video sequences are

divided into five folds, each of which contains 423 videos from 47 persons with 9 videos

per person. In each fold, 3 image sets per person are randomly selected to be stored in

the gallery set, and the remaining 6 videos per person are used as probe sets. We repeat

the random division 50 times and record the averaged recognition rates and standard

deviations in Table 5.6.

In Table 5.6, it is observed that the performance of the proposed CRMMD method

(1 < k < n) reaches the best recognition rate 57.40%, which is better than the MMD

by 2.62% and slightly higher than AHISD 57.13%. Compared with the MMD method,

CRMMD method adopts collaborative reconstruction to handle outliers, which leads to

the better performance of the CRMMD method than that of the MMD method. Com-

pared with the AHISD method, the experimental results shows that the performances

of CRMMD and AHISD are comparable on this challenging database. In the YouTube

Celebrities database, the number of frames of each video sequence varies in a large range.

When the size of a subset is not very large, the mean vector is a good choice to represent

this subset. However, when the size of a subset in too large, the mean vector may not be

a sufficient descriptor for a large or sparse subset. In this situation, the AHISD method

that utilizes an affine hull or a convex hull to characteristic an image set is able to achieve

an acceptable recognition performance.
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Figure 5.5: The recognition rate goes up with the increasing of the number of face images
in each probe set.

5.3.2.3 The effect of the Number of Images in a Probe Set

To demonstrate that the efficacy of the methods for the task of face recognition based

on image sets, we design an experiment on the Honda/UCSD database as follows: We

use all the images of each gallery video to construct the gallery set and use the first f

frames of each probe video to store as each probe set where f ∈ [5, 300]. Under this

configuration, we increase the number of images for each probe set and keep the number

of images per gallery set unchanged. The CRMMD method is used in this experiment

and the recognition results are illustrated in Fig.5.5.

From the Fig.5.5, it can be observed that: When the gallery sets contain sufficient

face images for each person, the recognition performance of the FRBIS methods goes up

with the increasing of the number of face images in each probe set. The recognition rate

is only 84.62% when the number of images per set is 5. The recognition rate rises up to

94.87% when the number of images per set becomes 50. The recognition rate achieves

97.44% when the number of images per set is greater than 100. This experiment verifies

the efficacy of methods that recognize a person through a set of face images rather than

using a single image.
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5.3.2.4 The effect of k

In the proposed CRMMD method, the parameter k denotes the number of local models

used in collaborative reconstruction. It is important for us to clarify that how the various

values of k can affect the recognition performance of the proposed CRMMD method. We

conduct a series of experiments with varying k(k = 1, n/10, 2n/10, · · · , 9n/10, n) based
on the Honda/UCSD database where n denotes the number of basis in the codebook. We

perform the CRMMD method under three settings as mentioned in previous experiments.

Using the first 50 frames, the first 100 frames and full length of each video sequence.

Under each setting, we repeat the experiment 30 times and average the recognition rates

over the three setting conditions. Table 5.7 summarized the averaged results as follows.

Table 5.7: Face recognition results of the CRMMD method with various values of k on
the Honda/UCSD database.

Values of k k = 1 k = n/10 k = 2n/10 k = 3n/10
Recognition Rates 85.47% 85.61% 85.04% 85.89%
Values of k k = 4n/10 k = 5n/10 k = 6n/10 k = 7n/10
Recognition Rates 88.03% 89.32% 88.20% 88.46%
Values of k k = 8n/10 k = 9n/10 k = n
Recognition Rates 88.20% 89.07% 85.04%

From the Table 5.7, it is observed that the recognition results of CRMMD are not

sensitive to k when it takes values in the range of [4n/10, 9n/10] and the best recognition

rate of 89.32% is achieved at k = n/2. Thus, we chose k = n/2 in our experiments.

5.4 Conclusion

In this chapter, we have investigated the stage of manifold-to-manifold distance measure

under the framework of multi-model based methods, as a continuous of the stage of

local model construction discussed in the previous chapter. We first introduced the

limitations of the existing manifold-to-manifold distance measure which we denote as

NN-MMD in Section 5.1. In view of these limitations, we have proposed a more robust

and flexible manifold-to-manifold distance measure called collaborative reconstruction-

based manifold-manifold distance (CRMMD) for face recognition based on image sets
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in Section 5.2. The CRMMD between two manifolds can be obtained by computing

the distance between each local model and its approximation which was reconstructed

from neighbors on the other manifold. This reconstruction increased robustness of the

CRMMD method. In Section 5.3, we verified the efficacy of the proposed CRMMD

method through comparing with the state of the arts that are based on the unsupervised

set-based matching on three widely used databases.

It is noted that the methods investigated in Chapter 4 and Chapter 5 are based on

unsupervised set-based matching. Different from this, we will continue to discuss the

multi-model based methods in a supervised manner in the next chapter.

105



Chapter 5. Collaborative Reconstruction-Based Manifold-to-Manifold Distance

106



Chapter 6

Multi-Manifold Metric Learning
Approach

6.1 Introduction

In Chapter 4 and Chapter 5, it is observed that the multi-model based methods outper-

form the single model-based methods from the experimental results. Thus, we continue

to improve the approaches based on the multiple models in Chapter 6. The motivations

of our work in this chapter are explained as below:

• From the viewpoint of supervised learning: It is known that the supervised

learning is very useful for the pattern classification task, since the discriminative in-

formation provided by class labels are fully utilized in the training phase. Thus, we

add a discriminative learning step before the stage of manifold-to-manifold distance

measure to further enhance the performance of the multi-model based methods in

this work. Furthermore, the existing discriminative learning algorithms usually

learn only one low-dimensional subspace for all the samples from different classes.

However, the distributions of manifolds in different classes are not consistent, which

leads to unappropriate mappings. In view of this, we aim to design a novel learning

approach that seeks a collection of discriminative mappings, one for each class, to

adaptively transform the manifolds in different classes.

• From the viewpoint of metric learning: Recently, a number of distance metric

learning methods have been proposed in references [131] [132] [133] [134] [135] [136].
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Most of them learn a distance metric from single images and cannot deal with

image sets. A possible solution is to make use of each image sample within a set

separately and then learn a distance metric from these image samples. However, the

relations of face samples within a set is missed and some discriminative information

is ignored. In this work, we model each set as a manifold and then learn distance

metrics from these manifolds rather than single images, which is more suitable for

our face recognition from image sets problem.

In this chapter, we propose a multi-manifold metric learning (MMML) method for the

task of face recognition based on image sets. Different from most existing metric learning

algorithms that learn the distance metric based on single-shot images, our method aims

to learn distance metrics to measure the similarity of pairs of manifolds. Given an image

set, we first model it as a manifold and learn multiple distance metrics under which

the intra-class manifold variations are minimized and inter-class manifold variations are

maximized, simultaneously. For each person, we learn a distance metric by using such

criterion so that the learned distance metrics are person-specific and more discriminative.

In the classification phase, a probe image set is also modeled as a collection of affine hulls

and compared with each gallery set associated with the learned distance metric. Fig. 6.1

shows the working flow of our approach. There are three nice properties of the proposed

MMML algorithm summarized as follows:

• MMML learns a discriminant metric which aims to maximize the separability of

neighbor manifolds from different classes, at the same time the compactness of

manifolds from the same class is minimized.

• MMML learns a class-specific metric. In contrast to existing learning algorithms

which learn only one distance metric or a global linear transformation for all the

samples from different classes, the proposed method learns a collection of discrim-

inative distance metrics, one for each class. This class-specified distance metric is

able to better differentiate the current class from others than a single metric, which

may be not discriminative enough because face images from different classes may

lie on different manifolds with different intrinsic dimensions.
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Figure 6.1: Illustration of our proposed multi-manifold metric learning method. For each
image set, we model it as a manifold, which is further approximated as a collection of
affine hulls. For each person, we learn a person-specific distance metric to maximize the
inter-class manifold variations and minimize intra-class manifold variations, simultane-
ously, such that more discriminative information can be exploited for recognition. In the
test phase, the test image set is compared with each gallery image set associated with
the learned distance metric, and a label is assigned according to the nearest neighbor
rule.

• MMML learns a set-based metric. The previous metric learning algorithms are

instance-based metric, which cannot deal with the comparisons among image sets.

Thus, in the scenario of classification based on image sets, the MMML distance

metric is more suitable to measure the distances between manifolds.

The rest of this chapter is organized as follows: Based on the analysis mentioned

above, we propose a Multi-Manifold Metric Learning (MMML) method in Section 6.2,

which utilizes the discriminative property of a metric learning step to enhance the per-
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formance of multi-model based methods. Our method is extensively evaluated on three

popular face databases and compared to the state of the arts. Experimental results are

presented to show the effectiveness of the proposed method in Section 6.3, and Section

6.4 concludes the investigations of this chapter.

6.2 Proposed Approach

6.2.1 Multi-Affine Hulls Model

Consider N training sets from C classes. For each set, the face images are assumed to

lie on or near an underlying nonlinear and intrinsically low-dimensional manifold M. To

better capture the characteristic of each manifold, we adopt multiple local models rather

than a single model. Existing multi-model based methods [16, 118] first divide a nonlinear

manifold M into several subsets {s1, s2, · · · , sm} and each subset si, i ∈ {1, 2, · · · ,m}, is
then described by a linear subspace, such that a collection of linear subspaces is used to

model the manifold M. However, considering that the linear subspace is a rather loose

approximation of a subset, we use more compact representations, i.e., a collection of affine

hulls to characterize a manifold M = {h1,h2, · · · ,hm}, where hi, i ∈ {1, 2, · · · ,m}, is
an affine hull. Since the mean information is important to characterize an affine hull hi

because it reflects the averaged positions of face images within a set, we divide an image

set into multiple subsets by using the spectral clustering algorithms [125] [126] such that

a stable and representative mean vector can be obtained for each affine hull.

The spectral clustering: The spectral clustering algorithms [125] [126] cluster the

data points based on the first k eigenvectors of a normalized Laplacian matrix L of S,

which is an adjacency matrix storing the similarities between pairwise points of a data

set X. Then the objective function aims to find a collection of orthogonal embeddings of

the data set denoted as V, which consists of the approximations of the cluster indicator

vectors:

max
V∈Rn×k

tr
(
VTLV

)
s.t. VTV = I, (6.1)

where the optimal V contains the first k eigenvectors of the symmetric normalized Lapla-

cian matrix L as columns. Then each row vector of V can be normalized and used to

assign a data point to one of the k clusters through the k-means algorithm [124]. The
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spectral clustering algorithm has many nice properties such as well-defined mathematic

framework, more discriminative nature for clustering, good performance on clusters with

arbitrary shapes, etc.

The affine hull model for each subset: For a subset si = [xi
1, x

i
2, · · · , xi

ni], its

affine hull approximation hi is defined as

hi =
{
xi = µi +Uivi|vi ∈ RD

}
, (6.2)

where sample xi ∈ RD, µi is the mean vector of the subset si, Ui is the orthonormal basis

that spans the whole affine hull and vi is a vector of free parameters of xi within the affine

hull. Ui is obtained from the singular vectors of Singular Value Decomposition (SVD)

on [xi
1 − µi,x

i
2 − µi, · · · ,xi

ni − µi]. By using an affine hull, a subset can be compactly

represented since the affine subspace is able to reduce more redundant dimensions than

a linear subspace that is forced to go through the origin.

Differences from the AHISD method [98]: The method that utilizes affine hulls

or convex hulls to represent image sets was first proposed in [98]. In this AHISD method,

an image set is modeled by using a single affine hull or convex hull. In contrast, we

first cluster an image set into multiple subsets through a spectral clustering method, and

model each subset as an affine hull. Then the whole image set is described by using a

collection of affine hulls, i.e., M = {h1,h2, · · · ,hm}. Thus, our proposed method has a

stronger capability to characterize an image set with nonlinear distributions.

6.2.2 Affine hull-based Distance Metric

Most existing work such as [104], [16] design the manifold-to-manifold distance measure

as the dissimilarity between the most similar parts of two image sets, i.e.,

dmf(Mp,Mq) = min
hi∈Mp

min
hj∈Mq

daff(hi,hj), (6.3)

where dmf(Mp,Mq) denotes the distance between manifolds Mp and Mq, and daff(hi,hj)

denotes the distance between affine hulls hi and hj.

Instead of directly comparing the two affine hulls, we compare them by using a learned

distance metric. The conventional metric learning algorithms learn a Mahanalobis dis-

tance metric that is an instance-based metric. However, in the considered scenario, an
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affine hull-based distance metric is needed. Hence, we define a distance metric over affine

hulls as:

daff(hi,hj,A) = α
(µT

i Aµj)
2

(µT
i Aµi)(µT

j Aµj)
+ (1− α)tr(Λ), (6.4)

where α is a scalar parameter and Λ is obtained from the SVD of (Ũ
T

i AŨj), i.e.,

(Ũ
T

i AŨj) = QijΛQ
T
ji. Ui and Uj are orthonormal bases that span two affine hulls

respectively. Before we explain Ũi and Ũj that are transformed from Ui and Uj, we first

introduce a decomposition of A , where A = WWT and W ∈ RD×d. This makes the

parameter matrix A be a D ×D symmetric and positive semidefinite matrix such that

the affine hull-based metric is a valid metric that satisfies non-negativity, symmetry and

triangle inequality. Then we use WWT instead of A such that Eq. (6.4) can be rewritten

as

daff(hi,hj,W)

= α
(µT

i WWTµj)
2

(µT
i WWTµi)(µT

j WWTµj)
+ (1− α)tr(Λ)

= α

[(
WTµi

)T (
WTµj

)]2[(
WTµi

)T (
WTµi

)] [(
WTµj

)T (
WTµj

)]
+ (1− α)tr(Λ) (6.5)

where Λ is obtained from the SVD: (Ũ
T

i (WWT )Ũj) = (WT Ũi)
T (WT Ũj) = QijΛQ

T
ji. It

is observed that Λ contains the principal angles between matrices (WT Ũi) and (WT Ũj)

when the two matrices are orthonormal basis matrices of subspaces. Although Ui and Uj

are orthonormal matrices, in the subspace W, (WTUi) and (WTUj) are not generally

orthonormal basis matrices. Thus, to obtain the orthogonalized matrices (WT Ũi) and

(WT Ũj), we orthogonalize (WTUi) and (WTUj) by applying the QR decomposition

WTUi = ΦiRi

WTUj = ΦjRj (6.6)

where Φi and Φj are orthogonal matrices and Ri and Rj are invertable upper-triangular

matrices. The orthogonalized matrices (WT Ũi) and (WT Ũj) can be obtained as follows

Φi = (WTUi) ·R−1
i = WT · (UiR

−1
i ) = WT Ũi

Φj = (WTUj) ·R−1
j = WT · (UjR

−1
j ) = WT Ũj (6.7)
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where

Ũi = UiR
−1
i

Ũj = UjR
−1
j (6.8)

In Eq. (6.4) and Eq. (6.5), tr(Λ) describes the correlation between two orthonormal

basis matrices. Furthermore, tr(Λ) ≥ 0 due to the fact that the principal angles are

defined in the range of [0, π
2
]. Since Ui and Uj are two different coordinate systems with

respect to µi and µj respectively, the first term in Eq. (6.4) and Eq. (6.5) denotes how

far away the origins of the two coordinate systems Ui and Uj are from each other in

the subspace W. Whereas the second term in Eq. (6.4) and Eq. (6.5) indicates that if

the two coordinate systems are both shifted to the same origin, how relevant the two

subspaces are. Based on Eq. (6.5), we observe that learning a good distance metric is

equivalent to learn the linear transformations W for image sets in the original space.

6.2.3 Learning Parameter Matrix for the Distance Metric

WithN image sets from C classes, N intrinsically low dimensional manifoldsM1,M2, · · · ,MN

are embedded in the high dimensional ambient space. In order to give a more compact

description of a manifold meanwhile avoid the curse of dimensionality, a nonlinear di-

mension reduction procedure [9–11] is applied on a manifold. Based on the proof [8]

that the Laplacian of a graph can be considered as a good approximation of Laplace-

Beltrami operator defined on the manifold, many graph embedding algorithms have been

proposed to linearly map a manifold from a high dimensional Euclidean space to a low

dimensional subspace, such that the embedding is defined everywhere in ambient space

rather than just on the training data. However, these methods [8], [118] treated all the

training samples from different classes with the same embedding and ignored that man-

ifolds across classes might distribute very differently, i.e., there are large variations in

the intrinsic structures across different classes. In view of this, we learn a class-specified

distance metric daffc (hi,hj,Wc) for each class c. Then the proposed method aims to learn

a collection of linear transformations W1,W2, · · · ,WC from multiple manifolds.

There are N manifolds M1,M2, · · · ,MN that constitute the whole training dataset

X = [x1,1,x1,2, · · · ,x1,l1 , · · · ,xN,1,xN,2, · · · ,xN,lN ]. For notation simplicity, X is denoted
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Figure 6.2: Illustration of the basic idea of the learning procedure for the ith class. For
class i, we learn a distance metric that pushes the manifolds of class i away from neighbor
manifolds of other classes meanwhile pulls affine hulls inside the same manifold closer.

as [x1,x2, · · · ,xl] where l =
∑N

i=1 li. From the classification perspective, we expect that

the learned transformations W1,W2, · · · ,WC are able to maximize the scatterness be-

tween neighboring manifolds but from different classes, and minimize the compactness

of manifolds from the same class simultaneously. Figure 6.2 shows the basic idea of the

learning procedure for the ith class. To achieve this goal, we maximize the discriminabil-

ity of training data by solving the following objective function for the cth class:

max
Wc

fb(Wc), s.t. fw(Wc) = 1, (6.9)
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where

fb(Wc) =
∑
i,j

∥WT
c xi −WT

c xj∥2G(c)
b (i, j), (6.10)

fw(Wc) =
∑
i,j

∥WT
c xi −WT

c xj∥2G(c)
w (i, j). (6.11)

For the cth class, the penalty graph G
(c)
b that describes the between-class scatterness

introduces a penalty of ||WT
c xi − WT

c xj|| if xi and xj is near to each other but from

different classes, whereas the intrinsic graph G
(c)
w encourages WT

c xi and WT
c xj to get

closer if xi and xj are from the same class. The penalty graph G
(c)
b and intrinsic graph

G
(c)
w are defined as:

G
(c)
b (i, j) =

{
e

−∥xi−xj∥
tb , if M(xj) ∈ Nk(M(xi)) ,

where only xi ∈ class c,
0, otherwise,

(6.12)

G(c)
w (i, j) =

{
e

−∥xi−xj∥
tw , if both xi,xj ∈ class c,

0, otherwise,
(6.13)

where tb and tw are parameters of the heat kernels that follow an Gaussian distribution

approximately in a local area. M(xi) denotes the manifold to which xi belongs, and

Nk(M(xi)) denotes the manifolds that are the k nearest neighbors of manifold M(xi).
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For ease of analysis, we simplify fb(Wc) in (6.10) as:∑
i,j

∥WT
c xi −WT

c xj∥2G(c)
b (i, j)

= tr

{
WT

c

[∑
i,j

(xi − xi)(xi − xj)
TG

(c)
b (i, j)

]
Wc

}

= tr

{
WT

c

[∑
i,j

xiG
(c)
b (i, j)xT

i −
∑
i,j

xjG
(c)
b (i, j)xT

i

−
∑
i,j

xiG
(c)
b (i, j)xT

j +
∑
i,j

xjG
(c)
b (i, j)xT

j

]
Wc

}

= tr

{
WT

c

[∑
i

xiD
(c)
b (i, i)xT

i −XGc
bX

T

−XGc
bX

T +
∑
j

xjD
(c)
b (j, j)xT

j

]
Wc

}
= 2tr

(
WT

c XD
(c)
b XTWc −WT

c XG
(c)
b XTWc

)
= 2tr

(
WT

c XL
(c)
b XTWc

)
, (6.14)

where D is a diagonal matrix with D
(c)
b (i, i) =

∑
j G

(c)
b (i, j) and L

(c)
b = D

(c)
b −G

(c)
b is the

Laplacian of the penalty graph G
(c)
b .

In the similar way, fw(WC) in (6.11) can be simplified as follows:∑
i,j

∥WT
c xi −WT

c xj∥2G(c)
w (i, j)

= 2tr
(
WT

c XL(c)
w XTWc

)
, (6.15)

where the multiplier 2 is a constant that can be discarded. Thus, the optimal trans-

formation matrix Wc can be derived by solving the generalized eigen-decomposition of

matrices L(c)
w and L

(c)
b :

XL
(c)
b XTw = λXL(c)

w XTw. (6.16)

The largest d eigenvectors {w1,w2, · · · ,wd} corresponding to the largest d eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0 are chosen as the transformation matrix Wc. In this way, in the

learning phase we compute W1,W2, · · · ,WC for each class respectively.
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6.2.4 Recognition

Having obtained a collection of discriminant parameter matrix W1,W2, · · · ,WC , the

recognition procedure is conducted on a probe image set, the manifold of which is de-

noted as Mp. The probe set is first divided into mp clusters by using a spectral clustering

algorithm and then characterized as a set of affine hulls Mp = [h
(p)
1 ,h

(p)
2 , · · · ,h(p)

mp
]. Sim-

ilarly, a gallery set from class c is also described as M(c)
g = [h

(c,g)
1 ,h

(c,g)
2 , · · · ,h(c,g)

mg
]. To

compare the probe manifold to the gallery manifold, we directly match them using the

manifold to manifold distance metric whose parameter matrixWc is obtained from learn-

ing:

dmf(Mp,Mg) = min
h
(p)
i ∈Mp

min
h
(c,g)
j ∈Mq

daff(h
(p)
i ,h

(c,g)
j ,Wc). (6.17)

The probe manifold is assigned the label of a gallery manifold which is the nearest

neighbor to the probe.

To speed up the proposed algorithm, we let α = 1 in (6.5). Thus the affine hull

distance metric becomes:

daff(h
(p)
i ,h

(c,g)
j ,WcW

T
c )

=
µ
(p)T
i WcW

T
c µ

(c,g)
j

(µ
(p)T
i WcW

T
c µ

(p)
i )(µ

(c,g)T
j WcW

T
c µ

(c,g)
j )

, (6.18)

where the mean vectors µ
(c,g)
j and µ

(p)
i are used as descriptors of affine hull h

(c,g)
j and

h
(p)
i respectively. Under such circumstances, the Euclidean distance between two mean

vectors µ
(p)
i and µ

(c,g)
j can be used as an alternative affine hull distance metric:

daff(h
(p)
i ,h

(c,g)
j ,WcW

T
c )

=

√
(µ

(p)
i − µ

(c,g)
j )TWcW

T
c (µ

(p)
i − µ

(c,g)
j ). (6.19)

6.3 Experiments

In this section, we evaluate the proposed MMML method on the task of face recognition

based on image sets. Given a query face image set, its nearest gallery set is found by

using the collection of parameter matrices W1,W2, · · · ,Wc and the nearest neighbor

classifier.
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6.3.1 Experimental Setup

Goals: Through the following experiments, we aims to evaluate the performance of the

proposed MMML method in several aspects to verify its efficacy.

• In experiment 1, in order to demonstrate the effectiveness of using affine hull models,

we compare the performance of the methods based on the affine hull model to that

based on the linear subspace model (PCA model).

• In experiment 2, in order to show the effectiveness of using multiple class-specific

subspaces, we test the performance of the methods based on multiple class-specific

subspaces and one unified subspace respectively.

• In experiment 3, we illustrate the effect of the number of affine hulls on the recog-

nition performance of the proposed MMML method.

• In experiment 4, we show the effect of the number of dimensions of each class-

specific subspace on the recognition performance of the proposed MMML method.

• In experiment 5, we compare the proposed MMML method with five state of the

arts on three widely studied face video databases to demonstrate the effectiveness

of the proposed method.

The three databases used for evaluations: We evaluate the performance of

the proposed MMML method based on three widely studied face video databases: the

Honda/UCSD database [127], the CMUMoBo database [119] and the Youtube Celebrities

database [128]. Each video sequence in these databases is broken into frames and saved

as an image set.

• The Honda/UCSD Database: As introduced in Section 4.4.1, Honda/UCSD

database [127] contains 59 video clips involving 20 individuals. There are some

exemplar cropped face images from the Honda/UCSD database are shown in Fig.

4.3.
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• The CMU MoBo Database: As introduced in Chapter 3, there are 96 videos

sequences from 24 different persons in the CMU MoBo (Motion of body) database

[119] where each person has 4 video sequences containing a large number of varia-

tions in poses and expressions. Some exemplar face images from the CMU MoBo

database are shown in Fig. 3.9.

• The Youtube Celebrities Database: As introduced in Section 4.4.1, the Youtube

Celebrities Database [128] contains 1910 video sequences from 47 different individ-

uals. These videos are obtained from the real-life scenarios and with low qualities.

Some well-cropped face images from the Youtube Celebrities database are shown

in Fig. 4.4.

The six approaches used for comparisons: In the experimental parts, we com-

pare the proposed MMML method with the state of the arts to demonstrate its efficacy.

These methods are: the Affine hull-based Image Set Distance (AHISD) [98], Discrimi-

nant Canonical Correlation Analysis (DCC) [104], Manifold-to-Manifold Distance(MMD)

[16], Manifold Discriminant Analysis (MDA) [118] and Sparse Approximated Nearest

Points(SANP) method [117]. Among these methods, there two unsupervised set-based

matching methods including the MMD method and the AHISD method. The other three

algorithms are based on supervised learning stages.

• The DCC method: A discriminative learning approach using canonical corre-

lations known as DCC was proposed in reference [104]. Inspired by both the lin-

ear discriminant analysis (LDA) method and the canonical correlations analysis

(CCA) method, the DCC algorithm defines the distance between image sets by us-

ing canonical correlations and uses a discriminative learning method to maximize

the between-class correlations and minimize the within-class correlations over all

the image sets. The objective function optimizes the orthonormal basis matrix,

rotation matrices and discriminant transformation matrix in each step iteratively

and the convergence of the DCC method is verified through experiments. The

source codes of the DCC method are provided by original authors. In our imple-

mentations, the important parameters are tuned and optimized as follows. The
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PCA algorithm is applied to preserve 90% energy of each subspace such that the

dimension of each subspace is 10. The dimension of the embedding subspace is set

to 150.

• The MDA method: Manifold Discriminant Analysis (MDA) was proposed in

reference [118] to improve their previous work, the MMD method. Different from

MMD that utilizes the MLP to construct each subset, the MDA method adopts

a Hierarchical Divisive Clustering (HDC) method that is able to divide more bal-

anced subsets than the MLP method. Then the MDA method finds a discriminative

transformation for all the manifolds in the training dataset to maximize the sep-

arability of local models from different manifolds and minimize the compactness

of images from the same local model. The source codes of the MDA method are

provided by original authors. To achieve the optimal performance, we tune the im-

portant parameters in our implementation as follows: The ratio between geodesic

distance and Euclidean distance is tuned to 1.1 to achieve an optimal performance.

The other parameters are set following the experimental settings in their papers.

• The SANP method: The Sparse Approximated Nearest Points(SANP) method

was recently proposed in the reference[117]. It utilizes an affine hull to describe

each image set. This is different from our MMML method where an image set is

described by a collection of affine hulls. In their method, the distance between two

image sets is obtained from the nearest pair of points from two affine hulls, where

the nearest point is approximated by the sparse linear combination of images in

the other set. The sparse approximation error is used as the distance between two

image sets. The source codes of the SANP algorithm are also provided by authors,

which facilitates the implementations. We set the important parameters, all the

weights for convex optimization, as the same the shown in their paper.

• The MMD method: As introduced in the previous chapters, the Manifold-to-

manifold distance (MMD) method utilizes the MLP algorithm to cluster each image

set and defines the manifold-to-manifold distance as the distance between the near-

est pair of local models from two manifolds. In our implementations, we used the

codes provided by the authors and set the parameters as follows: The ratio between
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geodesic distance and Euclidean distance is tuned to 1.1 to achieve an optimal per-

formance. The principal angles which are used in the manifold-to-manifold distance

are the first 10 angles.

• The AHISD method: As introduced in Chapter 5, the Affine hull-based Image

Set Distance (AHISD) method describes each image set by using a convex hull or

an affine hull and the distance between two such convex geometric regions is defined

as the distance between the nearest pair of points from two hulls. The classification

is accomplished by a SVM classifier. The source code of the AHISD approaches is

provided by original authors. In the implementations of the AHISD method, there

is no parameter to be tuned.

• The propsoed MMML method: For the proposed MMML method, the param-

eter k of the k-means algorithm is set as follows: k = 4 if the number of images in

each set is less than 20, k = 9 if the image number is less than 50. To speed up

our algorithm, we adopt the affine hull-based distance metric defined in (6.18) and

(6.19) where each affine hull is described by its mean vector.

6.3.2 Experiment 1: Affine Hull vs Linear Subspace

In the proposed MMML method, we adopt the affine hulls instead of linear subspaces

to represent a nonlinear manifold. From the geometric viewpoint, in general an affine

hull is a more compact representation than a linear subspace. Thus the affine hull-

based methods are expected to perform better than the linear subspace-based methods

in terms of the recognition performance. To verify the advantage of the proposed MMML

method, we design experiment 1 as follows. Based on the Honda/UCSD database, we

select 20 video sequences as gallery sets, with the remaining 39 videos as probe sets.

For fair comparisons between the affine hull-based method and the linear subspace-based

method, we adopt the same algorithm in the design of each step except the modeling part,

where each subset is modeled using the affine hulls and linear subspaces respectively. It is

noted that this experiment does not involve any learning stage for reducing computational

complexity. Under such conditions, we randomly repeat the experiment 30 times. Then

the averaged experimental results are given in Table 6.1 for the two methods respectively.
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Table 6.1: Experimental results of experiment 1 on the Honda/UCSD database.

Methods Average
Linear subspace-based method 87.2%± 4.1%

Affine hull-based method 95.4%± 3.3%

In the Table. 6.1, it can be observed that the affine hull-based method improves the

recognition performance significantly, which achieves better recognition rate 95.4% that

outperforms that of the linear subspace-based method by around 8.2%.

6.3.3 Experiment 2: Multiple Class-specific Subspaces vs One
Unified Subspace

Different from the existing methods that only learn a unified subspace for all the train-

ing samples, the proposed MMML method learns a collection of class-specific subspaces

W1,W2, · · · ,WC based on the observation that the manifolds in different classes dis-

tribute differently. To illustrate the efficacy of the proposed method using multiple class-

specific subspaces, we design experiment 2 as follows. On the CMU MoBo database,

one image set per person is randomly selected for training, with the remaining three im-

age sets used for testing. For fair comparisons between the class-specific subspace-based

method and the unified subspace-based method, we adopt the same algorithm in the

design of each step except the learning part, where multiple class-specific subspaces and

one unified subspace are learned respectively. Based on these settings, we repeat the

experiment 30 times for each method. Then the averaged results of experiment 2 on the

CMU MoBo database are illustrated in Table 6.2.

Table 6.2: Experimental results of experiment 2 on the CMU MoBo database.

Methods Average
Unified based method 95.8%± 1.3%

Class-specific based method 98.6%± 2.3%

We can observe from Table 6.2 that the recognition performance of the proposed

method based on multiple class-specific subspaces reaches 98.6%, which significantly

outperforms that of the method based on one unified subspace.
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6.3.4 Experiment 3: Number of Affine Hulls

In the proposed MMML method, the spectral clustering algorithm is adopted to divide an

image set into multiple clusters. The number of affine hulls, which we denote as k, equals

to the number of clusters. To investigate how the selection of the number of affine hulls

affects recognition performance, we conduct a series of experiments on Honda/UCSD

database where 50 frames of each video are used. We test the MMML method with

varying k (from 1 to 29) since the number of frames of each video varies from 29 to 50.

For each k, we repeat the experiment 30 times and the averaged recognition rates are

recorded. Thus we illustrate the relationship between the number of affine hulls and the

recognition performance of the proposed method based on the Honda/UCSD database

in Fig. 6.3.
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Figure 6.3: The recognition performance of the MMML method with varying number of
affine hulls.

From the Fig. 6.3, it is observed that the performance of MMML method is robust

with respect to varying k. When k=1, the recognition rate of MMML method only

reaches 70% since the whole image set is directly put into the discriminative learning

stage without division. With the increasing value of k, the recognition rate of the MMML

method first rises and then stabilizes around 89% as shown in Fig. 6.3. Thus when k

varies from 4 to 29, it is apparent that the proposed MMML method is not sensitive to

123



Chapter 6. Multi-Manifold Metric Learning Approach

k. Hence, there is a large space for us to choose a suitable number of affine hulls for the

proposed MMML method.

6.3.5 Experiment 4: The Dimension of Each Subspace

To further illustrate the robustness of the proposed MMML method, we evaluate its

performance with an increase in the dimensions of each subspace in experiment 4. Similar

to experiment 2, 96 face image sets from the CMU MoBo database are used. One image

set per individual is randomly selected for learning, with the remaining three image sets

per person used as the probe sets. We repeat the random selection 30 times for each

subspace of fixed dimensions, and then increase the dimensions with step size 1. Then

the averaged recognition rates are shown in Fig. 6.4 and 6.5, where the relationship

between the number of dimensions of each discriminative subspace and the recognition

rates of the proposed method on the CMU MoBo database is demonstrated. Fig. 6.4

shows the recognition rates when the number of dimensions varies from 1 to 60. To better

illustrate the effect of the dimension on the performance of the proposed method, Fig.

6.5 demonstrates the recognition rates when the number of dimensions varies from 1 to

12.
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Figure 6.4: The recognition performance of the MMML method with increasing number
of dimensions (from 1 to 60) of each discriminative subspace.
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Figure 6.5: The recognition performance of the MMML method with increasing number
of dimensions (from 1 to 12) of each discriminative subspace.

From Fig. 6.4 and 6.5, we observe that the performance of the proposed MMML

method improves with an increase in the number of dimensions of each discriminative

subspace. In Fig. 6.5, the recognition rate is only around 9.72% when the number of

dimensions equals to one and quickly rises up to 37.5%, 72.22%, 81.94% and 84.72% with

dimensions 2, 3, 4 and 5 respectively. However, when the number of dimensions keeps

increasing beyond 12, the improvement in the recognition performance of the proposed

MMML method is limited as shown in Fig. 6.4, which demonstrates a robustness to the

dimension of each subspace. This provides us a large space to choose a suitable number

of dimensions of each subspace for the proposed MMML method.

6.3.6 Experiment 5: Compare with Five State of the Arts

We compare the proposed MMML method with five set-based classification methods, the

Affine hull-based Image Set Distance (AHISD) [98], Discriminant Canonical Correlation

Analysis (DCC) [104], Manifold-to-Manifold Distance (MMD) [16], Manifold Discrimi-

nant Analysis (MDA) [118] and Sparse Approximated Nearest Points (SANP) method

[117], as introduced in the experimental setting part.
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Table 6.3: Experimental results on the Honda/UCSD database.

Methods 50 100 Full Average
Frames Frames Length

DCC 79.5% 92.3% 94.9% 88.9%
MMD 82.1% 84.6% 94.9% 87.2%
MDA 76.9% 89.7% 100% 88.9%
AHISD 87.2% 84.6% 89.7% 87.2%
SANP 84.6% 92.3% 100% 92.3%
MMML 89.7% 92.3% 97.22% 93.1%

Experiments on the Honda/UCSD Database: For the Honda/UCSD database

[127], each cropped face image is resized to 20 × 20 as in [117] [16]. To minimize the

effect of illuminations, the histogram equalization is performed as a preprocessing step.

In our implementation, we adopt the configuration described in Section 4.4.2 where

20 video sequences are selected for training and the remaining 39 videos are used for

testing. Similar to [117], we evaluate the proposed method and the five methods under

three settings: 50 frames each video sequence, 100 frames each video sequence and full

length of each video sequence. The number of k nearest neighbor affine hulls is set to

7. The experimental results of the proposed method and the competing methods are

summarized and shown in Table 6.3.

From the comparison results shown in Table 6.3, the proposed MMML method

achieves the best average recognition rate 93.1%. Since the MMD and AHISD meth-

ods directly compare the models of image sets without any learning procedure, they

perform not as well as the discriminative learning approaches DCC, MDA and MMML

methods. Although the SANP does not involve any discriminative learning steps, it

reconstructs a sample point using sparse affine coefficients which introduce the discrimi-

native information into the sparse representations. Thus the SANP method is also able

to achieve a comparable recognition rate. In the case that the frames of a video sequence

are reduced, i.e., 50 frames in each image set, the performances of MDA and DCC de-

grade heavily because of the training samples is not enough for discriminative learning.

In this situation, since the MMML method describes an image set using a collection of

affine hulls which can “fill-in” the missing data, the MMML method shows effectiveness

and robustness across different training set size, even the training samples decreased.
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Table 6.4: Experimental results on CMU MoBo database.

Methods Average
DCC 94.9%± 2.3%
MMD 94.4%± 3.0%
MDA 95.8%± 1.9%
AHISD 94.4%± 1.9%
SANP 97.8%± 1.1%
MMML 98.6%± 2.5%

Experiments on CMU MoBo Database: For the CMU MoBo database, the

cropped face images are resized to the size of 40 × 40 and the LBP features of each

face image are extracted as described in the previous chapters. The configuration of

experiments on the CMUMoBo datasets is: one image set per person is randomly selected

for training and the remaining three image sets are used for testing. We repeat the

random selection 30 times for each algorithm and the averaged results are illustrated in

Table 6.4.

From the averaged recognition rates shown in Table 6.4, we observe that the perfor-

mance of the proposed MMML method achieves 98.61% which shows the best average

recognition rate over all methods. Compared to the Honda/UCSD database, the CMU-

mobo database is more noisy, thus the proposed MMML method perform better than

others since it learns a class-specific metric which is able to describe a noisy image set

better. The recognition rate of SANP method reaches 97.8% which is slightly inferior

to MMML. However the computational complexity of the proposed MMML method is

much lower than SANP. On the CMU MoBo database, MMD and AHISD still perform

not as well as discriminative learning methods such as MDA, DCC, SANP and MMML,

where SANP employs sparse coefficients which introduce discriminative information.

From the Table 6.3 and Table 6.4, all the six set-based approaches perform well on the

Honda/UCSD database and the CMU MoBo database, since the two databases contain

the variations in pose and expression under controlled conditions where there is little

variations in illumination and the videos are captured in the indoor environment.

Experiments on YouTube Celebrities Database: For the Youtube Celebrities

database, each cropped face image is histogram equalized and resized to 50× 50.
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Table 6.5: Experimental results on YouTube Celebrities database.

Methods Average
DCC 62.2%± 2.1%
MMD 63.6%± 2.3%
MDA 61.9%± 3.4%
AHISD 64.2%± 4.1%
SANP 63.9%± 2.3%
MMML 69.4%± 2.8%

In our implementations, we follow the experimental configuration mentioned in [117]

where there are five-fold cross validation experiments conducted on this database. We

divide video sequences of each person into 5 groups and make sure that each group con-

tains 9 videos(with minimum overlapping). After this division, the YouTube Celebrities

Database becomes five folds. Each fold consists of 423 video sequences from 47 subjects.

In each fold, we randomly select 3 image sets per person used in the learning stage and

use the remaining 6 image sets in the classification phase. We repeated the random se-

lected experiments 10 times for each algorithm and show the averaged recognition rates

and standard deviations in Table 6.5.

In Table 6.5, all the set-based image classification approaches show lower perfor-

mances on the YouTube Celebrities database, since the videos are obtained from real

life with low quality, misalignments and the large variations in appearances, poses and

expressions. In this challenging case, the recognition rate of our MMML method achieves

69.4% which outperforms all the other competing methods. Due to the single affine hull

model cannot exactly describe an noisy image set which is quality-low with full of large

appearance variations, the performance of the SANP method is not as well as that on

Honda/CUCSD and CMU MoBo databases. Both the MAD and DCC methods learn

a single discriminative subspace for all the samples from different classes. However the

large variations cannot be covered into this single subspace which leads to the relative

low recognition rates of MDA and DCC tested on the YouTube Celebrities database. In

our method, the proposed affine hull-based distance metric is designed for each class such

that the variations of the current class is characterized well by the class-specified model.

This leads to the robust performance of our MMML method across the Honda/UCSD,

CMU MoBo and YouTube Celebrities databases.
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Table 6.6: Computation time of different methods on Honda/UCSD database (classifi-
cation of one image set).

Methods Training Testing
DCC 6.50s 0.23s
MMD N/A 30.10s
MDA 8.90s 0.18s
AHISD N/A 5.20s
SANP N/A 2.80s
MMML 60.08s 0.13s

6.3.7 Discussion

Computational Complexity: Table 6.6 compares the computational time of different

methods on Honda/UCSD database. From this table, we can see that MMD spends the

longest time 30.1 seconds in the testing step of classifying one image set, because two

parts of MMD are time-consuming: constructing a collection of linear subspaces through

PCA and matching image sets by computing their principal angles. From the recognition

rates shown in Tables 6.3 and 6.4, we observe that the performances of SANP and MMML

keep close to one another, but SANP costs more time (2.8 seconds) in classifying one

image set than our MMML method (0.13 seconds). Although our proposed MMML needs

to learn a distance metric for each class, the time consuming training step can be finished

offline such that the testing time of classifying each probe image set does not increase.

Sample Size: The whole algorithm assumes that there are sufficient images in each

image set such that a collection of affine hulls can be utilized to characterize a nonlinearly

distributed manifold. Naturally, the small sample size (SSS) problem may arise in some

scenarios. When there are not sufficient samples in an image set, the number of affine

hulls used to describe this manifold will be reduced. Furthermore, for each subset of a

manifold, there are two key factors to effectively describe its affine hull representation:

the mean vector µ and the orthonormal basis matrix W. When there are not sufficient

samples in a subset, the mean vector is able to describe the subset better than the

orthonormal basis matrix. Thus we give a larger weight to the mean vector and a smaller

weight to the orthonormal basis matrix, such that our approach is able to adapt to

different image sizes, and vice versa.
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6.4 Conclusion

Different from the previous chapters that studied the approaches in a unsupervised man-

ner, we conducted our investigation on the area of supervised multi-model based methods

for face recognition with image sets in Chapter 6. Based on the motivation mentioned in

Section 6.1, we discussed the proposed multi-manifold metric learning (MMML) method

for face recognition from image sets in Section 6.2. We considered each image set as a

nonlinear manifold and characterized it by using a collection of affine hulls. We learned

multiple person-specific distance metrics based on the training manifolds to maximize the

separability of neighbor manifolds from different classes and minimize the compactness of

manifolds from the same class, simultaneously, such that more discriminative information

can be exploited for classification. Experimental results on three popular databases are

presented to show the effectiveness and robustness of our proposed method in Section

6.3, followed by the conclusion in Section 6.4.
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Conclusion and Future Research

7.1 Conclusion

As a challenging problem in the area of pattern recognition, face recognition has received a

large amount of research interest over the past several decades. Although great progress

has been made on this topic and the techniques have been considered rather mature,

face recognition systems are far from achieving desirable performance under uncontrolled

conditions that usually occur in our real lives. One possible solution to reduce the

degree of challenges is to utilize more face images of each individual, e.g., a collection of

photos from the personal galley or frames from a video clip, which include more noises

such as misalignments, occlusions and large variations in illumination, expression, pose,

resolution, etc.

In this thesis, we have investigated the topic of face recognition based on image

sets (FRBIS) where a set of face images of an individual can be collected from various

social media sharing websites such as Facebook, YouTube, Flickr, etc. Based on the

investigation, we further proposed some possible solutions to address this problem. In

the following sections, we summarize our work in this thesis and sketch the further

research directions.

7.1.1 Single Model-based Methods for FRBIS

As reviewed in Chapter 2, the literatures on the area of FRBIS can generally be divided

into three categories: model-free methods, single-model based methods and multi-model
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based methods, of which we investigated the two predominant categories, i.e., the single-

model based methods and multi-model based methods.

Among the single model-based methods, we investigated the correlation-based ap-

proaches that are efficient for set-to-set matching in Chapter 3. The correlation-based

approaches usually model an image set by using a linear subspace or a weighted subspace.

Based on the study of correlation-based methods, we proposed a generalized subspace

distance (GSD) framework to illustrate the underlying relationships among several state

of the arts. Moreover, we observed that the weight assigned to each basis is often a fixed

value, e.g., the corresponding eigenvalue. To improve the recognition performance, we

introduced a parameter, which is learned from a discriminative learning step, into the

proposed GSD framework. This leads to the proposed FOWSD and EWSD that have

stronger ability to classify image sets from different classes. Furthermore, we extended

the FOWSD and EWSD methods to their affine versions such that each image set can

be fitted better by using an affine hull. We verified the efficacy of the proposed methods

on four widely used databases for both the face recognition and object recognition tasks.

7.1.2 Multi-model based Methods for FRBIS — Local Model
Construction

Although we have strived to explore the potential of the single-model based methods

in Chapter 3, the performance of them seems to confront a bottleneck, e.g., the best

recognition results appear to be stable around 93% on the CMU MoBo database. This

phenomenon is possibly caused by the fact that the single-model based methods have

the limited ability to describe the nonlinearly distributed image sets that are usually

obtained from the real-life applications. In view of this observation, we exploited the

multi-model based methods, which are more flexible to capture the nonlinear distributed

image sets, for solving the FRBIS problem. Generally, the multi-model based methods

consists of two steps: the local model construction and the manifold-to-manifold distance

measure.

In Chapter 4, we investigated the first stage: local model construction. In the existing

multi-model based methods, an image set is usually considered as a nonlinear manifold

that is represented by using a collection of local models. Usually, a local model is a linear
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subspace in the state of the arts. However, constructing a linear subspace from an image

set and matching different linear subspaces are very time-consuming steps. In view of this,

we adopted the mean vector of each subset as the local model to accelerate the procedure

of computing manifold-to-manifold distances. The question is how to divide an image set

into clusters such that the mean vector of each subset becomes more representative. The

conventional clustering methods, the k-means clustering and standard spectral clustering

methods, cluster images by using only one view of the image set. Different from this, we

proposed a co-learned multi-view spectral clustering (CMSC) algorithm that combines

multiple representations of an image set, e.g., the SIFT descriptors, LBP descriptors and

intensity values, such that the resultant clusters are able to provide more representative

mean vectors as local models. We verified the efficacy of the proposed CMSC method

through a series of experiments.

7.1.3 Multi-model based Methods for FRBIS — Manifold to
Manifold Distance

As a continuous of Chapter 4, we further investigated the stage of manifold-to-manifold

distance measure for multi-model based approaches. The existing method for measuring

the similarity between manifolds is to compare the most similar pair of local models

from two manifolds respectively, which is denoted as nearest neighbor based manifold-

to-manifold distance (NN-MMD). However, the NN-MMD cannot guarantee a reliable

recognition result when an face image set contains outliers. To make the recognition sys-

tem more robust to noises, we proposed a collaborative reconstruction-based manifold-

to-manifold distance (CRMMD) that can be obtained from the minimal reconstruction

error between a local model and its approximation, which is collaboratively reconstructed

from several local models on the other manifold. Hence, the proposed CRMMD reduces

its sensitivity to random variations in local models and provides more accurate classifica-

tion results, which was verified through comparing with state of the arts on three widely

studied databases.
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7.1.4 Multi-model based Methods for FRBIS — Supervised
Learning

From Chapter 4 and Chapter 5, we observed that the multi-model based methods which

we had investigated are based on unsupervised matching stage. It is known that the

supervised learning is very useful for pattern classification task, since the discriminative

information provided by class labels are fully utilized in the training phase. Thus we

attempted to exploit the discriminative learning methods to enhance the classification

performance of the multi-model based methods. It is noted that the existing discrim-

inative learning algorithm used for multi-model based methods only learns one single

low-dimensional subspace for all the image sets from different classes where the image

sets distributes differently. In contrast, we proposed a person-specific metric learning

approach denoted as the multi-manifold metric learning (MMML) method for FRBIS in

Chapter 6. Firstly, our MMML method adopted a metric learning manner. Different

from the existing metric learning methods that learn the distance metric from single

images and cannot deal with image sets, the proposed MMML method learns the dis-

tance metrics for matching manifolds. Secondly, the MMML method learns a collection

of person-specific distance metrics, one for each class. This provides more discriminative

distance metrics for classifying manifolds. Based on the above advantages, the proposed

MMML algorithm has outperformed the state of the arts as shown in the experimental

section.

7.2 Future Work

7.2.1 Possible Directions of FRBIS

Although we have investigated the problem of face recognition based image sets as com-

pletely as possible, there are still many potential solutions worth to be further explored.

For the FRBIS problem, our study is from the single model-based methods to the

multi-model based methods and the experimental results have showed that the multi-

model based methods generally outperform the single model-based methods. In view of

this, one can continue to investigate the multi-model based methods. In our proposed

methods introduced in the previous chapters, we used a mean vector to describe each
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Photos Photos Photos 

Infrared images Sketches 3D images 

Figure 7.1: Three examples of heterogeneous face recognition applications. Form left to
right are visual images v.s. NIR images, 2D images v.s. 3D images, and photo-sketch
heterogeneous face recognition, respectively.

subset of an image set. However, the mean vector might have limited capability to

capture a subset when this subset contains too many samples or distributes sparsely.

Under this situation, it is better to adopt some more complex local models such as the

covariance matrix, the low-rank matrix, etc. Accordingly, a new manifold-to-manifold

distance measure should be re-designed to matching such complex local models.

Furthermore, the proposed CMSC method can be applied to more clustering appli-

cations and the proposed CRMMD methods can be applied to other set-based visual

recognition applications such as video-based object search and multi-view object recog-

nition to further demonstrate its effectiveness.

7.2.2 Heterogeneous Face Recognition

We have investigated the topic of face recognition based on image sets that is one of the

problems confronted in the practical face recognition applications. Besides the FRBIS

problem, there are still many practical problems of face recognition left and needed to be

explored. For example, human can recognize faces by using information from multiple

stimuli (the senses of eye, nose, ear and touch) and some experience such as race, gender

and the relevance between individuals and contextual knowledge, etc. Inspired by this,

more and more research work has looked into the areas of multi-model (combining the

information of speech, visual and gait, etc.) face recognition or multi-modality (infrared

face image, 3D face image and sketch, etc.) face recognition.
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A challenging task is the heterogeneous face recognition where the query face images

captured on spot and the reference face images stored in the database are captured from

different modalities, e.g., visual images vs. near infrared (NIR) images, digital images vs.

sketches, or 2D images vs. 3D images, as the examples shown in Fig. 7.1. Heterogeneous

face recognition is a very common situation in our daily lives, for example:

• Visual images vs. near infrared (NIR) images: NIR is an emerging imaging modality

which is able to combat the weak lighting condition and capture clear images of

a subject in the night, cloudy or rainy days. In a heterogeneous face recognition

system, the NIR images captured by surveillance camera is compared to optical

images stored in the gallery database.

• Photos vs. sketches: Sketches drawn by artists are important tools for determining

the identity of a suspect whose photo is unavailable when criminal activities occur.

• 2D images vs. 3D images: 3D face images has the potential to improve face recog-

nition performance under the conditions with large variations in pose. The system

often matching 3D face images enrolled in the gallery database with 2D probe

images since the 2D images are not easy to obtain in many applications.

The difference in modalities caused by different acquisition processes leads to unsatis-

factory face recognition results. Heterogeneous face recognition algorithms are designed

to reduce the gap between different modalities and utilize the face images from various

modalities.
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