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Abstract

Memory forms the basis of human’s intelligence enabling us to reason and act appropri-

ately based on past experiences. According to the theory of multiple memory systems,

there are two major types of long term memories, namely declarative memory and pro-

cedural memory. Whereas procedural memory refers to the implicit knowledge of per-

forming tasks, declarative memory can be further divided into two related components,

namely episodic memory of specific past experience and semantic memory of concepts

and general facts.

In view of the importance of memory in developing intelligent capabilities, this re-

search aims to study the neuropsychological principles and constraints of the memory

systems in the brain and develop a computational model of the multiple memory sys-

tems. Furthermore, this research aims to embed these memory modules into autonomous

agents so as to improve their decision making and problem solving capability.

To this end, this thesis presents a biologically inspired computational model of mul-

tiple memory systems which are able to learn and co-evolve, in response to a continuous

stream of sensory input and feedback from the environment. Using self-organizing neu-

ral networks as the building block, the multi-memory architecture presents a neurally-

plausible model for each type of the long-term memory systems, including episodic mem-

ory, semantic memory and procedural memory. The model further encompasses a set of

emergent processes, through which the various memory modules may transfer knowledge
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and cooperate with each other, for decision making and problem solving without the use

of a centralized executive control.

Specifically, as part of the multi-memory architecture, the episodic memory module,

based on an extension of fusion Adaptive Resonance Theory (fusion ART) network, ex-

tracts key events and encodes their spatio-temporal relations by creating cognitive nodes

dynamically. The episodic memory, called EM-ART, further incorporates a novel memory

search procedure, which performs parallel search of stored episodic traces continuously.

We present experimental studies, where EM-ART is evaluated based on the encoding

efficiency and recall accuracy. Our experimental results show that EM-ART produces

more robust performance in encoding and recalling events and episodes with incomplete

and noisy cues, compared with prior models of spatio-temporal memory.

Similarly, based on fusion ART, the semantic memory module presents a unified

set of representation and learning methods for various types of semantic knowledge. A

general procedure of memory consolidation is also proposed and implemented, wherein

episodic memory is consolidated and transferred to the more permanent semantic mem-

ory. The declarative memory model, consisting of episodic and semantic memory, has

been embedded into a reinforcement learning agent in a game environment called Unreal

Tournament, wherein the declarative memory continuously acquires knowledge about the

environment. The experiments show that memory consolidation is able to extract useful

knowledge to enhance the performance of high level cognitive tasks.

Finally, based on a specialization of three-channel fusion ART, the procedural mem-

ory module acquires the procedural knowledge and skills through interacting with the

environment via reinforcement learning. More importantly, we formalize two major types

of memory interaction, wherein the procedural memory and the semantic memory coop-

erate in decision making and problem solving. We investigate the overall performance of

the declarative-procedural memory system embedded into autonomous learning agents in
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two problem domains: (1) the Toad and Frog puzzle and (2) a strategic game known as

Starcraft Broodwar. The results show that the cooperative interaction between declar-

ative knowledge and procedural skills can lead to a significant improvement in both

learning efficiency and performance of the learning agents.
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Chapter 1

Introduction

1.1 Background and Motivation

Memory is a critical component of the brain for reasoning and decision making. It forms

our understanding of the environment and affects our daily behaviors by providing past

relevant experiences to extend momentary perceptual range, enable goal tracking, support

planning, and improve learnt knowledge [1]. The long-term memory in the brain has been

well recognized as multiple memory systems [9, 10] consisting of notably declarative

memory and procedural memory. Declarative memory is an explicit record of what we

encounter and what we learn [11, 12]. Procedural memory, on the other hand, refers to the

implicit memory of skills and reflex responses, wherein the knowledge is usually difficult

to articulate or explain. While procedural learning is essential to the development and

utilization of both motor and cognitive skills, the declarative memory represents the high

level concepts and knowledge which forms the basis of our understanding and guides us

in reasoning and decision-making.

As an integral component of our long-term memory, declarative memory has been

known in psychology as a type of memory enabling one to consciously and deliberately

remember experiences or knowledge learnt from the past. Typically, declarative memory

is further divided into episodic memory and semantic memory. While episodic memory

enables one to remember personal experiences that can be explicitly stated, semantic
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Chapter 1. Introduction

memory stores meanings, concepts, rules, and general facts unrelated to specific experi-

ences [12].

As a part of the declarative memory, episodic memory has been identified in recent

research to be crucial in supporting many cognitive capabilities, including concept for-

mation, representation of events in spatio-temporal dimension and record of progress

in goal processing [13]. Additional research on the role of episodic memory and hip-

pocampus (an area of the brain believed to be associated with episodic memory) in

animals also indicates that episodic memory is an important part of an individual to

learn about context and configurations of stimuli. In particular, Morgan and Squire have

shown that during reinforcement learning tasks, hippocampus is critical for representing

relationships between stimuli independent of their associations with reinforcement [14].

The specific functionalities mentioned above suggest that episodic memory should not

be just a storage of one’s past experiences, but should also support the representation of

complex conceptual and spatio-temporal relations among one’s experienced events and

situations. Therefore, a major concern of modeling episodic memory is on how it can be

used as an effective storage with flexible retrieval mechanism of those past experiences

and their spatio-temporal relations. Furthermore, a dynamic memory management is

also required to prevent the ever-growing memory size as the model continuously records

daily experiences.

On the other hand, semantic memory represents high level concepts and knowledge

extracted from specific experiences without explicit referencing. Various kinds of general

knowledge are situated at different levels of cognitive hierarchy to influence the decision

making based on experiences, including Is-A (i.e. concept) relation, association relation,

and causal relation. Hence, a study on semantic memory requires a unified set of repre-

sentation and learning methods for various types of knowledge and concepts. Moreover,

other key issues in studying semantic memory include: (1) what and when experiences

2



Chapter 1. Introduction

can be selected to form semantic concepts and knowledge; and (2) how these knowledge

can be used to support the related cognitive functions and task performance.

Known as the counterpart of declarative memory, procedural memory is the memory

on how to perform certain kinds of action or behaviors. It learns well-defined action se-

quences and execute action-related procedures under the level of consciousness. Through

intensive rehearsal on complex action sequences from one’s own experiences, procedural

memory guides the association of all relevant cognitive modules to accomplish various

tasks in hand, and hence serves a critical role for the further development of cognitive

and motor skills. Therefore, for a proper model of procedural memory, our research fo-

cuses on studying the crucial issues on: (1) how the past experiences can be encoded,

learnt and retrieved in a unconsciously and automatic manner; and (2) how the ever-

growing experiences can affect the procedural knowledge previously learnt and hence lead

to potential skill improvements.

Although these three types of long-term memory represent distinct knowledge and

support different cognitive functionalities, prior research have suggested that they interact

intensively with one another to serve their roles and functionalities and affect our learning

and behavior. Besides the facts that most skills in the real life is combined with both

procedural and declarative components, there is a common belief that declarative memory

initiates and provides the foundation for procedural learning [15]. Previous research [16]

on neuroscience also indicates that declarative memory is also directly associated with

the acquisition and subsequential memory (re)consolidation of procedural knowledge.

As two complementary components of declarative memory, semantic and episodic

memory also interact and influence each other regularly [17, 18]. On one hand, seman-

tic memory can be considered as the outcome of the gradual knowledge transfer from

episodic memory. The process of knowledge transfer forms semantic knowledge by ex-

tracting the set of common features among similar episodic experiences while removing
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Chapter 1. Introduction

the sensitivity to temporal-spatial context and the associations with specific experiences.

On the other hand, semantic memory influences our daily activities in understanding

as well as interacting with the environment, hence guides the formation of new episodic

memory.

Figure 1.1 gives an overview of interactions among the different types of long-term

memory, based on the neuroscience observations from [16, 15, 17, 18]. In this research,

we shall study the individual structures and processes of memory encoding, learning and

retrieving of the episodic, semantic, and procedural memories under the complex context

of an integrated architecture. Specifically, the investigation will be conducted on how the

different memories interact to support and enhance each other, in contrast to isolated

studies on individual memories.

Episodic Memory Semantic Memory 

form  

knowledge  

provide  

guidance  

Procedural Memory 

 

 

 

 

 

 

 

 

 

Declarative Memory 

Figure 1.1: Overview of interactions among different types of long-term memory
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1.2 Issue and Challenges

This section discusses the major issues and challenges on modeling multiple memory sys-

tems and their interactions. Section 1.2.1, section 1.2.2 and section 1.2.3 discuss the main

issues of modeling each individual component of the long-term memory systems, namely

episodic memory, semantic memory and procedural memory. Section 1.2.4 and section

1.2.5 highlight the major challenges for modeling the interaction among the various types

of memories.

1.2.1 Modeling of Episodic Memory

As discussed in Section 1.1, two basic elements of episodic memory are events and

episodes: An event can be described as a snapshot of one’s experience, containing the

“what’, “when” and “where” information about the corresponding experience; while a

temporal sequence of events that one experiences can be called an episode.

To enable efficient encoding of events and episodes, an episodic memory model should

be able to distinguish between distinct events and episodes with a well-defined matching

scheme. The basic challenge regarding episodic novelty detection is to build an effi-

cient storage matching scheme that can distinguish important entries from irrelevant

ones across time based on some criteria that may be inexact or ambiguous. On one

hand, the novelty detection should be sufficiently strict to distinguish highly similar but

semantically different events; On the other hand, it should also be loose enough to tol-

erate minor differences between event sequence within an episode. Hence, the critical

characteristics for the novelty detection scheme is its high efficiency in determining the

significant differences between events/episodes.

Many existing episodic memory models have attempted to address some of these chal-

lenges. However, while some existing episodic memory models focus on the encoding the

spatiotemporal relations among events, most still have limitations in capturing complex
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concepts and situations, including representing multiple-channel event and dealing with

noisy inputs and imperfect information (e.g. [19, 1]). On the other hand, those models

supporting the intricate relations of concepts and events are not able to process complex

sequences of events as a whole (e.g. [5, 20, 2]).

Besides simply encoding the experienced events and their temporal associations, the

episodic memory model should be able to explore and evaluate the importance of stored

events and episodes in order to facilitate the process of decision making and reasoning.

Major factors concerning the importance of event and episode at the moment of mem-

ory formation include rewards, prediction surprises, emotions, accessing frequency and

forgetting. In addition, events, episodes and their importance may change in time as a

result of interpretation.

The importance-based dynamic management of episodic memory should serve to

strengthen and preserve important episodes and remove unimportant ones. Assuming

the importance of the learned event and episode pattern is simply based on the fre-

quency of activations, a dynamic management scheme can simply prune less important

episodes on a periodic basis if their level of importance falls below a predefined threshold.

One of the existing episodic memory models [2] has addressed the issue of dynamic mem-

ory. It has indicated the use of sleep for knowledge consolidation and active forgetting

of less useful events. However, the implementation details are not provided.

In summary, the main elements of an episode within episodic memory include the

following information as suggested by [13]:

• Individual events encoded as an aggregation of objects, concepts, actions and loca-

tions in a memorable scene

• Temporal relations between events as sequences of event features, rather than ex-

plicit time reference
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• Dynamical management of event and episode importance based on rewards, sur-

prises, emotions, interpretation, access frequency and aging

• Association between events (possibly across different episodes) to facilitate multi-

episode recalling

1.2.2 Modeling of Semantic Memory

As mentioned previously, semantic memory refers to the memory of meanings, under-

standings, and other concept-based knowledge unrelated to specific experiences. It is the

conscious recollection of the factual information and the general knowledge about the

world [21]. In literature, researchers have studied many types of the semantic knowledge,

called concepts, situated at different levels in cognitive hierarchy, including Is-A relation

(e.g.“Lily is a girl”), concept association (e.g. “weekend is usually happy and relaxing”),

and causal relation (i.e. a “IF-THEN” rule) [11]. Therefore, to model semantic memory

efficiently, this research requires general principles and processes for encoding and learn-

ing various types of semantic memory in a unified manner for all possible types of related

semantic knowledge.

Although many semantic memory models have been proposed, most of them are

limited to studying some specific aspects of the semantic memory: most early abstract

models (e.g. [22] and [23]) focus on representation but not on learning of such semantic

knowledge; In contrast, typical statistical models (e.g. [24], [25] and [19]) allow learn-

ing but only work for a limited form of semantic memory, namely correlation between

words and concepts. As the more recent development of semantic memory modelling,

some connectionist models (e.g. [26, 3]) support complex concept representation based

on multi-modal sensory inputs, while others (e.g. [27, 28]) employ the single-modal rep-

resentations to explore the correlations among semantic concepts. However, to our best
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knowledge, none of these existing work study the learning of the wide range of semantic

relations using the multi-facet concept representation.

This research aims to develop a semantic memory model based on a unified set of

computing principles, that encompasses multiple key functions of semantic memory, in-

cluding concept formation, causal relation learning, and concept association. In designing

the memory models and learning algorithms, we consider the principles and requirements

summarized below.

• What should be the representation of semantic memory? How do we acquire such

semantic memory? In fact, there are many types of semantic knowledge. It is

important for a model to represent and learn multiple types of knowledge, including

concept association, Is-A relation, and other types of semantic relations.

• Concepts are learned based on multi-modal sensory inputs. For example, a concept

“Chair” has a multi-facet representation, including visual, auditory, and verbal.

A model for concept formation should be able to learn concepts based on multi-

modal sensory representation. Furthermore, remembering a concept in multiple

representations provides the needed redundancy in concept recognition. The fusion

of the multi-modal sensory representation at conceptual level also provides the

capabilities in cross-modal association and retrieval.

• How do different types of semantic memory work together? The various semantic

memory modules in the architecture should interact and function cooperatively.

• While most prior models deal with a concept or concept pair at a time, the human’s

working memory is capable of holding multiple concepts for further processing at

one time [29]. The architecture should provide one or more working memory buffers

for multiple concepts to be active at the same time.
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1.2.3 Modeling of Procedural Memory

Procedural memory refers to the memory of how to perform actions or tasks, such as

riding a bicycle or driving a car. In contrast to declarative memory, most of knowledge in

procedural memory is verbally inexpressible, automatically learned and acquired below

the level of conscious awareness [30].

Existing computational models of procedural memory can be classified into three

categories, namely connectionist models, fragment-based models and the hybrid models.

The connectionist models of procedural memory (e.g. [31]) usually learn the complex pro-

cedural procedures as temporal-ordered sequences of situation-action association pairs.

On the other hand, fragment-based or chunking models (e.g. [32]) acquire procedural

knowledge through a case-based learning of memory chunks or fragments. These mod-

els records the situation-action pairs without the explicit recording of action sequences.

More recently, the hybrid models of the two procedural learning paradigms further in-

vestigate how the cognitive skills and capabilities can be supported by the collaborative

interaction between procedural and declarative learning. In these models, procedural

memory (e.g. [33]) controls and executes various real-time decision making based on the

sub-symbolic procedural knowledge representation, while the symbolic and explicit rules

are gradually learnt as the declarative knowledge.

Although the existing models on procedural memory have been applied and inves-

tigated in a wide range of practical domains, there are two key issues on procedural

learning which have not been well addressed from these works. These considerations

serves as our guiding principles as highlighted below.

• Procedural memory learning should consist of a complex process of priming, wherein

the continuously-growing experience keep shaping the memory to influence and
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guide the behavior in future. Through priming, the memory retrieval on procedu-

ral knowledge can be more than repeating a specific instance from past experience,

which has been typically shown in the chunking models.

• Although the hybrid models on procedural memory have been focusing on under-

standing how the procedural knowledge can be translated into the corresponding

declarative representation, there is a need to develop an unified model of procedural-

declarative memory interactions across various tasks and domains.

1.2.4 Modeling Interaction within Declarative Memory

As discussed previously, within the declarative memory systems, semantic memory is

formed based on high level concepts and knowledge, while episodic memory is the collec-

tion of low level instances [12]. Under certain circumstances, semantic knowledge could

be created from several episodic experience and the abstract semantic memory concepts

sometimes could be traced back to specific episodic memory instances [17]. During the

modeling of the interaction between episodic and semantic memory, the following issues

and concerns are identified:

• What are the contents from episodic memory copied to semantic memory for ab-

straction of semantic knowledge? Generally speaking, episodic memory captures a

snapshot for each encounter incurred previously which may involve large numbers

of trivial details. To model the interaction from episodic to semantic memory, this

research requires an algorithm to select relevant inputs or attributes from the stored

event patterns as well as their spatio-temporal relations in order to extract useful

semantic knowledge.

• How to perform knowledge transfer from episodic to semantic memory? Since

semantic memory refers to various types of semantic knowledge, this research re-

quires a general set of principles and procedures to consolidate the learned events
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and episodes from episodic memory to various forms of semantic knowledge in a

unified way.

• When does knowledge transfer take place? Knowledge transfer can be time con-

suming due to the massive amount of information stored in episodic memory. The

timing of transfer should be selected in a way that the transfer process will not

affect the performance of other functionalities.

1.2.5 Modeling Interaction between Declarative and Procedu-
ral Memory

In this work, we also aim to develop an interaction model between declarative memory

and procedural memory to facilitate the overall process of decision making and problem

solving. For the design of the interaction model, several considerations serve as our

guiding principles are highlighted below.

• The interaction model should contain at least two types of long-term memory mod-

ules, including the semantic memory of meanings, concepts, rules, and general facts

and the procedural memory for performing actions based on direct state-action

pairings.

• The interaction model should enable a wide variety of interactions between the two

memory modules. The interaction should preferably be achieved via the neural

pathways connecting the different memory modules, such that the knowledge and

information from the different memory modules can be shared and commonly used

by all. This dual-memory systems should also model the knowledge transfer pro-

cesses between different memory systems especially from semantic to procedural

memory.
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• The interaction model should allow the individual and parallel processes of different

memory modules running in varying time scales. In the dual-memory systems, se-

mantic and procedural memory modules should run online in a concurrent manner.

Each learning process should individually provide a fast and efficient learning even

when the other complementary module(s) fail.

• The interaction model should enable the emergence of intelligence from the vari-

ous types of memory interactions. The interactive declarative-procedural memory

models should contribute to a better decision making by utilizing the information

from the entire knowledge base. During this process of decision making with dual

memory interactions, each individual model may also require subsequent learning

on the given situation with the additional information shared from other types of

memories.

• As information and knowledge is shared from different memory modules, the deci-

sion making process should resolve the potential information conflicts and errors.

• The interaction model should suppport the efficient learning and fast responses as

required by the online task domains. As various memory modules run concurrently,

each module should maintain the efficient performance for its own operation, such

as rule/memory trace retrieval, encoding, and deletion.

1.3 Research Objectives

This research aims to develop a computational model of the multiple memory systems in

the brains, which can be subsequently incorporated into brain-inspired cognitive architec-

tures. Through representing, learning, and processing of different types of memory, this
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research discusses and evaluates the possibility of acquiring and co-evolving both declara-

tive and procedural memory to enhance complex cognitive functionalities and integrated

performance.

As part of the multi-memory architecture, the incorporated episodic memory shall

support the learning of all possible complex situations as well as their spatio-temporal

relations [12]. In respond to a continual stream of sensory input and feedback received

from the environment, the episodic memory module should be able to capture and ex-

plore details of all the encounters with the consideration of their spatio-temporal ordering

through the form of one-shot learning on events and episodes. To achieve an efficient

representation and learning of events and episodes, the episodic memory module re-

quires a well-defined generalization and matching scheme that distinguishes significant

differences among different events and episodes while tolerating minor changes within a

learned pattern. As the sensory and feedback signals from real-world environment are

supposed to be noisy, incomplete, redundant or even conflicting, this study on episodic

memory modeling should also investigate the robust learning of events and episodes deal-

ing with imperfect information. Moreover, besides fast and accurate memory encoding

and retrieving, this research takes further consideration and emphasizes on an efficient

dynamic management of learned events and episodes. Due to the real-time learning of

episodic memory, to prevent an ever-growing memory size, this research holds a view such

that storage in episodic memory is not permanent. Dynamic management of memory

should be incorporated into the episodic memory model in a way that it only holds the

storage of important experiences while discarding the insignificant information.

As introduced previously, semantic memory represents different types of concepts and

knowledge sitting at various levels of knowledge hierarchy as defined in [11]. Therefore,

the research on the modeling of semantic memory requires a unified set of algorithms and

procedures for encoding and retrieving many possible types of semantic knowledge on
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concepts, associations and causal relations. Since the various types of semantic knowl-

edge exist in the knowledge structure, the semantic memory should be able to represent

different types of knowledge and model their possible interactions and cooperations.

Due to the co-evolution characteristic of episodic and semantic memory learning, this

research follows the view presented in [12] that high-level semantic knowledge is learned

through generalizing low-level instances learned from episodic memory. Since the episodic

memory holds a tremendous amount of past experiences, this research should promote

a fast and efficient selection procedure among stored events and episodes in order to

form meaningful and different types of semantic concepts and knowledge. The learned

semantic memory should serve as a better understanding of environment and lead to more

responsive actions and behaviors while guiding the formation of new episodic memory.

Resulted from the independent learning of episodic and semantic memory, this research

on declarative memory system presents both instance-based information from episodic

memory and generalized semantic knowledge. The ultimate question should be answered

in this research is that how these different but intrinsically-related memory modules can

collaborate for better functioning and performance.

This research should build a procedural memory model, which is able to learn the

explicit association between the situation and all possible actions. Upon explicit modeling

of each individual component of the long-term memory, this research should further

propose a novel cognitive architecture incorporating the learning and processing among

the three types of memory. The architecture should show that how the intelligence is

usually raised through the complex interactions among the various types of memories.

There are two basic paradigms of memory learning in our brain: one is the statistical

and incremental learning to develop procedural and semantic knowledge; the other is the

instance-based and one-shot learning to store specific past experiences as episodic traces.

Therefore, the multiple memory systems should allow mutually incompatible information
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and knowledge to be learnt and stored in different manners as suggested by the nature

of each individual memory modeled, so that they can be used in their individual best

fitting situations.

1.4 Approach and Methodology

This research presents a biologically inspired multi-memory framework for modeling the

structures and connections between the declarative and procedural memories. The multi-

memory architecture is based on fusion Adaptive Resonance Theory (ART) [34] which

applies unsupervised learning to categorize input patterns. Fusion ART employs bi-

directional processes of categorization and prediction to find the best matching category

(resonance). It also learns continuously by updating the weights of neural connections

at the end of each search cycle. Fusion ART may also grow dynamically by allocating a

new category node if no match can be found. This type of neural network is chosen as

the building block of our memory model as it enables continuous formation of memory

with adjustable vigilance of categorization to control the growth of the network and the

level of generalization. By applying fuzzy operations and complement coding [34], fusion

ART can also generalize input patterns dynamically and capture a range of values every

time it learns.

Using fusion ART as the building block, the architecture includes a highly robust

declarative memory system for dynamically encoding and retrieving episodic traces of

events and a mechanism for consolidating them into more permanent and general forms

in semantic memory. The episodic memory, based on fusion ART network, extracts key

events and encodes spatio-temporal relations between events by dynamically creating

cognitive nodes in response to a continual stream of sensory input and feedback received

from the environment. The model further incorporates a novel memory search procedure,

which performs parallel search of stored episodic traces continuously with potentially
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noisy and imperfect memory cues. The model also includes a forgetting mechanism to

remove irrelevant information and prevent the memory from overloading.

This research also proposes an additional knowledge transfer process, wherein the

information stored in the episodic memory can be consolidated to produce more gen-

eral and abstract knowledge in semantic memory. The semantic memory, based on the

same self-organizing principle as the episodic memory (i.e. fusion ART), extracts related

general facts, meanings and concepts through creating and learning of category codes.

Essentially, episodic memory serves as a long-term temporary buffer for rapidly storing

events and episodes, which can be recalled at a later time through a memory consolida-

tion process to gradually extract and learn general facts and rules as semantic memory.

In this way, the declarative memory supports independent memory running and learn-

ing in parallel but at different paces, wherein episodic memory supports rapid, specific

and automatic learning while sematic memory provides slow, gradual and incremental

learning.

Finally, this research completes the multi-memory architecture with an explicit model

of procedural memory. Based on a specialization of three-channel fusion ART, the proce-

dural memory model acquires action-based knowledge and skills through reinforcement

learning. In the multi-memory architecture, two major types of memory interaction pro-

cesses between declarative memory and procedural memory are identified and formalized,

wherein the factual information and general knowledge in semantic memory is retrieved

to guild the development of various types of procedural skills. As illustrated in Figure 1.2,

the architecture consists of four main components, namely, the working memory module

to share information and knowledge among all other components, the procedural mem-

ory module, the declarative memory module, consisting of episodic memory and semantic

memory, and the intentional module to maintain a set of goals in hand and regulate the

decision making. Each of the long-term memory modules in our system is built based on
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fusion ART network [34]. This research further shows how the interaction among various

memory systems enable the model to exhibit more versatile decision making and problem

solving. Specifically, we identify and formalize two main types of memory interaction and

knowledge transfer processes between semantic memory and procedural memory.

Figure 1.2: The generic framework of the multiple memory systems in a cognitive archi-
tecture.

We have conducted empirical experiments in three phases. In the first phase, we

investigate the performance of the standalone episodic memory model. We evaluate

the robustness of the episodic memory compared with some other memory models in

solving a word recognition task [35], as well as a sign language recognition task [36]. The

comparisons are also conducted in the Unreal Tournament video game application [37]

through various memory retrieval tests. Extended with the forgetting mechanism, the
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episodic memory is further investigated for its retrieval accuracy and robustness against

noisy environments under the application domain of Unreal Tournament.

In the second phase, we evaluate the dual episodic-semantic memory model in the

Unreal Tournament domain to support a Non-Player-Character (NPC) agent to learn

from experience and improve performance. Through our experiments, we find that our

episodic memory model provides a more robust level of performance in learning and

retrieving spatio-temporal patterns than other existing types of spatio-temporal memory

system. Furthermore, we also find that, as a co-evolving dual memory system, the model

does not just improve the task performance, but in some cases, a faster forgetting rate

even results in faster learning.

In the third phase of the experimental evaluation, we have investigated the overall

performance of the entire multiple memory architecture. We have conducted the experi-

ments on two problem domains: (1) the Toad and Frog puzzle and (2) a strategic game

known as Starcraft Broodwar. Our experimental results show that the architecture is able

to learn procedural knowledge for the various tasks accross the different game domains

based on reinforcement learning signals from the environment. More importantly, the

results show that the interaction between declarative memory and procedural memory

can lead to a significant improvement in both learning efficiency and performance.

1.5 Organization of Report

The rest of this thesis has been organized as follows. Chapter 2 discusses prior works on

modeling declarative and procedural memory, as well as the study on their interaction.

Chapter 3 presents the novel episodic memory model with the associated algorithms and

procedures developed to learn the individual’s episodic experiences. These methods are

evaluated through the investigations on the memory performance in various benchmark

problems. Chapter 4 proposes a new model of semantic memory, combining with a
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general procedure of memory consolidation from episodic memory to semantic memory.

A performance evaluation on this integrated declarative memory system is also provided

in Chapter 4 by applying the system into the Unreal Tournament game environment.

Chapter 5 completes a novel cognitive architecture with an additional model of procedural

memory based on reinforcement learning. The architecture further integrates with two

forms of declarative-procedural memory interactions. The experimental evaluation on the

multiple memory systems is based on two problem domains: the Toad and Frog puzzle

and a strategic game known as Starcraft Broodwar. Chapter 6 concludes the current

research and highlights future work.
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Literature Review

As an essential component of all kinds of learning, the brain’s long-term memory has been

widely studied in various fields, including artificial intelligence, cognitive psychology and

neurobiology. Over the past decades, many models have been proposed using various

computational principles and modeling paradigms. This chapter presents a review of

these existing computational models on each type of the long-term memory systems,

namely episodic memory, semantic memory and procedural memory, as well as the related

studies on their interactions. The rest of this chapter is organized as follows. Section 2.1

to Section 2.3 discuss and compare the existing works on modeling episodic, semantic

and procedural memory respectively. Section 2.4 and Section 2.5 provide a review of the

related works on modeling the memory interaction.

2.1 Models of Episodic Memory

Episodic memory refers to the long-term memory stores one’s specific experience in the

form of events, as well as their temporal-spatial relations known as episodes [11]. Besides

referring to episodic events containing what, where, and when information, episodic mem-

ory usually incorporates autonoetic consciousness or awareness of the retrieved event as

a veridical part of the rememberer’s own past existence [38]. This allows one to mentally
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travel back in time to the past while being aware that the recollection is actually some-

thing of the experience of the earlier time [39]. Over past several decades, researchers

have identified that episodic memory is critical to support various cognitive capabilities,

including goal processing, concept formation and context encoding [13, 14]. Based on the

nature of their individual knowledge representation, the existing computational models

of episodic memory can be divided into two main categories, namely the symbolic models

and the connectionist models.

In a typical symbolic model of episodic memory [40, 19, 41], each episode is encoded

as an individual memory trace. The episode retrieval is conducted through a item-by-item

similarity search among all the traces stored by explicitly providing a memory cue. Since

these models encode an episode as a linearly ordered sequences of individual event traces,

they are limited to to explore complex relations between events (e.g. repeated events on

an episode), especially in potentially imperfect or noisy environments. Although few

symbolic models [42, 19, 43] have employed statistical methods to deal with imperfect

and noisy cues, they still consider the memory trace as continuous series of events with

no coherent representation of episodic chunks as units of experience. Another approach

extends an cognitive architecture, known as the Soar architecture [44, 45], with a novel

episodic memory model [1]. With a tree-like storage of episodic traces shown as Figure

2.1, the model makes use of the built-in operations of the Soar architecture to conduct

complex memory encoding and retrieval. One critical issue of this approach is that it

requires some effective partial matching to deal with incomplete and possibly degraded

cues for retrieval [46].

The second family of episodic memory models focuses on understanding the under-

lying neural structure which forms the basis of episodic learning. Most of these works

employ an explicit connectionist modeling of the hippocampal region, which is the brain

area commonly thought to be associated with episodic memory. Grossberg and Merrill
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Figure 2.1: Data structures for modeling episodic memory used in (a)instance-based
memory matching approach and (b) interval-based memory matching approach in Soar
adopted from [1]

combine ART (Adaptive Resonance Theory) neural network with spectral timing encod-

ing to model timed learning among different eventual situations in hippocampus [47],

regardless other aspects of episodic memory (e.g sequential ordering, multimodal associ-

ation). A similar model presented in [48] joins an ART network with a Fuzzy Associative

Memory (FAM) in a hierarchical manner. The top FAM network learns the temporal

relations among events encoded by the bottom ART network. Samsonovich and Ascoli

employ a single-layer associative network to study the roles of episodic memory during

navigation [20]. In [20], the investigated navigation task is described as the learning of

a ordered location sequence from the starting location to the final destination. In this

model, each location is represented by a node in the network. It can learn the location se-

quence by strengthening the node connections between any two adjacent locations within

the sequence. A similar model [49, 50] combines two identical ART1 neural networks to

share the same category layer (F2 layer). This category layer learns the association be-
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tween two spatiotemporally-closed events, each of which is learned by one of the two

ART1 networks.

System for the Memorization of Relational Instances from Temporal Impulses (SM-

RITI) supports complex relational event representation as a group of role-entity binding

[2], based on the neural structures illustrated in Figure 2.2. The model can provide

a robust event learning in which the memory cues can involve transient values while

retrieving with partial information. Although SMRITI has already supported complex

inferences on top of the relational representation, it still omits to study the temporal

or sequential relations between events. Following the same anatomical outline of hip-

pocampus (including interconnected subarea of entorhinal cortex, dentate gyrus, CA3

and CA1), Norman and O’Reilly [51, 52, 53, 54] develop a biologically detailed episodic

memory model [55], namely Complementary Learning Systems (CLS) model, for rapid

and automatic episodic memorization. By employing the simple Hebbian learning, CLS

model learns episodic memory as a set for highly sparse and separated patterns. The

model incorporates a novel learning process of pattern separation to avoid catastrophic

interference.
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Figure 2.2: Neural pathways interconnecting the main hippocampal components in the
SMRITI episodic memory model adopted from [2]
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Some more recent connectionist models of episodic memory focus on handling the

encoding of spatio-temporal or multimodal patterns without a explicit referencing to

hippocampus. Rinkus builds a sparsely distributed neural network model of episodic

memory [27], namely Temporal Episodic and Semantic Memory using Combinatorial

Representations (TESMECOR), to rapidly stores spatio-temporal patterns in a dis-

tributed manner. The model also provides a robust retrieval mechanism which can

support complex sequential representation. Compared to other approaches that han-

dle complex sequences, the growth of storage space is non monotonic as sequences are

continuously stored in a distributed representation. However, this sparsely distributed

model of episodic memory still retains the sequences as a continuous chain of events

rather than chunks of episodes. Starzyk et al. [56, 57, 58, 59, 60] also develop a series of

neural network models which perform the anticipation-based spatio-temporal learning.

The model can store and retrieve complex sequences as units of episodes. Based on a

neural model for complex sequential learning and production [61], the model can toler-

ate errors from cues and strongly supports partial matching. Another episodic memory

model, called Temporal Context Model (TCM), associates each memory trace with the

corresponding inner mental context [62]. Each of these gradually changing or drifting

context represents the currently active thoughts in our brain. The information retrieval

of TCM is based on the cue matching between current context state and the contexts

associated with the memory traces in storage. Through reinstating the mental context,

TCM model explains and illustrates the long-term recency effect of episodic memory, as

well as its corresponding process of strategic memory search.

Some existing models of episodic memory have been embedded into autonomous

agents to investigate how the proposed episodic learning can contribute to the tasks

of problem solving and decision making. Ho et al. [40] demonstrate that the use of

episodic memory can increase the survivability of an agent while seeking for resources in
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a simulated ’ecological’ environment. Nuxol [1] integrates episodic memory model into

Soar cognitive architecture and shows that, in an artificial environment of tank battles,

episodic memory supports a wide range of cognitive functionalities from sensing to ab-

stract reasoning. Samsonovich and Ascoli [20] apply a simplified hippocampus model to a

few task domains and show that episodic memory is able to improve the learning for var-

ious tasks, including navigation, the tower-of-hanoi problem solving and memory-based

inferences. In [63, 64], Zilli and Hasselmo investigate the demands of an episodic memory

(modeled as [65]) while learning six different behavior tasks, including spatial alternation,

tone-cued alternation, spatial sequence disambiguation, odor sequence disambiguation,

non-matching to position, and non-matching to lever. in In [63, 64], these tasks are de-

scribed as a set of partially-observable Markov decision processes [66, 67, 68]. The empir-

ical results indicate that the episodic memory model can disambiguate order-dependent

and probably alternating situations wherein most reactive reinforcement learning algo-

rithms can hardly solve [64]. In [69], the episodic memory model presented in Chapter

3 has been embedded into an autonomous robot in a office domain to study the task of

delivering objects to people.

Table 2.1: Comparison between existing episodic memory models

MODEL MODEL
TYPE

KNOWLEDGE
REPRESEN-
TATION

LEARNING
METHOD

FEATURES

Soar [1] symbolic vector; tree
structure

stores the snap-
shots of active
working elements
as each nodes in a
tree structure

effective partial
and noisy memory
search; integrated
into a cognitive
architecture

REMII [19] symbolic; sta-
tistical

vector a Bayesian cal-
culation of the
likelihood that the
cue matches to a
particular stored
memory traces

highly robust to
imperfect and
noisy cues
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MODEL MODEL
TYPE

KNOWLEDGE
REPRESEN-
TATION

LEARNING
METHOD

FEATURES

SMRITI [2] connectionist;
modeling
biological
details

architecture
with several
intercon-
nected neural
networks

encodes each trace
as several role-
entity bindings
using recruitment
learning

encodes complex
relations; robust
with noisy cues

Cortico-
Hippocampal [5]

biological predictive
auto-encoder

encodes stimulus
into compressed
inner represen-
tation with a
predicted outcome

clear definition on
integrations with
cortex

Spatial Naviga-
tion [20]

connectionist;
modeling
biological
details

single lay-
ered neural
network

explains the nav-
igated process
as the series of
retrievals along
the encoded item-
context linkage

explicit context en-
coding

CLS [53] connectionist;
modeling
biological
details

architecture
with several
intercon-
nected neural
networks

high sparse and
separated patterns
of cortical activity
with basic Hebbian
learning

biological detailed
model of hip-
pocampus; widely
agreed definition
on its interaction
with cortical areas

TESMECOR [27] connectionist;
encoding
spatio-
temporal
patterns

sparsely
distributed
neural net-
work

encodes multi-
modal and dis-
tributed patterns
of event, which
links each other
through their
spatio-temporal
relations

handling spatio-
temporal patterns;
robust retrieval
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MODEL MODEL
TYPE

KNOWLEDGE
REPRESEN-
TATION

LEARNING
METHOD

FEATURES

LTM [56, 57,
59]

connectionist;
encoding
spatio-
tsemporal
patterns

sparsely
distributed
neural net-
work

events are rep-
resented by
the identically-
structured neurons
in the network
and their spatio-
temporal relations
are studied as their
connections

encodes spatio-
temporal patterns;
noise tolerant;
models memory
forgetting process

TCM [62] connectionist;
encoding
spatio-
temporal
patterns

vector associates each
memory traces
with subject’s
inner mental
context

drifting context
update and encod-
ing; explains the
process of forget-
ting and strategic
memory search

We summarize our review on the existing episodic memory models in Table 2.1. As

shown in Table 2.1, most existing symbolic models are able to support the effective and

robust episodic learning of complex conceptual and/or temporal relations from past expe-

riences. However, few of these works are shown to account for various related behavioral

and neurophysiological finding, and hence provide a limited insight of the underlying

structures and mechanisms which forms the basis of episodic memory. On the other

hand, although some connectionist models of episodic memory indicate possible biolog-

ical details supporting episodic memory functionalities, some significant details are still

missing (e.g. how episodic information moves in and out of working memory [70]). More-

over, the computational complexity of these biologically-inspired connectioist models also

raise a significant memory capability problem, and further degrade their performance in

practical realtime domains.
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2.2 Models of Semantic Memory

In contrast to episodic memory, semantic memory stores meanings, concepts, rules, and

general facts [11] unrelated to specific experiences. Distributed all over cortical/neocortical

areas of the brain, semantic memory can maintain information more permanently than

episodic memory. Various types of models have been proposed to study semantic memory

over the past decades. One of the earliest model represents semantic knowledge as simple

logical propositions as nodes and links in a semantic network [71]. The network studies

three types of semantic relations (links) between different concepts (node), including “is

a”, (e.g “a flamingo is a bird”), “has”(e.g ”a bird has wings”), or “can” (e.g “a flamingo

can fly”) relations.

In Copycat, Hofstadter and Mitchell [72] model the semantic memory (the Slipnet)

as a network of related concepts, wherein each concept is represented by a node. The

link connecting two concepts encodes their relation them, while the corresponding link

strength measures the degree of association. The semantic memory in Copycat changes

the link strength dynamically: the link strength between two concepts increase as the

type of relation represented becomes more relevant to the current situation in hand and

vice versa. In this way, the semantic knowledge relevant to the current context tends to be

activated and recalled. A similar type of semantic memory network model called Fuzzy

Cognitive Maps (FCM) is also proposed to represent causality between concepts [22].

The fuzzy value of the link represents the strength of the casual condition between the

connected two concepts . In Soar [23], the semantic memory is represented as declarative

chunks to describe properties of a concepts. Soar keeps track on the historical sum of

activation level for each declarative chunk store to reflect the general usefulness in the

past. Besides representing meanings as symbolic conceptual relations, other approaches

apply statistical methods to learn semantic knowledge. Semantic memory models like

Hyperspace Analogue to Language (HAL) [24], Latent Semantic Analysis (LSA) [25],
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and REM-II [19] learns the correlations between concepts by exploring their statistical

co-occurences. The statistical models can handle partial or degraded retrieval cues by

applying statistical inferences.

Olfaction Praxis

Somatos

ensorySound Semantics

VisualVerval

Figure 2.3: Main components of semantic memory and their interconnections in the
convergence model adopted from [3]

Besides abstract computational models, some connectionist models are proposed to

model the neural structures which forms the basis of semantic memory learning. Hin-

ton [73] proposes one of the earliest connectionist architecture, which emulates the se-

mantic memory by setting up interconnected neural fields to reflect different elements

of a proposition. Beyond representing relationships between concepts, the connectionist

architecture supports knowledge recollection and generalization through pattern comple-

tion accross the network. Further, Rumelhart [28] also develops a similar connectionist

model that can automatically learn relational and hierarchical relations among seman-

tic concepts. Using a backpropagation learning method, the model can categorize and

discriminate different concepts without external supervision. Shastri and Ajjanagadde

proposed the Shruti [74] model, wherein the rational facts (predicate) is represented by
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the group of dynamic entity-role bindings. The entity-role binding is established through

the synchronous firing of the nodes that represent the corresponding conceptual entities

and roles. The model supports the process of reasoning and inferencing through the

explicitly interconnecting the neuronal patterns between the facts with inferential de-

pendency. Farah and McClelland [26] suggest a bidirectional network model consisting

of different interconnected neural fields, wherein each neural field corresponds to one

specific type of sensory-functional features. The model is extended further as the conver-

gence theory of semantic memory [3] in which more perceptual and functional features

like actions, sounds, and olfactions are incorporated as different neural fields shown by

Figure 2.3. Different models and structures above indicate that semantic memory is

not a monolithic unitary model but may involve multiple representation and learning

mechanisms.

Most semantic models mentioned above are still considered as isolated memory sys-

tems that process and acquire semantic knowledge. However, some models also employ

episodic memory to be attached with a semantic memory model to form the complete

declarative memory systems. Retrieving Effectively from Memory-II (REM-II) [19] con-

nects episodic memory and semantic memory together to learn statistical relationships

between items within and accross time. Another episodic memory model based on the

Soar cognitive architecture [1] embeds episodic memory directly to the symbolic seman-

tic memory model [75] as additional properties providing contextual and historical in-

formation of each assertion and update in the memory. A distributed approach called

TESMECOR [27] considers episodic memory as distributed neural connections that also

support semantic representation. Although the integrated approaches of episodic mem-

ory and semantic memory modeling may provide robust mechanisms to store and retrieve

knowledge based on both temporal and relational structures, they still do not reflect the

current existing neuropsychological evidences of memory.
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The cortico-hippocampal neural model [5] is made to explain why episodic memory

and semantic memory are separated in the brain. The model suggests that hippocampus

(episodic memory) and neocortex (semantic memory) are two parallel memory systems

receiving the same input. The hippocampus learns an internal representation to encode

the input and the recalled patterns. On the other hand, the neocortex learns and cate-

gorizes the input based on the internal representation formed by the hippocampus. In

this way, episodic memory and semantic memory can work together to process abstract

categorization while they can accurately retrieve specific information. A more realistic

model of episodic-semantic memory interaction called Complementary Learning Systems

(CLS) [51] reflects the network structure and connections between hippocampus and

neocortex in the brain and comprises a particular memory consolidation process. Based

on neuroscientific evidences that neurons in hippocampus are reactivated spontaneously

during slow wave sleep [76] and thus reinstating the patterns in neocortex to enact slow

incremental learning, CLS also emulates an offline consolidation process by randomly re-

activating memory recollection in hippocampus to be used as inputs for neocortex. The

model also incorporates a forgetting mechanism of hippocampus in which the strength

of neurons are decayed over time before reinstated during or beyond the consolidation

process.

Table 2.2: Comparison between existing semantic memory models

MODEL MODEL
TYPE

STRUCTURE TYPE OF
KNOWL-
EDGE
LEARNED

LEARNING METHOD
AND FEATURES

semantic net-
work [71]

symbolic graph describ-
ing concepts
and their rela-
tions

concept cat-
egorization;
concept hier-
archy

simple semantic believes can
be learned as stored proposi-
tions, connecting two nodes
with a certain predicate;
supports knowledge general-
ization and deductive infer-
ence
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MODEL MODEL
TYPE

STRUCTURE TYPE OF
KNOWL-
EDGE
LEARNED

LEARNING METHOD
AND FEATURES

REMII [19] symbolic concurrence
matrix of fea-
tures

associative re-
lations among
concepts

provides a statistical learn-
ing on the co-occurences be-
tween memory items; con-
text encoding; context sen-
sitive knowledge acquisition

Rumelhart
model [28]

connectionist three layer
neural network
with a back-
propagation
learning

connectionist
learning of
propositions
using in
semantic
network

encodes the inner represen-
tation for each concept; each
proposition is trained as a
hidden units connecting the
concepts and their relations;
pattern completion; parallel
distributed processing

Farah-
McClelland
model [26]

connectionist;
modeling
biological
details

bidirectional
network con-
sisting of verbal
and visual input
neural fields

complex and
mutltimodal
concept

learns each concept as a dis-
tributed activation pattern
of hidden units sensitively
tuned either their functional
or perceptual aspects; pat-
tern completion; accounts
for behavioral data from the
category-specific sematic im-
pairment

convergence
model [3]

connectionist;
modeling
biological
details

bidirectional
network cen-
tered by an
intermediating
hidden layer
connecting each
filed of surface
neural

complex and
mutltimodal
concept

the intermediating inner
representations encompass-
ing the various concept
representation from surface
fields; pattern completion;
accounts for behavioral data
from the semantic dementia
impairment
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MODEL MODEL
TYPE

STRUCTURE TYPE OF
KNOWL-
EDGE
LEARNED

LEARNING METHOD
AND FEATURES

CLS [51] connectionist;
modeling
biological
details

two-layer net-
work with
Conditional
Principal Com-
ponents Anal-
ysis (CPCA)
Hebbian learn-
ing

distributed
and overlap-
ping famil-
iarity signals
of concept
categories

hidden units in the sec-
ond layer compete and en-
codes statistical regularities
present in input patterns
through incremental learn-
ing; address the interactions
with episodic memory (hip-
pocampus)

We summarize and compare the various types of the existing semantic memory mod-

els in Table 2.2. As shown in Table 2.2, the existing works on semantic memory mod-

eling differentiate from each other by their diverse knowledge representations, system

architectures, learning paradigms and the hypnosis held on functional organization of se-

mantic memory. Therefore, the current research requires a single unified computational

model combining the different aspects of semantic memory , which have been individually

addressed, e.g. concept generalization, context representation, temporal encoding and

accounting of behavioral data.

2.3 Models of Procedural Memory

Procedural memory refers to the memory of how to perform actions or tasks, for example

riding a bicycle or driving a car. Contrasting with declarative memory, most of knowledge

in procedural memory are verbally inexpressible, automatically learned and acquired

below the level of conscious awareness [30]. The characteristics of procedural knowledge

intuitively triggers the thought of representing it as the weighted connections learned

through neural networks. The very first connectionist model of procedural memory was
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developed by Dienes in 1992. In [77], Dienes employs a fully-connected, single layer auto-

associative network to encode each executed procedure as a localist pattern, wherein each

neuron in the pattern represents the particular position of an action in the temporally

ordered action sequence. Due to the simplicity of the network, this model fails to capture

complex experiences and support advanced cognition. Cleeremans and McClelland [31]

extended the study and stored each action in a sequence as a single pattern. The Simple

Recurrent Network (SRN) [4] encodes the temporal context for each action in a sequence

by its hidden layer in a backpropagation manner as shown in Figure 2.4. This procedural

memory model predicts the next action in an action sequence by presenting all actions

within the partial sequence preceding it one by one as network inputs.

Dienes, Altmann and Gao [78] developed a general-propose procedural memory model,

wherein the learned knowledge can be transferred among various domains. The model

can conduct action prediction on a novel sequence (from a novel domain), as long as

the sequence can be explained by the same set of structural knowledge learned from

all the trained sequences (from the original domain). The model introduces an addition

encoding layer between the hidden layer and input layer of the procedural memory model

presented in [4]. Combined the context information learned through the hidden layer,

the novel encoding units capture the domain-independent and structural characteristics

from a set of training sequences in a particular domain. Then, the learned structural

knowledge can be further generalized to other relevant ones. Another model also extends

the SRN model by exploring the relations among items temporally nonadjacent (i.e.

non-local dependencies, commonly observed in the field of language learning) in [79].

Rather than encoding context information into recurrent layers, the memory buffer model

treats several continuous time steps as an input pattern, rather than the single-step input

pattern in the SRN model. The model encodes these patterns in a sliding-window manner

as the action in the sequence is presented to it one by one. The size of the sliding window
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is determined by the maximum length of nonadjacent relation (i.e. the maximum time

duration considered as related) to be explored.

Output LayerOutput Layer

… Hidden Layer

…

Input Layer Context Layer

Figure 2.4: The simple recurrent network (SRN) model of procedural memory adopted
from [4]

The connentionist models of procedural memory have been applied and investigated in

various tasks of artificial language learning, dynamic system control and serial reaction

time. The experimental evaluations have confirmed that the performance of a typical

connectionist model can roughly fit various characteristics of human’s procedural learning

in both perfect and noisy test environments. However, these models usually requires some

free parameters. Moreover, different configurations on parameter settings can be used to

predict totally different set of behavior patterns.

The Temporal Difference-Fusion Architecture for Learning, Cognition, and Navigation

(TD-FALCON) [80] models procedural memory to perform reinforming learning, based

on an extension of fusion Adaptive Resonance Theory (ART) [34]. Each category nodes

in a TD-FALCON network encodes the association among a certain action, a given state

and their expected reward. In TD-Falcon, the rewards are leaned by Temporal Difference
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(TD) methods to estimate the goodness for a learning system to take a certain action in

a given state. They are then used in the action selection mechanism, also known as the

policy, to select an action with the maximal payoff.

Since the actual procedural learning of human has been observed to always involve

certain kinds of memorization on information chunks [81], another family of procedural

memory models, namely chunking models, store and manage procedural knowledge in

form of memory chunks. In these models, the novel procedural knowledge are learned

through comparison and accumulation among all the existing chunks within it. The

first chunking model, called Competitive Chunking model, was proposed by Schreiber

and Anderson in the context of artificial language learning [82]. In this model, each

artificially generated word (or letter string) can be learned by recursively joining its

fragments or partial letter string until a single chunk can be used to represent it. During

the memory formation, each stored chunk competes with each other to learn the novel

word based on its individual memory strength. The memory strength of a memory

chunk equals to the sum of its constituent chunks’ strength. The strength of each chunk

decays along time and is enhanced when it is reused. This model has been further

improved [32] by introducing a refined completive learning method to achieve the online

attentional control during artificial language learning. Compared to the connectionist

models, the chuncking models present significant advantages while resolving the problem

of catastrophic inference. Consider learning a sequence which shares the starting elements

with a perviously learned sequence, the connetionist model usually turns out to wrongly

relearn the original sequence through updating the weights. On the other hand, the

chunking model can maintain the knowledge on both sequences by allocating additional

chucks to represent the novel sequence. However, the chunking models can hardly capture

non-local dependencies as illustrated by some connectionist procedural memory models.

Based on a chunk-based representation, both Soar [83] and ACT-R [23] architecture

model their procedural memory as a set of if-then production rules. Given the current
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state of memory buffer, sensory inputs and goal settings, both architectures employ their

procedural memory to select appropriate actions in order to interact with the environment

and accomplish tasks. While ACT-R limits to the selection of a single production rule at

any time point, Soar supports the simultaneous and subsequential firing of multiple rules

during decision making process. It is to include as much knowledge and information as

possible before an action decision is made. To compensate the shortcoming from single-

rule firing, ACT-R further models the latency effects [84] of production rule matching,

such that the more useful production rules (measured by memory strength) are matched

in a shorter time duration and are more likely to be fired and selected. Soar and ACT-

R also conduct their procedural memory learning in different manners. In ACT-R, the

procedural memory manages its pool of rules through the basic processes of procentral-

ization (i.e. compilation), generalization, composition and analogy. On the other hand,

Soar employs the chunking technology [85] to conduct procedural rule learning only in

case of knowledge inadequacy. That is, when none of action can be selected during a

single decision making cycle (i.e. impasse), Soar resolve the condition by adding and

executing additional rule based on its past experiences on similar situations stored in

declarative memory modules. The rules learned in Soar can be further refined through

its reinforcement learning procedure, which captures and predicts the expected rewards

for each state-operator pairs in a continuous manner [86].

More recent research on modeling procedural memory attempts to address a critical

issue on how and when these implicit knowledge into can be translated into the corre-

sponding explicit form. This type of research usually holds a point of view that although

the procedural learning tries to maintain under the level of consciousness, there is al-

ways an attempt during the procedural learning to generalize the learned knowledge into

conscious and declarative knowledge. This third category of procedural memory models,

namely hybrid models of procedural memory, conducts the procedural learning based on
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a mixture of both explicit and implicit knowledge representations. Sun et al. proposed

a procedural memory model in the Connectionist Learning with Adaptive Rule Induc-

tion On-line (CLARION) cognitive architecture, known as the action-centered subsystem

(the ACS), to demonstrate how the intelligence can be raised through interactions be-

tween the implicit and explicit learning procedures on procedural knowledge [6]. The

implicit learning in CLARION is modeled by a three-layer backpropagation neural net-

work, namely Implicit Decision Network (IDN), which is situated in the bottom layer

in the ACS [87]. Taking the current state of working memory, sensory buffers and goal

structures as inputs, IDN employs a Q-learning algorithm to produce the reactive actions

recommendation through the trial-and-error interactions with the environment. The ex-

plicit knowledge in CLARION is represented as a set of “condition→ action” rules, which

is learned on top of IDN. Using the action choices in IDN as training samples, the explicit

knowledge learning process extracts, refines and deletes (i.e. RER algorithm) its rules in

a bottom-up manner. The prior knowledge can also be captured by pre-inserting some

fixed rules in the top level. Then the pre-inserted rules can guide the learning in IDN,

which also forms a top-down learning paradigm in CLARION. As the implicit and ex-

plicit learning procedures mutually independently recommend actions based on their own

set of knowledge, the final decision from ACS is a combination of their recommendations

through a stochastic action selection method. An action carried out by the ACS is able

to change the external states and/or internal states of the architecture. Hence it may

trigger the subsequential actions and learning on ACS and other related components.
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Table 2.3: Comparison between existing procedural memory models

MODEL MODEL
TYPE

STRUCTURE KNOWLEDGE
REPRESEN-
TATION

LEARNING METHOD
AND FEATURES

autoassociator
network [77]

connectionist single layer
auto-associator
network

localist acti-
vation pattern
to represent
action se-
quence

encodes action sequence as
one localist pattern; each
neuron in the pattern rep-
resents the occurrence of an
action in a particular posi-
tion of the temporally or-
dered sequence

SRN network
[4]

connectionist three-layer
backpropaga-
tion network

one localist
pattern to
represent
each item in
the action
sequence

encodes context information
as the pattern of its hidden
layer; action prediction by
inputs the context informa-
tion gathered by all its ante-
cessor

memory
buffer model
[79]

connectionist two-layer feed-
forward net-
work

localist repre-
sentation for
a action se-
quence within
a sliding win-
dow

encodes several action items
within several continuous
time steps as inputs in a
sliding-window manner; ex-
plores the non-local depen-
dencies of an action sequence

TD-
FALCON [80]

connectionist fusion ART self-
organizing net-
work

commits cat-
egory node as
learning rule
specifying
the mapping
between per-
ception and
motor neural
fields

perform reinforcement learn-
ing through Temporal Dif-
ference (TD) methods to es-
timate the goodness for a
learning system to take a
certain action in a given
state

competitive
chunking

chunking [82] storage of mem-
ory chunks

continuously
accumulated
fragments or
chunks

knowledge acquiring by ac-
cumulation and comparison
among all the previously
stored chunks
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MODEL MODEL
TYPE

STRUCTURE KNOWLEDGE
REPRESEN-
TATION

LEARNING METHOD
AND FEATURES

ACT-R [23] chunking set of produc-
tion rules

if-then pro-
duction rules

create chunks by rule pro-
centralization, composition,
generalization and analogy;
update existing chunks
based on their general
usage; modeling latency
of rule matching and its
relation to probability of
recall; accounts for spacing
effects

Soar [83] chunking set of produc-
tion rules

if-then pro-
duction rules

chunking to learn novel rules
and resolve the impasse situ-
ations; reinforcement learn-
ing on the usefulness of the
existing rules

CLARION [6] hybrid bottom level:
three-layer
backpropaga-
tion neural
networks ; top
level: set of
rules/chunks

explicit and
accessible
knowledge
as if-then
rules; implicit
and hidden
connectionist
representa-
tion

bottom level: Q-learning
of backpropagation network;
top level: rule extraction
and refinement; decision
made by the combination
of output recommendations
from both levels

We conclude and highlight our discussion on the existing models of procedural mem-

ory by Table 2.3. In general, the existing models represent the procedural knowledge

with various abstractness level, based on the different modeling assumptions and being

targeted to different applications and tasks. Further research on the procedural memory

modeling needs to develop more unified works to put all the pieces together and show

more methodological and theoretical insights regarding the procedural learning.
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2.4 Modeling Interactions between Episodic and Se-

mantic Memory

As discussed previously, in a declarative memory system, semantic memory is formed

based on high level concepts and knowledge, while episodic memory is the collection

of low level instances [12]. Although episodic memory and semantic memory represent

distinct knowledge and support different cognitive functionalities, they have been com-

monly recognized to be intrinsically related [17]. Hence, the two forms of memory are

interdependent, interacting closely most of the time, each influencing the other in many

situations [18]. The interactions between episodic and semantic memory can be gen-

erally described using Figure 1.1: while semantic memory can be considered to be the

outcome of knowledge transfer from episodic memory, it has been recognized that seman-

tic memory influences our daily activities in understanding as well as interacting with

the environment, hence guides the formation of new episodic memory.

From each family of episodic memory model discussed previously, some models have

been extended to demonstrate the possible ways of interacting with their corresponding

semantic memory models. Basically, the different approaches to modeling interactions

mainly reflect the different natures of the corresponding models of episodic and semantic

memory. A brief comparison on different episodic-semantic interaction models has been

provided in Table 2.4. As an abstract memory model, REM-II [19] connects episodic

memory and semantic memory together to learn statistical relationships between items

within and accross time. Another abstract episodic memory model integrated the Soar

cognitive architecture [1] embeds episodic memory directly to the semantic memory model

as additional additional memory storage of the contextual and historical information of

each assertion and update in the memory.

The spatio-temporal approach like TESMECOR [27] consider the episodic knowledge

as the distributed neural pattern, which also support the knowledge representation of
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Table 2.4: Comparison between existing episodic-semantic memory models

Model Episodic Represen-
tation

Semantic Repre-
sentation

Way(s) of Interactions

REMII [19] vector of features concurrence ma-
trix of items

statistical learning of con-
currence between different
items

Soar snapshot of active
working elements
at a certain time

chunks stating
concurrence of
items

statistical learning of con-
currence between different
items

TESMECOR [27] distributed neural
patterns on spatio-
temporal context

distributed neural
patterns on seman-
tic structure

encoded and stored in the
same network

cortico-
hippocampal [5]

internal represen-
tation of input
stimuli

category repre-
sentation of input
stimuli

sharing the same inputs;
hippocampus supervised the
categorization of cortical
network

CLS [51] sparse and sepa-
rated patterns of
experience details

distributed and
overlapping famil-
iarity signals of
concept categories

consolidation of semantic
knowledge initiating by the
reactivation in hippocampus

MTT [88] spatial and tem-
poral context in
hippocampus with
links to the neocor-
tical regions

context free knowl-
edge in neocortex

consolidation of hippocam-
pal traces during each reac-
tivation
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semantic memory. Although the unified approaches of modeling episodic memory and

semantic memory may provide robust mechanisms to store and retrieve knowledge based

on both temporal and relational structures, they still do not reflect the current existing

neuropsychological evidences of memory interations.

The biologically-inspired models of episodic memory attempts to model the episodic-

semantic memory interactions through modeling ing the neuronal pathway and functional

relations between the hippocampal (episodic) and cortex (semantic) regions. The cortico-

hippocampal neural model [5] suggests a simplified interaction procedure as shown in

Figure 2.5, such that hippocampus (episodic memory) and neocortex (semantic memory)

are two parallel memory systems receiving the same input. The hippocampus learns an

internal representation to encode the input and the recalled patterns. On the other hand,

the neocortex learns and categorizes the input based on the internal representation formed

by the hippocampus. In this way, episodic memory and semantic memory can work

together to process abstract categorization and accurately retrieve specific experiences.

External

Training Signal

Response (outcome)

Training Signal

InputsSemantic/Cortex

Network

Episodic/Hippocampal

Network

Figure 2.5: The cortico (semantic)-hippocampal (episodic) interaction model adopted
from [5]
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Some biologically-inspired models explain how the episodic and semantic memory in-

teract with each other by explicitly modeling a process of memory consolidation, wherein

each memory trace in semantic and/or episodic memory can be reorganized and stabilized

through reactivation after its initial acquisition, in association with each other. Com-

plementary Learning Systems (CLS) [51] proposes a dual memory system which runs

both episodic and semantic learning in parallel: hippocampus conducts the fast and au-

tomatic episodic learning for the highly sparse and separated episodic memory patterns;

while neocortex performs the slow and incremental semantic learning and encodes the

more distributed and overlapping semantic patterns. Neuroscientific findings reveal that

neurons in hippocampus can be reactivated spontaneously during slow wave sleep [76]

and thus reinstates the patterns in neocortex though enacting its slow incremental learn-

ing. Based on these evidences for the Standard Model of System Consolidation (SMSC)

[89], CLS also emulates an offline consolidation process, wherein the randomly reacti-

vated memory recollection in hippocampus is used as inputs to the neocortex to guide its

memory consolidation process. This consolidation process has been further extended to

the transformation model [90] by introducing a novel neuronal replay between episodic

and semantic memory, wherein either of the dual memories may be dominant depend-

ing on the circumstances. Hence, the interaction models based on SMSC state that the

formation of semantic memory always requires the episodic memory as its “teacher” and

the semantic knowledge is learnt through the explicit transfer process from episodic to

semantic memory. Nadel and Muscovites have proposed an alternative model of episodic-

semantic memory consolidation, namely Multiple Trace Theory (MTT) [88], which claims

for a semantic memory model with less dependance with its episodic component. Nadel

and Muscovites argue that the neocortex stores only the context-free (semantic) content,

while the complex spatio-temporal (episodic) context is managed in the hippocampus

with the links to its corresponding semantic content in neocortex. The model allocates a
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novel memory trace in hippocampus at each time the episodic memory is (re)activated.

Therefore, the retrieval and formation of contextually rich episodic traces in MTT model

requires the interaction within the overall hippocampal-neocortical region. However, the

remote semantic knowledge can be properly retrieved independent from the hippocampus

region after the years of memory consolidation. A more recent work on Competitive Trace

Theory (CTT) [91] further extends the ideas from MMTmodel with a novel decontextual-

ization process during the memory consolidation from episodic events to semantic traces.

In the proposed decontextualization process, as the memory trace is reactivated repeat-

edly along time, while the core/overlapping features on the similar events are strengthen

to form their common and semantic representation, the non-overlapping/context features

among these events mutually inhibit each other such that none of them can be retrieved

and hence “decontextualized” from their semantic representation.

2.5 Modeling Interactions between Procedural and

Declarative Memory

As the two major components of the long-term memory systems, procedural and declar-

ative memory involve complex interactions with each other to facilitate our learning and

decision making. One generally accepted view on procedural-declarative interaction is

that the declarative memory usually initiates and provides foundations for the corre-

sponding procedural learning [92]. For example, while driving is usually considered as

the skills developed through procedural learning, it still requires some relevant declara-

tive knowledge, for example “what are the accelerator and brake for?”. Therefore, most

of cognitive skills developed from our daily activities are resulted from the collaborative

learning of both procedural and declarative memory. Besides collaborating with each

other, the two memory models also show some level of competition during the process of

decision making. That is, procedural and declarative memory compete with each other
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for activation in order to contribute to the decision making. One possible example on

their competition is that, while performing some familiar activity, the inertia brought

from our old habits usually blocks the influence from the novel declarative knowledge.

The contributions of the procedural or declarative memory in the process of decision

making usually depend on the various relevant factors, such as the nature of the task,

the subject’s familiarity to the environment and the the current emotional states. More-

over, their competition is also observed during the memory formation process. Some

behaviorial experiments has identified that there are some resource (neurons) usually

shared by the two memories in order to form their individual knowledge representation

[93]. Following that, researchers also observed that they block each other during their

individual memory consolidation, indicated their reciprocal neuron activities [94].

Various models have been proposed for the development of integrated memory sys-

tems, which consists of both procedural and declarative memory. A sample list of such

declarative-procedural memory models is given in Table 2.5. Many of these models have

been further embedded into autonomous agents for performance evaluation. However,

these models typically only study limited forms of declarative-procedural memory inter-

actions, in comparison with those discussed in the previous paragraph.

ACT-R [23] is a cognitive architecture to simulate human cognition, based on the

sets of empirical evidences from cognitive psychology and brain imaging. ACT-R as-

sumes human knowledge consist of two separate but mutually related sets of knowledge,

procedural and declarative knowledge. As discussed in Section 2.4, declarative memory

in ACT-R takes the chunk based representation. Through a competitive learning simi-

lar with [82], declarative memory holds the current set of known facts and concepts, as

well as active goals. Procedural memory, on the other hand, is modeled by a centered

processing system, wherein a set of production rules can be stored and executed. Each

production rule is represented by a “if-then” statement. Each production rule defines how
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Table 2.5: Comparison between existing procedural-declarative memory models

Model Procedural
Knowledge

Declarative
Knowledge

Interactions Model Decision Making

Soar [83] production
rules

semantic chunks:
concurrence of
features or items
overtime ; episode:
snapshot of active
working elements
at a certain time

declarative mem-
ory serves as
context infor-
mation to firing
production rules;
retrieval of declar-
ative memory to
form novel proce-
dural knowledge
through chunking

five-phase of cycle
of input, elabora-
tion , decision , ap-
plication and out-
put

ACT-R [23] production
rules

declarative chunks declarative mem-
ory serves as
context infor-
mation to firing
production rules

action recommen-
dation by firing a
single production
rule

CLARION [6] top level: ex-
plicit and acces-
sible knowledge
as if-then
rules; bottom
level: implicit
and hidden
connectionist
representation

top level: declar-
ative chunks
encoded by gen-
eral knowledge
store (GKS)
and associative
rules; bottom
level: auto- and
hetero-associative
connectionist
representation

declarative mem-
ory is under the
control of proce-
dural memory;
meta-cognition
take the overall
supervision of
their interactions

action recommen-
dation through
combining the
action decision
making from
both the top and
bottom level of
action-centered
subsystem, under
the supervision
from the mo-
tivational and
meta-cognitive
subsystems
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a certain goal can be accomplished if its associated pre-conditions can be satisfied, that is

the pre-conditions can be matched with the currently activated contents from declarative

knowledge. Therefore, the basic reasoning process of ACT-R can be simply described as

the following steps: (1) at any point of time, an ACT-R based agent attempts to accom-

plish a task by activating a particular goal representation in its declarative memory; (2)

based on the current set of activated declarative knowledge, the agent selects and fires

a single production rule from its procedural memory; (3) the firing of a production rule

can lead to either directly accomplishing the goal, or the subsequential activation and/or

learning of more declarative chunks which may further trigger the firing of additional

production rules; (4) step (2) and (3) are repeated until the goal is accomplished. The

recursive process of rule firings illustrates the step-by-step rationale for problem solving

commonly observed in our daily life. Hence, ACT-R demonstrates how the intelligence

has be raised during the interactions between declarative and procedural memories.

Similar to ACT-R, Soar [83] models the process of problem solving by managing on a

complex set of goals, states and actions. The memory system of Soar includes both the

long-term memory, consisting of the procedural, semantic and episodic memory, and the

working memory. The working memory model in Soar holds all the available knowledge

and information about the current situation, including the goals, the perceptions on the

external environment and the lists of available actions. Driven by the goal of solving

the current problem in hand, Soar selects actions to take, namely operator, from a set

of “if-then” production rules, which represents the pool of its procedural knowledge.

Contrasting with the decision making in ACT-R, Soar allows the unlimited number of

productions rules to fire in parallel, that is to take all the relevant procedural knowledge

into consideration before make a decision. After all the related rules have been fired,

Soar will select a single operator to take according to its specific preference evaluation of

rules.
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ACS NACS

Explicit

Representation

Explicit

Representation

Implicit

Representation

Implicit

Representation

Goal Structure

MS MS

Goal Setting

Drivers Regulation

…

g

Figure 2.6: The CLARION model adopted from [6, 7]. ACS denotes the action-centered
subsystem, NACS the non-action-centered subsystem, MCS the meta-cognitive subsys-
tem, MS the motivational subsystem
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From the decision making process described, the behaviors of a Soar-based agent is

mainly guided by its procedural memory. However, the semantic and episodic memory

may play the critical roles when the current level of procedural knowledge is insufficient.

This is signaled by multiple or no operators recommended during the process of the rule

firing. In this case, the Sore-based agent will continue its decision making by looking

into its similar experiences from the semantic and episodic memory to resolve the im-

passe. Once sufficient knowledge has been retrieved to choose the correct operator, a

new production rule will be directly encoded into its procedural memory in a manner

of chunking. In general, Soar supports the parallel learning and execution for procedu-

ral and declarative memory: while procedural memory is automatically retrieved during

each cycle of decision making and executes the highly skilled behaviors; the learning of

semantic and episodic memory is continually conducted without the interference from

the decision making, and the access of the declarative memory is only through explicit

memory retrievals in the scenarios of “non experts”.

As shown in Figure 2.6, CLARION [6] cognitive architecture organizes its procedural

and declarative memory into two separated subsystems, the action-centered subsystem

(ACS) [87] and the non-action-centered subsystem (NACS) [7] respectively. In CLAR-

ION, declarative memory is under the complete control of procedural memory, illustrated

by the following two aspects: (1) declarative memory provides necessary reasoning out-

come needed for the decision making process conducted by procedural memory and (2)

the context and declarative information about the current situation is also retrieved

by declarative to facilitate the decision making process. Moreover, CLARION suggests

an additional supervisory subsystem, namely meta-cognitive subsystem (MCS) [95], to

monitor and control the interactions among the two long-term memory systems.
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Modeling of Episodic Memory

In this chapter, we present an episodic memory model supporting the encoding of an indi-

vidual’s experience as well as their spatio-temporal relation, based on a generalization of

fusion Adaptive Resonance Theory (ART) [34], as published in [96, 97]. The model called

EM-ART supports complex-event storage through its multiple-channel pattern learning

capability inherited from fusion ART. A special encoding scheme is also introduced that

allows complex sequences of events to be grouped and recognized. EM-ART further in-

corporates a novel memory search procedure, which performs parallel search of stored

episodic traces continuously in response to potentially imperfect search cues. In addition,

the model employs a mechanism of gradual forgetting so as to maintain a manageable

level of memory consumption over a possibly infinite time period crucially needed by a

real-time system.

We have conducted experimental studies on the model through two different applica-

tions. The first application is a word recognition task, wherein the model is used to learn

a set of words. The performance is measured by the accuracies of retrieving the learned

words given their noisy versions. Compared with existing models of spatio-temporal

memory, our experiment results show that the model produces an equal or better re-

trieval performance. We also evaluate the model in a first person shooting game called

Unreal Tournament. In the game, the model is used to learn episodic memory based
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on an agent’s encounters. Experiments show that the model provides a more robust

level of performance in encoding and recalling events and episodes using various types

of input queries involving incomplete and noisy cues, compared with another spatio-

temporal memory model. By further examining the effects of forgetting, we find that the

incorporated forgetting mechanism also promotes a more efficient and robust learning by

continuously pruning of erroneous and outdated patterns.

The rest of this chapter is organized as follows. Section 3.1 provides an introduction

to the modeling of episodic memory. Section 3.2 presents the architecture of our episodic

memory model. Section 3.3 and section 3.4 present the algorithms and processes for

event and episode encoding and retrieval respectively. Section 3.5 discusses the forget-

ting mechanism incorporated in the model. Section 3.6 and section 3.7 investigate the

performance and robustness of the model in the word recognition task, the sign language

recognition task and the shooting game respectively. Section 3.8 provides a brief dis-

cussion and comparison of selected work on episodic memory models. The final section

concludes and highlights future work.

3.1 Introduction

Two basic elements of episodic memory are events and episodes. An event can be de-

scribed as a snapshot of experience. Usually, by aggregating attributes of interest, a

remembered event can be used to answer critical questions about the corresponding ex-

perience, such as what, where and when. On the other hand, an episode can be considered

as a temporal sequence of events that one experiences.

3.1.1 Memory Formation

To enable efficient encoding of events and episodes, an episodic memory model should

be able to distinguish between distinct events and episodes with a well-defined matching
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scheme. The basic challenge regarding building the memory storage matching scheme

is: On one hand, the novelty detection should be sufficiently strict to distinguish highly

similar but semantically different events (e.g. “Mary borrowed a book from Emma yes-

terday” is different from “Mary borrowed a book from Bob yesterday”); On the other

hand, it should also be loose enough to tolerate minor differences for events within a

single episode, such as slight changes within observed events and their temporal order.

Hence, the critical characteristics for the matching scheme is its high efficiency in de-

termining the significant differences while tolerating all minor variances for both events

and episodes encoding. Therefore, an efficient matching scheme should also lead to a

parsimonious memory storage as well as faster memory operations.

3.1.2 Memory Retrieval

We identify three major tasks in episodic memory retrieval, namely event detection,

episode recognition, and episode recall, described as follows.

• Event detection refers to the recognition of a previously learned event based on

a possibly incomplete description of the current situation. The episodic memory

model should be able to search for similar memorized events, which can be used to

complete or refine the given description.

• Episode recognition refers to the identification of a stored episode in the episodic

memory in response to a partial event sequence. Following the effect of episode

recognition, episodic memory model may also perform event completion if the

present event sequence has missing parts in the event representation. Two ba-

sic requirements of episode recognition include: (1) tolerance to incomplete cues,

which only form part of the stored episodes and (2) tolerance to errors in situational

information, for example, noise in event attributes and variations in the order of

event sequences.

53



Chapter 3. Modeling of Episodic Memory

• Episode recall is the playback of episode(s) in response to an external cue, such

as “what did I do yesterday?”. When a cue is presented, episodic memory answers

the cue with the most closely matched episode according to its similarity. During

the episode playback, compared with the stored information, an exemplar cue may

present minor disparities in individual event representations as well as their tempo-

ral orderings. The episodic memory model should be able to identify and tolerate

this imperfection during recall.

3.1.3 Forgetting

Many studies (e.g. [98, 99]) have indicated that the memory traces in hippocam-

pus are not permanent and occasionally transferred to neocortical areas in the brain

through a consolidation processes. It implies that forgetting should exist in episodic

memory to avoid possible information overflow. Forgetting in the episodic memory helps

to preserve and strengthen important or frequently used episodes, and remove (or forget)

unimportant ones. The forgetting in episodic memory also brings strong evidence to

the knowledge transfer process from hippocampus to neocortical memory. The memory

consolidation process makes the memory traces less prone to disruption and forgetting

[2].

Forgetting is not only a natural and desired characteristics of biological intelligence.

It is also a prevalent operation in continuous operation of real time artificial models

that gradually learns how to operate in a given environment. More importantly, it

is a necessary condition for promoting efficient memory storage, as well as fast and

accurate memory operations of episodic memory in real-time environments. However, as

episodic memory is event driven, the memory stores events that could be separated in

unpredictable intervals along time. Therefore, it is unrealistic to incorporate a forgetting

process for episodic memory relying on time as the only or the most important regulator

of its functions.
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In this research, we describe the basic principles of forgetting as follows: in the

formation of episodic memory, short term memory events and/or episodes that were not

rehearsed frequently and did not have significance will be quickly forgotten, while those

that are significant or repeated frequently will last longer. In order to achieve these

requirements, the dynamic memory architecture may include the following two main

components: (1) an evaluation method on the importance of stored events and episodes

based on various related criterions (such as rewards and accessing frequency); (2) a

forgetting mechanism continuously enhances the storage of important past experiences

while purging the aging and trivial situations.

3.1.4 Summary

Taking the above into consideration, an episodic memory model should satisfy the fol-

lowing basic requirements:

• Efficient event representation, which is able to describe complex situations and

events;

• Efficient episode representation, which explores spatio-temporal relations among

events which form the episode;

• Well-defined generalizations on representations, which accurately distinguishes crit-

ical and irrelevant differences among them (for both events and episodes);

• High error tolerance to incomplete or noisy cues;

• Fast memory operations, including memory encoding and retrieving;

• Tracking the importance of events and episodes in realtime based on rewards, sur-

prises, emotions, interpretation and access frequency; and

• Forgetting mechanism to deal with the limited capacity issue.
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3.2 The Model

Our episodic memory model, called EM-ART, is built by hierarchically joining two multi-

channel self-organizing neural networks, called fusion ART networks. Based on Adaptive

Resonance Theory (ART) [100], fusion ART dynamics offers a set of universal computa-

tional processes for encoding, recognition, and reproduction of patterns.

As shown in Figure 3.1, the model consists of three layers of memory fields: F1, F2

and F3. The F1 layer, connected with the working memory, holds the activation values

of all situational attributes. Based on the F1 pattern of activations, a cognitive node in

F2 is selected and activated as a recognition of the event. Following that, the activation

pattern of an incoming event can be learned by adjusting the weights in the connections

between F1 and F2.

Besides categorizing events, the F2 layer also acts as a medium-term memory buffer

for event activations. A sequence of events produces a series of activations in F2. The

activations in F2 decay over time such that a graded pattern of activations is formed

representing the order of the sequence. This activity pattern, which represents an episode,

is similarly learned as weighted connections between F2 and the selected category in F3.

Once an episode is recognized through a selected node in F3, the complete episode can

be reproduced by a top down activation process (readout) from F3 to F2. The events in

the episode can also be reproduced by reading out the activations from F2 to F1 following

the order of the sequence held in the F2 layer.

The computational principles and algorithms used for encoding, storing and retrieving

events and episodes are described in details in the following sections.

3.3 Event Encoding and Retrieval

An event consists of attributes characterizing what (e.g. subject, relation, action, object),

where (e.g. location, country, place), and when (e.g. date, time, day, night) an event
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Figure 3.1: The three-layer neural network architecture of the episodic model: F1 is the
input layer connected to the working memory, F2 for event recognition, F3 for episode
recognition

occurs. Figure 3.2 shows an example of the structure of an input event based on the

Unreal Tournament domain [37]. This structure is also used in the experiments for

evaluating EM-ART (explained in later sections). In the structure shown, the location

is expressed using a 3-dimensional cartesian coordinate system; other task and internal

states include the observed distance from the enemy (another agent), the availability of

collectable items, and the agent’s health and ammo level.

There are four behavior choices (actions) available for the agent, including running

around, collecting items, escaping from battle and engaging in fire. The consequence of

a battle situation (e.g. killing and being damaged) is presented to the model as a reward

value. Information about time is not included in this case, but it can be assumed that

the temporal information has been represented inherently in the episode.

Figure 3.2: The vector representation of an event based on the Unreal Tournament
domain
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3.3.1 Fusion ART

Fusion ART network [34] is used to learn individual events encoded as weighted connec-

tions between the F1 and F2 layers. In this case, an event is represented as a multi-channel

input vector. Figure 5.2 illustrates the fusion ART architecture, which may be viewed

as an ART network with multiple input fields. Each event’s attribute is represented as

the activity of a node in the corresponding input field.

Figure 3.3: The fusion ART Architecture

For completeness, a summary of the fusion ART dynamics [34] is given below.

Input vectors: Let Ik = (Ik1 , I
k
2 , . . . , I

k
n) denote an input vector, where Iki ∈ [0, 1]

indicates the input i to channel k, for k = 1, . . . , n. With complement coding, the input

vector Ik is augmented with a complement vector Īk such that Īki = 1− Iki .

Input fields: Let F k
1 denote an input field that holds the input pattern for channel

k. Let xk = (xk
1, x

k
2, . . . , x

k
n) be the activity vector of F k

1 receiving the input vector Ik

(including the complement).

Category fields: Let Fi denote a category field and i > 1 indicate that it is the ith

field. The standard multi-channel ART has only one category field which is F2. Let

y = (y1, y2, . . . , ym) be the activity vector of F2.

Weight vectors: Let wk
j denote the weight vector associated with the jth node in F2

for learning the input pattern in F k
1 .

Parameters: Each field’s dynamics is determined by choice parameters αk ≥ 0, learning

rate parameters βk ∈ [0, 1], contribution parameters γk ∈ [0, 1] and vigilance parameters
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ρk ∈ [0, 1].

The dynamics of a multi-channel ART can be considered as a system of continuous

resonance search processes comprising the basic operations as follows.

Code activation: A node j in F2 is activated by the choice function

Tj =
n∑

k=1

γk
|xk ∧wk

j |
αk + |wk

j |
, (3.1)

where the fuzzy AND operation ∧ is defined by (p ∧ q)i ≡ min(pi, qi), and the norm |.|

is defined by |p| ≡
∑

i pi for vectors p and q.

Code competition: A code competition process selects a F2 node with the highest

choice function value. The winner is indexed at J where

TJ = max{Tj : for all F2 node j}. (3.2)

When a category choice is made at node J , yJ = 1; and yj = 0 for all j ̸= J indicating

a winner-take-all strategy.

Template matching: A template matching process checks if resonance occurs. Specif-

ically, for each channel k, it checks if the match function mk
J of the chosen node J meets

its vigilance criterion such that

mk
J =
|xk ∧wk

J |
|xk|

≥ ρk. (3.3)

If any of the vigilance constraints are violated, mismatch reset occurs or TJ is set to

0 for the duration of the input presentation. Another F2 node J is selected using choice

function and code competition until a resonance is achieved. If no selected node in F2

meets the vigilance, an uncommitted node is recruited in F2 as a new category node.

Template learning: Once a resonance occurs, for each channel k, the weight vector wk
J

is modified by the following learning rule:
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w
k(new)
J = (1− βk)w

k(old)
J + βk(xk ∧w

k(old)
J ). (3.4)

Activity readout: The chosen F2 node J may perform a readout of its weight vectors

to an input field F k
1 such that xk(new) = wk

J .

A fusion ART network, consisting of different input (output) fields and a category

field, is a flexible architecture that can be made for a wide variety of purposes. The

neural network can learn and categorize inputs and can be made to map a category to

some predefined fields by a readout process to produce the output. Another important

feature of the fusion ART network is that no separate phase of operation is necessary for

conducting recognition (activation) and learning. Learning can be conducted by adjusting

the weighted connections while the network searches and selects the best matching node.

When no existing node can be matched, a new node is allocated to represent the new

pattern. Hence, the network can grow in response to novel patterns.

3.3.2 Algorithm for Event Encoding and Retrieval

Based on the above description of fusion ART, an event can be encoded as an input vector

to the network such as the one shown in Figure 3.2. Using the standard operations of

fusion ART, the recognition task can be realized by a bottom-up activation given the

input vector. On the other hand, the top-down activation (readout operation) achieves

the recall task. Figure 3.4 illustrates the bottom up and top down operations for learning,

recognition, and recalling an event.

More specifically, the algorithm for learning and recognizing events can be described

as Algorithm 3.1.

Algorithm 3.1 for event recognition and encoding is designed to handle complex se-

quences involving repetition of events. The iteration condition in line 3 Algorithm 3.1

ensures that the same node will not be selected if it has been selected previously as a
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Algorithm 3.1 Event Encoding

1: for each incoming pattern of event in F1 do
2: Activate and select a node (through winner-take-all) in F2

3: while the node is not in resonant condition or the node has been selected previously
do

4: Reset the current node activation
5: Choose another node in F2

6: end while
7: if no matching node can be found in F2 then
8: Recruit an uncommitted node in F2

9: Learn it as a novel event
10: end if
11: end for

matching category in the same episode. This leads to the creation of a new event category

when the event pattern is repeated in a sequence (episode). One important parameter

for event recognition and encoding is ρk, the vigilance parameter for each input channel

k in F1. The vigilance values are used as thresholds for the template matching process,

as described in Section 3.3.1. If the same vigilance value is applied to all input channels

in F1 layer, ρe is introduced to represent this unified vigilance value for encoding and

retrieval of events.

Figure 3.4: Operations between F1 and F2 in EM-ART: bottom-up activation to recognize
and select an event, top-down activation to recall an event
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3.4 Episode Learning and Retrieval

3.4.1 Episode Representation and Learning Algorithm

A crucial part of episodic memory is to encode the sequential or temporal order between

events. However, in the standard model of fusion ART, this feature of sequential rep-

resentation is missing. The Episodic Memory (EM) model in this chapter extends the

fusion ART model so that it can associate and group patterns across time.

Specifically, we adopt the method of invariance principle [101, 102], which suggests

that activation values can be retained in a working memory (neural field) in such a

way that the temporal order in which they occur are encoded by their activity patterns.

To retain the temporal order, each entry of activation item multiplicatively modifies the

activity of all previous items. Based on the multiplying factor, an analog pattern emerges

in the neural field reflecting the order the events are presented. Thus, the temporal order

of items in a sequence, encoded as relative ratios between their values, remains invariant.

The method has accurately emulated the characteristic of serial learning conforming

the psychological data about human working memory [101]. The approach has also been

simplified as gradient encoding by replacing the multiplication with the adding/subtracting

operation and is successfully applied to the intentional Fusion Architecture for Learning,

COgnition and Navigation (iFALCON), a belief-desire-intention (BDI) agent architecture

composed of fusion ART [103].

To represent a sequence in our EM model, the invariance principle is applied, so that

an activation value in F2 indicates a time point or a position in an ordered sequence. The

most recently activated node in F2 has the maximum activation of 1 while the previously

selected ones are multiplied by a certain factor decaying the values over time. Suppose

t0, t1, t2, ..., tn denote the time points in an increasing order, and yti is the activity value

of the node that is activated or selected at time ti, the activation values in F2 form a
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certain pattern such that yti > yti−1
> yti−2

> ... > yti−n
holds where ti is the current or

the latest time point. This pattern of activation also possesses or exhibits the so called

recency effect in STM (Short-Term Memory), in which a recently presented item has a

higher chance to be recalled from the memory.

Figure 3.5: Operations between F2 and F3 in EM-ART: bottom-up activation to recognize
and select an episode, top-down activation to recall an episode

The process of episode learning in EM-ART is shown in Figure 3.5. While a newly

activated node has an activation of 1, the activation value of any other node j in F2 is

decayed in each time step so that y
(new)
j = y

(old)
j (1− τ), where yj is the activation value

of the jth node in F2 and τ ∈ (0, 1) is the decaying factor.

Concurrently, the sequential pattern can be stored as weighted connections in the

fusion ART network. As mentioned previously, F2 and F3 can be considered respectively

as the input field and category field of another fusion ART neural network with a single

input field only. Each node in F3 represents an episode encoded as a pattern of sequential

order according to the invariance principle in its weighted connections.

The overall algorithm of episode learning can be described as Algorithm 3.2.

One important parameter used in the episode learning algorithm is ρs, the vigilance

parameter in the F2 field. The vigilance parameter is used as a threshold for the template

matching process as described in Section 3.3.1.
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Algorithm 3.2 Episode Activation and Learning

1: for each event in an episode S do
2: Select a node in F2 based on the input pattern in F1

3: Set the activation yj of the selected node to maximum

4: Decay activations of all previously selected nodes i by y
(new)
i = y

(old)
i (1− τ)

5: if the event is the end of S then
6: Activate, select, and learn a node in F3 based on the pattern formed in F2 by

resonance search
7: end if
8: end for

3.4.2 Episode Retrieval

After episodes are learned, a particular episode can be recalled using different types of

cues. A cue for the retrieval can be a partial sequence of the episode starting from the

beginning or any position in the sequence. Based on the cue, the entire episode can be

reproduced through the read out operation. An important characteristic of EM-ART

is that the retrieval can be done in a robust manner as the activation and matching

processes comprise analog patterns. This feature is useful when the cue for retrieval is

imperfect or noisy. The approximate retrieval is also made possible by the use of fusion

ART as the basic computational model for all parts of the EM. For example, lowering

the vigilance parameter ρs of F2 can make it more tolerant to noises or incomplete cues.

To retrieve an episode based on a weak cue, such as a subsequence of episode, a

continuous search process is applied, in which the activity pattern of the cue is formed in

F2 while the F3 nodes are activated and selected at the same time through the resonance

search process. As long as a matching node is not found (still less than ρe), the next

event is received activating another node in F2 while all other nodes are decayed. For

a cue as a partial episode, the missing event can mean no more new activation in F2

while other nodes are still decayed. The algorithm for recognizing an episode based on

imperfect cues can be described in Algorithm 3.3.
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Algorithm 3.3 Episode Recognition

1: for each incoming event do
2: Select a node in F2 based on the incoming event in F1 by resonance search
3: Set the selected node activation yj to maximum

4: Decay the value of every previously selected node i by y
(new)
i = y

(old)
i (1− τ)

5: Activate and select a node (winner-take-all) in F3 based on the current pattern
formed in F2

6: if the selected node matches with the pattern then
7: Episode is recognized and the search finishes
8: Continue to the next stage of retrieval by exiting the loop
9: end if
10: end for

Once an episode is recognized, the complete pattern of sequence can be reproduced

readily in the F2 layer by the read out operation from the selected node in F3 to the nodes

in F2. To reproduce the complete episode as a sequence of events, the corresponding

values in F1 layer must be reproduced one at a time following the sequential order of the

events in the episode. That is, the episode playback starts with the first event in the

episode and ends with the last event occurred. However, due the recency effect during

episode encoding as mentioned in Section 3.4.1, the first event in the episode is encoded

with the smallest value in the sequence pattern, while the maximum value is given to

the termination event. The EM-ART resolves this issue by vector complementing the

values in F2 before reading out the complete events in F1. After the sequential pattern is

readout to the field in F2 which can be expressed as vector y, a complementing vector y

can be produced so that for every element i in the vector, yi = 1− yi. Given the vector

y, the node corresponding to the largest element in y is selected first to be read out to

the F1 fields. Subsequently, the current selected element in the vector is suppressed by

resetting it to zero, and the next largest is selected for reading out until everything is

suppressed. In this way, the whole events of the retrieved episode can be reproduced in

the right order.
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3.5 Forgetting in Episodic Memory

Forgetting in episodic memory is essential to preserve and strengthen important and/or

frequently used experiences, while removing unimportant or rarely occurred ones. Pre-

venting ever-growing storage is a crucial aspect when dealing with continuous realtime

operations. The forgetting mechanism should periodically check all stored events for

their frequencies of use and the level of importance. Rarely-rehearsed events in episodic

memory will be quickly forgotten while frequently-active ones will last longer.

In the episodic memory model, a memory strength value sj ∈ [0, 1], is associated

with each event encoded by a F2 node. Initially, sj is set to sinit and gradually decays

by a decay factor δs ∈ [0, 1]. Upon an event reactivation, sj is increased by an amount

proportional to a reinforcement rate rs ∈ [0, 1]. The strength of an event ej at time t can

be computed as follows:

sj(t) =


sinit e is just created at t

sj(t− 1) + (1− sj(t− 1))rs e is reactivated at t
sj(t− 1)(1− δs) otherwise

An event having sj falling below a threshold ts ∈ [0, 1] will be removed from episodic

memory together with all of its weighted connections to/from other event and episode

nodes.

The determination of parametric values on sinit and δs is mainly based on the nature of

the associated application domain. Multiple values on these parameters can be included

in one single episodic model. The various values on sinit and δs should be based on all

related factors, such as rewards, prediction surprises and emotions. Generally, the events

with greater rewards, prediction surprises and/or emotions should be stored in episodic

memory for a longer time period. Hence, it should be associated with a higher value of

sinit and/or a smaller value for δs.
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3.6 Benchmark Comparison

3.6.1 Empirical Evaluation on A Word Recognition Task

In this section, we compare the performance of the model with other sequential memory

methods to be discussed in Section 3.1 for a word recognition task. In this task, we

compare the performance of different models for the typoglycemia phenomena based on

the following benchmark presented in [35]: “I cnduo’t bvleiee taht I culod aulaclty uesdtannrd

waht I was rdnaieg. Unisg the icndeblire pweor of the hmuan mnid, aocdcrnig to rseecrah

at Cmabrigde Uinervtisy, it dseno’t mttaer in waht oderr the lterets in a wrod are, the olny

irpoamtnt tihng is taht the frsit and lsat ltteer be in the rhgit pclae. The rset can be a taotl

mses and you can sitll raed it whoutit a pboerlm. Tihs is bucseae the huamn mnid deos not

raed ervey ltteer by istlef, but the wrod as a wlohe. Aaznmig, huh? Yaeh and I awlyas tghhuot

slelinpg was ipmorantt! See if yuor fdreins can raed tihs too.”

To perform such benchmark test, each letter in the recognition test is fed into EM-

ART model as an input vector one by one. The input vector consists of 26 attributes,

each of which represents a letter in the alphabet. At any time, only one attribute in the

vector can be set to 1 to indicate the current letter read by the EM model. In the model,

each letter is learned as a event node in F1, while a unique word is encoded as an episode

node in F2 describing the ordering of its included letters (i.e. events).

We train the EM model using all corresponding corrected words indicated by the

typoglycemia test. We set the choice parameter α = 0.1, contribution parameter γ = 1

and learning rate β = 1 for event learning, α = 0.1, contribution parameter γ = 1,

learning rate β = 1 (uncommitted node) and learning rate β = 0.3 (committed node) for

sequence learning. With a vigilance of 1 at both the event and episode levels (ρe = ρs =

1), the model creates 26 event nodes and 73 episodes nodes, which corresponds to the 26

letters and 73 unique words in the typoglycemia test. After building the EM model, we
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load the test passage with all the misspelt words. Therefore, the model performance can

be examined by the memory retrieval subject to the noisy cues with erroneous ordering.

We compare the performance with many other methods including hidden Markov model

(HMM), Levenshtein distance method and a spatio-temporal network model called LTM

model, (i.e. long-term memory), as reported in [57]. As shown in Figure 3.6, HMM

can correctly retrieve 94.67% of the learned words from all words in the test, while

the accuracy for Levenshtein distance method is 89.36%. EM-ART and LTM model

provide an equal retrieval performance of 100% accuracy for this retrieval test. These

results shows EM-ART provides better recognition performance compared to HMM and

Levenshtein distance method in the typoglycemia test; LTM has a simlar performance

as EM-ART by tolerating all errors while recalling the whole misspelt paragraph.
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Figure 3.6: Comparison of retrieval accuracy (in %) on the typoglycemia word recognition
benchmark

3.6.2 Empirical Evaluation on A Sign Language Recognition
Task

In the previous section, the EM-ART model shows a similar performance in the word

recognition task compared with the LTM model [57]. In this section, we evaluate the
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performance of the EM-ART model in a sign language recognition task. The experiment

results are compared with the LTM model, as well as one of its extended models presented

in [59]. In this task, the EM-ART model learns the sample set of the Auslan (Australian

Sign Language) signs presented in [36]. This Australian Sign Language (ASL) data

set contain 27 samples for each of 95 Auslan signs. Each sample in the ASL dataset

was collected from a native signer with high-quality position trackers and instrumented

groves. The sample in the dataset has an average length of 57 frames, each of which

contains 22 channels of information (e.g. x, y, z, roll, pitch, yaw and individual figure

motions of both hand).

For a proper comparison, we employed the similar set of experiment configuration

as stated in [104, 59]. We extracted the trajectory from each sign sample by the first-

derivation of the data on the x and y coordinates of both hands. The trajectory is then

smoothed by a moving average window of size three. To perform the ASL recognition

task, each data point in the smoothed trajectory is fed into the EM-ART model as an

input pattern (i.e. an input pattern consist of one input field with four attributes) one by

one. As the input patterns are presented one by one along the trajectory, the EM-ART

model learns each data point as an event node in F2 layer. The model eventually learns

the entire trajectory of a sign sample as an episode in F3 layer. The episode describes

the temporal ordering of the individual data points along the corresponding trajectory.

We conducted four sets of experiments with the different numbers of signs to learn,

i.e. 8, 16, 29 and 38. In each set of the experiments, the EM-ART model is trained

using the half of the sample trajectories (13 trajectories per sign) and the retrieval test

is conducted by the full set of the samples for the selected sign. During each run of

experiments, the signs to be learned is randomly selected. We set the same parameters

of the model as stated in Section 3.6.2, except that the vigilance at the event level is

set to 0.97 to consider the noisy trajectory inputs (i.e. ρe = 0.97). We compared the
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performance with several other methods including HMM [104], Gaussian mixtures model

(GMM) [104], self-organizing map (SOM) [105], the original LTM model [57] and the

extended model of LTM [59]. The performance measurement of the compared models is

reported ias [104, 59]. The experiment results are shown in Table 3.1. From Table 3.1,

EM-ART is able to retrieval more testing trajectories accurately compared with HMM,

GMM, SOM and the original LTM model, especially as the number of the signs learned

increases. Compared with the extended LTM model, EM-ART provides a better retrieval

performance in term of the average retrieval accuracies, but with larger values of standard

deviations.

Table 3.1: Retrieval accuracies of EM-ART and comparisons with other models in the
ASL language recognition task.

Model No. of classes
(no. of runs/no. of test instances)

8 16 26 38
(50/216) (30/432) (10/738) (10/1026)

EM-ART 0.9615 0.9170 0.8986 0.8869
(± 0.0487) (± 0.0405) (± 0.0404) (± 0.0390)

LTM [59] 0.9412 0.9009 0.8884 0.8671
(± 0.0244) (± 0.0296) (± 0.0189) (± 0.0147)

Original LTM 0.8102 0.7676 0.7372 0.7263
model [57] (± 0.0409) (± 0.0200) (± 0.0135) (± 0.0346)

HMM [104] 0.86 0.78 0.69 0.66

GMM [104] 0.85 0.74 0.67 0.64

SOM [105] 0.82 0.76 N.A. N.A.
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3.7 Case Study in A Game Domain

3.7.1 Episode Learning by A Game Agent

In this section, we study the performance of EM-ART in a first-person shooter game

environment called Unreal Tournament (UT). In the UT environment, each non-player

character (NPC) agent receives events describing the situation it experiences. The EM-

ART model is used to learn episodic traces of those events, which are subsequently

subjected to various recall tasks for performance evaluation.

In our EM-ART model, an event can be defined as a vector, as shown in Figure 3.2.

Those events experienced by an agent during a battle, together with their mutual tempo-

ral relations, form an episode in the game. In this section, we investigate the experience

of an agent from 100 battles (i.e. episodes) played in the game. During these 100 battles,

there are 7735 events. The number of events within an episode varies from 7 to over 250.

The consistent set of parameter values is applied to the experiments in the rest of the

chapter if not explicitly stated: the choice parameter α = 0.1, contribution parameter

(γlocation, γstatus, γbehavior, γconsequence) = (0.1, 0.3, 0.3, 0.3) and learning rate β = 1 (un-

committed node) and learning rate β = 0.3 (committed node) for event learning; the

choice parameter α = 0.1, contribution parameter γ = 1, learning rate β = 1 (uncom-

mitted node) and learning rate β = 0.3 (committed node) for sequence learning. The

γlocation, γstatus, γbehavior and γconsequence represent the contribution parameters for the

four channels of location, status, behavior and consequence in the event representation

as described in Section 3.3 and Figure 3.2.

3.7.2 Episode Retrieval by A Game Agent

We build several exemplar EM models using various vigilance values to access their

effect on both episode learning and retrieval. Table 3.2 shows the memory sizes of the

EM models based on different vigilance setting, described by the total number of events
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and episodes in the built models. As reported in Table 3.2, the size of memory shows

almost no change as the vigilance at the episode level (i.e. ρs) drops from 1.0 to 0.9;

meanwhile, a 0.05 decrease on event-level vigilance ((i.e. ρe) leads to a 60% reduction

in the number of events by merging highly similar events into a single event node. The

sensitivity of model over vigilance values reveals one remarkable characteristic of the UT

domain—the similarity between events is relatively high, while most of exemplar episodes

are distinct from each other.

Table 3.2: Comparisons of the EM model sizes (in numbers of event and episode nodes)
at various levels of vigilances.

(ρe, ρs) Number of Episodes Number of Events

(1.0, 1.0) 100 6705
(1.0, 0.9) 100 6705
(0.95, 1.0) 98 2692
(0.95, 0.9) 98 2692

After the EM models are built, various tests are conducted to evaluate the ac-

curacy of memory retrieval, subject to variations in cues, described as follows: (1)

The cue is a full/partial event sequence of a recorded episode starting from the begin-

ning/end/arbitary location of the episode; (2) The cue is a noisy or erroneous full length

event sequence of the recorded episodes. In the retrieval test, the retrieval accuracy is

measured using the ratio of the number of the correctly retrieved episodes over the total

number of cues applied. We also further investigate the influence of different levels of

vigilance on the model’s performance at both the event and episode levels, indicated by

the vigilance values of ρe and ρs respectively. For the ease of the parameter setting, all

our experiments use a standard vigilance value (ρe) throughout all the fields in the F1

layer. We evaluated the performance of EM-ART under a range of vigilance values from

0.5 to 1.0 at both event (i.e. ρe) and episode (i.e. ρs) level. Due to the large amount and

high similarity of results, in this chapter we only present the model performance under a
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narrower range of vigilance values from 0.9 to 1.0. The results of these tests are reported

in the following paragraphs.
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Figure 3.7: Comparison of retrieval accuracies (in %) using partial cues from the begin-
ning of episodes with various lengths under different vigilance values.

Retrieving from Beginning of Episodes In this retrieval test, we extract partial

sequences from the beginning of the recorded episodes as cues for retrieving the episodes.

The cues are of different lengths, ranging from whole to 1/2, 1/3, 1/4, and 1/5 of the

length of the episodes. Figure 3.7 gives the retrieval accuracy using cues of various

length under different vigilance values. As shown in Figure 3.7, the model can accurately

retrieve all stored episodes based on partial cues with different lengths with ρe of 1.0.

With a lower ρe value of 0.95, the built model can still give a retrieval accuracy of 88%

while reducing the number of encoded event nodes by 60%. With ρe = 0.95, a higher

retrieval accuracy can be typically provided by a longer cue. Meanwhile, the abstraction

at the episode level (indicated by the value of ρs) shows insignificant impacts on the

performance due to the data characteristics discussed previously.
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Table 3.3: Comparison of retrieval accuracies (in %) using partial cues from (a)the begin-
ning (b) the end (c) arbitrary locations of episodes with various lengths under different
vigilance values.

Cue Type (ρe, ρs) Cue Length

full 1/2 1/3 1/4 1/5
(1.0, 1.0) 100 100 100 100 100

(a) partial cues from (1.0, 0.9) 100 100 100 100 100
the beginning of episodes (0.95, 1.0) 98 93 93 89 88

(0.95, 0.9) 98 93 93 89 88

full 1/2 1/3 1/4 1/5
(1.0, 1.0) 100 100 100 100 100

(b) partial cues from (1.0, 0.9) 100 100 100 100 100
the end of episodes (0.95, 1.0) 98 98 98 97 96

(0.95, 0.9) 98 98 98 97 96

full 1/2 1/3 1/4 1/5
(1.0, 1.0) 100 100 100 100 100

(c) partial cues from arbitrary (1.0, 0.9) 100 100 100 99 98
location of episodes (0.95, 1.0) 98 97 93 88 85

(0.95, 0.9) 98 94 90 90 90

Retrieving from End of Episodes In this retrieval test, cues are extracted from the

end of the recorded episodes. Similarly, cues of various length are used, ranging from

whole to 1/2, 1/3, 1/4 and 1/5 of the original length of the episodes. The section (b)

of Table 3.3 shows the retrieval accuracy using cues of different length under various

vigilance values of ρs. We see that the test shows similar performance patterns as those

observed by retrieving from the beginning of episodes. Besides, the tests lead to an

equal or better retrieval performance (i.e. at least 96% recognition rate) comparing with

retrieving from the beginning of episodes. The difference in performance can be observed

by introducing the multiplicative decay process described in Section 3.4.1. Given partial

length cues from the beginning of episodes, this process tends to produce small differences

between event activations and weighted connections encoded in the episode nodes.
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Retrieving from Arbitrary Location of Episodes In this retrieval test, cues are

extracted from the recorded episodes starting from randomly selected locations. Each

such partial cue is forwarded to the model for episode retrieval. The cues are of different

lengths, ranging from whole to 1/2, 1/3, 1/4 and 1/5 of the length of the episodes. The

section (c) of Table 3.3 shows the retrieval accuracy under various vigilance values. As

indicated, the test provides similar retrieval performance as those by retrieving from

beginning and end of episodes.

Retrieving with Noisy Events To test the robustness of the model, we have further

conducted the retrieval test with noisy data. Two types of errors are applied in the test

as follows: (1) error in individual event’s attributes and (2) error in event ordering within

a complete sequence. This test investigates the model’s robustness in dealing with the

first type of noise. The corresponding noisy data set is directly derived from the original

data set using the method described in Algorithm 3.4, with a specified error rate.

Table 3.4: Comparison of retrieval accuracies (in %) using full-length cues with various
levels of noises on (a) event (b) episode representation.

Cue Type (ρe, ρs) Error Rate

2% 5% 10% 15%
(a) full length cues with (1.0, 1.0) 98 97 91 72
various level of noises (1.0, 0.9) 97 97 93 75
on event representation (0.95, 1.0) 95 95 82 57

(0.95, 0.9) 95 95 85 57

5% 10% 15% 20%
(b) full length cues with (1.0, 1.0) 100 100 100 100
various level of noises (1.0, 0.9) 100 100 100 100

on sequence representation (0.95, 1.0) 98 98 98 97
(0.95, 0.9) 98 98 97 97

We test the model with various error rates on event representation and the results are

shown in the section (a) of Table 3.4. The test shows that the built model can correctly
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Algorithm 3.4 Generation of Noisy Events

Input: Error rate r ∈ (0, 100)
1: Randomly select r% events in the original data set
2: for each selected event in the original dataset do
3: for each attributes A, in the selected event do
4: Randomly draw a value e from a Gaussian distribution N(0, σ2)
5: A′ = A+ e
6: if A is boolean value then
7: if A′ ≥ 0.5 then
8: A = true
9: else
10: A = false
11: end if
12: end if
13: if A is real value then
14: A = A′

15: if A′ > 1 then
16: A = 1
17: end if
18: if A′ < 0 then
19: A = 0
20: end if
21: end if
22: end for
23: end for
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retrieve at least 90% of all episodes with an error rate as high as 10%, at an event vigilance

of 1.0. However, the performance drops to roughly 70% as the error rate reaches 15%.

We further observe that, to achieve a high retrieval accuracy with noisy cues, the model

requires a high vigilance ρe for event recognition in the F2 layer, and the vigilance ρs

for sequence recognition in the F3 layer shows a relatively limited impact on the model

performance. The results show that for event recognition, higher vigilance (ρe) is required

to distinguish the highly similar but conceptually different events; In contrast, episode

recognition should be able to tolerate minor changes within events and their temporal

orders, which is achieved by lowering its vigilance (ρs). By setting appropriate vigilance

values, the model tackles the challenge of building an efficient memory storage matching

scheme as stated in Section 3.1.

Retrieving with Noisy Episodes In this section, we test the model reliability in

dealing with the second type of noise. The corresponding noisy data set is derived from

the original data set using the method described in Algorithm 3.5, given the desired rate

of noise.

We test the model with various error rates on sequence representations and the results

are shown in the section (b) of Table 3.4. Similar to the previous results, to achieve

tolerance to high level of noise, the model requires a relatively high event vigilance (ρe).

With a vigilance of 1 at event level, the model can achieve 100% retrieval accuracy with

an error rate as high as 20%.

3.7.3 Comparison with A Long-term Memory Model

Since EM-ART and the LTM (i.e. long-term memory) model [57] show similar perfor-

mance on the word recognition tests described in Section 3.6, in this section, we conduct

further performance comparison between these two models by repeating the retrieval

tests conducted in Section 3.7.2. Since the retrieval tests show that the performance of
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Algorithm 3.5 Generation of Noisy Episodes

1: for each episode S1 stored do
2: Randomly select another stored episode S2 whose length is longer than S1

3: Randomly set the value of x where 0 < x <the length of S1

4: Set y = x+ n, where n/S1.length is the desired error rate
5: Replace partial event sequence in S1 indexed by [x, y] with the corresponding par-

tial event sequence of S2

6: end for

both models are almost the same with partial cues and only the retrieval results with

noisy cues are presented in this chapter.

Figure 3.8 shows the accuracy for retrieving episodes when noises are introduced to

each individual event in an episode. Although both models provide lower performance as

more noises are added, EM-ART can retrieve more correct episodes than the LTM model

across all noise levels. The performance difference between the two models widens when

dealing with noises on the event ordering. As shown in Figure 3.9, there is a gradual

degradation of accuracy level in the LTM model with the increase in the error introduced.

In contrast, EM-ART always retrieves all the correct episodes even though the error rate

has reached 20%.

The results above confirm that the neural model for episodic memory can deal with

imperfect cues and tolerate noises by doing approximate retrieval through the resonance

search. The model is also more tolerant to noises and errors in memory cues than the

LTM model.

3.7.4 Analysis on Effects of Forgetting

Signals from environment are subject to noises. The episodic memory model should

maintain a robust performance while learning with noisy information. Through its one-

shot learning, EM-ART encodes all the incoming events into its storage, regardless the

validity of the information. To deal with this problem, the incorporated forgetting mecha-

nism discriminatively manages these learned experiences as follows: the noisy experiences
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Figure 3.8: Comparison of retrieval accuracy (in %) using full-length cues with various
error rates on event representation.
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Figure 3.9: Comparison of retrieval accuracy (in %) using full-length cues with various
error rates on sequence representation.
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are typically subjected to continuous decaying on their memory strength and eventually

deleted from episodic memory due to low reactivation frequency; Meanwhile, a consis-

tently happening experience tends to be preserved by high repetitions. The episodic

memory model should be able to maintain the actual experiences despite the limited

noises present. Therefore, the actual experiences are more likely to be retrieved from

memory. In this way, not only forgetting helps episodic memory to maintain a manage-

able memory size in the long term, but it also enhances the robustness and reliability of

the model performance in a noisy environment.

In this section, we simulate four sets of noisy training data as shown in Algorithm

3.6. By setting r in Algorithm 3.6 to 5, 10, 15 and 20, we generate four noisy data

sets, each with 77350 events and 1000 episodes. The generated data sets respectively

containing 5%, 10%, 15% and 20% errors on their event representation are used to train

the episodic memory models. We then examine the performance of the trained models

through retrieval tests, subject to various partial and noisy cues. Again, we measure the

retrieval performance based on how many actual episodes can be correctly retrieved in

a trial using the same type of cues. The performance is also compared with the original

EM-ART without the forgetting mechanism.

Algorithm 3.6 Generation of Noisy Training Set

Input: Error rate r ∈ (0, 100), original data set Setorig and an empty data set Set r
Output: Data set Set r
1: Copy Setorig into Set r
2: Generate a noisy data set from Setorig using Algorithm 3.4 with a passing argument

of r
3: Append the generated data set to Set r
4: Repeat step 1− 3 for D for 4 times

We set the initial confidence sinit = 0.5, decay factor δs = 10−4, reinforcement rate

rs = 0.5, strength threshold ts = 0.1 and vigilance ρ = 0.5 for event learning and

sinit = 0.5, decay factor δs = 0.008, reinforcement rate rs = 0.5, strength threshold
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ts = 0.1 and vigilance ρ = 0.95 for episode learning. We train EM-ART for each generated

training data set with a different level of noise. The memory size of the evaluated models

is given in Table 3.5 with comparison to their corresponding models without forgetting.

From Table 3.5, we observe that as the error rate increases from 5% towards 20%, the

evaluated models without forgetting have a larger number of event and episodes nodes

by 66.7% and 9.8% respectively. The significant increase on the memory size reflects

the increased noises presented in the training sets. On the other hand, the models with

forgetting show a marginal increase in their sizes due to continuously recognition of and

thus deletion of noisy patterns.

Table 3.5: Comparisons of the EM model sizes (in numbers of event and episode nodes)
with/out forgetting at various levels of vigilances

Number of Number of Number of Number of

Data Set Events Events Episodes Episodes

with Forgetting with Forgetting

Set 5 8635 7258 526 230
Set 10 10570 7809 570 231
Set 15 12505 8353 571 240
Set 20 14440 8907 578 241

After the models are built, we have conducted various retrieval tests using noisy

partial cues. Two exemplar sets of experimental results are presented with the following

retrieval cues: (1) 1/3 noisy sequences of actual episodes starting from the end; (2)

1/5 noisy sequences of actual episodes starting from the end. The noises on these cues

are generated from the same set of actual experiences (i.e. Dorig) using Algorithm 3.4.

The performance for these retrieval tests are compared with the counterparts without

forgetting.

As shown in Figure 3.10 and 3.11, forgetting helps episodic memory to retrieve more

episodes correctly despite the reduction in memory size. The only exception is on the
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Figure 3.10: Comparison of retrieval accuracies (in %) with 1/3 of episodes from end as
partial cues.
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Figure 3.11: Comparison of retrieval accuracies (in %) for with 1/5 of episodes from end
as partial cues.
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models built for Set 20, wherein retrieval with 1/5 length of the noisy sequences shows

the same performance with or without forgetting. In general, longer cues provide a

better performance for retrieval. As more noises are introduced, the model shows higher

accuracies on retrieval both with or without forgetting. The difference in performance

caused by forgetting also reduces as the error rate increases. This may be because

higher noises tend to generate more distinguished erroneous training samples and that

the original experiences can be retrieved more accurately.

3.8 Discussion on Related Work

Many prior systems model episodic memory as traces of events and activities stored in

a linear order, wherein some operations are designed specifically to retrieve and modify

the memory to support specific tasks (e.g. [19, 40, 41]). These approaches are limited

to encoding simple sequential trace structure and may not be able to learn complex

relations between events and retrieve episodes with imperfect or noisy cues. Although

some models [19] have used statistical methods to deal with imperfect and noisy cues, they

consider memory trace as continuous series of events with no coherent representation of

chunks of episodes as units of experience. Our model addresses this issue by representing

events as multi-channel activation patterns allowing retrieval based on partial matching.

Furthermore, the fusion ART fuzzy operations and the complement coding technique

enable patterns to be generalized, so that irrelevant attributes of an event can also be

suppressed through learning.

Another approach of episodic memory modeling uses the tree structure of a general

cognitive architecture (Soar) to store episodes instead of the linear trace (e.g. [1]). Each

node in the memory tree includes some temporal information about its occurrence so that

more complex representation can be expressed and episodes can be retrieved based on

partial match. However, as it requires to store every snapshot of the working memory, the
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system may not be efficient due to the possibly large storage of snapshots. In contrast,

our episodic memory model clusters both individual events and their sequential patterns

based on similarities instead of holding all incoming information in a trace buffer. Our

approach thus allows more compact storage and efficient processing.

On the other hand, most neural network models of episodic memory use associative

networks that store relations between attributes of events and episodes (e.g. [20, 5]).

Although they can handle partial and approximate matching of events and episodes with

complex relationships, the associative model may still be limited in recalling information

based on sequential cues. Some of the existing episodic memory models have attempted

to address these challenges, in particular episode formation. Grossberg and Merrill com-

bine ART (Adaptive Resonance Theory) neural network with spectral timing encoding

to model timed learning in hippocampus [106]. Although it can rapidly and stably learn

timed conditioned responses in delayed reinforcement learning tasks, this model is only

made specifically to handle learning timed responses but not other aspects of episodic

memory, in particular, sequential ordering and multimodal association. SMRITI encodes

events as relational structures composed of role-entity bindings [107, 2], without consid-

ering their spatio-temporal relations. Our model tackles these issues by employing two

levels of fusion ART. The first level deals with repetition by growing separate categories,

while the second level clusters sequential patterns formed at the first level so that various

lengths of complex sequential patterns can be learned at once. Our model thus is able

to explore many possible complex relations, such as event and episode clustering as well

as complex sequential learning. Another model called TESMECOR [108, 109, 27] cap-

tures complex spatio-temporal patterns and supports retrievals based on degraded cues.

Using two neural layers consisting of nearly complete horizontal connections, the model

distributively captures events and episodes without clustering. However, our approach

offers modularity and flexibility by employing two levels of clustering that may be used

by other systems.
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3.9 Summary

We have presented a new episodic memory model called EM-ART, based on a class of

self-organizing neural networks known as fusion Adaptive Resonance Theory and the

technique of invariance principle. The model encodes the potentially complex conceptual

and spatio-temporal relations among past situations. The stored information can be

retrieved with various imperfect cues containing noises and errors.

We have conducted empirical experimental evaluation on EM-ART using a first-

person shooting game, as well as a word recognition benchmark test. Various tests

are performed on the built memory model to access its efficiency of possible memory

retrieving during the games. The experimental results show that the model is able to

provide a robust level of performance in encoding and recalling events and episodes even

with incomplete and noisy cues. This is mainly due to its approximate retrieval using

resonance search. The experiments conducted also indicate that forgetting promotes an

effective memory consolidation of its storage such that crucial knowledge can be kept in

the memory while the size of the stored information is regulated by discarding trivial and

noisy information.
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Memory Consolidation: From
Episodic Memory to Semantic
Memory

In Chapter 3, we present a fusion ART-based neural model that learns episodic memory

in response to an incoming stream of events. In this chapter, we propose a semantic

memory model to learn general facts and knowledge. An additional knowledge transfer

process as reported as [110], wherein the information stored in the episodic memory can

be consolidated to produce more general and abstract knowledge in semantic memory.

Our experiments show that our model can provide the dual memory system succeeds

to provides a meaningful memory consolidation to semantic knowledge. Using the same

game domain as the last chapter, we integrate the dual memory system into a situated

agent to demonstrate how this memory system may improve its performance. The ex-

perimental results show that the memory consolidation and forgetting in the integrated

episodic-semantic memory system can jointly improve the retrieval accuracy and the

task performance and strike a balance between learning useful knowledge and memory

efficiency over time.

The rest of this chapter is organized as follows. Section 4.1 provides some background

information on the modeling of knowledge transfer between episodic and semantic mem-

ory. Section 4.2 reviews the related neurobiolocal studies, which forms the basis of the
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proposed dual memory systems. Section 4.3 discusses and compares the existing mod-

els of the semantic memory and those of the episodic-semantic dual memory systems.

Section 4.4 gives the details of the semantic memory model implemented. Section 4.5

presents the incorporated memory consolidation process, followed by the experimental

results shown in Section 4.7. The overall performance of the integrated model is given

in Section 4.8. The final section concludes the work presented.

4.1 Introduction

In this chapter, we extend the modeling of the multiple memory systems by augmenting

EM-ART with a general procedure wherein the contents of episodic memory may be

consolidated and transferred to a more permanent form of semantic memory. With

the dual memory system consisting of episodic and semantic memory, a situated agent

can recall the content in episodic memory through a memory consolidation process to

gradually extract and learn general facts and rules as semantic memory and improve

its overall performance. This kind of dual memory mechanism has also been known to

prevent memory interferences and catastrophic forgetting [51]. Essentially, in this dual

memory system, episodic and semantic memory run and learn independently in parallel

but at different paces. Episodic memory serves as a long-term temporary buffer for

rapidly storing events and episodes. The stored events and episodes then can be recalled

at a later time through a memory consolidation process to gradually extract and learn

general facts and rules as semantic memory.

Contrary to many models of declarative memory in which the emphasis is mostly

on memory as an information storage with flexible retrieval mechanism [111, 1, 112],

some issues that we want to explore are (1) how the contents of episodic memory can

be selected through memory consolidation to form the right semantic knowledge; and

(2) how the consolidated knowledge can be used to support cognitive functions and task
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performance. Hence, besides the explanation on the detailed transfer process, we apply

this dual memory system into an exemplar agent in the Unreal Tournament domain to

demonstrate how the memory system performs the knowledge transfer.

4.2 Neurobiological Studies on Hippocampal-Cortical

Interactions

The very first evidence for the consolidation process between episodic and semantic mem-

ory comes from the phenomenon called retrograde memory gradients [113, 114], wherein

recent memories are actually more impaired by hippocampal damage than more remote

ones. The relatively dense loss of recent memories suggests that the learned knowledge in

episodic memory is not instantly made permanent and requires a continual consolidation

process into a more persistent storage form [115].

In the standard model of the memory consolidation process [116, 117, 89], when the

novel information is initially encoded into hippocampus, its corresponding hippocampal

representation is bound into the synchronously-activated memory traces in other related

structures, including cortex, medial temporal lobes and diencephalon [118]. This ini-

tial hippocampal-neocortical binding results into a “weak” knowledge representation in

cortical region [119]: the cortical representation cannot be activated though its weak

neuronal connections alone, but requires the stimuli inputs from the hippocampus and

related structures. After the initial knowledge learning, a process of the memory consoli-

dation then begins, wherein the learned hippocampal information is reactivated through

conscious and/or unconscious memory recalls during sleep or some offline processes [120].

As the hippocampal representation is continually reactivated and “teaches” the cortex

(i.e. fires the activation of the cortical representation through memory binding) during

the consolidation process, the bounded cortical knowledge representation is gradually
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enhanced [120]. Eventually, the consolidation process ends when the cortex representa-

tion is strong enough to sustain the permanent memory trace and mediate its retrieval

alone [117]. Therefore, though the memory consolidation, the knowledge originally rep-

resented in the hippocampus is gradually transferred to the more permanent storage in

cortex[120].

4.3 Related Work

As opposed to episodic memory, semantic memory stores meanings, concepts, rules, and

general facts [11] rather than specific experienced events. Taking place all over cor-

tical/neocortical areas of the brain, semantic memory can maintain information more

permanently than episodic memory. Various types of structure and representation have

been proposed for semantic memory over the past decades. One of the earliest model

suggests semantic memory to store simple logical propositions encoded as nodes and

links of a semantic network [71]. The network explicitly expresses concepts and their

interrelationships like ”is a”, (e.g ”a flamingo is a bird”), ”has”(e.g ”a bird has wings”),

or ”can” (e.g ”a flamingo can fly”) relations.

A similar type of semantic memory network model called Fuzzy Cognitive Maps

(FCM) is also proposed incorporating fuzzy logic for representing the extent of relation-

ship between concepts [22]. FCM can represent causality between concepts supporting

causal reasoning. Another model of declarative memory is also suggested to represent

general facts as chunks in ACT-R cognitive architecture [23]. A declarative chunk can

describe properties of a concept with a sum of activation level reflecting its general use-

fulness in the past. Besides representing meanings as symbolic conceptual relations,

other approaches use statistical methods to store knowledge. Semantic models like Hy-

perspace Analogue to Language (HAL) [24], Latent Semantic Analysis (LSA) [25], and

REM-II [19] maintain the level of statistical co-occurences between memory items. The
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statistical models can handle partial or degraded retrieval cues by applying statistical

inferences.

Besides abstract computational models above, some others are based on neural ar-

chitectures corresponding to the memory systems in the brain. Hinton [73] proposes one

of the first connectionist architecture emulating the semantic network model by setting

up interconnected neural fields reflecting different elements of a proposition. Beyond

representing relationships between concepts, the connectionist architecture supports rec-

ollection and generalization through pattern completion accross the network. Further,

Rumelhart [28] also develop a similar connectionist model that can automatically learn

relational and hierarchical structure of a semantic network. Using a backpropagation

learning model, the connectionist architecture can categorize and discriminate different

concepts without direct supervision. Other works also base their models on the actual

neurocognitive functionality of neocortex in the brain. Farah and McClelland [26] sug-

gest a bidirectional network model consisting of different interconnected neural fields

corresponding to their sensory-functional features. The model is developed further as

the convergence theory of semantic memory in which more perceptual and functional

features like actions, sounds, and olfactions are incorporated as different neural fields [3].

Different models and structures above indicate that semantic memory is not a monolithic

unitary model but may involve multiple representation and learning mechanisms.

Most semantic models mentioned above are still considered as isolated memory sys-

tems that process and acquire semantic knowledge directly from the inputs without

interacting with another part in the whole memory systems. However, some models also

consider episodic memory to be attached with semantic memory as a whole memory

system. REM-II [19] connects episodic memory and semantic memory together to learn

statistical relationships between items within and accross time. Another episodic mem-

ory model based on the SOAR cognitive architecture [1] embeds episodic memory directly
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to the symbolic semantic memory model as additional properties providing contextual

and historical information of each assertion and update in the memory. A distributed

approach like TESMECOR [27] also consider episodic memory as distributed neural con-

nections that also support semantic representation. Although the integrated approaches

of episodic memory and semantic memory modelling may provide robust mechanisms to

store and retrieve knowledge based on both temporal and relational structures, they still

do not reflect the current existing neuropsychological evidences of memory.

The cortico-hippocampal neural model [5] is made to explain why episodic memory

and semantic memory are separated in the brain. The model suggests that hippocampus

(episodic memory) and neocortex (semantic memory) are two parallel memory systems

receiving the same input. The hippocampus learns an internal representation to encode

the input and the recalled patterns. On the other hand, the neocortex learns and cate-

gorizes the input based on the internal representation formed by the hippocampus. In

this way, episodic memory and semantic memory can work together to process abstract

categorization while they can accurately retrieve specific information. A more realistic

model of episodic-semantic memory interaction called Complementary Learning Systems

(CLS) [51] reflects the network structure and connections between hippocampus and

neocortex in the brain and comprises a particular memory consolidation process. Based

on neuroscientific evidences that neurons in hippocampus are reactivated spontaneously

during slow wave sleep [76] and thus reinstating the patterns in neocortex to enact slow

incremental learning, CLS also emulates an offline consolidation process by randomly re-

activating memory recollection in hippocampus to be used as inputs for neocortex. The

model also incorporates a forgetting mechanism of hippocampus in which the strength

of neurons are decayed over time before reinstated during or beyond the consolidation

process.

Although the complementary neocortex and hippocampus models above can be con-

formed with the real evidences of memory consolidations and lesions behavior in the
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brain, they still omit the sequential or temporal processing in hippocampus. In this re-

search, we follow the complementary model of episodic memory and semantic memory

in which both memory systems learn separately and independently but the formation of

knowledge in semantic memory is also supported through the consolidation process from

episodic memory to semantic memory. However, we also consider that the sequential

order learnt in episodic memory is also a crucial factor enabling the complex structure

formation in semantic memory beyond pattern generalization and discrimination.

4.4 Semantic Memory Model

Different from episodic memory, we view that the semantic memory is not unitary. In

other words, there may be different types of semantic memory network, each represents

different structure of knowledge. In contrast to episodic memory, each entry in semantic

memory generalizes similar inputs into the same category rather than as separate entries.

Each type of semantic memory can be made as a fusion ART with each input field

representing a property or an attribute of a concept. The generalization can be achieved

by lowering the vigilance parameter ρ so that slightly different input patterns will still

activate the same category.

Figure 4.1 illustrates the structure of various types of the semantic memory. A se-

mantic memory network may consist of domain specific associative rules (e.g a set of

association between a certain object and its location in the environment, a set of rule

associating the effectiveness of a certain weapon and the distance to the opponent) or

generic causal relations associating a particular type of event to another that follows.

These types of semantic knowledge can be derived by exposing the played back items

from the episodic memory to the input of the semantic memory using a lower vigilance

parameter and a smaller learning rate such that similar instances may gradually be clus-

tered together regardless of their order.
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Figure 4.1: Different types of semantic memory in UT domain and their memory consol-
idation process with episodic memory

4.5 General Process of Knowledge Transfer from Episodic

Memory to Semantic Memory

Besides encoding and storing events sequentially, the other functionality of episodic mem-

ory is to consolidate the stored information into permanent abstract (semantic) forms [12].

The process of transferring episodic memory items into permanent knowledge in semantic

memory is not a unitary process and may involve different parts and areas in the brain.

An existing model of episodic memory, based on a well known cognitive architecture

(Soar), has involved the formation of more abstract knowledge from episodic memory [1].

A neural network model has also been formulated to extract abstract knowledge involving

dynamic variable bindings from a sequential trace of events [121]. Each of these mod-

els requires specific mechanisms to extract particular structures of knowledge. Several

mechanisms and memory structures are also applied in EM-ART to extract more general

and abstract knowledge based on the nature of the semantic knowledge to be extracted.

Figure 4.2 illustrates the memory system supporting the transfer of information from

EM-ART to a semantic memory structure.

During a process of knowledge transfer, EM-ART reproduces each stored episode as
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Figure 4.2: An illustration of the knowledge transfer process from episodic to semantic
memory

a memory playback process as described in Section 3.4.2. During each episode reproduc-

tion, each associated event in the episode will be presented as both the episodic memory

output (via F1) and the activation pattern of the working memory. The ordering of event

reproductions should be consistent with the temporal information stored (via weights of

F2). As each event is presented, it will be reevaluated and checked against its relevance

with the current knowledge transfer process. In case the presented event describes the

experience of interest, the event representation (shown in Figure 3.2) held in the working

memory is forwarded to semantic memory as a training sample for learning the specific

semantic knowledge. Otherwise, the content of working memory is discarded and the

reproduction is continued from the next stored event.

4.6 An Example on Knowledge Transfer

To understand the knowledge transfer process between episodic and semantic memory,

we consider an autonomous agent playing the first-person shooting games of UT.
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Example: An agent plays the UT game and learns its own experience as episodic mem-

ory. Given an event representation illustrated in Figure 3.2, a sample episode/battle

learned by the agent can be described as a ordered list of occurred events shown below.

E1
1: (location = (x1, y1, z1), health = 952, ammo = 503, reachable item = true, ...,

running around = true, ..., reward = 0.54)

E2: (location = (x2, y2, z2), health = 95, ammo = 50, reachable item = true, ..., col-

lecting item = true, ..., reward = 0.5)

E3: (location = (x2, y3, z3), health = 100, ammo = 50, pickup small health = true,

..., collecting item = true, ..., reward = 0.5)

...

En: (..., enemy distance = 10005, is shooting = true, selected weapon=ASSAULT

RIFFLE..., engaging in battle = true, ..., reward= 0.5)

En+1: (..., enemy distance = 500, is shooting = true, selected weapon=ASSAULT

RIFFLE..., engaging in battle = true, ..., reward = 0.6)

En+2: (..., enemy distance = 100, is shooting = true, selected weapon=ASSAULT

RIFFLE..., engaging in battle = true, ..., reward = 0.9)

En+3: (..., enemy distance = 100, is shooting = true, selected weapon=ASSAULT

RIFFLE..., engaging in battle = true, ..., reward = 1)

This episode describes a battle, wherein the agent collects items in the initial stage,

engages with the opponent and finally wins the game. We assume that the agent is

embedded with a semantic memory model to learn the weapon effectiveness. As presented

1En refers to the n-th event within an episode
2the value of the health is bounded to [0,100]
3the value of the ammo is bounded to [0,100]
4the reward value of 0.5 stands for no battle outcome received at the current state; a reward value

in the range of (0, 0.5) and (0.5, 1) refers to be damaged by and damage the opponent respectively, and
the reward value is proportionated with the amount of damage incurred; the reward of 0 or 1 refers to
a event of being killed or killing

5a visible enemy distance is between 0 to 3000
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in Section 4.4, the semantic memory model takes a rule-based representation. Each

semantic rule in this model can be written as “IF selected weapon is a, AND enemy

distance is [d1, d2], THEN the damage caused is usually in the range of [r1, r2]”. Assuming

the agent has no prior knowledge on weapon effectiveness, the semantic memory model

is initialized to contain no rule. This is to indicate that the agent has no prior knowledge

on the weapon effectiveness.

At a certain point of time, the process of knowledge transfer from episodic to semantic

memory is initialized. The episode described above is replayed wherein each of its events,

from E1 to En+3, will be read out one by one to the working memory according to the

order of occurrence. Once an event is presented to the working memory, the transfer

process evaluates its relevance to the current semantic memory learning precess. To order

to learn the semantic knowledge on the weapon effectiveness, an event is considered to be

relevant to the learning process if its is shooting flag/attribute is set in its corresponding

event representation. Hence, in the sample episode, the event representations of En to

En+3 are fed to the semantic memory as the training samples to learn the semantic rules

on weapon effectiveness. Each training sample is a 3-tuple of (selected weapon, enemy

distance, reward).

As the agent gradually learns the semantic knowledge on weapon effectiveness from

its battle experiences, the agent gradually utilized its semantic knowledge by making the

memory query for the best weapon to choose while deciding to engage in a battle. The

query can be in the form of “which weapon can cause the greatest damage if my distance

to the enemy is x?” If the query is returned with a optimal weapon choice, the agent

improve its decision making through a more sophisticated scheme of weapon selection.

The knowledge transfer process can be easily extended to learn other types of semantic

knowledge in two steps: (1) determine the network structure of the semantic knowledge

to be learned; (2) define the process of relevance check on episodic events. The following

two sections provide more implementation details on the knowledge transfer process.
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4.7 Illustrations on Knowledge Transfer

In our experiment domain, an agent in UT can develop a wide range of semantic knowl-

edge from its battling experience to enhance its performance. We identify the following

two types of knowledge of agent’s interest: (1) Association rules between collectable

items (i.e. weapons and medical kits) and their collecting locations on the battlefield;

(2) Causal relation between weapon used, distance to enemy, and damage caused by the

weapon firing. We implement these knowledge transfer and investigate the extracted

semantic knowledge as a result of the transfer.

4.7.1 Learning of Association Rules

In the UT games, the agent usually can make better decisions if it has a correct estimation

on where are the collectable items are placed. This can be expressed as the association

rules between the items and their collecting locations. We design the fusion-ART based

memory for these groups of association knowledge as shown in Figure 4.3(a). The Se-

mantic Memory (SM) model consist of two F1 fields: the Location field represents the

battlefield coordinates while the Object field holds exactly one semantic representation

for each of the available collectable items. Each F2 code represents an association rule

in the form of “At location (x, y, z), the item a is usually present”.

During the knowledge transfer as described in Section 4.5, each event stored in EM-

ART is replayed and the events describing an encounter with collectable items are se-

lected. To learn the association rules between the items and their collecting locations,

each selected event together with the agent’s location and items encountered are copied

to the Location and Object fields in the SM model respectively as a training sample for

learning the association rules. In the experiment, we investigated a total of 100 battles

containing 3602 events. During the transfer process, 225 events are identified to involve

the encountering of collectable items. These 255 events are used to build a SM model
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Figure 4.3: Learning of association rules

containing 54 association rules. Figure 4.3(b) shows six sample rules taken from the 54

learned rules. As shown in Figure 4.3(b), an agent can access the most-likely locations

of the items and pick up essential items in the closest location by querying this SM.

4.7.2 Learning of Causal Relations

Generally, the agent performance in the battle can be improved if it has a better under-

standing on the characteristics of each available weapon. We define these characteristics

of weapons as the causal relations between weapon, distance to enemy and damage

caused. Therefore, we present the fusion-ART based memory for this type of knowledge

as shown in Figure 4.4(a). The SM model has three F1 fields: the Weapon field holds

exactly one semantic representation for each weapon in the game; Distance field shows

the distance between the agent and its enemy at the time of firing; Damage field gives

the resulted damage to the enemy (reduction of enemy’ health level) caused by the firing.

Each F2 code represents a learned causal relation in the form of “IF the weapon is a, and

distance is [d1, d2], the caused damage is usually in the range of [r1, r2]”.

During the knowledge transfer, the events which involve weapon firing are selected

to learn the causal relations of “Weapon + Distance → Damage”. For each selected
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IF Weapon = FLAK_CANNON,

Distance = [1143 ~ 1199],

THEN Efficiency = [0 ~ 2]

b
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THEN Efficiency = [0 2].

IF Weapon = FLAK_CANNON,

Distance = 600,

THEN Effi i [58 64]Weapon D

a

F
1
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F
1

THEN Efficiency = [58 64].

(a) Semantic memory of causal relations            (b) Sample causal relations

Weapon Distance Damage

Weapon

Effective

Distance

Max

Distance

SHOCK_RIFLE 1500 4000

ROCKET LAUNCHER 1900 20000ROCKET_LAUNCHER 1900 20000

SNIPER_RIFLE 2000 20000

MINIGUN 600 4000

FLAK_CANNON 500 1500

BIO_RIFLE 1400 2000

LINK_GUN 1200 5000

ASSUALT_RIFLE 2000 300

(c) Leaned damage expectation  (d) Game-predefined damage by various weapons and distances

Figure 4.4: Learning of causal relations: weapon + distance → damage
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event, the current weapon held by the agent, the distance to the enemy and the resulting

damage (e.g. reward) are copied to the Weapon, Distance and Damage fields in the

SM model respectively as one-time input activation for learning. In the experiment, we

investigate a total of 200 battles containing 12130 events. During the transfer process,

1894 of the events include weapon firings which lead to 37 causal relations created in

the SM model. Figure 4.4(b) gives two sample relations taken from the 37 learned rules.

We further plotted the knowledge of these rules into damage prediction curves against

distance for different weapons, as shown in Figure 4.4(c). The learned weapon curves

can be compared and verified by the game-defined weapon characteristics illustrated by

Figure 4.4(d). Comparing Figure 4.4(c) and (d), for frequently used weapon, e.g. Mini-

gun, the damage prediction from SM are roughly consistent with the pre-defined weapon

features in the game; however, for the rarely used weapon, e.g. Bio-Rifle, there are large

differences between the learned knowledge and the game-set weapon rules. This is mainly

due to the insufficient learning with the limited examples of using these weapons. With

adequate battle experiences, we can expect a more accurate weapon damage prediction,

even compared with the game-set weapons rules, which omit all case-dependant practical

considerations.

4.8 Experiments on Integrated Agent

In order to test the integrated dual memory model, we embed the episodic-semantic

memory system into an autonomous non-player character (NPC) agent in the Unreal

Tournament (UT) game [122].

The UT game is a commercial first-person shooting game, which requires the real-

time decision making in the complex environment. To be competitive in the UT, the

agent needs the expertise and domain specific knowledge and skills on this domain. One

promising advantage of the UT game domain is that it provides the easy and standard
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mechanics to implement an self-defined agent playing the game through Pogamut [123].

Pogmut is an free Integrated Development Environment (IDE) which manages the com-

munication between the game and the built agent. Pogmut also provides the templates

to build various types of virtual agents simply by overriding some required methods.

With the ease of implementation and comparison, some recent works [124, 125, 126, 127]

have presented various types of behavior learning model in the domain of UT game. In

[128, 129, 130], groups of virtual UT agents have been proposed and implemented in

order to study the process of the multi-agent decision making. Figure 5.8 gives a screen

snapshot from the game play in UT.

Figure 4.5: A screen snapshot of Unreal Tournament

The experiments in UT are conducted to validate our memory model, which should

produce useful knowledge for the agent that improves its performance. The knowledge

is not pre-wired but learned by the agent while it explores and engages in battles inside
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the game. We also investigate whether the forgetting process may sacrifice the agent’s

performance.

The scenario of the game used in the experiment is ”Death match”. The objective of

each agent is to kill as many opponents as possible and to avoid being killed by others.

In the game, two (or more) NPCs are running around and shooting each other. They

can collect objects in the environment, like health or medical kit to increase its strength

and different types of weapon and ammunition for shooting.

4.8.1 The Baseline Agents for Comparison

All agents that we evaluate in the experiment play against an NPC agent called Ad-

vanceBot that behave according to hardcoded rules. There are four different hard-coded

behavior modes in AdvanceBot : (1) Running around behaviour, in which the agent will

run around exploring the environment randomly; (2) Collecting items behavior, in which

the agent will go and pick up collectible items; (3) Escaping from the battle situation,

in which the agent will turn and run away from the opponent; (4) Engaging in battle, in

which the agent will approach its opponent and shoot to kill it.

AdvanceBot always chooses one of the four behaviors based on a set of predefined

rules. Under the battle engagement behavior, the agent also always tries to select the best

weapon available for shooting. The weapon selection rules are based on some heuristics

optimized for a certain environment map used in the game. As a performance comparison,

another agent (name it RLBot) is made to employ the same set of behaviors but its

selection is conducted dynamically based on a fusion ART neural network conducting

reinforcement learning algorithm.

The state, action, and reward vectors in Figure 4.6 correspond to the input fields in a

multi-channel ART network of RLBot. Behavior pattern (i.e. running around, collecting

items, escaping away and engaging in battle) in the state vector represents the behavior
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currently selected. The action vector indicates the next behavior to be selected. Based

on the state field and the reward (set to the maximum), the network searches the best

match category node and reads out the output to the action field indicating the behavior

type to be selected. The network then receives feedbacks in terms of the new state and

reward (if any).

Figure 4.6: The input vectors of state, action, and reward to RLBot and RLBot++ in
UT

The network learns by updating the weighted connections according to the feedback

received and applying temporal difference methods [131] to update the reward field if the

immediate reward is absent. The agent receives the reward signal (positive or negative)

whenever it kills or is killed by another agent. In contrast to AdvanceBot, RLBot chooses

an available weapon randomly in the battle engagement behavior. Another agent called

RLBot++ is also used to employ the same reinforcement learning model as RLBot but

select the weapon based on the optimized predefined rules just like in AdvanceBot.

4.8.2 Episodic-Semantic Memory Enhanced Agent

The model is embedded in an agent with the same architecture as RLBot but with the

episodic memory module running concurrently. The episodic memory captures episodes

based on the event information in the working memory. An event from the UT game is

encoded as a vector shown in Figure 4.6. There are four input fields in episodic memory

for location, state, selected behavior, and the reward received. In the experiment, the

vigilance of all input fields (ρe) and the F2 field (ρs) are set to 1.0 and 0.9 respectively
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so that it tends to always store distinct events and episodes in response to the incoming

events. The values of the other parameters remains the same as Section 3.7.1

According to the general process of knowledge transfer presented in Section 4.5, at

a certain period of time, the contents of the episodic memory is played back by reading

out the events to the working memory. The reinstatement occurs in the period between

different battles wherein one agent has just been killed and starting to re-spawn in an-

other place. The semantic memory then acquires the knowledge by learning from the

recalled events. In the experiment, only one type of semantic memory about weapon

effectiveness is used given the distance towards the enemy. Whenever the value of the

reward field in the event vector is large enough to be considered as a successful killing

(0.5 is the threshold), the values of weapon selected, opponent distance, and reward (or

the effectiveness to kill) fields are fed and learnt by the semantic memory.

The multi-channel ART network of the semantic memory used in the experiment to

learn the causal relation between weapon, distance to enemy and weapon effectiveness as

discussed in Section 4.7.2. In the experiment, the vigilance of the Weapon (ρa), Distance

(ρb), and Effectiveness (ρc) fields are 1.0, 0.9, and 0.8 respectively.

The experiment also uses forgetting in episodic memory with the threshold (ts) and

reinforce rate (rs) set to 0.0001 and 0.5 respectively. To evaluate the effect of forgetting,

different decay rates (δs) in the events field F2 are used: 0 (no forgetting), 0.005, 0.01,

and 0.02.

4.8.3 Results and Discussion

Experiments are conducted by letting RLBot, RLBot++ and the memory-based RLBot

(calledMemBot) with different forgetting decay rates (δs=0.005, δs=0.01, and δs=0.02) to

individually play against AdvanceBot. For practical reason, MemBot without forgetting

(δs=0) is excluded from performance comparison as the program overloads the system
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memory soon after the game starts causing the system to halt and the agent refrains

from playing. A single experiment run consists of 25 games or trials, which is counted

whenever the agent kills or is killed by another agent.

Figure 4.7: Memory usage for events, episodes, and transferred semantic knowledge with
different forgetting decay rate during the game play

Figure 4.7 shows the memory size taken up in the episodic memory (in terms of the

number of nodes in F2 and F3 of a MemBot) and the number of nodes created in the

semantic memory with different δs in F2 sampled from a single run against AdvanceBot.

Without forgetting (δs = 0), the memory space is taken up rapidly into its limit after

about three trials.

In contrast, the forgetting mechanism can make the memory size converge and sta-

bilize at certain points. Hence the agent can always perform and learn continuously. It

is clearly shown that the larger the decay rate, the smaller number of codes (nodes) is

produced in episodic memory. Interestingly, in semantic memory, a low decay rate (e.g

δs=0.005) creates lesser codes comparing with those obtained with higher decay rates

(e.g δs=0.01 and δs=0.02).
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Figure 4.8: Performance of RLBot, RLBot++, and MemBot over 25 trials

Figure 4.8 plots the performance of both RLBot, RLBot++ and MemBot with dif-

ferent δs in terms of game score differences against AdvanceBot averaged over four in-

dependent runs. It shows that incorporating the episodic and semantic memory model

improves the learning which results in a much better performance than using the rein-

forcement learning alone. This indicates that the semantic memory successfully learns

useful knowledge for the weapon selection portion of the reasoning mechanism. Sur-

prisingly, the results also indicate that with a larger forgetting rate (e.g δs=0.01 and

δs=0.02), the performance and learning efficiency are better than those obtained with

the smaller one (δs=0.005) and can eventually reach the performance using the optimized

rules model. In other words, forgetting less important things faster can make learning

better. One explanation of this beneficial effect of forgetting is that noisy events that

could impair the consolidated knowledge are filtered before being generalized in semantic

memory. The semantic memory would thus end up with the appropriate generalization

and some specific but necessary information.
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4.9 Summary

We have presented the integrated episodic-semantic memory model for virtual agents

integrating two separate modules of episodic and semantic memory. The stored contents

of episodic memory can be recalled to derive abstract knowledge and general facts into

more permanent forms in semantic memory. The episodic and semantic memory modules

are realized with fusion ART neural networks as two independent but connected networks

operating in different paces of learning. A forgetting mechanism is also applied to regulate

the size of memory by removing insignificant entries.

Our experiments confirm that an explicit memory model can improve the agent learn-

ing and performance by acquiring useful knowledge for the task at hand through memory

consolidation, relieving the agent from continuously reasoning and processing the infor-

mation for learning. It is also demonstrated that the forgetting regulates the memory size

while the performance is still improving. Moreover, the experiment shows faster forget-

ting can even result in better learning. This indicates that the forgetting can successfully

filter out insignificant entries while maintaining the useful ones. The findings can inspire

the exploration of forgetting as a useful feature of intelligent agents and machine learning

systems in general.

107



Chapter 5

Declarative-Procedural Memory
Interactions

It has been well recognized that human makes use of both declarative memory and

procedural memory during the process decision making and problem solving. In this

study, we present our investigation into the constraints and principles for modeling the

interactions between the declarative and procedural memory modules. To this end, we

propose a computational model with the overall architecture and individual processes for

realizing the interaction between the declarative and procedural memory based on self-

organizing neural networks. We formalize two major types of memory interactions and

show how each of them can be embedded into autonomous reinforcement learning agents.

Our experiments based on the Toad and Frog puzzle and a strategic game known as

Starcraft Broodwar have shown that the cooperative interaction between declarative and

procedural memory can lead to significant improvement in task performance. In addition,

semantic knowledge may be transferred to procedural memory through a natural learning

process.

5.1 Introduction

Human brains have been well recognized as multiple memory systems [9] consisting of

notably declarative memory and procedural memory. Declarative memory is an explicit
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record of what we encounter and what we learn. Procedural memory, on the other

hand, refers to the implicit memory of skills and reflex responses, wherein the knowledge

is usually difficult to articulate or explain. While procedural learning is essential to

the development and utilization of both motor and cognitive skills, declarative memory

represents high level concepts and knowledge which forms the basis of our understanding

and provides guidance to reasoning and decision making.

Declarative and procedural memory do not function independently. In view that

memory interaction is an integral element of human cognition, this research reports our

investigation into the interaction between declarative and procedural memory. To this

end, we present a cognitive model with an explicit modeling of procedural and declara-

tive memory. The architecture consists of four main components, namely, the working

memory module, the procedural memory module, the declarative memory module and

the intentional module. Each of the memory modules in our system is built based on

self-organizing neural network models known as fusion ART [34]. As a generalization

of Adaptive Resoannce Theory (ART), the multi-channel network provides a set of uni-

versal computational processes for encoding, recognition, and reproduction of patterns.

Previous works [132, 133] have used fusion ART as a building block for various types of

memory systems, including episodic memory, semantic memory and procedural memory.

In this work, we conduct an in-depth study into how the interaction among declarative

and procedural memory systems enables the model to produce a more versatile capability

in decision making and problem solving. Specifically, we identify and formalize two major

types of memory interaction and knowledge transfer processes between semantic mem-

ory and procedural memory. More importantly, we show how each type of the memory

interaction can be embedded into a reinforcement learning agent.

We have conducted the experiments on two problem domains: (1) the Toad and

Frog puzzle and (2) a strategic game known as Starcraft Broodwar. Our experimental
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results show that the model is able to learn procedural knowledge for the various tasks in

the game domains based on reinforcement learning signals from the environment. More

importantly, the results show that the interaction between declarative knowledge and

procedural skills can lead to a significant improvement in both learning efficiency and

performance.

The rest of this research is organized as follows. Section 5.2 briefly reviews recent

studies on memory interaction and the related works on memory modeling in cognitive

architecture. Section 5.3 presents the framework of the overall architecture and its main

components. Section 5.4 presents a formalization of the memory interaction processes

among the dual-memory system. Section 5.5 describes the underlying implementation of

the individual memory modules. Sections 5.6 and 5.7 present the experimental results.

The final section concludes and highlights our future work.

5.2 Related Work

5.2.1 Memory Interaction

Declarative and procedural memory have been shown to interact during problem solving.

Recent neurobiological studies [134] on human multiple memory systems have shown

that, given a specific memory task, the various memory systems compete for activation

with each other throughout the process of task learning. The studies via fMRI further

identify that activity in regions associated with declarative memory was negatively corre-

lated with that in the ones associated with procedural memory. Specifically, the activity

is initially observed in the declarative memory regions, but declines gradually, while the

brain regions of procedural memory gain more activations over time. This activation

pattern suggests that, subjects at first try to learn the task based on inferencing and rea-

soning using declarative memory; however, in the later stage, as the procedural memory
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learns the stimulus-response association, it is able to make quick decision on its own. Ad-

ditionally, the research in [135] points to a mechanism in our brains, wherein knowledge

can be transferred or transformed from declarative to procedural memory.

For memory interaction, both procedural and declarative memory systems have in-

tensive neural connections with the working memory regions. Working memory refers

to the short-term memory system that keeps all the necessary information and knowl-

edge online for use in performing the current task. Since the working memory is strictly

subjected to both capacity and time limits [136], during the process of decision making,

working memory requires constant interactions with the long-term memory systems to

bring the most important information and knowledge into attention. Researchers also

found that the novel relations between known concepts must be brought together into

the working memory to form novel long-term knowledge [136]. However, further studies

have pointed to the parallel processing between the long-term memory system and the

working memory [137]. In particular, while the working memory maintains the impor-

tant information online for solving the problem in hand, the long-term memory systems

continuously record and learn these experiences into more permanent forms of knowledge

for later use.

5.2.2 Memory Modeling in Cognitive Models

Memory has been an important component of many cognitive models. The Adaptive

Control of Thought - Rational (a.k.a. ACT-R) [23] has modelled the declarative memory

as a set of competitive learning chunks to hold the current set of known facts, concepts

and goals. Procedural memory, on the other hand, is modelled by a central processing

system with a set of if/then production rules. At any point of time, ACT-R selects and

fires a single production rule by matching its pre-conditions with the pool of available

declarative knowledge.
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Similar to ACT-R, Soar [83] models the process of problem solving as a complex set

of goals, states and actions. Driven by a specific current goal, Soar selects an appropriate

action, namely operator, from a set of if/then production rules. Different from ACT-R,

Soar allows multiple production rules to fire in parallel so that all the relevant procedural

knowledge are taken into consideration before make a decision. Soar then selects a

single operator to take after rule evaluation. In the case that the available procedural

knowledge is insufficient to select an operator, declarative memory retrieves the past

similar experiences stored to further guide the rule evaluation. Once the decision is

made, a new procedural rule is encoded through chunking to deal with similar situations

in the future.

CLARION [6] organizes its procedural and declarative memory into two separated

subsystems, namely the action-centered subsystem (ACS) and the non-action-centered

subsystem (NACS). Their interactions are via the complete control of declarative memory

by procedural memory, such that declarative memory provides additional information

and reasoning required by the procedural-memory-controlled decision making process.

CLARION further suggests an additional supervisory subsystem, namely Meta-Cognitive

Subsystem (MCS) to monitor and control the interactions between the two long-term

memory systems.

In general, most of the existing works on multiple memory systems focus on a single

form of interaction, wherein the declarative memory provides the necessary reasoning

to activate the relevant procedural knowledge. In view that human benefits from the

existence and interplay of various memory systems, it is the motivation of our work to

conduct a deeper study into the mechanism of memory interaction and investigate how

it may be used in designing learning agents.
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5.3 The Overall Architecture

In this research, we present a neural network-based cognitive model with an explicit

modeling of both procedural and declarative memory systems. The architecture contains

the minimal structure just sufficient to illustrate the encoding and interactions between

semantic memory and procedural memory. This dual memory system may in turn form

an integral part of a cognitive agent. As shown in Figure 5.1, the model contains four

main components, described as follows.

• Intentional Module maintains a set of goals in hand to regulate the decision

making process linking sensory input to motor responses.

• Working Memory is a limited-capacity memory buffer that maintains all the

necessary information and knowledge online for use in performing the current task.

It also incorporates an attentional mechanism which ensures that the information

and knowledge important to the current task is always retained in the memory

buffer.

• Procedural Memory contains a collection of action rules, which encode the se-

quences of situation-action pairings to perform the familiar routines and other well-

rehearsed tasks. These tasks are usually automatically performed by procedural

memory under the level of consciousness and without the involvement of the inten-

tional module.

• Semantic Memory is the storage for meanings, concepts, rules, and general facts

about the world, with no relation to specific experiences. The basic forms of se-

mantic knowledge include concept hierarchy, causal relations and association rules.

In this architecture, each of long-term memory modules is capable of performing its

own basic operations, including encoding, learning, consolidation and retrieval, indepen-

dently from all other components. However, the overall decision process is a result of
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Figure 5.1: The proposed framework of the dual-memory cognitive model.
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the complex interactions. In contrast to most cognitive models, the architecture involves

no centralized executive control to direct and manage the various components and the

learning process. Instead, the interactions among different modules are fully based on

the neural connections and the activity propagation mechanism.

5.4 Processes for Memory Interaction

In this research, we focus on two basic types of interaction between the semantic and

procedural memory. Prior to discussing the processes of interactions, we first present a

mathematical formulation for long-term memory, as follows.

Semantic Memory, denoted by S = {S1, S2, ...}, can be viewed as a set of semantic

fragment or rules, where each semantic rule Si, can be one of the three basic types

described as follows: (1) an association rule indicates the co-occurrence of two memory

states, each representing any piece of information or concept stored. Each association

rule is represented as Si = (s, s′), where s and s′ indicate the two associated objects or

concepts (e.g. “People who buy milk usually buy some bread together.”); (2) a causal

relation rule states the causality between two memory states and is written as Si : s→ s′,

wherein s refers to the cause and s′ represents the effect (e.g.“Eating crabs with some

fruits usually causes diarrhoea and vomiting.”); (3) A rule of concept hierarchy defines

the “IS-A” relation between two known concepts and can be represented by Si = sa : sA,

wherein sa and sA refer to the memory representation of the concept a and its category

A respectively (e.g.“Pigeon is a kind of bird.”). These three types of semantic memory

contains the minimal set of semantic knowledge just sufficient from the perspective of

the evaluation domains.

Procedural Memory, denoted by P = {P1, P2, ...}, is a set of action rules which per-

form the familiar tasks and routines. Each action rule Pk suggests a possible action a with

a certain level of expected reward r (payoff), based on a given situation s. Therefore,
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each action rule can be represented as Pk : s → (a, r). Typically through reinforce-

ment learning, procedural memory learns the association of the current state and the

chosen action to the estimated reward. The generic flow of the reinforcement learning is

presented as Algorithm 5.1 below.

Algorithm 5.1 Reinforcement Learning with Procedural Memory

1: initialize the Procedural Memory network
2: repeat
3: sense the environment and update current state s in Working Memory
4: for each available action a do
5: predict the reward r by presenting s and a to the network
6: end for
7: based on computed reward values, select action a with highest reward
8: perform action a, observe next state s′ and receive a reward r from environment
9: compare estimated reward Q(s, a) using a temporal difference method
10: present the corresponding state, action and the updated reward estimation, namely

s, a and Q(s, a), to learn the procedural rule as Pnew : s→ (a,Q(s,a))
11: update the current state by s = s′

12: until goal is realized or s is a terminal state

Together, the two memory systems constitute the knowledge base of the cognitive

architecture, which guides the behaviors of the agent through their interactions. We

present two main types of memory interaction below.

5.4.1 Semantic to Procedural Interaction

In this form of interaction, semantic memory is used to provide the contextual information

in order to activate the relevant action rules in the procedural memory. More formally,

the interaction involves the flow of information from semantic memory to procedural

memory, as defined below.

Definition 5.1 (SP Interaction). Given the current state s, a threshold τ , and the fol-
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lowing knowledge fragments from semantic memory and procedural memory:
Si : s→ s′ or Si = (s, s′)
Pk : s

′ → (a, r)
r ≥ τ

where semantic memory indicates that the current state s usually associate with (or lead

to) another state s′. s′ can trigger an action a leading to a good outcome according to

the procedural rule Pk

Upon SP interaction, if the procedural rule indeed leads to a favorable outcome, the

procedural memory may learn to directly associate the memory state of s with action a,

which can be expressed as: Pnew : s→ (a, r).

Although the semantic and procedural memory modules should run in parallel, the

complete process of SP interaction and transfer can be implemented with a sequential

algorithm as presented in Algorithm 5.2.

5.4.2 Procedural to Semantic Interaction

For making a decision, procedural memory may explicitly prime the semantic memory

for the unknown information and knowledge for firing a specific action rule. The search

in the semantic memory can be triggered by rising the attention levels for those missing

attributes in the working memory. More formally, the interaction involving the flow of

directive signals from procedural to semantic memory is defined as follows.

Definition 5.2 (PS Interaction). Given the current state s and a procedural rule

Pk : s
′ → (a, r),

the semantic memory is primed to search for semantic knowledge of the form:

Si : s→ s′ or Si = (s, s′)

which will lead the current state from s to s′. If Si is found, the procedural rule Pk is

fired.
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Algorithm 5.2 Reinforcement Learning with Semantic-Procedural Interaction

1: initialize the Procedural Memory
2: repeat
3: sense the environment and update current state s in Working Memory
4: repeat
5: Semantic Memory retrieves the most relevant semantic chunk in the form of

Si : s→ s′ or Si = (s, s′)
6: updates Working Memory by s← s′

7: Procedural Memory searches for a procedural rule Pk : s′ → (a, r) based on
updated current state s′

8: until a procedural rule is fired or time-out
9: if a procedural rule is fired then
10: perform the identified action a
11: else
12: perform a random action
13: end if
14: compare estimated reward Q(s, a) using a temporal difference method
15: present the corresponding state, action and the updated reward estimation, namely

s, a and Q(s, a), to learn the procedural rule as Pnew : s→ (a,Q(s,a))
16: update the current state by s = s′

17: until goal is realized or s is a terminal state
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Upon PS interaction, if the selected procedural rule leads to a favorable outcome, the

procedural memory may learn to directly associate the memory state of s with the action

a as Pnew : s → (a, r). This interaction and transfer process can be embedded into a

reinforcement learning algorithm presented in Algorithm 5.3.

Algorithm 5.3 Reinforcement Learning with Procedural-Semantic Interaction

1: initialize the Procedural Memory network
2: repeat
3: sense the environment and update current state s in Working Memory
4: repeat
5: Procedural Memory searches for a procedural rule Pk : s

′ → (a, r)
6: Each unmatched attribute value v in Pk causes an increase of its attention level

in Working Memory
7: Semantic Memory searches for a semantic rule Si : s → s′ or Si = (s, s′) such

that s′ contains the missing attribute v and updates the Working Memory
8: until a procedural rule is fired or time-out
9: if a procedural rule is fired then
10: perform the identified action a
11: else
12: perform a random action
13: end if
14: compare estimated reward Q(s, a) using a temporal difference method
15: present the corresponding state, action and the updated reward estimation, namely

s, a and Q(s, a), to learn the procedural rule as Pnew : s→ (a,Q(s,a))
16: update the current state by s = s′

17: until goal is realized or s is a terminal state

5.5 Detailed Implementation

The current implementation of the multiple memory model is based on fusion Adaptive

Resonance Theory (ART) [34] which categorizes input patterns in a self organizing man-

ner. Figure 5.2 illustrates the fusion ART architecture, which may be viewed as an ART

network with multiple input fields. ART employs bi-directional processes of categoriza-

tion and prediction to find the best matching category. It also learns continuously by
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updating the weights of neural connections at the end of each search cycle. Fusion ART

may also grow dynamically by allocating a new category node if no match can be found.

This type of neural network is chosen as the building block of our memory model as it

enables continuous formation of memory with adjustable vigilance of categorization to

control the growth of the network and the level of generalization. By applying fuzzy

operations and complement coding [34], fusion ART can also generalize input patterns

dynamically and capture a range of values every time it learns.

Figure 5.2: The fusion ART Architecture

5.5.1 Working Memory Model

In this architecture, the working memory module is modelled as a vector, denoted by

s = {s1, s2, ...}, which holds all the available information and knowledge about the current

situations, including those immediate knowledge retrieved from the long-term memory

modules. Functioning as the buffer within the entire cognitive architecture, the working

memory shares the knowledge stored among the other modules to perform the subsequent

operations, with the aim of accomplishing the current task in hand. Additionally, to

evaluate the importance of each piece of information held, each attribute si in working

memory is associated with an attention factor, ai. The ai is initialized with the value

of 0, and updated at each point of time such that ai(t) = |vi(t) − vei (t)| · (1 − ai(t −

1)) + (1− σ) · ai(t− 1), where vi(t) ∈ [0, 1] and vei (t) ∈ [0, 1] are the actual and expected

value of the attribute si at time t and σ is the decay rate for the attention factors. As
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Figure 5.3: Different types of semantic knowledge and their neural network models: (a)

association rule (s, s′) (b) concept hierarchy sa : sA (c) causal relation s→ s′

shown, an attribute with a large discrepancy between its current value and expected (or

primed) value will gain attention. For all attributes, the attention level gradually decays

over time. The long-term memory modules perform memory retrieval by attending to

the attributes with a high level of attention. This serves to confine the search within the

newly discovered information.

5.5.2 Semantic Memory Model

In this architecture, the semantic memory is not a unitary system. In other words, there

may be multiple types of semantic memory network in semantic memory, each represents

a specific structure of knowledge. Each entry in semantic memory generalizes similar

inputs into the same category rather than as separate entries. Each type of semantic

memory can be made as a fusion ART with each input field representing a concept or

memory state (s, s′, sa and sA). The generalization can be achieved by lowering the

vigilance parameter so that slightly different input patterns will still activate the same

category. Figure 5.3 illustrates the various basic types of semantic memory.

5.5.3 Procedural Memory Model

The procedural memory model is based on a 3-channel Fusion ART model, namely Tem-

poral Difference-Fusion Architecture for Learning, COgnition, and Navigation (i.e. TD-

Falcon) [138], which learns the action and value policies through reinforcement learning
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across the sensory, motor, and feedback channels. The procedural memory model com-

prises a cognitive field F c
2 and three input fields, namely a sensory field F c1

1 for repre-

senting current states, an action field F c2
1 for representing actions, and a reward field F c3

1

for representing reinforcement values. Each F c
2 node represents a action rule in form of

Pk : s→ (a, r), which suggests a possible action a with a certain level of expected reward

r (payoff), based on a given situation s.

Given the current state s, the model searches for optimal action a (with highest

expected reward, r) through a direct code access procedure in the set of stored action

rules. Upon receiving a feedback from the environment after performing the action, a

TD (Temporal Difference) formula is used to compute a new estimate of the Q value of

performing the chosen action in the current state. The new Q value is then used as the

teaching signal for the procedural memory model to learn the association of the current

state and the chosen action to the estimated Q value. The details are elaborated as

described in [138].

5.6 An Illustrative Domain

The Toad and Frog puzzle [139] presents a standard reinforcement learning problem with

a wide variety of semantic knowledge on the game domain and playing strategies. In

the actual configuration, there is a seven-square board with the initially empty central

square. Three toads and three frogs occupy the three leftmost and rightmost squares

respectively (shown as Figure 5.4). The goal of the game is to swap the positions of

the toads and frogs, such that the toads are placed in the three rightmost squares and

the frogs are placed in the three leftmost squares. A square can be occupied by only

an animal at a time in the game. Each type of animals can only move in one direction:

toads can move only to the right and frogs only move to the left. In the game, an animal

can only perform two types of feasible move: (1) a Slide if the next square in its moving
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direction is an empty square and (2) a Jump if the next square in its moving direction is

the animal of the different type and the empty square is placed the two-square away from

it in its moving direction. There are two symmetrical solution paths with the different

type of animal first moved. Each solution has 15 moves, consisting of nine Jumps and

six Slides.

Figure 5.4: The initial configuration of a the Toad and Frog puzzle (image adopted from
[8])

Along a solution path, some moves are forced as there is only a single feasible move

(either a Jump or a Slide only) based on the current animal positions, while in the

remaining cases, a decision has to be made to choose between two Slides (i.e. Slide-Slide

Choice), or between a Jump and a Slide (i.e. Jump-Slide Choice), or between two Jumps

(i.e. Jump-Jump Choice). Besides the first move that allows two possible moves, there

is a single correct move for every step in the right solution path.

5.6.1 Semantic Memory

Move Validity: One straightforward form of semantic knowledge is the feasibility/legality

of moving at a certain location based on the current status of the puzzle. According to

the puzzle description, the moving feasibility depends on the contents (toad/frog/empty)

of both current square in consideration and its nearby squares within the distance of two

squares away. We summarize four symbolic rules on checking the moving feasibility in

Table 5.1.

In the four listed rules, the attribute Current Square indicates the content of the

square in consideration, while Square Left/Right n (n = 1, 2) represents the content
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Table 5.1: Sample semantic rules on move validity

1) IF current square is Toad, and square left 1 is Space,

THEN movable is true;

2) IF current square is Toad, and square left 1 is Frog,

and square left 2 is Space,

THEN movable is true;

3) IF current square is Frog, and square right 1 is Space,

THEN movable is true;

4) IF current square is Frog, and square right 1 is Toad,

and square right 2 is Space,

THEN movable is true;

of the square n-square away on the left/right side of the current square. This type of

semantic knowledge can be modelled as a fusion ART network as shown in Figure 5.5.

The network model of semantic memory has two F1 fields: the Current Maze input field

consists of five attributes representing the current state of the considered and nearby

squares, while the Movability field stores a single attribute value indicating the validity

of moving in the current situation. Hence, to represent all the feasible moves based on a

certain puzzle status, the network requires a total of seven memory cues, each of which

represents one of the seven squares in the puzzle as the Current Square. The successful

retrieval of any stored rule in the network indicates a valid move at the current square.

2
F

1

F

Current Maze Movability

Figure 5.5: Semantic network model on move validity

Jump and Random Strategy: As derived by a previous cognitive study on the Toad
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Table 5.2: Semantic rules to implement JRND strategy

1) IF MOVE1 is Jump, and MOVE2 is Jump,

THEN PERFORM MOVE1 is true, and PERFORM MOVE2 is true;

2) IF MOVE1 is Jump, and MOVE2 is Slide,

THEN PERFORM MOVE1 is true, and PERFORM MOVE2 is false;

3) IF MOVE1 is Slide, and MOVE2 is Jump,

THEN PERFORM MOVE1 is false, and PERFORM MOVE2 is true;

4) IF MOVE1 is Slide, and MOVE2 is Slide,

THEN PERFORM MOVE1 is true, and PERFORM MOVE2 is true;

5) IF MOVE2 is none,

THEN PERFORM MOVE1 is true, and PERFORM MOVE2 is false;

and Frog puzzle [140], there exist several strategics which can improve the process of

problem solving. Each of the available strategy can be modeled as a set of semantic

memory networks. The Jump and Random strategy (JRND) states that the player

should always perform the Jump for each Jump-Slide choice and choose a random action

while facing a Slide-Slide choice. The random action should be picked for the Jump-Jump

choice, since the Jump-Jump situation always leads to a dead end eventually. The JRND

strategy can be expressed using the five semantic rules in Table 5.2.

In Rule 1 and 4, when both moves are valid, one of them will be selected randomly.

Rule 5 indicates a forced move when only a single feasible move exists. The JRND

strategy also requires additional knowledge on the feasible move(s) based on each possible

puzzle state. This set of semantic knowledge uses two boolean post-conditional attributes

to indicate the type of a move, as shown in Table 5.3.

Figure 5.6 illustrates how a set of fusion ART networks may interact with each other

to implement the JRND strategy. The JRND strategy involves two semantic networks: a

network on the types of valid move(s) based on each possible puzzle status (Figure 5.6-a)
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Table 5.3: Sample semantic rules on move type

1) IF current square is Toad, and square left 1 is Space,

THEN is slide is true;

2) IF current square is Toad, and square left 1 is Frog,

and square left 2 is Space,

THEN is jump is true;

3) IF current square is Frog, and square right 1 is Space,

THEN is slide is true;

4) IF current square is Frog, and square right 1 is Toad,

and square right 2 is Space,

THEN is jump is true;

2
F

2
F

1

F

Current Maze Move Type

1

F

Valid Move Type Move Selction

a) Semantic Memory: Valid Move Type b) Semantic Memory: JRND Strategy

Figure 5.6: Semantic memory and interactions to implement JRND strategy: (1) activate
network a) to determine feasible moves and their types based on the current puzzle status (2)the

feasible moves and their types from a) is fed to network b) to recommend a single move

and a network to implement JRND (Figure 5.6-b). At each step of the puzzle solution,

the network on the types of feasible move(s) is firstly retrieved for the set of feasible

moves and their types based on the current puzzle status. This retrieved information

is shared with the JRND semantic network through the common working memory to

recommend a move based on the JRND strategy.

5.6.2 Procedural Memory

The procedural memory learns and performs the move selection through the reinforce-

ment learning algorithm as stated in Section 5.5.3. The state, action, and reward vectors
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in Figure 5.7 correspond to the input fields in a multi-channel ART network. Move pat-

tern (i.e. moving one of the seven squares in the puzzle) in the state vector represents

the move currently selected. The action vector indicates the next move to be selected.

Based on the state field (stating the animal type currently occupied each of the seven

squares in the puzzle) and the reward (set to the maximum), the network searches the

best match category node and reads out the output to the action field indicating the

move type to be selected. The network then receives feedbacks in terms of the new state

and any reward given by the environment.

State: current maze Action: slide/jump a frog/toad reward

Figure 5.7: The input vectors to a procedural memory in Toad and Frog puzzle

The network learns by updating the weighted connections according to the feedback

received and applying temporal difference methods as described by Section 5.5.3 to up-

date the reward field. The agent receives the reward signal (1 or 0) whenever it succeeds

or fails in resolving the puzzle at one trial. The immediate rewards will also be given after

each move based on its improvement on distance from the leading puzzle state to the

desired final one. In this way, procedural knowledge is continually learned and acquired

on the move selection while solving the puzzle.

5.6.3 Results and Discussion

Experiments are conducted to play the Toad and Frog puzzle game using different types

of memory and their combinations. A single experiment run consists of 1000 games trials.

The performance is measured and compared by the success rate and the trial number of

the first successful game, averaging over ten independent experiment runs.
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Success Rate (%) First Successful Trial
Pure Procedural Learning 87.62 124.1

(fusion ART based)
Pure Procedural Learning 55.53 171.1

(Q-learning)
Feasibility Check 0.49 357.4

JRND 25.45 3.4
Procedural Learning with

Feasibility Check 93.54 59.1

Table 5.4: Performance comparison with different memory options on solving the Toad
and Frog puzzle

Table 5.4 shows the performance of five different experiment configuration embedded

with different memory options, including (1) the pure procedural memory learning as

described in Chapter 5.6.2; (2) the pure procedural memory learning using the stan-

dard Q-learning method based on the implementation presented in [141]; (3) the stand-

alone semantic memory model with the knowledge on feasible moves; (4) the stand-alone

semantic memory model implementing the Jump and Random (JRND) strategy; and

(5) the procedural memory learning combined with the semantic knowledge on feasible

moves. From Table 5.4, the JRND strategy and semantic knowledge on feasible moves

both produce success rate of less than 50%. This poor performance shows that these

two configurations contain insufficient knowledge (both semantic and procural) required

by solving the Toad and Frog puzzle. The experiment also shows that the presented

procedural memory model is able to achieve a better performance compared with the

standard Q-learning method. By further comparing the performance of pure procedu-

ral learning with its combination with semantic memory, the experiment confirms that

the interaction of the procedural and semantic memory modules further improves the

learning resulting in a much better level of performance.
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5.7 Empirical Study on StarCraft

In this section, we present the overall performance of the declarative-procedural memory

systems by embedding the systems into the StarCraft game domain. StarCraft is a

popular real-time strategy game developed by Blizzard Entertainment [142]. It presents

the complete set of challenging domain tasks for both human players and the intelligent

virtual agents. In each game, a player in StarCraft starts with a small territory and

several working units. The player employs to continuously require its working units to

harvest resources (mineral and gas) from its territory. The player is required to manage

the resources collected in an effective manner to expand and constrict its territory, as

well as increase its unit population. In order to win a game, the player eventually builds

up its army force (i.e. a group of specific type of units and buildings) and destroy the

opponents’ territory. Figure 5.8 shows a screen snapshot from the game play in StarCraft.

Figure 5.8: A screen snapshot of StarCraft

The complicated tasks in StarCraft show a wide variety for challenges to artificial
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intelligence (AI) research, including imperfect information, multi-task planning, spa-

tiotemporal reasoning and potential multi-agent communications. One great thing about

StarCraft is that it offers an easy and standard way to build intelligent virtual agents

in its game domain. This is accomplished by a software interface, namely BWAPI (An

API for interacting with Starcraft:Broodwar) [143], to manage the interaction between

a virtual agent and the game environments. With the help of BWAPI, some researchers

have applied different types learning agents in StarCraft [144, 145, 146]. Furthermore,

the success in this game requires the expertise level of skills and knowledge on the game

domain, which also indicates a need of the multiple-memory systems for the complex

knowledge acquisition and potential memory interactions.

5.7.1 Semantic Memory In StarCraft

Resource gathering, building construction and unit production are the three main

tasks of a StarCraft game. Each construction or production activity consumes a certain

level of resources such as mineral, gas and supply. Each attempt of building activ-

ity without sufficient resources will be denied by the game environment. Due to this

dependency among the three tasks, semantic knowledge on the resource condition for

building construction and unit production is critical to develop a fast and efficient terri-

tory building-up during the early stage of the StarCraft game. In the semantic memory

module, resource condition can be expressed as the causal relation rules between resource

level and its feasible action(s). The semantic memory is in turn encoded based on the

fusion ART model as shown in Figure 5.9. The proposed SM model has two input (F1)

fields: the Resource field represents the resource level in term of mineral, gas and supply

count, while the Action field represents the various construction or production action.

Each node in F2 represents a causal relation rule. Some examples of the causal rules

can be described as Table 5.5.

130



Chapter 5. Declarative-Procedural Memory Interactions

1

F

2
F

1

F

2
F

a) Resource Conditions for Building Construction

Resource Level

(mineral, gas, supply)

Construction Action

b) Resource Conditions for Unit Production

Resource Level

(mineral, gas, supply)

Production Action

a) Resource Conditions for Building Construction )

Figure 5.9: Representation of semantic knowledge on resource conditions to accomplish
basic tasks in Starcraft

Table 5.5: Sample semantic rules on resource conditions to accomplish basic tasks in
Starcraft

IF mineral is [50, +∞ )

and gas is [25, +∞ )

THEN HAVE ENOUGH RESOURCE TO BUILD FIREBAT is true

IF mineral is [50, +∞ )

and gas is [100, +∞ )

THEN HAVE ENOUGH RESOURCE TO BUILD STARPORT is true

IF mineral is [400, +∞ )

and gas is [0, +∞ )

THEN HAVE ENOUGH RESOURCE TO BUILD COMMAND CENTER is true

5.7.2 Empirical Comparison

To investigate how the individual memory modules contribute to the overall performance,

learning agents embedded with different memory modules are tested and compared. We

evaluate three types of memory-based agents, namely PR with only the procedural mem-

ory, SP incorporating the multiple memory system using SP interaction, and PS using

the PS interaction. The semantic knowledge employed includes the resource conditions

for both building construction and unit production presented previously.
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(a) Resource Scores
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(b) Building Scores
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(c) Unit Scores
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Figure 5.10: Performance comparison between learning agents using SP interaction, PS
interaction and pure procedural learning (PR)
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Experiments are conducted by letting PR, SP and PS to individually play in the

StarCraft game. We compare the performance of different agents in terms of numbers

of units, buildings and resources constructed or collected, at the end of each trial/game.

Figure 5.10 shows the empirical comparison among the three configurations organized

in terms of resource management, building construction and unit production. It also

provides the overall performance of the three configurations, in terms of overall game

score and average decision time. The overall game score is computed as the weight sum

of unit, building and resource count at the end of game and normalized between 0 and

1. The plots are obtained by averaging over 20 experiment runs, of which each consists

of 200 games trials.

As shown in Figure 5.10(a), SP and PS have provided a better performance in the

task of resource management, comparing with that of PR. The use of semantic memory

has helped the agents to collect the right amount of resource in terms of mineral, gas

and supply level. PS has a slightly better performance compared with SP, due to the

targeted searching of semantic memory, which reduces the excessive knowledge access

and thus decision time.

Note that the unit production tasks usually have a high dependency on building

construction, as the product of most of units requires some buildings as pre-condition.

As shown in Figure 5.10(b), both the SP and PS interaction have helped to produce more

units across various types, compared with that using pure procedural learning. While

PR can only achieve an asset score of 0.3, both SP and PS have scored around 0.95 on

these specific tasks. PS has a slightly better performance compared with SP, due to the

same reason discussed.

From Figure 5.10(c), both SP and PS interaction provide a better performance on

building construction, compared with pure procedural learning. As mentioned earlier,

these tasks usually precede the task of unit production. More importantly, building
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construction is usually more expensive and time-consuming, and hence is critical to

achieving the overall game target. The high efficiency of this task learning therefore

leads to more successful completion of building construction. Combined with the results

for building construction, SP and PS have led to faster building construction, facilitating

the unit production task.

As shown in Figure 5.10(d) and (e), SP and PS interactions lead to a better overall

performance during the game. PS produces a shorter decision time due to its targeted

memory search. At the starting stage of the game, both SP and PS incur a longer decision

time as procedural memory learning heavily depends on the retrievals from semantic

memory. However, the decision time declines as the knowledge gradually transfers from

semantic to procedural memory.

5.8 Summary

We have presented a multiple memory cognitive architecture with two major types of

interaction between the semantic memory and the procedural memory. We illustrate

how the two memory systems can cooperate in decision making process through the

Toad and Frog puzzle and the Starcraft Broodwar game. Our experimental results have

shown that the memory interactions consistently lead to a better performance in decision

making.

Moving ahead, there are plans to explore other known forms of interaction between

the semantic memory and the procedural memory. More complex learning tasks will also

be defined to illustrate the use of the episodic memory and its interaction with the other

memory systems.
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Conclusion

6.1 Summary of Contributions

This thesis presents a self-organizing approach to the explicit modeling of both proce-

dural and declarative knowledge based on a unified set of computational principles and

algorithms under fusion Adaptive Resonance Theory (fusion ART). More importantly,

the multiple memory systems demonstrate how the various memory modules cooperate

with and transfer knowledge from each other in order to achieve their individual roles

and functionalities, as well as to facilitate the process of decision making. We present ex-

perimental studies, wherein the system is tasked to learn the procedural and declarative

knowledge for the autonomous agents playing in various game domains. Our experimen-

tal results show that the multiple memory systems are able to enhance the performance

of the agent in a real time environment by utilizing its both procedural and declarative

knowledge. The main contributions of this dissertation work are summarized as follows.

1. We have presented a cognitive model, which consists of a declarative memory mod-

ule, a procedural memory module, a working memory module and an intentional

module. Each of the long-term memory modules in our system uses fusion ART

as a building block to perform individual memory learning and support the differ-

ent cognitive functionalities. we have also conducted an in-depth study into how
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the interaction among declarative and procedural memory enables the cognitive

model to produce a more versatile capability in decision making and problem solv-

ing. Specifically, we identify and formalize two major types of memory interaction

and knowledge transfer processes between semantic memory and procedural mem-

ory. We have empirically investigated the performance of the overall declarative-

procedural memory model using the Toad and Frog puzzle and an online strategic

game known as Starcraft Broodwar. Our experimental results show that the model

is able to learn procedural knowledge for the various tasks in both domains based

on reinforcement learning signals from the environment. More importantly, the

results also imply that the interaction between declarative knowledge and proce-

dural skills can lead to a significant improvement on both learning efficiency and

performance.

2. We have developed a declarative memory model consisting of episodic memory

and semantic memory using fusion ART as building blocks. Episodic memory

model stores specific experiences and their complex spatio-temporal relations. The

contents in episodic memory can be selected to form the general facts and knowledge

in semantic memory through a periodical knowledge transfer process.

3. Based on a generalization of fusion ART, we have shown how the neural network

can be used in an episodic memory model, for encoding an individual’s experi-

ence in the form of events as well as the spatio-temporal relations among events.

The model supports complex-event storage through its multiple-channel learning

capability inherited from fusion ART. An additional encoding scheme is also intro-

duced, which allows complex sequences of events to be clustered and grouped. The

model further incorporates a novel approximate memory search procedure, which

performs parallel search of stored episodic traces continuously in response to poten-

tially imperfect search cues. We have conducted empirical experimental evaluation
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on the episodic memory model using a first-person shooting game, as well as a

word recognition benchmark test. Various tests are performed on the built mem-

ory model to access its efficiency of possible memory retrieving during the games.

The experimental results show that the model is able to provide a robust level of

performance in encoding and recalling events and episodes even with incomplete

and noisy cues. This is mainly due to its approximate retrieval using resonance

search. The experiments conducted also indicate that forgetting promotes effective

consolidation of its storage such that crucial knowledge can be kept in the memory

while the size of the stored information is regulated by discarding trivial and noisy

information.

4. We have proposed several semantic memory representations based on the same

fusion ART encoding principle. Different from episodic memory, we view that

the semantic memory is not unitary, in a way that different types of semantic

memory network are required, each representing a different structure of knowledge.

Through the interaction with the episodic memory module, a general procedure is

also provided wherein the contents of episodic memory may be consolidated and

transferred to a more permanent form of semantic memory. Our experiments on the

integrated declarative memory model confirm that an explicit memory model can

improve the agent learning and performance by acquiring useful knowledge for the

task at hand through memory consolidation, relieving the agent from continuously

reasoning and processing the information for learning. It is also demonstrated

that the forgetting regulates the memory size while the performance is still being

improved. Moreover, the experiment shows faster forgetting can result in better

learning. This indicates that the forgetting can successfully filter out insignificant

entries while maintaining the useful ones. The findings can inspire the exploration
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of forgetting as a useful feature of intelligent agents and machine learning systems

in general.

6.2 Future Work

There are many possible directions for further research on the modeling of multiple mem-

ory systems and learning. One key issue is the representation and learning of more general

semantic structure. We shall also explore other roles and usages of episodic memory in

decision making. More complex forms of interaction among the different memory models

may also be identified and studied possibly in more advanced and complex domains. The

rest of this section provide a detailed discussion of each potential future direction of this

work.

6.2.1 Formation of Semantic Memory

The memory consolidation process requires the prior awareness on the specific types of

semantic knowledge. The effective learning of semantic memory requires a fair judgement

by developers on semantic knowledge to be learned. Therefore, the memory consolidation

process may demand a deep understanding of the relevant tasks and domains. Addition-

ally, the fixation on the types of learned knowledge also limits the functionalities of the

model by preventing the discovery of novel knowledge types. To develop more useful

and general purpose semantic memory, we may extend our multiple memory systems for

automatically determination of which semantic knowledge are necessary and useful. One

possible solution is to let episodic memory keep looking for significant relations among

the stored information while learning, recalling and consolidation. The explored seman-

tic knowledge to be learned shall be in the form of meaningful groupings among several

event attributes and/or event patterns.
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6.2.2 Roles of Episodic Memory

Our case study in the UT domain shows that the episodic memory model is able to

enhance the agent performance by providing learning samples to form semantic knowl-

edge on the weapon effectiveness. However, episodic memory model may also contribute

directly to the performance of the agent rather than just as a transient structure. Take

the UT game as an example, a more direct usage of episodic memory model is to let the

agent predict the weapon effectiveness and choose the optimum weapon by retrieving

and investigating prior weapon-firing experiences under similar situations stored in the

episodic memory. In this way, the case-based learning by episodic memory can also be

compared with the corresponding learning from semantic knowledge for their effective-

ness to improve integrated performance. To investigate the performance of learning with

episodic memory, the memory system model can be further applied to additional cogni-

tive tasks wherein episodic memory has been identified with critical roles, for example

navigation and goal processing.

6.2.3 Forms of Memory Interaction

Our overall architecture formalizes two types of interactions between semantic and pro-

cedural memories. However, additional forms of interactions between the three different

long-term memory modules could be required to support more complex and meaningful

cognitive tasks. Therefore, another potential extension of our work is to explore other

forms of interactions, especially the interactions between the semantic memory and the

procedural memory, as well as the ones between episodic memory and the procedural

memory. One possible form of interaction between episodic and procedural memory is to

retrieve specific past experience in episodic memory for use in decision making, as well as

for driving the subsequent learning of new procedural memory. Moreover, more complex

learning tasks can be identified to illustrate the use of more complex forms of memory

interaction.
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6.2.4 Attentional Control in Working Memory

Our working memory module incorporates an attentional mechanism which ensures that

the information and knowledge important to the current task is always retained in the

memory buffer. The importance of each piece of information held is evaluated mainly

based on its recency and prediction surprises. However, a more realistic attentional

mechanism should evaluate the information importance based on all related factors, such

as rewards from the environment, relation to the current (sub)goals and emotions. The

refined attentional mechanism should be evaluated using the additional domains, wherein

the working memory, especially the attention control, has been identified with critical

roles, for example navigation tasks.

6.2.5 Learning in Complex Domains

In this research, we have evaluated the performance of the multiple memory systems

through (1) a first person shooting game and (2) a strategic game. However, the multiple

memory systems can be applied to more complex cognitive functionalities and tasks. One

possible cognitive capability supported by the memory model is the management of long

term goals, wherein the episodic memory informs the agent whether or not its goals have

been achieved. Another possible example can be prediction — the agent can retrieve a

relevant episode to predict what comes next, how its actions affect the world, and the

chance of success/failure. In order to investigate the performance and robustness of the

multiple memory model while achieving higher level cognitive functionalities, we may

need to move to more advanced domains for complex goals and scenarios.
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