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Summary

Motivated by the human brain, neural network has been widelyused and extensively

investigated in the past several decades. It works and operates in a highly-complex,

nonlinear and parallel way. Single-hidden layer feedforward neural network (SLFN) is

the most common type because of: 1) its simple structure; 2) the approximation capa-

bility of very complicated nonlinear function. The conventional training methods for

SLFN, such as back-propagation (BP) algorithm [88], involve numerous gradient de-

scent steps and suffer from trivial issues including slow convergence rate, local minima,

tedious human involvement, etc.

In recent years, a novel algorithm named Extreme Learning Machine (ELM) [50, 51]

has been attracting plenty of research attention. ELM was initially proposed as a vari-

ant and improvement on the classic SLFN and was later extended to the “generalized”

SLFN, which was not necessarily neuron alike. Different from traditional methods,

which demand tedious parameter tunings, ELM randomly generates the input weights

and analytically calculates the output weights, thus providing a simple and deterministic

solution.

However, in almost all ELM implementations realized in the past, hidden nodes are

fully connected with the input ones. On one hand, it needs to store all the connection

weights in memory and perform addition/multiplication operations for all the weights.

Therefore, it requires plenty of storage space and testing time, especially when facing

large-scale applications. On the other hand, the fully connected ELM does not explic-

itly model the local structures, and thus may not perform well for locally correlated

applications, such as image processing, speech recognition, etc.

vii



SUMMARY viii

In Chapter 3 and Chapter 4, we propose the sparse ELM as an alternative solution to

deal with classification and regression problems respectively. In terms of generalization

performance, the sparse ELM is on par with the unified ELM and better than traditional

support vector machine (SVM) [15]. Additionally, it provides a sparse solution, reduc-

ing the storage space and testing time significantly. Furthermore, we develop efficient

training algorithms based on iterative update for classification and regression problems

separately. They both break down the large quadratic programming (QP) problem into

a series of sub-problems, each of which can be solved analytically. Different from the

popular unified ELM [49], whose computational complexity isbetween quadratic and

cubic with regard to the training sizeN, the proposed algorithms scale only quadrati-

cally with respect toN. The decrease of the complexity gives the proposed sparse ELM

considerable advantages to handle large-scale applications.

In Chapter 5, we investigate the local receptive fields basedextreme learning machine

(ELM-LRF). It thoroughly discusses the issue:can local receptive fields be implemented

in ELM? ELM theories prove that hidden nodes can be randomly generated according

to any continuous probability distribution. Consequently, local receptive fields can be

naturally extended and implemented in ELM [2]. Inspired by convolutional neural net-

works (CNNs) [55], we construct the network of ELM-LRF by randomly generating

hidden nodes that are in sparse connections with the input ones and perform convolution

operations. Experimental results on the NORB dataset, a benchmark for object recogni-

tion, show that the proposed ELM-LRF achieves thebest accuracyand accelerates the

learning speed up to200 times.

Subsequently, in Chapter 6 we suggest to use the proposed ELM-LRF as a general

framework for generic object recognition. ELM-LRF is operated directly on the raw

images without any pre-processing, thus suitable for different datasets. In addition, the

simple structure only requires few computations and minimal human involvement as

most connection weights are generated randomly. The general framework of ELM-LRF

is evaluated on several generic object recognition datasets, NORB, ETH-80, COIL and

ALOI. And it achieves the best accuracy on NORB, COIL and ALOIwhile comparable

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE



SUMMARY ix

with state-of-the-art result on ETH-80.

In summary, this thesis studies ELM with sparse connections. We first present the sparse

ELM as an alternative solution for the unified ELM, which significantly reduces the stor-

age space and testing time. Additionally, the sparse ELM hasbetter scalability, making

it preferable to handle large-scale applications. Later, we conduct some research on the

ELM-LRF and shows that it is especially suitable and efficient for highly correlated ap-

plications, such as image processing, speech recognition,natural language processing,

etc.
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Chapter 1

Introduction

1.1 Research Background

Machine learning is a scientific discipline that learns fromthe data without explicitly

modeling the underlying relationship of the data. It is highly relevant to other stud-

ies, including statistics, computer science, data mining and artificial intelligence [103].

Currently, one challenging issues for machine learning include how to generate proper

representations for the original input and how to handle bigdata problems.

Neural network is a popular method in machine learning and has been thoroughly inves-

tigated in recent decades because of its approximation capability of complicated non-

linear functions [34]. It was inspired by human brain and operated in a highly complex,

nonlinear and parallel manner. Single-hidden layer feedforward neural network (SLFN)

is the most common one because of the simple structure and thesuperb approximation

capability.

The conventional training methods for SLFN, such as back-propagation (BP) algorithm

[88], are mostly gradient descent based and require numerous updates of the parameters.

Consequently, these training methods are slow, while suffering from troubles like slow

1



1.2 Motivations and Objectives 2

convergence rate, local minima, intensive human involvement, etc. [51, 50].

The emerging extreme learning machine (ELM) was originallyproposed as an improve-

ment for the classic SLFN, where the input weights (connection weights from input to

hidden layer) are generated randomly based on any continuous probability distribution

[46, 44]. Subsequently, ELM was further developed to the “generalized” SLFN and

provides a unified framework for different learning methods, including SLFN, support

vector machine (SVM), radial basis function (RBF) network,etc. [49, 41]. The unified

ELM provides an efficient and deterministic solution for different applications, includ-

ing classification, regression, clustering, as it randomlygenerates the input weights and

analytically calculates the output weights.

Additionally, image processing, speech recognition and similar tasks are important yet

difficult applications for machine learning techniques. These tasks involve plenty of lo-

cal correlations and thus cannot be directly handled by any machine learning techniques.

Traditionally, pre-processing steps first transform the raw inputs (like images, speeches)

into well-designed features, such as shape models, SIFT features, etc. Then, machine

learning techniques are followed to deal with these features. Recently, vast works are

proposed to deal with the raw inputs directly due to the greatsuccess in deep learning

[37] and convolutional neural networks (CNNs) [64, 98].

1.2 Motivations and Objectives

ELM is widely used because of its great generalization performance and exceptionally

fast speed. It presents high accuracy with superb efficiencyfor different applications,

including but not limited to biomedical analysis [108], system modeling [107], action

recognition [75], etc. [41].

However, input and hidden nodes are in full connections for almost all ELM imple-

mentations studied before. Thus, it needs huge storage space and much testing time,

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE



1.2 Motivations and Objectives 3

since all the connection weights have to be stored in the memory and performed ad-

dition/multiplication operations in the testing phase. Inaddition, the fully connected

ELM does not model local structures explicitly. Therefore,it usually performs poorly

when facing applications with strong local correlations, such as image analysis, speech

recognition, natural language processing [2, 70].

In this thesis, we aim to study ELM with sparse connections and solve the aforesaid

problems associated with fully connected ELM.

In the beginning, we aim to construct a sparse ELM. There are three major approaches

to train a SLFN [34]: 1) gradient descent based method; 2) least squares based method;

3) standard optimization based method. The conventional training methods are based

on gradient descent and the unified ELM is based on least squares. In this thesis, we

build up the ELM network based on standard optimization and provide a sparse so-

lution. Comparing to the unified ELM, it significantly reduces the storage space and

testing time, while achieving comparable accuracy. Furthermore, we develop the train-

ing algorithms for classification and regression separately. The complexity scales only

quadratically with regard to the training sizeN, providing better scalability than the

unified ELM.

Later, we discuss the open question:can local receptive fields be implemented in ELM?

We show that local receptive fields are naturally valid in ELMand can be easily imple-

mented. Hence, we propose the local receptive fields based extreme learning machine

(ELM-LRF). The input and hidden nodes are in sparse connections and bounded by cor-

responding local receptive fields. In this way, the local structures are explicitly modeled,

enabling ELM-LRF to be suitable for image processing and similar works.

Finally, we try to solve some real-world applications and suggest to use ELM-LRF as

a general framework for generic object recognition. We showthat ELM-LRF provides

a deterministic and efficient solution for generic object recognition, setting new records

for NORB, COIL [78], ALOI [31] and on par with the best result of ETH-80 [66].
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1.3 Major Contributions

In this thesis, we thoroughly study ELM with sparse connections and well solve the

issues associated with fully connected ELM. In this section, we summarize all the major

contributions during the PhD study.

Firstly, we propose a sparse ELM for classification from the perspective of standard op-

timization. It presents comparable accuracy with the unified ELM, while providing a

compact network and largely reducing the storage space and testing time. Moreover, we

develop a training algorithm for the sparse ELM specifically. The large quadratic pro-

gramming (QP) problem is broken into a series of sub-problems, each of which includes

only one Lagrange multiplier. These sub-problems can be solved analytically in a se-

quential manner. The computational complexity is quadratic with respect to the training

sizeN. Thus, the sparse ELM has better scalability than the unifiedELM, making it

superior when facing large-scale applications.

Secondly, we extend the preceding classification-applicable-only network into regres-

sion problems and propose the sparse ELM for regression. It shares resemblances with

the aforementioned work, yet dealing with different constraints, loss functions and prob-

lems. It also largely reduces the storage space, testing time and provides better scalabil-

ity.

Thirdly, we study another form of sparse connections: localreceptive fields. Strong

local correlations exist in some applications, such as image processing, speech recog-

nition and similar tasks. Thus, it is reasonable to expect the network to learn these

local correlations by sparse and local connections insteadof full ones. We discover that

local receptive fields can be easily realized by ELM and construct the ELM-LRF net-

work. The input weights to the hidden nodes are generated randomly and the output

weights are calculated analytically. Experimental results well demonstrate the superb

performance and extraordinarily fast speed of ELM-LRF.

Finally, we set up a general framework for generic object recognition with ELM-LRF
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because of its distinct merits: 1) task non-specific as ELM-LRF uses no task-specific

information; 2) simple to use because the users only need to choose several parame-

ters through validation; 3) highly efficient since most connection weights are generated

randomly. The general framework presents state-of-the-art accuracy with exceptionally

high speed on several benchmark datasets, NORB, ETH-80, COIL and ALOI.

1.4 Organization of the Thesis

The thesis is organized as follows:

Chapter 2 presents the literature reviews on current popular machine learning tech-

niques, including support vector machine (SVM), extreme learning machine (ELM),

convolutional neural networks (CNNs), etc.

Chapter 3 illustrates the sparse ELM for classification in details, showing how it pro-

vides a sparse solution and decreases the computational complexity.

Chapter 4 extends the sparse ELM for regression, since the method illustrated in Chapter

3 cannot solve regression problems. It produces a sparse solution and requires lower

complexity.

Chapter 5 discusses the properties of local receptive fieldsfor ELM and proposes ELM-

LRF accordingly.

Chapter 6 constructs a general framework for generic objectrecognition with ELM-LRF

and solves real-world applications.

Chapter 7 concludes the thesis and addresses the future work.
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Chapter 2

Literature Review

2.1 Machine Learning

People encounter decision making in everyday life, such as whether going out or not

when the weather is cloudy. Thus, it is attractive to enable the machine to make these

kinds of decisions. For some problems, we can use human knowledge to model the latent

factors and generate explicit mathematical expressions for the problem. This is called

designing with domain knowledge. However for other problems, we can only collect

some data (several measurements and corresponding labels)and learn the underlying

relationship implicitly. This ismachine learningwith data-driven knowledge.

Machine learning learns from the data by optimizing a performance criterion without ex-

plicitly modeling the underlying relationship within the data. Key factors for successful

machine learning include representation and generalization. All machine learning tech-

niques consist of data representation and generalization.Data representation determines

in what format the data are presented to the learning technique and the generalization

decides how well the system performs on unseen data [103].

Machine learning is closely related to other fields, such as statistics, computer science,

6



2.1 Machine Learning 7

artificial intelligence, data mining, etc. Compared with other areas, machine learning

concentrates on how to build up the model, to perform the optimization and to regularize

in order to make the optimal use of the data.

Before we go any further on machine learning, let us describethe basic notations and

assumptions first. There are two types of datasets:

(1) Labeled dataset:XN×d =
[

xT
1 · · ·xT

N

]T
,xi ∈ R1×d andTN×m =

[

tT
1 · · · tT

N

]T
, t i ∈

R1×m

(2) Unlabeled dataset:XN×d =
[

xT
1 · · ·xT

N

]T
,xi ∈ R1×d

whereXN×d is the feature set ofN samples. Each samplexi ∈ R1×d is a feature vector

in row format.T denotes the target set andt i ∈ R1×m indicates the target of the feature

vector. Additionally,xi andt i is called a data pair. In some cases, there are no targets

observed, resulting in the unlabeled dataset.

In machine learning, the underlying distribution is the probability of all possible data

pairs to occur in the real world [12]. However, we can only observe a subset of all these

possible data pairs, denoted astraining data. It is assumed that the training data are

independently and identically (i.i.d) sampled from the underlying distribution. Thus,

we can model the distribution from the training data and predict on the unseentest data

using the model.

In general, there are several groups of machine learning techniques depending on the

problem and the dataset provided:

(1) Supervised learning:Given a labeled dataset as the training data, supervised

learning aims to discover the relationship between the feature setX and the target

setT. If the target ist i = [ti,1 · · · ti,m] ∈ R1×m, it is a classification problem. If the

targett i ∈ R is a real value, it is a regression problem.

(2) Unsupervised learning:The training data provided is unlabeled. Unsupervised
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Table 2.1: List of common supervised learning methods
Category Learning methods

Linear model

Neural networks
Support vector machine (SVM)
Support vector regression (SVR)
Linear regression
Logistic regression

Non-parametric model
K-nearest neighbors
Kernel density estimation
Kernel regression

Non-metric model Classification and regression tree (CART), decision tree

Parametric model

Naive Bayes
Gaussian discriminant analysis (GDA)
Hidden Markov models (HMM)
Probabilistic graphical models

Mixed methods
Bagging (bootstrap + aggregation)
Adaboost
Random forests

learning focuses on clustering [105], probability densityestimation, dimensional-

ity reduction, etc.

(3) Semi-supervised learning:Semi-supervised learning handles both labeled and un-

labeled datasets and combines them together to solve the problem.

(4) Reinforcement learning:Reinforcement learning closely interacts with the envi-

ronment and provides a sequence of decision makings, with the purpose of maxi-

mizing the long-term reward. Unlike the supervised learning, there are no targets,

or correct actions, for any feature vectors [56].

There are many different types of machine learning techniques. For instance, linear

discriminant analysis is originated from statistics, while rule-based classifiers or deci-

sion trees come from the field of data mining. Table 2.1 lists some common supervised

learning methods [12].
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2.2 Neural Networks

It has been discovered that human brain, as an information processing system, consists

of numerous fundamental processing units, the biological neurons. Each neuron pro-

vides very basic processing capability. And the brain integrates all these neurons and

performs various kinds of cognitive functions, such as logical reasoning, computing,

memorizing, learning from experience and decision making.

Neural network is thus inspired by the human brain and becomes a popular machine

learning technique. Unlike conventional digital computer, it is in nature highly com-

plex, nonlinear and parallel. Neural network could approximate severely complicated

functions and solve a wide variety of problems. Neurons (also called nodes), the ba-

sic components of neural networks, are combined together toperform certain machine

learning tasks, such as pattern recognition, time series prediction, etc. In the past several

decades, large amounts of works have been proposed about neural networks [34, 53].

2.2.1 The basic unit: node

Bias kb

1x

2x

dx

Output

ky

Activation

function

1kw

2kw

kdw

Input kv

Figure 2.1: The basic unit of neural networks: nodek

The node is the basic unit of neural networks. In order to mimic the human brain, the

mathematical formulation of the node includes three fundamental elements:

(1) Synapses (connection weights): The input signalx j is connected to nodek through
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2.2 Neural Networks 10

the connection weightwk j. Different from the human brain, the weightwk j in

neural networks may have negative as well as positive values[34].

(2) Summation operator: This operator is a linear combiner that sums up the weighted

input signals. Note that an additional bias termbk may be included.

vk =
d

∑
j=1

wk jx j +bk = xwk+bk, x ∈ R1×d,wk ∈ Rd×1 (2.1)

(3) Activation function: The purpose of activation functionG is to limit the value of

the output. At here, we show three typical activation functions:

i) Threshold function:

G(v) =







1 if v≥ 0

0 if v< 0
(2.2)

ii) Piecewise-linear function:

G(v) =



















1 v≥ 1
2

v −1
2 < v< 1

2

0 v≤−1
2

(2.3)

iii) Sigmoid function:

G(v) =
1

1+exp(−a ·v)
(2.4)

More functions can be used in neural networks, such assignum, hyperbolic tan-

gent, etc.
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1

m

1

i

d

Input

layer

Hidden

layer

Output

layer

(a) Feedforward neural network

1

m

1

i

d

Input

layer

Hidden

layer

Output

layer

(b) Recurrent neural network

Figure 2.2: Network architectures

2.2.2 Network architectures

In order to perform certain tasks, the nodes need to be linkedand structured into some

architectures with proper learning algorithm for training. Based on the network archi-

tectures, we can identify two general types:

(1) Feedforward neural networks (FNNs):The network is layered and organized in

a strictly feedforward manner. The signals are transmittedin forward direction

only. As depicted in Fig. 2.2(a), every node is connected to subsequent nodes in

forward sense and the network is in full connections.

(2) Recurrent neural networks (RNNs):As shown in Fig. 2.2(b), the network consists

of at least one feedback loop. RNN is in effect dynamic because the output will in

turn change the input, until reaching an equilibrium state.Thus, one input would

generate a series of outputs. Popular RNN networks include Hopfield network

[38] and Kohonen self-organizing maps [60].
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2.2.3 Single-hidden layer feedforward neural networks (SLFNs)

Before the great advancement of deep learning [36] on 2006, researchers had been at-

tempting to train multilayer neural networks for decades, yet achieving no significant

success. Therefore, SLFN was the most frequently used one amongst the family of

FNNs. As implied by the name, only one hidden layer exists in SLFN. It provides

great approximation capability with exceptionally simplestructure. Fig. 2.3 shows the

architecture of SLFN.

1

i

d

1

m

Input

layer

Hidden

layer

Output

layer

i
x

i
t

Figure 2.3: Single-hidden layer feedforward neural network (SLFN)

SLFN belongs to supervised learning, where the feature and target sets are both provided

in the training data. Traditionally, all connection weights will be adjusted in order to

learn from the training data and predict on the test (unseen)data. Back-propagation (BP)

algorithm is one famous training method based on gradient descent [88]. It calculates the

gradients of a loss function with respect to the weights and feeds them backward in order

to minimize the loss function. BP algorithm delivers an elegant way to train the SLFN.

However, it also faces problems, such as local minima, intensive human involvement

and time consuming of parameter tunings. Extreme learning machine (ELM) [43, 51]

was thus proposed, which generates the hidden nodes randomly and solves the issues

associated with BP. We will introduce ELM in detail later.
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2.3 Convolutional Neural Networks (CNNs)

In this section, we take a closer review at the convolutionalneural network (CNN). It

is a variant of multilayer feedforward neural networks
(

or called multilayer perceptrons

(MLPs)
)

and an exception that presents nice performance with multilayer structure from

decades ago. CNN was initially inspired by the visual cortex, particularly by the model

proposed in [52]. The first computational model with local connections was introduced

by Fukushimaet al. [29].

CNN has been successfully adopted in many different applications, including but not

limited to object recognition, image processing, speech recognition. Unlike CNN, tradi-

tional methods for these applications first transform the input into hand-crafted features

and then perform classification on these features [70]. Consequently, the performance

largely depends on the quality of the features, which are manually designed. In contrast,

CNN is operated directly on the raw inputs, eliminating the design of features. Thus, it

is less task-specific than traditional methods as it implicitly learns the features from the

raw inputs rather than designing for any specific application. ✂✁☎✄✝✆✟✞✠✄☛✡✌☞✎✍✟✏✒✑✓✏✂✏✂✏✎✔✖✕☛✄☎✗☛✏✙✘✛✚✙✏✂✁✢✜✤✣✥✣✧✦  

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection

Full connection

Gaussian connections

OUTPUT
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Figure 2.4: A classic convolutional neural network: LeNet-5

Fig. 2.4 displays a classic CNN, LeNet-5, which was proposedby LeCunet al. [64].

The input is the image to be classified. There are two main operations in the CNN: con-

volution and subsampling (also called pooling). Convolutional and subsampling layers

are stacked together alternately until generating the high-level representations (layer F6

in Fig. 2.4). The representations (or features) will be fed into the subsequent classifier,
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2.3 Convolutional Neural Networks (CNNs) 14

such as the last two layers of Gaussian connections in Fig. 2.4.

(1) Convolution: Use the 1-st convolutional layer C1 in LeNet-5 as an example. Each

unit in C1 has a receptive field in the lower layer: a 5×5 patch in the input layer.

And the 6 feature maps in C1 are calculated with 6 different filters. Units in the

same feature map share the same filter. This setting enables the network to learn

different representations while keeping the number of parameters tractable. Each

filter includes the connection weightw ∈ R5×5 and a biasb. The value of a unit

in C1 (y1) is calculated as follows:

y1 = G(
5

∑
i=1

5

∑
j=1

wi j ·xi j +b) (2.5)

whereG is a nonlinear function.

(2) Subsampling: The feature detected at one location tends to be useful at different

locations. Subsampling is a straightforward approach to introduce translational

invariance. Different subsampling methods could be performed over local areas,

such as averaging and max-pooling [14]. Additionally, it would alleviate the com-

putational burden as it reduces the size of the maps.

Stimulated by the recent developments in deep learning [36,6, 5], some variants of

CNN, Deep CNN [62], GoogLeNet [98], show superior performance on super large im-

age datasets, such as ImageNet [89], PASCAL [22]. The commonapproach to train a

CNN is the BP algorithm. With so many parameters to be tuned, it requires a large train-

ing set and computational capability in order to train the network properly. Furthermore,

it also faces the challenging issues associated with BP, including slow convergence rate,

intensive human intervention, local minima, etc.
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2.4 Support Vector Machine (SVM) 15

2.4 Support Vector Machine (SVM)

Support vector machine (SVM) and its variants, such as leastsquares SVM (LS-SVM),

proximal SVM (PSVM), have been extensively used in the last two decades in various

applications, including regression, classification and clustering [96, 30]. Originated

from statistics, SVM can be regarded as a special form of SLFNand achieves better

generalization performance than conventional neural networks for most problems [15].

2.4.1 Statistical learning theory

To begin with, we present a brief review of the statistical learning theory, on which

SVM is built on. Given two random variablesx ∈ R1×d andt ∈ R1×m, a probabilistic

relationship exists between them, defined asP(x, t) over Rd ×Rm. One sample ofx

determines a probability distribution ont rather than a unique value. We are provided

with N samples ofx, t, X ∈ RN×d and T ∈ RN×m. X andT are the training data, from

which we will learn and model the distribution.

The basic idea of statistical learning theory is: for a finiteset of training data, the search

for the optimal model of the distributionP(x, t) needs to be constrained to a suitable

small hypothesis space. Otherwise, the model may provide terrible generalization per-

formance, even though it could fit the training data exactly.Vapnik formalized these

concepts asmodel capacity control[23]. Subsequently, theStructural Risk Minimization

(SRM)[100] was constructed and aimed to minimize the model capacity and empirical

errors simultaneously. The mathematical expression is formulated as follows:

min
f∈H

Rreg=
λ
2
‖ f‖2+Remp[ f ]

Remp[ f ] =
1
N

N

∑
i=1

c
(

t i , f (xi)
)

(2.6)

whereRemp[ f ] is the empirical errors of the training data andλ
2‖ f‖2 is the model ca-
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2.4 Support Vector Machine (SVM) 16

Table 2.2: List of common loss functions
Name Loss function
ε-insensitive c(ξ ) = |ξ |ε
Laplacian c(ξ ) = |ξ |
Gaussian c(ξ ) = 1

2ξ 2

Polynomial c(ξ ) = 1
p|ξ |

p

pacity. The loss functionc
(

t i , f (xi)
)

could have numerous forms. We should avoid very

complicated functionc as it may lead to difficult optimization problem and select the

most suitable one for each particular problem. Table 2.2 contains some common loss

functions [93].

2.4.2 SVM

SVM was initially developed to solve binary classification problems. The core idea of

SVM is to construct a hyperplane in order to separate the training data with maximal

margin. For multiclass problems, several binary classifiers are combined using one-

against-one (OAO), one-against-all (OAA) or directed acyclic graph (DAG) methods

[40].

Figure 2.5: Nonlinear feature mapping

Assume we have the training dataXN×d =
[

xT
1 · · ·xT

N

]T
,xi ∈R1×d,TN×1= [t1 · · · tN]

T , ti ∈

{1,−1}. In most cases, the training data are linearly non-separable in the input space.
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Thus, it requires nonlinear mappings from the input to a higher dimensional space:

xi → φ(xi) as shown in Fig. 2.5. In addition, even after the feature mapping, errors

may still exist and should be allowed.

The primal form of SVM is constructed as follows:

Minimize: Lp =
1
2
‖w‖2+C

N

∑
i=1

ξ σ
i

Subject to:ti
(

w ·φ(xi)+b
)

≥ 1−ξi

ξi ≥ 0, i = 1, · · · ,N

(2.7)

whereC is a user-specified parameter andξi is the slack variable to account for the

errors. The SVM problem (2.7) is in general NP-complete. In order to avoid NP-

completeness,σ = 1 is normally used [15]. And there are many efficient methods to

find the solution if choosingσ = 1.

Standard optimization method is used to establish the Lagrangian function:

P =
1
2
‖w‖2+C

N

∑
i=1

ξi −
N

∑
i=1

µiξi −
N

∑
i=1

αi

(

ti
(

w ·φ(xi)+b
)

− (1−ξi)
)

(2.8)

whereαi > 0,µi > 0 are the Lagrange multipliers to be optimized. According tothe

Karush-Kuhn-Tucker (KKT) theorem [27], we could find the optimal solution (saddle

point):

∂P

∂w
= 0⇒ w =

N

∑
i=1

αitiφ(xi)

∂P

∂ξ
= 0⇒C= αi +µi , i = 1, · · · ,N

∂P

∂b
= 0⇒

N

∑
i=1

αiti = 0

(2.9)
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Table 2.3: List of common kernel functions
Name Kernel function
Polynomial of degreed G(u,v) = (1+u ·v)d

Gaussian G(u,v) = exp(−‖u−v‖2)

Multiquadric G(u,v) =
√

(‖u−v‖2+c2)

Trigonometric polynomial of degreed G(u,v) = sin(d+1/2)(u−v)
sin( u−v

2 )

Substituting (2.9) into (2.8), the dual form of SVM is generated:

Maximize:Ld =−
1
2

N

∑
i=1

N

∑
j=1

tit jαiα jφ(xi) ·φ(x j)+
N

∑
i=1

αi

Subject to:
N

∑
i=1

αiti = 0

0≤ αi ≤C, i = 1, · · · ,N

(2.10)

As observed from (2.10), the dual form only involves the dot productφ(xi) ·φ(x j). Thus,

we do not need to know the explicit form of the feature mappingφ(x). Instead, kernel

function,K(xi ,x j) = φ(xi) · φ(x j) satisfying Mercer’s conditions [15] can be adopted.

Table 2.3 summarizes some common kernel functions.

The decision function of SVM is formulated as:

f (x) = sign

(

N

∑
i=1

αitiK(x,xi)+b

)

= sign

(

Ns

∑
s=1

αstsK(x,xs)+b

)

(2.11)

wherexs is Support Vector (SV) andNs is the number of SVs. Apparently, the SVs (xs)

are the samples (xi) with non-zero Lagrange multipliers (αi).

2.4.3 Support vector regression (SVR)

The SVM formulation can be extended to deal with regression problems. Similarly,

standard optimization method will be adopted.ε-insensitive loss function is chosen and
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the method is calledε-support vector regression (ε-SVR) [93].

c(ti, f (xi)) = |ti − f (xi)|ε =







0 |ti − f (xi)|< ε

|ti − f (xi)|− ε otherwise
(2.12)

Given the training dataXN×d =
[

xT
1 · · ·xT

N

]T
,xi ∈ R1×d,TN×1 = [t1 · · · tN]

T , ti ∈ R. The

primal function of SVR is:

Minimize: Lp =
1
2
‖w‖2+C

N

∑
i=1

(ξi +ξ ∗
i )

Subject to:ti −w ·φ(xi)−b≤ ε +ξi

w ·φ(xi)+b− ti ≤ ε +ξ ∗
i

ξi ,ξ ∗
i ≥ 0, i = 1, · · · ,N

(2.13)

The constantC determines the trade-off between the model capacity and empirical er-

rors. Thus, the Lagrangian of SVR is:

P =
1
2
‖w‖2+C

N

∑
i=1

(ξi +ξ ∗
i )−

N

∑
i=1

αi
(

ε +ξi − ti +w ·φ(xi)+b
)

−
N

∑
i=1

α∗
i

(

ε +ξ ∗
i + ti −w ·φ(xi)−b

)

−
N

∑
i=1

(ηiξi +η∗ξ ∗
i )

(2.14)

where the Lagrange multipliersα(∗)
i ,η(∗)

i > 0 andα(∗)
i denotesαi andα∗.

Solving the Lagrangian (2.14) and substituting back into the primal form (2.13), we

obtain the dual optimization problem:

Maximize:Ld =−
1
2

N

∑
i, j=1

(αi −α∗
i )(α j −α∗

j )K(xi,x j)− ε
N

∑
i=1

(αi +α∗
i )+

N

∑
i=1

ti(αi −α∗
i )

Subject to:
N

∑
i=1

(αi −α∗
i ) = 0

0≤ αi ,α∗
i ≤C, i = 1, · · · ,N

(2.15)
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Figure 2.6: The architecture of ELM

whereK(xi ,x j) = φ(xi) ·φ(x j) is the kernel function. Consequently, the decision func-

tion of ε-SVR is:

f (x) =
N

∑
i=1

(αi −α∗
i )K(x,xi)+b=

Ns

∑
s=1

(αs−α∗
s )K(x,xs)+b (2.16)

There are more variants of SVM, proposed for different purposes. For instance, the least

squares SVM (LS-SVM) [96] and proximal SVM (PSVM) [30] were proposed to avoid

the quadratic programming (QP) problem by enforcing equality constraints rather than

the inequality constraints used in the initial SVM. Moreover, ν-SVM was suggested

which used the parameterν ∈ [0,1] to replace the originalC ∈ [0,+∞) to control the

tradeoff between model capacity and empirical errors [13].

2.5 Extreme Learning Machine (ELM)

Extreme learning machine (ELM) was originally proposed as avariant and improvement

of single-hidden layer feedforward neural networks (SLFNs). Unlike the common un-

derstanding of neural networks, ELM theories demonstrate that hidden nodes need not

be adjusted even though they are indeed important [46, 44, 45]. Instead, it is able to per-

form the learning without iterative tuning of the hidden nodes as long as the activation
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functions of these hidden nodes are nonlinear piecewise continuous.

Subsequently, ELM was further developed to the “generalized” SLFNs. Fig. 2.6(a)

depicts the general architecture of ELM in two stages:ELM Feature MappingandELM

Learning. ELM feature mapping is composed of single or multiple typesof random

hidden nodes, independent of the training data. And ELM learning concentrates on

how to obtain the output weights when facing different applications (representational

learning, regression, classification, clustering, etc.).In essence, ELM tends to reach

both smallest training error and smallest norm of output weights [51, 43].

In recent years, ELM has been thoroughly investigated and successfully applied to dif-

ferent tasks, including but not limited to chemical process[110], bio-informatics [108],

remote sensing [112], computer vision [75]. Furthermore, ELM auto-encoder [58] also

produces state-of-the-art accuracy on MNIST dataset, a common benchmark for deep

learning methods, with much faster learning speed.

2.5.1 Basic ELM

Algorithm 1: Basic ELM learning algorithm
1: Initialization: Given the activation functionG satisfying universal approximation

conditions and the numberL;
2: Generate input weightai ∈ R1×d and biasbi ∈ R randomly,i = 1, ...,L;
3: Obtain hidden layer output matrixH;
4: Calculate output weight asβββ = H†T;

Huanget al. theoretically proved and proposed the basic ELM in [51, 50].Fig. 2.6(b)

shows the network of ELM. For an inputx, L hidden nodes are constructed and denoted

by h(x):

h(x) = [h1(x) · · · hL(x)] = [G(a1,b1,x), · · · , G(aL,bL,x)] ∈ R1×L (2.17)

whereG(a,b,x) is a nonlinear piecewise continuous function that needs to satisfy ELM

universal approximation conditions [46, 44, 45].{ai,bi}
L
i=1 are input weights gener-
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ated randomly based on any continuous probability distribution. Common activation

functionsG includesigmoidfunction,hard-limit function,Gaussianfunction, etc.

Given the training dataXN×d =
[

xT
1 · · ·xT

N

]T
,xi ∈R1×d,TN×m=

[

tT
1 · · · tT

N

]T
, t i ∈R1×m,

the hidden layer matrixH is built up as follows:

H =

















h(x1)

h(x2)
...

h(xN)

















N×L

,T =

















t1

t2
...

tN

















N×m

Hβββ = T

⇒βββ = H†T

(2.18)

whereβββ is the output weight connecting hidden and output layer.

2.5.2 Unified ELM

ELM was further advanced by some later works, providing a single framework to sim-

plify and unify different learning methods, such as SLFNs, LS-SVM, RBF network, etc.

It was proved that ELM has universal approximation capability [49], thus enabling it to

be applicable for different kinds of problems.

Theorem 2.1 Universal approximation capability: given any continuoustarget func-

tion f(x), there always exists a series ofβi in some nonlinear feature space hi(x) that

can approximate it.

lim
L→+∞

‖
L

∑
i=1

βihi(x)− f (x)‖2 = 0 (2.19)

Theorem 2.2 Classification capability: provided a random feature mapping h(x), if

h(x)βββ is dense in C(Rd) or in C(M), where M is a compact set ofRd, then the “gen-
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eralized” SLFNs withh(x) as the hidden layer mapping can separate arbitrary disjoint

regions inRd or M [47, 49].

The unified ELM aims to minimize the combination of model capacity and empirical

errors [49]:

Minimize: Lp,ELM =
1
2
‖w‖2+C

1
2

N

∑
i=1

‖ξξξ i‖
2

Subject to:h(xi)βββ = tT
i −ξξξ T

i , i = 1, · · · ,N

(2.20)

The solution is derived by following the standard optimization method. The feature

mappingh(x) in ELM is randomly generated and known to users. Thus, different from

SVM, ELM can be solved directly without invoking any kernel functions. However, we

can also use an implicit mapping and adopt any kernel that satisfies Mercer’s conditions.

(1) Non-kernel case:

βββ =







HT
( I

C +HHT
)−1

T if N ≤ L
( I

C +HTH
)−1

HTT if N > L
(2.21)

(2) Kernel case:

f(x) = h(x)HT
(

I
C
+HHT

)−1

T =











K(x,x1)
...

K(x,xN)











(

I
C
+ΩΩΩELM

)−1

T (2.22)

whereΩΩΩELM is called ELM kernel matrix with elements:

ΩΩΩELM = HHT : ΩELMi, j = h(xi) ·h(x j) = K(xi,x j) (2.23)
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2.5.3 Other variants of ELM

More variants of ELM have been proposed for different applications. For instance,

previous works determine the number of hidden nodesL by trial-and-error method. In

order to solve this issue, some algorithms with adjustable structures were introduced

to adjustL heuristically. Incremental ELM (I-ELM) adds one random hidden node and

calculates the output weight between the new hidden node to the output node in each step

[46]. Furthermore, convex I-ELM (CI-ELM) was later suggested in order to improve the

convergence rate. The output weights of existing nodes would be re-calculated when

a new node is included each time [44]. Moreover, the error minimized ELM (EM-

ELM) allows adding the hidden nodes one-by-one or group-by-group, introducing more

flexibility into the incremental ELM algorithms [24].

In addition, data may become available sequentially in someproblems, making the pre-

vious batch-based ELM algorithms unsuitable to use. Lianget al. developed the online

sequential ELM (OS-ELM), which could learn from sequentialdata of fixed or varying

size [69].

Furthermore, ELM was further extended to solve semi-supervised or unsupervised learn-

ing problems based on manifold regularization [42, 67]. It presents great learning

capability and high efficiency while being able to handle multiclass classification or

clustering directly. Additionally, the ELM based auto-encoder (ELM-AE), which was

proposed in [58], learns data representations with singular values and discovers the un-

derlying relationship within the data.

2.6 Summary

Machine learning is data-driven and aims to enable machinesfor decision making. There

are many different types of machine learning techniques, generically belonging to four

categories, supervised, unsupervised, semi-supervised and reinforcement learning. Pop-
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ular algorithms include neural networks, SVM,K-nearest neighbors (K-NN), decision

tree, random forests, etc.

Within the family of neural networks, SLFN is the most popular type because of its sim-

ple structure and great approximation capability of complicated nonlinear mappings.

Additionally, CNN shows advantages when facing problems with strong local correla-

tions, such as image processing, speech recognition and similar tasks. The basic method

to train the SLFN and CNN is the back-propagation (BP) algorithm, invoking numer-

ous trivial issues, such as slow convergence rate, intensive parameter tunings, numerous

computations. In contrast, ELM randomly generates the input weights and analytically

calculates the output weights. Thus, it does not require anygradient descent steps and

exhibits abundant advantages. Different variants of ELM have been developed, suitable

for diverse applications, including classification, regression, clustering, representational

learning, etc.

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE



Chapter 3

Sparse Extreme Learning Machine for

Classification

In this chapter, we present a sparse extreme learning machine (ELM) for classification.

Unlike the unified ELM, which gives a dense solution, it provides a sparse solution,

largely reducing the storage space and testing time. Furthermore, we specifically de-

velop an efficient training algorithm for sparse ELM for classification. It breaks down

the large quadratic programming (QP) problem into a series of smallest possible sub-

problems, each of which includes only one Lagrange multiplier to be calculated. Conse-

quently, each sub-problem can be easily solved in an analytical way. More importantly,

it only requires computational complexity quadratic to thetraining sizeN, while that of

the unified ELM is between quadratic and cubic. As a result, itgreatly accelerates the

training phase when facing large-scale applications.

In summary, compared with the traditional SVM, sparse ELM realizes better generaliza-

tion performance with much faster training speed, up to500 times. And comparing to the

unified ELM, it presents comparable generalization performance while greatly scaling

down the training time, testing time and storage requirement, especially for large-scale

problems.

26
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3.1 Sparse ELM for Classification

An optimization method based ELM was initially developed in[48] to handle classifi-

cation problems. It uses inequality constraints and generate a sparse network. However,

it can only use random hidden nodes as the feature mapping.

In this section, we conduct a thorough investigation on sparse ELM, where both kernels

and random hidden nodes are applicable. Furthermore, we show that sparse ELM unifies

different classification methods, including but not limited to conventional SVM, SLFNs,

radial basis function (RBF) networks, etc.

3.1.1 Problem formulation

The sparse ELM is proposed to solve binary classification. And when encountering

multiclass problems, one-against-one (OAO), one-against-all (OAA), directed acyclic

graph (DAG) methods will be utilized to combine several binary classifiers together [40].

The training data provided is:XN×d =
[

xT
1 · · ·xT

N

]T
,xi ∈ R1×d,TN×1 = [t1 · · · tN]

T , ti ∈

{1,−1}.

Feature mapping

As discussed before, in most cases, the training data are notlinearly separable in the

input space. Consequently, a nonlinear mapping is necessary to transform the data from

the input space to a higher dimensional feature space. The feature mapping could be

generated randomly as proved in ELM theories [51, 46].

xi ∈ R1×d → h(xi) ∈ R1×L, i = 1, · · · ,N (3.1)

whereL is the number of hidden nodes. Except for the random feature mapping in (3.1),

kernels are also applicable as long as meeting Mercer’s conditions.
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Optimization

It was proved that a continuous functionf (x) is able to separate any any disjoint re-

gions inRd. In addition, ELM provides universal approximation capability [46], which

means ELM could approximate any target functionf (x) in order to separate any disjoint

regions inRd:

lim
L→+∞

‖
L

∑
i=1

βihi(x)− f (x)‖= 0 (3.2)

As a consequence, the biasb that is necessary in conventional SVM can be removed.

However, in real implementations, the number of hidden nodesL cannot grow infinitely.

Hence, training errorsξi ’s should be allowed. Furthermore, the generalization perfor-

mance is guaranteed by minimizing both empirical errors
(

∑N
i=1ξi

)

and model capac-

ity (‖βββ‖2) based on statistical learning theory and structural risk minimization (SRM)

[100, 23]. Overfitting problems are well solved and a great generalization performance

will be presented.

The sparse solution is produced by enforcing inequality constraints in the primal prob-

lem as follows:

Minimize: Lp,ELM =
1
2
‖βββ‖2+C

N

∑
i=1

ξi

Subject to:ti h(xi)βββ ≥ 1−ξi

ξi ≥ 0, i = 1, ...,N

(3.3)

Naturally, the Lagrangian function is built up:

PELM(βββ ,ξξξ ,ααα ,µµµ) =
1
2
‖βββ‖2+C

N

∑
i=1

ξi −
N

∑
i=1

µiξi −
N

∑
i=1

αi ·
(

tih(xi)βββ − (1−ξi)
)

(3.4)
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The optimal solution will be obtained at the saddle point:

∂PELM

∂βββ
= 0⇒ βββ =

N

∑
i=1

αitih(xi)
T =

Ns

∑
s=1

αstsh(xs)
T

∂PELM

∂ξξξ
= 0⇒C= αi +µi

(3.5)

The dual form of sparse ELM for classification is obtained by substituting the results of

(3.5) into (3.4):

Minimize: Ld,ELM =
1
2

N

∑
i=1

N

∑
j=1

αiα j tit jΩELM(xi ,x j)−
N

∑
i=1

αi

Subject to: 0≤ αi ≤C, i = 1, ...,N

(3.6)

whereΩΩΩELM is the ELM kernel matrix:

ΩELM(xi ,x j) = h(xi) ·h(x j) = K(xi,x j) (3.7)

Therefore, the decision function of sparse ELM is calculated:

f (x) = h(x)βββ = h(x)

(

N

∑
i=1

αitih(xi)
T

)

= h(x)

(

Ns

∑
s=1

αstsh(xs)
T

)

=
Ns

∑
s=1

αstsΩELM(x,xs)

sign
(

f (x)
)

=



















sign
[

h(x)
(

∑Ns
s=1 αstsh(xs)

T
)]

non-kernel case

sign
(

∑Ns
s=1 αstsΩELM(x,xs)

)

kernel case

(3.8)

wherexs is the support vector (SV), andNs is the number of SVs.

Remark 3.1 Errors ξi ’s are allowed in the primal objective function(3.3) to account

for the samples that are not correctly classified. Thus, the proposed sparse ELM is

sub-optimal in the sense that it constructs a soft margin.
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3.1.2 Sparsity analysis

As in (3.5), the optimal solution is calculated at the saddlepoint. And the KKT condi-

tions are:

αi
(

tih(xi)βββ − (1−ξi)
)

= 0

µiξi = 0
(3.9)

For the support vectors (SVs), corresponding Lagrange multipliers need to be non-zero.

Two possible cases are displayed:

(1) 0< αi <C:

µi > 0⇒ ξi = 0

αi > 0⇒ tih(xi)βββ −1= 0
(3.10)

In this case, the data is on the decision hyperplane (separating boundary).

(2) αi =C:

µi = 0⇒ ξi > 0

αi > 0⇒ tih(xi)βββ − (1−ξi) = 0

⇒ tih(xi)βββ −1< 0

(3.11)

In this case, the data is classified with error.

Remark 3.2 In contrast to the unified ELM, in which almost allξi ’s are non-zero, the

sparse ELM invokes errorsξi ’s only when the inequality constraint
(

tih(xi)βββ −1> 0
)

are violated as aforementioned.

Let us consider the training data and the distribution from which the data are sampled.

Apparently, only a part of them would be on the boundary or classified with errors.
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Therefore, only a part of all training data are support vectors (SVs), making the solution

sparse.

As easily observed from Fig. 3.1, the proposed method provides a sparse dual net-

work since all non-SVs are excluded. Considering the primalnetwork, the architecture

remains the same as the number of hidden nodesL is fixed once chosen. However, spar-

sity also ease the computational burden forβββ since some components are removed as

shown in (3.5). The computations required in the testing phase and storage space are

both proportional to the number of SVs (Ns). As a consequence, sparse ELM largely

reduces the storage space and testing time compared with theunified ELM.

1 d

1 i L

1

1
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N

T
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Figure 3.1: Primal and dual networks of sparse ELM for classification

3.1.3 Unified framework for different classification methods

As depicted in Fig. 3.1, the primal network of sparse ELM and “generalized” SLFNs

share the same architecture. Additionally, the dual network of sparse ELM bears re-

semblance to the dual of SVM [15]. Furthermore, both RBF kernels (i.e. Gaussian

kernel) and RBF hidden nodes are applicable in the sparse ELM. Therefore, the pro-

posed sparse ELM provides a unified framework for different classification methods,

including but not limited to “generalized” SLFNs, SVM, RBF networks, etc.
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3.1.4 ELM kernel matrix ΩΩΩELM

The proposed sparse ELM could use a random feature mapping ora kernel function to

obtain the solution. Hence, similar to the unified ELM [49], it also has the kernel and

non-kernel cases. At here, we present them in detail.

Non-kernel case

The ELM kernel matrixΩΩΩELM is calculated from random hidden nodes directly.

h(x) = [G(a1,b1,x), · · · ,G(aL,bL,x)] (3.12)

whereG is the activation function and{ai,bi}
L
i=1,ai ∈R1×L,bi ∈R are the input weights

connecting to the hidden nodes.{ai,bi}
L
i=1 are generated randomly and the functionG

needs to satisfy ELM universal approximation conditions [46].

ΩΩΩELM = HHT (3.13)

It can use either additive hidden nodes or RBF ones. In the following, the former two

are additive nodes and the latter two are RBF nodes.

(1) Sigmoid function:

G(a,b,x) =
1

1+exp
(

− (a ·x+b)
) (3.14)

(2) Sinusoid function:

G(a,b,x) = sin(a ·x+b) (3.15)
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(3) Multiquadric function:

G(a,b,x) =
√

(‖x−a‖2+b2) (3.16)

(4) Gaussian function:

G(a,b,x) = exp(−
‖x−a‖2

b
) (3.17)

Kernel case

We can also obtain the ELM kernel matrixΩΩΩELM with kernel functions directly as in

(3.7). The only requirement for the kernel functionK is to satisfy Mercer’s conditions

[15, 16]. The functionK could be, but not limited to:

(1) Gaussian kernel:

K(xi,x j) = exp(−
‖xi −x j‖

2

2σ2 ) (3.18)

(2) Laplacian kernel:

K(xi,x j) = exp(−
‖xi −x j‖

σ
), σ > 0 (3.19)

(3) Polynomial kernel:

K(xi,x j) = (1+xi ·x j)
d, d ∈ Z+ (3.20)

Remark 3.3 ELM provides universal approximation ability if the activation function G

satisfies the conditions given in [46]. Various types of functions are applicable with ran-

dom input weights. Alternatively, they can also be constructed based on some implicit

relationship. In this case, the feature mappingh(x) is unknown to the users and the

kernel function K will be adopted, which needs to meet Mercer’s conditions.
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Theorem 3.1 The dual problem of sparse ELM for classification(3.6) is convex.

Proof: The first-order partial derivative is calculated as:

∂Ld,ELM

∂αs
= ts

N

∑
j=1

α j t jΩELM(xs,x j)−1 (3.21)

And the second-order partial derivative is:

∂ 2Ld,ELM

∂αt∂αs
= tttsΩELM(xt,xs) (3.22)

Consequently, the Hessian matrix∇2Ld,ELM = TTΩΩΩELMT is obtained.

(1) When it is non-kernel case,ΩΩΩELM will be calculated from random hidden nodes

directly as (3.13):

∇2
Ld,ELM = TTHHTT = (TTH)IL×L(TTH)T (3.23)

Obviously,∇2Ld,ELM is positive semi-definite.

(2) When it is kernel case,ΩΩΩELM will be calculated with the functionK. Thus,ΩΩΩELM

is guaranteed to be positive semi-definite by the Mercer’s conditions. Hence,

∇2Ld,ELM = TTΩΩΩELMT ≥ 0 is positive semi-definite.

The positive semi-definiteness of the Hessian matrix∇2Ld,ELM is the sufficient condi-

tion for the functionLd,ELM to be convex. As a result, the dual problem of sparse ELM

(3.6) is convex.
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3.2 Training Algorithm of Sparse ELM for Classifica-

tion

In effect, sparse ELM for classification is a quadratic programming (QP) problem. It is

similar to the conventional SVM (2.10) with an important distinction that sparse ELM

does not have the sum constraint∑N
i=1 αiti = 0 1. Therefore, the proposed sparse ELM

searches for the optimal solution within a wider range, enabling it to present better gen-

eralization performance than the conventional SVM. Additionally, the training method

will be easier as fewer constraints need to be satisfied. However, early works only

discussed the sparse ELM from theoretical perspectives without implementation con-

siderations [48].

Inspired by the ideas of sequential minimal optimization (SMO) [87], which divides the

large QP problem into different sub-problems, we specifically develop a training algo-

rithm for the proposed sparse ELM for classification and fully explore its advantages.

It divides the large QP problem into a series of sub-problems, each of which includes

only one Lagrange multiplier and can be solved analytically. Through iterative steps,

we solve these sub-problems one-by-one until certain condition is reached to trigger the

termination action.

3.2.1 Brief review of SMO

To begin with, the SMO algorithm proposed by Plattet al. will be briefly reviewed [87].

Prior to the SMO algorithm, the training of SVM requires numerical calculation of a

large QP optimization problem. The requirement for memory and computational ability

grows rapidly with the increase of the training sizeN.

SMO is developed accordingly to solve these issues. It splits the large QP problem into

1In some cases, SVM can also be trained without the bias, and thus no sum constraint, when satisfying
certain conditions [95].
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a series of smallest possible sub-problems. Each sub-problem includes two Lagrange

multipliers and could be solved analytically. Consequently, the time-consuming numer-

ical QP optimization is avoided, providing an efficient solution for SVM. In addition,

one major computation of SMO comes from the evaluation of kernel function. Thus, it

would be further accelerated when using linear kernel or dealing with sparse data.

3.2.2 Optimality conditions

We use the optimality conditions to decide whether the optimal solution has been reached

or not. If the conditions are met, the optimal solution is thus reached, andvice versa.

The KKT conditions are provided in (4.6). Three possible cases are listed as follows:

(1) αi = 0:

αi = 0⇒ ti f (xi)−1≥ 0

µi =C⇒ ξi = 0
(3.24)

(2) 0< αi <C:

αi > 0⇒ ti f (xi)−1= 0

µi > 0⇒ ξi = 0
(3.25)

(3) αi =C:

αi =C⇒ ti f (xi)−1≤ 0

µi = 0⇒ ξi > 0
(3.26)
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3.2.3 Improvement strategy

When the optimality conditions are not fully satisfied, how should we further decrease

the objective functionLd,ELM (3.6). The improvement strategy is formulated accord-

ingly.

Based on the selection criteria, which will be presented later, αc is chosen to be up-

dated at the current step. The first- and second- order partial derivatives of the objective

functionLd,ELM with regard toαc are constructed:

∂Ld,ELM

∂αc
= tc

N

∑
j=1

α j t jΩELM(xc,x j)−1= tc f (xc)−1

∂ 2Ld,ELM

∂α2
c

= ΩELM(xc,xc)

(3.27)

It has been proved that the dual problem of sparse ELM for classification (3.6) is a

convex quadratic one based on Theorem 3.1. Hence, the globalminimumα∗
c does exist

and can be reached [81]:

α∗
c = αc+

−
∂Ld,ELM

∂αc

∂ 2Ld,ELM

∂α2
c

= αc+
1− tc f (xc)

ΩELM(xc,xc)
(3.28)

The bounding constraints[0,C] decide the limit ofαi ’s. Thus, constraints[0,C] enforce

the unstrained minimumα∗
c within the range and the constrained minimumαnew

c is thus

calculated.

αnew
c = α∗,constrained

c =



















0 α∗
c< 0

α∗
c 0< α∗

c <C

C α∗
c >C

(3.29)
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3.2.4 Selection criteria

The selection of the Lagrange multiplier to be updated in each step is essential. Ide-

ally speaking, it would be the best to choose the Lagrange multiplier that reduces the

objective functionLd,ELM the most. Nevertheless, it is time consuming and computa-

tion intensive to calculate the exact decrease ofLd,ELM that each Lagrange multiplier

could cause. Therefore, we recommend an estimate method: using the step size ofαi to

estimate the decease ofLd,ELM thatαi brings.

Definition 3.1 d is the update direction. di denotes whetherαi should be increased

or decreased: 1) di = 1, increased; 2) di = −1, decreased; 3) di = 0, increased or

decreased are both acceptable.

(1) αi = 0: αi is on the left boundary of the constraints[0,C]. Thus, it can only be

increased. Therefore,di = 1.

(2) 0< αi < C: di should be along the direction to reduce the objective function

Ld,ELM. Therefore,di =−sign
(

∂Ld,ELM
∂αi

)

.

(3) αi = C: αi is on the right boundary of the constraints[0,C] and can only be de-

creased. Therefore,di =−1.

Definition 3.2 J is the selection parameter:

Ji =

(

∂Ld,ELM

∂αi

)

di , i = 1,2, ...,N (3.30)

The Lagrange multiplier with the minimal selection parameter Ji will be selected in the

current iteration.

c= arg min
i=1,...,N

Ji (3.31)
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Theorem 3.2 The chosen Lagrange multiplierαc will decrease the object functionLd,ELM

as expected.

Proof: In the training process, at least one data violates the optimality conditions

(3.24)-(3.26). Otherwise, it would be determined that the optimal solution has been

reached and the training algorithm will be terminated. Assume that the data correspond-

ing to αv violates the optimality conditions. Three possible cases are displayed:

(1) αv = 0:

⇒
∂Ld,ELM

∂αv
= tv f (xv)−1< 0

Jv =

(

∂Ld,ELM

∂αv

)

·1< 0
(3.32)

(2) 0< αv <C:

⇒
∂Ld,ELM

∂αv
= tv f (xv)−1 6= 0

Jv =
∂Ld,ELM

∂αv
·

(

−sign

(

∂Ld

∂αv

))

< 0
(3.33)

(3) αv =C:

⇒
∂Ld,ELM

∂αv
= tv f (xv)−1> 0

Jv =

(

∂Ld,ELM

∂αv

)

· (−1)< 0
(3.34)

Therefore,

(

min
i=1,...,N

Ji

)

is always negative in the training process and the objectivefunc-

tion Ld,ELM is guaranteed to be decreased after every iteration.
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3.2.5 Termination condition

The training algorithm is based on iterative update. It would be excessively difficult to

find the exact match of the optimality conditions. In fact, itwould be enough to satisfy

the optimality conditions within a toleranceε. It has been discovered that a tolerance

equals to the square root of the machine epsilon is good enough to produce stable results

[26]. Similar to the SMO implementation [87], we chooseε = 10−3.

When

(

min
i=1,...,N

Ji

)

>−ε, the optimality conditions are fulfilled within the toleranceε,

and the training algorithm will be terminated.

3.2.6 Convergence analysis

Theorem 3.3 The training algorithm proposed in this paper will convergeto the global

optimum in a finite number of iterations.

Proof: As proved in Theorem 3.1, the dual problem of sparse ELM (3.6)is a convex

QP problem. Additionally, the algorithm chooses a Lagrangemultiplier αc that violates

the optimality conditions in each step. And the update of each step would makeαc

satisfy the conditions and is guaranteed to monotonically reduce the objective function

Ld as proved in Theorem 3.2.

Moreover, the Lagrange multipliers are all bounded within[0,C]N. Based on the Osuna’s

theorem proved in [84], the algorithm will convergee to the global optimal solution in a

finite number of iterations.

3.2.7 Training algorithm

Algorithm 2 summarizes the training algorithm of sparse ELMfor classification. g

is the gradient ofLd,ELM and gi =
∂Ld,ELM

∂αi
. Additionally, d is the update direction
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defined in Definition 3.1 andJ is the selection parameter as in Definition 3.2. And

Gi, j = tit jΩELM(xi,x j).

Algorithm 2: Sparse ELM for classification

Problem formulation: Provided the training dataX ∈ RN×d,T ∈ RN×1, we
construct the QP problem (3.6) with an appropriate ELM kernel matrix
ΩΩΩELM and parameterC;

1: Initialization: ααα = 000, g= Gααα −111, J = g, d = 1, ααα, g, J, d ∈ RN;
2: While min

i=1,...,N
Ji <−ε:

1) Update the selection parameterJ, Ji = gi di ;
2) Find the indexc with the minimalJi , c= arg min

i=1,...,N
Ji. And update the

corresponding Lagrange multiplierαc.
3) Update the gradient and update directiong, d;
Endwhile

The newly-developed training algorithm is based on iterative computation. In each step,

one Lagrange multiplier will be updated and the corresponding sub-problem is solved.

The computational complexity is quadratic with regard to the training sizeN. In con-

trast, the unified ELM obtains the solution through matrix inversion, and thus scales

between quadratically and cubically with respect toN. Consequently, sparse ELM for

classification is expected to be faster than the unified ELM whenN grows. Additionally,

sparse ELM requires less testing time and storage space for problems of all scales. In

summary, sparse ELM is quite promising for growing-scale problems, such as neuro-

science, image processing, data compression, etc.

3.3 Experiments

The proposed sparse ELM for classification is extensively investigated in this section

and compared with the conventional SVM and the unified ELM on some benchmark

datasets. Except for COD RNA, marked with∗ in the table, all experiments are con-

ducted in MATLAB R2010b running on an Intel i5-2400 3.10 GHz CPU with 8 GB

RAM. The dataset of COD RNA requires more memory and is evaluated on a VIZ
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Table 3.1: Datasets of Binary Classification
Class Dataset # train # test # features

Low Dims
Small Size

Australian 345 345 14
Breast Cancer 342 341 10
Diabetes 384 384 8
Heart 135 135 13
Ionosphere 176 175 34

Low Dims
Large Size

Mushroom 4062 4062 22
SVMguide1 3089 4000 4
Magic 9510 9510 11
∗ COD RNA 29768 29767 8

High Dims
Small Size

Colon Cancer 31 31 2000
Colon (Gene Sel) 31 31 60
Leukemia 38 34 7129
Leukemia (Gene Sel) 38 34 60

High Dims
Large Size

Spambase 2301 2300 57
Adult 6414 26147 123

server with IBM system x3550 M3, dual quad-core Intel Xeon E5620 2.40 GHz CPU

with 24 GB RAM. The SVM implementations are realized with theSVM and Kernel

Methods Matlab toolbox [8].

As previously described, sparse ELM and the training algorithm are originally devel-

oped for binary classification only. Thus, when encountering multiclass problems, one-

against-one (OAO) method is utilized to combine several binary sparse ELMs together.

Likewise, SVM also uses the OAO method to handle multiclass problems.

3.3.1 Datasets description

In order to fully explore the properties and performance of sparse ELM for classification,

many datasets are used in the experiments, including both binary and multiclass ones.

Additionally, the datasets consist of high or low dimensions, and large or small sizes.

They are taken from LIBSVM portal, UCI repository, etc. [28,1, 33, 39, 99]. In total,

15 binary and 8 multiclass datasets are included. Tables 3.1and 3.2 list the details of all

datasets.

Preprocessing steps are performed for each individual feature, which scales the feature
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Table 3.2: Datasets of Multiclass Classification
Dataset # train # test # features Classes
Iris 75 75 4 3
Wine 89 89 13 3
Vowel 528 462 10 11
Segment 1155 1155 19 7
Satimage 4435 2000 36 6
DNA 2000 1186 180 3
SVMguide2 196 195 20 3
USPS 7291 2007 256 10

in [−1,1] linearly. Additionally, the features of the testing data will be scaled based

on the factors to scale the training data. For binary problems, the label is either 1 or

-1. For multiclass problems, the label is 1,2, · · · ,m, wherem is the number of classes.

All experiments are conducted with 20 repetitions to produce stable results. In each

repetition, the training and testing datasets are randomlypermuted within themselves

separately.

The datasets of Colon Cancer and Leukemia originally come from UCI repository. How-

ever, the dimensionality is too high, thus difficult to handle. Therefore, the features are

selected with minimum-redundancy-maximum-relevance method [86] in order to make

the datasets easier to deal with. Respectively, 60 features(genes) are selected from 2000

and 7129 ones.

3.3.2 Influence of the number of hidden nodesL

As described in (3.2), even though ELM has universal approximation capability, the

number of hidden nodesL cannot grow infinitely. Therefore, training errors should

be allowed. Intuitively speaking, the training errors willbe reduced if increasing the

numberL. Furthermore, overfitting problems have been well solved byminimizing the

model capacity and empirical errors altogether guided by the regularization theory.

As depicted in Fig. 3.2, both the training and testing accuracy improve with the in-

crement ofL for all values ofC. Moreover, training and testing performance keep un-
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changed afterL becomes large enough. Fig. 3.3 shows more results at the valueC= 1.

The relationship between accuracy andL is consistent with our analysis.

We aim to find a fixedL, which is suitable for almost all problems, to reduce the com-

putational requirement in the parameter tuning stage. 5-fold cross-validation method is

adopted accordingly. Binary and multiclass problems are handled separately because the

complexities of these two generic types are different. For all the datasets considered in

this thesis,L = 200 is fixed for binary problems andL = 1000 for multiclass ones. The

effectiveness of these two values, 200 and 1000, is well verified by the great validation

accuracy.

3.3.3 Parameter specifications

The kernel functions adopted are the GaussianK(xi,x j) = exp
(

−
‖xi−x j‖

2

2σ2

)

and polyno-

mial K(xi,x j) = (xi ·x j +1)d. The generalization performance of SVM and sparse ELM

with Gaussian kernel are shown in Fig. 3.4 and Fig. 3.5 respectively. The figures for

the unified ELM is also similar. The combination of trade-offparameterC and kernel

parameterσ or d need to be chosena priori. The 5-fold cross-validation method is thus

adopted. ForC andσ , 14 different values are tried: [0.01, 0.1, 0.2, 0.5, 1, 2, 5,10, 20,

50, 100, 200, 500, 1000]. Ford, 5 values are tried: [1, 2, 3, 4, 5].

In addition, for non-kernel case of sparse ELM and unified ELM, L is fixed to 200 when

dealing with binary problems and 1000 for multiclass ones. And the parameterC is also

tried with 14 values: [0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50,100, 200, 500, 1000]. The

optimal parameters,C andσ or d, for all these methods are specified in Table 3.3.

3.3.4 Performance comparison

The optimal parameters ofC andσ or d are fixed once chosen and will be used for train-

ing and testing. The results recorded are average accuracy,standard deviation among
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Figure 3.2: The performance of sparse ELM (sinusoid nodes) with varyingL
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Figure 3.3: The performance of sparse ELM (sinusoid nodes) with varyingL

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE



3.3 Experiments 47

0.01
0.1

1
10

100
1000

0.01

0.1

1

10

100

1000
0

20

40

60

80

100

σ

SVM (Ionosphere)

 C

T
es

tin
g 

ac
cu

ra
cy

 (
%

)

Figure 3.4: SVM (Gaussian kernel) for dataset Ionosphere
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Figure 3.5: Sparse ELM (Gaussian kernel) for dataset Ionosphere
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Table 3.3: Parameter Specifications

Dataset
SVM Unified ELM Sparse ELM

Gaussian
Kernel

Polynomial
Kernel

Gaussian
Kernel

Polynomial
Kernel

Sigmoid
Nodes

Sinusoid
Nodes

Gaussian
Kernel

Polynomial
Kernel

Sigmoid
Nodes

Sinusoid
Nodes

C σ C m C σ C m C C C σ C m C C

Binary Classification
Australian 1 20 0.1 2 5 2 1 2 10 0.2 200 2 1 3 20 50
Breast Cancer 2 1 1 3 2 1 2 2 100 200 200 1 1 3 100 5
Diabetes 10 5 0.1 2 10 5 1 2 5 200 0.2 0.5 0.2 3 1000 1000
Heart 1 2 10 1 20 10 5 1 2 100 5 5 0.5 1 500 50
Ionosphere 1 2 2 1 1 2 0.01 2 10 1000 1 2 0.01 2 200 5
Mushroom 1 1 1 3 1 1 1 2 20 20 1 1 1 4 5 2
SVMguide1 1 0.5 2 2 50 0.5 0.1 5 100 200 20 0.2 1 5 20 5
Magic 2 1 1 3 200 1 1 4 5 50 50 0.5 1 4 5 10
∗ COD RNA 2 1 2 3 5 1 1 3 5 5 1 0.5 2 3 50 20
Colon Cancer 1 1 1 1 5 50 0.01 1 5 10 1 20 1 1 10 100
Colon 2 2 0.2 1 1 0.1 1 4 5 5 5 2 1 4 0.2 100
(Gene Sel)
Leukemia 50 500 1 1 500 1000 1 1 500 50 1 20 1 1 20 10
Leukemia 2 20 1 1 1 1 1 5 2 2 1 1 1 3 10 2
(Gene Sel)
Spambase 5 0.5 1 3 10 1 0.01 3 100 1000 2 0.5 5 5 20 1
Adult 2 2 0.2 2 5 10 1 2 2 5 2 5 1 4 0.2 2

Multiclass Classification
Iris 10 1 1 3 500 2 10 3 1000 500 1 0.5 2 2 1000 1000
Wine 5 1 1 3 1 2 0.5 1 2 1 5 0.5 10 2 1000 5
Vowel 10 1 10 3 20 0.5 20 4 1000 1000 2 0.2 10 4 200 100
Segment 1000 0.2 1 4 1 0.1 0.1 5 1000 1000 1 0.1 10 4 1000 50
Satimage 500 1 2 3 1 0.2 0.1 4 500 1000 1 0.2 1 3 1000 1000
DNA 500 20 1 3 1 1 1 3 2 200 1 20 10 3 10 10
SVMguide2 5 0.5 1 3 1 0.2 0.01 3 20 1000 50 0.2 1 1 1000 5
USPS 10 10 1 4 1 1 0.01 3 1000 1000 1 1 1 4 1000 1000
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20 repetitions, training time and testing time. In the table, the best testing accuracy and

shortest training time are highlighted in each row.

Binary problems

(1) Comparison with SVM: Tables 3.4 and 3.5 display the results of sparse ELM in

kernel case and SVM. It is easily observed that sparse ELM in kernel case pro-

vides better generalization performance than SVM for most datasets. Addition-

ally, sparse ELM in non-kernel case (sigmoid and sinusoid random nodes) provide

comparable generalization performance with SVM, sometimes better and some-

times worse, as seen in Tables 3.6 and 3.7. Furthermore, sparse ELM, in both

kernel and non-kernel cases, are superior to SVM regarding to training speed, ac-

celerating the training phase up to500 times. In addition, sparse ELM and SVM

both construct compact networks, resulting in similar testing speed.

(2) Comparison with the Unified ELM: Tables 3.4-3.7 show comprehensive compar-

isons between the proposed sparse ELM and the unified ELM. Thetraining speed

of sparse ELM is much faster than the unified ELM when dealing with large

datasets, while being slower when facing small datasets. Nevertheless, when

the dataset is small, training speed is not very important. Furthermore, sparse

ELM largely reduces the testing time for almost all the datasets except two cases:

Colon (Gene Sel) and Leukemia (Gene Sel) with sigmoid hiddennodes. In these

two cases, the number of training dataN is extremely small. Hence, sparse ELM

only reduces a little computation in the testing phase, eventhough it does provide

a more compact network. Thus, unaccounted random reasons may dominate the

computation and lead to this outcome.

Multiclass problems

(1) Comparison with SVM: The kernel case of sparse ELM presents better generaliza-

tion performance for most datasets. On the contrary, the non-kernel case of sparse
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ELM is not able to produce better performance than SVM. This is caused by the

OAO method. The non-kernel case of sparse ELM is in effect a random method

and thus has higher variation than SVM. Therefore, when combining several bi-

nary sparse ELMs together by OAO method, the effects of higher variation will

be amplified, resulting in the degradation of generalization performance. Addi-

tionally, sparse ELM, in both kernel and non-kernel cases, achieves much faster

training speed than SVM

(2) Comparison with the Unified ELM: As observed from Tables 3.4-3.7, the gener-

alization performance of sparse ELM is on par with the unifiedELM. However,

sparse ELM is only directly applicable for binary problems,while the unified

ELM can handle both binary and multiclass ones straightforwardly. Therefore,

the proposed sparse ELM is sub-optimal than the unified ELM when facing mul-

ticlass problems. The unified ELM realizes faster training and testing speed for

most datasets. Moreover, the variations of training and testing accuracy of sparse

ELM are higher than the unified ELM. Therefore, when facing multiclass prob-

lems, the unified ELM is a better choice.

Number of support vectors (SVs) and storage space

When facing multiclass problems, SVM and sparse ELM use OAO method to combine

several binary classifiers together, while the unified ELM provides the solution directly.

Consequently, the number of total vectors are different, making the number of SVs of

the unified ELM incommensurable with the other two methods.

Table 3.8 lists the number of SVs for all these methods. The unified ELM produce a

dense network so that all vectors are SVs. In contrast, both SVM and the proposed

sparse ELM provide sparse networks as only a proportion of vectors are SVs. However,

the sparsity varies for SVM and sparse ELM when dealing with different datasets. It is

not definite which one provides a more sparse network.
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3.4 Conclusions

ELM was originally developed as an improvement for the classic SLFNs and extended

to a unified framework for different applications, including regression, classification,

clustering, etc. However, the unified ELM produces a dense solution, thus requiring

much storage space and testing time. In this chapter, we propose a sparse ELM for clas-

sification as an alternative solution, significantly reducing the storage space and testing

time. Moreover, it is also demonstrated that the proposed sparse ELM unifies different

classification methods, including SVM, SLFNs, RBF networks, etc.

Furthermore, an efficient training algorithm is specifically designed for the proposed

sparse ELM for classification. In summary, sparse ELM is favorable over SVM and

the unified ELM for: 1) presenting better generalization performance with much faster

training speed (up to500 times) than SVM; 2) largely reducing the storage space and

testing time than the unified ELM. Additionally, when facinglarge-scale binary prob-

lems, sparse ELM is highly recommended for achieving even faster training speed than

the unified ELM, which is already exceptionally efficient.

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE



3.4
C

onclusions
5

2

Table 3.4: Performance of sparse ELM, unified ELM and SVM withGaussian Kernel

Dataset

SVM
(Gaussian Kernel)

Unified ELM
(Gaussian Kernel)

Sparse ELM
(Gaussian Kernel)

Training
Accuracy

Testing
Accuracy

Training
Time (s)

Testing
Time (s)

Training
Accuracy

Testing
Accuracy

Training
Time (s)

Testing
Time (s)

Training
Accuracy

Testing
Accuracy

Training
Time (s)

Testing
Time (s)

Binary Classification
Australian 90.96±0 83.09±0 0.2411 0.0039 93.62±0 84.35±0 0.0098 0.0043 90.61±0.40 84.62±0.60 0.0088 0.0012
Breast Cancer 98.25±0 97.36±0 0.0550 0.0010 99.12±0 98.24±0 0.0092 0.0039 99.05±0.22 98.21±0.13 0.0075 0.0009
Diabetes 78.65±0 73.96±0 0.1319 0.0026 83.33±0 74.48±0 0.0119 0.0062 84.92±0.18 74.67±0.16 0.0164 0.0030
Heart 92.59±0 82.96±0 0.0385 0.0007 84.44±0 84.44±0 0.0033 0.0011 85.48±0.49 84.44±0.74 0.0042 0.0006
Ionosphere 93.75±0 93.71±0 0.0667 0.0009 96.02±0 91.43±0 0.0036 0.0015 95.45±0 90.31±0.38 0.0063 0.0007
Mushroom 100±0 100±0 41.4878 0.3148 100±0 100±0 2.3835 0.6463 100±0 100±0 0.8188 0.0584
SVMguide1 97.09±0 96.90±0 5.1869 0.1154 97.38±0 96.85±0 1.1208 0.4803 97.42±0.07 97.00±0.06 0.4809 0.0703
Magic 84.29±0 85.73±0 311.7731 2.2336 88.46±0 86.88±0 24.0994 4.5080 87.47±0.05 86.20±0.07 5.1139 1.4432
∗ COD RNA 95.31±0 95.25±0 3858.086011.8995 95.33±0 95.22±0 354.830851.755394.26±0.10 94.44±0.00 62.7069 19.0089
Colon Cancer 100±0 70.97±0 0.0494 0.0382 96.77±0 87.10±0 0.0412 0.0395 95.16±1.61 90.16±2.16 0.0357 0.0316
Colon (Gene Sel) 100±0 93.55±0 0.0128 0.0004 100±0 90.32±0 0.0027 0.0008 100±0 93.55±0 0.0020 0.0006
Leukemia 100±0 82.35±0 0.4327 0.4389 100±0 82.35±0 0.4134 0.3949 100±0 79.41±0 0.4093 0.3856
Leukemia (Gene Sel)100±0 100±0 0.0114 0.0013 100±0 100±0 0.0017 0.0008 100±0 100±0 0.0016 0.0004
Spambase 96.61±0 92.83±0 9.7045 0.1706 95.13±0 93.70±0 0.5707 0.2841 95.10±0.12 93.02±0.10 0.3197 0.0956
Adult 90.47±0 84.33±0 172.3218 7.2712 85.02±0 84.66±0 6.6666 9.7930 85.03±0.11 84.48±0.04 2.5282 3.4892

Multiclass Classification
Iris 100±0 93.33±0 0.0253 0.0009 100±0 97.33±0 0.0029 0.0008 98.40±0.53 97.27±1.60 0.0028 0.0007
Wine 100±0 97.75±0 0.0304 0.0011 100±0 98.89±0 0.0027 0.0008 100±0 97.92±0.82 0.0060 0.0013
Vowel 99.81±0 62.55±0 0.6316 0.0310 100±0 57.79±0 0.0230 0.0098 100±0 63.55±1.25 0.1355 0.0475
Segment 100±0 91.43±0 5.1300 0.3360 100±0 96.10±0 0.2311 0.0641 100±0 95.77±0.34 0.2357 0.2303
Satimage 100±0 90.55±0 11.5949 0.4161 100±0 90.95±0 2.6646 0.3495 99.85±0.02 90.08±0.26 2.4090 1.5518
DNA 100±0 94.10±0 2.0669 0.1056 100±0 85.24±0 0.4383 0.1628 100±0 86.94±0.38 0.5307 0.3038
SVMguide2 100±0 56.41±0 0.1832 0.0031 100±0 63.08±0 0.0028 0.0022 100±0 63.08±0 0.0153 0.0033
USPS 99.88±0 95.07±0 20.0226 1.9588 99.99±0 94.97±0 10.4227 0.8524 99.99±0 94.82±0.08 10.4365 9.2329
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Table 3.5: Performance of sparse ELM, unified ELM and SVM withPolynomial Kernel

Dataset

SVM
(Polynomial Kernel)

Unified ELM
(Polynomial Kernel)

Sparse ELM
(Polynomial Kernel)

Training
Accuracy

Testing
Accuracy

Training
Time (s)

Testing
Time (s)

Training
Accuracy

Testing
Accuracy

Training
Time (s)

Testing
Time (s)

Training
Accuracy

Testing
Accuracy

Training
Time (s)

Testing
Time (s)

Binary Classification
Australian 90.72±0 84.93±0 0.0749 0.0003 92.46±0 84.93±0 0.0056 0.0027 90.46±0.40 84.23±0.78 0.0108 0.0022

Breast Cancer 100 95.31±0 0.0359 0.0015 98.86±0 97.65±0 0.0050 0.0016 99.23±0.28 98.53±0.21 0.0093 0.0011
Diabetes 83.07±0 74.74±0 0.1180 0.0005 83.59±0 75.26±0 0.0071 0.0073 81.95±0.73 73.89±0.43 0.0173 0.0066

Heart 87.41±0 82.22±0 0.0348 0.0003 82.96±0 83.70±0 0.0023 0.0008 83.85±1.04 84.00±1.16 0.0033 0.0003
Ionosphere 94.89±0 89.71±0 0.0410 0.0001 97.73±0 91.43±0 0.0020 0.0008 92.59±0.99 90.40±0.50 0.0044 0.0005
Mushroom 100±0 100±0 4.5436 0.0760 100±0 100±0 1.3134 0.2049 100±0 100±0 1.0398 0.0468
SVMguide1 96.60±0 96.25±0 4.3610 0.0175 97.02±0 96.63±0 1.2677 0.7589 96.44±0.09 96.19±0.08 0.6873 0.1456

Magic 87.19±0 86.11±0 361.8243 2.6178 87.78±0 86.42±0 18.2095 5.3064 86.14±0.12 85.61±0.12 6.4395 2.0246
∗ COD RNA 95.22±0 95.00±0 4342.746014.4478 95.00±0 95.01±0 208.976026.066894.92±0.03 94.98±0.05 36.6408 5.0626
Colon Cancer 100±0 77.42±0 0.0121 0.0003 100±0 80.65±0 0.0039 0.0047 98.48±2.39 89.84±2.34 0.0018 0.0016

Colon (Gene Sel) 100±0 90.32±0 0.0126 0.0007 100±0 90.32±0 0.0007 0.0006 100±0 93.55±0 0.0015 0.0006
Leukemia 100±0 85.29±0 0.0121 0.0019 100±0 88.24±0 0.0062 0.0052 100±0 83.53±3.40 0.0029 0.0021

Leukemia (Gene Sel)100±0 97.06±0 0.0088 0.0001 100±0 100±0 0.0029 0.0017 100±0 100±0 0.0020 0.0008
Spambase 97.83±0 91.87±0 8.0709 0.1114 94.18±0 92.39±0 0.5882 0.3232 88.53±0.17 88.53±0.18 0.4283 0.1936

Adult 90.38±0 82.15±0 244.3654 1.6786 90.04±0 82.14±0 5.4775 4.0977 89.14±0.12 84.31±0.09 2.9209 3.6742

Multiclass Classification
Iris 100±0 96.00±0 0.0264 0.0009 100±0 97.33±0 0.0076 0.0010 99.00±0.93 97.47±1.66 0.0016 0.0003

Wine 100±0 97.75±0 0.0332 0.0013 100±0 98.88±0 0.0018 0.0009 99.44±0.75 97.46±1.89 0.0042 0.0004
Vowel 100±0 59.74±0 0.7054 0.0714 100±0 62.64±0 0.0526 0.0202 97.97±0.51 64.86±3.89 0.1561 0.1501

Segment 99.83±0 96.45±0 0.4502 0.0792 99.13±0 96.88±0 0.1603 0.0871 95.90±0.36 88.00±0.28 0.2332 0.0965
Satimage 98.35±0 89.55±0 11.2106 0.4514 95.96±0 89.05±0 4.5560 0.6345 93.96±0.14 90.96±2.76 3.0376 0.4097

DNA 100±0 94.86±0 25.6512 0.3876 100±0 94.86±0 0.5727 0.2203 99.76±0.02 95.10±1.52 0.5695 0.2369
SVMguide2 100±0 56.41±0 0.0744 0.0039 94.39±0 56.41±0 0.0046 0.0027 94.52±0.69 58.85±4.00 0.0091 0.0005

USPS 100±0 95.52±0 27.9954 2.3716 99.99±0 94.92±0 12.2367 0.9945 99.27±0.03 96.66±5.99 9.9507 1.6330
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Table 3.6: Performance of sparse ELM and unified ELM with Sigmoid Hidden Nodes

Dataset

Unified ELM
(Sigmoid Hidden Nodes)

Sparse ELM
(Sigmoid Hidden Nodes)

Training AccuracyTesting Accuracy
Training
Time (s)

Testing
Time (s)

Training AccuracyTesting Accuracy
Training
Time (s)

Testing
Time (s)

Binary Classification
Australian 89.00±0.02 84.62±0.03 0.0100 0.0067 87.10±0.94 85.32±0.72 0.0181 0.0023

Breast Cancer 97.42±0.01 97.89±0.02 0.0103 0.0073 98.01±0.21 97.99±0.39 0.0085 0.0029
Diabetes 82.60±0.00 74.32±0.00 0.0118 0.0076 81.41±0.93 74.11±0.59 0.0148 0.0052

Heart 85.70±0.01 83.63±0.01 0.0039 0.0023 85.74±0.90 83.81±1.18 0.0079 0.0016
Ionosphere 94.46±0.01 90.63±0.01 0.0047 0.0028 92.05±0.80 90.66±1.26 0.0073 0.0022
Mushroom 99.91±0 99.84±0 2.0256 0.3225 98.61±0.44 98.17±0.51 0.5291 0.0912
SVMguide1 94.57±0.01 94.35±0.01 0.9222 0.2601 94.33±0.31 94.30±0.48 0.3313 0.0955

Magic 82.89±0.02 82.84±0.02 11.0930 1.4562 81.48±0.27 81.55±0.30 3.0090 0.8074
∗ COD RNA 94.63±0 94.63±0 203.9884 9.4621 94.29±0.04 94.36±0.05 32.0594 2.2913
Colon Cancer 100±0 83.39±0.06 0.0085 0.0037 94.03±3.27 89.03±4.26 0.0097 0.0036

Colon (Gene Sel) 100±0 93.06±0.02 0.0024 0.0012 98.98±0.02 93.55±0 0.0015 0.0015
Leukemia 100±0 76.91±0.05 0.0379 0.0143 98.03±2.18 78.09±2.37 0.0294 0.0087

Leukemia (Gene Sel) 100±0 98.82±0.01 0.0026 0.0013 100±0 99.12±1.35 0.0025 0.0015
Spambase 91.29±0.00 91.18±0.00 0.5428 0.1239 89.03±1.58 84.78±1.44 0.2374 0.0921

Adult 84.46±0.00 84.29±0 7.8926 3.1285 83.28±0.58 83.41±0.57 1.3478 1.3899

Multiclass Classification
Iris 98.67±0 97.20±0.00 0.0045 0.0046 97.00±1.33 97.40±0.66 0.0085 0.0115

Wine 100±0 99.16±0.01 0.0061 0.0061 100±0 99.16±0.70 0.0103 0.0142
Vowel 94.63±0.08 57.85±0.07 0.0405 0.0443 96.13±1.67 59.84±2.46 0.2709 1.3603

Segment 97.71±0.00 95.88±0.00 0.1809 0.1505 91.68±0.45 91.57±0.60 0.3961 1.5215
Satimage 92.88±0.00 89.89±0.00 3.8516 0.7572 87.86±0.17 85.65±0.22 2.8562 4.3452

DNA 98.06±0.00 93.68±0.01 0.5864 0.2724 94.45±1.88 88.19±2.55 0.5002 0.5810
SVMguide2 92.59±0.01 54.74±0.15 0.0129 0.0148 84.44±1.09 53.56±5.10 0.0233 0.0359

USPS 99.09±0 93.51±0.00 11.1521 1.2797 98.13±0.08 93.64±0.15 9.0268 15.0449
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Table 3.7: Performance of sparse ELM and unified ELM with Sinusoid Hidden Nodes

Dataset

Unified ELM
(Sinusoid Hidden Nodes)

Sparse ELM
(Sinusoid Hidden Nodes)

Training AccuracyTesting Accuracy
Training
Time (s)

Testing
Time (s)

Training AccuracyTesting Accuracy
Training
Time (s)

Testing
Time (s)

Binary Classification
Australian 86.84±0.00 85.84±0.00 0.0094 0.0064 86.42±0.62 85.30±0.62 0.0095 0.0029

Breast Cancer 98.03±0.00 98.56±0.00 0.0089 0.0057 98.02±0.23 97.82±0.39 0.0077 0.0025
Diabetes 83.48±0.00 74.49±0.00 0.0105 0.0068 81.72±0.57 74.77±0.66 0.0127 0.0038

Heart 88.07±0.01 83.15±0.01 0.0038 0.0019 85.22±1.11 84.56±1.13 0.0048 0.0010
Ionosphere 94.91±0.01 88.09±0.01 0.0036 0.0025 89.03±0.68 88.63±1.02 0.0065 0.0015
Mushroom 99.92±0 99.88±0 1.9781 0.3237 97.79±0.27 97.32±0.31 0.5043 0.0860
SVMguide1 95.22±0.00 94.86±0.00 0.6956 0.2490 94.50±0.17 94.61±0.24 0.3210 0.0867

Magic 84.02±0.00 83.77±0.00 11.3833 1.4718 82.20±0.13 82.82±0.13 2.9645 0.7939
∗ COD RNA 94.28±0 94.38±0 222.0702 9.3984 93.95±0.06 94.01±0.08 33.0523 2.7118
Colon Cancer 100±0 82.10±0.06 0.0084 0.0031 90.16±2.39 88.06±4.22 0.0094 0.0030

Colon (Gene Sel) 99.89±0 91.29±0.03 0.0015 0.0014 98.89±2.90 93.71±1.24 0.0013 0.0011
Leukemia 100±0 81.03±0.07 0.0345 0.0148 98.03±1.64 81.47±4.02 0.0290 0.0084

Leukemia (Gene Sel) 100±0 99.12±0.01 0.0029 0.0017 100±0 98.82±1.44 0.0016 0.0012
Spambase 90.32±0.00 90.87±0.00 0.5050 0.1201 87.39±3.39 85.79±2.10 0.2281 0.0086

Adult 84.80±0 84.55±0 4.6063 2.9173 84.71±0.16 84.66±0.07 1.3163 1.2399

Multiclass Classification
Iris 98.60±0.00 96.20±0.01 0.0043 0.0037 97.27±0.29 97.33±0.42 0.0057 0.0082

Wine 100±0 99.10±0.01 0.0056 0.0046 100±0 99.10±0.84 0.0084 0.0122
Vowel 97.23±0.00 59.77±0.01 0.0389 0.0428 97.40±1.49 60.74±1.98 0.2407 1.0784

Segment 96.29±0.00 95.28±0.00 0.1373 0.1423 91.34±0.46 91.16±0.57 0.4104 1.5421
Satimage 86.09±0.00 83.61±0.00 2.1227 0.6790 87.84±0.14 85.70±0.23 2.8198 4.4148

DNA 98.11±0.00 94.57±0.00 0.4008 0.2478 96.64±0.18 94.13±0.42 0.4793 0.5367
SVMguide2 95.58±0.01 59.77±0.07 0.0116 0.0133 84.21±1.12 59.38±5.56 0.0221 0.0344

USPS 97.97±0.00 93.56±0.00 6.7664 1.1829 96.76±0.06 92.98±0.11 9.1235 14.9499
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Table 3.8: Number of Support Vectors

Dataset
# Total
Vectors

SVM Sparse ELM Unified ELM
Gaussian
Kernel

Polynomial
Kernel

Gaussian
Kernel

Polynomial
Kernel

Sigmoid
Nodes

Sinusoid
Nodes

Gaussian
Kernel

Polynomial
Kernel

Sigmoid
Nodes

Sinusoid
Nodes

Binary Classification
Australian 345 306 109 240.35 112.85 122.7 119.7 345 345 345 345

Breast Cancer 342 80 41 68 51.3 53.2 52.25 342 342 342 342
Diabetes 384 213 202 278 204.1 219.7 217.55 384 384 384 384

Heart 135 72 46 79.45 58.75 68.8 68.05 135 135 135 135
Ionosphere 176 93 48 98.95 85.65 94.15 101.45 176 176 176 176
Mushroom 4062 956 135 323.15 174.9 582.8 727.75 4062 4062 4062 4062
SVMguide1 3089 429 354 464.35 575.4 910.15 886.75 3089 3089 3089 3089

Magic 9510 3469 3190 3262.1 3599.75 4429.25 4428.6 9510 9510 9510 9510
∗ COD RNA 29767 5002 3912 11359 5972.3 7578.8 7853.6 29767 29767 29767 29767
Colon Cancer 31 31 24 29.3 25.2 27.6 26.85 31 31 31 31

Colon (Gene Sel) 31 30 17 25.85 24.6 29.35 19.55 31 31 31 31
Leukemia 38 33 32 38 32.9 27.8 27.05 38 38 38 38

Leukemia (Gene Sel) 38 12 7 38 22.45 12.3 11.1 38 38 38 38
Spambase 2301 772 392 810.95 1311.8 1586.2 1590.4 2301 2301 2301 2301

Adult 6414 2729 2261 2531.15 2450.85 2918.45 2666.1 6414 6414 6414 6414

Multiclass Classification
Iris 150 29 23 54.45 38.4 46.8 47.4

Wine 178 72 46 149.05 49.9 54.55 53.25
Vowel 5280 1281 1066 4146.25 1692.3 2487.4 2483.8

Segment 6930 5010 328 6116.75 866.45 1323.5 1370.05
Satimage 22175 2376 1528 19197.1 2073.3 2705 2690.2

DNA 4000 612 2237 3830.95 1967.05 1136.75 1040.85
SVMguide2 392 386 163 392 175.1 188.95 187.5

USPS 65619 3179 5404 58532.4 5581.3 6205.7 6573.1
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Chapter 4

Sparse Extreme Learning Machine for

Regression

In the last chapter, a sparse ELM is proposed for classification, significantly reducing

the storage space, testing time and computational complexity. However, it cannot be

applied to regression problems. In this chapter, we proposea sparse ELM for regression

and develop a specific training algorithm based on iterativecomputation. It is favored

over the unified ELM for large-scale applications by providing better scalability. Ad-

ditionally, it is also advantageous over support vector regression (SVR) by producing

better generalization performance with much faster learning speed.

4.1 Sparse ELM for Regression

When facing regression problems, the training data provided is: XN×d =
[

xT
1 · · ·xT

N

]T
,xi ∈

R1×d andTN×1 = [t1 · · · tN]
T , ti ∈ R. Unlike classification, the targetsti ’s in regression

problems are real numbers rather than binary labels as in (3.3). Therefore, the sparse

ELM in Chapter 3 cannot deal with the infinite possible valuesof ti ’s and is not applica-

ble for regression problems. In this section, we develop thesparse ELM for regression.

57
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4.1.1 Problem formulation

When facing regression problems, the target is to find a function f (x) = h(x)βββ to min-

imize the expected risks on the probability distribution from which the training and

testing data are sampled [93]. However, the distribution isunknown and needs to be

estimated with some criteria. According to the regularization theory and structural risk

minimization (SRM) [23, 100], the weighted sum of model capacity ‖βββ‖2 and empirical

errorsRemp[ f ] is chosen as the estimate criteria.

Minimize: Rreg=
λ
2
‖βββ‖2+Remp[ f ]

Remp[ f ] =
1
N

N

∑
i=1

c
(

ti, f (xi)
)

(4.1)

wherec
(

ti, f (xi)
)

is the the loss function.c
(

ti, f (xi)
)

may have various forms as long

as it is convex [27, 93].

In order to derive a sparse solution, we choose theε-insensitive loss function, similar

to ε-insensitive SVR [20, 93]. Errors will be ignored if they arewithin a ε-wide tube

around the target functionf (x).

c
(

ti, f (xi)
)

=







0 for |ti − f (xi)|< ε

|ti − f (xi)|− ε for otherwise
(4.2)

Remark 4.1 The loss function depends on the problem to be solved. If we select the

c
(

ti, f (xi)
)

=
(

t − f (x)
)2

, a matrix inversion problem will be generated, leading to a

specific case of the unified ELM.
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4.1.2 Optimization

Using theε-insensitive loss function (4.2) in the problem formulation (4.1), we can

obtain the primal problem of sparse ELM for regression:

Minimize: Lp,ELM =
1
2
‖βββ‖2+C

N

∑
i=1

(ξi +ξ ∗
i )

Subject to:ti −h(xi)βββ ≤ ε +ξi

h(xi)βββ − ti ≤ ε +ξ ∗
i

ξ (∗)
i ≥ 0, i = 1, ...,N

(4.3)

whereξ (∗)
i denotesξi ,ξ ∗

i ≥ 0 andC= 1/(λN).

Remark 4.2 Noted that the output function f(x) = h(x)βββ is different from SVR: f(x) =

φ(x)www+b. The bias b is removed in ELM because of the universal approximation ca-

pability (3.2). Therefore, it completely solves the computational inefficiency associated

with b and gives sparse ELM for regression distinct merits.

Following the procedure of standard optimization, the LagrangianPELM is constructed

as follows:

PELM =
1
2
‖βββ‖2+C

N

∑
i=1

(ξi +ξ ∗
i )−

N

∑
i=1

αi

(

ε +ξi − ti +h(xi)βββ
)

−
N

∑
i=1

α∗
i

(

ε +ξ ∗
i + ti −h(xi)βββ

)

−
N

∑
i=1

µiξi −
N

∑
i=1

µ∗
i ξ ∗

i

α(∗),µ(∗)
i ≥ 0

(4.4)

whereα(∗)
i denotesαi ,α∗

i andµ(∗)
i denotesµi ,µ∗

i .
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The optimal solution will be calculated at the saddle point:

∂PELM

∂βββ
= 0 ⇒ βββ =

N

∑
i=1

(αi −α∗
i )h(xi)

T

∂PELM

∂ξ (∗)
i

= 0⇒C= α(∗)
i +µ(∗)

i

(4.5)

Accordingly, the KKT conditions are obtained:

αi
(

ti − f (xi)− ε −ξi
)

= 0

α∗
i

(

f (xi)− ti − ε −ξ ∗
i

)

= 0

µ(∗)
i ξ (∗)

i = 0

(4.6)

Remark 4.3 The conditionαi ·α∗
i = 0, i = 1, · · · ,N is guaranteed to be satisfied.

For the KKT conditions (4.6), we can derive the following twocases:

(1) If αi > 0, ti − f (xi) = ε +ξi ⇒ ti − f (xi)≥ ε

(2) If α∗
i > 0, f (xi)− ti = ε +ξ ∗

i ⇒ ti − f (xi)≤−ε

It can be easily observed that these two cases are contradicted with each other. There-

fore, at least one ofαi andα∗
i should be zero.

4.1.3 QP problem and convexity

The dual form of sparse ELM for regression is derived by putting the saddle point con-

ditions (4.5) into the Lagrangian function (4.4).

Minimize: Ld,ELM =
1
2

N

∑
i=1

N

∑
j=1

(αi −α∗
i )(α j −α∗

j )ΩELM i, j −
N

∑
i=1

(αi −α∗
i )ti + ε

N

∑
i=1

(αi +α∗
i )

Subject to:αi ·α∗
i = 0 and αi ,α∗

i ∈ [0,C]

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE



4.1 Sparse ELM for Regression 61

(4.7)

whereΩΩΩELM is called ELM kernel matrix. And it has two cases:

(1) Non-kernel case: Please refer to (3.12) and (3.13) for details.

(2) Kernel case: (3.18)-(3.20) list several common kernel functions:Gaussian, Lapla-

cian andPolynomial.

For the conciseness of the objective functionLd,ELM, we useλi to replaceαi −α∗
i and

λi is the Lagrange multiplier which needs to be optimized in thetraining phase. In

addition, as explained before, at least one ofαi andα∗
i needs to be zero. Consequently,

|λi|= αi +α∗
i .

Minimize: Ld,ELM =
1
2

N

∑
i=1

N

∑
j=1

λiλ jΩELM i, j −
N

∑
i=1

λiti + ε
N

∑
i=1

|λi|

Subject to:−C≤ λi ≤C

(4.8)

Straightforwardly, we can obtain the output function of thesparse ELM for regression

as follows:

f (x) =h(x)βββ = h(x)

(

N

∑
i=1

λih(xi)
T

)

= h(x)

(

Ns

∑
s=1

λsh(xs)
T

)

=
Ns

∑
s=1

λsK(x,xs) (4.9)

wherexs is support vector (SV) andNs is the number of SVs.

Remark 4.4 The primal problem(4.3) involves two constraints and two slack variables

ξi ,ξ ∗
i . Hence more dual variables(αi,α∗

i ,µi ,µ∗
i ) exist in(4.7) compared with classi-

fication. Moreover, the dual form (QP problem) in(4.8) includes an additional term

ε ∑N
i=1 |λi|, making it necessary to carefully avoid crossing the value 0, because the par-

tial derivative∂Ld,ELM/∂λi is not defined atλi = 0.
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Remark 4.5 Different from support vector regression (SVR) [100, 93], sparse ELM is

freed from the constraint∑N
i=1 λi = 0. As a result, sparse ELM for regression searches

the optimal values ofλi ’s in a wider area than SVR and provides a better solution.

Theorem 4.1 The dual problem of sparse ELM for regression(4.8) is convex.

Proof:

∂Ld,ELM

∂λi
=

N

∑
j=1

λ jΩELM i, j − ti + ε
(

sign(λi)
)

∂ 2
Ld,ELM

∂λ 2
i

= ΩELM i,i = ∇2
Ld,ELM

(4.10)

where∇2Ld,ELM = ΩΩΩELM is the Hessian matrix.

(1) Non-kernel case:

zT (∇2
Ld,ELM

)

z= zTHHTz=
(

HTz
)T

IL×L
(

HTz
)

≥ 0

∀z∈ RN
(4.11)

Obviously,∇2Ld,ELM is a positive semi-definite matrix.

(2) Kernel case: The kernel functionK needs to meet Mercer’s conditions, which

ensures that∇2
Ld,ELM is positive semi-definite.

,ELMd i
L l¶ ¶

i
l0

i
l =

e

e

Figure 4.1: The partial derivative ofLd,ELM with respect toλi
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The first-order partial derivative∂Ld,ELM/∂λi is monotonically increasing as the Hes-

sian matrix∇2Ld,ELM is positive semi-definite. Fig. 4.1 illustrates the generaltrend of

∂Ld,ELM/∂λi . As observed from Fig. 4.1, the discontinuity atλi = 0 will not influ-

ence the monotonicity ofLd,ELM. Consequently, the dual problem of sparse ELM for

regression (4.8) is proved to be convex.

4.1.4 Sparsity analysis

1 d

1 i L

1

1

= (x )
s
N

T

s s

s

h

1 d

1 s

1

N
s

1 s s
N

1(x, x )K (x, x )
s

K (x, x )
s
N

K Non-SVs

Primal network Dual network

Figure 4.2: The primal and dual networks of sparse ELM for regression

In the case|ti − f (xi)| < ε, αi andα∗
i both need to be zero in order to fulfill the KKT

conditions (4.6). Naturally,λi = αi −α∗
i leads toλ = 0 and the corresponding compo-

nent will be excluded in (4.9) when calculating the output weight βββ . And the datai is

not a member of support vectors (SVs).

Fig. 4.2 displays the primal and dual networks of sparse ELM for regression. In the dual

network, non-SVs are removed, producing a compact network.In the primal network,

the number of hidden nodesL is fixed once chosen. However, the calculation of the

output weightsβββ (4.9) gets easier as some components are removed. Furthermore,

the proposed method largely reduces the storage space and testing time, since they are

proportional to the number of SVs.
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4.2 Training Algorithm of Sparse ELM for Regression

In this section, an efficient training algorithm based on iterative computation is partic-

ularly designed for the proposed sparse ELM for regression.Essentially, the dual form

(4.8) is a convex quadratic programming (QP) problem as proved in Theorem 4.1. Akin

to the training algorithm of sparse ELM for classification inChapter 3, the large QP

problem is partitioned into a group of small sub-problems, each of which includes only

one Lagrange multiplier. Thus, these sub-problems can be solved analytically one-by-

one. Additionally, the proposed sparse ELM for regression (4.8) is released from the

sum constraint∑N
i=1λi = 0.

4.2.1 Optimality conditions

The optimality conditions are derived based on the KKT conditions (4.6) obtained at

the saddle point (4.5). The optimal solution is determined as achieved if the optimality

conditions are satisfied; andvice versa. The error between the actual output and target

is: ei = ti − f (xi).

(1) λi =C:

αi =C,α∗
i = 0⇒ µi = 0,ξi > 0

ti − f (xi)− ε −ξi = 0⇒ ei > ε
(4.12)

(2) 0< λi <C:

αi ∈ (0,C),α∗
i = 0⇒ µi ∈ (0,C),ξi = 0

ti − f (xi)− ε = 0⇒ ei = ε
(4.13)

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE



4.2 Training Algorithm of Sparse ELM for Regression 65

(3) λi = 0:

α(∗)
i = 0⇒ µ(∗)

i =C,ξ (∗)
i = 0

|ti − f (xi)|< ε ⇒ |ei |< ε
(4.14)

(4) −C< λi < 0:

α∗
i ∈ (0,C),αi = 0⇒ µ∗

i ∈ (0,C),ξ ∗
i = 0

f (xi)− ti − ε = 0⇒ ei =−ε
(4.15)

(5) λi =−C:

α∗
i =C,αi = 0⇒ µ∗

i = 0,ξ ∗
i > 0

f (xi)− ti − ε −ξ ∗
i = 0⇒ ei <−ε

(4.16)

4.2.2 Update rule

When the optimal solution has not yet been reached, we need todecide how to proceed

further to decrease the objective functionLd,ELM. Assume the Lagrange multiplier

chosen to be updated at the current step isλc.

Ld,ELM = ε|λc|−λctc+
1
2

λ 2
c Kcc+λcz

old
c +Wconst

zold
c = f old

c −λ old
c Kcc

(4.17)

in whichWconstis a constant term with no relevance toλc and the superscript “ old” indi-

cates the last step. AndKcc, f old
c respectively denotesK(xc,xc), f (xc)

old for conciseness.

∂Ld,ELM

∂λc
= ε
(

sign(λc)
)

− tc+λcKcc+ f old
c −λ old

c Kcc (4.18)

Denote the optimal value withλ †. Then, the first-order partial derivative ofLd,ELM at
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λ † is 0.

⇒λ †
c = λ old

c +
1

Kcc

(

tc− f old
c − ε

(

sign(λ †
c )
)

)

(4.19)

The optimal valueλ †
c is bounded by the constraints[−C,C]. Furthermore, there is a

discontinuity for∂Ld/∂λi at the value 0, as observed from Fig. 4.1, which must not be

crossed during the training phase. Thus, we utilize more stringent constraints forλ †
c as

follows:

(1) λ old
c > 0: the constraint is:[0,C].

(2) λ old
c < 0: the constraint is:[−C,0].

Apparently, only the Lagrange multipliers that violate theoptimality conditions will be

considered for update. Thus, if indexc is selected, it implicitly means thatλ old
c violates

the conditions.

(1) λ old
c = 0:

If: tc− f old
c ≥ ε ⇒ λ †

c ≥ 0⇒ λc =
[

λ †
c

]C

0
=
[

λ †
c

]C

−C

Else:tc− f old
c ≤−ε ⇒ λ †

c ≤ 0⇒ λc =
[

λ †
c

]0

−C
=
[

λ †
c

]C

−C

(4.20)

Rewrite the update rule forλ old
c = 0 concisely:

sign(λ †
c ) = sign(tc− f old

c )

⇒λ †
c =

1
Kcc

(

tc− f old
c − ε

(

sign(tc− f old
c )
)

)

λc =
[

λ †
c

]C

−C

(4.21)
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(2) λ old
c > 0:

λ †
c = λ old

c +
1

Kcc

(

tc− f old
c − ε

)

λc =
[

λ †
c

]C

0

(4.22)

(3) λ old
c < 0:

λ †
c = λ old

c +
1

Kcc

(

tc− f old
c + ε

)

λc =
[

λ †
c

]0

−C

(4.23)

4.2.3 Selection criteria

It is vital to choose which Lagrange multiplier to be updated. An intuitive method is to

choose the one with the fastest convergence to the minimum:

c∈ arg min
i=1,...,N

(

Ld,ELM(λi)−Ld,ELM(λ old
i )
)

(4.24)

Nevertheless, it is computation intensive to calculate theexact decrease ofLd,ELM that

each Lagrange multiplier will bring. Thus, a more reasonable method is to estimate the

decrease ofLd,ELM. Consequently, the violated degree of KKT conditions is naturally

used as the estimate and the Lagrange multiplierλc with the highest degree of violation

will be chosen.

Definition 4.1 The degree of violation of the KKT conditions is denoted by ddd. The

positive di indicates the violation of KKT conditions.

(1) λi =C:

di = ε −ei (4.25)
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(2) 0< λi <C:

di = |ei − ε| (4.26)

(3) λi = 0:

di = |ei |− ε (4.27)

(4) −C< λi < 0:

di = |ei + ε| (4.28)

(5) λi =−C:

di = ε +ei (4.29)

As a result, the selection criteria is constructed as:

c∈ arg max
i=1,...,N

di (4.30)

4.2.4 Termination condition

In real implementation, the optimality conditions only need to be fulfilled within a tol-

eranceγ rather than exactly. Therefore, whenever max
i=1,...,N

di < γ is met, the training

algorithm will be terminated. It was discovered that when the toleranceγ is equal to the

square root of the machine epsilon, stable results would be generated [26]. Thus, we use

γ = 0.001 accordingly.
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4.2.5 Convergence proof

Theorem 4.2 The training algorithm of sparse ELM for regression will converge to the

global optimal solution in a finite number of iterations.

Proof: Our algorithm satisfies all conditions of Osuna’s decomposition theorem [84]

as listed below. Consequently, the algorithm is convergentto the global optimum within

a finite number of iterations:

(1) The QP problem should be convex: it is proved in Theorem 3.1.

(2) In each step, at least one Lagrange multiplier that violates the KKT conditions

should be changed: the Lagrange multiplier chosenλc in each step does violate

the KKT conditions before the change.

(3) In each step, the objective function should be reduced: the change ofλc makes it

satisfy KKT conditions and reduce the objective functionLd,ELM definitely.

(4) Lagrange multipliers should be bounded: constraints[−C,C]N limit the range for

all the multipliers.

4.2.6 Training algorithm

Algorithm 3 summarizes the training algorithm of sparse ELMfor regression.

4.2.7 Merits of sparse ELM for regression

The proposed sparse ELM for regression provides several distinct merits over other

regression methods. Conclusively, the proposed method is superior over the unified
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Algorithm 3: Sparse ELM for regression

Problem formulation: Provided the training dataX ∈ RN×d,T ∈ RN×1, build
up the dual form as in (4.8);

1: Initialization: λλλ = 0,e= T,d = 0;λλλ ,e,d ∈ RN;
2: While max

i=1,...,N
di ≥ γ:

1) Select the Lagrange multiplierλc with the highest degree of violation;

c= arg max
i=1,...,N

di (4.31)

2) Use the update rules listed in (4.21)-(4.23) to update thechosen multiplierλc;
3) Use the equations (4.25)-(4.29) to update the violated degreed and the erroreas
follow:

e= e− (λc−λ old
c ) ·K(:,c) (4.32)

whereK(:,c) is thec-th column of the ELM kernel matrixΩΩΩELM.
Endwhile

ELM and SVR to solve large-scale regression problems for providing a more compact

network, better scalability and less memory requirement.

(1) No bias b and sum constraint∑N
i=1 λi = 0: The bias termb is eliminated due

to the universal approximation capability of ELM. On one hand, the computa-

tional inefficiency associated withb is resolved completely. On the other hand,

the dual problem of sparse ELM for regression (4.8) is freed from the sum con-

straint ∑N
i=1λi = 0 due to the removal ofb. Thus, it searches for the optimal

solution within a wider area and presents better accuracy.

(2) Sparse network: It constructs a sparse network and largely reduces the storage

space and testing time compared with the unified ELM.

(3) No memory issue: Memory issue is getting more important along with the explo-

sion of the problem scale. For instance, the unified ELM and conventional QP

methods [81] need to store the whole kernel matrixΩΩΩELM in the memory, invok-

ing serious problems. The proposed method is based on iterative computation

and only requires to store the values encountered in each step. Thus, it solves the
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memory issue completely.

(4) Computational complexity: The training algorithm is convergent and the number

of iterations is proportional toN. In each iteration, the computational complexity

is O(N). Thus, the complexity of the proposed algorithm is O(N2). In contrast,

the unified ELM obtains the solution through matrix inversion with complexity

between O(N2) and O(N3) [102, 104]. Consequently, the proposed sparse ELM

for regression provides better scalability and realizes faster training speed when

solving large-scale problems.

(5) Easy parallel implementation: We can easily realize parallel implementation to

further accelerate the training algorithm by dividing the whole dataset into several

subsets to be handled with several CPU processors separately [9].

4.3 Experiments

The proposed method is extensively investigated in this section for numerous regression

datasets. Except for the CASP, marked with∗, all datasets are evaluated in Matlab

R2010b, running on an Intel i5-2400, 3.10 GHz CPU and 8 GB RAM.Experiments on

the large dataset, CASP, are conducted in Matlab R2013a, running on an Intel Xeon

E5-2650, 2 GHz CPU and 256 GB RAM, otherwise the unified ELM andSVR will be

out of memory. SVR is implemented by the SVM and Kernel Methods Matlab Toolbox

downloaded from [8]. And through the entire section, all experiments are repeated 20

times in order to get stable and reliable results.

4.3.1 Datasets description

Plenty of datasets are used from the UCI repository [28] and LIBSVM portal [11]. We

equally divide each dataset into two parts, one for trainingand the other for testing.

Before the experiments, preprocessing steps are performedover the data. Training data
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Table 4.1: The description of datasets
Dataset # train # test # features
Bodyfat 126 126 14
Mpg 196 196 7
Housing 253 253 13
Concrete 515 515 8
Mg 693 692 6
Spacega 1554 1553 6
Abalone 2089 2088 8
Winequality 2449 2449 11
Cpusmall 4096 4096 12
Cadata 10320 10320 8
CASP∗ 22865 22865 9

Table 4.2: The details within the training phase

Dataset
# of λi

(samples)
# of

iterations
# λi changed
in the process

Average∆i(1)
∆i

Bodyfat 126 134 33 2.01
Concrete 515 2622 217 7.88
Abalone 2089 9177 607 12.60
Cpusmall 4096 3998 225 12.34

are linearly scaled into[0,1] for the targets and[−1,1] for the features. And the factors

used to scale the training data are adopted to scale the testing data linearly. All the

datasets are detailed in Table 4.1.

4.3.2 Improvement of convergence speed

In this section, we conduct experiments to check the convergence speed of the pro-

posed method. The kernel function and parameters are naively selected asK(xi,x j) =

exp(−‖xi−x j‖
2

2σ2 ) andC = 1,σ = 1. Fig. 4.3 displays the ratio between the number of

iterations and the training sizeN. It is easily observed that the bar called “original” are

much larger than 1 for most datasets. Hence, it is necessary to improve the convergence

speed and to further accelerate the learning phase.

Table 4.2 shows the details of the training process of sparseELM for regression. The

four datasets are chosen as examples. And all other datasetspresent similar process.

As seen from the table, only a part ofλi ’s are changed during the process, while the
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Figure 4.3: Number of iterations for the original and improved algorithms

total number of iterations is much bigger than the number of changedλi ’s. Thus, it

is concluded that someλi ’s are updated several times. The first value change and the

total change ofλi are respectively denoted by∆i(1) and ∆i . It is observed that the

ratios ∆i(1)
∆i

are larger than 1. Thus, a straightforward approach is to adda learning rate

ηi = 1+a·exp
(

−(TI i −1)
)

in the update rules (4.21)-(4.23). Consequently, the training

algorithm will change the values ofλi ’s by a bigger gap in the first several times so that

the number of iterations can be reduced. Which time (1st time, 2nd time or more) the

i-th Lagrange multiplierλi is updated is denoted by TIi .

The parameter ofa is tested with 4 different values:[2,3,4,5]. It is illustrated in Fig.

4.3 that all the 4 values ofa greatly improve the convergence speed, while the difference

between them is not significant. It is not our main concern to find out the best learning

rate in this work. And we choosea = 3 for the following experiments:ηi = 1+ 3 ·

exp
(

− (TI i −1)
)

.
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4.3.3 Influence of the parameterε

At here, we study the influence ofε on the sparse ELM for regression. The aim is not to

choose the optimal parameters or kernels. Thus, we naively choose the Gaussian kernel

with parametersC= 1,σ = 1.

The number of SVs

We use the toy data “sinc” function to investigate of relationship betweenε and number

of SVs:

t = f (x) =







sin(x)/x, x 6= 0

1, x= 0
(4.33)

in which x is a random variable with uniform distribution in the range(−10,10). It is

respectively sampled 1000 times to generate the training and testing data. Uniform noise

in the range (-0.2, 0.2) is added to the targetst of the training data. And the testing data

is noise-free.

ε is investigated with 3 values: [0.1, 0.2, 0.3]. Bigger valueof ε will lead to fewer

support vectors (SVs) as shown in Fig. 4.4.
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Figure 4.4: The expected and actual outputs and SVs with differentε
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Table 4.3: 10-fold cross-validation RMSE with differentε
ε = 0 ε = 0.02 ε = 0.04 ε = 0.06 ε = 0.08 ε = 0.10 ε = 0.12 ε = 0.14

Bodyfat 0.0608 0.0676 0.0747 0.0817 0.0882 0.0962 0.0993 0.1041
Mpg 0.0476 0.0504 0.0497 0.0525 0.0570 0.0643 0.0684 0.0734
Housing 0.0612 0.0569 0.0607 0.0668 0.0756 0.0829 0.0905 0.0990
Concrete 0.0898 0.0904 0.0915 0.0938 0.0967 0.0974 0.1000 0.1038
Mg 0.1442 0.1442 0.1441 0.1408 0.1410 0.1409 0.1423 0.1445
Spacega 0.0320 0.0331 0.0343 0.0374 0.0422 0.0498 0.0589 0.0627
Abalone 0.0781 0.0784 0.0778 0.0777 0.0783 0.0800 0.0824 0.0887
Winequality 0.1240 0.1234 0.1225 0.1225 0.1238 0.1234 0.1230 0.1240
Cpusmall 0.0313 0.0307 0.0325 0.0363 0.0428 0.0530 0.0575 0.0626
Cadata 0.1214 0.1210 0.1205 0.1202 0.1203 0.1205 0.1211 0.1224
CASP 0.2348 0.2343 0.2334 0.2320 0.2310 0.2300 0.22930.2287

10-fold cross-validation error

The optimal relationship between the noise (model and level) andε has been discussed

in [92]. However, when facing real applications, the details of noise are usually un-

known, making it impossible to calculated the optimalε exactly.

Comparing to the unified ELM,ε is an additional parameter, causing bigger computa-

tional burden to choose the optimal parameters. Thus, we target to find a value ofε that

is good enough, though not optimal, to handle different datasets.

8 values ofε are studied: [0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14]. The 10-fold cross-

validation root mean square error (RMSE) is calculated for the training data and sum-

marized in Table 4.3. The cross-validation RMSE at 0, 0.02 and 0.06 are all acceptable,

while the values producing the best results are problem dependent. In addition, Fig. 4.4

illustrates that more compact network will be provided by biggerε. In summary, we

chooseε = 0.06 and keep it fixed for the following experiments.

4.3.4 Influence ofL

It has been discussed in Chapter 3 that biggerL will lead to better generalization per-

formance [3]. At here, the relationship between the numberL and the performance is
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studied for sparse ELM for regression.Sigmoidactivation function is utilized:

G(a,b,x) =
1

1+exp
(

− (a ·x+b)
) (4.34)

C is fixed to 1 and the numberL is tested with 11 values:[21,22, ...,211]. Fig. 4.5 plots

the 10-fold cross-validation RMSE and numberL. All other datasets present similar

relationships.

It is clear that the 10-fold cross-validation RMSE decreases along with the increase of

L. In addition, more hidden nodes should be required when the dataset gets larger and

more complex [46, 101]. Thus, we fix theL to a large enough valueL = 29 for the

subsequent experiments.
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Figure 4.5: The relationship between 10-fold cross-validation RMSE andL

4.3.5 Parameter specification

We evaluate the performance with linear kernelK(u,v) = u · v and Gaussian kernel

K(u,v)=exp(−‖u−v‖2

2σ2 ). The parametersC andσ are both tried with 20 different values:

[2−9,2−8, · · · ,210]. And ε = 0.06 is fixed for sparse ELM and SVR.
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Table 4.4: Parameter Specifications

Datasets
Sparse ELM Unified ELM SVR

Linear
Kernel

Gaussian
Kernel

Sigmoid
Nodes

Linear
Kernel

Gaussian
Kernel

Sigmoid
Nodes

Linear
Kernel

Gaussian
Kernel

C C σ C C σ C C C C C
Bodyfat 20 21 22 22 26 210 24 26 22 20 22

Mpg 22 25 21 23 27 210 22 210 20 25 22

Housing 20 22 21 20 24 210 25 24 2−2 23 23

Concrete 23 21 20 22 21 27 20 24 2−2 21 2−1

Mg 20 20 20 23 21 23 20 210 26 21 20

Spacega 23 21 21 21 29 29 23 26 23 22 22

Abalone 20 20 20 20 23 28 21 210 22 22 20

Winequality 2−5 2−2 21 2−2 26 21 20 25 21 21 22

Cpusmall 2−4 22 20 21 23 28 20 210 2−2 2−1 20

Cadata 20 20 20 21 25 21 20 26 21 21 20

CASP 20 20 20 20 22 20 2−2 210 20 20 20

For the non-kernel case, the proposed sparse ELM and the unified ELM both adopt the

sigmoidactivation function, whereC is also chosen from the 20 values:[2−9,2−8, · · · ,210]

and L = 29 is fixed. The optimal parameters are selected based the 10-fold cross-

validation error and summarized in Table 4.4.

4.3.6 Performance comparison

The three methods, the proposed one, unified ELM and SVR, are thoroughly evaluated

and compared. The average RMSE is calculated over 20 repetitions. The implicit as-

sumption is that the mean RMSE over 20 repetitions is a reliable estimate of the perfor-

mance on this particular dataset. The details of all methodsare shown in Tables 4.7-4.9.

And the shortest training time and best testing RMSE are highlighted in each row.

Generalization performance

The generalization performance of the proposed sparse ELM is separately compared

with the unified ELM and SVR. Based on [19], Wilcoxon signed ranks test is suitable

for the statistical comparison between two methods on multiple datasets. And Table 4.5

demonstrates the detailed Wilcoxon test between sparse ELMand SVR with Gaussian
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Table 4.5: Wilcoxon test between sparse ELM and SVR with Gaussian kernel

Dataset
Difference of

testing RMSE (di)
Absolute value

of difference (|di|)
Rank

Bodyfat 0.0014 0.0014 5
Mpg 0.0017 0.0017 6
Housing 0.0225 0.0225 9
Concrete 0.0268 0.0268 10
Mg 0.0006 0.0006 2
Spacega 0.0037 0.0037 8
Abalone 0.0004 0.0004 1
Winequality 0.0008 0.0008 4
Cpusmall -0.0024 0.0024 7
Cadata -0.0006 0.0006 3
CASP 0.0328 0.0328 11

kernel.|di| is the absolute value of the difference between the testing RMSE on the two

methods.

R+ = ∑
di>0

rank+
1
2 ∑

di=0

rank= 56

R− = ∑
di<0

rank+
1
2 ∑

di=0

rank= 10

T = min(R+,R−) = 10

z=
T − 1

4N(N+1)
√

1
24N(N+1)(2N+1)

=
10− 1

4 ·11·12
√

1
24 ·11·12·23

=−2.0449<−1.96= z0.05
2

(4.35)

It is conclude that the proposed sparse ELM produces better generalization performance

than SVR at a significance levelα = 0.05 when adopting the Gaussian kernel because of

z<−1.96. The same test is performed to compare the proposed sparseELM and SVR

with linear kernel:z=−1.9560>−1.96. Even though we cannot claim the difference

to be statistically significant, it is highly probable that sparse ELM outperforms SVR

with linear kernel.

Moreover, the Wilcoxon test is also performed to compare sparse ELM and the unified
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ELM, where thez values are all bigger than−1.96: 1)−0.9780 for linear kernel; 2)

−0.5335 for Gaussian kernel; 3)−1.6893 for non-kernel case withsigmoidactivation

function.

In conclusion, sparse ELM is highly favored than than SVR andon par with the unified

ELM in terms of the generalization performance.

Training and testing speed

Consistent with our theoretical analysis of the computational complexity aforemen-

tioned, the proposed method achieves much faster training speed than the unified ELM

when facing large-scale datasets. Additionally, the proposed method reduces the testing

time compared with the unified ELM for datasets of all scales.

Compared with SVR, much faster training and testing speed are provided by the pro-

posed method as seen from Tables 4.8 and 4.9.

Number of SVs

It is verified that the proposed method provides a sparse network, as listed in Table 4.6.

Consequently, the storage space is reduced than the unified ELM because the storage

requirement is proportional to the number of SVs. Furthermore, the testing speed is also

accelerated as fewer computations need to be performed in the testing phase.

Nevertheless, both the proposed method and SVR construct a sparse network, while it

depends on the individual dataset to determine which one is more compact.
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Table 4.6: Number of support vectors

Dataset
# Total
vectors

Sparse ELM Unified ELM SVR
Linear
kernel

Gaussian
kernel

Sigmoid
Nodes

Linear
kernel

Gaussian
kernel

Sigmoid
Nodes

Linear
kernel

Gaussian
kernel

Bodyfat 126 19 15 13.65 126 126 126 16 20
Mpg 196 47 38 35.30 196 196 196 58 47
Housing 253 89 69 83.45 253 253 253 95 90
Concrete 515 313 212 278.25 515 515 515 335 233
Mg 693 497 430 429.55 693 693 693 500 418
Spacega 1554 93 112 152.60 1554 1554 1554 181 174
Abalone 2089 642 659 631.40 2089 2089 2089 703 671
Winequality 2449 1601 1572 1585.55 2449 2449 2449 1574 1602
Cpusmall 4096 858 215 745.80 4096 4096 4096 745 280
Cadata 10320 5684 4798 5305.40 10320 10320 10320 6041 4879
CASP 22865 18232 16442 17892.10 22865 22865 22865 18609 16644

4.4 Conclusions

In this chapter, we extend the sparse ELM for regression problems and construct a com-

prehensive framework of sparse ELM. Compared with the unified ELM, which is state-

of-the-art method, it produces a sparse network and largelyreduces the storage space

and testing time. Subsequently, we design an efficient training algorithm based on iter-

ative computation. Several distinct merits make it superior to other methods: 1) no sum

constraint∑N
i=1λi = 0 and biasb, resolving the computational inefficiency associated

completely; 2) no memory issue as it only needs to store the values used in each step;

3) computational complexity of lower magnitude than the unified ELM; 4) building up

a sparse network and thus reducing the storage space and testing time.

Conclusively, the proposed method is more suitable for large-scale regression problems,

such as neuroscience, image processing, time series prediction, etc. Later, we plan to

implement the sparse ELM in parallel manner and to use kernelcache [11] to further

improve the efficiency of sparse ELM.
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Table 4.7: Performance of sparse ELM and unified ELM with Sigmoid hidden nodes

Dataset
Sparse ELM Unified ELM

Training
RMSE

Testing
RMSE

Training
time (s)

Testing
time (s)

Training
RMSE

Testing
RMSE

Training
time (s)

Testing
time (s)

Bodyfat 0.0524 0.0448 0.0105 0.0032 0.0331 0.0198 0.0067 0.0047
Mpg 0.0603 0.1389 0.0583 0.0030 0.0439 0.1231 0.0086 0.0085
Housing 0.0835 0.1367 0.0166 0.0081 0.0717 0.1436 0.0090 0.0091
Concrete 0.1224 0.1374 0.1630 0.0188 0.1243 0.1407 0.0534 0.0465
Mg 0.1555 0.1450 0.5045 0.0286 0.1359 0.1330 0.0400 0.0370
Spacega 0.0474 0.0450 0.3166 0.0369 0.0374 0.0401 0.1823 0.1246
Abalone 0.0819 0.0785 0.3397 0.0920 0.0756 0.0741 0.4459 0.2208
Winequality 0.1318 0.1221 0.5067 0.2089 0.1267 0.1210 0.6475 0.3216
Cpusmall 0.0345 0.0373 1.0375 0.2389 0.0333 0.0376 2.1991 0.8132
Cadata 0.1409 0.1497 13.4122 1.9611 0.1322 0.1498 21.3416 4.0056
CASP 0.2467 0.2495 59.3273 6.7365 0.2314 0.2347 70.7220 9.4233
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Table 4.8: Performance of sparse ELM, unified ELM and SVR withlinear kernel

Dataset
Sparse ELM Unified ELM SVR

Training
RMSE

Testing
RMSE

Training
time (s)

Testing
time (s)

Training
RMSE

Testing
RMSE

Training
time (s)

Testing
time (s)

Training
RMSE

Testing
RMSE

Training
time (s)

Testing
time (s)

Bodyfat 0.0534 0.0436 0.0066 0.0001 0.0336 0.0161 0.0051 0.0010 0.0402 0.0368 0.0268 0.0002
Mpg 0.0660 0.1341 0.0424 0.0004 0.0602 0.1500 0.0039 0.0014 0.0604 0.1452 0.0562 0.0007
Housing 0.0743 0.1455 0.0193 0.0004 0.0716 0.1507 0.0073 0.0012 0.0723 0.1543 0.0832 0.0008
Concrete 0.1485 0.1272 0.3420 0.0012 0.1457 0.1402 0.0217 0.0025 0.1462 0.1294 0.7283 0.0034
Mg 0.1674 0.1570 0.0840 0.0029 0.1666 0.1582 0.0259 0.0044 0.1668 0.1572 1.8135 0.0070
Spacega 0.0477 0.0406 0.3424 0.0026 0.0395 0.0435 0.1390 0.0291 0.0398 0.0436 4.5092 0.0205
Abalone 0.0802 0.0771 0.3049 0.0131 0.0806 0.0774 0.3171 0.0502 0.0802 0.0776 19.6114 0.0447
Winequality 0.1345 0.1273 0.3792 0.0368 0.1294 0.1243 0.4751 0.0562 0.1297 0.1266 46.9333 0.0952
Cpusmall 0.1147 0.1001 0.5004 0.0356 0.1036 0.0961 2.1691 0.1694 0.1212 0.1009 75.7302 0.0657
Cadata 0.1437 0.1516 10.5743 0.4547 0.1423 0.1536 15.1593 0.8153 0.1436 0.1537 3548.7487 1.3921
CASP 0.2390 0.2413 102.9173 3.5126 0.2457 0.2483 116.4548 4.7878 0.2500 0.2529 14400.5332 22.9362
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Table 4.9: Performance of sparse ELM, unified ELM and SVR withGaussian kernel

Dataset
Sparse ELM Unified ELM SVR

Training
RMSE

Testing
RMSE

Training
time (s)

Testing
time (s)

Training
RMSE

Testing
RMSE

Training
time (s)

Testing
time (s)

Training
RMSE

Testing
RMSE

Training
time (s)

Testing
time (s)

Bodyfat 0.0516 0.0425 0.0066 0.0001 0.0333 0.0162 0.0034 0.0009 0.0522 0.0439 0.0224 0.0003
Mpg 0.0504 0.1211 0.0193 0.0004 0.0405 0.1216 0.0042 0.0012 0.0464 0.1228 0.0471 0.0007
Housing 0.0510 0.1284 0.0480 0.0008 0.0715 0.1496 0.0061 0.0033 0.0700 0.1509 0.0647 0.0012
Concrete 0.0671 0.1241 0.0742 0.0027 0.0503 0.1394 0.0827 0.0099 0.0583 0.1509 0.7481 0.0058
Mg 0.1307 0.1341 0.0987 0.0093 0.1272 0.1319 0.0359 0.0166 0.1279 0.1347 1.7136 0.0143
Spacega 0.0412 0.0385 0.1499 0.0083 0.0358 0.0401 0.1905 0.0880 0.0414 0.0422 4.3292 0.0307
Abalone 0.0753 0.0738 0.3580 0.0460 0.0738 0.0735 0.3428 0.1477 0.0736 0.0742 18.6725 0.1281
Winequality 0.1262 0.1200 0.5233 0.1328 0.1177 0.1204 0.4816 0.2035 0.1274 0.1208 45.1656 0.3300
Cpusmall 0.0317 0.0407 1.2119 0.0382 0.0248 0.0352 1.6629 0.5505 0.0348 0.0383 61.2297 0.1354
Cadata 0.1197 0.1423 8.9124 1.5977 0.1203 0.1433 15.3376 3.2928 0.1171 0.1417 2813.5930 3.0710
CASP 0.1874 0.2026 51.6688 15.2476 0.1935 0.2046 121.2519 24.9627 0.2307 0.2354 12269.6436 41.0614
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Chapter 5

Local Receptive Fields Based Extreme

Learning Machine

Extreme learning machine (ELM) in full connections produces superior generalization

performance with high efficiency. However, when facing applications like image analy-

sis, speech recognition, natural language processing, etc., fully connected network may

not present satisfactory performance because it does not model the local correlations in

these tasks. In this chapter, we propose the local receptivefields based extreme learning

machine (ELM-LRF), where the connections between input andhidden layer are sparse

and locally bounded. In addition, we implement the ELM-LRF network with convolu-

tional hidden nodes and evaluate the performance on the benchmark object recognition

dataset, NORB. The proposed method produces thebest accuracyand accelerates the

learning speed up to200 times.

5.1 Introduction

In the ELM implementations studied in the past, hidden nodesare in full connections

with the input ones. On one hand, these implementations provide excellent accuracy
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with fast speed for a wide types of applications. On the otherhand, when facing appli-

cations with strong local correlations, such as image analysis, speech recognition, etc.,

it may be more reasonable to construct a network with sparse,local connections rather

than full ones. In fact, bioscience has discovered that local receptive field is the key

factor for the brain to deal with visual information. Naturally, we raise an open question

for ELM: can local receptive fields be implemented in ELM?In this chapter, we discuss

this question in detail.

It has been proved that ELM can generate the hidden nodes randomly based on any con-

tinuous probability distribution in [46, 44, 45]. Therefore, we can perform a straight-

forward extension to generate the hidden nodes based on someprobability distribution,

which are denser around the center while sparser farther away, to deal with these locally

correlated applications. Different shapes of local receptive fields may be used as long

as they are continuous and local-wise. For instance, McDonnell et al. utilize random

sampling method to generate the local receptive fields and present superior performance

on the MNIST, NORB and SVHN datasets [73, 74]. The selection of the shapes relies

on the specific problem to be dealt with. Inspired by the convolutional neural networks

(CNNs), we implement the local receptive fields by randomly generating convolutional

hidden nodes in this chapter.

5.2 Local Receptive Fields Based Extreme Learning Ma-

chine

In this section, we describe the details of ELM-LRF and applyit as a generic architec-

ture to solve image processing and similar tasks, where different density levels of con-

nections can be used. The sparse connections between input and hidden nodes decide

the local receptive fields and could be sampled by any continuous probability distribu-

tion. Subsequently, combinatorial nodes are followed, grouping several hidden nodes

together into sub-network and providing translational invariance to the network. The
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training speed is exceptionally fast as no gradient descentsteps are performed.

5.2.1 Hidden nodes in full and local connections

ELM theories demonstrate that hidden nodes can be constructed randomly based on any

probability distribution. In effect, two types of randomness are involved:

(1) Random connections: The connections between input and hidden nodes can be sam-

pled randomly according to diverse probability distributions.

(2) Random weights: The weights between input and hidden nodes can also be gener-

ated randomly.

Hidden nodes in full connections, as depicted in Fig. 5.1(a), have been thoroughly

investigated and produce state-of-the-art performance innumerous applications, such as

bio-medical applications [108], text analysis [111], power systems [80], remote-sensing

image classification [85], etc. In essence, these works concentrate on the aspect of

random weights, while giving no attention to the random connections.

However, for image analysis, speech recognition, natural language processing, etc. [63],

the strong local correlations within the input degenerate the effectiveness of full connec-

tions. In order to solve these problems, we naturally construct the hidden nodes in local

connections. As shown in Fig. 5.1(b), the connections between input and hidden nodes

are denser around the center while sparser farther away. Thelocal receptive fields have

been verified by concrete biological evidence, which shows that different cells in the

visual cortex are sensitive to different sub-regions of theretina (input layer) [4, 57, 94].

Consequently, locally connected network is suitable for image processing and similar

works because more meaningful representations are produced in the hidden layer by

explicitly modeling the local structures.
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Hidden Node i 

(a) Hidden nodes in full connections

 

Hidden Node i  

(b) Hidden nodes in local connections

Figure 5.1: Hidden nodes in full and local connections

5.2.2 Combinatorial nodes

In biological systems, it is unclear what forms of local receptive fields are adopted.

And it is probable to generate them by diversified methods. One promising method is

to construct the combinatorial node as proposed in [44]. It proves that hidden node in

ELM could be a sub-network (combination) of several hidden nodes. Fig. 5.2 shows

an example where the combinatorial nodei is actually a sub-network of hidden nodes

that are in sparse connections with the input ones bounded byseveral local areas. The

combinatorial nodei connects with the three hidden nodes and performs a weighted

summation, linear or nonlinear, over them.

In this manner, the feature generated at one location (obtained by one particular com-

binatorial node) is likely to be suitable at different locations (different combinatorial

nodes). As a consequence, the ELM-LRF network will be invariant to translations and

rotations of the input. Additionally, the connections between the input and combinatorial

nodes are able to model the local structures even better. Theoverlaps of the three re-

ceptive fields make the connections denser around the centerwhile sparser farther away.

Subsequently, we use average methods to calculate the values of these combinatorial

nodes. Of course, it deserves further investigation to find out other suitable methods,

such as max-pooling, learning based methods, etc.
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Combinatorial Node i  

Figure 5.2: The combinatorial nodei

5.3 The Implementation

5.3.1 One feasible network of ELM-LRF

Even though the local receptive fields can be sampled by various types of probability

distribution, we utilize the simple step function to construct one feasible network of

ELM-LRF for convenience. The receptive field of each hidden node is bounded by a

pre-determined distance to the center. Moreover, the inputweights to different hidden

nodes in the same feature map are shared. In this sense, our hidden nodes actually

perform convolution operations similar to CNNs. Additionally, the combinatorial nodes

are formulated with square/square-root pooling structure.

The network of ELM-LRF that we build up in this chapter is displayed in Fig. 5.3:

(1) Random convolutional nodes: The node in the feature maps is one case of the

hidden node in local connections depicted in Fig. 5.1(b).

(2) Combinatorial nodes: The node in the pooling maps is one case of the combina-

torial node depicted in Fig. 5.2.
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Feature Map k

e

ak

Pooling Map kInput Map

Figure 5.3: One feasible network of ELM-LRF

5.3.2 Random input weights

Fig. 5.4 displays the whole network of ELM-LRF withK maps.K diverse feature maps

are generated withK different input weights and provide comprehensive representations

of the input. The feature maps are composed of random convolutional nodes, where

input weights on the same map are shared while different among different maps. The

input weights are first generated randomly and then orthogonalized as follows:

(1) Random generation: Generate the initial weight matrix̂A init based on the standard

Gaussian distribution randomly1. Assume that the input is ofd×d and receptive

field of r × r, then the feature map should be of(d− r +1)× (d− r +1).

Â init ∈ Rr2×K

âinit
k ∈ Rr2

, k= 1, · · · ,K
(5.1)

(2) Orthogonalization: Use singular value decomposition (SVD) method to orthogo-

nalize the matrixÂ init into Â. The columns of̂A, âk’s, are the orthonormal basis of

Â init 2.

The effect of orthogonalization is to extract more comprehensive and discriminative

1We discover that the bias term is not necessary in the convolutional nodes.
2Orthogonalization cannot be performed over the column whenr2 < K. In this case, 1)̂A init is trans-

posed; 2) orthogonalized over the column; 3) transposed back.
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features than non-orthogonal ones. Thus, it further improves the generalization per-

formance of the network. The works in [58, 63] have previously utilized orthogonal

random weights and present superior performance.

âk ∈ Rr2
is transformed intoak ∈ Rr×r column-wisely. Thus, the convolutional hidden

node(i, j) in thek-th feature map,ci, j ,k, is calculated as:

ci, j ,k(x) =
r

∑
m=1

r

∑
n=1

xi+m−1, j+n−1 ·am,n,k

i, j = 1, · · · ,(d− r +1)

(5.2)

e

1

i

m

a
1

a
K

Figure 5.4: The network of ELM-LRF withK maps

Several CNN networks with certain structures also present surprisingly good perfor-

mance with random, untrained input weights [90, 17, 55]. However, the performance

in these works still cannot outperform fine-tuned ones. In contrast, the proposed ELM-

LRF in this chapter, where the input weights to the feature maps are orthogonal random,
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can produce even higher accuracy than well-trained counterparts while achieving much

faster learning speed. We will compare ELM-LRF and CNN in depth later.

5.3.3 Square/square-root pooling structure

We form the combinatorial node with square/square-root pooling structure. As shown

in Fig. 5.4, pooling sizee is the distance between the center and the edge of the pooling

area. In addition, the size of the pooling map is(d− r +1)× (d− r +1), equivalent to

the size of the feature map.ci, j ,k andhp,q,k denote the convolutional node(i, j) in the

feature mapk and combinatorial node(p,q) in the pooling mapk.

hp,q,k =

√

√

√

√

p+e

∑
i=(p−e)

q+e

∑
j=(q−e)

c2
i, j ,k

p,q= 1, · · · ,(d− r +1)

if (i, j) is out of bound:ci, j ,k = 0

(5.3)

The network is provided with the key factors of successful image processing [14]: rec-

tification nonlinearity and translational invariance, by the square and summation oper-

ations respectively. Moreover, it is proved that the square/square-root pooling structure

after the convolution operation is frequency selective andtranslational invariant [90].

Consequently, the network of ELM-LRF implemented in this chapter will be exception-

ally suitable for image processing and similar tasks.

5.3.4 Closed-form solution of the output weights

As observed in Fig. 5.4, the output layer is in full connection with the pooling layer.

The vector of output weightsβββ is calculated analytically and deterministically with

regularized least squares method [71].
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Suppose we have the input samplex, the combinatorial nodehp,q,k could be easily cal-

culated by solving (5.2) and (5.3) sequentially.

ci, j ,k(x) =
r

∑
m=1

r

∑
n=1

xi+m−1, j+n−1 ·am,n,k

hp,q,k =

√

√

√

√

p+e

∑
i=(p−e)

q+e

∑
j=(q−e)

c2
i, j ,k

p,q= 1, · · · ,(d− r +1)

if (i, j) is out of bound:ci, j ,k = 0

(5.4)

Putting all combinatorial nodes in the pooling layer into a row vector and concatenating

the rows ofN input samples together, the combinatorial layer matrixH ∈RN×K·(d−r+1)2

is constructed.

(1) if N ≤ K · (d− r +1)2

βββ = HT
(

I
C
+HHT

)−1

T (5.5)

(2) if N > K · (d− r +1)2

βββ =

(

I
C
+HTH

)−1

HTT (5.6)

5.3.5 Algorithm

The algorithm is summarized in Algorithm 4.
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Algorithm 4: The algorithm of ELM-LRF
1: Random convolutional nodes: Inputd×d; receptive fieldr × r; feature map

(d− r +1)× (d− r +1).
1) GeneratêA init ∈ Rr2×K randomly based on standard Gaussian distribution.
2) OrthogonalizêA init with SVD method [32] and get̂A ∈ Rr2×K. Reshape each
column ofÂ, âk, into ak ∈ Rr×r ,k= 1, · · · ,K.
3) GenerateK feature maps by convolvingak,k= 1, · · · ,K with the input.

2: Square/square-root pooling: Pooling sizee is the distance between the center and
the edge of the pooling area (Fig. 5.4).
1) Calculate the squares of all nodes inK feature maps.
2) For each pooling area, sum up the squared values within it.
3) Calculate the value of each pooling node by performing square-root operation
on the corresponding summation.

3: Regularized least squares solution:
1) Concatenate all nodes in the pooling maps into a row and putall rows ofN
training samples together. And we obtain the output matrix of the pooling layer
H ∈ RN×K·(d−r+1)2.
2) Calculate the output weightβββ :

βββ =











HT
( I

C +HHT
)−1

T, if N ≤ K · (d− r +1)2

( I
C +HTH

)−1
HTT, if N > K · (d− r +1)2

(5.7)
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5.4 Discussions

5.4.1 Universal approximation and classification capability

The network of ELM-LRF can be considered as a specific type of the general ELM:

(1) Local receptive fields: The sparse connections bounded by the local receptive

fields can be regarded as ordinary connection with weight 0. Generally the prob-

ability distribution used to generate the connections is still piecewise continuous.

Therefore, the universal approximation and classificationcapabilities of ELM are

preserved for ELM-LRF, enabling ELM-LRF to learn sophisticated forms of in-

put.

(2) Combinatorial nodes: Hidden node in ELM can be a sub-network, consisting

of different nodes in linear or nonlinear manners. Thus, thesquare/square-root

pooling structure is adopted to formulate the sub-network directly, introducing

translational and rotational invariance.

5.4.2 Relationship with CNN

Apparently, the proposed ELM-LRF is closely related to CNN.They both handle the

raw input directly and apply local connections to force the network to model spatial cor-

relations in natural images and languages. Additionally, high-level features are implic-

itly learned or generated, on which the learning is subsequently performed. However,

several distinctions differentiate the proposed ELM-LRF and CNN:

(1) Local receptive fields: The local receptive fields provided by ELM-LRF are more

flexible, which can be sampled randomly based on different types of probability dis-

tributions. However, CNN adopts convolutional hidden nodes only. Except for the

random convolutional nodes chosen in this chapter, other types are also applicable
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for ELM-LRF, such as the ones generated by random sampling method in [73, 74].

ELM-LRF deserves further exploration for other proper local receptive fields and

learning methods to construct the combinatorial nodes.

(2) Training method: The training of CNN depends on BP algorithm, while ELM-LRF

provides a simple deterministic solution. CNN is degenerated by the trivial issues

of BP, such as local minima, slow convergence rate, etc. Moreover, it is computa-

tion intensive as BP algorithm involves numerous gradient descent steps. On the

contrary, ELM-LRF generates the input weights randomly andcalculates the out-

put weights analytically. Only the output weights require computations, making

ELM-LRF deterministic and highly efficient.

5.5 Experiments

Figure 5.5: 60 samples of the NORB dataset

In this section, we compare the proposed ELM-LRF with state-of-the-art algorithms,
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Table 5.1: Parameter specification
# training

data
# testing

data
Input

dimensions
Receptive

field
# feature

maps
Pooling

size
C

24300 24300 32× 32× 2 4×4 48 3 0.01

deep neural networks, etc., on the NORB object recognition dataset [65], which is a

common benchmark. NORB dataset consists of 24,300 trainingimages and 24,300 test-

ing images, both of which belong to 5 generic categories. Each image has two channels

as it is stereo type. High variations exist among all categories, such as 3D poses, light-

ing conditions, scales, etc. Fig. 5.5 shows 60 samples of theNORB dataset. The only

pre-processing involved is to downsize the images into 32×32.

All experiments are conducted on MATLAB 2013a, Intel Xeon E5-2650, 2GHz CPU,

256GB RAM. Several parameters need to be chosena priori in ELM-LRF: 1) the size

of the receptive field{4×4,6×6}; 2) the number of feature maps{24,36,48,60}; the

pooling size{1,2,3,4}; 4) the value ofC {0.01,0.1,1,10,100}. We hold a validation

set out from the training data and choose the optimal parameters based on the validation

accuracy. Table 5.1 summarizes the parameters we choose.

5.5.1 Test error

Table 5.2 reports the test errors of the proposed ELM-LRF andrelated works in the

literature3. As easily observed, ELM-LRF outperforms other fine-tuned,computation

intensive algorithms. The proposed ELM-LRF achieve 2.74% test error, thebest accu-

racy in the literature with a significant gap.

5.5.2 Training time

For the comparison of training time, we reproduce other algorithms on our experimental

platform. Table 5.3 lists the detailed training time of several algorithms. ELM-LRF

3We cite the accuracy of other methods from the literature directly to make the comparison fair.
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Table 5.2: Test error rates of different algorithms
Algorithms Test error rates
ELM-LRF 2.74%
ELM-LRF (no orthogonalization) 4.01%

Random weights [90] 4.8%
K-means + soft activation1[14] 2.8%
Tiled CNN [63] 3.9%
CNN [65] 6.6%
DBN [77] 6.5%
1 Current state-of-the-art result.

Table 5.3: Training time of different algorithms
Algorithms Training time (s) Speedup times1

ELM-LRF 394.16 217.47
ELM-LRF (no orthogonalization) 391.89 218.73

Random weights2 1764.28 48.58
K-means + soft activation3 6920.47 12.39
Tiled CNN 4 15104.55 5.67
CNN 5 53378.16 1.61
DBN 6 85717.14 1
1 DBN is used as the standard to calculate the speedup times.
2 The current most efficient CNN solution. The training time reported in

[90] is 0.1h. Reasons for such difference in training time are: i) we have
considered convolution and pooling operations as part of training, and the
training time reported includes the time spent on convolution and pooling
which were not considered in [90]; ii) experiments are run indifferent
experimental platforms.

3 Use the same parameters as in [14] with 4000 features.
4 Use the same architecture as ELM-LRF and set the maximum number of

iterations in the pretraining to 20.
5 The architecture is provided in [65] and we use 50 epochs.
6 The architecture is: 2048 (input)-500-2000-500-5 (output) and 500

epochs since the convergence of training error is slow when dealing with
NORB dataset.

accelerates the learning speed up to200 timesthan other algorithms. Moreover, even if

we use the random weights method [90], which is the current most efficient method, as

the benchmark, the proposed ELM-LRF still realizes 4.48 times speedup and reduces

the test error.
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(a) The original image (left one) (b) The 48 feature maps

Figure 5.6: The original image (left) and corresponding feature maps

5.5.3 Feature maps

To show what features (representations) are obtained at thehigher level of ELM-LRF

network, we display the feature maps in the hidden layer. Forthe input stereo images,

only the left one is displayed since the difference between left and right ones is almost

unobservable. As seen from Fig. 5.6, all 48 feature maps share similar outlines, since

they represent the same input (an airplane). Nevertheless,these maps highlight different

parts, producing diversified and comprehensive representations. Jointly, the 48 feature

maps generate different representations for the original image and make the subsequent

classification accurate and efficient.

5.5.4 Orthogonalization of random input weights

In this section, we explore the improvement that the orthogonalization operation can

introduce. We take the center convolutional node in each feature map as the example.

The value distributions of the 48 center nodes generated by the orthogonal and non-

orthogonal weights are compared. And one sample is chosen from each category and

displayed in Fig. 5.7. It can be easily seen that the distribution of orthogonal weights is

more broad and even. Similar patterns are discovered for convolutional nodes at other
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positions in the feature maps. Consequently, the effect of orthogonalization is to make

the images easier to be separated and classified.

As listed in Table 5.2, ELM-LRF still produces a 4.01% test error, which decreases 38%

compared with conventional deep learning methods, even without orthogonalization. In

addition, ELM-LRF (no orthogonalization) provides exceptionally fast solution, making

it quite suitable for image processing and similar tasks.
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Figure 5.7: The value distributions of the center convolutional nodes in the 48 feature
maps with orthogonal and non-orthogonal random weights

5.6 Conclusion

In conclusion, this chapter explores the randomness of ELM in two aspects: random

connection and random weights. The network of ELM-LRF, which is in sparse and

local connections, explicitly models the local correlations within the input. Thus, it is

exceptionally suitable for image analysis, speech recognition, natural language process-

ing, etc. Orthogonalization is followed after random generation of the input weights,

forcing the network to obtain more thorough representations for the input. The output

weights are calculated analytically, providing a deterministic solution.
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In the experiments, detailed comparisons are conducted between the proposed ELM-

LRF and related works on NORB dataset, a common benchmark. ELM-LRF reduces

the test error to 2.7%, thebest accuracyin the literature, while accelerating the learning

speed up to200 times.
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Chapter 6

Generic Object Recognition with Local

Receptive Fields Based Extreme

Learning Machine

Generic object recognition, also called object categorization, is to classify an individ-

ual object to a generic category. It faces serious issue of intra-class variabilities, such

as different poses, lightings, scales, contracts, etc. Conventional methods are problem

dependent and require various pre-processing operations.In this chapter, we suggest

to use local receptive field based extreme learning machine (ELM-LRF) as a general

framework for generic object recognition. ELM-LRF requires no pre-processing steps

as it deals with the original input directly. Furthermore, the network is simple and effi-

cient as most connection weights are generated randomly. Weextensively compare the

performance of ELM-LRF with state-of-the-art algorithms on several datasets, NORB,

ETH-80, COIL and ALOI. It is comparable with the best result on ETH-80 and sets the

new records for NORB, COIL and ALOI.
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6.1 Introduction

Generic object recognition is to classify an unknown objectto a generic category and

also known as object categorization [83, 25]. High level of intra-class variabilities, such

as different instances of the same category, diverse poses,lightings, scales, etc., pose

big problems for this task. Many different methods have beenproposed to handle it:

(1) Shape-based methods: In [66, 72], explicit shape models are built up, on which the

subsequent recognition is performed. In these works, otherattributes, like color,

texture, etc., are neglected. Later, parts-based shape models are constructed and

produce satisfactory performance in some applications [54, 35].

(2) Appearance-based methods: Objects of the same category may display various ap-

pearance. In these cases, low-level information, such as texture and color histogram,

are helpful. The images are highly correlated and will be processed by PCA or

other compression methods to generate compact representations as the model im-

ages. Hence, the classification criteria will be the similarity between the object itself

and the model images [97, 68, 109].

(3) Local features-based methods: These works identify some points of interest and

extract local features around the identified points. Various types of local features

have been used, such as HOG features [18], SIFT features [70], scale invariant

descriptors (SIDs) [61], etc.

However, these methods require large amount of human involvement, making it tedious

to use. Even worse, these methods are task dependent since the local features or shape

models need to be changed if facing new tasks [10, 6]. Consequently, we propose to use

the ELM-LRF described in Chapter 5 as a general framework forthis task.

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE



6.3 Experiments 103

6.2 ELM-LRF for Generic Object Recognition

ELM-LRF is operated on the raw images directly. It randomly generates the input

weights and analytically calculates the output weights, providing a deterministic solu-

tion. Furthermore, unlike convolutional neural networks (CNNs), it does not require BP

algorithm to iteratively tune the connection weights. Consequently, the requirements for

computational ability and huge training set are both greatly reduced as the input weights

need no tuning.

ELM-LRF provides several superiorities over other methodsas the general framework

for generic object recognition:

(1) General applicability: It does not utilize any task-specific information, such as local

features, global shapes, etc., thus is applicable for different applications.

(2) Simple usage: The only human involvement is to select several parametersbased on

the validation accuracy, enabling it simple to use.

(3) High efficiency: Most connection weights (input weights) are simply generated ran-

domly, making it highly efficient.

We construct the network of ELM-LRF by formulating convolutional nodes and com-

binatorial nodes as shown in Fig. 6.1. A car image from ETH-80dataset is used as an

example. There are 3 maps (RGB image) in the input layer andK maps in the feature

and pooling layers. These maps provide complete representations for the original input.

6.3 Experiments

In this section, we examine the performance of ELM-LRF on several generic object

recognition datasets, NORB [65], ETH-80 [66], COIL [78] andALOI [31]. The exper-
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Figure 6.1: The network of ELM-LRF with convolutional hidden nodes

imental platform is MATLAB 2013a, on a Windows Server 2012, Intel Xeon E5-2650,

2GHz CPU, 256G RAM.

6.3.1 Datasets descriptions

These datasets have plenty of variations, including lightings, poses, scales, positions in

the image, etc. The only pre-processing is to downsize the original images into 32×32.

There are 2 input maps (stereo image) for the NORB dataset and3 input maps (RGB

image) for other datasets.

NORB consists of 5 generic categories, with 24,300 for training and 24,300 for testing.

ETH-80 consists of 8 generic categories. Each category has 10 different objects, with

41 viewing angles. For each category, the 10 objects are separated evenly into training

and testing sets as in [59]. COIL is consisted of 100 objects with 72 viewing angles

(5◦ increment). The testing set contains images with 20◦ increment, resulting in 18

views. The training set contains the remaining images, 54 views. ALOI consists of

1,000 objects under three types of variations: illumination colors, illumination directions

and viewpoints. And these three types respectively correspond to experiment 1, 2 & 3.

Experiment 4 consists of all the data of different variations. For all experiments, 25%
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Table 6.1: Datasets descriptions

Dataset
# of

categories
# of training

data
# of testing

data
# of input
channels

NORB 5 24300 24300 2
ETH-80 8 1640 1640 3
COIL 100 1800 5400 3

ALOI (Exp1) 1000 3000 9000 3
ALOI (Exp2) 1000 6000 18000 3
ALOI (Exp3) 1000 18000 54000 3
ALOI (Exp4) 1000 27000 81000 3

samples is chosen for training and the other 75% for testing.

6.3.2 Parameter selections

We select the optimal parameters based on the accuracy on thehold-out validation set.

For each dataset, 20% samples of the training set are reserved for validation and the

parameters are searched over a grid. Here are the parametersto be chosen: 1) the

number of feature maps; 2) the size of receptive field; 3) the pooling size; 4) the value

of C.

Influence of the number of feature mapsK

Feature maps generate diversified, comprehensive representations for the raw images.

Thus, the more feature maps, generally the more comprehensive representations. After

the number passes a threshold, further increase ofK will not improve the performance

of ELM-LRF. On the contrary, it may even degrade the performance as it may easily

cause overfitting.

There are 4 parameters to be tuned, requiring plenty of humaninvolvement and compu-

tations. In this section, we evaluate the performance by varying the values ofK from 10

to 100 and aims to find a value that is suitable, though not optimal, for most problems

to lighten the computational burden. Naive values are used for other 3 parameters when

we explore the values ofK: receptive field 4×4, pooling size 5 andC= 0.01.
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Figure 6.2: The validation accuracy and training time with varying feature maps

Table 6.2: Parameter specifications

Dataset
Receptive

field
Pooling

size
C

# Feature
maps (fixed)

NORB 4 × 4 3 0.01 50
ETH-80 3 × 3 6 1 50
COIL 7 × 7 5 1 50
ALOI (all 4 experiments) 4 × 4 6 1 50

Observing from Fig. 6.2(a), the validation accuracy generally increases with the incre-

ment of feature maps, signifying that it has not reached the threshold. However, the

training time increases significantly with the increment offeature maps as illustrated

in Fig. 6.2(b). We make a compromise at here and fixK = 50 feature maps for later

experiments.

Parameter specifications

After fixing K = 50, other 3 parameters are chosen with grid search based on the vali-

dation accuracy. 5 values for the receptive field: 3×3, 4×4, 5×5, 6×6; 5 values for

the pooling size: 3, 4, 5, 6, 7; and 3 values forC: 0.01, 1, 100.

In order to reduce the computational burden, parameters of the 4 experiments of ALOI

with different variations are selected for ALOI (Exp3) only. Other 3 experiments simply

use the same parameters directly. However, it should be reminded that the parameters for
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Table 6.3: Test error rates and training time on the NORB dataset
Methods Test error rates Training time (s)
ELM-LRF 2.76% 400.78
Random weights [90] 4.8% 1764.28
K-means + soft activation [14] 2.8% 6920.47
Tiled CNN [63] 3.9% 15104.55
CNN [65] 6.6% 53378.16
DBN [77] 6.5% 85717.14

other 3 experiments are not necessarily optimal. Table 6.2 lists the selected parameters

for all these datasets.

6.3.3 Performance on NORB

Table 6.3 summarizes the test errors and training time of several methods on the NORB

dataset1. ELM produces thebest accuracy, while reduces the training time nearly200

timescompared with deep belief network (DBN) and CNN.

6.3.4 Performance on ETH-80

Fig. 6.3 displays some samples of the ETH dataset. It contains different objects belong-

ing to 8 generic categories with high level of intra-class variations. Table 6.4 lists the

error rates of ELM-LRF and related methods. It is observed that ELM-LRF produces

error rate on par with state-of-the-art result achieved by DCC method [59]. Furthermore,

ELM-LRF is remarkably efficient with 48.64 seconds for training and 15.35 seconds for

testing.

1The error rates of other methods are cited from the literature directly. However, the training time are
recorded on our experimental platform to provide fair comparisons.
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Figure 6.3: Samples of ETH dataset

Table 6.4: Test error rates on the ETH-80 dataset
Methods Test error rates
ELM-LRF 10.0%
Discriminant Analysis of Canonical Correlations (DCC) [59] 8.3%
Orthogonal Subspace Method (OSM) [59] 9.5%
Constrained Mutual Subspace Method (CMSM) [79] 10.3%
kNN-LDA [7] 24.8%
kNN-PCA 23.8%
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6.3.5 Performance on COIL

Some samples of COIL dataset are shown in Fig. 6.4, which has 100 categories. ELM-

LRF outperforms thebest accuracyon the COIL dataset. Furthermore, some works

also investigate the performance of CNN on COIL [76]. ELM-LRF outperforms not

only the standard CNN, but also the CNNs with additional information. ELM-LRF

presents lower test error by a big gap even compared with CNN plus unlabeled test

images or COIL-like images for pre-training. We believe that the relatively too few

training samples cannot train CNN properly, making it inferior to ELM-LRF.

Figure 6.4: Samples of COIL dataset
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Table 6.5: Test error rates on the COIL dataset
Methods Test error rates
ELM-LRF 0.02%
Local Affine Frames (LAFs) [82]1 0.1%
Linear SVM [106] 8.7%
Spin-Glass Markov Random Field (MRF) [72] 3.2%

Standard CNN [76] 28.51%
CNN+video (test images of COIL)[76] 2 7.75%
CNN+video (COIL-like images)[76] 3 20.23%
1 The current state-of-the-art result.
2 Use the unlabeled test images as additional learning source. It is a semi-

supervised method together with the labeled training images.
3 Use COIL-like images as additional learning source.

Table 6.6: Test error rates on the ALOI dataset

Methods
Test error rates

Exp1 Exp2 Exp3 Exp4
ELM-LRF 0% 0.24% 0.49% 0.80%
SalBayes [21] 35.21% 24.50% 10.29% 16.17%
SIFT [70] 10.59% 28.53% 29.05% 27.32%
HMAX [91] 0.96% 16.87% 19.24% 16.58%

6.3.6 Performance on ALOI

ALOI dataset includes 1000 generic categories and is even more diversified than pre-

vious datasets. Additionally, several types of variationsexist in the datasets of ALOI:

illumination colors, illumination directions and viewpoints. We conduct experiments 1,

2, 3 and 4 to investigate the performance of ELM-LRF with regard to different varia-

tions separately. Table 6.6 shows the detailed performancecomparison and ELM-LRF

achieves thebest accuracyfor all these four experiments with big improvements.

6.3.7 High efficiency of ELM-LRF

In this section, we discuss the efficiency of the general framework of ELM-LRF. Ta-

ble 6.7 summarizes the training and testing time for all datasets. ELM-LRF needs less

than 0.03 seconds per image for training and about 0.01 seconds for testing. Conse-
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Table 6.7: Training and testing time on different datasets

Dataset
Training stage Testing stage

Total training time Per image Total testing time Per image
NORB 400.78 0.0165 113.7 0.0047
ETH-80 48.64 0.0297 15.35 0.0094
COIL 33.23 0.0185 34.18 0.0063

ALOI (Exp1) 68.05 0.0227 96.11 0.0107
ALOI (Exp2) 116.41 0.0194 192.81 0.0107
ALOI (Exp3) 328.55 0.0183 548.47 0.0102
ALOI (Exp4) 579.19 0.0215 819.91 0.0101

quently, ELM-LRF can be straightforwardly extended to real-time applications because

it is capable of dealing with around 100 images per second.

6.4 Conclusion

In this chapter, we suggest ELM-LRF to be used as a general framework for generic

object recognition. Compared with traditional methods, ELM-LRF provides several ad-

vantages: 1) tasks non-specific since it does not use any task-specific information; 2)

easy to use as it requires no pre-processing steps; 3) highlyefficient since most con-

nection weights are simply generated randomly. Moreover, different from the newly-

emerging CNN, which requires BP method to iteratively tune numerous parameters,

ELM-LRF provides a simple and deterministic solution. Thus, compared with CNN,

ELM-LRF: 1) largely reduces the computational requirement; 2) is more suitable for

applications that does not contain enormous training samples. The experiments on sev-

eral generic object recognition datasets, NORB, ETH-80, COIL and ALOI, well show

the superior accuracy and high efficiency of ELM-LRF.
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Chapter 7

Conclusions and Future Works

7.1 Conclusions

In this thesis, we fully investigate the extreme learning machine (ELM) with sparse

connections. Unlike previous implementations of ELM, where the hidden nodes are in

full connections with the input ones, we focus on the sparse connections. On one hand,

the sparse connections reduce the number of connection weights, thus the storage space

and addition/multiplication operations in the testing phase. On the other hand, the sparse

connections explicitly model the local structures within the input, making it especially

suitable for locally correlated applications, such as image analysis, speech recognition,

natural language processing, etc.

In Chapter 3 and 4, the sparse ELM is proposed as an alternate for the unified ELM to

handle classification and regression problems respectively. The sparse ELM produces

comparable accuracy with the unified ELM while beating the commonly used support

vector machine (SVM). Additionally, it constructs a sparsenetwork, largely reducing

the storage space and testing time. More importantly, the computational complexity

of sparse ELM is of lower magnitude than the unified ELM. Thus,it is considerably

preferred when dealing with large-scale applications.
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In Chapter 5, we explore the properties of local receptive fields and propose the ELM-

LRF, which naturally implements the local receptive fields in ELM network. The con-

nections in the ELM-LRF are sparse and bounded by corresponding local receptive

fields. ELM-LRF explicitly models the local structures within the input and is remark-

ably suitable for image processing and similar tasks, wherelocal correlations exist. It

presents thebest accuracyon the NORB dataset, a common benchmark for object recog-

nition, and shortens the training time up to200 times.

In Chapter 6, the proposed ELM-LRF is studied as a general framework for generic

object recognition. It is operated on the raw input directlyand generally applicable for

requiring no task-specific information. In addition, the network is simple and deter-

ministic, offering it superiorities over traditional methods and recent CNN networks.

ELM-LRF produces high accuracy with exceptional efficiencyon several benchmark

datasets, NORB, ETH-80, COIL and ALOI.

7.2 Future Works

In the future, we would further investigate the ELM with sparse connections to deal with

applications of growing scale, local correlations, etc. Ingeneral, there are several topics

deserving more research:

(1) Parallel implementation: For the sparse ELM, we have developed training al-

gorithms based on iterative computation. Therefore, the training phase can be

paralleled by partitioning the training data into several blocks to be handled by

different processors.

(2) Different types of local receptive fields: As discussed in Chapter 5, various types

of probability functions can be utilized to sample the localreceptive fields. Thus,

we plan to search for other proper local receptive fields thatcan well represent the

local structures within the input data.
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(3) Deep network: It is promising to build up a deeper network so that more meaning-

ful and complete representations of the original inputs canbe produced. The key

issue is proper representational learning, such as auto-encoder, manifold learning,

convolution, pooling, etc.
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