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Abstract 

Excessive accumulation of extracellular matrix results in fibrosis, which is the 

hallmark of chronic liver diseases. The role of liver biopsy as the gold standard for 

liver fibrosis assessment has recently been challenged due to inter- and intra-observer 

variation and sampling error. We have developed qFibrosis - a fully-automated 

classification of liver fibrosis through quantitative extraction of pathology-relevant 

features using non-linear optics microscopy, trained and tested in both animal and 

human studies. qFibrosis faithfully recapitulates the liver fibrosis staging performed 

by pathologists, and is robust with reference to sampling size. It can significantly 

predict staging underestimation in short biopsy cores, thus aiding in the correction of 

sampling error-mediated intra-observer variation. qFibrosis can predict the staging 

underestimation of the non-expert pathologist, thus further aiding in the correction of 

inter-observer variation. qFibrosis can also significantly differentiate intra-stage 

cirrhosis changes that can be monitored for making informed clinical decisions, and 

for predicting possible prognostic outcomes. qFibrosis has the potential to expedite 

the re-establishment of liver biopsy as the gold standard for assessment of fibrosis in 

chronic liver diseases. Furthermore, we have hypothesized that the less invasive liver 

surface imaging could serve as a favourable alternative to biopsy. We established a 

Capsule Index based on significant parameters extracted from the non-linear optics 

microscopy images of liver capsule from two fibrosis rat models. The Capsule Index 

is capable of differentiating different fibrosis stages in both animal models, making it 

possible to quantitatively stage liver fibrosis via liver surface imaging without biopsy. 



VIII 
 

 

Summary 

Excessive accumulation of extracellular matrix results in fibrosis which is the 

hallmark of chronic liver disease, such as chronic hepatitis B and C virus infection, 

alcoholic liver disease, non-alcoholic steatohepatitis and autoimmune liver disease. 

Liver biopsy has been the gold standard for fibrosis assessment for more than a 

century, providing information on inflammatory activity and collagen architecture that 

are not obtainable with non-invasive techniques. The conventional histological 

staging of liver fibrosis is semi-quantitative, relying on a global assessment of 

architectural distortion and associated fibrosis, in biopsy samples. It is, however, 

highly subjective to sampling error and inter-observer variation; both of which have 

led to the liver biopsy being challenged as the gold standard for fibrosis assessment in 

recent years.  

With the advancement of new imaging modalities and image informatics techniques, 

the major contribution of this thesis is to introduce the newest development of image 

analytic tools to characterize liver fibrosis progression quantitatively from liver 

biopsy samples using non-linear optics microscopy thus to improve the liver diseases 

diagnosis and re-establish biopsy based assessment as the gold standard.  This thesis 

also presents the first study to quantitatively monitor fibrosis progression from the 

collagen capsule of liver surface that sheds a light on the potential application of liver 

surface scanning using an endoscope as a totally new method for liver disease 

diagnosis that is less invasive than biopsy.  
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The non-linear optical microscopy especially second harmonic generation microscopy 

makes it possible to image collagen directly from unstained samples without staining 

variations. In chapter 2, we investigated the application of second harmonic 

generation imaging on unstained liver tissue samples for quantitative liver fibrosis 

assessment. We proposed a quantification system, Fibro-C-Index, by quantifying the 

collagen amount in the samples. We have validated the system in both animal and 

human study and compared the index with other non-invasive liver fibrosis 

measurements.  

As it has been shown that the histo-pathological features of collagen architecture and 

patterns used in semi-quantitative scoring systems by pathologists are more important 

than collagen amount to assess liver fibrosis, we presented qFibrosis, the improved 

liver fibrosis quantification system by incorporating histo-pathological features in 

Chapter 3. qFibrosis was validated in a Thioacetamide-induced rat model and in 

chronic hepatitis B biopsy samples. The results indicated that qFibrosis can reliably 

recover liver fibrosis staging, with reduced variability of sampling error and inter-

/intraobserver bias. qFibrosis may become a powerful novel tool for precise analysis 

of fibrosis in basic research; and a surrogate histological marker for evaluating liver 

fibrosis and for monitoring anti-fibrotic drug efficacies in clinical practice. 

On the other hand, the highly invasive nature of liver biopsy for assessing fibrosis led 

us to hypothesize that the less invasive liver surface imaging could serve as a 

favourable alternative. In Chapter 4, we investigated whether non-linear optical 

imaging of the Glisson’s capsule at liver surface would yield sufficient information to 

allow quantitative staging of liver fibrosis. In contrast to conventional tissue sections 

whereby tissues are cut perpendicular to the liver surface and interior information 

from the liver biopsy samples were used, we have established a Capsule Index based 
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on significant parameters extracted from the second harmonic generation microscopy 

images of capsule collagen from anterior surface of rat livers. The Capsule Index is 

capable of differentiating different fibrosis stages in two animal models used, making 

it possible to quantitatively stage liver fibrosis via liver surface imaging without 

biopsy. 
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Chapter 1  

Introduction 

Liver fibrosis is associated with the excessive deposition of extracellular matrix 

(ECM) proteins, such as collagen, as a recurrent wound healing response to most 

chronic liver diseases [1]. The injury of the hepatocytes due to viral infection, heavy 

alcohol consumption, toxins or other factors will activate the immune system and start 

the repair process. The inflammatory immune cells are stimulated to release cytokines, 

growth factors and other chemicals which support hepatic stellate cells to activate and 

produce collagen, fibronectin, and other substances [2]. These substances are 

deposited in the liver and cause the build-up of ECM. Although the ECM production 

and degradation are in balance in a healthy liver, the process of degrading collagen is 

impaired in an injured liver which leads to excessive accumulation of ECM and 

fibrosis. The accumulation of ECM distorts the hepatic architecture by forming a 

fibrous scar, and the subsequent development of nodules of regenerating hepatocytes 

defines cirrhosis, the advanced stage of fibrosis. Cirrhosis produces hepatocellular 

dysfunction and increased intrahepatic resistance to blood flow, which result in 

hepatic insufficiency and portal hypertension, respectively [3]. 

Assessment of liver fibrosis severity is commonly used for staging chronic liver 

diseases, and for therapeutic efficacy evaluation. Various invasive and non-invasive 

techniques are used or under study to detect liver fibrosis [4, 5]. The most widely 
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adopted non-invasive methodologies include serum markers from blood tests and liver 

stiffness measurement by elastography imaging of the liver [6].  

A large number of serum markers have been developed for the assessment of liver 

fibrosis directly or indirectly. The direct markers directly represent the level of the 

components of ECM while indirect markers may need to be combined together with 

direct makers to form certain indices. FibroTest [7], which combines six serum 

markers (Alpha-2-macroglobulin, Haptoglobin, Apolipoprotein A1, Gamma-glutamyl 

transpeptidase, Total bilirubin, and Alanine transaminase) together with age and 

gender of the patients, is the most popular biomarker test in the market and has been 

tested in clinical trials.  The other available indices include PAPAS index [8], FIB-4 

[9], APRI [10], and APGA [11] etc, which use different formulas or regression 

models to combine serum markers.  Most of these indices are shown to be useful for 

detecting advanced fibrosis; however, the sensitivities are rather poor to identify early 

and mild fibrosis which limits the prospect of such techniques. Moreover, as these 

biomarkers in the blood could be affected by the fibrogenesis and metabolism changes 

in other organs, such techniques may only be applied when certain ideal requirements 

are met [12]. 

Liver stiffness measurement is becoming an alternative to the serum markers for non-

invasive diagnosis of liver diseases. Such techniques include transient elastography 

(TE) [13] and magnetic resonance elastography (MRE) [14, 15].  The reproducibility 

of both of the techniques is excellent and recent studies suggest that both of the 

techniques are good for diagnosis of significant fibrosis with sensitivity and 

specificity values over 90% [16]. However, the diagnostic performances decrease 

dramatically for mild fibrosis.  Besides, the TE has the limitation that the results will 

be greatly affected in obese patients as the depth of the signal penetration is limited 
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[17]. Meanwhile, MRE does not have such limitation for obese patients, but its results 

are highly dependent on operator expertise [18]. Moreover, since some 

pathophysiological processes other than fibrosis may also contribute to liver stiffness 

change, the liver stiffness measurement may not be able to reflect fibrosis progression 

in particular [14, 19].  

In all, most of the currently adopted non-invasive methodologies are effective in 

qualitatively assessing the presence or absence of the disease, rather than assessing 

precisely the progression of fibrosis in a step-wise fashion. This limits the clinical 

usefulness of the tests, as it is important to track the progression of disease to predict 

the eventual timing of liver function loss and the onset of portal hypertension or other 

complications which determine proper courses of therapeutic intervention. 

Liver biopsy remains the gold standard in tracking fibrosis progression despite the 

fact that it is an invasive procedure and the risks of sampling error, provided that the 

specimens are of at least 25 mm in length, including at least 11 portal tracts [20-22].  

After biopsy, tissue samples are stained and passed to experienced pathologists to 

yield either a descriptive or semi-quantitative score. These scoring systems, originally 

designed for specific liver diseases like hepatitis C, focus on qualitative rather than 

quantitative properties of fibrosis development, grouping liver fibrosis into categories 

of severity. The first semi-quantitative scoring system came out in 1980s, which 

allocated a range of numbers presenting different categories to pathological features 

on the basis of their severity [23]. Several routinely used scoring systems include 

Knodell histological activity index (HAI) [24], Scheuer [25], Ishak [26] and Metavir 

[27] systems. The detailed pathological features of two most widely used staging 

systems are shown in Table 1 where numerical numbers are assigned accordingly.  
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Although liver biopsy still remains the only reliable method for liver fibrosis 

assessments until now, it has been questioned whether it should remain the golden 

standard due to several drawbacks. In the following part of this chapter, we first 

describe the limitations of the current gold standard technique – liver biopsy, which 

motivated us to conduct this thesis research aiming to overcome these drawbacks to a 

certain extent with the help of the state-of-art imaging and computation techniques. 

Our contributions for developing imaging modalities and image analysis techniques 

are summarized in the second section, followed by the reviews of the previous works 

that focus on the foundations for this study in the next section. We finally conclude 

the chapter with the outline of thesis.  

Table 1: Histo-pathological features used in different liver fibrosis scoring systems 

Stage Metavir Ishak 

0 No fibrosis No fibrosis 

1 Fibrous portal expansion Fibrous expansion of some portal areas, with or without 

short fibrous septa 

2 Few bridges or septa Fibrous expansion of most portal areas, with or without 

short fibrous septa 

3 Numerous bridges or septa Fibrous expansion of most portal areas with occasional 

portal to portal bridging 

4 Cirrhosis Fibrous expansion of most portal areas with marked 

bridging (portal to portal as well as portal to central) 

5  Marked bridging (portal-portal and/or portal-central) 

with occasional nodules (incomplete cirrhosis) 

6  Cirrhosis, probable or definite  

 

1.1 Motivation and objectives 

Although there have been various approaches for observing and assessing liver 

fibrosis currently, liver biopsy is the particular one which acquires the diseased tissue 

specimen and directly observes the histological changes in the tissue, thus remaining  

the gold standard for providing the pathology progress information that is 

substantially supportive for important clinical strategy development. However, liver 
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biopsy currently taken in clinical settings has its own limitations, which compromises 

to some extent its diagnostic power. These limitations are summarized as follows. 

Invasive Procedure 

As an invasive procedure, liver biopsy comes with significant pain and major 

complications occurring in 30% and 0.5% of patients, respectively. 1-2% of the 

biopsied patients may suffer significant bleeding and 2-3% of the biopsied patients 

require hospitalization. Fatal complications may occur in up to 0.01-0.3% of biopsied 

patients [28].  

Staining Variations 

Special histochemical staining of the biopsy samples is required routinely for the 

assessment of liver fibrosis. The most common used staining is hemotoxylin and 

eosin (H&E) stain which colors nuclei of cells blue and other eosinophilic structures 

in various shades of red, pink and orange. However, when it comes to the specific 

staining, the panel varies from laboratory to laboratory. For the purpose of liver 

fibrosis assessment, collagen need to be specifically stained in tissue samples, where 

several different staining methods are applied such as Masson trichrome (MT) stain, 

Sirius Red stain, reticulin stain and Van Gieson stain. The colours of the stained 

samples are different from different stainings which makes it difficult to standardize 

the samples and follow evaluation procedures between the labs. Moreover, there are 

colour variations of the staining between different labs or operators even with the 

same staining protocol (Figure 1). Besides, all these stainings are time-consuming 

procedures which generally require several steps and more than 45 minutes, and will 

increase the patients’ costs additionally.   
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Figure 1: Staining variation of liver tissue samples from different stages using the 

same Masson Trichrome staining method. 

 

Sampling Error 

As needle liver biopsy generally only represents 1/50000 of the total liver organ and 

fibrosis distributes heterogeneously, sampling error can occur due to its localized 

sampling site and limited sampling size, which may lead to inaccurate grading and 

staging of liver fibrosis [29, 30]. Although it is suggested that the sampling variation 

can be reduced by taking several biopsies from the same patient [21], the approach is 

not well adopted due to the increased risk of morbidity and mortality after taking 

more biopsies. Other studies have suggested that an adequate biopsy should be at least 

25 mm in length while including at least 11 portal tracts [22]. However, although 

using adequate biopsies which meet these criteria can help to reduce the sampling 

error, the sampling variation can still be as high as 40% according to Bedossa et al 

[20].  

Evaluation Bias 
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Liver biopsy is also limited by the evaluation bias origins from assessment-system 

due to its semi-quantitative property and inter- and intra- observer variability [31]. 

These semi-quantitative scoring systems aim to group liver fibrosis into categories of 

severity based on a limited number of well-characterized morphologic patterns, which 

very much relies on the observers’ subjective opinion. Therefore, the inter- and intra- 

observer variations can be as high as 35% and it is difficult to obtain highly 

reproducible results from these systems [32-34].  Moreover, severities of the samples 

which are assigned in the same category cannot be further assessed to reflect fine 

fibrosis progression or regression, which may be important for drug efficiency 

evaluation and prediction of disease progression.  

It is a big challenge to overcome these limitations of the liver biopsy, and great efforts 

have been made in the field which motivates us to keep exploring in this direction. 

The objectives of this thesis research are to develop new computation tools together 

with new imaging modalities to improve the diagnosis of liver fibrosis which are 

introduced as follows: 

Objective 1: Feasibility study of quantitative liver fibrosis assessment using non-

linear optics microscopy.  

To overcome the evaluation bias problem of the liver fibrosis assessment, several 

studies have reported to quantify liver fibrosis through image analysis techniques. 

These computer-aided systems aim to provide objective quantitative measurements 

which are able to exclude observer discrepancies. However, all of these systems work 

for stained biopsy samples, and have the difficulty dealing with staining variations. 

Driven by the telecommunication boost in recent years, developments in both mode-

locked lasers and highly sensitive optical sensors have made nonlinear optical 
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microscopy— such as the two-photon excited fluorescence (TPEF) and second 

harmonic generation (SHG) [35] — an affordable option for tissue imaging. In 

particular, SHG is capable of imaging collagen from unstained tissue samples since it 

is a nonlinear optical process requiring no fluorophore presence. Our aim is to 

develop a quantification method to measure collagen proportionate area (CPA) for 

TPEF/SHG images on unstained liver tissue samples to demonstrate its capability for 

quantitative liver fibrosis assessment, which could be a good substitution for stained 

samples. The imaging can be applied on unstained sample directly with no staining 

variation problem anymore.  

Objective 2: Development of innovative image analytic tool incorporating 

pathological relevant features for liver fibrosis assessment 

Collagen percentage area (CPA) was widely adopted as the measurement to 

quantitatively grade and stage fibrosis. Although some correlations were found 

between CPA and results of semi-quantitative scoring, CPA is not specifically 

addressed in any of the scoring systems. Other pathological features such as fibrosis 

architecture change play a more important role in grading and staging fibrosis, which 

leads to the need of computer-aided systems with more measurements than CPA only. 

Therefore, we aim to propose new image analysis techniques that not only quantify 

CPA but also characterize morphology and architecture changes of collagen patterns. 

The new technique should be capable of providing indices which has better 

correlation with pathology scores than CPA and inheriting its advantages of 

diminishing evaluation bias.    

Objective 3: Feasibility study of liver fibrosis assessment using non-linear endoscopy 

from liver surface.  
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The limitations of being invasive and sampling error cannot be avoided if liver biopsy 

approach is adopted. Current available non-invasive methodologies still are not able 

to replace liver biopsy because of their own limitations in precisely assessing the 

progression and regression of fibrosis. Recent studies have reported the feasibility of 

liver surface scanning based on non-linear SHG fiber-optic endoscope, which can 

potentially be used clinically to complement or eventually replace the more invasive 

liver biopsy. In view of translating this imaging technique from bench to bed side, we 

aim to develop automated image analysis methods to quantify liver fibrosis 

progression at the liver surface and provide a histological index for further clinical 

applications. By incorporating our histological index with SHG endoscopes, we see 

the feasibility of liver fibrosis diagnosis from the liver surface, which would therefore 

give us the potential to image larger sampling area than from biopsy and extract 

enough information over a long period of time without the complication brought forth 

by the invasive biopsy. 

1.2 Contributions of this thesis 

With the advancement of new imaging modalities and image informatics techniques, 

it is promising to overcome or at least improve some of the weaknesses of the biopsy 

based liver fibrosis assessment so as to re-establish it as the gold standard. The non-

linear optical microscopy makes it possible to image collagen directly from unstained 

samples without staining variations. The automated image analysis techniques is 

capable of reducing inter- and intra- observer discrepancies significantly by 

evaluating fibrosis in a quantitative manner. It is also feasible to achieve virtual liver 

biopsy by scanning the liver surface with the non-linear endoscope which does not 

have the limitations on sample sites and areas and tends to be a less invasive 

procedure than liver biopsy. In light of the above, this thesis aims to contribute a step 
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further in these aspects, focusing on the development of new image analytic tools to 

characterize liver fibrosis both from liver interior and liver surface using non-linear 

optics microscopy thus to facilitate the improvement of liver diseases diagnosis which 

could potentially benefit the patients. The research in this thesis has made three main 

specific contributions:  

(1)  An improved quantification method to measure collagen proportionate area in 

TPEF/SHG images for liver fibrosis assessment  

Collagen proportionate area is widely accepted as the important quantitative feature to 

characterize liver fibrosis progression. However, all existing methods are developed 

for stained images using colour information.  We present Fibro-C-Index, a new 

quantification system to measure collagen proportionate area in TPEF/SHG image 

using both cellular information from TPEF image and collagen information from 

SHG image. The method was first validated in the bile duct ligation (BDL) animal 

model comparing with the conventional histopathology scores, and then tested in a 

human study for hepatitis B patients comparing with liver stiffness measurement as 

well as histopathology scores.   

(2) First quantitative method incorporating histo-pathological features for liver 

fibrosis assessment 

Collagen proportionate area is sensitive to sampling error and its ability to 

differentiate between fibrosis stages is limited.  The histo-pathological features of 

collagen architecture and patterns used in semi-quantitative scoring systems by 

pathologists are more important to assess fibrosis. In order to recognize these patterns 

by automated image analysis algorithms and include this path-architecture 

information for quantification, we develop an algorithm to classify collagen into 

portal collagen, septa collagen and fibrillar collagen according to the pathological 
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knowledge. Morphological and spatial features are further extracted for each collagen 

group and a statistical framework is proposed to reduce the dimension of the features 

into a single index - qFibrosis. The algorithms are developed and validated on a 

thioacetamide (TAA) inducded animal model which has similar collagen architecture 

patterns as hepatitis B. We have further tested the proposed index on two independent 

cohorts of human biopsy samples of hepatitis B which reveal the promising results of 

characterizing liver fibrosis progression.  

(3) First quantitative method for liver fibrosis assessment from liver surface 

Liver capsule is not assessed during diagnosis in conventional ways. However, with 

the development of modern imaging techniques, we are able to image liver capsule 

which can provide a new way to grade and stage liver fibrosis. An algorithm based on 

minimum spanning tree was developed which is capable of extracting complete but 

compact major axis of collagen fibers in the capsule SHG images which has high 

level of noise. Geometry measurements are quantified after individual collagen fibers 

are identified. Besides, we also extracted hundreds of texture features from capsule 

images. We selected the most useful features from all the measurements and combine 

the selected measurements into one index – Capsule Index. The new index 

successfully differentiates between non-fibrosis and fibrosis samples, as well as 

between early fibrosis and late fibrosis samples, which shows the potential of 

applying surface scanning as a totally new method to monitor liver disease 

progression.  

1.3 Review of previous works 

In this section, we will first introduce the application of SHG/TPEF microscopy in 

disease diagnostics as a new powerful optical imaging modality. Image informatics 

techniques for characterizing fibrosis and cellular morphologies in SHG/TPEF images 
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will also be discussed. We will next focus on reviewing all the existing image analysis 

approaches to quantify liver fibrosis progression from histological liver biopsy images 

in clinical studies. Finally, we will discuss the role of the liver capsule from liver 

surface for fibrosis diagnosis and review the existing computation techniques to 

characterize collagen network geometry.         

1.3.1 Short overview of SHG/TPEF microscopy 

Fluorescence imaging is widely adopted in pathology applications to study the 

localization and distribution of molecular in cellular and tissue structures. The 

development of advanced imaging tools as well as new fluorescence proteins and 

fluorescent dyes enables pathologists a series of more powerful tools to assess cells 

and tissue that are not visible previously. One major limitation of the conventional 

widefield one-photon fluorescence is the affected image contrast and resolution due to 

the blurring caused by the emission light outside of the imaging focal plane. The use 

of pinhole in confocal laser scanning fluorescence microscopy improves the image 

contrast by eliminating the out-of-focus light. However, it blocks the laser light 

emitted at the focal point at the same time which reduces the detection sensitivity and 

imaging depth.  

With the developments in both mode-locked lasers and highly-sensitive optical 

sensors, non-linear optical microscopy such as multi-photon excited fluorescence and 

multi-harmonic generation become an affordable option for tissue imaging [35, 36]. 

When the power of excitation light is low, the macroscopic polarization of the media 

is proportionate to the electric field strength known as the linear optics affect. In the 

case of laser excitation when the power is much higher, this response becomes non-

linear and the media properties are not only related to the electric field strength but a 

power series expansion of it. For instance, the second harmonic generation effect 
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comes from the quadratic terms of the power series expansion and the cubic terms 

gives rise to the two-photon absorption. In recent studies, two-photon excited 

fluorescence (TPEF) microscopy has been widely used for imaging structure and 

dynamic interactions in biological tissues while second harmonic generation (SHG) 

microscopy has been increasingly used for measuring highly ordered structures 

without central symmetry in tissue [37-39].  

The two photon excitation of molecules is a nonlinear process that involves the 

absorption of two photons whose combined energy is sufficient to induce a molecular 

transition to an excited electronic state. Even though this idea dates back to 1931 

when the Nobel laureate Maria Goppert Mayer predicted in her doctoral thesis the 

phenomenon of two photon absorption, it was not until 1990 when Denk et al 

exploited this phenomenon in regard to fluorescence microscopy. In more detail, two-

photon excitation fluorescence microscopy exploits the fact that a fluorophore can be 

excited by two photons with lower energy than required in one photon excitation. The 

two photons have smaller frequencies and longer wavelengths than the one photon 

that would provide the same results.  Excited by these two photons, the fluorophore 

acts in the same way as if it was excited by only one photon, emitting a single photon 

whose wavelength is only determined by its intrinsic characterstics, such as 

fluorophore type, chemical structure, etc. As the chance of absorption of two photons 

at the same time for excitation is proportional to the square of the laser power, thus 

such chance is extremely low out of the imaging volume and nothing is excited so that 

the out-of-focus blurring is minimized. Comparing to the confocal one photon 

fluorescence imaging, since no pinhole is used, all the emitted light at the imaging 

volume can be detected which improves the detection sensitivity and imaging depth.  
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SHG imaging shares the same laser source with the TPEF imaging and can be 

performed together. Other than TPEF imaging which results from the nonlinear 

excitation of molecules, SHG imaging depends on the material properties such as 

orientation, polarization and local symmetry property etc. For example, collagen 

consists of a triple helix structure which is asymmetry and produces SHG signals. In 

this process, an excitation signal is converted to an emission signal with double the 

energy while no absorption of the excitation photon happened.  

Compared to the conventional technique of imaging collagen by using transmitted 

light microscopy of histological tissue sections stained with Masson’s trichrome or 

picrosirius red, SHG is more specific for the collagen type I in ECM which is 

noncentrosymmetry and capable of generating SHG signals, thus does not need the 

samples to be stained which excludes the variation in staining resulting from different 

batches of stains, protocols, time dependant fading and photobleaching [40, 41]. The 

other advantages of using SHG to image collagen include requiring no fluorophore 

presence in tissue so that signals are unaffected by dye concentration and 

photobleaching; excitation source can be at infrared range, resulting in less scattering 

in tissue; deeper tissue penetration for imaging purposes and three-dimensional 

visualization of the fiber architecture [42]. TPEF can provide complementary 

structure and cellular information [43], as TPEF has different excitation mechanism 

than SHG so that TPEF signals can be easily separated from SHG signals using 

appropriate detectors. Since ECM is highly altered in many diseases such as cancer, 

connective tissue diseases, cardiovascular diseases and autoimmune disorders, 

SHG/TPEF has the potential to play an important role in disease diagnostics with its 

advantages over traditional histology as described.  
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1.3.2 Application of SHG/TPEF microscopy and image informatics for disease 

diagnostics  

Due to the handy accessibilities and abundant collagen in skin SHG/TPEF 

microscopy is found useful in applications of dermatology. Yeh et al [44] and Tai et 

al [45] first demonstrated the applicability of SHG to provide distribution of collagen 

fibers in dermis in rodent and human skin samples, respectively, in a qualitative 

manner. Lin et al [46] presented a quantitative MFSI index which calculates the signal 

ratio between TPEF and SHG images to differentiate cancer cells and adjacent cancer 

stroma from the normal dermis successfully. Dong’s team [47] further used 

polarization-resolved SHG microscopy to distinguish normal and dermal pathological 

conditions of keloid, morphea, and dermal elastolysis according to the finding that the 

peaks of the histogram of the second order susceptibility tensor element ratio is wider 

in pathological skins, which suggested more heterogeneous structures of pathological 

dermal collagen fibers. Cicchi et al [48] adopted texture analysis by calculating 

correlation, homogeneity and energy from gray-level co-occurrence matrix together 

with collagen/elastin content scoring to characterize skin tissue with particular dermal 

disorder. An automated image-pattern classification algorithm was developed by 

Medyukhina et al [49] to discriminate between keloid and healthy skin. They 

calculated two waviness parameters of collagen: the corrected average shift of the 

center of mass and the inter-fiber variability of the Feret’s angle and the combination 

of two were found to separate normal and keloid skin samples with statistical 

significance. Wu et al [50] reported the quantification of orientation index and 

collagen bundle packing by fast Fourier transform as good indicators for the statuses 

of aging skins. Recent work by Puschmann et al [51] also suggested the elastin-to-

collagen ratio as a useful parameter to quantify age-associated alterations in the 
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extracellular matrix. Another study by Chen et al [52] showed the collagen content 

increased in both upper dermis and the deep dermis with the progression of keloid.           

The predominant extracellular collagen in corneal membrane layers suggests 

promising application of SHG/TPEF microscopy in ophthalmology as well. Yeh et al 

[53] were among the first to report the capability of SHG/TPEF microscopy to reveal 

three-dimensional structure of the corneal stroma, which contains approximately 88% 

of collageous fibrils, in a rabbit model. Han et al [54] further visualized the 

morphology of collagen fibrils in cornea and sclera with SHG/TPEF microscopy and 

concluded the differences of collagen fibril morphology account for the transparency 

of cornea and high stiffness and elasticity of the sclera. Tan et al [55] demonstrated 

the value of MFSI index in infectious keratitis diagnosis. More recently, a quantitative 

analysis was performed by Matteini et al [56] to study photothermally-induced 

alterations of corneal stroma by SHG imaging. The collagen orientation and 

arrangement were assessed to provide a good description of collagen morphology 

changes along with the progressive thermal modifications.   

Using SHG/TPEF microscopy as a tool to study cancer microenvironment provided 

the insights of how tumor formation and progression were affected by extracellular 

matrix organization. The pioneer works in this area were reported by Keely’s group 

[57-59] in mammary tumor and breast cancer studies. They presented three tumor-

associated collagen signatures (TACS) to characterize tumor microenvironments. The 

first signature characterizes the presence of locally dense collagen within the globally 

increased collagen concentration surrounding tumors. The second signature was 

designed for collagen fibers stretched around the tumor. The third signature identified 

radially aligned collagen fibers that facilitate local invasion by a distribution of 

collagen fiber angles around 90 degrees relative to the tumor boundary. The 
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signatures were able to provide indications to assess whether a tumor is invasive or 

not. Adur et al [60] further reported pathological changes associated with ovarian 

cancer can also be characterized by TACSs, as well as by collagen density and 

epithelium width.  Other studies on ovarian cancer had been done by Kirkpatrick et al 

[61] and Nadiarnykh et al [62]. The former quantified SHG-based texture from gray-

level co-occurrence matrix, the spatial frequency characteristics of the SHG images 

by Fourier transform, and cellular redox ratios from TPEF images. The latter adopted 

an integrated approach combing 3D SHG imaging and optical parameter 

measurements to calculate the tissue scattering coefficient and scattering anisotropy, 

as well as the intensity ratio between forward and backward SHG signal and 

attenuation-rate of intensity decrease along increasing depth into tissue. Besides, 

Hompland et al [63] observed differences of collagen density, second-order nonlinear 

optical susceptibility and anisotropy parameter between osteosarcoma, breast 

carcinoma and melanoma, and Wang et al [64] applied their MFSI index in the lung 

cancer study. Zhang et al [65] also reported the visualization of the invasive cancer 

cell in their native environment in human melanoma skin tissue from TPEF/SHG co-

localization images which provide the insights of cell morphology and cell-ECM 

organization.  

Accumulation of ECM proteins such as collagen serves as an important signature of 

fibrosis. The applicability of SHG/TPEF microscopy to monitor fibrosis progression 

in liver was first demonstrated by Cox et al [42] as SHG images showed the extensive 

collagen fibers in cirrhotic liver samples. Our group presented a study [41] on 

quantification of liver fibrosis in a bile duct ligated (BDL) rat model. We quantified 

collagen percentage area in SHG images by the automated Otsu segmentation method. 

The segmented collagen were further grouped into aggregated and distributed using 
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low pass filters and the progression patterns of two groups of collagens suggested the 

regression of fine distributed collagen and progression of large aggregated collagen 

along the fibrosis progression. Sun et al [66] reported similar findings as our study 

using a limited number of human liver samples. Guilbert et al [67] reported a new 

scheme for liver fibrosis scoring under different SHG/TPEF imaging settings. A 

reference sample was required to set the reference gain and signal intensities. Each 

SHG image would be normalized according to the reference gain and signal 

intensities and the normalized images would be segmented using a fixed threshold to 

calculate collagen percentage area as the fibrosis score. Besides, Pena et al [68] first 

reported 3D spatial distribution of lung fibrosis using SHG/TPEF microscopy, and 

they measured histograms of background noise and applied to the images a threshold 

corresponding to the maximum background value to quantify collagen percentage in 

different areas which successfully sorts out control and fibrotic lung samples.  

Strupler et al [40] presented a quantification method for kidney fibrosis in a mouse 

model. A threshold was applied to SHG images after noise subtraction and correction 

to identify collagen percentage area, which appears to be appropriate to differentiate 

control and fibrotic mice. In their further study [69] on renal interstitial fibrosis, the 

SHG quantification also achieved good agreement with pathology scores. They also 

characterized arterial remodeling along fibrosis progression by measuring media to 

lumen ratio, wall to lumen ratio, and adventitial surface to cross sectional area ratio 

from TPEF images.  

Another important application of SHG/TPEF microscopy is to characterize connective 

tissues in muscle, tendon and cartilage. Theodossiou et al [39] first found that both 

collagen types I and III can be detected by SHG microscopy in rat-tendon 

cryosections which demonstrate the possibility of using SHG to assess scar tissue 
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after injury and surgery. The following studies on tendon and ligaments were more 

focused on the quantitative analysis where Hu et al [70] adopted orientation-

dependant gray-level co-occurrence matrix based texture analysis with the estimation 

of dominant orientation of collagen fibers and Frisch et al [71] used fast Fourier 

transformation and fractal dimension analysis according to the box-counting method. 

These quantitative measurements were shown to successfully characterize tendons 

during aging and wound healing. Davies’s group reported studies [72, 73] on chicken 

cartilage by quantifying the principal directionality and dispersion of the collagen 

fibers in the superficial layer based on Fourier analysis and they successfully showed 

that these parameters can be used in biomechanical constitutive models. Plotnikov et 

al [74] characterized striation patterns of muscle in SHG images by calculating the 

local striation spacing and angle of orientation using the imageJ plugin. Garbe et al 

[75] demonstrated a quantification algorithm to extract sarcomere lattice disruption 

patterns by applying the boundary tensor, which was computed from polar, separable 

filters in Fourier domain, to the image stacks. Signal phase, direction and energy were 

extracted from the tensor at different scales and the changes of signal directions on 

smaller scales referred to the locations of local disruptions of the striation pattern. The 

morphometry of muscle disease was well characterized in both of these two studies 

using SHG microscopy.  

The study by Zoumi et al [76] reported the feasibility of using SHG microscopy to 

visualize coronary artery microstructures such as collagen, elastin fibril and muscle 

cells. Kwon et al [77] in the following study quantified collagen content within 

atherosclerosis-prone aortic arch branch points and resistant areas in the murine aortic 

wall and evaluated its role in regional low-density lipoprotein deposition. The first 

demonstration of quantitative determination of the myosin filament content using 
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SHG/TPEF microscopy was reported by Wallace et al [78]. The cell volume of 

mononucleated and binucleated cardiomyocyte was determined after segmentation of 

TPEF images making use of the well-resolved background and signal peaks in the 

intensity histogram of the image and the myosin filaments were segmented from SHG 

images with a fixed threshold. The more recent study by Tsai et al [79] used Fourier 

transform analysis to quantify angle entropy which was shown to increase in atrial 

fibrillation tissues.  

The recent reports by Akins et al [80] and Yousefi et al [81] showed the ability of 

SHG/TPEF microscopy to stage pregnancy and predict preterm birth. The fiber size, 

number of pores, mean pore size, mean spacing between pores, and the fractional area 

in microns squared covered by the pores were characterized by autocorrelation and 

particle analysis, which revealed the potential of SHG endoscopic devices for clinical 

assessment. Another quantitative approach to characterize SHG images was 

established by Reiser et al [82] for intervertebral disk injury where angle index and 

neighbor index were presented to characterize structural disorder. The angle index 

was defined as the sum of the differences in the orientation of the index pixel and that 

of each of its neighbors normalized to the number of neighbors, and neighbor index 

was calculated as the number of nonparallel neighbors. These indices tend to be good 

measurements to infer structural information from SHG/TPEF microscopic images.  

1.3.3 Image analysis for liver biopsies in clinical studies 

Image analysis was introduced into liver biopsy studies in the mid 90s where collagen 

morphometry was quantified. The earliest study was presented by Kage et al [83] to 

infer that collagen percentage area might be a predictive factor for predicting 

evolution of fibrosis from chronic hepatitis to cirrhosis in hepatitis C patients based 

on liver biopsies from 25 patients. Pilette et al [84] did a more comprehensive study 
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on 243 chronic hepatitis C (CHC) patients later to support that collagen percentage 

area, which was quantified by interactive thresholding from images of picrosirius red 

stained samples, correlated well with Knodell scores and had a better correlation with 

serum markers.  

Since then, collagen percentage area was recognized as a useful fibrosis morphometry 

measurement and was included in several studies. O’Brien et al [85] further examined 

230 liver biopsy samples from CHC patients with Mallory trichrome staining and 

interactive thresholding method and found that the correlation between collagen 

percentage area and Knodell score only existed among biopsies with high scores. 

Furthermore, they reported that fibrosis change among serial biopsy was accurately 

estimated by collagen percentage area in only 30% of the samples. Similar findings 

were reported by Wright et al [86] using 30 liver biopsies of CHC patients with picro-

sirius red staining. An image histogram based peak proportion area change method 

was developed to quantify collagen percentage area and poor reproducibility was 

found between different sections from the same core. They suggested possible 

limitations of the image-based quantification comes from variation in staining 

intensity, variation in section thickness and real variation in the amount of 

collagenous tissue within the section. Arima et al [87] compared change of collagen 

percentage area in paired liver biopsy with IFN therapy of 25 patients with HCV 

infection and reported that fibrosis regression after therapy was better characterized 

by quantitative analysis than by a semi-quantitative scoring system. Lazzarini et al 

[88] obtained collagen percentage area on 164 trichrome-stained biopsies from 

untreated patients with CHC using color information for segmentation, and suggested 

that collagen percentage area was highly correlated with Ishak scores and was capable 

of differentiating all the stages. Friedenberg et al [89] also approached color based 
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segmentation method according to hue, lightness and saturation to quantify collagen 

percentage area from images of trichrome stained samples and demonstrated a strong 

relationship between the collagen percentage area and the Ishak score, although 

considerable overlaps for intermediate stages of fibrosis were observed as well. 

Goodman et al [90] conducted a study in a cohort of 245 CHC patients where 158 

patients were treated with interferon gamma-1b for advanced hepatic fibrosis and 87 

with placebo. Collagen percentage area was quantified from unfragmented Sirius red 

stained biopsy samples of adequate sizes. Both a brightfield RGB image and a 

grayscale image using crossed polarization filters were captured for each sample. 

Since only collagen stained with Sirius red had bright birefringence that could be seen 

in the polarized image, the saturation of the red channel of the RGB image was 

multiplied by the intensity of the corresponding pixel in the polarized image to 

calculate collagen content at each pixel location. Their results showed that collagen 

percentage area overlaps between various stages of the scoring system but it appeared 

to be a more sensitive tool to demonstrate fibrosis progression than a semi-

quantitative scoring system between treated and untreated groups. They further 

suggested that factors other than the collagen percentage area, such as architectural 

alteration as well as shunting of blood may be of equal or greater importance than the 

collagen percentage area. They later reported nonlinear changes in collagen 

percentage area over time in another study [91] of 346 patients enrolled in the 

hepatitis C antiviral long-term treatment against cirrhosis (HALT-C) trial.  

All these methods are based on the colour information in the stained liver images, 

thus there is a need for a standard quantification method specially designed for the 

TPEF/SHG images where no such information is available. We reported one of the 

first CPA quantification systems for SHG images in Chapter 2. More recently, 
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Gailhouste et al [92] also demonstrated the application of SHG microscopy to 

quantify liver fibrosis using 119 biopsies from patients with chronic liver disease. The 

collagen percentage area quantified from SHG images were found to correlate well 

with Metavir scores, which allows discriminating patients with advanced fibrosis and 

cirrhosis.  

Besides all these studies which aim to demonstrate the role of collagen percentage 

area for fibrosis diagnosis and drug treatment efficiency evaluation, other works were 

done to compare collagen percentage area with other non-invasive liver fibrosis 

diagnostic markers. Calvaruso et al [93] evaluated 250 liver biopsies from HCV 

patients who underwent hepatic venous pressure gradient (HVPG) measurement as 

well. They found that collagen percentage area had better correlation with HVPG than 

with Ishak scores and greater changes of collagen percentage area were found when 

HVPG was low. Their later study [94] suggested that collagen percentage area had 

better prognostic power than Ishak scores or HVPG to predict clinical outcome in 

hepatitis C virus infected patients after liver transplantation. Studies from Nitta et al 

[95] and Mori et al [96] confirmed that liver stiffness measurement from FibroScan 

correlated well with collagen percentage area in HCV and NAFLD patients, 

respectively. On the other hand, Patel et al [97] demonstrated that serum biomarkers 

can differentiate mild from moderate-to-severe fibrosis better than morphometry 

analysis according to the comparison between FIBROSpectII panel and collagen 

percentage area on CHC patients.  We also explored in this direction to study the 

correlation between CPA and liver stiffness measurement using SHG images as 

elaborated in Chapter 2.   

Although numerous studies using CPA are investigated, till now, CPA is still not 

adopted in the routine clinical practice. The major problem, as mentioned in most of 
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these studies, is that the quantification of collagen percentage area in liver fibrosis 

study has the limitation of ignoring the architecture changes of collagen patterns along 

the disease progression. To address this problem, Masseroli et al  [98] first 

demonstrated an image analysis approach to quantify collagen percentage area in 

porto-periportal and septal areas along with vessel and biliary duct lumina area. 

Several portal tracts regions of one biopsy were manually selected to be imaged and 

quantified. The collagens were segmented using a global thresholding method defined 

by Kurita from images of Sirius red stained samples while the contours of porto-

periportal and septal areas were manually edited. They claimed that the analysis of the 

total collagen percentage area in the whole liver biopsy was less precise than their 

approach by calculation of collagen percentage area in prota-periportal area and 

excluding the vessel and biliary duct lumina.  Significant correlations were shown 

between their quantifications with Knodell and Scheuer scores from 59 CHC patients. 

Similar results were reported in their later study [99] to demonstrate that their 

quantifications provide more objective data on the anti-fibrogenic effects of interferon 

than semi-quantitative scores. Zaitoun et al [100] assessed fibrosis and steotosis in 

liver biopsies from patients with hepatitis C and alcoholic liver disease, by manually 

identifying fibrosis and steatosis in peri-central and periportal regions. The collagen 

percentage area and diameter of fat globules in these two areas were quantified and 

significant differences were found between hepatitis C and alcoholic liver disease 

groups. Hui et al [101] demonstrated the first study on chronic hepatitis B patients. 

They manually identified portal-periportal, perisinusoidal and pericentral area and 

adopted the interactive thresholding method to quantify collagen percentage area in 

these regions. Excellent inter-observer agreement, significant correlation between 

quantifications and Ishak scores, and good discriminative power between mild and 
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advance and with and without cirrhosis was found according to their results.  They 

further investigated their quantifications along with liver stiffness measurement in 

hepatitis B, hepatitis C and non alcoholic fatty liver disease patients [102]. Higher 

correlation between Fibroscan and pericelluar fibrosis was observed than periportal or 

perivenular fibrosis. Sethasine et al [103] manually measured number of nodules per 

millimeter of length of liver biopsy, spetal width and nodule size and quantified 

collagen percentage area from Masson trichrome stained samples to investigate 

quantitative histological-hemodynmaic correlations in cirrhosis. They found that 

collagen percentage area and nodule size could be used to predict clinically significant 

portal hypertension in cirrhosis patients and collagen percentage area correlated best 

with HVPG. Kim et al [104] further adopted manually septal thickness and nodule 

size measurements to validate a new scoring system, Laennec system, for sub-staging 

cirrhosis, where significant increment in the septal thickness and decrement in the 

nodule size were found.  All these studies support the assumption that such pathology 

relevant approach using pathological features in the quantification improves the 

analysis; however, the methods to identify such pathological features developed in 

these studies are performed manually which introduces observer variations back to the 

analysis and limits the analysis throughput.  

The other approach is to adopt novel image features to characterize liver fibrosis 

along with collagen percentage area. Matalka et al [105] developed a collagen 

segmentation method for images from Van Geison stained samples based on a k-

means clustering method using local variance and percent of black pixels in a local 

region. Fifty-four measurements were then generated including size measures, shape 

measures, invariants and frequency domain measures of segmented collagen fibers. A 

neural network was trained to automatically assign a score to the image according to 
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the 54 measurements extracted. Their system was found to be more accurate in 

fibrosis diagnosis than collagen percentage area. In another image analysis system 

proposed by Dioguardi et al [106], fractal analysis methods were used to generate a 

series of fractal-corrected size and shape measures, include fractal dimension and 

Hurst’s exponent of whole tissue section, sizes of collagen islet, collagen percentage 

area corrected by the fractal dimension, and wrinkled nature of the collagen. They 

suggested that their system provided the quantitative measurements of the geometric 

properties and architectural changes of the liver tissue and had the potential to 

outperform collagen percentage area in liver fibrosis characterization.  However, such 

approach does not directly assess the pathological features and cannot reflect the 

pathologists’ know how which makes it difficult to be accepted by the pathologists. 

Alternatively, we present a new analysis framework by combing both the automated 

recognition of pathological relevant collagen patterns and advanced machine learning 

tools for liver fibrosis assessment as illustrated in Chapter 3.   

1.3.4 Liver capsule study and techniques for characterizing collagen network 

geometry 

The entire surface of the liver is covered by a thin layer called the Glisson’s capsule, 

which is mostly composed of dense, irregular connective tissue of typical Type-I 

collagen fibrils. Liver capsule plays an important role to preserve the integrity of liver, 

but the correlation between the structures of capsule and liver disease progression is 

not well studied. The early works were done by Ryoo and Buschmann [107, 108] in 

rat and human samples respectively where they measured the thickness of liver 

capsules and studied its correlation with liver fibrosis. It was found that the thickness 

of liver capsule increases along the fibrosis progression and should be an important 

indicator of fibrosis which was missed in the routine histology examinations. 
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However, no further study on large group of samples was performed to validate their 

preliminary findings of the potential role of liver capsule thickness in diagnosis. 

Therefore, pathological features from liver capsule and sub-capsule areas are 

excluded in any of the routinely used semi-quantitative scoring systems nowadays. 

Chapman et al [109] carefully examined the liver capsule in rat, monkey and pike’s 

samples under transmission electron microscope and suggested that the capsule 

thickness varied depending on the area of the capsule studied and on the animal 

studied. Our previous study [110] demonstrated the correlation of sub-capsular 

surface features to the bulk of the liver and the correlation of sub-capsular surface 

features as well as capsule thickness to fibrosis stages in a rat model, which was 

consistent with Ryoo and Buschmann’s earlier findings. It is also reported that liver 

capsule can be affected by pathologic conditions from the view of computed 

tomography and magnetic resonance imaging [111], but both of these imaging 

modalities were not able to capture the capsule structures in high resolution and the 

study is qualitative rather than quantitative.  

The application of reflective SHG microscopy makes it feasible to image the real 

collagen network geometry of liver capsule instead of a thick band at the tissue 

boundary in the conventional way. Although no previous study was proposed to 

characterize the geometry of collagen network in liver capsule, several techniques 

were reported to extract collagen network geometry in biopolymer network created in 

collagen gels. The useful measurements include average pore-size and cross-links. 

Baradet et al [112] first proposed interactive image analysis software to identify 

collagen network architecture which required human operations. The first automated 

algorithm was presented by Wu et al [113] for backscattered-light confocal images of 

collagen gels. The collagen network image was segmented first and global maximal 
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points were identified in the calculated Euclidean distance maps. Medial axes of the 

fibers were recognized by tracing and connecting these maximal points, followed by 

post-processing procedures to remove short branches and connect similarly-oriented 

branches. This algorithm was further verified by Sander et al [114] on 3D images of 

fluorescently labeled collagen gels. Both actual collagen network and artificially 

generated images of known network structure were used to test the algorithm. Fiber 

length, persistence length and cross-link density were extracted and fitted in a 

mechanical model to predict the gel shear modulus. The predicted results were 

compared to experimental measurement and demonstrated the ability of the proposed 

algorithm to extract collagen network geometry. Nisslert et al [115] developed a 

skeletonization-based algorithm to identify the gel microstructure from transmission 

electron micrographs. The image was first filtered with Wiener filter, minimum filter 

and median filter and segmented. The binary image was skeletonized after removal of 

small spots and those skeletons with branches shorter than 10 pixels were further 

removed. The authors also quantified several global measurements such as the 

distribution of branch lengths and the angles between branches at nodes. To predict 

the elastic moduli of collagen gels from 2D confocal reflectance microscopy and 

confocal fluorescence microscopy, Yang et al [116] developed a fiber finding 

algorithm performed on thresholded images by tracing out individual fibers at 

different widths. Starting from one initial segmented collagen pixel, the fiber was 

extended to another collagen pixel which fell in a searching window with same size as 

the fiber width from one to eight pixels if there is no big change of the fiber direction. 

The number of fibers and the mesh size were characterized and fitted to two 

mechanical models which successfully predicted the storage modulus of collagen gel 

according to the experimental results. Another skeletonization-based method was 
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presented by Luck et al [117] to quantify architecture of intermediate filament 

networks using scanning electron microscopy. The binary image after noise reducing 

and thresholding was skeletonized by the Avizo package, followed by improving the 

position of all line segments and merging all closely located cross-links.  Total 

network length per base area, cross-link density, mean segment length and network 

connectivity were calculated to characterize network morphology and investigate the 

role of network organisation in regulation of cell elasticity. A recent work was done 

by Smith et al [118] to use open active contours to extract cytoskeletal structures from 

fluorescence microscopy. The contour of each new filament was initialized by the 

user and then deformed to minimize the sum of an internal bending and stretching 

energy and external energy representing constraints from the images. The final 

contour was further edited by the user for analysis. The method was validated using 

simulated images of semiflexible polymers of known properties and was used to 

extract tangent correlation function and curvature distribution from in vitro actin 

filaments and actin cables images. This method needs a certain level of human 

interaction and is more appropriate for single fiber or filament tracing. In summary, 

the key step to extract the collagen network geometry is to identify and locate the 

medial axis of the collagen fibers, which is very challenging in SHG images due to 

the disconnected fibers after segmentation caused by the low signal to noise level. We 

demonstrate a gap filling algorithm to resolve this problem as presented in Chapter 4.   

1.4 Outline of the thesis 

This thesis is organized as follows: In Chapter 2, we describe how to adapt the 

conventional quantitative assessment method developed for images from stained 

samples to the images from non-linear optics microscopy. Chapter 3 explains the 

details of our innovative pathological relevant approach established for patho-
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architecture characterization of liver fibrosis and demonstrates its ability to diagnose 

fibrosis in the TAA rat model and hepatitis B human samples.  In chapter 4, we report 

the surface quantification of liver fibrosis by establishing a histology index from 

morphology and texture analysis of liver capsule. Finally, in Chapter 5, we summarize 

the research work done and discuss future directions of this research.  
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Chapter 2  

Fibro-C-Index, quantitative liver fibrosis assessment using 

non pathological relevant approach  

2.1 Introduction 

Liver fibrosis is a result of wound healing responses with resultant accumulation of 

collagen [1]. Assessment of the severity of liver fibrosis is important for scoring 

chronic liver diseases, as well as for therapeutic efficacy evaluation.   

Liver biopsy remains the gold standard despite risks of staining variation, sampling 

error, and inter- and intra- observer variations, as it can provide information on 

inflammatory activity and collagen architecture, that are not obtainable with non-

invasive techniques. All the currently adopted non-invasive methodologies such as 

blood tests, magnetic resonance imaging (MRI) and ultrasound are effective in 

qualitatively assessing the presence or absence of the disease, rather than assessing 

precisely the progression of fibrosis in a step-wise fashion [12, 16], due to its 

specificity and imaging resolution. This limits the clinical usefulness of the tests as it 

is important to track the progression of disease to predict the eventual timing of the 

liver function loss and the onset of portal hypertension or other complications which 

determine proper courses of therapeutic intervention. Liver biopsy has been 

recommended in the clinical guidance of hepatitis B management as the reference 

method for diagnosis as well as for assessment of treatment eligibility.  The prediction 

of specific end point in the fibrosis progression from the biopsy has huge impact in 
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respect to clinical planning, as the detection of significant fibrosis is crucial for 

antiviral therapies and the identification of cirrhosis affects the treatment entirely as it 

is now associated to a high risk of cancer.  

To minimize observer discrepancies, several studies have reported building automated 

image analyses systems to quantify the amount of fibrosis for assessment [85, 86, 88-

90, 98, 105, 119] , where collagen proportionate area (CPA) is the most widely used 

feature defined by the percentage of the collagen area over the entire tissue area. As 

CPA is not addressed in any of the scoring system used by pathologists, we refer it as 

the non pathological relevant approach in this work. CPA tends to be an objective 

quantitative measurement with minimized observer variations compared to the semi-

quantitative scores. The key procedure to quantify CPA is to segment collagen from 

the tissue image. Dealing with images acquired from light microscope with stained 

samples, most of these studies applied collagen segmentation methods according to 

the color information. However, most of these segmentation algorithms are either 

simple or not automated, thus are not robust to the images from batch to batch due to 

the fact that staining variation is unavoidable in most situations.   

The advanced imaging modalities such as second-harmonic generation (SHG) 

microscopy could be the solution for staining variation problem, which is a non-linear 

optical process specific for imaging fibrillar collagens without the need of staining. 

SHG exhibits intrinsic advantages over conventional fluorescence imaging as it is a 

non-linear optical process, requiring no fluorophore presence in tissue; thus, signals 

are unaffected by dye concentration and photobleaching. Excitation source can be at 

infrared range, resulting in less scattering in tissues than in the visible wavelength 

range, and deeper tissue penetration for imaging purposes [120-126].  
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Thus, in this chapter, we investigated the application of SHG imaging modality for 

liver fibrosis assessment. As the images obtained using SHG are standardized and 

highly reproducible, we further established a quantification index system based on 

CPA, Fibro-C-index, for scoring the progression of liver fibrosis from SHG images. 

Based on morphological characteristics of collagen development observed, we 

developed an algorithm to improve the sensitivity of CPA quantification. Our results 

confirm that CPA quantified from SHG images is useful to monitor liver fibrosis 

progression in a quantitative way which has the potential to reduce inter- and intra-

observer discrepancies from both animal samples and human biopsy samples.  

Furthermore, we addressed the potential use of Fibro-C-index as an alternative marker 

of semi-quantitative fibrosis scores to validate other quantitative non-invasive 

markers for fibrosis assessment. As discussed, the current available non-invasive 

methods for liver fibrosis assessment are, by far, not as comprehensive as liver 

biopsy. Hence, it is necessary to use liver biopsy as a reference to validate any non-

invasive markers in the development process. As pointed out by Standish et al [23], 

the semi-quantitative score is a category assignment rather than a measurement, thus 

any numerical manipulation of scores is statistically invalid and any further statistical 

analysis should take this into account. In this manner, Fibro-C-index provides 

additional value as a quantitative surrogate marker of fibrosis scores to serve this 

purpose.  In this chapter, we validate MRE using Fibro-C-index as the standard for the 

fibrosis scoring in 32 CHB patients. MRE assesses liver stiffness non-invasively 

which is the most accurate non-invasive test for detection and staging of liver fibrosis 

[14-16].   

We also reported the limitations of CPA based Fibro-C-index quantification for liver 

fibrosis assessment which leads to the needs for including other histo-pathological 
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features that are more pathologically relevant, which will be covered in the following 

chapters.  

2.2 Materials and Method 

2.2.1 Animal tissue preparation 

Male Wistar rats, with initial weight of 200g, were used for the experiment. Animals 

were housed in the Animal Holding Unit (AHU) of the National University of 

Singapore (NUS) with free access to lab chow and water in a 12:12 – hour light / dark 

schedule. Experiments were approved by the Institutional Animal Care and Use 

Committee (IACUC).  

Bile duct ligation (BDL) of rats was performed under general anesthesia with 

ketamine and xylazine. A midline abdominal incision was performed, exposing the 

liver and intestines. The lower end of the bile duct is identified at its insertion into the 

small intestines and traced up towards the porta. The bile duct is then doubly ligated 

at two areas near the porta with silk sutures and then transacted between the two 

ligation points. Wound is then closed with double layered tissue closure with vicryl 

sutures. A total of 15 rats were ligated and sacrificed at intervals of 2, 4 and 6 weeks 

(n = 5 per week). 5 control rats were also sacrificed at week 0.   

Cardiac perfusion with 4 % paraformaldehyde was performed to flush out blood cells 

and fix the liver tissue before harvesting. Liver specimens from the left lateral lobe 

were preserved in paraffin and sectioned at a thickness of 50 µm for imaging and of 

5µm for staining and scoring.  

2.2.2 Human sample preparation 

The study was approved by the institutional review board at National University 

Hospital, Singapore and all patients gave written informed consent for the study. 
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Patients with CHB and who underwent MRE of liver and a liver biopsy within a 6-

month interval were recruited. A total of 36 patients were recruited. Four patients 

were excluded due to inadequate liver biopsy samples. Finally 32 patients (20 males 

and 12 females) formed the study group. 

Percutaneous liver biopsies were performed by experienced radiologists under local 

anesthesia using ultrasound for guidance. Biopsies from the right anterior lobe of liver 

were obtained using an eighteen gauge core biopsy needle with one to three passes. 

The samples were fixed immediately in formalin and sent to the pathology. The liver 

biopsy samples were processed using standard techniques. 

2.2.3 Histo-pathological scoring 

Animal tissue samples were stained with Masson’s Trichrome (MT) stain kit 

(ChromaView advanced testing, #87019, Richard-Allan Scientific) and imaged (IX51, 

Olympus). Animal tissue scoring was performed using modified Ruwart score 

according to Boigk et al. as there was extensive bile duct proliferation noted [127, 

128], making the modified Ishak score unsuitable.  

The human biopsies were stained with hematoxylin and eosin and Masson’s 

trichrome. The histologic staging of fibrosis was performed by an experienced 

hepatopathologist with more than 20 years’ experience in liver pathology using the 

METAVIR system as follows: F0, no fibrosis; F1, portal fibrosis without septa; F2, 

portal fibrosis with few septa; F3, numerous septa without cirrhosis; and F4, cirrhosis. 

2.2.4 TPEF/SHG microscopy 

The TPEF/SHG microscopy was developed based on a confocal imaging system 

(LSM 510, Carl Zeiss) using an external tunable mode-locked Ti:Sapphire laser (Mai-

Tai broadband, Spectra-Physics). System is shown in Figure 2, where laser was 



36 
 

passed through a pulse compressor (Femtocontrol, APE GmbH, Berlin, Germany) and 

an acousto-optic modulator (AOM) for group velocity dispersion compensation and 

power attenuation respectively. The laser was then routed by a dichroic mirror (DM1, 

490 nm), through an objective lens, to the tissue sample. TPEF emission generated in 

tissue was collected by the same objective lens and recorded by a photo-multiplier 

tube (PMT), after passing through the dichroic mirror (DM2) and a 700 nm short-pass 

filter (BP1). SHG signal was collected using a high numerical aperture (NA) 

condenser and filtered by a 450±10 nm band-pass filter (BP2) before entering PMT 

(Hamamatsu R6357) for detection. With the intrinsic optical sectioning characteristics 

for non-linear optical process, the pinhole function of the confocal microscope was 

not used. A total of 4 SHG images (~ 4.1 x 4.1 mm) were scanned for each animal 

tissue specimen. Up to 10 SHG images (~ 1.3 x 1.3mm) were scanned for each human 

biopsy sample to cover all the tissue areas.  
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Figure 2: Schematic illustration of the TPEF/SHG microscope system used in the 

study.  

 

2.2.5 Fibro-C-Index 

We proposed a standardized quantification indexing system, Fibro-C-Index, for 

staging the progression of liver fibrosis, by measuring collagen proportionate area 

from the SHG microscopy images. A quantification algorithm for collagen 

segmentation is developed as illustrated in Figure 3. The algorithm utilizes images 

acquired using both TPEF and SHG microscopy. Dark background images pre-

acquired before the experiment were subtracted from raw images, for both TPEF and 
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SHG channels. TPEF image was categorized into 3 different groups depending on 

pixel intensity: completely dark, dim, and bright which represent areas of vessel or 

outside-tissue-space, bile duct cannaliculi, and all other cells respectively. Threshold 

levels used here were found by identifying local minima from the pixel intensity 

profile of the entire TPEF image, given the significant intensity variation among 3 

different groups. Once these areas were identified, a mask was created from 

segmented TPEF image. Various weights were subsequently assigned to these areas 

depending on the likelihood of collagen aggregation in these areas. A weight, α, was 

assigned to areas representing the border of blood vessels as well as inside the bile 

duct cannaliculi while the rest of the image was assigned with an unity constant, 1, to 

create a weight map. The value of weight constant, α, was then determined 

systematically by examining the adaptive quantification results between early and late 

stages of liver fibrosis such that the quantification result difference is greatest. Once 

the optimal α was determined, the weight map was multiplied to SHG image, 

followed by Otsu segmentation [129], erosion, and dilation [130] to create a final 

mask. By applying a final mask on the raw SHG image, we obtained an image 

representing the collagen content in the tissue sample where the collagen 

proportionate area was calculated and was named as Fibro-C-index.  
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Figure 3: Flow Chart of the adaptive quantification algorithm. 

 

The SHG images were also analyzed using the direct segmentation method for 

comparison purposes. The direct segmentation algorithm is described as follows: 

background in the images was removed by subtracting a pre-recorded background 

image, and then images were segmented using the Otsu method. Residual grainy noise 

was removed using erosion and dilation functions. 

Moreover, to make a standardized comparison across all tissue samples, all images 

were collected using the same parameters (PMT gain and laser power). Fibro-C-Index 

was later used to compare the results obtained using conventional histopathological 

scoring. 

For human samples, the normal collagen from liver capsules and around the big portal 

tracts and central veins which did not contribute to fibrosis was identified by an 

experienced pathologist and excluded from the Fibro-C-Index. All the parameters 

were set as same as those used in the animal study.  

2.2.6 Magnetic resonance elastography (MRE) 

MRE of the liver was performed with a standard MRE technique as described 

previously [131] on a 1.5 Tesla clinical MR scanner. MRE was performed with 
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standard liver MRI protocol after 6 hours fasting. MRE was performed in supine 

position with a 19-cm passive driver placed over right lower chest wall and upper 

abdomen at the xiphisternum level so as to lie directly above the right lobe. The 

passive was connected to an active driver placed outside the MRI scanner via a 7.6 m 

long plastic tube. Shear waves were produced in the upper abdomen and liver by 

continuous acoustic vibrations at 60Hz generated by the active driver. The MRE 

sequence was a standard GRE based sequence as described in literature [131]. The 

liver stiffness values were calculated by placing regions of interest (ROI) on the 

automatically generated stiffness maps. ROIs were placed on the region of right 

anterior lobe so as to correlate with biopsy region sampled and a mean liver stiffness 

value obtained for each patient and expressed in kilopascals (kPa). 

2.3 Results and Discussions 

2.3.1 Qualitative assessment of liver fibrosis progression in animal samples 

SHG and TPEF microscopies were used to detect changes in collagen as well as the 

hepatocyte and bile duct morphology; and compared with results obtained from 

modified Ruwart scoring [127, 128]. Figure 4 shows changes in collagen using 

Masson’s Trichrome staining (A – D) and the combination of SHG and TPEF 

microscopies (E - H). Readers can refer to the modified Ruwart scoring system for a 

detailed definition of the scoring system [127, 128]. In normal livers, hepatocytes 

were healthy and the presence of collagen was minimal. As the animal model 

progressed, stage 1 fibrosis with an increase in pericellular collagen without the 

formation of septa was seen (Figure 4A, E). At about 3-4 weeks after BDL, 

proliferation of bile duct appeared as dim regions in the SHG/TPEF images. Stage 2 

collagen aggregations formed incomplete septa from portal tract to central vein 

(Figure 4B, F). By week 6, profuse proliferation of bile ducts could be observed all 
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over the tissue sample (Figure 4C, G). Complete but thin collagen septa 

interconnected with each other to divide the parenchyma into separate fragments in 

stage 3 fibrosis. Late fibrosis (stage 4) was observed in some animals after 6 weeks, 

where thick collagen septa were observed, forming complete cirrhotic nodules 

(Figure 4D, H). Unique to the BDL model, was the amount of bile duct proliferation 

and collagen aggregating around the bile ducts, shown as dim regions.  

 

Figure 4: Fibrosis progression at different time points after BDL imaged by 

conventional MT staining (A-D) and SHG/TPEF microscopy (E-H).   
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The BDL model used in this experiment successfully induced fibrosis progression in 

livers over a period of 6 weeks. Pathological development of liver fibrosis, including 

changes in collagen fibers, bile duct cannaliculi, and hepatocyte morphology, could be 

clearly recorded by SHG/TPEF imaging without the need for tissue staining. 

2.3.2 Fibro-C-index: Quantitative assessment of liver fibrosis progression in 

animal samples 

Our group has previously developed a quantification algorithm using the SHG/TPEF 

system, in which images and quantification were processed without emphasis on the 

typical morphological features seen in the images [41].  When the original algorithm 

was applied to the BDL model, a small amount of the collagen presence was removed 

after segmentation, as their signal levels are equivalent to the noise levels. To improve 

the system’s sensitivity, we have incorporated morphology information for 

quantitative fibrosis assessment. 

We developed an algorithm specifically for the BDL model using insights gained 

from collagen progression observed in Figure 5. Collagen was noted to aggregate 

around blood vessels and bile ducts in our BDL model. By enhancing SHG signals in 

these regions before applying Otsu segmentation, we could retain fine collagens with 

low intensity level. A comparison between direct segmentation algorithm and 

proposed quantification algorithm is shown in Figure 5. In Figure 5A, the raw 

TPEF/SHG image was shown, and the area pointed by the white arrow appeared to be 

fairly empty. The binary mask where the low intensity SHG signals were enhanced is 

shown in Figure 5B. The processed images using a direct Otsu segmentation 

algorithm and the proposed quantification algorithm were shown in Figure 5C and 

5D respectively. There was much more collagen in the same area when the proposed 

quantification algorithm was applied instead (Figure 5D). A series of weights (α = 1, 
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50, 70, 100) were applied in the proposed quantification algorithm and the results are 

summarized in Figure 5E. In order to determine the optimal weight, α, a sensitivity 

analysis was done based on the quantification results between week 2 and week 6. 

The ratio (quantification results of week 6/week 2) was calculated systematically for α 

= 1 - 110 (Figure 5E). The SHG image was taken as 12 bit with the maximum 

intensity at 4095. As the SHG signal intensity to be enhanced in the region is around 

20-30, it would not be over saturated after being multiplied by α in such range. In this 

analysis, it was found that when α = 70, the proposed algorithm is most sensitive for 

differentiating between early and late stages of liver fibrosis. Area of collagen 

identified is 4 to 6 times higher than that obtained with the direct segmentation 

algorithm (α = 1, Figure 5F). For the subsequent results presented in this study, α was 

chosen to be 70. The proposed algorithm developed here further enhanced the 

sensitivity of SHG for detecting collagen contents, specifically for BDL model. 
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Figure 5: Comparison between direct and proposed quantification algorithms. The 

TPEF/SHG image of a typical region in the fibrotic liver is shown in (A), and the 

mask of the signal enhancing regions is shown in (B). The processed images using 

direct thresholding and proposed methods are shown in (C) and (D). The weight used 

in adaptive method is optimized as shown in (E) where the quantification results of 

Fibro-C-Index using two methods are compared in (F).  
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We then validated Fibro-C-index by comparing it with the conventional assessment 

technique using a histo-pathological scoring system. Fibrosis was scored in four 

different stages, 1, 2, 3, and 4. Staging results from tissue samples acquired at 

different time points (week 0, 2, 4, 6 after BDL) are shown in Figure 6. We then 

compared the histo-pathological results against the Fibro-C-Index detected using SHG 

microscopy and the optimized quantification algorithm (Figure 7). There is clear 

overlap of Fibro-C-Index between different stages: in early stages (1 & 2), overlap 

occurs by as much as 50%; in later stages (3 & 4), this problem was even more 

significant, with almost no difference in the Fibro-C-Index in the 2 groups. Within 

each stage, Fibro-C-Index varies from 11% to 45%.  

 

Figure 6: The Fibro-C-Index quantified at different time points after BDL.  

 

On one hand, the high degree of overlap between the amount of liver fibrosis between 

stages and the variability of Fibro-C-Index within each stage clearly illustrates the 
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problems of inter- and intra- observer discrepancies when a qualitative staging system 

is used [32-34, 132, 133]. On the other hand, since Fibro-C-Index is not specifically 

addressed in any of the scoring systems, we should also question that whether Fibro-

C-Index alone is good enough to characterize liver fibrosis progression given that 

histo-pathology scoring remains the gold standard.  

 

Figure 7: Investigation of Fibro-C-Index (CPA) at different fibrosis stages. The 

overlap of collagen proportionate area is clear between different fibrosis stages.  

 

2.3.3 Fibro-C-index: Quantitative assessment of liver fibrosis progression in 

human samples 

We then applied Fibro-C-index on 32 biopsy samples from CHB patients (Figure 8). 

The mean age ± SD of the study group was 46 years ± 12.2 years. The mean body 

mass index of the study population was 24.3 Kg/m
2
 (95%CI, 22.8 – 25.7, range 18.6-

32.7). The mean cumulative biopsy length was 22mm (95% CI, 19.5-24.3mm, range 
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11-33mm). The histological stages of fibrosis were F0 in 5, F1 in 10, F2 in 4, F3 in 5 

and F4 in 8 patients.  

 

Figure 8:  The fibrosis progression at different stages in Hepatitis B patients imaged 

by conventional MT staining and SHG/TPEF microscopy. The Fibro-C-Index value 

was calculated for each SHG/TPEF image as shown.  

 

The mean Fibro-C-index of the study population was 2.5% (95% CI, 1.8%-3.2%, 

range 0.6%-7.4%), which showed increasing trend with stages of fibrosis (Figure 9A).  

There was significant correlation between fibrosis stages and Fibro-C-index 

(rho=0.80, 95% CI, 0.63-0.89, p<0.0001).  A Kruskal-Wallis test showed significant 

differences in Fibro-C-index (p=0.003) among different stages of fibrosis. However, a 

trend of small incremental increase was observed in earlier stages of fibrosis. These 
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results are similar to an earlier observation in a study with morphometric 

quantification of liver fibrosis using stained samples [23].  

 

Figure 9: Fibro-C-Index and MRE values of 32 Hepatitis patients are shown in (A) 

and (B) respectively. The correlation between Fibro-C-Index and MRE values are 

assessed in (C). 

 

2.3.4 Correlation between Fibro-C-index and MRE 

The mean time interval between liver biopsy and MRE was 83.8 days (95% CI, 60.6-

107 days, range 2-180 days). MRI was successful in all the study subjects. The mean 
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liver stiffness of the study population was 3.98 kPa (95% CI, 3.2-4.8 kPa, range 2-

10.2 kPa).  

Similar to Fibro-C-index, MRE also showed increasing trend with stages of fibrosis 

(Figure 9B). A significant positive correlation existed between Fibro-C-index and 

MRE (r=0.82, 95% CI, 0.66-0.91, p<0.0001) (Figure 9C). ROC analysis results 

showed MRE performing slightly better (but not statistically significant) than Fibro-

C-Index in the detection of ≥F1 (0.87 vs. 0.81, P=0.67), ≥F2 (0.95 vs. 0.94, P=0.78), 

≥F3 (0.98 vs. 0.96, P=0.76) and F4 (1.00 vs. 0.92, P=0.10). 

In a previous study, liver stiffness evaluated with TE in CHB patients, correlated with 

collagen proportionate area using picosirus red for collagen and digital morphometric 

analysis with a photomicroscope [102]. In this study, only 5 periportal fields, 5 

perivenular fields and 15 random pericellular fields were evaluated, therefore not a 

complete evaluation of fibrosis burden in the specimen. The correlation of stiffness 

with TE was made with pericellular, periportal and perivenular fibrosis. The 

correlations were reported to be statistically significant but low (r=0.43, 0.21 and 0.25 

respectively). In our study, the correlation coefficient was much higher (r=0.78) than 

the previous study. This is probably due to the adoption of Fibro-C-index method, 

which is capable of evaluation of the whole biopsy specimen when only large vessels 

and subcapsular region were excluded. Fibro-C-index provides a relatively accurate 

estimation of degree of fibrosis as compared to histological staging.  

2.4 Conclusions 

Without varying factors such as staining quality and photobleaching [40, 41], 

quantification from SHG/TPEF microscopy images is highly reproducible and can be 

used as a standardized platform for assessing progression of liver fibrosis in a 

continuum. We have developed and validated Fibro-C-index method for SHG 
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microscopy images based on the morphological characteristics of collagen 

development observed in BDL model. Collagen proportionate area was calculated at 

same set time points (week 0, 2, 4, 6 after BDL) and correlated to histo-pathology 

scores. We also validated Fibro-C-index in a pilot study using 32 biopsy samples from 

CHB patients. It is also shown that Fibro-C-index has the potential to be used as a 

quantitative alternative of histo-pathology scores to validate other non-invasive 

fibrosis markers such as MRE.   

These findings suggested that collagen proportionate area (Fibro-C-Index), as a 

quantitative measurement, has the potential to minimize the intra- and inter-observer 

discrepancies by providing a standardized indexing system which was consistent with 

other reports.  By including SHG/TPEF imaging and quantification of collagen 

proportionate area as a part of the scoring criteria, we anticipate that the time required 

for diagnosis can be significantly reduced by removing the need of tissue staining 

(which takes at least 4 hours), and more importantly, intra and inter-observer 

discrepancies can be eliminated. On the other hand, we also reported the limitation of 

using collagen proportionate area to accurately predict fibrosis stages as it lacks histo-

pathological information used by pathologists, which requires more advanced image 

analysis techniques to characterize other collagen architectural patterns that are more 

pathologically relevant.  
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Chapter 3  

qFibrosis, quantitative liver fibrosis assessment using 

pathological relevant approach  

3.1 Introduction 

Excessive accumulation of extracellular matrix (ECM) results in fibrosis, which is the 

hallmark of chronic liver diseases (CLD) [1]. Progression of liver fibrosis is closely 

related to the development of major complications of CLD [134]. Chronic hepatitis B 

(CHB), a leading global health burden, is the major cause of cirrhosis and liver cancer 

[135]. With recent advances in efficacious antiviral therapies, the endpoint of 

fibrosis/cirrhosis regression can be achieved in long-term treatment of CHB [136]. 

Herein lies an increasing need for accurate and precise assessment of fibrosis, a 

prognostic indicator of chronicity and CLD sequelae, in order to facilitate and monitor 

the effective utilization of therapeutic advances [137].    

Liver biopsy has long been the gold standard for fibrosis assessment in CLD [138]. It 

has the capability of providing histopathological information on various 

morphological parameters that have been clinically validated for their 

pathophysiological relevance, but are not obtainable with non-invasive techniques 

[139, 140] such as liver stiffness measurements [6] and biochemical markers [141]. 

Currently, liver biopsy-based assessment remains the standard reference for 

monitoring therapeutic responses in both clinical research trials and actual practice 

[23, 136].   
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However, conventional histological staging of fibrosis in liver biopsy is 

semiquantitative and highly subjective to sampling error and observer variations, as it 

basically relies on a global assessment of architectural distortion and associated 

fibrosis. It cannot sufficiently and reliably reflect the complicated 

pathophysiological/functional status of the liver, which is incumbent for diagnostic 

decision-making in current CLD management [32, 137]. Furthermore, cirrhosis has 

recently been redefined to be a dynamic process with intra-stage 

progressive/regressive changes [142]; in this regard, the International Liver Pathology 

Study Group has called for biopsy-based histological markers that can quantify and 

predict intra-stage cirrhosis changes [143]. Thus, technologies that can provide 

feasible solutions to these issues may potentially improve fibrosis assessment in 

CLDs such as CHB.  

Image-based morphometric analysis of biopsy samples has been explored as an 

alternative to histological staging systems [93]. The current method of choice is 

collagen proportionate area (CPA) measurement, which quantifies the extent of 

collagenous ECM deposition without incorporating architectural information about 

the damaged tissue landscape [91-93] as elaborated in Chapter 2. CPA correlates well 

with late stages of fibrosis but is highly sensitive to sample size [20]. Clinical 

applicability of CPA is still being critically evaluated.  

The strengths and limitations of current assessment systems motivated us to develop 

an innovative method- qFibrosis for liver biopsy assessment, based on the strategy of 

combining pathology-relevant collagen architectural features with automated 

computer-aided image analysis tools. With input of imaging data from liver sample, 

qFibrosis is able to automatically compute the fully-quantitative fibrosis scores of the 

respective collagen architectural features. Such a strategy may potentially solve some 
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of the current issues encountered in biopsy-based histological fibrosis assessment with 

a more accurate and objective quantitative methodology. Thus, in this Chapter, we 

sought to establish qFibrosis and to verify its potential as a fibrosis assessment tool in 

both animal model and CHB patients.  

 

3.2 Materials and Method 

3.2.1 Animal tissue preparation 

Thioacetamide (TAA)-induced animal model is used for studying liver fibrosis in rats 

since it has similar characteristics as that caused by viral hepatitis in humans [144]. 

Similar histopathological changes are found in humans and TAA-induced animals 

which make it a valid model to study liver fibrosis progression in chronic hepatitis B 

[145, 146].  

All the protocols for studying the TAA-induced liver fibrosis rat model were reviewed 

and approved by the Biological Resource Centre (BRC) Institutional Animal Care and 

Use Committee (IACUC). Male Wistar rats with an average weight of 220g were 

housed two per cage in BRC of Biopolis A*STAR with free access to laboratory 

chow and water in a 12:12h light/dark schedule. The rats were administered with 

intra-peritoneal (ip.) injections of TAA 200mg/kg of body weight with PBS, three 

times a week. Twenty-five rats were randomly separated into five groups, 

representing 5 time points, without drug treatment, and treated with TAA for 4, 8, 10 

and 12 weeks.  

Liver specimens from the left lateral lobe of each animal were formalin-fixed, 

paraffin-embedded and sectioned at a thickness of 50 µm for imaging, and at 5 µm for 

staining with haematoxylin and eosin and Masson Trichrome (a connective tissue 
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stain) for histological examination. Scoring was performed by an experienced 

pathologist using the Metavir staging system (F0=no fibrosis, F1=portal fibrosis 

without septa; F2=few septa, F3=numerous septa without cirrhosis, and F4=cirrhosis) 

[27].  

3.2.2 Human sample preparation 

In this study, clinical biopsy samples from two independent cohorts were included: 

107 non-fragmented liver core biopsies for algorithm training and testing, and another 

well-balanced 55 long biopsy samples for demonstrating the technology 

reproducibility. Both cohort samples were from CHB patients in Nanfang Hospital 

(Guangzhou, China). The clinical study was conducted according to the Declaration 

of Helsinki guidelines and approved by the Ethical Committee of Nanfang Hospital. 

All patients have given written informed consent for liver biopsy as well as 

permission for use of their medical records. The average length of the 107 biopsies 

was 16.7 ± 5.4 mm (minimum length: 10 mm, maximum length: 30 mm). The average 

length of the 55 biopsies was 30.4 ± 4.4 mm (minimum length: 25 mm, maximum 

length: 44 mm). 

 

Table 2: Number and length of biopsy samples of chronic hepatitis B.  Data are Mean 

 SD. 
 Metavir Fibrosis Score 

F 1 F 2 F 3 F 4 Total 

Length ≥ 10 mm 

Number 18 19 27 43 107 

Length (mm) 17.50 ± 5.64 16.32 ± 6.93 17.96 ± 5.80 15.79 ± 4.07 16.72 ± 5.38 

 Length ≥ 15 mm 

Number 12 9 18  30 69 

Length (mm) 20.42 ± 4.44 22.00 ± 5.96 20.89 ± 4.83 17.53 ± 3.47 19.49 ± 4.64 

 Sample with complete clinical measurements 

Number 9 11 11 18 49 

Length (mm) 15.89 ± 3.72 19.09 ± 7.40 19.36 ± 6.82 15.28 ± 4.13 17.16 ± 5.75 
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All the liver biopsy specimens were routinely processed by formalin fixation and 

paraffin-embedding, and sectioned at 5µm thickness for SHG-imaging, and then 

stained with Masson Trichrome for histological assessment. Biopsy samples were 

read independently by one hepatopathologist and one junior pathologist, and staged 

using Metavir and Ishak fibrosis scoring systems. The detailed distribution of all 

biopsies, together with their Metavir fibrosis stages is summarized in Table 2. 

3.2.3 Image acquisition 

The 107 samples for training and testing qFibrosis were imaged by the system of 

second harmonic generation/two photon excitation fluorescence (SHG/TPEF) 

microscopy established and adjusted as previously reported in Chapter 2. Image 

acquisition was performed with a 20 × objective on unstained sections of the tissue 

samples. To cover most of the sample areas, 3 of nine-by-nine multi-tile images were 

acquired for the animal samples with a final image size of 16 mm
2
 (4 × 4 mm); and up 

to 10 three-by-three multi-tile images for each human biopsy sample with final image 

size of 1.8 mm
2
 (1.35 × 1.35 mm). The additional 55 samples for reproducibility 

demonstration were imaged by Genesis system (HistoIndex, Singapore), a SHG/TPEF 

technology-based commercial device, at Southern Medical University (Guangzhou, 

China).  Image acquisition parameters for these samples were set the same as the ones 

for the former cohort samples. 

3.2.4 Establishment of qFibrosis 

The procedure for establishing qFibrosis includes (i) identification of different 

collagen patterns, (ii) extraction of collagen architectural features, and (iii) statistical 

analysis of features of the respective collagen patterns, which were then combined 

into a single index. 



56 
 

The acquired images of samples were processed and calculated with the established 

qFibrosis. A numerical value between 0 and 1 will be assigned to each sample while 

the higher value indicates more severe fibrosis.  

3.2.4.1 Identification of portal, septal and fibrillar collagen 

Automated image processing algorithms were developed to identify and differentiate 

portal, septal and fibrillar collagen (Figure 10).  

The TPEF image (Figure 10A.1) was first used to locate the tissue samples into 

several region-of-interests (ROIs) while each ROI represents one portal tract or 

central vein region. Since the TPEF image records the autofluorescence signals of the 

liver tissue (hepatocytes), the portal tracts and central veins were shown as empty 

spaces in the TEPF channel image. These portal tracts and central veins were then 

identified on TPEF images by thresholding (Figure 10A.1-A.2). The segmentation 

process started with determining a threshold (5% of the maximum pixel intensity) 

separating those pixels belonging to portal tracts and central veins based on their 

intensity values. Next, we smoothed the spaces by applying morphological closing 

and hole-filling operations [148] (Figure 10A.2-A.3). We then removed spaces that 

were smaller than 100 µm
2
 (size of one hepatocyte) and spaces with large major-axis-

length to minor-axis-length ratio (which were assumed to be sinusoidal spaces) before 

further processing (Figure 10A.3-A.4).   

Under normal circumstances, the portal tract contains three lumens, comprising one 

hepatic vein, one hepatic artery and one bile duct. However, we often encountered 

more lumens in a portal tract due to issues such as direction of tissue sectioning. 

Therefore, we considered those segmented spaces which were very close to each other 

as denoting one portal tract versus one central vein; after which we merged the spaces 
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into one ROI. We did this by generating a Delaunay triangulation diagram [149] 

treating the centre of each segmented space as a node and by connecting all nodes to 

their immediate neighbouring nodes such that there is no node inside any of the 

triangles formed (Figure 10A.5). We then merged small triangles by applying a 

threshold that equals the average length of all edges in the triangulation, and 

combined those nodes with triangle edge length smaller than the threshold. For each 

merged group, we created a larger space by essentially connecting individual spaces 

and covered all individual spaces using convex hull filling (Figure 10A.5-A.6).  

After merging all nodes with triangle edge length less than the threshold, we updated 

the Delaunay triangulation diagram and used these new nodes to create a Voronoi 

diagram [149] (Figure 10A.6-A.7). For each ROI, we considered the node as either 

the portal tract or central vein region. 

The collagen was then segmented from the SHG images (Figure 10B.1 – 10B.2) 

using a segmentation algorithm based on Gaussian mixture models [147]. The 

segmented collagen in each of the ROI (Figure 10C) was next differentiated into 

portal, septal and fibrillar collagen.  
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Figure 10: Diagram of image processing procedures to identify portal, septal and 

fibrillar collagen. The empty spaces in the TPEF image (A.1) was first segmented 

(A.2), smoothed (A.3) and the small holes were then removed (A.4). The Delaunay 

triangulation (A.5) was performed on the segmented vessels and veins and the closing 
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vessels and veins were merged together (A.6). The Voronoi diagram was next 

generated to form several region-of-interests each representing a portal tract or central 

vein region (A.7). The SHG image (B.1) was segmented to identify the collagen 

regions (B.2). The segmented collagen in each of the ROI (C) was next differentiated 

into portal, septal and fibrillar collagen. (D.1) shows one ROI as example, and the 

collagen distribution along the distance to the vessels was shown in (D.2) to figure out 

the cut-off value to identify portal collagen. The collagen distribution along different 

directions was then shown in (D.3) to find the local maxima which identifies the 

septal collagen. The identified portal, septal and fibrillar collagen in ROI (D.1) were 

illustrated in (E), where portal collagen is coded in blue, septal collagen in green and 

fibrillar collagen in red. The identified three collagen patterns in the entire image was 

demonstrated in (F). 

 

In order to illustrate the definitions of portal, septal and fibrillar collagen, we use one 

ROI as an example (Figure 10D.1). To identify portal collagen, the percentage of 

collagen pixels measured at various distances from the boundary of the portal tract or 

central vein is shown in Figure 10D.2. A cut-off distance was chosen when the 

percentage of collagen pixels decreased to half from the maximum percentage. All the 

collagen within the cut-off distance was considered as portal collagen (blue, Figure 

10E). For septal collagen, we measured the direction profile of the remaining collagen 

and the result is shown in Figure 10D.3. We then identified the local maxima of the 

collagen direction profile (red arrow, Figure 10D.3) and considered all collagen at 

these particular angles as septal collagen. Lastly, we interpreted all the remaining 

collagen as fibrillar collagen (red, Figure 10E).  The same processing was performed 

in each of the ROI in the image and the overall collagen was separated into portal, 

septal and fibrillar collagen completely (Figure 10F).   

3.2.4.2 Collagen feature extraction 

qFibrosis can quantify the morphological features of all the collagen patterns 

described above for accurate assessment of fibrosis. We labeled all collagen in each 

ROI as portal, septal or fibrillar collagen and extracted features for each group 
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separately. The detailed procedures for collagen feature extraction for each group are 

described as follows. In the process of feature extraction, each collagen pattern was 

classified into aggregated and distributed collagen. If a collagen fiber links to other 

fibers, it has more than one cross-link and is classified as aggregated collagen. 

Distributed collagens are those collagen fibers with no cross-links with others.  

34 portal collagen features are shown in Table 3. Portal collagen is divided into two 

groups, aggregated and distributed collagen, based on their cross-linking properties. 

Aggregated collagen is cross-linked while the distributed collagen is not. Some of the 

collagen features were extracted from aggregated and distributed collagen separately. 

The major axis of each collagen fiber is tracked and the features such as fiber number, 

length, width, curvature, alignment, cross-link space and cross-link density are 

calculated as described in [114]. The caliber of the portal tract or central vein is 

measured as the cut-off threshold for differentiating portal and septal collagen 

patterns.  

Table 3: Description of 34 portal collagen features. The 19 features selected after 

feature selection procedure are highlighted in grey. 

Number Feature Description 

1 CPA Portal collagen proportionate area 

2 Fiber Number Portal collagen fiber number 

3 Fiber Length Portal collagen fiber length 

4 Fiber Width Portal collagen fiber width 

5 Fiber Curvature Portal collagen fiber curvature 

6 Fiber Alignment Portal collagen fiber alignment 

7 Fiber CL Density Portal collagen fiber cross-link density 

8 Fiber CL Space Portal collagen fiber cross-link space 

9 Agg CPA Portal aggregated collagen proportionate area 

10 Agg Fiber Number Portal aggregated collagen fiber number 

11 Agg Fiber Length Portal aggregated collagen fiber length 

12 Agg Fiber Width Portal aggregated collagen fiber width 

13 Agg Fiber Curvature Portal aggregated collagen fiber curvature 

14 Agg Fiber Alignment Portal aggregated collagen fiber alignment 

15 
Agg Fiber CL 

Density 
Portal aggregated collagen fiber cross-link density 

16 Agg Fiber CL Space Portal aggregated collagen fiber cross-link space 

17 Dis CPA Portal distributed collagen proportionate area 
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18 Dis Fiber Number Portal distributed collagen fiber number 

19 Dis Fiber Length Portal distributed collagen fiber length 

20 Dis Fiber Width Portal distributed collagen fiber width 

21 Dis Fiber Curvature Portal distributed collagen fiber curvature 

22 Dis Fiber Alignment Portal distributed collagen fiber alignment 

23 Cut-off Width Portal tract / central vein collagen thickness 

24 CPA/ROI 
Portal collagen proportionate area per ROI 

25 Fiber Number/ROI Portal collagen fiber number per ROI 

26 Agg CPA/ROI Portal aggregated collagen proportionate area per ROI 

27 
Agg Fiber 

Number/ROI 
Portal aggregated collagen fiber number per ROI 

28 Dis CPA/ROI Portal distributed collagen proportionate area per ROI 

29 
Dis Fiber 

Number/ROI 
Portal distributed collagen fiber number per ROI 

30 Agg CPA/CPA 
Ratio between portal aggregated collagen proportionate area and portal collagen 

proportionate area 

31 Dis CPA/CPA 
Ratio between portal distributed collagen proportionate area and portal collagen 

proportionate area 

32 Agg CPA/CPA/ROI 
Ratio between portal aggregated collagen proportionate area and portal collagen 

proportionate area per ROI 

33 Dis CPA/CPA/ROI 
Ratio between portal distributed collagen proportionate area and portal collagen 

proportionate area per ROI 

34 CPA/Total CPA 
Ratio between portal collagen proportionate area and total collagen proportionate 

area 

 

28 septal collagen features are shown in Table 4. A similar approach is adopted to 

separate this collagen into aggregated and distributed collagen. The number of septa 

was recognized as the number of local maxima found in angle profile during the 

process of septal collagen identification. The width of each local maximum in the 

angle profile represents the width of each septum, and the collagen percentage along 

the local maxima represents the completeness of certain septa.    

Table 4: Description of 28 septal collagen features. The 13 features selected after 

feature selection procedure are highlighted in grey. 

Number Feature Description 

1 CPA Septal collagen proportionate area 

2 Fiber Number Septal collagen fiber number 

3 Fiber Length Septal collagen fiber length 

4 Fiber Width Septal collagen fiber width 

5 Fiber Curvature Septal collagen fiber curvature 

6 Fiber Alignment Septal collagen fiber alignment 

7 Fiber CL Density Septal collagen fiber cross-link density 

8 Fiber CL Space Septal collagen fiber cross-link space 
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9 Agg CPA Septal aggregated collagen proportionate area 

10 Agg Fiber Number Septal aggregated collagen fiber number 

11 Agg Fiber Length Septal aggregated collagen fiber length 

12 Agg Fiber Width Septal aggregated collagen fiber width 

13 
Agg Fiber 

Curvature 
Septal aggregated collagen fiber curvature 

14 
Agg Fiber 

Alignment 
Septal aggregated collagen fiber alignment 

15 
Agg Fiber CL 

Density 
Septal aggregated collagen fiber cross-link density 

16 
Agg Fiber CL 

Space 
Septal aggregated collagen fiber cross-link space 

17 Dis CPA Septal distributed collagen proportionate area 

18 Dis Fiber Number Septal distributed collagen fiber number 

19 Dis Fiber Length Septal distributed collagen fiber length 

20 Dis Fiber Width Septal distributed collagen fiber width 

21 Dis Fiber Curvature Septal distributed collagen fiber curvature 

22 
Dis Fiber 

Alignment 
Septal distributed collagen fiber alignment 

23 
Agg CPA/Septal 

CPA 

Ratio between septal aggregated collagen proportionate area and septal 

collagen proportionate area 

24 
Dis CPA/Septal 

CPA 

Ratio between septal distributed collagen proportionate area and septal 

collagen proportionate area 

25 CPA/Total CPA 
Ratio between septal collagen proportionate area and total collagen 

proportionate area 

26 
Number of 

Septa/ROI 
Number of septa per ROI 

27 Septa Width Average septa width 

28 
Septa 

Completeness 
Average septa completeness between ROIs 

 

25 fibrillar collagen features are shown in Table 5. Morphological features are 

extracted from total fibrillar collagen, aggregated fibrillar collagen and distributed 

fibrillar collagen separately.  

Table 5: Description of 25 fibrillar collagen features. The 8 features selected after 

feature selection procedure are highlighted in grey. 

Number Feature Description 

1 CPA   Fibrillar collagen proportionate area  

2 Fiber Number  Fibrillar collagen fiber number  

3 Fiber Length  Fibrillar collagen fiber length  

4 Fiber Width  Fibrillar collagen fiber width  

5 Fiber Curvature  Fibrillar collagen fiber curvature  
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6 Fiber Alignment  Fibrillar collagen fiber alignment  

7 Fiber CL Density  Fibrillar collagen fiber cross-link density  

8 Fiber CL Space  Fibrillar collagen fiber cross-link space  

9 Agg CPA  Fibrillar aggregated collagen proportionate area  

10 Agg Fiber Number  Fibrillar aggregated collagen fiber number  

11 Agg Fiber Length  Fibrillar aggregated collagen fiber length  

12 Agg Fiber Width  Fibrillar aggregated collagen fiber width  

13 
Agg Fiber 

Curvature 
 Fibrillar aggregated collagen fiber curvature  

14 
Agg Fiber 

Alignment 
 Fibrillar aggregated collagen fiber alignment  

15 
Agg Fiber CL 

Density 
 Fibrillar aggregated collagen fiber cross-link density  

16 Agg Fiber CL Space  Fibrillar aggregated collagen fiber cross-link space  

17 Dis CPA  Fibrillar distributed collagen proportionate area  

18 Dis Fiber Number  Fibrillar distributed collagen fiber number  

19 Dis Fiber Length  Fibrillar distributed collagen fiber length  

20 Dis Fiber Width  Fibrillar distributed collagen fiber width  

21 Dis Fiber Curvature  Fibrillar distributed collagen fiber curvature  

22 Dis Fiber Alignment  Fibrillar distributed collagen fiber alignment  

23 
Agg CPA/Fibrillar 

CPA 

 Ratio between fibrillar aggregated collagen proportionate area and 

fibrillar collagen proportionate area  

24 
Dis CPA/Fibrillar 

CPA 

 Ratio between fibrillar distributed collagen proportionate area and 

fibrillar collagen proportionate area  

25 CPA/Total CPA 
 Ratio between fibrillar collagen proportionate area and total collagen 

proportionate area  

 

3.2.4.3 Combination of features into indices 

To demonstrate how features were extracted and combined into indices, we used the 

portal index from the TAA animal model as an example. From the 34 portal collagen 

features (Table 3), 19 features were selected based on their relevance to fibrosis 

progression (Figure 11A), highlighted in grey in Table 3, using a class-specific 

ensemble feature selection framework that is explained in the following section. By 

using principal component analysis, we generated the two most significant principal 

components (PC) from the 19 features. These two PCs together contained more than 

75% of the variance and each represented more than 10% of the total variance of the 

19 selected features (Figure 11B). The values of the two PCs at different stages of 
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fibrosis are shown in Figure 11C, 11D. The first PC indicated an increasing trend 

along fibrosis progression and reflected the changes of the majority of selected 

features. The second PC was only sensitive to the difference between stages 1 and 2 

where the distributed portal collagen percentage and distributed portal collagen 

number played the most important roles. Finally, we trained a multinomial logistic 

regression model [150] based on these two PCs to estimate the probability of each 

stage for a certain sample and normalized the probabilities into the portal index 

(Figure 14A).    

 

Figure 11: Statistical analysis to reduce the dimension of portal collagen features in 

Thioacetamide (TAA)-induced animal model. (A) 19 features were selected from 34 

portal collagen features. (B) The 19 selected features were reduced to two principal 

components by principal component analysis. (C-D) The box-plots of the two 

principal components used show different trends along the Metavir stages of fibrosis 

progression.  

 

Similar approaches were applied to septal collagen features (Table 4, Figure 12) and 

fibrillar collagen features (Table 5, Figure 13) to build the septal index (Figure 14B) 

and the fibrillar index (Figure 14C), respectively. All the PCs from portal, septal and 

fibrillar collagen were used together to create qFibrosis.  
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Figure 12: Statistical analysis to reduce the dimension of septal collagen features in 

Thioacetamide (TAA)-induced animal model. (A) 13 features were selected from 28 

septal collagen features. (B) The 13 selected features were reduced to two principal 

components by principal component analysis. (C-D) The box-plots of the two 

principal components used show different trends along the Metavir stages of fibrosis 

progression.  

 

 

Figure 13: Statistical analysis to reduce the dimension of fibrillar collagen features in 

Thioacetamide (TAA)-induced animal model. (A) 8 features were selected from 25 

fibrillar features. (B) The 8 selected features were reduced to two principal 

components by principal component analysis. (C-D) The box-plots of the two 

principal components used show different trends along the Metavir stages of fibrosis 

progression. 



66 
 

 

Figure 14: Portal, septal and fibrillar indices. (A) The most drastic increase in the 

portal index occurs from stage 1 to 2, when portal expansion is the dominant site of 

collagen deposition. (B) The septal index, on the other hand, increases most 

significantly from stage 2 to 3 when collagenous connections bridge adjacent portal 

tracts. (C) The change of fibrillar index. 

 

3.2.4.4 Class-specific ensemble feature selection 

To identify the most important features from all the features extracted, we designed a 

class-specific ensemble feature selection framework. One hundred bootstrap samples 

were created to generate diversities in training samples. For each bootstrap sample, 

the features were ranked using support vector machine recursive feature elimination 
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(SVM-RFE) method [151]. An ensemble rank of each feature was generated using the 

same approach in Abeel et al [152]. The best overall feature subset was selected 

according to the classification performance tested on the out-of-bag samples. The 

frequency of each feature to be selected from all 100 bootstrap samples was used as 

the criteria to evaluate its importance. The important features tend to be selected in 

most of the bootstrap samples no matter how the training set was altered.  The cutoff 

frequency was set to 90% as those features which were selected at least 90 times from 

100 bootstrap samples were recognized as important features for further analysis.  

3.2.4.5 Principal component analysis 

Principal component analysis [153] was used to convert the selected important 

features into a set of linearly uncorrelated principal components (PC). Each PC was a 

weighted summation of all the selected features with different weights. The first PC 

has the largest possible variance while each succeeding component has descending 

possible variances. We selected the PC with two criteria: the sum variance of all 

selected PC should exceed 75% of the total variance of the important features and 

each PC should have a variance with no less than 10% of the total variance. By doing 

this selection, we can better assess the fibrosis with those trends observed in these 

morphological features during fibrosis progression. 

3.2.4.6 Multinomial logistic regression 

To combine all PC to qFibrosis and its subindices, we used multinomial logistic 

regression (MNL) [154], a generalization of normal logistic regression which can 

create five or seven discrete outcomes (for Metavir and Ishak scores). To calculate the 

index (portal, septal, fibrillar and qFibrosis) for a testing sample, a training set of 

images was defined. The probability of the sample belonging to each stage from 0 to 4 



68 
 

was predicted from the trained MNL model. The index was calculated by the 

following equation:  

* , 0,1,2,3,4qFibrosis pi Ei i  , 

where pi was the probability of stage i, Ei i was the expectation value of each stage 

and α was a scale factor to normalize the index into certain range. α was set to 1/4 in 

our study so that the index was a continuous variant located in the range from 0 to 1. 

In the animal study, to calculate the index (portal, septal, fibrillar and qFibrosis) for 

each sample, the leave-one-out training is performed as all the other samples were 

used as the training set.  

In the human experiment to investigate the performance of qFibrosis to replicate the 

fibrosis scores obtained with Metavir scores, the leave-one-out training is used to 

calculate the index for each sample, either using all the samples or using the long 

biopsy samples.  

In the human experiment to study the performance of correction of sampling error-

mediated intra-observer variation, the 69 good quality biopsy samples were used as 

the training set to test the remaining suboptimal biopsy samples.  

In the human experiment to explore the performance of correction of inter-observer 

variation, the leave-one-out training is used to calculate the index for each sample 

using the scores from the experienced pathologist as the references.  

In the human experiment to validate qFibrosis on another independent cohort, the 

original 107 biopsy samples were used as the training set to test another 55 biopsy 

samples in a new cohort.  
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3.2.5 Statistical analysis 

The two-tailed Wilcoxon rank-sum test was performed to estimate the statistical 

differences of CPA and qFibrosis index between different Metavir and Ishak fibrosis 

stages, and differences of clinical measurements between Ishak stages 5 and 6. The 

DeLong test was used to compare the receiver-operating-characteristics curves (ROCs) 

and area under ROCs (AUCs) of qFibrosis and CPA. The stepwise logistic regression 

was performed to find the best combination of markers to differentiate Ishak stages 5 

and 6. Statistical significance level was set as p < 0.05. 

3.3 Results 

3.3.1 qFibrosis, and automated assessment of changes in collagen patterns and 

quantification of liver fibrosis 

qFibrosis was developed based on key architectural features, namely, portal expansion 

(portal collagen), fibrosis bridging mechanism (septal collagen), and general 

distribution of fine collagen in the pericellular/perisinusoidal space of Disse 

throughout the liver (fibrillar collagen) (Figure 15A). Using the Metavir staging 

system as an example, normal livers (F0) contain minimal collagenous tissue (blue) 

within portal tracts and around central veins. In early stage of fibrosis (F1), there is 

fibrous portal expansion (blue). In the next stage (F2), incomplete spike-like septa 

(green) emanate from some of the portal tracts. With progression of fibrosis (F3), 

some complete septa (green) begin to link some of the portal tracts and occasionally 

bridge portal tracts and central veins. The last stage, cirrhosis (F4), is established 

when broad complete septa (green) are formed between portal areas, and between 

portal areas and central veins, intersecting the lobular architecture and surrounding 

regenerative hepatocellular nodules [90]. qFibrosis is able to identify and differentiate 
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the collagen patterns at different stages of liver fibrosis (Figure 15B). In the statistical 

analysis framework of qFibrosis (Figure 15C), a list of 87 collagen architectural 

features (Table 3, 4 and 5) was categorized into three groups: portal, septal and 

fibrillar collagen. The feature selection [151] was performed to identify the most 

important architectural features. We used principal component analysis [153] to 

reduce the dimension of the selected features and multinomial logistic regression to 

combine the principal components into a single index - qFibrosis.  The potential use 

of qFibrosis in routine clinical practice is illustrated in Figure 16.  
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Figure 15: Schematic illustration of qFibrosis establishment. (A) Representation of 

changes in collagen patterns in chronic liver disease based on Metavir staging system. 

Portal, septal and fibrillar collagen are denoted in blue, green and red, respectively. (B) 

The 3 types of collagen patterns are shown in Thioacetamide (TAA)-induced rat liver 

samples with normal and advanced fibrosis, as visualised by Masson Trichrome-

stained, TPEF/SHG and processed images. (C) Computation framework to establish 

qFibrosis.  
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Figure 16: Illustration of qFibrosis application in liver biopsy-based fibrosis 

assessment. Conventional histological assessment of liver fibrosis requires human 

observation of microscopic images from stained tissue sections. qFibrosis provides 

fully-automated, computer-aided liver fibrosis staging, which is fast, quantitative and 

consistent.      

 

3.3.2 qFibrosis scoring faithfully replicate Metavir fibrosis staging 

We first investigated the performance of qFibrosis to replicate the fibrosis scores 

obtained with conventional histological assessment such as Metavir staging system. 

qFibrosis reflected a continuum of fibrosis progression that was consistent with 

Metavir fibrosis stages in both animal model and CHB patients, of which the values 

are summarized in Tables 6 and 7, respectively.  

 

Table 6: qFibrosis values of Thioacetamide-treated animal samples. (SEM: standard 

error of mean) 

 Fibrosis – qFibrosis    

Fibrosis –  

Metavir Score 

25th 

percentile 

75th 

percentile 
Median Mean SEM 

F0 (n= 15) 0.016 0.144 0.049 0.074 0.017 

F1 (n= 15) 0.157 0.410 0.258 0.266 0.040 

F2 (n= 15) 0.350 0.504 0.429 0.434 0.031 

F3 (n= 15) 0.743 0.854 0.751 0.779 0.025 

F4 (n= 15) 0.968 1.000 0.998 0.956 0.021 
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Table 7: qFibrosis values in 69 chronic hepatitis B core liver biopsies longer than 15 

mm. (SEM: standard error of mean) 

 Fibrosis – qFibrosis    

Fibrosis – 

Metavir score 

25th 

percentile 

75th 

percentile 
Median Mean SEM 

F1 (n= 12) 0.257 0.493 0.374 0.411 0.051 

F2 (n= 9) 0.445 0.783 0.590 0.607 0.073 

F3 (n= 18) 0.640 0.919 0.809 0.761 0.047 

F4 (n= 30) 0.776 0.995 0.933 0.892 0.023 

 

 

In the rat model, 75 liver tissue images (16 mm
2
) were quantified with 15 images 

from each stage. qFibrosis values increased with fibrosis progression and showed 

significant differences between all the stages (p < 0.001) (Figure 17A). CPA showed 

drastic changes only in late stages and could not differentiate between early stages 

(stages 1 and 2) (Figure 17B). In the CHB biopsies, qFibrosis values, obtained from 

69 biopsies longer than 15 mm, successfully differentiated between all stages (p < 

0.05) (Figure 17C). In comparison, CPA could only differentiate between stages 3 

and 4 (stages 1 versus 2, p = 0.124; stages 2 versus 3, p = 0.194) (Figure 17D).  
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Figure 17: qFibrosis faithfully matches Metavir fibrosis staging. (A) Changes of 

qFibrosis with fibrosis progression between the various stages in Thioacetamide 

(TAA)-treated animals (p < 0.001). (B) Changes of collagen proportionate area (CPA) 

with fibrosis progression in TAA-treated animals. (C) Changes of qFibrosis with 

fibrosis progression between the various stages in core biopsy samples from chronic 

hepatitis B patients (p < 0.05). (D) Changes of CPA with fibrosis progression in the 

same core biopsies. The boxes indicate the median, 25
th

 and 75
th

 percentiles, whereas 

vertical bars display the adjacent value and ‘+’ symbols represent outliers.   

 

3.3.3 qFibrosis is less sensitive to sampling error 

Sampling error is a major limitation when applying quantification methods such as 

CPA [20]. To assess the sensitivity of qFibrosis to sampling error, we first performed 

a proof-of-concept demonstration with animal samples. Different sizes were divided 

from a large-size section of liver containing sufficient number of portal tracts for 

accurate scoring by an experienced pathologist. Images of the large sections were 

cropped to simulate samples of varying sizes (Figure 18). The coefficient of variation 

(CV) of qFibrosis was calculated for each sample at different sizes; the CV values 
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gradually increased from 18% to 28% whilst the sample sizes decreased from 8 mm
2
 

to 1 mm
2 

(Figure 19). In contrast, the CV of CPA increased more drastically from 20% 

to 46% for the same sample size (Figure 19). The CV of qFibrosis was significantly 

smaller than that of CPA for samples sizes at 4 mm
2
 (p = 0.02), 2 mm

2
 (p < 0.001) 

and 1 mm
2
 (p < 0.001).  

 

Figure 18: The image of each sample was cropped into half, one-fourth, one-eighth 

and one-sixteenth of the original size. Coefficient of variance (CV) of qFibrosis and 

collagen proportionate area (CPA) was calculated. 

 

 

Figure 19: Coefficient of variance of qFibrosis and CPA in animal samples (*: p < 

0.05). 
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The performances of qFibrosis versus CPA for fibrosis scoring with different sample 

sizes were evaluated with ROC analysis (Figure 20, Table 8). The AUC values of 

qFibrosis decreased slightly along with the reduction in sample sizes (Figure 20A). 

CPA achieved similar AUC values as qFibrosis using large samples at 16 mm
2
; 

however, the AUC values of CPA decreased drastically when the sample sizes were 

reduced (Figure 20B). The differences of AUC between qFibrosis and CPA values 

became significant at half (8 mm
2
) (stages 0 versus 1, 2, 3, 4 and 0, 1 versus 2, 3, 4; p 

< 0.05, respectively) to one fourth (4 mm
2
) (all stages, p < 0.001) of the original size 

for differentiating liver fibrosis stages. The performance achieved by qFibrosis at 1 

mm
2
 sample size (AUC: 0.95 - 0.93) was similar to that obtained by CPA at sample 

size of 8 mm
2
 (AUC: 0.96 - 0.90).   
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Figure 20: Performance of qFibrosis and collagen proportionate area (CPA) to 

differentiate fibrosis stages on rat samples of different size. For the detection of any 

stage in the fibrosis progression, the AUCs of qFibrosis were higher than those of 

CPA at all sample sizes (A-E). For the detection of fibrosis (stage 0 versus stages 1-4) 

and significant fibrosis (stages 0-1 versus stages 2-4), the improved performances of 

qFibrosis over CPA were significant at all sample sizes except for the largest sample 

size tested (16 mm
2
) (A).  For differentiating stages 1-2 and stages 3-4, as well as 

non-cirrhosis and cirrhosis (stages 0-3 versus stage 4), the AUCs of qFibrosis 

remained above 0.95 in smaller sample sizes (4 mm
2
 to 1 mm

2
) (C-E) while the AUC 

of CPA decreased to 0.85 (1 mm
2
) (E). The improved performances of qFibrosis were 

significant in these sample sizes (4 mm
2
 to 1 mm

2
) (C-E). The standard error and 95% 

confidence interval of all ROC curves are shown in Table 8. 
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Table 8: Statistics of ROC analysis of qFibrosis and collagen proportionate area 

(CPA) on animal samples of different sizes. (AUC: area under the ROC curve, SE: 

standard error, CI: confidence interval)  
Fibrosis 

Stage 

Sample Size 

16 mm2 8 mm2 4 mm2 2 mm2 1 mm2 

 AUC 

(SE) 

95% 

CI 

AUC 

(SE) 

95% 

CI 

AUC 

(SE) 

95%  

CI 

AUC 

(SE) 

95% 

CI 

AUC 

(SE) 

95% 

CI 

 qFibrosis 

0 vs. 1234 
0.970 

(0.019) 

[0.901, 

0.996] 

0.979 

(0.011) 

[0.940, 

0.996] 

0.960 

(0.011) 

[0.931, 

0.980] 

0.947 

(0.009) 

[0.925, 

0.964] 

0.928 

(0.009) 

[0.910, 

0.944] 

01 vs. 234 
0.970 

(0.016) 
[0.901, 
0.996] 

0.952 
(0.017) 

[0.903, 
0.981] 

0.958 
(0.011) 

[0.928, 
0.978] 

0.943 
(0.009) 

[0.903, 
0.981] 

0.930 
(0.008) 

[0.912, 
0.945] 

012 vs. 34 
0.998 

(0.002) 

[0.948, 

1.000] 

0.984 

(0.007) 

[0.947, 

0.998] 

0.984 

(0.005) 

[0.962, 

0.995] 

0.973 

(0.005) 

[0.955, 

0.985] 

0.949 

(0.006) 

[0.933, 

0.962] 

0123 vs.  4 
0.982 

(0.012) 

[0.918, 

0.999] 

0.971 

(0.013) 

[0.929, 

0.992] 

0.961 

(0.011) 

[0.932, 

0.980] 

0.965 

(0.007) 

[0.946, 

0.979] 

0.948 

(0.007) 

[0.932, 

0.961] 

 CPA 

0 vs. 1234 
0.937 

(0.028) 

[0.854, 

0.980] 

0.910 

(0.027) 

[0.851, 

0.951] 

0.884 

(0.022) 

[0.841, 

0.919] 

0.842 

(0.019) 

[0.808, 

0.871] 

0.796 

(0.017) 

[0.769, 

0.821] 

01 vs. 234 
0.929 

(0.027) 

[0.845, 

0.976] 

0.903 

(0.024) 

[0.842, 

0.946] 

0.882 

(0.020) 

[0.839, 

0.917] 

0.842 

(0.017) 

[0.809, 

0.872] 

0.789 

(0.015) 

[0.762, 

0.814] 

012 vs. 34 
0.981 

(0.011) 

[0.918, 

0.999] 

0.953 

(0.018) 

[0.904, 

0.981] 

0.928 

(0.015) 

[0.891, 

0.955] 

0.893 

(0.015) 

[0.864, 

0.918] 

0.846 

(0.013) 

[0.821, 

0.868] 

0123 vs. 4 
0.968 

(0.018) 

[0.897, 

0.995] 

0.960 

(0.015) 

[0.913, 

0.985] 

0.930 

(0.017) 

[0.894, 

0.957] 

0.906 

(0.016) 

[0.878, 

0.929] 

0.864 

(0.015) 

[0.841, 

0.885] 

                        Significance of difference between qFibrosis and CPA (P-value) 

0 vs. 1234 0.301 0.013 < .001 < .001 < .001 

01 vs. 234 0.060 0.009 < .001 < .001 < .001 

012 vs. 34 0.090 0.066 < .001 < .001 < .001 

0123 vs. 4 0.267 0.250 0.011 < .001 < .001 

In the clinical scenario provided by the CHB biopsies, the AUC values of qFibrosis 

for the detection of different stages of fibrosis on 69 samples longer than 15 mm were 

from 0.92 to 0.84, while the AUC values of CPA were smaller (0.76 - 0.71) (Figure 

21A-C, Table 9). We further evaluated qFibrosis on all 107 non-fragmented human 

core biopsy samples that included both long (≥ 15 mm) and short samples (< 15 mm), 

as short samples are unavoidable in routine clinical practice. AUC values of qFibrosis 

were maintained at higher than 0.8 for detection of significant fibrosis and cirrhosis, 

whereas the AUC of CPA dropped to 0.71 (Figure 21D-F, Table 9). Thus, we 

demonstrated that qFibrosis can potentially differentiate fibrosis at different stages in 

core biopsy samples of different sizes.  
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Figure 21: qFibrosis is superior to collagen proportionate area (CPA) in resolving 

biopsy-related issues of sampling error. (A)-(C) Performances of qFibrosis and CPA 

in differentiating all fibrosis stages for human core biopsies longer than 15 mm. (D)-

(F) Performances of qFibrosis and CPA in differentiating all fibrosis stages for human 

core biopsies, including short ones (≥ 10 mm in length).  
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Table 9: Statistics of ROC analysis of qFibrosis and collagen proportionate area 

(CPA) on human samples of different sizes. (AUC: area under the ROC curve, SE: 

standard error, CI: confidence interval)  

Fibrosis 

Stage 

Sample Length 

≥15 mm ≥10 mm 

 AUC (SE) 95% CI AUC (SE) 95% CI 

 qFibrosis 

1 vs. 234 0.921 (0.041) [0.831, 0.972] 0.871 (0.047) [0.793, 0.928] 

12 vs. 34 0.883 (0.048) [0.783, 0.948] 0.836 (0.041) [0.751, 0.900] 

123 vs. 4 0.840 (0.046) [0.732, 0.917] 0.805 (0.042) [0.717, 0.875] 

 CPA 

1 vs. 234 0.763 (0.082) [0.645, 0.857] 0.742 (0.067) [0.649, 0.822] 

12 vs. 34 0.748 (0.064) [0.629, 0.845] 0.712 (0.054) [0.616, 0.795] 

123 vs. 4 0.709 (0.064) [0.587, 0.812] 0.722 (0.051) [0.627, 0.805] 

Significance of difference between qFibrosis and CPA (P-value) 

1 vs. 234 0.068 0.097 

12 vs. 34 0.049 0.014 

123 vs. 4 0.037 0.100 

 

3.3.4 qFibrosis can aid in correction of sampling error-mediated intra-observer 

variation 

Short core biopsy samples are known to yield underestimated scores in fibrosis 

staging [29]. We simulated the scenario of a pathologist scoring short core biopsy 

samples to investigate whether qFibrosis can identify the potential underestimation. 

We used all 69 good quality (≥ 15 mm) biopsy samples to train a multinomial logistic 

regression model and applied it to the remaining 38 suboptimal (< 15 mm) biopsy 

samples to obtain qFibrosis values. The underestimation of fibrosis stages by 

pathologists on suboptimal biopsy samples was accurately predicted by qFibrosis 

(Figure 22A). CPA cannot predict the underestimation in all stages except for stage 4 

(Figure 22B). It is generally accepted that there is rare underestimation of Metavir F4 

samples. Therefore, qFibrosis can potentially aid pathologists to adjust for the degree 

of aggressive versus conservative scoring decisions to compensate for sampling error-

mediated intraobserver variation. 
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Figure 22: Comparison of the capability to highlight potential underscoring of 

suboptimal biopsy samples to address size-dependent sampling error-mediated 

intraobserver variation by qFibrosis (A) and CPA (B), respectively. The qFibrosis 

values of suboptimal biopsy samples scored as stages 1 to 3 are significantly higher 

than the qFibrosis values of good quality biopsy samples scored as the same stages, 

indicating that these suboptimal samples are underscored and may belong to later 

fibrosis stages (*: p < 0.05).  

 

3.3.5 qFibrosis can aid in correction of inter-observer variation 

We investigated whether qFibrosis can identify the trend of deviation of a 

pathologist’s scoring with reference to an experienced pathologist’s scores. All 107 

human samples were independently scored by two pathologists, A and B. Cohen’s and 

Fleiss’s kappa statistics were used to assess the interobserver agreement between two 

(Cohen’s) or any number (Fleiss’s) of observers. The Cohen’s kappa of the scores 

from the two pathologists was 0.40 (p < 0.001), suggesting a fair but not strong 

agreement (Figure 23).  
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Figure 23: Deviation of fibrosis staging between one experienced pathologist and one 

non-expert pathologist in 107 human biopsy samples. Cohen’s kappa score between 2 

pathologists was 0.4.  

 

Forty-nine out of 107 human samples with available FibroScan measurements were 

chosen to compare the consistency of fibrosis scores by the two pathologists. The cut-

off values of non-invasive fibrosis markers, such as FibroScan, APRI, and FIB-4, to 

predict cirrhosis (F4) or significant fibrosis (F2-4) were established in large cohort 

studies of CHB patients [155-157]. The scores from pathologist A were more 

consistent with all the clinical markers (with higher Fleiss’s kappa indicating stronger 

overall agreement) than pathologist B (Table 10). Thus, scores from pathologist A 

were used to train the multinomial logistic regression model to yield qFibrosis values 

for all 107 samples.  
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Table 10: Thresholds of FibroScan, APRI and FIB-4 to predict cirrhosis (F 1, 2, 3 

versus F 4) and significant fibrosis (F 1 versus F 2, 3, 4) are excerpted from literature. 

The Fleiss’s kappa values indicate that the fibrosis scores from pathologist A are more 

consistent with FibroScan, APRI and FIB-4 results than the scores from pathologist B.  

Pathologist A B 

Prediction of Cirrhosis 

 Cohen’s Kappa 

FibroScan > 12.5 kPa 0.50 0.45 

APRI > 1 0.36 0.26 

FIB-4 > 1.6 0.55 0.29 

 Fleiss’s Kappa 

Overall 0.50 0.43 

Prediction of Significant Fibrosis 

 Cohen’s Kappa 

FibroScan > 7.1 kPa 0.22 0.31 

APRI > 0.5 0.31 0.31 

FIB-4 > 1 0.22 0.34 

 Fleiss’s Kappa 

Overall 0.35 0.32 

Compared to the scores from pathologist A, the scores from pathologist B were 

overestimated and underestimated by 3.7% and 42%, respectively. Such over- and 

underestimation can be accurately predicted by qFibrosis but not by CPA (Figure 24). 

Thus, qFibrosis can aid in the correction of interobserver variation in fibrosis 

assessment by serving as a reliable proxy for experienced pathologists. 

 

Figure 24: Comparison of the capability to predict interobserver over-

/underestimation of biopsy samples by qFibrosis and CPA, respectively. The values of 

qFibrosis can significantly reflect the scoring-deviation under the same stages except 

for F4 (*: p < 0.05).  
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3.3.6 qFibrosis can aid in detection and monitoring of intra-stage cirrhosis 

changes 

To differentiate intra-stage cirrhosis changes, we calculated qFibrosis values from 43 

human samples that were categorized as cirrhosis (F4) on Metavir and under two 

substages 5 and 6 according to Ishak staging. qFibrosis accurately differentiated these 

two substages (p = 0.008) with AUC of 0.73 whereas CPA failed to do so (p = 0.302) 

(Figure 25A-C). We also investigated whether the combination of qFibrosis with 

non-invasive clinical markers would improve the detection of intra-stage cirrhosis. 

Nine routine clinical biomarkers and stiffness measurements by FibroScan were first 

assessed in 17 of the 43 Metavir F4 samples, which had complete clinical data; only 

FibroScan could differentiate intra-stage cirrhosis changes amongst these markers 

(Table 11). By stepwise logistic regression analysis, including all the 10 markers 

together with qFibrosis and CPA, the combination of qFibrosis, FibroScan and 

international normalized ratio (INR) was the most predictive for differentiating intra-

stage cirrhosis (Table 12); the AUC improved from 0.81 (qFibrosis only) to 0.93 

(combination of qFibrosis, FibroScan and INR) (Figure 25D). Thus, qFibrosis can 

differentiate intra-stage cirrhosis changes alone or in combination with FibroScan and 

INR.  
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Figure 25: qFibrosis is superior to collagen proportionate area (CPA) in intra-stage 

discrimination in cirrhosis. (A)-(B) Differentiation of Ishak stage 5 from 6 by 

qFibrosis (*: p = 0.008) and CPA (p = 0.302). (C) ROC curve demonstrated the 

improved sensitivity and specificity of qFibrosis to differentiate between Ishak 

staging scores of 5 and 6 than CPA in 44 human biopsy samples. (D) ROC curves of 

qFibrosis and the combination of three markers (qFibrosis, Fibroscan and INR) to 

detect intra-stage cirrhosis change on 17 cirrhotic biopsy samples with complete 

clinical measurement. The cut-off point for best sensitivity and specificity of 

qFibrosis is 0.294 with 87.5% sensitivity and 77.8% specificity. The cut-off point for 

best sensitivity and specificity of the combination of 3 markers is 0.205 with 87.5% 

sensitivity and 100.0% specificity. The combination of clinical markers with qFibrosis 

improves the detection of intra-stage cirrhosis changes. 



86 
 

 

Table 11: Comparison of qFibrosis, collagen proportionate area (CPA) and clinical 

parameters for Ishak stages 5 and 6.  Data are Mean  SD. ALT: alanine transaminase, 

AST: aspartate transaminase, ALB: albumin, TBIL: total bilirubin, INR: international 

normalized ratio, PT: prothrombin time, APRI: AST-to-platelet ratio index, and FIB-4: 

FIB-4 index.  

 Ishak Stage 5 Ishak Stage 6 P Value 

CPA (%) 4.61 ± 2.30 7.22 ± 3.58 0.08 

qFibrosis (a.u.) 0.80 ± 0.16 0.94 ± 0.08 0.03 

ALT (U/L) 149.33 ± 70.70 214.9 ± 236.9 0.44 

AST (U/L) 110.33 ± 64.25 136.56 ± 82.84 0.46 

ALB (g/L) 43.89 ± 4.61 43.01 ± 1.57 0.6 

TBIL (mol/L) 23.51 ± 21.18 20.90 ± 5.64 0.73 

INR (a.u.) 1.11 ± 0.09 1.11 ± 0.08 0.9 

PT (s) 13.32 ± 1.14 13.28 ± 1.09 0.93 

PLT (10
9
/L) 199.67 ± 41.76 195.67 ± 30.63 0.82 

FibroScan (kPa) 9.93 ± 3.37 17.13 ± 8.79 0.04 

APRI (a.u.) 1.10 ± 0.85 1.22 ± 0.58 0.74 

FIB-4 (a.u.) 2.09 ± 1.59 2.80 ± 2.08 0.43 

 

 

Table 12: qFibrosis, collagen proportionate area (CPA) and 10 clinical markers 

associated with intra-stage cirrhosis changes according to multiple logistic regression 

analysis. Stepwise forward analysis include 12 markers, namely, qFibrosis, CPA, 

alanine transaminase, aspartate transaminase, albumin, total bilirubin, platelet count, 

prothrombin time and its international normalized ratio (INR), APRI, FIB-4 and 

FibroScan.  Best model was found with three predictors (qFibrosis, FibroScan and 

INR): r
2 

= 0.80, χ
2 

= 15.54, p = 0.0014 (intercept: regression coefficient, -6.40; p = 

0.65). Using any additional marker will not improve the model.  

Makers 
Regression 

Coefficient 
SE Chi-square β P value 

qFibrosis 17.61 11.17 2.49 0.11 

FibroScan 0.84 0.55 2.33 0.13 

INR -17.52 13.04 1.80 0.18 
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3.3.7 Validation of qFibrosis on another independent cohort of CHB biopsy 

samples 

We further tested the reliability of qFibrosis with the images of another 55 core 

biopsy samples acquired by a commercial SHG/TPEF imaging device. The values of 

qFibrosis can faithfully replicate Metavir fibrosis scoring as the previous experiments 

indicated, of which the differentiation ability between stages is obviously better than 

CPA measurement (Figure 26A-B). The performances of both qFibrosis and CPA are 

improved in this cohort due to the good sample quality (average length of 30.4 ± 4.4 

mm), but qFibrosis still performs better than CPA. The AUC values of qFibrosis for 

detection of different stages were from 0.90 to 0.95, while the AUC values of CPA 

were smaller (0.84 - 0.92) (Figure 26C-E).  

 

Figure 26: Validation of qFibrosis in another independent cohort. (A) Changes of 

qFibrosis with fibrosis progression between the various stages in 55 core biopsy 

samples from chronic hepatitis B patients. (p < 0.001). (B) Changes of collagen 

proportionate area (CPA) with fibrosis progression in the same core biopsies. The 

boxes indicate the median, 25
th

 and 75
th

 percentiles, whereas vertical bars display the 
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adjacent value and ‘+’ symbols represent outliers. (C-E) Performances of qFibrosis 

and CPA in differentiating all fibrosis stages for these 55 core biopsies.  

 

3.4 Discussions 

By incorporating spatial architectural features of pathological relevance at tissue level, 

we have established a fully-quantitative method - qFibrosis - that can reliably recover 

liver fibrosis staging, but with reduced variability of sampling error and inter-

/intraobserver bias in assessment of both animal samples and CHB core biopsies. In 

addition, qFibrosis also showed the potential to discriminate fine changes within 

cirrhosis stage.  

qFibrosis establishment is based on two key elements. One is the suitable imaging 

techniques for efficient collection of tissue architectural information. For this purpose, 

we employed the nonlinear optical SHG/TPEF microscopy that was reported in 

Chapter 2. SHG/TPEF can quantify and localise collagen in 2D and 3D formats by its 

endogenous fluorescence in the stain-free samples [158], so as to accurately identify 

and discriminate the spatial parameters of the respective collagen patterns. Another is 

the qualified identification of histopathological architectural features. We used TAA-

treated animal model to simulate the changes of CHB liver fibrosis [144], for serial 

sampling to sufficiently accumulate, select and test the parameters of image analysis; 

so that diversity and quality of tissue samples were guaranteed for appropriate pre-

acquisition of architectural information for setting-up the qFibrosis framework. All 

the considerations were justified by the better results of qFibrosis performance testing 

in animal samples.  

Histological staging is the fundamental concept for qFibrosis design.  In order to fully 

recapitulate the informative characteristics of traditional descriptive assessment, we 

designed the qFibrosis index to encompass three key morphological phenotypes of 



89 
 

common pathological interest, and quantified them into three subindices by measuring 

the spatial parameters of fibrillar collagen within the individual phenotypic location. 

We observed that during the dynamics of fibrosis development, there were different 

trends of change between the three subindices (Figures 11-14); implying that 

qFibrosis might be used to sensitively and precisely monitor the independent 

evolution of different collagen patterns. This applicability will certainly go a long way 

to address the emerging needs for insightful analysis into the  pathophysiological 

developments occurring in different types of CLDs [137]. In viral hepatitis, it is 

known that the early progression of fibrosis mainly occurs in the portal tract region 

which is consistent with the trend in Figure 11 that the most obvious increase appears 

at the transition from stage 1 to 2. The forming of septal collagen appears at the mid 

stage and progresses most significantly in the late stages where we see the significant 

increase of septal index at stage 3 to 4 in Figure 12.  

We set Metavir system as the reference to develop qFibrosis; other systems such as 

Knodell and Ishak systems can also be conveniently translated into qFibrosis, since 

they essentially employ the similar architectural principles to categorize liver disease 

stages [23]. Within the framework of histopathological categorization, qFibrosis 

provides scores of continuous variables due to its inherent full-quantification 

algorithm; thus, it potentially would have more discriminative power for precisely 

reflecting the dynamics of fibrosis/cirrhosis progression/regression. 

Employing the similar imaging technique, Gailhouste et al first comprehensively 

validated SHG on 119 clinical liver tissue samples of mixed CLDs for scoring the 

amount of fibrosis via detecting fibrillar collagen density, which is similar to CPA 

measurement [92]. Our present study is innovative in its strategy for establishing 

qFibrosis index with histopathological architectural features by quantitatively defining 
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the spatial parameters of fibrillar collagen. Another distinct contribution of our study 

is that qFibrosis was specially trained and validated with CHB samples; thus, 

promoting the ready applicability of our method to align closely with clinical practice 

of this particular disease.   

We further analyzed the performance of qFibrosis against CPA. While CPA showed 

limitations in discrimination accuracy and higher sensitivity to sampling error, as 

reported before [20, 23], qFibrosis exhibited significantly improved capacity to 

overcome the above issues. Considering the strategy taken for qFibrosis design, it is 

rational that qFibrosis would behave more similarly to conventional histological 

assessment system than CPA. This partly accounts for the robustness of qFibrosis to 

sample size-dependent sampling error (i.e. sample adequacy). On the other hand, CPA 

has significant deviation between different samples of the same stage scores, since 

histological staging and amounting fibrosis (CPA) are entirely different assessments 

[23, 159, 160]. Collectively, the results not only support the technical strength of 

qFibrosis for future applications, but also validate our hypothesis that the improved 

discriminative power of qFibrosis is due to the additional input of histopathological 

architectural features. 

We also showed that the performance of qFibrosis is reproducible between the 

original cohort of 107 samples and the independent cohort of 55 samples imaged by 

different SHG imaging devices. qFibrosis is highly reproducible when the image 

quality is consistent. The inconsistency of SHG images due to different sample 

processing procedures or different imaging systems could be corrected using different 

optical settings and be calibrated according to Guilbert et al [67, 161].  Thus, 

qFibrosis is most likely to be suitable for the potential multicenter clinical research 

studies. 
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There are several exciting areas in which qFibrosis may have a role in the near future. 

First is in the realm of antiviral clinical research and management of CHB. It has been 

verified recently that long-term effective antiviral therapy can lead to regression of 

liver fibrosis and cirrhosis in CHB patients [136, 162]. Histological analysis is 

currently the standard reference for performing the evaluation. Primarily established 

and validated with CHB samples, qFibrosis may soon be sufficiently improved to 

serve as an automatic and reliable adjunctive tool for liver biopsy evaluation. Second 

is in the area of cirrhosis assessment. Regression of cirrhosis is now recognized, 

bringing with it increasing requirement for substaging [137, 143, 163, 164]. Due to its 

fully-quantitative scoring and sensitive discriminability indicated in our study, it 

could be interesting and valuable to further investigate the potential of qFibrosis to 

facilitate this refinement of the dynamic subclasses of cirrhosis in comprehensively 

designed studies, coupled with the possible replication or correlation to other clinical 

markers such as FibroScan [165] and hepatic vein pressure gradient (HVPG) [103]. 

Last but not least, since experienced hepatopathologists are a rare breed in most 

setups, qFibrosis might act as a valuable aid to pathologists to produce consistent 

staging of liver fibrosis; as well as to provide on-site expert consultation to the non-

expert pathologists. In laboratories without SHG microscopy, qFibrosis values can be 

obtained from images of stained biopsy samples using routine light microscopy, as 

long as accurate identification of collagen can be ensured. The examples of both 

Masson Trichrome-stained and Sirius Red-stained images with qFibrosis evaluation 

are shown in Figure 27.  
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Figure 27: An example of the processing of Masson Trichrome-stained human biopsy 

sample. (A) The Masson Trichrome-stained image of a human biopsy sample of stage 

4 is shown. The collagen patterns are stained green. (B) The portal (blue), septal 

(green) and fibrillar (red) collagen patterns are successfully identified using the 

proposed image analysis technique. 

 

Meanwhile, it must be noted that performance of qFibrosis can be affected by the 

quality of samples in the training set; as evident from the higher AUC values obtained 

in staging larger animal samples in our results. This is because establishment of 

qFibrosis is basically the generation of an algorithm by training-and-learning with the 

sample’s imaging data. Thus, in our future work, more qualified biopsy samples for 

training purpose will be needed to improve the performance of qFibrosis; and 

recruiting a larger set of samples for a multicentre clinical study would be necessary 

to generalize the capability of qFibrosis and validate its clinical applications. In 

addition, since its target sample is liver biopsy, however superior the diagnostic utility 

of qFibrosis, invasiveness of the assessment is still an inherent limitation against its 
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widespread application. Moreover, since liver biopsy provides comprehensive 

information not limited to fibrosis, but also necroinflammtion, steatosis and other 

specific pathological features, qFibrosis should be used properly only when the 

fibrosis assessment is needed.  

The performance of qFibrosis is also affected by the image analysis tools used. 

Regarding to the recognition of three collagen patterns, one of the key step is to 

accurately locate the portal tract and central veins from the tissue image. In the TPEF 

image from the unstained tissue sample, as no additional cellular or nuclei 

information can be used, it is very difficult to separate the targeted tracts and veins 

with the other artifacts such as irregular shaped sinusoidal spaces. More importantly, 

it is almost impossible to separate portal tract and central vein according to 

morphology only. This could possibly be achieved in stained images where special 

staining can be potentially performed to highlight centre-lobular cells around central 

veins. It would have a huge improvement if portal tract and central vein regions can 

be separated as the progression of fibrosis varies differently in these two regions, 

indicating different stages of disease progression.  

More features could also be explored from the three collagen patterns identified. 

Besides the morphological and spatial features adopted in this study, other features 

such as fractal geometry or texture could potentially play an important role. Other 

machine learning approaches can also be tested in future, such as support vector 

machine or artificial neural network. The proper design of the machine learning 

framework can significantly improve the final classification performance. The study 

in this chapter has proved the advantage of using pathological relevant approach to 

build the automated analysis system for liver fibrosis assessment, but it is always 
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worth the further investigation and tuning of the proper pieces and parameters in the 

analysis framework to optimize the system performance.  

3.5 Conclusions 

qFibrosis has been established and validated in this chapter to provide fully-

quantitative scores incorporating histopathological features for liver fibrosis 

evaluation. It faithfully recovers the staging results of conventional histological 

assessment systems; while in the meantime, effectively ameliorating the inherent 

issues of current systems regarding sampling error, observer variation and cirrhosis 

intra-staging. qFibrosis can potentially be a valuable adjunctive tool to enhance the 

role of liver biopsy for accurate and objective assessment of fibrosis in clinical 

research and management of CLD.  
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Chapter 4  

Capsule Index, quantitative liver fibrosis assessment from 

liver surface 

4.1 Introduction 

Liver fibrosis is associated with the excessive accumulation of collagen in the extra-

cellular matrices of the liver, which occurs in chronic liver diseases that affect 

millions of people worldwide causing high morbidity and mortality rates [1]. Hence, 

much effort has been placed in developing markers for staging and grading fibrosis, 

evaluating anti-fibrotic drug efficacy, and predicting fibrosis progression, regression 

and liver de-compensation [166]. Liver biopsy is the gold standard for staging liver 

fibrosis in patients with chronic liver diseases [167]. However, it has several 

disadvantages such as being invasive, providing poor sampling volume, and inter-

/intra-pathologist staging variations [23]. Most importantly, repeated biopsies for 

monitoring disease status and efficacy of treatment are painful for patients, and risk 

other complications [168].  

To overcome these problems, various non-invasive diagnostic tools are proposed 

ranging from advanced medical imaging modalities to serum biomarker assays [169]. 

Nevertheless, ultrasound and magnetic resonance imaging (MRI) [170] cannot 

identify early and mild fibrosis stages due to their limitations in image resolution 

[171]. Liver stiffness measurement using transient ultrasound elastography (Fibroscan) 

[172, 173] or magnetic resonance elastography (MRE) [174, 175] provide no cellular 

and tissue level information; and their performances in fibrosis evaluation are still 
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under validation [176, 177]. The accuracy of serum biomarkers to predict fibrosis 

progression is also reported to be unsatisfactory since these biomarkers are indirect 

expression of the liver fibrosis process and are easily affected by other factors such as 

systemic inflammation [178, 179]. Motivated by our previous findings that surrogate 

histological markers such as collagen proportionate area (CPA) in liver sub-capsule 

region are consistent with those measured in liver interior and are well-correlated with 

fibrosis stages [180], we hypothesize that liver surface scanning can be a potential 

alternative to liver biopsy.  With the advance in endomicroscopy and laparoscopic 

surgical techniques [181], we envision the possibility of liver surface scanning to 

reduce the invasiveness and associated risks of liver biopsy taking samples from the 

liver interior. Liver surface scanning with SHG endomicroscopy has the potential to 

replace liver biopsy in most of the scenarios in routine clinical practice where liver 

biopsy is needed for fibrosis assessment, such as the prognostic of fibrosis 

progression and regression for treatment planning and evaluation of treatment efficacy.   

Liver surface is covered by a collagenous layer called the Glisson’s capsule [182]. 

The thickness of the Glisson’s capsule has been reported to increase during fibrosis 

progression [107, 180] as imaged from the biopsied liver tissue sections perpendicular 

to the liver surfaces, which does not reflect the overall structural changes of the 

collagen in the Glisson’s capsule.  The histo-pathological features that are used in 

routine semi-quantitative scoring systems [183-185] by pathologists to stage liver 

fibrosis are also derived from the cellular and tissue structures in the liver interior that 

cannot be observed on the liver surface. To investigate the feasibility of liver surface 

scanning as an alternative to liver biopsy for scoring fibrosis, we would need to 

extract all relevant liver surface features, especially on the Glisson’s capsule which is 

essentially bundles of collagen fibers [109]. Second harmonic imaging (SHG) is a 
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powerful tool for visualization and quantification of collagen fibers in various tissue 

states including liver fibrosis [92, 186-188]. As the capsule collagen is the outer-most 

layer wrapping the entire liver; and it generates appreciable backward second 

harmonic signals, SHG imaging in reflective mode can be employed for stain-free 

quantitative imaging of the liver surface. It would also be possible to image larger 

areas of the liver surface than liver biopsy whose limited sampling volume often 

causes errors in fibrosis scoring [20, 189]. 

In the study of this chapter, we have imaged the liver surfaces from 65 rats of two 

disease models, thioacetamide (TAA) and bile duct ligation (BDL), which represents 

parenchymal and biliary fibrosis [190, 191] respectively, to induce liver fibrosis, 

using reflective second harmonic (R-SHG) imaging. Image analysis was performed to 

extract 125 features that characterize the morphology and texture of the collagen 

network of the Glisson’s capsule. These features, together with the capsule thickness, 

were combined to build one single index – capsule index by multinomial logistic 

regression (MNL) after feature selection. Good performance is found for the detection 

of fibrosis at different stages by capsule index, enabling liver surface scanning as a 

viable alternative to biopsy.   

4.2 Materials and Method 

4.2.1 Animal tissue preparations 

Male Wistar rats at an average weight of 220g were housed two per cage in the 

Biological Resource Centre (BRC) of Biopolis, A*STAR with free access to 

laboratory chow and water in a 12:12h light/dark schedule. The Institutional Animal 

Care and Use Committee (IACUC) approved all animals-related experiments. 

Thioacetamide (TAA) induced fibrosis 
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Thirty-five rats were randomly separated into seven groups, and a group of five as 

control rats. These were treated with thioacetamide (TAA) 200mg/kg by 

intraperitoneal injection three times a week for 14 weeks to induce liver fibrosis. The 

35 rats in the TAA-treated group were sacrificed at time-points of 2, 4, 6, 8, 10, 12, 

and 14 weeks (n = 5 per week). 5 rats of the control group were also sacrificed at 

week 0, without treatment. Cardiac perfusion with 4% paraformaldehyde was 

performed to flush out blood cells and the liver was fixed before harvesting.  

Bile duct ligation (BDL) induced fibrosis 

Twenty-five rats were randomly separated as five groups of five. BDL of rats was 

performed under general anesthesia with ketamine (100mg/kg body weight). A 

midline abdominal transverse incision was performed after shaving of the abdomen, 

exposing the liver and intestines. After gently and skillful displacing of the liver and 

intestines, the lower end of the bile duct was identified at its insertion into the small 

intestines and traced up towards the porta, which was then doubly ligated in two areas 

near the porta with silk sutures (USP 3-0) and transacted between the two ligation 

points. Abdominal contents were gently rearranged and the wound closed in a double-

layered tissue closure with vicryl sutures. A total of 20 rats were ligated and sacrificed 

at intervals of 1, 2, 4 and 6 weeks (n = 5 per week). Similarly, 5 rats were sacrificed at 

week 0, without ligation, to serve as the control group. Cardiac perfusion with 4% 

paraformaldehyde was performed to flush out blood cells and the liver was fixed 

before harvesting. 

The left lobe of each liver was used for imaging, as there were no differences of the 

features between the left and right lobe of the same liver, both from the capsule and 

sub-capsule regions [180]. The volume of left lobe of liver increased significantly 

along fibrosis progression in BDL model (stage 0: 4.1±0.2 cm
3
, stage 1: 4.4±0.6 cm

3
, 
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stage 2: 4.6±0.4 cm
3
, stage 3: 6.8±1.2 cm

3
, stage 4: 9.4±1.3 cm

3
). On the other hand, 

the volume of left lobe of liver decreased in the course of fibrosis progression in the 

TAA model (stage 0: 4.1±0.2 cm
3
, stage 1: 3.6±0.6 cm

3
, stage 2: 3.1±0.6 cm

3
, stage 3: 

2.7±0.5 cm
3
, stage 4: 1.9±0.4 cm

3
). 

4.2.2 Image acquisition 

The non-linear optical microscope was developed based on a multiphoton and 

confocal imaging system (LSM510Meta, Carl Zeiss, Heidelberg, Germany) using an 

external tunable mode-locked Ti:Sapphire laser (Mai-Tai broadband, Spectra-Physics, 

USA). A schematic of the set-up is shown in Figure 28, where the laser was passed 

through a pulse compressor (Femtocontrol, APE GmbH, Berlin, Germany) and an 

acousto-optic modulator (AOM) for group velocity dispersion compensation and 

power attenuation respectively. Laser was then routed by a dichroic mirror 

(reflect >700nm, transmit <543nm), through an objective lens (plan-neofluar, 20X, 

NA=0.5, Carl Zeiss, Heidelberg, Germany), to the tissue specimen. The average 

power at the objective lens is ~80mW. Two-photon excitation fluorescence 

microscopy (TPEF) signals in the epi-direction was collected by the same objective 

lens and recorded by a photo-multiplier tube (PMT, Hamamatsu R6357, Tokyo, 

Japan), after passing through the dichroic mirror (reflect <490nm, transmit >490nm) 

and a 500-550nm band-pass (BP) filter. SHG signals were collected similarly but with 

a 390-465nm band-pass filter before reaching the PMT. 
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Figure 28:  Schematic illustration of the optical set-up.  

 

The detector gain and amplifier gain and offset settings of the photomultiplier tube of 

our system were optimized to eliminate under- or over-saturation. Noise floor was 

typically around 200 intensity counts. The number of pixels per image plane was 

fixed at 1024 by 1024 for varying depths into the tissue with a 12-bit data depth.  A z-

stack of TPEF and SHG images were taken at 10 randomly selected sites on the 

anterior surface of the left lobe of each liver sample with a field of view of 450 µm by 

450 µm. The thickness of the z-stack is variable as it depends on the complete 

attenuation of the reflective SHG signals as we scan deeper into the tissue. Time taken 

to image a typical 450 µm by 450 µm by 30 µm z-stack is about 100 seconds (1024 

by 1024 pixels per plane with a spot dwell time of 3.2×10
-6 

seconds). Hence, imaging 

10 random sites would need 1000 seconds (about 17 minutes) per sample without 

considering the time taken in between stage movement and re-focusing. Images were 

acquired 3 days after formalin fixation of the harvested livers so as to allow stable 

cross-links to form and the morphology be preserved. 
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For comparison with conventional histopathology scoring, 5 µm thick tissue slices 

were sectioned from each liver sample, the biopsy spot being within 0.5 cm radius of 

the imaged sites, stained with Masson Trichrome (MT) stain kit (ChromaView 

advanced testing, #87019, Richard-Allan Scientific) and imaged with bright-field 

microscopy (Aperio Digital Pathology Environment).  

4.2.3 Histo-pathological scoring 

Each sample was scored by a pathologist based on blind reading of the MT image to 

reduce any bias using Metavir score [183]. In the Metavir scoring system, liver 

fibrosis was classified into five stages from F0 to F4 according to the severity of 

fibrosis: no fibrosis, fibrous portal expansion, few bridges or septa, numerous bridges 

or septa, and cirrhosis [192]. 

4.2.4 Image pre-processing 

To reduce computation time and cost for image segmentation and feature extraction, 

the original three-dimensional (3D) image z-stack was rendered by a 2D 

representative image.  Since the liver surface was not always perpendicular to the z-

direction of the image stack, the 3D stack was rotated first. To identify the rotation 

angle, MIP was first performed along the y-direction (Figure 29A) and the centerline 

of the capsule was recognized by extracting the maximum intensity pixels along the z-

direction in x-z images, after which the stack was rotated around the y-axis by the 

degree ɵ calculated from the angle between the centerline and the z-axis (Figure 29D). 

Similar procedure was performed to rotate the stack around the x-axis; where MIP 

was applied along x-direction and the rotation angle was identified from the angle 

between the centerline and the y-axis (Figure 29B, E). MIP was finally applied to the 

rotated image stack along z-direction to generate the representative 2D image (Figure 
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29C, F). As the Glisson’s capsule was generally less than 20µm thick in z-direction 

only, the projected image contained most of the structure and architectural 

information of the 3D image stack and hence, it is a good representation of the 

Glisson’s capsule. 

 

Figure 29: Comparison between the Glisson’s capsule images before and after pre-

processing. (A) Maximum intensity projection (MIP) of the image stack along y-

direction before pre-processing. The rotation angle was defined as the angle between 

x-axis and the centerline of the band with high pixel intensities. (B) MIP of the image 

stack along x-direction before pre-processing. (C) The 2D representative image of the 

image stack before pre-processing. The scale bar represents 50um. (D) MIP of the 

image stack along y-direction after pre-processing. (E) MIP of the image stack along 

x-direction after pre-processing. (F) The 2D representative image of the image stack 

after pre-processing. The scale bar is 50um. The pixel intensity distribution is more 

uniform in the representative 2D image after pre-processing.  
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4.2.5 Fiber tracing in capsule collagen network 

We follow the existing skeletonization based method to extract the centerlines of the 

collagen fibers, and adopt a gap filling method to connect broken fiber ends. The 

collagen fiber tracing algorithm proposed has three stages: vectorization stage, gap 

filling stage, and tracing stage (Figure 30). The first stage is to generate a vector 

representation of the collagen fibers segmented from the original SHG image. The 

second stage is to correct the errors in the graph representation of the collagen fiber 

network, due to the degradation of image quality and the segmentation procedure, by 

connecting proper gaps between the nodes in the graph according to a confidence 

score calculated. Such processing could preserve the topology of the collagen fiber 

network at the Glisson’s capsule.  Finally, the centerline of each collagen fiber is 

traced in the last stage.  

Image 

Enhancement

Collagen 

Segmentation

Skelectonization

Vectorization

Vectorization Stage

Find Potential 

Gaps

Calculate 

Confidence Score

Filling Gaps

Gap Filling Stage

Trace Fibers

Remove Short 

Fibers

Fiber Tracing Stage

 

Figure 30: The flow chart of the proposed fiber tracing algorithm.  
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4.2.5.1 Network vectorization 

Image enhancement 

The SHG image was first filtered by the Frangi filter [193] to enhance the collagen 

structures from the noisy background. The Frangi filter is designed to convolve the 

image with second derivation of a Gaussian kernel at different directions and the 

convolution results of each pixel are recorded in the Hession matrix,  
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convolution. If there is a linear structure existed, a principle direction could be found 

by decomposition of these second order structures through eignvalue analysis. Hence, 

if we denote the two eignvalues from the Hessian matrix as 1  and 2 , we should 

have the absolute value of one eigenvalue much higher than the absolute value of 

another. To enhance the intensity of pixels that are more likely to present a linear 

structure, their values are then replaced by a measure defined as 
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       , where 1 2   and 2 0  . 

As explained, we will have small 1

2




and large 2 2
1 2  for a pixel with linear 

structure which tends to assign a high frangiI value for such pixels. Although the 

Frangi filter is originally designed for vessel enhancement, it could be extended to the 

applications of any tubular/linear structures such as neuron [194]. We feel that it is 
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also appropriate for collagen structure enhancement as collagen fiber consists of triple 

helix structure which is tubular as well.  

In our experiment, we fixed the  and c  at 0.5 and 15 respectively, and investigated 

different scales of the Gaussian kernel with  from 1 to 8. Every pixel was assigned 

the maximum output value among all the scales assessed.  

Segmentation 

The enhanced image was then segmented into collagen and background using the 

segmentation algorithm based on Gaussian mixture models, which was shown to be 

more accurate than other methods such as global thresholding and clustering methods 

for collagen segmentation in the previous chapter.  The morphological closing is then 

performed to smooth the binary mask of the collagen and any segment with less than 

5 pixels was removed.   

Skeletonization 

The initial centerlines of the binary mask of the segmented collagen are extracted by 

skeletonization. Since the boundaries of the segmented collagen areas are usually 

noisy, the classic skeletonization methods based on morphological thinning are not 

appropriate as the skeletons extracted could be affected by spurious branches. We 

implemented a skeletonization method proposed by Telea et al. [195] which is based 

on the distance transform of the boundary points. Fast Marching Method (FMM) was 

used to evolve the boundary towards inside of the collagen area. The original image 

was initialized by calculating the count of boundary points followed by FMM to 

generate the map of evolved count inside the object. The derivative count map was 

then produced after computation and thresholding was performed on the map to locate 
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the skeleton points. The thinning processing is further performed for the identified 

skeleton points if they are not one-pixel in width.        

Vectorization 

The skeleton is next represented by a graph, ( , )G V E , where each vertex iv V is a 

point on the skeleton and each edge ( , )k i je v v E  connects two neighboring vertexes 

on the skeleton.  The vertexes are further identified into three types (end points, curve 

points and branch points) based on the number of their neighboring vertexes: 

int, deg( ) 1

int, deg( ) 2

int, deg( ) 3

i

i i

i

End Po if v

v Curve Po if v

Branch Po if v




 
 

. 

The graph G, together with the original SHG image, the binary mask of the segmented 

collagen and the filtered grey-scale image, are used in the following stages to fill the 

gaps and trace the collagen fibers.  

4.2.5.2 Gap filling 

The collagen network topology is strongly affected by the discontinuities of the 

segmented collagen fibers due to the influence of noise. The gaps are formed between 

the closest discontinuous collagen fibers, which could be reduced to a certain extent 

by the proper usage of image enhancement and segmentation methods. However, the 

disconnected fibers still exist in the resulting network, which makes the following 

quantification of collagen network features not accurate. Hence, it is necessary to 

adopt a gap filling algorithm to preserve the real collagen network topology.  

Locate potential gaps 
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A direction profile is established for each end point, which uses a plurality of 

directions in its neighborhood. The distribution of intensities is characterized in each 

direction to decide whether a tubular structure existed. For any existing tubular 

structure without the identified skeleton, a gap is located and will be filled.  

We first create a circular neighborhood with radius epN  around each end point, where 

epN is defined as five times of the shortest distance from that end point to the 

background. Hence, the size of neighborhood assessed is proportional to the width of 

collagen fiber that end point belongs to. In the neighborhood, the direction profile is 

defined as the intensity variation with respect to the directions to that point. It is 

assumed that, along the direction where a tubular structure existed, the variation of 

intensity should be low. We adopted and modified the definition of “vesselness” 

measure from Qian [196] by using the average squared intensity deviation as the 

measure of the intensity variation, which is defined as  
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     , where iv  is the end point i and 

, ,i ru   is the point with distance r and direction  to the end point i.  

In each direction profile, there exists a significant peak representing the direction 

where the original collagen fiber is. If there is any other peak existed in the direction 

profile which has Sid measure higher than 50% of that of the significant peak, these 

directions are considered as where the potential gaps are. The ratio can be tuned to 

control the sensitivity of the detection of potential gaps.  

Finally, starting from an end point through each of the directions detected for the 

potential gaps, we find the nearest vertex located on this direction as the other end of 

the potential gap and will decide whether an edge needs to be built to fill this gap 

according to a confidence score illustrated in the following section.  
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Calculate confidence score 

A path is first recognized to link the two ends of each potential gap by finding the 

optimal connections of image pixels between them. A confidence score is proposed to 

reflect the intensity variation on this path. A low confidence score indicates that the 

path should not be kept and the gap does not need to be filled.    

For a potential gap, we consider the local image area in the bounding box of the 

points at the two ends of the gap as a weighted graph ( , , )aG V E W , where V is the 

vertex set containing all the pixels in the local image area, E is the set of all the edges 

that connect neighboring vertexes/pixels, and W consists of the weights of each edge 

in set E. Given the points  0v  and nv  at the two ends of the gap, we aim to find a path 

p from 0v  to nv  in the graph aG which has the smallest overcall weight. We design the 

overall weight allW  for a path { | [0, ]}ip v i n  as 
1

0
( ) ( )

n
all ii

W p W v



 , and 

 1 1 2 1( ) 1 0.5*( ( ) ( ))i i i frangi i frangi iW v w v v w I v I v      . The first term in the weight 

function W emphasizes the distance between the neighboring vertexes on the path 

which gives higher cost for the longer path. The second term generates higher cost if 

the vertexes on the path that are less likely the collagen points which tend to have 

smaller frangi filtered values. The Dijkstra’s algorithm [197] is applied to find the 

path with the lowest cost.  

The confidence score for the identified path p is defined as 
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   , where 2
0( ) ( ( ) ( ))iDev p I v I v  .  

This probability function computes the generalized likelihood ratio test of the linear 

structure, which is used as the criteria to determine the connection of the gap through 

the identified path.    

Filling gaps 
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We set a threshold of 0.1 to the confidence score. If the score is higher than 0.1, the 

gap is filled by updating the vertexes and edges in the graph G. This threshold is 

tuned and chosen according to several experiments on some sample images and is 

kept consistent for all the images.  

If one end of the gap to be filled is originally an endpoint, it is updated as a curve 

point in the graph; otherwise, it is updated as a branch point. If a branch point is 

added, we further check whether it is close to any of the existing branch point and 

merge them if any exists.   

4.2.5.3 Fiber tracing 

Trace fibers 

To trace each fiber in the graph G, we start from each end point through the 

connecting curve points towards another end point or branch point. If another end 

point is reached, a complete fiber is traced and updated in the fiber list. Otherwise, the 

fiber is stored as an uncompleted fiber for further processing. We next start from each 

branch point through the connecting curve points towards another branch point and 

updated in the uncompleted fiber list as well.  

For all the uncompleted fibers which share same branch point as one end, they are 

connected if having similar orientations that the difference of the orientation of these 

two uncompleted fibers was smaller than a threshold of 60 degrees. The connected 

uncompleted fibers were finally updated in the complete fiber list.    

Remove short fibers 

The short fibers will be removed since they are likely the false branches from the 

skeleton of collagen fibers. A fiber will be considered as the candidate of short fiber 

to be deleted if at least one end is a branch point. The threshold is set as 5 pixels to 

delete all candidates shorter than this.    
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An example of the image processing of fiber tracing was show in Figure 31.   

 

Figure 31: The illustration of image processing to trace collagen fibers from the 

collagen network. The raw capsule image is shown in (A). The enhanced image after 

Frangi filtering is shown in (B). The binary image after collagen segmentation is 

presented in (C). (D) shows the final segmented image of collagen after 

morphological operations to remove the small objects. The initial skeletons of each 

collagen segment are shown in (E). (F) The gap filling method was performed to 

finally connect the broken collagen fibers where the connected pixels are shown in 

green. Two regions-of-interest are shown for example in (G) and (H).  
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4.2.5.4 Generation of artificial collagen network 

The artificial network is generated by growing one fiber at a time until the network 

achieves the desired fiber number AN . The image size of each artificial network is set 

to 512 pixels by 512 pixels which is the same as the SHG image from the liver 

capsule. The lengths of all AN  collagen fiber were assigned by following an 

exponential distribution with mean at 200 pixels. When a new fiber is added, an initial 

point was generated at a random position in the image. The initial direction of the 

fiber was also randomly generated. The fiber was extended from the initial point to a 

new end at the step of 3 pixels (around 1µm) followed the initial direction. If the 

length of the fiber has not reached the assigned length and the fiber did not reach the 

boundary of the image, the fiber continued to extend to a new end at the same step 

size. The new direction of the extension was defined by adding a random turbulence 

generated between 0 to 60 degrees to the previous fiber extension direction. This fiber 

growing process is repeated until all AN  fibers were added to the image and the 

skeletons of the artificial network were generated.  

The next step is to locate the cross-link points of all the collagen fibers. A threshold at 

3 pixels was set as the minimum distance between two cross-link points, and any pair 

of cross-link points was merged if their distance was lower than the threshold. The 

skeleton image of the artificial network was then convolved with a 2D Gaussian filter 

with standard deviation of 3 pixels to create the artificial image. We chose the same 

value for the standard deviation of the Gaussian filter and the threshold of the 

minimum distance between two cross-link points to ensure that every cross-link point 

in the image was detectable in the convolved artificial image. In order to test whether 

the developed fiber tracking algorithm is suitable for noisy SHG images of the liver 
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capsule, we finally added the random generated noise to the image at different signal 

levels.  

4.2.6 Capsule feature extraction 

To characterize the collagen capsule network at liver surface, we extracted 125 

features as listed in Table 13.  

Table 13: Summarization of all 125 features extracted. 

No. Feature Descriptions 

Morphological Features [114] 

1 Number of fibers 

2 Number of cross-links 

3-4 Mean and variation of the size of pores 

5 Number of pores 

6-7 Mean and variation of fiber length 

8-9 Mean and variation of fiber width 

10 Amount of collagen 

11-12 Mean and variation of cross-link spaces 

13-14 Mean and variation of cross-link densities 

15-16 Mean and variation of the straightness of fibers 

Texture Features 

17-28 Contrast, correlation, energy and homogeneity from the GLCM given 

three different pixel distances at two, four and eight pixels [198] 

29-34 Energy, entropy, mean, standard deviation, third moment and fourth 

moment of the coefficients from Fourier transform [201] 

35-94 Energy, entropy, mean, standard deviation, third moment and fourth 

moment of the wavelet decomposition coefficients from ten sub-images 

generated by Daubechies wavelet transform [199] 

95-124 Energy, entropy, mean, standard deviation, third moment and fourth 

moment of the magnitude of the convolution over the image with Gabor 

filter at five scales [200] 

3D Feature 

125 Capsule thickness 

 

4.2.6.1 Morphological features 

The reticular properties of a collagen network are important for the better 

understanding of its microstructure and biological role. We characterized 16 

morphological features to represent the geometrical and topological distributions of 

the collagen network.  
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1. Number of fibers:  the number of medial axis traced in the image. 

2. Number of cross-links: the number of cross-link points that is defined as 

those points on the medial axis belonging to more than one collagen fibers.  

3-4. Mean and variation of pore sizes: the average and standard deviation of 

the areas of empty spaces that are completely surrounded by fibers in the network.  

5. Number of pores: the number of empty spaces that are completely 

surrounded by fibers in the network. 

6-7. Mean and variation of fiber length: the average and standard deviation of 

the lengths of medial axis of each collagen fiber.  

8-9. Mean and variation of fiber width: the average and standard deviation of 

the fiber width was defined as the area of the collagen segment divided by the length 

of the medial axis of the segment. 

10. Amount of collagen: the number of pixels that belongs to collagen divided 

by the total area of the image. 

11-12. Mean and variation of cross-link spaces: the average and standard 

deviation of the cross-link spaces quantified as the distance between two 

neighbouring cross-link points on the same fiber.  

13-14. Mean and variation of cross-link densities: the average and standard 

deviation of the cross-link densities defined as the number of cross-link points from 

one collagen fiber divided by its fiber length. 

15-16. Mean and variation of the fiber straightness: the average and standard 

deviation of fiber straightness calculated as the the absolute distance between the two 

ends of the fiber divided by its length.  
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4.2.6.2 Texture features 

Textures are important information of any object in an image. Thus, we extracted a 

total of 108 texture features including gray-level co-occurrence matrix (GLCM) based 

features [198], Daubechies wavelet transform based features [199], Gabor filters 

based features [200] and Fourier transform based features [201].  

GLCM features 

GLCM is one of the most widely used texture analysis methods proposed by Haralick 

[198] first. Each entry Co(i,j) in GLCM corresponds to the number of occurrences of 

the pair of gray levels i and j which are a certain distance apart in original image. 

Several second order texture features can be calculated from GLCM, including 

contrast, correlation, energy and homogeneity. These second order measures consider 

the relationship between groups of two (usually neighbouring) pixels in the image 

which are defined as below. 

Contrast =   

Correlation =  

Energy =  

Homogeneity =  

where Co(i,j) is the entry of co-occurrence matrix, Ng is the number of grey-level in 

the original image after quantization, and x , y , x  and y  are the means and 

standard deviations of Cox(i) =                     and Coy(j) =                   .  

We calculated contrast, correlation, energy and homogeneity [198] from the GLCM 

with three different pixel distances of 2, 4 and 8 used as the distance between the 

pixel of interest and its neighbours to create the co-occurrence. At each pixel distance, 
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each feature was averaged from four different directions of adjacency (horizontal, 

vertical, left and right diagonals) from the GLCM.   

Fourier features 

Fourier transform transforms the original image into the frequency domain to generate 

the power spectrum of the signal so as to detect the repetitive patterns of texels and to 

capture the details of the texture. After Fourier transform of the capsule SHG image, 

we calculated energy, entropy, mean, standard deviation, third moment and fourth 

moment of the coefficients of the Fourier series.   

Daubechies wavelet features 

The wavelet features are also widely used in different image retrieval applications. As 

a wavelet is defined as a function to represent a continuous time signal into different 

frequency components, an image could be decomposed into several sub-bands by 

applying discrete wavelet transform while each sub-band represents the original 

image at different levels of details.  

One of the most widely used families of orthogonal wavelets is Daubechies wavelets. 

Thus, in this study, a three-level Daubechies wavelet transform was preformed to 

generate ten sub-images from the original image. For each sub-image, the first 10 

nonzero wavelet decomposition coefficients were used and the energy, entropy, mean, 

standard deviation, third moment and fourth moment [199] of these coefficients were 

calculated as the Daubechies wavelet features.  

Gabor wavelet features 

The Gabor wavelet transform used a Gaussian kernel function so that both frequency 

and spatial representations are similar to the human visual system. Its advantage is to 

be able to decompose the original signals in frequency and spatial domains 

simultaneously.   
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To calculate Gabor wavelet transform features, the original image was initially 

convolved with a Gabor filter with five wavelet scales and six filter orientations. 

Energy, entropy, mean, standard deviation, third moment and fourth moment [200] of 

the magnitude of the convolution over the image at each scale were then calculated by 

averaging each measurement from six orientations at the same scale.  

4.2.6.3 Capsule thickness 

The capsule thickness was calculated from the rotated image stack before the MIP 

was performed. The thickness was defined as the width of the band with high pixel 

intensities in the x-z or y-z image (Figure 29) [180].  

4.2.7 Feature selection 

Feature selection was applied to recognize the best subset among all 126 features that 

are the most relevant to fibrosis progression. Support vector machine recursive feature 

elimination (SVMRFE) approach [202] was first adopted to rank all the features. 

SVMRFE was introduced as a multivariate feature ranking method that uses SVM 

weights as the ranking criterion of features.  Starting from using all the features, a 

SVM was trained and features were sorted by the absolute value of their weight in the 

hyper-plane. The feature with the least weight was least important and was eliminated 

from the feature set and a SVM was trained again using the new feature set after 

elimination, this process was performed iteratively until all the features had been 

removed.  All the features were hence ranked during this recursive elimination 

procedure.  

The diversities were generated on the training set by the bootstrapping method [203], 

after which SVMRFE was applied on each of these bootstrap samples and a diverse 

set of feature rankings was obtained. The ensemble rankings of all the features were 

aggregated by summing the ranks over all bootstrap samples [152] for each feature. 
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Different numbers of the features were selected according to the ensemble rankings 

from the top order to train a SVM on the bootstrap samples and be evaluated on the 

out-of-bag samples based on the area under the receiver operating characteristic curve 

(AUC) [204], which was a measure of test performance. The subset of the features 

that lead to the highest AUC among all was finally selected.  

4.2.8 Establishment of Capsule Index 

The image analysis system developed to quantify capsule index, a continuous 

measurement of the Glisson’s capsule, to stage liver fibrosis was shown in Figure 32.  

 

 

Figure 32: Schematic illustration of the procedures to create capsule index. Most 

significant parameters were selected from all the morphological and texture features 

extracted from the pre-processed capsule image to build a multinomial logistic 

regression model, which was used to create capsule index.    

 

Each image stack of a site on the anterior surface of the sample was first rotated and 

the maximum intensity projection (MIP) [205] was performed along the z-direction to 
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generate a two-dimensional (2D) image which is a good representation of the 

Glisson’s capsule in the original image stack, in order to save computation time and 

cost in further processing. The 2D capsule image was then segmented and 125 

features were extracted, followed by feature selection to identify the most significant 

measurements for monitoring fibrosis progression. A leave-one-out cross-validation 

approach was adopted, where one sample was used as the test set to calculate capsule 

index while all other samples were used for training. MNL model [206] was used for 

the training set with selected features to predict the probabilities of all the stages from 

0 to 4 for the test sample.  MNL is a generalization of normal logistic regression by 

allowing more than two discrete outcomes that were appropriate, as we need to 

classify each image into one of the five stages. We then combined the probabilities of 

each stage for the test sample into the capsule index by the equation as follows: 

, 

where  is the probability of stage , is the expectation value of each stage i 

and  is a scale factor to normalize the capsule index into certain range.  was set to 

0.25 in our study so that the capsule index is a continuous measurement ranging from 

0 to 1. 

4.3 Results  

4.3.1 Reflective SHG reveals collagen architectures of the Glisson’s capsule 

TPEF/SHG microscopy on unstained samples is a good substitute for conventional 

histological imaging of liver fibrosis where most of the important features used in 

scoring system can be observed [92, 188]. A Masson Trichrome (MT) stained image 

of a normal liver which contains minimal collagen within portal tracts and around 

central veins is shown in Figure 33A. Similar collagen patterns were observed in the 
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TPEF/SHG image of the same location (Figure 33B).  In a late stage fibrotic liver of 

TAA model, the collagen patterns changed significantly where broad complete septa 

are formed between portal areas, and between portal areas and central veins. These 

changes can be clearly identified in both MT stained (Figure 33D) and TPEF/SHG 

images (Figure 33E). The proliferation of bile duct cells is obvious in the late stage 

fibrotic liver of BDL model and collagens are found to aggregate around bile duct 

cells as shown in the MT stained image (Figure 33G) as well as TPEF/SHG image 

(Figure 33H).  

None of the pathological features related to the cellular and collagen structures in the 

interior of the liver showed up in the Glisson’s capsule as the outermost layer of the 

liver. Reflective SHG microscopy used to scan the front surface of the livers from 

TAA and BDL models successfully revealed collagen network architectures of the 

Glisson’s capsule. In the capsule layer of the normal liver (Figure 33C), capsule 

collagen fibers or fibrous bundles are dense with wavy sub-filament structures.  In 

fibrotic liver of TAA model (Figure 33F), the capsule collagen fibers or fibrous 

bundles are denser than that of the normal liver and the spaces in between the fibers or 

bundles are smaller. However, the capsule collagen fibers or fibrous bundles are less 

dense in fibrotic liver of BDL model (Figure 33I). The fibers are straight with loss of 

curry sub-filament structures and spaces between the fiber bundles are larger than the 

normal liver. These structural changes are likely due to the dramatic alteration of liver 

mechanical properties because of increased extracellular matrix (ECM) deposition 

and portal hypertension, which in turn affect the cellular and tissue functions or 

structures [207, 208]. The different progression patterns of the capsule collagen 

network architecture between the two animal models may be related to the different 

etiologies of the diseases. One possible explanation is that the accumulation of bile in 
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the liver in the BDL model causes the livers from the BDL model to be much larger in 

volume [209] (measured to be 4.1 cm
3
 - 9.4 cm

3
) than those from the TAA model 

[210] (measured to be 4.1 cm
3
 - 1.9 cm

3
). The decrease of volume in the TAA model 

is due to the loss of hepatocytes in the course of ECM accumulation. This leads to 

higher expansion force in the fibrotic liver of the BDL model, both on the surface and 

the interior causing straight fibers and large space between fibers of the Glisson’s 

capsule. 

 

 

Figure 33: Comparisons between liver interior images and liver surface images. (A) 

to (C) are Masson Trichrome stained interior image, TPEF/SHG interior image and 

SHG surface image from a normal liver respectively. (D) to (F) are interior and 

surface images from a late stage fibrotic liver of the TAA model. (G) to (I) are interior 
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and surface images from a late stage fibrotic liver of the BDL model. The scale bar 

represents 100 um for interior images and 50um for surface images. 

 

The capsule images of the normal and fibrotic livers from two animal models were 

shown at different imaging depth from 0 to 16 µm in Figure 34. The morphology of 

collagen network is consistent in the images at different depth. Thus, the 2D image 

generated by MIP from the z-stack image is well representative of the entire collagen 

network of the Glisson’s capsule and is valid for additional quantification.  

 

Figure 34: Illustration of SHG images at different imaging depth from the top of the 

Glisson’s capsule. The morphology and structure of collagen network are consistent at 

different imaging depth. 

 

4.3.2 Quantitative assessment of liver fibrosis from liver surface 

4.3.2.1 Improved characterization of capsule morphology 

The existing algorithms to extract collagen network morphology are mostly developed 

for biopolymer network created in collagen gels which is normally imaged using 

confocal microscopy with a relatively more clear background and higher signal-to-

noise level. While the reflective SHG images of the collagen network from liver 

capsule are usually noisier, we proposed a modified fiber tracking algorithm which 
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tends to retain more accurate morphology of the collagen network when the image 

quality is not ideal and the noise level is high.  

To evaluate the performance of the proposed fiber tracking method compared to one 

of the widely used existing method, FIRE [114], a series of artificial collagen network 

images were generated for testing. We simulated the artificial collagen network with 

different fiber numbers at 25, 50, 100 and 200. For each fiber number, 50 images 

were generated and noises at three different levels were added to each image. The 

examples of the images from the artificial collagen network with different fiber 

numbers at different noise level were shown in Figure 35.  

 

Figure 35: Simulated artificial collagen networks with different fiber numbers at 

different SNR level.  



123 
 

 

We chose average fiber length and average cross-link space as two representative 

features to evaluate the performances of proposed method. The Kolmogorov-Smirnov 

test was performed to compare the distribution of quantified average fiber 

length/cross-link spaces with the known ground-truth from each image and the K-S 

distance was calculated. The histograms of the K-S distance from 50 images with 

different fiber numbers at different signal-to-noise ratios (SNRs) were shown in 

Figure 36 and 37.   

We first assessed the performance of fiber length quantification (Figure 36). When 

the number of fibers in the network is low (25 fibers), the proposed method presents 

similar results as the FIRE method at all noise levels. When the fiber numbers 

increases (50 fibers and 100 fibers), the proposed method started to show the 

superiority over the FIRE method with smaller K-S distances to the ground-truth, 

especially when the SNR is low (1dB). In the scenario of very dense collagen network 

(200 fibers) which is similar to the network at liver capsule, the proposed method 

achieved significantly better results than FIRE method even when the SNR is high 

(100dB). The improvements were more obvious in the images with decreased SNR 

(10dB, 1dB).   
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Figure 36: Assessment of the performance of fiber length quantification using 

proposed algorithm and FIRE method in artificial collagen network images with 

different fiber numbers and different SNRs.  

Similar results were found when we evaluated the cross-link spaces (Figure 37). In 

the sparse collagen networks (25, 50, 100 fibers), the proposed method has smaller K-

S distance than FIRE method, and the improvement is more significant when the SNR 

is low (1dB). When the fiber number increases to 200, the proposed method performs 

better than FIRE method regardless of SNR levels.  
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Figure 37: Assessment of the performance of cross-link spaces quantification using 

proposed algorithm and FIRE method in artificial collagen network images with 

different fiber numbers and different SNRs. 

 

With the proposed method, we were able to better characterize the morphology of the 

collagen network from the liver surface, thus the features extracted would be more 

useful for the following analysis to generate the Capsule Index.  
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4.3.2.2 Capsule Index could accurately reflect fibrosis progression  

The Capsule index values of the BDL and TAA rat models samples at different 

Metavir stages are shown in Figure 38. The Metavir scores were assigned by an 

experienced pathologist from reading the MT stained slices of the interior of the same 

liver of which the surface was scanned. We also presented the capsule thickness and 

collagen proportionate area (CPA) quantified from the capsule images at different 

fibrosis stages for the comparison.  

In the BDL model, capsule index was observed to increase with the fibrosis 

progression (Figure 38A). One-way analysis of variance (ANOVA) revealed that 

there are significant differences of the average capsule index between at least two 

stages. Further pair-wise comparison of the mean value of capsule index between 

every two stages showed the significant difference between all the groups. However, 

no increasing trend was observed for capsule thickness with fibrosis progression as 

the capsule thickness decreased first in early stages and increased later in mild and 

late stages. No statistical significance between stage 1, stage 2 and stage 3 was found 

for capsule thickness (Figure 38B). The CPA decreases along the fibrosis progression 

(Figure 38C) due to the expansion of collagen network in the late stages in the BDL 

model. However, the differences were not significant between stage 2, stage 3 and 

stage 4.    

Similar results were obtained from the TAA model, as an increasing trend of the 

capsule index could be observed with fibrosis progression (Figure 38D). One-way 

ANOVA indicated that the means of the capsule index of each stage were not all 

equal (p<0.0001). Further analysis revealed that the capsule index could differentiate 

between all fibrosis stages. On the other hand, capsule thickness decreased until stage 

3 and a sharp increase was observed in the late stage. No significant differences were 
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found between stages from 0 to 3 in the TAA model for capsule thickness (Figure 

38E). No trend was observed for CPA along the fibrosis progression (Figure 38F).    

 

Figure 38: Validation of capsule index with conventional histopathology scoring 

system for bile duct ligation (BDL) and thioacetamide (TAA) model. Comparison 

between scoring results from conventional histo-pathological scoring system against 

capsule index were shown in (A) for the BDL model and (D) for the TAA model. (B) 

and (E) show the capsule thickness of the BDL and the TAA model for different 

stages. (C) and (F) show the collagen proportionate area (CPA) of the BDL and the 

TAA model for different fibrosis stages.  

 

These results showed that the conventional quantification of the Glisson’s capsule by 

measuring capsule thickness was not sufficient to accurately monitor fibrosis 
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progression. CPA was useful to quantify fibrosis progression in the liver interior [92]; 

however, it is not a good indicator for liver fibrosis assessment from the surface.   

 4.3.2.3 Capsule Index could detect liver fibrosis at different stages 

The performances of capsule index for detection of fibrosis at different stages were 

evaluated with receiver operating characteristics curve (ROC) analysis. The larger 

area under the ROC curve (AUC) indicates the better sensitivity and specificity for 

the detection of certain stages. The AUC of 0.5 represents a random classification.  

For the detection of fibrotic samples against normal samples (stage 0 versus. stages 1-

4,), the AUCs of capsule index was 0.72 and 0.80 for the BDL and TAA model, 

respectively, and were significantly higher than 0.5 (Figure 39A, D, p<0.001). The 

AUCs of capsule thickness and CPA were 0.59 and 0.52 for the BDL model and 0.53 

and 0.65 for the TAA model. Since these AUCs were not significantly higher than 0.5, 

both capsule thickness and CPA failed to differentiate between normal and fibrotic 

samples.   

The detection of significant fibrosis (stages 2-4) versus non-significant fibrosis (stages 

0-1) is critical for assessing the need of antiviral therapies [211]. Capsule index 

achieved AUCs at 0.76 and 0.84 for detection of significant fibrosis in the BDL and 

TAA models (Figure 39B,E). The best cuff-off value was 0.51 for BDL model with 

69.2% sensitivity and 75.0% specificity, and was 0.52 for TAA model with 81.8% 

sensitivity and 71.4% specificity. The AUCs of capsule thickness and CPA were 

smaller (0.52-0.69). 

The detection of cirrhosis (stage 4) versus non-cirrhosis (stages 0-3) is also an 

important indication for the end stage of fibrosis progression which has the higher risk 

of developing liver cancer such as hepatocellular carcinoma [211]. The AUCs of 
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capsule index were 0.77 and 0.91 for the detection of cirrhosis in two animal models 

(Figure 39C,F). The best cuff-off value was 0.59 for the BDL model with 72.0% 

sensitivity and 83.3% specificity, and was 0.62 for the TAA model with 90.9% 

sensitivity and 90.0% specificity. The capsule thickness can detect cirrhosis well in 

the TAA model with the AUC at 0.88, but cannot achieve comparable performance in 

the BDL model (AUC=0.61).  The performance of CPA was as not good as the 

capsule index in both of the animal models with lower AUCs (0.60-0.69).  
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Figure 39: Receiver operating characteristics curve (ROC) analysis of capsule index 

to demonstrate performance for fibrosis detection at different stages. For the detection 

of fibrosis (stage 0 versus stages 1-4), significant fibrosis (stages 0-1 versus stages 2-4) 

and cirrhosis (stages 0-3 versus stage 4), capsule index performs better than capsule 

thickness and collagen proportionate area (CPA) in both BDL and TAA models, with 

area under ROC (AUC) from 0.72 to 0.91.   

 

Thus, the capsule index can monitor the liver fibrosis progression in both TAA and 

BDL animal models, and can detect liver fibrosis at different stages with reasonable 

sensitivity and specificity. The superiority of the capsule index over the capsule 
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thickness and CPA for fibrosis staging comes from the detailed collagen network 

structure imaged by reflective SHG microscopy and quantified by our image analysis 

algorithm. Capsule collagen structures are highly correlated with the fibrosis 

progression. 

4.4 Discussions  

The TAA animal model has similar characteristics as viral hepatitis in humans [144], 

such as hepatitis B and C which are the leading and important targets for fibrosis 

assessment in chronic liver diseases (CLDs). The good performance of capsule index 

to detect different fibrosis stages in the TAA model (AUC: 0.80-0.91) showed that it 

is a useful marker for prognosis of fibrosis progression and regression for treatment 

evaluation in CLDs. The performance of capsule index to detect different fibrosis 

stages in the BDL model (AUC: 0.72-0.77) was not as good as in TAA model and the 

capsule index needs to be further improved. We have previously demonstrated the 

correlation of sub-capsular features to the interior liver features and the correlation of 

sub-capsular features to fibrosis stages in the BDL model [180]. Hence, it would be 

beneficial to further investigate the sub-capsular collagen and cellular information 

beneath the Glisson’s capsule to improve the sensitivity and specificity of the capsule 

index for the detection of liver fibrosis at different stages. 

Due to the different etiology of the two animal models we studied, the architecture 

changes of the capsule collagen network along fibrosis progression for the two models 

are different. Although similar trends of capsule index for the two animal models 

were found, the frequency of each feature to be selected in each training set varied. 

The important features should have higher frequencies since they tend to be selected 

more often no matter how the training set changes. The frequency of the features 

selected from all measurements to build the regression model in the BDL and TAA 
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models were shown in Figure 40. The importance of each feature was found to be 

different in the two animal models. For example, the average area of the pore space 

(no. 3) in the collagen network was selected in 84% of the training sets in the TAA 

model but was only selected in 2.7% of the training sets in the BDL model. In contrast, 

the average cross-link space (no. 12) was selected in the 83.8% of the training sets in 

the BDL model but was only selected in 12.5% of the training sets in the TAA model. 

Thus, it is important to fine-tune capsule index in liver diseases of different etiologies 

by building the specific multinomial logistic regression model for each disease with 

proper training set of capsule images. One advantage of the proposed framework to 

calculate capsule index in this study is that the rule of combination of various features 

to create the index was automatically learned from the training set using the pathology 

scores as the ground-truth.      

 

Figure 40: Comparison of the selected features between TAA and BDL models. The 

frequency of each feature to be selected in each training set varies between TAA and 

BDL model which are shown in (A) and (B). The first 16 features are morphological 

and structural features (left side of the first red line). The next 108 features are texture 

features (between the two red lines), and the final one is capsule thickness, which is 

the only 3D feature used.  

 

Translation of the TPEF/SHG microscopy into potential clinical applications in vivo 

requires the establishment of minimally invasive diagnostic imaging tools. Recent 

studies have reported the development of nonlinear endoscopy technology and their 
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applications for imaging in different organs, such as kidney, liver, lung, colon and 

cervix [212-217]. Nonlinear endoscope is capable of acquiring images with distinct 

features that are similar in the images acquired by conventional nonlinear microscope. 

Two liver species used in this study were imaged by a SHG endoscope ex vivo 

(Figure 41). Similar collagen networks were observed in liver capsule as seen from 

SHG microscope, which reveals the feasibility of applying the quantification methods 

presented in this study to the endoscopy images. Hence, we foresee that similar 

collagen network images can be acquired for the Glisson’s capsule by SHG 

endoscopes that would yield a similar framework to quantify capsule index to 

differentiate different stages of liver fibrosis for scoring. It should be noted that 

endoscopy is still a minimal invasive procedure thus its potential application needs to 

be further investigated. Another necessary study is to address some of the critical 

issues in real practice, such as the minimized number of focal spots to be imaged 

using the endoscopy to achieve the satisfied performance from the analysis.  

 

Figure 41: The ex vivo SHG/TPEF imaging of liver surface using non-linear 

endoscopy.  
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4.5 Conclusions 

We proposed and validated a quantification system, capsule index, for liver fibrosis 

assessment from liver surface reflective SHG imaging. We demonstrated the 

advantage of imaging the Glisson’s capsule using reflective SHG, which can 

accurately reveal the architecture of liver capsule collagen network. Image analysis 

methods were developed to extract plenary morphology, structure and texture features 

from capsule collagen network. We also presented a statistical framework to select the 

most important measurements from all the extracted features and to combine the 

selected measurements into one index. Capsule index values were compared with a 

conventional histopathology scoring system for two different animal models, and 

good correlations were established in both models. The results indicate that capsule 

index was able to differentiate different fibrosis stages with good performances for 

both animal models representing two major types of the human chronic liver diseases 

[190, 191]. By incorporating our capsule index quantification methodology with SHG 

endomicroscopy, we have established the feasibility of liver fibrosis staging and 

diagnosis from scanning the liver surface in a less invasive manner. This would also 

provide us the potential to image a larger sampling area than from biopsy and extract 

enough information, over many time-points for a long period of time, for liver fibrosis 

monitoring without the complication brought forth by the current gold standard of the 

invasive liver biopsy. Thus, liver surface scanning with SHG endomicroscopy could 

possibly replace liver biopsy in the clinical practice for the sole purpose of fibrosis 

assessment critical in making clinical decisions on many chronic liver diseases.   
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Chapter 5  

Conclusion and future directions 

5.1 Conclusion 

The role of liver biopsy as well as the biopsy-based conventional histopathological 

assessment as the standard for the liver disease diagnosis is being challenged at this 

time. However, the alternative non-invasive diagnosis tools are still far from mature 

and cannot completely replace biopsy and histopathological assessment in the 

foreseeable future. Hence, this thesis focused on the solutions to improve the current 

practice of histopathological assessment using biopsy samples.  

The non-linear optics microscopy especially the SHG was well known for its 

advantage of applicability on non-stained samples and, therefore,  was selected to 

solve the staining variation problem. The objective assessment tools such as the 

automated image analysis systems are also important to assist pathologists in fibrosis 

scoring which could effectively minimize the inter- and intra-observer variations. By 

translating the qualitative pathological knowledge into the quantitative computer 

measurements, we build a powerful system, qFibrosis, which is capable of 

intelligently learning from the most experienced hepato-pathologists for liver fibrosis 

scoring.  As the pathological-relevant information is incorporated into the feature 

extraction and machine learning procedure, the qFibrosis method is able to deliver 

more consistent fibrosis scores especially for early and mid stage diagnosis compared 

to other existing methods, given those scores from pathologists as the reference. More 

importantly, qFibrosis not only could serve as a powerful complementary tool to 
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assist pathologist in fibrosis scoring, but are also suitable in many applications where 

a fully quantitative and unbiased “gold standard” is required. These applications 

include evaluation of incremental treatment efficacies for anti-fibrotic drug 

development and validation of newly-developed fibrosis assessment tools.   

Although the qFibrosis method could significantly improve the practice of biopsy-

based liver fibrosis assessment, it cannot address the problem that biopsy is an 

invasive procedure as the qFibrosis analysis is based on extracted tissue samples. 

Hence, we explore the possibility of using non-linear endoscope as the new image 

modality to assessment liver fibrosis from liver surface which could be less invasive 

than biopsy but still present enough tissue information at the cellular level. Due to the 

fact that the surface scanning using the endoscope can only penetrate around hundreds 

of microns from the liver surface, this thesis documented the very first study to 

investigate the performance of liver fibrosis diagnosis based on liver capsule at the 

surface only. The positive results from two animal fibrosis models supported our 

assumption that liver surface scanning using a non-linear endoscope could be a 

promising tool for less invasive liver fibrosis assessment in the future.   

5.2 Future directions 

The development of CAD tools coupled with non-linear optics microscopy could 

benefit both basic research and clinical management of liver diseases. The 

quantitative tools proposed in this thesis, mainly qFibrosis and Capsule Index, are just 

two examples which require further improvement and validation in different 

applications with large samples sizes. The explorations of some directions with 

available preliminary results are elaborated as below.   
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5.2.1 Application of qFibrosis in other liver diseases 

With the burgeoning obesity-related problems across the globe, an increasing 

populace is suffering from the metabolic syndrome. This systemic condition has a 

liver component called non-alcoholic fatty liver disease (NAFLD) which is 

recognized as the leading cause of many liver diseases. Among the spectrum of 

diseases encompassed in NAFLD, diagnosis of non-alcoholic steatohepatitis (NASH) 

from simple hepatic steatosis is critical in clinical management, as patients with 

NASH have much higher risk to progress to cirrhosis which will finally lead to portal 

hypertension and liver cancer.  The semi-quantitative scoring systems for NASH 

include Brunt’s score and NAFLD activity score (NAS) which mainly assess the 

histological features of NASH from three categories: steatosis, inflammation and 

fibrosis. As NASH is associated with pericellular/perisinusoidal fibrosis, which is 

specifically denoted as fibrillar index in qFibrosis, we foresee qFibrosis a useful tool 

to quantitatively assess fibrosis changes from steatosis to NASH. 

5.2.2 Go beyond fibrosis in liver disease assessment 

Moreover, we have reported the successful implementation of coherent anti-Stokes 

Raman scattering (CARS) microscopy for liver steatosis assessment in an animal 

model [218]. Hence, the monitoring of the progression of NAFLD could be achieved 

by the integration of SHG/TPEF with CARS microscopy. With qFibrosis and new 

image analysis tools developed for micro- and macro- vascular steatosis quantification 

in CARS images and inflammatory cell identification in TPEF images, a fully 

quantitative standard could be established to differentiate between hepatic steatosis 

and NASH which would have great impact on diagnosis and treatment planning.     
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5.2.3 Exploring cellular information beneath the liver surface 

One of the advantages of non-linear optics microscopy is its penetration depth up to 

hundreds of microns into the tissue.  To further demonstrate the feasibility of potential 

application of non-linear endoscopy as virtual biopsy, which is less invasive 

compared to biopsy and is capable of scanning larger areas as needed to reduce 

sampling error, the development of image analysis tools to assess cellular information 

beneath the Glisson’s capsule is equally important. These histological features include 

hepatocellular changes such as cell ballooning and necrosis, as well as portal, peri-

portal and lobular inflammation.   

As tissue staining is not applicable for in vivo virtual biopsy, the development of 

virtual staining techniques could be rather useful to identify key biological structures 

in the tissue such as nuclei and cell and add colors to them which are familiar to the 

pathologists in routine stained images. Such translation from unstained images to the 

stained images could assist pathologists for the more comfortable evaluation of liver 

images using non-linear endoscopy and thus improve the qualitative assessment of 

virtual liver biopsy. One promising solution for this is to adopt the stimulated Raman 

Scattering (SRS) microscopy which allows chemical imaging of proteins within a 

single nucleus [219]. Hence, the conventional histopathology could move towards a 

new stain-free age where real-time in vivo assessment and diagnosis is feasible.        

The quantitative evaluation of cellular information in the tissue from non-linear 

endoscopy is also important as it could provide reproducible and un-biased 

measurements compared to the qualitative assessment. The nucleus and cell 

morphologies are important features that characterize the disease progression, but the 

extraction of such features relies on the accurate segmentation of nuclei and cells 

which is difficult in TPEF image. A recent study shows that the combination of 
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CARS and TPEF microscopy could lead to the successful segmentation of single cell 

and nucleus [220]. Third harmonic generation (THG) microscopy is also reported to 

provide good contrast on the cell boundary which is useful for the extraction of 

cellular information [221]. We have explored the usage of local image features, such 

as scale-invariant feature transform (SIFT) features [222], as alternatives to the 

morphological features extracted from TPEF image for the classification of liver 

fibrosis into different stages in an animal study.  Under the bag-of-feature (BOF) 

classification scheme where a dictionary (visual vocabulary) is built by quantizing 

and clustering SIFT features extracted from the training images, good sensitivity 

could be achieved for the differentiation of advanced fibrosis from the TPEF images 

in the test set.  Evaluation of different state-of-art image features other than SIFT, 

such as speeded up robust features (SURF) [223] and gradient location and orientation 

histogram features (GLOH), that can be used in association with the BOF strategy for 

the classification of TPEF images of liver fibrosis could be the next step and 

essentially engage the better quantitative assessment of liver fibrosis using virtual 

biopsy from non-linear endoscopy.  
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