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Summary

Motivated by the human brain, neural network has been widebd and extensively
investigated in the past several decades. It works and tgsera a highly-complex,
nonlinear and parallel way. Single-hidden layer feedfody@eural network (SLFN) is
the most common type because of: 1) its simple structureheppproximation capa-
bility of very complicated nonlinear function. The convemial training methods for
SLFN, such as back-propagation (BP) algorithm [88], ineohumerous gradient de-
scent steps and suffer from trivial issues including slomengence rate, local minima,

tedious human involvement, etc.

In recent years, a novel algorithm named Extreme Learninghita (ELM) [50, 51]
has been attracting plenty of research attention. ELM witislily proposed as a vari-
ant and improvement on the classic SLFN and was later extietodihe “generalized”
SLFN, which was not necessarily neuron alike. Differenirfrraditional methods,
which demand tedious parameter tunings, ELM randomly gagegrthe input weights
and analytically calculates the output weights, thus mhog a simple and deterministic

solution.

However, in almost all ELM implementations realized in thest) hidden nodes are
fully connected with the input ones. On one hand, it needsae «ll the connection
weights in memory and perform addition/multiplication ogteons for all the weights.
Therefore, it requires plenty of storage space and tesitimg, tespecially when facing
large-scale applications. On the other hand, the fully ected ELM does not explic-
itly model the local structures, and thus may not performl iiael locally correlated

applications, such as image processing, speech recagretio

Vii



SUMMARY Vil

In Chapter 3 and Chapter 4, we propose the sparse ELM as anadive solution to
deal with classification and regression problems respagtiin terms of generalization
performance, the sparse ELM is on par with the unified ELM agitielb than traditional
support vector machine (SVM) [15]. Additionally, it prodd a sparse solution, reduc-
ing the storage space and testing time significantly. Furibes, we develop efficient
training algorithms based on iterative update for clas#ificn and regression problems
separately. They both break down the large quadratic pnogiag (QP) problem into

a series of sub-problems, each of which can be solved acallyti Different from the
popular unified ELM [49], whose computational complexitypbstween quadratic and
cubic with regard to the training si2¢, the proposed algorithms scale only quadrati-
cally with respect tdN. The decrease of the complexity gives the proposed sparse EL

considerable advantages to handle large-scale appheatio

In Chapter 5, we investigate the local receptive fields bas@idme learning machine
(ELM-LRF). It thoroughly discusses the isswen local receptive fields be implemented
in ELM? ELM theories prove that hidden nodes can be randomly gesteaicording
to any continuous probability distribution. Consequerithgal receptive fields can be
naturally extended and implemented in ELM [2]. Inspired bywolutional neural net-
works (CNNs) [55], we construct the network of ELM-LRF by damly generating
hidden nodes that are in sparse connections with the inmstamd perform convolution
operations. Experimental results on the NORB dataset, enpesirk for object recogni-
tion, show that the proposed ELM-LRF achieves iest accuracyand accelerates the

learning speed up 200 times

Subsequently, in Chapter 6 we suggest to use the proposedlRMVas a general
framework for generic object recognition. ELM-LRF is opweic directly on the raw
images without any pre-processing, thus suitable for diffedatasets. In addition, the
simple structure only requires few computations and mihimenan involvement as
most connection weights are generated randomly. The gdrareework of ELM-LRF

is evaluated on several generic object recognition datakk¥dRB, ETH-80, COIL and
ALOI. And it achieves the best accuracy on NORB, COIL and AlbDile comparable

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE



SUMMARY IX

with state-of-the-art result on ETH-80.

In summary, this thesis studies ELM with sparse connectidresfirst present the sparse
ELM as an alternative solution for the unified ELM, which sfgrantly reduces the stor-
age space and testing time. Additionally, the sparse ELMbe#er scalability, making
it preferable to handle large-scale applications. Latercanduct some research on the
ELM-LRF and shows that it is especially suitable and effitfenhighly correlated ap-
plications, such as image processing, speech recognitadnral language processing,

etc.
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Chapter 1

Introduction

1.1 Research Background

Machine learning is a scientific discipline that learns frima data without explicitly
modeling the underlying relationship of the data. It is ygtelevant to other stud-
ies, including statistics, computer science, data minmdyaxtificial intelligence [103].
Currently, one challenging issues for machine learninguote how to generate proper

representations for the original input and how to handledaig problems.

Neural network is a popular method in machine learning asdean thoroughly inves-
tigated in recent decades because of its approximatiorbdapaf complicated non-

linear functions [34]. It was inspired by human brain andraged in a highly complex,
nonlinear and parallel manner. Single-hidden layer femddod neural network (SLFN)
is the most common one because of the simple structure arsiifegb approximation

capability.

The conventional training methods for SLFN, such as badpggation (BP) algorithm
[88], are mostly gradient descent based and require nureemates of the parameters.

Consequently, these training methods are slow, while snffédrom troubles like slow



1.2 Motivations and Objectives 2

convergence rate, local minima, intensive human involvenetc. [51, 50].

The emerging extreme learning machine (ELM) was originatbposed as an improve-
ment for the classic SLFN, where the input weights (conpaciveights from input to
hidden layer) are generated randomly based on any consruabability distribution
[46, 44]. Subsequently, ELM was further developed to thenggalized” SLFN and
provides a unified framework for different learning methadsluding SLFN, support
vector machine (SVM), radial basis function (RBF) netwaetc. [49, 41]. The unified
ELM provides an efficient and deterministic solution forfeient applications, includ-
ing classification, regression, clustering, as it randogelgerates the input weights and

analytically calculates the output weights.

Additionally, image processing, speech recognition andlar tasks are important yet

difficult applications for machine learning techniquesesé tasks involve plenty of lo-

cal correlations and thus cannot be directly handled by aaghine learning techniques.
Traditionally, pre-processing steps first transform thve irgputs (like images, speeches)
into well-designed features, such as shape models, SIRUrésa etc. Then, machine
learning techniques are followed to deal with these featuRecently, vast works are
proposed to deal with the raw inputs directly due to the gseatess in deep learning

[37] and convolutional neural networks (CNNs) [64, 98].

1.2 Motivations and Objectives

ELM is widely used because of its great generalization perémce and exceptionally
fast speed. It presents high accuracy with superb efficiémrcgifferent applications,

including but not limited to biomedical analysis [108], 83/ modeling [107], action

recognition [75], etc. [41].

However, input and hidden nodes are in full connections foroat all ELM imple-

mentations studied before. Thus, it needs huge storage sipatmuch testing time,

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE



1.2 Motivations and Objectives 3

since all the connection weights have to be stored in the mered performed ad-
dition/multiplication operations in the testing phase. abidition, the fully connected
ELM does not model local structures explicitly. Therefateysually performs poorly
when facing applications with strong local correlationg;lsas image analysis, speech

recognition, natural language processing [2, 70].

In this thesis, we aim to study ELM with sparse connections solve the aforesaid

problems associated with fully connected ELM.

In the beginning, we aim to construct a sparse ELM. Theretasetmajor approaches
to train a SLFN [34]: 1) gradient descent based method; 2} kguares based method;
3) standard optimization based method. The conventioaadifg methods are based
on gradient descent and the unified ELM is based on leastesjuém this thesis, we

build up the ELM network based on standard optimization aravide a sparse so-

lution. Comparing to the unified ELM, it significantly redscthe storage space and
testing time, while achieving comparable accuracy. Funtioee, we develop the train-

ing algorithms for classification and regression separafgdhe complexity scales only

quadratically with regard to the training sid& providing better scalability than the
unified ELM.

Later, we discuss the open questican local receptive fields be implemented in ELM?
We show that local receptive fields are naturally valid in EBNt can be easily imple-
mented. Hence, we propose the local receptive fields basszhexlearning machine
(ELM-LRF). The input and hidden nodes are in sparse conmestnd bounded by cor-
responding local receptive fields. In this way, the localaires are explicitly modeled,

enabling ELM-LRF to be suitable for image processing andlamworks.

Finally, we try to solve some real-world applications andgest to use ELM-LRF as
a general framework for generic object recognition. We sttt ELM-LRF provides
a deterministic and efficient solution for generic objeciognition, setting new records
for NORB, COIL [78], ALOI [31] and on par with the best resuftlTH-80 [66].

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE



1.3 Major Contributions 4

1.3 Major Contributions

In this thesis, we thoroughly study ELM with sparse conmewiand well solve the
issues associated with fully connected ELM. In this sectiemsummarize all the major

contributions during the PhD study.

Firstly, we propose a sparse ELM for classification from tBespective of standard op-
timization. It presents comparable accuracy with the uhiEeM, while providing a
compact network and largely reducing the storage spaceeatidd time. Moreover, we
develop a training algorithm for the sparse ELM specificallipe large quadratic pro-
gramming (QP) problem is broken into a series of sub-probjeach of which includes
only one Lagrange multiplier. These sub-problems can besdahnalytically in a se-
quential manner. The computational complexity is quadnatih respect to the training
sizeN. Thus, the sparse ELM has better scalability than the uniielll, making it

superior when facing large-scale applications.

Secondly, we extend the preceding classification-apgkeably network into regres-
sion problems and propose the sparse ELM for regressiohates resemblances with
the aforementioned work, yet dealing with different coastts, loss functions and prob-

lems. It also largely reduces the storage space, testirggaimd provides better scalabil-

ity.

Thirdly, we study another form of sparse connections: loeakptive fields. Strong
local correlations exist in some applications, such as enagcessing, speech recog-
nition and similar tasks. Thus, it is reasonable to expeetrtbtwork to learn these
local correlations by sparse and local connections instéadl ones. We discover that
local receptive fields can be easily realized by ELM and gosthe ELM-LRF net-
work. The input weights to the hidden nodes are generatedbraly and the output
weights are calculated analytically. Experimental resulell demonstrate the superb

performance and extraordinarily fast speed of ELM-LRF.

Finally, we set up a general framework for generic objecbgadtion with ELM-LRF

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE



1.4 Organization of the Thesis 5

because of its distinct merits: 1) task non-specific as ELRFLuses no task-specific
information; 2) simple to use because the users only neetidose several parame-
ters through validation; 3) highly efficient since most ceation weights are generated
randomly. The general framework presents state-of-thaeauracy with exceptionally

high speed on several benchmark datasets, NORB, ETH-8Q, &t ALOI.

1.4 Organization of the Thesis

The thesis is organized as follows:

Chapter 2 presents the literature reviews on current popn&chine learning tech-
niques, including support vector machine (SVM), extrenmariang machine (ELM),

convolutional neural networks (CNNs), etc.

Chapter 3 illustrates the sparse ELM for classification itaiflg showing how it pro-

vides a sparse solution and decreases the computationpleaty.

Chapter 4 extends the sparse ELM for regression, since ttieoch#lustrated in Chapter
3 cannot solve regression problems. It produces a sparsgosplnd requires lower

complexity.

Chapter 5 discusses the properties of local receptive fietdsLM and proposes ELM-

LRF accordingly.

Chapter 6 constructs a general framework for generic obgecgnition with ELM-LRF

and solves real-world applications.

Chapter 7 concludes the thesis and addresses the future work

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE



Chapter 2

Literature Review

2.1 Machine Learning

People encounter decision making in everyday life, such lasthver going out or not
when the weather is cloudy. Thus, it is attractive to endidenbachine to make these
kinds of decisions. For some problems, we can use human kdgelto model the latent
factors and generate explicit mathematical expressianthéproblem. This is called
designing with domain knowledge. However for other proldeme can only collect
some data (several measurements and corresponding labdis¢arn the underlying

relationship implicitly. This isnachine learningvith data-driven knowledge.

Machine learning learns from the data by optimizing a penfamce criterion without ex-
plicitly modeling the underlying relationship within thaid. Key factors for successful
machine learning include representation and generalizafll machine learning tech-
niques consist of data representation and generalizdliata representation determines
in what format the data are presented to the learning teakraqd the generalization

decides how well the system performs on unseen data [103].

Machine learning is closely related to other fields, suchta$stics, computer science,
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artificial intelligence, data mining, etc. Compared withet areas, machine learning
concentrates on how to build up the model, to perform thexpétion and to regularize

in order to make the optimal use of the data.

Before we go any further on machine learning, let us desdhbebasic notations and
assumptions first. There are two types of datasets:
]T

(1) Labeled datasetXnxq = [X] -] ,xi € R andTnxm= [t] ---t]

Rlxm

(2) Unlabeled datasetXnxq = [X] ---x{,]T X € R1xd

whereXy«q is the feature set dfl samples. Each samptec R4 is a feature vector
in row format. T denotes the target set ahd= R™™ indicates the target of the feature
vector. Additionally,x; andt; is called a data pair. In some cases, there are no targets

observed, resulting in the unlabeled dataset.

In machine learning, the underlying distribution is thelmbility of all possible data
pairs to occur in the real world [12]. However, we can onlyatye a subset of all these
possible data pairs, denotedtasining data It is assumed that the training data are
independently and identically.itcd) sampled from the underlying distribution. Thus,
we can model the distribution from the training data and jotezh the unseetest data

using the model.

In general, there are several groups of machine learninnigees depending on the

problem and the dataset provided:

(1) Supervised learning:Given a labeled dataset as the training data, supervised
learning aims to discover the relationship between theifeatetX and the target
setT. If the targetigj = [tj1 --- tim] € RIXM it is a classification problem. If the

targett; € R is a real value, it is a regression problem.

(2) Unsupervised learningThe training data provided is unlabeled. Unsupervised

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE



2.1 Machine Learning 8
Table 2.1: List of common supervised learning methods
Category Learning methods
Neural networks
Support vector machine (SVM)
Linear model Support vector regression (SVR)
Linear regression
Logistic regression
K-nearest neighbors
Non-parametric model Kernel density estimation
Kernel regression
Non-metric model Classification and regression tree (CART), decision free

Parametric model

Naive Bayes

Gaussian discriminant analysis (GDA)
Hidden Markov models (HMM)
Probabilistic graphical models

Mixed methods

Bagging (bootstrap + aggregation)
Adaboost
Random forests

learning focuses on clustering [105], probability densiyimation, dimensional-

ity reduction, etc.

(3) Semi-supervised learnin@emi-supervised learning handles both labeled and un-

labeled datasets and combines them together to solve thiepro

(4) Reinforcement learningReinforcement learning closely interacts with the envi-

ronment and provides a sequence of decision makings, wathuhpose of maxi-

mizing the long-term reward. Unlike the supervised leagnthere are no targets,

or correct actions, for any feature vectors [56].

There are many different types of machine learning teclesguFor instance, linear

discriminant analysis is originated from statistics, whilile-based classifiers or deci-

sion trees come from the field of data mining. Table 2.1 liste& common supervised

learning methods [12].
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2.2 Neural Networks 9

2.2 Neural Networks

It has been discovered that human brain, as an informatmrepsing system, consists
of numerous fundamental processing units, the biologiearons. Each neuron pro-
vides very basic processing capability. And the brain iraegs all these neurons and
performs various kinds of cognitive functions, such asdafjreasoning, computing,

memorizing, learning from experience and decision making.

Neural network is thus inspired by the human brain and bescmgopular machine
learning technique. Unlike conventional digital computers in nature highly com-

plex, nonlinear and parallel. Neural network could apprate severely complicated
functions and solve a wide variety of problems. Neuronso(alled nodes), the ba-
sic components of neural networks, are combined togetheeriorm certain machine
learning tasks, such as pattern recognition, time seredigion, etc. In the past several

decades, large amounts of works have been proposed aboat networks [34, 53].

2.2.1 The basic unit: node

Bias b,

Activation
function

f 5 Output
Vi

Input <

Figure 2.1: The basic unit of neural networks: néde

The node is the basic unit of neural networks. In order to mithée human brain, the

mathematical formulation of the node includes three funelaa elements:

(1) Synapses (connection weight§he input signak; is connected to nodethrough
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2.2 Neural Networks 10

the connection weighty;. Different from the human brain, the weight; in

neural networks may have negative as well as positive viB4gs

(2) Summation operatoiThis operator is a linear combiner that sums up the weighted
input signals. Note that an additional bias tdsgmay be included.
d

V=) WiXj + b = xwi+ by, x € R w, e RI¥1 (2.1)
=1

(3) Activation function The purpose of activation functida is to limit the value of

the output. At here, we show three typical activation fuorcsi

I) Threshold function

1 ifv>0
G(v) = (2.2)
0 ifv<O

i) Piecewise-linear functian

1 v>1
GV)=q¢ v —3<v<3 (2.3)
0 v<-—3
iii) Sigmoid function
1
G(v) = 2.4
(V) 1+exp(—a-v) (24)

More functions can be used in neural networks, suckigrsum hyperbolic tan-

gent etc.
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Input Hidden Output

layer layer layer
(a) Feedforward neural network (b) Recurrent neural network

Figure 2.2: Network architectures

2.2.2 Network architectures

In order to perform certain tasks, the nodes need to be linkedstructured into some
architectures with proper learning algorithm for trainiri@ased on the network archi-

tectures, we can identify two general types:

(1) Feedforward neural networks (FNNsT:he network is layered and organized in
a strictly feedforward manner. The signals are transmittefdrward direction
only. As depicted in Fig. 2.2(a), every node is connecteduitisequent nodes in

forward sense and the network is in full connections.

(2) Recurrent neural networks (RNN#s shown in Fig. 2.2(b), the network consists
of at least one feedback loop. RNN is in effect dynamic bee#us output will in
turn change the input, until reaching an equilibrium stditeus, one input would
generate a series of outputs. Popular RNN networks inclunjgfield network

[38] and Kohonen self-organizing maps [60].
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2.2 Neural Networks 12

2.2.3 Single-hidden layer feedforward neural networks (SENS)

Before the great advancement of deep learning [36] on 2@3@archers had been at-
tempting to train multilayer neural networks for decades, achieving no significant
success. Therefore, SLFN was the most frequently used onegsnthe family of
FNNs. As implied by the name, only one hidden layer exists lifFi%. It provides
great approximation capability with exceptionally simpteucture. Fig. 2.3 shows the

architecture of SLFN.

Input Hidden  Output
layer layer layer

Figure 2.3: Single-hidden layer feedforward neural nekw(@&LFN)

SLFN belongs to supervised learning, where the featureaagdtsets are both provided
in the training data. Traditionally, all connection weightill be adjusted in order to
learn from the training data and predict on the test (unseé@ta) Back-propagation (BP)
algorithm is one famous training method based on gradiestatd [88]. It calculates the
gradients of a loss function with respect to the weights aed$ them backward in order
to minimize the loss function. BP algorithm delivers an alggway to train the SLFN.
However, it also faces problems, such as local minima, sienrhuman involvement
and time consuming of parameter tunings. Extreme learniaghine (ELM) [43, 51]
was thus proposed, which generates the hidden nodes ran@omwhisolves the issues

associated with BP. We will introduce ELM in detail later.
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2.3 Convolutional Neural Networks (CNNSs)

In this section, we take a closer review at the convolutiowalral network (CNN). It
is a variant of multilayer feedforward neural netwo(kn; called multilayer perceptrons
(M LPs)) and an exception that presents nice performance with @ygtilstructure from
decades ago. CNN was initially inspired by the visual cqorpaxticularly by the model
proposed in [52]. The first computational model with locahgections was introduced
by Fukushimeet al. [29].

CNN has been successfully adopted in many different agmits, including but not

limited to object recognition, image processing, speecbgeition. Unlike CNN, tradi-

tional methods for these applications first transform tipaifinto hand-crafted features
and then perform classification on these features [70]. €guently, the performance
largely depends on the quality of the features, which areualandesigned. In contrast,
CNN is operated directly on the raw inputs, eliminating tesign of features. Thus, it
is less task-specific than traditional methods as it imipyitearns the features from the

raw inputs rather than designing for any specific applicatio

C3: f. maps 16@10x10

INPUT C1: feature maps S4: f. maps 16 @5x5
32x32 6@28x28 S2: 1. maps cs: |
A clayer .
50 14014 \120 v F6: layer ?léJTPUT
e

A\ 5 — b &
|

‘ ——— |
‘ FuIIconAection ‘ Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

Figure 2.4: A classic convolutional neural network: LeMNet-

Fig. 2.4 displays a classic CNN, LeNet-5, which was propdsetdeCunet al. [64].
The input is the image to be classified. There are two mainatioas in the CNN: con-
volution and subsampling (also called pooling). Convalnél and subsampling layers
are stacked together alternately until generating the-tagél representations (layer F6

in Fig. 2.4). The representations (or features) will be f&d the subsequent classifier,
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2.3 Convolutional Neural Networks (CNNSs) 14

such as the last two layers of Gaussian connections in Fg. 2.

(1) Convolution Use the 1-st convolutional layer C1 in LeNet-5 as an exantpdeh
unitin C1 has a receptive field in the lower layer: & 5 patch in the input layer.
And the 6 feature maps in C1 are calculated with 6 differetarl Units in the
same feature map share the same filter. This setting enhiglestwork to learn
different representations while keeping the number of patars tractable. Each
filter includes the connection weight € R>*° and a biag. The value of a unit

in C1 (y1) is calculated as follows:

5 5
ylzG(ZZWij-Xij-i-b) (2.5)
=i

whereG is a nonlinear function.

(2) SubsamplingThe feature detected at one location tends to be usefuffatett
locations. Subsampling is a straightforward approach tmduce translational
invariance. Different subsampling methods could be peréat over local areas,
such as averaging and max-pooling [14]. Additionally, ituballeviate the com-

putational burden as it reduces the size of the maps.

Stimulated by the recent developments in deep learning §3%], some variants of
CNN, Deep CNN [62], GoogLeNet [98], show superior perforc@aon super large im-
age datasets, such as ImageNet [89], PASCAL [22]. The comapproach to train a
CNN is the BP algorithm. With so many parameters to be tune€guires a large train-
ing set and computational capability in order to train thiewoek properly. Furthermore,
it also faces the challenging issues associated with BRdmg slow convergence rate,

intensive human intervention, local minima, etc.
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2.4 Support Vector Machine (SVM)

Support vector machine (SVM) and its variants, such as kpsires SVM (LS-SVM),

proximal SVM (PSVM), have been extensively used in the lastdecades in various
applications, including regression, classification angstring [96, 30]. Originated
from statistics, SVM can be regarded as a special form of SBRYN achieves better

generalization performance than conventional neural owds\for most problems [15].

2.4.1 Statistical learning theory

To begin with, we present a brief review of the statisticarfeng theory, on which
SVM is built on. Given two random variablese R1*9 andt € R™™, a probabilistic
relationship exists between them, definedPgs,t) over RY x R™. One sample ok
determines a probability distribution drrather than a unique value. We are provided
with N samples ok,t, X € RN*d and T € RN*™, X andT are the training data, from

which we will learn and model the distribution.

The basic idea of statistical learning theory is: for a figi¢ of training data, the search
for the optimal model of the distributioR(x,t) needs to be constrained to a suitable
small hypothesis space. Otherwise, the model may providélegeneralization per-
formance, even though it could fit the training data exactgpnik formalized these
concepts amodel capacity contrdR3]. Subsequently, thgtructural Risk Minimization
(SRM)[100] was constructed and aimed to minimize the model c&paod empirical
errors simultaneously. The mathematical expression mitated as follows:

M Reg= 3 |12+ Rempl ]

fest
(2.6)

1 N
Remplf) = 3, (0. 100)

whereRem| f] is the empirical errors of the training data aéqlf |? is the model ca-
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Table 2.2: List of common loss functions

Name Loss function
g-insensitive c(&)=1&|e
Laplacian c(é&)=|¢&]
Gaussian c(&) = 1&2
Polynomial c(é) = %\E\p

pacity. The loss function(ti, f(xi)) could have numerous forms. We should avoid very
complicated functiort as it may lead to difficult optimization problem and selea th
most suitable one for each particular problem. Table 2.2as08 some common loss

functions [93].

242 SVM

SVM was initially developed to solve binary classificatiolplems. The core idea of
SVM is to construct a hyperplane in order to separate thaitrgidata with maximal
margin. For multiclass problems, several binary classifee combined using one-
against-one (OAQ), one-against-all (OAA) or directed dicygraph (DAG) methods
[40].

Figure 2.5: Nonlinear feature mapping

Assume we have the training datg .4 = [X] ---me X eRYA Ty g=[t; --tn] ,ti €

{1,—1}. In most cases, the training data are linearly non-sepaiatihe input space.
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Thus, it requires nonlinear mappings from the input to a éigiimensional space:
Xj — @(xi) as shown in Fig. 2.5. In addition, even after the feature rimapperrors

may still exist and should be allowed.

The primal form of SVM is constructed as follows:

o 1 A
Minimize: £, = EHWHZJrC.Z\fiU
i=

Subject tot; (w- @(xi) +b) > 1-§ (2.7)

(>0 i=1--- N

whereC is a user-specified parameter afids the slack variable to account for the
errors. The SVM problem (2.7) is in general NP-complete. ideo to avoid NP-
completenessg = 1 is normally used [15]. And there are many efficient methads t

find the solution if choosing = 1.

Standard optimization method is used to establish the Ioggga function:
N

1, N N
P =|wl +Ci;5i —i;Hifi —izlai <ti (w- @(x;) +b) —(1—&)) (2.8)

wherea; > 0, 4; > 0 are the Lagrange multipliers to be optimized. Accordinght®
Karush-Kuhn-Tucker (KKT) theorem [27], we could find the ioml solution (saddle

point):
07 N
W O=w= i;aitifp(xi>
g:O:C:ai+ui,i:1,-~,N (2.9)
¢
07 N
b _O:>i;a.t. =0
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Table 2.3: List of common kernel functions

Name Kernel function
Polynomial of degred G(u,v) = (1+u-v)d
Gaussian G(u,v) = exp(—||u—Vv||?)
Multiquadric G(u,v) = /(Ju—V|]2+c?)
Trigonometric polynomial of degrezs G(u,v) = %

Substituting (2.9) into (2.8), the dual form of SVM is gerteca

N
titjai o @(Xi) - (xj) +.Z\ai

H

HMZ

Maximize: %4 = E

M=

i

N
Subject to:zlaiti =0 (2.10)
i=

0<a;<C, i=1,-,N

As observed from (2.10), the dual form only involves the dotictg(x;) - ¢(x;). Thus,
we do not need to know the explicit form of the feature mapmi(g). Instead, kernel
function, K(xi,Xj) = @(xi) - @(x;j) satisfying Mercer’s conditions [15] can be adopted.

Table 2.3 summarizes some common kernel functions.

The decision function of SVM is formulated as:

s=1

f(x) = sign(iaitiK(x,xi) + b) = sign(% astsK (X, Xs) + b) (2.11)

wherexs is Support Vector (SV) anbls is the number of SVs. Apparently, the S\g)(

are the samplex{) with non-zero Lagrange multipliers).

2.4.3 Support vector regression (SVR)

The SVM formulation can be extended to deal with regressiablpms. Similarly,

standard optimization method will be adopteeinsensitive loss function is chosen and
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the method is called-support vector regressioa-SVR) [93].

ofti, (%)) = [ti— F(x)]e = { 0 [li-fli)l<e (2.12)

ti—f(xi)]—&  otherwise

Given the training dat& g = [X] ---XMT X e R Tyyr=1tr ---tn]T i €R The

primal function of SVR is:

o 1 k
Minimize: %, = EI\W!\2+C_Z(€i +&)
i=

Subject totj —w- @(xj) —b < g+ (2.13)
w-@(x)+b—t<e+§&*
Ei;{i*zov |:1,,N

The constan€ determines the trade-off between the model capacity andrieadper-

rors. Thus, the Lagrangian of SVR is:

iai (e+& —ti+w-(xi)+b)

_1 2 o : sk
7 =5 MIP+C 3 (6 8) -

\ (2.14)

N
_.Z\ai*(s‘i‘fi* +ti —w- (x) —b) _.Z\(nifi +n7§")

i=
where the Lagrange multipliea;(*),ni(*) >0 andai(*) denotesyj anda*.

Solving the Lagrangian (2.14) and substituting back int® phimal form (2.13), we

obtain the dual optimization problem:

N N N
Maximize: %y = —3 (ai—ai)(aj—aj )K(xi,xj) — € Zl(ai +a) + thi(ai —ai)
i1=1 i= =

=

—

N
Subjectto:y (a;—0a;") =0
e
0<a,0 <C, i=1--- N
(2.15)
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d Input Nodes ~ L Hidden Nodes m Output Nodes
L ° J\ J
T T Input Hidden  Output
ELM Feature Mapping ELM Learning layer layer layer
(a) Two-stage ELM general architecture (b) The network of initial ELM

Figure 2.6: The architecture of ELM

whereK(xi,Xj) = @(xi) - @(X;j) is the kernel function. Consequently, the decision func-
tion of e-SVR is:

f(x) = i(ai — o )K(X,%) +b= i(as— aZ)K(x,xs) +b (2.16)

There are more variants of SVM, proposed for different pagso For instance, the least
squares SVM (LS-SVM) [96] and proximal SVM (PSVM) [30] wersoposed to avoid
the quadratic programming (QP) problem by enforcing etyuabnstraints rather than
the inequality constraints used in the initial SVM. Moregve-SVM was suggested
which used the parameterc [0, 1] to replace the originaC € [0, +) to control the

tradeoff between model capacity and empirical errors [13].

2.5 Extreme Learning Machine (ELM)

Extreme learning machine (ELM) was originally proposed garant and improvement
of single-hidden layer feedforward neural networks (SLFNd#nlike the common un-
derstanding of neural networks, ELM theories demonsttaethidden nodes need not
be adjusted even though they are indeed important [46, 44iniead, it is able to per-

form the learning without iterative tuning of the hidden eedas long as the activation
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functions of these hidden nodes are nonlinear piecewisgncmus.

Subsequently, ELM was further developed to the “generdli#&_FNs. Fig. 2.6(a)
depicts the general architecture of ELM in two stagelsM Feature Mappin@andELM
Learning ELM feature mapping is composed of single or multiple typésandom
hidden nodes, independent of the training data. And ELMniegr concentrates on
how to obtain the output weights when facing different aggiions (representational
learning, regression, classification, clustering, etén).essence, ELM tends to reach

both smallest training error and smallest norm of outpugives [51, 43].

In recent years, ELM has been thoroughly investigated andessfully applied to dif-
ferent tasks, including but not limited to chemical proddd9], bio-informatics [108],
remote sensing [112], computer vision [75]. FurthermotdylEauto-encoder [58] also
produces state-of-the-art accuracy on MNIST dataset, araombenchmark for deep

learning methods, with much faster learning speed.

2.5.1 Basic ELM

Algorithm 1: Basic ELM learning algorithm
1: Initialization: Given the activation functio® satisfying universal approximation
conditions and the numbér
2: Generate input weiglg; € R*9 and biad; € R randomly,i = 1, ..., L;
: Obtain hidden layer output matrit;
4: Calculate output weight g8 = HT;

w

Huanget al. theoretically proved and proposed the basic ELM in [51, 50¢. 2.6(b)
shows the network of ELM. For an inpxt L hidden nodes are constructed and denoted
by h(x):

h(x) = [h1(x) --- h (X)] = [G(ay, b1, X), ---, G(ar,b,x)] € RP*L (2.17)

whereG(a, b,x) is a nonlinear piecewise continuous function that needatiefg ELM

universal approximation conditions [46, 44, 45{|a;,bi}i'-:1 are input weights gener-
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ated randomly based on any continuous probability disiobu Common activation

functionsG includesigmoidfunction, hard-limit function, Gaussiarfunction, etc.

. .. T T
Giventhe training datnxq = [X] ---x{] X € R4, Tyum=[t] ---tf] ,ti e R™,

the hidden layer matrii is built up as follows:

h(X]_) t1
h(x t
T A e
(2.18)
_h(XN)_ NxL _tN_ Nxm
HB=T
=B =H'T

wheref is the output weight connecting hidden and output layer.

2.5.2 Unified ELM

ELM was further advanced by some later works, providing glsiframework to sim-
plify and unify different learning methods, such as SLFNS; &VM, RBF network, etc.
It was proved that ELM has universal approximation capghbi9], thus enabling it to

be applicable for different kinds of problems.

Theorem 2.1 Universal approximation capability: given any continuaasget func-
tion f(x), there always exists a series @fin some nonlinear feature spacg) that

can approximate it.

L
lim ||_ZlBihi(X>— fF(¥)[2=0 (2.19)

L—+o0

Theorem 2.2 Classification capability: provided a random feature maypph(x), if

h(x)B is dense in CRY) or in C(M), where M is a compact set &Y, then the “gen-
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eralized” SLFNs withh(x) as the hidden layer mapping can separate arbitrary disjoint
regions inRY or M [47, 49].

The unified ELM aims to minimize the combination of model aapyaand empirical

errors [49]:

- 1 13
Minimize: ZpeLm = QHWH2+C§ ZHEiHZ
= (2.20)

Subjecttoh(x)B =t —&', i=1,---,N

The solution is derived by following the standard optimiagatmethod. The feature
mappingh(x) in ELM is randomly generated and known to users. Thus, diffefrom
SVM, ELM can be solved directly without invoking any kernahttions. However, we

can also use an implicit mapping and adopt any kernel thafiegtMercer’s conditions.

(1) Non-kernel case:

HT (L+HHT)'T  ifN<L
= (c _1) - (2.21)
(E+HTH) "HTT  ifN>L
(2) Kernel case:
K(X,X1)
f(x) = h(x)HT <6+HHT) T= ; <6+QELM) T (2.22)
K(X,XN)
whereQg v is called ELM kernel matrix with elements:
QELM = HHT . QELML] = h(Xi> . h(Xj) = K(Xi,Xj> (2.23)
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2.5.3 Other variants of ELM

More variants of ELM have been proposed for different agpians. For instance,
previous works determine the number of hidden nddey trial-and-error method. In
order to solve this issue, some algorithms with adjustatrlectures were introduced
to adjustL heuristically. Incremental ELM (I-ELM) adds one randomdeeh node and
calculates the output weight between the new hidden nodetoutput node in each step
[46]. Furthermore, convex I-ELM (CI-ELM) was later suggestn order to improve the
convergence rate. The output weights of existing nodes dvbalre-calculated when
a new node is included each time [44]. Moreover, the errorimized ELM (EM-
ELM) allows adding the hidden nodes one-by-one or groupptmup, introducing more

flexibility into the incremental ELM algorithms [24].

In addition, data may become available sequentially in sprablems, making the pre-
vious batch-based ELM algorithms unsuitable to use. Ligtrey. developed the online
sequential ELM (OS-ELM), which could learn from sequendiata of fixed or varying

size [69].

Furthermore, ELM was further extended to solve semi-supedwor unsupervised learn-
ing problems based on manifold regularization [42, 67]. riegents great learning
capability and high efficiency while being able to handle ticldss classification or
clustering directly. Additionally, the ELM based auto-eder (ELM-AE), which was
proposed in [58], learns data representations with simgpales and discovers the un-

derlying relationship within the data.

2.6 Summary

Machine learning is data-driven and aims to enable mackimetecision making. There
are many different types of machine learning techniquesegeally belonging to four

categories, supervised, unsupervised, semi-supervisectanforcement learning. Pop-
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ular algorithms include neural networks, SVK;nearest neighbord&¢NN), decision

tree, random forests, etc.

Within the family of neural networks, SLFN is the most popuige because of its sim-
ple structure and great approximation capability of coogikd nonlinear mappings.
Additionally, CNN shows advantages when facing problents wirong local correla-
tions, such as image processing, speech recognition andrsiasks. The basic method
to train the SLFN and CNN is the back-propagation (BP) atbari invoking numer-
ous trivial issues, such as slow convergence rate, intepsikameter tunings, numerous
computations. In contrast, ELM randomly generates thetimj@ights and analytically
calculates the output weights. Thus, it does not requiregaaglient descent steps and
exhibits abundant advantages. Different variants of ELMeHaeen developed, suitable
for diverse applications, including classification, reggien, clustering, representational

learning, etc.
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Chapter 3

Sparse Extreme Learning Machine for

Classification

In this chapter, we present a sparse extreme learning mefBirM) for classification.
Unlike the unified ELM, which gives a dense solution, it pa®s a sparse solution,
largely reducing the storage space and testing time. Funtive, we specifically de-
velop an efficient training algorithm for sparse ELM for ddigation. It breaks down
the large quadratic programming (QP) problem into a seriesrallest possible sub-
problems, each of which includes only one Lagrange mudtippb be calculated. Conse-
quently, each sub-problem can be easily solved in an analytiay. More importantly,
it only requires computational complexity quadratic to ttaning sizeN, while that of
the unified ELM is between quadratic and cubic. As a resugireatly accelerates the

training phase when facing large-scale applications.

In summary, compared with the traditional SVM, sparse ELBMires better generaliza-
tion performance with much faster training speed, Upd0 times And comparing to the

unified ELM, it presents comparable generalization peréoroe while greatly scaling
down the training time, testing time and storage requirdyespecially for large-scale

problems.
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3.1 Sparse ELM for Classification

An optimization method based ELM was initially developed48] to handle classifi-
cation problems. It uses inequality constraints and geéa@raparse network. However,

it can only use random hidden nodes as the feature mapping.

In this section, we conduct a thorough investigation onsp&l M, where both kernels
and random hidden nodes are applicable. Furthermore, wetblabsparse ELM unifies
different classification methods, including but not lindite conventional SVM, SLFNs,

radial basis function (RBF) networks, etc.

3.1.1 Problem formulation

The sparse ELM is proposed to solve binary classificationd #hen encountering
multiclass problems, one-against-one (OAQO), one-agath§OAA), directed acyclic
graph (DAG) methods will be utilized to combine several byndassifiers together [40].
The training data provided iXnxq = [X] ~-~me X € R Ty =1ty --tn] ti €

{1,-1}.

Feature mapping

As discussed before, in most cases, the training data arineatly separable in the
input space. Consequently, a nonlinear mapping is negetssttansform the data from
the input space to a higher dimensional feature space. Hteréemapping could be

generated randomly as proved in ELM theories [51, 46].
xie R4 5 h(x)eR™, i=1..- N (3.1)

whereL is the number of hidden nodes. Except for the random featapping in (3.1),

kernels are also applicable as long as meeting Mercer’sithonsl
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Optimization

It was proved that a continuous functidiix) is able to separate any any disjoint re-
gions inRY. In addition, ELM provides universal approximation cagiép[46], which
means ELM could approximate any target functfdw) in order to separate any disjoint

regions inRY:

L
i, | 3 A0 — £ =0 32)

L—+o0

As a consequence, the biaghat is necessary in conventional SVM can be removed.
However, in real implementations, the number of hidden s&dmnnot grow infinitely.
Hence, training errorg;’s should be allowed. Furthermore, the generalizationgoerf
mance is guaranteed by minimizing both empirical erl@il Ei) and model capac-
ity (]| B|?) based on statistical learning theory and structural righimization (SRM)
[100, 23]. Overfitting problems are well solved and a greategalization performance

will be presented.

The sparse solution is produced by enforcing inequalitystramts in the primal prob-

lem as follows:

. 1 A
Minimize: ZpeLm = §||B||2+C Zfi
i=

Subject tot; h(x)B > 1— & (3.3)

(>0, i=1,...,N

Naturally, the Lagrangian function is built up:

N N N
@ELmB,E,a,u):%||B||2+C_Zia—_Ziuia—_;aa-(tah<xi)ﬁ—<1—a>) (3.4)
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The optimal solution will be obtained at the saddle point:

N N
0 ZeLm s

=0=B= Y aith(x)" = astsh(xs)"
d;ﬁ i; le (3.5)
ELM N
aE = O = C = CY. + l/ll

The dual form of sparse ELM for classification is obtained blgstituting the results of
(3.5) into (3.4):

2

N
Minimize: Zygim = Z i0jtitj QeLm (Xi, Xj) —

A .
.; ! (3.6)

NI

Subjectto: KX a; <C, i=1,...,N

whereQg v is the ELM kernel matrix:

QeLm(Xi, X)) = h(xi) - h(xj) = K(xi,X;) 3.7)

Therefore, the decision function of sparse ELM is calcuaate

N Ns Ns
f(x)=h =h ith(x)T | =h dsh(xs)T | = sts s Xs
(X) =h(x)B =h(x) (i;at (X)) (x) (S;at (X)) SZlatQELM(XX)
sign[h(x) <ZSN§1 astsh(xs)Tﬂ non-kernel case

sign(f(x)) =
sign(z's\'ilastsQELM(x,xs)> kernel case
(3.8)

wherexXs is the support vector (SV), and; is the number of SVs.

Remark 3.1 Errors &’s are allowed in the primal objective functig.3) to account
for the samples that are not correctly classified. Thus, ttup@sed sparse ELM is

sub-optimal in the sense that it constructs a soft margin.
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3.1.2 Sparsity analysis

As in (3.5), the optimal solution is calculated at the sagdimt. And the KKT condi-
tions are:

ai (th(x)B—(1-¢&)) =0

Hié&i =0

(3.9)

For the support vectors (SVs), corresponding Lagrangeiphielts need to be non-zero.

Two possible cases are displayed:

(1) O<a;<C:

U >0=¢&=0
(3.10)
ai >0=th(x)B—1=0
In this case, the data is on the decision hyperplane (sépguatundary).

(2) aj=C:
H=0=4¢ >0
ai >0=th(x)B—(1-&)=0 (3.11)

=th(x)B—-1<0
In this case, the data is classified with error.
Remark 3.2 In contrast to the unified ELM, in which almost §|ls are non-zero, the

sparse ELM invokes error§’s only when the inequality constrail(utih(xi)B -1> O)

are violated as aforementioned.

Let us consider the training data and the distribution fromiclv the data are sampled.

Apparently, only a part of them would be on the boundary ossifeed with errors.
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Therefore, only a part of all training data are support viex{8Vs), making the solution

sparse.

As easily observed from Fig. 3.1, the proposed method pesval sparse dual net-
work since all non-SVs are excluded. Considering the primealvork, the architecture
remains the same as the number of hidden nadss$ixed once chosen. However, spar-
sity also ease the computational burden ffosince some components are removed as
shown in (3.5). The computations required in the testingsphand storage space are
both proportional to the number of SVHEl). As a consequence, sparse ELM largely

reduces the storage space and testing time compared witinifiexd ELM.

/J’:ia\t‘h(x\)'

Primal network Dual network

Figure 3.1: Primal and dual networks of sparse ELM for cfassion

3.1.3 Unified framework for different classification methods

As depicted in Fig. 3.1, the primal network of sparse ELM agdreralized” SLFNs
share the same architecture. Additionally, the dual néivedrsparse ELM bears re-
semblance to the dual of SVM [15]. Furthermore, both RBF &kxifi.e. Gaussian
kernel) and RBF hidden nodes are applicable in the sparse. Hlbrefore, the pro-
posed sparse ELM provides a unified framework for differdassification methods,

including but not limited to “generalized” SLFNs, SVM, RBEtworks, etc.
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3.1.4 ELM kernel matrix Qg m

The proposed sparse ELM could use a random feature mappegemel function to
obtain the solution. Hence, similar to the unified ELM [49Q]aiso has the kernel and

non-kernel cases. At here, we present them in detail.

Non-kernel case

The ELM kernel matrixQg_ v is calculated from random hidden nodes directly.
h(X) = [G(a].?bl,X)?"' ,G(aL,bL,X)] (312)

whereG is the activation function anfl, bi}-_;,a € R™L b € R are the input weights
connecting to the hidden nodea;, bi}- ; are generated randomly and the funct®n

needs to satisfy ELM universal approximation conditiorg][4

Qem=HHT (3.13)

It can use either additive hidden nodes or RBF ones. In thewalg, the former two

are additive nodes and the latter two are RBF nodes.

(1) Sigmoid function

1
G(a,b,x) = 3.14
( ) 1+exp(—(a-x+b)) (3:14)
(2) Sinusoid function
G(a,b,x) =sin(a-x+Db) (3.15)
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(3) Multiquadric function

Gla,b.x) = /(|x— a2+ 1?) (3.16)

(4) Gaussian function

x —al|?
| . | )

G(a,b,x) = exp(— (3.17)

Kernel case

We can also obtain the ELM kernel mat¥g \, with kernel functions directly as in
(3.7). The only requirement for the kernel functikinis to satisfy Mercer’s conditions

[15, 16]. The functiorK could be, but not limited to:

(1) Gaussian kernel:

K(Xi,Xj) = exp(—%) (3.18)
(2) Laplacian kernel:

K(xi,xj):exp(—M), g>0 (3.19)
(3) Polynomial kernel:

K(xi,xj) = (14xi-xj)%, dez*t (3.20)

Remark 3.3 ELM provides universal approximation ability if the actiian function G
satisfies the conditions given in [46]. Various types of fioms are applicable with ran-
dom input weights. Alternatively, they can also be consédibased on some implicit
relationship. In this case, the feature mappin) is unknown to the users and the

kernel function K will be adopted, which needs to meet Més@anditions.
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Theorem 3.1 The dual problem of sparse ELM for classificati{@6)is convex.

Proof: The first-order partial derivative is calculated as:

024 ELM

N
dots :tsglajthELM(Xs,XD -1 (3.21)

And the second-order partial derivative is:

02 Ly ELm

=ttQ 22
dadae ttsQELM (Xt, Xs) (3.22)

Consequently, the Hessian matfiX %y g m = TT Qe v T is obtained.

(1) When it is non-kernel cas®g v Will be calculated from random hidden nodes

directly as (3.13):

P Zyem=TTHHTT = (TTH)I L. (TTH)T (3.23)

Obviously,DZDSfdvELM is positive semi-definite.

(2) When itis kernel cas®€g v will be calculated with the functioK. Thus,Qg v
is guaranteed to be positive semi-definite by the Mercerigditmns. Hence,

(2 %yeim =TT QemT > 0 is positive semi-definite.

The positive semi-definiteness of the Hessian miﬂﬁz%ﬂ,v. is the sufficient condi-
tion for the functionZy g v to be convex. As a result, the dual problem of sparse ELM

(3.6) is convex. n
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3.2 Training Algorithm of Sparse ELM for Classifica-

tion

In effect, sparse ELM for classification is a quadratic pamgming (QP) problem. Itis
similar to the conventional SVM (2.10) with an importanttdistion that sparse ELM
does not have the sum constra’[rjil ait; = 0 1. Therefore, the proposed sparse ELM
searches for the optimal solution within a wider range, énglit to present better gen-
eralization performance than the conventional SVM. Addidlly, the training method
will be easier as fewer constraints need to be satisfied. Menvearly works only
discussed the sparse ELM from theoretical perspectivasowitimplementation con-

siderations [48].

Inspired by the ideas of sequential minimal optimizatioM(® [87], which divides the

large QP problem into different sub-problems, we speclficd¢velop a training algo-
rithm for the proposed sparse ELM for classification andyfekplore its advantages.
It divides the large QP problem into a series of sub-probjezash of which includes
only one Lagrange multiplier and can be solved analyticallgrough iterative steps,
we solve these sub-problems one-by-one until certain tiomds reached to trigger the

termination action.

3.2.1 Briefreview of SMO

To begin with, the SMO algorithm proposed by Pkttal. will be briefly reviewed [87].
Prior to the SMO algorithm, the training of SVM requires nuioal calculation of a
large QP optimization problem. The requirement for memaowy @omputational ability

grows rapidly with the increase of the training side

SMO is developed accordingly to solve these issues. Itssihié large QP problem into

1In some cases, SVM can also be trained without the bias, aischihsum constraint, when satisfying
certain conditions [95].
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a series of smallest possible sub-problems. Each suberobicludes two Lagrange
multipliers and could be solved analytically. Consequgeitle time-consuming numer-
ical QP optimization is avoided, providing an efficient gan for SVM. In addition,
one major computation of SMO comes from the evaluation afékiunction. Thus, it

would be further accelerated when using linear kernel olinggavith sparse data.

3.2.2 Optimality conditions

We use the optimality conditions to decide whether the ogltsolution has been reached

or not. If the conditions are met, the optimal solution issiheached, andice versa
The KKT conditions are provided in (4.6). Three possibleesaare listed as follows:
(1) ai=0:

ai=0=1tf(xj))—1>0

(3.24)
Hi=C=4§=0
(2) O< o <C:
ai >0=tf(xj))—1=0
(3.25)
U >0=¢&=0
3) a;=C:
ai=C=tf(x)—1<0
(3.26)

Hi=0=¢& >0
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3.2.3 Improvement strategy

When the optimality conditions are not fully satisfied, hdvosld we further decrease

the objective functionZy g v (3.6). The improvement strategy is formulated accord-

ingly.

Based on the selection criteria, which will be presentedrjat; is chosen to be up-
dated at the current step. The first- and second- order paetizatives of the objective

function %y gLm With regard toac are constructed:

0.7y N
WELM =t ) ajtjQem(Xe, X)) —1=tcf(xc) -1
ac 2 (3.27)
0<%,
#?‘M = QELm (Xc, Xc)

It has been proved that the dual problem of sparse ELM forsifleation (3.6) is a
convex quadratic one based on Theorem 3.1. Hence, the giobmhuma does exist

and can be reached [81]:

024 ELm
% - (9ac 1 - tcf (Xc)
— de  _ R S 7 2
dc = e+ 2Ly ELm O+ QeLm (Xe, Xc) (3.28)
da?

The bounding constrain{®,C| decide the limit ofa;’s. Thus, constraintf), C] enforce

the unstrained minimura; within the range and the constrained minima@f" is thus

calculated.
0 a:<0
qlew — qconstrained_ af  O<ar<C (3.29)
C a>C
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3.2.4 Selection criteria

The selection of the Lagrange multiplier to be updated irhestep is essential. Ide-
ally speaking, it would be the best to choose the Lagrangéiphal that reduces the
objective functionZy g v the most. Nevertheless, it is time consuming and computa-
tion intensive to calculate the exact decreasegZgf v that each Lagrange multiplier
could cause. Therefore, we recommend an estimate methiody. the step size aft; to

estimate the decease & g v thata; brings.

Definition 3.1 d is the update direction. jddenotes whethea; should be increased
or decreased: 1)id= 1, increased; 2) d= —1, decreased; 3)id= 0, increased or

decreased are both acceptable.

(1) a; = 0: aj is on the left boundary of the constrain@Cj. Thus, it can only be

increased. Thereford, = 1.

(2) 0< aj < C: d; should be along the direction to reduce the objective foncti

“Za.em. Therefored; = _Sign(afl;;m)_

(3) a; =C: a; is on the right boundary of the constraif@C]| and can only be de-

creased. Thereford, = —1.

Definition 3.2 Jis the selection parameter:

J= <@> d, i=12..N (3.30)

The Lagrange multiplier with the minimal selection paraenét will be selected in the

current iteration.

c= argl_gninNJi (3.31)
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Theorem 3.2 The chosen Lagrange multipliet will decrease the object functia#fy g1 v

as expected.

Proof:  In the training process, at least one data violates the afityrconditions
(3.24)-(3.26). Otherwise, it would be determined that tpé&moal solution has been
reached and the training algorithm will be terminated. Assihat the data correspond-

ing to ay, violates the optimality conditions. Three possible casesisplayed:

Q) ay=0:
0.%
= ZGEM f (%) —1< 0
aay
0.2, (3.32)
ELM
= - . l
W ( Jday ) <0
(2) O<ay<C:
L OZAEM _y(x)1£0
day (3.33)
Jvzmﬂ. _Sign dgd <0 .
aday aday
v (3.34)

(0L Em
@_<—5a—)4—n<o

Therefore,(__min Ji | is always negative in the training process and the objefiive-

i=1,..,

tion %y eLm is guaranteed to be decreased after every iteration. n
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3.2.5 Termination condition

The training algorithm is based on iterative update. It wldug excessively difficult to
find the exact match of the optimality conditions. In factvduld be enough to satisfy
the optimality conditions within a toleranee It has been discovered that a tolerance
equals to the square root of the machine epsilon is good értoygoduce stable results

[26]. Similar to the SMO implementation [87], we choase 102,

When < min J; | > —¢, the optimality conditions are fulfilled within the tolereae,

geeey

and the training algorithm will be terminated.

3.2.6 Convergence analysis

Theorem 3.3 The training algorithm proposed in this paper will convetgehe global

optimum in a finite number of iterations.

Proof: As proved in Theorem 3.1, the dual problem of sparse ELM (i3.&)convex
QP problem. Additionally, the algorithm chooses a Lagramgétiplier a. that violates
the optimality conditions in each step. And the update ohestep would makex
satisfy the conditions and is guaranteed to monotonicaliyice the objective function

%4 as proved in Theorem 3.2.

Moreover, the Lagrange multipliers are all bounded wifBi€]N. Based on the Osuna’s
theorem proved in [84], the algorithm will convergee to thabal optimal solution in a

finite number of iterations. =

3.2.7 Training algorithm

Algorithm 2 summarizes the training algorithm of sparse Eldvl classification. g

0244 ELm

da Additionally, d is the update direction

is the gradient ofZi g v andg =
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defined in Definition 3.1 and is the selection parameter as in Definition 3.2. And
Gi j =titjQeLm(Xi, Xj).

Algorithm 2: Sparse ELM for classification

Problem formulationProvided the training datd € RN*d T e RN*1 we
construct the QP problem (3.6) with an appropriate ELM kienmegtrix
Qg v and parameter;

1: Initialization: @ =0, g=Ga—-1,J=g9,d=1, a, g, J, d e RN;

-----

corresponding Lagrange multipliet.
3) Update the gradient and update direciipm,;
Endwhile

The newly-developed training algorithm is based on iteeatomputation. In each step,
one Lagrange multiplier will be updated and the correspaopdub-problem is solved.
The computational complexity is quadratic with regard te training sizeN. In con-

trast, the unified ELM obtains the solution through matrixersion, and thus scales
between quadratically and cubically with respecNtoConsequently, sparse ELM for
classification is expected to be faster than the unified ELMm¥hgrows. Additionally,

sparse ELM requires less testing time and storage spacedblems of all scales. In
summary, sparse ELM is quite promising for growing-scalebfgms, such as neuro-

science, image processing, data compression, etc.

3.3 Experiments

The proposed sparse ELM for classification is extensivehgstigated in this section
and compared with the conventional SVM and the unified ELM ome& benchmark
datasets. Except for COD RNA, marked withn the table, all experiments are con-
ducted in MATLAB R2010b running on an Intel i5-2400 3.10 GHRPWC with 8 GB
RAM. The dataset of COD RNA requires more memory and is etatban a VIZ
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Table 3.1: Datasets of Binary Classification

Class Dataset #train | #test| #features
Australian 345 345 14
Low Dims Breast Cancer 342 341 10
Small Size Diabetes 384 384 8
Heart 135 135 13
lonosphere 176 175 34
Mushroom 4062 | 4062 22
Low Dims | SVMguidel 3089 | 4000 4
Large Size| Magic 9510 | 9510 11
+ COD RNA 29768 | 29767 8
Colon Cancer 31 31 2000
High Dims | Colon (Gene Sel) 31 31 60
Small Size| Leukemia 38 34 7129
Leukemia (Gene Sel 38 34 60
High Dims | Spambase 2301 | 2300 57
Large Size| Adult 6414 | 26147 123

server with IBM system x3550 M3, dual quad-core Intel Xeo&H52.40 GHz CPU
with 24 GB RAM. The SVM implementations are realized with &M and Kernel
Methods Matlab toolbox [8].

As previously described, sparse ELM and the training algoriare originally devel-
oped for binary classification only. Thus, when encountgnmulticlass problems, one-
against-one (OAO) method is utilized to combine severahtyisparse ELMs together.

Likewise, SVM also uses the OAO method to handle multiclasblpms.

3.3.1 Datasets description

In order to fully explore the properties and performancepai'se ELM for classification,
many datasets are used in the experiments, including bo#nband multiclass ones.
Additionally, the datasets consist of high or low dimensioand large or small sizes.
They are taken from LIBSVM portal, UCI repository, etc. [28,33, 39, 99]. In total,

15 binary and 8 multiclass datasets are included. Tables2iB.2 list the details of all

datasets.

Preprocessing steps are performed for each individualfeaivhich scales the feature
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Table 3.2: Datasets of Multiclass Classification

Dataset #train | #test| # features| Classes
Iris 75 75 4 3
Wine 89 89 13 3
Vowel 528 | 462 10 11
Segment 1155| 1155 19 7
Satimage 4435 | 2000 36 6
DNA 2000 | 1186 180 3
SVMguide2 196 | 195 20 3
USPS 7291 | 2007 256 10

in [—1,1] linearly. Additionally, the features of the testing datdlwie scaled based
on the factors to scale the training data. For binary prob|eime label is either 1 or
-1. For multiclass problems, the label ig2]- -- ,m, wherem is the number of classes.
All experiments are conducted with 20 repetitions to pradstable results. In each
repetition, the training and testing datasets are rand@miynuted within themselves

separately.

The datasets of Colon Cancer and Leukemia originally coora fdCl repository. How-
ever, the dimensionality is too high, thus difficult to haadTl'herefore, the features are
selected with minimum-redundancy-maximume-relevanceénow{86] in order to make
the datasets easier to deal with. Respectively, 60 featgeees) are selected from 2000
and 7129 ones.

3.3.2 Influence of the number of hidden node&

As described in (3.2), even though ELM has universal appnakion capability, the
number of hidden nodels cannot grow infinitely. Therefore, training errors should
be allowed. Intuitively speaking, the training errors i reduced if increasing the
numberL. Furthermore, overfitting problems have been well solvedbyimizing the

model capacity and empirical errors altogether guided by é¢igularization theory.

As depicted in Fig. 3.2, both the training and testing acoutienprove with the in-

crement ofL for all values ofC. Moreover, training and testing performance keep un-

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE



3.3 Experiments 44

changed aftet becomes large enough. Fig. 3.3 shows more results at the@ahul.

The relationship between accuracy dni$ consistent with our analysis.

We aim to find a fixed., which is suitable for almost all problems, to reduce the com
putational requirement in the parameter tuning stage Ibdimss-validation method is
adopted accordingly. Binary and multiclass problems anelleal separately because the
complexities of these two generic types are different. Hdha datasets considered in
this thesisL = 200 is fixed for binary problems arid= 1000 for multiclass ones. The
effectiveness of these two values, 200 and 1000, is welfigdrby the great validation

accuracy.

3.3.3 Parameter specifications

X2
202

mial K(xi,Xj) = (xi -Xj +1)9. The generalization performance of SVM and sparse ELM

The kernel functions adopted are the Gauskign, Xj) = exp( ) and polyno-
with Gaussian kernel are shown in Fig. 3.4 and Fig. 3.5 rda@de The figures for
the unified ELM is also similar. The combination of trade-p#frameteC and kernel
parameteo or d need to be chosempriori. The 5-fold cross-validation method is thus
adopted. FoC andao, 14 different values are tried: [0.01, 0.1, 0.2, 0.5, 1, 21(8, 20,
50, 100, 200, 500, 1000]. Fdr, 5 values are tried: [1, 2, 3, 4, 5].

In addition, for non-kernel case of sparse ELM and unified ELNs fixed to 200 when
dealing with binary problems and 1000 for multiclass onesd e parametet is also
tried with 14 values: [0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, Bm), 200, 500, 1000]. The

optimal parameter€; ando or d, for all these methods are specified in Table 3.3.

3.3.4 Performance comparison

The optimal parameters €fando ord are fixed once chosen and will be used for train-

ing and testing. The results recorded are average accutangard deviation among
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lonosphere

Training accuracy (%)

c 0.01 1

(a) Training accuracy

lonosphere

Testing accuracy (%)

0.01 1

(b) Testing accuracy

Figure 3.2: The performance of sparse ELM (sinusoid nodés)waryingL
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Figure 3.4: SVM (Gaussian kernel) for dataset lonosphere

Sparse ELM (lonosphere)
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Figure 3.5: Sparse ELM (Gaussian kernel) for dataset |dmergp
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Table 3.3: Parameter Specifications

SVM Unified ELM Sparse ELM
Dataset Gaussian | Polynomial| Gaussian | Polynomial| Sigmoid | Sinusoid| Gaussian| Polynomial| Sigmoid | Sinusoid
Kernel Kernel Kernel Kernel Nodes | Nodes Kernel Kernel Nodes | Nodes
Clo[C] m Cl] o C | m C C Clo C | m C C
Binary Classification
Australian 1 20 | 0.1 2 5 2 1 2 10 0.2 200 2 1 3 20 50
Breast Cancer 2 1 1 3 2 1 2 2 100 200 200 1 1 3 100 5
Diabetes 10 5 (01 2 10 5 1 2 5 200 02|05 0.2 3 1000 1000
Heart 1 2 |10 1 20 10 5 1 2 100 5 5105 1 500 50
lonosphere 1 2 2 1 1 2 0.01| 2 10 1000 1 2 1001 2 200 5
Mushroom 1 1 1 3 1 1 1 2 20 20 1 1 1 4 5 2
SVMguidel 1 05| 2 2 50 | 0.5 | 0.1 5 100 200 20 | 02| 1 5 20 5
Magic 2 1 1 3 200 1 1 4 5 50 50 | 05| 1 4 5 10
* COD RNA 2 1 2 3 5 1 1 3 5 5 1 |05 2 3 50 20
Colon Cancer| 1 1 1 1 5 50 (001 1 5 10 1] 20 1 1 10 100
Colon 2 2 0.2 1 1 0.1 1 4 5 5 5 2 1 4 0.2 100
(Gene Sel)
Leukemia 50 [ 500 1 1 500 | 1000| 1 1 500 50 1] 20 1 1 20 10
Leukemia 2 20 | 1 1 1 1 1 5 2 2 1 1 1 3 10 2
(Gene Sel)
Spambase 5 05| 1 3 10 1 0.01| 3 100 1000 2 |05| 5 5 20 1
Adult 2 2 0.2 2 5 10 1 2 2 5 2 5 1 4 0.2 2
Multiclass Classification

Iris 10 1 1 3 500 2 10 3 1000 500 1 |05 2 2 1000 1000
Wine 5 1 1 3 1 2 0.5 1 2 1 5 |05] 10 2 1000 5
Vowel 10 1] 10 3 20| 05 | 20 4 1000 1000 2 102] 10 4 200 100
Segment 1000( 0.2 | 1 4 1 0.1 | 0.1 5 1000 1000 1 ]01| 10 4 1000 50
Satimage 500 | 1 2 3 1 0.2 | 0.1 4 500 1000 1 ]02| 1 3 1000 1000
DNA 500 | 20 | 1 3 1 1 1 3 2 200 1 |20 10 3 10 10
SVMguide2 5 05| 1 3 1 0.2 {001] 3 20 1000 50 | 0.2 1 1 1000 5
USPS 10 | 10 | 1 4 1 1 0.01| 3 1000 1000 1 1 1 4 1000 1000
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20 repetitions, training time and testing time. In the tabite best testing accuracy and

shortest training time are highlighted in each row.

Binary problems

(1) Comparison with SVMTables 3.4 and 3.5 display the results of sparse ELM in
kernel case and SVM. It is easily observed that sparse ELMeined case pro-
vides better generalization performance than SVM for masasets. Addition-
ally, sparse ELM in non-kernel case (sigmoid and sinusaidoan nodes) provide
comparable generalization performance with SVM, sometibedter and some-
times worse, as seen in Tables 3.6 and 3.7. FurthermoresesgdiM, in both
kernel and non-kernel cases, are superior to SVM regarditrgining speed, ac-
celerating the training phase up300 times In addition, sparse ELM and SVM

both construct compact networks, resulting in similaribesspeed.

(2) Comparison with the Unified ELMIables 3.4-3.7 show comprehensive compar-

isons between the proposed sparse ELM and the unified ELMtraimeng speed

of sparse ELM is much faster than the unified ELM when dealiriilp Warge
datasets, while being slower when facing small datasetsverieeless, when
the dataset is small, training speed is not very importantrthérmore, sparse
ELM largely reduces the testing time for almost all the dataexcept two cases:
Colon (Gene Sel) and Leukemia (Gene Sel) with sigmoid hidaetes. In these
two cases, the number of training d&tas extremely small. Hence, sparse ELM
only reduces a little computation in the testing phase, ¢éveagh it does provide

a more compact network. Thus, unaccounted random reasondananate the

computation and lead to this outcome.

Multiclass problems

(1) Comparison with SVMThe kernel case of sparse ELM presents better generaliza-

tion performance for most datasets. On the contrary, thekeomel case of sparse
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ELM is not able to produce better performance than SVM. Téisaused by the
OAO method. The non-kernel case of sparse ELM is in effechdam method
and thus has higher variation than SVM. Therefore, when @oimdp several bi-
nary sparse ELMs together by OAO method, the effects of migagation will
be amplified, resulting in the degradation of generalizaperformance. Addi-
tionally, sparse ELM, in both kernel and non-kernel casekijeaes much faster

training speed than SVM

(2) Comparison with the Unified ELMAs observed from Tables 3.4-3.7, the gener-
alization performance of sparse ELM is on par with the unit#dl. However,
sparse ELM is only directly applicable for binary problemjile the unified
ELM can handle both binary and multiclass ones straighthodly. Therefore,
the proposed sparse ELM is sub-optimal than the unified ELMmfacing mul-
ticlass problems. The unified ELM realizes faster training gesting speed for
most datasets. Moreover, the variations of training antihigaccuracy of sparse
ELM are higher than the unified ELM. Therefore, when facindtrolass prob-

lems, the unified ELM is a better choice.

Number of support vectors (SVs) and storage space

When facing multiclass problems, SVM and sparse ELM use OAfthod to combine
several binary classifiers together, while the unified ELEMutes the solution directly.
Consequently, the number of total vectors are differenkingathe number of SVs of

the unified ELM incommensurable with the other two methods.

Table 3.8 lists the number of SVs for all these methods. ThiednELM produce a
dense network so that all vectors are SVs. In contrast, bt nd the proposed
sparse ELM provide sparse networks as only a proportionctbve are SVs. However,
the sparsity varies for SVM and sparse ELM when dealing wiileidnt datasets. It is

not definite which one provides a more sparse network.

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE



3.4 Conclusions 51

3.4 Conclusions

ELM was originally developed as an improvement for the ¢aS&FNs and extended
to a unified framework for different applications, includinegression, classification,
clustering, etc. However, the unified ELM produces a den$gieq, thus requiring
much storage space and testing time. In this chapter, wepeagpsparse ELM for clas-
sification as an alternative solution, significantly redgcihe storage space and testing
time. Moreover, it is also demonstrated that the proposadssELM unifies different

classification methods, including SVM, SLFNs, RBF netwoeks.

Furthermore, an efficient training algorithm is specifigallesigned for the proposed
sparse ELM for classification. In summary, sparse ELM is falbte over SVM and
the unified ELM for: 1) presenting better generalizationfpenance with much faster
training speed (up t600 time$ than SVM; 2) largely reducing the storage space and
testing time than the unified ELM. Additionally, when facitagge-scale binary prob-
lems, sparse ELM is highly recommended for achieving evstefaraining speed than

the unified ELM, which is already exceptionally efficient.
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Table 3.4: Performance of sparse ELM, unified ELM and SVM v@tussian Kernel

SVM Unified ELM Sparse ELM
(Gaussian Kernel) (Gaussian Kernel) (Gaussian Kernel)

Dataset Training| Testing | Training | Testing| Training| Testing | Training| Testing| Training Testing |Training| Testing

AccuracyAccuracy Time (s) | Time (s) AccuracyAccuracy Time (s)|Time (s) Accuracy | Accuracy |Time (s) Time (s)

Binary Classification
Australian 90.96+0| 83.09+0| 0.2411 | 0.0039|93.62t0|84.35+0| 0.0098 | 0.0043|90.614+-0.4084.62+0.60 0.0088| 0.0012
Breast Cancer 98.25+0( 97.36+0| 0.0550 | 0.0010|99.12+0|98.24+0| 0.0092 | 0.0039|99.05+0.2298.21+0.13 0.0075| 0.0009
Diabetes 78.65t0| 73.96+0| 0.1319 | 0.0026|83.33+0| 74.48+0| 0.0119| 0.0062|84.92+0.18 74.670.16 0.0164| 0.0030
Heart 92.59+0|82.96+0| 0.0385 | 0.0007|84.44+0|84.44+0| 0.0033 | 0.0011|85.48+0.4984.44+0.74 0.0042| 0.0006
lonosphere 93.75t0(93.7140| 0.0667 | 0.0009|96.02t0|91.43+0| 0.0036 | 0.0015| 95.45+0 |90.31:+0.38 0.0063| 0.0007
Mushroom 100+0 | 100+0 | 41.4878| 0.3148| 100+0 | 100+0 | 2.3835| 0.6463| 100+0 100+0 | 0.8188| 0.0584
SVMguidel 97.09+0|96.90+0| 5.1869 | 0.1154|97.38+0|96.85+0| 1.1208 | 0.4803|97.42+0.07/97.00+0.06 0.4809| 0.0703
Magic 84.29+0|85.73+0| 311.7731 2.2336|88.46+0|86.88+0| 24.0994| 4.5080|87.4740.0586.20+0.07] 5.1139| 1.4432
* COD RNA 95.31+0] 95.25+0(3858.086(011.8995 95.33+0 95.22+0|354.830851.755394.26+0.10 94.44+0.00 62.7069 19.0089
Colon Cancer 100+0 |70.9A40| 0.0494 | 0.0382|96.7A4-0|87.10+0| 0.0412 | 0.0395|95.16+1.61{90.16+2.16 0.0357| 0.0316
Colon (Gene Sel) | 100+0 |93.55t0| 0.0128 | 0.0004| 100+0 |90.32t0| 0.0027 | 0.0008| 100+0 93.55+0 | 0.0020( 0.0006
Leukemia 100+0 |82.35-0| 0.4327 | 0.4389| 100+0 |82.35-0( 0.4134| 0.3949| 100+0 79.41+0 | 0.4093| 0.3856
Leukemia (Gene Sel)100+0 | 100+0 | 0.0114 | 0.0013| 100+0 | 100+0 | 0.0017| 0.0008| 100+0 100+0 | 0.0016| 0.0004
Spambase 96.61+0|92.83+0| 9.7045 | 0.1706|95.13+0|93.70+0| 0.5707 | 0.2841|95.10+0.1293.02+0.10 0.3197| 0.0956
Adult 90.4740|84.33+0| 172.3218 7.2712|85.02t0| 84.66+0| 6.6666 | 9.7930|85.03+0.1184.48+0.04 2.5282| 3.4892
Multiclass Classification

Iris 100+0 |93.33:0| 0.0253 | 0.0009| 100+0 |97.33+0( 0.0029 | 0.0008|98.40+0.5397.2A4-1.60 0.0028| 0.0007
Wine 100+0 |97.75-0( 0.0304 | 0.0011| 100+0 |98.89+0( 0.0027 | 0.0008| 100+0 [97.92+0.82 0.0060| 0.0013
Vowel 99.81+0|62.55+0| 0.6316 | 0.0310| 100+0 |57.79+0| 0.0230| 0.0098| 100+0 [63.55+1.25 0.1355| 0.0475
Segment 100+0 |91.43+0| 5.1300 | 0.3360| 100+0 |96.10+0( 0.2311| 0.0641| 100+0 [95.770.34 0.2357| 0.2303
Satimage 100+0 |90.55+0( 11.5949| 0.4161| 100+0 |90.95-0( 2.6646 | 0.3495|99.85+0.0290.08+0.26 2.4090| 1.5518
DNA 100+0 |94.10+0| 2.0669 | 0.1056| 100+0 |85.24+0( 0.4383| 0.1628| 100+0 [86.94+0.38 0.5307| 0.3038
SVMguide2 100+0 |56.414-0| 0.1832 | 0.0031| 100+0 |63.08:0( 0.0028 | 0.0022| 100+0 63.08t0 | 0.0153| 0.0033
USPS 99.88+0| 95.0A4-0| 20.0226| 1.9588|99.99+0|94.974-0| 10.4227| 0.8524| 99.99+0 |94.82+0.08 10.4365 9.2329
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Table 3.5: Performance of sparse ELM, unified ELM and SVM Wwitdtynomial Kernel

SVM Unified ELM Sparse ELM
(Polynomial Kernel) (Polynomial Kernel) (Polynomial Kernel)
Dataset Training| Testing | Training | Testing| Training| Testing | Training| Testing| Training Testing |Training| Testing
AccuracyAccuracy Time (s) | Time (s) AccuracyAccuracy Time (s)|Time (s) Accuracy | Accuracy |Time (s) Time (s)
Binary Classification
Australian 90.72+0|84.93+0| 0.0749 | 0.0003|92.46+0|84.93+0| 0.0056 | 0.0027|90.46+0.4084.23+0.78 0.0108| 0.0022
Breast Cancer 100 |95.310| 0.0359 | 0.0015|98.86+0|97.65+0| 0.0050 | 0.0016|99.23+0.2898.53+0.21] 0.0093| 0.0011
Diabetes 83.040| 74.74+0| 0.1180 | 0.0005|83.59+0| 75.26+0| 0.0071 | 0.0073|81.95+0.7373.89+0.43 0.0173| 0.0066
Heart 87.41+0|82.22+0| 0.0348 | 0.0003|82.96+0|83.70+0| 0.0023 | 0.0008|83.85+1.04/84.00+1.16 0.0033| 0.0003
lonosphere 94.89+0(89.710| 0.0410 | 0.0001|97.73t0{91.43+0| 0.0020 | 0.0008{92.59+0.9990.40+0.50 0.0044| 0.0005
Mushroom 100+0 | 100+0 | 4.5436 | 0.0760| 100+0 | 100+0 | 1.3134| 0.2049| 100+0 100+0 | 1.0398| 0.0468
SVMguidel 96.60+0| 96.25+0| 4.3610 | 0.0175|97.02t0|96.63+0| 1.2677 | 0.7589|96.44+0.0996.19+0.08 0.6873| 0.1456
Magic 87.19+0|86.114-0| 361.8243 2.6178|87.78+0|86.42+0| 18.2095| 5.3064|86.14+0.1285.61+0.12 6.4395| 2.0246
* COD RNA 95.22+0 95.00+0|4342.746014.4478 95.00+0| 95.014-0 | 208.976026.066894.92+0.03 94.98+0.05 36.6408 5.0626
Colon Cancer 100+0 |77.42:0( 0.0121 | 0.0003| 100+0 |80.65-0( 0.0039 | 0.0047|98.48+2.3989.84+2.34 0.0018| 0.0016
Colon (Gene Sel)| 100+0 |90.32t0| 0.0126 | 0.0007| 100+0 |90.32t0| 0.0007 | 0.0006| 100+0 93.55+0 | 0.0015| 0.0006
Leukemia 100+0 |85.29+0( 0.0121 | 0.0019| 100+0 |88.24+0( 0.0062 | 0.0052| 100+0 (83.53+3.40 0.0029| 0.0021
Leukemia (Gene Sel)100+0 |97.06+0| 0.0088 | 0.0001| 100+0 | 100+0 | 0.0029| 0.0017| 100+0 100+0 | 0.0020| 0.0008
Spambase 97.83t0|91.8A4-0| 8.0709 | 0.1114|94.18+0|92.39+0| 0.5882 | 0.3232|88.53+0.17/88.53+0.18 0.4283| 0.1936
Adult 90.38+0| 82.15+0| 244.3654 1.6786|90.04+0|82.14+0| 5.4775| 4.0977|89.14+0.1284.31+0.09 2.9209| 3.6742
Multiclass Classification
Iris 100+0 | 96.0G+0| 0.0264 | 0.0009| 100+0 |97.33+0( 0.0076 | 0.0010|99.00+0.9397.4741.66 0.0016| 0.0003
Wine 100+0 |97.75:0( 0.0332 | 0.0013| 100+0 |98.88+0( 0.0018 | 0.0009|99.44+0.7597.46+1.89 0.0042| 0.0004
Vowel 100+0 |59.74+0( 0.7054 | 0.0714| 100+0 |62.64+0( 0.0526 | 0.0202|97.97-0.51{64.86+3.89 0.1561| 0.1501
Segment 99.83+0| 96.45+0| 0.4502 | 0.0792|99.13+0|96.88+0| 0.1603 | 0.0871|95.90+0.3688.00+0.28 0.2332| 0.0965
Satimage 98.35+0( 89.55+0| 11.2106| 0.4514|95.96+0|89.05+0| 4.5560 | 0.6345|93.96+0.1490.96+2.76 3.0376| 0.4097
DNA 100+0 |94.86+0| 25.6512| 0.3876| 100+0 |94.86+0( 0.5727 | 0.2203|99.76+0.02195.10+1.52 0.5695| 0.2369
SVMguide2 100+0 |56.414-0( 0.0744 | 0.0039|94.39+0|56.414-0| 0.0046 | 0.0027|94.52+0.6958.85+4.00 0.0091| 0.0005
USPS 100+0 | 95.52+0| 27.9954 | 2.3716|99.99+0|94.92+0| 12.2367| 0.9945|99.27+0.0396.66+5.99 9.9507| 1.6330
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Table 3.6: Performance of sparse ELM and unified ELM with SighiHidden Nodes

Unified ELM

(Sigmoid Hidden Nodes)

Sparse ELM

(Sigmoid Hidden Nodes)

Dataset Training AccuracyTesting Accurac y;rr?]'gl?g _;;Sélr(]g) Training AccuracyTesting Accurac ’/—Trirrilgl?s% _;;Sélr(]g)
Binary Classification
Australian 89.06+0.02 84.62-0.03 | 0.0100| 0.0067| 87.10t0.94 85.32:0.72 | 0.0181| 0.0023
Breast Cancer 97.42+0.01 97.89+-0.02 | 0.0103| 0.0073| 98.01-0.21 97.99-0.39 | 0.0085| 0.0029
Diabetes 82.6G+0.00 74.32:0.00 | 0.0118| 0.0076| 81.41-0.93 74.114-0.59 | 0.0148| 0.0052
Heart 85.7G+0.01 83.63:0.01 | 0.0039| 0.0023| 85.74+0.90 83.814+-1.18 | 0.0079| 0.0016
lonosphere 94.46+0.01 90.63:0.01 | 0.0047| 0.0028| 92.05+-0.80 90.66+1.26 | 0.0073| 0.0022
Mushroom 99.914-0 99.84+-0 2.0256 | 0.3225| 98.61-0.44 98.1A40.51 | 0.5291| 0.0912
SVMguidel 94.540.01 94.35-0.01 | 0.9222| 0.2601| 94.33+:0.31 94.30+0.48 | 0.3313| 0.0955
Magic 82.89+0.02 82.84+0.02 | 11.0930| 1.4562| 81.48+0.27 81.55+0.30 | 3.0090| 0.8074
*x COD RNA 94.63+0 94.63+0 203.9884 9.4621| 94.29+0.04 94.36£0.05 |32.0594 2.2913
Colon Cancer 100+0 83.39+-0.06 | 0.0085| 0.0037| 94.03+3.27 89.03+:4.26 | 0.0097| 0.0036
Colon (Gene Sel) 100+0 93.06:0.02 | 0.0024 | 0.0012| 98.98+0.02 93.55+0 0.0015| 0.0015
Leukemia 100+0 76.914-0.05 | 0.0379| 0.0143| 98.03+-2.18 78.09:2.37 | 0.0294| 0.0087
Leukemia (Gene Sel) 100+0 98.82:0.01 | 0.0026 | 0.0013 100+0 99.12+1.35 | 0.0025| 0.0015
Spambase 91.29+-0.00 91.18+0.00 | 0.5428| 0.1239| 89.03+1.58 84.78:1.44 | 0.2374| 0.0921
Adult 84.46+0.00 84.29%4-0 7.8926 | 3.1285| 83.28+0.58 83.414-0.57 | 1.3478| 1.3899
Multiclass Classification
Iris 98.6 40 97.2G+0.00 | 0.0045| 0.0046| 97.00+1.33 97.4G+0.66 | 0.0085| 0.0115
Wine 100+0 99.16+0.01 | 0.0061| 0.0061 100+0 99.16+0.70 | 0.0103| 0.0142
Vowel 94.63+0.08 57.85:0.07 | 0.0405| 0.0443| 96.13+1.67 59.84+2.46 | 0.2709| 1.3603
Segment 97.714-0.00 95.88:0.00 | 0.1809| 0.1505| 91.68+0.45 91.5A40.60 | 0.3961| 1.5215
Satimage 92.88+0.00 89.89+-0.00 | 3.8516| 0.7572| 87.86:0.17 85.65+0.22 | 2.8562| 4.3452
DNA 98.06+0.00 93.68:0.01 | 0.5864 | 0.2724| 94.45+-1.88 88.19+-2.55 | 0.5002| 0.5810
SVMguide2 92.59+0.01 54.74+0.15 | 0.0129| 0.0148| 84.44+1.09 53.56+5.10 | 0.0233| 0.0359
USPS 99.09+-0 93.514-0.00 |11.1521) 1.2797| 98.13+0.08 93.64+-0.15 | 9.0268|15.0449
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Table 3.7: Performance of sparse ELM and unified ELM with Sgid Hidden Nodes

Unified ELM Sparse ELM
(Sinusoid Hidden Nodes) (Sinusoid Hidden Nodes)
Dataset Training AccuracyTesting Accurac y;rr?]'gl?g _;;Sélr(]g) Training AccuracyTesting Accurac ’/—Trirrilgl?s% _;;Sélr(]g)
Binary Classification
Australian 86.84+0.00 85.84+0.00 | 0.0094 | 0.0064| 86.42+:0.62 85.3G+0.62 | 0.0095| 0.0029
Breast Cancer 98.03+0.00 98.56+0.00 | 0.0089 | 0.0057| 98.02+0.23 97.82:0.39 | 0.0077| 0.0025
Diabetes 83.48+0.00 74.49-0.00 | 0.0105| 0.0068| 81.72+0.57 74.7H0.66 | 0.0127| 0.0038
Heart 88.0740.01 83.15+0.01 | 0.0038| 0.0019| 85.22+1.11 84.56+1.13 | 0.0048| 0.0010
lonosphere 94.914+0.01 88.09:0.01 | 0.0036| 0.0025| 89.03+0.68 88.63:1.02 | 0.0065| 0.0015
Mushroom 99.92+-0 99.88+0 1.9781 | 0.3237| 97.79:0.27 97.32:0.31 | 0.5043| 0.0860
SVMguidel 95.22+-0.00 94.86:0.00 | 0.6956 | 0.2490| 94.50+0.17 94.614+0.24 | 0.3210| 0.0867
Magic 84.02+0.00 83.740.00 |11.3833 1.4718| 82.20+0.13 82.82+0.13 | 2.9645| 0.7939
*x COD RNA 94.28+0 94.38+0 222.07029.3984| 93.95+-0.06 94.014-0.08 |33.0523 2.7118
Colon Cancer 100+0 82.1G+0.06 | 0.0084 | 0.0031| 90.16+2.39 88.06+4.22 | 0.0094| 0.0030
Colon (Gene Sel) 99.8%-0 91.29+-0.03 | 0.0015| 0.0014| 98.89+2.90 93.711.24 | 0.0013| 0.0011
Leukemia 100+0 81.03:0.07 | 0.0345| 0.0148| 98.03+1.64 81.4H44.02 | 0.0290| 0.0084
Leukemia (Gene Sel) 100+0 99.12+0.01 | 0.0029| 0.0017 100+0 98.82+1.44 | 0.0016| 0.0012
Spambase 90.32+0.00 90.840.00 | 0.5050| 0.1201| 87.39+3.39 85.79-2.10 | 0.2281| 0.0086
Adult 84.80+0 84.55+-0 4.6063| 2.9173| 84.710.16 84.66+0.07 | 1.3163| 1.2399
Multiclass Classification
Iris 98.6G+0.00 96.20+0.01 | 0.0043| 0.0037| 97.2A-0.29 97.33:0.42 | 0.0057| 0.0082
Wine 100+0 99.1G+0.01 | 0.0056 | 0.0046 100+0 99.1G+0.84 | 0.0084| 0.0122
Vowel 97.23+0.00 59.740.01 | 0.0389| 0.0428| 97.40+1.49 60.74+1.98 | 0.2407| 1.0784
Segment 96.29+-0.00 95.28+0.00 | 0.1373| 0.1423| 91.34+-0.46 91.16+0.57 | 0.4104| 1.5421
Satimage 86.09+0.00 83.614+-0.00 | 2.1227| 0.6790| 87.84+0.14 85.70+0.23 | 2.8198| 4.4148
DNA 98.114-0.00 94.540.00 | 0.4008| 0.2478| 96.64+0.18 94.13:0.42 | 0.4793| 0.5367
SVMguide2 95.58+0.01 59.740.07 | 0.0116| 0.0133| 84.21-1.12 59.38t:5.56 | 0.0221| 0.0344
USPS 97.940.00 93.56+0.00 | 6.7664 | 1.1829| 96.76+-0.06 92.98+0.11 | 9.1235|14.9499
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Table 3.8: Number of Support Vectors

Dataset # Total _SVM _ _ Sparge E!_M _ _ _ Unifie_d EITM . _
Vectorg GaussianpPolynomial GaussianPolynomial Sigmoid| Sinusoid GaussianPolynomial Sigmoid| Sinusoid
Kernel Kernel Kernel Kernel | Nodes| Nodes| Kernel Kernel Nodes| Nodes
Binary Classification
Australian 345 306 109 240.35| 112.85 | 122.7 | 119.7 345 345 345 345
Breast Cancer 342 80 41 68 51.3 53.2 | 52.25 342 342 342 342
Diabetes 384 213 202 278 204.1 219.7 | 217.55| 384 384 384 384
Heart 135 72 46 79.45 58.75 68.8 | 68.05 135 135 135 135
lonosphere 176 93 48 98.95 85.65 94.15 | 101.45| 176 176 176 176
Mushroom 4062 956 135 323.15 174.9 582.8 | 727.75| 4062 4062 4062 | 4062
SVMguidel 3089 429 354 464.35| 575.4 | 910.15| 886.75| 3089 3089 3089 | 3089
Magic 9510 | 3469 3190 3262.1 | 3599.75 |4429.25 4428.6| 9510 9510 9510 | 9510
* COD RNA 29767| 5002 3912 11359 | 5972.3 | 7578.8| 7853.6| 29767 29767 | 29767 | 29767
Colon Cancer 31 31 24 29.3 25.2 27.6 | 26.85 31 31 31 31
Colon (Gene Sel)| 31 30 17 25.85 24.6 29.35 | 19.55 31 31 31 31
Leukemia 38 33 32 38 32.9 27.8 | 27.05 38 38 38 38
Leukemia (Gene Sell) 38 12 7 38 22.45 12.3 111 38 38 38 38
Spambase 2301 772 392 810.95| 1311.8 | 1586.2| 1590.4| 2301 2301 2301 | 2301
Adult 6414 | 2729 2261 | 2531.15| 2450.85 |2918.45 2666.1| 6414 6414 6414 | 6414
Multiclass Classification
Iris 150 29 23 54.45 38.4 46.8 47.4
Wine 178 72 46 149.05 49.9 54,55 | 53.25
Vowel 5280 | 1281 1066 |4146.25] 1692.3 | 2487.4| 2483.8
Segment 6930 | 5010 328 6116.75 866.45 | 1323.5|1370.05
Satimage 22175 2376 1528 |19197.1] 2073.3 | 2705 | 2690.2
DNA 4000 612 2237 |3830.95 1967.05 |1136.75 1040.85
SVMguide2 392 386 163 392 175.1 | 188.95| 187.5
USPS 65619 3179 5404 |58532.4f 5581.3 | 6205.7| 6573.1

SuoISNfaU0D 'S
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Chapter 4

Sparse Extreme Learning Machine for

Regression

In the last chapter, a sparse ELM is proposed for classificasignificantly reducing
the storage space, testing time and computational contyleddiowever, it cannot be
applied to regression problems. In this chapter, we propagarse ELM for regression
and develop a specific training algorithm based on iteratoraputation. It is favored
over the unified ELM for large-scale applications by promglbetter scalability. Ad-
ditionally, it is also advantageous over support vectoresgion (SVR) by producing

better generalization performance with much faster le@rspeed.

4.1 Sparse ELM for Regression

When facing regression problems, the training data praMisteX g = [XI . ~XL]T ,Xj €
Rd and Ty = t1 ~-~tN]T ,ti € R. Unlike classification, the targetss in regression
problems are real numbers rather than binary labels as 3). (Therefore, the sparse
ELM in Chapter 3 cannot deal with the infinite possible valoks's and is not applica-

ble for regression problems. In this section, we develosgase ELM for regression.
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4.1 Sparse ELM for Regression 58

4.1.1 Problem formulation

When facing regression problems, the target is to find a fondt(x) = h(x)B to min-
imize the expected risks on the probability distributioanfr which the training and
testing data are sampled [93]. However, the distributioaniknown and needs to be
estimated with some criteria. According to the regularcratheory and structural risk
minimization (SRM) [23, 100], the weighted sum of model czipyel| B||? and empirical

errorsRemp| f] is chosen as the estimate criteria.

L A
Minimize: Rreg = EHBHZ—i_ Remp! f]

N2,
wherec(t;, f(xi)) is the the loss functionc(t;, f(xi)) may have various forms as long

as itis convex [27, 93].

In order to derive a sparse solution, we choosestiesensitive loss function, similar
to e-insensitive SVR [20, 93]. Errors will be ignored if they amithin a e-wide tube

around the target functiof(x).

(b, F(x)) = 0 for |t—f(xi)|<e& 4.2)
R Iti— f(xj)|—¢& for otherwise '

Remark 4.1 The loss function depends on the problem to be solved. If lsetshe
c(ti, f(x)) = (t— f(x))z, a matrix inversion problem will be generated, leading to a

specific case of the unified ELM.
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4.1.2 Optimization

Using thee-insensitive loss function (4.2) in the problem formulati@.1), we can

obtain the primal problem of sparse ELM for regression:

. 1 N )
Minimize: Zpeim = §||B||2+C Z(Ei +&")
i=

Subject toti —h(x)B < £+ ¢ (4.3)
h(x)B—ti <e+§&
£9>0, i=1..N

whereEi(*) denotesf;, &* > 0 andC = 1/(AN).

Remark 4.2 Noted that the output functionxt) = h(x)B is different from SVR: () =
@(X)W+b. The bias b is removed in ELM because of the universal appaiion ca-
pability (3.2). Therefore, it completely solves the computational inefiicy associated

with b and gives sparse ELM for regression distinct merits.

Following the procedure of standard optimization, the lagian?g| v is constructed

as follows:

1 N N
Fewn=3|BIF+CY (&8~ 3 aife+&-t+h(p)
N

— Zlai* <e + &+t — h(Xi)B> - _iui &i— _iui*fi* (4.4)

a(*),“i(*) >0

Whereai(*)denotesxi,ai* andui(*) denotegy;, L.
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The optimal solution will be calculated at the saddle point:

0 i ]

M _0=B= Z(ai —a)h(x)T
B =

Py (4.5)

ZL)M =0=C=a;" +u"
¢
Accordingly, the KKT conditions are obtained:
ai(ti — f(Xi)—S—fi) =0
o (f(xi) —ti—e— &) =0 (4.6)

W0 Zg

Remark 4.3 The conditioro; - a;" = 0,i = 1,--- ,N is guaranteed to be satisfied.

For the KKT conditions (4.6), we can derive the following teases:

@) fo>0t—f(xi)=€e+&=t—1(x)>¢
(2) Ifa>0,f(x)—ti=e+& =t —f(x) <—¢

It can be easily observed that these two cases are conaddidth each other. There-

fore, at least one af; anda;* should be zero.

4.1.3 QP problem and convexity

The dual form of sparse ELM for regression is derived by pgtthe saddle point con-

ditions (4.5) into the Lagrangian function (4.4).

N N N N
(@i —ai')(aj — a})Qewmij — .Z\(Gi —ai)ti+ S.Z(ai +a7)

Minimize: Z4eim =

NI =
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4.7)

whereQg v is called ELM kernel matrix. And it has two cases:

(1) Non-kernel casePlease refer to (3.12) and (3.13) for details.

(2) Kernel case (3.18)-(3.20) list several common kernel functio@aussianLapla-

cian andPolynomial

For the conciseness of the objective functighg v, we use); to replacea; — ;" and
Aj is the Lagrange multiplier which needs to be optimized in tiilaéning phase. In
addition, as explained before, at least oneoanda;* needs to be zero. Consequently,

|Ai| = ai+af.

1 N N N N
Minimize: ngLM =z )\')\'QELM'7' — Y Aitj+¢€ |)\|
2;,; o " i; " i; | (4.8)

Subjectto:—C <A <C

Straightforwardly, we can obtain the output function of #parse ELM for regression

as follows:

f(x) =h(x)B = h(x) (_i)\ih(xi)T> = h(x) (i)\sh(xs)T> = i)\sK(x,xs) (4.9)

wherexs is support vector (SV) anls is the number of SVs.

Remark 4.4 The primal problen{4.3)involves two constraints and two slack variables
&, &*. Hence more dual variable@;, a;*, b, 1£*) exist in(4.7) compared with classi-
fication. Moreover, the dual form (QP problem) (4.8) includes an additional term
ezi’\‘: 1]Ai], making it necessary to carefully avoid crossing the valuse@ause the par-
tial derivatived.Zy g m/d4; is not defined ad; = 0.
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Remark 4.5 Different from support vector regression (SVR) [100, 9Bfrse ELM is
freed from the constraing\ ; Aj = 0. As a result, sparse ELM for regression searches

the optimal values of;’s in a wider area than SVR and provides a better solution.

Theorem 4.1 The dual problem of sparse ELM for regress{@dm8)is convex.

Proof:
044 N .
7‘9)’:%'_'\/' = Z )\jQELMLj —t +£(S|gn()\i))
aZgl =t (4.10)
dELM 2
Toar Qemii = ULy em
wherengdELM = Qg m Is the Hessian matrix.
(1) Non-kernel case
T (2 TuyT TAT T
z (U°LAem)z=z HH'z=(H z) I« (H 2) >0
(0P Zseww) (H72)" 1L (H72) )

vz e RN

Obviously,Dziﬂd,ELM is a positive semi-definite matrix.

(2) Kernel case The kernel functiorK needs to meet Mercer’s conditions, which

ensures thdﬂzdeLM is positive semi-definite.

OLy i |04

N

1]

Figure 4.1: The partial derivative dfy g v With respect to);
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The first-order partial derivativé.Zy gL v /dAi is monotonically increasing as the Hes-
sian matrixDZZdELM is positive semi-definite. Fig. 4.1 illustrates the genéehd of
0%3eLm/0Ai. As observed from Fig. 4.1, the discontinuity/at= 0 will not influ-
ence the monotonicity af/y grm. Consequently, the dual problem of sparse ELM for

regression (4.8) is proved to be convex. n

4.1.4 Sparsity analysis

Non-SVs

Primal network Dual network

Figure 4.2: The primal and dual networks of sparse ELM foresgion

In the caset; — f(xi)| < &, a; anda;* both need to be zero in order to fulfill the KKT
conditions (4.6). Naturally); = a; — o;* leads toA = 0 and the corresponding compo-
nent will be excluded in (4.9) when calculating the outputghéf. And the datad is

not a member of support vectors (SVs).

Fig. 4.2 displays the primal and dual networks of sparse EaMédgression. In the dual
network, non-SVs are removed, producing a compact netwarkae primal network,
the number of hidden nodésis fixed once chosen. However, the calculation of the
output weightsf (4.9) gets easier as some components are removed. Furtlegermo
the proposed method largely reduces the storage spacesiimd) téme, since they are

proportional to the number of SVs.
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4.2 Training Algorithm of Sparse ELM for Regression

In this section, an efficient training algorithm based onatige computation is partic-
ularly designed for the proposed sparse ELM for regresdissentially, the dual form
(4.8) is a convex quadratic programming (QP) problem asemav Theorem 4.1. Akin

to the training algorithm of sparse ELM for classificationGhapter 3, the large QP
problem is partitioned into a group of small sub-problenagheof which includes only
one Lagrange multiplier. Thus, these sub-problems can lvedanalytically one-by-

one. Additionally, the proposed sparse ELM for regressiB)(is released from the

sum constraing N, A = 0.

4.2.1 Optimality conditions

The optimality conditions are derived based on the KKT ctads (4.6) obtained at
the saddle point (4.5). The optimal solution is determinedehieved if the optimality
conditions are satisfied; arice versa The error between the actual output and target

is: g =t — f(x).

1) A =C:

ai=C,0=0=1=0,¢§>0
(4.12)
ti—f(x))—e—-¢é=0=>¢g>¢

(2) 0< A <C:

a; € (0,C),a"=0=pj €(0,C),é=0
i €(0,C),0q; i € (0,C),¢; (4.13)
ti—f(x)—e=0=g=¢
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(3) A =0

ai(*) 0= ul(*) =C, EI(*) =0

(4.14)
ti—f(x)|<e=l|al<e
(4) C<A<O:
a’ €(0,C),ai=0=u* € (0,C),&* =0
I ( ) | 1 ( ) [ (4.15)
f(xi)—ti—e=0=¢=—¢
(5) Aj=-C:
ai*:C,ai:O:>ui*:O,Ei*>O
(4.16)

f(xi)—ti—e—§&§"=0=g < —¢

4.2.2 Update rule

When the optimal solution has not yet been reached, we nesetide how to proceed
further to decrease the objective functicfy g1 . Assume the Lagrange multiplier

chosen to be updated at the current stejp.is

1
LA4ELM = E|Ac| = Acte + é)\cchc‘i‘ )\czgld +Weonst

Zgld _ fgld i )\glchc

(4.17)

in whichW;onstiS a constant term with no relevanceioand the superscript “ old” indi-

cates the last step. A, f!9 respectively denote$(xe, xc), f (x¢)2 for conciseness.

0%, .
% = £(sign(Ac)) —te+ AcKee+ FI9 — AQUK e (4.18)
Cc

Denote the optimal value with™. Then, the first-order partial derivative OofgeLm at
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ATis0.

1 |
SAf =AM (to— 18— &(signAd)) (4.19)

The optimal value\! is bounded by the constraintsC,C]. Furthermore, there is a
discontinuity ford.%y/0dA; at the value 0, as observed from Fig. 4.1, which must not be
crossed during the training phase. Thus, we utilize moiegsint constraints fok! as

follows:

(1) 229> 0: the constraint isf0,C].
(2) 229 < 0: the constraint isf—C, 0].
Apparently, only the Lagrange multipliers that violate tiimality conditions will be

considered for update. Thus, if indejs selected, it implicitly means thap!d violates

the conditions.

(1) AQd =0
C C
If: te— fO9> = AT > 0= A= [/\J] - [/\J]
0 < (4.20)
Elseite— < —e = AT <0= A = [Ag] = [AJ )
Rewrite the update rule for0!d = 0 concisely:
sign(AJ) = sign(t; — )
1 .
A== <tc — £ _ g (sign(te — fg'd))) (4.21)
CcC
C
_ [yt
Ac= [AC] —c

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE



4.2 Training Algorithm of Sparse ELM for Regression 67

(2) A%9 > 0:
t_ yold, 1 old
R (tc— fC —s)
cc (4.22)
A= [Ag]
(3) A4 <o0:
t_yold, 1 old
R <tc— £ +s)
. e (4.23)
_ T
Ac= [AC] —c

4.2.3 Selection criteria

It is vital to choose which Lagrange multiplier to be updatad intuitive method is to

choose the one with the fastest convergence to the minimum:

cecarg minN (fd,ELM()\i) — Z4EM (Aimd)) (4.24)

geeey

Nevertheless, it is computation intensive to calculatestkact decrease d¥y g v that
each Lagrange multiplier will bring. Thus, a more reasoeabéthod is to estimate the
decrease aof£y g m. Consequently, the violated degree of KKT conditions isiredty
used as the estimate and the Lagrange multiglievith the highest degree of violation

will be chosen.

Definition 4.1 The degree of violation of the KKT conditions is denoteddbyThe

positive g indicates the violation of KKT conditions.

(1) A =C:

d=¢c—¢g (4.25)
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(2) 0< A <C:

di =& —¢g (4.26)
(3) Ai=0:

d=le|—¢ (4.27)
(4) —C < A <O

di = |+ €| (4.28)
(5) Ai=—C:

d=¢e+g (4.29)

As a result, the selection criteria is constructed as:

ce arg ma>’<\I di (4.30)
|

=4,...,

4.2.4 Termination condition

In real implementation, the optimality conditions only dde be fulfilled within a tol-
erancey rather than exactly. Therefore, whene\i/:elerNnax< y is met, the training
algorithm will be terminated. It was discovered that wheattilerancey is equal to the
square root of the machine epsilon, stable results woulethergted [26]. Thus, we use

y = 0.001 accordingly.
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4.2.5 Convergence proof

Theorem 4.2 The training algorithm of sparse ELM for regression will e@nge to the

global optimal solution in a finite number of iterations.

Proof: Our algorithm satisfies all conditions of Osuna’s decomjmsiheorem [84]
as listed below. Consequently, the algorithm is convergetite global optimum within
a finite number of iterations:

(1) The QP problem should be convex: it is proved in Theorelm 3.

(2) In each step, at least one Lagrange multiplier that teslahe KKT conditions
should be changed: the Lagrange multiplier chakem each step does violate

the KKT conditions before the change.

(3) In each step, the objective function should be redudseichange oiA; makes it

satisfy KKT conditions and reduce the objective functigfag v definitely.

(4) Lagrange multipliers should be bounded: constrdin®, C]N limit the range for

all the multipliers.

4.2.6 Training algorithm

Algorithm 3 summarizes the training algorithm of sparse Eldviregression.

4.2.7 Merits of sparse ELM for regression

The proposed sparse ELM for regression provides severahatisnerits over other

regression methods. Conclusively, the proposed methodper®r over the unified
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Algorithm 3: Sparse ELM for regression
Problem formulationProvided the training datd € RN*9 T € RN*1, build
up the dual form as in (4.8);
1: Initialization: A =0,e=T,d =0;A,e,d € RN;
2: Whilei Tadei > .

-----

1) Select the Lagrange multiplide with the highest degree of violation;

c=arg max d (4.31)

1= tARRS]

2) Use the update rules listed in (4.21)-(4.23) to updatetiosen multiplieig;
3) Use the equations (4.25)-(4.29) to update the violatgdedel and the erroe as
follow:

e=e—(Ac—A29.K(:0) (4.32)

whereK(:, c) is thec-th column of the ELM kernel matriQg v .
Endwhile

ELM and SVR to solve large-scale regression problems fovignag a more compact

network, better scalability and less memory requirement.

(1) No bias b and sum constraint ; Aj = 0: The bias ternb is eliminated due
to the universal approximation capability of ELM. On one thathe computa-
tional inefficiency associated wittnis resolved completely. On the other hand,
the dual problem of sparse ELM for regression (4.8) is freechfthe sum con-
straint YN ; Aj = 0 due to the removal db. Thus, it searches for the optimal

solution within a wider area and presents better accuracy.

(2) Sparse networklt constructs a sparse network and largely reduces thagsor

space and testing time compared with the unified ELM.

(3) No memory issueMemory issue is getting more important along with the explo
sion of the problem scale. For instance, the unified ELM and/entional QP
methods [81] need to store the whole kernel ma@pq  in the memory, invok-
ing serious problems. The proposed method is based onivee@mputation

and only requires to store the values encountered in eaghBtels, it solves the
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memory issue completely.

(4) Computational complexityThe training algorithm is convergent and the number
of iterations is proportional tdl. In each iteration, the computational complexity
is O(N). Thus, the complexity of the proposed algorithm iN®). In contrast,
the unified ELM obtains the solution through matrix inversiwith complexity
between QN?) and QN3) [102, 104]. Consequently, the proposed sparse ELM
for regression provides better scalability and realizesefatraining speed when

solving large-scale problems.

(5) Easy parallel implementationWe can easily realize parallel implementation to
further accelerate the training algorithm by dividing thieale dataset into several

subsets to be handled with several CPU processors sepd@itel

4.3 EXxperiments

The proposed method is extensively investigated in this@mefor numerous regression
datasets. Except for the CASP, marked withall datasets are evaluated in Matlab
R2010b, running on an Intel i5-2400, 3.10 GHz CPU and 8 GB RENkperiments on
the large dataset, CASP, are conducted in Matlab R2013ajmgion an Intel Xeon
E5-2650, 2 GHz CPU and 256 GB RAM, otherwise the unified ELM 8NGR will be
out of memory. SVR is implemented by the SVM and Kernel Methibthtlab Toolbox
downloaded from [8]. And through the entire section, allexments are repeated 20

times in order to get stable and reliable results.

4.3.1 Datasets description

Plenty of datasets are used from the UCI repository [28] dBEVM portal [11]. We
equally divide each dataset into two parts, one for trairang the other for testing.

Before the experiments, preprocessing steps are perfooregdhe data. Training data

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE



4.3 Experiments 72

Table 4.1: The description of datasets

Dataset #train  #test #features
Bodyfat 126 126 14
Mpg 196 196 7
Housing 253 253 13
Concrete 515 515 8
Mg 693 692 6
Spacega 1554 1553 6
Abalone 2089 2088 8
Winequality | 2449 2449 11
Cpusmall 4096 4096 12
Cadata 10320 10320 8
CASH 22865 22865 9

Table 4.2: The details within the training phase

Dataset # of A _ # Qf _# A changed AverageM
(samples)| iterations| in the process A
Bodyfat 126 134 33 2.01
Concrete 515 2622 217 7.88
Abalone 2089 9177 607 12.60
Cpusmall 4096 3998 225 12.34

are linearly scaled int{D, 1] for the targets anf-1, 1] for the features. And the factors
used to scale the training data are adopted to scale thageasdta linearly. All the

datasets are detailed in Table 4.1.

4.3.2 Improvement of convergence speed

In this section, we conduct experiments to check the coeverg speed of the pro-
posed method. The kernel function and parameters are pagkicted a¥(x;,xj) =
exp(—%) andC =1 0 =1. Fig. 4.3 displays the ratio between the number of
iterations and the training si2¢. It is easily observed that the bar called “original” are
much larger than 1 for most datasets. Hence, it is necessanptove the convergence

speed and to further accelerate the learning phase.

Table 4.2 shows the details of the training process of sak$é for regression. The
four datasets are chosen as examples. And all other daf@esent similar process.

As seen from the table, only a part 8fs are changed during the process, while the
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9 r #itey
g | #samples

B original
m a= 2

a=3
a=4
a=>5

> S ) ) 2 ¢ 8N > K
O&\@ NS 0@& & N § § s

Figure 4.3: Number of iterations for the original and impgdwalgorithms

total number of iterations is much bigger than the numberhaingedA;’s. Thus, it

is concluded that som&’s are updated several times. The first value change and the
total change ofp; are respectively denoted iy (1) and 4. It is observed that the
ratios%il) are larger than 1. Thus, a straightforward approach is tcadddrning rate
n= 1+a-exp(— (T —1)) in the update rules (4.21)-(4.23). Consequently, theitrgin
algorithm will change the values @f’s by a bigger gap in the first several times so that
the number of iterations can be reduced. Which time (1st,tind time or more) the

i-th Lagrange multiplied; is updated is denoted by;TlI

The parameter o is tested with 4 different valueg2,3,4,5|. It is illustrated in Fig.
4.3 that all the 4 values @fgreatly improve the convergence speed, while the diffexenc
between them is not significant. It is not our main concernrtd &ut the best learning

rate in this work. And we choosa = 3 for the following experimentsn; = 1+ 3-
exp(— (Tl —1)).
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4.3.3 Influence of the parametere

At here, we study the influence efon the sparse ELM for regression. The aim is not to
choose the optimal parameters or kernels. Thus, we naihelyse the Gaussian kernel

with parameter€ = 1,0 = 1.

The number of SVs

We use the toy data “sinc” function to investigate of relasibip betweers and number
of SVs:

t=f(x) = (4.33)

in which x is a random variable with uniform distribution in the rangel0,10). It is
respectively sampled 1000 times to generate the trainidgesting data. Uniform noise
in the range (-0.2, 0.2) is added to the targeitthe training data. And the testing data

is noise-free.

€ is investigated with 3 values: [0.1, 0.2, 0.3]. Bigger vabfes will lead to fewer

support vectors (SVs) as shown in Fig. 4.4.

* SVs
expected

£=0.3

actual output

210 5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10

Figure 4.4: The expected and actual outputs and SVs witardifite
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Table 4.3: 10-fold cross-validation RMSE with different

E=0 €=002 £€=004 £€=006 £=008 £=010 £=012 £=014
Bodyfat 0.0608 0.0676 0.0747 0.0817 0.0882 0.0962 0.0993 0.1041
Mpg 0.0476 0.0504 0.0497 0.0525 0.0570 0.0643 0.0684 0.0734
Housing 0.0612 0.0569 0.0607 0.0668 0.0756 0.0829 0.0905 0.0990
Concrete 0.0898 0.0904 0.0915 0.0938 0.0967 0.0974 0.1000 0.1038
Mg 0.1442  0.1442 0.1441 0.1408 0.1410 0.1409 0.1423 0.1445
Spacega 0.0320 0.0331 0.0343 0.0374 0.0422 0.0498 0.0589 0.0627
Abalone 0.0781 0.0784 0.0778 0.0777 0.0783 0.0800 0.0824 0.0887
Winequality | 0.1240 0.1234 0.1225 0.1225 0.1238 0.1234 0.1230 0.1240
Cpusmall 0.0313 0.0307 0.0325 0.0363 0.0428 0.0530 0.0575 0.0626
Cadata 0.1214 0.1210 0.1205 0.1202 0.1203 0.1205 0.1211 0.1224
CASP 0.2348 0.2343 0.2334 0.2320 0.2310 0.2300 0.2293.2287

10-fold cross-validation error

The optimal relationship between the noise (model and Jerede has been discussed
in [92]. However, when facing real applications, the dstaif noise are usually un-

known, making it impossible to calculated the optiraaxactly.

Comparing to the unified ELMg is an additional parameter, causing bigger computa-
tional burden to choose the optimal parameters. Thus, \ettéw find a value of that

is good enough, though not optimal, to handle different skt

8 values ofe are studied: [0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14¢ T®fold cross-
validation root mean square error (RMSE) is calculatedterttaining data and sum-
marized in Table 4.3. The cross-validation RMSE at 0, 0.@R2@&A6 are all acceptable,
while the values producing the best results are problemrakgpe. In addition, Fig. 4.4
illustrates that more compact network will be provided bgdgre. In summary, we

chooses = 0.06 and keep it fixed for the following experiments.

4.3.4 Influence ofL

It has been discussed in Chapter 3 that bidgerill lead to better generalization per-

formance [3]. At here, the relationship between the nuniband the performance is
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studied for sparse ELM for regressiddigmoidactivation function is utilized:

1
G(a,b,x) = e~ @ x1H) (4.34)

Cis fixed to 1 and the numbgéris tested with 11 valueg2!,2, ..., 211 Fig. 4.5 plots
the 10-fold cross-validation RMSE and numher All other datasets present similar

relationships.

It is clear that the 10-fold cross-validation RMSE decrsaseng with the increase of
L. In addition, more hidden nodes should be required when ditesdt gets larger and
more complex [46, 101]. Thus, we fix tHeto a large enough value = 2° for the

subsequent experiments.
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Figure 4.5: The relationship between 10-fold cross-vaiaeRMSE and.

4.3.5 Parameter specification

We evaluate the performance with linear kerKél,v) = u-v and Gaussian kernel
K(u,v)= exp(—%). The parameteiS ando are both tried with 20 different values:

[279,278 ... 210]. And £ = 0.06 is fixed for sparse ELM and SVR.
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Table 4.4: Parameter Specifications

Sparse ELM Unified ELM SVR
Datasets Linear | Gaussian| Sigmoid | Linear | Gaussian| Sigmoid | Linear | Gaussian
Kernel | Kernel Nodes | Kernel | Kernel Nodes | Kernel Kernel
C C|o C C o C C C C C
Bodyfat 20 2t | 22 22 20 2101 24 20 22 20 | 22
M pg 22 25 21 23 27 210 22 210 20 25 22
Housing 20 22 | 2t 20 24 | 210 25 24 272 2 | 28
Concrete 23 2t | 20 22 2! 27 | 20 24 22 | 2t |21
Mg 20 20 20 23 21 23 20 210 26 21 20
Spacega 23 2t | 21 21 2° 29 | 28 26 23 22 | 22
Abalone 20 20 | 20 20 23 28| 2t 210 22 22 | 20
Winequality | 27> | 272 | 21 272 26 2t | 20 25 2! 2t | 22
Cpusmall 274 | 22 | 20 2t 23 28 | 20 210 272 | 271 20
Cadata 20 20 | 20 2t 25 2t | 20 26 2t 2t | 20
CASP 20 20 | 20 20 22 20 | 272 210 20 20 | 20

For the non-kernel case, the proposed sparse ELM and thedi&fiM both adopt the
sigmoidactivation function, wher€ is also chosen from the 20 valugg:°,2-8 ... 219
andL = 29 is fixed. The optimal parameters are selected based theld @ifoss-

validation error and summarized in Table 4.4.

4.3.6 Performance comparison

The three methods, the proposed one, unified ELM and SVRhareughly evaluated
and compared. The average RMSE is calculated over 20 riepstitThe implicit as-

sumption is that the mean RMSE over 20 repetitions is a feliestimate of the perfor-
mance on this particular dataset. The details of all methogelshown in Tables 4.7-4.9.

And the shortest training time and best testing RMSE areligigted in each row.

Generalization performance

The generalization performance of the proposed sparse EL8éparately compared
with the unified ELM and SVR. Based on [19], Wilcoxon signedksitest is suitable
for the statistical comparison between two methods on pieltiatasets. And Table 4.5

demonstrates the detailed Wilcoxon test between sparse &#idVBVR with Gaussian
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Table 4.5: Wilcoxon test between sparse ELM and SVR with Gansernel
Difference of Absolute value

Dataset testing RMSE ¢;) | of difference (di|) Rank
Bodyfat 0.0014 0.0014 5
Mpg 0.0017 0.0017 6
Housing 0.0225 0.0225 9
Concrete 0.0268 0.0268 10
Mg 0.0006 0.0006 2
Spacega 0.0037 0.0037 8
Abalone 0.0004 0.0004 1
Winequality 0.0008 0.0008 4
Cpusmall -0.0024 0.0024 7
Cadata -0.0006 0.0006 3
CASP 0.0328 0.0328 11

kernel.|d;| is the absolute value of the difference between the testvi§Ron the two

methods.

Rt = dz rank+}dz rank= 56
;>0 2 ;=0
- 1
R :dz rank+—dz rank= 10
;<0 2 ;=0
T =min(R",R") =10 (4.35)
,_ T—gN(N+1)  10-7-11.12

VEANN+D(N+1)  /4-11-12.23

= —2.0449< -1.96= Zogs

Itis conclude that the proposed sparse ELM produces bedterglization performance

than SVR at a significance level= 0.05 when adopting the Gaussian kernel because of

z< —1.96. The same test is performed to compare the proposed fpavband SVR
with linear kernel:z= —1.9560> —1.96. Even though we cannot claim the difference
to be statistically significant, it is highly probable thaasse ELM outperforms SVR

with linear kernel.

Moreover, the Wilcoxon test is also performed to comparesspgLM and the unified
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ELM, where thez values are all bigger than1.96: 1)-0.9780 for linear kernel; 2)
—0.5335 for Gaussian kernel; 3)1.6893 for non-kernel case wiigmoidactivation

function.

In conclusion, sparse ELM is highly favored than than SVR amgbar with the unified

ELM in terms of the generalization performance.

Training and testing speed

Consistent with our theoretical analysis of the computeaticcomplexity aforemen-
tioned, the proposed method achieves much faster traip@gdsthan the unified ELM
when facing large-scale datasets. Additionally, the psepanethod reduces the testing

time compared with the unified ELM for datasets of all scales.

Compared with SVR, much faster training and testing speegesvided by the pro-

posed method as seen from Tables 4.8 and 4.9.

Number of SVs

It is verified that the proposed method provides a sparseankpas listed in Table 4.6.
Consequently, the storage space is reduced than the unifiédoEcause the storage
requirement is proportional to the number of SVs. Furtheanihe testing speed is also

accelerated as fewer computations need to be performed testing phase.

Nevertheless, both the proposed method and SVR constrpetraesnetwork, while it

depends on the individual dataset to determine which oneis compact.
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Table 4.6: Number of support vectors

Dataset # Total _ Sparse_ ELM_ _ _ Unified _ELM _ _ _ SVR _
vectors| Linear | Gaussian| Sigmoid | Linear | Gaussian| Sigmoid | Linear | Gaussian
kernel | kernel Nodes | kernel| kernel Nodes | kernel | kernel
Bodyfat 126 19 15 13.65 126 126 126 16 20
Mpg 196 47 38 35.30 196 196 196 58 47
Housing 253 89 69 83.45 253 253 253 95 90
Concrete 515 313 212 278.25 515 515 515 335 233
Mg 693 497 430 429.55 693 693 693 500 418
Spacega 1554 | 93 112 152.60 1554 | 1554 1554 181 174
Abalone 2089 642 659 631.40 2089 | 2089 2089 703 671
Winequality | 2449 1601 | 1572 1585.55 | 2449 | 2449 2449 1574 | 1602
Cpusmall 4096 858 215 745.80 4096 | 4096 4096 745 280
Cadata 10320 | 5684 | 4798 5305.40 | 10320 | 10320 10320 | 6041 | 4879
CASP 22865 | 18232 | 16442 17892.10| 22865 | 22865 22865 18609 | 16644

4.4 Conclusions

In this chapter, we extend the sparse ELM for regressioni@nadand construct a com-
prehensive framework of sparse ELM. Compared with the uhlEEM, which is state-
of-the-art method, it produces a sparse network and lamgelyices the storage space
and testing time. Subsequently, we design an efficientitrgialgorithm based on iter-
ative computation. Several distinct merits make it supgdather methods: 1) no sum
constrainty N ; Aj = 0 and biasb, resolving the computational inefficiency associated
completely; 2) no memory issue as it only needs to store theesaised in each step;
3) computational complexity of lower magnitude than thefiedi ELM; 4) building up

a sparse network and thus reducing the storage space andg tese.

Conclusively, the proposed method is more suitable foetatple regression problems,
such as neuroscience, image processing, time series foadietc. Later, we plan to
implement the sparse ELM in parallel manner and to use kexagte [11] to further

improve the efficiency of sparse ELM.
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Table 4.7: Performance of sparse ELM and unified ELM with Sighthidden nodes
Sparse ELM Unified ELM

Dataset Training | Testing | Training | Testing | Training | Testing| Training | Testing

RMSE | RMSE | time (s) | time (s)| RMSE | RMSE | time (s) | time (S)
Bodyfat 0.0524 | 0.0448| 0.0105 | 0.0032 | 0.0331 | 0.0198| 0.0067 | 0.0047
Mpg 0.0603 | 0.1389| 0.0583 | 0.0030 | 0.0439 | 0.1231| 0.0086 | 0.0085

Housing 0.0835 | 0.1367| 0.0166 | 0.0081| 0.0717 | 0.1436| 0.0090 | 0.0091
Concrete 0.1224 | 0.1374| 0.1630 | 0.0188 | 0.1243 | 0.1407| 0.0534 | 0.0465
Mg 0.1555 | 0.1450| 0.5045 | 0.0286 | 0.1359 | 0.1330| 0.0400 | 0.0370
Spacega 0.0474 | 0.0450| 0.3166 | 0.0369 | 0.0374 | 0.0401| 0.1823 | 0.1246
Abalone 0.0819 | 0.0785| 0.3397 | 0.0920| 0.0756 | 0.0741| 0.4459 | 0.2208
Winequality | 0.1318 | 0.1221| 0.5067 | 0.2089 | 0.1267 | 0.1210| 0.6475 | 0.3216
Cpusmall 0.0345 | 0.0373| 1.0375 | 0.2389| 0.0333 | 0.0376| 2.1991 | 0.8132
Cadata 0.1409 | 0.1497| 13.4122| 1.9611| 0.1322 | 0.1498| 21.3416| 4.0056
CASP 0.2467 | 0.2495| 59.3273| 6.7365| 0.2314 | 0.2347| 70.7220| 9.4233
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Table 4.8: Performance of sparse ELM, unified ELM and SVR Viftkar kernel

Dataset — Sparse EL.M. - — Unified ELM. - — . SVR — .
Training | Testing| Training | Testing | Training | Testing| Training | Testing | Training | Testing| Training Testing
RMSE | RMSE | time(s) | time(s)| RMSE | RMSE | time(s) | time(s)| RMSE | RMSE time (s) time (s)
Bodyfat 0.0534 | 0.0436| 0.0066 | 0.0001 | 0.0336 | 0.0161| 0.0051 | 0.0010| 0.0402 | 0.0368 0.0268 0.0002
Mpg 0.0660 | 0.1341| 0.0424 | 0.0004 | 0.0602 | 0.1500| 0.0039 | 0.0014| 0.0604 | 0.1452 0.0562 0.0007
Housing 0.0743 | 0.1455| 0.0193 | 0.0004 | 0.0716 | 0.1507| 0.0073 | 0.0012| 0.0723 | 0.1543 0.0832 0.0008
Concrete 0.1485 | 0.1272| 0.3420 | 0.0012 | 0.1457 | 0.1402| 0.0217 | 0.0025| 0.1462 | 0.1294 0.7283 0.0034
Mg 0.1674 | 0.1570| 0.0840 | 0.0029 | 0.1666 | 0.1582| 0.0259 | 0.0044 | 0.1668 | 0.1572 1.8135 0.0070
Spacega 0.0477 | 0.0406| 0.3424 | 0.0026 | 0.0395 | 0.0435| 0.1390 | 0.0291| 0.0398 | 0.0436 4.5092 0.0205
Abalone 0.0802 | 0.0771| 0.3049 | 0.0131| 0.0806 | 0.0774| 0.3171 | 0.0502 | 0.0802 | 0.0776| 19.6114 | 0.0447
Winequality | 0.1345 | 0.1273| 0.3792 | 0.0368 | 0.1294 | 0.1243| 0.4751 | 0.0562 | 0.1297 | 0.1266| 46.9333 0.0952
Cpusmall 0.1147 | 0.1001| 0.5004 | 0.0356| 0.1036 | 0.0961| 2.1691 | 0.1694| 0.1212 | 0.1009| 75.7302 0.0657
Cadata 0.1437 | 0.1516| 10.5743| 0.4547 | 0.1423 | 0.1536| 15.1593 | 0.8153 | 0.1436 | 0.1537 | 3548.7487| 1.3921
CASP 0.2390 | 0.2413| 102.9173| 3.5126 | 0.2457 | 0.2483| 116.4548| 4.7878 | 0.2500 | 0.2529 | 14400.5332 22.9362
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Table 4.9: Performance of sparse ELM, unified ELM and SVR Wi#lussian kernel

Dataset — Sparse ELM - — U_nified EL.M. - — . SVR — .
Training | Testing| Training | Testing | Training | Testing| Training | Testing | Training | Testing| Training Testing
RMSE | RMSE | time (s) | time (s)| RMSE | RMSE | time(s) | time(s)| RMSE | RMSE time (s) time (s)
Bodyfat 0.0516 | 0.0425| 0.0066 | 0.0001 | 0.0333 | 0.0162| 0.0034 | 0.0009 | 0.0522 | 0.0439 0.0224 0.0003
Mpg 0.0504 | 0.1211| 0.0193 | 0.0004 | 0.0405 | 0.1216| 0.0042 | 0.0012 | 0.0464 | 0.1228 0.0471 0.0007
Housing 0.0510 | 0.1284| 0.0480 | 0.0008 | 0.0715 | 0.1496| 0.0061 | 0.0033 | 0.0700 | 0.1509 0.0647 0.0012
Concrete 0.0671 | 0.1241| 0.0742 | 0.0027 | 0.0503 | 0.1394| 0.0827 | 0.0099 | 0.0583 | 0.1509 0.7481 0.0058
Mg 0.1307 | 0.1341| 0.0987 | 0.0093 | 0.1272 | 0.1319| 0.0359 | 0.0166 | 0.1279 | 0.1347 1.7136 0.0143
Spacega 0.0412 | 0.0385| 0.1499 | 0.0083 | 0.0358 | 0.0401| 0.1905 | 0.0880 | 0.0414 | 0.0422 4.3292 0.0307
Abalone 0.0753 | 0.0738| 0.3580 | 0.0460 | 0.0738 | 0.0735| 0.3428 | 0.1477 | 0.0736 | 0.0742| 18.6725 0.1281
Winequality | 0.1262 | 0.1200| 0.5233 | 0.1328 | 0.1177 | 0.1204| 0.4816 | 0.2035 | 0.1274 | 0.1208| 45.1656 0.3300
Cpusmall 0.0317 | 0.0407| 1.2119 | 0.0382 | 0.0248 | 0.0352| 1.6629 | 0.5505 | 0.0348 | 0.0383| 61.2297 0.1354
Cadata 0.1197 | 0.1423| 8.9124 | 1.5977 | 0.1203 | 0.1433| 15.3376 | 3.2928 | 0.1171 | 0.1417| 2813.5930| 3.0710
CASP 0.1874 | 0.2026 | 51.6688| 15.2476| 0.1935 | 0.2046 | 121.2519| 24.9627| 0.2307 | 0.2354 | 12269.6436| 41.0614
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Chapter 5

Local Receptive Fields Based Extreme

Learning Machine

Extreme learning machine (ELM) in full connections produseperior generalization
performance with high efficiency. However, when facing aggilons like image analy-
sis, speech recognition, natural language processingfetg connected network may
not present satisfactory performance because it does raelrtitee local correlations in
these tasks. In this chapter, we propose the local recdplds based extreme learning
machine (ELM-LRF), where the connections between inputradden layer are sparse
and locally bounded. In addition, we implement the ELM-LR#work with convolu-
tional hidden nodes and evaluate the performance on thénb®rk object recognition
dataset, NORB. The proposed method producedést accuracyand accelerates the

learning speed up 200 times

5.1 Introduction

In the ELM implementations studied in the past, hidden natesn full connections

with the input ones. On one hand, these implementationsgeaxcellent accuracy
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with fast speed for a wide types of applications. On the oftaerd, when facing appli-
cations with strong local correlations, such as image aimlgpeech recognition, etc.,
it may be more reasonable to construct a network with splrsal connections rather
than full ones. In fact, bioscience has discovered thatl leezeptive field is the key
factor for the brain to deal with visual information. Natllyawe raise an open question
for ELM: can local receptive fields be implemented in ELIM his chapter, we discuss

this question in detail.

It has been proved that ELM can generate the hidden nodesmantiased on any con-
tinuous probability distribution in [46, 44, 45]. Thereéymwe can perform a straight-
forward extension to generate the hidden nodes based onmoimability distribution,
which are denser around the center while sparser farthey, aovdeal with these locally
correlated applications. Different shapes of local rewefftelds may be used as long
as they are continuous and local-wise. For instance, McBlbehal. utilize random
sampling method to generate the local receptive fields aggkpt superior performance
on the MNIST, NORB and SVHN datasets [73, 74]. The selectioth® shapes relies
on the specific problem to be dealt with. Inspired by the cari@nal neural networks
(CNNs), we implement the local receptive fields by randondgerating convolutional

hidden nodes in this chapter.

5.2 Local Receptive Fields Based Extreme Learning Ma-

chine

In this section, we describe the details of ELM-LRF and apipas a generic architec-
ture to solve image processing and similar tasks, whererdift density levels of con-
nections can be used. The sparse connections between bhidden nodes decide
the local receptive fields and could be sampled by any cootisprobability distribu-

tion. Subsequently, combinatorial nodes are followedupgiog several hidden nodes

together into sub-network and providing translationabimance to the network. The
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training speed is exceptionally fast as no gradient desteps are performed.

5.2.1 Hidden nodes in full and local connections

ELM theories demonstrate that hidden nodes can be constitmbhdomly based on any

probability distribution. In effect, two types of randonsseare involved:

(1) Random connection3 he connections between input and hidden nodes can be sam-

pled randomly according to diverse probability distributs.

(2) Random weightsThe weights between input and hidden nodes can also be-gener

ated randomly.

Hidden nodes in full connections, as depicted in Fig. 5,1(@yve been thoroughly

investigated and produce state-of-the-art performanoearmerous applications, such as
bio-medical applications [108], text analysis [111], powgstems [80], remote-sensing
image classification [85], etc. In essence, these workserdrate on the aspect of

random weights, while giving no attention to the random @mtions.

However, for image analysis, speech recognition, natargjliage processing, etc. [63],
the strong local correlations within the input degeneragestffectiveness of full connec-
tions. In order to solve these problems, we naturally cocsthe hidden nodes in local
connections. As shown in Fig. 5.1(b), the connections betvieput and hidden nodes
are denser around the center while sparser farther awaylo¢akreceptive fields have
been verified by concrete biological evidence, which shdvas tifferent cells in the
visual cortex are sensitive to different sub-regions ofrétaa (input layer) [4, 57, 94].
Consequently, locally connected network is suitable faage processing and similar
works because more meaningful representations are prddndée hidden layer by

explicitly modeling the local structures.
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(a) Hidden nodes in full connections (b) Hidden nodes in local connections

Figure 5.1: Hidden nodes in full and local connections

5.2.2 Combinatorial nodes

In biological systems, it is unclear what forms of local netnee fields are adopted.
And it is probable to generate them by diversified methodse fremising method is

to construct the combinatorial node as proposed in [44]rdv@s that hidden node in
ELM could be a sub-network (combination) of several hiddedes. Fig. 5.2 shows

an example where the combinatorial nade actually a sub-network of hidden nodes
that are in sparse connections with the input ones boundeg\mral local areas. The
combinatorial node connects with the three hidden nodes and performs a weighted

summation, linear or nonlinear, over them.

In this manner, the feature generated at one location foddddy one particular com-
binatorial node) is likely to be suitable at different Idoats (different combinatorial

nodes). As a consequence, the ELM-LRF network will be irargrto translations and
rotations of the input. Additionally, the connections beém the input and combinatorial
nodes are able to model the local structures even betteroVéraps of the three re-
ceptive fields make the connections denser around the aghilersparser farther away.
Subsequently, we use average methods to calculate thesvaflubese combinatorial
nodes. Of course, it deserves further investigation to fimidother suitable methods,

such as max-pooling, learning based methods, etc.
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Figure 5.2: The combinatorial nodle

5.3 The Implementation

5.3.1 One feasible network of ELM-LRF

Even though the local receptive fields can be sampled by watigpes of probability
distribution, we utilize the simple step function to constrone feasible network of
ELM-LRF for convenience. The receptive field of each hiddedenis bounded by a
pre-determined distance to the center. Moreover, the iweights to different hidden
nodes in the same feature map are shared. In this sense,dsl@nhnodes actually
perform convolution operations similar to CNNs. Addititlgathe combinatorial nodes

are formulated with square/square-root pooling structure
The network of ELM-LRF that we build up in this chapter is desged in Fig. 5.3:
(1) Random convolutional node3 he node in the feature maps is one case of the
hidden node in local connections depicted in Fig. 5.1(b).

(2) Combinatorial nodesThe node in the pooling maps is one case of the combina-

torial node depicted in Fig. 5.2.

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE



5.3 The Implementation 89
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Figure 5.3: One feasible network of ELM-LRF

5.3.2 Random input weights

Fig. 5.4 displays the whole network of ELM-LRF wikhmaps.K diverse feature maps
are generated witK different input weights and provide comprehensive repregmns

of the input. The feature maps are composed of random caimwoél nodes, where
input weights on the same map are shared while different gnddferent maps. The

input weights are first generated randomly and then orthalgaed as follows:

(1) Random generationGenerate the initial weight matri™™ based on the standard
Gaussian distribution randomly Assume that the input is af x d and receptive
field of r x r, then the feature map should be(df—r +1) x (d —r +1).

Alnit - Rr2><K

N , (5.1)
AMeR" k=1,---,K

(2) Orthogonalization Use singular value decomposition (SVD) method to orthogo-

nalize the matriA"t into A. The columns of\, &/’s, are the orthonormal basis of
Ainit 2.

The effect of orthogonalization is to extract more compnsive and discriminative

IWe discover that the bias term is not necessary in the cotignhl nodes.
20rthogonalization cannot be performed over the column wRenK. In this case, 1AM is trans-
posed; 2) orthogonalized over the column; 3) transposekl bac
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features than non-orthogonal ones. Thus, it further imgsawe generalization per-
formance of the network. The works in [58, 63] have previgudilized orthogonal

random weights and present superior performance.

a € R is transformed inta, € R™*" column-wisely. Thus, the convolutional hidden

node(i, j) in thek-th feature mapg; ; k, is calculated as:

r r

Cij k(X) = Xi+m-1,j+n-1"8mnk
nglngl (52)

i,j:1,~-',(d—r+1)
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Figure 5.4: The network of ELM-LRF witK maps

Several CNN networks with certain structures also presergrisingly good perfor-
mance with random, untrained input weights [90, 17, 55]. Ewsv, the performance
in these works still cannot outperform fine-tuned ones. Im&st, the proposed ELM-

LRF in this chapter, where the input weights to the featurpsreae orthogonal random,
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can produce even higher accuracy than well-trained copates while achieving much

faster learning speed. We will compare ELM-LRF and CNN inttédater.

5.3.3 Square/square-root pooling structure

We form the combinatorial node with square/square-rootipgstructure. As shown

in Fig. 5.4, pooling size is the distance between the center and the edge of the pooling
area. In addition, the size of the pooling magds-r + 1) x (d —r + 1), equivalent to

the size of the feature ma; j x andhy g« denote the convolutional nodg, j) in the

feature magk and combinatorial nodgp, q) in the pooling magk.

pre  g+e
hpak=,| Y > ik
i=(p—e) j=(a-¢)

(5.3)
pqulav(d_r+l>

if (i, j) is out of boundg j k=0

The network is provided with the key factors of successflidge processing [14]: rec-
tification nonlinearity and translational invariance, by tsquare and summation oper-
ations respectively. Moreover, it is proved that the sqgisareare-root pooling structure
after the convolution operation is frequency selective adslational invariant [90].
Consequently, the network of ELM-LRF implemented in thiagter will be exception-

ally suitable for image processing and similar tasks.

5.3.4 Closed-form solution of the output weights

As observed in Fig. 5.4, the output layer is in full connectiwith the pooling layer.
The vector of output weightf is calculated analytically and deterministically with

regularized least squares method [71].
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Suppose we have the input sampleéhe combinatorial node, o« could be easily cal-
culated by solving (5.2) and (5.3) sequentially.
r r

Cik(X)= > > Xrm-1jrn-1-amnk

m=1n=1

p+e  g+e 2
hp.qk = Z Z i,j,k
i=(p—e) j=(a—e) (5-4)

pqulav(d_r+l>

if (i, j) is out of boundg; j k=0

Putting all combinatorial nodes in the pooling layer intae vector and concatenating
the rows ofN input samples together, the combinatorial layer matrix RN*K-(d—r+1)?

is constructed.
(1) fN<K-(d—r+41)?
| -1
B=HT <E+HHT) T (5.5)

(2) if N>K-(d—r+1)2

-1
B = <IE+HTH) HTT (5.6)

5.3.5 Algorithm

The algorithm is summarized in Algorithm 4.
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Algorithm 4: The algorithm of ELM-LRF

1. Random convolutional nodeputd x d; receptive field x r; feature map
(d=r+1)x(d—r+1).
1) Generatdint ¢ Rr*xK randomly based on standard Gaussian distribution.
2) Orthogonalizéd "t with SVD method [32] and gek € R"*K. Reshape each
column ofA, 3, intoa, € R™*" k=1,--- K.
3) Generat& feature maps by convolving, k=1, --- ,K with the input.

2: Square/square-root poolindPooling sizee is the distance between the center and
the edge of the pooling area (Fig. 5.4).
1) Calculate the squares of all nodesirfieature maps.
2) For each pooling area, sum up the squared values within it.
3) Calculate the value of each pooling node by performingaseroot operation
on the corresponding summation.

3: Regularized least squares solution
1) Concatenate all nodes in the pooling maps into a row andlprgws of N
training samples together. And we obtain the output mafrtke pooling layer
He RNxK-(d—r+1)%

2) Calculate the output weigif:

HT (L+HHT) T, ifN<K-(d—r+1)2
B= (5.7)
(L+HTH) "HTT, ifN>K-(d—r+1)2
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5.4 Discussions

5.4.1 Universal approximation and classification capabity

The network of ELM-LRF can be considered as a specific typa@feneral ELM:

(1) Local receptive fields The sparse connections bounded by the local receptive
fields can be regarded as ordinary connection with weightéhe@lly the prob-
ability distribution used to generate the connectionsiismécewise continuous.
Therefore, the universal approximation and classificategpabilities of ELM are
preserved for ELM-LRF, enabling ELM-LRF to learn sophiated forms of in-
put.

(2) Combinatorial nodes Hidden node in ELM can be a sub-network, consisting
of different nodes in linear or nonlinear manners. Thus,dipgare/square-root
pooling structure is adopted to formulate the sub-netwar&ctly, introducing

translational and rotational invariance.

5.4.2 Relationship with CNN

Apparently, the proposed ELM-LRF is closely related to CNey both handle the
raw input directly and apply local connections to force teenork to model spatial cor-
relations in natural images and languages. Additionalghevel features are implic-
itly learned or generated, on which the learning is subsettjuperformed. However,

several distinctions differentiate the proposed ELM-LRIE &NN:

(1) Local receptive fieldsThe local receptive fields provided by ELM-LRF are more
flexible, which can be sampled randomly based on differgresyof probability dis-
tributions. However, CNN adopts convolutional hidden reodely. Except for the

random convolutional nodes chosen in this chapter, othprstyare also applicable
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for ELM-LRF, such as the ones generated by random samplirtigaden [73, 74].
ELM-LRF deserves further exploration for other proper laezeptive fields and

learning methods to construct the combinatorial nodes.

(2) Training method The training of CNN depends on BP algorithm, while ELM-LRF
provides a simple deterministic solution. CNN is degerestdtty the trivial issues
of BP, such as local minima, slow convergence rate, etc. Man® it is computa-
tion intensive as BP algorithm involves numerous gradi@scdnt steps. On the
contrary, ELM-LRF generates the input weights randomly ealdulates the out-
put weights analytically. Only the output weights requimanputations, making
ELM-LRF deterministic and highly efficient.

5.5 Experiments

four-legged human four-legged human
animals figures

airplanes  trucks cars airplanes  trucks cars

animals figures

Figure 5.5: 60 samples of the NORB dataset

In this section, we compare the proposed ELM-LRF with stdtthie-art algorithms,

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE



5.5 Experiments 96

Table 5.1: Parameter specification

# training  # testing Input Receptive # feature Pooling
. . . . C
data data dimensions field maps size
24300 24300 3% 32x2 4x 4 48 3 0.01

deep neural networks, etc., on the NORB object recognitetasit [65], which is a
common benchmark. NORB dataset consists of 24,300 traimages and 24,300 test-
ing images, both of which belong to 5 generic categorieshiiaage has two channels
as it is stereo type. High variations exist among all categosuch as 3D poses, light-
ing conditions, scales, etc. Fig. 5.5 shows 60 samples d®RBB dataset. The only

pre-processing involved is to downsize the images inta 32.

All experiments are conducted on MATLAB 2013a, Intel XeonZ®0, 2GHz CPU,
256GB RAM. Several parameters need to be chaspriori in ELM-LRF: 1) the size
of the receptive field4 x 4,6 x 6}; 2) the number of feature magg4, 36,48, 60}; the
pooling size{1,2,3,4}; 4) the value ofC {0.01,0.1,1,10,100}. We hold a validation
set out from the training data and choose the optimal paembased on the validation

accuracy. Table 5.1 summarizes the parameters we choose.

55.1 Testerror

Table 5.2 reports the test errors of the proposed ELM-LRF ratated works in the
literature®. As easily observed, ELM-LRF outperforms other fine-tureminputation
intensive algorithms. The proposed ELM-LRF achiev#42s test error, théest accu-

racyin the literature with a significant gap.

5.5.2 Training time

For the comparison of training time, we reproduce otherrétlgms on our experimental

platform. Table 5.3 lists the detailed training time of sevalgorithms. ELM-LRF

3We cite the accuracy of other methods from the literatureadly to make the comparison fair.
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Table 5.2: Test error rates of different algorithms

Algorithms Test error rates
ELM-LRF 2.74%
ELM-LRF (no orthogonalization) 4.01%
Random weights [90] 4.8%

K-means + soft activatiofj14] 2.8%

Tiled CNN [63] 3.9%

CNN [65] 6.6%

DBN [77] 6.5%

1 Current state-of-the-art result.

Table 5.3: Training time of different algorithms

Algorithms Training time (s) | Speedup times"
ELM-LRF 394.16 217.47
ELM-LRF (no orthogonalization) 391.89 218.73
Random weight$ 1764.28 48.58

K-means + soft activatioh 6920.47 12.39

Tiled CNN*4 15104.55 5.67

CNN?® 53378.16 1.61

DBN 6 85717.14 1

1 DBN is used as the standard to calculate the speedup times.

2 The current most efficient CNN solution. The training timpaged in
[90] is 0.1h. Reasons for such difference in training tine @ we have
considered convolution and pooling operations as paraafittg, and the
training time reported includes the time spent on convoiuéind pooling
which were not considered in [90]; ii) experiments are rurdiffierent
experimental platforms.

3 Use the same parameters as in [14] with 4000 features.

4 Use the same architecture as ELM-LRF and set the maximum ewafib
iterations in the pretraining to 20.

5 The architecture is provided in [65] and we use 50 epochs.

6 The architecture is: 2048 (input)-500-2000-500-5 (outparid 500
epochs since the convergence of training error is slow wieatirty with
NORB dataset.

accelerates the learning speed ug®0 timeghan other algorithms. Moreover, even if
we use the random weights method [90], which is the currerdtmificient method, as

the benchmark, the proposed ELM-LRF still realizes 4.4&8mpeedup and reduces

the test error.
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(a) The original image (left one) (b) The 48 feature maps

Figure 5.6: The original image (left) and correspondingdeamaps

5.5.3 Feature maps

To show what features (representations) are obtained dtigher level of ELM-LRF
network, we display the feature maps in the hidden layer.tlf®@input stereo images,
only the left one is displayed since the difference betweéraind right ones is almost
unobservable. As seen from Fig. 5.6, all 48 feature mapsdianilar outlines, since
they represent the same input (an airplane). Neverthelesse maps highlight different
parts, producing diversified and comprehensive represensa Jointly, the 48 feature
maps generate different representations for the origmagie and make the subsequent

classification accurate and efficient.

5.5.4 Orthogonalization of random input weights

In this section, we explore the improvement that the ortimadjpation operation can
introduce. We take the center convolutional node in eactufeanap as the example.
The value distributions of the 48 center nodes generatedhdyitthogonal and non-
orthogonal weights are compared. And one sample is chosandach category and
displayed in Fig. 5.7. It can be easily seen that the didiobwof orthogonal weights is

more broad and even. Similar patterns are discovered forobamonal nodes at other
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positions in the feature maps. Consequently, the effecttbbgonalization is to make

the images easier to be separated and classified.

As listed in Table 5.2, ELM-LRF still produces a04.% test error, which decreases 38%
compared with conventional deep learning methods, evdrowitorthogonalization. In
addition, ELM-LRF (no orthogonalization) provides exdeptlly fast solution, making

it quite suitable for image processing and similar tasks.
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Figure 5.7: The value distributions of the center convoludl nodes in the 48 feature
maps with orthogonal and non-orthogonal random weights

5.6 Conclusion

In conclusion, this chapter explores the randomness of EbMvD aspects: random
connection and random weights. The network of ELM-LRF, whig in sparse and
local connections, explicitly models the local correlagawithin the input. Thus, it is
exceptionally suitable for image analysis, speech redmgninatural language process-
ing, etc. Orthogonalization is followed after random getien of the input weights,
forcing the network to obtain more thorough representation the input. The output

weights are calculated analytically, providing a deteiistia solution.
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In the experiments, detailed comparisons are conductedebeatthe proposed ELM-
LRF and related works on NORB dataset, a common benchmarkl-BRF reduces
the test error to 2%, thebest accuracyn the literature, while accelerating the learning

speed up t@00 times
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Chapter 6

Generic Object Recognition with Local
Receptive Fields Based Extreme

Learning Machine

Generic object recognition, also called object categtiomais to classify an individ-
ual object to a generic category. It faces serious issuetrd-tiass variabilities, such
as different poses, lightings, scales, contracts, etc.v€dional methods are problem
dependent and require various pre-processing operationthis chapter, we suggest
to use local receptive field based extreme learning maclibh®{LRF) as a general
framework for generic object recognition. ELM-LRF requingo pre-processing steps
as it deals with the original input directly. Furthermoiteg network is simple and effi-
cient as most connection weights are generated randomlgxXfeasively compare the
performance of ELM-LRF with state-of-the-art algorithns several datasets, NORB,
ETH-80, COIL and ALOI. It is comparable with the best resuitE&TH-80 and sets the
new records for NORB, COIL and ALOI.

101
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6.1 Introduction

Generic object recognition is to classify an unknown objech generic category and
also known as object categorization [83, 25]. High levehtfa-class variabilities, such
as different instances of the same category, diverse pbgbsngs, scales, etc., pose

big problems for this task. Many different methods have qgeposed to handle it:

(1) Shape-based methads [66, 72], explicit shape models are built up, on which the
subsequent recognition is performed. In these works, atigbutes, like color,
texture, etc., are neglected. Later, parts-based shapelsnace constructed and

produce satisfactory performance in some applications35h

(2) Appearance-based method3bjects of the same category may display various ap-
pearance. In these cases, low-level information, suchkégrésand color histogram,
are helpful. The images are highly correlated and will becpssed by PCA or
other compression methods to generate compact repraeastas the model im-
ages. Hence, the classification criteria will be the sintijtdretween the object itself
and the model images [97, 68, 109].

(3) Local features-based methodshese works identify some points of interest and
extract local features around the identified points. Vegitypes of local features
have been used, such as HOG features [18], SIFT features §Zéle invariant
descriptors (SIDs) [61], etc.

However, these methods require large amount of human iemudwnt, making it tedious
to use. Even worse, these methods are task dependent stnloedhfeatures or shape
models need to be changed if facing new tasks [10, 6]. Comsglyuwe propose to use

the ELM-LRF described in Chapter 5 as a general frameworkhisrtask.
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6.2 ELM-LRF for Generic Object Recognition

ELM-LRF is operated on the raw images directly. It randomgnerates the input
weights and analytically calculates the output weighteyjling a deterministic solu-
tion. Furthermore, unlike convolutional neural networ€NNs), it does not require BP
algorithm to iteratively tune the connection weights. Gamsently, the requirements for
computational ability and huge training set are both gyeatliuced as the input weights

need no tuning.

ELM-LRF provides several superiorities over other methaslshe general framework

for generic object recognition:

(1) General applicability It does not utilize any task-specific information, suchcsl

features, global shapes, etc., thus is applicable forréifteapplications.

(2) Simple usageThe only human involvement is to select several paramégessd on

the validation accuracy, enabling it simple to use.

(3) High efficiency Most connection weights (input weights) are simply geteztaan-

domly, making it highly efficient.

We construct the network of ELM-LRF by formulating convabutal nodes and com-
binatorial nodes as shown in Fig. 6.1. A car image from ETHi&taset is used as an
example. There are 3 maps (RGB image) in the input layerkanthps in the feature

and pooling layers. These maps provide complete repragardor the original input.

6.3 Experiments

In this section, we examine the performance of ELM-LRF oresalvgeneric object
recognition datasets, NORB [65], ETH-80 [66], COIL [78] aAdOl [31]. The exper-
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Figure 6.1: The network of ELM-LRF with convolutional hiddaodes

imental platform is MATLAB 2013a, on a Windows Server 201rel Xeon E5-2650,
2GHz CPU, 256G RAM.

6.3.1 Datasets descriptions

These datasets have plenty of variations, including Iigjgj poses, scales, positions in
the image, etc. The only pre-processing is to downsize tigenat images into 3% 32.
There are 2 input maps (stereo image) for the NORB dataseB amgut maps (RGB

image) for other datasets.

NORB consists of 5 generic categories, with 24,300 for tngiand 24,300 for testing.
ETH-80 consists of 8 generic categories. Each category Gakfferent objects, with
41 viewing angles. For each category, the 10 objects areaepaevenly into training
and testing sets as in [59]. COIL is consisted of 100 objedts W2 viewing angles
(5° increment). The testing set contains images with @@rement, resulting in 18
views. The training set contains the remaining images, 8#si ALOI consists of
1,000 objects under three types of variations: illuminagolors, illumination directions
and viewpoints. And these three types respectively coorebpo experiment 1, 2 & 3.

Experiment 4 consists of all the data of different variasiofror all experiments, 25%
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Table 6.1: Datasets descriptions
# of # of training # of testing # of input

Dataset categories data data channels
NORB 5 24300 24300 2
ETH-80 8 1640 1640 3
COIL 100 1800 5400 3
ALOI (Expl) 1000 3000 9000 3
ALOI (Exp2) 1000 6000 18000 3
ALOI (Exp3) 1000 18000 54000 3
ALOI (Exp4) 1000 27000 81000 3

samples is chosen for training and the other 75% for testing.

6.3.2 Parameter selections

We select the optimal parameters based on the accuracy twlidh@ut validation set.
For each dataset, 20% samples of the training set are relstawealidation and the
parameters are searched over a grid. Here are the pararteeteeschosen: 1) the

number of feature maps; 2) the size of receptive field; 3) taipg size; 4) the value
of C.

Influence of the number of feature mapsK

Feature maps generate diversified, comprehensive repaéises for the raw images.
Thus, the more feature maps, generally the more comprefgaregpresentations. After
the number passes a threshold, further increasé wiil not improve the performance

of ELM-LRF. On the contrary, it may even degrade the perforogaas it may easily

cause overfitting.

There are 4 parameters to be tuned, requiring plenty of hunvatvement and compu-
tations. In this section, we evaluate the performance byingthe values oK from 10
to 100 and aims to find a value that is suitable, though notragdtifor most problems
to lighten the computational burden. Naive values are ugedther 3 parameters when

we explore the values &f: receptive field 4« 4, pooling size 5 an@ = 0.01.
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Figure 6.2: The validation accuracy and training time wiginwing feature maps

Table 6.2: Parameter specifications

Receptive Pooling # Feature
Dataset . . :
field size maps (fixed)
NORB 4x4 3 0.01 50
ETH-80 3x3 6 1 50
COIL 7Tx7 5 1 50
ALOI (all 4 experiments), 4 x 4 6 1 50

Observing from Fig. 6.2(a), the validation accuracy gelhemacreases with the incre-
ment of feature maps, signifying that it has not reached hibeshold. However, the
training time increases significantly with the incrementffedture maps as illustrated
in Fig. 6.2(b). We make a compromise at here andfix 50 feature maps for later

experiments.

Parameter specifications

After fixing K = 50, other 3 parameters are chosen with grid search basea malth
dation accuracy. 5 values for the receptive fielk 3, 4x 4, 5x 5, 6x 6; 5 values for
the pooling size: 3, 4, 5, 6, 7; and 3 values@r0.01, 1, 100.

In order to reduce the computational burden, parameteitseot £xperiments of ALOI
with different variations are selected for ALOI (Exp3) on@ther 3 experiments simply

use the same parameters directly. However, it should bendadithat the parameters for
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Table 6.3: Test error rates and training time on the NORBsddita

Methods Test error rates | Training time (S)

ELM-LRF 2.76% 400.78
Random weights [90] 4.8% 1764.28
K-means + soft activation [14]] 2.8% 6920.47
Tiled CNN [63] 3.9% 15104.55
CNN [65] 6.6% 53378.16
DBN [77] 6.5% 85717.14

other 3 experiments are not necessarily optimal. Tablei§&®the selected parameters

for all these datasets.

6.3.3 Performance on NORB

Table 6.3 summarizes the test errors and training time araémethods on the NORB
dataset. ELM produces thdest accuracywhile reduces the training time nea290

timescompared with deep belief network (DBN) and CNN.

6.3.4 Performance on ETH-80

Fig. 6.3 displays some samples of the ETH dataset. It canthiferent objects belong-
ing to 8 generic categories with high level of intra-classat#gons. Table 6.4 lists the
error rates of ELM-LRF and related methods. It is observed BLM-LRF produces
error rate on par with state-of-the-art result achieved 8YDnethod [59]. Furthermore,
ELM-LRF is remarkably efficient with 48.64 seconds for tiamand 15.35 seconds for
testing.

1The error rates of other methods are cited from the liteeadiinectly. However, the training time are
recorded on our experimental platform to provide fair corrguams.
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Figure 6.3: Samples of ETH dataset

Table 6.4: Test error rates on the ETH-80 dataset

Methods Test error rates
ELM-LRF 10.0%
Discriminant Analysis of Canonical Correlations (DCC) 59 8.3%
Orthogonal Subspace Method (OSM) [59] 9.5%
Constrained Mutual Subspace Method (CMSM) [79] 10.3%
KNN-LDA [7] 24.8%
KNN-PCA 23.8%
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6.3.5 Performance on COIL

Some samples of COIL dataset are shown in Fig. 6.4, which B@gdtegories. ELM-
LRF outperforms théest accuracyn the COIL dataset. Furthermore, some works
also investigate the performance of CNN on COIL [76]. ELMf.Rutperforms not
only the standard CNN, but also the CNNs with additional iinfation. ELM-LRF
presents lower test error by a big gap even compared with CNBI ynlabeled test
images or COIL-like images for pre-training. We believetttige relatively too few

training samples cannot train CNN properly, making it irdeto ELM-LRF.

Figure 6.4: Samples of COIL dataset
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Table 6.5: Test error rates on the COIL dataset

Methods Test error rates
ELM-LRF 0.02%
Local Affine Frames (LAFs) [82} 0.1%
Linear SVM [106] 8.7%
Spin-Glass Markov Random Field (MRF) [72] 3.2%
Standard CNN [76] 28.51%
CNN-+video (test images of COII[J6] 2 7.75%
CNN-+video (COIL-like imaged)76] 3 20.23%

1 The current state-of-the-art result.

2 Use the unlabeled test images as additional learning soutds a semi-
supervised method together with the labeled training image

3 Use COIL-like images as additional learning source.

Table 6.6: Test error rates on the ALOI dataset
Test error rates
Methods

Expl Exp2 Exp3 Exp4
ELM-LRF 0% | 0.24% | 0.49% | 0.80%
SalBayes [21] 35.21%| 24.50%| 10.29%| 16.17%
SIFT [70] 10.59%| 28.53%| 29.05%| 27.32%
HMAX [91] 0.96%| 16.87%| 19.24%)| 16.58%

6.3.6 Performance on ALOI

ALOI dataset includes 1000 generic categories and is evee digersified than pre-
vious datasets. Additionally, several types of variatierst in the datasets of ALOI:
illumination colors, illumination directions and viewps. We conduct experiments 1,
2, 3 and 4 to investigate the performance of ELM-LRF with rega different varia-
tions separately. Table 6.6 shows the detailed performemegarison and ELM-LRF

achieves théest accuracyor all these four experiments with big improvements.

6.3.7 High efficiency of ELM-LRF

In this section, we discuss the efficiency of the general éaork of ELM-LRF. Ta-
ble 6.7 summarizes the training and testing time for all sketta ELM-LRF needs less

than 0.03 seconds per image for training and about 0.01 dedon testing. Conse-
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Table 6.7: Training and testing time on different datasets

Dataset Training stage Testing stage

Total training time  Per image Total testing time  Per image
NORB 400.78 0.0165 113.7 0.0047
ETH-80 48.64 0.0297 15.35 0.0094
COIL 33.23 0.0185 34.18 0.0063
ALOI (Expl) 68.05 0.0227 96.11 0.0107
ALOI (Exp2) 116.41 0.0194 192.81 0.0107
ALOI (Exp3) 328.55 0.0183 548.47 0.0102
ALOI (Exp4) 579.19 0.0215 819.91 0.0101

quently, ELM-LRF can be straightforwardly extended to +&ale applications because

it is capable of dealing with around 100 images per second.

6.4 Conclusion

In this chapter, we suggest ELM-LRF to be used as a generakfsrk for generic
object recognition. Compared with traditional methodsM=LRF provides several ad-
vantages: 1) tasks non-specific since it does not use amspesiific information; 2)
easy to use as it requires no pre-processing steps; 3) haffidyent since most con-
nection weights are simply generated randomly. Moreovéferdnt from the newly-
emerging CNN, which requires BP method to iteratively tumenerous parameters,
ELM-LRF provides a simple and deterministic solution. Thesmpared with CNN,
ELM-LRF: 1) largely reduces the computational requiremé)tis more suitable for
applications that does not contain enormous training sasndlhe experiments on sev-
eral generic object recognition datasets, NORB, ETH-80ILCGDd ALOI, well show
the superior accuracy and high efficiency of ELM-LRF.
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Chapter 7

Conclusions and Future Works

7.1 Conclusions

In this thesis, we fully investigate the extreme learningchiae (ELM) with sparse
connections. Unlike previous implementations of ELM, whtre hidden nodes are in
full connections with the input ones, we focus on the spapsmections. On one hand,
the sparse connections reduce the number of connectiomtsetus the storage space
and addition/multiplication operations in the testing $aOn the other hand, the sparse
connections explicitly model the local structures withie input, making it especially
suitable for locally correlated applications, such as ienagalysis, speech recognition,

natural language processing, etc.

In Chapter 3 and 4, the sparse ELM is proposed as an alteworatieef unified ELM to
handle classification and regression problems respegtiVdle sparse ELM produces
comparable accuracy with the unified ELM while beating theaswnly used support
vector machine (SVM). Additionally, it constructs a spamsgwork, largely reducing
the storage space and testing time. More importantly, tmepcdational complexity
of sparse ELM is of lower magnitude than the unified ELM. Thiti$s considerably

preferred when dealing with large-scale applications.
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In Chapter 5, we explore the properties of local receptiMdgiand propose the ELM-
LRF, which naturally implements the local receptive field€ELLM network. The con-
nections in the ELM-LRF are sparse and bounded by correspgridcal receptive
fields. ELM-LRF explicitly models the local structures wiilthe input and is remark-
ably suitable for image processing and similar tasks, whoaal correlations exist. It
presents thbest accuracyn the NORB dataset, a common benchmark for object recog-

nition, and shortens the training time up200 times

In Chapter 6, the proposed ELM-LRF is studied as a generaidveork for generic

object recognition. It is operated on the raw input direettyl generally applicable for
requiring no task-specific information. In addition, thewerk is simple and deter-
ministic, offering it superiorities over traditional meftths and recent CNN networks.
ELM-LRF produces high accuracy with exceptional efficiermey several benchmark
datasets, NORB, ETH-80, COIL and ALOI.

7.2 Future Works

In the future, we would further investigate the ELM with sg@connections to deal with
applications of growing scale, local correlations, etcgdémeral, there are several topics

deserving more research:

(1) Parallel implementation For the sparse ELM, we have developed training al-
gorithms based on iterative computation. Therefore, thmitig phase can be
paralleled by partitioning the training data into severaicks to be handled by

different processors.

(2) Different types of local receptive fietdas discussed in Chapter 5, various types
of probability functions can be utilized to sample the losadeptive fields. Thus,
we plan to search for other proper local receptive fields¢hatwell represent the

local structures within the input data.
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7.2 Future Works 114

(3) Deep networklt is promising to build up a deeper network so that more rmegn
ful and complete representations of the original inputstleaproduced. The key
issue is proper representational learning, such as awoden manifold learning,

convolution, pooling, etc.
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