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Abstract

Recently, lots of visual representations have been developed for computer vision appli-

cations. As different types of visual representations may reflect different kinds of infor-

mation about the original data, their differentiation ability may vary greatly. As the

existing machine learning algorithms are mostly based on the single data representation,

it becomes more and more important to develop machine learning algorithms for tack-

ling data with multiple representations. Therefore, in this thesis we study the problem

of learning with multiple representations. We develop several novel algorithms to tackle

data with multiple representations under three different learning scenarios, and we ap-

ply the proposed algorithms to a few computer vision applications. Specifically, we first

study the learning with multiple kernels under fully supervised setting. Based on a hard

margin perspective for the dual form of the traditional ℓ1-norm Multiple Kernel Learning

(MKL), we introduce a new “kernel slack variable” and propose a Soft Margin frame-

work for Multiple Kernel Learning (SMMKL). By incorporating the hinge loss for kernel

slack variables, a new box constraint for the kernel coefficients is introduced for Multiple

Kernel Learning. The square hinge loss and the square loss soft margin MKLs naturally

incorporate the family of elastic-net MKL and ℓ2MKL, respectively. We demonstrate the

effectiveness of our proposed algorithms on benchmark data sets as well as several com-

puter vision data sets. Second, we study the learning with multiple kernels for weakly

labeled data. Based on “input-output kernels”, we propose a unified Input-output Kernel

Learning (IOKL) framework for handling weakly labeled data with multiple representa-

tions. Under this framework, the general data ambiguity problems such as SSL, MIL and

clustering with multiple representations are solved in a unified framework. We formulate

the learning problem as a group sparse MKL problem to incorporate the intrinsic group

structure among the input-output kernels. A group sparse soft margin regularization is
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further developed to improve the performance. The promising experimental results on the

challenging NUS-WIDE dataset for a computer vision application (i.e., text-based image

retrieval), SSL benchmark datasets and MIL benchmark datasets demonstrate the effec-

tiveness of our proposed IOKL framework. Third, we study the learning with privileged

information for distance metric learning, where the distance metric is learnt with extra

privileged information which is available only in the training data but unavailable in the

test data. We propose a novel method called Information-theoretic Metric Learning with

Privileged Information (ITML+) to model the learning scenario. An efficient cyclical

projection method based on analytical solutions for all the variables is also developed to

solve the new objective function. The proposed algorithm is applied to face verification

and person re-identification in RGB images by learning from the RGB-D data. The ex-

tensive experiments are conducted on the real-world EUROCOM, CurtinFaces and BIWI

RGBD-ID datasets and the results demonstrate the effectiveness of our newly proposed

ITML+ algorithm.
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Chapter 1

Introduction

With the advancements of the electric and information technologies in the last century,

more and more digital equipments such as cameras, smart phones are more and more

popularized to the public. People can capture pictures or videos conveniently, and upload

them into social networking sites such as Facebook1, Instagram2, Twitter3, photo sharing

website Flickr4 and video sharing website Youtube5. Digital data especially the image and

video data have being exploding drastically especially in the recent ten years. Needless

to say, the world has entranced into the big data era. It is extremely important to

organize, retrieve, and manage those visual data available at hand. However, although

we have witnessed that a large quantity of visual data is emerging rapidly, recognizing and

automatically managing the visual data is still in the research stage, but is attracting

more and more attention in recent years both from the computer vision and machine

learning fields.

When compared with the practical text retrieval techniques used by search engine

such as Google6 and Baidu7, image and video retrieval is in its infant stage. Lots of

efforts have been spent to catch up with the possible real-world applications. To this

end, many computer vision benchmark data sets have been collected and released re-

1https://www.facebook.com/
2http://instagram.com/
3https://twitter.com/
4https://www.flickr.com/
5http://www.youtube.com/
6https://www.google.com.sg/?gws_rd=ssl
7http://www.baidu.com/
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Chapter 1. Introduction

cently, including Caltech-1018, Caltech-2569 , Pascal VOC10 and ImageNet11 for image

classification, Scene1512 and Sun Database13 for scene classification, NUS-WIDE14 for

image retrieval, UCF Sports15 and KTH16 for action recognition, TREC Video Retrieval

Evaluation (TRECVID)17 for video concept detection and video retrieval, Yale Face18

and CMU Multi-PIE19 for face recognition, Labeled Face in the Wild (LFW)20 for face

verification, VIPeR21 for person re-identification and so on.

Despite of various data sets released for various computer vision applications, the

prevailing approaches in the computer vision for those tasks all rely on the machine

learning techniques, and can be briefly summarized into five steps: data collection, feature

extraction, data labeling, model learning and prediction. Specifically, for a given task,

the data capturing devices are utilized to capture the original data such as RGB images,

depth images and videos. After collecting a data set, feature extraction methods are

utilized to extract feature representations for the given data. Then, the labels of the

data can be obtained by either human labeling or using any learning techniques. The

classification model is further trained based on the extracted features as well as the labels.

Finally, the new test data is predicted by using the learnt model for the corresponding

tasks.

The image capturing devices include surveillance cameras, single-lens reflex camera

(DLSR), depth cameras such as Microsoft Kinect sensors, smart phones, video recorders,

and Google glasses. As a result, for the same scenario, different devices can capture

different types of images. For instance, the surveillance cameras may have low resolution,

while the DLSR may obtain another image with much higher resolution under the same

8http://www.vision.caltech.edu/Image_Datasets/Caltech101/
9http://www.vision.caltech.edu/Image_Datasets/Caltech256/

10http://pascallin.ecs.soton.ac.uk/challenges/VOC/
11http://www.image-net.org/
12http://www-cvr.ai.uiuc.edu/ponce_grp/data/
13http://vision.princeton.edu/projects/2010/SUN/
14http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
15http://crcv.ucf.edu/data/UCF_Sports_Action.php
16http://www.nada.kth.se/cvap/actions/
17http://trecvid.nist.gov/
18http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/YaleFaceDatabase.htm
19http://www.multipie.org/?3e3ea140
20http://vis-www.cs.umass.edu/lfw/
21VIPeR:ViewpointInvariantPedestrianRecognition
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Chapter 1. Introduction

Figure 1.1: The RGB images and depth images of two similar pairs in the EUROCOM
dataset. The first row shows the RGB images captured under different lighting conditions,
and the second row shows the corresponding depth images.

condition. Another example is the Kinect sensor, which can simultaneously capture the

RGB and depth images (see Fig. 1.1). Obviously, the depth image contains information

that has been missed in the traditional RGB image.

The term “representation” is defined as “the description or portrayal of someone or

something in a particular way” by the Oxford Dictionaries22. In computer vision, a good

data representation [15] is crucial for the success of machine learning algorithms. Exploit-

ing effective data representation for images and videos has been one of most fundamental

problems for computer vision, and has attracted lots of attention accompanying the birth

of the computer vision. For one image or video, the visual representations in the form

of visual features can be extracted. These feature representations include simple raw

pixels, color moment, handcrafted local features such as SIFT [139], HOG [50], LBP [2],

high-level features such as attributes [159], and the deep representations by using deep

learning methods [15],[106]. In this way, we are easily to obtain multiple types of feature

representations for visual data such as images and videos.

Machine learning plays an important role in computer vision. After obtaining the

feature representation, the tasks from computer vision are transferred into different ma-

22http://www.oxforddictionaries.com/definition/english/representation
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chine learning problems. The ground truth labels of the data is another important factor

for the training of the models in both the computer vision and machine learning. Most

of the existing data sets are labeled by human manually. Recently, the crowdsourcing

techniques such as Amazon Mechanical Turk are utilized to obtain the labels more con-

veniently. Besides, the web resources are also utilized to construct weak labels for the

data set such as NUS-WIDE [39].

For data with complete label information, the supervised learning scenarios can be

applied. The boosting such as the Adaboost [195] has been successfully applied to the

face detection, and sparse representation has been utilized for face recognition [208]. The

Nearest Neighbor (NN) and distance metric learning algorithms have been applied to

tasks such as face verification [80] and person re-identification [78]. One of the most pop-

ular algorithms for computer vision tasks has been the Support Vector Machine (SVM),

which is shown to achieve promising results for a broad range of applications such as

object recognition [106], object detection [67], pedestrian detection [50], scene classifica-

tion [211], action recognition [210] and video understanding [93].

Obtaining the labels is always a big issue for both the academic work and engineering

applications, but the data with incomplete labels which are referred to as weakly labeled

data are easily to be obtained. Learning with weakly labeled data has been a hot topic

in machine learning. Specifically, Semi-supervised Learning (SSL) trains the model by

using a small number of labeled data and a large number of unlabeled data, while Multi-

instance Learning (MIL) is proposed to tackle data with label constraints given in bag

manner, and Clustering tackles the case where no labeled data are available.

Although machine learning techniques have been widely applied to computer vision

tasks and some multi-view learning methods have been developed recently (see [215] for a

comprehensive review), most of the current prevailing machine learning algorithms such

as SVM, TSVM, mi-SVM and LMNN are based on single data representation. As new

data capturing devices become available as well as the developments of new feature ex-

traction methods, the learning algorithms that can tackle those multiple representations

are needed in real-world applications due to the fact that different representations may

contain different information. To this end, in this thesis we study the problem of learn-

ing with multiple representations. According to different problem settings in real-world

applications, we study the following three problems:
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• How to train classifier for supervised learning with multiple representations?

• How to train classifiers for weakly labeled data with multiple representations?

• How to train classifiers for data with additional privileged representation that is

only available to the training data but unavailable to the test data?

We aim to develop several novel learning algorithms for learning with multiple representa-

tions for these three different learning scenarios, and also apply the proposed algorithms

to a few real-world computer vision applications. In the following, we summarize the

contributions of this thesis and also introduce the structure of this thesis.

1.1 Thesis Contributions

This thesis studies the learning with multiple representations with novel algorithms and

real-world applications to both the computer vision and machine learning fields. We

briefly summarize the proposed contributions as follows:

• We propose a novel Soft Margin Multiple Kernel Learning (SMMKL) framework to

learn robust supervised classifiers for data with multiple representations. Specifi-

cally, we show that the traditional ℓ1MKL can be deemed as hard margin MKL.

Then, based on the so-called kernel slack variable, we propose a novel soft margin

framework for MKL. Our Soft Margin MKL framework incorporates the ℓ2MKL

and family of elastic net constraint/regularizer based MKL formulations naturally

as square loss and square hinge loss Soft Margin MKL, respectively. Moreover, by

using the hinge loss under our soft margin MKL framework, we develop a new box

constraint for the kernel combination coefficients for MKL problem, which inher-

ently bridges the method using average kernel and ℓ1MKL. The soft margin MKL

is found to be good at handling the noisy base kernels.

• We present a unified kernel learning framework named Input-Output Kernel Learn-

ing (IOKL) to handle weakly labeled data with multiple representations. Specif-

ically, based on the so-call input-output kernel, we formulate the learning with

5
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general data ambiguity to be an Input-Output Kernel Learning problem. The clas-

sifier is trained to cope with weakly labeled data with multiple representations using

multiple kernel learning techniques. Based on our framework, we further propose

a novel soft margin group sparse Multiple Kernel Learning formulation by intro-

ducing a group kernel slack variable to each group of base input-output kernels.

Moreover, an efficient block-wise coordinate descent algorithm with an analytical

solution for the kernel combination coefficients is obtained to solve the proposed

formulation. The proposed framework is applied to semi-supervised learning, multi-

instance learning setting with multiple data representations.

• We propose a novel approach to learn distance metric with privileged informa-

tion. Specifically, we propose a new formulation called Information-theoretic Met-

ric Learning with Privileged Information (ITML+) to learn a more robust distance

metric with additional privileged information available in the training set. We also

present an efficient algorithm based on the cyclical projection method for solving

the proposed ITML+ formulation. The proposed algorithm is applied to improve

face verification and person re-identification in RGB images by leveraging a set of

RGB-D data captured by using depth cameras (i.e.,Kinect). Visual features and

depth features are extracted from the RGB images and depth images, respectively.

As the depth features are only available in the training data, we treat the depth

features as privileged information, and we demonstrate both the effectiveness of

the additional depth feature in the training set as well as our ITML+ algorithm to

utilize the additional privileged information in the training set.

1.2 Thesis Structure

This thesis contains six chapters. The structure of this thesis is shown in Fig. 1.2.

The introduction about background and motivations is in Chapter 1 (this chapter). In

Chapter 2, we review traditional machine learning algorithms for learning with single

representation, learning with multiple kernels, learning with privileged information as

well as data representation in Computer Vision applications. In Chapter 3, we study the

problem of learning with multiple representations under the supervised setting, and we

6
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present a novel Soft Margin Multiple Kernel Learning (SMMKL) framework. In Chap-

ter 4, we study the problem of learning with multiple representations under the weakly

supervised setting. We propose a novel unified Input-Output Kernel Learning (IOKL)

framework to handle general weakly labeled data with multiple representations. The pro-

posed framework is applied to text-based image retrieval task. In Chapter 5, we study the

problem of learning using privileged information, where additional information is only

available to the training data, but not available to the test data. We propose a novel

Information-theoretic Metric Learning with Privileged Information (ITML+) algorithm.

The algorithm is applied to the RGB face verification and person re-identification tasks

by learning distance metrics from RGB-D data. In Chapter 6, we conclude our work and

also discuss future extensions for this thesis.
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Figure 1.2: The structure of this thesis.
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Chapter 2

Literature Review

Machine Learning plays an important role in artificial intelligence areas such as data

mining as well as computer vision. It concerns how to construct a learning system that

can learn from data. The core problems of the machine learning have been representation

and generalization. Based on the different settings of the data representation, in this

thesis, we summarize the different existing learning algorithms mainly into the following

three categories:

• Learning with Single Representation, which refers to the learning setting where both

the training data and test data are given with single representation;

• Learning with Heterogeneous Information, which refers to the learning setting where

both the training data and test data are given with multiple representations;

• Learning with Privileged Information, which refers to the learning setting where the

training data are associated with with multiple representations, but the test data

are associated with single representation.

Throughout the rest of this thesis, we use the superscript ′ to denote the transpose of

a vector, and 0,1 ∈ Rl denote the zero vector and the vector of all ones, respectively. We

also define α⊙ y as the element-wise product between two vectors α and y. Moreover,

||µ||p represents the ℓp-norm of a vector µ and we specially denote the ℓ2-norm of d as

∥d∥, and the inequality µ = [µ1, . . . , µl]
′ ≥ 0 (resp., D ≥ 0, D ∈ RM×T ) means that

µi ≥ 0 for i = 1, . . . l (resp., dm,t ≥ 0 for m = 1, . . . ,M, t = 1, . . . , T ).
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Chapter 2. Literature Review

2.1 Distance and Kernel

The data is usually represented by a vector x ∈ Rh ⊂ X , where h is the feature dimen-

sion of the data, and X is the distribution. Given two data points x and x′ from the

distribution X , the relationship between them is an important issue for many machine

learning algorithms. We introduce the two most popular concepts between the given two

points in the following. The two concepts are kernel and distance.

2.1.1 Distance

Another commonly used concept is the distance, and the distance can be directly used

for nearest neighbor search, k-means clustering, as well as the construction of the RBF

kernel. The Euclidean distance directly measures the relationship between two points by

using Pythagorean formula, specifically,

d(x,x′) =

√√√√ h∑
i=1

(xi − x′i)2 = ||x− x′||. (2.1)

The Euclidean distance may be sensitive to some measurements that have a large

range, and the Mahalanobis distance is introduced by considering a matrix M ∈ Rh×h,

and it is defined as

dM(x,x′) =
√
(x− x′)M(x− x′), (2.2)

where R is positive semi-definite to ensure that the distance metric dM satisfies the

non-negativity and the triangle inequality.

2.1.2 Kernel

The definition of the kernel is given by (Aizerman et al., 1964 [4]) as the following:

Definition 2.0 A kernel is a function k that for all x,x′ ∈ X satisfies

k(x,x′) = ⟨ϕ(x), ϕ(x′)⟩, (2.3)

where ϕ is a mapping from X to an (inner product) Hilbert space H

ϕ : X 7→ H. (2.4)

10



Chapter 2. Literature Review

The nonlinear mapping ϕ(·) maps the data from the original space Rh to the high dimen-

sional reproducing kernel Hilbert space (RKHS) H. If we are given a set of n data points

{xi}|ni=1, we can obtain a kernel matrix K ∈ Rn×n, where K(i, j) = k(xi,xj). Usually,

the linear classifier f(x) = w′x + b can be constructed in the original low dimensional

space Rh, and by using the kernel trick, the linear classifier f(x) = w′ϕ(x) + b in RKHS

H is essentially the nonlinear classifier in the original low dimensional space. Thus, the

kernel is very important for constructing the nonlinear classifier, and the kernel trick has

been successfully applied to algorithms such as SVM [19] and kernel PCA [169].

2.2 Learning with Single Representation

In this Section, we review related machine learning algorithms for learning with single

representation.

2.2.1 Supervised Learning

Supervised learning is the task of learning classifiers by using given training samples

as well as their full labels to learn a classifier that can be applied to unseen new data.

Specifically, given a set of labeled training data S = {(xi, yi)|i = 1, . . . , l} sampled inde-

pendently from X × Y with X ⊂ Rh and Y = {−1,+1}, the task is to learn a classifier

that could classify the training data and can also be applied to generalize to the new

unseen test data {xi}|l+m
i=l+1. The most widely used supervised learning algorithms are

the Support Vector Machine (SVM) and k-Nearest Neighbor (kNN) classifier.

Support Vector Machine The Support Vector Machine has been a powerful tool

for many real world applications, and it employs the maximum margin criteria to the

classification tasks. The hard margin SVM was first proposed in the year of 1992 [19],

and the soft margin SVM was further developed three years later in [45]. We firstly

introduce the hard margin SVM. If the data are mapped into a Hilbert space H, a linear

classifier on the space to separate the data can be constructed as

f(x) = w′ϕ(x) + b, (2.5)

where ϕ(x) is the mapping function.

11
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Suppose that the hyperplane can separate the positive samples from the negative

samples, then we have that the points satisfying w′ϕ(x) + b = 0 lie on the hyperplane,

then the margin of the hyperplane is defined as the sum of the shortest distances from

the separating hyperplane to the negative sample as well as the positive sample. It can

be easily shown that 2/||w||2 is the margin for the separating hyperplane.

The hard margin Support Vector Machine (SVM) proposed in [19] constructs the

classifier by minimizing the following objective function:

min
w, b

1

2
||w||22 (2.6)

s. t. yi(w
′ϕ(xi) + b) ≥ 1, i = 1, . . . , l,

and the dual can be formulated as

max
α

l∑
i=1

αi −
1

2
(α⊙ y)′K(α⊙ y) (2.7)

s. t. α ≥ 0,α′y = 0,

where α = [α1, . . . , αl]
′ and αi is the non-negative Lagrangian multiplier for each of the

inequality constraint as in the primal problem.

In the year of 1995, the soft margin SVMs were first proposed [45] by introducing the

slack variables ξis for each of the training point. By considering the hinge loss function

for the slack variables, the primal SVM objective function is given as in the following:

min
w, b

1

2
||w||22 + C

l∑
i=1

ξi (2.8)

s. t. yi(w
′ϕ(xi) + b) ≥ 1− ξi, ξi ≥ 0,

and compared to the hard margin SVM formulation as in (2.6), the soft margin SVMs

in (2.8) performs well for real-world applications by tuning the additional regularization

parameter C. This is due to the fact that the introduced slack variables can cope with

data with different levels of noise. The square hinge loss and the square loss can also be

investigated similarly.

The dual of (2.8) can be derived [45] similarly by using the Lagrangian method with

the derivation with hard margin SVM as the following form:

max
α

α′1− 1

2
(α⊙ y)′K(α⊙ y), 0 ≤ α ≤ C,α′y = 0, (2.9)

12
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which is a Quadratic Programming (QP) problem. Efficient algorithms have been de-

veloped for solving (2.8) effectively such as the Sequential Minimal Optimization (SMO)

algorithm [162]. Training the SVM in primal has also been studied in [29] [97]. Many

softwares have been developed to solve the SVM problem effectively, and the widely used

ones are LibSVM1 [28], LibLinear2 [63] for linear SVM, and SVM-Light3 [95] [94].

Since its birth, SVM has been successfully applied to a broad range of applications,

such as data mining [209], bioinformatics [86], information retrieval [9] and computer

vision etc.. For example, the SVM has been applied to text categorization [94]. For

computer vision, SVM has achieved promising state-of-the-arts results for applications

such as object recognition [106], image retrieval [37], pedestrian detection [50], scene

classification [211], action recognition [210] and video understanding [93], etc..

Beyond the original formulation for binary classification problem as proposed in [45],

lots of extensions based on SVM have been done recently. The representative works in-

clude multi-class SVM [46], [84] for multi-class classification problem, structural SVM [191], [98]

for structural prediction, Support Vector Regression (SVR) for regression problem [180],

latent SVM [67], latent structural SVM [233], Transductive SVM (TSVM) [96] as well

as Laplacian SVM [36] for semi-supervised learning, and Multi-instance SVM [3] for

multi-instance learning etc..

Distance Metric Learning Compared with SVM, the k-Nearest Neighbor classifier

(kNN) is in a simpler form for the classification, which usually employs the Euclidean

distance based on the k-nearest neighbors of the samples for classification or regression

tasks. As the accuracy of the kNN classification depends highly on the metric used

to calculate the distance between different samples, the distance metric learning has

extracted lots of attention in recent works [214] [204], [80], [52], [232], [107], [13]. The early

work for the Mahalanobis distance metric learning in [214] formulates the distance metric

learning problem as a convex optimization problem that maximizes the sum of distances

between dissimilar pairs while minimizing the sum of distances between similar pairs. A

projected gradient descent method was proposed to solve the proposed objective function,

1http://www.csie.ntu.edu.tw/~cjlin/libsvm/
2http://www.csie.ntu.edu.tw/~cjlin/liblinear/
3http://svmlight.joachims.org/
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but the SVD operation on the distance metric M makes the algorithm only applicable

to small scale problems. Following [214], a large number of methods were proposed in

literature (see the surveys [13, 107, 232] for comprehensive reviews of different metric

learning methods). The two representative methods for distance metric learning are the

Large Margin Nearest Neighbors (LMNN) method [204] and the Information-theoretic

Metric Learning (ITML) [52] method.

2.2.2 Weakly Labeled Learning

Data labeling has always been a time consuming task, and many learning settings with

limited number of labeled data or even with no labeled data have been proposed to tackle

the data with partial labels, data with implicitly known labels, and data with completely

unknown labels, respectively. These learning scenarios correspond to semi-supervised

learning, multi-instance learning, and unsupervised learning (i.e., clustering). Due to the

different information available for the label, algorithms differ significantly for the different

learning scenarios. In this thesis, we uniformly refer to the learning scenarios where the

labels of the training data are incomplete as Weakly Labeled Learning following [132].

We briefly introduce and review the related works from literature as follows:

Semi-Supervised Learning For Semi-Supervised Learning (SSL), a large set of u un-

labeled training samples {xi}l+u
i=l+1 and a small set of labeled training samples {(xi, yi)}li=1

are assumed to be given. The task of SSL is to learn a more robust classifier that can take

advantage of the additional unlabeled data when compared with the supervised classifier

trained by using the labeled data only. Based on the assumptions on the given unlabeled

training data, SSL methods can be roughly classified into cluster assumption [32] based

methods and manifold assumption [36] based methods.

The cluster assumption assumes that the data from the same cluster are more likely

to share the same class label. Specifically, if an edge connecting given two data points

lies in a high density region of the data distribution, they are more likely to share the

same class label. Therefore, the decision boundary of the learnt classifier should lie in

low density regions such that the classification error could be minimized. Many SSL

methods such as Transductive SVM (TSVM) [96], Low Density Separation (LDS) [32]
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and meanS3svm [131] are based on the cluster assumption. The most representative work

for the cluster assumption based methods is the TSVM, which is based on inferring the

labels of unlabeled data and learning the classifier simultaneously. As the inferring of the

unlabeled data is a NP-hard problem, the proposed algorithm in [96] cannot be readily

applied to large scale applications. The concave-convex procedure (CCCP) is utilized to

solve the large scale TSVM in [40] and makes TSVM applicable to large scale real-world

applications.

Another sets of works such as Laplacian SVM (LapSVM) [12], Laplacian Regularized

Least Square (LapRLS) [12], Laplacian Embedded Regression (LapREMR) [36] are based

on the manifold assumption, which assumes that each class of the data lies on a separate

low-dimensional manifold which is embedded in a high dimensional feature space. The

manifold regularization framework [12] developed algorithms such as Laplacian Support

Vector Machine, Laplacian Regularized Least Squares, and Laplacian Support Vector

Regression (LapSVR) and have shown the state-of-the-art performance for a broad range

of applications. The solution for Laplacian SVM in [12] involves an inversion of the

matrix to recover the dual variables, and becomes inefficient for large scale applications.

In [147], the training of Laplacian SVM in primal form is studied while in [36] a Laplacian

embedded regression method is proposed to solve the large scale manifold regularization

problem efficiently.

Multi-Instance Learning Multi-Instance Learning [188] [3], [23], [128], [73] is under

the setting where labels of training data are implicitly known. Specifically, the training

data are provided in the form of bags. Only the label of each bag is known, while the

labels of instances in each bag remain unknown. In MIL, the constraints are that all

instances in the negative bags are negative and at least one instance (or a portion of

the instances) in each positive bag is positive [3], [128]. Let us denote BI as the I-th

training bag and YI as the corresponding given bag label. Then we can define the label

candidate set as Y = {y|
∑

i:xi∈BI
(yi + 1)/2 ≥ ε, if YI = 1; yi = −1, if YI = −1}, where

we have ε = 1 for the traditional MIL constraint [3] and ε = µ|BI | for the general MIL

constraint [128] with µ being the portion parameter and |·| being the cardinality function.

The different algorithms for Multi-Instance Learning include Non-SVM-based meth-

ods (i.e., DD [144], EM-DD [238]) graph-based methods (i.e., MIGraph [244], miGraph
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[244], HSR-MIL [120]), similarity-based method (i.e., SMILE [212]) and SVM-based

methods (i.e., MI-SVM [3], mi-SVM [3], MI-Kernel [73], sMIL [23], KISVM [130], MIL-

CPB [128], ∝SVM [113]). The SVM-based algorithms focus on inferring the labels of am-

biguous samples in a large margin regularization manner. The MIL has also been utilized

for real-world applications such as drug activity prediction [144], content-based image re-

trieval (CBIR) [239], text-based image retrieval [128], image classification [224] [130],

tracking [5], [125] and video event detection [113] etc..

Clustering Another setting with incomplete labeled data is the unsupervised learning.

In this case, all the given training data are with no label information, and the task is

to cluster the data into a few clusters. Similar to the case for SSL, the assumptions for

the clustering methods can also be roughly classified into manifold assumption based

methods as well as cluster assumption based methods. For manifold based approaches,

the manifold structure of the training data is explored. The most commonly used algo-

rithms for clustering are the k-means [209] and spectral clustering [92]. On the other

hand, the cluster assumption based methods for clustering are mainly based on the max-

imum margin criteria, such as the maximum margin clustering (MMC) [217], [133], [237],

which aim to infer the labels for the unlabeled data in a maximum margin manner. The

k-means algorithm has been applied to lots of computer vision tasks such as code book

generation for image classification [118], while normalized cuts for spectral clustering has

been successfully applied to image segmentation task [92].

2.3 Learning with Multiple Kernels

In this Section, we review the existing works for learning with heterogeneous information.

2.3.1 Theory, Algorithm and Applications

We now review the most popular Multiple Kernel Learning (MKL) algorithm from [115].

The ℓ1MKL tries to learn the optimum linear combination coefficients and the decision

function simultaneously from a set of given M base kernels {K1, ...,KM}. Lanckriet et

al. [114], [115] proposed to learnt the kernel K as the linear combination from the given

M base kernels as K =
∑M

m=1 µmKm.
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Margin Based Kernel Learning methods The pioneer work in [114] proposed to

use the maximum margin criteria similarly to the SVM, and if the ν-SVC [170] is used as

the classification model, the MKL problem is firstly given in [114], [115] as the following

form:

min
µ

max
α

−1

2

M∑
m=1

µm(α⊙ y)′Km(α⊙ y) (2.10)

s. t. α′y = 0,α′1 = 1, 0 ≤ α ≤ C,

K ∈ K,

where K is the feasible set constructed from the given M base kernels.

In the following, we will list some representative works for improving the efficiency of

the MKL problems.

• QCQP

If only restricting the combined kernel matrix to be semi-positive definite K =∑M
m=1 µmKm ≽ 0, the previous problem is formulated as the Semi-definite Pro-

gramming (SDP) problem [114, 115]. If the combined kernel matrix is restricted to

be the convex combination where
∑M

m=1 µm = 1, µm ≥ 0, the problem can be formu-

lated [114, 115] as the quadratically constrained quadratic programming (QCQP)

problem.

max
α,λ

−λ (2.11)

s. t. α′y = 0,α′1 = 1,

0 ≤ α ≤ C,
1

2
(α⊙ y)′Km(α⊙ y) ≤ λ,m = 1, . . . ,M.

• Mixed Norm Primal Form [7]

The primal form for Multiple Kernel Learning was proposed in [7] as follows:

min
{fm},b,ρ

1

2

( M∑
m=1

∥fm∥Hm

)2
+ C

l∑
i=1

ξi − ρ (2.12)

s. t. yi(
M∑

m=1

fm(xi) + b) ≥ ρ− ξi, ξi ≥ 0.

17



Chapter 2. Literature Review

As has been pointed out in [164] that the objective function is non-smooth due to

the first term as in the objective of (2.12). The mixed-norm is type of group sparse

ℓ21-norm, which is non-smooth due to the fact that ℓ1-norm is non-smooth.

• SILP [182]

Based on the formulation in (2.10), the Semi-Infinite Linear Program formulation

was proposed in [182] by solving the following problem:

max
α,λ

λ (2.13)

s. t.
M∑

m=1

µm = 1, µm ≥ 0,

1

2

M∑
m=1

µm(α⊙ y)′Km(α⊙ y) ≥ λ

α′y = 0,α′1 = 1, 0 ≤ α ≤ C,

This formulation makes the large-scale MKL problem applicable by recycling the

single kernel SVM, thus the complexity of the problem is transformed to the opti-

mization of the SVM.

• SimpleMKL [164]

The above problem is non-smooth due to the mixed-norm structure for the com-

plexity. Actually, as in [164],
(∑M

m=1 ∥fm∥Hm

)2
is equal to minµ

∑M
m=1

∥fm∥2Hm

µm

with the simplex constraint for µ ∈ {µ|0 ≤ µ,
∑M

m=1 µm = 1}. Then the above

formulation was further formulated in [164] as:

min
µ,{fm},b,ρ

1

2

M∑
m=1

∥fm∥2Hm

µm

+ C
l∑

i=1

ξi − ρ (2.14)

s. t. yi(
M∑

m=1

fm(xi) + b) ≥ ρ− ξi, ξi ≥ 0,

0 ≤ µ,
M∑

m=1

µm = 1.

The above problem is formulated as the convex smooth problem by introducing the

kernel coefficients explicitly in the objective function.
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• Block-wise coordinate descent [222][99]

The recent proposed work [222][99] apply the analytical updating rule for the kernel

coefficients by directly solving the primal problem (2.14) due to the jointly convex

property of the problem. The fm, ρ, ξ are updated based on the dual of the standard

SVM formulation, then the kernel coefficients µ are updated by using the closed

form formulation µm =
∥fm∥Hm∑M

m=1 ∥fm∥Hm

. The convergence of this updating rule has’t

be provided, but the stable and faster convergence property has been observed in

[222][99].

We observe that these new formulations were proposed for more efficiency of the original

problem for learning the kernel combination coefficients, and the efficiency of for solving

the margin based optimization problem has been improved greatly. Due to the simplex

constraint for the kernel coefficients for the above mentioned works, these formulations

are referred to as the ℓ1MKL. However, these objective functions are all equivalent to

the original proposed one as in (2.10) for a long time in the early development of the

Multiple Kernel Learning.

Extensions of the Margin Based methods The ℓ1MKL can get very sparse solution

for the kernel coefficients, and the performance of the ℓ1MKL is not always good in

real applications, thus many works recently focus on the improvement of the ℓ1MKL

formulation. In the following, we review some recent work about this direction.

• ℓpMKL [99]

The non-sparse ℓ2MKL [102][42][99]4 was proposed by substituting the simplex con-

straint with the ℓ2-norm ball constraint µ ∈ {µ|0 ≤ µ,
∑M

m=1 µ
2
m ≤ 1}. The ℓpMKL

[99] [158] directly extends the MKL formulation (2.14) by simply substituting the

simplex constraint with the ℓp-norm constraint

4The original formulation is using the ridge regression problem which is equivalent to square loss soft
margin SVM, but the main idea is to use the ℓ2-norm for the kernel coefficients.
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µ ∈ {µ|0 ≤ µ,
∑M

m=1 µ
p
m ≤ 1} for p ≥ 1. The ℓpMKL primal were proposed as [99]

min
µ,{fm},b,ρ

1

2

M∑
m=1

∥fm∥2Hm

µm

+ C
l∑

i=1

ξi − ρ (2.15)

s. t. yi(
M∑

m=1

fm(xi) + b) ≥ ρ− ξi, ξi ≥ 0,

0 ≤ µ,

M∑
m=1

µp
m ≤ 1.

or equivalently in the mixed norm as5:

min
{fm},b,ρ

1

2

( M∑
m=1

∥fm∥
2p
p+1

Hm

)2
+ C

l∑
i=1

ξi − ρ (2.16)

s. t. yi(
M∑

m=1

fm(xi) + b) ≥ ρ− ξi, ξi ≥ 0.

• Switch between the constraint and regularization

Another equivalent form of the ℓpMKL is still in the primal form, which is

min
µ,{fm},b,ρ

1

2

M∑
m=1

∥fm∥2Hm

µm

+ C
l∑

i=1

ξi − ρ+ λ(
M∑

m=1

µp
m)

2
p (2.17)

s. t. yi(
M∑

m=1

fm(xi) + b) ≥ ρ− ξi, ξi ≥ 0,

0 ≤ µ.

This form appears in [193],[194],[196] for p = 1, p = 2 and p ≥ 1 respectively.

• Elastic-net Regularization

Some recent works also focus on the combining the different regularization strategies

directly to get the new formulations for Multiple Kernel Learning, such as the

[228][185][138][103] [156].

Yang et el. [228] proposed to unify the ℓ1MKL and the ℓ2MKL by introducing

the new constraint as µ ∈ {µ|0 ≤ µ, θ
∑M

m=1 µm + (1 − θ)
∑M

m=1 µ
2
m ≤ 1}, where

5If (
∑M

m=1 µ
p
m)

1
p ≤ 1, then the corresponding objective function can be formulated as

1
2

(∑M
m=1 ∥fm∥

2p
p+1

Hm

) 1+p
p

+ C
∑l

i=1 ξi − ρ, which is exactly the one as in [222].
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v ∈ [0, 1] is the parameter that balances the ℓ1-norm and ℓ2-norm for the kernel

coefficients.

Besides the above developments for Multiple Kernel Learning, there are also works for

extending the kernel learning methods for other kernel-based methods. Such as the mul-

tiple kernel learning for dimensional reduction [135][227], clustering [240], large margin

nearest neighbor [145], fisher discriminant analysis [223].

Alignment Based Kernel Learning methods The notion of the Kernel Target

Alignment (KTA) was proposed by Cristianini et al. [48]. The kernel target alignment

is defined as

ρ̂(K,Y) =
⟨K,yy′⟩F√

⟨K,K⟩F ⟨yy′,yy′⟩F
. (2.18)

The empirical value of this definition can be viewed as the cosine of the angle between

the kernel K and the target ideal kernel yy′, and reveals the similarity between the kernel

and the target. This criteria has been applied as the criteria for learning the kernel

coefficients in [114, 115]. By substituting the K =
∑M

m=1 µmKm into (2.20) with the

constraint µ ≥ 0, the maximization of the alignment can be formulated as the following

QCQP problem:

max
µ

µ′a (2.19)

s.t. µ′Mµ ≤ 1,

µ ≥ 0,

where am = y′Kmy,m ∈ {1, · · · ,M} and Mpq = ⟨Kp,Kq⟩F ,p, q ∈ {1, · · · ,M}.
The recent work by Cortes [44] proposed to utilize the centered kernel6 for maximizing

the kernel alignment, and also propose to optimize the alignment based on the norm

constraints such as the simplex constraint or the ℓ2-ball constraint for learning the linear

combination coefficients. Thus the maximization problem7 is formulated as

max
µ

µ′aa′µ

µ′Mµ
(2.20)

s.t. ||µ|| = 1,µ ≥ 0,

6The centered kernel Kc is defined as Kc
ij = Kij − 1

l

∑l
i=1 Kij − 1

l

∑l
j=1 Kij +

1
l2

∑l
i,j=1 Kij .

7The vector a and matrix M are calculated by using the centered base kernels correspondingly.
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where the ||µ|| is the general norm (e.g.,ℓ1-norm and ℓ2-norm).

The above problem is then formulated as the QP problem,

max
µ

1

2
v′Mv − v′a (2.21)

s.t. v ≥ 0,

and then µ is obtained as µ = v⋆/||v⋆||, where v⋆ is the optimal solution to prob-

lem (2.21). After learning the kernel coefficients, the single kernel SVM can further be

trained separately. Thus, learning the kernel and training the classifier are performed

independently in two steps, and the computational complexity can be reduced greatly.

Generalization Bound The generalization bound for the standard ℓ1MKL was firstly

given in [114] with the complexity of Õ
(√

(M
γ2 )/l

)
, where M is the number of base ker-

nels, γ is the margin of learnt classifier, and ℓ is the number of training samples. The

generalization bound is the multiplicative between the number of base kernelsM and the

margin complexity term 1
γ2 . The work in [183] developed a new bound with complexity

of Õ
(√

(dϕ +
1
γ2 )/l

)
, where dϕ is the pseudodimension of the given kernel family and

equals to the number of base kernelsM for the linear combination of base kernels. In this

new bound, the total complexity term between margin complexity term and the family-

of-kernels term is shown to be additive rather than multiplicative as from [183]. In the re-

cent work [88], [89], the bound was further improved to Õ
(√(

log(M) + 1
γ2 + 2Mc

)
/l

)
,

where Mc is the number of selected base kernels for the final learned classifier.

The generalization bound using Rademacher complexity has also been studied. In [43],

the estimation error of the learnt classifier is upper bounded by a term of the order

Õ
(√

( log(M)
γ2 )/l

)
, which improves the bound from [183] for ℓ1MKL due to the introduced

log(M) term. The work in [88] further improves the Rademacher complexity bound for

ℓ1MKL to be the order of Õ
(√

(log(M) + 1
γ2 )/l

)
, which is tighter than the ones obtained

in [183] and [43]. The Rademacher complexity for ℓpMKL was also studied in [43] and

the local Rademacher complexity for ℓpMKL was studied in [100]. Based on the local

Rademacher complexity, new algorithm was designed in [41]. The convergence rate in

order of Õ(l
α

α+1 ) with α being the minimum eigenvalue decay rate of the individual kernels

was derived in [101] for ℓpMKL. New learning rates for both the ℓ1MKL and elastic-net

MKL were also derived in [184].
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Applications The applications of the Multiple Kernel Learning algorithms can be

categorized into traditional supervised learning and weakly supervised leaning. The

traditional supervised learning mainly focuses on fusing/choosing the different types of

features. Applications from directly applying the MKL algorithms include object recog-

nition [22], image classification [193], [75], [157], [225], [219], speaker verification [138],

computational biology [14]. A few works are based on the adaptation of the Multiple

Kernel Learning algorithms such as DTMKL [57],AMKL [59] for domain adaptation,

AFMKL [210] for action recognition and GA-MKL for image classification [225].

Recently, the MKL techniques have been applied to solve the Weakly Labeled Learn-

ing problems. These works formulate the mixed integer programming problems for infer-

ring the labels of ambiguous data to be MKL problems. In this way, the original NP-hard

problem is converted into convex optimization problem. These works include [133] for

maximum margin clustering, [131] for semi-supervised learning, [130] for multi-instance

learning. A unifying of these works is summarized in [132] as weakly labeled SVMs

and the experiments on benchmark data sets show that the algorithms can achieve the

state-of-the-art performance when compared with the traditional methods under the

specific learning settings. The using of MKL techniques has been also applied to the

tasks of text-based image retrieval (TBIR) [128], [126], [125], [56], heterogenous domain

adaptation [127], video event recognition from multiple heterogenous sources [34], video

event detection [113], high dimensional feature selection [187], multivariate performance

measure [143], multitemplate learning for structured prediction [142], class hierarchy

learning [229] [33], outlier detection [124] and multi-source domain adaptation [171].

2.3.2 Relationship to Multi-view Learning

Another learning setting with multiple data representation is the multi-view learning,

which refers to learning with multiple views of data. It is related to multiple kernel

learning but also is different from multiple kernel learning. In this part, we summarize

the related work from the literature which are deemed as multi-view learning, and then

discuss their connections and differences with multiple kernel learning.
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Weakly Labeled Learning Setting In multi-view learning, the training data are

represented with multiple views of features. Typically, a classifier f v (e.g. an SVM

classifier) is trained on the v-th view and the final classifier is fused by using the classifiers

from all views, i.e. f̃(x) = 1
V

∑V
v=1 f

v(xv).

The multi-view learning was originally proposed to solve semi-supervised learning

problem. When training data is represented with multiple feature representations, re-

searchers have developed many multi-view learning approaches to improve performance

by utilizing information from different views [16], [153], [105], [178], [177], [234], [109],

[110], [51], [20]. Most of those works (e.g., co-training [16]) in multi-view learning were

proposed for the multi-view SSL scenario. Most traditional multi-view learning methods

were proposed for semi-supervised learning (SSL). One of the pioneering works is the

co-training method [16], and it was originally proposed for the SSL problem with two

views. The basic idea of co-training is to iteratively add some pseudo-labeled samples

into the pool of labeled training samples to re-train the classifiers on both views. The

pseudo-labeled samples are selected from the pool of unlabeled training samples, and are

labeled by at least one classifier which has a confident prediction. Finally, the classifiers

from different views are fused to perform the classification.

The co-training algorithm was further extended to co-EM [153], in which they label

all the unlabeled data at each iteration without considering confidence. It was also ex-

tended by using SVMs as base classifiers in [20], which was subsequently adapted for

unsupervised learning [51]. Co-training was also extended to tri-training [243] and co-

forest [122] to handle more than two views. However, the co-training style algorithms

work under strict assumptions that each view is sufficient to train a low-error classi-

fier and both views are conditionally independent, which might not be satisfied on real

world datasets [200]. Many works attempted to relax those assumptions from various

perspectives, such as weak dependence [1], α-expansion [11], large diversity [200] and

label propagation [201]. Recently, co-training with insufficient views has also been the-

oretically analyzed in [202]. Besides co-training style methods, other methods such as

co-regularization based approaches [105], [178], [177], [234] were also proposed to train

classifiers on different views based on a so-called co-regularization criterion, which is used

to minimize the differences of the decision values from the classifiers on different views.

Similar ideas have also been employed in multi-view clustering [109], [110].
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Supervised Learning Setting Under the supervised learning setting for two-view

learning from literature is the SVM-2K [65], which is based on the KCCA [81]. For SVM-

2K, it employs the key idea of KCCA formulation, and enforces the co-regularization term

so that the predictions from the two views are consistent for all the training samples.

Specifically, we learn the target decision function fA(x) = w′ψ(x) + b and fB(x) =

v′ϕ(x) + ϱ by solving the following optimization problem:

min
w,b,v,ρ

1

2

(
||w||2 + ||v||2

)
+ CA

l∑
i=1

ξAi + CB

l∑
i=1

ξBi +D
l∑

i=1

ηi,

s.t., |w′ψ(xi) + b− v′ϕ(xi)− ϱ| ≤ ηi + ϵ, (2.22)

yi(w
′ψ(xi) + b) ≥ 1− ξAi ,

yi(v
′ϕ(xi) + ϱ) ≥ 1− ξBi ,

ξAi ≥ 0, ξBi ≥ 0,

where CA, CB and D are the regularization parameters. The final classifier is given as

f(x) = 1
2
(fA(x) + fB(x)). The problem in (2.22) is converted into its dual form, and

can be solved by using the QP solver. As more constraints have been introduced into

the optimization problem, the complexity becomes high when the number of samples is

large. Besides, the prediction will be more complex when compared with the classifiers

obtained by using the MKL.

Connections between Multi-view Learning and MKL The two types of learning

settings are all based on the multiple data representations, and fall into our learning

with multiple representations setting. The MKL focus more on the algorithm represen-

tation point of view based on the multiple kernels [114]. Those multiple kernels can be

constructed with different parameters for the same data representation as well as from

different data representations such as multiple views. While the multi-view learning focus

more on the original data representation, in which we have multiple original data. It is

possible to construct different or multiple kernels for multi-view learning problems.

In the literature, the multiple kernel learning algorithms are mostly for supervised

learning setting without specific learning assumptions, while the multi-view learning is
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mostly for semi-supervised learning, and the views are required to be independent. Be-

sides, the Multiple Kernel Learning learns a single classifier while multi-view learning

usually introduces one classifier for one view, and learns multiple classifiers simultane-

ously. In this way, most of the existing multi-view learning algorithms are only restricted

to two-view cases [16], [105], [65], and extending them to more than three views usually

suffers from high computational complexity [243] [122]. The final output for Multiple

Kernel Learning is a single classifier which usually has one common dual variables for

all the base kernels, but the final outputs for multi-view learning algorithms are classi-

fiers corresponding to each of the considered views. In this way, the prediction by using

the classifier from the multiple kernel learning is more efficient than that of the clas-

sifiers trained by using multi-view learning algorithms. Therefore, in terms of learning

with multiple representations, they are similar. However, in terms of settings as well as

efficiency, they differ from each other significantly.

2.4 Learning with Privileged Information

Another learning setting with multiple representations is the learning using privileged

information (LUPI) recently proposed in [192]. This learning scenario introduces a

“teacher” into the learning process, which supplies training example with additional

information such as comments, explanation, description, logical reasoning, and so on.

For instance, we want to classify biopsy images into cancer and non-cancer categories

based on the given images captured by using the medical devices. At the same time, the

available training images are possibly associated with a report written by a pathologist

that describes the images using high level holistic descriptions.

In this setting, the additional privileged information is only available to the given

training examples but it is not available for the new test examples. The LUPI learning

setting applies to almost any existing learning problems as long as privileged information

exists. The privileged information plays an important role in the learning process as

it can significantly increase the speed of learning. In this Section, we first review the

theoretical foundations for LUPI using SVM algorithm, and then review SVM+ as well

as recent extensions and their applications to real-world tasks.
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2.4.1 Problem Setting, Theory and Algorithms

Problem Setting Different from the learning with heterogeneous information setting

such as multiple kernel learning and the multi-view learning, the learning with privileged

information setting is recently proposed by [192], [161]. The learning setting assumes that

training data in training set have additional information for the training task. Specifically,

given a set of n training data {xi}|ni=1 with xi ∈ Rh⊂ X , where h is the feature

dimension of each sample, we refer to X as the decision space as suggested in [161]

because the final decision is based on the features of the testing samples in the space X .
Except for the training data in the decision space X , the additional privileged feature

{zi}|ni=1 with zi ∈ Rg ⊂ Z in the correcting space Z [161] is only available for the

training set, but it is not available for the test set.

Generalization bound It is shown in [174] that the convergence rate of SVM based

algorithms can be improved by using a correcting function to incorporate privileged

information. Lets review the theoretic results from [192] in the following. For the binary

classification task, suppose the given data in the decision space x ∈ X is only associated

with one of the two classes, and a best linear classifier w0, b0 exists. There exists an

oracle function ξ(x) = max(0, 1−yi(w
′
0x+b0)) that can correctly classify all the training

samples (i.e., yi(w
′
0xi + b0) ≥ 1− ξ(xi)). We have the following proposition8 [192]:

Proposition 1 If any vector x ∈ X belongs to one and only one of the classes and there

exists an Oracle function with respect to the best decision rule in the admissible set of

hyperplanes, then with probability 1 - η the following bound holds true,

Pr(y(w′x+ b) < 0) ≤ Pr(1− ξ(xi) < 0) + A
h ln

(
l
h

)
− ln(η)

l
, (2.23)

where Pr(y(w′x+ b) < 0) is the probability of error for the Oracle SVM solution on the

training set of size ℓ, Pr(1− ξ(xi) < 0) is the probability of error for the best solution in

the admissible set of functions, h is the VC dimension of the admissible set of hyperplanes

and A is a constant.

8Proposition 1 in [192].
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As we do not know either the values of slack variables or the oracle function, but

we can utilize the privileged information zi ∈ Z to construct the correcting functions

ϕ(z, δ) that have a low VC dimension, and the generalization bound using this correcting

function is given as the following proposition9 [192]:

Proposition 2 If any vector x ∈ X belongs to one and only one of the classes and there

exists an Oracle function with respect to the best decision rule in the admissible set of

hyperplanes, then with probability 1 - η the following bound holds true,

Pr(y(w′x+ b) < 0) ≤ Pr(1− ϕ(z, δ) < 0) + A
(h+ g) ln

(
2l

(h+g)

)
− ln(η)

l
, (2.24)

where Pr(y(w′x+b) < 0) is the probability of error for the training problem with training

set of size ℓ, Pr(1− ϕ(z, δ) < 0) is the probability of the event {ϕ(z, δ) > 1}, h is the VC

dimension of the admissible set of hyperplanes, g is the VC dimension of the admissible

set of correcting functions and A is a constant.

SVM+ In [174], the task is to utilize the training data {xi, zi}|ni=1 as well as their

labels {yi}|ni=1 to train a classifier for classifying the test data {xi}|n+m
i=n+1 under the SVM

framework for the supervised binary classification problem. Specifically, the linear target

classifier f(x) = w′x + b is learnt on the decision space X only in order to classify the

test data. At the same time, another function ξ = v′z + ρ is learnt on the correcting

space Z by modeling privileged information as the loss function. The objective function

of SVM+ is proposed as follows:

min
w,v,b,ρ

1

2

(
||w||2 + λ||v||2

)
+ C

l∑
i=1

(v′zi + ρ) (2.25)

s.t., yi(w
′xi + b) ≥ 1− (v′zi + ρ), ∀i = 1, . . . , l,

v′zi + ρ ≥ 0, ∀i = 1, . . . , l,

where C and λ are the two regularization parameters.

9Proposition 2 in [192].
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By introducing the lagrangian multipliers αi’s and βi to 2.25, the dual form of the

SVM+ can be formulated as the following optimization problem:

max
α,β

l∑
i=1

αi −
1

2

l∑
i=1,j=1

αiαjyiyjk(xi,xj)−
1

2λ

l∑
i=1,j=1

(αi + βi − C)(αj + βj − C)k∗(zi, zj)

s.t.,
l∑

i=1

(αi + βi − C) = 0, (2.26)

l∑
i=1

αiyi = 0,

αi ≥ 0, βi ≥ 0,

where k(xi,xj) is the kernel function between xi and xj, and k∗(zi, zj) is the kernel

function between zi and zj. The optimization problem in (2.26) is in the form of a

standard Quadratic Programming (QP) problem, which can be solved by using any state-

of-the-art QP solvers. In [160], the Sequential Minimal Optimization (SMO) algorithm

is developed to solve the dual form in (2.26) efficiently.

2.4.2 Extensions and Applications

In the original work of SVM+, the proposed algorithms are used for applications such as

proteins classification in bioinformatics using the 3D-structures of proteins as privileged

information, finance market prediction using future events as privileged information and

digit recognition problem using the poetic description as privileged information. The

empirical studies show that the privileged information improves the specific tasks. The

SVM+ algorithm has also been utilized in [60] to perform the glaucoma detection task in

medical images using the genetic information as privileged information. The work in [174]

applies to SVM+ to the task of image classifications using the attributes, bounding box,

textual descriptions or rationales as privileged information. The work in [35] utilizes

the SVM+ to the task of object recognition in RGB images by using the depth images

captured by the Kinect sensors as privileged information.

The work in [129] extends the SVM+ algorithm to multi-instance learning setting, and

then applies the algorithm to the task of image categorization by using the descriptions to

the image from the web as privileged information. Following the LUPI method [192], the
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work in [68] extended [192] for the clustering problem, while the work in [174] extended

it into the Ranking SVM for the ranking problem. The recent work in [69] proposed an

extension of the learning scenario to distance metric leaning. However, their proposed

method is a two-step approach to utilize privileged information [69]. They firstly trained

a distance metric based on ITML using privileged information. Based on the distance

metric learnt from privileged information, some pairs of training samples are removed.

Then ITML is retrained again by using the remained pairs based on the main features.

2.5 Visual Representation for Computer Vision

The data representations play important roles for computer vision tasks. For any com-

puter vision task, the features are needed to represent the data. Computer vision appli-

cations have evolved from the descriptions such as raw pixel values, edges information,

color histogram to local histogram based descriptors such as SIFT, HOG and even de-

scriptions learnt by using the deep learning methods such as the deep convolutional neural

networks. In this Section, we review the recent progress for feature extraction methods

for computer vision tasks and we also discuss the related learning scenarios such as the

sparse representation, deep convolutional neural networks for the feature extraction.

2.5.1 Visual Representation for Vision Data

Low-level visual descriptions The low-level features for representing an image or a

video can be simply the gray pixel value or other complex designed features. The global

features incorporate the global information such as block-wise color moments for color,

wavelet texture for textual information. The local features have been shown to obtain

state-of-the-art results for plenty of vision applications. The GIST descriptor is proposed

in [154] for scene recognition, and it represents the image by computing a wavelet image

representation. The Scale Invariant Feature Transform (SIFT) descriptor [139] is the most

prevailing local features in the recent years. The SIFT features are invariant to image

scale and rotation, and are found to be robust [149] among the interest point descriptors

and have been applied to almost all the computer vision applications. The Histograms

of Oriented Gradient (HOG) [50] descriptor is another local descriptors and has been
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proposed to the task of human detection task. The Local Binary Pattern (LBP) [2] has

been proposed to encode the local structure of the pixel. The HOG-LBP [203] combines

the HOG and LBP features and get improved performance for the human detection

task with partial occlusion. Other local descriptors include the Self-similarity descriptors

(SSIM) [176], Spatio-Temporal Interest Point (STIP) [116] for incorporate the temporal

information from videos.

Bag of words model for visual Representation As the features such as SIFT,

HOG are local features, and thousands of local descriptors could be extracted from each

image or video, the local features have to be converted into a single feature vector that

can effectively and efficiently represent the visual data. To this end, the bag of words

model [179] has been successfully adapted from text representation to visual represen-

tation. In [118], the spatial pyramid matching is further proposed to encode the spatial

information for visual representation. Since then, the procedures for representing an im-

age can be summarized into the following procedures: local feature extraction, dictionary

learning, coding, and spatial pooling. After obtaining the local descriptors, k-means al-

gorithm is used to obtain the cluster centres of the local descriptors, and then each local

descriptor is assigned to a cluster center, and finally spatial pooling is done to obtain

a long dimensional feature vector. Lots of works in the literature are proposed to im-

prove the procedure for image classification procedures from [179] and [118]. The most

successful works are for the coding and spatial pooling stages. For the coding stage,

some works uses learning algorithms to learn a better representation, and we will review

these methods in the next subsection. For the pooling stage, a dense spatial sampling

procedure [225] is proposed to improve the performance for image classification.

2.5.2 Representation Learning

Different from the handcrafted global features, lots of works have been developed for

the learning of representations [15] for the visual data, which is shown to be effective

in the recent years. These works include sparse representation, attribute learning (i.e.,

classifier-based features) as well as deep convolutional neural networks.
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Sparse Representation The sparse representation is based on the ℓ1-norm regulariza-

tion originally proposed in [189], and has been a popular topic recently. Following [189],

the least angle regression [62] is further proposed to solve the ℓ1-norm regularized least

square problem efficiently. The ℓ1-norm regularized least square problem enforce the

regression coefficients to be as sparse as possible for each element of the coefficient. The

group lasso is based on the ℓ21-norm regularization, and is proposed in [235] for group

variable selection. It also has been pointed out that the group lasso is a special case of

multiple kernel learning [6]. Recently, there are also works that proposed dictionary learn-

ing methods [245] for visual recognition, utilized evolutionary computation methods [173]

to image classification, and learned discriminative representations [137] for RGB-D video

classification. These statistical models have been applied to the computer vision field for

learning a better data representation.

In [208], the sparse representation is found to be perform well for the faces with

occlusion. The sparse coding has been applied to the task of image super-resolution [230],

image restoration [141]. The group sparse coding has also been applied to the task of

human gait recognition [216]. For the visual feature extraction of the bag of words model,

[231] formulates the quantization (pooling) stage as an ℓ1-norm regularized least square

problem, and use the regression coefficient to represent each of the local descriptors.

The [199] further improves [231] in efficiency to code the local descriptors in a locally

linear embedding (LLE) [166] manner. The Laplacian regularization is enforced to the ℓ1-

norm regularized least square problem in [72] [70] to enforce that similar descriptors have

similar codes while the kernel trick [71] is applied to sparse representation to improve

the results for face recognition and image classification.

Classifier-level Representation: Attributes and Pre-trained Classifiers An-

other high-level visual description is the attributes or the pre-trained classifiers. The

attributes are based on the predictions from classifiers trained for specific meaning for

describing the visual content. The binary attributes classifiers is obtained from classifiers

trained to recognize the presence or absence of visual appearances such as age, race and

gender for face verification task in [111], while the object bank [121] directly represents

the images using the response map of a large number of pre-trained generic object de-

tectors. The relative attributes [159] is also studied for the ranking problem. In these
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works, the high-level representation is further utilized to perform the classification tasks

and is found to improve the performance when compared with the simple low-level visual

features. The fusing of the high-level representation with the low-level visual features

is found to be helpful for applications such as video concept detection [220], content

based-image retrieval [37], video event detection [59], action recognition [210], image

classification [225] [226].

Deep Representations from Deep Convolutional Neural Networks The learn-

ing of visual features using deep neural networks has been found to outperform the

handcrafted features recently. In [106], due to the “dropout” regularization procedure

applied to the deep convolutional neural network as well as the large scale training data

in ImageNet dataset [53], the performances from the obtained visual representation for

image classification in ImageNet data set have been significantly improved. The De-

CAF [54] has been released with the trained models on ImageNet to extract features for

the other data sets such as object recognition on Caltech-101 [66], domain adaptation on

Office data set [167], subcategory recognition on Caltech-UCSD birds dataset [205], and

scene recognition on SUN-397 data set [211]. The representations from each layer of the

deep convolutional networks are also visualized in [236].

2.6 Summary

In this Chapter, we have reviewed the related data representation using kernel and dis-

tance metric. Then we review the existing learning algorithms with single data rep-

resentation. The learning algorithms are summarized into supervised learning such as

SVM and weakly supervised learning including semi-supervised learning, multi-instance

learning and clustering. After that, we review the related work for learning with multiple

representations, which consists of learning with multiple kernels setting and learning with

privileged information setting. The learning with multiple kernels is mainly about algo-

rithms for multiple kernel learning, and it learns the classifier from multiple kernels that

can be constructed from multiple representations. We review the learning algorithms

for multiple kernel learning from literature and also discuss the connections and differ-

ences with multi-view learning. The learning with privileged information setting is the
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case where training data has additional privileged information. We review the existing

works for learning with privileged information. Finally, we review the visual representa-

tions for computer vision applications. We summarize the visual representation for vision

data with handcrafted low-level visual representation, and learning-based representation.

The learning based representation includes the classifier-based representation and deep

representations from deep convolutional networks.

In this thesis, we focus on the learning with multiple representations. For the set-

ting where heterogeneous information is available for both the training and test data

with complete label information, in Chapter 3 we propose a unified Soft Margin Multi-

ple Kernel Learning framework to learn a more robust classifier to utilize the available

information from multiple representations. Compared with the existing works for MKL,

our newly proposed hinge loss soft margin MKL(SM1MKL) is more robust to noisy base

kernels. For the setting where multiple representations are available for both the training

and test data, in Chapter 4 we propose a unified Input-output Kernel Learning (IOKL)

to learn a more robust classifier under weakly labeled setting. Compared with the exist-

ing works for weakly labeled learning, we are the first work to study the weakly labeled

learning with multiple representations. For the setting where training data have addi-

tional privileged information, in Chapter 5 we propose a distance metric learning with

privileged information framework to learn a more robust distance metric. Compared with

the existing work for distance metric learning, we are the first to model the privileged

information in a unified objective function.
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Soft Margin Multiple Kernel
Learning

Multiple Kernel Learning (MKL) has been proposed for kernel methods by learning the

optimal kernel from a set of predefined base kernels. However, the traditional ℓ1MKL

method often achieves worse results than the simplest method using the average of base

kernels (i.e., average kernel) in some practical applications. In order to improve the

effectiveness of MKL, this chapter presents a novel soft margin perspective for MKL.

Specifically, we introduce an additional slack variable called kernel slack variable to each

quadratic constraint of MKL, which corresponds to one support vector machine model

using a single base kernel. We first show that ℓ1MKL can be deemed as hard margin

MKL, and then we propose a novel soft margin framework for MKL. Three commonly

used loss functions, including the hinge loss, the square hinge loss and the square loss,

can be readily incorporated into this framework, leading to the new soft margin MKL

objective functions. Many existing MKL methods can be shown as special cases under

our soft margin framework. For example, the hinge loss soft margin MKL leads to a

new box constraint for kernel combination coefficients. Using different hyper-parameter

values for this formulation, we can inherently bridge the method using average kernel,

ℓ1MKL, and the hinge loss soft margin MKL. The square hinge loss soft margin MKL

unifies the family of elastic net constraint/regularizer based approaches; and the square

loss soft margin MKL incorporates ℓ2MKL naturally. Moreover, we also develop effi-

cient algorithms for solving both the hinge loss and square hinge loss soft margin MKL.

Comprehensive experimental studies for various MKL algorithms on several benchmark
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data sets, and two real world applications including video action recognition and event

recognition demonstrate that our proposed algorithms can efficiently learn an effective

yet sparse solution for MKL.

3.1 Introduction

Kernel methods such as Support Vector Machine (SVM) [24, 74], kernel principal com-

ponent analysis have been shown as powerful tools for numerous applications. However,

their generalization performances are often decided by the choice of the kernel [165, 168],

which represents the similarity between two data points. For kernel methods, a poor ker-

nel can lead to impaired prediction performance, thus many works [31, 48, 85, 115, 155,

190] have been proposed for learning the optimal kernel for kernel methods.

One of pioneering works for kernel learning was proposed to simultaneously train the

SVM classifier and learn the kernel matrix [115]. However, learning the general kernel

matrix is a non-trivial task. The learning problem is generally formulated as a semi-

definite programming (SDP) problem, which suffers from the high computational cost

even for one hundred training samples. Thus, this approach can be applicable for small

scale data sets only. To reduce the computational cost, Lanckriet et al.[115] further

assumed that the kernel is in the form of a linear combination of a set of predefined

base kernels. Then the SVM classifier and the kernel combination coefficients are learned

simultaneously, which is known as Multiple Kernel Learning (MKL). Since the proposed

objective function has a simplex constraint for the kernel combination coefficients, it is

also known as ℓ1MKL.

There are two major research directions for MKL methods, in which the first one

focuses on the development of efficient learning algorithms, while second one focuses on

the improvement the generalization performance. For the first direction, Bach et al.[7]

employed a sequential minimization optimization (SMO) method for solving medium-

scale MKL problems. Sonnenburg et al.[182] applied a semi-infinite linear programming

(SILP) strategy by reusing the state-of-the-art SVM implementations for solving the

subproblems inside the MKL optimization more efficiently, which makes MKL applicable

to large scale data sets. The similar SILP strategy was also used by [246] for multiclass
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MKL problem. Following [182], the sub-gradient based method [164] and the level-

method [221] have been proposed to further improve the convergence for solving MKL

problems.

Although the optimization efficiency for ℓ1MKL has been improved in recent years,

Cortes et al.[42] and Kloft et al.[99] showed that the ℓ1MKL formulation from [115]

cannot achieve better prediction performance when compared with the simplest method

using the average of base kernels (i.e., average kernel) for some real world applications.

To improve the effectiveness, lots of new MKL formulations [42], [59], [175], [99], [157],

[99], [194], [138], [228], [103], [185], [44], [156], [158], [57], [210], [225] have recently been

proposed.

The simplex constraint for the traditional ℓ1MKL formulation usually yields a sparse

solution. The recent works [42] and [99] conjectured that such a sparsity constraint may

omit some useful base kernels for the prediction. Thereafter, they introduced a ℓ2-norm

constraint to replace the ℓ1-norm constraint in ℓ1MKL, leading to a non-sparse solution

for the kernel combination coefficients. The ℓ2-norm constraint was further extended to

the ℓp-norm (p >1) constraint in [99]. Other MKL variants (e.g., [193], [194], [196]) were

proposed by removing the ℓ1-norm constraint, while directly adding one regularization

term based on the ℓ1-norm, ℓ2-norm or ℓp-norm of the kernel combination coefficients

to the objective function, which are indeed equivalent to the formulation as in [99]. To

further improve the efficiency of ℓpMKL, Xu et al.[222] and Kloft et al.[99] proposed

an analytical way to update the kernel combination coefficients. The SMO strategy

was also employed in [196] to accelerate the optimization for the ℓpMKL problem. In

[138], a ℓ2-norm regularizer of the kernel combination coefficients is directly added to

the objective function while keeping the simplex constraint fixed. Alternatively, Yang

et al.[228] used the elastic net regularizer on the kernel combination coefficients as a

constraint for MKL. Note that the elastic net regularizer in the block norm form first

appeared in [7] as a numerical tool for optimizing the ℓ1MKL and was further discussed

in [185] with a variant form. Moreover, the extensions of elastic net regularizer for MKL

in primal form with more general block norm regularization were also discussed in [103]

and in [156]. However, it is still unclear why these regularizers can enhance the prediction

performances for MKL.
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To answer this question, in this chapter, we first show that the traditional ℓ1MKL can

be deemed as hard margin MKL which only selects the base kernels with the minimum

objective and throws away other useful base kernels. Then, we propose a novel soft margin

perspective for MKL problems by starting from the dual of the traditional MKL method.

The proposed soft margin framework for MKL is in analogy to the well-known soft margin

SVM [45], which makes SVM robust in real applications by introducing a slack variable

for each of the training data. Similarly, with the introduction of a slack variable for each

of the base kernels, we propose three novel soft margin MKL formulations, namely, the

hinge loss soft margin MKL, the square hinge loss soft margin MKL and the square loss

soft margin MKL by using different loss functions.

The square loss soft margin MKL formulation incorporates ℓ2MKL naturally. The

square hinge loss soft margin MKL connects a few MKL methods using the elastic net

like regularizers or constraints. The hinge loss soft margin MKL leads to a totally new

formulation, which bridges ℓ1MKL and the simplest approach based on the average kernel

by using the different hyper-parameter values. These three cases reveal the connections

between many independently proposed algorithms in the literature under our framework

of soft margin MKL for the kernel learning, thus explaining why the regularization such

as the ℓ2-norm or the elastic net like regularizer/constraint help improve the performance

over ℓ1MKL in a new perspective.

In summary, the core contributions of this chapter are listed in the following:

(i) A novel soft margin framework for Multiple Kernel Learning is proposed. Partic-

ularly, a kernel slack variable is first introduced for each of the base kernels when

learning the kernel. Three new MKL formulations, namely the hinge loss soft mar-

gin MKL, the square hinge loss soft margin MKL and the square loss soft margin

MKL are also developed under this framework.

(ii) A new block-wise coordinate descent algorithm based on the analytical updating

rule for learning the kernel combination coefficients is developed to efficiently solve

the new hinge loss soft margin MKL problem. With our proposed framework, a

simplex projection method is also introduced to solve the square hinge loss soft

margin MKL, leading to a more efficient optimization procedure when compared

with the existing optimization algorithms for elastic net MKL.
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(iii) Comprehensive experimental results on the benchmark data sets and two video

applications including real video event recognition and action recognition demon-

strate the effectiveness and efficiency of our proposed soft margin MKL learning

framework. Compared with ℓ2MKL (ℓpMKL), the new hinge loss soft margin MKL

and the square hinge loss soft margin MKL have much sparser solution for kernel

combination coefficients; nevertheless, these two MKL models can achieve better

generalization performance. This defends the efficiency using sparse kernel combi-

nation coefficients in MKL.

The chapter is organized as follows. In Section 3.2, we first review ν-SVM and MKL.

In Section 3.3, a unified framework for soft margin MKL is proposed, and three novel

soft margin MKL formulations are developed based on different loss functions for the

kernel slack variables. New formulations for MKL are developed under our proposed

soft margin MKL framework, and some existing formulations for MKL can also be re-

visited as the special cases under this framework. Then, a new block-wise coordinate

descent algorithm for solving the hinge loss soft margin MKL and a simplex projection

based algorithm for solving the square hinge loss soft margin MKL are introduced in

Section 3.4. Experimental results on the standard benchmark data sets and the YouTube

and Event6 data sets from computer vision applications are shown in Section 3.5. Finally,

the conclusive remarks and the future work are presented in the last section.

3.2 Related works

3.2.1 ν-SVM

Given a set of labeled training data S = {(xi, yi)|i = 1, . . . , l} sampled independently

from X × Y with X ⊂ Rn and Y = {−1,+1}, a kernel matrix K ∈ Rl×l is usually

constructed by using a mapping function ϕ(x) to map the data x from X to a Reproducing

Kernel Hilbert Space (RKHS) H such that k(xi,xj) = ϕ(xi)
′ϕ(xj). Then, ν-SVM [170],

[134], [27] learns the decision function:

f(x) =
l∑

i=1

αiyik(x,xi) + b, (3.1)
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where αi’s are the coefficients associated with training samples, b is the bias of the

decision function f . Let us define α = [α1, · · · , αl]
′ and y = [y1, · · · , yl]′. We minimize

the model complexity ∥f∥2H = (α ⊙ y)′K(α ⊙ y) and the training errors (represented

by slack variables ξi’s) for the decision function f simultaneously, then we arrive at the

corresponding optimization problem1

min
α,b,ρ,ξi

1

2
(α⊙ y)′K(α⊙ y) + C

l∑
i=1

ξi − ρ (3.2)

s. t. yif(xi) ≥ ρ− ξi, ξi ≥ 0, ∀i = 1, . . . , l,

where ρ/∥f∥H is the margin separation between two opposite classes and C > 0 is the

regularization parameter. Note one can show that C = 1
lν
, where ν is the lower bound

of fraction of outliers [170], [134], [28]. By using the duality property, it is easy to show

that the dual of the objective in (3.2) is:

max
α∈A

SVM{K,α}, (3.3)

where SVM{K,α} = −1
2
(α⊙ y)′K(α⊙ y) is the dual of the objective in SVM, and

A = {α|α′1 = 1,α′y = 0,0 ≤ α ≤ C1} (3.4)

is the domain for α. From the Karush-Kuhn-Tucker (KKT) conditions of (3.2), one can

show that the optimal solution α⋆ in the dual (3.3) is the same as that in the primal

(3.2). Hence, for the given training set S and K, the maximization of SVM{K,α} with
respect to α ∈ A indeed gives the solution of the SVM classifier in (3.1).

3.2.2 ℓ1MKL

Now, we review Multiple Kernel Learning (MKL) [7, 164]. With a set of given M

base kernels K = {K1, ...,KM}, ℓ1MKL tries to learn the optimal kernel combination

coefficients and the decision function f simultaneously. When the ν-SVM model is used,

the primal problem of ℓ1MKL with block norm regularization is written as:

min
fm,b,ρ,ξi

1

2

( M∑
m=1

∥fm∥Hm

)2
+ C

l∑
i=1

ξi − ρ (3.5)

s. t. yi

( M∑
m=1

fm(xi) + b
)
≥ ρ− ξi, ξi ≥ 0.

1Although this formulation looks different from the original one proposed in [170], they are essentially
equivalent according to [27, 28].
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The first term in (3.5) is the group lasso regularizer [6, 235] to choose groups of nonlinear

features with small model complexity ∥fm∥Hm , in which each group of nonlinear features

is induced by using one base kernel. By using the Lagrangian method, the dual of ℓ1MKL

is

max
α∈A,τ

τ : SVM{Km,α} ≥ τ, ∀m = 1, . . . ,M, (3.6)

where SVM{Km,α} = −1
2
(α ⊙ y)′Km(α ⊙ y). Alternatively, the dual (3.6) of ℓ1MKL

can also be written as:

max
α∈A

min
µ∈M

M∑
m=1

µmSVM{Km,α} (3.7)

where µ = [µ1, . . . , µM ]′, µm is the coefficient to measure the importance of the mth base

kernel, andM = {µ|0 ≤ µ,
∑M

m=1 µm = 1} is the domain for µ. Then the final classifier

is given by

f(x) =
l∑

i=1

αiyi

( M∑
m=1

µmkm(x,xi)
)
+ b.

3.2.3 The Hard Margin Perspective for ℓ1MKL

From the constraints in (3.6), each SVM dual objective is no less than τ . The “error” is

not allowed for each SVM dual objective which is below τ , and only the base kernels with

the objective equal to τ are retained. In other words, the objective of ℓ1MKL is essentially

the same as maxα∈Aminm=1,...,M SVM{Km,α}, which learns the SVM classifier by first

choosing the model with the minimal objective. Ideally, only one base kernel will be

chosen. Hence, ℓ1MKL usually gets a very sparse solution for the kernel combination

coefficients, and some useful base kernels may not be used. Since the constraints in (3.6)

“push” the SVM dual objectives as large as possible, the variable τ can be considered

as the hard margin in ℓ1MKL, which reveals the hard margin property of ℓ1MKL in

the margin point of view, and paves the way for soft margin MKL formulations in the

subsequent sections.

Recall that the non-sparse ℓ2MKL [42] was proposed by substituting the simplex

constraint with the ℓ2-norm ball constraint µ ∈ {µ|0 ≤ µ,
∑M

m=1 µ
2
m ≤ 1}. ℓpMKL
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[99] directly extends the MKL formulation in (3.7) by simply substituting the simplex

constraint with the ℓp-norm constraint µ ∈ {µ|0 ≤ µ,
∑M

m=1 µ
p
m ≤ 1} for p > 1. However,

the kernel combination coefficients of these two models are always non-zeros, resulting in

impaired prediction performance especially when many noisy or irrelevant base kernels

are included. Therefore, how to remove noisy or irrelevant base kernels, and how to keep

and emphasize the useful base kernels are the key issues for MKL methods.

3.3 A Soft Margin Framework for MKL

MKL learns the classifier and the optimal kernel simultaneously with a set of predefined

base kernels. These base kernels can be obtained by using any well-known kernel func-

tions (e.g. Gaussian kernel function, polynomial kernel function, spline kernel function,

etc) with different kernel parameters or specially designed by domain experts for the

learning task. Moreover, in computer vision tasks such as image classification or video

event recognition, different types of features are extracted from lots of feature extraction

methods (e.g. SITF [139], STIP [116], HOG [50], etc). Even with the same feature

extraction method, there are many parameters. Usually, each type of features can be

used to form a base kernel [75] for representing images/videos. However, only some base

kernels are informative for classification, and others may be irrelevant or even harmful.

Recent studies show that the combination of several features can achieve better predic-

tion performance for computer vision applications. However, ℓ1MKL usually chooses only

one or few base kernels due to its hard margin property. On the other hand, we always

obtain the dense solution for kernel combination coefficients by using ℓ2-MKL, ℓp-MKL

and the simplest method based on average kernel. Some noisy or irrelevant base kernels

are inevitably included for prediction.

As pointed out in Section 3.2.3, ℓ1MKL is indeed a hard margin MKL, which only

selects the base kernels with the minimum objective. This could easily suffer from the

over-fitting problem especially when some base kernels are formed by using noisy fea-

tures. Recall that hard margin SVM assumes that the data of two opposite classes can

always be separated with the hard margin, and the error is not allowed for training the

model. However, to make SVM applicable for real applications, the slack variables were
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introduced to hard margin SVM in [45]. The introduction of the slack variables allows

some training errors for the training data, thus alleviating over-fitting encountered in

hard margin SVM.

Inspired by the success of slack variables for SVM [45, 47], in this section, we introduce

the concept of the kernel slack variable for each of the base kernels, and develop a soft

margin MKL framework, which is the counterpart to soft margin SVM. Herein, we have

the following definition:

Definition 3.2 Given M base kernels K = {K1, ...,KM} for the training data S =

{(xi, yi)|i = 1, . . . , l} sampled independently from X × Y, we define kernel slack variable

to be the difference of the target margin τ and the SVM dual objective SVM{Km,α} for
the given kernel Km ∈ K as

ζm = τ − SVM{Km,α},∀m = 1, . . . ,M. (3.8)

Then, the loss introduced from the kernel slack variable is defined as

zm = ℓ(ζm),∀m = 1, . . . ,M, (3.9)

where ℓ(·) is any general loss function.

In the following, we mainly consider three loss functions, namely, the hinge loss (i.e.,

ℓ(ζm) = max(0, ζm)), the square hinge loss (i.e., ℓ(ζm) = (max(0, ζm))
2) and the square

loss ℓ(ζm) = ζ2m. Based on these loss functions on the kernel slack variables, we will

present our proposed soft margin MKL formulations respectively. Note that our soft

margin MKL framework can cater for not only the above-mentioned loss functions but

also many other loss functions. These three loss functions are studied due to their

simplicity and successful utilization in the standard soft margin SVM formulations.

3.3.1 Hinge Loss Soft Margin MKL

Based on the definition of the kernel slack variable for each base kernel, we are now ready

to propose our soft margin MKL formulations. When the hinge loss is used for the kernel
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slack variables, we have the following objective function for the Hinge Loss Soft Margin

MKL:

min
τ,α∈A,ζm

−τ + θ
M∑

m=1

ζm (3.10)

s. t. SVM{Km,α} ≥ τ − ζm, ζm ≥ 0,m = 1, . . . ,M.

The objective of the above hinge loss soft margin MKL is to maximize the margin τ

while considering the “errors” from the given M base kernels. The parameter θ balances

the contribution of the loss term represented by slack variables ζm’s and the margin τ .

To further discover the properties of the newly proposed hinge loss soft margin MKL

formulation, we have the following proposition:

Proposition 3 The solution of the following optimization problem is also the solution

of hinge loss soft margin MKL:

min
µ∈M1

max
α∈A

J(µ,α) (3.11)

where the objective function is J(µ,α) = −1
2

∑M
m=1 µm(α ⊙ y)′Km(α ⊙ y) and M1 =

{µ|
∑M

m=1 µm = 1,0 ≤ µ ≤ θ1}.

The proof of this proposition is shown in Appendix A.1. Note that the objective

function J(µ,α) is the same as the one in the hard margin MKL formulation, and the

difference is in the constraint for the coefficients µ. In hard margin MKL, the constraint

for µ is the simplex constraint µ ∈M = {µ|
∑M

m=1 µm = 1,0 ≤ µ}. In contrast, we have

µ ∈M1 in our new hinge loss soft margin MKL. This new constraint enforces the values

of the µ no more than the regularization parameter θ, which can prevent extreme large

values of kernel combination coefficients frequently encountered in hard margin MKL.

We similarly observe the counterpart property of this formulation from the relationship

between the hard margin SVM [19] and the hinge loss soft margin SVM [45]. For the

hard margin SVM, the boundary constraint for α is given by 0 ≤ α, while the constraint

is 0 ≤ α ≤ C for the hinge loss soft margin SVM. Note C in the soft margin SVM and

θ in our soft margin MKL are the regularization parameters that balance the training

error and the complexity of the model.

We also have the following interesting observations for this new objective function:
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(i) θ should be in the range {θ|θ ≥ 1/M}, otherwise there is no solution to the proposed

problem. This can be easily verified from the constraints in (3.11);

(ii) when θ = 1
M
, according to constraint M1 in (3.11), we can obtain the uniform

solution for µ (i.e., µ = 1
M
1);

(iii) when θ ≥ 1, the constraint M1 in (3.11) becomes the same as M in the hard

margin MKL (i.e., ℓ1MKL [164]).

We clearly observe that the structural risk function is well controlled by introducing

the penalty parameter θ, and the solution of the MKL problem can be changed by varying

this parameter, which gives a novel perspective to the MKL problems. This objective

function also bridges ℓ1MKL and the simple approach using average kernel by choosing

different regularization parameter θ.

3.3.2 Square Hinge Loss Soft Margin MKL

When we define the loss function for the kernel slack variables as the square hinge loss,

then we can arrive at the following objective function for the Square Hinge Loss Soft

Margin MKL:

min
τ,α∈A,ζm

−τ + θ

2

M∑
m=1

ζ2m (3.12)

s. t. SVM{Km,α} ≥ τ − ζm,m = 1, . . . ,M.

Similar to the hinge loss soft margin MKL, τ is the margin of the final classifier, and

each SVM’s dual objective for the base kernels is lower bounded by the difference between

the margin τ and the kernel slack variable ζm. We have the following proposition:

Proposition 4 The solution of the following optimization problem is equivalent to that

of square hinge loss soft margin MKL:

min
µ∈M2

max
α∈A

J(µ,α) +
1

2θ

M∑
m=1

µ2
m, (3.13)

where the function J(µ,α) is J(µ,α) = −1
2

∑M
m=1 µm(α ⊙ y)′Km(α ⊙ y) and M2 =

{µ|
∑M

m=1 µm = 1,0 ≤ µ}.
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The proof of this proposition is similar to that of Proposition 3, and thus it is omitted.

Compared with ℓ1MKL, this formulation shares the same simplex constraint for µ, but it

has one more ℓ2-norm regularization term 1
2θ

∑M
m=1 µ

2
m for the coefficients in the objective

function. The regularization parameter θ balances the regularization for µ and the margin

of the classifier J(µ,α).

The relationship between the hard margin MKL and the square hinge loss soft mar-

gin MKL is also similar to that between hard margin SVM and the square hinge loss

soft margin SVM [45], where the constraint for α remains the same while one more

regularization term
∑l

i=1 α
2
i

2C
is added in the objective function of the hard margin SVM

formulation.

Note the simplex constraint is removed from ℓ2MKL to ℓ1MKL. In contrast, this

formulation still has the simplex constraint. The previous work [138] has used such

type of regularization by directly adding the ℓ2-norm regularization term for the kernel

combination coefficients in the objective function of ℓ1MKL. To further discover the

connections of our square hinge loss soft margin MKL with previous works, we have the

following proposition.

Proposition 5 The primal form of the square hinge loss soft margin MKL is given as:

min
µ,fm,b,ρ,ξi

1

2

M∑
m=1

∥fm∥2Hm

µm
+ C

l∑
i=1

ξi − ρ+
1

2θ

M∑
m=1

µ2
m (3.14)

s. t.yi(
M∑

m=1

fm(xi) + b) ≥ ρ− ξi, ξi ≥ 0,
M∑

m=1

µm = 1,0 ≤ µ.

Proof: With fixed µ, we can write the Lagrangian as L = 1
2

∑M
m=1

∥fm∥2
Hm

µm
+ C

∑l
i=1 ξi −

ρ+ 1
2θ

∑M
m=1 µ

2
m −

∑l
i=1 αi

(
yi(
∑M

m=1 fm(xi)+b)−ρ+ξi

)
−
∑l

i=1 ξiβi, where αi ≥ 0, βi ≥ 0 are the

Lagrange multipliers of the corresponding constraints. By setting the derivatives of the

primal variables fm, b, ρ, ξi to be zeros, we can get the corresponding KKT conditions. By

replacing the primal variables in the Lagrangian with the KKT conditions, we can arrive

at the minmax optimization problem as shown in (3.13). Together with Proposition 4,

we prove the proposition.

In the primal form, the objective function can be denoted as f = argminf Ω(f) +

Remp(f), where Ω(f) is the regularization term for the functional f , Remp(f) is the

empirical risk term from the given training samples. Specifically, for (3.14), we have
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Ω(f) = 1
2

∑M
m=1

∥fm∥2Hm

µm
+ 1

2θ

∑M
m=1 µ

2
m with µ ∈ M2 and Remp(f) is the standard hinge

loss from the training samples. In this formulation, we can see that the ℓ1-norm of

the kernel combination coefficients is enforced in the constraint, and the ℓ2-norm of

the kernel combination coefficients is penalized in Ω(f). Therefore, it is essentially the

elastic net regularization [247] for MKL. In [228], the regularization is given as Ω(f) =

1
2

∑M
m=1

∥fm∥2Hm

µm
under the elastic net constraint v

∑M
m=1 µm+(1−v)

∑M
m=1 µ

2
m ≤ 1,µ ≥ 0.

This can be regarded as a variant of (3.14) after considering the general conversion

between Tikhonov regularization and Ivanov regularization as shown in Theorem 1 from

[99].

Several existing works [7, 103, 156, 175, 185] have also been proposed for MKL with the

(generalized) elastic net regularization in the primal form with the block norm regulariza-

tion, without explicitly containing the kernel combination coefficients µ. For instance, the

work in [7] utilized the regularization term Ω(f) = λ
2

∑M
m=1 ∥fm∥2Hm

+ 1
2

(∑M
m=1 ∥fm∥Hm

)2
to facilitate the optimization of the ℓ1MKL problem. Interestingly, it can be shown that

the primal form of square hinge loss soft margin MKL in (3.14) is equivalent to the

formulations in [7, 175, 185] by seeking the entire regularization path [8].

Note that, the square norm
∑M

m=1 ζ
2
m for the kernel slack variables ζm in (3.12) can

be readily extended to a more general norm
∑M

m=1 ζ
p

p−1
m with 1 < p < ∞ in a sim-

ilar fashion as from ℓ2MKL to ℓpMKL (see Section 3.3.3 for more discussions). We

can then obtain a more general p
p−1

-hinge loss soft margin MKL as minτ,α∈A,ζm −τ +

θ
2

∑M
m=1 ζ

p
p−1
m s.t. SVM{Km,α} ≥ τ − ζm, ζm ≥ 0,m = 1, . . . ,M . The extensions of

elastic net MKL in the primal form with more general block norm regularization are also

discussed in [103, 156], which can also be deemed as the soft margin MKL.

3.3.3 Square Loss Soft Margin MKL

By setting the margin τ = 0 in (3.12), the loss function for the kernel slack variables

becomes the square loss, and we can get the following Square Loss Soft Margin MKL:

min
α∈A,ζm

θ

2

M∑
m=1

ζ2m (3.15)

s. t. −SVM{Km,α} ≤ ζm,m = 1, . . . ,M,
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The ℓ2MKL comes out naturally from (3.15) under our soft margin MKL framework

according to the proposition:

Proposition 6 The solution of the following problem gives the solution of square loss

soft margin MKL:

min
µ∈M3

max
α∈A

J(µ,α), (3.16)

where the function J(µ,α) is J(µ,α) = −1
2

∑M
m=1 µm(α ⊙ y)′Km(α ⊙ y) and M3 =

{µ|
∑M

m=1 µ
2
m ≤ 1,0 ≤ µ}.

Proof: It can be also proven by introducing the Lagrangian multipliers, i.e., the dual

variables µm for each of the inequality constraint, we can arrive at the following dual

form: maxµ≥0minα∈A− 1
2θ

∑M
m=1 µ

2
m+ 1

2

∑M
m=1 µm(α⊙y)′Km(α⊙y). By using Theorem

1 from [99], it is easy to show that for one specific parameter θ the above optimization

problem is equivalent to: minµ≥0,µ′µ≤1maxα∈A−1
2

∑M
m=1 µm(α ⊙ y)′Km(α ⊙ y), which

is essentially ℓ2MKL [42], [99]. Thus we conclude that our proposed soft margin MKL

framework also incorporates ℓ2MKL as one special case.

By considering a more generalized norm on ζm beyond the ℓ2-norm, the formulation

can be further extended to minα∈A,ζm
θ
2

∑M
m=1 ζ

p
p−1
m s.t. − SVM{Km,α} ≤ ζm,m =

1, . . . ,M, which can be similarly reformulated as ℓpMKL (p > 1) [99]. In general, ℓpMKL

[99] can be regarded as a special case of our soft margin MKL as well.

3.4 Optimization for Soft Margin MKL

In this section, we propose new optimization algorithms for our proposed soft margin

MKLs.

As the optimization problems can be changed to the minmax optimization prob-

lem, we adopt the alternating optimization approach, which was widely used in previous

works [164, 182], to alternatively learn the kernel combination coefficients and the model

parameter by leveraging the standard SVM implementations. Note that the recent works

[99, 222] proposed a new analytical updating rule for ℓpMKL by considering the special

structure in the primal form of ℓpMKL. This type of solution can avoid the time consum-

ing procedure for searching the new updating point for the kernel combination coefficients.
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Although the convergence when using p = 1 is not proven, the stable convergence to the

optimal solution was experimentally observed in [99, 222]. Besides, the similar analytical

updating rule was also adopted in [186]. In this chapter, we also propose a new analytical

solution for updating the kernel combination coefficients based on the structure of our

new objective function for the hinge loss soft margin MKL. For the square hinge loss soft

margin MKL, a simplex projection method is proposed.

3.4.1 Block-wise coordinate descent algorithm for solving the
primal hinge loss soft margin MKL

We have the following proposition:

Proposition 7 The following problem is the primal form for hinge loss soft margin

MKL:

min
µ∈M1,fm,b,ρ,ξi

1

2

M∑
m=1

∥fm∥2Hm

µm

+ C

l∑
i=1

ξi − ρ (3.17)

s. t. yi(
M∑

m=1

fm(xi) + b) ≥ ρ− ξi, ξi ≥ 0.

Proof: The Lagrangian can be written as:

L =
1

2

M∑
m=1

∥fm∥2Hm

µm

+ C

l∑
i=1

ξi − ρ (3.18)

−
l∑

i=1

αi

(
yi(

M∑
m=1

fm(xi) + b)− ρ+ ξi

)
−

l∑
i=1

ξiβi

−
M∑

m=1

µmηm −
M∑

m=1

ζm(θ − µm) + τ(
M∑

m=1

µm − 1),

where αi ≥ 0, βi ≥ 0, ηm ≥ 0, ζm ≥ 0 and τ are the Lagrange multipliers for the

corresponding constraints.

By setting the derivatives of the Lagrangian in (3.18) with respect to the primal

variables fm, b, ρ, ξi and µm to be zeros, and substituting the primal variables back into
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the Lagrangian according to the corresponding KKT conditions, we have:

max
τ,α∈A,ζm

−τ − θ
M∑

m=1

ζm (3.19)

s. t. −1

2
(α⊙ y)′Km(α⊙ y) ≥ −τ − ζm,

ζm ≥ 0,m = 1, . . . ,M.

By multiplying −1 to the objective function in (3.19), it is converted into a minimiza-

tion problem. Substituting τ with −τ , we arrive at the same formulation as the hinge

loss soft margin MKL in (3.10). This completes the proof.

In the primal form as in (7), we have the box constraint for µ, i.e., µ ∈ M1 =

{µ|
∑M

m=1 µm = 1,0 ≤ µ ≤ θ1}. The work in [148] proposed a family of structured

sparsity to improve the lasso for linear regression problem. Specifically, a box constraint

is directly enforced on the unknown regression variables to enforce the structured sparsity.

By simplifying our model to the linear case without the group structure [6, 235], we could

incorporate [148] as a special case.

The primal problem in (3.17) is convex in the objective function [164] and linear in

the constraints, thus it is convex. It can be solved by using the block-wise coordinate

descent algorithm [99, 222].

3.4.1.1 Fix µ, update fm, b, ρ, ξi

With a fixed µ, the optimization problem in (3.17) becomes a standard maximum margin

SVM problem, which can be equivalently reformulated as a standard Quadratic Program-

ming (QP) problem with respect to α as shown in (3.20), and many efficient QP solvers

can be readily used to obtain the optimal α.

max
α∈A

−1

2

M∑
m=1

µm(α⊙ y)′Km(α⊙ y) (3.20)

After obtaining the optimal α, the primal variables fm, b, ρ, ξi can be recovered ac-

cordingly.
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3.4.1.2 Fix fm, b, ρ, ξi, update µ

With fixed fm, b, ρ, ξi, the optimization problem in (3.17) reduces to the following convex

programming problem:

min
µ∈M1

M∑
m=1

am
µm

(3.21)

with am = 1
2
∥fm∥2Hm

= 1
2
µ2
m(α⊙ y)′Km(α⊙ y).

The remaining problem is how to efficiently solve the subproblem (3.21). Let us

suppose all the base kernels are semi-positive definite, and then we have am > 0 for

m = 1, · · · ,M . Without the loss of generality, we also assume that am has been sorted

such that a1 ≥ a2 ≥ · · · ≥ aM . Inspired by the Lagrangian multipliers method [172] used

for simplex projection, we introduce the Lagrangian multipliers λ, ηm’s, and ζm’s for the

constraints in (3.21). Then we can get the following Lagrangian:

L =
M∑

m=1

am
µm

−
M∑

m=1

µmηm +
M∑

m=1

ζm(θ − µm)

+ λ(
M∑

m=1

µm − 1). (3.22)

Setting the derivative of L with respect to µm to be zeros, we have the following KKT

condition,

− am
µ2
m
− ηm − ζm + λ = 0, (3.23)

with the complementary KKT conditions µmηm = 0, ζm(θ−µm) = 0, and λ(
∑M

m=1 µm−
1) = 0.

Thus, for 0 < µm < θ, we have

− am
µ2
m
+ λ = 0, or µm =

√
am
λ
. (3.24)

If am > 0, we have µm > 0. Thus, for the case that all the am’s are larger than 0, the

constraint 0 ≤ µm can be replaced by 0 < µm. If we know ω, the number of elements

in µ whose value strictly equals to θ, the solution of the above problem can be directly

obtained as:

µm =

{
θ m ≤ ω
(1−ωθ)

√
am∑M

p=ω+1
√
ap

m > ω
. (3.25)

We have the following two lemmas to obtain the solution for the problem in (3.21).
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Lemma 3.1 Let µ∗ be the optimal solution to problem (3.21), and suppose ap > aq for

any two given indices p,q ∈ {1, · · · ,M}. If µ∗
q = θ, then we have µ∗

p = θ.

Proof: Suppose that µ∗ is the optimal solution to the problem in (3.21), and µ∗
q = θ.

If using proof by contradiction, we have µ∗
p < θ. Let µ̃ be another vector whose elements

have the same value with µ∗ except that µ̃p = µ∗
q and µ̃q = µ∗

p. Then, we observe that µ̃

satisfies all the constraints in (3.21). Thus,
∑M

m=1
am
µ∗
m
−
∑M

m=1
am
µ̃m

= ap
µ∗
p
+ aq

µ∗
q
− ap

µ̃p
− aq

µ̃q
=

(ap − aq)(
1
µ∗
p
− 1

θ
) > 0. So we have

∑M
m=1

am
µ∗
m
>
∑M

m=1
am
µ̃m

, which contradicts with the

assumption that µ∗ is the optimal solution to (3.21). So the original assumption is

incorrect and we thus complete the proof.

Lemma 3.2 Let µ∗ be the optimal solution to the problem in (3.21), and suppose that

a1 ≥ a2 ≥ · · · ≥ aM . Then ω, the number of elements whose value strictly equals to θ in

µ∗, is

min
{
p ∈ {0, 1, · · · ,M − 1}

∣∣∣√ap+1(1− pθ)∑M
m=p+1

√
am

< θ
}
.

The proof is similar with that of Lemma 3.1 by using the proof by contradiction and thus

it is omitted here.

3.4.1.3 The whole optimization procedure

Based on the above derivations, we can easily develop the whole optimization proce-

dure for the hinge loss soft margin MKL, and the detailed block-wise coordinate descent

algorithm is shown in Algorithm 1.

3.4.2 Simplex projection method for solving the square hinge
loss soft margin MKL

For solving the square hinge loss soft margin MKL, we directly solve the problem in

(3.13). With a fixed µ, the optimization problem with respect to α is a standard QP

problem, which can be optimized by using the QP solver.

With a fixed α, the projected gradient descent based algorithm is used to update

the kernel combination coefficients. Following [31], the gradient pt of the optimization

problem in (3.13) with respect to µ can be calculated as

pm = −hm +
1

θ
µm,m = 1, . . . ,M, (3.26)
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Algorithm 1 : Procedure of the block-wise coordinate descent algorithm for hinge loss
soft margin MKL

1: Initialize µ1.
2: t = 1
3: while stop criteria is not reached do
4: Obtain αt by solving the subproblem in (3.20) using the standard QP solver with

µt

5: Calculate am and update µt+1 by solving the subproblem in (3.21)
6: t = t+ 1
7: end while

Algorithm 2 : Procedure of the iterative approach for square hinge loss soft margin
MKL
1: Initialize µ1.
2: t = 1.
3: while stop criteria is not reached do
4: Obtain αt by solving the subproblem in (3.20) using the standard QP solver with

µt

5: Calculate µ⋆
sub that can reduce the objective function value for the problem in

(3.13)
6: Update µt+1 = µ⋆

sub

7: t = t+ 1
8: end while
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where hm = 1
2
(α⊙ y)′Km(α⊙ y).

Then, the coefficient µ is updated by using the coefficients µt at the current iteration,

namely,

µ⋆
sub = ΠM2(µ

t − ηtpt), (3.27)

where ΠM2(·) is the simplex projection operation and ηt is the updating step size de-

termined by the standard line search strategy. The simplex projection operation is a

standard QP problem, which can also be solved by using the general QP solver. How-

ever, due to the special simplex constraint for µ, the efficient simplex projection method

in [61] is used in this work The detailed optimization procedure is shown in Algorithm 2.

3.4.3 Computational Complexity

Now we can analyze the computational complexity for Algorithm 1 and Algorithm 2,

we observe that obtaining αt by solving the QP subproblem in (3.20) shares the similar

form with the standard SVM, therefore its complexity is just O(n2.3). For computing the

am’s, the complexity isMO(n), and for updating µ, the complexity is just O(M log(M)).

Therefore, for one iteration, the complexity is O(n2.3 +Mn+M log(M)), and the whole

complexity is O(MKL) = T ×O(n2.3+Mn+M log(M)). The different types of regular-

ization may lead to different number of iterations, and it is still a very challenging issue

to estimate the number of iterations, and therefore it is interesting to further study the

convergence rate of the different MKL algorithms.

3.5 Experiments on real world data sets

In this section, we first evaluate different MKL algorithms on the benchmark data sets.

Then we show the experimental studies on two real computer vision applications (i.e.,

video action recognition and video event recognition).

3.5.1 Comparison algorithms

We evaluate the following algorithms:
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(i) AveKernel : we use average combination of the base kernels. Specifically the kernel

combination coefficients is given by µ = 1
M
1, then the maximum margin classifier

is learnt by SVM;

(ii) SimpleMKL [164]: the classifier and the kernel combination coefficients are opti-

mized by solving the ℓ1MKL problem as in (3.5);

(iii) ℓ2MKL [42, 99]: the classifier and the kernel combination coefficients are optimized

under the constraint ||µ||2 ≤ 1;

(iv) ℓpMKL [99]: the classifier and the kernel combination coefficients are optimized

under the constraint ||µ||p ≤ 1 with p ≥ 1;

(v) SGMKL [228]: the sparse generalized multiple kernel learning as in [228], where

the constraint for the kernel combination coefficients is the elastic net constraint,

i.e., v||µ||1 + (1− v)||µ||2 ≤ 1 with 0 ≤ v ≤ 1;

(vi) SM1MKL: our proposed hinge loss soft margin MKL, in which the classifier and the

kernel combination coefficients are optimized by solving the hinge loss soft margin

MKL problem;

(vii) SM2MKL: the square hinge loss soft margin MKL, in which the classifier and the

kernel combination coefficients are optimized by solving the square hinge loss soft

margin MKL problem.

To be consistent with previous works [164], [228], [99], the experiments for different

MKL algorithms are all based on the C-SVC formulation as used in [164], and the SVM

QP problem is solved by using the LibSVM C-SVC QP solver2. For the SimpleMKL

codes downloaded from the web3, we additionally change the SVM solver in their im-

plementation with the LibSVM QP solver. For ℓpMKL, the implementation is available

in Shogun toolbox [181], however we implement the algorithm by using the analytical

updating rule for the kernel combination coefficients exactly as in [99, 222] for better uti-

lization of the LibSVM QP solver for fair comparison. For SGMKL [228], we download

2http://www.csie.ntu.edu.tw/ cjlin/libsvm/
3http://asi.insa-rouen.fr/enseignants/∼arakotom/code/mklindex.html
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their matlab implementation4, and replace the SVM QP solver with the LibSVM QP

solver, and also use Mosek5 to solve the subproblem for updating the kernel combination

coefficients in their implementation.

The SVM regularization parameter C is set in the range of {0.01, 0.1, 1, 10, 100} for
all the algorithms on all the data sets in the following experiments. One more model

parameter p is introduced for ℓpMKL, v is introduced for SGMKL and θ is introduced

for SM1MKL and SM2MKL. These parameters are set as follows:

(i) for ℓpMKL, p ∈ {1, 32/31, 16/15, 8/7, 4/3, 2, 3,∞};

(ii) for SGMKL, v is in the range of {0, 0.1, 0.2, . . . , 1};

(iii) for SM1MKL, θ is set to be 1
νM

, where ν is a ratio parameter from {1/M, 0.1, 0.2, . . . , 1};

(iv) for SM2MKL, θ is in the range of {10−5, . . . , 104, 105}.

Then all the algorithms have multiple sets of parameters, and the optimal parameters

are determined by using five-fold cross validation on the training set.

3.5.2 Experiments on benchmark data sets

We first evaluate our proposed algorithms on some benchmark data sets. The experi-

ments are conducted on seven publicly available data sets 6,7, which are Heart, Diabetes,

Australian, Ionosphere, Ringnorm, Banana and FlareSolar.

3.5.2.1 Experimental settings

For the construction of base kernels on these benchmark data sets, we follow the method

in [164] by designing the base kernels in the following manner:

(i) Gaussian kernels using 10 different bandwidth parameters from {2−3, 2−2, . . . , 26}
by using all the variables and each single variable;

4http://appsrv.cse.cuhk.edu.hk/∼hqyang/doku.php?id=gmkl
5http://www.mosek.com/
6http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets
7http://www.fml.tuebingen.mpg.de/Members/raetsch/benchmark
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Figure 3.1: The average number of selected base kernels for each of the methods on the
benchmark data set.

(ii) polynomial kernels with the degree from {1, 2, 3} by using all the variables and each

single variable.

We randomly partition the data set into two parts, namely 70% for training and the

rest 30% for testing. For each partition, all the dimensions of samples in the training set

are normalized to have zero mean and unit variance, while the samples in the test set are

normalized accordingly. The experiments are then repeated for 10 times, and the mean

accuracy and the standard deviation on the test set are reported for comparison.

3.5.2.2 Experimental results

Table 3.1 shows the performance comparison of different algorithms. We observe the

effectiveness of our proposed MKL formulations when compared with the other MKL

formulations. The average rank for each algorithm is calculated in the last row in Ta-

ble 3.1. The average rank of SM2MKL is 2.00, and the average rank of SM1MKL is

2.57. So, SM1MKL and SM2MKL achieve similar performances. SimpleMKL follows

SM1MKL and achieves the third position. In terms of the rank, SGMKL and ℓ2MKL

are a bit worse than SimpleMKL, and AveKernel is the worst. The results show that

AveKernel and ℓpMKL cannot outperform ℓ1MKL, probably because of redundant base

kernels constructed in this setting. In terms of the loss functions defined on the kernel
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Figure 3.2: The performances of MKL when using different loss functions on kernel slack
variables with respect to the level of noisy features for “Diabetes”.

slack variables, the square loss is usually more sensitive to the outliers than (square) hinge

loss, thus the generalization ability of ℓ2MKL (ℓpMKL) may be limited when compared

with the hinge loss soft margin MKL (SM1MKL) and square hinge loss soft margin MKL

(SM2MKL).

The average numbers of selected base kernels for different MKL formulations are

shown in Figure 3.1. We observe that SimpleMKL (ℓ1MKL) selects the smallest number

of base kernels on most of the data sets, and ℓ2MKL selects almost all the base ker-

nels, leading to dense solutions. The AveKernel selects all the base kernels. SGMKL,

SM1MKL, and SM2MKL obtain sparser solutions when compared to ℓpMKL, which

demonstrates that whether the solution is sparse or non-sparse should not be the main

factor for the effectiveness of MKL methods.

Table 3.2 shows the mean CPU time costs for training each of the model on the

training set. The average rank for each algorithm is also listed in the last row of the table.

We can observe that generally AveKernel using the single average kernel is the fastest
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Table 3.3: performance evaluation for different algorithms on the YouTube data set in
terms of the mean Average Precision (MAP %), the mean number of selected kernels
(MNK) and the mean training CPU time (MTT) over 11 concepts on the test set.

AveKernel SimpleMKL ℓ2MKL ℓpMKL SGMKL SM1MKL SM2MKL

MAP (%) 88.39 87.47 88.66 89.21 89.20 89.26 89.09

MNK 20 3.09 20 12.91 8.64 9.09 8.54

MTT (Second) 1.04 57.77 36.78 123.8 191.8 36.48 45.37

since SVM model is trained only once for prediction. For MKL algorithms, SGMKL

and SimpleMKL are comparable to each other but they are less efficient when compared

with other methods. When compared with the SimpleMKL and SGMKL, the ℓpMKL is

more efficient due to the analytical solution for the kernel combination coefficients [222]

[99]. For SM1MKL and SM2MKL, the training is very efficient thanks to the analytical

updating rule for SM1MKL and the efficient simplex projection procedure for SM2MKL.

Moreover, SM2MKL is much faster than SGMKL due to the utilization of the simplex

projection method in our optimization process.

3.5.3 Measuring the impact of noisy base kernels for different
MKL algorithms

From the soft margin point of view, we also analyze the characteristics for the MKL

methods by using the regularization on the kernel slack variables. Specifically, some

MKL formulations are more sensitive to noisy base kernels. To verify it, we compare

AveKernel with other MKL methods using different loss functions on the kernel slack

variables, including ℓ1MKL (Hard Margin), ℓ2MKL (Square Loss), SM1MKL (Hinge

Loss) and SM2MKL (Square Hinge Loss). We use the first round of experiment for

“Diabetes” from the benchmark data set to show the results of different algorithms when

using noisy base kernels. The feature vector is augmented with r∗d dimensions of random

generated features, where d is the dimension of the original feature vector and r is the

percentage of the augmented noisy features in the range of {0, 0.2, 0.4, · · · , 1.2}.
Figure 3.2 shows the accuracy of different MKL methods when using different levels

of the noisy features for “Diabetes”. We can clearly observe that AveKernel can achieve

good results when the base kernels are clean. But when there are more noisy base kernels,

the performance of AveKernel becomes much worse than the other algorithms. Moreover,
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Table 3.4: performance evaluation for different algorithms on the Video Event data set
in terms of the mean Average Precision (MAP %), the mean number of selected kernels
(MNK) and the mean training CPU time (MTT) over 6 events on the test set.

AveKernel SimpleMKL ℓ2MKL ℓpMKL SGMKL SM1MKL SM2MKL

MAP (%) 44.33 47.14 53.34 53.49 53.81 54.84 53.98

MNK 80.00 3.63 68.00 60.50 60.53 53.83 61.77

MTT (Second) 2.297 542.9 261.1 396.4 1639 410.1 367.1

in this experiment, the hinge loss for the kernel slack variables is the most robust loss

function when there are strong noisy base kernels.

3.5.4 Experiments on YouTube for Action Recognition

In computer vision applications, many features can be extracted for the image or video

data sets, and the best results are usually obtained by fusing multiple types of features.

However, some features may only be suitable for some specific applications and may even

be harmful for other applications. Thus how to fuse or combine different features is an

important problem for computer vision applications. In the following, we will show the

effectiveness of MKL algorithms for Action Recognition [136].

3.5.4.1 Experimental setting

We evaluate different MKL algorithms on the YouTube data set, which contains 11 action

categories: basketball shooting, biking/cycling, diving, golf swinging, horse back riding,

soccer juggling, swinging, tennis swinging, trampoline jumping, volleyball spiking, and

walking with a dog. The data set contains a total number of 1168 video sequences. We

follow the pre-defined partitions as in [136], where the whole data set is partitioned to 25

folds. In order to compare the generalization ability of the different MKL formulations,

we further choose 20 folds for training and use the remaining five folds for testing. The

20 training folds are also used to determine the parameters for all the algorithms.

Four types of features, namely Trajectory, HOG, HOF, MBH [198], are extracted

from each of the video sequences. Then the base kernels are constructed from each of the

four types of features by using the χ2-kernel. The kernel mapping function is given as

k(xi,xj) = exp
(
−γD(xi,xj)

)
, where D(xi,xj) is the χ

2 distance between any two videos
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for each type of features, and γ = 1
A
4n−1 with A being the mean value of the χ2 distances

between all the training samples. The kernel parameter n is from {−1,−0.5, . . . , 1}, thus
a total number of 20 base kernels are used in the experiment.

For the performance evaluation, we use the non-interpolated Average Precision (AP),

which has been widely used as the performance metric for image and video retrieval

applications. It corresponds to the multi-point average precision values of a precision-

recall curve and incorporates the effect of recall. Mean AP (MAP) means the mean of

APs over all the 11 semantic action concepts.

3.5.4.2 Experimental results

We report the MAP, the mean number of selected kernels (MNK) and the mean training

CPU time (MTT) in Table 3.3 on this data set. The results are based on the mean of the

11 evaluated concepts. We can observe that the MAP of SimpleMKL is 87.47% and it is

worse than AveKernel (88.39%), which indicates that ℓ1MKL (SimpleMKL) may throw

away some useful base kernels due to the hard margin property. We also observe that all

the soft margin formulations ℓ2MKL, ℓpMKL, SGMKL, SM1MKL and SM2MKL achieve

better results when compared with AveKernel and ℓ1MKL (SimpleMKL) and SM1MKL

is the best in terms of MAP.

As shown in Table 3.3, we also observe that AveKernel and ℓ2MKL select all the 20

base kernels, and ℓ1MKL selects the smallest number of base kernels, (i.e., 3.09 base

kernels on average). SM1MKL, SM2MKL and SGMKL select fewer base kernels than

AveKernel and ℓpMKL. Again, we conclude that whether the solution is sparse or non-

sparse is not the key factor for the effectiveness of the MKL methods even though our

new formulations can obtain sparser solutions compared with ℓpMKL.

We also find that the training time of AveKernel is much faster than other MKL algo-

rithms, and SGMKL and SimpleMKL are slower when compared with other MKL algo-

rithms like ℓ2MKL, SM1MKL and SM2MKL, which have similar training time. ℓpMKL

becomes slower in this experiment due to the smaller p value obtained from cross val-

idation. Comparing the training time of SM2MKL and SGMKL, SM2MKL is much

faster due to the efficient simplex projection method proposed under our soft margin

framework. In general, our new SM1MKL outperforms other MKL learning algorithms

in terms of both efficiency and effectiveness on this data set.
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3.5.5 Experiments on Event6 for Video Event Recognition

3.5.5.1 Experimental setting

We evaluate different algorithms on another real world Event6 data set [58]. This data set

contains 1101 videos, in which 924 videos are used as the training set and the remaining

177 are used as the test set. Six events (i.e.,“wedding”, “birthday”, “picnic”, “parade”,

“show” and “sports”) are used for performance evaluation. Two types of local features

(i.e.,“STIP”, “SIFT”) are extracted from each of the video sequences, and then K-means

is used to build the visual vocabularies for each of the local features. The spatial pyramid

is also used to construct the final feature vector, in which two levels are used. Thus, four

types of distances from two types of features and two pyramid levels are calculated as

suggested in [58].

For a given distance D, four types of kernels are used as the base kernels: Gaussian

kernel (i.e., k(xi,xj) = exp
(
− γD2(xi,xj)

)
), Laplacian kernel (i.e., k(xi,xj) = exp

(
−

√
γD(xi,xj)

)
), inverse square distance (ISD) kernel (i.e., k(xi,xj) = 1

γD2(xi,xj)+1
) and

inverse distance (ID) kernel (i.e., k(xi,xj) =
1√

γD(xi,xj)+1
), where D(xi,xj) denotes the

distance between two samples xi and xj. We set γ = 4n−1γ0, where n ∈ {−2,−1, · · · , 2}
and γ0 = 1/A with A being the mean value of square distances between all the training

samples, thus a total number of 80 base kernels are constructed from the four types of

distances. Please refer to [58] for more details of the features and the kernels.

3.5.5.2 Experimental results

We report the MAP, the mean number of the selected base kernels (MNK) and the mean

training CPU time (MTT) over all the 6 events. The MAP for AveKernel is only 44.33%,

which is the worst on this data set. A possible explanation is the poor performance of the

STIP features as shown in [58]. ℓ1MKL (SimpleMKL) can improve the MAP to 47.14%,

and ℓpMKL can further improve the performance to 53.49%. SM2MKL and SGMKL

achieve comparable performances. However, our newly proposed SM1MKL achieves the

best MAP 54.84%. We observe that AveKernel can be much worse when the base kernels

are noisy. While SimpleMKL can discard the noisy base kernels, it may also discard

some useful base kernels due to the hard margin property. Although ℓpMKL improves

the performance, the generalized square loss is usually more sensitive to the outliers than
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the (square) hinge loss, thus it can not achieve the best result. The hinge loss for the

kernel slack variables should be the most robust one on this data set, thus SM1MKL

achieves the best results when compared with other algorithms.

In terms of the MNK, AveKernel selects all the base kernels, and ℓ2MKL still selects

as more as possible base kernels, and ℓpMKL selects fewer base kernels due to a smaller

value p determined from cross-validation. SGMKL, SM1MKL and SM2MKL can also

select fewer base kernels when compared with AveKernel and ℓ2MKL. As for the training

time, our new algorithms are still very efficient. SM1MKL is faster than SGMKL and

SimpleMKL and it is comparable to ℓpMKL. Again, we observe that the utilization of sim-

plex projection method for SM2MKL significantly improves the efficiency, so SM2MKL

is much faster than SGMKL, which again demonstrates it is beneficial to use our soft

margin MKL framework to develop new efficient optimization method for improving the

efficiency of square hinge loss soft margin MKL.

3.6 Summary

In this chapter, we have proposed a novel soft margin framework for Multiple Kernel

Learning by introducing the kernel slack variables for kernel learning. Based on the for-

mulation, we then propose the hinge loss soft margin MKL, the square hinge loss soft

margin MKL and the square loss soft margin MKL. We additionally discover their connec-

tions with previous MKL methods and compare different MKL formulations in terms of

the robustness of loss functions defined on the kernel slack variables. Comprehensive ex-

periments have been conducted on the benchmark data set and the YouTube and Event6

data sets from computer vision applications. The experimental results demonstrate the

effectiveness of our proposed framework.

In the future, we plan to analyze the theoretical bounds for the proposed soft margin

MKLs and study their extensions to multi-class settings as well as investigate how to

extend our MKL techniques for solving the more general ambiguity problem in [126, 218].
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Chapter 4

Input-Output Kernel Learning for
Learning with Ambiguity

Data ambiguities exist in many data mining and machine learning applications such as

text categorization and image retrieval. For instance, it is generally beneficial to utilize

the ambiguous unlabeled documents to learn a more robust classifier for text catego-

rization under the semi-supervised learning setting. To handle general data ambiguities,

we present a unified kernel learning framework named Input-Output Kernel Learning

(IOKL). Based on our framework, we further propose a novel soft margin group sparse

Multiple Kernel Learning (MKL) formulation by introducing a group kernel slack variable

to each group of base input-output kernels. Moreover, an efficient block-wise coordinate

descent algorithm with an analytical solution for the kernel combination coefficients is

developed to solve the proposed formulation. We conduct comprehensive experiments

on benchmark datasets for both semi-supervised learning and multiple instance learn-

ing tasks, and also apply our IOKL framework to a computer vision application called

text-based image retrieval on the NUS-WIDE dataset. Promising results demonstrate

the effectiveness of our proposed IOKL framework.

4.1 Introduction

The pioneering work for kernel learning was proposed by [115] to train the SVM classifier

and learn the kernel matrix simultaneously, which is known as Multiple Kernel Learning

(MKL). Since the objective function proposed in [115] has a simplex constraint for the
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kernel coefficients, it is also known as ℓ1MKL. While the developments of efficient algo-

rithms for ℓ1MKL have been a major research topic in the literature [7, 115, 164, 182, 221],

recently [42] and [99] showed that ℓ1MKL cannot achieve better prediction performance

compared even with simple baselines for some real world applications. To address this

problem, the non-sparse MKL [42, 99] was proposed.

The traditional MKL formulations are proposed for supervised classification problems,

where the input base kernels and the labels of training samples are provided. The target

is to learn a classifier as well as the optimal combination of input base kernels in a

supervised manner. However, in many real-world applications, we often need to cope

with data with uncertain labels or with an uncertain representation, which is uniformly

referred to as ambiguity in this chapter. For instance, for text categorization under the

semi-supervised learning setting [96], the unlabeled document with unknown labels may

be helpful for learning a more robust classifier. Moreover, in text-based image retrieval

[128], the training images collected from the photo-sharing websites (e.g., Flickr.com

or Photosig.com) are associated with loose labels. To tackle those data ambiguities,

many learning strategies such as Semi-Supervised Learning (SSL) [96] and Multi-Instance

Learning (MIL) [3] have been proposed.

Recently, MKL optimization techniques have been successfully applied to solve learn-

ing problems with ambiguity, such as bag-based MIL [130], instance-based MIL [128],

SSL [131] and multi-view ambiguous learning [126]. In these works, their objective func-

tions which are formulated in the form of a mixed integer programming (MIP) problem

are relaxed into a reduced problem which shares a similar objective function as the ℓ1MKL

formulation. The empirical results in these works demonstrate the effectiveness of the

MKL techniques for solving different learning problems with ambiguity. However, they

assume that only one predefined input base kernel is provided beforehand, which may

limit their generalization performance.

To address the ambiguity problem with multiple input base kernels, in this chapter, we

formulate the general data ambiguities as a unified kernel learning problem. Specifically,

by introducing the so-called input-output kernels, we propose a novel kernel learning

framework, namely Input-Output Kernel Learning (IOKL), which not only learns the

optimal kernel but also handles data ambiguities. The major contributions of this chapter

are summarized below:
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(i) Unlike previous works for MKL in supervised learning settings without considering

any uncertainty, our proposed IOKL framework simultaneously learns a robust

classifier and the optimal kernel for the more challenging case in which there are

data ambiguities either from unknown output labels or uncertainties associated with

input data. Therefore, our kernel learning framework is applicable to more general

learning scenarios such as multi-instance learning and semi-supervised learning.

(ii) To learn a more robust classifier, we propose a novel soft margin group sparse MKL

formulation by introducing a new group kernel slack variable to each group of base

input-output kernels. Moreover, a block-wise coordinate descent algorithm with an

analytical solution for the kernel combination coefficients is developed to solve the

new formulation efficiently.

(iii) We conduct comprehensive experiments on the benchmark datasets for both semi-

supervised learning and multiple instance learning tasks, and also apply IOKL to

a computer vision application (i.e., text-based image retrieval) on the challeng-

ing NUS-WIDE dataset. Promising results demonstrate the effectiveness of our

proposed IOKL framework.

4.2 Learning with Ambiguity

4.2.1 Related works

In traditional Multiple Kernel Learning (MKL) methods [42, 57, 59, 99, 115, 225], the

input base kernels and the labels for the training samples are given. Then the classifier is

trained under a supervised learning setting where no uncertainty exists for either sample

labels or the input data. However, in many real world applications, we often need to cope

with data with uncertain labels or uncertainty associated with the input data. To this

end, learning strategies such as the Semi-Supervised Learning [96] and Multi-Instance

Learning [3] are designed to handle those data ambiguities.

Many Semi-supervised Learning (SSL) methods such as TSVM [96], LDS [32],

LapSVM [12], LapRLS [12], LapREMR [36] and meanS3svm [131] have been proposed

to utilize the unlabeled data for training the classifier. In addition, the Multi-Instance
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Learning (MIL) methods including Non-SVM-based methods (i.e., DD [144], EM-

DD [238]) graph-based methods (i.e., MIGraph [244], miGraph [244], HSR-MIL [120]),

similarity-based method (i.e., SMILE [212]) and SVM-based methods (i.e., MI-SVM [3],

mi-SVM [3], MI-Kernel [73], sMIL [23], MIL-CPB [128]) have been proposed recently.

In this chapter, we uniformly refer to such uncertainty in the data as ambiguity

and divide it into two categories. The first type of uncertainty is due to the lack of

label information, which is referred to as output ambiguity. For instance, in semi-

supervised learning [96], the label information is not available for unlabeled training

samples. Another type of uncertainty comes from the uncertainty associated with input

data, such as the bag-based MIL [3, 73, 130], in which only the bag labels are given with

the representative instance in each bag being unknown. Usually, an indicator variable

is introduced for each instance to parameterize the bag representation of instances. We

refer to this type of uncertainty as input ambiguity.

For clarity of presentation, we specify ∀ i,∀m and ∀ t as meaning the value of i from

1 to n, the value of m from 1 to M , and the value of t from 1 to T , respectively.

4.2.2 Input-Output Kernel with Ambiguity

In this section, we define the input-output kernel, based on which we show several exam-

ples for utilizing MKL techniques to handle data ambiguities with only one predefined

input base kernel. Then, in Section 4.2.3, we propose the Input-Output Kernel Learning

(IOKL) framework by considering multiple input base kernels for handling general data

ambiguities.

Suppose we are given a set of n input data {xi|ni=1}, and denote the possible output

label vector as y = [y1, . . . , yn]
′ with yi ∈ {+1,−1}, ∀i. We have the following definition:

Definition 4.7 Given {xi|ni=1} with xi being the input data and the corresponding output

label yi ∈ {+1,−1}, we define the input-output kernel as:

KIO = KI ⊙KO, (4.1)

where KI ∈ Rn×n is the input kernel associated with the kernel function k, and KO =

yy′ ∈ Rn×n is the output kernel with y = [y1, . . . , yn]
′.
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Example 1 (Output Ambiguity): This type of ambiguity comes from uncertain

output labels, such as semi-supervised learning [96] and instance-based MIL [128]. The

method in [128] formulates instance-based MIL as a MIP problem, and then further re-

laxes it as a ℓ1MKL problem in the form of minµ∈D maxα∈A

(
−1

2
α′
(∑

t:yt∈Y µtK⊙ (ytyt′)
)
α
)
,

where Y is the feasible set of the instance label vector y and yt is the tth candidate label

vector under the MIL constraints [3, 128], µ ∈ R|Y| is a coefficient vector, and α ∈ Rn

is the SVM dual vector. This relaxed problem can be deemed as optimizing the lin-

ear combination of |Y| base input-output kernels KIO
t constructed from Definition 4.7,

namely, KI = K ∈ Rn×n with K(i, j) = k(xi,xj) and KO
t = ytyt′. The |Y| base input-

output kernels are obtained due to output ambiguity. The mapping function for KIO
t is

φ̃t(xi) = ytiφ(xi) with φ(·) being the mapping function for k. The semi-supervised learn-

ing shares the same form of objective function except that the feasible set Y is based on

the balance constraint as in [96].

Example 2 (Input Ambiguity): For bag-based MIL, the input data is composed

of n bags, and each bag xi consists of ni instances {xj
i |
ni
j=1} with known bag label yi but

unknown bag representation w.r.t. the instances inside each bag. With N =
∑n

i=1 ni,

the kernel K ∈ RN×N associated with a kernel function k w.r.t. the instances is given.

The method in [130] formulates this problem as a mixed integer programming problem,

and also relaxes the problem into a ℓ1MKL problem in form of

min
µ∈D

max
α∈A
−1

2
α′

( ∑
t:δt∈∆

µt(yy
′)⊙ conv

(
K⊙ (δtδt′)

))
α,

where conv(·) is the convolution operator [73] for mapping the kernel matrix from instance

level to bag level, δ ∈ RN is an indicator vector with its element δji ∈ {0, 1} which is

associated with xj
i (i.e., δ

j
i = 1 if xj

i is used to represent the ith bag), and ∆ is the feasible

set for δ under bag-based MIL constraints [73, 130]. Then we can have |∆| input-output
kernels KIO

t with KI
t = conv

(
K⊙ (δtδt′)

)
and KO = yy′. The mapping function for

each input-output kernel is φ̃t(xi) = yi
∑nj

j=1 δ
jt
i φ(x

j
i ),∀t with φ(·) being the mapping

function for k.

In this chapter, we uniformly model the general data ambiguities (i.e., output ambi-

guity and input ambiguity) by using a vector h referred to as an ambiguity candidate.
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Specifically, for output ambiguity, we have h = y, and for input ambiguity, we have

h = δ. Note that for any predefined k, each ambiguity candidate leads to one input-

output kernel, thus the total number T of base input-output kernels is determined by the

size of Y or ∆, i.e., T = |Y| or T = |∆|. In the following, we refer to C = {h1, . . . ,hT}
as the ambiguity candidate set which contains all possible ambiguity candidates, and

propose the new Input-Output Kernel Learning framework for handling the general data

ambiguities with multiple input base kernels.

4.2.3 Input-Output Kernel Learning (IOKL)

Considering C as that in Section 4.2.2 and M input base kernels K = {k1, ..., kM} as

that in the traditional MKL framework, we can construct a total number of M × T base

input-output kernels. Let us denote the input-output kernel from km and ht as KIO
m,t,

m = 1, . . . ,M and t = 1, . . . , T . The mapping function φ̃m,t(·) for KIO
m,t can be obtained

by instantiating the φ(·) in Example 1 and 2 with φm(·). Inspired by the traditional MKL

framework, we propose to learn the target classifier1f(xi) =
∑T

t=1

∑M
m=1 w̃

′
m,tφ̃m,t(xi)

with a linear combination of those input-output kernels. We then formulate the Input-

Output Kernel Learning (IOKL) problem as the following kernel learning problem:

min
D∈M,w̃m,t,ρ,ξi

1

2

(
T∑
t=1

M∑
m=1

∥w̃m,t∥2

dm,t

+ C
n∑

i=1

ξ2i

)
− ρ

s.t.
T∑
t=1

M∑
m=1

w̃′
m,tφ̃m,t(xi) ≥ ρ− ξi,∀ i, (4.2)

where D ∈ RM×T is the input-output kernel coefficient matrix with D(m, t) = dm,t for

m = 1, . . . ,M, t = 1, . . . , T , and M = {D|Ω(D) ≤ 1,D ≥ 0} is the feasible set for

input-output kernel coefficient matrix with Ω(D) being the general regularization term

for D.

Note that our IOKL is based on the input-output kernels by considering the general

data ambiguities, while the existing MKL methods [186], [99] only learn the optimal

kernel under the supervised setting. We take ν-SVM [170] with square hinge loss as an

example in this chapter, but other SVM formulations can be incorporated similarly.

1The bias b can be incorporated by augmenting 1 as the additional feature in φm(·),∀m.
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4.3 Soft Margin Group Sparse Regularization for IOKL

4.3.1 Regularization for IOKL

For traditional supervised MKL, the regularization for the kernel coefficients can be ℓ1-

norm [115, 164], ℓ2-norm [42] and ℓp-norm [99]. In addition, Composite Kernel Learning

(CKL) [186] proposed a generic ℓp,q-norm for the input base kernels. However, all these

regularization terms are for input base kernels without considering the ambiguity.

In general, any regularization from previous works can be readily adopted for our

IOKL framework. Considering the ambiguity problem, we have two intuitions:

(i) Non-sparse regularization for input base kernels: The input base kernels

are possibly based on different features from professional knowledge (e.g., feature

design in computer vision applications). Thus, complementary and orthogonal

information [42, 99] from input base kernels should be preserved.

(ii) Sparse regularization for ambiguity candidates: The underlying authentic

ambiguity candidate h only has few correct choices (e.g., the authentic labels of un-

labeled samples for semi-supervised learning only have one correct choice according

to the ground-truth labels). Thus, the ambiguity candidates should be enforced to

be sparse.

To preserve the non-sparseness for input base kernels and also enforce sparseness for

ambiguity candidates, we employ the group sparse ℓ2,1-norm regularization [235] for our

IOKL in (4.2) as:

Ω(D) =
T∑
t=1

√√√√ M∑
m=1

d2m,t , (4.3)

where the ℓ2-norm is used for input base kernels and ℓ1-norm is used for ambiguity

candidates.

Note that, different from [186] that proposed a generic group structure to input base

kernels for MKL under the traditional supervised learning setting, our ℓ2,1-norm structure

is specifically enforced on the base input-output kernels by considering the general data

ambiguities, thus our work significantly differs from [186]. Although the generic group

structure for input base kernels from [186] is more general and can be incorporated into
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our IOKL, we only utilize the non-sparse ℓ2-norm [99] for the input base kernels due to

the aforementioned intuitions. We will also validate these intuitions for designing the

regularization term on the real world computer vision data set in Section 4.5.1.

4.3.2 A Hard Margin Perspective for Group Sparse MKL

Substituting the group sparse ℓ2,1-norm in (4.3) back into (4.2), we can get the primal

form of the group sparse MKL. To further discover the properties of this group sparse

MKL, we go a step further to derive its dual form, from which we give a novel “hard

margin” interpretation for MKL. The dual form of (4.2) with regularization in (4.3) can

be obtained in the following proposition:

Proposition 8 The dual form of the MKL problem in (4.2) with Ω(D) defined in (4.3)

is:

max
α,λ,γ

− 1

2C

n∑
i=1

α2
i − γ

s.t.
1

2
α′KIO

m,tα ≤ λm,t, ∀m, ∀ t, (4.4)

α ≥ 0,1′α = 1,√√√√ M∑
m=1

λ2m,t = γ, t = 1, . . . , T,

where α = [α1, . . . , αn]
′, λ = [λ′

·,1, . . . ,λ
′
·,T ]

′ (with λ·,t = [λ1,t, . . . , λM,t]
′,∀ t) and γ are

the Lagrangian multipliers.

Proof: We firstly rewrite the problem in (4.2) as:

min
D≥0,z,w̃m,t,ρ,ξi

1

2

(∑
m,t

||w̃m,t||2

dm,t

+ C
n∑

i=1

ξ2i

)
− ρ

s.t.
∑
t,m

w̃′
m,tφ̃m,t(xi) ≥ ρ− ξi, ∀ i, (4.5)

dm,t = zm,t,∀ t,∀m,
T∑
t=1

√√√√ M∑
m=1

z2m,t ≤ 1,
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where zm,t is an intermediate variable introduced for ease of derivation. Then the La-

grangian can be written as: L = 1
2

(∑
m,t

||w̃m,t||2
dm,t

+ C
∑n

i=1 ξ
2
i

)
−ρ+γ

(∑
t

√∑
m z

2
m,t − 1

)
+∑

m,t λm,t(dm,t−zm,t)−
∑n

i=1 αi

(∑
m,t w̃

′
m,tφ̃m,t(xi)− ρ+ ξi

)
−
∑

m,t dm,tηm,t, where γ ≥

0, αi ≥ 0, ηm,t ≥ 0 and λm,t are the Lagrangian multipliers introduced from the constraints

in (4.5).

By setting the derivatives of L with respect to the primal variables w̃m,t, ρ, ξi, dm,t, zm,t

to be zeros, we have w̃m,t

dm,t
=
∑n

i=1 αiφ̃m,t(xi),
∑n

i=1 αi = 1, Cξi = αi, −1
2

∥w̃m,t∥2
d2m,t

− ηm,t +

λm,t = 0 and

λm,t = γ
zm,t√∑M
l=1 zl,t

2

(4.6)

The equation in (4.6) gives√√√√ M∑
m=1

λ2
m,t = γ

√∑M
m=1 z

2
m,t√∑M

l=1 zl,t
2

= γ, ∀t, (4.7)

which are the equality constraints as in the last row of (4.4). The other constraints

can be obtained similarly. Eliminating the primal variables in the Lagrangian gives the

objective form as in (4.4). Thus we finish the proof. In the dual form, the group

sparse regularization term reflects that the upper bounds λm,t’s of the quadratic terms

are grouped into T groups accordingly. The constraint for each group of upper bounds

is formulated as ||λ·,t||2 = γ, which encodes the non-sparseness from the input base

kernels inside the tth group. However, we observe that the ℓ2-norm ||λ·,t||2 strictly equals

the global “margin” γ, thus there is no “error” allowed from tth group for the learning

problem, which can be deemed as a “hard margin” property for each group of the input-

output kernels.

4.3.3 Soft Margin Group Sparse MKL

To overcome the “hard margin” defect, in this section we propose a novel soft margin

formulation to learn a classifier with better generalization ability. Specifically, we can

introduce one slack variable ζt, namely a group kernel slack variable, to the tth group for
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∀t, then the soft margin group sparse MKL can be formulated as:

min
α,λ,γ,ζ

1

2C

n∑
i=1

α2
i + γ + θ

T∑
t=1

ζt

s.t.
1

2
α′KIO

m,tα ≤ λm,t, ∀m, ∀t, (4.8)

α ≥ 0,1′α = 1,√√√√ M∑
m=1

λ2m,t = γ + ζt, ζt ≥ 0, ∀ t,

where ζ = [ζ1, . . . , ζT ]
′ and θ is the soft margin regularization parameter for group kernel

slack variables.

To efficiently solve this new objective function for MKL, we have the following propo-

sition:

Proposition 9 The primal form of the soft margin group sparse MKL problem as in
(4.8) is shown as the following optimization problem:

min
D≥0,w̃t,m,ρ,ξi

1

2

∑
∀m,∀t

||w̃m,t||2

dm,t
+ C

n∑
i=1

ξ2i

− ρ

s.t.
∑
∀m,∀t

w̃′
m,tφ̃m,t(xi) ≥ ρ− ξi,∀i,

T∑
t=1

√√√√ M∑
m=1

d2m,t ≤ 1, (4.9)

√√√√ M∑
m=1

d2m,t ≤ θ, t = 1, . . . , T.

Proof: In order to get the dual form of (4.9), we rewrite the problem in (4.9) as:

min
D,z,e,w̃m,t,b,ρ,ξi

1

2

(∑
m,t

||w̃m,t||2

dm,t
+ C

n∑
i=1

ξ2i

)
− ρ

s.t.
∑
m,t

w̃′
m,tφ̃m,t(xi) ≥ ρ− ξi,∀i,

dm,t = zm,t, dm,t ≥ 0, ∀ t,m, (4.10)

et =

√∑
m

z2m,t, et ≤ θ, ∀ t,

∑
t

et ≤ 1,
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where zm,t, et are the intermediate variables that would be beneficial for deriving the

dual. The problem in (4.10) and the problem in (4.9) are equivalent by eliminating the

intermediate variables zm,t, et in (4.10).
Then the Lagrangian of (4.10) can be written as:

L=1

2

(∑
m,t

||w̃m,t||2

dm,t
+ C

n∑
i=1

ξ2i

)
− ρ+

∑
t

ζt (et − θ)

−
n∑

i=1

αi

(∑
m,t

w̃′
m,tφ̃m,t(xi)− ρ+ ξi

)
+
∑
m,t

λm,t (dm,t − zm,t)−
∑
m,t

dm,tηm,t

+γ

(∑
t

et − 1

)
−
∑
t

βt

et −
√∑

m

z2m,t

 ,

where αi ≥ 0, ηm,t ≥ 0, γ ≥ 0, ζt ≥ 0, βt and λm,t are the Lagrangian multipliers intro-

duced from the constraints in (4.10).

By setting the derivatives of L with respect to the primal variables w̃m,t, ρ, ξi, dm,t, zm,t, et

to be zeros, we can get the KKT conditions similarly with the proof for Proposition 8.

Using similar elimination techniques gives exactly the dual form as in (4.8). Thus we get

the conclusion.

Note that by introducing the group kernel slack variables in the dual of the group

sparse MKL in (4.4), we observe that this corresponds to having one more box constraint

for the ℓ2-norm of each group of coefficients, specifically
√∑M

m=1 d
2
m,t ≤ θ, ∀t. The new

regularization parameter θ for group kernel slack variables places an upper bound on

the ℓ2-norm of the coefficients from each group, thus preventing strong values from any

groups of base input-output kernels.

This kind of improvement is in analogous to the change from the hard margin SVM

[19] to hinge loss soft margin SVM [45]. The soft margin SVM introduces one slack

variable for each training instance, while our proposed soft margin group sparse MKL

introduces one slack variable for each group of base input-output kernels. If θ ≥ 1, the

soft margin case in (4.8) reduces to the hard margin case in (4.4). To distinguish the two

types of IOKL, we refer to (4.2) with regularization in (4.3) and (4.9) as IOKL-HM and

IOKL-SM, respectively.
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Algorithm 3 : Cutting-plane algorithm for IOKL

1: Initialize h1,τ = 1, and set Cm = h1, m = 1 . . .M .
2: Get KIO

m,t by using Cm and K according to Definition 4.7.
3: Get ατ by solving the MKL problem as in (4.8).
4: For m = 1 . . .M

Get hτ+1 = argmaxy∈Y (ατ )′ (Km ⊙ (yy′)) (ατ ).
Set Cm = hτ+1

∪
Cm.

5: End For
6: τ = τ + 1.
7: Repeat Steps 2 to 6 until convergence.

4.3.4 Cutting-plane Algorithm for IOKL

From Definition 4.7, we observe that the number of all possible candidates for the

ambiguity candidate h could be exponential with the size of h, which makes it inefficient

to train a classifier with MKL. Fortunately, we can employ the cutting-plane algorithm

to iteratively select a small number of the most violated input-output kernels instead of

using all of them. Taking semi-supervised learning as an example, the detailed cutting-

plane algorithm is listed in Algorithm 3.

Specifically, taking semi-supervised learning as an example, according to the quadratic

constraints in (4.8), the most violated input-output kernels can be constructed iteratively

with hτ+1 obtained by solving the following problem:

hτ+1 = argmax
y∈Y

(ατ )′ (Km ⊙ (yy′)) (ατ ) , ∀m, (4.11)

which can be optimized by either the enumeration method [128] or the approximation

based sorting algorithm [130], [125].

By using the cutting-plane algorithm, the ambiguity candidate is added into Cm iter-

atively. Thus, the whole solution to IOKL in Algorithm 3 depends on solving the inner

MKL problem as in (4.9) efficiently, which will be detailed in Section 4.4. In the sequel,

we still denote the size of Cm inside each iteration as T .

4.4 Solution to Soft Margin Group Sparse MKL

The formulation in (4.9) is a convex optimization problem, therefore the global solution

for (4.9) is guaranteed. To solve this problem, we follow the block-wise coordinate descent
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procedure for ℓp-norm MKL [99, 222] and CKL [186], and optimize two subproblems

w.r.t. the two sets of variables {w̃m,t, ρ, ξi} and {D} alternately. Note that, due to

the additional box constraints introduced from soft margin regularization for the group

input-output kernels, the subproblem for updating D becomes much more difficult than

the one in [99, 186, 222].

4.4.1 Updating SVM Variables with Fixed D

With a fixed D, we write the dual of (4.9) by introducing the non-negative Lagrangian

multipliers αi’s as:

max
α∈A

−α′α

2C
− 1

2
α′

(∑
∀m,∀t

dm,tK
IO
m,t

)
α. (4.12)

which is a quadratic programming (QP) problem with A = {α|α′1 = 1,0 ≤ α}, and
can be efficiently solved by any existing QP solvers. Then, the primal variables w̃m,t, ρ, ξi

can be recovered accordingly. For instance, the norm for w̃m,t can be expressed as:

||w̃m,t|| = dm,t

√
α′KIO

m,tα. (4.13)

4.4.2 Updating D with Fixed SVM Variables

For updatingD with fixed SVM variables, the subproblem can be equivalently formulated

as:

min
D≥0,e

1

2

∑
m,t

||w̃m,t||2

dm,t

et =

√√√√ M∑
m=1

d2m,t, et ≤ θ, ∀ t, (4.14)∑
t

et ≤ 1,

where e = [e1, . . . , eT ]
′ is an intermediate variable vector introduced for ease of optimiza-

tion.

Because of the additional upper bound θ, the existing optimization techniques [99, 186,

222] cannot be directly utilized. Inspired by [172] for simplex projection, we introduce
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Algorithm 4 : Optimization procedure for solving ω

1: Calculate at =
(∑M

l=1 ||w̃l,t||4/3
)3/4

, ∀ t.
2: Sort at’s such that a1 ≥ a2 ≥ · · · ≥ aT .
3: ω = 0.
4: while ω < T do
5: if (1−ωθ)aω+1∑T

s=ω+1 as
< θ

6: break;
7: else
8: ω = ω + 1.
9: end
10: end while

a Lagrangian method to solve (4.14) analytically. Before we introduce our algorithm to

solve (4.14), let us denote ω as the number of elements whose value strictly equals θ in

the optimal solution for e in (4.14), and the closed-form solution for (4.14) is obtained

as in the following:

Proposition 10 The optimal solution for subproblem (4.14) is given as, for t = 1, . . . , ω,

dm,t = θ
∥w̃m,t∥2/3√∑M
l=1 ||w̃l,t||4/3

,∀m, (4.15)

and for t = ω + 1, . . . , T ,

dm,t = (1− ωθ)
||w̃m,t||2/3

(∑M
l=1 ||w̃l,t||4/3

)1/4
∑T

t=ω+1

(∑M
l=1 ||w̃l,t||4/3

)3/4 ,∀m. (4.16)

Proof: The Lagrangian for (4.14) is:

L =
1

2

∑
m,t

||w̃m,t||2

dm,t
−
∑
m,t

dm,tηm,t +
∑
t

ζt (et − θ)

+γ

(∑
t

et − 1

)
−
∑
t

βt

et −
√∑

m

d2m,t

 , (4.17)

where ηm,t ≥ 0, γ ≥ 0, ζt ≥ 0 and βt are Lagrangian multipliers introduced for the

constraints.
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By setting the derivatives of the Lagrangian as in (4.17) with respect to the primal
variables dm,t, et to be zeros, we have the following equations:

−1

2

||w̃m,t||2

d2m,t

+ βt
dm,t√∑

l d
2
l,t

= ηm,t, (4.18)

γ + ζt − βt = 0, (4.19)

and the complementary KKT conditions give ηm,tdm,t = 0, βt

(
et −

√∑
m d

2
m,t

)
= 0 and

ζt (et − θ) = 0. (4.20)

Since ∥w̃m,t∥2 > 0, thus dm,t > 0, according to the previous KKT conditions, ηm,t = 0.

According to (4.18) with ηm,t = 0, we have 1
2

∥w̃m,t∥2
d2m,t

= βt
dm,t√∑

l d
2
l,t

, which further gives

||w̃m,t||2
||w̃l,t||2

=
d3m,t

d3l,t
for ∀m, l, then et =

√∑
l d

2
l,t = dm,t

√∑
l

d2l,t
d2m,t

= dm,t

√∑
l

||w̃l,t||4/3
||w̃m,t||4/3

, thus

et =
dm,t

||w̃m,t||2/3

√∑
l

||w̃l,t||4/3. (4.21)

In the following, we will discuss the solutions for dm,t > 0 based on the value of et.

If et = θ for any group t: Due to et = θ and (4.21), the solution for dm,t is obtained

as that in (4.15).

If et < θ for any group t: We can observe from (4.20) that ζt = 0, and this further

gives γ = βt according to (4.19). With (4.18) and ηm,t = 0 as well as (4.21), we further

have d3m,t =

√∑
l d

2
m,t

2βt
||w̃m,t||2 = et

2γ
||w̃m,t||2 =

dm,t

√∑
l ||w̃l,t||4/3
2γ

||w̃m,t||4/3, thus we have,

dm,t =
||w̃m,t||2/3

(∑M
l=1 ||w̃l,t||4/3

)1/4
√
2γ

, (4.22)

and then et =
1√
2γ

(∑M
l=1 ||w̃l,t||4/3

)3/4
by substituting (4.22) back into (4.21).

The formulations in (4.15) and (4.22) show that if we know γ and whether et equals

to θ, the optimal solution for D can be obtained accordingly. Thus the remaining key

problem is to get γ and to determine whether et equals to θ.
Suppose that ω, the number of elements whose value strictly equals θ in the optimal

solution for e, is given, we will show how to obtain the optimal γ. WLOG, we assume
that et have been sorted such that e1 ≥ e2, . . . ,≥ eT ,

T∑
t=1

et = ωθ +
1√
2γ

T∑
t=ω+1

(
M∑
l=1

||w̃l,t||4/3
)3/4

. (4.23)
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It can be similarly proved as in [99] that the constraint
∑T

t=1 et ≤ 1 always holds as the
equality constraint, thus γ can be obtained as the function of ω as,

√
2γ =

∑T
t=ω+1

(∑M
l=1 ||w̃l,t||4/3

)3/4
1− ωθ

, (4.24)

then together with (4.22), for groups that et < θ, one gets the solution in (4.16). Thus

we finish the proof.

To determine ω, the number of the elements in e with value strictly equal to θ, we

have the following lemma:

Lemma 4.3 Let D⋆ and e⋆ be the optimal solution to (4.14), and suppose that a1 ≥
a2 ≥ · · · ≥ aT with at =

(∑M
l=1 ||w̃l,t||4/3

)3/4
for t = 1, . . . , T . Then ω, the number of

elements whose value strictly equal θ in e⋆, is

min

{
p ∈ {0, 1, · · · , T − 1}

∣∣∣(1− pθ)ap+1∑T
s=p+1 as

< θ

}
.

Thus the optimization for ω is simply a sorting algorithm as shown in Algorithm 4.

Suppose that the indices from 1 to T has been reordered according to at as that in

Algorithm 4. To determine the group that strictly has et = θ, we have the following

Lemma:

Lemma 4.4 Let e⋆ be the optimal solution to the problem (4.14), and suppose ap > aq

for any two given indices p,q ∈ {1, · · · , T}. If e⋆q = θ, we have e⋆p = θ.

The proofs of Lemma 4.3 and 4.4 are omitted here due to space limitation.

4.4.3 Overall Optimization Procedure for MKL

The whole optimization procedure for solving the soft margin group sparse MKL in

(4.9) is detailed in Algorithm 5. Taking semi-supervised learning as an example, after

obtaining the optimized D and α with Cm = {ym,1, . . . ,ym,T}, the learnt classifier is

expressed as:

f(x) =
n∑

i: αi ̸=0

αi

( ∑
m,t:dm,t ̸=0

dm,ty
m,t
i km(x,xi)

)
.
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Algorithm 5 : The block-wise coordinate descent algorithm for solving the soft margin
group sparse MKL

1: Initialize D1.
2: r = 1
3: while the stop criterion is not satisfied do
4: Get αr by solving the subproblem (4.12) using the standard QP solver with Dr.
5: Calculate ∥w̃m,t∥ according to (4.13) and update Dr+1 by solving (4.14).
6: r = r + 1.
7: end while

4.4.4 Computational Complexity for IOKL

Now we analyze the computational complexity for our proposed IOKL. The computa-

tional complexity of IOKL in Algorithm 3 depends on the cutting-plane strategy as

well as the inner group sparse MKL problem as shown in Algorithm 5. Specifically, in

Algorithm 3, the 2-nd step takes about MO(n2) time complexity to construct the input-

output kernels, while the 3-rd step takes O(MKL) time complexity to solve the group

MKL problem. In the 4-th step, it takes O(n log(n)) time complexity to infer the most

violated ambiguity candidate. In total, it takes O(IOKL) = Γ(M ×O(n2) +O(MKL))

with Γ being the number of iterations.

For the complexity of the group sparse MKL as shown in Algorithm 5, it shares the

similar form with that of previous analyze for MKL in Chapter 3. However, due to the

group structure for updating the kernel combination coefficients, the complexity of it

could be given as O(MKL) = R × O(n2.3 +MTn +M log(M)) with R being the total

number of iterations for Algorithm 5.

4.5 Experiments

4.5.1 Text-based Image Retrieval on NUS-WIDE Dataset

In this section, we show the experimental results of our IOKL framework for a computer

vision application (i.e., text-based image retrieval [56]) on the NUS-WIDE dataset [39].

This dataset contains 269,648 images collected from Flickr.com and annotations for 81

semantic concepts. Following [39], the dataset is partitioned into a training set consisting

of 161,789 images and a test set with 107,859 images.
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Table 4.1: MAP (%) of the different MIL methods over 81 concepts on the NUS-WIDE
dataset.

Method SIL-SVM mi-SVM sMIL MIL-CPB IOKL-SM
MAP 57.54 58.63 59.71 61.49 64.36

As in [39, 128], three types of global visual features (i.e., Grid Color Moment (225

dim), Wavelet Texture (128 dim) and Edge Direction Histogram (73 dim)) are extracted

for each of the images. The three types of visual features are then concatenated into a

426-dimensional feature vector, and PCA is further used to project the feature vector into

a 119-dimensional visual vector, preserving 90% of the energy. Also, a 200-dimensional

term-frequency feature is extracted as the texture feature, and is concatenated with the

119-dimensional global visual feature. Also, we extract the local SIFT features [139], and

quantize the SIFT features with codebook size of 1024 to form a 21504-dimensional LLC

feature vector following [199].

The aforementioned two types of features are used to construct the input base ker-

nels. For each type of features, we utilize the Gaussian kernel (i.e., k(xi,xj) = exp
(
−

γD2(xi,xj)
)
), where D(xi,xj) denotes the Euclidean distance between samples xi and

xj. We set γ = 2nγ0, where n ∈ {−1,−0.5, . . . , 1} and γ0 = 1/A with A being the

mean value of the square distances between all the training samples. Thus 10 input base

kernels are used.

We use 25 positive bags and 25 negative bags with each bag consisting of 15 instances

to train one-versus-all classifiers for all 81 concepts. For performance evaluation, we use

the non-interpolated Average Precision (AP), which has been widely used as the standard

performance metric for image retrieval applications. Mean AP (MAP) represents the

mean of APs over all the 81 concepts from the dataset.

The effectiveness of IOKL for MIL: We firstly show the results of IOKL and

some representative MIL methods in Table 4.1, which include SIL-SVM [3], mi-SVM [3],

sMIL [23] and MIL-CPB [128]. MIL-CPB can be regarded as a special case of our method

by using the single input kernel as in [128] with θ ≥ 1. These results clearly show the

effectiveness of our proposed framework for MIL with application to text-based image

retrieval on NUS-WIDE.
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Table 4.2: MAPs (%) of our IOKL using different regularization settings on the NUS-
WIDE dataset.

Method ℓA,1 ℓA,2 ℓ1,1 ℓ2,2 ℓ1,2 ℓ2,1 SMℓ2,1
MAP 61.84 60.78 61.04 60.02 55.95 62.82 64.36

The effectiveness of ℓ2,1-norm regularization: To verify the non-sparseness for

input base kernels and sparseness for ambiguity candidates, we compare different reg-

ularization settings in Table 4.2 as ℓi,j, where i = A, 1, 2 represent averaging, ℓ1-norm

and ℓ2-norm for input base kernels, respectively, and j = 1, 2 represent ℓ1-norm and

ℓ2-norm for ambiguity candidates, respectively. Also, SMℓ2,1 is ℓ2,1 with soft margin

regularization.

Table 4.2 shows MAPs of different regularization settings for the IOKL framework.

We can observe that enforcing sparseness for input base kernels leads to poor perfor-

mances (e.g., 61.04% for ℓ1,1 compared with 62.82% for ℓ2,1), which is consistent with most

observations of traditional MKL. Moreover, enforcing sparseness for ambiguity candidates

improves the performance (62.82% for ℓ2,1 compared with 60.02% for ℓ2,2). Also, improper

utilization of group structure such as in the ℓ1,2 case degenerates the performance greatly.

These results clearly demonstrate the benefits of preserving non-sparseness for input base

kernels and enforcing sparseness for ambiguity candidates with the ℓ2,1-norm.

The effectiveness of soft margin regularization: As discussed previously, the

soft margin case reduces to the hard margin case for large value of θ. We show the

influence of the soft margin regularization parameter θ in Figure 4.1. The IOKL-HM is

IOKL with ℓ2,1-norm regularization, and IOKL-SM is IOKL by using soft margin ℓ2,1-

norm regularization. We observe that θ influences the final performance greatly, and

IOKL-SM can achieve the best 64.36% in MAP. Therefore, our proposed soft margin

regularization can effectively learn a more robust classifier.

The complexity of IOKL: The complexity of the IOKL framework depends on

the number of input base kernels, the number of iterations for cutting-plane method and

the regularization strategy for the input-output kernel coefficients. In this part, the first

concept “airport” from the NUS-WIDE data set is taken as an example, and the training

time under different regularization settings for IOKL is reported. The training CPU time
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Figure 4.1: The MAP (%) over 81 concepts of our proposed IOKL-SM with respect to
the regularization parameter θ on the NUS-WIDE dataset. Note that T in x-axis is the
size of Cm in Algorithm 3.
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Table 4.3: The number of input base kernels (#IK), training CPU time (CPU time),
the number of selected input-output kernels (#IOK) and the number of selected output
kernels (#OK) of our IOKL under different regularization settings for concept “airport”.

Method ℓA,1 ℓA,2 ℓ1,1 ℓ2,2 ℓ1,2 ℓ2,1 SMℓ2,1
#IK 1 1 10 10 10 10 10

CPU time 133.42 346.09 8239.8 2380.2 26003 1282.5 591.72
#IOK 12 29 69 310 156 200 120
#OK 12 29 19 31 31 20 12

Table 4.4: Testing accuracy (%) on semi-supervised learning benchmark datasets
#l Method g241c g241d Text Digit1 USPS BCI AveRank

SVM 52.66 (9) 53.34 (7) 54.63 (8) 69.40 (9) 79.97 (7) 50.15 (9) 8.17
TSVM [96] 75.29 (2) 49.92 (8) 68.79 (1) 82.23 (6) 74.80 (9) 50.85 (6) 5.33
LDS [32] 71.15 (3) 49.37 (9) 63.85 (6) 84.37 (4) 82.43 (1) 50.73 (8) 5.17

LapSVM [12] 53.79 (7) 54.85 (3) 62.72 (7) 91.03 (2) 80.95 (3) 50.75 (7) 4.83
10 LapRLS [12] 56.05 (6) 54.32 (4) 66.32 (5) 94.56 (1) 81.01 (2) 51.03 (5) 3.83

meanS3vm [131] 65.48 (4) 58.94 (1) 66.91 (4) 83.00 (5) 77.84 (8) 52.07 (3) 4.17
ℓ2MKL [99] 52.16 (8) 53.67 (5) 54.62 (9) 73.79 (8) 80.76 (4) 52.16 (2) 6.00
IOKL-HM 64.86 (5) 53.93 (6) 67.70 (3) 82.18 (7) 80.46 (5) 51.69 (4) 5.00
IOKL-SM 80.66 (1) 56.32 (2) 68.53 (2) 85.88 (3) 80.46 (5) 52.48 (1) 2.33

SVM 76.89 (6) 75.36 (7) 73.55 (8) 94.47 (7) 90.25 (8) 65.69 (5) 6.83
TSVM [96] 81.54 (3) 77.58 (3) 75.48 (7) 93.85 (9) 90.23 (9) 66.75 (4) 5.83
LDS [32] 81.96 (2) 76.26 (5) 76.85 (3) 96.54 (3) 95.04 (3) 56.03 (9) 4.17

LapSVM [12] 76.18 (8) 73.64 (8) 76.14 (6) 96.87 (2) 95.30 (2) 67.61 (3) 4.83
100 LapRLS [12] 75.64 (9) 73.54 (9) 76.43 (5) 97.08 (1) 95.32 (1) 68.64 (2) 4.50

meanS3vm [131] 80.25 (4) 77.58 (3) 76.60 (4) 95.91 (4) 93.17 (4) 71.44 (1) 3.33
ℓ2MKL [99] 76.71 (7) 75.38 (6) 72.77 (9) 94.15 (8) 91.15 (5) 64.56 (7) 7.00
IOKL-HM 79.86 (5) 78.39 (1) 77.86 (1) 94.79 (6) 90.78 (6) 64.33 (8) 4.50
IOKL-SM 83.62 (1) 78.39 (1) 77.86 (1) 94.88 (5) 90.78 (6) 65.06 (6) 3.33

with an IBM workstation (2.79GHz CPU with 32GB RAM) and Matlab implementation

is reported in Table 4.3. The number of input base kernels (#IK), the number of selected

base input-output kernels (#IOK), the number of output kernels (#OK) are also included

in the table. We can observe the efficiency of the soft margin regularization (SMℓ2,1) even

compared with the single average base kernel (i.e., ℓA,1, ℓA,2) using state-of-the-art MKL

optimization techniques [99, 186, 222]. Also, the ℓ1-norm selects fewer kernels, and the

ℓ2-norm selects more kernels, either in #IOK or #OK. Moreover, pursuing sparseness

for input base kernels (e.g., ℓ1,1, ℓ1,2), although it leads to a sparser solution, results in

more training time and degenerated performance.
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Table 4.5: Testing accuracy (%) on multiple instance classification benchmark datasets
Method Musk1 Musk2 Elephant Fox Tiger
DD [144] 88.0 84.0 N/A N/A N/A

EM-DD [238] 84.8 84.9 78.3 56.1 72.1
MI-Kernel [73] 88.0 89.3 84.3 60.3 84.2
mi-SVM [3] 87.4 83.6 82.0 58.2 78.9
MI-SVM [3] 77.9 84.3 81.4 59.4 84.0

miGraph [244] 88.9 90.3 86.8 61.6 86.0
MIGraph [244] 90.0 90.0 85.1 61.2 81.9

Bag-KI-SVM [130] 88.0 82.0 84.5 60.5 85.0
IOKL-HM 86.9 87.2 87.0 60.0 85.0
IOKL-SM 88.0 88.2 88.0 63.5 86.5

4.5.2 Semi-Supervised Learning Benchmark Datasets

We evaluate our proposed IOKL on six semi-supervised learning benchmark datasets2,

including g241c, g241d, Text, Digit1, USPS and BCI. We follow two standard settings,

one using 10 labeled samples and the other using 100 labeled samples. The experiments

are repeated 12 rounds following the provided partitions, and the average testing accuracy

on the unlabeled data is used as the performance measure.

We utilize four types of kernel functions to construct the input base kernels: Gaus-

sian kernel (RBF) (i.e.,k(xi,xj) = exp
(
− γD2(xi,xj)

)
), Laplacian kernel (Lap) (i.e.,

k(xi,xj) = exp
(
−√γD(xi,xj)

)
), inverse square distance (ISD) kernel (i.e., k(xi,xj) =

1
γD2(xi,xj)+1

) and inverse distance (ID) kernel (i.e., k(xi,xj) =
1√

γD(xi,xj)+1
), whereD(xi,xj)

denotes the Euclidean distance between sample xi and xj, and γ is the kernel parameter.

We set γ = 1/A with A being the mean value of the square distances between all the

training samples, thus we have four input base kernels in total. The SVM regularization

parameters for the labeled samples and unlabeled samples are set to be 100 and in the

range {0.1, 1} respectively, and the soft margin regularization parameter θ is set to be in

the range {1.2/T, 1.4/T, . . . , 6/T} with T being the size of Cm in Algorithm 3 for each

iteration. The balance constraint for the unlabeled data is set to be the ground truth

value following [30].

2http://olivier.chapelle.cc/ssl-book/benchmarks.html
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The final performance is reported in Table 4.4. We compare our learning framework

with supervised MKL using labeled data only (i.e., ℓ2MKL), semi-supervised learning

using the group sparse MKL (i.e., IOKL-HM) and semi-supervised learning using the

soft margin group sparse MKL (i.e., IOKL-SM). We also include results reported by

other SVM-type methods from the literature for comparison, including TSVM [96], LDS

[32], LapSVM [12], LapRLS [12] and meanS3svm [131].

We can observe from Table 4.4 that the proposed IOKL achieves very competitive

results for semi-supervised learning. We also report the average rank of the different

algorithms. Note that when the number of labeled data is 10, the IOKL-SM achieves a

much better result in the average rank compared with other methods; when the number

of labeled data is 100, the difference between different algorithms becomes small. This

may come from the fact that the less the labeled data is used, the more uncertainty

is associated with the output labels. Moreover, comparing the IOKL-SM with IOKL-

HM under all settings, we can observe the effectiveness of our proposed soft margin

regularization.

4.5.3 Multi-Instance Learning Benchmark Datasets

We evaluate our proposed IOKL on five popular multiple instance classification task

benchmark datasets3, including Musk1, Musk2, Elephant, Fox and Tiger, which have

been widely used in the literature. In the experiments, we utilize the same four types of

kernel functions (i.e., RBF, Lap, ISD, ID) with section 4.5.2.

We show the final performance by using the IOKL framework in Table 4.5. The

results are all based on 10-fold cross validation accuracy following the common settings

on these datasets. In the lower part of the table, we list results from Bag-KI-SVM [130]

and IOKL-HM and IOKL-SM. The Bag-KI-SVM becomes a special case of our framework

by using a Gaussian kernel with IOKL-HM.

The other representative MIL methods are also shown in the upper part of Table 4.5,

including non-SVM-based methods (i.e., DD [144], EM-DD [238]), graph-based methods

(i.e., MIGraph [244], miGraph [244]) and SVM-based methods (i.e., MI-SVM [3], mi-

SVM [3] and MI-Kernel [73]). Our IOKL framework achieves very competitive results on

3www.cs.columbia.edu/∼andrews/mil/datasets.html
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these benchmark datasets. More importantly, comparing IOKL-SM with IOKL-HM, we

again observe the effectiveness of our proposed soft margin regularization.

4.6 Summary

In this chapter, we have proposed an Input-Output Kernel Learning framework for han-

dling general data ambiguities. By introducing the concept of input-output kernel, the

methodology from traditional MKLs designed for supervised learning only is applicable

for handling general data ambiguity problems such as SSL and MIL. To learn a more

robust classifier, we further introduce a novel soft margin group sparse MKL formula-

tion. In addition, a block-wise coordinate descent algorithm with an analytical solution

for the kernel coefficients is developed to solve the new MKL formulation efficiently. The

promising experimental results on the challenging NUS-WIDE dataset for a computer

vision application (i.e., text-based image retrieval), SSL benchmark datasets and MIL

benchmark datasets demonstrate the effectiveness of our proposed IOKL framework. In

the future, we would like to extend our IOKL framework to solve more ambiguity prob-

lems such as clustering [133] and relative outlier detection [124], [123].
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Chapter 5

Distance Metric Learning using
Privileged Information

In this chapter, we propose a novel approach to improve face verification and person

re-identification in RGB images by leveraging a set of RGB-D data, in which we have

additional depth images in the training data captured by using depth cameras such as

Kinect. Specifically, we extract visual features and depth features from the RGB images

and depth images, respectively. As the depth features are only available in the training

data, we treat the depth features as privileged information, and we formulate this task

as a distance metric learning with privileged information problem. Unlike traditional

face verification and person re-identification tasks which only use visual features, we

further employ the extra depth features in the training data to improve the learning of

distance metric in the training process. Based on the recent information-theoretic metric

learning (ITML) method, we propose a new formulation called Information-theoretic

Metric Learning with Privileged Information (ITML+) for this task. We also present

an efficient algorithm based on the cyclical projection method for solving the proposed

ITML+ formulation. Extensive experiments on the challenge faces datasets EUROCOM

and CurtinFaces for face verification as well as the BIWI RGBD-ID dataset for person

re-identification demonstrate the effectiveness of our proposed approach.

5.1 Introduction

Face verification and person re-identification are two important problems in computer

vision, which have attracted attentions from many researchers in the last two decades [2,
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26, 38, 77, 78, 80]. In both tasks, a few pairs of training images (i.e., faces images or

the images containing the whole head and body areas) are provided together with side

information (i.e., we only know whether each pair of images is from the same or different

subjects instead of the names of those subjects in the images). The target of both tasks

is to decide whether two test images are from the same subject or not.

Given only side information, one can learn a Mahalanobis distance metric for face

verification or person re-identification. After that, the distance between a pair of testing

images is used to decide whether they are from the same subject or different subjects [25,

77, 78, 80, 152, 207]. However, most of those existing works for face verification and person

re-identification are based on the RGB images only. On the other hand, with the advance

of new depth cameras such as Kinect, one can easily capture depth information together

with RGB images when collecting training data for computer vision tasks. A few labeled

RGB-D datasets were recently released to the public. Compared with RGB images, depth

information is more robust to illumination changes, complex background, etc., thus it can

provide useful information for many vision tasks, such as face recognition [119], gender

classification [90], and object recognition [112]. However, those works require depth

information and RGB information in both the training and test stages, which limits

them for a broader range of applications, where the testing images (i.e., the images

captured by conventional surveillance cameras) do not contain depth information.

In this chapter, we propose a new scheme for recognizing RGB images by learning

from a set of weakly labeled RGB-D training data, and our method can be used for face

verification and person re-identification. As shown in Fig. 5.1, in our work, the training

data consists of a few pairs of RGB images and the corresponding depth images together

with side information, which are referred to as weakly labeled RGB-D training data. Our

goal is to decide whether a pair of RGB testing images come from the same subject or

not. In the training process, we firstly extract the visual features and depth features from

the RGB images and depth images, respectively. Then we learn a robust Mahalanobis

distance metric in the visual feature space by using both visual and depth features. In the

testing process, we use the learnt Mahalanobis distance metric to determine whether a

pair of RGB images are from the same subject or not only based on their visual features.

To learn the Mahalanobis distance metric under the new learning scheme, we propose

a novel distance metric learning method called Information-theoretic Metric Learning
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Figure 5.1: The comparison of the traditional distance metric learning setting and our
new distance metric learning setting using privileged information.

with Privileged Information (ITML+) by formulating a new objective function based on

the existing work ITML [52]. To effectively utilize the additional depth features in the

training data, inspired by the recent work SVM+ [192], we model the loss term for each

pair of visual training samples (i.e., the training samples with visual features) by using

the corresponding pair of depth training samples (i.e., the training samples with depth

features). In this way, the distance between two visual training samples can be affected

by their corresponding depth training samples. An efficient cyclic projection method with

analytical solution is also proposed to solve the new optimization problem. We conduct

extensive experiments on the real-world EUROCOM and CurtinFaces datasets as well as

BIWI RGBD-ID dataset and we demonstrate the effectiveness of our proposed ITML+

algorithm for improving the face verification and person re-identification performances

in RGB images by utilizing the additional depth images.

This chapter is organized as follows. In section 5.2, we briefly review the related

works. The proposed ITML+ algorithm is presented in Section 5.3 and its solution is

provided in Section 5.4. In Section 5.5, we report the experimental results as well as the

detailed analysis. Finally, the conclusion is given in Section 5.6.
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5.2 Related Work

Our work is related to the distance metric learning methods and the recent works on

learning using privileged information as well as the existing works on face verification

and person re-identification.

5.2.1 Distance Metric Learning

Our work is related to the distance metric learning works [13, 52, 80, 107, 204, 214, 232].

The early work for the Mahalanobis distance metric learning in [214] formulates the

distance metric learning problem as a convex optimization problem that maximizes the

sum of distances between dissimilar pairs while minimizing the sum of distances between

similar pairs. A projected gradient descent method was proposed to solve the proposed

objective function, but the SVD operation on the distance metric M makes the algorithm

only applicable to small scale problems. Following [214], a large number of methods were

proposed in literature (see the surveys [13, 107, 232] for comprehensive reviews of different

metric learning methods). The two representative methods for distance metric learning

are the Large Margin Nearest Neighbors (LMNN) method [204] and the Information-

theoretic Metric Learning (ITML) [52] method.

The LMNN [204] method was proposed for the nearest neighbor classifier by constrain-

ing the data in a local way, i.e., the k nearest neighbors of any training instance from the

same class should be closer to each other, while the instances from other classes should be

kept away by a margin. The constraints are thus given in a triplet form, which requires

two samples from the same class and one additional sample from the other class. Thus

the explicit class label information is usually required for each sample in the training set

to obtain such constraints. The ITML method [52] is based on the pairwise constraints,

which assumes that the positive pairs are from the same class and the negative pairs are

from different classes without requiring knowing the class label for each sample in the

training set. The work in [52] introduced the LogDet divergence based regularization to

the distance metric, and such regularization makes the optimization simpler and more

efficient.

Different from the existing distance metric learning methods [52, 80, 204, 214], our

proposed method for distance metric learning using privileged information aims to learn
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a robust distance metric by further exploiting additional privileged information (i.e., the

depth features) in training data. There are also several multi-modal distance metric

learning methods [146, 213], where multiple types of features are assumed to be available

for both training and testing data. In these methods, the final decision is made based

on all types of features, the learnt models are not suitable to the learning setting in

our work. In the recent methods [49, 140], the distance metric is learnt for each type of

features, and we can directly apply the learnt distance metric corresponding to the RGB

images in the testing stage. However, our experiments show that those methods are also

worse when compared with our proposed ITML+.

5.2.2 Learning Using Privileged Information

The recently proposed Learning Using Privileged Information (LUPI) method [161, 174]

used privileged information to improve SVM for the supervised binary classification tasks.

In SVM+ [174], privileged information is utilized to construct the correcting function to

control the losses in the objective function. Given a set of n training data {xi}|ni=1 with

xi ∈ Rh⊂ X , where h is the feature dimension of each sample, we refer to X as the

decision space as suggested in [161] because the final decision is based on the features of

the testing samples in the space X . Except for the training data in the decision space

X , the additional privileged feature {zi}|ni=1 with zi ∈ Rg ⊂ Z in the correcting space

Z [161] is only available for the training set, but it is not available for the test set.

In [174], the task is to utilize the training data {xi, zi}|ni=1 as well as their labels {yi}|ni=1

to train a classifier for classifying the test data {xi}|n+m
i=n+1 under the SVM framework

for the supervised binary classification problem. Specifically, the linear target classifier

f(x) = w′x + b is learnt on the decision space X only in order to classify the test data.

At the same time, another function ξ = v′z + ρ is learnt on the correcting space Z by

modeling privileged information as the loss function. The objective function of SVM+

is proposed as follows:

min
w,v,b,ρ

1

2

(
||w||2 + λ||v||2

)
+ C

l∑
i=1

(v′zi + ρ)

s.t., yi(w
′xi + b) ≥ 1− (v′zi + ρ), ∀i = 1, . . . , l,

v′zi + ρ ≥ 0, ∀i = 1, . . . , l.
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The above formulation can be reformulated in the dual form as a standard Quadratic

Programming (QP) problem, which can be solved efficiently by using any state-of-the-art

QP solvers.

It is shown in [174] that the convergence rate of SVM based algorithms can be im-

proved by using such a correcting function to incorporate privileged information. As

different algorithm has different kinds of loss function and decision function, we cannot

directly extend it to the other learning scenarios such as distance metric learning.

Following the LUPI method [192], the work in [68] extended [192] for the clustering

problem, while the work in [174] extended it into the Ranking SVM for the ranking

problem. The recent work in [69] proposed an extension of the learning scenario to

distance metric leaning. However, their proposed method is a two-step approach to utilize

privileged information [69]. They firstly trained a distance metric based on ITML using

privileged information. Based on the distance metric learnt from privileged information,

some pairs of training samples are removed. Then ITML is retrained again by using the

remained pairs based on the main features. Instead of using a two-step approach, in

this chapter we follow the existing work SVM+ [192], and propose a new formulation

from the correcting function perspective to utilize privileged information for the distance

metric learning problem.

5.2.3 Face Verification and Person Re-identification

Our work is related to the face verification works. Generally, the existing face verifica-

tion methods can be categorized into feature based methods and distance metric learning

based methods. The feature based methods [38, 111, 197, 206] developed better face de-

scriptors. For example, in [38], an unsupervised learning approach is proposed to encode

the micro-structures of a face image. In [111], the output of the attributes and simile clas-

sifiers are used as the mid-level features to represent a face image for the face verification

task. In contrast, the distance metric learning based works [25, 80, 152, 207] developed

new metric learning methods for the face verification task. Specifically, two face images

from the same person are regarded as a similar pair, while two face images from differ-

ent persons are regarded as a dissimilar pair. Based on the extracted low level visual

features (i.e., SITF [139], HOG [50], LBP [2]) for each of face images, the Mahalanobis
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distance metric is learnt by using these low level visual features on the training samples,

and the learnt distance metric is applied to a pair of test samples with the same type of

low-level visual features. The distance metric learning methods have been successfully

applied to the face verification task on the benchmark datasets such as LFW [87]. The

ITML method [52] was proposed for distance metric learning by considering the pairwise

constraints as side information, while the work in [80] proposed a discriminant metric

learning method that takes advantages of all the pairs of samples in the dataset, and the

work in [152] proposed a cosine similarity metric learning method.

Person re-identification is another related task by using images containing the whole

head and body areas. Recently, many benchmark datasets have been released for the per-

son re-identification task, and the most famous ones are VIPeR [78] and CAVIAR4REID

[55]. Many methods for person re-identification have been proposed, which include fea-

tures based methods [78], [79], [64], [117], [10], [241], [76], as well as learning based

methods [242], [163], [104], [83], [82]. The reviews of the related works on person re-

identification have been published in a recent book [77]. The feature based methods

aim to develop better descriptors for the human body areas by using spatial temporal

appearances [76], salience learning [241], etc. The learning based methods aim to develop

more effective learning algorithms for person re-identification task, such as probabilistic

relative distance comparison [242], rank SVM [163] and KISSME [104]. The distance

metric learning methods such as LMNN and ITML have also been successfully used for

the person re-identification task [77].

5.3 Distance Metric Learning with Privileged Infor-

mation

In this section, we first introduce the problem setting of our face verification and person

re-identification task. Then we review the objective function of ITML. After that, we

develop the objective function of our new method Information-theoretic Metric Learning

with Privileged Information (ITML+). We also present a variant of our ITML+ called

partial ITML+ for the case that only parts of training data contain privileged information.
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5.3.1 Problem Statement

In our task, the training data is a few pairs of RGB-D images together with side infor-

mation describing whether each pair of RGB-D images belong to the same subject or

not. In the training process, we extract the visual features and depth features from the

RGB images and depth images, respectively. Formally, let us denote the visual features

as {xi}|ni=1, where xi ∈ Rh is the visual feature vector extracted from the RGB image of

the ith training sample, and n is the number of training samples. Similarly, we denote

the depth features as {zi}|ni=1, where zi ∈ Rg is the depth feature vector extracted from

the depth image of the ith sample. We also use (xi, zi) to denote the i-th training sample.

We also have side information for the training data, namely we have a set of similar

pairs S and a set of dissimilar pairs D. For each similar pair (i, j) ∈ S (resp., dissimilar

pair (i, j) ∈ D), the two corresponding training samples (xi, zi) and (xj, zj) are from the

same subject (resp., different subjects). Our goal is to learn a distance metric M ∈ Rh×h

that can be used to classify a pair of test data that only contains the RGB images and

does not have the depth images for the face verification and person re-identification task.

In other words, based on the training RGB-D images {(xi, zi)}|ni=1 together with side

information in S and D, we aim to learn a Mahalanobis distance dM(·, ·) defined as,

d2M(xi,xj) = (xi − xj)
′M(xi − xj), (5.1)

where we use the squared distance for the ease of representation in this chapter. Intu-

itively, we expect the learnt Mahalanobis distance d2M(xi,xj) can output a large value

if (i, j) ∈ D, and a small value if (i, j) ∈ S. In the testing process, we use the learnt

Mahalanobis distance on each pair of test samples, and determine whether the two cor-

responding RGB images are from the same subject or not based on their Mahalanobis

distance.

5.3.2 Information-theoretic Metric Learning (ITML)

The key idea of ITML is to learn the distance metric M by enforcing that the learnt

distance dM is high for dissimilar pairs of samples and low for similar pairs of samples.

Specifically, they expect d2M(xi,xj) ≤ u for a relatively small value u if (i, j) ∈ S,
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and d2M(xi,xj) ≥ l for a sufficiently large l if (i, j) ∈ D. However, for the real-world

applications, a feasible solution may not exist after using those strict constraints. Thus,

a slack variable ξij is introduced for each constraint. Let us define ξ ∈ R|D|+|S| as the

vector of slack variables, where each entry ξij corresponds to one training pair (i, j).

Then, the objective function of ITML [52] is formulated as follows,

min
M≽0,ξij

Dld(M,M0) + γL(ξ, ξ0) (5.2)

s.t., d2M(xi,xj) ≤ ξij, (i, j) ∈ S,

d2M(xi,xj) ≥ ξij, (i, j) ∈ D,

where ξ0 ∈ R|D|+|S| is a vector with each entry ξ0ij =

{
u (i, j) ∈ S,
l (i, j) ∈ D

, L(ξ, ξ0) is the loss

term which measures the difference between ξ and ξ0, Dld(M,M0) is a regularizer based

on Bregman divergence to avoid the trivial solution.

Given any strictly convex differentiable function ϕ(·) over a convex set, the Bregman

divergence [108] over two matrices M and M0 is defined as

Dϕ(M,M0) = ϕ(M)− ϕ(M0)− tr
(
(M−M0)′∇ϕ(M0)

)
.

By using the Burg entropy function ϕ(M) = −logdetM, we can define the LogDet

divergence (or the Burg matrix divergence) [52, 108] as:

Dld(M,M0) = tr(M(M0)−1)− log det(M(M0)−1)− h, (5.3)

where h is the dimension of M. M0 ∈ Rh×h is a predefined matrix, which is often

set to be the identity matrix I. Moreover, the loss term L(ξ, ξ0) can be written as

L(ξ, ξ0) = Dld(diag(ξ), diag(ξ
0)), which is the LogDet divergence between two diagonal

matrices. Thus, ITML aims to minimize the difference between the slack variables ξ and

the ideal distances ξ0 as well as enforce the learnt Mahalanobis metric M close to the

identity matrix to avoid the trivial solution.

5.3.3 Information-theoretic Metric Learning with Privileged In-
formation (ITML+)

Recall in our task, we additionally have the depth features in the training data. As ITML

only considers one type of features when learning the Mahalanobis distance metric, we
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thus propose a new distance metric learning method called Information-theoretic Metric

Learning with Privileged Information (ITML+) to learn a more robust Mahalanobis dis-

tance metric in the visual feature space by further utilizing the additional depth features

in the training data.

Inspired by the SVM+ method [192], we consider to use the additional depth features

to correct the loss of each pair of training samples in the visual feature space. Specifically,

we replace the slack variable ξij in (5.2) by using a slack function in the depth feature

space, i.e., ξij = d2P(zi, zj) = (zi − zj)
′P(zi − zj), where zi and zj are the depth features

of training samples from the pair (i, j), and P ∈ Rg×g is a Mahalanobis distance metric

in the depth feature space. In this way, the distance between the training samples from

the pair (i, j) in the depth feature space can serve as the correcting guidance for the

distance calculated by using the visual features. Accordingly, the objective function for

our ITML+ is formulated as follows,

min
M≽0,P≽0

Ω(M,P) + γ
∑

(i,j)∈S∪D

ℓ(d2P(zi, zj), ξ
0
ij)

s.t., d2M(xi,xj) ≤ d2P(zi, zj), (i, j) ∈ S, (5.4)

d2M(xi,xj) ≥ d2P(zi, zj), (i, j) ∈ D,

where Ω(M,P) = Dld(M,M0) + λDld(P,P
0) is the regularization term by summing

the LogDet divergence based regularization terms related to M and P, γ and λ are

two tradeoff parameters, M0 and P0 are two predefined matrices (we use the identity

matrices), and ℓ(d2P(zi, zj), ξ
0
ij) = Dld(d

2
P(zi, zj), ξ

0
ij) is the LogDet divergence between

d2P(zi, zj) and ξ
0
ij as defined in (5.3).

Compared with the objective function of ITML in (5.2), the objective function of

ITML+ in (5.4) additionally learns a Mahalanobis distance metric P in the depth feature

space. We also replace the original slack variable ξij in (5.2) with d2P(zi, zj) for each pair

(i, j). Accordingly, the constraints become d2M(xi,xj) ≤ d2P(zi, zj), ∀(i, j) ∈ S, and

d2M(xi,xj) ≥ d2P(zi, zj) otherwise. Intuitively, for any pair (i, j) in the visual feature

space, if the visual features xi and xj are corrupted by some noises (e.g., illumination

changes), the distance in the visual feature space d2M(xi,xj) may not be satisfied (i.e.,

the distance is large if (i, j) ∈ S or small if (i, j) ∈ D). Considering the depth features
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are relatively robust to the illumination changes, the distance in the depth feature space

d2P(zi, zj) can be satisfied (i.e., the distance is small if (i, j) ∈ S or large if (i, j) ∈ D). In
this case, by using the constraints in (5.4), the learnt Mahalanobis distance metric M in

the visual feature space should be more robust to those noises. Specifically, our ITML+

will enforce that similar pairs become more similar while dissimilar pairs will become more

dissimilar by using the distances in the depth feature space as the correcting guidance.

The detailed analysis of the learnt distances by using both ITML and ITML+ are given

in Fig. 5.4 in our experiments (see Section 5.5.5).

5.3.4 Partial ITML+

In real-world applications, not all the training data are always associated with depth

information. To handle the situation where only a part of training data contains depth

information, we further formulate a variant of our ITML+ method called partial ITML+.

Specifically, let us denote the training set as the similar pair set Sp and dissimilar pair

set Dp which only contain RGB information, then we can formulate our partial ITML+

as follows:

min
M≽0,P≽0,ξij

Ω(M,P) + γL(ξ, ξ0) (5.5)

s.t., d2M(xi,xj) ≤ d2P(zi, zj), (i, j) ∈ S − Sp,

d2M(xi,xj) ≥ d2P(zi, zj), (i, j) ∈ D −Dp,

d2M(xi,xj) ≤ ξij, (i, j) ∈ Sp,

d2M(xi,xj) ≥ ξij, (i, j) ∈ Dp,

where L(ξ, ξ0) =
∑

(i,j)∈(S−Sp)∪(D−Dp)
ℓ(d2P(zi, zj), ξ

0
ij) +

∑
(i,j)∈Sp∪Dp

ℓ(ξij, ξ
0
ij) is the loss

term with ℓ(d2P(zi, zj), ξ
0
ij) (resp. ℓ(ξij, ξ

0
ij)) being the LogDet divergence between d

2
P(zi, zj)

(resp. ξij) and ξ
0
ij, and Ω(M,P) = Dld(M,M0) + λDld(P,P

0) is defined similarly as in

(5.4), and γ and λ are two tradeoff parameters.

In other words, for the pairs of training samples that have privileged information, we

use the constraints from ITML+, and for the pairs of training samples that do not have

privileged information, we still utilize the constraints from ITML. We can observe from

(5.5) that (5.5) reduces to the ITML+ formulation in (5.4) if Sp = ∅,Dp = ∅, while
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(5.5) reduces to the ITML in (5.2) if Sp = S,Dp = D. In this way, the proposed partial

ITML+ in (5.5) can naturally bridge the ITML and ITML+ by varying the number of

pairs of training samples with privileged information.

5.4 Solution to ITML+

In this section, we develop a new optimization algorithm for solving our ITML+ problem

in (5.4) by using the cyclic projection method [21].

5.4.1 ITML+ with Explicit Correcting Function

The cyclic projection method cannot be directly applied to solve the new objective func-

tion in (5.4) for ITML+, because we have two variables M and P in the constraints. Let

us introduce an intermediate variable ξij for each constraint related to one pair (i, j), we

then rewrite our ITML+ formulation in (5.4) to an equivalent form as follows,

min
M≽0,P≽0,ξ

Dld(M,M0) + λDld(P,P
0) + γL(ξ, ξ0) (5.6)

s.t., d2M(xi,xj) ≤ ξij, (i, j) ∈ S,

d2M(xi,xj) ≥ ξij, (i, j) ∈ D,

ξij = d2P(zi, zj), (i, j) ∈ S ∪ D,

where L(ξ, ξ0) = Dld(diag(ξ), diag(ξ
0)) is the LogDet divergence between ξ and ξ0 de-

fined similarly as in (5.2). The equivalence between (5.6) and (5.4) can be easily verified

by substituting the correcting function ξij = d2P(zi, zj) back into the objective function

in (5.6).

Now we apply the cyclic projection method similarly to that in [52]. For the ease of

presentation, we further unify the two inequalities in (5.6), and write the new objective

function as follows,

min
M≽0,P≽0,ξ

Dld(M,M0) + λDld(P,P
0) + γL(ξ, ξ0) (5.7)

s.t., yijd
2
M(xi,xj) ≤ yijξij, (i, j) ∈ S ∪ D,

ξij = d2P(zi, zj), (i, j) ∈ S ∪ D,
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where yij =

{
1 (i, j) ∈ S
−1 (i, j) ∈ D

, and other terms are as the same as those in (5.6).

It can be observed that the objective function in (5.7) is convex. Following the cyclic

projection method [21], [52], we first initialize the solution to (5.7) as (P0,M0). Then we

iteratively pick up a pair of training samples (i, j), and update the current solution with

Bregman projection such that the objective is minimized and the constraints w.r.t. this

pair are also satisfied. The above process is repeated until all constraints are satisfied.

We will detail Bregman projection in the next subsection.

5.4.2 Bregman Projection

Let us denote the solution at the t-th iteration as (Mt,Pt). At the (t + 1)-th iteration,

we pick up a pair of training samples (i, j), then the new solution (Mt+1,Pt+1) can be

obtained using Bregman projection by optimizing the following subproblem:

min
M≽0,P≽0,ξij

Dld(M,Mt) + γℓ(ξij, ξ
t
ij) + λDld(P,P

t) (5.8)

s.t.,yijd
2
M(xi,xj) ≤ yijξij, (5.9)

ξij = d2P(zi, zj). (5.10)

The above problem has analytical solutions forM,P and ξij, as shown in the following

proposition:

Proposition 11 The optimal solution (M,P, ξij) to the problem in (5.8) can be obtained

in closed form as follows,

Mt+1 =Mt − yijαijM
t(xi − xj)(xi − xj)

′Mt

1 + yijαijr
, (5.11)

Pt+1 =Pt +
βijP

t(zi − zj)(zi − zj)
′Pt

λ− βijs
, (5.12)

ξt+1
ij =

λs

λ− sβij
, (5.13)

where r = (xi−xj)
′Mt(xi−xj), s = (zi−zj)′Pt(zi−zj), and αij, βij are the dual variables

that can be obtained analytically in Lemma 5.5.
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Proof: By respectively introducing the Lagrangian multipliers αij ≥ 0 and βij for the

constraints in (5.9) and (5.10), we obtain the Lagrangian of (5.8) as follows,

L(M,P, ξij) (5.14)

= Dld(M,Mt) + γℓ(ξij, ξ
t
ij) + λDld(P,P

t)

+αij

(
yijd

2
M(xi,xj)− yijξij

)
+ βij

(
ξij − d2P(zi, zj)

)
.

By setting the derivatives of L with respect to M and P to zeros and denoting ϕ(M) =

−log (det(M)), we have,

∇ϕ(M)−∇ϕ(Mt) + yijαijAij =0, (5.15)

λ∇ϕ(P)− λ∇ϕ(Pt)− βijBij =0, (5.16)

where Aij = (xi − xj)(xi − xj)
′, and Bij = (zi − zj)(zi − zj)

′.

Given a matrix M, we have ∂det(M)
∂M

= det(M)(M−1)′, which gives ∇ϕ(M) = ∂ϕ(M)
∂M

=

−(M−1)′. Thus, we derive the updating rules for the solution at the (t+ 1)-th iteration

from (5.15) and (5.16) as follows,

(Mt+1)−1 =(Mt)−1 + yijαijAij, (5.17)

λ(Pt+1)−1 =λ(Pt)−1 − βijBij, (5.18)

Next, we further simply the above equations by eliminating the matrix inverse opera-

tor. By using Sherman-Morrison inverse formula (i.e., (A+uv′)−1 = A−1−A−1uv′A−1

1+v′A−1u
) [91],

we derive the equation in (5.17) as follows,

Mt+1 =
(
(Mt)−1 + yijαijAij

)−1

=
(
(Mt)−1 + yijαij(xi − xj)(xi − xj)

′)−1

=Mt − yijαijM
t(xi − xj)(xi − xj)

′Mt

1 + yijαij(xi − xj)′Mt(xi − xj)
, (5.19)

which is exactly the solution for Mt+1 as in (5.11) by denoting r = (xi−xj)
′Mt(xi−xj).

Similarly, we apply the Sherman-Morrison inverse formula to (5.18) and we arrive at,

Pt+1 = Pt +
βijP

t(zi − zj)(zi − zj)
′Pt

λ− βij(zi − zj)′Pt(zi − zj)
, (5.20)
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which is the solution for Pt+1 as in (5.12) by denoting s = (zi − zj)
′Pt(zi − zj).

Moreover, according to the equality constraint in (5.10), we have

ξt+1
ij = (zi − zj)

′Pt+1(zi − zj). (5.21)

Substituting (5.20) into the above equation, we arrive at,

ξt+1
ij =(zi − zj)

′Pt+1(zi − zj)

= s+
βijs

2

λ− sβij

=
λs

λ− sβij
, (5.22)

which is exactly the solution for ξt+1
ij as in (5.13). Thus, we complete the proof.

5.4.3 Solutions for αij and βij

The remaining problem is to solve the two dual variables αij and βij in the updating

rules in Proposition 11. Based on the KKT condition, we give the analytical solution to

those two dual variables in the following Lemma 5.5.

Lemma 5.5 The dual variables αij and βij can be obtained in closed form as follows,

αij =max

0,

(
γ
ξtij

+ λ
s
− λ+γ

r

)
yij (λ+ γ + 1)

 , (5.23)

βij =
λ

λ+ γ

(
γ

s
− γ

ξtij
+ yijαij

)
, (5.24)

where r = (xi − xj)
′Mt(xi − xj), and s = (zi − zj)

′Pt(zi − zj).

Proof: By setting the derivative of L in (5.14) with respect to ξij to zero, we have,

γ∇ϕ(ξij)− γ∇ϕ(ξtij)− yijαij + βij =0. (5.25)

Similar to the derivations of (5.17) and (5.18), we derive the solution of ξt+1
ij at the

(t+ 1)-th iteration as follows,

γ(ξt+1
ij )−1 = γ(ξtij)

−1 − αijyij + βij. (5.26)
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Substituting (5.13) into (5.26), we arrive at,

γ
λ− sβij
λs

=
γ

ξtij
− αijyij + βij,

which further gives the solution for βij shown as in (5.24).

As αij is non-negative, the final solution for αij is either greater than or equal to

zero. Specifically, according to the complementary KKT conditions, for the inequality

constraints of (5.8), we have,

αij :

{
αij > 0 : yij[(xi − xj)

′Mt+1(xi − xj)] = yijξ
t+1
ij ,

αij = 0.

Thus, if αij > 0, we must have ξt+1
ij = (xi − xj)

′Mt+1(xi − xj). Together with (5.11),

we further obtain

ξt+1
ij = r − yijαijr

2

1 + yijαijr
=

r

1 + ryijαij

. (5.27)

Combining with (5.13), we eliminate ξt+1
ij and obtain

λs

λ− sβij
=

r

1 + ryijαij

, (5.28)

which gives βij =
λ(r−s(1+ryijαij))

sr
. By using (5.24), we further obtain the closed-form

solution for αij as

αij =

(
γ
ξtij

+ λ
s
− λ+γ

r

)
yij (λ+ γ + 1)

. (5.29)

Considering αij > 0, thus we can obtain the closed form solution for αij as shown in (5.23).

This completes the proof.

5.4.4 The Overall Optimization Procedure

The detailed optimization procedure is given as in Algorithm 6. We first initialize t = 0

and initialize the matrices M0 = I and P0 = I, and also set ξ0 as ξ0ij =

{
u (i, j) ∈ S,
l (i, j) ∈ D

.

Then we iteratively pick up a training pair (i, j) and update Mt+1, Pt+1 and ξt+1
ij accord-

ing to Proposition 11. This process is repeated until the relative change of the norms
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Algorithm 6 : Optimization procedure for ITML+

1: Set t = 0, M0 = I, P0 = I and initialize ξ0.
2: repeat
3: Pick a constraint (i, j) ∈ S ∪ D.
4: Calculate r = (xi − xj)

′Mt(xi − xj) and s = (zi − zj)
′Pt(zi − zj), ∀ t.

5: Obtain αij using (5.23) with r, s, and ξtij.
6: Obtain βij using (5.24) with s, αij and ξ

t
ij.

7: Update Mt+1 using (5.11) with r, αij and Mt.
8: Update Pt+1 using (5.12) with s, βij and Pt.
9: Calculate ξt+1

ij using (5.13) with s and βij.
10: Set t← t+ 1.
11: until The stop criterion is reached.

of the vectors of dual variables αij’s and βij’s between two succussive iterations is small

than 10−3 or the maximum number of iterations (which is set as ten times of the number

of training pairs) is reached.

Moreover, the semi-definite properties for both M and P are automatically satisfied

during the updating procedure at each iteration of Algorithm 6. We also observe that

all the variables have closed-form solutions at each iteration. Thus, our optimization

process is efficient and shares the similar convergence property as ITML [52].

5.4.5 Solution to Partial ITML+

Similarly as in ITML+, we introduce the intermediate variables ξij’s, and rewrite the

objective function of partial ITML+ in (5.5) as follows,

min
M≽0,P≽0,ξ

Dld(M,M0) + γL(ξ, ξ0) + λDld(P,P
0)

s.t., d2M(xi,xj) ≤ ξij, (i, j) ∈ S, (5.30)

d2M(xi,xj) ≥ ξij, (i, j) ∈ D,

ξij = d2P(zi, zj), (i, j) ∈ (S − Sp) ∪ (D −Dp).

Note for the partial ITML+ formulation in (5.30), a part of pairs are associated with

the correcting function based on privileged information, while the other pairs are not as-

sociated with the correcting function. Recall when using the cyclical projection method,

we update our solution by picking one training pair at each iteration. Therefore, the
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subproblem at each iteration can be solved in two ways. For the training pair associated

with privileged information, i.e., (i, j) ∈ (S−Sp)∪ (D−Dp), the corresponding subprob-

lem is as the same as in (5.8), and we update the variables M, P and ξij according to

Proposition 11. For the training pair without privileged information, i.e., (i, j) ∈ Sp∪Dp,

the subproblem reduces to the same form of the subproblem in ITML [52], so we update

M and ξij according to the solution for the subproblem in ITML and keep P unchanged.

5.4.6 Computational Complexity

We now analyze the complexity of our proposed ITML+ method in Algorithm 6. In the

4-th step, the time complexity for calculating r and s are O(h2) and O(g2), respectively.

The updates for αij and βij in the 5-th step and 6-th step only require O(1) time com-

plexity. In the 7-th step, the projection of M for each constraint requires O(h2) time

complexity using the closed-form updating solution(see (5.11)), while the projection of

P (see (5.12)) requires O(g2) time complexity in the 8-th step. As we have a total num-

ber of |S| + |D| training pairs, the time complexity for passing the whole training pairs

once is (|S| + |D|)O(h2 + g2). Compared with ITML, which has the time complexity of

(|S|+ |D|)O(h2) for scanning the whole training pairs once, our ITML+ is slightly more

expensive, because we need to additionally optimize the distance metric P introduced by

privileged information.

5.5 Experiments

In this section, we study the face verification and person re-identification problems in the

RGB images by using weakly labeled RGB-D data and compare our proposed ITML+

algorithm with several baseline algorithms. We use two real world face datasets (i.e.,

the EUROCOM Kinect Face dataset [90] and the CurtinFaces dataset [119]) for the face

verification task, and use the BIWI RGBD-ID dataset for the person re-identification

task.

5.5.1 Baseline Approaches

To the best of our knowledge, we are the first to study the face verification and person

re-identification tasks in the RGB images by learning distance metric from weakly labeled
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RGB-D data. As there is no existing work specifically designed for this task, we compare

our ITML+ with the following baselines:

• L2 distance, the Euclidian distance without learning the distance metric (i.e., M =

I) is directly used in the testing stage, which is the baseline for all the distance

metric learning methods;

• ITML [52], the distance metric is learnt based on the visual features from the RGB

images only with side information from the training pairs;

• LMNN [204], the Large Margin Nearest Neighbor method, in which the distance

metric is learnt only based on the visual features from the RGB images but with

explicit label information to construct the constraints in each triplet;

• NRML [140], the Neighborhood repulsed metric learning method, which is based

on the pairwise constraint. We learn the distance metric by only using the visual

features from the RGB images and apply the learnt distance metric to the RGB

images in the test set;

• MNRML [140], the multi-view version of NRML, which learns the distance metric

from multi-view training data. We train MNRML using the visual and depth

features respectively from RGB and depth images in the training set, and then

apply the learnt distance metric corresponding to the visual features to the RGB

images in the test set;

• PMML [49], a Pairwise-constrained Multiple Metric Learning method, which trains

multiple distance metrics for multiple types of features, and the learnt distance

metric corresponding to the RGB images is directly applied to the RGB images in

the test set. It can reduce to ITML if only one type of feature is used;

• ITML-S [69], a two-step approach to utilize privileged information for distance

metric learning, which firstly learns a distance metric by using ITML based on the

depth features, and then removes some pairs that are identified as outliers. Finally,

it trains a distance metric by using ITML again based on the visual features from

the remaining pairs of training images.
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Table 5.1: The performance evaluation for different algorithms on the EUROCOMKinect
Face dataset. Average Precision (AP) (%) as well as Area Under Curve (AUC) (%) on
the test set are reported.

L2 distance ITML LMNN NRML MNRML PMML ITML-S ITML+

AP 57.70 83.54 82.93 72.74 65.46 82.92 83.52 85.39
AUC 69.22 92.41 92.29 82.91 80.27 92.57 92.39 93.39

5.5.2 Face Verification on the EUROCOM Dataset

The EUROCOMKinect Face dataset1 is collected by using the Microsoft Kinect, in which

the subjects are captured with different facial expressions and under different lightening

and occlusion conditions. There are 14 RGB-D face images (i.e., 14 RGB images and 14

depth images) for each of 52 subjects (38 males, 14 females). So a total number of 728

RGB-D images are used for the experiments.

For all the face images in the dataset, we align and crop them into a fixed size of

120×105 pixels based on the positions of the two eyes. Then, each of the face image is

divided into 8×7 non-overlapping sub-regions. The Gradient-LBP features [90] from each

sub-region are extracted from both the RGB and depth images. Finally, the Gradient-

LBP features from all the 56 sub-regions in each face image are concatenated to form a

single 6888-dim feature vector. We refer to the Gradient-LBP features extracted from the

RGB image and the depth image as GLBP-RGB and GLBP-DEPTH, respectively. Recall

that as the face verification task in RGB images is more common, in our experiments the

GLBP-RGB feature is used as the main feature, while GLBP-DEPTH feature is used as

privileged information.

For evaluating our proposed ITML+ algorithm for the face verification task in RGB

images, we partition the 52 subjects into a training set containing 26 subjects and a

test set with the remaining 26 subjects. For our learning scenario (i.e., learning using

privileged information), we assume that the depth features are only available in the

training data, and they are not available in the test data. A total number of 2366 positive

pairs (or similar pairs) are constructed by using the samples from the same subjects in

the training set, while another 7634 negative pairs (or dissimilar pairs) are sampled from

the pairs constructed from different subjects in the training set. So the total number of

1Downloaded from http://rgb-d.eurecom.fr/
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training pairs is 10000. The same strategy is utilized on the test set to generate another

set of test pairs containing a total number of 10000 pairs for performance evaluation.

We compare our proposed ITML+ algorithm with the baseline method directly using

L2 distance for face verification without distance metric learning, ITML [52], LMNN [204],

NRML [140], ITML-S [69] as well as the multi-view distance metric learning methods

MNRML [140] and PMML [49]. The ITML2 method utilizes the GLBP-RGB features

only for both the training and testing processes, while ITML-S, MNRML, PMML and our

proposed ITML+ utilize both the GLBP-RGB features and the GLBP-DEPTH features

for the training process, but only employ the GLBP-RGB features for the testing process.

The LMNN3 method uses GLBP-RGB features only for both the training and testing

processes, but it additionally uses the explicit class label information in the training set

for the construction of triplets in the algorithm. Namely, LMNN utilizes stronger label

information than the other methods, which only employ side information rather than the

class label information.

We set the common parameter γ for ITML, ITML-S, PMML and ITML+ in the range

of {10−4, 10−3.5, 10−3, . . . , 100} while the regularization parameter λ for ITML+ is set in

the range of {10−2, 10−1.5, . . . , 102}. Following [52], the predefined values l and u are set

to be the 3-rd and 97-th percentages of the distances according to L2 distances between

all pairs of samples within the training dataset. For LMNN, the tradeoff parameter is

set in the range of {0.1, 0.2, . . . , 1}, while the parameter for KNN is set in the range of

{3, 5, . . . , 11}. For NRML and MNRML, we set the p-norm parameter in their algorithm

in the range of {1.1, 1.5, 2, 2.5, 10, 100, 1000}. For all the methods, in Table 5.1 we report

their best results by using the optimal parameters on the test set. We perform PCA for

both the GLBP-RGB features and the GLBP-DEPTH features as it is computationally

inefficient to learn the distance metric with the original feature dimension. We fix the

PCA dimension for both GLBP-RGB and GLBP-DEPTH features to be 150 in our

experiments. Average Precision (AP) and Area Under Curve (AUC) are reported for

performance evaluation.

The detailed experimental results are shown as in Table 5.1. From the experimental

results, we observe that ITML and LMNN outperform the original L2 distance in terms

2Codes are from http://www.cs.utexas.edu/ pjain/itml/
3Codes are from http://www.cse.wustl.edu/ kilian/code/page21/page21.html
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of both AP and AUC, which demonstrates that it is useful to learn the distance metrics

for the face verification problem. Although stronger class label information is used for

LMNN, it is worse than ITML, which shows ITML is more suitable for face verification

task. Moreover, our ITML+ is much better than ITML that learns the distance metric

only using the GLBP-RGB features, which demonstrates it is beneficial to use the depth

features GLBP-DEPTH as privileged information to learn a more robust distance metric

for the face verification task in RGB images.

Note that the recently proposed work ITML-S in [174] uses a two-step approach

to utilize privileged information. Specifically, in the first stage, a distance metric is

learnt by using the ITML algorithm based on privileged information (i.e., the GLBP-

DEPTH feature). Then, the training pairs are sorted based on the distances in the learnt

distance metric space, and some pairs are removed from the training set. In the second

stage, another distance metric is trained based on GLBP-RGB feature only. Note that

ITML-S is slightly worse than ITML. A possible explanation is the two stage approach

based on the pair removal strategy is not so effective to utilize privileged information.

Therefore it is critical to better utilize privileged information. In contrast, our ITML+

algorithm learns the correcting distance metric and the decision distance metric in a

unified framework, and it directly models the relationship between the main feature

GLBP-RGB from RGB images and the privileged feature GLBP-DEPTH from depth

images, thus it is much more effective than the naive two-step approach in [174].

We also compare ITML+ with the two multi-view methods PMML [49] and MN-

RML [140], which are initially proposed to fuse multiple views of features in the training

set for the distance metric learning. The results in Table 5.1 show that they are only

comparable or even worse when compared with their single-view counterparts ITML and

NRML [140], respectively. A possible explanation is that the final goal of these methods

is to learn good distance metrics when different types of features are available in both

the training and test sets. Although we can still obtain a distance metric corresponding

to the visual features from RGB images, this distance metric cannot work well when the

depth features are not available in the test set as in our task.
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Table 5.2: The performance evaluation for different algorithms on the CurtinFaces
dataset. Average Precision (AP) (%) as well as the Area Under Curve (AUC) (%)
on the test set are reported.

L2 distance ITML LMNN NRML MNRML PMML ITML-S ITML+

AP 61.02 73.14 70.01 65.81 62.70 71.18 67.09 76.86
AUC 58.18 72.14 68.29 63.76 59.74 70.26 69.14 77.50

5.5.3 Face Verification on the CurtinFaces Dataset

We also conduct the experiments on the CurtinFaces dataset4, in which the RGB-D

images are also collected by using the Microsoft Kinect. The CurtinFaces dataset consists

of 52 people, and each people contains 95 RGB-D face images, thus we have a total

number of 4940 RGB-D face images in the dataset. The images are captured with

different facial expressions and under different illuminations and poses.

Again, we use the samples from the first 26 subjects as the training set, and the

remaining 26 subjects as the test set. On the training set, we randomly generate a

total number 15000 similar pairs that contain the faces from the same subject as well

as another 15000 dissimilar pairs that contain the faces from different subjects. The

same strategy is also utilized on the test set to generate another 30000 pairs including

15000 similar pairs and 15000 dissimilar pairs for performance evaluation. For all the face

images in the training dataset, we use the same strategy as in the EUROCOM dataset

to extract 6888-dim visual features and 6888-dim depth features from RGB images and

depth images, respectively.

The same baselines and parameter settings are used to evaluate the performances of

our proposed ITML+ algorithm. We fix the PCA dimensions of both the GLBP-DEPTH

feature the GLBP-RGB feature to be 150, and we report the APs and AUCs of different

algorithms in Table 5.2. On this dataset, all the distance learning methods are better

than the L2 distance and ITML is still better than LMNN and NRML. We can observe

from Table 5.2 that ITML+ achieves the best results and it also outperforms ITML,

which demonstrates that it is beneficial to utilize extra privileged information on the

training dataset to improve the distance metric learning results for the face verification

task in the RGB images. Our ITML+ again outperforms the two-step approach ITML-S

4http://impca.curtin.edu.au/downloads/datasets.cfm
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Table 5.3: The performance evaluation for different algorithms on the BIWI RGBD-ID
dataset. The Rank-1 recognition rates (%) on the two test sets are reported.

L2 distance ITML LMNN NRML MNRML PMML ITML-S ITML+

Walking 34.59 47.18 36.28 37.22 34.41 41.54 41.73 50.38
Still 85.53 91.92 85.71 87.97 87.97 90.04 91.92 95.49

as well as PMML and MNRML in terms of both AP and AUC, which demonstrates the

effectiveness of our proposed ITML+ method for utilizing privileged information in a

unified framework.

5.5.4 Person Re-identification on the BIWI RGBD-ID Dataset

In this section, we conduct the experiments on the BIWI RGBD-ID dataset5 for the

person re-identification task in RGB images. The BIWI RGBD-ID dataset [150, 151]

was also collected by using the Microsoft Kinect, and the dataset consists of a training

set and two testing sets (i.e., “Walking” and “Still”). The training set records the

video sequences of 50 different subjects performing certain actions (e.g., rotation, head

movements, walking) in front of a Kinect sensor. The test set is collected from 28 subjects

that appears in the training set, but on a different day and with a different dress. In the

“Walking” setting, each of the 28 subjects performs the action walking in front of the

Kinect, while in the “Still” setting, all subjects stand still in front of the Kinect with little

movement. Both the RGB images and the depth images are recorded simultaneously. In

order to perform the person re-identification task, for each subject in the training set

we uniformly sample 20 shots of RGB-D images from each of the video sequences, and

sample 20 shots of RGB images from each of the video sequences for each subject in the

testing set. The whole head and human body appear in both the RGB and depth images

are cropped and the background is removed. Thus, we obtain a total number of 1000

RGB-D images in the training set, and a total number of 560 RGB images in the two

test sets.

After that, we extracted the RGB-D kernel descriptors (KDES) [17] as the features,

which have shown promising results for a broad range of applications using the RGB-D

images [17, 18]. Following [17], the Gradient KDES features are extracted from each

5http://robotics.dei.unipd.it/reid/index.php/downloads
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of the RGB/depth images by using the codes6 from [17]. Then the extracted kernel

descriptors are aggregated into the object-level features, in which the codebook size is

set to be 1000, and three levels of pyramids (i.e., 1×1, 2×2 and 4×4 for RGB images

and 1×1, 2×2 and 3×3 for depth images) are utilized for the spatial pooling. Finally, the

feature vectors from each region of the pyramids are concatenated into a single feature

vector (21,000-dim for RGB images and 14,000-dim for depth images). We extract the

KDES features from both the RGB images and the depth images in the training set, and

we only extract the KDES features from the RGB images in the test data set.

Before learning the distance metric, we also perform PCA on both the RGB features

and the depth features to reduce the feature dimension to be 150, as in the experiments

for face verification. On the training set, we construct a set of 9500 similar pairs, and we

also sample a set of 9500 dissimilar pairs. We also use the features from the RGB images

as the main features, and the features from the depth images as privileged information.

The Rank-1 recognition rate is the typical evaluation criterion, which is the first point in

the so-called Cumulative Matching Characteristic (CMC) curve [78], and it measures the

mean person recognition rate when finding the correct person in the top-1 match. We

train all the models of all the algorithms on the training set, and then apply the learnt

distance metrics on the test set, and report the Rank-1 recognition rate on the two test

settings in Table 5.3, respectively.

From the experimental results in Table 5.3, we observe that in terms of the Rank-1

recognition rate, all the distance metric learning algorithms are better than the baseline

method (i.e., L2 distance). Our proposed ITML+ is much better than ITML as well as

other baseline methods, which again shows the effectiveness of our proposed ITML+ to

utilize additional depth information in the training set. The two methods PMML and

MNRML learn a unified decision function for fusing the distances from multiple views, the

results are only comparable or even worse than their single-view counterparts (i.e., ITML

and NRML). A possible explanation is that these methods aim to learn good distance

metrics when all types of features are available during both the training and testing

processes. Although we can still obtain a distance metric corresponding to the visual

features from the RGB images, this distance metric cannot work well in our task due to

6http://mobilerobotics.cs.washington.edu/projects/kdes/
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the lack of the depth features in the test set. We observe that the recognition rates for

the “Still” case are much better than those for the “Walking” case, which demonstrates

that it is more difficult to perform the person re-identification task for the “Walking”

case, because there are more variations in the test set when people are walking.

5.5.5 Detailed Performance Analysis

In this section, we conduct the experiments to analyze our proposed ITML+ algorithm.

We firstly investigate partial ITML+ by using different percentages of training pairs with

privileged information and then analyze the learnt distance metrics.

5.5.5.1 Evaluating partial ITML+ using different percentages of pairs with
privileged information

In real world applications, privileged information may be hard to be obtained. So it is

also possible that some training data are not associated with privileged information. We

evaluate our partial ITML+ discussed in Section 5.3.4 by using different percentages of

training pairs with privileged information.

We take the CurtinFaces and BIWI RGBD-ID datasets as two examples, and use the

partial ITML+ formulation to learn the distance metric by varying the percentage of

the pairs with privileged information. We use the first 0%, 25%, 50%, 75%, and 100%

of positive training pairs and negative training pairs with privileged information (i.e.,

the GLBP-DEPTH features for CurtinFaces dataset and the KDES-DEPTH features for

the BIWI RGBD-ID dataset) and the remaining 100%, 75%, 50%, 25% and 0% training

samples are not with privileged information. Then we train our partial ITML+ model

to learn a distance metric on the main features, which is used on the testing set for

performance evaluation.

We report AP and AUC on the CurtinFaces dataset in Fig. 5.2 (a) and Fig. 5.2 (b),

respectively. We also report the Rank-1 recognition rate on the BIWI RGBD-ID dataset

for two test settings “Walking” and “Still” in Fig. 5.3 (a) and Fig. 5.3 (b), respectively.

We can observe that the results are the same with those of ITML (resp., ITML+) when

the ratio is set to 0% (resp., 100%). Note our partial ITML+ incorporates ITML and

ITML+ as two special cases according to the formulation in (5.5). By varying the ratio
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Figure 5.2: The results using different ratios of training pairs with privileged information
on the CurtinFaces dataset.
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(a) Rank-1 recognition rate for the test set
“Walking”

0 0.25 0.5 0.75 1

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

The ratio of the training pairs with privileged information

R
an

k−
1 

R
ec

og
ni

tio
n 

R
at

e

(b) Rank-1 recognition rate for the test set
“Still”

Figure 5.3: The results using different ratios of training pairs with privileged information
on the BIWI RGBD-ID dataset.

in the range of {0%, 25%, 50%, 75%, 100%}, we observe that the performances are

improved when the ratio of training pairs with privileged information increases.

5.5.5.2 Analyzing the learnt distance metric

We take the BIWI RGBD-ID dataset as an example to analyze the learnt distance metric.

Specifically, we analyze the distance metrics learnt by using ITML, ITML-S and ITML+

for classifying the first 250 positive training pairs as well as the first 250 negative training

pairs in the following.
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(b) ITML-S
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(c) ITML+

Figure 5.4: Illustration of the distances between 250 positive pairs of images and 250
negative pairs of images based on the distance metrics learnt by using ITML, ITML-S
and our ITML+. The red star indicates the positive pair while the blue circle indicates
the negative pair.

Note the KEDS-RGB feature is used as the main feature in the testing processes.

We show the distances of these 500 pairs of RGB images based on the learnt distance

metrics from ITML, ITML-S and ITML+ in Fig. 5.4(a), Fig. 5.4(b) and Fig. 5.4(c),

respectively. In the two figures, the red star indicates the positive pair, while the blue

circle indicates the negative pair. The two horizontal lines are the predefined parameters

l (i.e., l = 1.9 × 10−3) and u (i.e., u = 7.2 × 10−2). As shown in Fig. 5.4(c), we can

observe that the distances based on the learnt metrics by using the ITML+ algorithm

for both the positive pairs and the negative pairs are better clustered when compared

with the results obtained by using ITML as shown in Fig. 5.4(a) as well as using ITML-

S as shown in Fig. 5.4(b). Moreover, the projections of the points along the y-axis

in Fig. 5.4(c) seldomly have the overlaps (i.e., the area between the two dashed lines)

between the positive pairs and negative pairs, which is much better when compared with

the results from ITML. As the ITML-S removes some training pairs, it is reasonable to

observe that the data points are not even better classified than that of for ITML. Thus, we

conclude that the distance metric learnt by using ITML+ is better, which demonstrates

the effectiveness of our ITML+.

5.6 Summary

In this chapter, we have studied the face verification and person re-identification tasks

in the RGB images by using the weakly labeled RGB-D data. We formulate a new
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problem called distance metric learning with privileged information, where the distance

metric is learnt with extra information which is available only in the training data but

unavailable in the test data. We take the Information-theoretic Metric Learning (ITML)

method as an example, and propose a new method called Information-theoretic Metric

Learning with Privileged Information (ITML+) for distance metric learning by addi-

tionally using privileged information. An efficient cyclical projection method based on

analytical solutions for updating all the variables is also developed to solve the new

objective function in our proposed ITML+. The extensive experiments are conducted

on the real-world EUROCOM, CurtinFaces and BIWI RGBD-ID datasets. The results

demonstrate the effectiveness of our newly proposed ITML+ algorithm for learning the

effective distance metric from weakly labeled RGB-D data for the face verification and

person re-identification tasks in the RGB images.
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Chapter 6

Conclusion and Future Work

With the development of more effective visual representations for computer vision tasks,

the learning with multiple representations will receive increasing attention in the future.

In this thesis, we have proposed several novel algorithms to the learning with multiple

representations, and we also apply the proposed algorithms to a few computer vision

applications. In this part, we conclude our proposed works and discuss the future work.

6.1 Conclusion

We conclude this thesis by summarizing the contributions for learning with multiple

representation as follows:

• We have proposed a novel Soft Margin framework for Multiple Kernel Learning

(SMMKL) based on the novel kernel slack variables introduced base kernels. Based

on the hard margin perspective for traditional ℓ1MKL, we then propose the hinge

loss soft margin MKL, the square hinge loss soft margin MKL and the square loss

soft margin MKL. The hinge loss soft margin MKL leads to a novel box constraint

for MKL, while square hinge loss soft margin MKL and square loss soft margin MKL

unifies the family of elastic-net MKL and the ℓ2MKL from literature, respectively.

We discover their connections with previous MKL methods and compare different

MKL formulations in terms of the robustness of these different loss functions defined

on the kernel slack variables. Comprehensive experiments have been conducted

on the benchmark data sets, the YouTube and Event6 data sets from computer
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vision applications. The experimental results demonstrate the effectiveness of our

proposed framework.

• We have also proposed an Input-Output Kernel Learning (IOKL) framework for

handling general data ambiguities with multiple representations. By introducing

the concept of input-output kernel, the methodology from traditional MKLs de-

signed for supervised learning only is applicable for handling general data ambigu-

ity problems such as SSL, MIL and clustering with multiple data representations in

a unified framework. To learn a more robust classifier, we further introduce a novel

soft margin group sparse MKL formulation. In addition, a block-wise coordinate

descent algorithm with an analytical solution for the kernel coefficients is devel-

oped to solve the new MKL formulation efficiently. The promising experimental

results on the challenging NUS-WIDE dataset for a computer vision application

(i.e., text-based image retrieval), SSL benchmark datasets and MIL benchmark

datasets demonstrate the effectiveness of our proposed IOKL framework.

• We propose a new problem called distance metric learning with privileged informa-

tion, where the distance metric is learnt with extra information which is available

only in the training data but unavailable in the test data. We propose a novel

method called Information-theoretic Metric Learning with Privileged Information

(ITML+) for distance metric learning by additionally using the privileged infor-

mation for the training data. An efficient cyclical projection method based on

analytical solutions for all the variables is also developed to solve the new objective

function. The extensive experiments are conducted on the real-world EUROCOM,

CurtinFaces and BIWI RGBD-ID datasets. The results demonstrate the effective-

ness of our newly proposed ITML+ algorithm for learning more effective distance

metric from RGB-D data for face verification and person re-identification tasks in

the RGB images.

6.2 Future Work

In this section, we discuss the possible extensions to our works.

122



Chapter 6. Conclusion and Future Work

6.2.1 Future Work for Soft Margin Multiple Kernel Learning

Our proposed Soft Margin Multiple Kernel Learning framework has provided a new per-

spective to multiple kernel learning problem. The generalization bound of our SMMKL

framework could be further investigated for the completeness of theoretical analyse of

our work. Moreover, the tool box with efficient implementations of the different types

of MKL algorithms will be released to public as the proposed work makes it possible to

fuse as many different types of visual representations as possible for visual classification

tasks. It is possible to study the fusion of a large number of visual representations such

as low-level handcrafted features, classifier-based features and even the deep representa-

tions from deep convolutional networks for more challenging real-world computer vision

classification tasks.

6.2.2 Future Work for Input-output Kernel Learning

Our proposed Input-output Kernel Learning is applicable to more learning scenarios such

as clustering [133], relative outlier detection [123], and multi-instance semi-supervised

learning. It is also possible to apply our proposed group sparse soft margin regularization

to the task of domain adaptation [34]. It is also an interesting topic to improve the

speed of IOKL framework. Besides, more effective label inference procedure could be

further explored. The different regularization strategies such as the multi-layer structure,

hierarchical structure from the construction of the base input-output kernels could be

explored to improve specific learning tasks.

6.2.3 Future Work for Learning with Privileged Information

The Learning with Privileged Information framework opens a wide area for both the

machine learning algorithms and computer vision applications. Almost all the existing

learning algorithms can be extended to this learning scenario. For the different learning

scenarios, it is possible to explore the specific learning algorithms for utilizing the priv-

ileged information. For example, multiple kernel learning using privileged information

could be further studied. Extending the learning setting to algorithms tackling weakly

labeled data with either single representation or multiple representations is also an im-

portant direction. From the application point of view, the designing of the privileged
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information could also be investigated for computer vision applications. For instance,

the additional text description for the images from web could be obtained to help the

traditional visual recognition tasks. It is also quite interesting to explore the domain

adaptation problem using privileged information where source data not only have a dif-

ferent distribution with target data but also have additional privileged information.

124



References

[1] Steven P. Abney. Bootstrapping. In ACL, 2002.

[2] Timo Ahonen, Abdenour Hadid, and Matti Pietikäinen. Face description with local
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[13] Aurélien Bellet, Amaury Habrard, and Marc Sebban. A survey on metric learning

for feature vectors and structured data. CoRR, abs/1306.6709, 2013.
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[181] Sören Sonnenburg, Gunnar Rätsch, Sebastian Henschel, Christian Widmer, Jonas

Behr, Alexander Zien, Fabio De Bona, Alexander Binder, Christian Gehl, and

Vojtech Franc. The SHOGUN machine learning toolbox. Journal of Machine

Learning Research, 11:1799–1802, 2010.
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Appendix

A.1 Proof of Proposition 3

We can rewrite the problem (3.10) in the following form:

min
α∈A,τ,ζm

−τ + θ

M∑
m=1

ζm (A.1)

s. t. −1

2
(α⊙ y)′Km(α⊙ y) ≥ τ − ζm,

ζm ≥ 0,m = 1, . . . ,M,

where the domain for α is A = {α|α′1 = 1,α′y = 0, 0 ≤ α ≤ C}.
The Lagrangian of problem (A.1) is

L = −τ + θ
M∑

m=1

ζm −
M∑

m=1

zmζm (A.2)

+
M∑

m=1

µm

(1
2
(α⊙ y)′Km(α⊙ y) + τ − ζm

)
,

where µm ≥ 0 and zm ≥ 0 are the non-negative Lagrangian multipliers for inequalities in

(A.1). Setting the gradient of the Lagrangian with respect to the primal variables τ and

ζm, we get the following

M∑
m=1

µm = 1, (A.3)

θ − µm − zm = 0,m = 1, . . . ,M. (A.4)

Substituting equation (A.3) and (A.4) back into the Lagrangian, the proof is com-

pleted.
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A.2 Proof of Proposition 4

The objective function for hinge loss soft margin MKL can be formulated as:

min
α∈A,τ,ζm

−τ + θ

2

M∑
m=1

ζ2m (A.5)

s. t. −1

2
(α⊙ y)′Km(α⊙ y) ≥ τ − ζm,

where the domain for α is A = {α|α′1 = 1,α′y = 0, 0 ≤ α ≤ C}.
The Lagrangian of problem (A.5) is

L = −τ + θ

2

M∑
m=1

ζ2m

+
M∑

m=1

µm

(1
2
(α⊙ y)′Km(α⊙ y) + τ − ζm

)
,

where µm ≥ 0’s are the nonnegative Lagrangian multipliers of the inequalities in (A.5).

Setting the gradient of the Lagrangian with respect to the primal variables λ and ζm, we

can get the following

M∑
m=1

µm = 1, (A.6)

θζm − µm = 0,m = 1, . . . ,M. (A.7)

Substituting equation (A.6) and (A.7) back into the Lagrangian, the proof is com-

pleted.
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