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Abstract

Color retinal fundus images provide visual documentation of the health of a person’s

retina. With the widespread adoption of higher quality medical imaging techniques and

data, there are increasing demands for medical image-based computer-aided diagnosis

(CAD) systems to manage large volumes of data, provide objective assessments for de-

cision support and help in labour-intensive observer-driven tasks. This thesis focuses on

the development of 2-dimensional color retinal image analysis algorithms for automated

optic cup localization in glaucoma, the leading cause of irreversible blindness worldwide.

Traditionally, the optic cup is automatically segmented using image processing-based

methods, often with many hand-crafted heuristics. With the incorporation of learning-

based techniques, the accuracy of medical image-based CAD systems has improved sig-

nificantly and are now widely accepted and adopted by medical practitioners. In this

dissertation, three novel approaches for automatic localization of the optic cup in retinal

fundus images are presented.

In the first work, a boundary-based cup detection approach using vessel kinks is

presented. The key contribution in this work is its close modeling relationship with the

clinical grading protocol to identify the optic cup, providing explicit visual evidence.

Experimental results demonstrated that the novel use of vessel kinks as cup boundary

key points guidance provides improved accuracy performance over existing retinal image-

processing based strategies.

Although the use of vessel kinks is highly desirable and provides additional visu-

al evidence, accurate detection and interpretation of these small vessel bends can, at

times, be challenging. Instead, in the second work, a novel region-based unsupervised

learning approach for automatic optic cup localization is proposed. This approach re-

quires no training procedure, and utilizes domain knowledge and region-based features
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in a similarity-based label propagation and refinement scheme to obtain an estimated

cup region. The promising result suggests that learning-based techniques are capable of

accurate automatic optic cup localization.

Recently, supervised superpixel-based cup localization has demonstrated superior per-

formance. In the third work, a study on the limitations of this state-of-the-art classi-

fication framework is presented and an alternative generalized multi-scale approach is

proposed, with improved stability and performance. This approach offers a stable and

robust solution to reduce classification performance variations due to repeated random

sampling of training samples. Furthermore, it integrates and unifies multiple superpixel

resolutions for better boundary adherence. Extensive experimental results demonstrates

the improved robustness and accuracy in optic cup localization against existing methods.

In summary, three approaches for optic cup localization are proposed. This thesis

demonstrate that using vessel kinks as cup margin key points is highly desirable and

provides additional visual evidence. The challenges in the detection of these key points are

also discussed. Alternatively, a region-based unsupervised learning approach is presented.

Experimentally, it was shown that in the absence of ground-truth labels, this approach

is able to achieve higher or comparable accuracy to the boundary-based and existing

retinal image processing-based approaches. Lastly, the limitations of the state-of-the-art

supervised superpixel-based cup localization approach are studied and improved with a

novel multi-scale multi-model framework, which offers stability and improved accuracy.
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Chapter 1

Introduction

Computer-aided Diagnosis (CAD) utilizes computer technology and analysis to effectively

handle large volumes of data used in diagnostic process [115]. As high quality medical

imaging techniques and modalities gain widespread adoption, this has facilitated a greater

role for CAD in medical imaging for their processing and analysis capabilities.

Medical image-based CAD is an interdisciplinary research area used in radiology and

medical imaging for the interpretation of medical images. It has shown to be effective as

radiologists use the CAD output as a ”second opinion” and this has helped improve the

diagnostic accuracy, consistency and productivity of the final decision made by clinicians

[28, 41]. Successful examples includes CAD for early detection of breast cancer using

digital mammogram [28, 41], detection of colonic polyps using computed tomographic

(CT) colonography [28, 94], and detection of lung nodules for chest radiography [28, 127].

Examples of commercial companies using medical image-based CAD includes Hologic1,

and iCAD 2.

While medical image-based CAD has shown to be promising, the approaches and

methods used vary widely. Often these would depend on factors such as the required

specific application and imaging modality. The presence of imaging artifacts such as

noise and motion, which may be introduced during data acquisition, can also have a sig-

nificant penalty on the performance of the algorithms. In comparison to generic methods

customized to suit the domain application, methods that integrate explicit application-

specific domain knowledge, such as anatomical or image modality prior knowledge, usual-

1 http://www.hologic.com/
2 http://www.icadmed.com/
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Chapter 1. Introduction

ly have an edge in terms of accuracy, precision and computational efficiency. Nonetheless,

the selection of such an appropriate approach to the task is often a challenging issue [95].

In addition, the task of objective evaluation and comparison of algorithms in medical

image analysis can be difficult. Some of the reasons include a lack of definitive gold

standard (caused by inter-and intra-observer variability) and tedious data collection [21].

Color retinal fundus3 images provides visual documentation of the health of a person’s

retina, and is often the most fundamental image used by eye specialists to assess retinal

abnormalties. A reliable ocular-image CAD system, which can provide objective assess-

ments, measurements and reduce labor-intensive observer-driven tasks for opthamolo-

gists, has always been one of the ultimate aims in this area of research. Although there

are a number of imaging technologies, such as Heidelberg Retinal Tomograph (HRT) and

Optical Coherence Tomography (OCT), which can be used to view the retina, digital

fundus images still remains highly relevant for establishing a baseline. Furthermore, reti-

nal fundus cameras are widely available and prevalent in primary healthcare, thus, are

highly suitable for disease screening.

This thesis focuses on the design, implementation and evaluation of image analysis

algorithms using color retinal fundus images taken from patients suffering varying degrees

of glaucoma, a major ocular disease. In particular, it focuses on methods to identify

the damages caused by glaucoma on the nerve fibres of the optic nerve. For a fair

performance evaluation, a large set of retinal fundus images from the online glaucoma

analysis database, ORIGA-light [147] will be used. This database consists of images from

a population-based cross-sectional study with graded glaucoma pathological signs.

1.1 Motivation

Globally, glaucoma is reported to be the second leading cause of blindness, and esti-

mated to visually impair 60 million people by 2010 and 80 million by 2020 [99]. It is

the most prevalent of eye diseases in the United States and around the world. There

are approximately 2.5 million diagnosed cases of glaucoma in the United States and 60

million worldwide; however, this figure is significantly underreported due to the slow,

3 Fundus: refers to the bottom on an organ, in the context of this thesis, the back of the eye, where
the retina, optic nerve and macula resides
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asymptomatic progression of the disease, resulting in low disease detection until vision

lost sets in. In Singapore, the Tanjong Pagar Study[37] and the Singapore Malay Eye

Study[35, 117] found that a 3% prevalence of glaucoma amongst Singaporean adults of 40

years and above. The study also reports that more than 90% of the patients are unaware

of their conditions[35, 117]. Similarly, under-diagnosis rate ranges from 50% in developed

countries like North America to as high as 90% in developing countries like India.[17]

Vision loss is often a late symptom of glaucoma. When glaucoma patients are referred

to the ophthalmologists, it was found that severe permanent visual loss has occurred, and

often, the disease is then managed using expensive surgery. At the same time, glaucoma

is a social burden, with heavy direct and in-direct costs, since visual loss reduces an

individual’s capacity to work and live independently.

Although glaucomatous damage is irreversible, early diagnosis and treatment of glau-

coma has shown to reduce or halt the risk of visual field loss [46]. Hence, early detection

is critical to prevent blindness and aid in glaucoma management. A medical image-based

CAD system for glaucoma is a technological-means of assisting this process, especially in

data analysis, management and objective assessments for decision support.

The motivation of this thesis is to explore methods for automatic retinal image analy-

sis for glaucoma in 2-dimensional fundus images. As glaucoma causes optic nerve damage

and increases the size of the optic cup, it is important to localize and measure the optic

cup. Although it is essential and may seem simple, localization of the cup is a highly

challenging task, especially for inexperienced clinicians. Furthermore, automatic meth-

ods to localize the optic cup are much less reported, perhaps due to the entry barrier of

basic fundus image interpretation training. This meaningful task of automatic optic cup

localization is selected as the focus of this research.

1.2 Scope and Objectives

In this thesis, a review on the current approaches for automatic optic nerve segmentation

is presented, and new approaches to determine the optic nerve damage from glaucoma

in retinal images are proposed. Specifically, a study on the background of this deadly

disease, the recommended practices of diagnosis, challenges, and the existing automated
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methods will be surveyed. Inspired by recent successful machine learning techniques

adapted on object recognition, new learning-based approaches for optic cup localization

approaches are investigated and proposed. The ORIGA-light database [147] will be used

to evaluate the accuracy of the proposed methods.

1.3 Contributions of Thesis

This thesis proposes several novel approaches for optic cup localization. More specifically,

it exploits and adopts popular and proven machine learning techniques to localize the

optic cup. The main contributions of this thesis are as follows:

First, an automated vessel kink detection method, which is modeled after a frequently-

used clinical clue was developed to improve optic cup boundary detection. Using ves-

sel kinks and color information as boundary key points, a minimum enclosing ellipsoid

method is proposed to represent the detected optic cup boundary. Initial experimental

evaluation demonstrates encouraging improved results over existing methods.

Second, a novel unsupervised learning region-based approach for optic cup localiza-

tion was proposed. Here, image pixels are clustered into boundary-adhering superpixel

regions, and a set of features is extracted from each region for feature representation.

Next, region labels are initialized using domain priors and propagated using a similarity

measure. Finally, a label refinement scheme is performed to return the final localized op-

tic cup. Unlike previous reported approaches, this method requires no training samples,

and is not limited by the absence of vessel kinks. Furthermore, it was experimental-

ly demonstrated that such learning-based approach is also able to achieve competitive

performance.

Third, a study of the limitations of the current state-of-the-art supervised superpixel-

based learning for optic cup localization, was done and a novel optimal model selection

approach was proposed to overcome some of these limitations. A major shortcoming

in the previous approaches, is the variations in classification performances due to ran-

dom sampling of training samples. Experimental results demonstrated that the proposed

approach, which selects and integrates multiple models and multiple scales, yielded im-

proved performance stability and increased accuracy. Experimental results on the ORI-

GA database demonstrates a 7.12% improvement. In addition, against the intra-image

[138] method, the proposed approach does not assume a restricted CDR range of 0.2-0.9.
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1.4 Thesis Organization

This report has 6 chapters and is organized in the following manner:

Chapter 2 introduces an overview of the medical background of glaucoma, imaging

aspects, followed by a review of the current state-of-the-art automatic localization and

segmentation of the optic disc and cup. The image dataset and criteria used for the

evaluations of the proposed approaches are also presented.

In Chapter 3, a system which automatically detect vessel kink points and integrates

with optic cup color information for boundary-based optic cup key point detection is

presented. Clinically, these visual cues are often used, when available, to estimate the

cup margin. Tested on a large dataset, the effectiveness and the use of vessel kinks, and

the performance of such boundary-based approach is discussed.

In Chapter 4, the first unsupervised learning approach of optic cup localization is pro-

posed. Superpixels are used to cluster and partition an image into boundary-adhering

segments, for features extraction. Domain priors are then used to initialize the unlabeled

segments for similarity-based label propagation. Finally a label refinement is performed.

Detailed experiments are carried out to validate each step in the framework, demonstrat-

ing its effectiveness.

Chapter 5 introduces the multi-scale supervised approach for optic cup detection.

A study on the limitations of the current state-of-the-art supervised superpixel-based

learning for optic cup localization is discussed, and a generalized multi-scale multi-model

approach, which overcomes most of the limitations, is proposed. Experimental results

demonstrate the improved stability and performance from this framework.

Chapter 6 summarizes the contributions in this research and the areas for future

research works to be explored.

Appendix A contains a list of publication works resulting from this thesis.

Appendix B contains a list of abbreviations used in this thesis.

Appendix C contains the pseudo codes for the algorithms proposed in this thesis.
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Chapter 2

Medical Background and Related
Works

This chapter will cover two main sections, the medical background of the ocular disease,

and the existing computerized approaches in literature. An introduction on the structure

of the human eye, the image acquisition of the retina and medical overview of the ocular

disease will be covered. The clinical retinal image assessment protocols will also be

described. In the second half of this chapter, a review of the influential and exciting

works that are related to this research along with the available dataset will be detailed.

2.1 The Human Eye

Aristotle (384 BC - 322 BC) classified the five sensory organs of the body: sight, smell,

taste, touch, and hearing. The human eye, the organ of vision shown in Fig. 2.1, provides

the capability to see color, detect motion, identify shapes, gauge distance and speed,

judge the size of faraway objects, see in three dimensions even though images fall on the

retina in two[43]. In the brain itself, neurons devoted to visual processing number in the

hundreds of millions and take up about 30 percent of the cortex, as compared with 8

percent for touch and just 3 percent for hearing[43].

2.1.1 Structure of the Human Eye

The eye is a complex structure, with an approximate length of 24 to 25mm, where light

passes through the cornea and a transparent crystalline lens, which assists in focusing
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Chapter 2. Medical Background and Related Works

Figure 2.1: The Human Eye - The figure shows the anatomy of the human eye, taken
from University of Maryland Medical Center (UMMC).

light, onto the retina through the pupil. The amount of light which enters the eye

is controlled by the iris, which has the ability to enlarge or contract, while the lens

converges the incoming light rays to a sharp focusing point onto the retina by lengthening

and shortening its width. The retina, situated at the back of the eye, is approximately

0.5 mm thick [44] (Fig. 2.2a). In the center of the retina is the optic nerve, an oval white

area measuring about 2mm (height) x 1.5mm (width) across. At approximately 17◦(4.5-5

mm), or 2.5 disc diameters away from the optic nerve, lies a blood vessel-free reddish

region, known as the fovea, Fig. 2.2b. The centre of the fovea is also called the macula.

The entire retina is a circular area of between 30 and 40 mm in diameter [98]. It is a

multi-layered tissue, and is covered with two types of light-sensitive photoreceptor cells,

rods and cones, to convert light rays into electrical impulses. As shown in Fig. 2.2c, a

radial cross-section of the retina shows that the ganglion cells (the output neurons of the

retina) occupy the innermost of the retina nearest to the lens and front of the eye, and

the rods and cones photosensors lie at the outermost in the retina against the pigment

epithelium and choroid [44].
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(a) Sagittal view of the human eye with an schematic enlargement of the
retina. Image from [44]

(b) Example of a retina image. (c) Schema of the layers of the devel-
oping retina around 5 months gestation
(Modified from Odgen,1989). The rods
and cones are denoted as R and C re-
spectively. Image from [44].

Figure 2.2: Anatomy and schematic diagram of the human eye.
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The rods are most sensitive to light and are responsible for vision in low light and

peripheral vision. The cones which are concentrated in the fovea, handle color vision

and details. The retina collects the signals and sends the impulses, through a million

nerve fibers that are carried by the optic nerve, to the visual cortex of the brain. These

impulses are then interpreted and processed by the brain. The optic nerve on the retina

is also called the blind spot as it is insensitive to light. Often, the fovea, optic nerve,

retina and retinal vasculature are referred to as the ocular fundus structures.

2.1.2 Image Acquisition of the Retina

2.1.2.1 Fundus image capture

A color retinal fundus camera is widely used to photograph the retina. The fundus

camera is a complex optical imaging device with a low power microscope and an attached

camera, Fig. 2.4a. Its optical operation principles is designed based on the indirect

ophthalmoscope, Fig. 2.3. The general working principle described below is based on the

overview provided in [90].

Light is first generated from either viewing lamp or the electronic flash, and is passed

through a set of filters, mirrors and a series of lenses for focusing. A mask on the

uppermost lens is then used to shape the light into a doughnut. Based on the Gullstrand

principle, the ring of light is projected on the cornea, through the pupil. The resulting

retinal image then leaves the cornea through the un-illuminated portion of the doughnut,

Fig. 2.4b. This space within the ring allows a separation of both the incoming and

outgoing illumination. The outgoing light continues through the central aperture of the

mirror, through the astigmatic correction device and the diopter compensation lenses,

and then back to the single lens reflex camera system.

Clinically, this camera is used by ophthalmologists and trained medical professionals

to monitor and discover evidence of ocular abnormalities for immediate feedback, diag-

nosis and treatment of retina diseases. The fundus photographs are then kept as visual

records to document the ophthalmoscopic appearance of a patient’s retina.

In the market, fundus cameras are described by their angle of coverage. This is derived

from the optical angle of acceptance of the fundus camera lens and can range between

20 ◦, to 140 ◦. An angle of 30 ◦, considered the normal angle of view, creates a film image
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Figure 2.3: The first indirect ophthalmoscope. Image from [5].

with a magnification of 2.5x [104]. Wide-angle fundus cameras capture images between

45 ◦ and 140 ◦ and provide proportionately less retinal magnification. In this research,

the images used are mostly taken using a 45 ◦ digital retinal camera, Fig. 2.4c, (model

CR-DGi with a 10D SLR digital camera backing; Canon, Tokyo, Japan).

Capturing the retinal fundus photographs can be performed either through a dilated

or non-dilated pupil. The main advantage of dilation is to allow better view and image

capture of the retina. However, even with dilation, the quality of the fundus image can

still be affected by additional difficulties such as the media opacity due to cataracts. Non-

mydriatic1 retinal fundus cameras allows digital photographs of the eye to be captured

through a small pupil size (in between 2.0- to 4.0mm) without the need and discomfort

of pupil dilation. However, there may be a trade-off in the image acquisition quality.

Another consideration in fundus photography acquisition, is the field of capture within

the retina. The Early Treatment Diabetic Retinopathy Study (ETDRS) has established

a standard seven-field photographic protocol used as the gold standard in fundus pho-

tography, Fig. 2.5b (where Field 1 = optic disc; Field 2 = macula; Field 3 = temporal to

macula; Field 4 = superior temporal; Field 5 = inferotemporal; Field 6 = superior nasal;

Field 7 = inferior nasal). For the purposes of assessing the optic disc, a Field 1 capture

is usually used.

1Without causing dilation to the pupil.
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(a) A simple schematic of the fundus camera. Image from [75].

(b) “Donut” of light. Image from [90]. (c) Canon CR-DGi. A Non-Mydriatic
Retinal Camera allows digital images of
the eye to be captured through a small
pupil size without pupil dilation. Image
from Retinal Physician[96].

Figure 2.4: Retinal image capture using the fundus camera.
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(a) Depiction of different angle of coverage on
the retina. Image from [90].

(b) Seven standard fields of the ETDRS proto-
col on a right eye. The optic nerve is highlighted
in yellow.

Figure 2.5: Illustrations of the angle of coverage, and field of view capture in a retinal
fundus camera.
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2.1.2.2 Other Imaging Devices

Over the past 15 years, other imaging technologies have emerged to detect early glauco-

matous optic nerve damage and monitor for changes. Examples of such devices includes

nerve fiber layer polarimetry (GDx nerve fiber analyzer), Heidelberg Retinal Tomogra-

phy (HRT) and Optical Coherence Tomography (OCT). A brief introduction on these

technologies will be described below.

GDx nerve fiber analyzer, Carl Zeiss Meditec. The GDx nerve fiber analyzer

is a scanning-laser polarimeter developed by Laser Diagnostic Technologies, which uses

the reflected polarised light to measure the thickness of the retinal nerve fibre layer.

The retinal nerve fibre layer (RNFL) is innermost retinal layer closest to the vitreous,

containing axons and ganglion cells which converge to the fibres of the optic nerve [1]. As

studies have shown that the structural loss of ganglion cells, which makes up the RNFL,

has an association with functional visual field defect [114], the use of the GDx nerve fiber

analyzer offers a means to measure and track RNFL thickness.

The scanning-laser polarimetry technique relies upon the birefringent qualities of

the RNFL, where the phase shift in the polarization of the light (retardation) passing

through the nerve fibers tissues are measured (see Fig. 2.6b for depiction). The degree

of change of polarization is proportional to the thickness of the RNFL tissues, where

higher retardation denotes thicker tissues[25]. A high-resolution image of 256 by 256

pixels of the RNFL topographical map is created, where each pixel represents a measure

of the retardation of the laser scan at its location [6]. For each test, three serial scans

are obtained, and these measurements and compared against a normative database of

sex, race, and age matched normals [2]. Fig. 2.6c shows an example of the GDx report

printout of the nerve fibre analysis thickness.

Confocal Scanning Laser Ophthalmoscopy (HRT), Heidelberg Retinal To-

mograph. The principle of confocal microscopy was first introduced and patented by

Marvin Minsky in 1957 [76] to perform precision microscopy. The key element in the

confocal approach is the use of spatial filtering techniques to eliminate out-of-focus light

or in specimens whose thickness exceeds the immediate plane of focus [4]. The Heidelberg

Retinal Tomograph (HRT) is a confocal laser scanning system which uses a rapid scan-

ning laser diode to obtain multiple cross-section images to produce a three-dimensional

high-resolution topographic image of the optic nerve 2.7a.
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(a) The GDxVCC. Image from Carl Zeiss
Meditec GDxVCC Brochure.

(b) Working principles of the GDx scanning-
laser polarimeter. Image from Carl Zeiss
Meditec GDxVCC Brochure.

(c) GDx Printout Patient with Early POAG.
Image from [6].

Figure 2.6: Retinal nerve fibre layer (RNFL) analysis using the GDxVCC.
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A 670-nm diode laser is used to emit a beam, which is redirected by two oscillating

mirrors to focus on the x-axis and y-axis along a plane of focus perpendicular to the optic

nerve. A 15◦x15◦, two-dimensional reflected image(384x384 image resolution) from this

plane is then captured. Subsequent reflected images are obtained from different image

planes of an equidistance longitudinal resolution depth. For example, using a 4mm depth,

a maximum of 64 image planes will be captured. These cross-sections are then combined

and reconstructed to form a three-dimension contour map of the optic nerve surface. For

analysis, the software requires the operator to manually define the outline of the optic

disc. This allows a reference plane to be established for the computer to perform an

automatic analysis computing the stereometric parameters, classification of the eye and

depth profile comparison against the Moorfields Regression Analysis (MRA) data. The

OU report from the HRT machine depicting the various measurement results is shown

in Fig. 2.7b.

Optical Coherence Tomography (OCT). Using a technique known as low-coherence

interferometry, to establish the echo time delay and magnitude of backscattered light

reflected off an object-of-interest, the Optical Coherence Tomography (OCT) is a non-

invasive imaging technique used to scan the structured layers of the retina [105].

The working principles of OCT is similar to ultrasound, where light reflections, instead

of sound, is being used to provide the cross-sectional images, Fig. 2.8a. Using a beam

splitter, the optical beam (from the source) is redirected into two arms: a reference

arm(usually a mirror), and a sample arm where light is diffused and reflected off the

intended tissue structures. Light from both the reference and sample arms travels back

to the beam splitter and recombines to form an interference pattern, which is sensed

by a photodetector, if the light from both arms have similar optical distance [105]. In

Time-Domain OCT (TD-OCT), a reflectivity profile of the tissue sample, called an A-

scan, is obtained by scanning the position of the oscillating mirror in the reference arm.

Using interferometry to record the optical path length of received photons, the OCT is

able to reject background signal while accepting light directly reflected from surfaces of

interest. Each pixel in the A-scan represents the reflection intensity at that position, and

a cross-sectional tomograph (B-scan) can be produced by laterally combining a series of

these axial depth scans (A-scan).

15



Chapter 2. Medical Background and Related Works

(a) Schematic diagram of a confocal scanning laser system in the
HRT II. Image from Heidelberg Engineering Product Literature
[3].

(b) A sample of the HRT Glaucoma Module v.3 Report. Image from Heidelberg Engineering
Product Literature [3].

Figure 2.7: Optic nerve imaging using HRT.
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(a) Schematic diagram of the time-domain OCT(TD-OCT), spec-
tral domain OCT(SD-OCT), swept-source OCT(SS-OCT) and the
adaptive optic system that can be added to the SD-OCT system
(AO-OCT). Image from [105].

(b) A high resolution SD-OCT scan revealing the underlying tissue structures of the retina.
Image from [39].

Figure 2.8: Optic nerve imaging using OCT.17



Chapter 2. Medical Background and Related Works

Recent advances in OCT have led to the higher speed, higher resolution Spectral

Domain OCT (SD-OCT), which encodes the reflected light in the Fourier domain, to

the latest Swept-Source OCT(SS-OCT), which encodes the spectral components in time,

providing greater details. An example of a SD-OCT scan is shown in Fig. 2.8b.

Role of Retina Fundus Imaging. Although, the above mentioned newer tech-

nologies provides alternative measurement of optic disc and retinal nerve fiber layer

structure, they cannot quantify other irregularities of the optic nerve head such as disc

hemorrhage, optic disc pallor and peripapillary atrophy [56]. The GDx provides good

retinal nerve fiber layer thickness measurement, however, its measurements have found to

be affected by media opacity and other retina conditions. In HRT, although it provides a

three-dimensional topographic view of the optic nerve, the perspective is obtained from

a reconstruction of the cross-sectional image(i.e. the image is not a true view of the

optic nerve, but an approximate representation). Furthermore, manual outlining of the

optic disc boundary is required before the software analysis is performed. This limita-

tion also results in difficulties to compare quantitative measurements between subsequent

follow-up. Lately, the versatility of OCT, for being able to provide both RNFL and optic

nerve data, has been gaining popularity. However, it have been reported that its results

changes with each new generation device and are not backwards compatible [61]. In

Table 2.1: Overview comparison of retinal acquisition devices.

Devices Advantages Limitations
Fundus Camera Stable technology. Does not capture layer

True color of retina. thickness or information.
Low Cost and widespread use.

GDx nerve fiber Provides thickness of Measurements can be affected
analyzer nerve fibre layer. by existing eye conditions.

Pseudo Color image.
Heidelberg Retinal Provides topographic (layer Topographic image is an
Tomography (HRT) thickness) image of the optic approximate representation.

nerve. Pseudo Color image.
Optical Coherence Multiple cross-sectional Results change with each new
Tomography (OCT) (A-scans) of retina. generation device and are not

Cross-sectional tomograph (B-scan). backwards compatible.
Sub-layer retinal tissue thickness. Pseudo Color image.

High Cost.
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addition, OCT machines are unable to provide progression analysis as there is no means

to measure the same tissue during follow-up exams.

Retinal fundus photographs, on the other hand, provides the advantages of full color

which helps to distinguish between cupping and pallor, has a stable technology and

widespread usage for community-level screening [6]. Furthermore, the record of a retinal

photograph will not go out of date, and is often used as a baseline for clinical evaluation

and comparison. This makes it the ideal media to use for glaucoma disease screening

purposes. A summarized comparison table of these devices is shown in Table. 2.1.

2.2 A Medical Overview of Ocular Diseases

Ocular diseases are diseases and disorders of the eye. According to the World Health

Organization(WHO), there are 285 million visually impaired people worldwide and 80%

of all visual impairment can be avoided or cured [88]. In 2010, a study by the WHO

found that the top causes of blindness are cataracts, glaucoma and age-related macular

degeneration [91] and, the leading cause of irreversible blindness is glaucoma. This section

will cover an overview of the medical aspects of glaucoma and the structural changes it

brings to the retina as it progresses.

2.2.1 Glaucoma

Glaucoma is a serious and lifelong eye-threatening disease, and the leading cause of

irreversible blindness which affects the optic nerve head [92, 99]. The optic nerve head is

made up of bundles of ganglion cell axons which leaves the retina and enter the front of

the optic nerve (also known as optic disc). The optic cup is a pale cavity-like depression

in the optic nerve head, and the area between the optic nerve and cup is known as the

rim, Figure 2.9.

Glaucoma is a progressive optic neuropathy that structurally damages retinal ganglion

cells and other mechanisms in the visual pathway. As this disease progresses, the retinal

ganglion cells in the optic nerve head gets damaged and eventually results in ganglion

cell death. This leads to a collapse and enlarged excavation of the optic cup within the

optic nerve head, Fig. 2.10.
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Figure 2.9: Anatomy of the Optic Nerve Head - Clinical features of the optic nerve.

Figure 2.10: Progression of Optic Cup Enlargement Changes in Glaucoma -
(Left) A normal optic nerve head. (Centre) Early glaucoma optic nerve head. (Right)
Advanced glaucoma optic nerve head. Image from Bay EyesCataract&LaserCenter [30].
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Unfortunately, glaucoma does not have any early warning signs [38]. Patients with

early glaucoma do not have visual symptoms. They usually first develop a “tunneling

vision”, the lost of their peripheral vision, and eventually central vision, (see Fig. 2.11).

Studies have also reported that 90% of those affected are unaware of their condition

[37, 108] and caring for glaucoma can be costly. Without treatment, a substantial number

of patients will experience significant progression of the disease leading to total permanent

blindness within a few years. Several studies demonstrated that the estimated progression

of optic nerve fiber loss in glaucoma can be in the order of 9-63% over a five-year period

[20, 60, 57].

Although glaucoma cannot be cured, early diagnosis and treatment of glaucoma is

reported to able to reduce or halt the risk of visual field loss [46], as well as being cost

efficient[65]. Intraocular pressure (IOP) lowering (e.g. by eye drops, laser, surgery) is

the therapeutic approach that can reduce the risk of glaucoma development and slow

down the rate of disease progression. Due to the irreversible nature of the disease, early

detection of glaucomatous changes is crucial to allow for early treatment prior to the

onset of functional visual loss and aid in glaucoma management. A medical image-based

computer-aided diagnosis for glaucoma is a means of taking such an active role.

Figure 2.11: A Contrast of Vision - (Left) Normal’s patient view of a scene. (Right)
Glaucoma’s patient view of a scene. Note the loss of vision around the peripheral. Image
from NIH [80]

2.2.1.1 Glaucoma Assessment

Eye doctors usually use several tests to detect glaucoma. These are usually categorized

as functional or image-based assessment. Functional assessment includes measuremen-
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t of IOP (tonometry) and visual field examination. Image-based evaluation relies on

optic nerve head imaging devices to determine optic nerve head structural damage or

thinning of the retinal nerve fiber layer (RNFL). Examples of such imaging devices are

Retinal Fundus Camera, Heidelberg Retinal Tomography (HRT) and Optical Coherence

Tomography (OCT). Nonetheless, most of these methods have their own limitations.

Measurement of IOP was reported to have poor sensitivity of around 50% [114]. This

is partially due to cases of normal tension glaucoma, where patients have a condition in

which optic nerve damage and vision loss have developed even with a normal pressure

inside the eye. Visual field examination is often time-consuming and found to be unreli-

able due to factors such as patient’s fatigue and learning effects. Image-based evaluation

using HRT and OCT are highly costly and are usually only available at tertiary hospitals,

thus limiting its outreach.

Figure 2.12: Cup-to-Disc Ratio - The vertical cup-to-disc ratio is used as clinical
measure in assessing glaucoma.

On the other hand, retinal fundus cameras are commonly found and used at primary

care for assessment of the retinal and optic nerve. Unlike IOP, the appearance of the

optic nerve does not fluctuate from day to day, and unlike visual field tests, it is not

dependent on patient co-operation [87]. In addition, compared to functional assessment,

direct inspection of the optic disc seems to have the highest accuracy [109]. The study
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in [109] also showed in particular that Cup-to-Disc Ratio (CDR), Fig. 2.12, is the most

important single disc parameter for glaucoma. It is an important clinical indicator of

glaucoma[26], and measures the ratio between the vertical height of the optic cup against

the vertical optic disc height. Currently, CDR assessment is performed manually by the

ophthalmologists to gauge and monitor optic cupping size and degeneration of the optic

nerve head in glaucoma. In this thesis, the objective is to design algorithm approaches

to directly assess the optic nerve changes in retinal fundus images.

2.3 Related Works

As mentioned in the previous section,to assess the optic nerve head for glaucoma in retinal

fundus photography, the optic disc and optic cup have to be inspected and delineated. In

a clinical environment, this is usually manually outlined by an ophthalmologist. However,

the task of manual annotation is often labor intensive, leading to researchers developing

automated processes for disc and cup segmentation.

2.3.1 Optic Disc Localization and Segmentation

In general, the optic disc appears as a bright elliptical region in the red channel of

the RGB space, or brightness channel in other color spaces, Fig. 2.13. Based on this

observation, works to determine the optic disc have been extensively reported. Methods

of optic disc boundary detection usually involves two steps: localization and boundary

segmentation. The former aims to find the location of the optic disc center, while the

latter delineates the boundary of the optic nerve head from the retina automatically.

Broadly, these approaches can be categorized as intensity-based approach, shape-based

approach and learning-based approach, or a combination of these approaches.

In the first category, [112, 51, 45] proposed locating the optic disc by identifying the

area with the highest variation in intensity (1-10%) of adjacent pixels. Similar works also

search for the brightest region in the fundus image as the optic disc using PCA [66, 67],

morphological operators[128, 11] and template-matching[89, 63] techniques and fine-tune

the localized optic disc contour using watershed[128], Hough transform [107, 150, 23] and

ellipse-fitting [70, 133] methodologies.
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Figure 2.13: General Appearance of the Optic Disc in a Retinal Fundus Image
- (Left) Original Color Fundus Image. (Right) Red Channel of the Fundus Image. The
optic disc appears as the brightest circular-elliptic region.

In the second category, shape-based approaches in the form of deformable models,

level sets and geometric models have been proposed with reported improved accuracy

compared to intensity-based methods. In the local deformable model approaches, Osare-

h [89] and Mendels [74] proposed using GVF-snake-based gradient energy minimization

approaches. Parametric deformable models using modified ASM [67, 66] were reported

to delineate the optic disc boundary with high experimental accuracy. Yin [143] pro-

posed using the Circular Hough transform combined with active shape models for better

optic disk boundary detection. Lowell and colleagues [72] used a variant of Hu’s circular

deformable model with an elliptical model and variable edge-strength dependent stiff-

ness to the same task. Similarly, [122] used the Chan-Vese formulation for optic disc

localization. Approaches using level sets includes [70, 133], which uses a variational level

set formulation without re-initialization to segment the optic disc. Besides using local

shape to detect the optic disc, Hoover and colleagues [49] presented a voting-based fuzzy

convergence method to detect the optic disc by finding the origination of the blood vessel

network using global geometric shape relationship. This framework uses the geometric

relationship between the optic disc and main blood vessels arcades and was reported to

be more robust in finding the optic disc in the presences of drusen2, exudates3 and imag-

ing artifacts such as uneven illumination. Ravishankar et. al. [102] as well as Foracchia

et. al.[36] also reported a more robust optic disc localization using a similar framework.

2Yellowish deposits under the retina.
3Lipid residues that are associated with vascular leakage from damaged capillaries
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In the third category, learning-based methods were used to discriminate features to

find the optic disc. Xu et al.[137] extended the GVF-snake-based approach with an

unsupervised k-means clustering of the contour points to reduce the influence of blood

vessels occlusion and detect the optic disc boundary. Abramoff et al.[8] used pixel features

and a set of Gaussian Gabor wavelet steerable filter bank of responses as features in a k-

nearest neighbor (kNN) classifier. A hard classification is then performed using a majority

vote of the kNNs on each pixel. Tobin et al. [58] used the retina vasculature along with

the retina luminance, vessel density, average vessel thickness and orientation in a two-

class Bayesian classifer to determine the optic disc location. No segmentation of the

optic disc was done. Niemeijer et al. [85] introduced a similar pixel-based classification

learning method by using kNN regressor and a circular template to estimate the distance

of each pixel to a image feature in the fundus image.

A summarized comparison table of these methods are compiled in Table 2.2.
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Table 2.2: Categorization of Existing Optic Disc Methods

Method Approach Year Techniques Used Localization Segmentation
Sinthanayothin [112] Intensity 1999 Thresholding 3 7
Inoue [51] Intensity 2005 Thresholding 3 3
Hatanaka [45] Intensity 2010 Thresholding, Canny Edge Detection, Spline Fitting 3 3
Walter [128] Intensity 2001 Thresholding, Morphology Operator, Watershed Transformation 3 7
Aquino [11] Intensity, Local Shape 2010 Intensity Variation, Morphology Operator, Low-Pass Filter, Prewitt Edge

Detection, Otsu Thresholding, Circular Hough Transform
3 3

Osareh [89] Intensity, Local Shape 2002 Template Matching, Morphology Operator, Gradient Vector Flow (GVF)
Snake

3 3

Lalonde [63] Intensity, Local Shape 2001 Hausdorff-based template matching, Canny Edge Detection, Pyramidal
Decomposition using Haar-based discrete wavelet transform

3 3

Sekhar [107] Intensity, Local Shape 2008 Morphology Operator, Threshold, Circular Hough Transform 3 3
Cheng [23] Intensity, Local Shape 2011 Thresholding, Morphology Operator, Mean Filter, Constrained Elliptical

Hough Transform
3 3

Rangayyan [150] Intensity, Local Shape 2008 Median Filter, Canny Edge Detection, Circular Hough Transform 3 3
Liu [70] Intensity, Local Shape 2009 Thresholding, Variational Level-Set, Ellipse Fitting 3 3
Wong [133] Intensity, Local Shape 2008 Thresholding, Variational Level-Set, Ellipse Fitting 3 3
Mendels [74] Intensity, Local Shape 1999 Local Minima Detection, Morphology Operator, Gradient Vector Flow

(GVF) Snake
3 3

Yin [143] Intensity, Local Shape 2011 Hough transform, Active Shape Model, Principal Component Analysis
(PCA), Ellipse Fitting

3 3

Lowell [72] Intensity, Local Shape 2004 Template Matching, Circular Deformable Model 3 3
Tang [122] Intensity, Local Shape 2006 Thresholding, Chan-Vese (CV) Active Contour Model 3 3
Foracchia [36] Geometric Shape 2004 Weighted Residual Sum of Squares (RSS), Simulated Annealing (SA) 3 7
Ravishankar [102] Intensity, Geometric

Shape
2009 Morphology Operator, Hough Transform, Circular Hough Transform 3 3

Hoover [49] Intensity, Geometric
Shape

2003 Fuzzy Convergence, Illumination Equalization, Fisher’s Linear Discrimi-
nant Statistic

3 7

Li [66, 67] Intensity, Local Shape,
Learning

2003 Principal Component Analysis (PCA), modified Active Shape Model (AS-
M)

3 3

Xu [137] Intensity, Local Shape,
Learning

2007 Circular Hough Transform, Modified GVF Snake, K-Means Clustering 3 3

Abramoff [8] Intensity, Learning 2007 Color Opponency Gaussian Filter Bank, Gabor wavelet, Principal Com-
ponent Analysis (PCA), k-Nearest Neighbor (kNN) Classifier

3 3

Tobin [58] Intensity, Geometric
Shape, Learning

2006 Bayesian Classifer 3 7

Niemeijer [85] Intensity, Local Shape,
Learning

2009 Gaussian Filter Bank, k-Nearest Neighbor (kNN) Classifier, k-Nearest
Neighbor (kNN) Regression, Circular Template Matching, Sequential
Floating Feature Selection (SFFS)

3 7
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2.3.2 Optic Cup Segmentation

Many methods have been reported for optic disc detection, but significantly fewer meth-

ods have been presented for optic cup detection, which is much more challenging. Here,

some of the primary challenges faced in optic cup segmentation from a computer vision

standpoint and the existing works found in literature will be presented.

2.3.2.1 Challenges

Figure 2.14: Scaling disparity of optic cup. - (From Left to Right) CDR of 0.16, 0.56,
0.8, 0.91 respectively.

Scaling. The size of the optic cup appears differently from one eye to another. In par-

ticular, the scaling disparity can range from 0.1 - 1.0 cup-to-disc ratio (CDR), Fig. 2.14.

As such, features and details that can be extracted from the neuro-retinal rim (the area

between the optic disc and cup) or from the optic cup may fluctuate (less discriminative)

and become biased. The difficulty in estimating the size of the optic cup in the absence

of a prior can greatly affect accurate delineation of its boundary. Henceforth, for robust

optic cup localization, it is important to extract reliable and stable descriptors in the

retinal image across multiple scales.

Variation in Pallor Appearance The variation in pallor appearance can be traced

to the following factors. First, the optic cup is a cavity-like depression within the optic

nerve and the extend of an optic cup excavation varies from one individual to another,

(see Fig. 2.15). A punch-out optic cup appears as a well-defined boundary within the

optic disc, while a shallow, saucer-like optic cup produces little or gradual boundary in
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the retinal image, which may sometimes be an early, subtle sign of damage . Examples

of shallow cup region and punch-out optic cup is illustrated in Fig. 2.16. Second, image

acquisition from different lighting environments and mixed retina image cameras can

affect the photometric quality, transform and aspect ratio of the retina image captured.

Although some of these changes can be compensated by normalization and filtering, they

may also introduce new distortions and affect the image contents.

Figure 2.15: Extent of optic cup excavation and its effect in pallor appearance
variation. -

Viewpoint Perspective The optic nerve is a three dimensional structure and projects

different appearances when observed at different viewing angles or when seen in different

field of capture (ETDRS Field 1 - Optic Disc Centered, Field 2 - Macula Centered).

In general, when the optic nerve is being assessed, the Field 1 image is used, while

a Field 2 image is used to appraise the state of the macula. In addition, viewpoint

perspective variation may result from a common population condition known as tilted

optic nerve [130], where the optic nerve exits the eye at an oblique angle, compared to

the normal optic nerve which exits the sclera at a 90 ◦ angle. Fig. 2.17 shows instances of

these images. The challenge of optic cup viewpoint perspective invariance thus, requires

additional known information (eg. inferring degree of tilt) and this complex task can

be towering if good generalization is required as a model across all other unseen image

instances.
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Figure 2.16: Variation of Pallor Intensity. - (Top Row) Examples of a shallow and
diffused cup pallor region. (Bottom Row) Examples of a ’punched-out’ optic cup.

Figure 2.17: Viewpoint perspective. - (Top-Left) Field 2 image captured image.
(Top-Right) Field 1 image of the same subject. (Bottom) Example of tilted optic nerve.
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Occlusion Similar to object and human-based recognition, distortion and misrepresen-

tation from occlusion can lead to a degradation of visual appearance and affect the task of

optic nerve assessment in retinal fundus imaging. In particular, if the key salient features

of the optic cup boundary are occluded, the performance of the localization algorithm

may also be affected. Examples of possible occlusion in this domain are media opacity

from cataracts, artifacts from image acquisition or from pre-existing medical conditions.

Fig. 2.18 shows the effects of media opacity on the appearance of the optic nerve.

Figure 2.18: Challenges in Occlusion. - (Top) Media opacity artifacts from image
acquistion. (Bottom) Effects of cataracts on the visual appearance of the optic nerve.

2.3.2.2 Related Works

In this section, some of the noteworthy works and trends in this field will be discussed and

highlighted. Optic cup detection in digital retinal fundus photography can be broadly

classified along two imaging strategies based on multiview images [137, 8, 53] or single
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Figure 2.19: Close-up Appearance of the Optic Cup - (Left) In RGB. Note that
the blood vessels are more prevalent in the nasal sector. (Right) Green Channel of the
Optic Cup. This channel is most commonly used as the pallor has the best contrast.

images [51, 70, 133, 120, 45, 54, 139, 27]. For each image strategy, the methods can be

further classified based on their approaches. This is summarized in Table 2.3.

Multiview image strategies utilize depth information obtained from stereo geometry

setups, which can be fixed (stereo images)[137, 8] or estimated [53]. In stereo images,

pixel depth information is calculated by modeling the fixed geometric configuration. This

is then used to detect the cup, such as by pixel classification [8]. Xu and colleagues [137]

proposed using depth information derived from stereo images, local gradient magnitude,

shape as global information and a smoothing term as the energy function for their de-

formable model. Stereo information has also been estimated by calculating the motion

displacement field from sequential images [53], and cup boundary points were estimat-

ed by detecting depth discontinuity points. Although multivew methods can provide a

measure of depth, there are additional acquisition requirements, such as the need for cus-

tomized stereo retinal fundus camera hardware setups, or the need to ensure consistent

image quality in sequentially acquired images.

Single retinal images are more straightforward to acquire and analyze for screening,

although the lack of depth information necessitates the use of other visual indicators

[51, 70, 133, 120, 45, 54, 139, 27] for optic cup detection.

One of the most heavily used visual indicator is the optic cup pallor (also known as

optic cup color), (see Fig. 2.19). In [51], Inoue et al. described a method to segment
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the optic cup in the green channel by a discriminatory analysis of the optic disk pixels.

A threshold level that separates the histogram of the ROI image into two classes is

determined by the maximum value of the decentralization between the two classes. In

another pallor-based only approach, Hatanaka et al. directly obtained the cup-to-disk

ratio in [45] from a detected optic disk, by averaging vertical pixel intensity profiles within

the optic disk on the blue channel to determine the cup area edge. Beyond using intensity

profiles and histograms, Liu et al. [70] and Wong et al. [133] have also demonstrated

methods using level sets for optic cup segmentation.

In an earlier work to introduce domain knowledge into optic cup segmentation, Tan

et al. have proposed using a probabilistic Gaussian mixture model to regulate the tem-

poral optic cup boundary and fuse the result with variational level set for optic cup

segmentation [120]. Although level set-based methods have the advantages of being in-

dependent from contour parametrization, and are adaptable to topological changes, they

are highly susceptible and influenced by noise, poor image gradient contrast and muddled

background. As such, faced with a shallow temporal cup boundary, the level set segmen-

tation can be vulnerable to leaks and shocks in this zone. Using domain knowledge of

the optic cup, the proposed approach generated a closer-fitting temporal cup boundary

compared with [70]. Instead of regulating the temporal region of the optic cup, Joshi et

al. [54] propose a symmetric optic cup shape domain prior. The authors proposed to

first perform blood vessel removal, followed by cup detection in the LAB space using an

empirically determined dynamic threshold. This returns a thresholded cup pallor. To

avoid the blood vessels at the nasal cup boundary, the authors assume that the optic

cup will be symmetric. The nasal optic cup boundary was then formed by mirroring the

temporal optic cup boundary around the vertical axis of symmetry of the optic disc.

Another significant work incorporating domain knowledge for cup segmentation is by

the use of vessel kinking. Wong et al. first put forward the idea of automatic detection of

vessel kinks [132], which are the bendings of small vessels as the vessels traverse from the

optic disc to cup. Vessels around an estimated cup boundary are extracted and identified

using a Bayesian rule, comprising of edge and wavelet prior probability coefficients. The

kinks are then identified if the directional angular changes of the vessel edges exceed 20◦.

An ellipse fitting approach is then used on these identified points to obtain the optic cup
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boundary. However, the approach was only tested on a small dataset of 27 images. In

another recent work, Yin et al. [145] proposed the domain prior of finding the Nasal Side

Vessel Wall (NSVW), to reduce the effects of blood vessel interweavement, and integrate

with an Active Shape Model (ASM) approach for optic cup segmentation.

Recently, learning-based methods have gain popularity in the tasks of medical image

segmentation. A machine learning framework was proposed in [139] by Xu et al. to detect

the optic cup. Features extracting color difference between cup and disc regions, as well as

the elliptical shape of the optic cup are derived from each sliding window. These features

are then selected based on group sparsity constraint and fitted in a non-linear kernelized

Support Vector Regression (ε-SVR). The final cup region is then obtained by applying

non-maximal suppression. The authors note that their method is computationally heavy

(7.2 minutes per image) and has a limitation in detecting large optic cup as the non-

maximal suppression suppresses the rim of the cup.

Table 2.3 is a summary of the current noteworthy optic cup segmentation methods

in this literature review.
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Table 2.3: Taxonomy of Existing Optic Cup Segmentation Methods

Method Year Strategy Pallor-based Domain Prior Machine Learning Techniques Used
Inoue [51] 2005 Single 3 7 7 Discriminatory Threshold
Xu [137] 2007 Multi-View 3 7 Unsupervised Circular Hough Transform, Modified GVF Snake, K-

Means Clustering
Abramoff [8] 2007 Multi-View 3 3 Supervised Color Opponency Gaussian Filter Bank, Gabor wavelet,

Principle Component Analysis (PCA), k-Nearest Neighbor
(kNN) Classifier

Wong [133] 2008 Single 3 7 7 Threshold, Variational Level-Set, Ellipse Fitting
Liu [70] 2009 Single 3 7 7 Threshold, Variational Level-Set, Ellipse Fitting
Wong [132] 2009 Single 3 3 7 Threshold, Variational Level-Set, Canny Edge Detector,

Gabor wavelet filter, Bayesian Rule
Hatanaka [45] 2010 Single 3 7 7 Vessel Erase, Intensity Profile, Averaging, Smoothing,

Threshold
Tan [120] 2010 Single 3 3 7 Variational Level Set, Expectation Maximization, Convex

Hull
Joshi [54] 2010 Single 3 3 7 Threshold A Channel of LAB, Morphology operator, In-

tensity Mapping, Dynamic Threshold, Symmetric Cup
Xu [139] 2011 Single 3 3 Supervised Sliding Window Feature Extraction, Group Sparsity Con-

straint, Support Vector Regression, Non-maximal Sup-
pression

Yin [145] 2012 Single 3 3 7 Active Shape Model, Frangi Filter,Nasal Side Vessel Wall
(NSVW), Convex Hull

Joshi [53] 2012 Multi-View 3 3 7 Circular Hough Transform, Chan-Vese (CV) Active Con-
tour Model, Image registration by Discontinuity Displace-
ment Field, Threshold A Channel of LAB, Morphology
operator, Intensity Mapping, Dynamic Threshold, Confi-
dence Value Mapping, Radial Smoothing.
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2.4 Evaluation Dataset

An introduction of the dataset and metrics used for evaluation in this work is presented.

The optic cup segmentation methodologies are evaluated on the ORIGA-light database, as

it is the only public dataset, to our knowledge, that consists of the manual demarcation

of the optic disc and cup boundaries by clinical experts.

2.4.1 ORIGA-light

The ORIGA-light (An Online Retinal Fundus Image Database for Glaucoma Analysis

and Research) [147] database is an online depository which contains of 650 annotated

retina images(482 normal and 168 glaucoma cases) from the Singapore Malay Eye Study

(SiMES) [35]. This is a population-based cross-sectional study of the Malay ethnic group,

aged 40-79, on the prevalence of and risk factors for age-related eye diseases in Singapore.

This study was conducted from August 2004 to June 2006. The glaucoma images are

distributed amongst the dataset, (i.e. They are not all grouped together in the front or

at the end of the dataset). The first 325 images from the dataset, forms Set I, denoted

as SetI and the rest forms Set II, denoted as SetII .

The color fundus images were acquired using a 45◦ FOC Canon CR-DGi retinal

fundus camera with a Canon 10D single-lens reflex camera (SLR). The color images

were captured at an image resolution of 3072 x 2048 pixels and saved in JPEG format.

The pathological signs in each image are graded following a clinical glaucoma grading

protocol defined by the Centre of Eye Research, Australia. The grading information for

each image is shown in Table 2.4, with manual segmentation of the optic cup and disc

boundaries by trained grading professionals from the Singapore Eye Research Institute

using ORIGA-GT, an image grading tool provided for manual segmentation and ground-

truth building. To perform the grading, the user manually defines points along the optic

disc and cup boundaries, and an ellipse, based on Direct Least Square Fitting Algorithm

(B2AC) [34], is used to fit the input points. Each image was manually assessed by the

grading team after discussions and mutual agreement among the team. To avoid bias

in the grading processing, no clinical information was provided at the time of grading.

Samples of the retinal images in the dataset, as well as the ground truth optic disc and

cup, are shown in Fig. 2.20.
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Figure 2.20: Sample Images and Ground-Truth in ORIGA-light dataset - (From
Left to Right) Original ROI image (800x800) in the dataset, Ground-truth Optic Disc Mask,
Ground-truth Optic Cup Mask, Ground-truth overlaid on original image.
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Table 2.4: Clinical Grading Information in ORIGA-light dataset. Table adapted
from [147]

Annotation Term Details
Eye Left eye / Right eye
Image Quality Disc presented / No Disc presented
Gradability Gradable / Not Gradable
Field Retina image taken in Field 1 - 6
Disc Size Large Disc / Middle Disc / Small Disc
CDR Cup-to-Disc Ratio, automatically calculated
ISNT rule Follow ISNT rule / Not follow ISNT rule
RNFL Retinal Nerve Fiber Layer thinning / Not thinning
Notch Yes / No
Disc Haemorrhage Presented / not presented
Alpha PPA Presented / not presented
Beta PPA Presented / not presented
Comments Additional information

2.5 Evaluation Criteria

2.5.1 ORIGA-light Evaluation Criteria

The following are the criteria recommended for evaluation of the ORIGA-light dataset in

[147]. Here, Edt refers to the detected cup region, Egt refers to the ground-truth labelled

ellipse, Ddt is the vertical height of the detected cup, Dgt is the vertical height of the

ground-truth cup, DD is the vertical height of optic disc.

2.5.1.1 Non-overlap Ratio (m1)

The non-overlap ratio, m1, measures how well the segmented area matches with the

clinical segmentation. It is calculated by measuring the error between the number of

pixels in the intersection of segmentation and reference, divided by the number of pixels

in the union of segmentation and reference. A perfect segmentation returns a value of 0

and a value of 1 means there is no overlap at all between the segmentation and reference.

The highest possible value for m1 is 1.

m1 =1− area(Edt
⋂
Egt)

area(Edt
⋃
Egt)

, (Eq. 2.1)
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2.5.1.2 Absolute Area Difference (m2)

The absolute area difference, m2, gauges the extent of the segmentation away from the

clinical ground-truth. This metric is measured by the absolute difference in area between

the segmentation and reference, divided by the area of the reference. This value is 0

when there is a perfect segmentation, and larger than zero otherwise. It is important to

note that the perfect value of 0 can also be obtained for a non-perfect segmentation, as

long as the area of that segmentation is equal to the area of the reference. Note that

there is not maximum value for this criteria.

m2 =
|area(Edt)− area(Egt)|

area(Egt)
, (Eq. 2.2)

2.5.1.3 Absolute CDR Error (δ)

The absolute CDR error (δ) measures the CDR variation between the vertical height of

the cup segmentation and cup reference, divided by the vertical height of the reference

disc. This value is 0 when a perfect segmentation is met, and larger than zero otherwise.

It is important to note that the perfect value of 0 can also be obtained for a non-perfect

segmentation, when both the area of that segmentation and area of the reference are

equal.

δ =
|Ddt −Dgt|

DD
(Eq. 2.3)

2.5.2 Superpixel Classification Evaluation Criteria

Here, TP and TN refers to the true positives and true negatives, and FP and FN

denotes the false positives and false negatives, respectively.

2.5.2.1 Sensitivity (P+) and Specificity (P−)

Sensitivity, defined here as (P+), measures the ratio of actual positives which are correctly

identified, while specificity, defined here as (P−), is the proportion of actual negatives

which are correctly identified.

P+ =
TP

TP + FN
,P− =

TN

TN + FP
(Eq. 2.4)
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2.5.2.2 Balanced Accuracy (P̄ )

Balanced Accuracy is a performance measure commonly used to evaluate a classifier’s

performance on a imbalanced dataset. It is defined as

P̄ =
P+ + P−

2
(Eq. 2.5)

2.5.2.3 Receiver Operating Characteristic Curve (ROC)

The receiver operating characteristic curve is a plot of the true positive rate(Sensitivity)

against the false positive rate(1 - Specificity) at different classifier threshold settings. The

top left corner of the plot is considered the most desirable point, where the false positive

rate is 0, and the true positive rate is 1. This plot is often used in binary classifications

to study the prediction output of a classifier. The area under the ROC curve (AUC) is

a measure of the overall performance of the classifier. The maximum value of the AUC

is 1, indicating a perfectly accurate classification, while an AUC of 0.5, depicted as a

diagonal line from the left bottom to the top right corner of the ROC curve, indicates

pure chance or random guess.
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Chapter 3

The Detection and Use of Vessel
Kinking to Improve Optic Cup
Detection in Digital Retinal Fundus
Images

3.1 Introduction

The detection of the optic cup is important for glaucoma assessment. However, it is

difficult to visually discern the optic cup using only color information from digital retinal

fundus images. A clinical phenomenon known as the pallor-cupping discrepancy describes

an under-estimation of the cup boundary if only color information is used. In the early

stages of glaucoma, enlargement of the cup may progress ahead of that of the area of

pallor. A potential pitfall in interpreting optic nerve head cupping is to look only at the

area of pallor and miss the larger area of cupping [101]. A better estimation of the optic

cup boundary can be obtained from an assessment of kinking of vessels at the temporal

cup margin, which is an accepted clinical practice [52].

This chapter first describes the motivation of using visual features of vessel kinks,

which are small vessel bends along the cup margin. Next, a framework, which automat-

ically detects and integrates the kinking of vessels with color information, is introduced

to improve optic cup detection.
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Figure 3.1: (Left) Optic disc showing kinking of vessels (black arrows). (Right) Illustration
of vessel kinking.

3.1.1 What are Vessel Kinks?

Kinking refers to the mechanical bending of small vessels as they traverse across the

surface of the neuroretinal rim and fall into the depression of the optic cup. When

projected onto a 2D plane, such as on a single retinal image, the vessel trajectory can be

observed to bend or ’kink’ across the optic cup boundary, indicating a change in topology

due to the optic cup excavation. An illustration is provided in Figure 3.1.

3.1.2 Prior Works

The detection and use of kinks for optic cup detection is a recent approach and there are

few published methods in literature. It is also a challenging task to detect small vessel

kinks due to its size and visibility. Wong et al. [133] first reported an approach where

kinks are detected through localized patch generated from a preliminary cup boundary

obtained by level-set. A morphological approach is then used to detect vessel kinks

around the cup estimate boundary. However, the approach is highly reliant on the initial
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cup estimate from pde-based level-set segmentation, which is susceptible to ‘leaks’ or

‘shocks’ during curve evolution.

A similar implementation by [55], described the use of r-bends, or kinks, by first

identifying vessels via trench detection, and subsequently, r-bends were detected along

the detected vessels in using a prescribed region-of-support approach. Multiple steps,

which involved selecting only r-bends within a specified circular fit were used and a

polynomial fitting was employed to determine the optic cup boundary. However, vessel

bendings were used as the only indicators of the optic cup. Although the exclusive use of

kinks may be ideal in some cases, in practice, often, there are some limitations, such as

when insufficient kinks are detected, or when poor vessel visibility precludes the detection

of vessels for kinks analysis. Under these circumstances, it may be useful to integrate

kinks with other sources of cup information.

3.2 Methodology

A framework is proposed to detect and use the kinking of vessels, which are topological

indicators of the optic cup depression, in order to improve optic cup detection. Unlike

previous approaches, in this work, vessel kink detection is performed 1) independent of

cup estimate, and, 2) solely focused on the temporal region of the cup, where the cup

boundary is usually weaker. Furthermore, the detected vessel kinks are used as key points

to integrate with color (or pallor) information.

The motivation of this approach is based on the observation that 1) the automatic

detection of the optic cup boundary using prior approaches often fail, and ‘leak’, in the

temporal region (Fig. 3.1(Left)), where the boundary is usually the weakest; 2) exclusive

use of vessel kinks to segment the cup boundary without integration of color information

is not reliable, especially in cases where small vessels are absent or when their visibility

is poor.

A disc image is first used to detect vessel edges using a support vector machine

classifier with hybrid edge and wavelet features. Piece-wise probing is used to detect

locations of kinks along the vessels. Optic cup feature points are integrated using these

detected kinks and color-based indicators of the optic cup boundary. The set of feature

points are then combined using a convex optimization-based minimum volume enclosing

ellipse to obtain the optic cup boundary. The overall system is presented in Fig. 3.2.
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Figure 3.2: Schematic diagram of the proposed system. The main contributions are
indicated in the colored boxes.

3.2.1 Vessel Trajectory Detection

The main objective of this step is to detect the trajectory of the blood vessels. Instead

of performing accurate vessel segmentation, the goal is to detect kinking along vessel

edges. This reduces the complexity of the problem, since it reduces the dependence on

granularity of the bank of pre-defined matched filters on the vessel caliber.
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A three-step approach is proposed to detect plausible vessel edges with trajectories.

First, vessels are enhanced using Gabor wavelets; Second, vessel edges are extracted using

the Canny edge detector, which helps to link short vessel segments; Third, features are

extracted from local patches for vessel edge classification.

3.2.1.1 Vessel Enhancement using Gabor Wavelets

Often, a main challenge in the detection of vessel kinks is the poor visibility of small

vessels. Existing edge detection methods do not perform well, in general, as they require

extensive tuning to balance the sensitivity of under-detection (i.e. little or no vessel

edge responses) and over-detection (i.e. noise). Instead, the use of Gabor wavelets is

investigated to perform two functions, a) enhance the visibility of vessel edges, and b) as

an analyzing wavelet for vessel edge classification. The two-dimensional Gabor wavelet is

suitable as it offers the advantages of tuning specific frequencies for vessel enhancement

and noise filtering, and directional selectivity. Previous application of Gabor wavelets

was used to perform supervised multi-scale retinal vessel segmentation [113]. An in-

troduction of the two-dimensional Gabor wavelets used in this work is described here

for completeness and better understanding. Letting coordinates in the real plane <2 be

represented by x = [x y]T , the Gabor wavelet is defined as

ψ(x) = ejk0(x)e−
1
2
||Ax||2 (Eq. 3.1)

where k0 = [kx ky] represents the frequency of the complex exponential, A = diag[ε−
1
2 1],

and ε ≥ 1 represents the wavelet elongation factor.

The wavelet transform is defined as

W (x) = max|T (b, θ, a)| (Eq. 3.2)

where

T (b, θ, a) = C−
1
2a−1

∫
ψ∗(a−1r−θ(x− b))f(x)d2x (Eq. 3.3)

and b is the displacement, r−θ the rotation operation with angle θ and a is the dilation

parameter which controls the scale of the transform, and C is a normalizing constant. The

44



Chapter 3. The Detection and Use of Vessel Kinking to Improve Optic Cup Detection
in Digital Retinal Fundus Images

Table 3.1: Selected Parameters for Gabor Wavelet Implementation

Parameter Symbol Value
Elongation ε 1
Dilation a 5
Rotation Angle θ 0◦ − 170◦ (default)
Rotation Angle Stepsize ∆θ 10◦ (default)
Complex Exponential Frequency k0 [0, 3] (default)

wavelet transform T is performed across the retinal image, and the maximum response

of the transform is taken as θ varies from 0◦ to 170◦, where ∆θ = 10◦.

In tuning the wavelet transform, the elongation parameter, ε, and dilation (or scale)

parameter, a, are adjusted to enhance vessel edges. The scale of the transform controls

how well fine vessel edges and contours are enhanced; having too small a value results in a

noisy grainy image whereas a large value of a misses the small vessels. Similarly, a larger

value for the elongation term , ε, emphasizes the linearity of vessels, at the expense of

neglecting vessel curvature. In order to enhance vessel edges for kinks detection, a number

of experiments were conducted and it was found empirically that values of a = 4, . . . , 10

and ε = 1, . . . , 10 were suitable. In this work, values of a = 5 and ε = 1 were found to

offer optimal enhancement, in terms of preserving the curvature trajectory and increasing

contrast against non-vessel elements in the transformed image. A value k0 = [0, 3] is kept

as the low frequency component for complex exponential. This setting is recommended

and consistent with the experimental findings in [113], as it was found to enable the

wavelet transform to present strong responses for pixels associated with blood vessels.

Various settings of a and ε are shown in Fig. 3.3. In the enhanced image, it can be seen

that the thick vessels are enhanced comparably to thinner vessels, due to the scaling

parameter, a. The final parameters used in this implementation is listed in Table. 3.1.

3.2.1.2 Vessel Edge Detection

Next, the enhanced vessel edges are detected from the wavelet transform image by apply-

ing a Canny edge detector. The characteristics of Canny edge detection are particularly

suitable for the detection of vessels traversing the optic cup boundary. Differences in the

appearance of the background as the vessel crosses from the disc to the cup result in a

variation of the visibility of vessels. Using a single threshold for vessel edge detection,
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Figure 3.3: Different settings for a and ε for the enhancement of thin vessels. (Top-
Left) RGB Image, (Top-Centre) a = 20 ε = 4, (Top-Right) a = 1 ε = 4, (Bottom-Left)
a = 4 ε = 100, (Bottom-Centre) a = 4 ε = 0.01, (Bottom-Right) a = 5 ε = 1, The set
of parameters leading to the transformed image in the lower right corner was used. For
illustration purposes the intensity ranges for each image was stretched to [0, 255].
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Table 3.2: List Of Features For Vessel Edge Classification

Feature Description
Rµ(Ej), Gµ(Ej), Bµ(Ej) Mean color along edge Ej
Rσ(Ej), Gσ(Ej), Bσ(Ej) Std deviation of color along edge Ej
Wµ(Ej) Mean wavelet response along edge Ej
Wσ(Ej) Std deviation of wavelet response along edge

Ej
G∇(Ej) Mean gradient response along edge Ej

such as in the Prewitt detector, may fail to detect the vessel edge, especially within the

optic cup. Furthermore, the emphasis on linking of edge segments in the Canny algo-

rithm is advantageous to obtain a longer and more complete run of the vessel course for

kinking analysis.

In this work, the Canny edge detection algorithm is applied on W (x) to generate a

set of edges. A mask based on the detected optic disc is applied to remove edges outside

the optic nerve head. To address any vessel bifurcations, branching pixels along each

edge are selected if they have more than two 8-connected neighbours. These pixels are

used to separate the edge into the component branches. Any branching segment less

than 50 pixels, equivalent to 250 µm, is removed. If more than one possible path exists

for the segment, only the path with the least deviation from the prior points, considered

inwards from the optic disc rim, is kept while other paths are discarded. This reduces

the likelihood of detecting vessel bends due to minor vessels splitting off from the vessel

under consideration. A consolidated set E of p edges E = {Ej}j=1,...,p is formed from

the prior edge detection after applying these constraints, where Ej = {ek}j=1,...,q denotes

the set of connected pixels for each edge.

3.2.1.3 Feature Extraction

In order to differentiate vessels from non-vessel edges in E , the following features (see

Table 3.2) are extracted to build a discriminative learning model for vessel edge classifi-

cation.

(i) Mean Color: Vessel color is a distinctive exploitable feature of vessels within the

optic nerve head. Compared to other optic nerve structures, vessels have higher

red content, lower green and blue content.
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(ii) Std Dev of Color: This is based on the observation that the deviations of color

along a vessel edge should be minimal compared to non-vessel edges.

(iii) Wavelet response: The magnitude of the wavelet transform represents the response

of the attuned vessel enhancement kernel. The response should be high and rela-

tively consistent for vessels.

(iv) Gradient: Mean modulus of the derivative of the edge pixels in the green color

space domain. The green domain is chosen as it offers the highest contrast among

the other RGB color spaces for vessels. This has also been observed in previous

works. The gradient, G∇(Ej), is defined as,

G∇(Ej) = mean(||∇ek||)k=1,...,q (Eq. 3.4)

where ∇ek represents the partial derivatives in the vertical and horizontal directions

for each pixel in the j-th edge. To avoid bias and over-representation, the features were

normalized to the range [0, 1], with zero mean and unit variance.

These features are chosen empirically based on visual observations to describe the

blood vessels, through different feature representations such as color, wavelet responses,

and gradient to differentiate them from spurious noise and/or image artifacts. The image

gradient from the red, blue and grey channel was investigated, however, the vessels were

found to have the largest contrast in the green channel. This finding is also largely

consistent with many literature works such as in [112, 49, 36, 113] performing retinal

vessel segmentation. The mean color, mean wavelet response and mean gradient response

each offers highly distinctive characteristics to represent the vessel edges. However, as

the image quality from the population-based ORIGA-light dataset is not consistent, the

combination of these set of features from Table 3.2 offer a better discriminative model to

be learnt in order to classify vessel edges across different image conditions.

3.2.1.4 Local Patch Generation and Vessel Edge Classification

In order to improve the detection of vessel edges belonging to smaller vessels, the extent

of edges under consideration are limited to patches of size 128x128 pixels, which is about
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Figure 3.4: Three stage patch generation for vessel edge detection

1
3

the size of the optic disc, to consider local vessel information. The use of such a patch-

based approach avoids biasing the features towards the larger vessels, which could lead to

under-detection of the smaller temporal vessels. These patches are formed in three stages

as illustrated in Fig. 3.4. In the first stage, non-overlapping patches are defined within

the optic disc boundary. These patches are limited to the temporal side of the optic

disc, where the smaller kink-containing vessels have a higher occurrence. In the second

stage, additional patches are defined with their horizontal centres at the intersection of

the patches in the first step to enhance vessel continuity. In the final stage, patches are

defined on the remaining regions not encompassed in the prior steps. The edges within

each patch are considered independently of other patches, and a 9-dimensional feature

vector for each within-patch edge candidate is generated using only local information

within that patch. Within-patch edges are classified, and detected vessel edges from a

patch are merged with other detected vessel edges and morphologically thinned to obtain

the final vessel edge trajectories.

3.2.2 Kinks Detection

A two-step approach is proposed to identify kinking along vessel edges using piecewise

probing. The high variability of the shape of the vessel, in particular considering the
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Figure 3.5: Simulated vessel edge(red), approximated straight line segment(blue), and
kink point(yellow) are detected at (Left) γ = 60◦, (Middle) γ = 100◦ and (Right) γ = 159◦.

presence of sharp kinking points, leads to difficulties in parametrically modeling the

vessel trajectory.

Instead, a non-parametric approach is adopted to analyze the vessel course. First,

each vessel segment course is subsampled as a series of connected straight lines segments,

with a 5 pixel deviation tolerance. This allows isolated edges and spurs to be removed,

while the general vessel course still remains sufficiently represented. Next, for each vessel

segment, the angle between each two connected lines are then calculated using γ =

cos−1 (
~U ·~V
‖U‖‖V ‖) where ~U and ~V represents two connected vessel line segment. Kink points

are identified when the 0◦ < γ < 160◦. A illustration of detected vessel kinks using

simulated data is shown in Fig. 3.5.

3.2.3 Optic Cup Feature Point Integration

In the detection of the optic cup in practice, a combination of color and kinking infor-

mation is used to accurately determine the extent of the optic cup. To form a base-

line estimate from previous color-based methods, a system of reference is used, based

on clinical nomenclature: Inferior(I), Superior(S), Nasal (N) and Temporal(T). Each

of these extrema locations represent an extent of the optic cup boundary defined at

N, S, T, I = {0, π
2
, π,−π

2
} with respect to the optic disc centre. Using a previous method

[134], a close estimate of the I, S and N regions can be obtained due to a more obvious

cup boundary in those areas. However, due to the lack of a distinctly, visible cup edge
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Figure 3.6: (Top-Left) Original Image. (Top-Right) Small vessel enhancement using
wavelet transform. (Bottom-Right) Detected vessels (in blue), and vessel kinks points (in
green) along vessels; (Bottom-Left) Optic cup feature points (in blue) comprising kinks and
optic cup color extrema .

in the temporal side, optic cup segmentation tends to undersegment (segmentation leak

towards the temporal edge of the optic disc) temporally and is unreliable in this region.

In order to circumvent this problem, only the inferior, superior and nasal extents are

extracted to form a baseline estimate of the extents of the optic cup in the corresponding

region and discard the temporal extrema point.

The detected kinks which are located in the temporal region are added to the remain-

ing I,S,N extrema points to generate a set of optic cup feature points P = {xm}m=1,...,M ,M ≥

4, which incorporate color boundary and contour information. Fig. 3.6 illustrates the pro-

cess flow used to obtain the integrated optic cup key feature points.
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3.2.4 Optic Cup Boundary Detection

To integrate these key points and obtain the optic cup boundary, Wong et al. [131] have

previously applied the direct least-squares ellipse-fitting method from Fitzgibbon et al.

(B2AC) [34]. This was motivated by clinical observation that the shape of the cup tends

to be an ellipse. However, direct ellipse fitting can lead to erroneous skewed results,

particularly if the points in P are not well distributed. Instead, a more suitable approach

based on convex optimization is proposed.

Since these key points can be sparse, incorrectly extracted and not adequately repre-

sentative of an ellipse, using direct least-squares fitting [34] to provide the best ellipsoidal

boundary fit for every point in a sparse and noisy set of point distribution can often lead

to problems of bias and overfitting [97]. Instead, a minimum volume enclosing ellipse

(MVEE), that encapsulates the optic cup feature points, is proposed to obtain the optic

cup boundary. The advantage of using MVEE is that the method focuses on determining

the ellipse which best encompasses all points in the point distribution with the least vol-

ume or, in this case, area. This is, in contrast, to least squares method, which attempts to

find the ellipse which minimizes the distance for all points. In this section the minimum

volume ellipsoid based on [59, 16, 79, 125] will be introduced.

Generally, for x ∈ <n, a full-dimensional ellipsoid EQ,c in <n, with center c ∈ <n, and

shape matrix Q ∈ Sn++ is defined as:

EQ,c = {x ∈ <n|(x− c)TQ(x− c) ≤ 1} (Eq. 3.5)

with the volume of EQ,c, denoted as Vol(EQ,c), is given as

Vol(EQ,c) = v0 det Q−
1
2 (Eq. 3.6)

where v0 is the volume of the unit ball in <n. Suppose the set S ⊆ <n is bounded and

has a non-empty interior. The minimum volume ellipsoid, also known as the Löwner-John

ellipsoid [59], that contains the set S is parameterized as

ε = {x| ||Ax+ b||2 ≤ 1} (Eq. 3.7)
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where A ∈ Sn++. To compute the minimum volume ellipsoid, where Vol(EQ,c) is

proportional to det A−1, the problem can be expressed as:

minimize
A,b

log det A−1

subject to supx∈S ||Ax+ b||2 ≤ 1
(Eq. 3.8)

where A ∈ Sn++ and b ∈ <n. Though the objective and constraint functions are both

convex, the constraint function is only tractable in certain special cases [16]. In this work,

the problem of finding the minimum volume ellipsoid that encloses S = {x1, x2, . . . xk} ⊆
<n will be considered. More specifically, the key interest is determining the minimum

volume ellipsoid encloses the convex hull of S. Geometrically, this is equivalent to finding

the minimum volume ellipsoid that circumscribes the polyhedron conv{x1, . . . , xk}.
The convex optimization problem of computing the minimum volume ellipsoid can

now be expressed as:

minimize
A,b

log det A−1

subject to ||Axi + b||2 ≤ 1, i = 1, . . . , k
(Eq. 3.9)

where A ∈ Sn++.

The ellipsoid method was solved by Khachiyan [59] to demonstrate the polynomial

time algorithm for linear programming. During the past decades, extensive research

efforts have been developed on computing the MVEE. Kumar and Yildirim [62] provide

more applications and solutions to the MVEE problem for point sets. In [62], they

categorized these solutions by first-order algorithms [59], second order algorithms using

interior point methods [118] and a fusion of both [59]. In this paper, the framework

and implementation of [79], to solve for minimum volume ellipsoid based on [62, 118] to

improve on the work of Khachiyan [59], will be used. The assumption for the formulation

guarantees that the minimum volume ellipsoid is full-dimensional [118].

Since S is not centrally symmetric, a ”lifting” to S to <n+1 is defined in [118] as

S ′ := {±q1, . . . ,±qn},where qTi =

[
xi
1

]
; i = 1, . . . , k. (Eq. 3.10)

The minimum volume ellipsoid (MVEE) of the original set S can be recovered from

the intersection of H with MVEE of the lifted points, qi by,
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MVEE(S) = MVEE(S ′) ∩H where H = {(x ∈ <n+1 : xn+1 = 1} (Eq. 3.11)

Since S ′ is centrally symmetric, MVEE(S ′) is centred at the origin. This observation

provide the ”lifted” primal optimization problem, whose solution is used to compute

MVEE(S) :

( P(S)) minimize
M

- log det M

subject to qTi Mqi ≤ 1, i = 1, . . . , k
(Eq. 3.12)

M ∈ <(n+1)x(x+1) is symmetric and postive definite

where M ∈ <(n+1)x(x+1) is the decision variable.

The Lagrangian dual of (P(S) ) is equivalent to

(D(S)) maximize
u

log det V (u)

subject to eTu = 1,

u ≥ 0,

(Eq. 3.13)

where the linear operator V (u) =
∑n

i=1uiqiq
T
i , u ∈ <n is the decision variable and e

is the vector of ones.

Let u∗ denote the optimal value of u, and U∗ denote the matrix with diagonal entries

of u∗. Let P denote the n x k matrix with points p1, . . . , pk being the columns of the

matrix. Finally, the dual optimal solution obtained is

MVEE(S) = EQ∗,c∗

EQ∗,c∗ := {x ∈ <n|(x− c∗)TQ∗(x− c∗) ≤ 1}
(Eq. 3.14)

where

Q∗ :=
1

d
(PU∗P T − Pu∗(Pu∗)T )−1, C∗ := Pu∗ (Eq. 3.15)
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Figure 3.7: Comparison of MVEE and B2AC on set of generated typical sparse key points
(Left) Minimal difference when points are well-distributed and representative. (Centre) and
(Right) show an over-fit by B2AC when the point distribution is not representative and a
more robust recovery for MVEE.

3.2.4.1 ‘Toy’ Example

To illustrate the utility of MVEE over B2AC for optic cup feature points, distributions

of synthetic data based on some typically observed locations of extracted key points are

generated. Both MVEE and B2AC algorithms were applied to these distributions and

the ellipsoidal plots are shown in Fig. 3.7. It can be seen that when the points are

well distributed and representative, both B2AC and MVEE techniques produce the same

ellipse. However, when there are variations in the distribution of the optic cup feature

points, the B2AC approach may result in an ellipse which extends beyond the feature

points. This is because the B2AC uses a least-squares error measure as the algebraic

criterion for ellipse-fitting, as opposed to MVEE, which approximates the ellipse based

on the area defined the optic cup feature key points. As such, in contrast, the MVEE

approach is able to extract a more acceptable and stable optic cup contour, and is more

suitable for this implementation.

Computationally, from [59, 125], it is shown that for small dimensions, in this im-

plementation d = 2, the computation complexity of MVEE can be solved in O(dO(d)m),

where d denotes the dimensional space, and m denotes the number of points. For B2AC

, its computation complexity of is O(6m). As both MVEE and B2AC are used to fit s-
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Table 3.3: Cup localization performance comparison

Data SetI SetII Overall
Evaluation criteria m1 m2 δ m1 m2 δ m1 m2 δ

KinkMVEE 0.397 0.525 0.138 0.394 0.500 0.135 0.396 0.512 0.136
KinkB2AC 0.447 0.680 0.205 0.432 0.600 0.185 0.440 0.640 0.195
IET [51] 0.566 2.291 0.427 0.555 2.46 0.462 0.560 2.376 0.445
JET [54] 0.492 0.97 0.242 0.554 1.128 0.300 0.523 1.049 0.271
LS [131] 0.476 0.702 0.140 0.471 0.663 0.157 0.474 0.683 0.149

Error reduction to [51] 29.86% 77.08% 67.68% 29.00% 79.67% 70.78% 29.29% 78.45% 69.44%
Error reduction to [54] 19.31% 45.88% 42.98% 28.88% 55.67% 55.00% 24.28% 51.19% 49.82%
Error reduction to [131] 16.60% 25.21% 1.43% 16.35% 24.59% 14.01% 16.46 % 25.04% 8.72%

parse optic cup feature points, where m ≤ 20 in practice, the differences in computational

efficiency is not immediately obvious.

3.3 Experiments

3.3.1 Comparison of methods

The performance of this approach is evaluated on the ORIGA-light dataset, as mentioned

in Section 2.4.1. The evaluation metrics tested using non-overlap ratio, m1, absolute area

difference (m2), absolute CDR error (δ) are detailed in Section 2.5.1.

KinkMVEE denotes the full implemented approach, while KinkB2AC refers to the

use of the direct least squares ellipse fitting on the detected boundary key points. LS

denotes the baseline level-set approach by [131]. In addition, existing methods for optic

cup segmentation in non-stereoscopic fundus images developed by Inoue et al. (IET) [51]

and Joshi et al. (JET) [54] were implemented and tested on the same test dataset. To

ensure that differences in the optic cup segmentation were due to methodology and not

to errors in optic disc segmentation, the ground-truth optic disc was used as the common

disc segmentation and starting point for all the methods evaluated.

The results of the experiments are shown in Table 3.3. In general, the overall per-

formance metrics suggest that the proposed system of optic cup detection by integrating

vessel kinks with color information improves upon the detection results when only color-

based methods are used. Comparing IET, which uses a discriminative threshold-based

approach, with JET, which uses regional domain prior, it can be observed that, in general,
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Figure 3.8: Sample segmentation results (in blue) of different approaches and ground-
truth(in red). From Top : IET [51], JET [54], LS [131], KinkB2AC, Proposed Method -
KinkMVEE. [Best viewed in color]
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approaches using domain priors usually offers higher accuracy against similar approach-

es without prior knowledge. Comparing JET with LS, it is observed that the level-set

based approach offers an improved accuracy, due to its use of local gradient informa-

tion. Furthermore, from Fig. 3.8, it is clear that due to the assumption that the cup

is symmetric, JET tends to overestimate the cup boundary on the nasal and temporal

regions. Comparing LS to KinkB2AC, it can be observed that the use of vessel kinks as

key point regulators reduces both the m1 and m2 errors. Lastly, comparing KinkB2AC

with KinkMVEE, there is a significant accuracy improvement in all three metrics. In

particular, it is observed that using the minimum volume enclosing ellipse (MVEE) to

represent the same sparsely distributed key points for optic cup boundary, results in a

more robust optic cup estimation.

3.4 Model Training and Computation Speed

3.4.1 SVM Model Training

To train the SVM model parameters used in vessel edge segment classification, images

from 5 sample eyes of varying degrees of optic cup visibility were selected. Using the

proposed approach, a set of 146 training edges were selected based on patches generated

from these eyes. To avoid a bias of the support vectors, the training set is composed

of 75 vessel edges and 71 non-vessel edges. The radial basis function (RBF) is used as

the kernel function. The edge set was used to train the SVM model using a grid search

in a leave-one-out cross-validation approach, and the optimal parameters for C and γ

produced an overall cross-validation accuracy of 93.8%. This model was used for the rest

of the evaluation for vessel edge classification.

3.4.2 Computation Speed

The computation speed of the proposed method was also evaluated using MATLAB

R2013b, using on a quad-core 3.4GHz CPU and 12GB RAM. The Gabor wavelet blood

vessel enhancement requires 0.38s, and on average, vessel edge detection and feature

extraction took 6.01s. The vessel edge classification requires 0.53s, and kinks detection

took 1.9s. The proposed minimum volume enclosing ellipse (MVEE) procedure required
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only 0.5s. On average, each image requires 9.3-10.8 seconds to be processed, and is largely

dependent on the number of vessel edges detected for each image.

3.5 Discussion

Although experimentally, it was demonstrate that the use of vessel kinks can help improve

the optic cup detection, however, it should be noted that there are some limitations and

considerations for the effective use of kinking for cup boundary detection. Like many

existing optic cup detection methods, there is a need for an accurate detection of the

optic disc as a form of initialization for the optic cup detection. Furthermore, in this

large database testing, there were no kinks detected in 98 out of 650 images (15.08% ).

In such a scenario, the approach defaults to using only color information from a single

method. This can be combined with other color-based methods.

Even for images with vessel kinks, there were several instances of detection failure.

The failure to detect vessel kinks can be attributed to two main aspects, 1) the inability

in automatically detect blood vessels reliably, and 2) the absence of physical vessel kinks

in the temporal region. In the case of the former, it was found that the proposed blood

vessel extraction approach results in inferior performances in poor quality images, such

as the examples shown in Fig. 3.9. As highlighted in Sec. 2.3.2.1, these images are

examples of occlusion, whereby the media opacity can occur during image acquisition or

as a pre-existing medical condition. In the latter case, as shown in Fig. 3.10, there were

not physical vessel landmarks present.

A recent approach for optic cup detection using kinking was reported by Joshi et al.

[55]. In that approach, kinks were the only feature used to determine the cup boundary.

In their discussion section[55], it was reported that the largest obstacle faced in the cup

detection was mainly attributed to difficulties in finding reliable visual feature extrac-

tion. In such cases, their approach will fail to return a cup region. This is a common

limitation in such boundary-based approaches, where the lack of reliable boundary fea-

tures keypoints contributes to a less consistent result. In contrast, in the same scenario,

our proposed approach has the added advantage of additional color information as a

supplement. However, the limitations of reliable boundary features keypoints still exists.
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Figure 3.9: Images with low contrast, arising from media opacity. [Best viewed in color]

Figure 3.10: Absence of physical blood vessel landmarks in the temporal region. [Best
viewed in color]

Another key consideration to improve the detection of kink feature landmarks, is

to obtain a sufficient size dataset of manually labeled vessel kinks ground-truth. This

would also largely help in the accurate modeling of automatic kinks detection with fewer

parameter tuning, as well as, provide further possible insights on how outlier vessel

kinks may be removed. The lack of interpretation of useful vessel kinks and their inter-

relationship, is still a limitation in the existing key point boundary-based approaches.
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3.6 Summary

A system of using vessel kinks as regulators of the optic cup boundary from non-stereo

fundus images has been proposed. This is based on the clinical protocol that kink in

vessels within the optic disc are useful as markers of a change in topology due to the de-

pression of the optic cup. In this approach, kinking detection is focused in the temporal

side of the optic disc, where these kinks are most informative. This is in contrast to other

color-based indicators which are unreliable due to the reduced visibility of the optic cup

in this region. Detected kinks and canonical points were used as feature points to regulate

the cup boundary using a convex optimization-based minimum volume enclosing ellipsoid

technique. This technique approximates the cup ellipse based on the area bounded by

these key points and produces a more stable result. Tested on the ORIGA-light clinical

dataset, it is experimentally demonstrated that the use of vessel kinks can help improve

cup detection accuracy. However, it is important to note that, while such key points

boundary-based approaches follows the clinical protocols and provide explicit visual evi-

dence, these naturally occurring vessel kinks are missed in more than 15% of the images.

Although there are some limitations in such boundary-based key point approaches, this

is an important step towards the implementation of a more robust automatic system for

the screening and early detection of glaucoma using retinal fundus photographs.
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4.1 Introduction

In the previous chapter, a boundary-based approach using a vessel kink detection model

was presented and a review of its strengths and limitations were discussed. The main

design consideration of the boundary-based approach was to simulate and model the

clinical practice of identifying clinical visual cues for the optic cup boundary. Although

it was shown experimentally to improve the cup localization results, several challenges

remain. The main challenges faced were the occasional absence of vessel kinks and the

inability to automatically detect and interpret these key points reliably when they were

present. This limited the performance of the general approach. Furthermore, the lack of

manually labeled vessel kinks ground-truth and meticulous parameter tuning and post-

processing for accurate modeling increases the complexity of designing a robust key point

boundary-based approach. These limitations are common across most boundary-based

approaches.

In this chapter, an alternative novel region-based approach is investigated. The pro-

posed method uses unsupervised learning, with the help of domain priors to find hidden

structure in unlabeled data for optic cup localization. In contrast to previous supervised

approaches [139, 8], this framework requires no training procedure. To the best of the
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author’s knowledge there are no other earlier works that performs unsupervised learn-

ing to localize the optic cup. Therefore, this chapter presents a significant contribution

towards learning-based methods for optic cup localization.

4.2 Methodology and Contributions

Unsupervised learning is a type of machine learning, where, learning is performed on the

raw input data without labels, optimization criterion(s), or feedback. Its main goal is to

find patterns within the input data and build a representation. Examples of unsupervised

learning are dimensionality reduction and clustering. Unsupervised learning is a powerful

machine learning technique, and some successful applications includes face recognition

[126], object recognition [33], human actions activity [84] and natural language processing

[42].

In this work, the state-of-art SLIC (Simple Linear Iterative Clustering) superpixels

are used to obtain region segments from the retinal image. Features are extracted from

each superpixel unit, and the feature representations are generalized using clustering. As

the clusters are not labeled, domain priors are used to provide initialization for further

label propagation and refinement.

The contributions here are threefold. First, a new domain prior, optic cup origin is

identified. The optic cup origin is derived from the physiological understanding that the

central retinal vessels traces its origin from the optic cup before extending to the rest of

the retinal. Second, the features of the optic nerve head are extracted from superpixels,

which are obtained from low-level grouping and have more natural and descriptive fea-

tures than pixel based techniques. Third, the domain knowledge comprising optic cup

origin and cup pallor, and the extracted features from superpixels are then used to drive

a similarity-based label propagation and refinement scheme for the optic cup localization.

The framework of the overall approach is illustrated in Fig. 4.1.

4.2.1 Superpixel Segmentation

Instead of pixel-level classification, labels are assigned for each superpixel segment for

efficiency. This bottom-up segmentation of superpixels not only reduces the complexity

63



Chapter 4. Domain Prior Based Superpixel Propagation for Unsupervised Optic Cup
Localization

Figure 4.1: Flowchart of the proposed methodology.

Figure 4.2: Region segments obtained using superpixel segmentation. Each region seg-
ment is compact and uniform, while adhering to the image boundaries.

of our problem, but also summarizes image redundancy and provides highly desirable

spatial and local boundaries adhering properties.

Superpixels are acquired using the SLIC (Simple Linear Iterative Clustering) algo-

rithm [9] which groups pixels by adapting a k -means clustering approach. Each SLIC

superpixel corresponds to a cluster in a five-dimensional color (CIELAB) and image lo-

cation plane space. The advantages of using the SLIC algorithm to perform superpixel

segmentation are 1) its efficiency to generate compact, nearly uniform superpixel seg-

ments with O(N) complexity, and, 2) only requiring a single parameter, which is to

specify the number of superpixels. In this work, the number of superpixels is specified
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to be 1152, which is about 550 pixels per superpixel segment. A example of the typical

segmentation results is shown in Fig. 4.2.

4.2.2 Multi-Scale Blood Vessel Extraction

To reduce the effects on rim/cup classification, a multi-scale difference-of-closing vessel

extraction algorithm is used. This is first introduced by [102]. A morphological closing

operation is defined as dilation followed by erosion. The formulations for the dilation,

erosion and closing operations are as follows:

Dilation: A⊕B = A1(x, y) = sup
i,j∈b

(A(x− i, y − i) +B(i, j)) (Eq. 4.1)

Erosion: A	B = A2(x, y) = inf
i,j∈b1

(A(x− i, y − i) +B1(i, j)) (Eq. 4.2)

Closing: C ′ = (A⊕B2)	B2 − (A⊕B1)	B1 (Eq. 4.3)

where A is the input image, B and B1 are the structuring elements used for dilation

and erosion respectively.

The advantage of this method is its flexibility in quick parameter tuning to extract

only the thicker blood vessels, and the vessel extraction is simple and fast, requiring only

morphological operations. In the implementation, a disk structuring element of radius of

16 pixels and 3 pixels for the dilation and erosion operations are used respectively. As

the images are processed at superpixel scale, a blood vessel mask is generated based on

superpixels that overlap at least 70% of the extraction vessels. Figure. 4.3 demonstrates

some of the results using the multi-scale blood vessel extraction technique.

4.2.3 Optic Cup Origin Prior - Central Retinal Vessel

Based on discussions with clinical graders, it was understood that a portion of the central

retinal vessel trunk that bends inwards, towards the centre of the optic disc, is considered

as part of the optic cup. This is derived from the physiological understanding that the

central retinal vessels traces its origin from the optic cup before extending to the rest of

the retinal.
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Figure 4.3: Left: Green Channel of the input image. Middle: Extracted Blood Vessel.
Right: Generated blood vessel mask.
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Figure 4.4: Illustration of optic cup origin with neighborhood prior

In order to estimate this optic cup origin automatically, the vessel junctions are first

localized from extracted skeletonised vessels in the optic nerve. The optic cup origin

point is then determined based on a weighed mean of these vessel junctions. The weight

assigned to the c-th vessel junction is denoted as wc = (1−
√(

xc
a

)2
+
(
yc
b

)2
)2, with a and

b representing half of the optic disc width and height respectively. A strong optic cup

origin region prior is defined by using the superpixels that lies within the vicinity of the

optic cup origin point, excluding the blood vessels. Examples of the proposed automatic

optic cup origin detection are shown in Figure. 4.4. Once the strong optic cup origin

region prior is established, the rest of the superpixels are defined as unlabeled regions.

4.2.4 Superpixel Feature Representation

In this proposed approach, positional, color, texture and appearance information, which

are relevant to characterise the cup and the rim, are extracted from each superpixel.

In each i-th superpixel, the feature vector fi consists of the euclidean distance to the

optic cup origin center (di), mode RGB colors (ri, gi, bi), mode LAB colors (li, ai, bi),

color moments of the HSV colors (1st to 4th moments) (CH
i , C

S
i , C

V
i )[116], image mo-

ment invariants RGB colors M I
i and statistical texture descriptors from RGB channels
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Table 4.1: Features used

Features Description Dimension
Positional di 1

Color (ri, gi, bi), (li, ai, bi), (CH
i , C

S
i , C

V
i ) 18

Texture TRi , T
G
i , T

B
i 18

Appearance M I
i 21

(TRi , T
G
i , T

B
i ) (average gray level, average contrast, measure of smoothness, third mo-

ments, uniformity and entropy). In total, for each superpixel, 58 dimensional features

are extracted. A summary of these features extracted is found in Table. 4.1. Features

are then standardized to reduce the influence of scale differences among features, which

makes the values of each feature in the data have zero-mean and unit-variance.

4.2.5 Label Initialization and Propagation

A similarity-based label propagation is introduced to propagate superpixel labels using

measured feature similarity between strong prior superpixels and unlabeled ones. This

returns the initial label l of a unlabeled superpixel, defined as

li =
1

N

N∑
j=1

si,j, (Eq. 4.4)

where si,j = e
−
di,j
σf is the similarity between i-th unlabeled superpixel and the j-th strong

prior superpixel and σf regulates the feature noise sensitivity. The correlation distance

between the i-th unlabeled superpixel and the j-th strong prior superpixel di,j is defined

as

di,j = 1− (fi − f̄i)(fj − f̄j)′√(
fi − f̄i

) (
fi − f̄i

)′√
(fj − f̄j)(fj − f̄j)′

, (Eq. 4.5)

where f̄i = 1
n

∑
t f

t
i and f̄j = 1

n

∑
t f

t
j .

After each superpixel get its initial label, a threshold θp = 0.5 is used to determine

the binary cup labels, i.e. li ≥ θp is cup (1), otherwise is rim (0).

4.2.6 Label Refinement

The initial labels of superpixels are obtained by using optic cup origin prior and feature

similarity measurement. Inspired by the bag-of-words method [32], a k-means based label
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Figure 4.5: k -Means clustered region segments.

refinement is applied to the feature similarity measure before using pallor prior to refine

the labels of each superpixel.

4.2.6.1 K-Means Clustering based Refinement

For all the superpixels within a given disc, excluding the ones corresponding to blood

vessels, a k-means (k = 10) clustering is used to quantify each superpixel, Fig. 4.5. This

quantization allows the cup segments to have variety of representation and is used as a

local codebook. Using the k-means cluster index of each superpixel, the refined label l′

of the i− th superpixel is defined as

l′i = αli + (1− α)[ki ∈ Ω], (Eq. 4.6)

where ki is k-means index of the i-th superpixel, Ω is the complete set of indexes of

strong prior superpixels, [·] is a logical expression, its value is 1 when the condition is

true, otherwise it is 0, i.e., [ki ∈ Ω] = 1 when ki ∈ Ω, otherwise [ki ∈ Ω] = 0, and α is a

weighted parameter.
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4.2.6.2 Pallor Prior based Final Refinement

In this work, pallor prior is utilized as a conservative initial estimate of the cup area.

As the optic cup pallor appears as the brightest region within the optic nerve head,

empirically taking each superpixel as the unit, the top pG = 30% of the highest intensity

(denoted as Gmax) in the green channel (in RGB color space) for the cup pallor, as well

as the top pL = 25% of the highest lightness (denoted as Lmax) in the lightness domain

(in LAB color space) are used. The green channel is used as for two main reasons, it has

the largest dynamic range among the RGB channels, and the optic cup appears most

distinct. The Lightness domain of the LAB is used as it is perceptually uniform and

closely agrees with the human perception of lightness. The cup pallor prior label, lPi of

the i-th superpixel, is formed by fusing both thresholding results in the two color channels,

calculated as lPi = (lGi + lLi )/2. The final label of the i-th superpixel is l
′′
i = [(l

′
i+ lPi ) > 0].

4.2.7 Region-based Ellipse Fitting

In order to obtain a unique cup region to integrate and represent the superpixel segments,

a simple ellipse-fitting method is used. In this implementation, the ellipse-fitted optic

cup is represented by its centre and elongation parameters,(u, v, υ, ν).

4.3 Experiments

This approach was validated on the ORIGA-light [147] dataset, of 650 images. Image set

SI and image set SII both consists of 325 images each. The experiments are evaluated

using the same criteria as [139] - non-overlap ratio (m1), relative absolute area difference

(m2), absolute CDR error (δ). Details regarding the dataset and evaluation metrics can

be found in Section 2.4.1 and Section 2.5.1 respectively.

4.3.1 Comparison to Prior Arts

The pixel based level-set segmentation method of [131] iteratively seeks the local gradient

minimum within the optic disc and assigns pixels within the ellipse-fitted level-set contour

as the cup region. The state-of-the-art sliding window based method [139] identifies a
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Table 4.2: Cup localization performance comparison

Data SI SII Overall
Evaluation criteria m1 m2 δ m1 m2 δ m1 m2 δ

Full using Corr 0.317 0.360 0.100 0.327 0.316 0.112 0.322 0.338 0.106
Full using Eucli 0.349 0.397 0.120 0.359 0.335 0.131 0.354 0.366 0.126
Full w/o Prop 0.433 0.405 0.180 0.463 0.415 0.215 0.448 0.41 0.198
Full w/o Pallor 0.397 0.355 0.120 0.397 0.347 0.131 0.397 0.351 0.126
Full w/o kRef 0.384 0.425 0.122 0.392 0.349 0.139 0.388 0.387 0.131
Full w/o LRef 0.462 0.399 0.140 0.485 0.395 0.163 0.474 0.397 0.152
Pallor Only 0.677 0.644 0.221 0.715 0.675 0.266 0.696 0.660 0.244

pixel based [131] 0.476 0.702 0.140 0.471 0.663 0.157 0.474 0.683 0.149
window based [139] 0.268 0.315 0.091 - - - - - -

Relative error reduction to [131] 33.4% 48.72% 28.57% 30.57% 52.33% 28.66% 32.07% 50.51% 28.86%
Relative error reduction to [139] -18.28% -14.29% -9.89% - - - - - -

cup as a whole, by ranking all the cup candidate regions obtained with sliding windows

and produces a single detection result. In contrast, the proposed region-based approach

utilizes domain prior from the optic cup origin as initial cup labels, which are then

propagated, using a similarity-measure, and refined to identify the cup region.

As shown in Table 4.2, compared with the pixel based method [131], the proposed

approach reduces the cup localization error significantly in all three evaluation criteria.

Unlike the pixel-based method [131] which considers only local gradient information,

the proposed method is more superior as it exploits additional regional features and

domain priors, making it less susceptible to local optimal conditions. Compared with

the window based method [139], the proposed method had a minor trade-off in cup

localization accuracy. However, it is worth mentioning that training samples are needed

in [139] and the listed results are the average of both training and testing samples.

4.3.2 Comparison of methods within proposed framework

(Full using Corr) and (Full using Eucl) denotes the fully proposed method using corre-

lation distance and Euclidean distance as their similarity metric respectively; (Full w/o

Prop) refers to the proposed framework excluding the similarity-based propagation stage;

(Full w/o Pallor) excludes the pallor prior based refinement stage; (Full w/o kRef ) ex-

cludes K-Means clustering; (Full w/o LRef ) excludes the label refinement stage; and

(Pallor Only) uses the pallor prior solely to localize the optic cup.

From the results listed in Table 4.2, it is observed that the correlation distance measure

achieves better accuracy than the Euclidean distance for label propagation in this specific
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Figure 4.6: Final segmentation (blue) against manual ground-truth segmentation (red).

application. Comparing (Full using Corr) and (Full w/o Prop) shows the effectiveness

of propagation stage, and the results of (Full w/o LRef) demonstrate the advantages of

Label refinement, using the combination of both K-Means and Pallor prior, to reduce

localization errors. It can also be concluded that the K-Means based refinement aids more

in reducing m2 and δ errors, while Pallor prior is more beneficial in reducing m1 error.

Due to the complementary effect of both refinements, their combination has an add-on

effect to further improve the overall optic cup localization. A sample of the experimental

results from the proposed unsupervised method is shown in Fig. 4.6.
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Figure 4.7: Cup Detection with different k values for clustering.

4.4 Parameter Selection and Other Considerations

4.4.1 K-means Parameter Selection

A further examination is done to explore the performance and stability of the proposed

approach with different settings. For clustering, the number of clusters, k, is a primary

parameter which influences both clustering and the refinement process. As shown in

Fig. 4.7, one can observe that the errors become stable and has the best trade-off at

k = 10.

When the number of clusters becomes too little (i.e. k < 10), the size of each clus-

ter region becomes larger. This results in an improvement in the overlap error, m1,

but a higher absolute CDR error (δ), due to ambiguously labeled superpixel segments

being clustered in the same region. Similarly, when (i.e. k > 10), the features in the

oversegmented regions becomes less distinctive, leading to a higher overlap error, m1.

4.4.2 Computation Speed

The computation speed of the proposed method was also evaluated using MATLAB

R2013b, using on a quad-core 3.4GHz CPU and 12GB RAM. The morphological blood

vessel extraction process takes 0.85s, and superpixel segmentation requires 0.67 sec. The

73



Chapter 4. Domain Prior Based Superpixel Propagation for Unsupervised Optic Cup
Localization

Table 4.3: Features comparison Cup localization performance

Data SI SII Overall
Evaluation criteria m1 m2 δ m1 m2 δ m1 m2 δ
Full Approach* 0.307 0.378 0.092 0.308 0.297 0.104 0.307 0.337 0.098
Full Approach 0.317 0.360 0.100 0.327 0.316 0.112 0.322 0.338 0.106

Relative error reduction 3.15% -5.00% 8.00% 5.81% 6.01% 7.14% 4.66% 0.30% 7.55%

most computationally heavy module in this approach, is the feature extraction for each

superpixel, which requires 14.96 secs. In addition, k -means requires 1.4 secs, and the

label initialization and propagation took 0.46 secs. On average, each image requires

19.41 seconds to be processed.

4.4.3 Alternative Features

Recently, a supervised superpixel-based intra-image strategy is proposed in [138] with

state-of-the-art accuracy in cup localization error. In this section, an investigation of

the performance of this proposed unsupervised learning framework using the histogram-

based features exemplified in the intra-image[138] approach is experimentally validated.

The details of these features are documented in Sec. 5.2.2.

(Full Approach* ) describes the proposed approach using the alternative features de-

scribed in [138], while (Full Approach) denotes the proposed approach using the features

described in Sec. 4.2.4. As can be observed from Table. 4.3, in general, comparing the

use of different features in the same unsupervised framework, the alternative features

proposed in [138] provides an overall relative error reduction in all three evaluation met-

rics. In particular, the new features offers a performance improvement with an overall

relative error reduction of 4.66%, and 7.55% in non-overlap ratio, m1, and absolute CDR

error, δ. A possible reason for this could be attributed to the higher dimension of the

new features (i.e. 768 dimension vs 58 dimensions), which provides better separation

capabilities. This experiment also highlights the flexibility of the proposed framework in

incorporating new and more discriminative features.

4.5 Summary

Unlike the boundary-based approach in Chapter 3, in this chapter, a novel unsupervised

learning region-based framework is presented. The motivation of this work is to explore
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the use of learning-based methods for optic cup localization. In this approach, region

segments are obtained using superpixel segmentation, which reduces image redundancy

and allows regions to be learned and classified. Using domain priors extracted from the

primary structures of the optic disc, a new optic cup origin domain prior is proposed to

provide initialization for the cup labels. A similarity-based propagation and refinement

scheme is then used to provide additional contexture information to refine the region la-

bels. An optic cup region is obtained after a simple region-based ellipse fitting operation.

Experimentally, it was demonstrated that the proposed learning-based method is capable

of providing performance accuracy that is comparable to against existing state-of-the-art

image-processing method. In addition, each contribution in this framework is separately

verified and discussed. A further examination on the parameter selections and alternative

features were also reviewed. The latter was provided to highlight the flexibility of this

framework in adopting different types of features.
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5.1 Introduction

Recently, the use of superpixels for feature classification has been widely adopted in reti-

nal imaging for diseases like pathological myopia [140], age-related macula degeneration

(AMD) [135] and glaucoma [121, 138, 24]. In particular, for optic cup detection, the

supervised superpixel-based classification [138] [24] has shown to achieve state-of-the-art

performance against other existing approaches [131][55][144]. In [24], a centre surround

statistics(CSS) feature descriptor based on biological inspired features were used as fea-

tures for a non-linear support vector machine (SVM) to perform the task of optic cup

segmentation. In [138], besides using the general supervised superpixel classification

method, domain prior based on intra-image learning, where each model is learnt from

samples from each test image without pre-labeling, is introduced to overcome the illu-

mination differences between training and testing images. A refinement scheme is then

used to include structural priors and local context for the final cup detection to further

boost its performance. However, the approach assumes a CDR ranging between 0.2 to

0.9, which leads to low accuracy in small and large cup localization. Furthermore, at

larger superpixel scales, this will lead to fewer training samples, thus, affecting the over-

all performance. In Chapter 4, an unsupervised approach[121] is proposed using domain

priors, derived from cup pallor and optic cup origin, together with features extracted
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from superpixels. A label refinement using k-means clustering is then used to achieve the

task of optic cup localization. Nonetheless, the accuracy of the supervised approaches

[138] [24] outperforms the unsupervised method.

In this chapter, two limitations in the existing superpixel-based framework are studied

and identified as the motivation for this work. First, an alternative strategy to reduce the

effects of varying illumination between images is proposed and experimentally validated.

Next, a general multi-scale superpixel classification strategy is proposed to improve the

accuracy and robustness for optic cup localization. This work is build upon the existing

single scale superpixel classification framework in [138] and [121](in Chapter 4), and

incorporated two novel contributions. First, a multiple model selection and integration

scheme using sparse learning is proposed to provide stability in performance variations,

arising from repeated random samples selection of training data. The intuition of sparsity

is that many natural signals are sparse and can be concisely represented when expressed

in the correct basis [18]. Applications employing sparse learning were demonstrated in

data compression[18], object detection [10] and feature selection [83]. Similarly, in this

work, sparse learning is used to concisely select, represent and integrate the multiple

base modes. Second, multiple superpixel resolutions are integrated for better optic cup

boundary adherence and localization. This general framework is also adaptable to other

similar classification-based ocular disease CAD applications.

5.2 Methodology and Contributions

Similar to the setup of the work in [138], a disc image is used as the input image. First,

blood vessels are extracted and the input disc image is enhanced by a contrast normal-

ization scheme. Next, the contrast enhanced image is then segmented into superpixels

and blood vessels which overlap with the superpixels are removed. Features are then ex-

tracted across multiple superpixel scales, and multiple classification models are trained

for each respective scale. To obtain an unique label for each pixel with higher accuracy,

optimal superpixel classification models are selected and integrated using a sparse learn-

ing approach. The final optic cup area is then identified by using an ellipse to enclose

all the pixels predicted as ‘cup’. The framework of the proposed approach is shown in

Fig. 5.1.
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Figure 5.1: Flowchart of the proposed learning framework.
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5.2.1 Pre-processing

5.2.1.1 Multi-Scale Blood Vessel Extraction

Similar to the previous unsupervised learning approach(in Chapter 4), blood vessels are

first extracted using the multi-scale approach proposed by [102]. Details of the approach

and parameters used can be found in Section. 4.2.2. As the images are processed at

superpixels scale, a blood vessel mask is acquired using superpixels which overlap the

extracted vessels by at least 70%.

5.2.1.2 Contrast Normalization

The influence of illumination variances between training and learning images can affec-

t the performance of the trained machine learning models. To reduce these effects, a

pre-processing using histogram stretching is performed. For each RGB channel in a dis-

c image, the image intensities are represented as a histogram and stretched to [0, 255]

to expand the dynamic range and achieve consistency across all the images. This pre-

processing histogram normalization accomplishes two goals, 1) it provides better illumi-

nation alignment for all images, 2) it helps to enhance the contrast between the optic

cup and rim.

5.2.2 Multi-Scale Superpixel Feature Representation

As presented in Section. 4.2.1, SLIC superpixels offers the advantage of reducing the

image redundancy while providing desirable spatial and local boundary adherence prop-

erties. Using a single parameter, the number of superpixel segments can be generated

for an input image.

Experimental studies in [138] demonstrated the effects of different superpixel scales

and their resulting performance accuracy (see Fig. 5.2). In particular, it was found that

larger superpixel segments provides richer and more discriminative features compared to

smaller superpixels, but are prone to over-segmentation in ambiguously-labeled boundary

superpixels. In contrast, smaller superpixel regions offers less distinctive features but are

able to adhere to the cup boundary with greater precision. This trade-off is unavoidable in

a single scale classification framework. Instead of using a “one-size-fits-all” strategy, this

79



Chapter 5. Multi-Scale Superpixel Classification for Supervised Optic Cup
Localization

Figure 5.2: Cup detection errors with different number of superpixels. Figure and caption
is reproduced from with permission from [138].

approach proposes to merge multiple superpixel scales segments to unify their advantages

for better boundary fit.

Using the superpixels as building blocks, features can be extracted to describe each

segment. Examples of features that had been used to represent superpixels in object

recognition and human body segmentation, includes size, shapes, texture, colors, bound-

ary contours, and thumbnail appearances [124, 78]. Following the features extracted in

[138], for each j-th superpixel at superpixel scale Sc (i.e. Sc ∈ {S1, . . . , Sβ}), a feature

vector f cj which consists of position information (coordinates and distance of each super-

pixel centroid with respect to the disc centre) denoted by (xj, yj, ρj), mean RGB colors

(rj, gj, bj) and a 256-bin histogram (hrj , h
g
j , h

b
j) for each R,G,B channel is extracted. The

features are then each normalized to the range of [0, 1] using a L1-normalization of the

histogram, to avoid the effects of magnitude differences between features. Finally, for

each scale Sc, the feature matrix of all superpixels F c can be obtained.

5.2.3 Multi-Scale Superpixel Classification

At each scale Sc, α linear SVM models are trained to predict each test superpixel to be

either disc(-1) or cup (+1). For each test superpixel, with feature f cj , using a pre-learnt

80



Chapter 5. Multi-Scale Superpixel Classification for Supervised Optic Cup
Localization

linear SVM model wc
j at scale Sc, the predicted label can be obtained by (wc

j)
>f cj (i.e.,

the superpixel is classified as cup(+1) when (wc
j)
>f cj ≥ 0 with this pre-learned model,

otherwise it is classified as disc(-1)).

Using a one-time random sampled superpixels with manual labels (determined by an

overlapping ratio with ground truth cup), a base model can be learned using a linear SVM.

However, since one time random sampling only learns a model which represents a small

area in the feature space, its performance may vary significantly. To overcome this bias,

multiple base models can be obtained by repeated random sampling. Furthermore, in

order to avoid unbalanced training data distribution, equal positive and negative samples

are selected for each training round. In total, αβ base models are trained for β scales. At

each scale, the α base models can be used to get α predictions simultaneously without

much additional cost. This is performed simply by concatenating each single model

projection vector wc
j , as columns, to form a projection matrix W c. The prediction labels

for a single scale can then be found by (W c)>F c
j .

5.2.4 Model Integration Strategy

5.2.4.1 Implementation I : Majority Voting

To integrate the multiple base models, a majority voting strategy is included as a base-

line comparison. Although this scheme is known for its simple implementation, it has

been found to be just as effective as other complicated methods. Majority voting does

not assume any prior knowledge on the individual classifiers’ accuracy and requires no

training. In this framework, this strategy is also suitable as the individual classifiers can

be assumed to be independent.

5.2.4.2 Implementation II : Model Selection based on Sparsity Constraint

In the training phases, for each pixel, αβ base models are used to classify it as disc or

cup. To obtain a unique and accurate classification with minimal computation cost, the

following problem is solved:

min
ω

τ∑
a=1

‖la − ω>da‖2
2 + λ‖ω‖1 (Eq. 5.1)
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where da is the αβ predictions from the linear SVM base models and, la is the training

label. The first term is to minimize the prediction error, and the second term is regu-

larized by λ to enforce the sparsity of ω, which means, only a few linear base models

are selected for the unique final prediction for each pixel. In this implementation, the

SLEP [69] toolbox is used to train the integration model. The solution of ω, denoted as

Ω, indicates which base models are chosen to generate the final feature Ds of each pixel,

i.e., the i-th base model is selected when |ωi| > 10−3. A unique integration model Ψ is

then obtained by consolidating the weight parameters of the selected base models in Ω

Likewise, it is worthwhile noting that the majority voting scheme assumes ω = 1
αβ
× 1.

In real applications, only a small number of selected models are used to compute the

intermediate results for making final classification. This allows a boost to the performance

without much additional cost.

5.2.5 Testing Phase

To summarize, in the testing phase, four steps are sequentially performed to obtain the

final pixel-level label from the original image. 1) Preprocessing for blood vessel extrac-

tion and contrast enhancement, 2) Superpixel segmentation, blood vessel removal and

feature extraction at multiple scales, Sc ∈ {512, 1024, 2048}, 3) Using the selected base

models, a feature vector for the s-th pixel, Ds, is formed by concatenating the respective

classification decision values of selected models indicated by ω. 4) The integration model

Ω is then used to assign each pixel with a unique label Ω>Ds.

As the given ground-truth for optic cup segmentation is an elliptical reference [147],

after obtaining the final labels for each pixel, a minimum ellipse that encloses all positive

labeled pixels is computed to produce the final optic cup boundary estimate. Another

major reason to introduce ellipse fitting is to include superpixels lying on the blood vessels

which had been previously removed. Moreover, the use of ellipse-fitting to produce an

accurate single optic cup region has also been widely used and reported in related works

[131, 139, 138, 24, 121]. In this implementation, the ellipse-fitted optic cup is represented

by its centre and elongation parameters,(u, v, υ, ν). This is also consistent with the

previous approach introduced in Chapter. 4. The major steps of the proposed approach

is illustrated in Fig. 5.3. Pseudo codes for both the learning and testing phases can be

found in Appendix. C.

82



Chapter 5. Multi-Scale Superpixel Classification for Supervised Optic Cup
Localization

Figure 5.3: Overview of the major steps in this approach. From Left : Contrast En-
hancement; Multi-scale Superpixel segmentation, vessel removal and feature classification;
Multiple base model training and selection; Model integration and Ellipse-fitting. [Best
viewed in color]

5.3 Experiments

5.3.1 Experimental Setup

This approach is implemented in MATLAB R2013b, using on a quad-core 3.4GHz CPU

and 12GB RAM. A total of 650 2-D fundus photographs from the online clinical dataset
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ORIGA-light [147] were used for the experiments. They were divided in two sets SetI and

SetII , which consisted of 168 images with glaucoma and 482 normal images. Ground-

truth segmentation of the optic cup, provided as an ellipse, were drawn manually by a

team of grading experts. Details on this dataset can be found in Sec. 2.4.1.

In the learning phase, 150 images from image set SetI were used as the training set.

This setting is consistent with [139][138]. A 2-fold cross-validation was performed to

determine the optimal parameters for the linear SVM classifiers by setting the parame-

ters as C ∈ {10−3, 10−2, ..., 102, 103}. Similar to [138], the optimal SVM parameter was

determined to be C = 100, and the remaining models were trained by repeated ran-

dom sampling, using the same optimal regularization parameter. A total of α = 100

models were trained for each superpixel scale, Si ∈ {512, 1024, 2048} . For sparse model

selection, the optimal parameter was chosen from λ ∈ {1024, 2048, ..., 32768} by using

cross-validation.

5.3.2 Evaluation Criteria

As the fundamental basis of this approach is based on superpixel classification, an as-

sessment of the multi-models’ superpixel classification performance, at superpixel scale

precision is performed. Similarly, to evaluate the localization of the unique optic cup

for a given retinal image, the pixel-scale evaluation metrics introduced in Sec. 2.5.1 are

measured.

5.3.2.1 Superpixel Classification - for superpixel scale precision evaluation

ROC curves presents a comprehensive representation to summarize the accuracy of the

superpixel classification predictions of our learning models, where each point on the curve

represents the true-positive rate and false-positive rate.

As the linear models are trained using partial images from image set SetI , Area Under

ROC (AUC) and a balanced accuracy with a fixed 85.0% specificity are assessed on image

set SetII . The details of the evaluation criteria for superpixel classification are introduced

in Sec. 2.5.2
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5.3.2.2 Cup Localization - for pixel scale precision evaluation

Cup localization error is evaluated using the non-overlap ratio (m1), absolute area dif-

ference (m2), and absolute CDR error (δ), as introduced in Sec. 2.5.1

It is worth mentioning that m1 is the only evaluation metric related to

cup localization accuracy. This is also widely used for accuracy evaluation in general

object detection challenges [29]. Absolute CDR error (δ), however, is associated to glau-

coma diagnosis and used in many previous works [139][138][121], thus is also considered

in this work, but m1 is the dominant criteria in the experiments. The absolute area dif-

ference (m2) is tabulated in the final performance comparison table for a fair evaluation

across all previous works.

The experiments using these criterions are carried out on SetI and SetII , and com-

pared with existing state-of-the-art methods. This evaluation is comparable to many

real applications, where the main objective is to localize the unique cup as accurately as

possible to the ground truth. Additionally, the influence of parameters and computation

speed of the overall performance are also reported and discussed.

5.3.3 Experiments to validate motivations

Two sets of experiments were performed to identify two current limitations in the existing

superpixel-based cup localization framework. In the first experiment, the effects of illu-

mination variations between images are examined to verify if the contrast normalization

scheme mitigates these influences. In the second experiment, the consequences of random

sampling of training data, and its influence on the accuracy in optic cup localization are

studied.

5.3.3.1 Motivation 1 : Alternative strategy to reduce illumination variations
in replacement of intra-image learning

In the existing superpixel-based approach of [138], an intra-image learning is proposed

to avoid illumination inconsistencies between training and testing images. Though this

is highly desirable, the approach assumes that each image has a CDR of between 0.2 to

0.9. In most cases, this assumption may be valid, however, in extreme cases of small (C-

DR ≤ 0.2) and large (CDR ≥ 0.9) optic cups, the training samples becomes insufficient.

85



Chapter 5. Multi-Scale Superpixel Classification for Supervised Optic Cup
Localization

Table 5.1: Performance comparison between proposed contrast
normalization and intra-image learning

Overall (SetI & SetII)
m1 δ

Proposed Contrast Normalization 0.263 0.094
No Contrast Normalization 0.287 0.108
Pre-Learned [138] 0.289 0.089
Intra-Image [138] 0.267 0.081

Furthermore, the intra-image learning approach is unable to localize CDR sizes beyond

its assumed range. Instead, a histogram-based contrast normalization approach is pro-

posed, as an alternative to intra-image strategy, to reduce this inter-image illumination

variations.

From Fig. 5.2, it was observed that the cup localization results performs most favor-

ably at superpixel scale 2048. Table 5.1 compares the results when the proposed contrast

normalization approach was adopted and was not adopted within the same experimental

framework. The mean errors of the α = 100 models at superpixel scale 2048 are used

in this experiment for a fair comparison. The results show that the proposed normaliza-

tion pre-processing method improves feature discriminative power, and is able to boost

the overall cup localization performance in m1 and δ. Comparing the implementation

without contrast normalization against the pre-learned approach in [138], a similar m1

performance is achieved with, however, a slightly higher δ. This could be due to the per-

formance variations from the models trained with randomly selected samples. Compared

to the intra-image learning, this approach achieves a relative error reduction by 1.50% in

overlap error (m1) but has a trade-off in 16.0% δ increment, without using the proposed

multiple models and multiple scale fusion strategy. Visually, as shown in Fig. 5.4, the

consistency in the dynamic range from this approach also helps to enhance the contrast

between the optic cup and rim.

5.3.3.2 Motivation 2 : Performance variations of SVM models trained with
random sampled data

As observed in Fig. 5.2, the cup detection error varies at different superpixel scales.

Similarly, it is observed in this experiment that, the cup localization performance varies
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Figure 5.4: Effects of proposed contrast normalization. (Top) Original image, (Bottom)
Contrast normalized images. Finer details of the tissues becomes clearer and distinct.

with different random training data samples. To illustrate these variabilities, a box plot

is computed for m1 and δ errors for all the αβ models in this framework (Fig. 5.5).

To further explore and understand the performance variabilities, 3 measures (classi-

fication prediction accuracy, overlap error m1 on training set and overlap error m1 on

testing set) for all the α training models in the same scale are tabulated. Each model is

ranked according to their respective measures, and sorted according to their prediction

accuracy, Fig. 5.6(Top), and training m1 error, Fig. 5.6(Bottom).

From the two plots, it can be observed that a trained model with high prediction

accuracy does not necessarily result in a high pixel-level cup localization performance,

m1. Likewise, models that perform well in m1 during training, does not produce the best

overall m1 results. However, a trained model with poor prediction accuracy or high m1

training error, often results in weak overall m1 localization performance. This further

highlights the challenges in finding optimal models for accurate cup localization, where

models selected based on high accuracy or low training overlap error does not guarantee

the performance for cup localization in testing.
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Figure 5.5: Boxplot illustrating variance in localization accuracy.

5.3.4 Superpixel Classification Performance

In this section, an evaluation of the trained multi-models’ superpixel classification perfor-

mance for each superpixel scale (S1, S2, S3) is performed. To avoid bias from the training

samples used, the assessment is focused on the 325 images from SetII of the ORIGA-light

dataset.

For clarity, base models from each superpixel scale will be modeled as a single ROC

curve to represent the 100 ROC curves. For each scale, the single ROC curve is found

by calculating the mean of all true positive points at each false positive interval from the

100 ROC curves. The AUC derived from the single ROC curve is also found to be about

the same as the mean AUCs calculated from each base model, as the variances between

each base model’s performance is minimal. Next, similar to our proposed framework

which integrates multiple models, a majority voting scheme, which is simple and has

been shown to be effective in many applications, is used as a baseline comparison. As

the integration model assigns a label for each pixel, in order to obtain a distinct decision

value for a given superpixel segment, an averaging operation on the predicted labels of

all pixels within each superpixel unit is performed. Lastly, the performance of our model

integration approach is also compared.
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Figure 5.6: Rank-sorted performance plots for trained models. Top : Models sorted by
prediction accuracy. Bottom : Models sorted by training m1 error. Trained models of Scale
1024 are shown here. [Best viewed in color]

Results of the superpixel classification performances are shown in Fig. 5.7, 5.8, 5.9

and Table 5.2. It is observed that the classification performances for single model is the
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Table 5.2: Performance of Superpixel Classification

Evaluation Criteria
Superpixel Scale

S1 = 512 S2 = 1024 S3 = 2048

AUCSingleModel 0.950 ± 0.00088 0.955 ± 0.00078 0.957 ± 0.00083
AUCMajV ote 0.948 0.946 0.945
AUCModelSelect 0.957 0.957 0.957

P̄SingleModel(%) 90.163 ± 0.00022 90.726 ± 0.00020 90.935 ± 0.00021
P̄MajV ote(%) 90.992 90.979 91.068
P̄ModelSelect(%) 91.041 91.070 91.157

highest at superpixel scale S3 = 2048, Fig. 5.7, for both AUC and balanced accuracy.

Using multiple models, the Majority Voting scheme, which assigns equal weights to all

trained models, is shown to have improved performances at 85% sensitivity, where the

test samples are easier to differentiate and both the optimal and sub-optimal models have

consistent decisions. This also demonstrates that multiple model integration can improve

the accuracy, as compared to single model approaches. However, in test samples that

are more challenging and ambiguous, the optimal and sub-optimal models have different

decisions. This is evident in Fig. 5.8, where the tail end of the ROC curves starts to taper

at a false positive rate of 0.3, leading to a decrease in overall AUC performance when

compared against single model approaches. Compared to Majority Voting, the proposed

model selection scheme, which selects and integrates optimal models with different weights,

produces consistent predictions for both easy and challenging test cases, thus improving

both AUC and balanced accuracy.

5.3.5 Comparison with existing methods.

The cup localization performance within the proposed framework and against several oth-

er published existing techniques is compared. Majority Voting denotes using the majority

voting integration strategy, as detailed in Section. 5.2.4.1. The mean performance of all

the trained αβ models, and the mean performance of the models in each superpixel scale,

S1, S2, S3 are also evaluated. Other established approaches such as window-based [139],

pixel-based level set [131] and superpixel-based methods (Intra-image [138], Pre-learned

[138], Unsupervised Chap. 4) were also included in this experiment. The evaluation

performance of these methods are listed in Table 5.3.
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Figure 5.7: Superpixel classification performance comparison in terms of ROC curves, at
different scales (S1 = 512 in blue, S2 = 1024 in red, S3 = 2048 in green. Mean performance
of single model.
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Figure 5.8: Superpixel classification performance comparison in terms of ROC curves, at
different scales (S1 = 512 in blue, S2 = 1024 in red, S3 = 2048 in green. Performance of
Majority Voting.
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Figure 5.9: Superpixel classification performance comparison in terms of ROC curves, at
different scales (S1 = 512 in blue, S2 = 1024 in red, S3 = 2048 in green. Performance of
the proposed model integration.
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Figure 5.10: Illustration of localized cup boundary at superpixel scale S1 = 512 (Top-
Left), S2 = 1024 (Top-Right), S3 = 2048 (Bottom-Left), Proposed integration approach
(Bottom-Right). The ground-truth boundary is shown in blue. [Best viewed in color]
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In general, it is observed that the superpixel-based approaches offers a significant per-

formance improvement compared to pixel-based [131] and window-based [139] methods.

Comparing the mean performance of the base models (mean of αβ models, means of S1,

S2 and S3 models) with existing superpixel-based cup localization methods, it can be

observed that the proposed alternative contrast normalization method improves feature

discrimination power and provides an improvement in cup overlap error, m1, but has a

slight trade-off in the absolute CDR error δ.

In addition, the mean performances at each individual scale (S1, S2, S3) was almost

similar. A similar conclusion was made in [138], where it was observed that the cup

localization accuracy is comparable when the size of each superpixel segment ranges

between 80-350 pixels. The misclassification increases when the size falls out of that

range.

Although from Table 5.3, the overall results of the three superpixel scales are similar;

but for a specific test image with comparable m1 results at different scales, the localized

cup boundaries may not appear as identical. The proposed multiple scale fusion, however,

can further reduce the localization error with closer boundary fit. An example of this

can be seen in Fig. 5.10.

Compared with the mean models and existing single superpixel-scale approaches

([139],[138],[121]), the combination of multiple models from multiple scales, as used in

Majority Voting and in the proposed model selection approach, offers an improvement in

cup localization accuracy. This demonstrates that the combination of multiple scales and

multiple models has a complementary effect in reducing localization errors and improving

classification accuracy. However, from Fig. 5.5, it can be observe that individual trained

models have large variances. These performance variations from individual models is

mainly caused by the bias of randomly selected training samples. Multi-model integra-

tion is able to improve localization performance, mainly because it has an equivalent

effect of increasing the training sample density and reducing the sampling bias.

Compared to the Majority Voting scheme, the proposed model selection approach

yielded improvements in both performance criteria. The error reduction is due to the

learnt model selection strategy which is able to select and integrate optimal models

across different scales. This result also suggests that the use of sparse learning does

95



Chapter 5. Multi-Scale Superpixel Classification for Supervised Optic Cup
Localization

reduce redundancy and improve the classification performance. Furthermore, measured

against the current state-of-the-art intra-image superpixel-based method [138], the pro-

posed model selection approach offers robust cup localization with lower or similar cup

localization performance at minimal additional computation cost. An illustration of the

sample results from the experiments is shown in Fig. 5.11.
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Figure 5.11: Sample Results. From Top : Original Image, Contrast Normalized, S1 =
512, S2 = 1024, S3 = 2048, Majority Voting, Proposed Method. [Best viewed in color]
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Table 5.3: Cup localization performance comparison

Data SetI SetII Overall (SetI & SetII)

Evaluation criteria m1 m2 δ m1 m2 δ m1 m2 δ

Proposed 0.238 0.292 0.079 0.259 0.258 0.082 0.248 0.275 0.081

Majority Voting 0.257 0.357 0.088 0.260 0.284 0.084 0.259 0.320 0.086
Mean performance of all αβ models 0.265 0.405 0.097 0.261 0.318 0.089 0.263 0.362 0.093
Mean performance of S1 = 512 models 0.266 0.403 0.097 0.262 0.318 0.089 0.264 0.361 0.093
Mean performance of S2 = 1024 models 0.264 0.400 0.096 0.261 0.316 0.089 0.263 0.358 0.093
Mean performance of S3 = 2048 models 0.266 0.412 0.098 0.260 0.320 0.090 0.263 0.366 0.094

pixel based [131] 0.476 0.702 0.140 0.471 0.663 0.157 0.474 0.683 0.149
window based [139] 0.268 0.315 0.091 N.A. N.A. N.A. N.A. N.A. N.A.
Unsupervised Superpixel based [121] 0.317 0.630 0.100 0.327 0.316 0.112 0.322 0.338 0.106
Pre-learned Superpixel based [138] 0.277 0.314 0.087 0.301 0.285 0.091 0.289 0.300 0.089
Intra-Image Superpixel based [138] 0.265 0.313 0.079 0.269 0.267 0.082 0.267 0.290 0.081

Error reduction to [131] 50.00% 58.40% 43.57% 45.10% 61.09% 47.77% 47.68% 59.74% 45.64%
Error reduction to [139] 11.19% 7.30% 13.19% N.A. N.A. N.A. N.A. N.A. N.A.
Error reduction to [121] 24.92% 53.65% 21.00% 20.80% 18.35% 26.79% 22.98% 18.64% 23.58%
Error reduction to Pre-learned [138] 14.08% 7.01% 9.20% 13.95% 9.47% 9.89% 14.19% 8.33% 8.99%
Error reduction to Intra-Image[138] 10.19% 6.71% – 3.72% 3.37% – 7.12% 5.17% –
Error reduction to Majority Voting 7.39% 18.21% 10.23% 0.38% 9.15% 2.38% 4.25% 14.06% 5.81%
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5.4 Discussion on Parameter Settings

In this section, the influence of the regularization parameter for sparse model selection

and the computation speed of this proposed framework are reviewed.

5.4.1 Sparsity Regularizer λ

Identifying and using only the effective models can provide higher localization precision

with minimal computational cost increase. The role of the regularizer λ, is to penalize

and enforce sparsity on ω for optimal model selection. Fig. 5.12 shows the selected SVM

base models across different superpixel scales, and its associated weights as λ increases.

The influence of different λ settings on the overall performance is shown in Table 5.4.

From Table 5.4, it is observed that λ = 4096 provides the best overall results, select-

ing 6% of the models, roughly 2% at each scale. As λ increases or decreases, the number

of selected models changes. When too few models are selected, the generalization condi-

tion becomes overly strict; conversely, selecting too many models introduces redundancy,

thereby, also significantly affecting the overall localization accuracy.

On closer inspection of Fig. 5.12, it can be observed that the weight of the selected

model(s) in S3 = 2048, is the highest. A similar observation is reported in [138], where a

superpixel of scale 2048 provides the lowest localization errors. However, as demonstrated

experimentally, the linear combination of selected optimal models from multiple scales is

able to enhance the localization performance with higher classification accuracy, provide

better adherence to the optic cup boundary and improved performance stability, with

minimal additional computational costs. Experimentally, it was also noted that these

Table 5.4: Influence of Sparsity Measure

λ
Selected Models

m1 δ
S1 S2 S3 {S1, S2, S3}

1024 8 6 7 21 0.251 0.083
2048 7 7 6 20 0.250 0.082
4096 6 7 5 18 0.248 0.081
8192 7 3 2 12 0.249 0.083
16384 5 2 1 8 0.251 0.083
32768 3 2 1 6 0.253 0.085
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selected models may not perform well in training and testing (in terms of m1 and δ)

individually.
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Figure 5.12: Selected SVM base Models using different Sparsity constraints. The 3 most frequently selected models are
shown for illustration. [Best viewed in color]
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5.4.2 Computation Speed

Computation speed was also evaluated in the experiments. The experimental setup used

is mentioned in Sec. 5.3.1. The contrast normalization process takes 0.12s per image,

while the morphological-based vessel extraction operation required 0.85s. Superpixel

segmentation, using SLIC, is performed in 0.64s for a 400 × 400 image. Training and

testing of linear SVM classifiers is also quick. The most computationally heavy process is

feature extraction for each superpixel and at multiple scales, and the overall computation

time increases in a near linear relation with the number of superpixels. On average, the

overall computation for a given test image takes 27.97s. In comparison, the intra-image

learning in [26], operating using a similar computation hardware, takes 20.2s per image.

In short, this proposed approach provides a gain of 6.74% in cup localization accuracy at

an additional 38.46% increase in computational cost. The improved robustness and accu-

racy in cup localization makes a worthwhile trade-off as increases in computational cost

can be often be addressed by using faster computational hardware and more optimized

algorithm implementations.

5.5 Summary

Based on the state-of-the-art superpixel classification approach, this chapter has present-

ed an optimal model integration approach to robustly localize the optic cup in retinal

images. The framework provides two major contributions. Firstly, motivated by the per-

formance variations due to random selection of training samples, a sparsity-based optimal

models selection and integration solution for robust and stable optic cup localization is

presented. Secondly, the multiple model selection is extended to include multiple super-

pixel scales for better optic cup boundary adherence and richer feature descriptions.

Experimentally, it was demonstrated that this generalized multi-model framework is

able to produce optic cup localization accuracy that is 7.12% more accurate than the

existing state-of-the-art intra-image learning method [138], without a restricted CDR

range of 0.2 to 0.9. It is believed that the proposed framework is general enough to be

adapted to other similar classification-based ocular disease CAD applications.
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Chapter 6

Conclusion and Future Works

This chapter summarizes the research work of the thesis, which is to design and develop

medical image analysis algorithms for optic nerve damage in glaucoma in 2-dimensional

retinal fundus images. This thesis proposes three approaches to segment and localize the

optic cup. To this end, several principal results and conclusions were reached.

6.1 Principal Results

This thesis first introduced a boundary-based technique using vessel kinks as key point

landmarks. Biologically, kinks are vessel directional topological indicators of the optic cup

boundary when vessels traverse across the cup depression. This is a highly recommended

and widely used clinical cue in the clinical assessment protocol for medical doctors and

clinical graders.

Inspired by this, a framework was proposed in Chapter 3 to model the detection of

vessel kinking, together with cup pallor information, in order to improve existing optic

cup detection. Unlike previous approaches[133, 55], in this work, vessel kinks detection

is performed without the influence of an initial cup estimate, and solely focused on the

temporal region of the cup, where the cup boundary is usually weaker. This is also the

recommended grading practice for human graders, so as to reduce cup estimate bias.

The detected vessel kinks and canonical points(from color information) are then used as

boundary feature points to regulate the cup boundary using a convex optimization-based

minimum volume enclosing ellipsoid technique. This technique provides a more stable

result for such boundary-based approach as it approximates the cup ellipse based on the
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area bounded by these key points. A key advantage of the boundary-based framework is

its close modeling relationship with the clinical grading protocol, providing explicit visual

evidence. However, a discussion on the limitations and challenges of such boundary-based

key points approach was also articulated.

This led to the proposal of a novel region-based approach using unsupervised learn-

ing. Drawing from the experience from the prevous work, which requires hand-crafting of

visual features (eg. vessel kink), a hypothesis was set up to investigate the use of learning-

based methods for optic cup localization. In particular, an unsupervised approach was

chosen to perform this task due to its advantages of not requiring training examples,

and its data-driven approach to uncover the underlying structure of the data. In this

approach, region segments are obtained using superpixel segmentation, which reduces

image redundancy and allows regions to be learned and classified. Using domain priors

extracted from the primary structures of the optic disc, a new optic cup origin domain

prior is proposed to provide initialization for the cup labels. A similarity-based propa-

gation and refinement scheme is then used to provide additional contexture information

to refine the region labels. An optic cup region is obtained after a simple region-based

ellipse fitting operation. Tested on the population-based ORIGA-light dataset, it was

demonstrated that learning-based methods is capable of providing comparable and re-

liable performance against existing state-of-the-art image-processing method. This is

likely due to the increased amount of information drawn from feature extraction to bet-

ter represent each region, and cluster similar segments together. Each component in

the unsupervised framework was individually verified experimentally and discussed. It

was observed that the best performance was obtained using the correlation distance as

the similarity metric during the label propagation stage. Additional experimental re-

sults were presented to demonstrate that the performance of the proposed unsupervised

learning framework can be improved if more discriminative image features is employed.

This highlighted the flexibility of the proposed framework and the ease in which it can

incorporate and adapt future research work.

Lately, the use of superpixels for feature classification has been widely adopted in

retinal imaging. In particular, for optic cup detection, the supervised superpixel-based

classification approach proposed in [138] has been shown to achieve state-of-the-art per-

formance. A general multi-scale superpixel classification was proposed, which builds
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upon the single scale superpixel optic cup localization framework in [138] and [121](in

Chapter 4, and incorporated two novel contributions. First, a multiple model selection

and integration scheme using sparse learning was proposed to provide stability in per-

formance variations, arising from repeated random samples selection of training data.

Second, multiple superpixel resolutions were integrated for better optic cup boundary

adherence and localization.

On the whole, the proposed multi-scale multi-model superpixel cup localization frame-

work has demonstrated its ability to produce optic cup localization accuracy that is 7.12%

higher than the current state-of-the-art intra-image learning method [138]. Furthermore,

it is not restricted within a CDR range of 0.2 to 0.9, and offers better boundary adherence,

with robust performance.

It has been observed the supervised learning-based approaches for optic cup local-

ization can produce highly competitive results, compared to the unsupervised approach.

Unfortunately, in order to deliver state-of-the-art performance, ground-truth labels are

required for the supervised learning algorithm to minimize the errors and generate the

resulting learning model(s). In the absence of these labels, such an approach would not

be feasible. This is a common challenge faced in medical imaging applications, where

obtaining sufficient numbers of ground-truth labels for real patient data can be a diffi-

cult and costly affair. Under these circumstances, the proposed unsupervised learning

approach, which is not based on the same assumptions, offers a more practical alterna-

tive that also gives reasonably accurate results. The additional benefit is that with the

flexible framework, the accuracy of the optic cup localization can be further improved if

more discriminative features are discovered and later integrated into the proposed unsu-

pervised learning framework. Even though the proposed boundary-based approach that

uses vessel kinks does not perform as well as the learning-based counterparts, its strength

is that it provides a visual appreciation and interpretation of how and where these key

points are extracted. This offers another form of valuable image-based visual evidence

feedback to medical professionals and such clinically-supported evidence can help make

automated CAD systems more acceptable to clinicians.

Although in this thesis, it is demonstrated that the proposed approaches are effective

for the task of optic cup localization, it is believed that these proposed frameworks are
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also general enough to be adapted to other similar classification-based ocular disease

CAD applications such as, the localization of drusens in Age-Related Macular Degenera-

tion (AMD) and the localization of peripapillary atrophy in degenerative/severe myopia.

While there is still a long way from replicating clinical graders who can cognitively rec-

ognize optic nerve damage, and demarcate the optic cup boundary, under various chal-

lenging settings, the author hope that this thesis has taken a positive step in providing

a solution. In the section below, future works are proposed to further investigate and

improve competency and versatility in this area.

6.2 Future Research Directions

During the course of this research journey, it was found that it would be meaningful

to further investigate and utilize the intrinsic relationship between the different visual

features and clinical clues(domain priors) for glaucoma diagnosis. Techniques for feature

selection, includes minimum-redundancy-maximum-relevance [93], unsupervised feature

learning and deep learning [14, 64], sparse group lasso [81, 13, 73], have shown to be

effective for applications in face recognition, digit recognition, life science and breast

cancer data. However, there has not been any works to investigate, the relationship of

extracted image features with domain priors, for glaucoma diagnosis on retinal images.

The study of this relationship could bring more insights into 1) the overall performance

and discriminative features of automatic glaucoma diagnosis, 2) better interpretation of

clinical glaucoma diagnosis observations, 3) possible useful understanding of physiological

color, size and shape morphology normal and/or glaucomatous optic nerves. Another

possible area of work is to investigate the union of both boundary-based and region-

based techniques proposed in this thesis.

Lately, it has recently been shown in some computer vision applications, e.g. gait

recognition [136] and prostate segmentation [19], that higher accuracy can be achieved

using reconstruction from samples. Motivated by this, a optic cup localization framework

based on local patch reconstruction has been investigated, and preliminary work in this

area is detailed in [141]. In particular, two types of local patches, i.e. grids and superpixels

were used to show the variety, generalization ability and robustness of the proposed

106



Chapter 6. Conclusion and Future Works

framework. However, the performance, in terms of non-overlap ratio, m1, still lacks

behind the multi-scale superpixel classification approach presented in Chap. 5. A possible

future work will be to embed the approach onto the proposed multi-scale superpixel

classification framework.

Another potential research extension will be to explore means to fuse both the pro-

posed (supervised and unsupervised) approaches together into a unified framework. One

such framework is the semi-supervised learning framework. Semi-supervised learning

(SSL) is a technique that attempts to build better classifiers by using large amount of

unlabeled data, together with small amount of labeled data [106, 148]. Often, in medical

imaging, labels or ”ground-truth” requires manual annotation efforts by medical experts,

which can be difficult, expensive and time-consuming to obtain. Semi-supervised learn-

ing addresses this issue by utilizing small(limited) amount of marked(known/annotated)

labels, together with large amount of unlabeled data, and learn a predictor that pre-

dicts future test data better than the predictor learned solely from the labeled training

data alone. Researchers have reported positive performances using SSL-based methods

in extracting diagnoses and investigation results from Electronic Health Records[129],

prediction of cancer patient’s survival rate [12], breast cancer diagnosis [68]. However, in

general, it is widely accepted that unlabeled data is only likely to help if there exists a

link (cluster assumption or manifold assumption) between the marginal data distribution

and the target function to be learnt [110]. Some representative research works in SSL

includes using generative likelihood model [86, 48, 40], low density separation [22, 142],

co-training [15, 50] and multi-view learning [146], and graph-based approaches [149, 71].

A possible direction along the same line will be to investigate a robust graph-based

semi-supervised learning (GSSL) for glaucoma diagnosis. GSSL has been shown to be

effective in 1)scalability to large data, 2) modeling the manifold structures in high dimen-

sional spaces, 3) good performance and ease in implementation. The extension from the

proposed unsupervised methodology fits well with this framework. However, some of the

major challenges in GSSL is 1) to reduce the influence of noisy labels, which can result

in poor graph transduction, 2) imbalanced labelling in the ratio of positive and negative

labels, which may cause a bias during learning [71]. Fergus and colleagues [100] proposed

using probabilistic latent semantic analysis (pLSA) as a prior to filter these noisy labels.
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Lastly, as mentioned earlier, it is often difficult to find sufficient or true exemplary

labels, especially in a screening setup. Unlike supervised approaches where correct labels

are provided, reinforcement learning emphasizes on learning from direct interaction with

the environment using rewards as feedback, without exemplary supervision or complete

models of the environment [119]. Successful applications of RL has been reported in

backgammon [123], cellular telephone network system [111], helicopter control [82], mar-

keting strategies[7] and robotics [47]. Other works in recommending diagnostic tests for

solitary pulmonary nodule (SPN) [31] and segmentation of the prostate in ultrasound

images [103] have also been reported. A possible future direction could be to develop

an online reinforcement learning framework for glaucoma diagnosis. This provides sev-

eral advantages over existing automated retinal image-based glaucoma diagnosis. First,

an online RL framework offers real-time (life-long) learning, which allows the system

to adapt their knowledge and behaviour over time, and reduces the sample complexity

when learning new task [77]. Second, this framework has the ability to explore (learn

new knowledge) and exploit (apply learnt knowledge) its states and actions. Third, it

has the ability to perform sequential decision making using partially observable states

to improve its observability of the environment. Intuitively, the online RL system is

similar to reasoning in human decision making. Due to learning through interaction

with its environment, the algorithm is forced to learn from its own mistakes from the

reward/penalty feedback and can learn a better policy.
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List of Abbreviations

Acronym Definition

ASM Active Shape Model
AUC Area under the (ROC) curve
CAD Computer-aided Diagnosis
CDR Cup-to-Disc Ratio
CT Computed Tomographic

ETDRS The Early Treatment Diabetic Retinopathy Study
GVF Gradient Vector Flow
HRT Heidelberg Retinal Tomograph
IOP Intraocular pressure

ISNT Inferior, Superior, Nasal, Temporal
kNN k-nearest neighbor
MRA Moorfields Regression Analysis

MVEE Minimum volume enclosing ellipse
OCT Optical Coherence Tomography
PCA Principal component analysis
PLSA Probabilistic Latent Semantic Analysis
RBF Radial Basis Function
RGB Red, Green, Blue channels of a color image
ROC Receiver Operating Characteristic Curve
RNFL Retinal Nerve Fibre Layer
RSS Residual Sum of Squares

SD-OCT Spectral Domain Optical Coherence Tomography
SFFS Sequential Floating Feature Selection
SLIC Simple Linear Iterative Clustering

SS-OCT Swept Source Optical Coherence Tomography
SSL Semi-supervised Learning
SVM Support Vector Machines
SVR Support Vector Regression

TD-OCT Time Domain Optical Coherence Tomography
WHO World Health Organization
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Appendix C

Pseudo Codes

Algorithm 1 Domain Prior Based Superpixel Propagation for Unsupervised Optic Cup
Localization

1: procedure Learning and Testing Phase
Input: ROI Image Q

2: Sc ← 1152
3: k ← 10

Output: Localized Cup Region pred cup
4: BV=Blood Vessel Extraction(Q)
5: VJ=Central Retinal Vessel Junction(BV)
6: PR1=Optic Cup Origin Prior Point Region(VJ )
7: IT G=Intensity Thresholding Green Channel(Q)
8: IT L=Intensity Thresholding L Channel(Q)
9: PR2 = (IT G + IT L)/2

10: SP = SLIC Superpixel Segmentation(Q, Sc)
11: F ← {}
12: for j ← 1 : |SP | do /∗ j-th superpixel SPj ∗/
13: fj=Feature Extraction(SPj)
14: F ← [F ; fj]

15: B=k Means(k,F ,Q,BV) /∗ k-means codebook B ∗/
16: for j ← 1 : |SP | do
17: li=Label Init Similarity(PR1,fj,F )
18: l′i=k Means Refinement(li,fj,B)
19: l

′′
i =Pallor Prior Refinement(l′, PR2)

20: pred cup = Ellipse Fitting(l
′′
i ,u,v,υ,ν) /∗ Ellipse fitting ∗/
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Chapter C. Pseudo Codes

Algorithm 2 Multi-Scale Superpixel Classification for Supervised Optic Cup Localiza-
tion - Learning Phase

1: procedure LearningPhase
Input: Training Disc Images Ki (i=1,· · · ,150) with Ground-Truth Cup Masks Ci

2: Sc ← {512,1024,2048}
3: β ← |Sc| = 3

Output: Selected base models Ω, Final integration model Ψ
4: for i← 1 : 150 do
5: Blood Vessel Extraction(Ki)
6: K′i = Contrast Normalization(Ki)
7: for Sc ← {512, 1024, 2048} do
8: SP c = SLIC Superpixel Segmentation(K′i, Sc)
9: Lc = Get Superpixel Label(SP c, Ci)

10: for j ← 1 : |SP c| do /∗ j-th superpixel SP c
j ∗/

11: f cj=Feature Extraction(SP c
j )

12: for Sc ← {512, 1024, 2048} do
13: W c ← {}
14: for α← 1 : 100 do /∗ Base Models ∗/
15: wcα = Linear SVM Training(f c,Lc)
16: /∗ Training with equal positive and negative random samples ∗/
17: W c ← [W c;wcα]

18: ω = Sparse Model Selection(f c,Lc,W c)
19: Ψ← {},Ω← {}
20: for i← 1 : αβ do
21: if abs(ωi) > 10−3 then
22: Ω← [Ω;wi]
23: Ψ← [Ψ;ωi]
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Chapter C. Pseudo Codes

Algorithm 3 Multi-Scale Superpixel Classification for Supervised Optic Cup Localiza-
tion - Testing Phase

1: procedure TestingPhase
Input: Test Disc Image Q

2: Sc ← {512,1024,2048}
3: β ← |Sc| = 3
4: F c ← {}

Output: Localized Cup Region, (pred cup)
5: Blood Vessel Extraction(Q)
6: Q′ = Contrast Normalization(Q)
7: for Sc ← {512, 1024, 2048} do
8: SP c = SLIC Superpixel Segmentation(Q′, Sc)
9: for j ← 1 : |SP c| do /∗ j-th superpixel SP c

j ∗/
10: f cj=Feature Extraction(SP c

j )
11: F c ← [F c; f cj ]

12: pred = Ψ>Ω>F c

13: pred cup = Ellipse Fitting(pred,u,v,υ,ν) /∗ Ellipse fitting ∗/
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