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Abstract

Today’s manufacturing industry is mostly driven by dynamic market forces, which

poses unique planning and scheduling challenges, especially in the semiconductor man-

ufacturing. The real-life scheduling problem requires the decision maker to simultane-

ously consider a number of objectives before arriving at any decision. These scheduling

objectives are often conflicting in nature. The trade-off involved in considering con-

flicting objectives provides useful insights to the decision maker.

The objective of this research is to characterize the control curves for the multi-

objective dynamic scheduling (MODS) of serial and batch manufacturing processes.

The pairs of conflicting objectives considered in this thesis are (1) mean cycle time and

maximum tardiness, (2) mean cycle time and cycle time variance, and (3) earliness

and tardiness related objectives. The motivation for using these conflicting objectives

is to simultaneously incorporate the manufacturer’s as well as the customer’s concerns

in scheduling. The interest of the decision maker lies not in just achieving a single

optimal solution, but in defining a trade-off curve so that the decision maker can

operate the scheduling along the trade-off curve according to the dynamic needs of the

manufacturing shop.

To address the needs of conflicting scheduling objectives, the concept of Pareto

control has been adopted and applied for MODS environment. For scheduling dynam-

ically arriving jobs on a single machine, at every decision instance in the simulation

clock, a Pareto optimal job is selected for processing by using compromise program-

i
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ming. Selection of these Pareto jobs at each decision instance leads to a near-Pareto

optimal schedule of the jobs in terms of overall objectives of scheduling. By chang-

ing weights of individual objectives at Pareto job selection level, the characterization

curves for Pareto control have been generated and a trade-off among the conflicting

objectives is established.

In computer integrated manufacturing environment, such as found in semiconduc-

tor industry, the real-time information about the incoming lots in near-future is usually

available. Exploiting this look-ahead information, a look ahead batching (LAB) method

is proposed and developed to minimize the earliness-tardiness (ET) performance. The

results of LAB method for ET performance show significant improvements over the

existing batch scheduling heuristics such as MBS, DBH and NACH. Furthermore, the

ET performance is considered as the simultaneous minimization of earliness and tar-

diness related objectives, which are two individual conflicting objectives. Thus, the

LAB method is extended to incorporate the concept of Pareto control between these

conflicting objectives.

To present the relevance of the research findings in industrial application, a case

study on the photolithography cluster in semiconductor wafer fabrication has been

developed for the concept of Pareto control in serial processes. The results obtained

from Pareto control approach are superior to the simulated results of actual operat-

ing heuristics in the factory. The characterization of Pareto control curves gives the

ability to control the scheduling objectives within a specified range. By selecting the

appropriate parameters, the decision maker can control the machine scheduling within

the specific range of the scheduling objectives. Thus, the Pareto control curves can be

used as a tool for the shop floor control management.

ii
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T̄ Mean tardiness

Ē Mean earliness

NT Number of tardy jobs

NE Number of early jobs

k Due-date allowance factor

λ Inter-arrival rate

µ Service rate

ρ Traffic intensity or utilization level (= λ/µ)

Fj Scheduling objective function

fj Scheduling criterion function

wj Weight associated with the scheduling criterion (fj)

r Exponent value in compromise programming method

F (i) WA function value for ith job

Fr(i) CP function value for ith job

c Batch capacity

T Batch processing time

t0 The time epoch that the batching machine is idle with positive queue length.

ti The arriving epoch of the next ith lot after t0

q The number of lots in queue at epoch t0 (q > 0)

L The look-ahead number (assuming that the next L arrival epochs are known

with certainty at t0.)
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Chapter 1

Introduction

Today’s manufacturing industry is mostly driven by dynamic market forces, which

poses unique planning and scheduling challenges, especially in the semiconductor man-

ufacturing. To meet the changing market needs, scheduling of manufacturing systems

is considered one of the prime options. The real-life scheduling problem requires the

decision maker to simultaneously consider a number of objectives before arriving at

any decision. These scheduling objectives are often conflicting in nature and their rela-

tive importance varies with market needs. In such situations, the trade-off involved in

considering conflicting objectives provides useful insights to the decision maker. The

interest of the decision maker lies not in just achieving a single optimal solution, but

in defining a trade-off curve so that the decision maker can operate the scheduling

along the trade-off curve according to the dynamic needs of the manufacturing shop.

Thus, considering problems with multiple objectives is more relevant in the context of

real-life manufacturing scheduling, especially in the semiconductor industry.

1.1 Scheduling Framework and Notation

The vast diversity of the scheduling field has been described in detail in Appendix A.

Here, a brief definition of scheduling is being presented as:

1
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1. Introduction

“Scheduling concerns the allocation of limited resources to tasks over time. It is a decision-

making process that has as a goal the optimization of one or more objectives.”

– Pinedo (1995)

The standard representation for scheduling problems (Graham et al., 1979) is

Ψ1|Ψ2|Ψ3, where Ψ1 indicates the scheduling environment, Ψ2 describes the job and

family characteristics and any restrictive requirements, and Ψ3 defines the objective

function to be minimized. For this, the basic notations of job characteristics have

already been presented in the list of symbols. Let Ψ1 = αm (Potts and Kovalyov,

2000), where m is the number of machines, α ∈ {P,Q, R, F, FF, J, FJ,O} respectively

for classical machines in identical, uniform and unrelated parallel machine, flow shop,

flexible flow shop, job shop, flexible job shop and open shop environments. In the

case of a single machine, α is omitted, and m = 1 denotes a single machine. Field Ψ2

specifies the processing restrictions and constraints such as release dates (ri), sequence

dependent setup times (sij), batch processing (batch), preemption (prmp), precedence

constraints (prec), breakdowns (brkdwn), recirculation (recrc), etc. (Pinedo, 1995).

The scheduling objectives are considered in the last field Ψ3. Multi-objective

scheduling problems are represented by having multiple entries in Ψ3 (T’kindt and

Billaut, 2002). The need of scheduling with multiple objectives is further discussed

in Section 1.3. In dynamic scheduling of a single machine, the jobs go on arriving

dynamically at the machine for processing, but the simulation statistics are collected

only in the steady state situation for a fixed number of jobs. If n is the number of

jobs considered in steady-state simulation statistics, then the scheduling objectives are

defined based on these n jobs. Typical objectives in dynamic scheduling are presented

in Table 1.1.

Throughout the thesis, the term ‘scheduling objective’ is used in an overall sense,

while the term ‘scheduling criterion’ is used in a myopic sense, i.e., at each decision

instance in simulation clock. For example, in single machine static scheduling prob-

2
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1. Introduction

Table 1.1: Typical scheduling objectives

C̄ =
∑n

i=1 Ci/n mean completion time

C̄w = 1
n

∑n
i=1 (wi · Ci) mean weighted completion time

F̄ =
∑n

i=1 Fi/n mean cycle time

σ2
F =

∑n
i=1(Fi − F̄ )2/n cycle time variance

Tmax = max(T1, T2, . . . , Tn) maximum tardiness

T̄ =
∑n

i=1 Ti/n mean tardiness

Ē =
∑n

i=1 Ei/n mean earliness

NT =
∑n

i=1 UTi number of tardy jobs

NE =
∑n

i=1 UEi number of early jobs

lem, the scheduling objective of minimizing mean flowtime (F̄ ) is achieved by using

the scheduling criterion of shortest processing time (SPT), min(pi), at each selection

instance. Similarly, the objective of minimizing maximum tardiness (Tmax) is obtained

by applying earliest due date (EDD), min(di), scheduling criterion.

1.2 Pareto Optimal Solution in Multi-Objective

Scheduling

The multi-objective scheduling problem is a class of multi-objective optimization (MOO)

problem. A MOO problem can be denoted as (Sawaragi et al., 1985; Yu, 1985):

min F (x) , (f1(x), f2(x), . . . , fP (x)),∀x ∈ X (1.1)

where each fj(x), j = 1, . . . , P is a scalar objective function. An optimal solution is

the one, which attains the minimum value of all the objectives simultaneously. The

3
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solution x∗ is optimal to the problem defined if and only if x∗ ∈ S and

fj(x
∗) ≤ fj(x),∀j and ∀x ∈ S (1.2)

where S is the feasible region. Unlike the single objective optimization problem, the

definition of an optimal solution for a MOO problem is not straightforward because

a solution, which simultaneously minimizes all the objectives, rarely occurs. As in

most of the real-life MOO problems, the objective functions are found conflicting in

nature, there may not be a particular optimal solution to a MOO problem. Therefore,

a more general definition of optimality is required, which is called as Pareto optima as

introduced by an Italian economist, Vilfredo Pareto, in 1896.

For a minimization type of MOO problem, as denoted in Equation 1.1, a Pareto

optimal solution is one in which no decrease can be obtained in any of the objectives

without causing a simultaneous increase in at least one of the other objectives. A Pareto

optimal solution is also called as efficient, non-dominated, or non-inferior solution and

is defined mathematically as (Tabucanon, 1988):

Definition:

The solution x∗ is Pareto Optimal to the problem defined if and only if there does not

exist any x ∈ S such that fj(x) ≤ fj(x
∗) ∀j and fj(x) < fj(x

∗) for at least one j.

Suppose that there are two objective functions, f1(x) and f2(x), where x ∈ X. A

single objective problem can be formulated as min Z , (f1(x), f2(x)). For a point

x1 ∈ X, Z1 , (f1(x1), f2(x1)) can be calculated and plotted on the Cartesian co-

ordinates as shown in Figure 1.1. For simultaneous minimization of both f1 and f2,

point Z1 resulting from x1 is certainly not the choice as point Z2 is better than point

Z1 in terms of both f1 and f2.

Pareto Optimal or efficient solutions are defined as the boundary line of solutions

that are better solutions than the others in the operating region. An operating solution

x0 ∈ X is a Pareto optimal solution if no other operating point x ∈ X exists such that

4
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Figure 1.1: Pareto optimal solution

f(x) ≤ f(x0) and this implies that there won’t be any other operating solution xa such

that f1(xa) ≤ f1(x0) and f2(xa) ≤ f2(x0). In this example, point Z0 can be considered

as a Pareto optimal point since there is no solution in the shaded area.

To clarify the concept of Pareto optimal solutions in the field of static scheduling,

an example of a bi-objective scheduling problem with four jobs on a single machine is

presented in Table 1.2, which is first considered by VanWassenhove and Gelders (1980)

and later reproduced by French (1982). In this static problem, the two conflicting

objectives are minimizing total cycle time and minimizing maximum tardiness. Job

data includes the processing times and the due dates for four jobs.

Table 1.2: A static bi-objective scheduling problem (French, 1982)

Objective function: min Z , (
∑4

i=1 Fi, Tmax)

Job data: Job J1 J2 J3 J4

Processing time (pi) 2 4 3 1

Due date (di) 1 2 4 6

For this static scheduling problem, f1(x) =
∑4

i=1 Fi, f2(x) = Tmax and the total

number of feasible solutions are 4! (=24) sequences, which are presented in graphical

5
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form on the two objectives in Figure 1.2. There are only 3 sequences which satisfy the

Pareto optimality conditions and hence these are called as Pareto Optimal solutions or

Pareto sequences, which are presented in Table 1.3.
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Figure 1.2: Graph showing all pairs of (
∑4

i=1 Fi, Tmax) for possible sequences. Encircled
points present Pareto optimal solutions/sequences with respect to min(

∑4
i=1 Fi, Tmax).

Table 1.3: Pareto optimal solutions for the static bi-objective scheduling problem

Pareto optimal solutions/sequences

Sequence :
∑4

i=1 Fi Tmax

(J4, J1, J3, J2) : 20 8

(J4, J1, J2, J3) : 21 6

(J1, J2, J3, J4) : 27 5

However, in case of multi-objective dynamic scheduling (MODS) problems, the

concept of Pareto optimality is not yet clearly defined due to stochastic nature of job

arrivals. In spite of the steady growth of research work in the area of multi-objective

scheduling, most of the published work only presents results on finding Pareto-optimal

6
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solutions for static scheduling problems, in which it is assumed that all jobs are available

for scheduling at the start of the planning period and their processing information is

known.

1.3 Research Motivation

The present research on Multi-Objective Dynamic Scheduling (MODS) is motivated

primarily to deal with multiple conflicting objectives, dynamic scheduling, presence of

serial and batch processes and availability of look-ahead information of jobs in computer

integrated manufacturing (CIM) environment. These are described in detail in the

following subsections.

Need of scheduling with multiple objectives

A major portion of the past scheduling research deals mainly with single objective

scheduling. Though, a vast amount of literature exists on the optimization of various

single objective functions such as Makespan time, average cycle time, machine utiliza-

tion and tardiness. Only a little effort has been made in the direction of simultaneously

considering multiple objectives while scheduling, which may very well be contradicting

each other in nature (T’kindt and Billaut, 2002). In the field of semiconductor schedul-

ing, the contradicting needs of the multiple objectives were taken into consideration

only in a few research papers (Yang and Chang, 1998; Dabbas et al., 2001; Sivakumar,

2001). Therefore, the primary focus of this research is to develop scheduling method-

ology to deal with the contradicting multiple objectives, which can be applied to the

serial as well as batch manufacturing processes. Pinedo and Chao (1999) also pro-

posed “scheduling with multiple objectives”, as a new direction of research in the field

of scheduling as it may often be desirable to see the trade-offs between the different

objectives of scheduling.

7
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Pareto trade-off between conflicting scheduling objectives

In manufacturing scheduling, following objectives are of high importance from the per-

spective of customer and producer:

• Minimizing mean cycle time in order to reduce the work-in-process (WIP) inventory

and the cost of production.

• Minimizing variance of cycle time for providing more reliable predictions of comple-

tion times to the customers.

• Minimizing tardiness for meeting due dates and reducing the penalty cost arisen out

of unfulfilled demand.

• Minimizing earliness for reducing the inventory holding cost arisen out of early

finished products.

These objectives constitute the following pairs of conflicting scheduling objectives:

• Minimizing mean cycle time and minimizing maximum tardiness (VanWassenhove

and Gelders, 1980; Koksalan, 1999)

• Minimizing mean cycle time and variance of cycle time (Bagchi, 1989)

• Minimizing both earliness and tardiness related objectives, i.e., ET performance in

Just-in-Time (JIT) manufacturing environment (Koulamas, 1996; Ventura and Rad-

hakrishnan, 2003)

Thus, the pairs of conflicting objectives studied in this thesis are mean cycle time

and maximum tardiness, mean cycle time and cycle time variance, average earliness

and average tardiness and number of early jobs and number of tardy jobs. For each

such pair, the interest lies not in just achieving a single optimal solution, but in defining

a trade-off curve so that the decision maker can operate the scheduling along the trade-

off curve according to the dynamic needs of the manufacturing shop. Thus, there is a

need to develop a Pareto control between these conflicting objectives.

8
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Requirements of dynamic scheduling

From more than six decades, efforts have been invested by many researchers around the

world towards the development of polynomial algorithms for solving complex scheduling

problems. Exact algorithms are developed even for multi-objective scheduling problems

as reviewed by Nagar et al. (1995) and T’kindt and Billaut (2001). However, most

of these efforts are dedicated only to static scheduling problems, where all the jobs

are available from the beginning. Only some effort has been directed towards multi-

objective scheduling problems in dynamic environment such as Dabbas et al. (2001);

Dabbas and Fowler (2003); Sivakumar (2001); etc. There is requirement of research

efforts to develop scheduling methods for MODS environment in both serial as well as

batch processes.

As most of the scheduling problems are intrinsically NP-Hard (Pinedo, 1995), no

simple rules or algorithms yield optimal solutions in a limited amount of computer time.

Even after formulating as mathematical programs, solving these NP-Hard problems to

optimality may require an enormous amount of computer time at best and may not be

achievable in most cases. Therefore, in the absence of such large computing power, one

is usually satisfied with an “acceptable” feasible solution that presumably is not far

from optimal called as “Near-Optimal Solutions” (Pinedo and Chao, 1999). One way to

obtain these near-optimal solutions of the NP-hard optimization problem is to develop

a detailed and deterministic simulation model of the entire system. This simulation-

based scheduling method simply ignores the NP-hard issue and efficiently generates

near-optimal solutions for dynamic scheduling problems (Hopp and Spearman, 2000).

Need of exploiting look-ahead information

With the recent influence of CIM environment, the highly sophisticated computerized

shop floor control systems can provide reasonably accurate predictions of arrival times

9
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and due dates of future jobs to a station. This real-time information about the incoming

jobs in the near-future is seldom exploited in decision making. However, this look-ahead

information can make a large difference in the scheduling performance, especially for

batch processing workstations such as oxidation and diffusion furnaces in semiconductor

wafer fabs. This can be highly useful in scheduling a batch process in supporting the

decision of whether or not to start processing a batch.

In the existing literature, the future arrival information has been exploited by

several researchers in order to minimize cycle time in batch processes such as Glassey

and Weng (1991); Fowler et al. (1992); Robinson et al. (1995) and Fowler et al. (2000).

There is also a need to exploit the due date information of the future arrivals for

improving the ET performance (earliness and tardiness related objectives) in scheduling

the batch processes. Further, this information can also be utilized to develop a trade-off

between earliness and tardiness related objectives in JIT manufacturing environment.

1.4 Research Objectives

The main objective of this thesis is to explore the field of multi-objective dynamic

scheduling in manufacturing environment. The primary focus is to characterize and

analyze the nature of trade-off curves between the conflicting objectives in dynamic

scheduling of a single machine with serial or batch processing. The secondary focus is

on studying the effects of using look ahead information for improving ET performance

in batch processing and further to develop a trade-off between earliness and tardiness

related objectives. To this end the specific research objectives of the thesis can be

summarized as follows:

1. To adopt and apply the novel concept of Pareto control for multi-objective dy-

namic scheduling (MODS) problems.

2. To investigate the trade-off curve between the conflicting objectives in dynamic

10

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



1. Introduction

scheduling of a serial, as well as batch, processing machine using the developed

MODS concept.

3. To propose and validate a single objective look ahead batching method for min-

imizing the ET performance in scheduling a batch processing machine.

4. To investigate the trade-off curve for the Pareto control between earliness and

tardiness related objectives in look ahead batching using the developed MODS

concept.

The third research objective focuses on the development of a look ahead batching

method for minimizing the ET performance. This is a preliminary requirement for

applying the MODS concept in look ahead batch processing environment, which con-

stitutes the fourth research objective.

The prime motivation of this research has arisen from scheduling problems in

semiconductor manufacturing. Nonetheless, the developed algorithms and methods

are generic in nature and therefore applicable in other industrial production scheduling

environments as well. The single machine models considered in this thesis are generic

to manufacturing processes; however the case study has been focused on the example of

photolithographic process from the wafer fabrication. The primary focus is to develop

scheduling methods for simultaneously optimizing the conflicting objectives and to

control the achieved schedule on a trade-off curve. The proposed method is capable of

providing the control parameters of scheduling to run the shop in a particular fashion,

which results in the desired range of the objective functions. Thus, it acts as a throttle

in the hands of the shop floor manager to control scheduling in favor of any objective

according to the time-demands and circumstance-needs of the industry.

11
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1.5 Thesis Organization

In this introductory chapter, the need for research in the field of multi-objective dy-

namic scheduling has been discussed and the research objectives have been defined.

The scheduling literature relevant to this research is reviewed in Chapter 2 in two par-

allel directions: multi-objective scheduling and the scheduling of a batch processing

machine. This chapter also presents the methodology of adopting the Pareto control

concept for MODS problems, which covers the first research objective.

The concept of Pareto control is applied in dynamic scheduling of serial as well

as batch processing machines respectively in Chapter 3 and Chapter 4. The trade-off

curves for Pareto control are presented and analyzed for simultaneous minimization

of two conflicting scheduling objectives. These chapters cover the second research

objective.

Exploiting the available real-time information of incoming jobs, a look ahead

batching (LAB) method is proposed in Chapter 5. LAB method is computationally

experimented to minimize the ET performance in the dynamic batch scheduling, which

covers the third research objective. In Chapter 6, the LAB method is extended to in-

corporate the concept of Pareto control between the conflicting objectives of earliness

and tardiness in the dynamic scheduling of a batch processing machine. This chapter

covers the last research objective.

The relevance of research findings in industrial application and a real-life case

study on the photolithography process in semiconductor wafer fabrication for the con-

cept of Pareto control in serial processing are presented in Chapter 7. Finally, the

essential conclusions and contributions of this research to the field of MODS are pre-

sented in Chapter 8 along with the possible future research directions.

12
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Chapter 2

Literature Review and
Methodology

This chapter reviews the scheduling literature relevant to this research on multi-

objective dynamic scheduling in serial and batch manufacturing processes. Further,

it presents the adopted Pareto control concept for MODS problems. Scheduling liter-

ature is very vast and can be categorized in many ways as presented in Appendix A.

For ease of literature review, a framework has been developed, which is presented in

Figure 2.1. In this framework, scheduling literature is vertically categorized first based

on the application type, then in to single and multiple objectives and then in to static

and dynamic environment. In the horizontal direction, the scheduling literature is first

categorized based on shop configuration and then based on type of job processing.

In the literature review framework, presented in Figure 2.1, a total of eight blocks

are presented corresponding to single machine scheduling for manufacturing environ-

ment. Each block is filled with the existing key research papers. In the figure, two

blocks are highlighted, which present the focus area of this research.

For building a research base, the existing literature is reviewed in the following

sections in two parallel directions: multi-objective scheduling with serial processing

and single objective scheduling with batch processing.

13
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2. Literature Review and Methodology

2.1 Multi-Objective Scheduling

In this section, a review of multi-objective scheduling literature relevant to this thesis

has been presented. The most important part of the literature on scheduling problems

is dedicated to single objective problems, whereas, in practice, the use of multiple

objectives often enables computation of a more realistic solution for the decision maker.

Research on multi-objective scheduling has been scarce, especially when compared to

the research in single objective scheduling. The complexity of scheduling problems

provides a possible explanation for the lack of published research in problems involving

multiple objectives. It is well known that optimal solutions can be found for only

relatively small single objective problems. In fact, only two algorithms have been

reported for the single machine bi-objective scheduling problem (Nagar et al., 1995).

One is the pseudo-polynomial algorithm, which was developed by VanWassenhove and

Gelders (1980), while the other is the polynomial algorithm developed by Chen and

Bulfin (1990).

Since most of the scheduling problems even with one measure of performance are

NP-hard, the multi-objective scheduling research has been confined mainly to single

machine or single stage scheduling problems. Most of the research in multi-objective

scheduling has been directed towards modelling situations with bi-objective on single

machine, which is covered by a number of review articles. Dileepan and Sen (1988)

addressed single machine, bi-objective problems involving regular functions of comple-

tion time. Fry et al. (1989) considered single machine, multi-objective problems that

involved both regular and non-regular functions of completion time. They noted that

even though non-regular measures are becoming more important with the increasing ac-

ceptance of JIT manufacturing philosophy, there exists a gap in the area of bi-objective

research where one criterion is not regular. Nagar et al. (1995) addressed multiple and

bi-objective scheduling problems and categorized the literature on a new classification

scheme. However, the problems and results surveyed are restricted to regular functions
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of completion time. T’kindt and Billaut (2001, 2002) provided a framework to tackle

multi-objective scheduling problems according to decision aid concept. The problem

is decomposed into three different problems. The first problem is about obtaining a

model, the second about how to take objective into account and the third one is about

solving a scheduling problem.

In this thesis, the problem of bi-objective scheduling is studied in a dynamic sin-

gle machine system with three pairs of conflicting objectives - (i) the mean cycle time

and the maximum tardiness, (ii) the mean cycle time and the cycle time variance, and

(iii) the earliness and the tardiness related objectives. Here, cycle time and flowtime

are same except that the cycle time terminology is used in dynamic scheduling prob-

lems while flowtime terminology is used in static environment. For a manufacturing

process, Little’s law states that the work-in-process inventory is equal to the product of

throughput and cycle time (Hopp and Spearman, 2000). Therefore, minimizing mean

cycle time implies minimizing work-in-process inventory, provided throughput remains

constant. However, minimizing maximum tardiness can be considered as a measure

for customer satisfaction. On the other hand, minimizing cycle time variance helps in

reliable predictions of the completion of jobs and thus in providing the same quality of

service to the customers, and thus reflecting the customer’s concern. In JIT manufac-

turing environment, minimizing earliness reflects in minimizing inventory holding costs

for the manufacturer. The motivation for studying these pairs of conflicting objectives

is to simultaneously incorporate the manufacturer’s as well as the customer’s concerns

in scheduling, which are conflicting by nature.

2.1.1 Minimizing mean flowtime and maximum tardiness

Majority of research on multi-objective scheduling has considered the minimization

of job flowtime as one of the objectives. Other objectives have often been due date

oriented. The extensive use of flowtime as a criterion is due to the direct relationship
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between work in process inventory and flowtime in single machine sequencing. Thus,

since normal objectives of production managers include inventory reduction and cus-

tomer satisfaction improvements, it is logical to incorporate flowtime and a measure of

due date performance as scheduling objective.

Smith (1956) was among the first researchers to deal with a bi-objective problem

of minimizing the total flowtime (= n × F̄ ) and the maximum tardiness (Tmax). The

two objectives are straightforward when taken individually. Since this is single ma-

chine static case, the total flowtime is minimized by a shortest processing time (SPT)

sequence and the minimization of the maximum tardiness is achieved by an earliest

due date (EDD) sequence. Smith’s a priori formulation is stated as follows:

Minimize
n∑

i=1

Fi

subject to Tmax = 0 (2.1)

where Fi is the flowtime of job i and n is the number of jobs considered in static case.

Smith’s algorithm is based on a theorem which states: Given that no jobs are

tardy, the last job (k) in the sequence has the following two properties:

(i)
n∑

i=1

pi − dk ≤ 0, and

(ii) pk ≥ pi, for all i for which
n∑

j=1

pj − di ≤ 0,

where pi is the processing time and di is the due-date for job i.

Heck and Roberts (1972) extended Smith’s result by relaxing the no tardiness

condition. Instead, they placed a user specified bound on maximum tardiness and

formulated the problem as follows:

Minimize
n∑

i=1

Fi

subject to Tmax ≤ To (2.2)

17
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Given that To is the maximum tardiness of the EDD sequence, mathematically the

extension is equivalent to rewriting property (i) as
∑n

i=1 pi − dk ≤ To. Their solution

procedure is similar to that given by Smith (1956).

Emmons (1975) considered the same problem with the objective of minimizing the

total flowtime (
∑n

i=1 Fi) and the maximum weighted tardiness max{wiTi}. Emmons

treats the problem as a preemptive goal programming problem with the primary ob-

jective of minimizing the maximum value of the cost function over all jobs. Within the

set of all jobs satisfying the primary objective, the schedule to minimize flowtime was

determined.

An a priori procedure was published by VanWassenhove and Gelders (1980) to

generate the set of all efficient points for the following objective:

Minimize {F̄ and Tmax} (2.3)

(For a bi-objective minimization problem involving objective C1 and C2, a point i is

said to be Pareto optimal or efficient if C1(i) ≤ C1(j) and C2(i) ≤ C2(j), with one

of the inequalities holding strictly, for all j in the solution space.) As shown by the

authors, all SPT sequences are efficient while an EDD sequence may or may not be

efficient. This is true because any schedule not in SPT order will increase total flowtime;

however, an EDD schedule will often have several jobs that can be resequenced and

still provide the same value for To.

Sen and Gupta (1983) considered the same two objective as done by VanWassen-

hove and Gelders (1980), but developed a different approach to solve the problem.

They used a weighted combination of mean flowtime and maximum tardiness as the

objective function.

Minimize {w(F ) · F̄ + w(Tmax) · Tmax} (2.4)

where w(F ) and w(Tmax) are the relative weights for flowtime and maximum tardiness

respectively. It is obvious that a schedule which is in both SPT order and EDD order,

18
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will always be an optimal schedule for this problem. However, when the SPT schedule

differs from the EDD schedule, Sen and Gupta developed a branch-and-bound scheme.

Upper bounds are determined by a pairwise interchange and a potential reduction is

used to produce a lower bound. The linear combination approach of Sen and Gupta has

the potential to identify each and every efficient point as determined by VanWassenhove

and Gelders. Later, Hoogeveen and van de Velde (1995) also proposed an algorithm for

this problem and showed that this problem can be solved in polynomial time. Their

algorithm is based on a greedy method to determine a strict Pareto optimum. Koksalan

(1999) developed a heuristic procedure to quickly find out a good solution for the

bi-objective scheduling. Koksalan implemented the procedure for two different bi-

objective scheduling problems: (i) minimizing total flowtime and maximum tardiness

and (ii) minimizing total flowtime and maximum earliness.

However, these efforts on bi-objective scheduling with the objectives of minimizing

mean flowtime and maximum tardiness have been made in the static case of a serial

processing machine problem. In this thesis, the efforts are directed towards dynamic

bi-objective scheduling of a single machine having serial processing as well as parallel

batch processing. In dynamic scheduling, the concept of Pareto optimal/ efficient

points becomes vague, which is first redefined for the dynamic scheduling environment

in Section 2.3. It is then applied to a serial processing machine in Chapter 3 and to a

batch processing machine in Chapter 4.

2.1.2 Minimizing mean and variation of flowtime

Minimization of mean completion times is one of the most commonly occurring regular

measures, perhaps due to its equivalence to mean waiting time, mean lateness, and

average in-process inventory. Yet in certain situations it is also desirable to reduce the

variability of completion times, resulting in performance measures that are non-regular.

For instance, in a service oriented environment, one might be interested in providing
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as much uniform quality of service as possible based on the customers waiting times in

the system. Another example where one might be interested in a variability measure

was given by Merten and Muller (1972) in the context of organization of computer

databases. They noted that, in an organization of computer files in large databases,

it is desirable to provide uniform response time to users. The objective then is to

determine an arrangement that minimizes variation of access times to the different

records in these files.

Different measures have been proposed and developed for measuring the variation

of completion times/flowtimes. Merten and Muller (1972) considered Completion Time

Variance (CTV). Kanet (1981) proposed using Total Absolute Difference in Comple-

tion times (TADC). While Aneja et al. (1998) proposed a new measure of variation as

Weighted Mean Absolute Deviation (WMAD) of completion times. Mosheiov (2000)

modified WMAD as Mean Absolute Deviation of job completion times from the Mean

Completion time (MADMC). The formulation of all these measures are as follows:

CTV =
1

n

n∑
i=1

(Ci − C̄)2 (2.5)

TADC =
n∑

i=1

n∑
j=1

|Cj − Ci| (2.6)

WMAD =
n∑

i=1

wi|Ci − C̄w| (2.7)

MADMC =
1

n

n∑
i=1

|Ci − C̄| (2.8)

where Ci is the completion time of job i, C̄ is the mean completion time, wi is the

weight assigned to job i, and C̄w =
∑n

i=1 wiCi.

Mittenthal et al. (1996) provided a review of bi-objective scheduling problems

involving a measure of central tendency of job completion times and a measure of

variation of job completion times. They considered two measures of central tendency
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(mean and median) and five different measures of variation and thus discussed ten

possible combinations of static bi-objective scheduling problems.

Bagchi (1989) considered TADC as a measure of the variation and total completion

time (TC =
∑n

i=1 Ci = nC̄) as a surrogate for mean completion time. Assuming

total cost as a linear and non-decreasing function of TC and/or TADC alone, Bagchi

formulated a convex combination model of the cost function as follows:

min{α(TC) + (1− α)(TADC)}, 0 ≤ α ≤ 1 (2.9)

Bagchi developed a polynomial algorithm to solve the problem and showed that

it has multiple V-shaped optimal sequences. A V-shaped sequence has jobs in non-

increasing order of processing times before the job with the shortest processing time,

and in non-decreasing order of processing times after it.

De et al. (1992) provided a dynamic programming algorithm to the completion

time variance problem with pseudo-polynomial time complexity and proved that the

optimal sequence is V-shaped. They further showed that a bi-objective problem of

minimizing mean and variance of job completion times could be solved in pseudo-

polynomial time. The convex combination model of their bi-objective problem is as

follows:

min{α(C̄) + (1− α)(CTV )}, 0 ≤ α ≤ 1 (2.10)

However, the problem of bi-objective scheduling with the objectives of minimizing

flowtime central tendency and its variation had been directed only on static cases of a

single serial processing machine with small number of jobs. In this thesis, the efforts

are focused on dynamic bi-objective scheduling of single machine with serial processing.

The concept of Pareto control in dynamic scheduling has been applied to bi-objective

scheduling of single serial processing machine with the objectives of minimizing mean

and variance of cycle time in Chapter 3.
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2.1.3 Minimizing earliness-tardiness (ET) performance

Machine scheduling problems with ET performance have received tremendous attention

in the last fifteen years due to the growing interest in Just-In-Time (JIT) production

strategies in the industry. The widespread use of JIT production strategy in manufac-

turing to eliminate inventories lead to a new class of scheduling problems in which both

earliness (and/or number of early jobs) and tardiness (and/or number of tardy jobs)

are penalized. The JIT production strategy is to produce only the necessary items in

the necessary quantities at the required times. Thus in a JIT manufacturing environ-

ment, finishing jobs too early induces high inventory holding costs and may mean loss

in profit due to environmental degradation of product quality, while finishing too late

implies contractual penalty and loss of customer good will. In this type of environ-

ment, instead of a single due date, a due date window is given, since the customers

will generally allow a time interval for the delivery of the products. If the job finishes

within the time period of the due date window, it incurs no penalty; otherwise it is

penalized either for being early or for being late. The problems dealing with earliness

and tardiness objectives in JIT scheduling are often referred as “ET problems” in the

literature. Correspondingly, the earliness and tardiness objectives are referred as “ET

performance” by Wu and Weng (2005).

The scheduling problems with the ET performance constitute the most important

part of the literature on multi-objective scheduling problems. Sidney (1977) was prob-

ably the first researcher to study the single machine scheduling problem with earliness

and tardiness penalties. He developed an efficient algorithm to minimize maximum

earliness or tardiness on a single static, serial processing machine, where jobs had dis-

tinct due dates. Garey et al. (1988) showed that the single machine scheduling problem

with distinct due dates, where the objective is to minimize the sum of the absolute

deviation of job completion times from their corresponding due dates, is NP-complete

by reducing the even-odd partition problem to it.
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Ow and Morton (1989) developed a procedure to solve JIT scheduling problems

assuming no inserted idle time. They implemented a new heuristic search method,

called the Filtered Beam Search, where a limited number of candidate solution paths

are searched in parallel and a certain number of good paths are stored at each stage.

Ow and Morton tested the performance of this search method with certain dispatch

heuristics like earliest due date first (EDD) and showed that the Filtered Beam Search

method performed better and was more robust. Lee and Choi (1995) developed a genetic

algorithm for sequencing jobs on a single machine with distinct due dates and earlytardy

penalties. They reported computational results for problem sizes of up to 80 jobs but

the optimality of the solutions for such large problems could not be verified since

genetic algorithms provide only a heuristic approach to problem solving. Ventura and

Radhakrishnan (2003) formulated the same problem with the objective of minimizing

the sum of the absolute deviations of the job completion times from their corresponding

due dates and developed a Lagrangian relaxation procedure to solve the problem.

Considerable research has been done in single machine scheduling with non-common

due dates and a comprehensive survey of work done on earliness/tardiness scheduling

problems until the late 1980s is provided by Baker and Scudder (1990). For schedul-

ing problems with the ET performance, no known algorithm exists that yields near

optimal solutions. These problems are complicated due to the planning horizon being

unrestricted and the possibility of inserted idle times in an optimal schedule. The

majority of the previous work provides computational results for problem sizes of up

to 40 jobs only. For larger problem sizes, heuristic procedures like genetic algorithms

and other search algorithms have been utilized to attain solutions.

Almost the entire body of literature on earliness/tardiness problems deals with

static scheduling and a majority of the studies focus on single machine models. In

addition, a bulk of the literature is rather rhetorical in that a large number of studies

focus on a special problem in which all jobs have the same common due date, which
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are not discussed in this thesis. To the best available knowledge, only two papers deal

with dynamic problems, i.e., distinct arrival times. The dynamic problem becomes

very complicated even for the single machine case. Nandkeolyar et al. (1993) proposed

a modular approach for the dynamic single machine problem with equal weights for

earliness and tardiness. Sridharan and Zhou (1996) developed a decision theory based

approach for the problem, where jobs have distinct arrival and processing times, distinct

due dates, and possibly unequal weights for earliness and tardiness. However, all these

efforts on scheduling for ET performance are conducted on a serial processing machine

problem and only one paper is found to address the earliness and tardiness scheduling

problems on a batch processor but in a static setting (Qi and Tu, 1999).

The ET performance can be quantified by several measures. Here, two measures

are considered for the ET performance - (|E|+ |T |) and (E2 + T 2) (Baker and Scudder,

1990; T’kindt and Billaut, 2002; Gordon et al., 2002). The earliness and tardiness of

lot i are represented by Ei = max(di − Ci, 0) and Ti = max(Ci − di, 0), where di and

Ci are the due date and completion time of lot i respectively. For dynamic systems,

two ET performance measures are defined below based on the data collection of n lots

in steady state.

|E|+ |T | =
1

n

∑

∀i
(Ei + Ti) (2.11)

=
1

n

∑

∀i
(|Ci − di|) (2.12)

E2 + T 2 =
1

n

∑

∀i

(
(Ei)

2 + (Ti)
2
)

(2.13)

First measure, (|E|+ |T |), represents the problem of minimizing the sum of ab-

solute deviations of the job completion times from their corresponding due dates. The

second measure, (E2 + T 2), is relevant for the cases where large deviations from the

due dates are highly undesirable, and so it might be more appropriate to use squared

deviations from the corresponding due dates as the performance measure (Baker and

Scudder, 1990).
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In this thesis, the work is carried out on dynamic scheduling of a batch processing

machine for minimizing the ET performance. First, a look ahead batching method

is developed for solving the ET problem in dynamic scheduling of a batch processing

machine in Chapter 5. Further, the concept of Pareto control has been applied for

tardiness and earliness related objectives in dynamic scheduling of a batching machine

in Chapter 6.

2.2 Scheduling of a Batch Processing Machine

A parallel batch processing machine is a machine that can process up to a number

of jobs simultaneously. The jobs that are processed together form a batch. All jobs

contained in the same batch start and complete at the same time, since the completion

time of a job is equal to the completion time of the batch to which it belongs. Web-

ster and Baker (1995) presented an overview of algorithms and complexity results for

scheduling a batch processing machine.

Generally, manufacturing scheduling involves two types of batch problems, espe-

cially in semiconductor manufacturing: burn-in oven model and furnace model (Web-

ster and Baker, 1995; Hung, 1998). In the burn-in oven model, the processing time

of a batch is equal to the processing time of the longest job in the batch, which is

exemplified by the problem of scheduling burn-in ovens for back-end test operations.

In the furnace model, the batch processing time is determined by the product type in

a batch and is independent of the number of jobs in the batch. The furnaces used for

the deposition operation in wafer fabrication is a typical example.

2.2.1 Burn-in oven model of batching

A series of work on this problem is presented by Lee et al. (1992), Chandru et al.

(1993a), Chandru et al. (1993b), Uzsoy (1994), and Sanjay and Uzsoy (1998). Brucker
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et al. (1998) developed dynamic programming algorithms for a single batching machine

with burn-in model. They proved that due date based scheduling objective gives rise

to NP-hard problems. Further, Potts and Kovalyov (2000) presented an extensive

literature review on models that integrate scheduling with batching decisions.

In the semiconductor manufacturing industry, burn-in oven operation is near the

end of the production process. Its scheduling is thus critical in determining ET perfor-

mance and throughput of the entire system. Lee et al. (1992) presented efficient dynamic

programming-based algorithms for minimizing the number of tardy jobs. Chandru et al.

(1993a) and Chandru et al. (1993b) developed an optimal branch-and-bound algorithm

for the single machine problem and heuristic algorithms capable of consistently obtain-

ing near-optimal solutions in reasonable computational times. Uzsoy (1994) developed

both a heuristic and a branch-and-bound approach to minimize the total completion

time and the makespan of a given mix of jobs. Sanjay and Uzsoy (1998) presented a

dynamic programming formulation and heuristics for a problem of minimizing total

tardiness on a batch processing machine. Although Lee et al. (1992) and Sanjay and

Uzsoy (1998) considered the due date objectives in scheduling the batch processing

machine, they focused only on the static problems.

However, in the available literature, it seems that there does not exist any litera-

ture on the bi-objective scheduling of a batch processing machine in either the static

or dynamic case. In this thesis, a dynamic bi-objective scheduling method for simul-

taneous minimization of mean cycle time and maximum tardiness is proposed and

developed for a burn-in oven type batching machine in Chapter 4.

2.2.2 Furnace model of batching

Many researchers have developed dynamic scheduling heuristics for the batch schedul-

ing problem with a furnace model such as Ikura and Gimple (1986), Glassey and
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Weng (1991), Fowler et al. (1992), Weng and Leachman (1993), Robinson et al. (1995),

and Fowler et al. (2000).

In the area of production, planning and control studies, Ikura and Gimple (1986)

were probably the first to address the problem of scheduling jobs on a batch processing

machine from a deterministic scheduling perspective. In the semiconductor manufac-

turing domain, some work has been done on batch processing machines. Glassey and

Weng (1991) added to the model of Ikura and Gimple, a feed forward control system

to take advantage of forecast arrival times. They called it Dynamic Batching Heuristic

(DBH). Using simulations for scheduling jobs of a single job family on a single batch

processing machine, they showed that forecasting information can reduce the waiting

time of lots arriving at a batch workstation. This real-time information is available

(from shop floor control systems) in most wafer fabrication facilities (fabs), but is sel-

dom exploited in decision making. Glassey and Weng showed that use of the real-time

information can yield improvements in operation.

Based on this standpoint, Fowler et al. (1992) noticed that the further ahead the

production planners look, the lower is the potential impact of occurring arrivals. They

modelled the activity of loading by triggering the starting rule whenever a new job

reaches the queue. Their rule is referred to as Next Arrival Control Heuristic (NACH).

They also extended the approach to the multi-product environment, where a decision

taken for one product can have a major impact on the delays experienced by batches

of different product types.

Weng and Leachman (1993) addressed the same problem examined by Glassey and

Weng (1991) and by Fowler et al. (1992) and proposed a new rule, Minimum Cost Rate

Heuristic (MCR). MCR attempts to minimize the holding cost per unit time, which

essentially minimizes the waiting time of lots in the queue. Robinson et al. (1995)

extended these rules by using the information on the current and expected future

workload status of both upstream and downstream workstations. They proposed a
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Rolling Horizon Cost Rate Heuristic (RHCR), which is essentially a combination of

NACH and MCR, i.e., the cost rate function used in MCR is incorporated into the

rolling planning horizon used in NACH. Fowler et al. (2000) later extended their rules

for single server case (Fowler et al., 1992) to a multiple server case.

The above mentioned related works exploit only the arrival information of the

future incoming lots and focus on controlling the waiting time in front of the machines

and thus the cycle time related objectives of the schedule. However, the work done

herein does not consider the ET performance (simultaneous minimization of earliness

and tardiness related objectives) in a JIT manufacturing environment, which are very

relevant to semiconductor manufacturing.

In this thesis, a new Look-Ahead Batching (LAB) method is proposed for the

ET performance in dynamic batch scheduling in Chapter 5. LAB method exploits the

arrival and due-date information of the future coming lots to optimize the batching

decisions. A wide range of simulation experiments are conducted to show the effect of

LAB over the MBS, DBH and NACH policies. Further, LAB method for ET perfor-

mance is extended to develop the Pareto control between the conflicting objectives of

earliness and tardiness in dynamic scheduling of a batch processing machine in Chap-

ter 6. Following sections present a brief review of literature with respect to the due

date related objectives in batch scheduling.

Hung (1998) presented a scheduling method for minimizing total tardiness of the

schedule at E-beam writers in mask shop, which is also modelled as furnace batching.

He proposed a dynamic programming formulation to calculate the optimal batching

decisions at each batch processing machine and showed its improved results over the

mask shop current scheduling method and the full batch method. But, this work is

also focused on the static problems with consideration of only one due-date related

objective, i.e. minimization of the total tardiness. In addition, it does not reap the

benefit of the future arrival information from shop floor control systems.
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Further, Kim et al. (2001) presented three batch scheduling rules, Modified Mini-

mum Batch Size rule, Modified Dynamic Batching Heuristic, and Processing Urgency

Classification Heuristic. Although they used a dynamic system that exploits the future

arrival information, they did not focus on optimization of due date objectives as such.

In all these modified rules, they used due dates of the jobs only to select a family to

be processed next on the available batch processing machine in a multiple job family

environment. A family with the least average slack time is selected to be processed

next. They did not exploit the due date information of the future incoming lots in

order to optimize the due date objectives.

In the available literature, it seems that there is no literature with respect to the

ET performance in dynamic batch scheduling. In this aspect, the development of LAB

for the ET performance and the ET performance schedule control is a new contribution

of this research.

2.3 Methodology: Pareto Control in Multi-Objective

Dynamic Scheduling

In this work, the concept of Pareto optimal solutions has been extended and applied

to multi-objective scheduling problems in dynamic cases, where jobs are assumed to

arrive continuously at discrete times. The multi-objective dynamic scheduling problem

can be considered as a multi-stage multi-objective optimization problem in real time.

The single-stage multi-objective optimization problems are generally solved by

combining the multiple objectives into one scalar objective, whose solution is a Pareto

optimal point for the original problem. “Geoffrion’s theorem” states that the minimizer

of these convex combined functions is Pareto optimal (Geoffrion, 1968). “Geoffrion’s

theorem” concerns a necessary and sufficient condition for the determination of proper

Pareto optima, as stated in the following theorem (T’kindt and Billaut, 2002):
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Theorem: (Geoffrion, 1968)

Let S be the convex set of the solutions and P criteria fj that are convex functions

on S. x∗ is a proper Pareto optimum if and only if ∃w ∈ RP , with wj ∈ ]0; 1[ and
∑P

j=1 wj = 1, such that x∗ is an optimal solution of the problem:

Min g(f(x)) with g(f(x)) =
∑P

j=1 wjfj(x)

subject to: x ∈ S.

Summary of Algorithm:

Geoffrion (1968) achieved the proof of the theorem by the method of contradiction.

First, it is assumed that x∗ is an optimal solution of the above problem with w fixed and

it is shown that x∗ is a proper Pareto optimum. Then, x∗ is assumed as a proper Pareto

optimum and it is shown that ∃ w ∈ ]0; 1[ such that x∗ is an optimal solution of the

above problem. ¤

Geoffrion’s theorem can be extended to the multi-stage multi-objective optimiza-

tion problems with an assumption that if an objective function (Fj, j = 1, 2, ..., P )

can be optimized by optimizing a criterion (fj, j = 1, 2, ..., P ) at each stage, then

optimizing a convex combination of these criteria (
∑P

j=1 wj.fj), such that ∃w ∈ RP ,

wj ∈ ]0; 1[ and
∑P

j=1 wj = 1, at each stage will give a Pareto optimal solution for

the multi-stage multi-objective optimization problem, Min(F1, F2, ..., FP ). Applying

this in the context of multi-objective dynamic scheduling problems, if the objective

function F1 can be optimized by selecting jobs in real time according to criterion f1

and the objective function F2 can be optimized by choosing jobs in real time according

to criterion f2, then it can be assumed that by selecting jobs in real time according to

a convex combination of criteria f1 and f2 will lead to a Pareto optimal solution for

the multi-objective dynamic scheduling problem, Min(F1, F2).

Since the term “Pareto optimal solutions” or “Pareto sequences” as presented for

the static problems in Section 1.2 may not be applicable to multi-objective dynamic

scheduling (MODS) problems. In dynamic problems, the sequence of jobs remains
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open-ended and the scheduling objectives are computed after long simulation runs in

steady state, excluding the warm-up period. Therefore, the concept of Pareto control

has been adopted for solving MODS problems. Pareto control in dynamic scheduling

is defined as controlling the performance of conflicting objectives within the operating

range. The concept of Pareto control in dynamic scheduling is shown in Figure 2.2. If

two conflicting objectives are considered, then the trade-off between them is represented

by a Pareto control curve as shown in Figure 2.2 (a). If there are three conflicting

objectives considered simultaneously, then there will be a Pareto control surface in

three dimensional space as presented in Figure 2.2 (b).

The concept of Pareto control can be explained as follows. Suppose there are

two conflicting objective functions (also called bi-objective function), F1 and F2, in

dynamic single machine scheduling. Assuming that these objectives are individually

optimized by scheduling a job at each decision instance in simulation clock accord-

ing to the corresponding criteria of f1(x) and f2(x), for x ∈ X, where x is the job

index and X is the set of all available jobs at that particular decision instance. For

bi-objective scheduling, at each decision instance on the time horizon, a convex combi-

nation approach is used to define a joint criterion. This joint criterion is used to select

a Pareto optimal job based on the relative importance of scheduling criteria f1(x) and

f2(x). This results in a particular sequence of dynamically arriving jobs for scheduling

and corresponding objective functions, F1 and F2. Varying the relative importance of

scheduling criteria at each decision instance will result in Pareto control of bi-objective

dynamic scheduling as shown in Figure 2.2 (a).

For scheduling dynamically arriving jobs on the machine, a discrete-event simulation-

based approach of scheduling is used. In this approach, at each decision instance in the

simulation clock, an optimal job is selected from the dynamic queue of jobs and sched-

uled on the machine for processing. The simulation clock is then moved forward to the

next decision instance. Generally, scheduling and simulation are studied as two sepa-
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(b) Pareto control surface for three objectives case

Figure 2.2: Pareto control in multi-objective dynamic scheduling

rate concepts; scheduling for sequencing jobs on the machine and simulation as a tool to

validate the results. Here, the concepts of scheduling and simulation are combined and

thus used to exploit the benefits of discrete-event simulation in dynamic scheduling of

the shop. This combined approach is referred to as Conjunctive Simulated Scheduling

(CSS) (Gupta and Sivakumar, 2005). Using CSS, a multi-objective dynamic scheduling

problem is disintegrated into several decision instance based multi-objective optimiza-
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tion problems. Thus, an appropriate job, which satisfies multiple criteria of scheduling

objectives need to be selected at each decision instance in the simulation clock.

Therefore, unlike finding a Pareto sequence in static scheduling problems, in multi-

objective dynamic scheduling problems a Pareto optimal job is selected for scheduling

on the machine at each decision instance in the simulation clock. For this, first a Pareto

job need to be determined among the queued up jobs at each decision instance.

2.3.1 Determination of Pareto optimal job

At each decision instance in dynamic scheduling, the Pareto optimal jobs are deter-

mined. Suppose the criteria f1(x) and f2(x) correspond to minimization of the process-

ing time (pi) and minimization of the due date (di), then at each job selection instance

all jobs can be represented on a two dimensional graph between pi and di. For the job

data in Table 1.2, the graph is presented in Figure 2.3, where each point corresponds to

a job which is a competitive candidate for being loaded on the machine. In this figure,

an encircled point can be considered as a Pareto optimal job (Gupta and Sivakumar,

2002). A Pareto optimal job is selected to schedule on the machine at each decision

instance in the simulation clock, and thus achieve a schedule of dynamic jobs, which

gives a boundary solution for the bi-objective dynamic scheduling problem.

Various approaches exist to find the Pareto optimal solution for a multi-objective

optimization problem as reported by Zeleny (1973); Yu (1973); Keeney and Raiffa

(1976); Goicoechea et al. (1982); Zeleny (1982); Sawaragi et al. (1985); Yu (1985); Tabu-

canon (1988); T’kindt and Billaut (2001, 2002). These approaches generally transform

the original multi-objective problem into a new single objective problem in which the

objective function is an aggregation of different individual objectives with new para-

meters. Based on texts by Yu (1985); Steuer (1986); Tabucanon (1988); T’kindt and

Billaut (2002), these approaches are enlisted as follows:
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Figure 2.3: Graph showing all jobs in Table 1.2 with points (di, pi).

[Encircled points present Pareto optimal jobs with respect to min(pi, di).]

∗ Determination by convex combination of objectives,

∗ Determination by means of the ε-constraint approach,

∗ Use of the Tchebycheff metric, weighted Tchebycheff metric, etc.,

∗ Use of Goal Programming, De Novo Programming

∗ Use of Multicriteria Mixed Integer/Linear Programming, etc.

The description of these approaches is beyond the scope of this thesis. The most

commonly used approach in multi-objective optimization is to transform the problem

into single objective problem using convex combination of objectives and weights. The

weights are decided based on the relative importance of each objective. Therefore, in

this research, the focus has been only on the convex combination approaches, because

of their simplicity of application in dynamic scheduling, low cost of computation, and

ability to provide feasible solution in near-real-time.

2.3.2 Convex combination approaches

Most of the convex combined functions are either in a linear fashion or in the form of

some kind of the distance derivatives (Tabucanon, 1988; Yu, 1985; Zeleny, 1982). The
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prominent techniques in this relation are Weighted Aggregation (WA) and Compromise

Programming (CP), which are described in detail in the following subsections.

Weighted aggregation (WA) method

A standard technique in MOO is to minimize a positively weighted convex sum of

the objectives. However, it is up to the user to choose appropriate weights. Until

recently, considerations of computational expense forced users to restrict themselves

to performing only one such minimization, considering just one set of weights chosen

with care. Newer, more ambitious approaches aim at minimizing convex sums of the

objectives for various settings of the convex weights, thus generating various points in

the Pareto set. Though computationally more expensive, this approach gives an idea

of the shape of the Pareto surface and provides the user with more information about

the trade-off among the various objectives. Thus, this method is aimed at minimizing

convex sums of the objectives for various settings of the convex weights in order to get

a trade-off among the various objectives. In this WA method, different objectives are

weighted and summed up in a linear fashion to a single objective, formulated as:

min F =
2∑

j=1

wj · fj(x) (2.14)

where wj are non-negative weights with
∑

wj = 1. By varying these weights, all

the Pareto optimal points can be achieved as each Pareto optimal solution point on

a convex surface corresponds to a set of wj (Geoffrion, 1968). This method is the

simplest possible approach to solving the MOO problem. From application point of

view, the user may be having only an intuition of the importance of one objective over

the other, without having any knowledge of an exact set of weights for their various

objectives, as it is very tough to establish a relationship between these weights and the

real outcome in terms of objective function values. This complexity can be dealt with

by using the idea of finding a Pareto boundary by assigning varying weights to the
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objectives. Thus, the user has the full set of Pareto optimal points, defining a Pareto

boundary in static cases.

One problem with the WA method is that of dimensional inconsistency among

various objectives. Therefore, it is often observed that due to the different units of

the objectives, one objective functional value appears to become dominant in the over-

all weighted aggregation of objective functions, even in various combinations of the

weights. As a result, this approach becomes misleading, i.e., always deciding in favor

of a particular objective, unless normalization is performed. One of the simple nor-

malization techniques to overcome this problem is to use relative scaling, i.e., dividing

each objective function by its maximum value and using the weighted ratio sum. The

maximum value of each objective function is taken from the available data set and thus

it dynamically changes at each decision instance.

However, this method suffers from two more drawbacks in solving MOO prob-

lems (Das and Dennis, 1997). First, the relationship between the vector of weights

and the Pareto curve even in convex MOO problems is such that a uniform spread of

weight parameters rarely produces a uniform spread of points on the Pareto set. Often,

all the points found are clustered in certain parts of the Pareto set with no solution

in the interesting “middle part” of the set, thereby providing little insight into the

shape of the trade-off curve. The second drawback is that the non-convex parts of the

Pareto set cannot be obtained by minimizing convex combinations of the objectives,

though the existence of a non-convex part in a Pareto boundary is a very rarely oc-

curring phenomenon. Motivated by the obvious need of looking for a more powerful

approach, Zeleny (1973, 1982), Yu (1985) and others developed the CP method.

Compromise programming (CP) method

The compromise programming (CP) method is a distance based technique (Zeleny,

1973; Yu and Leitmann, 1974; Zeleny, 1982). To define this, first let x∗ denote the
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utopia (or ideal) point, which gives the vector of the optimum value of each objective

function. Thus F ∗(x∗) = [f1(x
∗), f2(x

∗)] is the utopia vector. This vector can not be

obtained unless both objectives are non-conflicting, i.e., this ideal objective vector is

only a hypothetical solution that never exists in the practical real-life problems. Simi-

larly, let x0 denote the nadir (or anti-ideal or anti-utopia) point, which is defined by the

individual function-wise worst values, but considering only Pareto optimal solutions.

Thus F0(x0) = [f1(x0), f2(x0)] is the nadir vector, which may not be an actual solution

in the feasible space. The geometric interpretation of these points is demonstrated in

Figure 2.4.
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Figure 2.4: Utopia and Nadir points in compromise programming

CP method identifies solutions which are closest to the utopia solution as deter-

mined by some measure of distance (Zeleny’s (1982) axioms of choice). The solutions

identified as being closest to the utopia solution are called compromise solutions and

constitute the compromise set. In the CP method, the point of interest is the compar-

ison of distances of different efficient points (fj(x), j = 1, 2) from the utopia solution

which is the point of reference. Since the objectives may be of different dimensions,

so the distance measure needs to be corrected to make the individual objectives mu-

tually commensurable. It is therefore necessary to use relative rather than absolute
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deviations. The individual relative deviations can be raised to any power (r > 0) be-

fore these are summed and also the weights wj (0 < wj < 1 and
∑

j wj = 1) can be

attached to the different relative deviations. For a MOO problem, with utopia point

F ∗(x∗) = [f1(x
∗), f2(x

∗)], the overall minimizing objective function can be expressed

as follows:

min Fr =

[
2∑

j=1

[
wj · |fj(x

∗)− fj(x)|
fj(x∗)

]r
]1/r

(2.15)

In this formulation, the choice of exponent r reflects the user’s concern with re-

spect to the maximal deviation. Introduction of wj allows the expression of the user’s

intuition concerning the relative importance of the various objectives. Thus, a double-

weighting scheme exists. The parameter r reflects the importance of the maximal

deviation and the parameter wj reflects the relative importance of the jth objective.

From the application point of view, both these parameters give the benefit of control-

ling the generated solution over the Pareto boundary. In the above CP formulation,

keeping the utopia point the same but by changing the weights, one may reach all the

efficient points located on the boundary (Zeleny, 1982). In the observations of Gupta

and Sivakumar (2002), at any selection instance, all Pareto optimal jobs can be selected

by the CP method by varying weights wj within a particular spread of boundary. On

the other hand, varying exponent r helps in controlling the spread of this boundary.

Similarly, CP method can also be defined with reference to the nadir point, where

CP method will identify solutions which are farthest to the nadir point. The distances of

different efficient points (fj(x), j = 1, 2) from the nadir point F0(x0) = [f1(x0), f2(x0)]

are compared and the efficient point with the maximum distance is chosen. The cor-

responding overall maximizing objective function can be formulated as:

max F ′
r =

[
2∑

j=1

[
wj · |fj(x0)− fj(x)|

fj(x0)

]r
]1/r

(2.16)

Using the theory of fuzzy sets, Zeleny (1982) showed that minimizing Fr (equa-

tion 2.15) or maximizing F ′
r (equation 2.16) for certain values of exponent r would
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provide precisely the same solutions, which is also supported by our observations in

applying CP method for selecting Pareto optimal jobs at each selection instance in

scheduling. Operationally, three points of the compromise set are of mathematical im-

portance, those corresponding to r = 1, 2, and ∞. With r = 1 and equal weights wj,

the CP method is equivalent to the Global Criteria method, whose single optimization

function is formulated as (Tabucanon, 1988):

min Fr =
2∑

j=1

[ |fj(x
∗)− fj(x)|
fj(x∗)

]
(2.17)

where fj(x
∗) is optimum value of the singular objective function j at its optima point

x∗, fj(x) is the function value itself.

When r = 2, the equation becomes simply the quadratic function of distance be-

tween two points in 2-D space for a bi-objective problem, where each relative deviation

is weighted in proportion to its magnitude. As r becomes larger and larger, the largest

deviation receives more and more weight. For r approaching ∞, the distance measure

reduces to the Tchebycheff function (Zeleny, 1982):

lim
r→∞

Fr = lim
r→∞

[
2∑

j=1

[
wj · |fj(x

∗)− fj(x)|
fj(x∗)

]r
]1/r

(from Eqn. 2.15)

= lim
r→∞

[T r
1 + T r

2 ]1/r

(
where Tj =

∣∣∣∣wj · fj(x
∗)− fj(x)

fj(x∗)

∣∣∣∣ , j = 1, 2

)

(taking ln both sides and interchanging lim and ln)

⇒ (a) lim
r→∞

ln Fr = lim
r→∞

[
1

r
· ln

(
T r

1

(
1 +

(
T2

T1

)r))]
(assuming that T1 > T2)

= ln T1 + lim
r→∞

[
1

r
· ln

(
1 +

(
T2

T1

)r)]

= ln T1

(
∵ T2

T1

< 1, ∴ lim
r→∞

[
1

r
· ln

(
1 +

(
T2

T1

)r)]
= 0

)

Similarly,

⇒ (b) lim
r→∞

ln Fr = ln T2 (assuming that T2 > T1)

(thus combining both (a) and (b))
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⇒ lim
r→∞

Fr = max
j={1,2}

Tj

This leads to the following conclusion:

lim
r→∞

Fr = max
j={1,2}

[∣∣∣∣wj · fj(x
∗)− fj(x)

fj(x∗)

∣∣∣∣
]

(2.18)

This is because the relative contribution of the largest relative deviation, when

raised to a large exponent, would be extremely larger than all the rest combined and

thus will dominate the distance determination.

Though the weights representing relative importance are used as the preference

structure when applying CP, it has been mathematically proven that CP method is

superior to WA method in locating the efficient solutions (Steuer, 1986). Thus, CP

method is widely applied in mechanical engineering design problems, where single stage

multi-objective optimization problems exist. However, there are very few applications

of CP to multi-objective scheduling problems. Taboun et al. (1995) used CP to solve two

bi-objective scheduling problems with objectives of (i) minimizing total tardiness and

earliness vs. mean flowtime and (ii) minimizing total tardiness vs. total earliness. They

modelled the scheduling problem using linear programming and used CP to generate

efficient points of bi-objective static scheduling problem having 13 jobs to schedule on

a single machine. Koksalan (1999) exploited CP to develop a heuristic procedure for

solving two different bi-objective scheduling problems: (i) minimizing total flowtime

and maximum tardiness and (ii) minimizing total flowtime and maximum earliness.

Their application also addressed only static scheduling problems and presented an

example of scheduling 15 static jobs on a single machine.

However, to the best knowledge available, research on multi-objective dynamic

scheduling has not been addressed yet in the existing literature. Thus, this research ad-

dresses the use of achieving the Pareto control for the multi-objective dynamic schedul-

ing problems.
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2.4 Conclusion

In this chapter, first, a literature review framework has been developed for multi-

objective dynamic scheduling of manufacturing processes. Then, the existing literature

is reviewed in two parallel directions: multi-objective scheduling with serial process-

ing and single objective scheduling with batch processing. Multi-objective scheduling

review has been divided into three parts with respect to the three pairs of the con-

flicting objectives: (i) the mean cycle time and the maximum tardiness, (ii) the mean

cycle time and the cycle time variance, and (iii) the earliness and the tardiness related

objectives. The review on batch scheduling has been done in the two directions: the

burn-in oven model and the furnace model of batching.

Further, the methodology involved adopting the concept of “Pareto control” in the

context of multi-objective dynamic scheduling problems. The conjunctive simulated

scheduling approach is used to schedule dynamically arriving jobs on the machine.

Thus, a multi-objective dynamic scheduling problem is disintegrated into several deci-

sion instance based multi-objective optimization problems. At each decision instance in

simulation clock, a Pareto job is selected to satisfy the multiple criteria of scheduling ob-

jectives. For selecting Pareto jobs, two convex combination approaches are presented:

WA and CP methods.

The concept of “Pareto control” is applied and computationally experimented

for the serial processing machine in Chapter 3 and for the batch processing machine

in Chapter 4. Further, Pareto control is computationally experimented for look ahead

batch processing in Chapter 6. Finally, a real-life case study example for Pareto control

in serial processing is presented in Chapter 7.
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Chapter 3

Pareto Control in Serial Processing

3.1 Introduction

In the previous chapter, the Pareto control concept was adopted for multi-objective

dynamic scheduling problems. In this chapter, the Pareto control concept is applied

and computationally experimented for bi-objective dynamic scheduling problems with

a single serial processing machine. The two pairs of conflicting objectives considered

are (i) mean cycle time vs. maximum tardiness and (ii) mean cycle time vs. variance

of cycle time, as earlier discussed in Section 2.1.1 and Section 2.1.2.

In real life, manufacturing systems are dynamic and stochastic, and hence the

decision maker makes use of dispatching rules to determine the order in which jobs are

to be loaded and processed by the machines. A dispatching rule selects a job to be

processed next from a set of jobs in the machine queue, when the facility becomes free.

Development of dispatching rules has been normally intended to minimize the inven-

tory and tardiness costs. A good review of reports on the use of dispatching rules can

be seen from Blackstone et al. (1982), Haupt (1989) and Ramasesh (1990) for jobshop

scheduling with flowtime related performance measures. There also have been quite

a lot of studies on development of efficient rules (Russell et al., 1987) and combined

rules (Holthaus and Rajendran, 1997). Lu et al. (1994) particularly addressed the prob-
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lem of reducing the mean and variance of cycle time in semiconductor manufacturing

plants. A customary practice in scheduling research is to minimize the flowtime related

and tardiness-related measures of performance since the associated inventory and tar-

diness costs are assumed to be directly proportional to the time periods of flowtime

and tardiness of jobs respectively (Blackstone et al., 1982).

In contrast to the above, this chapter focuses on bi-objective scheduling problem

for single machine system with dynamic job arrival. The use of convex combination ap-

proaches is proposed for achieving Pareto control in dynamic scheduling. As discussed

previously in Section 2.3, the most commonly used approach in multi-objective opti-

mization is to transform the problem into a single objective problem using a convex

combination of objectives. However, published research on simultaneous minimiza-

tion of multi-objectives is limited to only static problems, even though the dynamic

scheduling problems have been extensively investigated in the last few decades.

In dynamic single machine systems, the shortest processing time (min pi) criterion

minimizes the mean cycle time (Conway and Maxwell, 1962). The earliest due date

(min di) criterion minimizes the maximum tardiness in static case of single machine

scheduling. In case of dynamic scheduling also, the earliest due date criterion tends to

minimize the maximum tardiness for single machine systems. These criteria are used

in the convex combination approaches for simultaneous minimization of mean cycle

time and maximum tardiness in the dynamic scheduling of a single machine. In both

cases, serial and batch processing machine, the Pareto control is achieved for the wide

range of weights associated with these objectives.

3.2 Model, Assumptions and Constraints

In this chapter, a serial processing machine has been modeled with dynamic job arrivals

and the computational experiments are carried out for achieving Pareto control. The
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3. Pareto Control in Serial Processing

motivation of this study is to facilitate the manufacturing management with a method-

ology to control the shop floor schedule according to the demands of dynamic market

forces. Especially, in semiconductor manufacturing, the production is highly driven by

the need of low cycle times and their high repeatability (i.e., low cycle time variance)

on one hand and by the requirements of meeting tight dead-lines on the other. The

relative importance of these objectives changes with time. Due to the highly complex

nature of shop floor at both front-end and back-end in semiconductor manufacturing, it

is preferred to have dynamic near-real-time scheduling based on conjunctive simulated

scheduling. The conjunctive simulated scheduling approach provides the flexibility to

make effective changes for achieving control over the conflicting objectives.

The model consists of a single serial processing machine with the dynamic arrival

of jobs, i.e., the jobs arrive at discrete times. Figure 3.1 represents the schematic

diagram of the model. Many production systems can be modeled as single machine

models, particularly when, in a multiple-machine environment, the performance of a

particular bottleneck machine determines the performance of the entire system.

Serial Processing 

MachineArrival, due date 

& Processing 

time distribution

Lot arrival

Traffic Intensity

Figure 3.1: Schematic diagram of the model with serial processing machine

The related assumptions and constraints can be summarized as follows:

1. The jobs are independent, i.e., the jobs are processed without any precedence.

2. The jobs arrive dynamically at the machine (i.e., ri 6= 0,∀i). The dynamic arrival

of jobs can be either deterministic or stochastic in nature.
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3. The serial processing machine can process only one job at a time.

4. No machine idle time and breakdowns; machine is always available for processing.

5. Setup times are independent of the job sequence and are included in the process-

ing times.

6. No interruption to jobs in processing, implying no job pre-emption.

7. There are no other limiting resources such as material or labor.

3.3 Scheduling Objectives

The scheduling objective functions under study are described in the following.

1. Minimizing Mean Cycle Time (F̄ =
∑n

i=1 Fi/n): the average amount of time that

jobs spend on the machine.

2. Minimizing Maximum Tardiness (Tmax = max(T1, T2, . . . , Tn)): the maximum

value of tardiness of the jobs in steady state.

3. Minimizing Cycle Time Variance (σ2
F =

∑n
i=1(Fi − F̄ )2/n): the variance of cycle

times of the jobs in steady state.

where n is the number of jobs considered in steady state simulation statistics, Fi is the

cycle time of job i and Ti is the tardiness of job i.

In scheduling practice, it is almost always desirable to minimize each of these

three objectives. Mean cycle time and maximum tardiness are contradicting in nature

as earlier presented in Section 2.1.1. With the decrease in mean cycle time, the spread

of cycle time of jobs and so the maximum cycle time of jobs increases, which in turn

increases the maximum tardiness. Similarly from Section 2.1.2, mean cycle time and
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cycle time variance are contradicting in nature. As the mean cycle time decreases, the

spread of the cycle time of jobs increases and vice-versa.

Therefore, in this chapter, two pairs of conflicting objectives are addressed for

dynamic single machine scheduling problem.

• Minimizing the mean cycle time and the maximum tardiness

min (F̄ , Tmax)

• Minimizing the mean cycle time and the cycle time variance

min (F̄ , σ2
F )

3.4 Computational Experiments for Pareto Control

in Serial Processing

Table 3.1 summarizes the factors considered for the simulation experiments. The ex-

perimental design consists of three independently varying parameters, the processing

times, the due dates and the utilization level.

The first factor is the utilization level (ρ) at two different levels, 0.75 and 0.85,

which are considered for the normal operation of the machine. Above 0.85 utilization

level, the system becomes unsteady; while 0.75 utilization level is taken as the average

loaded condition of the machine. The second factor, processing time (pi), is assumed

to include the setup time in it. The processing times of jobs are assumed to have a uni-

form distribution with equal mean and range considering the nature of semiconductor

manufacturing processes. Thus, the lower and upper limits of the interval are set at a

distance of half of the mean from the mean of the distribution. The mean and range

of the uniform distribution is assumed to be 30 time units as a sample study.
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Table 3.1: Factors for simulation experiments

No. Factor Levels Description

1. Utilization Two 0.75, 0.85
Level (ρ)

2. Processing Uniform Mean (µ) = Range = 30 min,
Time (pi) i.e., pi ∈ U[15,45]

3. Interarrival Exponential Mean (λ = ρ · µ)
Distribution

4. Due Date Tight (k = 1) di = ri + k · F̄i

(di) Loose (k = 2)

5. Conflicting Two pairs Minimizing (F̄ , Tmax)
Objectives Minimizing (F̄ , σ2

F )

Since the Poisson process is the most commonly used model for the arrival process

of customers to a queuing system (Law and Kelton, 2000), so the inter-arrival time, the

third factor, is assumed to be exponentially distributed with the mean being controlled

by the utilization factor. For single machine (or server) queuing systems, the utilization

factor can be related to the arrival rate as ρ = λ/µ, where λ is mean arrival rate and

µ is mean service rate. Hence, keeping the service rate at a constant value for all the

experiments, the arrival rate is set to depend on the utilization factor.

The uniformly distributed processing times are generated as follows (Law and

Kelton, 2000):

Mean = 1/µ, Range = 1/µ, Lower limit = 1/(2µ)

⇒ pi = [1/(2µ) + U(100)/(100µ)] (3.1)
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where U(100) generates a uniform random number between 0 and 100.

The exponentially distributed inter-arrival times are generated by the following

expression (Law and Kelton, 2000):

ri = − ln [U(100)/100] /λ (3.2)

The fourth factor is the due date (di), which is assigned to the jobs based on its

arrival on the machine and average system cycle time as presented in the following

expression:

di = ri + k · F̄i (3.3)

where the constant k (> 0) represents the due date allowance factor and F̄i represents

the mean cycle time of jobs in the system at the time of arrival of job Ji. The same

degree of allowance between the due date and the arrival time is assigned to all jobs.

The due date allowance factor gives the flexibility to vary the tightness of due-dates in

order to study its effects on achieving Pareto control. In the experimentation, k = 1 is

considered as tight due-date setting, while k = 2 is loose due-date setting.

The final factor is the conflicting objectives in multi-objective dynamic schedul-

ing of serial processing machine. As described in Section 3.3, two pairs of conflicting

objectives are addressed: (a) minimizing the mean cycle time (F̄ ) and the maximum

tardiness (Tmax) and (b) minimizing the mean cycle time (F̄ ) and the cycle time vari-

ance (σ2
F ).

In this study, each simulation experiment consists of 10 different runs (or repli-

cations) and in each run the shop is loaded continuously with jobs that are numbered

on their arrival. Thus, each run represents a different randomly generated problem

instance. For determining the steady state of the system, the mean of the cumulative

cycle times is continuously observed. It is found that the system reaches a steady state

approximately after the arrival of about 400 jobs for all the runs. Figure 3.2 presents
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the sample graph of the steady state of cumulative average cycle time for SPT method

at 0.75 utilization level. To be on the safe side, the steady state data is collected from

job completion number 500 onwards. Total sample size is in the order of thousands

of job completions (Conway and Maxwell, 1962) and it is preferable to have a smaller

number of replications and a larger run length (Law and Kelton, 1984). Hence, the

number of replications is fixed at 10 and the run length as 1000 jobs. For computation

of statistics the data is collected from job completions, numbering from 501 to 1500,

and the machine is continuously loaded till the completion of all the 1500 jobs. A flow

chart of the simulation experiment is presented in Figure 3.3. The simulation program

is written in C++, implemented in Turbo C++ environment and run on an Intel 2000

Pentium (4), 1.8 GHz PC.
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Figure 3.2: Steady state for cumulative average cycle time at 0.75 utilization level
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SETTING MACHINE PARAMETERS

Utilization level: 0.75, 0.85

START

GENERATION OF JOBS

1. Inter arrival times: Exponential

2. Processing times: Uniform (mean=range=30)

3. Due-date setting: (                                )

SIMULATION OF THE SERIAL PROCESSING MACHINE

1. Queue discipline

Various priority indexes for individual objective experiments

WA and CP methods for bi-objective scheduling experiments

2. Data collection

Jobs numbered on arrival on the machine

Statistics on 1000 completed jobs (501-1500)

3. Experimental Design

Number of runs: 10

Run length for 1000 jobs

(after warm up period of 500 jobs)

PERFORMANCE RELATED STATISTICS

Pareto-controllability of performance measures with

respect to:

mean cycle time and maximum tardiness

mean cycle time and cycle time variance

STOP

2,1, =⋅+= kFkrd
iii

Figure 3.3: Flow chart for simulation experiments on serial processing machine
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3.5 Scheduling Criterion Selection Using Single

Objective

In the main simulation experiments for Pareto control, a criterion is required for min-

imizing each of the individual scheduling objectives in dynamic scheduling of a serial

processing machine. In this context, the criterion refers to the rule by which a job is

selected for scheduling on the machine. This section presents a preliminary study for

selecting a criterion (fj(x), j = 1, 2) for each scheduling objective. This preliminary

study is conducted on the simulation results of single objective dynamic scheduling of

single machine. The experimental conditions for this preliminary study are kept similar

to the conditions described in the above section. These selected criteria will then be

used in WA (Equation 2.14) and CP (Equation 2.15) methods for selecting a Pareto

job at each decision instance in simulation.

In order to select an appropriate criteria for each scheduling objective, several

combinations are explored, which are based on the job and machine related information

of processing time (pi), due date (di), release time (ri), time instance (t) and waiting

time (Wi = t − ri). These combinations serve the purpose of job priority index or

the scheduling criteria at each decision instance in simulation clock. The job priority

index is used to set the priority of queued jobs for scheduling on the machine. The

scheduling objectives under consideration are minimizing mean cycle time, minimizing

maximum tardiness and minimizing cycle time variance as discussed in Section 3.3. The

experiments for single objective dynamic scheduling of a serial processing machine are

conducted at two different levels of utilization factor (ρ = 0.75, 0.85) for the following

job priority indices: (1) min(di) [earliest due date], (2) max(pi) [longest processing

time], (3) max(pi/(di−pi− t)) [maximum critical ratio], (4) max(pi +Wi), (5) min(pi +

Wi), (6) min(di − pi − t) [minimum slack], (7) min(pi/Wi) and (8) min(pi) [shortest

processing time].
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3. Pareto Control in Serial Processing

Table 3.2: Mean cycle time performance of various priority indices (ρ = 0.75)
(In each row, SB represents the best priority index and SW represents the worst priority
index for that problem instance.)

1 2 3 4 5 6 7 8

min (di ) max (pi ) max (pi/(di-pi-t) ) max (pi+Wi ) min (pi+Wi ) min (di-pi-t ) min (pi/Wi ) min (pi )

0 81.28 91.85 (SW) 74.29 83.54 74.88 83.47 78.82 71.00 (SB)

1 81.40 92.69 (SW) 73.92 84.66 71.33 84.66 78.87 65.79 (SB)

2 72.96 90.13 (SW) 63.97 76.58 67.37 76.58 70.42 58.65 (SB)

3 63.34 71.44 (SW) 61.60 66.77 61.78 66.78 61.93 55.43 (SB)

4 67.05 77.80 (SW) 62.63 70.17 61.22 70.14 65.34 55.77 (SB)

5 74.12 84.81 (SW) 70.60 77.32 70.60 77.28 70.94 62.82 (SB)

6 67.30 74.62 (SW) 59.20 (SB) 68.80 61.21 68.80 65.76 61.05

7 61.64 66.21 (SW) 58.24 63.25 56.87 63.16 60.11 54.00 (SB)

8 73.72 82.10 (SW) 68.83 77.62 65.17 77.57 71.16 61.76 (SB)

9 61.75 65.61 (SW) 59.54 63.73 59.00 63.72 60.08 55.23 (SB)

Run No. 

(Problem

instance)

Priority Indices

The results of mean cycle time performance for various priority indices at ρ = 0.75

are presented in Table 3.2. In this table, the rows represent the individual runs and the

columns represent the priority indices. For each run, each priority index gives a value

of mean cycle time in the steady state simulation. Here each run of the simulation

experiments represents a different randomly generated problem instance. It is to be

noted that in this case the average value of the mean cycle time itself may not be a good

measure to find out the best priority index, since the magnitudes of the solution values

of a priority index depend on the problem instances (Kim et al., 1998). If average

values are used, a problem instance in which (minimum and maximum) solution values

are large has much more impact on the performance measure, the average value, than

problems with small solution values. In other words, the average value of the mean

cycle time for different problem instances may be biased by the problem data.
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Table 3.3: RDI of various priority indices for Mean Cycle Time performance (ρ = 0.75)

1 2 3 4 5 6 7 8

min (di ) max (pi ) max (pi/(di-pi-t) ) max (pi+Wi ) min (pi+Wi ) min (di-pi-t ) min (pi/Wi ) min (pi )

0 0.493022 1.000000 0.157786 0.601410 0.186082 0.598053 0.375042 0.000000

1 0.580194 1.000000 0.302177 0.701362 0.205911 0.701362 0.486159 0.000000

2 0.454509 1.000000 0.168972 0.569486 0.276962 0.569486 0.373835 0.000000

3 0.494147 1.000000 0.385447 0.708423 0.396692 0.709047 0.406062 0.000000

4 0.511993 1.000000 0.311371 0.653608 0.247372 0.652246 0.434377 0.000000

5 0.513894 1.000000 0.353813 0.659421 0.353813 0.657602 0.369276 0.000000

6 0.525432 1.000000 0.000000 0.622734 0.130385 0.622734 0.425535 0.120006

7 0.625965 1.000000 0.347394 0.757876 0.235146 0.750502 0.500608 0.000000

8 0.587909 1.000000 0.347535 0.779618 0.167623 0.777161 0.462069 0.000000

9 0.628139 1.000000 0.415227 0.818893 0.363203 0.817930 0.467251 0.000000

Av. RDI = 0.541520 1.000000 0.278972 0.687283 0.256319 0.685612 0.430021 0.012001

Run No. 

(Problem

instance)

Priority Indices

To resolve the bias due to randomly generated problem instances, Kim et al. (1998)

used the relative deviation index (RDI) as a measure to compare the different priority

indices. For each problem instance, the RDI of the priority index is computed as:

Relative Deviation Index (RDI) =
(Sa − SB)

(SW − SB)
(3.4)

where Sa, SB, and SW are solution values (mean cycle time) of the priority index a, the

best priority index and the worst priority index, respectively, for that problem instance.

Thus, the RDI value shows the relative quality of the solutions without being biased by

the problem data. In each row of Table 3.2, SB represents the best priority index and

SW represents the worst priority index for that problem instance. Table 3.3 presents

the RDI values of mean cycle time performance at ρ = 0.75 for each priority index in

the different runs. The average RDI of a priority index represents an unbiased measure

to compare the priority indices with each other.
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On the data in Table 3.3, first, the test of analysis of variance (ANOVA) is con-

ducted in order to find out whether there is any significant statistical difference in the

RDI values obtained from different priority indices. The results of ANOVA test on the

RDI values for the three objectives at ρ = 0.75 and 0.85 are presented respectively in

Figures B.1 and B.2 in the appendix. ANOVA test confirms the difference among the

RDI values, obtained from different priority indices, to be significant for all the three

objectives of mean cycle time, max. tardiness and cycle time variance. Then, Duncans

multiple range test is conducted on the data in Table 3.3. Duncans multiple range

test (Montgomery, 1997) is a statistical test widely used to classify sets of data into

several groups according to the statistical differences in the data sets.

Table 3.4 gives the average RDI of ten problem instances for each priority index

in an ascending order at both utilization levels, ρ = 0.75 and 0.85. The table also

gives the results of the Duncan’s multiple range test. Using Duncan’s test, the priority

indices are classified into several groups (A, B, C, D, E, F). Between the priority indices

within one group, there is no statistical difference in the mean cycle time performance

at the significance level of 0.05. Based on these results under the specified conditions,

it can be concluded that the mean cycle time objective is minimized by the priority

index of min(pi).

Similarly, ANOVA and Duncan’s test are conducted on the RDI values for the ob-

jectives of maximum tardiness and cycle time variance. ANOVA results are presented

in the appendix in Figures B.1 and B.2 for ρ = 0.75 and 0.85 respectively, which con-

firms the significant difference in performance of the different priority indices. The

results of Duncan’s test are presented in Tables 3.5 and 3.6 respectively for maximum

tardiness and cycle time variance. These tables give the average RDI of ten problem

instances for each priority index in an ascending order and also the group classification

at both utilization levels, ρ = 0.75 and 0.85.
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Table 3.4: Steady state results of RDI and Duncan’s test for Mean Cycle Time (F̄ )

ρ = 0.75 ρ = 0.85
Priority index

RDI Duncan’s test RDI Duncan’s test

(8) min(pi) 0.012001 A 0.000000 A

(5) min(pi + Wi) 0.256319 B 0.245923 B

(3) max(pi/(di − pi − t)) 0.278972 B 0.275708 B

(7) min(pi/Wi) 0.430021 C 0.393034 C

(1) min(di) 0.541520 D 0.503783 D

(6) min(di − pi − t) 0.685612 E 0.593938 E

(4) max(pi + Wi) 0.687283 E 0.594156 E

(2) max(pi) 1.000000 F 1.000000 F

[Duncan’s test classifies the priority indices into several groups. Between the priority indices
within one group, there is no statistical difference in the mean cycle time performance at
the significance level of 0.05.]

Table 3.5: Steady state results of RDI and Duncan’s test for Max. Tardiness (Tmax)

ρ = 0.75 ρ = 0.85
Priority index

RDI Duncan’s test RDI Duncan’s test

(1) min(di) 0.000908 A 0.001161 A

(4) max(pi + Wi) 0.006221 A 0.001296 A

(6) min(di − pi − t) 0.006236 A 0.001299 A

(7) min(pi/Wi) 0.035863 A 0.049174 A

(3) max(pi/(di − pi − t)) 0.372335 B 0.415989 B

(8) min(pi) 0.595498 C 0.623549 C

(2) max(pi) 0.773493 D 0.788514 D

(5) min(pi + Wi) 0.969161 E 0.995907 E

[Duncan’s test classifies the priority indices into several groups. Between the priority indices
within one group, there is no statistical difference in the maximum tardiness performance at
the significance level of 0.05.]
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Table 3.6: Steady state results of RDI and Duncan’s test for Cycle Time Variance (σ2
F )

ρ = 0.75 ρ = 0.85
Priority index

RDI Duncan’s test RDI Duncan’s test

(7) min(pi/Wi) 0.008287 A 0.000000 A

(1) min(di) 0.026494 A 0.011587 A

(6) min(di − pi − t) 0.061006 A 0.025499 A

(4) max(pi + Wi) 0.061739 A 0.025540 A

(8) min(pi) 0.202004 B 0.173389 B

(3) max(pi/(di − pi − t)) 0.326551 C 0.317463 C

(2) max(pi) 0.900243 D 0.938541 D

(5) min(pi + Wi) 0.924071 D 0.894486 D

[Duncan’s test classifies the priority indices into several groups. Between the priority indices
within one group, there is no statistical difference in the cycle time variance performance at
the significance level of 0.05.]

From the results in Table 3.5, it can be stated that for minimizing maximum

tardiness, there is no significant difference in the performance of Group A priority

indices, i.e., min(di), max(pi+Wi), min(di−pi−t) and min(pi/Wi). Similarly, from the

results in Table 3.6, it can be inferred that the performance of Group A priority indices,

i.e., min(pi/Wi), min(di), min(di − pi − t) and max(pi + Wi) do not differ significantly

in minimizing cycle time variance. This finding confirms the initial understanding that

the objectives of minimizing maximum tardiness and minimizing cycle time variance

are not conflicting to each other. Based on these results, it may be considered that the

maximum tardiness is minimized by the priority index of min(di) and the cycle time

variance is minimized by min(pi/Wi). Therefore, for Pareto control in simultaneously

minimizing mean cycle time and maximum tardiness, the priority indices of min(pi)

and min(di) are considered as scheduling criteria for these two objectives. Similarly, the

priority indices of min(pi) and min(pi/Wi) are taken as scheduling criteria for Pareto

control in minimizing mean cycle time and cycle time variance.
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3.6 Results of Pareto Control in Serial Processing

As earlier stated in Section 3.2, the proposed concept of Pareto control in dynamic

scheduling is evaluated for a serial processing machine with respect to the two pairs of

conflicting objectives: (i) the mean cycle time and the maximum tardiness and (ii) the

mean cycle time and the cycle time variance. In the following subsections, the results

of Pareto control are presented with respect to each pair of conflicting objectives.

In applying weighted aggregation (WA) and compromise programming (CP) meth-

ods, the relative weights (w1, w2; w1+w2 = 1) of the two criteria are varied linearly from

value 0.05 to 0.95 at an interval of 0.05 in order to cover the whole range of weights,

i.e., 19 points are computed in total. In CP method, the exponent r is varied at the

levels of 0.33, 0.66, 1, 2, 3 and 10. The CP curves for these exponent settings are corre-

spondingly represented by CP0.33, CP0.66, CP1, CP2, CP3 and CP10. Among these,

CP0.33 and CP0.66 are studied to see the effects of exponent value less than unity and

similarly CP2 and CP3 for the effects of exponent value greater than unity. However,

CP10 is studied as an approximation of Tchebycheff function, as earlier explained in

Equation 2.18 (Koksalan, 1999).

3.6.1 Minimizing mean cycle time (F̄ ) and maximum
tardiness (Tmax)

As earlier discussed in Section 3.5, the scheduling objective of minimizing mean cycle

time (F̄ ) is achieved by the scheduling criterion of minimizing processing time (pi) and

the scheduling objective of minimizing maximum tardiness (Tmax) is obtained by the

scheduling criterion of minimizing due date (di). Thus, for this bi-objective scheduling

problem, the two criteria used in Equations 2.14 and 2.15 are as follows:

f1(x) = minimize (pi), f2(x) = minimize (di) (3.5)
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Thus, using Equation 3.5, the Pareto objective function for the normalized WA

method is formulated from Equation 2.14. Similarly based on Equation 2.15, the Pareto

objective function for CP method is formulated.

WA method:

min F (i) = w · pi

max
∀i

(pi)
+ (1− w) · di

max
∀i

(di)
(3.6)

CP method:

min Fr(i) =





w ·

|pi −min
∀i

(pi)|
min
∀i

(pi)




r

+


(1− w) ·

|di −min
∀i

(di)|
min
∀i

(di)




r 


1/r

(3.7)

Here, F (i) represents the WA function value for the ith job and Fr(i) represents the

CP function value for the ith job at the decision instance in the simulated time.

Then, among all the queued jobs in front of the machine, the best job is selected

for loading on the serial processing machine. The job, which has the minimum value of

Pareto objective function, F (i) for WA method and Fr(i) for CP method, is selected

for loading at every decision instance in the simulation clock.

k = arg min
∀i

[F (i) or Fr(i)] (3.8)

where k implies the index of the job, which is selected for loading on the machine.

The results of these two conflicting objectives are presented for utilization factors

of 0.75 and 0.85 respectively in Appendix C, Tables C.1 and C.2, for varying weights and

exponent values in WA and CP methods. The results are plotted in two dimensional

space with each objective on one axis. These plots are presented in Figures 3.4 and 3.5,

which show the characteristic curves of Pareto control. The extreme points in these

plots are achieved by the dispatching criterion represented in Equation 3.5.

In Figures 3.4 and 3.5, dispatching criterion min(pi) gives the extreme point cor-

responding to minimization of mean cycle time and similarly dispatching criterion
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min(di) gives the other extreme point corresponding to minimization of maximum tar-

diness. These two extreme points are the limits of Pareto control achievement, which

are correspondingly referred to as p extreme and d extreme points.

In WA and CP methods, as the weight is varied linearly in a discrete fashion,

different points are achieved on the boundary in a progressive manner from one end

point to the other end point of the curve. From the observations in Figures 3.4 and 3.5,

in comparison to the CP method, the WA method gives a short boundary between

the weights 0.05 and 0.95. CP method has a double weighing scheme which gives it

flexibility to cover the whole boundary from one end point to the other end point. In

addition, the variation of exponent value in CP method gives it the higher flexibility

of Pareto control between a specified range of objective functions.

In Figures 3.4 and 3.5, it may be questioned if there is any statistical significance

to the differences in the graphs. To address this point, first it is to be noted that in

these graphs each point is the average of 10 runs, where each run represents a different

randomly generated problem instance. Then, to find out the statistical significance to

the differences in the graphs, three consecutive points on CP1 curve in Figure 3.4 cor-

responding to weight (w) equal to 0.45, 0.50 and 0.55 are taken as a sample illustration.

For these three consecutive points, the values of the two objectives, mean cycle time

and maximum tardiness, are presented in Table 3.7 for each of 10 problem instances.

In Table 3.7, the values in each row are taken under homogeneous conditions

(the same problem instance), but these conditions change from one problem instance

to another. Therefore, instead of analyzing the difference between the average of 10

problem instances, the statistics of the mean of the differences in each problem instance

must be computed and the paired t-test must be applied (Montgomery, 1997). Thus,

the paired t-test is applied for the two consecutive pairs of points: (a) points with w

= 0.45 and 0.55 and (b) points with w = 0.50 and 0.55. These tests are presented in

Table 3.8.
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Table 3.7: Mean cycle time and maximum tardiness values for w =0.45, 0.50 and 0.55
points on CP1 curve in Figure 3.4

Run no. w = 0.45 w = 0.50 w = 0.55

(Problem) MeanCT∗ MaxTar† MeanCT∗ MaxTar† MeanCT∗ MaxTar†

0 71.22 388.95 70.80 389.39 70.85 389.47

1 68.82 433.22 68.56 452.58 67.94 473.90

2 61.20 402.36 61.41 481.68 61.32 520.38

3 56.08 315.84 56.04 336.24 55.88 374.04

4 57.25 312.35 57.05 325.75 56.85 395.85

5 63.60 355.62 63.54 355.80 63.42 406.80

6 61.25 351.19 61.04 351.19 61.18 351.05

7 56.00 378.80 55.92 401.92 54.72 401.92

8 63.36 379.26 63.09 409.59 62.64 415.80

9 56.20 454.40 55.90 454.40 55.70 485.00

Average 61.50 377.20 61.34 395.85 61.05 421.42

[∗ MeanCT = mean cycle time (min), † MaxTar = maximum tardiness (min)]

From the results in Table 3.8, the 95% confidence intervals of the differences

in mean cycle time between the points in two pairs are (0.037, 0.289) and (0.006,

0.564), which do not include zero. Also, the p-values (probability associated with a

Student’s paired t-test with a two-tailed distribution) are 0.017113 and 0.045911, both

of which are less than 0.05. It confirms that the differences in the mean cycle times are

statistically significant at 0.05 significance level. This also tells that as w increases from

0.45 to 0.50 to 0.55, there is a significant reduction in the mean cycle times. Similar

observations are made for the differences in maximum tardiness. For the two pairs

of points, the 95% confidence interval of the differences in maximum tardiness are (-

35.910, -1.401) and (-42.982, -8.153) and the p-values are 0.037023 and 0.008927. This

confirms that the maximum tardiness of the two points in each pair are significantly

different at 0.05 significance level. With the increase in w from 0.45 to 0.50 to 0.55,

the maximum tardiness significantly improves.

62

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



3. Pareto Control in Serial Processing

Table 3.8: Paired t-test for mean cycle time and maximum tardiness values between
the two pairs of consecutive points on CP1 curve in Figure 3.4

Run no. Between w = 0.45 and 0.50 Between w = 0.50 and 0.55

(Problem) d MeanCT∗ d MaxTar† d MeanCT∗ d MaxTar†

0 0.42 -0.44 -0.05 -0.08

1 0.26 -19.36 0.62 -21.32

2 -0.21 -79.32 0.09 -38.70

3 0.04 -20.40 0.16 -37.80

4 0.20 -13.40 0.20 -70.10

5 0.06 -0.18 0.12 -51.00

6 0.21 0.00 -0.14 0.14

7 0.08 -23.12 1.20 0.00

8 0.27 -30.33 0.45 -6.21

9 0.30 0.00 0.20 -30.60

Average 0.16 -18.66 0.28 -25.57

Std. Dev. 0.1767 24.1218 0.3894 24.3455

Conf. Int. (0.037, 0.289) (-35.910, -1.401) (0.006, 0.564) (-42.982, -8.153)

p-value 0.017113 0.037023 0.045911 0.008927

[∗ d MeanCT = difference in mean cycle times (min), † d MaxTar = difference in maximum
tardiness (min), Std. Dev. = standard deviation of the differences, Conf. Int. = 95%
confidence interval of the differences, p-value = probability associated with a Student’s
paired t-test with a two-tailed distribution]

In Figure 3.4, all the points of CP0.33 are concentrated around p extreme point.

For CP0.66, the points get spread over a wider range. CP1 gives the maximum spread

of boundary between the extreme points. As the exponent value is increased to 2 and

3, the spread of the boundary gets reduced and all the points shift towards the side

of d extreme point. For CP10, all the points more or less converge to d extreme point

as clearly visible in the magnified view in Figure 3.4. For a clear presentation of this

observation, the end points (corresponding to weights w = 0.05 and w = 0.95) of CP

curves for various exponent values are presented in Figures 3.6 (a) and (b).
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Figure 3.6: End points of CP for Mean Cycle Time and Maximum Tardiness (ρ = 0.75)

In Figure 3.6 (a), as the CP exponent value increases from 0.33 to 1, the points

corresponding to w = 0.05 move further away from p extreme point. With further

increase in exponent value from unity onwards, the points corresponding to w = 0.05

remain in the vicinity of d extreme point. Figure 3.6 (b) presents the contrary behavior

of the w = 0.95 points with respect to the CP exponent value. Here, as the CP

exponent value increases from 0.33 to 1, the points corresponding to w = 0.95 remain

in the vicinity of p extreme point. While, with further increase in exponent value from

unity onwards, the points corresponding to w = 0.95 move closer to d extreme point.
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Based on these observations and similar observations from Pareto control curve

for 0.85 utilization factor (see Figure 3.5), it can be inferred that for the small positive

exponent value (r ≈ 0), all the points are cornered to p extreme point with low spread

of the boundary. As the exponent value is increased up to unity, the boundary spread

increases to its maximum between the two extreme points. On further increase in

exponent value (r > 1), the boundary spread starts decreasing and the points start

converging towards d extreme point.

An intuitive explanation of such a behavior may be that as the value of the ex-

ponent r remains near unity, the two terms in the right hand side of Equation 3.7,

(w ·
|pi−min

∀i
(pi)|

min
∀i

(pi)
) and ((1−w) ·

|di−min
∀i

(di)|
min
∀i

(di)
), contribute equally. However, for r >> 1, the

maxima of these two terms dominates and for r << 1, the minima of these two terms

prevails. This results in achieving the maximum breadth of the CP curve for r = 1,

while shifting all points towards p extreme point for r << 1 and towards d extreme

point for r >> 1 as shown in Figure 3.6. However, the variation of curve with respect

to the weight remains unpredictable as it will depend on the individual values of w, pi

and di for the arriving jobs. The exact mathematical correlation between w and r and

their effect on achieving Pareto control is still open to further research.

As presented in Section 2.3, if the problem was of single stage multi-objective

optimization, then CP and WA methods might have resulted in the same curves. But,

since the problem is of multi-objective dynamic scheduling which is solved by selecting

and scheduling a Pareto optimal job at each decision instance in the simulated time,

this problem can be considered as a case of multi stage multi-objective optimization.

That’s why in Figures 3.4 and 3.5, CP and WA methods resulted in different Pareto

control curves.

Further, a point can be raised that whether it is possible to get the same point

through different r and w combinations in the CP method. Intuitively it can be ex-

plained that the CP method for various values might result in the same points in
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Figures 3.4-3.5. That is, in Equation 3.7, for each w value at a particular value of r,

there seems to be a w value (not necessarily the same) at a different value of r, that

produces almost the same point in Figure 3.4. This is because under similar conditions,

the same choices of Pareto jobs are made at the decision instances in the simulated

time.

However, in Figure 3.4, if only one CP curve is plotted for the whole range of w

(w ∈]0, 1[) at a particular value of r, then the Pareto curve will become highly sensitive

with respect to w value at some portions of the curve. For example in Figure 3.4, with

w varying linearly from 0.05 to 0.95 at an interval of 0.05, the mean cycle time value

ranges from 68.14 to 60.22 min for CP1 curve, while for CP2 curve it ranges from

70.27 to 63.28 min (please see Table C.1). Therefore, if mean cycle time value needs

to be achieved between 68.14 and 70.27 min on CP1 curve, then w value needs to be

varied in the interval ]0,0.05]. Similarly, if mean cycle time value needs to be achieved

between 60.22 and 63.28 min on CP2 curve, then w value needs to be varied in the

interval [0.95,1[. In both of these cases, mean cycle time will become highly sensitive

to the change in w value, i.e., even very slight change in w will cause a high change in

mean cycle time value. This kind of high sensitivity is not desirable for the practical

purpose of shop floor management. Therefore, the double weighing scheme, w and r,

in CP method is actually beneficial for the real-life applications of Pareto control in

shop floor management.

In static problems of bi-objective scheduling, there exists Pareto optimal solutions

and a Pareto boundary as shown in Figure 1.2. However, these are ill defined in the

case of a bi-objective dynamic scheduling problem, which led to the development of the

concept of Pareto control in MODS environment. Thus, the behavior of Pareto control

curves for the conflicting objectives of minimizing mean cycle time and minimizing

maximum tardiness in the dynamic scheduling of a serial processing machine has been

investigated. The characterization of Pareto control curves gives an additional benefit
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of the ability to control the scheduling objectives within a specified range. By selecting

an appropriate exponent value, the decision maker can control the machine scheduling

within the specific range of scheduling objectives.

3.6.2 Minimizing mean cycle time (F̄ ) and cycle time variance
(σ2

F)

In the second bi-objective problem, the simultaneous minimization of mean cycle time

and variance of cycle time is considered for the dynamic scheduling of a serial processing

machine. From Section 3.5, the priority indices for individually minimizing mean cycle

time and cycle time variance are considered as min(pi) and min(pi/Wi). These two

criteria are used in Equations 2.14 and 2.15 as follows:

f1(x) = minimize (pi), f2(x) = minimize (pi/Wi) (3.9)

Using Equation 3.9, the Pareto objective function is formulated for the normalized

WA method from Equation 2.14 and for CP method from Equation 2.15.

WA method:

min F (i) = w · pi

max
∀i

(pi)
+ (1− w) · pi/Wi

max
∀i

(pi/Wi)
(3.10)

CP method:

min Fr(i) =





w ·

|pi −min
∀i

(pi)|
min
∀i

(pi)




r

+


(1− w) ·

| pi

Wi
−min

∀i
( pi

Wi
)|

min
∀i

( pi

Wi
)




r 


1/r

(3.11)

Then, among all the queued jobs in front of the machine, the best job is selected

for loading on the serial processing machine similar to the job selection procedure in

Section 3.6.1. The job, which has the minimum value of Pareto objective function,

F (i) for WA method and Fr(i) for CP method, is selected for loading.

k = arg min
∀i

[F (i) or Fr(i)] (3.12)
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where k implies the index of the job, which is selected for loading on the machine.

The results of mean and variance of cycle times are presented in Tables C.3 and C.4

in Appendix C respectively for 0.75 and 0.85 utilization factors. These results show

the values of the two objectives with respect to varying weights and exponent values

in WA and CP methods. Figures 3.7 and 3.8 show the plots in two dimensional space

with each objective on one axis. The extreme points of these characteristic curves are

obtained by the dispatching criterion represented in Equation 3.9.

In Figures 3.7 and 3.8, dispatching criterion min(pi) gives the extreme point corre-

sponding to minimization of mean cycle time and the dispatching criterion min(pi/Wi)

gives the other extreme point corresponding to minimization of cycle time variance.

These two extreme points of Pareto control achievement are correspondingly referred

as p extreme and p/W extreme points.

In WA and CP methods, as the weight is varied linearly in a discrete fashion,

different points are achieved in a progressive manner from one end point to the other

end point of the curve. The performance of the methods is compared in terms of the

Pareto dominance of points achieved by WA and CP methods corresponding to the

equal weight. As earlier presented in Section 1.2, a point is said to be dominating over

another point if it is strictly better on one objective while better or equal to on the

second objective. For example, in Figure 1.1 point Z0 is dominating over point Z1 and

also over point Z2.

From the observations in Figure 3.7, the WA and CP methods perform equally well

for 0.75 utilization factor. Here, for some values of weights the WA points dominate the

CP points and vice versa for some other values of weights. While in Figure 3.8, there is

a consistent dominance by the CP points over the WA points for all values of weights.

For example, the points in CP0.33 curve clearly dominate the corresponding points in

WA curve. For 0.85 utilization factor, CP method performs better than WA method
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in achieving Pareto control between mean cycle time and cycle time variance. Similar

to the results presented in section 3.6.1, CP method has an additional advantage of

having double weighing scheme (weight and exponent), which gives it greater flexibility

to control the operation within a specified range of objectives. CP method gives better

performance in achieving Pareto control in dynamic bi-objective scheduling. Therefore,

here onwards, the emphasis is given on the CP method in characterizing the Pareto

control curves in multi-objective dynamic scheduling.

In Figure 3.7, there is a peculiarity that although the p/W extreme point is cor-

responding to the individual minimization of cycle time variance objective, there are

various points on WA and CP curves which show a lesser value than the p/W extreme

point on the cycle time variance axis. This behavior simply indicates that the priority

index min(pi/Wi) is only an approximate minimizer of the individual objective of cycle

time variance. However, it still solves the purpose of achieving Pareto control curves in

dynamic single machine scheduling for minimizing the mean cycle time and the cycle

time variance.

Unlike the results in Figure 3.4, in Figure 3.7, the points of CP0.33 curve give

a wide spread of boundary between the p and p/W extreme points. For CP0.66, the

spread of points gets reduced. Further, as exponent value in CP method increases, the

spread of points gets reduced more and more. Figures 3.9 (a) and (b) show the end

points (corresponding to weights w = 0.05 and w = 0.95) of CP curves for various

exponent values. In Figure 3.9 (a), the points corresponding to w = 0.05 for various

CP curves remain in the neighborhood of p/W extreme point, but goes away from

p/W extreme point as the exponent value increases. In Figure 3.9 (b), the points

corresponding to w = 0.95 for various CP curves move far away from p extreme point

as the exponent value increases. Thus, the range of the achieved boundary gets reduced

with the increase in the exponent value of CP.

Based on the observations of Pareto control for 0.75 and 0.85 utilization factor in
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Figure 3.9: End points of CP for Mean Cycle Time and Cycle Time Variance (ρ = 0.75)

Figures 3.7 and 3.8, it can be inferred that as the exponent value increases, the spread

of the boundary gets reduced. In addition, with the increase in CP exponent value,

both the end points of Pareto control curve move away from the two extreme points,

min(pi) and min(pi/Wi). The behavior of the end points of the CP curves in Figure 3.9

is not similar to the behavior observed in Figure 3.6.

The possible intuitive explanation for this behavior can be searched in the two

terms in the right hand side of Equation 3.11, (w ·
|pi−min

∀i
(pi)|

min
∀i

(pi)
) and ((1−w)·

| pi
Wi
−min
∀i

(
pi
Wi

)|
min
∀i

(
pi
Wi

)
).

Unlike in the case of Equation 3.7, here in case of Equation 3.11 the two terms are not
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completely independent. Here both the terms very much depend on pi and therefore the

value of the complete function very much depends on the relative values of these two

terms. Thus, the possible explanation of such a behavior is still open to further research.

However, the characterization of such Pareto trade-off curves and the investigation of

the behavior of the Pareto control for simultaneous minimization of mean and variance

of cycle times can be used to control these scheduling objectives within a specified

range, by selecting an appropriate exponent value.

3.7 Effects of Parameter Variation on Pareto Con-

trol in Serial Processing

In Section 3.6, the results of Pareto control were presented for the bi-objective dynamic

scheduling of a serial processing machine. In this section, the parameter settings of the

due dates, weight patterns and the number of replications are changed and their effect

on achieving Pareto control is observed. The results for the specific simulation studies

are presented in following.

3.7.1 Effect of due date tightness

The simulation experiments are repeated for minimizing mean cycle time and maximum

tardiness with loose due date settings. As described in Section 3.4, the due date of a

job Ji is equal to the release time plus a multiple of the mean cycle time of the jobs in

system before job Ji, that is di = ri + k · F̄i, where the constant k > 0 represents the

due date allowance factor and F̄i represents the mean cycle time of jobs in the system

at the time of arrival of job Ji. k = 1 is considered as tight due date setting, while

k = 2 as loose due date setting.

In the experimental results presented in Section 3.6.1, unity due date allowance

factor is used. To study the effect of loosening due dates on achieving Pareto control,
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3. Pareto Control in Serial Processing

the due date allowance factor is loosened to two. The corresponding Pareto control

results are presented in Figure 3.10, in contrast with the previous results for 0.85

utilization factor.

From the observations in Figure 3.10, the only difference in the CP curves for the

two settings of due dates is the shift towards the X-axis. It reflects a decrease in the

maximum tardiness value for all the weights, which is due to the loosening of the due

dates. However, the nature of the Pareto control curve repeats itself for the tight and

loose due date settings.

3.7.2 Effect of non-linear weights

In Section 3.6, the results of Pareto control were presented with linear setting of relative

weights. The CP points corresponding to these linear weights span the complete Pareto

control curve. In order to test the achievability of Pareto control curve irrespective of

the linear pattern of the weights, the weight pattern is changed to non-linear setting.

In this case, the nature of the relative weights is varied from linear setting to two

non-linear settings and its effect is studied on the nature of Pareto control. In the

experimental results of Section 3.6, the linear weights are taken from 0.05 to 0.95 at

a constant interval of 0.05. To study the effect of non-linear weights, the weights are

chosen in such a way that the interval between two consecutive weights changes in a

systematic trend such as sin θ and sin2 θ.

The two non-linear settings correspond to the weights equivalent to sin θ and sin2 θ,

where the angle θ varies from 5o to 85o at an interval of 5o. The non-linear settings

sin θ and sin2 θ are referred as Non-Linear 1 and Non-Linear 2 correspondingly. On a

common scale, the weights of the linear and two non-linear settings are presented in

Figure 3.11. From this figure, Non-Linear 1 setting gives more dense weights as the

weights increase towards unity. While Non-Linear 2 setting gives symmetric weights
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Figure 3.11: Relative weight patterns
[Non-Linear 1 = sin θ, Non-Linear 2 = sin2 θ]

around 0.5, which become more dense towards both extremes of 0 and 1.

The simulation results for these three settings of weights are presented in Fig-

ure 3.12 for CP1 in minimizing mean cycle time and maximum tardiness for 0.85

utilization factor. Both extremes of the curves are presented in a magnified view for

clear presentation. From these observations, Non-Linear 1 weights increase the bound-

ary length towards p extreme side while reducing the boundary on d extreme side. On

the contrary, Non-Linear 2 weights increase the boundary on both extreme sides, i.e.,

Non-Linear 2 weights generate points closer to the p and d extreme points for CP1.

These results corroborate the fact that the weights of the objectives determine the po-

sition of the point in achieving Pareto control. Non-Linear 2 weights (sin2 θ) enhance

the Pareto control boundary on both sides of the curve, i.e., p extreme and d extreme

sides.

3.7.3 Effect of number of replications

In this chapter, for all the simulation experiments, the number of replications are

kept to 10, following Kim et al. (1998, 2001). In these experiments, each replication

represents a different randomly generated problem instance with different job arrival

times, different due dates, etc. The run length is kept to 1000 jobs in the steady
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3. Pareto Control in Serial Processing

state. The average values of statistical estimates are plotted for achieving Pareto

control curves. However, two questions may be raised: (a) Is the Pareto control curve

achievable even for a single replication of the simulation experiment? and (b) How

does the number of replications affect the statistical fluctuations in the Pareto control

Mean Cycle Time vs. Cycle Time Variance (  = 0.75, No. of replications = 1)
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Mean Cycle Time vs. Cycle Time Variance (  = 0.75, No. of replications = 30)
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Mean Cycle Time vs. Cycle Time Variance (  = 0.75, No. of replications = 100)
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Figure 3.13: Effect of varying the number of replications (ρ = 0.75)

curves? For example, in Figures 3.7 and 3.8, although the steady state data is collected

for experiment outputs, still there are heavy fluctuations in the Pareto control curves.

To address these two questions, a series of simulation experiments is conducted
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with 1, 10, 30 and 100 replications for 0.75 and 0.85 utilization levels as a continuation

of Section 3.6.2. Due to the limited array size problem in coding, there is a limitation

on the run length. Hence, to study the effects of statistical fluctuations the run length

is kept same and only the number of replication is widely varied. The respective
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Mean Cycle Time vs. Cycle Time Variance (  = 0.75, No. of replications = 30)
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Figure 3.14: Effect of varying the number of replications (ρ = 0.85)

Pareto control results of these experiments are plotted in Figures 3.13 and 3.14. In

these figures, only p and p/W points and CP0.33 and WA curves are presented for

the clarity of the pictures. The reason for using CP0.33 is that CP0.33 gives heavier
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fluctuations than CP1 in Pareto control curves in Figures 3.7 and 3.8. Similarly, this

set of experiments could have been presented for the case of minimizing mean cycle

time and maximum tardiness (Section 3.6.1), but there the fluctuations in the Pareto

control curves of Figures 3.4 and 3.5 are not as heavy as in the Pareto control curves of

Figures 3.7 and 3.8. Therefore, in this subsection the set of experiments for the effect

of varying the number of replications has been conducted on the case of minimizing

mean cycle time and cycle time variance (Section 3.6.2).

Figure 3.13 (a) and Figure 3.14 (a) present the Pareto control curves for the single

replication of the simulation experiments. But, there exist high statistical fluctuations

in the curves of CP0.33 and WA methods. However, the point of achieving Pareto

control curve by single replication has been addressed here.

In the sequence of Figures 3.13 (a), (b), (c) and (d) for 0.75 utilization level, it

is observed that as the number of replications increases, the fluctuations in the Pareto

control curves of CP0.33 and WA methods decrease and the curves become smooth.

Similar observations are presented in Figures 3.14 (a), (b), (c) and (d) for achieving

Pareto control curves at 0.85 utilization level. Therefore, taking 100 replications will

give fairly smooth Pareto control curves as shown in Figures 3.13 (d) and 3.14 (d),

but at the expense of much higher computational time. However, here it is to be

stressed that even for one replication, the Pareto control can be achieved in the dy-

namic scheduling of a single machine. This is important from the point of the real-life

application of Pareto control in the shop floor management for there may be often only

one replication of these experiments.

From Figure 3.13 (d), it becomes reemphasized that at 0.75 utilization level the

WA points dominate over the CP0.33 points for some values of weights; while the

CP0.33 points dominate over the WA points for some other values of weights. There-

fore, it can be said that the WA and CP methods perform equally well for 0.75 utiliza-

tion factor. While, Figure 3.14 (d) presents that there is a consistent dominance by the
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CP0.33 points over the WA points for all values of weights. Thus, it can be concluded

that for 0.85 utilization factor the CP method gives better performance than the WA

method in achieving Pareto control points.

3.8 Conclusion

This chapter presented the computational experiments for Pareto control in multi-

objective dynamic scheduling of a serial processing machine. Conjunctive simulated

scheduling approach is used to schedule the jobs on the machine in a dynamic setting,

which fulfills the requirements of near-real-time schedules, especially in semiconductor

manufacturing. The study showed that by varying the relative weights of the selection

criteria at each selection instance in simulation clock, a Pareto control curve can be

achieved for two conflicting objectives. The methodology includes first finding the

selection criteria for optimizing an individual objective in dynamic scheduling and

then forming a combined selection criterion using convex combination methods of WA

and CP.

It has been shown how Pareto control can be achieved in scheduling a serial

processing single machine using CP method in conjunctive simulated scheduling with

respect to the two sets of conflicting objectives, (i) mean cycle time vs. maximum

tardiness and (ii) mean cycle time vs. variance of cycle time, in a dynamic setting.

Further, the sensitivity of these trade-off curves has been experimented for the varia-

tion in the due date tightness, the weight pattern and the number of replications in the

simulation experiments. It has been found that irrespective of the variations in these

parameters, the Pareto control can still be achieved between the conflicting objectives.

This chapter significantly contributes to the characterization of Pareto control

curves for conflicting objectives, which can be exploited to enhance the ability to

choose and operate the shop in a controlled way in semiconductor manufacturing. By
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appropriate selection of weight range and exponent value, the conflicting scheduling

objectives can be controlled and maintained within a specified range for a particular

operation. Therefore, once the characterization of the Pareto control curves has been

achieved, the choices of weight and exponent are left to the decision of the shop floor

manager according to the desired operating range of the objectives.

Pareto control is highly relevant in a dynamic manufacturing environment, where

the demands of objectives frequently changes according to the market forces. Further,

it is shown that using CP method gives wider control over achieving the trade-off curves

between the conflicting objectives as CP method involves double weighing scheme with

parameters of weight and exponent. A real-life case study example on this concept

is presented in Chapter 7 which shows the importance of using Pareto control over

the factory heuristics. Due to the strong NP-hard nature of multi-objective dynamic

scheduling problems, the true Pareto optimal frontier of these problems are left un-

defined. Therefore, Pareto control gives the feasible solutions to the multi-objective

dynamic scheduling problems. However, the test of the optimality of these feasible

solutions is beyond the scope of this thesis work.

In this chapter, the concept of CP in conjunctive simulated scheduling was ap-

plied to achieve the Pareto control in multi-objective dynamic scheduling of a serial

processing machine. The next chapter presents the application of Pareto control in

multi-objective dynamic scheduling of a batch processing machine.
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Chapter 4

Pareto Control in Batch Processing

4.1 Introduction

In Chapter 2, the Pareto control concept was adopted for multi-objective dynamic

scheduling problems, which was then applied to a serial processing machine in Chap-

ter 3. In this chapter, the Pareto control concept is applied and computationally

experimented for the bi-objective dynamic scheduling of a batch processing machine.

In semiconductor manufacturing, the back-end involves batching operations at

burn-in ovens, which is a bottleneck process in the final testing stage. Most of the

processes in semiconductor supply chain are driven by the needs of low cycle times and

due date accuracy, which are contradicting to each other. Scheduling of the back-end

batch processes is very important considering the productivity of the whole manu-

facturing process and customers’ due-date requirements. This results in the need for

schedule control of the semiconductor manufacturing processes to meet the frequent

changes in requirements of the market demands. In this chapter, the concept of Pareto

control is studied on a dynamic batch processing machine considering two objectives

of minimizing mean cycle time and maximum tardiness.

Research reported on scheduling problems concerned with batch processing ma-

chines can be divided into two categories according to the batch processing time pat-
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tern. In the first category, the processing time of each batch is fixed and independent of

the jobs grouped together in the batch. In the second category, the processing time is

dependent on the jobs assigned to each batch. In the semiconductor industry, such in-

dependent processing-time scheduling models are mainly applicable to batch processing

machines in the wafer fabrication process such as oxidation furnaces. The dependent

processing-time models, where the processing time of each batch is represented by the

maximum processing time among those of all the jobs grouped together in the batch,

are applicable to the burn-in oven process in the assembly and test.

In the back end burn-in operation, IC chips are loaded onto boards and are placed

in an oven to expose them to high temperatures so as to get any failed IC chips screened

out. The burn-in time of each IC chip is pre-specified and they vary based on type and

the customer’s requirements. The burn-in oven has a limited capacity, which requires

the boards loaded with the chips to be sub-grouped into batches. It is possible for

different IC chips to be processed in the oven simultaneously. The processing time of

each batch is represented by the longest burn-in time among those of all the IC chips

(jobs) grouped together in the batch. Hence, the scheduling problems for such an oven

can be modeled as that for a general type of batch processing machine where each batch,

loaded fully with jobs up to the oven capacity, can be processed simultaneously. The

processing time of a batch is represented by the longest processing time of a particular

IC chip in the batch (Sung et al., 2002).

Research on scheduling of burn-in ovens has been reported in the literature for

only static problems. Lee et al. (1992) have proposed an optimal algorithm to mini-

mize the number of tardy jobs and the maximum tardiness. Chandru et al. (1993b)

have proposed a branch-and-bound algorithm and several heuristic algorithms for a

problem of minimizing total completion time in a burn-in oven and also heuristics for

a parallel oven system. Uzsoy (1994) has examined a problem of scheduling jobs with

non-identical capacity volume requirements on a single burn-in oven to minimize total
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completion time and makespan. However, to the best available knowledge, the problem

has not been dealt with in a dynamic scheduling environment, where two conflicting

objectives are simultaneously considered.

4.2 Model, Assumptions and Constraints

The model consists of a single batch processing machine, where the jobs are assumed

to arrive dynamically at the machine and each job has its pre-specified processing time

which may depend on the family type to which it belongs. The schematic diagram of

the model has been presented in Figure 4.1. The available/queued jobs are grouped into

a batch of c jobs. At each decision instance of loading, the Pareto jobs are sequentially

selected from the queued jobs and the batch is processed simultaneously.

Batch Processing 

Machine
(Capacity = c lots)

Arrival, due date 

& Processing 

time distribution

Lot arrival

Traffic Intensity

Figure 4.1: Schematic diagram of the model with batch processing machine

The assumptions and constraints can be summarized as follows:

1. The jobs are independent, i.e., the jobs are processed without any precedence.

2. The jobs arrive dynamically at the machine.

3. The batch capacity is limited to c jobs per batch, i.e., only up to c jobs can be

processed simultaneously.

4. If the number of jobs in the queue is less than that of the batch capacity, all the

available jobs are formed into a batch and processed simultaneously.
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5. The processing time of a batch is represented by the longest job processing time

among all the jobs contained in a batch.

6. No machine idle time and breakdowns; machine is always available for processing.

7. Setup times are included in the processing times.

8. No job preemption is allowed during each batch process and all the jobs belonging

to the same batch are completed at the same time.

9. There are no other limiting resources such as material or labor.

The conflicting objectives of scheduling are:

1. Minimizing Mean Cycle Time (F̄ =
∑n

i=1 Fi/n) and

2. Minimizing Maximum Tardiness (Tmax = max(T1, T2, . . . , Tn)).

In batch scheduling, Brucker et al. (1998) proved that SPT indexing of jobs leads

to an optimal schedule for minimizing total completion time in static case. This result

is extended for the dynamic case of batch scheduling and experimented through simula-

tion studies. It is found that choosing a job having the shortest processing time (min pi)

at each decision instance minimizes mean cycle time (F̄ ) in the dynamic scheduling

of a batch processing machine. Similarly, it is experimentally found that selecting a

job having the earliest due date (min di) minimizes maximum tardiness (Tmax) for the

levels of utilizations (0.5, 0.6 and 0.7) considered in this study.

However, there is no definite selection rule for minimizing cycle time variance in the

scheduling of a batch processing machine either in the static or in the dynamic case.

Therefore, only one pair of conflicting objectives has been considered for achieving

Pareto control in batch processing, unlike two pairs of conflicting objectives in serial

processing in Chapter 4.
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Thus, for achieving the Pareto control between the conflicting objectives of min-

imizing mean cycle time and minimizing maximum tardiness, CP method is applied

for job selection at each decision instance in simulation clock. The two criteria used in

CP method in Equation 2.15 are:

f1(x) = minimize (pi), f2(x) = minimize (di) (4.1)

Thus, using Equation 4.1, the Pareto objective function for the CP method is

formulated from Equation 2.15 as follows:

min Fr(i) =





w ·

|pi −min
∀i

(pi)|
min
∀i

(pi)




r

+


(1− w) ·

|di −min
∀i

(di)|
min
∀i

(di)




r 


1/r

(4.2)

Since, the selection of jobs for making a batch is required only when there are

more than c jobs in the queue. In such case, among all the queued jobs in front of the

machine, c jobs are selected for loading on the batch processing machine. c jobs are

selected based on the minimum value of Pareto objective function, Fr(i).

4.3 Batch Scheduling Methods

This section presents two batch scheduling methods: (i) Natural Batch Scheduling

(NBS) and (ii) Minimum Batch Size (MBS), which are common in industrial practices.

These methods consider only the queued jobs in front of the batch processing machine

for making a batch. These two methods are taken for the purpose of comparison and

analysis of the results of Pareto control in batch processing.

Natural batch scheduling (NBS)

The most natural and simple way of scheduling a batch is that whenever the batching

machine becomes idle; it immediately starts the processing of the next batch if there
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are jobs available in the queue in front of the machine. If the available queue length is

greater than or equal to the batch capacity, then the formed batch is full and the job

selection is done by some simple priority rules such as shortest processing time (SPT),

earliest due date (EDD), etc. Else, a partial batch is loaded on the machine. In case

of no job present in the queue, the machine waits for the future job arrival. This way

of scheduling a batch is addressed here as Natural Batch Scheduling (NBS) strategy,

which is called as Greedy Batching by Glassey and Weng (1991). For clarity, the NBS

algorithm is presented in Figure 4.2.

If the batching machine becomes idle, then
if there are jobs in the queue (q > 0), then

if q ≤ c
Start processing a batch of q jobs;

else
Start processing a batch of c jobs based
on any priority rule (SPT, EDD, etc.)

endif
else

wait until a job arrives;
apply the procedure again;

endif
endif.

Figure 4.2: Natural Batch Scheduling (NBS) rule

Minimum batch size (MBS)

The Minimum Batch Size (MBS) strategy means that a number is picked such that

an operation is started when the number of waiting jobs is greater than or equal to

this number (Neuts, 1967). This is to say that if the machine is idle and the number

of waiting jobs is smaller than MBS, these jobs will not be processed. The possible

value of MBS is greater than or equal to 1 and is smaller than or equal to the batch
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capacity, c. The maximum number of jobs that can be processed in a batch is the

minimum of the queue length and the batch capacity. The MBS algorithm is presented

in Figure 4.3.

If the batching machine becomes idle, then
if there are jobs in the queue (q > 0), then

if q < MBS
Wait for future jobs to arrive;

elseif q ≤ c
Start processing a batch of q jobs;

else
Start processing a batch of c jobs based
on any priority rule (SPT, EDD, etc.)

endif
else

wait until a job arrives;
apply the procedure again;

endif
endif.

Figure 4.3: Neuts’s Minimum Batch Size (MBS) rule (Neuts, 1967)

NBS rule is a special case of MBS rule with MBS=1 i.e. NBS is equivalent to

MBS1. Therefore, in further discussions, NBS is not referred to as such independently;

but is covered within MBS wherever it is required for comparison.

In using MBS algorithm for batch scheduling, if the number of jobs in the queue

are more than the batch capacity (c) then simple priority rules are applied to select c

jobs from the queue in order to load a full batch. For bi-objective scheduling of a batch

processing machine, the MBS algorithm is modified at the step of selecting c jobs from

the queue. Instead of using simple priority rules, CP method is applied to select c jobs

from the queue to form a full batch.
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4. Pareto Control in Batch Processing

4.4 Computational Experiments for Pareto Control

in Batch Processing

In this study, a single batch processing machine is considered for dynamic scheduling,

where jobs arrive continuously at discrete times. Table 4.1 summarizes the factors

considered in the design of the simulation experiments.

Table 4.1: Factors for simulation experiments

No. Factor Levels Description

1. Utilization Three 0.5, 0.6, 0.7
Level (ρ)

2. Processing Uniform Mean (µ) = Range = 30 min,
Time (pi) i.e., pi ∈ U[15,45]

3. Interarrival Exponential Mean (λ = ρ · cµ)
Distribution

4. Due Date (di) One di = ri + F̄i

5. Conflicting One Minimizing (F̄ , Tmax)
Objectives

6. Batching Six MBS1 - MBS6
Strategy

For the simulation experiment, first the jobs are generated with their processing

time, due date and arrival time. The processing times of jobs are assumed to be

uniformly distributed with a mean and range of 30 time units, i.e., the lower and

upper limits of the interval are set at a distance of half of the mean from the mean of
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the distribution. The arrival process is assumed to be exponentially distributed with

the mean being controlled by the utilization factor.

For the single batch processing machine, the utilization factor can be related to

the arrival rate as:

ρ = λ/(c · µ) (4.3)

where λ is mean arrival rate, µ is mean service rate and c is the batch capacity. Hence,

keeping the service rate at a constant value for all our experiments, the arrival rate is

set to depend on the utilization factor. Three different utilization levels, viz., 0.5, 0.6

and 0.7 are considered for normal operation of the machine. At utilization level below

0.5, there is no variation in the schedule irrespective of different scheduling strategies

due to very poor loading. However, at utilization level above 0.7, the system shows

unsteady performance of cumulative average cycle time. It is due to the fact that the

batch processing time is represented by the longest job processing time among all the

jobs contained in a batch. This leads to the loss of the utilization capacity of the batch

processing machine and thus the unsteady queue in front of the machine.

Due-dates are assigned to the jobs based on their arrival on the machine and

average system cycle time with unity due-date allowance factor as:

di = ri + F̄i (4.4)

where ri is the arrival time of job i and F̄i is the system mean cycle time at the time

of release of job i. The batch scheduling method is varied at six different settings

according to MBS1, MBS2, MBS3, MBS4, MBS5 and MBS6.

Each simulation experiment consists of 10 different runs (or replications) and in

each run the shop is loaded continuously with jobs that are numbered on their arrival.

In order to make certain that the system is studied under the steady state, the mean

of the cycle times is continuously observed. It is found that the system reaches a
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steady state approximately after the arrival of about 1500 jobs for all runs. Figure 4.4

presents the sample graph of the steady state of cumulative average cycle time with

MBS 1 scheduling strategy and CP method with power unity at 0.60 utilization level.

Steady State of Cumulative Average Cycle Time (  = 0.6, MBS 1, CP 1)
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Figure 4.4: Steady state of cumulative average cycle time with MBS 1 scheduling
strategy and CP method with unity power at 0.60 utilization level

The number of replications is fixed at 10 and the run length is kept as 4000 jobs

in order to have a smaller number of replications and a larger run length as suggested

by Law and Kelton (1984). In Figure 4.4, the steady state is achieved approximately

after the completion of 1800 jobs. Thus, to be on safe side, the data for computation of

statistics is collected from job completions, numbering from 2001 to 6000. The machine

is continuously loaded till the completion of all the 4000 jobs. The simulation program

is written in C++, implemented in Turbo C++ environment and run on an Intel 2000

Pentium (4), 1.8 GHz PC.
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4. Pareto Control in Batch Processing

4.5 Results of Pareto Control in Batch Processing

This section presents the analysis of the results of achieving Pareto control for minimiz-

ing the conflicting objectives of mean cycle time (F̄ ) and maximum tardiness (Tmax)in

dynamic scheduling of a batch processing machine. In Section 3.8, it is concluded that

using the CP method gives wider control over achieving the boundary solutions of

objectives in dynamic scheduling of a serial processing machine as CP involves double

weighing scheme with parameters of weight and exponent. Therefore, in the simulation

experiments of Pareto control in batch processing, only CP method is used to select

the jobs for making a batch.

In case of Pareto control in serial processing (Section 3.6), CP method was used

to select a job for scheduling at each decision instant in simulation clock. For Pareto

control in batch processing, MBS method is used for batch scheduling. In case, the

number of queued jobs becomes greater than the batch capacity, c, CP method is used

to select c jobs to form a full capacity batch. Here, only the results of NBS, i.e., MBS1

method are presented. In CP method, the relative weights (w1; w2; w1 +w2 = 1) of the

two criteria are varied linearly from value 0.1 to 0.9 at an interval of 0.1 in order to

cover the whole range of weights, i.e., 9 points are computed in total. In CP method,

the exponent r is varied at the levels of 0.33, 0.66, 1, 2, 3 and 10. The CP curves

for these exponent settings are correspondingly represented by CP0.33, CP0.66, CP1,

CP2, CP3 and CP10 in graphs. Among these CP0.33 and CP0.66 are studied to see

the effects of exponent value less than unity and similarly CP2 and CP3 are studied for

the effects of exponent value greater than unity. CP10 is studied as an approximation

of Tchebycheff function (Equation 2.18) (Zeleny, 1982).

The two conflicting objectives under study are the minimization of mean cycle

time and the minimization of maximum tardiness. The results of these objectives

are presented for utilization factors of 0.5, 0.6 and 0.7 respectively in Figures 4.5, 4.6
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4. Pareto Control in Batch Processing

and 4.7 for varying weights and exponent values in CP method. The points on the

characteristic curve show the values of performance measures obtained for different

levels of weights for dynamic single batch processing machine. The extreme points

in these plots are achieved by the selection criterion presented in Equation 4.1. The

selection criterion min (pi) gives the extreme point corresponding to minimization of

mean cycle time and similarly selection criterion min (di) gives the other extreme point

corresponding to minimization of maximum tardiness. These two extreme points are

the limits of control, which are correspondingly referred to as p extreme and d extreme

points. The weight is varied linearly in a discrete fashion and different points are

achieved on the boundary in a progressive manner from one end point to the other end

point of the curve.

The points of CP0.33 are concentrated around p extreme point. The points of

CP0.66 get spread over a wider range. The maximum spread of the control boundary

between the two extreme points is achieved by CP2 at the utilization levels of 0.5

and 0.6 and by CP1 at 0.7 utilization level. As the exponent value is increased to 3,

the spread of the boundary gets reduced and all the points shift towards the side of

d extreme point. Further, at a very high exponent value such as 10, all the points

get clustered around d extreme point. Thus, first with an increase in the exponent

value, the boundary spread of Pareto control curve increases to its maximum value.

On further increase in the exponent value, the boundary spread starts decreasing and

the points start converging towards the d extreme point. The intuitive explanation

of this behavior is similar to the intuitive explanation presented for Pareto control in

serial processing in Section 3.6.1.

From this characterization of Pareto control curves, it is clear that the exponent

value of CP method has a direct correlation with the spread of trade-off curves between

the conflicting objectives of minimizing mean cycle time and minimizing maximum tar-

diness. This behavior of Pareto control curves gives scope for controlling the scheduling
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objectives within a specified range. By selecting an appropriate exponent value, the

decision maker can control the batch scheduling within the specific range of scheduling

objectives.

The Pareto control curves for MBS1 with CP1 are presented in Figure 4.8 for

various levels of utilization (ρ) considered in this study, i.e., 0.5, 0.6 and 0.7. From

this figure, it is clearly observed that at utilization level below 0.5, the curve will simply

converge to a single point. This is because, when the arrival of jobs is very light, there

is very low probability that there will be more than c jobs (batch capacity) in the

queue at any decision instance and so there will be no variation in the schedule while

using various weights in applying CP method for job selection. As the utilization level

increases up to 0.7, the spread of steady state values of two objectives gets widened.

At utilization level above 0.7, the arrival of jobs becomes very heavy and the jobs start

accumulating in front of the machine. Thus, the queue becomes larger and larger,

eventually leading to an unsteady state of the system.

4.6 Effects of Parameter Variation on Pareto Con-

trol in Batch Processing

The effect of varying due-dates and weight pattern on achieving Pareto control in bi-

objective dynamic scheduling of a batch processing machine is found similar to the case

of serial processing machine, as discussed in Section 3.7. Without being repetitive, the

effect of varying the MBS value on the Pareto control in dynamic batch scheduling is

addressed herein.

The simulation experiments of multi-objective dynamic batch scheduling are re-

peated for various MBS values at all the three utilization levels. The results of CP

method with unity exponent are presented in Figures 4.9, 4.10 and 4.11 respectively

for 0.5, 0.6 and 0.7 utilization levels. In these figures, each curve (MBS1 - MBS6) will
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have its own extreme points on both sides. For the purpose of clarity of figures, these

extreme points are not shown in these figures, as these extreme points are not relevant

for the discussion. Here, the focus is to present that the Pareto control curves can be

achieved for any MBS value.

At 0.5 utilization level, MBS curves are clearly separated as presented in Figure 4.9.

MBS6 gives very poor performance with respect to both the objectives, since it requires

full batch loading. At light job arrival, it incurs high waiting time to load the full batch.

MBS1 gives the best performance on both objectives because at light arrival rate, it

is preferable to load the available batch than to wait for more jobs to arrive. At

0.6 utilization in Figure 4.10, MBS curves come closer to each other. While, at 0.7

utilization in Figure 4.11, all MBS curves merge leaving no clear distinction. This

is because, at heavy job arrival, the queue length is always greater than the batch

capacity, c, and so at every decision instance a batch of c jobs is loaded on the machine

thus leaving no differentiation among the various MBS curves.

4.7 Conclusion

This chapter presented the computational experiments for Pareto control in multi-

objective dynamic scheduling of a batch processing machine. It has been shown that

by using CP method, Pareto schedule control can be achieved in dynamic scheduling

of a batch processing machine with respect to the conflicting objectives of minimizing

mean cycle time and minimizing the maximum tardiness.

Conjunctive simulated scheduling approach is used at each decision instance in

simulation clock. A batch is formed by using the MBS method of batching and in each

batch the Pareto optimal jobs are selected using the CP method. The study showed

that by varying the relative weights of selection criteria at each selection instance in

simulation clock and the exponent value in CP method, a Pareto controllable curve can
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be achieved for the conflicting objectives. By appropriate selection of weight range and

exponent value, the conflicting scheduling objectives can be controlled and maintained

within a specified range of operation. Further, it has been experimentally found that

the Pareto control curve is highly sensitive to the variation in MBS value at low levels

of utilization (0.5 and 0.6); while it becomes insensitive to the variation in MBS value

at high utilization level (0.7).

However, in most of the CIM oriented production environments, especially at semi-

conductor factories, real-time information about the incoming jobs is easily available

from the shop floor control systems, which can be exploited to significantly improve

the batch scheduling performance. Generally in batch processing, use of the predicted

future arrival data gives a significant improvement in the cycle time performance, as

shown by Glassey and Weng (1991) and Fowler et al. (1992). Extending the use of avail-

able real-time information about the incoming jobs, a look ahead batching method is

proposed in the next chapter in order to optimize the earliness and tardiness related

objectives. These earliness and tardiness related objectives are of utmost importance

in the JIT manufacturing environment.
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Chapter 5

Single Objective Look Ahead Batch
Processing

5.1 Introduction

In Chapter 2, the Pareto control concept was adopted for multi-objective dynamic

scheduling problems, which was computationally experimented with serial processing

and batch processing respectively in Chapters 3 and 4. In this chapter, a look ahead

batch processing method is proposed, which acts as a prerequisite for applying the

concept of “Pareto control” in look ahead batch processing in Chapter 6.

In Chapters 3 and 4, it was assumed that at any decision instance, a decision

maker has information only about the arrived/queued up lots, i.e., there is no real-

time information available about the arrival epochs of lots arriving in the near-future.

However, in most of the CIM oriented production environments, the real-time informa-

tion about the arrival epochs and the due dates of incoming lots is easily available from

shop floor control systems, but is seldom exploited in decision-making. This real-time

information of incoming lots in near-future time can significantly improve the schedul-

ing performance, especially for batch processing workstations where multiple jobs are

simultaneously processed. “To start the machine now or to wait for the next lot to

arrive” is the question, which stresses the essence of the control task for many batch
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processing systems.

In the furnace model of batching, when a batch-processing machine is available

and full loads are waiting, the decision to process a selected batch is obvious, since

no advantage in cycle time performance can be gained by waiting for the incoming

lots in the near-future. However, when there is a batch-processing machine available

and only partial loads of products are waiting, a decision must be made to either

start a (partial) batch or wait for more lots to arrive. In such situations, when the

total number of lots in the queue is less than the capacity of the batch processing

machine, starting a batch immediately underutilizes the batch processing machine.

Delaying the initiation of processing until more lots arrive increases the queuing time

for the lots that are currently awaiting processing and creates idleness of the machine.

Both decisions may lead to deterioration of the schedule performance. Therefore, the

dynamic optimization of the number of lots and starting time of the batch for loading

at each decision instance are very essential.

To optimize the tradeoff between the number of lots and starting time of the batch,

there exist look-ahead methods such as Dynamic Batching Heuristic (DBH) and Next

Arrival Control Heuristic (NACH), as discussed earlier in Section 2.2. These methods

exploit the arrival information of the incoming lots and minimize the mean cycle time

performance in dynamic batch scheduling. However, the existing scheduling literature

lacks any look-ahead batch scheduling strategy for optimizing due date related objec-

tives, which are gaining increasing importance in the JIT manufacturing environment.

In this chapter, a Look Ahead Batching (LAB) method is proposed, which utilizes the

arrival and due date information of the upcoming lots and evaluates the optimal batch

decision to achieve ET performance in dynamic batch scheduling.

The next section presents DBH and NACH methods for improving mean cycle time

performance in dynamic batch scheduling. The proposed LAB method for improving

ET performance is described in the succeeding section.
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5.2 Existing LAB Methods for Cycle Time Perfor-

mance

As presented in Section 4.3, NBS and MBS batch scheduling methods do not take

advantage of forecast arrival epochs if such information is available from the computer-

ized systems in the CIM environment. In this section, two look ahead batch scheduling

methods, DBH and NACH, are presented, which take advantage of the predictions of

future arrival in order to minimize the mean cycle time at a batch processing machine.

Dynamic Batching Heuristic (DBH)

Dynamic Batching Heuristic (DBH) (Glassey and Weng, 1991) utilizes the available

information of future arrival epochs in order to decide whether the batch should start

now or wait for more lots to come and join the present batch. DBH algorithm is

presented in Figure 5.1.

If the batching machine becomes idle, then
if there are lots in the queue, then

let t0 be the time epoch that the batching machine becomes idle;
start decision heuristic (explained in the text);

else
wait until a lot arrives and let t0 be the arrival epoch;
start decision heuristic (explained in the text);

endif
endif.

Figure 5.1: Glassey and Weng’s Dynamic Batching Heuristic (DBH) algorithm

DBH considers the future arrivals that will occur in a fixed planning horizon equal

to the batch processing time (T ). DBH makes a decision whether to start a partial

batch at the current time (t0) or to wait for the ith future arrival (at time ti). For each
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ti in the planning horizon, the net delay caused by waiting for the arrival is determined.

Net delay is the amount of time saved for the arrivals after t0 but before t0 + T minus

the delay incurred by those lots already waiting (q = the number of lots in queue at

epoch t0). Among all of the possible loading times as presented in Figure 5.2, the one

to be chosen should have the largest improvement, i.e., wait until time ti where

i = arg max
0≤j≤jmax

{j × (T + t0 − tj)− q × (tj − t0)} (5.1)

where jmax is the last future arrival considered in the look-ahead period.
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Figure 5.2: Cumulative number of lots in queue through time

In Equation 5.1, the first term, j× (T + t0− tj), represents the decrease in waiting

time for the arrivals after t0 but before t0 + T , if the decision is to load the batch at

time tj. The second term, q × (tj − t0), implies the increase in waiting time of the

already waiting lots at time t0 for the same decision. Thus, the whole term represents

the savings in the waiting time of lots for the decision of loading the batch at time tj.

The future arrival time with maximum savings in waiting times is selected as the final

loading instance. Ties are broken in favor of earliest start time. Glassey and Weng

concluded that the degree of improvement is affected by the middle traffic intensity

levels. At low or high levels, DBH often yields the same decisions as the MBS rule.
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Next Arrival Control Heuristic (NACH)

Glassey and Weng (1991) pointed out that about half of the potential benefit in

using DBH is gained by looking ahead at only the next arrival. Fowler et al. (1992)

modified DBH to consider only the next arrival and to make the decision whether to

start the batch now or wait for the next arrival. In case of starting the batch now,

the next decision is made at the time of batch completion. In case of waiting for

the next arrival, another decision is made at the time of the next arrival. Thus, the

modified heuristic is a rolling horizon policy. This contrasts with DBH which decides

at time t0 that how many arrivals should occur before starting a batch. They called

their modified heuristic as Next Arrival Control Heuristic (NACH). Thus, modifying

Equation 5.1 only for the next one arrival, NACH value is defined as follows:

NACH = (T + t0 − t1)− q × (t1 − t0) (5.2)

If NACH < 0, then it is beneficial to start the batch now for processing. Else, it is

desirable to wait till the next arrival and apply the decision logic again at that point.

Figure 5.3 provides a simplified flowchart of the logic of the simulation program. There

are two possible decisions: (1) when a lot arrives (a “push” decision); and (2) when

the batching machine finishes processing (a “pull” decision).

However, both DBH and NACH methods are developed to improve the cycle time

performance at a batch processing machine, taking benefit of the predicted information

about future arrivals. In the following section, a new LAB method is proposed for a

single product single batch processing machine case with the objective of improving

the ET performance. The proposed LAB method exploits the predicted information

about arrival time and due dates of incoming lots and optimizes the ET performance.
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Figure 5.3: Flowchart of simulation logic of Fowler et al.’s Next Arrival Control Heuris-
tic (NACH) algorithm

5.3 Proposed LAB method for ET Performance

In LAB, the near-future arrivals of the incoming lots are looked ahead in the simulated

time. First, all the LAB scenarios are formed from the arrived (queued-up) lots and

the future incoming lots. A LAB scenario is defined as a batch of several lots equivalent

to either partial or full batch capacity, which can be processed only after the arrival

of all the lots in the batch at the machine. Lots for every LAB scenario are selected

using arrival and due date information of the lots. Then, the best LAB scenario in

terms of due-date objectives is selected to schedule on the available batch processing
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machine for processing. The batch processing either starts immediately or after some

delay till the arrival of selected future lots in the best LAB scenario. It depends on

whether the best LAB scenario is formed from all available (queued-up) lots or from

the future incoming lots at the machine.

The overall flow chart of the proposed LAB method is presented in Figure 5.4. In

brief, the overall procedure is as follows.

1. Identify the lots arrived and to be arrived at in the near-future at the decision

point in the simulation clock.

2. Construct the LAB scenarios based on the future arrivals of the lots.

3. Find out the best LAB scenario based on ET performance measure.

4. Process the best LAB scenario on the machine and advance the simulation clock

to the next decision instance.

LAB algorithm has two stages of functioning. In the first stage, there is lot

selection for forming various LAB scenarios with the consideration of incoming lots in

the near-future. In the second stage, the best LAB scenario is selected to process on

the batch processing machine. All the four steps of the LAB algorithm are separately

elaborated in the following sub-sections in detail.

Step 1

A decision point in the simulation clock is defined as the availability of the machine or

as the arrival of a new job on the idle machine. The decision of which batch should be

loaded on the available machine needs to be made. First, at each decision point in the

simulation clock, the lots arrived and the future incoming lots are identified based on

the arrival information from the upstream process of manufacturing.
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Is  WIP

(in front of machine)

present ?

lots_done :=0
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machine.
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simulation clock till next simulation event on the machine.
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No

No
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Form a LAB scenario with full

batch capacity by EDD
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WIP at simulation clock
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Find out next lot arrival.
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batch processing time
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 clock ?

Yes X := X + 1;

No

Figure 5.4: Flow chart of the simulation logic of LAB algorithm for ET performance
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Step 2

At any decision point, in general, a batch is formed from the available (arrived) lots in

front of the machine. However, there may be cases of a lot with tight due date arriving

in the near-future. Since a batch under processing can not be stopped in between, the

future lot with urgency has to wait up to the completion of the running batch on the

machine in order to be processed next. Therefore, there is a need for looking ahead

in future time for the arrival of any lot with tight due-date. However, the question is

how much time to wait and how many lots to select for forming a batch. To deal with

this, a LAB scenario is defined as the consideration of future arrivals while forming

a batch at each decision instance in the simulation clock. This means the possibility

of keeping the machine idle until future arrival(s), forming a batch considering these

future arrivals and then loading the constructed batch for processing on the machine

in a future time.

Since the lots of the same product type have equal processing times, in constructing

the LAB scenarios, the maximum waiting time for future lots to arrive will always be

less than one batch processing time of that product type. This is so because if the

tight lot arrives after one batch processing time from now, then it might as well be

processed after the completion of the present batch on the machine.

First, there is a need to construct the LAB scenarios for future period equivalent

to one batch processing time. In each LAB scenario, the batch will consist of the

number of lots equivalent to the minimum value between the number of lots arrived

up to simulated time in consideration and the batch capacity. In case the number of

lots arrived is greater than the batch capacity, the appropriate lots need to be selected

to form full capacity batch based on due date. The construction of LAB scenarios

is presented by an example in Figure 5.5. In Figure 5.5, Scenarios 1, 2, and 3 are

formed of 4, 5, and 6 lots respectively, according to the number of lots arrived till
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that simulated instance. Assuming batch capacity to be 6 and batch processing time

to be 2 hours, scenario 4 is formed of 6 best lots out of 7 arrived lots, based on due

date. In constructing these LAB scenarios, 8th lot is not considered for batching as

it arrives after one batch processing time period from simulation clock. At the end

of this step, we will have various LAB scenarios being considered for loading on the

batch-processing machine.
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Figure 5.5: An example of constructing look ahead batching (LAB) scenarios

Step 3

Among constructed LAB scenarios in the above step, the best LAB scenario is selected

for loading on the batch processing machine. The scenario, which has the minimum

root mean square (RMS) value of the earliness-tardiness measure of the lots, is selected

as best for loading.

k = arg max
0≤j≤jmax




√√√√
q+j∑
i=1

[(Ei)2 + (Ti)2]


 (5.3)
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where j is the indicator of LAB scenario, i represents the lots in each LAB scenario and

k implies the best LAB scenario to be loaded for processing on the batching machine.

Step 4

Finally, the best LAB scenario will be loaded on the batch processing machine. The

simulation clock of the machine is forwarded by the waiting time along with the setup

and processing times. Then, it is required to find the next availability of machine in

order to forward the simulated time up to next simulation event. Then, the whole

procedure is repeated from step 1 again for batch decision making on the simulated

instance, until all the lots are scheduled on the batch processing machine.

5.4 Model, Assumptions and Parameters

The proposed LAB method for ET performance is computationally experimented for

the problem of scheduling a batch processing machine (e.g., oxidation furnaces in semi-

conductor fabs) with dynamic arrivals of the lots. The basic model is schematically

presented in Figure 5.6.
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Figure 5.6: Schematic diagram of the experimental model

The following assumptions and constraints are considered in the computational

study:

1. The lots arrive dynamically at the machine.
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2. Batch capacity, i.e., the maximum batch size is constant.

3. Prior knowledge of the arrival time and the due date of the upcoming lots at

batch processing machine is available.

4. The lots are independent, i.e., the lots are processed without any precedent

relationship.

5. No machine breakdowns or preventive maintenance is considered, i.e., machine

is always available for processing.

6. Setup times are independent of the sequence, and are included in the processing

times. The processing times in the furnace batch operations are assumed to be

constant.

7. No interruption to lots in processing, implying no pre-emption.

8. There are no other limiting resources such as material or labor.

Lots arrive dynamically at the furnace and wait in a queue. If they are unable

to be processed immediately, the arrival epochs of incoming lots are predicted. For

simplicity, the number of wafers in each lot is assumed to be the same and the batch

capacity is assumed to be six lots, with unlimited buffer capacity.

Table 5.1 summarizes the factors considered in the study of computational exper-

iments. The first factor in Table 5.1 is the traffic intensity (utilization). The value

selected for this factor are 0.70 and 0.80. The second factor, batch processing time, is

considered only at one constant level of 60 min, since in the furnace model of batching,

the processing time of the batch is taken as constant.

The third factor is the inter arrival time distribution, which is selected as ex-

ponential distribution. The actual parameters of the distribution are determined by

specifying the traffic intensity. Based on the known relation from the queuing results,
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Table 5.1: Factors for computational experiments

No. Factor Levels Description

1. Traffic Two 0.70, 0.80
Intensity (ρ)

2. Processing Constant 60 min
Time (T = 1/µ) (Furnace model of batching)

3. Interarrival Exponential Mean (λ = ρ · cµ)
Distribution

4. Due Date Tight k ∈ U[-2,6]
Tightness Loose k ∈ U[1,3]
(di = ri + k · T )

5. Batch DBH Arrival time of future lots
Scheduling NACH Arrival time of future lots
Method LAB Arrival time and due date of future lots

the traffic intensity for a single batch processor can be related to the arrival rate as:

ρ =
λ

c · µ (5.4)

where ρ is the traffic intensity, λ is the mean arrival rate, µ is the mean service rate and

c is the batch capacity. Hence, keeping the service rate at a constant value for all the

experiments, the arrival rate is set to depend on the traffic intensity. The inter-arrival

time is utilized to find random arrival times of the lots according to Poisson distrib-

ution function. The exponential case represents high variation, i.e., the coefficient of

variation is equal to 1.0.

The fourth factor deals with the tightness of the due dates in the system. It rep-
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resents the allowance between the arrival time and the due date of the job. This factor

is considered at two levels: tight and loose. The final factor is the batch scheduling

methods employed. These are DBH, NACH and the proposed LAB method.
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Figure 5.7: Steady state simulation results of cumulative average cycle time in dynamic
batch scheduling (ρ = 0.7).

[Out of results for total 4000 lots, initial 1000 lots are considered to be in the initial
warm-up period. Steady state data collection is done from 1001 to 3000 lots.]

Finally, all experimental results are collected after achieving the steady state per-

formance, i.e., after the initial warm-up period of the simulation runs. For each com-

bination of factors (i.e., each data point), 10 replications are taken to reduce the effect

of variance in each replication. The steady state performance of cumulative average

cycle time is shown in Figure 5.7. Steady state of cumulative average cycle time is

achieved after about 800 lots. Therefore, each replication contains the same number

of observations (2000) after an initial warm-up period of 1000 observations. A total of
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4000 jobs are continuously released in the single machine system and the data collec-

tion for the steady state performance measure is done from lot no. 1001 up to lot no.

3000 for 2000 lots. The simulation program is written and implemented in MatLab6

environment and run on an Intel 2000 Pentium (4), 1.8 GHz PC.

5.5 Results of Single Objective Look Ahead Batch

Processing

The ET performance is measured by the minimization of the average absolute sum of

earliness and tardiness of the lots, (|E|+ |T |), and the minimization of their average

square sum, (E2 + T 2). These measures are respectively represented in Equations 2.11

and 2.13 in Chapter 2. The results of the proposed LAB method are compared against

DBH and NACH. Often the maximum batch size of such operations is greater than the

size of the arriving lots, and therefore these decision-making situations become very

crucial for the improved performance of these batching operations.

Tables 5.2 and 5.3 present the steady state results of average absolute sum and

average square sum of earliness and tardiness for DBH, NACH, and LAB methods.

Each column represents an independent setting of experiments. The first three rows

respectively represent the values of the ET performance measure for DBH, NACH and

the proposed LAB method. These values are the average of ten replications. The

next two rows represent the percentage reduction in the ET performance measure

respectively for LAB over DBH and LAB over NACH.

From the results in Tables 5.2 and 5.3, it is clearly observed that LAB improves

the performance of average absolute sum of earliness and tardiness by more than 35%

in comparison to DBH and NACH method. For example, with loose due date setting

and 0.70 traffic intensity (ρ), the value of the average sum of absolute earliness and

tardiness is 38.83 min for the proposed LAB method, which is 40.60% reduction from
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Table 5.2: Steady state results of average sum of absolute earliness and tardiness

[The results of LAB method are compared against DBH and NACH for all four
experimental settings. LAB method improves performance by more than 35%.]

(|E|+ |T |) (min)

Method Tight due date Loose due date

ρ = 0.7 ρ = 0.8 ρ = 0.7 ρ = 0.8

1. DBH 122.41 122.50 65.37 65.44

2. NACH 122.48 122.71 65.64 65.60

3. LAB 79.34 74.43 38.83 41.03

% Reduction (LAB over DBH) 35.19 39.24 40.60 37.30

% Reduction (LAB over NACH) 35.22 39.34 40.84 37.45

corresponding value for DBH method (65.37 min) and 40.84% reduction from corre-

sponding value for NACH method (65.64 min). Similarly, for the average square sum of

earliness and tardiness, LAB improves the performance by more than 45% in compar-

ison to DBH and NACH methods. Figure 5.8 (a) and (b) presents the column graphs

for the % reduction in (a) average sum of absolute earliness and tardiness (|E|+ |T |)
and (b) average square sum of earliness and tardiness (E2 + T 2) on using LAB method

over DBH and NACH methods.

Though, for the ET performance, the comparison of the proposed LAB method

with that of DBH and NACH is unfair, as DBH and NACH are intended for the cycle

time objectives. However, these results demonstrate the benefit of using knowledge

about the arrival times and due-dates of future coming lots in significantly reducing

the ET performance measures in scheduling semiconductor batch processes, which
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5. Single Objective Look Ahead Batch Processing

Table 5.3: Steady state results of average square sum of earliness and tardiness

[The results of LAB method are compared against DBH and NACH for all four
experimental settings. LAB method improves performance by more than 45%.]

(E2 + T 2) (min2)

Method Tight due date Loose due date

ρ = 0.7 ρ = 0.8 ρ = 0.7 ρ = 0.8

1. DBH 20417.13 20449.94 6101.48 6124.29

2. NACH 20525.32 20524.47 6198.90 6159.70

3. LAB 10731.68 9551.94 2423.27 2730.51

% Reduction (LAB over DBH) 47.44 53.29 60.28 55.42

% Reduction (LAB over NACH) 47.71 53.46 60.91 55.67

generally constitute a bottleneck for the semiconductor manufacturing operations. ET

performance is important to both wafer fabrication and back-end factories, where both

early and tardy completion of lots is strongly discouraged.

In this chapter, the ET performance is measured in terms of a joint measure

of earliness and tardiness such as the minimization of the average absolute sum of

earliness and tardiness of the lots (|E|+ |T |) and the minimization of their average

square sum (E2 + T 2). However, if the ET performance is measured in terms of two

individual objective functions such as simultaneous minimization of average earliness

and of average tardiness, then it becomes a multi-objective dynamic batch scheduling

problem with availability of look ahead information of the incoming lots. This is further

addressed in the next chapter as “Pareto control in look ahead batch processing”.

Thus, the proposal of LAB method for the ET performance in this chapter becomes a
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(a) average sum of absolute earliness and tardiness (|E|+ |T |)
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Figure 5.8: Column graphs for % reduction in (a) average sum of absolute earliness and
tardiness (|E|+ |T |) and (b) average square sum of earliness and tardiness (E2 + T 2)
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5. Single Objective Look Ahead Batch Processing

prerequisite to the application of LAB method for Pareto control in Chapter 6.

5.6 Conclusion

In this chapter, a novel LAB method is proposed, which utilizes the arrival and due

date information of the upcoming lots and achieves the optimal batch decision for the

ET performance in dynamic batch scheduling. ET performance is measured in terms

of a joint measure of earliness and tardiness such as the minimization of the average

absolute sum of earliness and tardiness of the lots (|E|+ |T |) and the minimization

of their average square sum (E2 + T 2). By varying the due date pattern and the

traffic intensity, simulation experiments are conducted to show the effect of LAB over

DBH and NACH for ET performance measures. The steady state results of dynamic

scheduling of batch processing machine indicate the well-improved performance of the

LAB method under a wide variety of service rate and utilization level conditions. For

average absolute sum of earliness and tardiness, LAB method gives more than 35%

improvement over DBH and NACH, while more than 45% enhancement on average

square sum of earliness and tardiness.

In this chapter, while using the proposed LAB method to minimize the joint

earliness-tardiness measures, in effect a priori weights (i.e., 50-50 weight method)

are used to evaluate the earliness and tardiness objectives, which are conflicting in

themselves when seen independently. In the next chapter, earliness and tardiness are

taken as two conflicting individual objectives and the weights are assigned a posteriori

according to the preference of the decision maker. Thus, using the adopted Pareto

control, the proposed LAB method for ET performance is further exploited to develop

Pareto control curves between earliness and tardiness related objectives in Chapter 6.
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Chapter 6

Pareto Control in Look Ahead
Batch Processing

6.1 Introduction

In Chapter 5, a new LAB method was proposed to exploit the future arrival and

due date information for minimizing ET performance measures in dynamic scheduling

of a batch processing machine. The considered ET performance measures are just

the convex combinations of earliness and tardiness with a priori chosen weights, in

particular with equal weights. In this chapter, the weights of earliness and tardiness

are not decided a priori ; rather a control curve is achieved by taking the full range of

weights and leaving the decision of choosing an operating range on the decision maker

itself. This has been achieved by using CP method to get a Pareto control curve on

the two sets of conflicting objectives: (a) average earliness vs. average tardiness and

(b) number of early jobs vs. number of tardy jobs.

This chapter presents a combined concept of LAB and Pareto control with respect

to the problem of simultaneously minimizing the conflicting objectives of earliness and

tardiness related measures in dynamic scheduling of a batch processing machine. Ear-

liness and tardiness are taken as two individual objectives, which are by definition

perfectly negatively correlated for an individual job. Therefore, earliness and tardiness
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6. Pareto Control in Look Ahead Batch Processing

related objectives for a system as a whole are highly negatively correlated and so con-

flicting in nature. In production scheduling, the requirements of earliness and tardiness

related objectives vary with time according to the dynamic market forces. This creates

a need to control the ET performance schedule of a batch processing machine in a

dynamic environment. The Pareto control in look ahead batch processing has been

achieved by using CP method for earliness and tardiness objectives.

6.2 Earliness-Tardiness (ET) Performance

In general JIT manufacturing environment, instead of a strict due date, a due date

window is given as a criterion to meet the on-time delivery of the jobs (Baker and

Scudder, 1990). A due date window is defined by a lower and an upper limit of the due

date as [d1i, d2i]. The job (Ji) is said to be early, if it gets completed before d1i; late, if

it gets completed after d2i; and on-time, otherwise. Figure 6.1 presents the concept of

due date window clearly.

d
1i

d
2i

Completion time of job J
i
(C
i
)

Time

On-time

delivery

Early

jobs

Tardy

jobs

Figure 6.1: Due date window concept

Therefore, the earliness (Ei) and tardiness (Ti) of job Ji and their respective

indicators are redefined as follows:

Ei = max(0, d1i − Ci) (6.1)

Ti = max(0, Ci − d2i) (6.2)

UEi =

{
1, if Ci < d1i

0, else

}
(6.3)
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6. Pareto Control in Look Ahead Batch Processing

UTi =

{
1, if Ci > d2i

0, else

}
(6.4)

In the previous chapter, the strict due date was considered for the simplicity in

validating the results of the proposed LAB method for the ET performance. The ET

performance was measured by the minimization of the average absolute sum of earliness

and tardiness of the lots, (|E|+ |T |), and the minimization of their average square sum,

(E2 + T 2).

In this chapter, the due date window is considered for a more realistic picture of

JIT manufacturing scenario. The ET performance is measured in terms of two sets of

earliness and tardiness related conflicting objectives:

• average earliness vs. average tardiness

min {1

n

∑

∀i
(Ei) and

1

n

∑

∀i
(Ti)} (6.5)

• number of early jobs vs. number of tardy jobs

min {
∑

∀i
(UEi) and

∑

∀i
(UTi)} (6.6)

Due to the conflicting nature of these objectives, the Pareto control curve needs to

be developed and investigated for controlling the ET performance in look ahead batch

processing.

6.3 Pareto Control using LAB

For Pareto control between earliness and tardiness related objectives, Steps 1, 2 and

4 of the proposed LAB algorithm in Section 5.3 remain the same, while the Step 3 to

select the best LAB scenario is replaced by the following procedure.
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As shown in Section 5.3, at each decision instance in simulation clock, various

LAB scenarios can be defined within one batch processing time as also presented in

Figure 6.2.

New Lot Arrivals

LAB Scenario 1

LAB Scenario 2

LAB Scenario j

LAB Scenario 0

Simulation

Clock

Look-Ahead Simulated Time

T

t
1

t
2

t
j

tt
0

New lot out of 

consideration
Cumulative

number of 

lots in queue

q

Figure 6.2: Look Ahead Batching (LAB) scenarios

Considering that jth LAB scenario starts its processing at time tj, a measure of

batch earliness (BEj) and tardiness (BTj) can be defined for each LAB scenario as

follows:

BEj =

q+j∑
i=1

Ei, 0 ≤ j ≤ jmax (6.7)

BTj =

q+j∑
i=1

Ti, 0 ≤ j ≤ jmax (6.8)

where j is the indicator of LAB scenario, i represents the jobs in each LAB scenario and

q is the cumulative number of jobs in queue at simulation clock (t0). In a batch, there

may be some jobs finishing early, some finishing late and some on-time. Therefore,
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batch earliness (BEj) is defined as the sum of the earliness of all the early finishing

jobs in the batch of jth LAB scenario. Similarly, the batch tardiness (BTj) is defined as

the sum of the tardiness of all the late finishing jobs in the batch of jth LAB scenario.

Thus, each LAB scenario has two measures, batch earliness and batch tardiness,

both of which need to be minimized for JIT scheduling, i.e., the selection of the best

LAB scenario constitutes a bi-objective optimization problem at each decision instance

in simulation clock.

min
0≤j≤jmax

{BEj and BTj} (6.9)

Now, for this bi-objective optimization problem at each decision instance, the

Pareto optimal solution, i.e., the Pareto optimal LAB scenario is determined by using

compromise programming (CP) method. CP method is a convex combination approach

to solve the multi-objective optimization problems. It has been discussed earlier in

detail in Section 2.3.2.

Using CP method with weight w and exponent r, a Pareto objective function,

Fr(j), can be formulated for each LAB scenario as follows:

Fr(j) =

[(
w · |BEj −min (BEj)|

min (BEj)

)r

+

(
(1− w) · |BTj −min (BTj)|

min (BTj)

)r ]1/r

(6.10)

where min (BEj) represents the minimum value of batch earliness, BEj, for all possible

LAB scenarios within one batch processing time (0 ≤ j ≤ jmax) and similarly min (BTj)

represents the minimum value of batch tardiness, BTj, 0 ≤ j ≤ jmax.

Then, among all constructed LAB scenarios, the best LAB scenario is selected for

loading on the batch processing machine. The scenario, which has the minimum value

of Pareto objective function Fr(j), is selected as the best for loading.

k = arg min
0≤j≤jmax

(Fr(j)) (6.11)
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6. Pareto Control in Look Ahead Batch Processing

where k implies the best LAB scenario to be loaded for processing on the batching

machine.

Thus, by varying the weight w and exponent r in CP method, different control

curves can be achieved for the conflicting earliness and tardiness objectives. Pareto

control in look ahead batch processing is computationally experimented in the next

section for the dynamic scheduling of a batch processing machine.

6.4 Computational Experiments for Pareto Control

using LAB

Computational experiments for Pareto control in look ahead batch processing have

been conducted for the problem of scheduling a batch processing machine with dynamic

arrivals of the lots. The model, assumptions and constraints of the experiments are

kept similar to Chapter 5, as earlier described in Section 5.4. The basic model was

schematically presented in Figure 5.6. The parameters and setting are changed to

include the due date window factor. Table 6.1 summarizes the factors considered for

the computational experiments.

The first factor is the traffic intensity (ρ), i.e., the machine utilization which is

important because it affects the queue length. The traffic intensity is considered at

three different levels, 0.50, 0.60 and 0.70, as considered in Chapter 4. Some experiments

are tried at ρ values lower than 0.5 and also at ρ values higher than 0.7 and the following

observations are made. If the traffic intensity is much lower than 0.50, there may be

longer inter-arrival times and so very few future arrivals will occur within the look

ahead window. Thus, at every decision instance in simulation clock, there are not

many options of batch formation and so there is no variation in performance of LAB

strategy with respect to variation in weight. The 0.70 value represents moderately

heavy traffic, but not so heavy that the decisions made by different strategies are
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Table 6.1: Factors for computational experiments

No. Factor Levels Description

1. Traffic Three 0.50, 0.60, 0.70
Intensity (ρ)

2. Processing Constant 60 min
Time (T = 1/µ) (Furnace model of batching)

3. Interarrival Exponential Mean (λ = ρ · cµ)
Distribution

4. Due Date DD1: Tight k ∈ U[-2,6]
Tightness DD2: Medium k ∈ U[0,4]
(di = ri + k · T ) DD3: Loose k ∈ U[1,3]

5. Due Date DDW0: Strict d1i = d2i = di

Window DDW1: Small d1i = di − 0.2 · T ; d2i = di + 0.1 · T
([d1i, d2i]) DDW2: Medium d1i = di − 0.4 · T ; d2i = di + 0.2 · T

DDW3: Large d1i = di − 0.6 · T ; d2i = di + 0.3 · T

6. Batch MBS1-MBS6 No look-ahead information
Scheduling DBH Arrival time of future lots
Strategy NACH Arrival time of future lots

LAB Based Arrival time and due date of future lots

always the same, i.e., a full batch loading. For ρ values greater than 0.70, the system

with batch processing machine becomes so heavily loaded that at each decision instance

a full batch is loaded on the machine for processing. This makes the evaluation of the

effectiveness of LAB strategy difficult or almost impossible. Therefore, the ρ value is

considered within the region of interest at 0.50, 0.60 and 0.70 levels.

The single batch processing machine is considered under the furnace model of
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batching, where the processing time of the batch is taken as constant. Therefore, the

second factor, batch processing time, is considered only at one constant level of 60

minutes, as all other parameters are directly proportionate to it. The third factor is

the inter arrival time distribution, which is selected as exponential distribution. The

inter arrival time is utilized to find random arrival times of the lots according to Poisson

distribution function, as done in the previous chapter in Section 5.4.

The next two factors deal with the nature of the due dates in the system. The due

date tightness factor represents the allowance between the job arrival time and its due

date. This factor is considered at three levels: tight, medium and loose. It is designed

in such a way that the mean of allowance is equal at all levels, while the variance is

high at tight level and low at loose level. The due date window factor represents the

period (d1i, d2i) in which the job completion time reflects the on-time delivery of the

job Ji. This factor is considered at four levels: strict, small, medium and large. Strict

due date window implies d1i = d2i = di. Other three levels are taken to represent the

JIT scenario.

The final factor is the batch scheduling methods employed. These are MBS policies

from MBS1 to MBS6, DBH, NACH and the proposed LAB method.

The default setting of these factors is assumed as traffic intensity (ρ) at 0.70, due

date tightness at DD1 and due date window at DDW1. For Pareto control between the

conflicting objectives of earliness and tardiness, the proposed LAB strategy employs

CP method, which uses various values of individual weights and the exponent. In

general, in CP method, the weights are taken as 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9 and 0.95 and the exponent is regarded at 1, 2 and 3.

The flow chart of the simulation experiment is presented in Figure 6.3. All exper-

imental results are collected after achieving the steady state performance, i.e., after

the initial warm-up period of the simulation runs. For each combination of factors
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SETTING MACHINE PARAMETERS

Traffic Intensity ( ) : 0.50, 0.60, 0.70

START

GENERATION OF JOBS

1. Inter arrival times: Exponential

2. Processing times: Constant (= 60 min)

3. Batch capacity: c = 6.

3. Due-date setting: (                    )

4. Due-date window: (                                               )

SIMULATION OF SINGLE BATCHING MACHINE

1. Batch scheduling strategy

MBS1 - MBS6; DBH; NACH; LAB.

2. Data collection

Jobs numbered on arrival on the machine

Statistics on 2000 completed jobs (1001-3000) with

continuous loading of new jobs.

3. Experimental Design

Number of replications: 10

Run length for 2000 jobs

(after warm up period of 1000 jobs)

PERFORMANCE RELATED STATISTICS

Pareto-controllability of performance measures with

respect to:

average earliness vs. average tardiness

number of early jobs vs. number of tardy jobs

combined E/T criteria.

STOP

Tkrd ii

TkddTkdd iiii 2211 ;

Figure 6.3: Flow chart of the simulation experiment for the dynamic scheduling of a
batch processing machine
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(a) ρ = 0.5
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(b) ρ = 0.7

Figure 6.4: Steady state simulation results of cumulative average cycle time in dynamic
batch scheduling at two levels of traffic intensities: (a) ρ = 0.5 and (b) ρ = 0.7.

[Out of results for total 4000 lots, initial 1000 lots are considered to be in the initial
warm-up period. Steady state data collection is done from 1001 to 3000 lots.]
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(i.e., each data point), 10 replications are taken to reduce the effect of variance in each

replication. The steady state performance of cumulative average cycle time is shown in

Figure 6.4 for two different arrival rates, i.e., traffic intensities (ρ = 0.5 and 0.7). The

steady state curve for ρ = 0.6 is also similar to the graphs in Figure 6.4 and so it is not

presented here. Steady state of cumulative average cycle time is achieved after about

800 lots. Therefore, each replication contains the same number of observations (2000)

after an initial warm-up period of 1000 observations. A total of 4000 jobs are released

at discrete intervals in the single machine system and the data collection for the steady

state performance measure is done from lot no. 1001 up to lot no. 3000 for 2000 lots.

The simulation program is written and implemented in MatLab6 environment and run

on an Intel 2000 Pentium (4), 1.8 GHz PC.

The Pareto control in LAB processing for the ET performance is characterized for

two sets of earliness and tardiness related conflicting objectives: (a) average earliness

vs. average tardiness and (b) number of early jobs vs. number of tardy jobs. The

results of these two sets of conflicting objectives are plotted on 2-dimensional graphs

and discussed in the following.

6.5 Results of Pareto Control in Look Ahead Batch

Processing

The performance of LAB method is compared against several other batch scheduling

methods: MBS (requiring no look-ahead information), DBH and NACH (requiring

future arrival times). Figure 6.5 shows the comparison of the results for two sets of

bi-objective cases: (a) average earliness vs. average tardiness and (b) number of early

jobs vs. number of tardy jobs. From Figure 6.5(a), it is observed that MBS1 - MBS6

methods give the same level of average earliness and average tardiness. The values

of average earliness for MBS1 - MBS6 are 62.39, 62.53, 62.79, 63.03, 62.37 and 61.19

mins. While the corresponding values of average tardiness or MBS1 - MBS6 are 44.10,

136

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



6. Pareto Control in Look Ahead Batch Processing

43.96, 44.18, 44.56, 45.68 and 47.94 mins with slight increasing trend.

DBH and NACH methods are meant to reduce the cycle time but at the cost

of increasing average earliness. Therefore, the average earliness for DBH and NACH

methods gets increased up to 68.77 and 69.89 mins respectively, while the average

tardiness, 44.69 and 43.61 mins, remains in the same range.

In contrast to these, instead of just one point on the two dimensional graph, LAB

method gives a control line trading off between average earliness and average tardiness.

LAB method uses CP formulation, which has double weighting scheme in it, the weight

and the exponent. For exponent values 1, 2 and 3, CP curves are represented by CP1,

CP2 and CP3 in Figure 6.5. Changing the weight value gives the control line on a two

dimensional graph. The weight is varied at 11 different values at 0.05, 0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.95. Thus, for each CP1, CP2 and CP3, a total of 11

points are shown in the graph, which constitute a controllable curve. From various

experimental results, it is observed that the variation of exponent in CP formulation

does not significantly affect the performance of LAB method.

In Equation 6.10, w reflects the weight of earliness objective and so in LAB

method, 0.05 weight gives a point near to minimizing only tardiness. As this weight

increases towards 0.95, the tardiness increases and the earliness decreases. Thus, chang-

ing weights in a linear fashion gives a control line between the objectives of earliness

and tardiness. It is observed that the control line is almost a straight line with a neg-

ative slope which corroborates the mathematical fact that the earliness and tardiness

related objectives are highly negatively correlated.

Similarly, Figure 6.5 (b) shows the schedule control with respect to the number of

early jobs and the number of tardy jobs. These are also found to be highly negatively

correlated, giving a linear control line with negative slope. The sum of the number

of early jobs and the number of tardy jobs should always be less than or equal to the
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(b) Number of early jobs vs. Number of tardy jobs

Figure 6.5: Performance of LAB method over MBS, DBH and NACH methods for
schedule control on two objectives (a) average earliness vs. average tardiness and (b)
number of early jobs vs. number of tardy jobs. (Experimental settings : ρ = 0.7, DD1,
DDW1)

138

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



6. Pareto Control in Look Ahead Batch Processing

number of total jobs considered in steady state data collection, i.e., total 2000 jobs

from job no. 1001 up to job no. 3000. For the strict due date case (DDW0), this sum

will be strictly equal to 2000 and thus the curve between the number of early jobs and

the number of tardy jobs will be a straight line with slope of negative unity.

Similar to observations in Figure 6.5 (a), MBS1 - MBS6, DBH and NACH methods

give the single points in the close region in Figure 6.5 (b) also. In contrast to these,

LAB method gives a control line trading off between the number of early jobs and the

number of tardy jobs. Here also, the variation of exponent in CP formulation does not

significantly affect the performance of LAB method. However, the variation of weight

in a linear fashion gives a control line trading off between the number of early jobs and

the number of tardy jobs. This linear behavior of the curve between the number of

early jobs and the number of tardy jobs gives the benefit of controlling the performance

of the schedule based on the user preference in JIT scenario.

Further, the performance of LAB method is compared against MBS, DBH and

NACH for two ET performance measures. The two ET performance measures are

(|E|+ |T |) and (E2 + T 2), as represented in Equations 2.11 and 2.13 in Chapter 2. The

LAB method gives a whole series of points according to the weight in CP formulation

in Equation 6.10. These results are presented in pictorial form in Figure 6.6 in order

to show the pattern of LAB method with respect to the weight. The results of average

sum of absolute earliness and tardiness, (|E|+ |T |), are presented in Figure 6.6 (a),

while the results of the average square sum of earliness and tardiness (E2 + T 2) are

shown in Figure 6.6 (b).

Since MBS1 - MBS6, DBH and NACH methods do not include the consideration

of weight, in Figures 6.6 (a) and (b), these points are presented on the Y-axis. While

LAB method gives a controllable curve with respect to the weight. These curves are

represented by CP1, CP2 and CP3 according to the exponent value in CP formulation

in Equation 6.10. All the points on the CP curves give a value less than the value
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(b) Average square sum of earliness and tardiness (E2 + T 2)

Figure 6.6: Performance of LAB method over MBS, DBH and NACH methods for two
ET performance measures (a) (|E|+ |T |) and (b) (E2 + T 2). (Experimental settings :
ρ = 0.7, DD1, DDW1)
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of MBS1 - MBS6, DBH and NACH methods. From these results, it is quite evident

that for ET performance measures LAB method gives a significant improvement over

the other batching methods. In addition, by varying the weight in CP formulation,

LAB method gives the additional benefit of Pareto control between the earliness and

tardiness related conflicting objectives.

In the next section, the default settings (ρ = 0.70, DD1 and DDW1) of the exper-

imental parameters are varied one by one and the variability effects on the schedule

control are studied.

6.6 Effects of Parameter Variation on Pareto Con-

trol using LAB

In this section, the issue of changing various parameter settings (traffic intensity, due

date tightness and due date window) and observing its effect on achieving Pareto

control is addressed in bi-objective dynamic scheduling of a batch processing machine

with look ahead information of the upcoming jobs.

6.6.1 Effect of traffic intensity

In this set of experiments, the traffic intensity (ρ) is varied at 0.50, 0.60 and 0.70 levels,

while keeping the due date tightness at DD1 and due date window at DDW1 levels. For

ρ values greater than 0.70, the system with batch processing machine becomes heavily

loaded. While for a serial processing machine, the system becomes heavily loaded for

ρ values greater than 0.85. This is because a batch processing machine involves the

starting and finishing the processing of several jobs together, which results in capacity

loss. On the other hand, for ρ values less than 0.50, at every decision instance in

simulation clock, there are not many options of batch formation and so there is no

variation in performance of LAB method with respect to variation in weight. The
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(b) Number of early jobs vs. Number of tardy jobs

Figure 6.7: Effect of varying traffic intensity on schedule control between (a) Average
earliness vs. Average tardiness and (b) Number of early jobs vs. Number of tardy jobs
(Experimental settings: DD1, DDW1)
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results of LAB method for (a) average earliness vs. average tardiness and (b) number of

early jobs vs. number of tardy jobs are presented in Figures 6.7 (a) and (b) respectively.

In Figures 6.7 (a) and (b), it is observed that the points corresponding to 0.05

weight are very close to each other for different curves of ρ variation. While the points

corresponding to 0.95 weight get more and more distanced with the increase in ρ value.

So, with the increase in the traffic intensity (ρ), the breadth of the schedule control

curves for (a) average earliness vs. average tardiness and (b) number of early jobs

vs. number of tardy jobs increases. This observation corroborates with the fact that

with increase in arrival rate there will be an increase in the number of possible LAB

scenarios at each decision instance in simulation clock and so there will be a wider

range of options to select.

6.6.2 Effect of due date tightness

The due date tightness is varied at three levels: DD1 (tight), DD2 (medium) and DD3

(loose). In all the cases, the due date allowance factor (k) is varied uniformly around

a common mean value of 2. k is uniformly generated from U [−2, 6], U [0, 4] and U [1, 3]

for DD1, DD2 and DD3 respectively. The difference of interval length sets the due-date

tightness from the arrival time. The results of LAB method with respect to variation in

due date tightness are presented in Figures 6.8 (a) and (b) respectively for (a) average

earliness vs. average tardiness and (b) number of early jobs vs. number of tardy jobs.

The observations of these results state that as the due date turns from loose to tight,

the schedule control curve shifts towards the origin. Along with it, the width of the

curve for average earliness vs. average tardiness gets reduced.
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(b) Number of early jobs vs. Number of tardy jobs

Figure 6.8: Effect of varying due date tightness on schedule control between (a) Average
earliness vs. Average tardiness and (b) Number of early jobs vs. Number of tardy jobs
(Experimental settings: ρ = 0.7, DDW1)
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(b) Number of early jobs vs. Number of tardy jobs

Figure 6.9: Effect of varying due date window on schedule control between (a) Average
earliness vs. Average tardiness and (b) Number of early jobs vs. Number of tardy jobs
(Experimental settings: ρ = 0.7, DD1)
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6.6.3 Effect of due date window

Due date window defines a job to be early, tardy or on-time. Due date window is varied

at four levels: DDW0 (strict), DDW1 (small), DDW2 (medium) and DDW3 (large).

The corresponding results of schedule control between the two pairs of conflicting

objectives related to earliness and tardiness are shown in Figures 6.9 (a) and (b).

From these results, it is observed that as the due date window becomes broader,

the schedule control curves shift towards the origin in both graphs. This corroborates

the fact that the increase in due date window signifies more number of jobs on-time

and thus reduction in both the number of tardy jobs and the number of early jobs.

This reduces the average earliness and the average tardiness as well and thus makes

the curve in both the graphs to shift towards the origin.

For strict due date case (DDW0), the sum of the number of early jobs and tardy

jobs will always be equal to 2000 and thus it represents a straight line with negative

unity (-1) slope in Figure 6.9 (b). As the width of the due date window increases from

zero, this straight line gets converted in to a convex line and starts shifting towards

the origin. In this figure, the slope of DDW1, DDW2 and DDW3 lines are not equal

to -1. This is due to the fact that the due date windows are specifically designed to

tilt towards earliness, as shown in Table 6.1.

6.7 Conclusion

In this chapter, the LAB method for ET performance has been coupled with CP method

in order to characterize the Pareto control curves for the conflicting objectives related

to earliness and tardiness. This enables the decision maker to have the flexibility of

controlling the ET performance in dynamic batch scheduling. The two sets of earli-

ness and tardiness related conflicting objectives are (a) average earliness vs. average
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tardiness and (b) number of early jobs vs. number of tardy jobs.

The concept of LAB is exploited to develop Pareto control between earliness and

tardiness related objectives, which are by highly negatively correlated. To achieve

Pareto control in look ahead batch processing, CP method is used with a posteriori as-

signed weights according to the preference of the decision maker. In using CP method,

it is found that herein the exponent variation of CP formulation is ineffective while the

variation of weight enables one to achieve control over the full breadth of the curve.

Further, the experimental study showed that the trade-off curves between earli-

ness and tardiness related objectives are sensitive to the variation in traffic intensity,

due date tightness and due date window. However, the developed methodology of

using LAB method with CP formulation is found capable of achieving Pareto control-

lable curves for the earliness and tardiness related conflicting objectives in all these

variations.

Developing Pareto control between earliness and tardiness related conflicting ob-

jectives is very helpful for the production scheduling in JIT environment, where there is

a need to control the schedule of a batch processing machine in a dynamic environment

according to the varying requirements of earliness and tardiness objectives.
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Chapter 7

Industrial Application: A Case
Study on Photolithography Cluster

In this chapter, the research findings are summarized and discussed from the angle of

relevance in the real-life industrial applications. In addition, a case study with the

factory data from a wafer fab plant in Singapore is being presented. The case study

is built on the model of Pareto control in serial processing as presented in Chapter 3.

In the case study, two sets of conflicting objectives are considered: (1) simultaneously

minimizing mean cycle time and maximum tardiness and (2) simultaneously minimizing

mean cycle time and cycle time variance. Further, a 3-D case of Pareto control is briefly

discussed considering all three above mentioned objectives simultaneously.

7.1 Relevance of Research Findings in Industrial

Application

The various studies and simulation experimental investigations presented in this the-

sis are highly relevant from the point of view of semiconductor industries in Singa-

pore such as National Semiconductors, ST Microelectronics, Chartered Semiconductor

Manufacturing, Infineon Technologies AG, Systems on Silicon Manufacturing Co., etc.

These companies have shown their interest in this research and may provide the testing
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ground for implementing these novel ideas in their factories. Primarily, from the point

of view of industrial application, it is important to develop a methodology for operat-

ing the shop in a user-controlled trade-off between the needs of conflicting scheduling

objectives.

In a dynamic scheduling environment, the trade-off between conflicting objectives

hinges on selecting an appropriate job for scheduling on the machine in such a way that

it will give the overall schedule according to the defined emphasis on the particular ob-

jectives. Since the emphasis on different scheduling objectives keeps varying according

to the dynamic market forces, it is of high importance to develop a Pareto control

method in multi-objective dynamic scheduling of manufacturing processes. Therefore,

the research emphasis has been laid on the ability to control the scheduling performance

along the trade-off curves between the conflicting objectives.

In summary, the concept of Pareto control has been proposed and applied for the

conflicting pairs of scheduling objectives in three environments: (i) serial processing,

(ii) batch processing and (iii) look ahead batch processing, which have been respectively

presented in Chapters 3, 4 and 6. The methodology of achieving Pareto control curves

for two conflicting objectives includes first finding the selection criterion for optimizing

each individual objective in dynamic scheduling and then forming a combined selection

criterion using convex combination methods such as CP method.

The experimental studies showed that by varying the relative weights of the se-

lection criteria at each selection instance in simulation clock, a Pareto control curve

can be achieved for two conflicting objectives. This characterization of Pareto control

curves for the conflicting objectives can be exploited to enhance the ability to choose

and operate the shop in a user controlled way. By appropriate selection of parameters,

the conflicting scheduling objectives can be controlled and maintained within a spec-

ified range for a particular operation. This Pareto control is highly relevant for the

shop floor operations management.

149

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



7. Industrial Application: A Case Study on Photolithography Cluster

From the industrial engineering and management perspective of a manufacturing

concern, the shop floor management has to simultaneously incorporate the conflicting

concerns of the manufacturer and the customer in making the scheduling decisions.

The main performance measures in any factory include the cycle time statistics, i.e.,

cycle time mean and variance. In a manufacturing process, mean cycle time is closely

related to the work-in-process inventory, both of which are major concerns for the

manufacturer. Minimizing mean cycle time implies minimizing work-in-process inven-

tory. On the other hand, minimizing cycle time variance helps in reliable predictions

of the completion of jobs and thus in providing the same quality of service to the

customers and therefore it reflects the customer’s concern. In addition, minimizing

tardiness related measure can be considered as a measure of customer satisfaction. In

JIT manufacturing environment, finishing jobs too early induces high inventory hold-

ing costs and may mean loss in profit due to environmental degradation of product

quality, while finishing too late implies contractual penalty and loss of customer good

will. Thus, since the normal objectives of the production managers include inventory

reduction and customer satisfaction improvements, the following pairs of conflicting

scheduling objectives have been considered in this research: simultaneous minimiza-

tion of (a) average cycle time and maximum tardiness, (b) average cycle time and cycle

time variance and (c) earliness and tardiness related measures.

In the following section, a real-life case study has been presented in order to show

the effectiveness of Pareto control curves for the shop floor management. This case

study shows the application of Pareto control in serial processing with respect to the

two sets of conflicting objectives: 1. mean cycle time and maximum tardiness and 2.

mean cycle time and cycle time variance.
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7.2 An Overview of Semiconductor Manufacturing

The overall manufacturing flow for a typical IC manufacturing process in a semicon-

ductor industry can be divided into four main stages: wafer fabrication (also known

as wafer fab), wafer probe/sort, assembly/packaging and final test. The flow between

these processing stages is illustrated in Figure 7.1. In wafer fabrication, the inte-

grated circuits are layered through successive operations onto a smooth wafer of a

semi-conducting material, typically silicon. Each wafer may contain many individ-

ual dice. In wafer probe/sort, the individual dices are tested electronically using thin

probes and the defective dices are marked. The wafer then goes to assembly where the

wafer is sawed. Defective dices are discarded. The good dices are bonded to the lead

frames for connection and capsulated for protecting them from the environment. After

the assembly cycle, the IC chips are subjected to the final test. Among these stages,

the wafer fabrication and wafer sort are usually known as the “front-end” and the IC

assembly and testing are referred to as the “back-end”. The total manufacturing cycle

time in the semiconductor industry, ranges from 8 to more than 30 weeks. The stage

cycle time may range from 3-15 weeks in wafer fabrication; 2 days to 2 weeks in wafer

probe; 3 days to 3 weeks in assembly and 2 days to 4 weeks in final test (Qi et al.,

2002).

Wafer

Start

Wafer

Fabrication

Wafer

Probe
Assembly

Tested

IC Ship

Front End Back End

Final Test

Figure 7.1: A simplified semiconductor manufacturing flow
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7.3 Case Study Model, Data and Experimentation

This case study is based on the real factory data from one of the largest semiconductor

wafer fabrication facilities in the world situated in Singapore. The wafer fabrication

process dominates the economics of IC production and it is the most technologically

complex and capital-intensive stage in semiconductor manufacturing. In the wafer

fab, the wafers are processed in order to build up layers of patterns to produce the

required circuitry. This involves a complex sequence of processing steps with a number

of operations that require different kinds of equipment.

Wafer fabrication process basically involves the following process steps: photolitho-

graphy, etching, deposition, chemical mechanical polishing, ion implantation, diffusion.

Among these process steps, the photolithography process is considered the most crucial

and bottleneck process. Due to the large number of photolithography steps needed in

IC manufacturing, photolithography typically accounts for about 30% of the cost of

manufacturing. Photolithography or optical lithography is basically a photographic

process by which a light sensitive polymer, called a photoresist, is coated, exposed and

developed to transfer a pattern from a photomask (also called reticle) to the surface of

a wafer. The stepper machines are the pieces of equipment used for the photolithogra-

phy process, which is the most expensive bottleneck resource in the wafer fabrication

process.

The general sequence of processing steps for a typical photolithography process

is as follows: substrate preparation, photoresist spin coat, prebake, exposure, devel-

opment and postbake. This sequence is generally performed on several tools linked

together into a contiguous unit called a lithographic cluster. A brief description of

these processing steps is as follows:

1. Substrate Preparation: Substrate preparation is intended to improve the adhesion

of the photoresist material to the substrate.
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2. Photoresist Coating: A thin, uniform coating of photoresist at a specific, well

controlled thickness is accomplished by the process of spin coating. The photoresist,

rendered into a liquid form by dissolving the solid components in a solvent, is poured

onto the wafer, which is then spun on a turntable at a high speed producing the desired

film.

3. Prebake: A prebake or a softbake process involves drying the photoresist after spin

coat by removing the excess solvent. After cooling, the wafer is ready for its litho-

graphic exposure.

4. Alignment and Exposure: A photomask, a square glass plate with a patterned

emulsion of metal film on one side, is aligned with the wafer, so that the pattern can

be transferred onto the wafer surface. The photoresist is then exposed through the

pattern on the mask with a high intensity ultraviolet light.

5. Development: Once exposed, the photoresist must be developed by using some

aqueous bases as developers.

6. Postbake: The postbake is used to harden the photoresist and improve adhesion of

the photoresist to the wafer surface so that it will withstand the harsh environments

of implantation or etching.

Coat Expose Develop

Coat 1

Coat 2

Develop 1

Develop 2

Expose 1

Figure 7.2: Flow of processing steps in a photolithography cluster

The main processing steps in photolithography are coat, expose and develop. In

the photolithography cluster, there are two parallel coat tools, one expose tool and two

parallel develop tools. The flow of these processing steps is presented in Figure 7.2.

In this flow, the expose tool is a bottleneck as all the wafers has to necessarily pass
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through this single tool. This expose tool can be modeled as a single serial processing

machine and the concept of Pareto control in serial processing can be applied in order

to control the trade-off in multi-objective dynamic scheduling.

A sample of the factory data is presented in Table 7.1. In this table, second col-

umn represents the Lot ID, third column gives the step begin time, which is basically

the lot arrival time at the photolithography cluster, fourth column shows the priority

of the lot, fifth column gives the turn ratio of the lot, sixth column gives the lot quan-

tity in terms of the number of wafers in the lot and finally seventh column represents

the expose time per wafer in the lot. For the confidentiality reasons, the Lot IDs are

changed as shown in the second column of Table 7.1.

Table 7.1: Sample presentation of the factory data

S.No. Lot ID Step Begin Time
Lot

Priority

Turn

Ratio

Current Lot 

Quantity

Expose Time 

(sec/wafer)

1 XYZ001 30/11/2005 15:52 4 6.37 1 78.5414

2 XYZ002 30/11/2005 20:26 4 0 25 72.2

3 XYZ003 30/11/2005 20:27 4 0 25 72.2

4 ABC001 30/11/2005 20:27 4 0 25 72.2

5 ABC002 30/11/2005 20:28 4 0 25 72.2

6 ABC003 30/11/2005 20:35 4 0 25 72.2

7 ABC004 30/11/2005 20:35 4 0 25 72.2

8 ABC005 30/11/2005 20:36 4 0 25 72.2

9 XYZ004 30/11/2005 20:36 4 0 25 72.2

10 ABC006 30/11/2005 20:36 4 0 25 72.2

11 XYZ005 30/11/2005 21:23 4 0 25 72.2

12 XYZ006 30/11/2005 21:24 4 0 25 72.2

13 XYZ007 30/11/2005 21:24 4 0 25 72.2

14 XYZ008 30/11/2005 21:24 4 0 25 72.2

15 XYZ009 30/11/2005 21:25 4 0 25 72.2

16 PQR001 30/11/2005 22:47 4 0 25 72.2

17 PQR002 01/12/2005 1:45 3 7.61 1 72.2

18 PQR003 01/12/2005 4:05 4 0 25 72.2

19 ABC007 01/12/2005 4:05 4 0 25 72.2

20 ABC008 01/12/2005 4:06 4 0 25 72.2

- - - - - - -

- - - - - - -

- - - - - - -

2508 PQR--- 31/01/2006 19:29 2 6.99 25 80.1524
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The factory data is available for a period of two months, which involves the dy-

namic arrival of total 2508 lots. One requirement for applying the concept of Pareto

control at the expose tool is the data for the arrival time at the expose tool, but this

data is not available in the lot tracking system of the factory. In order to make the

situation suitable to the model, the lot arrival time at the photolithography cluster is

assumed to be the lot arrival time at the expose tool. Then, based on the advice of the

industrial engineering experts at the factory, the expose processing time is multiplied

with a random factor between 1 and 1.3 in order to balance the workload at the expose

tool. Thus, the lot processing time at the expose tool is computed according to the

following equation:

lot processing time = (1 + 0.3 ∗ U(0, 1)) ∗ expose time per wafer ∗ lot quantity (7.1)

where, U(0,1) is the uniform random number between 0 and 1.

Another requirement for applying the concept of Pareto control is the operation

due date for each lot at the expose tool, which is computed based on the following

equation:

operation due date = arrival time + (lot priority ∗ lot processing time) (7.2)

The actual operating heuristic in factory is priority minimization followed by turn

ratio maximization followed by first arrival, which is represented as factory heuristic.

Other simple dispatching rules considered in this study are FCFS, SPT and EDD. The

simulation experiments on the factory data are conducted for two cases: first with just

1-month data and second with 2-month data.

7.4 Case Study Results and Discussion

The concept of Pareto control in serial processing is applied on the expose tool for the

two pairs of conflicting objectives:
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(1) mean cycle time and maximum tardiness and

(2) mean cycle time and cycle time variance.

Similar to the simulation experiments conducted in Chapter 3, the relative weights

(w1, w2; w1 +w2 = 1) of the two criteria in the CP method are varied linearly from 0.05

to 0.95 at an interval of 0.05, computing total 19 points. The exponent r is varied at

the levels of 0.33, 0.66, 1, 2, 3 and 10. The Pareto curves achieved for this case study

are similar in nature to the Pareto curves presented in Section 3.6.

7.4.1 Mean cycle time and Maximum tardiness

The mean cycle time is minimized by the SPT rule and the maximum tardiness is

minimized by the EDD rule. The two criteria of CP method are similar to that were

presented in Equation 3.5, i.e., f1(x) = minimize (pi) and f2(x) = minimize (di).

Equation 3.7 presented the Pareto objective function for the CP method.

The Pareto curves for this pair of conflicting objectives are presented in Figures 7.3

(a) and (b), which respectively show the Pareto curves for 1-month and 2-month factory

data. In these figures, the extreme points are achieved by the SPT and EDD rules. All

the points of CP0.33 coincide with the SPT point. For CP0.66 and CP1, the points

get spread over a wider range and the curve shifts towards EDD point. For CP2, CP3

and CP10, all the points coincide with the EDD point. These results are similar to the

results presented in Figures 3.4 and 3.5.

7.4.2 Mean cycle time and Cycle time variance

For this pair of conflicting objectives, the mean cycle time is minimized by the SPT rule

and the cycle time variance is minimized by the P W rule. Equation 3.9 presented these

two criteria of CP method as f1(x) = minimize (pi) and f2(x) = minimize (pi/Wi). The

Pareto objective function was presented in Equation 3.11.
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Mean Cycle Time vs. Maximum Tardiness (1-month data)
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(a) Pareto control curve with 1-month data

Mean Cycle Time vs. Maximum Tardiness (2-month data)
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(b) Pareto control curve with 2-month data

Figure 7.3: Case study: Pareto curves for mean cycle time and maximum tardiness
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Mean Cycle Time vs. Cycle Time Variance (1-month data)
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(a) Pareto control curve with 1-month data

Mean Cycle Time vs. Cycle Time Variance (2-month data)
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(b) Pareto control curve with 2-month data

Figure 7.4: Case study: Pareto curves for mean cycle time and cycle time variance
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The Pareto curves for this pair of conflicting objectives are presented in Figures 7.4

(a) and (b) for 1-month and 2-month factory data. In these figures, the extreme points

are achieved by the SPT and P W rules. These results are similar to the results

presented in Figures 3.7 and 3.8. In Figures 7.4 (a) and (b), the points of CP10 curve

give a wide spread of boundary between the SPT and P W points. For CP3, the

spread of points gets reduced. Further, as exponent value in CP method decreases, the

spread of points gets reduced more and more. The points corresponding to w = 0.05

for various CP curves remain in the neighborhood of P W point. On the other hand,

the points corresponding to w = 0.95 for various CP curves move far away from SPT

point as the exponent value decreases. Thus, the range of the achieved boundary gets

reduced with the decrease in the exponent value of CP.

Under the given model and assumptions, the points corresponding to FCFS and

the factory heuristic are far from the Pareto control curves in all these figures, Figure 7.3

(a) and (b) and Figure 7.4 (a) and (b). This observation reflects the importance of

using the concept of Pareto control in order to trade-off the scheduling performance

between the conflicting objectives. The characterization of Pareto control curves gives

the ability to control the scheduling objectives within a specified range. Thus, the

Pareto control curves can be used as a tool for the shop floor control management. By

selecting an appropriate weight and exponent value, the decision maker can control the

machine scheduling within the specific range of the scheduling objectives.

7.5 Case Study with Three Objectives

In this section, the above case study is extended to the case of simultaneously con-

sidering three objectives as briefly mentioned in Section 2.3. In order to present the

concept of Pareto control surface, the three objectives considered are: minimizing

mean cycle time, minimizing maximum tardiness and minimizing cycle time variance.

These scheduling objectives are individually minimized by the corresponding schedul-
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ing criteria of SPT rule, EDD rule and P W rule. These rules can be represented as

f1(x) = minimize (pi), f2(x) = minimize (di) and f3(x) = minimize (pi/Wi). In apply-

ing CP method, the relative weights (w1, w2, w3; w1+w2+w3 = 1) of these three criteria

are varied linearly from 0.05 to 0.95 at an interval of 0.10. Here, the CP exponent is

kept constant at a value of 1.

The Pareto surface for these three conflicting objectives for 2-month factory data

is presented in Figures 7.5 (a) and (b), which respectively show the Pareto surface

from two different viewpoints. The viewpoint is specified in terms of azimuthal (az)

and elevation (el) angles. The azimuth, az, is the horizontal rotation about the z-axis

as measured in degrees from the negative y-axis. The elevation, el, is the vertical

elevation of the viewpoint in degrees. In these figures, the extreme points are achieved

by the SPT, EDD and P W rules. This characterization of Pareto surface can enable

the shop floor management to control the scheduling objectives within the specified

range.

Figures 7.6 (a), (b) and (c) correspondingly present the orthographic projections

of the Pareto surface on the x-y, x-z and y-z planes. These are respectively achieved

by (a) az = 0o and el = 90o, (b) az = 0o and el = 0o and (c) az = 90o and el = 0o.

Among these figures, Figure 7.6 (a) shows the conflicting nature of the objectives

of minimizing mean cycle time and maximum tardiness. Similarly, Figure 7.6 (b)

indicates the conflicting nature of the objectives of minimizing mean cycle time and

cycle time variance. However, Figure 7.6 (c) expresses the opposite and confirms

that the objectives of minimizing maximum tardiness and cycle time variance are not

conflicting to each other.

If all the three objectives were conflicting to each other, then a real Pareto surface

could have been generated. Such possibility exists in the case of scheduling a serial

processing machine with sequence dependent setup times, which adds a third dimension

of the objectives, mainly maximizing machine utilization or minimizing machine setups.
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(a) Projection view 1 at −37.5o azimuthal angle and 30o elevation angle
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(b) Projection view 2 at −45o azimuthal angle and 60o elevation angle

Figure 7.5: Case study: two different projection views of the Pareto surface for the
three objective Pareto control case
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(a) Projection view on the axes of mean cycle
time and maximum tardiness
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(b) Projection view on the axes of mean cycle
time and cycle time variance
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(c) Projection view on the axes of maximum tar-
diness and cycle time variance

Figure 7.6: Case study: orthographic projection views of the Pareto surface for the
three objective Pareto control case

Such a case of multi-objective dynamic scheduling is presented in Sivakumar and Gupta

(2006). Exploration of this case is still open to further research.
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Chapter 8

Conclusions and Recommendations

In this concluding chapter, the research of this thesis is summarized. The originality

of the research and its specific contribution to the field of multi-objective dynamic

scheduling of serial and batch manufacturing processes are highlighted. Recommenda-

tions for improving and extending experimental investigations and theoretical analysis

are presented featuring avenues for future research.

8.1 Originality of Research

The field of production scheduling is vast and well established over the last six decades.

Likewise, the field of multi-objective scheduling has been researched in depth but

mostly in static cases. In this thesis, some ideas and methods have been adopted

from previous researchers and applied in dynamic cases. For clear demarkation, the

ideas and methods that are original to this research are hereby highlighted.

1. Pareto-optimal solutions have by far been adopted as a standard technique in

multi-objective optimization field. Researchers have developed various techniques

to find out the complete set of Pareto-optimal solutions and thus to construct

a complete Pareto-boundary. However, all the theory related to Pareto-optimal

solutions is developed for static models with a limited number of jobs, especially in
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the field of multi-objective scheduling. The originality of the research presented

in this thesis is in the application of the concept of Pareto control in a multi-

objective dynamic scheduling environment, which has been dealt with as a multi-

stage, multi-objective optimization problem.

2. The use of look-ahead control policies at a batch processing machine have been

in existence since early 1990. It is also well known that the exploitation of the

available information about future arrival times leads to significant improvement

in the cycle time performance. A similar concept has been exploited in this

research for controlling the ET performance. The originality of the proposed

method lies in the idea of extracting the arrival and the due date information of

future incoming lots and then analyzing a Pareto control between earliness and

tardiness related measures.

3. The earliness and tardiness related measures have been extensively used in schedul-

ing research especially from the last two decades with the wide application of

Just-in-Time manufacturing strategy. Researchers have developed various meth-

ods for optimizing these objectives. However, most of the existing research deals

only with static cases for a serial processing machine. In this thesis, a look ahead

batching method is developed for minimizing ET performance at a batch processing

machine in a dynamic scheduling environment. In the semiconductor manufac-

turing environment, this research has wide scope of application especially for

scheduling the bottleneck crucial operations such as oxidation furnaces in wafer

fabs and burn-in-ovens in back-end.

8.2 Research Contributions

The research presented in this thesis reviews and substantiates the multi-objective

scheduling methods. The research further extends the application of multi-objective
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scheduling in dynamic environment of serial and batch processing machines. The ex-

tensive simulation experimental results and the analysis of schedule control in different

scheduling environments discussed in this thesis provide a valuable addition to the

knowledge base of this field. The specific research contributions of this thesis to the

field of scheduling are as follows:

1. The first contribution of this research is the application of the concept of Pareto

control in a dynamic environment for conflicting objectives. The concept of

Pareto control has been applied to serial as well as batch processing machines for

different conflicting objectives.

2. The second contribution is the research on the control of cycle time variability.

For bi-objective dynamic scheduling on a serial processing machine, a schedule

control is developed to trade-off between cycle time mean and cycle time variance.

3. The third contribution is the look ahead batching (LAB) algorithm for the ob-

jective of earliness and tardiness. The proposed method exploits the predicted

information about the arrival times and due dates of the future incoming lots at

a batch processing machine.

4. Fourthly, the concept of Pareto control has been applied with the LAB method

between the conflicting objectives of earliness and tardiness related measures for

the dynamic scheduling of a batch processing machine.

8.3 Conclusions and Findings

The connecting thread of the thesis is the application of the concept of Pareto control

in the multi-objective dynamic scheduling environment. The emphasis has been laid on

the ability to control the scheduling performance along the trade-off curves between the

conflicting objectives. Pareto control has been applied for different pairs of conflicting
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objectives in three scheduling environments: (i) serial processing, (ii) batch processing

and (iii) look ahead batch processing. For each case, the sensitivity of achieving the

Pareto control curves has also been studied for different experimental parameters.

Some essential conclusions and findings from the studies and experimental inves-

tigations are summarized below.

1. The concept of Pareto control has been applied for multi-objective dynamic

scheduling in serial as well as batch processing environment. The study showed

that by varying the relative weights of the selection criteria at each selection

instance in simulation clock, a Pareto control curve can be achieved for two con-

flicting objectives. This characterization of Pareto control curves for the conflict-

ing objectives can be exploited to enhance the ability to choose and operate the

shop in a controlled way. By appropriate selection of parameters, the conflicting

scheduling objectives can be controlled and maintained within a specified range

for a particular operation. This Pareto control is highly relevant in a semicon-

ductor manufacturing environment, where the demands of objectives frequently

change according to the dynamic market forces. One such application has been

presented in the case study on the real fab data.

2. The methodology of achieving Pareto control curves for two conflicting objec-

tives includes first finding the selection criterion for optimizing each individual

objective in dynamic scheduling and then forming a combined selection criterion

using convex combination methods of WA and CP. It has been shown that us-

ing CP method gives wider control over achieving the trade-off curves between

the conflicting objectives as CP method involves double weighing scheme with

parameters of weight and exponent.

3. For the dynamic scheduling of a serial processing machine, the concept of Pareto

control has been tested with respect to the two sets of conflicting objectives, (i)
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mean cycle time vs. maximum tardiness and (ii) mean cycle time vs. variance of

cycle time. While for the dynamic scheduling of a batch processing machine, the

Pareto control has been tested only for the above first set of conflicting objectives.

4. The sensitivity of achieving Pareto control in serial processing has been exper-

imented for the variation in the due-date tightness, the weight pattern and the

number of replications in the simulation experiments. It has been shown that

irrespective of the variations in these parameters, the Pareto control can still be

achieved between the conflicting objectives.

5. The sensitivity of achieving Pareto control in batch processing has been partic-

ularly experimented for the variation in MBS value. It has been found that the

Pareto control curve is highly sensitive to the variation in MBS value at low levels

of utilization (0.5 and 0.6); while it becomes insensitive to the variation in MBS

value at high utilization level (0.7).

6. For improving the ET performance in dynamic batch scheduling, a novel LAB

method has been proposed and experimented against the existing DBH and

NACH methods. By varying the due date pattern and the traffic intensity, sim-

ulation experiments are conducted to show the effect of LAB over DBH and

NACH for two ET performance measures (a) average absolute sum of earliness

and tardiness (|E|+ |T |) and (b) average square sum of earliness and tardiness

(E2 + T 2). The steady state results of dynamic batch scheduling has indicated

the well-improved performance of the LAB method under a wide variety of ser-

vice rate and utilization level conditions. For average absolute sum of earliness

and tardiness, LAB method gives more than 35% improvement over DBH and

NACH, while more than 45% enhancement on average square sum of earliness

and tardiness.

7. The above proposed LAB method for ET performance has been coupled with CP

method in order to characterize the Pareto control curves for the earliness and
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tardiness related conflicting objectives such as (a) average earliness vs. average

tardiness and (b) number of early jobs vs. number of tardy jobs. In using CP

method for achieving Pareto control in look ahead batching, it has been found

that herein the exponent variation of CP formulation is ineffective while the

variation of weight enables one to achieve control over the full breadth of the

trade-off curves.

8. The sensitivity of achieving Pareto control in look ahead batching has been ex-

perimented for the variation in the traffic intensity, due date tightness and due

date window. The developed methodology of using LAB method with CP for-

mulation has been found to be capable of achieving Pareto control curves for

the earliness and tardiness related conflicting objectives in all these variations.

Developing Pareto control in look ahead batching between earliness and tardi-

ness related conflicting objectives is very helpful for the production scheduling in

JIT environment, where there is need to control the schedule of a batch process-

ing machine in a dynamic environment according to the varying requirements of

earliness and tardiness objectives.

8.4 Limitations of Present Research

This research presents an initial effort to investigate Pareto control curves in the multi-

objective dynamic scheduling environment. The limitations of the present research are

summarized as follows:

1. This research presented three models of Pareto control, i.e., in serial processing,

in batch processing and in look ahead batch processing. However, all the three

models are limited to the processing of single family jobs on a single machine.

2. In all the three above mentioned models, there is no consideration of the setup
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times associated with the jobs or the setup times are considered to be included

in the processing times of the jobs.

3. The flow of job-arrivals on the machine should not be so low that the machine

has to stay idle and wait for the job to arrive. Otherwise, there will be no

option to select the Pareto job at each decision instance in the simulated time.

In addition, in the case of Pareto control in look ahead batch processing, the

flow of job arrivals should not be so high that at each decision instance a full

batch is loaded on the machine for processing. Otherwise, all LAB scenarios will

be similar which will make the evaluation of the effectiveness of LAB strategy

difficult or almost impossible.

4. The presented concept of Pareto control in multi-objective dynamic scheduling is

limited to one condition on the scheduling objectives. Each scheduling objective

should have a corresponding scheduling criterion at each decision instance. This

is due to the basic assumption that in dynamic scheduling, each objective is

individually optimized by scheduling a job at each decision instance in simulated

time according to the corresponding scheduling criterion.

5. In dynamic scheduling, there is no known way to define the Pareto optimum curve

for multi-objective scheduling, except the enumeration method which works only

for very small size problems.

6. In the present research, all models are considered with various combination of

two objectives. This is primarily due to the limitation of orthogonality of one

objective with another. In the case of considering more than two objectives, all

objectives may not be orthogonal to each other, as presented in the case study

example in Section 7.5. Also, the two objectives are considered in order to have

a clear representation of Pareto curves in 2-D graphs.

7. Pareto control in batch processing as presented in Chapter 4 is limited to burn-

169

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



8. Conclusions and Recommendations

in oven type of batching. This is due to the fact that the individual objective

of mean cycle time is minimized by selecting the jobs with minimum processing

time. While, in the case of furnace type batching, all the jobs in one batch should

be compatible to each other and so they have equal processing times.

8.5 Recommendations for Future Work

Future work primarily includes algorithm development and simulation experiments

considering the effects of various approaches on parameters such as mean cycle time,

cycle time variance, machine utilization, ET performance, etc., in order to maintain the

global competitiveness of the semiconductor industry. Based on the experience gained

and the limitations observed during the study, the following are the recommendations

for possible improvements and further investigations:

1. Scheduling with other objectives: Further research can explore the applica-

tion of the concept of Pareto control to the scheduling problems in serial and batch

processing environments with various other combination of objectives. These ob-

jectives may involve average cycle time, machine utilization, average tardiness,

number of tardy jobs, average earliness, number of early jobs, etc.

2. Scheduling with sequence dependent setups: The concept of Pareto control

needs to be extended to scheduling problems with sequence dependent setup times

in serial processing machines, as mostly found in semiconductor manufacturing.

Along with the cycle time performance and the ET performance, this will add

one important dimension to the objectives: the utilization of the machine. This

will lead to the development of a Pareto surface in 3-D space and thereafter

controlling the schedule along the surface.

3. Mathematical analysis of weight and exponent variation in CP method:

Further research is required on the mathematical modelling and analysis of the
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CP method for multi-objective dynamic scheduling. CP method has two variants,

the weight and the exponent, which are intricately correlated. Further analysis

is required to find their correlation, which will enhance the control aspect of

trade-off curves between the conflicting objectives.

4. Look ahead batching with multiple families: In this research, a look ahead

batching method is developed for minimizing ET performance at a batch process-

ing machine with a single family of products. This concept can be further devel-

oped for cases of multiple families and multiple parallel machines, which will be

a more realistic case as far as the present semiconductor manufacturing industry

is concerned.

Also, this model can be extended to the burn-in oven model of batching, where it

will be very important to segregate the jobs according to their processing times

in order to effectively utilize the batch capacity.

5. Extension to job shop environment: In this research, the MODS is consid-

ered primarily for a single machine case, either in a serial or batch processing

environment. Further research direction also includes the application of MODS

in a job shop environment with the ease of modelling while using conjunctive

simulated scheduling approach.
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Appendix A

Diversity of Scheduling

Scheduling problems, models and related literature range from deterministic to stochas-
tic models, from single machine to multiple machine problems, from static to dynamic
models, from single objective to multi-objective problems and so on. The diversity
of scheduling is developed and presented in breadth of the scheduling domain in Fig-
ure A.1, which is described in the following sections.

Shop configuration

Based on the number of machines available on the shop floor different shop configu-
rations are possible, which can be broadly classified in two cases, namely, single and
multiple machines. When only one machine processes all the jobs, it is known as the
single machine problem. In this case, the problem is to find an order in which the
jobs must be processed on this machine. In contrast to real world situations, this case
is highly simplistic; nevertheless it lays the foundation for the more complex multiple
machine case. Single machine problem is also useful to model and study bottleneck
problems, which occur frequently on the shop floor. An overall shop can also be seen
as a ‘single machine’ in an aggregate formulation of the problem.

More complex configurations arise when there are multiple machines on the shop
floor. The configurations, in increasing order of their complexity, are parallel machine,
flow shop and job shop. A shop is said to have parallel machine configuration when
there are a number of identical machines and the single operation jobs can be processed
on any of these machines. Flow shop is a configuration in which machines are arranged
in a serial fashion; each job has to pass through each machine. As the jobs are processed
by each machine, they are multi-stage in nature and each stage defines an operation.
The most complex of all cases is the job shop configuration in which the operations of
the jobs are equally likely to be assigned to any machine for processing. In this case,
there is no common pattern for job routing.

Job characteristics

If the job characteristics, e.g. processing times (pi), release dates (ri) and due dates (di),
can be ascertained with certainty, the problem is modelled as a deterministic scheduling
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A. Diversity of Scheduling

SINGLE MACHINE
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     - Parallel Machines
     - Flow Shop
     - Job Shop

Figure A.1: Diversity of scheduling

problem. Otherwise, the problem is considered stochastic where the parameters are
modelled as random variables with some known probability distribution. Stochastic
models, in general, capture real life situations better than deterministic models as the
parameters in the stochastic models are not assigned with the specific values.

Nature of job arrival

With all jobs being available at the beginning of the scheduling period (i.e., ri = 0,∀i),
the problem is modelled as static. When the jobs go on arriving discretely over time and
each new job joins an existing queue in front of the machine, the model is considered
as dynamic (T’kindt and Billaut, 2001).

Type of job processing

When a machine processes only a single job at a time and each job has its unique
processing time and setup time, then it is called discrete/serial processing. On the
other hand, when many jobs are grouped and processed together to avoid multiple
setup of the machine, it is called batch processing.

Batch processing mode can further be categorized in two types of situations. In
one situation, jobs are partitioned into families according to their similarity so that no
setup is required for a job if it belongs to the same family of the previously processed
job. The setup may reflect the need to change a tool or to clean the machine. A setup
time is required at the start of the schedule and on each occasion when the machine
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A. Diversity of Scheduling

switches from processing jobs in one family to jobs in another family. This is called
serial batching. In this model, a batch is a maximal set of jobs that are scheduled
contiguously on a machine and share a setup. Large batches have the advantage of
high machine utilization because the number of setups is small. On the other hand,
processing a large batch may delay the processing of an important job belonging to a
different family (Potts and Kovalyov, 2000).

In another situation, a batching machine may be capable of processing several
jobs simultaneously. This is referred to as parallel batching; and is found in burn-in
ovens in semiconductor back-end, oxidation furnaces in wafer fabs and kilns in chem-
ical processes. Based on the batch processing time, parallel batching can further be
divided primarily into two: burn-in oven model and furnace model (Webster and Baker,
1995). In burn-in oven model, the jobs from different families, i.e., the incompatible
jobs can form a batch. The batch processing time is equal to the longest processing
time of the jobs in a batch. In furnace model, only the jobs from a single family, i.e.,
the compatible jobs form a batch. The batch processing time is constant and equal to
the processing time of the family.

Scheduling objective

A vast amount of the scheduling literature focuses on single objective scheduling, where
only one scheduling objective is optimized. While, in multi-objective scheduling, many
conflicting objectives are optimized simultaneously. Multi-objective scheduling liter-
ature is thoroughly reviewed by Dileepan and Sen (1988); Fry et al. (1989); Nagar
et al. (1995); T’kindt and Billaut (2001), etc. Literature relevant to this thesis on
multi-objective scheduling is presented in Section 2.1

Performance measure

A performance measure is said to be regular if it is a non-decreasing function of job
completion times and the scheduling objective is to minimize the performance measure
(Ventura and Radhakrishnan, 2003). Objectives such as the minimization of mean
flowtime, percentage of tardy jobs, and mean tardiness are regular measures. A large
number of scheduling problems have been studied with regular performance measures,
mostly related to flowtime and tardiness.

With the advent of JIT philosophy, the deliveries are desired to be neither early
nor late. This has shifted the focus from regular to non-regular performance measures.
A non-regular performance measure is usually not a monotone function of the job com-
pletion times. Measures such as earliness, the sum of earliness and tardiness penalties,
the completion time variance, etc. are non-regular measures (Raghavachari, 1988).

Applications

Scheduling problems are encountered in production lines (Pinedo, 1995), in computer
systems (Blazewicz et al., 1996), in project management(Brucker, 1998), in timetabling
of educational establishments, etc.
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Scheduling approaches

The Non-deterministic Polynomial-time hard (NP-hard) problems are problems for
which there is no known polynomial algorithm, so that the time to find a solution
grows exponentially in problem size. Since most real-world scheduling problems fall
into the NP-hard category and tend to be large, it quite literally means that it is almost
impossible to solve many realistically sized scheduling problems optimally (Hopp and
Spearman, 2000). Therefore, all the scheduling approaches available in commercial
software systems make use of heuristics and hence none produces an optimal sched-
ule. Hopp and Spearman (2000) address these scheduling approaches in two categories:
simulation-based methods and optimization-based methods. Arguello (1994) provides an
excellent survey of scheduling software (both simulation-based and optimization-based)
used in the semiconductor industry.

Simulation-based methods: Simulation-based methods necessarily require a
simulation model to perform the scheduling task. One way to avoid the NP-hard
optimization problem is to simply ignore it by developing a detailed and deterministic
simulation model of the entire system (Hopp and Spearman, 2000). To generate a
schedule, the model is run forwards in time and records the arrival and departure of jobs
at each station. Different schedules are generated by applying various dispatching rules
at each station, which are then evaluated according to selected performance measures
to find the “best” schedule.

Researchers have been using discrete event system simulation as the tool for
scheduling large, complex and dynamic manufacturing systems as no other technique
has been developed to solve these problems satisfactorily (Deo, 1993). A good review
of simulation-based approaches for various types of environments and problems can
be found in Panwalker and Iskander (1977), Blackstone et al. (1982), Haupt (1989)
and Ramasesh (1990). They provide an insight into the aspects of job shop scheduling
using discrete event simulation.

The advantage of the simulation-based approach is that it is easier to explain
than most optimization-based methods. Since a simulator mimics the behavior of the
actual system in an intuitive way, one can easily understand its logic. Another advan-
tage is that it can quickly generate a variety of different schedules by simply changing
the dispatching rules according to the specific objective requirements and then report-
ing performance statistics. However, the disadvantages of simulation-based approach
include maintaining an enormous amount of data for simulation, no accounting for
variability in the schedules, finding an effective schedule by trial-and-error process, etc.

Petri net model is another simulation-based approach of scheduling the shops. Zhou
and Jeng (1998) presented a tutorial on Petri nets, introducing definitions and con-
cepts of Petri nets, discussing system modeling, presenting their properties and analysis
methods, and reviewing applications of Petri nets in semiconductor manufacturing au-
tomation. They also presented a case study to show how a Petri net methodology can
be applied to a complex real world system, by illustrating through Petri net modeling,
analysis, and simulation of the photolithography area of an IC wafer fab. Xiong and
Zhou (1998) proposed two Petri net-based hybrid heuristic search strategies and their
application to semiconductor test facilities scheduling with a size limit of 79 resources
and 30 jobs. The limitations of Petri Net model based simulation approach are the size
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of the problem and the multiple objective consideration.

Due to the vast complexity of scheduling problems in semiconductor manufac-
turing such as mix of serial and batch processors, reentrance, mix product type and
trade-off among multiple objectives, the often used scheduling approach is simulation-
based scheduling.

Optimization-based methods: Unlike classical optimization, optimization-based
scheduling techniques use heuristic procedures which lack in guarantees of performance.
It differs from simulation-based scheduling in that it uses some sort of algorithm to
actively search for a good schedule. Morton and Pentico (1993) and Pinedo and Chao
(1999) give a detailed description of these techniques. These techniques include ex-
act methods such as branch-and-bound technique, dynamic programming, Lagrangian
approximation, queuing networks, etc., neighborhood search techniques such as tabu
search, genetic algorithms, simulated annealing, etc., artificial intelligence (AI) tech-
niques such as neural networks, fuzzy logic, expert systems etc. and dispatching heuris-
tics. For the purpose of brevity, these techniques are not reviewed here. However Gupta
and Sivakumar (2006) provide a thorough review of these techniques for solving the
scheduling problems in semiconductor manufacturing environment.

The primary problem with these techniques manifests in a dynamic shop environ-
ment as it requires the schedule to be modified again and again with great endeavor
according to the real-time information. Secondly, in complex job shops where sequence
dependent setup times, multiple product families, re-entrant process flow etc. exist,
it becomes increasingly unachievable to optimize the schedule with a single scheduling
objective. Another problem with optimization-based scheduling is that many practi-
cal scheduling problems are not really optimization problems at all. Rather, they are
better characterized as satisficing problems (Hopp and Spearman, 2000).

However, many optimization-based scheduling methods also make use of simu-
lation either as a tool for searching the optimum solution or as a tool to study the
behavior and to evaluate the superiority of one technique over another. This leads to a
confusion in the understanding of the simulation-based scheduling methods among the
researchers especially from the field of Operational Research. The question arises how
to clearly distinguish between the optimization-based and simulation-based scheduling
methods. In an attempt to clear away this misunderstanding, the simulation-based ap-
proach of scheduling is referred to as Conjunctive Simulated Scheduling (CSS) (Gupta
and Sivakumar, 2005). CSS is considered as an approach of scheduling, where discrete
event simulation is conjuncted with the scheduling criteria. The scheduling decisions
are simulated at each decision instance, whenever either the resource becomes avail-
able or a new job arrives at an idle resource. A task has to be selected for the next
operation on this resource and then the simulated clock is moved forward for the next
decision instant to repeat the procedure. Thus the effect of simulation is conjuncted
with the scheduling of the shop and thus the terminology “Conjunctive Simulated
Scheduling” is used (Gupta and Sivakumar, 2005). This makes it clearly distinct from
the optimization-based methods.
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Appendix B

Duncan’s Multiple Range Test

Duncan’s multiple range test is a widely used post hoc test for comparing all pairs of
means (Montgomery, 1997). Post hoc tests need to be undertaken after Analysis Of
Variance (ANOVA), whenever there are more than two means. The results in one way
ANOVA table serve only to indicate whether the means of factors differ significantly
or not. These do not indicate which means differ from others. To determine this, post
hoc tests are conducted after finding the significant difference in ANOVA.

In Chapter 3, a sample illustration of Duncan’s multiple range test is presented.
Table 3.3 presented the RDI values of mean cycle times for all the ten runs of various
priority indices at ρ = 0.75. ANOVA and Duncan’s multiple range tests are conducted
using SPSS 10 sofware. The results of Duncan’s multiple range test were presented in
Table 3.4.

The results of ANOVA test as obtained from SPSS 10 software are presented for all
the three objectives in Figures B.1 and B.2 for ρ = 0.75 and 0.85 respectively. ANOVA
result states that the null hypothesis of all means being equal does not hold true,
i.e., the means of various priority indices significantly differ from each other. Further,
the results of Duncan’s multiple range test for ρ = 0.75 and 0.85 were presented in
Tables 3.4, 3.5 and 3.6 respectively for mean cycle time, max. tardiness and cycle time
variance.
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B. Duncan’s Multiple Range Test

Descriptives (  = 0.75): 

N Mean 
Std. 

Deviation Std. Error 
95% Confidence Interval 

for Mean Minimum Maximum

Priority index 
no. 

Lower 
Bound 

Upper 
Bound 

1 10 .541520 .0599467 .0189568 .498637 .584404 .4545 .6281

2 10 1.000000 .0000000 .0000000 1.000000 1.000000 1.0000 1.0000

3 10 .278972 .1295658 .0409723 .186286 .371658 .0000 .4152

4 10 .687283 .0808309 .0255610 .629460 .745106 .5695 .8189

5 10 .256319 .0899314 .0284388 .191986 .320652 .1304 .3967

6 10 .685612 .0802083 .0253641 .628235 .742990 .5695 .8179

7 10 .430021 .0483388 .0152861 .395442 .464601 .3693 .5006

8 10 .012001 .0379493 .0120006 -.015147 .039148 .0000 .1200

Mean 
CT 

Total 80 .486466 .3001583 .0335587 .419669 .553263 .0000 1.0000

1 10 .026494 .0375260 .0118668 -.000350 .053339 .0020 .1311

2 10 .900243 .1347680 .0426174 .803835 .996650 .6798 1.0000

3 10 .326551 .1472732 .0465719 .221198 .431904 .0514 .4792

4 10 .061739 .0482451 .0152565 .027227 .096252 .0192 .1903

5 10 .924071 .0989283 .0312839 .853302 .994840 .7789 1.0000

6 10 .061006 .0481573 .0152287 .026557 .095456 .0188 .1898

7 10 .008287 .0262052 .0082868 -.010459 .027033 .0000 .0829

8 10 .202004 .1329322 .0420369 .106910 .297098 .0000 .3936

CT 
Var

Total 80 .313799 .3729755 .0416999 .230798 .396801 .0000 1.0000

1 10 .000908 .0013777 .0004357 -.000077 .001894 .0000 .0043

2 10 .773493 .2090159 .0660966 .623972 .923014 .3845 1.0000

3 10 .372335 .1471104 .0465204 .267099 .477572 .1931 .5901

4 10 .006221 .0122715 .0038806 -.002558 .014999 .0000 .0387

5 10 .969161 .0830936 .0262765 .909719 1.028602 .7352 1.0000

6 10 .006236 .0122746 .0038816 -.002545 .015017 .0000 .0387

7 10 .035863 .0117906 .0037285 .027429 .044298 .0103 .0513

8 10 .595498 .2568899 .0812357 .411730 .779266 .2600 1.0000

Max 
Tar

Total 80 .344964 .3905494 .0436647 .258052 .431877 .0000 1.0000

Test of Homogeneity of Variances: 

Levene 
Statistic df1 df2 Sig.

Mean CT 6.296 7 72 .000

CT Var 6.758 7 72 .000

Max Tar 13.086 7 72 .000

ANOVA: 

Sum of 
Squares df Mean Square F Sig.

Between Groups 6.711 7 .959 169.627 .000 

Within Groups .407 72 .006

Mean 
CT

Total 7.118 79

Between Groups 10.323 7 1.475 159.323 .000 

Within Groups .666 72 .009

CT
Var 

Total 10.990 79

Between Groups 10.802 7 1.543 89.025 .000 

Within Groups 1.248 72 .017

Max 
Tar 

Total 12.050 79

Figure B.1: Results of ANOVA test for RDI values of Mean Cycle Time, Cycle Time
Variance and Max. Tardiness at ρ = 0.75 from SPSS 10 output window
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B. Duncan’s Multiple Range Test

Descriptives (  = 0.85): 

N Mean 
Std. 

Deviation Std. Error 
95% Confidence 
Interval for Mean Minimum Maximum 

Priority index 
no. 

Lower 
Bound

Upper
Bound

1 10 .503783 .1014517 .0320818 .431208 .576357 .2566 .6066

2 10 1.000000 .0000000 .0000000 1.000000 1.000000 1.0000 1.0000

3 10 .275708 .0871636 .0275635 .213354 .338061 .1518 .4288

4 10 .594156 .1285680 .0406568 .502184 .686128 .2713 .7340

5 10 .245923 .0677844 .0214353 .197433 .294413 .1276 .3204

6 10 .593938 .1284475 .0406187 .502052 .685824 .2715 .7340

7 10 .393034 .0790644 .0250024 .336475 .449594 .2073 .4882

8 10 .000000 .0000000 .0000000 .000000 .000000 .0000 .0000

Mean 
CT 

Total 80 .450818 .2934398 .0328076 .385516 .516119 .0000 1.0000

1 10 .011587 .0099468 .0031454 .004472 .018703 .0002 .0275

2 10 .938541 .1335430 .0422300 .843011 1.034072 .5833 1.0000

3 10 .317463 .1306265 .0413077 .224018 .410907 .1071 .5652

4 10 .025540 .0144277 .0045624 .015219 .035861 .0006 .0461

5 10 .894486 .1028760 .0325323 .820893 .968079 .7360 1.0000

6 10 .025499 .0144512 .0045699 .015161 .035836 .0006 .0461

7 10 .000000 .0000000 .0000000 .000000 .000000 .0000 .0000

8 10 .173389 .0933507 .0295201 .106610 .240168 .0275 .3112

CT 
Var

Total 80 .298313 .3816291 .0426674 .213386 .383240 .0000 1.0000

1 10 .001161 .0012071 .0003817 .000298 .002025 .0000 .0036

2 10 .788514 .2151849 .0680474 .634580 .942448 .4597 1.0000

3 10 .415989 .1619036 .0511984 .300170 .531808 .2033 .7274

4 10 .001296 .0038432 .0012153 -.001453 .004045 .0000 .0122

5 10 .995907 .0105815 .0033462 .988338 1.003477 .9665 1.0000

6 10 .001299 .0038421 .0012150 -.001449 .004048 .0000 .0122

7 10 .049174 .0277848 .0087863 .029298 .069050 .0090 .0918

8 10 .623549 .2284198 .0722327 .460148 .786951 .2852 .8971

Max 
Tar

Total 80 .359611 .3987883 .0445859 .270865 .448357 .0000 1.0000

Test of Homogeneity of Variances: 

Levene 
Statistic df1 df2 Sig.

Mean CT 2.978 7 72 .008

CT Var 6.138 7 72 .000

Max Tar 16.363 7 72 .000

ANOVA: 

Sum of 
Squares df Mean Square F Sig.

Between Groups 6.247 7 .892 115.583 .000 

Within Groups .556 72 .008

Mean 
CT

Total 6.802 79

Between Groups 11.013 7 1.573 230.056 .000 

Within Groups .492 72 .007

CT
Var 

Total 11.506 79

Between Groups 11.433 7 1.633 104.025 .000 

Within Groups 1.130 72 .016

Max 
Tar 

Total 12.564 79

Figure B.2: Results of ANOVA test for RDI values of Mean Cycle Time, Cycle Time
Variance and Max. Tardiness at ρ = 0.85 from SPSS 10 output window
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Appendix C

Output Data Tables

Table C.1: Results of Pareto control in serial processing for Mean Cycle Time and
Maximum Tardiness (ρ = 0.75)

w Mean CT T_max Mean CT T_max Mean CT T_max Mean CT T_max

0.05 60.61 664.9 63.13 309.37 68.14 232.98 70.27 217.83

0.1 60.28 671.77 61.7 387.31 65.35 254.96 70.12 217.95

0.15 60.23 673.27 61.19 449.79 63.93 275.75 69.99 219.66

0.2 60.22 673.29 60.87 485.34 63.05 288.09 69.84 219.78

0.25 60.2 669.58 60.69 506.31 62.59 310.59 69.69 219.88

0.3 60.22 669.52 60.44 541.43 62.2 332.27 69.42 221.72

0.35 60.23 693.46 60.31 585.13 61.96 355.95 69.2 221.99

0.4 60.21 687.63 60.37 621.29 61.77 381 68.96 221.55

0.45 60.19 686.39 60.27 630.96 61.49 377.2 68.69 223.89

0.5 60.15 686.39 60.22 613.86 61.34 395.85 68.5 225.09

0.55 60.16 678.55 60.14 642.15 61.05 421.43 68.22 223.87

0.6 60.15 678.55 60.13 649.35 60.91 438.94 67.92 225.54

0.65 60.16 675.06 60.07 653.12 60.73 462.02 67.59 230.72

0.7 60.16 670.59 60.12 664.7 60.65 464.89 67.22 225.3

0.75 60.16 670.59 60.13 661.21 60.57 492.27 66.78 233.46

0.8 60.16 670.59 60.15 670.6 60.35 522.57 66.21 248.39

0.85 60.16 670.59 60.16 670.59 60.17 555.73 65.5 272.05

0.9 60.16 670.59 60.16 670.59 60.26 600.22 64.53 286.74

0.95 60.16 670.59 60.16 670.59 60.22 625.47 63.28 306.33

w Mean CT T_max Mean CT T_max Mean CT T_max

0.05 70.24 217.78 70.07 217.74 61.79 450.21

0.1 70.19 217.85 70.05 217.77 61.23 523.33

0.15 70.08 217.85 70.05 217.77 60.72 554.15 Mean CT T_max

0.2 70.08 221.42 70.05 217.83 60.55 661.94 60.15 696.57

0.25 70.04 221.29 70.02 217.84 60.43 658.5

0.3 69.96 219.57 70.01 217.85 60.48 662.34

0.35 69.95 219.56 70.02 217.87 60.42 651.01 Mean CT T_max

0.4 69.92 219.56 70.02 217.87 60.38 639.32 70.46 219.67

0.45 69.79 219.5 70.01 217.88 60.33 649.84

0.5 69.78 219.51 70.01 217.88 60.32 649.85

0.55 69.74 219.55 70 217.88 60.23 669.51

0.6 69.67 219.56 70 217.88 60.18 656.75

0.65 69.67 218.97 70.01 217.88 60.11 649.2

0.7 69.59 219.08 69.93 217.95 60.06 652.12

0.75 69.52 221.03 69.92 217.95 60.08 666.95

0.8 69.41 221.08 69.92 217.95 60.09 666.96

0.85 69.33 221.17 69.96 221.49 60.13 675.06

0.9 69.07 221.1 69.92 221.31 60.15 670.6

0.95 68.61 219.38 69.9 221.32 60.16 670.59

CP 3

Min (p)

CP 0.33 CP 0.66 CP 1 CP 2

Min (d)

Extreme Points

CP 10 WA
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C. Output Data Tables

Table C.2: Results of Pareto control in serial processing for Mean Cycle Time and
Maximum Tardiness (ρ = 0.85)

w Mean CT T_max Mean CT T_max Mean CT T_max Mean CT T_max

0.05 84.29 963.27 93.37 385.79 103.31 303.77 106.47 294.35

0.1 82.24 1241 88.14 469.23 98.42 330.99 106.25 294.7

0.15 81.6 1299.13 85.99 551.18 95.05 367.71 105.8 294.06

0.2 81.31 1389.78 84.74 677.64 92.47 401.5 105.58 294.57

0.25 80.63 1440.25 84.04 748.41 90.63 416.53 105.32 293.39

0.3 80.29 1445.63 83.47 830.34 89.2 438.43 104.85 293.81

0.35 80.13 1394.27 82.96 908.61 88.12 456.1 104.41 293.46

0.4 80.2 1519.77 82.49 941.75 87.32 477.79 104.11 299.45

0.45 80.06 1587.27 82.41 1008.84 86.63 509.78 103.52 299.15

0.5 79.95 1664.29 82.12 1047.84 86.02 538.62 103.16 300.79

0.55 80.18 1748.41 81.67 1113.29 85.26 609.84 102.62 302.08

0.6 80.13 1752.86 81.68 1133.53 84.82 635.37 101.9 306.88

0.65 80.12 1752.88 81.42 1175.45 84.36 691.74 101.1 310.41

0.7 80.11 1752.86 81.21 1267.81 83.78 728.72 100.32 320.45

0.75 80.11 1752.89 80.89 1299.99 83.43 769.17 99.52 335.47

0.8 80.11 1752.89 80.62 1311.12 83 823.28 97.86 362.56

0.85 80.11 1752.91 80.29 1367.62 82.24 908.45 96.27 380.61

0.9 80.11 1752.91 79.99 1491.42 81.85 1001.58 93.89 391.21

0.95 80.11 1752.91 79.85 1704.83 81.01 1183.74 90.82 434.08

w Mean CT T_max Mean CT T_max Mean CT T_max

0.05 106.43 293.63 106.02 294.31 88.18 593.16

0.1 106.15 294.16 105.95 294.3 85.5 770

0.15 106.09 293.36 105.86 294.37 84.4 906.33 Mean CT T_max

0.2 105.89 293.47 105.82 294.38 83.98 1011.82 79.94 1779.28

0.25 105.83 293.55 105.79 294.41 83.31 1083

0.3 105.72 293.49 105.81 294.56 82.99 1077.07

0.35 105.59 292.25 105.75 294.45 82.82 1207.57 Mean CT T_max

0.4 105.49 292.27 105.75 294.46 82.36 1196.72 106.66 293.01

0.45 105.47 292.37 105.82 294.58 82.23 1190.67

0.5 105.35 292.43 105.78 294.6 81.87 1346.97

0.55 105.15 292.52 105.74 293.65 81.87 1318.22

0.6 105.09 292.61 105.73 293.64 81.62 1321.21

0.65 104.93 292.71 105.7 293.64 81.31 1347.44

0.7 104.83 293.23 105.69 293.67 81.03 1359.85

0.75 104.74 294.41 105.63 293.69 80.81 1378.32

0.8 104.59 296.35 105.58 292.3 80.4 1417.97

0.85 104.43 294.08 105.52 292.31 80.21 1529.9

0.9 103.84 297.06 105.53 292.35 80.12 1688.63

0.95 102.74 298.08 105.49 292.38 79.85 1748.47

Min (d)

CP 0.33 CP 0.66 CP 1 CP 2

CP 10 WACP 3

Min (p)

Extreme Points
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C. Output Data Tables

Table C.3: Results of Pareto control in serial processing for Mean Cycle Time and
Cycle Time Variance (ρ = 0.75)

w Mean CT Var. CT Mean CT Var. CT Mean CT Var. CT Mean CT Var. CT

0.05 67.73 2178.57 67.56 2156.3 67.4 2156.8 66.74 2137

0.1 67.73 2178.57 67.49 2153.06 67.14 2135.5 66.37 2140.6

0.15 67.57 2157.99 67.37 2155.55 66.93 2139.72 66.06 2139

0.2 67.56 2159.36 67.15 2136.51 66.69 2128.16 65.86 2144.6

0.25 67.52 2158.73 66.92 2133.9 66.43 2127.59 65.71 2155.99

0.3 67.42 2159.83 66.67 2122.94 66.15 2133.28 65.54 2167

0.35 67.22 2151.17 66.33 2118.76 65.94 2141.47 65.33 2170.8

0.4 66.85 2147.24 66.01 2131.71 65.56 2131.31 65.12 2157.3

0.45 66.29 2143.48 65.58 2136.93 65.26 2123.21 65.06 2169.63

0.5 65.6 2155.31 65.16 2137.74 65.03 2152.01 64.93 2187.55

0.55 64.56 2159.05 64.69 2144.76 64.77 2159.55 64.8 2192.46

0.6 63.43 2206.29 64.28 2159.12 64.39 2175.59 64.63 2177.6

0.65 62.79 2350.5 63.68 2216.58 64.02 2172.55 64.34 2166.88

0.7 61.7 2453.84 63.1 2250.62 63.62 2212.82 64.14 2159.27

0.75 60.91 2659.31 62.72 2334.05 63.09 2211.19 63.97 2166.88

0.8 60.05 2757.78 62.14 2376.61 62.72 2228.85 63.81 2207.39

0.85 59.13 2754.37 61.32 2462.33 62.39 2321.44 63.44 2213.31

0.9 58.75 2894.75 60.66 2597.02 61.87 2412.46 62.96 2248.09

0.95 58.72 2978.18 59.65 2719.02 60.87 2522.52 62.46 2267.75

w Mean CT Var. CT Mean CT Var. CT Mean CT Var. CT

0.05 66.27 2148.43 65.35 2188.5 66.93 2132.94

0.1 65.9 2151.03 65.27 2201.97 66.4 2123.09

0.15 65.76 2175.96 65.23 2208.96 66.02 2120.36 Mean CT Var. CT

0.2 65.56 2163.49 65.18 2207.15 65.56 2120.6 58.68 3004.58

0.25 65.39 2158.27 65.07 2201.8 65.27 2129.21

0.3 65.24 2167.27 65.05 2198.96 64.97 2156.63

0.35 65.23 2194.24 65.02 2199.23 64.66 2171.62 Mean CT Var. CT

0.4 65.16 2203.21 64.95 2191.34 64.28 2152.15 67.73 2178.57

0.45 65.05 2189.24 64.98 2206.94 63.9 2197.43

0.5 64.92 2196.74 64.93 2205.74 63.51 2220.52

0.55 64.87 2196.1 64.93 2210.72 62.97 2231.99

0.6 64.68 2172.02 64.92 2213.18 62.5 2262.96

0.65 64.56 2173.58 64.82 2195.1 61.85 2336.71

0.7 64.39 2176.39 64.81 2198.14 61.29 2381.11

0.75 64.2 2160.71 64.78 2201.45 60.81 2449.41

0.8 64.18 2213.89 64.69 2194.34 60.23 2547.15

0.85 63.97 2205.25 64.69 2220.49 60.03 2665.97

0.9 63.77 2240.47 64.63 2225.87 59.49 2685.1

0.95 63.16 2229.19 64.46 2239.34 58.91 2766.71

Min (p/w)

CP 10 WACP 3

Min (p)

Extreme Points

CP 0.33 CP 0.66 CP 1 CP 2
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C. Output Data Tables

Table C.4: Results of Pareto control in serial processing for Mean Cycle Time and
Cycle Time Variance (ρ = 0.85)

w Mean CT Var. CT Mean CT Var. CT Mean CT Var. CT Mean CT Var. CT

0.05 102.83 6682.58 102.78 6682.15 102.23 6677.92 100.45 6827.63

0.1 102.88 6683.73 102.6 6700.03 101.76 6720.31 99.66 6954.86

0.15 102.85 6686.58 102.17 6685.15 101.18 6775.05 99.1 7011.14

0.2 102.81 6692.59 101.81 6695.21 100.55 6810.21 98.64 7083.33

0.25 102.68 6694.93 101.33 6739.18 99.86 6841.91 98.2 7130.35

0.3 102.31 6695.6 100.79 6781.72 99.28 6885.08 97.62 7139.82

0.35 101.88 6716.35 99.98 6809.3 98.7 6948.37 97.29 7236.27

0.4 101.21 6748.89 99.14 6858.4 98.05 6993.37 96.79 7287.3

0.45 100.07 6794.76 98.19 6928.33 97.27 7088.36 96.43 7368.35

0.5 98.45 6952.84 97.21 7031.85 96.47 7107.28 96.09 7474.73

0.55 96.25 7183.64 96.2 7134.48 95.75 7213.96 95.84 7552.82

0.6 93.9 7492.64 94.86 7300.73 94.97 7415.42 95.49 7629.13

0.65 91.12 8248.1 93.31 7527.79 94.11 7583.37 94.92 7720.8

0.7 88.77 9079.35 92.21 7927.75 93.14 7877.32 94.37 7818.22

0.75 86.25 10218.65 90.95 8424.27 92.32 8191.19 93.91 7957.36

0.8 83.86 12251.45 89.32 9257.68 91.19 8531.71 93.62 8308.93

0.85 81.86 14796.26 87.48 10204.4 89.77 9116.24 92.63 8430.18

0.9 79.75 16554.21 85.71 11693.35 88.63 10180.65 91.59 8867.8

0.95 78.43 21972.13 83.08 14868.37 86.41 11809.07 90.54 9657.05

w Mean CT Var. CT Mean CT Var. CT Mean CT Var. CT

0.05 99.38 7010.25 97.08 7330.16 100.54 6856.27

0.1 98.59 7080.5 96.84 7380.45 98.7 7063.04

0.15 98.11 7123.13 96.7 7445.26 97.45 7272.94 Mean CT Var. CT

0.2 97.86 7192.74 96.57 7504.56 96.43 7554.8 78.67 29046.62

0.25 97.45 7261.97 96.52 7542.57 95.71 7922.87

0.3 97.16 7326.15 96.36 7531.41 94.71 8007.76

0.35 96.85 7373.36 96.28 7568.57 93.86 8576.05 Mean CT Var. CT

0.4 96.58 7454.75 96.3 7610.88 93.01 8881.31 102.83 6682.25

0.45 96.32 7495.03 96.12 7622.46 91.87 9078.78

0.5 95.99 7520.64 96.01 7650.15 91.17 9452.59

0.55 95.87 7629.79 95.93 7669.71 89.92 9778.94

0.6 95.53 7658.14 95.89 7659.49 88.98 10801.9

0.65 95.34 7757.76 95.93 7745.21 87.73 11492.46

0.7 95.02 7817.31 95.89 7794.51 86.08 12142.26

0.75 94.5 7869.7 95.71 7766.57 84.59 13914.97

0.8 94.13 8074.69 95.58 7797.29 83.84 16312.52

0.85 93.89 8294.38 95.47 7861.92 83.29 20224.09

0.9 93.37 8662.54 95.18 7871.05 81.33 23220.38

0.95 92.13 8988.5 94.82 7989.9 79.84 27650.81

CP 0.33 CP 0.66 CP 1 CP 2

Min (p/w)

CP 10 WACP 3

Extreme Points

Min (p)
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