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SUMMARY 

We conducted a systematic study on the transcriptional and posttranscriptional 

regulatory roles at sequence level in Arabidopsis. Both miRNA target motifs 

(miRNA-mediated posttranscriptional regulatory sites) and TFBSs (transcription 

factor binding motifs) were incorporated with microarray time course gene 

expression profiles to determine their probabilistic dependences. A novel method 

based on an inhomogeneous hidden Markov model (HMM) was developed to 

predict plant miRNA targets without additional conservation constraint. The 

model was trained using the target information of about one third of the confirmed 

miRNAs, whereas it was capable of finding all the experimentally validated 

targets for all the known miRNAs. Bayesian network model was introduced to 

deduce the conditional dependences between expression profiles and the 

combinations of two types of sequence motifs. Based solely on the sequence 

motifs adopted in the network models, we could correctly predict expression 

patterns for more than 50% of 1,132 genes, which was statistically significant. 

Furthermore, 20 genes’ expression patterns could only be correctly predicted with 

the involvement of miRNA target motifs. Among the 20 genes, one was 

experimentally validated as miRNA target and the other two had GO annotation 

term as RNA binding. The result suggested that microarray time course dataset 

could be used to detect the change of mRNA steady-state level which might be 
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affected by miRNA regulation, and the combinatorial approach was efficient to 

determine the underlying context-dependent roles in transcriptional and 

posttranscriptional regulation. 

The biological background, concepts and strategies for the construction of gene 

regulatory networks are reviewed in Chapter 1, and the two statistical methods 

used in this study, namely hidden Markov model (HMM) and Bayesian network 

model, are introduced in Chapter 2. In Chapter 3, a novel inhomogeneous HMM 

based approach for plant miRNA target prediction is described. Chapter 4 is a 

presentation on our systematic study on the transcriptional and posttranscriptional 

roles at sequence level in Arabidopsis. Chapter 5 gives the conclusion of this 

study. 
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Chapter 1: Introduction 

The completion of various genome sequencing projects and large-scale genomic 

studies has led to a wealth of available biological data. In the era of post-genomic 

biology, a key aim is to systematically catalogue all genes and their interactions 

within a living cell in order to understand the cell’s functional organization. 

Current molecular biological, analytical and computational technologies enable us 

to systematically investigate the complex molecular processes underlying 

biological systems [1]. 

Biological networks represent multiple interactions within a cell, and provide a 

global view to understand the relationships between molecules and the dictated 

cellular behavior. Rapid advances in network biology indicate that gene 

regulatory networks are governed by universal laws and offer a new conceptual 

framework that can potentially revolutionize our view of biology and disease 

pathologies in the twenty-first century [2]. Recent progresses in molecular and 

computational biology have made the study of intricate transcriptional regulatory 

network possible through describing gene expression as a function of regulatory 

inputs specified by interactions between protein and DNA [3]. To define the 

network structure of a cell, network biology researchers use data generated by 

experimental methods, including high-throughput genomic, proteomic, and 

metabolic data, as well as computational approaches to identify and map cell 
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signaling networks. High throughput genomic work, such as microarray 

technology, chromatin immunoprecipitation (CHIP), has now yielded relatively 

unbiased genome-wide data sets that comprise known metabolic, regulatory, 

functional, and physical interactions. Application of these technologies will shift 

the emphasis in biological research from primary data generation to complex 

quantitative data analysis [4]. It has become obvious that the rate-limiting step in 

the studies of functional genomics is not the handling of the biological samples, 

but the post-analytical work in determining what the results actually mean instead 

[5]. 

Viewing genes in terms of their underlying network structure is a powerful 

concept. All networks share common characteristics, and mathematical treatments 

have been developed to understand their structure and how they can be regulated. 

Thus, organizing biological information in the context of networks is fundamental 

to understanding biological function in system level. 

Many studies have been done to relate the gene expression data to the 

combination of cis-regulatory elements [6,7]. However, these approaches have not 

been broadly applied in multi-cellular organisms in spite of the reported success 

in model organisms. A key limitation of such approaches is that many regulators 

are regulated posttranscriptionally [8]. While progress is made in mapping 

transcriptional regulatory networks, posttranscriptional regulatory networks just 

begin to be uncovered. In this work, we conducted a systematic study on the 
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transcriptional and posttranscriptional regulatory roles at sequence level in 

Arabidopsis. Both miRNA target motifs (miRNA-mediated posttranscriptional 

regulatory sites) and TFBSs (transcription factor binding motifs) were 

incorporated with microarray time course gene expression profiles to determine 

their probabilistic dependences. To facilitate our transcription regulatory network 

construction, a novel method based on an inhomogeneous Hidden Markov Model 

(HMM) was developed to predict plant miRNA targets without additional 

conservation constraint. Bayesian network model was introduced to deduce the 

conditional dependences between expression profiles and the combinations of two 

types of sequence motifs. 

Before describing the methods proposed by us for transcriptional regulatory 

network construction, I would like to briefly review the general biological 

background and the common strategies of building transcriptional and 

posttranscriptional regulatory networks. Basically, there are three steps, namely 

classifying co-regulated genes into clusters, detecting transcriptional and 

posttranscriptional regulatory sequence motifs and building regulatory networks 

which integrate both gene expression data and sequence motifs. 

1.1 Biological background of the transcriptional and 

posttranscriptional regulation 

A large number of experimental and computational studies have been done on 
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locating transcriptional regulator binding DNA sequences and understanding their 

functions [9-11]. TFs regulate gene expression by binding selectively to sequence 

sites in promoters of genes, and genes regulated by the same TFs have been 

assumed to share the common binding sites in their promoter regions and exhibit 

similar expression profiles [12].  

1.1.1 Transcriptional regulation 

Transcription in molecular biology is the copying from a DNA pattern to create a 

RNA molecule. By interacting with RNA polymerase or recruiting 

chromatin-modifying machinery, transcriptional regulators increase or decrease 

the transcriptional rate of genes, through transcriptional regulator binding DNA in 

the neighborhood of protein-coding and RNA genes.  

The transcription of genes is regulated by transcription factors (TFs), which bind 

to DNA regulatory elements near the coding sequences. The "promoter" of a gene 

includes the DNA sequences which regulate basal levels of gene transcription, and 

control the exact position where transcription begins. These sequences are 

generally very near the transcriptional start site because of the functional need of 

Pol II enzyme. There are proteins involved in this process, such as the "basal 

transcription factors", which assemble on the promoter in a defined order (Figure 

1.1.1). This process of initiation complex formation is followed by other 

protein-protein interactions that modulate the level of transcription, the 
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cell-specificity, and the timing of gene expression. 

 

Figure 1.1.1 Transcription initiation. 

Pol: RNA polymerase II complex. B-H: transcription factors 1 

TFs are usually defined as proteins which show sequence-specific DNA binding 

and are capable of activating and/or repressing transcription of their target genes 

[13]. These transcription factor binding sites (TFBSs) contain 6~25 base pairs and 

are usually located in the upstream regions of the genes being regulated. They are 

important in facilitating the binding of TFs that controls the transcription of the 

genes. 

1.1.2 Posttranscriptional regulation 

microRNAs (miRNAs) was first discovered in nematodes in 1993. They are 

non-coding RNAs and sculpt gene expression profiles during plant and animal 

development. In fact, miRNAs may regulate as many as one-third of human genes 

[14]. 

miRNAs are transcribed by RNA polymerase II as primary miRNAs 

                                                 
1 Reproduce from http://homer.ornl.gov/cbps/tfpage.htm 
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(pri-miRNAs), the size of which ranges from hundreds to thousands of 

nucleotides in length [15-18]. Most miRNAs are transcribed from the genome 

regions distinct from previously annotated protein-coding sequences. About half 

of the known mammalian miRNAs are within the introns of protein-coding genes, 

or within either the introns or exons of non-coding RNAs, rather than in unique 

transcription units [19-23].  

1.1.2.1 The biogenesis and function of miRNAs in animals 

In animals, two processing steps are needed to yield mature miRNAs 

(Figure1.1.2), each of which is catalyzed by a ribonuclease III (RNase III) 

endonuclease together with a double-stranded RNA-binding domain (dsRBD) 

protein partner. First, Drosha, a nuclear RNase III, cleaves the flanks of 

pri-miRNA to liberate an ~70 nucleotide stem loop, the pre-miRNA 

[10,19-22,24-28]. The resulting pre-miRNAs have 5’ phosphate and 3’ hydroxyl 

termini, and two- or three- nucleotide 3’ overhangs, due to the characteristics of 

RNase III cleavage of dsRNA. Then pre-miRNA is exported from nucleus to 

cytoplasm by Exportin 5 [14,29-32]. Second, in the cytoplasm, another RNase III, 

Dicer, together with its dsRBD protein partner makes a pair cut that defines the 

other end of the mature miRNA, liberating an ~21 nucleotides RNA duplex 

[14,33-40]. The mature miRNA enters the RNA-induced silencing complex 

(RISC), the protein complex that represses target gene expression [41,42]. 

The RISC carries out small RNA-directed gene silencing in the miRNA pathways 
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in both plants and animals [43-47]. When miRNA guides in the RISC pairs 

extensively to a target mRNA, the RISC functions as an endonuclease, cleaving 

the mRNA between the target nucleotides paried to bases 10 and 11 of the miRNA. 

The core component of the RISC is a member of the Argonaute (Ago) protein 

family, whose members all contain a central PAZ domain and a carboxy terminal 

PIWI domain. The PIWI and PAZ domains bind to the 5’ and 3’ ends of the 

miRNA, respectively [48-53]. And Argonaute is the target-cleaving endonuclease 

of the RISC [54-59]. 

In animals, the complementarity between animal miRNAs and their targets is 

usually restricted to the 5’ region (nucleotides 2-8 or 2-7) of the miRNA to the 3’ 

region of the target site [60-63]. In the absence of extensive complementarity 

between the miRNAs and the targets, binding of the RISC blocks translation of 

the target mRNA [64].  

 

Figure 1.1.2 The miRNA biogenesis pathway. (A) Animal and (B) plant miRNA 
biogenesis2. 

                                                 
2 Reproduced from http://dev.biologists.org/cgi/content/full/132/21/4645 with permission. 
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1.1.2.2 The biogenesis and function of miRNAs in plants 

miRNA maturation in plants differs from the pathway in animals because plants 

lack a Drosha homolog (Figure1.1.2). The RNase III enzyme DICER-LIKE 1 

(DCL1), which is homologous to animal Dicer, is required for miRNA maturation 

[65-68]. In plants, DCL1 is localized in the nucleus and can make both the first 

pair cuts made by Drosha as well as the second pair of cuts made by animal Dicer. 

As for animal Dicer, a dsRNA-binding domain protein partner, HYL1, has been 

implicated in DCL1 function in plant miRNA maturation [66,69]. HASTY (HST), 

the plant ortholog of Exportin 5, exports the miRNA/mRNA* duplex and 

completes its assembly into the RISC in the cytoplasm [70,71]. Plant miRNAs 

have a methyl group on the ribose of the last nucleotide. The terminal methyl 

group is added by the methyltransferase HEN1, and the modification of the 

miRNA by HEN1 either protects the miRNA from further modification or 

degradation, or may facilitate its assembly into the RISC [14,72,73]. 

In plants, most miRNAs have perfect or near perfect complementarity to their 

targets [68]. Upon binding to their targets, the miRNA-containing RISCs function 

as endonucleases, cleaving the mRNA [74,75]. miRNA-binding motifs are found 

both in the coding regions and in the untranslated regions of miRNA-regulated 

plant mRNAs. 

miRNAs function in a wide rage of biological processes in plants and animals 

[76,77]. The first insight into their function came from phenotypic studies of 
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mutations that disrupt core components of the miRNA pathway. dicer mutants 

show diverse developmental defects, such as abnormal embryogenesis in 

Arabidopsis. Similarly, the disruption of Argonaute function causes widespread 

maintenance and failure to form axillary meristem in an Arabidopsis mutant for 

PINHEAD/ZWILLE (PNH/ZLL) or ARGONAUTE 1 (AGO1). Arabidopsis mutant 

for ZIPPY (ZIP), an Argonaute gene, and HASTY (HST), which encodes the 

miRNA export receptor, exhibit a precocious vegetative phenotype and produce 

abnormal flowers [70]. Overall, these phenotypes suggest that certain miRNAs 

play important roles in early development [14]. 

1.2 Gene regulation analysis through clustering of 

gene expression data 

DNA microarrays provide rapid and parallel surveys of gene-expression levels for 

hundreds or thousands of genes in a single assay. Based on our understanding of 

cellular processes, genes contained in a particular pathway, or respond to a 

common environmental challenge, should be co-regulated and consequently show 

similar patterns of expression. The hypothesis behind using clustering techniques 

is that genes in a cluster share some common function or regulatory elements. In 

other words, genes in the same cluster are more likely to have a known interaction 

or a similar cellular role [78]. However, there are quite a few clustering methods 

available for grouping genes in terms of their expression levels, differing in how 
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data is normalized within and across experiments and how the similarity is 

measured and so on and so forth. All of these differences may have substantial 

effect on the outcome of clustering analysis [79]. 

1.2.1 Clustering analysis of microarray data: heuristic 

clustering methods 

We can cluster genes into different groups based on the similarity of gene 

expression profiles. Genes with similar expression patterns across multiple 

conditions may share the same biological pathway or work coordinately, such that 

gene clustering can be used to predict the function of unknown genes [80,81]. 

Basically, there are two kinds of clustering methods: (a) the heuristic clustering 

methods; and (b) the model-based clustering methods. The former clusters genes 

based on the expression data only, whereas the latter makes use of prior biological 

knowledge. 

Many clustering methods have been applied to microarray data analysis [82]. 

Three commonly used methods are hierarchical clustering, K-means clustering 

and self-organizing map. They are all based on the measures of the distance or 

similarity between the objects of interest (gene expression vectors). The 

commonly used distance measures include Euclidean distance and the 

complementary Pearson correlation. The expression vectors of two genes 1g  and 
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2g are ),...,(
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Two advantages of this complementary Pearson correlation coefficient as the 

distance measure over Euclidean distance are: (a) it is not scale dependent; and (b) 

it can reflect negative association.  

After a distance measure is specified, one can use the following algorithms to 

cluster genes. 

(1) Hierarchical clustering 

Agglomerative hierarchical clustering is a commonly used method in clustering 

genes in terms of their expression profiles. Given a set of N genes to be clustered, 

the hierarchical clustering starts by assigning each gene to a cluster; and the two 

“closest” clusters are merged together in each step. This process continues until 

all the genes are merged into one single cluster of size N . Besides the distance 

measure, “linkage method”, which defines the distance between the two clusters 
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to be merged, needs to be specified. Linkage methods include: (a) average linkage, 

which uses the average distance between all pairs of genes (one in each cluster) as 

the distance between clusters; (b) complete linkage (also called the diameter or 

maximum method), which uses the greatest distance between pairs of genes; and 

(c) single linkage (also called the connectedness or minimum method), which uses 

the shortest distance between pairs of genes. In general, complete linkage and 

average linkage are preferred over single linkage because they tend to produce 

relatively compact clusters. Hierarchical clustering has been widely applied to 

microarray data analysis since Eisen et al. and Bittner et al. [80,83]. 

(2) K-means clustering 

The objective of K-means clustering is to segregate the genes into k clusters. The 

number of clusters k is predetermined and the main procedure is to define k 

centroids, one for each cluster. Usually the algorithm begins with a random 

initialization of the centroid of each cluster. Because different initial centroids will 

bring different result, the centroids should be placed far away as much as possible 

from each other. Each gene is assigned to the cluster whose centroid is nearest, 

and the centroid of that cluster is updated accordingly. After all the genes are 

assigned, the process starts over to reallocate the genes among clusters and update 

the centroids of both the donor cluster and the recipient cluster. The iteration 

continues until no more allocations take place. 
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The major advantages of the K-means method over hierarchical clustering are (a) 

the “clusters” are more clearly defined; and (b) it does not request for pair-wise 

distance between genes. This feature substantially improves the ability of the 

algorithm in dealing with large datasets. A disadvantage of this method is that the 

number of clusters k is to be chosen arbitrarily, and the outcomes could be very 

sensitive to the choice of k and the initial cluster centroids. The K-means 

clustering was first proposed by MacQueen and it is widely used in gene 

expression profile analysis [84-86]. Because of the instability of the outcomes, 

Rahnenfuehrer suggested clustering the data for a number of times with different 

random initial centroids and then choosing the best classification, which 

minimized the within-cluster sum of squares. This method performed very well on 

his test datasets [86].  

(3) Self-organizing maps (SOM) 

SOM is a data visualization technique which reduces the dimension of data using 

self-organizing neural networks. It produces a map of 1 or 2 dimensions which 

plots the similarities of the data.  

SOM is similar to the K-means method in that it also attempts to classify genes 

into a predefined fixed number of clusters, and it does so by comparing the 

distance between the gene and the centroid of each cluster. The difference 

between the two is as follows. For SOM, when a gene is classified, the centroid of 

the recipient cluster and the centroids of some defined “neighborhood” clusters 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Introduction 

 14

are updated simultaneously. This algorithm builds up a “map” for the clusters in a 

lower-dimensional space (for example, a two-dimensional plane). Each cluster is 

represented by a node in the map. The configuration of the map is arbitrarily 

determined and may be irrelevant of the real data structure. When using a 

two-dimensional plane, people usually arrange the nodes in a rectangle grid. Each 

node is associated with a “codebook” vector, which is of the same dimension as 

the data vectors. At the beginning of the algorithm, the codebook vector for each 

cluster is randomly chosen. When a gene is presented to the algorithm, the 

distance between this gene and each of the codebook vectors are computed to 

determine which codebook vector is the closest one. Then both the closest 

codebook vector and other codebook vectors whose corresponding nodes are 

within some neighborhood of the closest node are updated (moved toward to the 

gene). At the end of the algorithm, each gene is assigned to the cluster whose 

codebook vector is closest to it. However, the outcome is sensitive to the number 

of clusters, the configuration of the map, the choice of the learning rate and the 

neighborhood function. Tamayo et al. used this algorithm to classify 585 genes in 

a time-course experiment into 12 clusters arranged in a 4 3×  rectangle grid [87]. 

1.2.2 Clustering analysis of microarray data: model-based 

clustering methods 

There is another way to deal with clustering problems: model-based methods, 
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which use certain models for clusters and attempt to optimize the fit between the 

data and the model. 

An important question in microarray data analysis is whether to use a time-series 

(dynamic) design or a static design. The steady-state design may miss dynamic 

events that are critical for correctly inferring the structure of a gene network, but 

it enables one to observe gene expression under more diverse experimental 

conditions. On the other hand, time-series experiments can capture dynamics, but 

many of the data points may contain redundant information leading to inefficient 

use of experimental resources [88,89]. There are many approaches to analyze time 

course data, including the three aforementioned “heuristic” methods. These 

methods assume the different experiments to be independent and do not consider 

any dependencies between profiles belonging to subsequent time-points, so that 

permuting time points arbitrarily does not change the result of the clustering [90]. 

As an alternative to these methods, model-based clustering methods have also 

been proposed and applied to microarray data, which are especially suitable for 

time-series expression data [91-96]. The advantage of model-based clustering is 

that, usually the assumed underlying distributions are well defined and 

extensively studied in statistics. 

Two of the recently proposed model-based clustering methods, i.e. cubic spline 

clustering and hidden Markov model (HMM), are briefly reviewed in the 

following.  
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(1) Cubic spline clustering model 

Cubic splines can be used to represent gene expression curves. They are a set of 

piecewise cubic polynomials and are frequently used for fitting time series and 

other noisy data [97]. Ma et al. modeled the “mean curve” for each cluster of 

genes by smoothing spline [91]. The gene expression level in a time series 

experiment in a given cluster is assumed to follow the shape of the mean curve, 

with an additional gene-specific “random effect”. Given the gene i in cluster k , 

the expression at time ijt  ( j is the time point) can be written as: 

ijiijkij bty εµ ++= )( , 

where kµ is the mean curve, ),0(~ 2
bki Nb σ explains the gene specific deviation 

from kµ and ),0(~ 2σε Nij is the Gaussian measurement error. 

),(~ ∑ kkk Ny µ , where ky and kµ are the vector representations of the 

expression and the mean curve, respectively. And the time series expression 

vector of iy can be modeled by a mixture Gaussian distribution: 

∑ ∑∑ +⋅⋅⋅++ ),(),(),(~ 222111 KKKi NpNpNpy µµµ , 

where K is the total number of clusters and kp (a prior) is the relative size 

(proportion) of cluster k . The maximum likelihood of the entire mixed-effect 

model can be calculated by EM algorithm and Bayesian Information Criterion 

(BIC) can be used to estimate the number of clusters. 

Luan et al. used a mixed-effects model based on B-spline to account for time 

dependency of the gene expression measurements over time and the noisy nature 
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of the microarray data [96]. For gene expression, a B-spline can be described as a 

polynomial spline and represents each point as a linear combination of a set of 

basis polynomials; therefore it fits different curves in different regions instead of 

fitting one polynomial curve across the data points [95]. B-spline requires 

specification of series of internal knots (break points). Once the value of these 

splines at a set of control points is known, the entire set of polynomials can be 

generated using these basis functions. The parameters of these models are usually 

estimated by an EM algorithm [95].  

The cubic splines model provides a superior fit for time series expression data. 

However, it is only appropriate for relatively long time-series experiments (> 10 

time points), and for practical application the number and location of the knots for 

the splines corresponding to the mean function and the random effects have to be 

specified. 

(2) Hidden Markov models (HMM) for clustering time course microarray 

data 

HMM takes into account the temporal nature between the time points and the 

duration each time point represents. HMM can be defined by the following 

parameters: the hidden states iS , the initial probability iπ at a given state, the 

transition probability ija  from state i  to state j , and the emission probability 

)(wbi of symbol w at state iS .  
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Figure 1.2.1 A hidden Markov model visualized as a directed graph. 

The emission probability density functions are attached to the nodes. The model depicted 
is a prototype for down-regulation3. 

 

Given gene expression data for n genes, the objective is to classify the genes into 

K  clusters ( K HMMs KΛΛΛ ,...,, 21 ), which gives the maximum likelihood of 

the observed gene expression profiles (illustrated in Figure 1.2.1). Schliep et al. 

presented a HMM based clustering algorithm for time series expression data 

[90,97]. The emission probabilities were assumed to follow Gaussian distribution 

with fixed variance. An EM algorithm was used to estimate the parameters: each 

gene is assigned to the most likely HMM (E-step) and the parameters of each 

HMM are determined using the genes that are assigned to it (M-step).  

1.3 Detection of transcriptional and 

posttranscriptional regulatory motifs 

A flood of genome sequences and large scale expression data have combined to 

stimulate the maturation of bioinformatics methods for the analysis of sequences 

that mediate the regulation of gene transcription [98]. By interacting with RNA 

                                                 
3 Reproduced from http://bioinformatics.oxfordjournals.org/cgi/reprint/19/suppl_1/i255 with permission. 
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polymerase or recruiting chromatin-modifying machinery, transcriptional 

regulators increase or decrease the transcriptional rate of genes, through 

transcriptional regulator binding DNA in the neighborhood of protein-coding and 

RNA genes. On the other hand, other level of transcriptional regulation besides 

that through transcription factors has recently arrested much attention due to the 

discovery of microRNAs (miRNAs) [99,100]. A large number of experimental 

and computational studies are aimed at locating the specific sequence motifs 

which can bind to either transcription factors (transcriptional regulatory motifs) or 

miRNAs (posttranscriptional regulatory motifs). Some prevailing algorithms for 

detecting these motifs are briefly reviewed in the following sections. 

1.3.1 Identifying the cis-regulatory control elements shared 

by the co-expressed genes 

Transcription in molecular biology is the copying from a DNA pattern to create a 

RNA molecule. The creation of new RNA from DNA cannot occur without 

transcription factors (TFs) and TFs can be activated or deactivated by other 

proteins. TFs are primarily involved in the initiation stage of RNA transcription -- 

they are the key to determining the position at which the DNA chain will be 

"unzipped". TFs are usually defined as proteins which show sequence-specific 

DNA binding and are capable of activating and/or repressing transcription of their 

target genes [13]. These transcription factor binding sites (TFBSs) contain 6~25 
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base pairs and are usually located in the upstream regions of the genes being 

regulated. They are important in facilitating the binding of TFs that control the 

transcription of the genes. Therefore it is reasonable to assume that genes 

regulated by the same TF should all contain the corresponding binding sites in 

their regulatory regions and exhibit similar expression profiles as measured by, for 

example, microarray technology [12]. Based on this assumption, a considerable 

number of algorithms have been developed that group genes into coexpressed 

classes and then search their upstream sequences for common motifs [12,101,102]. 

It is important to note that the only assumption required for these approaches is 

that genes regulated by the same TF should contain common binding sites and 

exhibit similar expression profiles. However, this is a quite strong assumption that 

allows investigation of coregulation through genome-wide sequence and 

expression data analysis [12]. Recognition of TFBS in the upstream regions of 

co-expressed (co-regulated) genes is crucial for elucidating gene regulatory 

networks. Among the numerous methods available for detecting motifs, three 

commonly used ones are briefly introduced here, namely phylogenetic 

footprinting, EM (expectation maximization) and Gibbs sampling. 

(1) Phylogenetic footprinting 

The method phylogenetic footprinting is based on the observation that regulatory 

elements are under selective pressure, which result in a slower evolution rate than 

that of the surrounding nonfunctional sequences [103]. The phylogenetic 
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footprinting approach is aimed at detecting conserved sequences cross multiple 

closely related species. There are three components in the existing phylogenetic 

footprinting algorithms: comparison of suitable orthologous gene sequences, 

promoter sequence alignment of orthologous gene sequences and identification of 

significantly conserved segments [98]. Phylogenetic footprinting predicts highly 

conserved sequence elements that could function as potential regulatory motifs by 

comparing orthologous regulatory regions from multiple related species [103]. 

Prakash and Tompa have analyzed issues of reliability in studies in which 

comparative genomic approaches have been applied to the discovery of regulatory 

elements at a genome-scale level in vertebrates [103]. A key assumption in the 

application of phylogenetic footprinting is the implicit hypothesis that the 

regulation of orthologous genes are under the same regulatory mechanisms in 

different species [98]. Although straightforward and powerful, this approach can 

not be used when upstream regions are very divergent or have undergone genomic 

rearrangements. Furthermore, multiple closely related genome sequences are not 

always available [9]. 

(2) Expectation maximization (EM) 

The EM algorithm is a general iterative algorithm for parameter estimation based 

on maximum likelihood when some random variables involved are not observed, 

i.e. missing or incomplete. In each repeat, the EM algorithm contains two steps, 

namely E-step (Estimation step) and M-step (Maximization step). The E-step 
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replaces missing values by estimated values and computes the expected value of 

the log likelihood. The M-step maximized the expected log likelihood computed in 

the E-step in order to find the next estimates of the parameters. 

Lawrence and Reilly handled the uncertainty in the location of binding sites by 

employing the missing information principle to develop an EM algorithm [104]. 

They assumed that each TFBS had a fixed length L and each input sequence 

needed to contain and only contained one copy of each TFBS. And these 

assumptions were also the limitation of their model. Each DNA binding motif was 

represented by a L×4 matrix, whose L-column elements represented the 

probabilities of A, C, G, T occurred at position l  and Ll ≤≤1 . 

Bailey and Elkan developed a motif finding approach – MEME, based on an 

extended EM algorithm [105], which could be used for discovering multiple 

motifs. 

The major disadvantage of EM based algorithm is that it may end up with local 

optimum, such that different runs will give different results. Other limitations of 

EM algorithm based motif finding approaches are that the motif length L and 

expected number of motifs are both required to be pre-defined.  

(3) Gibbs sampling 

Gibbs sampling is a general method for probabilistic inference, which is well 

suited for coping with incomplete information. The algorithm generates a 

sequence of samples from the joint probability distribution of two or more random 
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variables. The purpose is to approximate the joint distribution, or to compute an 

integral. In other words, Gibbs sampling approach is essentially a special 

numerical approximation method Markov Chain Monte Carlo (MCMC), which 

enables one to draw samples of high dimensional random variables in an iterative 

fashion. If )(xπ is a multivariate target distribution and the entire vector x  will 

be updated by generating y from a density ),( yxq . At the thi step, iy is 

generated from the density ),( iii yxq , where iq  depends on the current value of 

ix and )(xπ  is uniquely determined by the set of full conditionals )( ii xπ , 

where ki ,...,1= . The distribution for updating the thi  component of x  is: 

)(),( iiiii yyxq π= , 

where )( ii yπ is the full conditional distribution of iy . Thus Gibbs sampling 

consists of sampling from full conditionals of the target distribution. Given a set 

of sequences, Gibbs sampling algorithm can be used to find the motif shared by 

all or most sequences, while the motif’s starting position in each sequence is 

unknown. 

After the original Gibbs sampling algorithm for motif finding was reported in 

1993 [106], Liu et al. developed a full Bayesian foundation of this algorithm and 

presented a rank test for the assessment of the significance of multiple sequence 

alignment [107]. Till now, various Gibbs sampling based motif finding 

approaches have been developed, such as Gibbs motif sampler [106,107], 

BioProspector [108] and AlignACE [109,110]. In this study, we used AlignACE 
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to detect motifs located upstream of co-regulated genes, that correspond to the 

DNA binding preferences of TFs (Chapter 4). 

1.3.2 Identifying the miRNA target motifs 

microRNAs (miRNAs) are endogenous 20~24 nt RNAs that can play important 

roles by targeting mRNAs for cleavage or translational repression. Although they 

captured attention only recently, there are evidence that miRNAs are parts of 

ancient, conserved regulatory modules underlying developmental outcomes and 

comprise one of the abundant classes of gene regulatory molecules in 

multicellular organisms and likely influence the expression of many 

protein-coding genes [99,100,111]. 

Substantial differences have been reported between the animal and plant 

kingdoms in regard to the mechanisms and scope of miRNA-mediated gene 

regulation, including the biogenesis of miRNAs and the recognition between 

miRNA-mRNA duplex. Before describing our own approach to detect miRNA 

target motifs in plants (in Chapter 3), I will briefly review several existing 

algorithms of predicting either animal or plant miRNA targets. 

1.3.2.1 Animal miRNA targets prediction 

miRNAs are among the major class of regulatory genes, present in most 

metazoans and play important roles for a range of biological functions [112]. In 

animals, most of the miRNAs bind to the target 3’ untranslated region (UTR) with 
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imperfect complementarity and function as translational repressors. The limited 

complementarity between miRNA-mRNA duplex are basis of all the methods to 

computationally predict animal miRNA targets. Recently, Rajewsky reviewed 

some of the computational approaches developed to predict miRNA targets in 

animals [112]. 

In 2003, the fly pro-apoptotic gene hid was the first miRNA (miRNA bantam) 

target identified by performing a genome-wide, sequence-based bioinformatics 

screening for targets of a miRNA [112-114]. Thereafter, different algorithms have 

been published in predicting targets for miRNAs in Drosophila and vertebrates 

[60,112,115-118]. Most of these methods detected target candidates generally 

based on two natures: (a) the 5’ end of miRNA (6-8 bp, called “seed sites”) needs 

to perfectly match to its target site, and the term “nucleus” was used for these seed 

sites which were found to be the key component of target recognition 

[111,112,117]; (b) The multiplicity of complementary sites in a 3’ UTR could 

exponentially boost the efficacy of target repression [111,112]. Additional 

constraints were also required in almost all the methods in order to increase the 

specificity of the algorithms, including conservation of the seed sites, free energy 

of the miRNA-mRNA duplex lower than a cut-off value, and the requirement of 

more complementary sites for miRNAs than their shuffled sequences (control). 

Although the additional constraints could dramatically reduce the number of 

target candidates which might lead to the increased specificity, there were some 
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arguments about the application of these additional constrains. Firstly, the 

conservation constraint will discard species-specific candidates. Secondly, there 

was evidence that the nuclei initiates a rapid zip up of the miRNA-mRNA duplex 

to overcome thermal diffusion, followed by a stabilizing thermodynamic step of 

further annealing of the miRNA to the target site [117]. The study indicated that 

the free energy requirement of the entire miRNA-mRNA duplex was generally a 

bad predictor for miRNA target sites [112]. Thirdly, in order to assess the 

statistical significance of targets, the abundance of perfect matches to the 5’ end 

of the shuffled sequences and miRNAs was compared. Since the shuffled 

sequences were unlikely to be biologically relevant, so the observation of more 

“hit” for miRNA than shuffled sequence could serve as an indicator that many of 

the target candidates were indeed biological relevant. The ratio of “real” versus 

“shuffled” hits provided an estimate of the signal to noise ratio of the target 

predictions. This logic seemed natural, however, Rajewsky suggested that if a 

miRNA had only very few targets because it might be functional disadvantageous 

for a mRNA to be targeted, then the number of its target candidates could be 

fewer than the number of hits produced by shuffled sequences [112]. 

New experimental evidence emerged in 2005, which showed that there are at least 

two classes of miRNA targets in animals. One class is as the aforementioned, the 

other class has imperfect 5’ matches but compensates via additional base pairing 

in the 3’ end of miRNAs [112]. The number of predicted targets for each miRNA 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Introduction 

 27

varies from a handful to more than 800 unique genes. Lall et al. suggested that a 

high fraction of all the conserved 3’ UTR motifs among vertebrates are 

complementary to the 5’ end of known miRNAs, which indicated that these motifs 

were likely under functional constraints mediated by miRNAs [112,119]. Chan et 

al. used network-level conservation between pairs of fly (Drosophila 

melanogaster/D. pseudoobscura) and worm (Caenorhabditis elegans/C. briggsae) 

genomes to detect highly conserved mRNA motifs in 3’ UTRs. Many of these 

elements were complementary to the 5’ end of known miRNAs and likely to be 

their target sites [100]. 

A systematic comparison of miRNA target prediction algorithms was recently 

carried out versus ~ 130 experimentally assayed miRNA-mRNA regulatory 

relationships in D. melanogaster and the result showed that the algorithm PicTar 

ranked relatively high in the comparisons of both accuracy and sensitivity 

[112,120]. 

PicTar computed a maximum likelihood score that a certain 3’ UTR was targeted 

by a fixed set of miRNAs. At each step one of the states,  i  ( }...0{ Mi∈ ) was 

chosen with prior probability iρ , where 0ρ was the prior probability for the 

background, and M was the total number of different miRNAs whose 

combinatorial effects were assessed. Depending on the nature of the state, a 

certain sequence would be emitted, namely one nucleotide would be emitted in 

the background state and a 7~8 mer would be emitted in miRNA target site state. 
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The emitted sequence was appended to the previously generated sequence and the 

process repeated until the length of 3’UTR was reached. The likelihood was 

calculated as: 

∏
=

⋅=
)(

1

)(),|(
TN

i
ii smTSP ρθ , 

where T was the state path and )(TN was the total number of states in the path. 

)(sm was the emission probabilities for the miRNA binding sites (the probability 

that a certain mRNA subsequence would be the miRNA binding site), which was 

estimated from the experimental data [121]. 

1.3.2.2 Plant miRNA targets prediction 

One of the major differences between plant miRNAs and animal miRNAs is that 

for plant miRNAs, base paring with the corresponding targets is near-perfect and 

their complementary sites are located in coding regions of the target genes instead 

of being limited to the 3’ UTRs [122]. The first group which used computational 

approach to predict Arabidopsis miRNA targets was Bartel’s lab at the Whitehead 

Institute for Biomedical Research and the Massachusetts Institute of Technology 

[122]. They used PatScan [123] to search complementary sites of miRNAs. 

PatScan is based on “fuzzy matching” algorithm, which might result in incorrect 

output of the counts of mismatches. In 2004, Jones-Rhoades and Bartel as well as 

Wang et al. both developed comparative genomic approaches to systematically 

identify miRNAs ant their targets that were conserved in Arabidopsis and rice 
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[124]. 

1.4 Recent approaches aimed at elucidating gene 

regulatory networks 

A comprehensive study should be at the network level which focuses on the 

interactions between genes, and attempts to build descriptive and predictive 

models for different systems in a cell. Microarray technology, which is capable of 

the simultaneous measurement of all RNA transcripts in a cell, has spawned the 

development of algorithms for reverse-engineering transcriptional networks. DNA 

microarray technology offered the possibility to infer, or “reverse-engineer”, a 

model of cell’s underlying transcription control systems (Figure 1.4.1). The 

development of reverse-engineering methods remains a challenge because of the 

nature of data, which are typically noisy, high dimensional and substantially 

under-sampled. Moreover, well-understood and standardized benchmark systems 

are not available which can evaluate algorithm performance without any bias. 

There is still an open question regarding to experimental design, the reliability of 

the predicted networks, and the utility of various approaches for particular 

applications [89]. 
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Figure 1.4.1 The general strategy for reverse-engineering transcription control systems. 

(1) The cells are perturbed with various treatments to elicit distinct responses. (2) The 
expression level (concentration) of many or all RNA transcripts in the cells is measured. (3) 
Parameter learning of the model that describes the transcription control system underlying 
the observed responses. The resulting model may then be used in the analysis and 
prediction of the control system function4. 

 

Reverse-engineering techniques have principally focused on decoding the 

mechanisms that control gene transcription and seek to model causal relationship 

between RNA transcripts and the causal relationships may or may not correspond 

to true molecular interaction.  

There are many methods which could be used to reconstruct the biological 

networks, and each has its own advantage and disadvantage, respectively (Table 

1-1).  

 

Methods Advantage Disadvantage 
Clustering  inconsistent 

Linear modeling  rough network models 
Boolean networks logic, general rough, determinism 

Differential equations Exactitude less of training data, time 
delay, high computational 

cost 

                                                 
4 Reproduced from http://gardnerlab.bu.edu/publications/Gardner with permission. 
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Bayesian networks local limitation in network 
structure (e.g. 
self-feedback) 

 Table 1-1 The comparison among different methods for the reconstruction of 
biological networks 

 

Three statistical approaches are further reviewed, i.e. Boolean network, 

differential regression and Bayesian network [89]. 

1.4.1 Boolean network models 

In Boolean network models, a gene takes one of the two states from binary 

space }1,0{ , and a gene regulation rule is given as a Boolean function [125]. A “0” 

represents that a gene is not expressed or its expression level remains unchanged 

relative to control sample. A “1” represents that a gene is expressed or its 

expression level is changed under certain condition. The state of a gene is 

determined as a Boolean function of the state of the input genes [89]. A Boolean 

network ),( FVG  consists of a set },...,{ 1 NvvV = of nodes representing genes 

and a list ),...,( 1 NffF = of Boolean functions, where a Boolean function 

),...,( 1 ikii vvf with inputs from specified nodes iki vv ,...,1  is assigned to each 

node iv . An expression pattern ψ is an index function from V to }1,0{ . That is, 

ψ assumed to take either 0 or 1 as its state value. Expression 1+tψ  at time 1+t is 

determined by Boolean functions F from expression pattern tψ at time t , i.e. 

))(),...,(()( 11 iktitiit vvfv ψψψ =+  [125]. 
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Learning Boolean network requires large amount of experimental data since it 

does not place constraints on the form of Boolean function if . For a fully 

connected Boolean network, an algorithm needs to require approximately N2  

data points to infer all interaction functions [1]. In practice, sparsely connected 

networks are usually assumed in order to reduce the demand for data. However, 

the data requirements are still considerable. Most studies based on Boolean 

networks have examined only simulated data sets. Hence it is difficult to assess 

their practical utility. Although Boolean networks had offered promise, such as 

Yuh et al. provided a Boolean network model to reveal the logic interrelations 

between a sea urchin control element and gene expression in the endoderm during 

development [126], the data requirements may impede their practical use in 

reverse-engineering [89]. 

1.4.2 Differential equation models 

A gene network can be described as a system of differential equations. The rate of 

change in expression level of a particular gene ix , is given by nonlinear influence 

function if of the expression levels of the genes in the network: 

),...,( 1 Ni
i xxf

dt
dx

= , 

where N  is the number of genes in the network. The influence functions if are 

usually presupposed, including sigmoidal functions and linear functions [88,89]. 

The linear function has simplifying power, which can dramatically reduce the 
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number of parameters needed to describe the conditional dependence between 

gene expression levels and avoid overfitting problem. Therefore, the amount of 

data to learn a linear model is much less than that required by more complex 

nonlinear models, such as Boolean network and Bayesian network models. This 

advantage is significant considering the high cost of experimental data. However, 

this gain in experimental efficiency is acquired at the cost of placing strong 

constraints on the nature of regulatory mechanisms in the cell, which may lead to 

errors in the network model and end up with models that can only describe the 

regulatory mechanism under certain conditions [89]. Akutsu et al. combined 

Boolean network model and nonlinear differential equation model to infer genetic 

network architecture from time series data of gene expression profiles [125]. 

Bussemaker et al. provided a method for discovering cis-regulatory elements 

based on a multiple linear regression model in which upstream motifs contribute 

additively to the log-expression level, and the authors pointed out that the 

log-linear model captured about 30% of the signal given a test set of yeast 

expression experiments [127]. However, the success of their approach depended 

on the assumption that the combinations of TFs act as a log-linear function of 

gene expression level which may lead to errors in predictions. Hence, more 

complex nonlinear models of gene regulatory network may be more suitable, such 

as Bayesian network model which could also capture location and orientation 

features of binding motifs, as described below [7]. 
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1.4.3 Bayesian network models 

Data are treated as random variables in a probabilistic model, and the probability 

distribution of a random variable depends on parameter values. Bayesian models 

are sometimes called fully probabilistic for the parameter values are also treated 

as random variables [128]. A Bayesian belief-network structure SB  is a directed 

acyclic graph in which nodes represent domain variables and arcs between nodes 

represent probabilistic dependencies [129,130]. An attractive feature of Bayesian 

analysis is its ability to incorporate background information into the specification 

of the model [128].  

Let iX denote the state of a particular gene, which can be specified by a 

probability distribution function if  and depends on a set of regulatory genes jX : 

)|()|( jiijjii xxfxXxXP === , 

where Nj ,...,1= (N is the number of genes), ij ≠ , and x  is a unique 

instantiation of X . As for differential equation models, the algorithm used to 

learn the model usually presupposes the form of conditional probability 

function if . Any function may be used, such as Boolean and linear functions. 

However, there will be a trade-off between model realism and model simplicity. 

More realistic models contains more parameters, which will require more 

experimental data and greater computational effort [89]. 

Two sets of parameters need to be determined in order to reverse-engineer a gene 

regulation network using Bayesian analysis: the model topology and the 
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conditional probability functions relating the state of regulatory genes to the state 

of regulated gene. 

 

 

Figure 1.4.2 An example for gene regulatory network. 

(a) An example for gene regulatory network with five genes and five nodes. Three different 
models are used to represent the conditional dependencies among gene expression 
levels, as illustrated in (b), (c), and (d). (b) Relationship obtained by differential equation 
model. For a linear relationship, the model requires two parameters to relate gene 1 and 2 
to gene 3, respectively. (c) Relationship obtained by Boolean network model. The model 
requires four parameters to relate gene 1, 2 and 3. “OR” logic is illustrated. (d) 
Relationship obtained by Bayesian network model. The model is similar to the Boolean 
model; it requires four parameters to relate genes 1, 2 and 3, though the parameters 
specify probability distributions rather than deterministic relationships. “OR-like” logic is 
illustrated5. 

 

Figure 1.4.2 illustrated an example for gene regulatory network based on three 

different models. When the expression level of a gene is discretized into binary 

random variables, the algorithm needs to learn four parameters to 

                                                 
5 Reproduced from http://gardnerlab.bu.edu/publications/Gardner with permission. 
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specify ),|( 123 XXXP , i.e. the conditional distribution for gene 3. For each of the 

k2 combinations of the states of the k parents, there is a parameter. Hence, to 

fully specify the distribution for a particular gene, each of the k2 state 

combinations must be experimentally observed at least once (as is the case for 

Boolean networks), which may result in an impractically large number of 

experiments. Training data for such models are often incomplete. However, the 

Bayesian network structure enables an algorithm to partially specify the 

conditional distribution function for those states that are observed and the set of 

partially complete distribution functions can be sufficient to determine the 

topology of the network. The network structure is usually determined by a 

heuristic search, such as greedy-hill climbing approach. When the training data 

are not complete, the learning problem is underdetermined and several 

high-scoring networks are found. So we can average model or do bootstrapping to 

select the most probable regulatory interactions [131]. Furthermore, the 

probabilistic structure of a Bayesian network enables incorporation of the prior 

knowledge via application of Bayes rule [89,132]. More details on Bayesian 

network model is provided below in Chapter 2. 

Bayesian network model is a promising tool for analyzing gene expression 

patterns. Firstly, it is particularly useful for describing processes composed of 

locally interacting components, that is, the value of each component directly 

depends on the values of a relatively small number of components. Secondly, 
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statistical foundations for learning Bayesian networks from observations and 

computational algorithms are well understood and have been used successfully in 

many applications [133]. Thirdly, Bayesian network models provide a way to 

account for the noise and data limitations inherent in expression studies, as well as 

retain the combinatorial logic of transcription regulation [89]. The main limitation 

of Bayesian network models is that the network structure does not allow cycles, 

i.e., feedback loops. 

Researchers have devoted considerable attention in recent years to the use of 

Bayesian network approaches for reverse-engineering gene regulatory networks 

[89,133-136]. Using Bayesian networks to represent statistical dependencies, 

Friedman et al. proposed a framework for discovering interactions between genes 

based on multiple expression measurements [133]. Segal et al. used a Naïve 

Bayes model [137] to identify transcriptional modules—sets of genes that are 

co-regulated in a set of experiments, through a common motif profile [6]. Instead 

of relying on a linear model for gene expression, Beer and Tavazoie used a 

Bayesian network model to capture non-linear effects, and could correctly predict 

the expression patterns for 73% of the 2587 genes examined [7]. Their results 

suggested the presence of non-linear regulatory control and showed a marked 

improvement over the predictive capabilities of the Bussemaker algorithm. Sabatti 

and James used a Bayesian hidden component model which integrated literature 

information, DNA sequences and expression arrays to identify the potential 
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binding sites actually used by the regulatory proteins in the studied cell conditions, 

the strength of their control, and their activation profile in a series of experiments 

[138].  

In our own work, we have applied a Bayesian network model to reverse-engineer 

the gene regulatory network at sequence level (see Chapter 4). 
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Chapter 2: Statistic Methods – Hidden Markov 

Model and Bayesian Network 

In this chapter, two statistical modeling methods used in this study are introduced, 

namely hidden Markov model and Bayesian network model. HMM and Bayesian 

network were used to predict plant miRNA targets and model the transcriptional 

and posttranscriptional regulatory networks, respectively. 

2.1 Hidden Markov model 

Hidden Markov model is an extension to the classic Markov chain model, in 

which the state of each observation is drawn randomly from a distribution, the 

state transition of which follows a Markov chain. 

2.1.1 Markov chains 

A classical Markov chain model generates sequences in which the probability of a 

symbol depends on the previous symbol [139]. The key property of a Markov 

chain (first order) is that the probability of each symbol to depends only on the 

value of the preceding symbol 1−to , not on the rest previous symbols: 

∏
=

−−− −
=⋅⋅⋅=

T

t
ooTTTT tt

aoPoPooPooPooPoP
2

1112211 1
)()()|()|()|()( , 

where the 
tt ooa

1−
is the transition probability. 
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2.1.2 Elements of an HMM 

A HMM contains two chains. One is the state chain (hidden) and the other is the 

symbol chain (observed). The state sequence is called the path I . The path itself 

follows a Markov chain, thus the probability of a state only depends on the 

immediate previous state. The state in the path is called tI  

and )|( 1 iIjIPa ttij === − is the state transition probability and }{ ijaA =  is the 

state transition probability matrix. 

In general, a state can produce a symbol from a distribution over all possible 

symbols and: 

)|()( jIboPbe ttj === , 

where )(be j  is defined as the emission probability that symbol b is observed 

when in state j and )}({ beE j= is the emission probability matrix. Then the 

joint probability of an observed sequence o and a state path I  is [139]:  

∏
=

+
=

T

t
IItII ttt

aoeaIoP
1

0 11
)(),( , 

where 
10 Ia is the initial probability that the state path begins at state 1I and 

}{
10IaZ = is the initial probability matrix. 

),,( ZEA=λ  will be used to denote an HMM as a compact notation. 

Most applications of HMMs mainly focus on three problems: 

Problem 1: Given the model ),,( ZEA=λ , how to compute )|( λoP , the 

probability of observing sequence o ? 
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Problem 2: Given the model ),,( ZEA=λ , how to choose a state path *I  in order 

to maximize )|,( λIoP , the joint probability of the observation o and the state 

path I ? 

Problem 3: How to obtain the HMM model parameters ),,( ZEA=λ  which can 

maximize )|( λoP (or )|,( λIoP )? 

Problem 1 and Problem 2 can be viewed as analysis problems while Problem 3 is 

a typical model identification or training problem.  

2.1.3 Forward algorithm 

Forward and backward algorithm both can solve the problem 1. The forward 

algorithm is a dynamic programming algorithm which can efficiently enumerate 

all paths to calculate the probability of a sequence, as ∑=
I

IoPoP ),()( . To 

calculate )(oP , we first define: 

),...()( 1 iIooPtf tti == , 

where )(tf i  (forward variable) is the probability of the observed sequence up to 

and including to , and iI t =  [139]. And the recursion equation for updating the 

forward variable is: 

∑+=+
i

ijitjj atfoetf )()()1( 1 . 

Following is the pseudo-code for forward algorithm. 
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2.1.4 Backward algorithm 

Analogous to the forward variable, the backward variable )(tbi is the probability 

of the observed sequence back to and including to  [139], which is defined as: 

)|...()( 1 iIooPtb tTti == + , 

where )(tbi is obtained by a backward recursion starting at the end of the 

sequence, and the pseudo-code for backward algorithm is given below. 

Input: observed sequence o , transition probabilities ija , and emission 

probabilities )(be j . 

Output: )(oP , the probability of observing a sequence o . 

1)0(0 =f ;   # initialization   

0)0( =if ;  # for 0>i  

for 1=t  to T  do               # recursion 

∑ −=
i

ijitjj atfoetf )1()()( ; 

end 

∑=
i

ii aTfoP 0)()( ;  
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The posterior probability of state i at time t , given the observed sequence o , 

can be calculated as [140] : 

)(
)()(

)|(
oP

tbtf
oiIP ii

t == , 

where )(oP can be calculated by either forward or backward algorithm. 

2.1.5 Viterbi algorithm 

The Viterbi algorithm is a common method for finding the most probable state 

transition path and its probability in HMMs [139,141], so it can be used to solve 

the problem 2. The path *I  with the highest probability should be chosen as 

follows: 

),(maxarg* IoPI I= . 

Let )(tvi  (the Viterbi variable) be the probability of the most probable path 

ending in state i  with observation t  and: 

Input: observed sequence o , transition probabilities ija , and emission 

probabilities )(be j . 

Output: )(oP , the probability of observing a sequence o . 

0)( ii aTb = ;   # initialization   

for 1−= Tt  to 1 do               # recursion 
)1()()( 1 += +∑ tboeatb jtj

j
iji ; 

end 

∑=
j

jjj boeaoP )1()()( 10 ;  
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))((max)()1( 1 ijiitjj atvoetv +=+ . 

Each state path starts from the initial state 0, thus 1)0(0 =v . The most probable 

path *I  can be found by backtracking recursively [139]. Following is the 

pseudo-code for Viterbi algorithm. 

 

2.1.6 Parameter estimation for HMMs: Baum-Welch 

algorithm 

Baum-Welch algorithm [140], which can be used to solve problem 3, is a 

Input: observed sequence o , transition probabilities ija , and emission 

probabilities )(be j . 

Output: the most probable state path *I . 

1)0(0 =v ;   # initialization   

0)0( =iv ;  # for 0>i  

for 1=t  to T  do               # recursion 

))1((max)()( ijiitjj atvoetv −= ; 

))1((maxarg)( ijiit atvj −=ψ ; 

end 

))((max*),( 0iii aTvIoP = ; # *),( IoP gives the required state-optimized 

probability 

))((maxarg* 0iiiT aTvI = ;      # termination 

for Tt =  to 1 do         # tracing back 

*)(*1 ttt II ψ=− ; 

end 

# *)*,...,*,{* 21 TIIII = is the optimal state path 
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particular iteration method that is used to estimate parameter values. This 

algorithm maximizes )|( λoP by adjusting the parameters ofλ . The optimization 

criterion is called the maximum likelihood criterion and the function )|( λoP  is 

called the likelihood function. 

The maximum likelihood estimators for ija and )(be j are given by [139]: 

∑
=

' 'j ij

ij
ij A

A
a  and 

∑
=

'
)'(

)(
)(

b j

j
j bE

bE
be , 

where ijA  and )(bE j  are the counts of particular transition (state i  to state j ) 

and emissions (state i  to observed symbol b ), respectively. 

The Baum-Welch algorithm calculates the ijA  and )(bE j as the expected number 

of times each transition and emission is used. And the probability that state i  to 

state j  transition is used at position t in sequence o can be calculated as: 

)(
)1()()(

),|,( 1
1 oP

tboeatf
ojIiIP jtjiji

tt

+
=== +

+ λ , 

then the ijA  can be derived by summing over all positions and over all training 

sequences: 

∑∑ += +
t

k
j

k
tjij

k
i

k
kij tboeatf

oP
A )1()()(

)(
1

1 , 

where )(tf k
i is the forward variable calculated for sequence k and )(tbk

j  is the 

backward variable calculated for sequence k . The )(bE j can be calculated as: 

∑∑
=

=
}|{

)()(
)(

1)(
bot

k
i

k
i

k
kj

k
t

tbtf
oP

bE , 

where the inner sum is only over those positions at which the symbol is b  [139]. 
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Baum-Welch algorithm is a special case of EM algorithm, which is a very 

powerful approach for probabilistic parameter estimation. The E-step calculates 

the expectations ijA  and )(bE j , which is done by the forward and backward 

algorithm. The M-step plugs ijA  and )(bE j into the re-estimation formulae for 

ija  and )(be j , respectively [139]. The pseudo-code for Baum-Welch algorithm 

is given below. 
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Input: observed sequence o . 

Output:  transition probabilities ija , and emission probabilities )(be j . 

Arbitrarily assign model parameters;   # initialization 

while ( 12−> echange ) do  

0=ijA ; 

0)( =bE j ; 

likelihoodlikelihood =' ; 
for 1=k  to K  do          # for each sequence Kk ..1=  

 ∑ −=
i

ij
k

itj
k
j atfoetf )1()()( ;    

#calculate )(tf i for sequence k using the forward algorithm 

 )1()()( 1 += +∑ tboeatb k
jtj

j
ij

k
i ; 

#calculate )(tb j for sequence k using the backward algorithm 

 ∑∑ += +
t

k
j

k
tjij

k
i

k
kij tboeatf

oP
A )1()()(

)(
1

1 ;   

 ∑∑
=

=
}|{

)()(
)(

1)(
bot

k
i

k
i

k
kj

k
t

tbtf
oP

bE ; # add the contribution of sequence k (E-step) 

end 

∑
=

' 'j ij

ij
ij A

A
a ;   # calculate the new model parameters (M-step) 

∑
=

'
)'(

)(
)(

b j

j
i bE

bE
be ; 

))(log(∏=
k

koPlikelihood ;   # calculate the new log likelihood of the model 

'likelihoodlikelihoodchange −= ; 
# convergence criterion 
# program will stop when the change in total log likelihood is sufficiently small 

end 
output the parameters; 
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2.2 Bayesian network model 

A Bayesian network represents a joint probability distribution [133]. It is a 

graph-based model of joint multivariate probability distributions which can 

capture properties of conditional dependence between variables. Such a model 

provides a clear methodology for learning from observations and is attractive for 

its ability to describe complex stochastic processes [133]. 

From the Bayes theorem, we have: 

)(
)()|()|(

DP
PDPDP φφφ = , 

where the likelihood )|( φDP  is the probability of the data given a particular set 

of parameter values. The marginal likelihood )(DP  is known as the “prior 

predictive distribution”, namely the probability distribution of the data 

irrespective of the parameter values. The prior )(φP is the probability distribution 

of all combinations of parameter values before observing the data. And the 

posterior distribution )|( DP φ  is the conditional distribution of the parameters 

given the observed data [2]. Typically, the likelihood will arise from a statistical 

model in which it is necessary to consider how the data can be “explained” by the 

parameter(s). The prior is an assumed distribution of the parameters, and it is 

obtained from background knowledge [2]. 

The goal of Bayesian network is not to prove the correlation between two 

variables but rather to select the variables that are likely to be correlated given the 
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observed data. In the biological context, Bayesian network should be used to 

understand the network of dependencies among the factors involved, to detect the 

strongest dependencies and remove independencies [142]. 

2.2.1 Induction of probabilistic network from data 

Let iPa  denote the parent nodes of variable iX . 

)|(),...,,(
1

21 i

n

i
in paxPxxxP ∏

=

= , 

where ix denotes the instantiation of iX and ipa denotes the instantiation of 

iPa , respectively. Let iq  be the number of different iPa  values and ijw  be 

the jth  unique instantiation of the values in ipa , relative to the ordering of the 

cases in D  [130]. Let Z be a set of n discrete variables, where a variable 

iX in Z has ir possible value assignments ),...,( 1 iiri νν . ijkN  denotes the number 

of cases in D  in which variable iX  has the value ikν and ipa is instantiated 

as ijw , and 

∑
=

=
ir

k
ijkij NN

1
. 

When there were unrestricted multinomial distribution, parameter independence, 

Dirichlet priors and complete data, we have 

∏∏∏
== = Γ

+Γ
⋅

+Γ

Γ
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ii r

k ijk

ijkijk
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)|(
α

α
φ , 

where 1=ijka  and ∑ =
= ir

k ijkij 1
αα  under the assumption of uniform priors 

[130,143].  
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2.2.2 K2 algorithm 

K2 is a greedy-search algorithm, which begins by making the assumption that a 

node has no parents, and then adds incrementally the parent nodes which can most 

increase the probability of the resulting structure. When the addition of no parent 

can further increase the probability, the process will stop [130,143]. 

Function ),( iPaig is used in K2: 

∏∏
== Γ

+Γ
⋅

+Γ

Γ
=

ii r

k ijk

ijkijk
q

j ijij

ij
i

N
Na

a
Paig

11 )(
)(

)(
)(

),(
α

α
. 

Below is the pseudo-code of K2 algorithm, where u is the maximum number of 

parents that a node is allowed to have (decided by the user) and we use 

)(Pr iXed  to denote the set of nodes that precede iX  in the node ordering 

[130]. 
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2.2.3 Predictions of interest 

A model with the highest log marginal likelihood (or the highest posterior 

probability, assuming equal priors on structure) is the best sequential predictor of 

the data D . We can average the possible configurations of Sθ  (vector of 

parameters) to obtain predictions of interest: 

Input: An ordered list of n  nodes, an upper bound u  for the number of parents a node 
may have, and a database D  containing h  cases. 
Output: For each node, a printout of the parents of the node. 
for 1=i  to n  do 

=iPa  Ø; 

),( iold PaigP = ; 

OKToProceed = true; 

   while OKToProceed and uPai <||  do 

))(Pr,(maxarg )(Pr iiXed XedPaigz
i

∪= ; 

       # z  is the node in )(Pr iXed , which can maximize }){,( zPaig i ∪  

       }){,( zPaigP inew ∪= ; 

if oldnew PP >  then 

oldnew PP = ; 

}{zPaPa ii ∪= ; 

else OKToProceed = false; 
   end 
   output parents of node i ; 
end 
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∏
= +
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where x  is the next case to be seen after D  [144]. 
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Chapter 3: Prediction of Plant miRNA Targets 

The approaches reviewed in Chapter 1 make use of both genome sequence data 

and gene expression data to enhance the sensitivity and specificity of predicted 

regulatory networks. The limitation of these approaches is that they can not detect 

regulatory control by mechanisms aside from transcription factors, however, 

many regulators are posttranscriptionally regulated [8]. Another level of 

regulation beyond that through transcription factors can be considered by 

including information of miRNA targets. The role of miRNAs in the negative 

regulation of the expression of their target genes has been demonstrated recently. 

miRNAs regulate the expression of their target genes, by mRNA cleavage or 

translational repression. Most plant miRNAs can mediate the destruction of their 

target mRNAs, and through targeting transcription factors, they can regulate the 

transcription of a large number of genes, directly or indirectly. The first step in 

understanding the mechanism of miRNAs is to identify their regulatory targets. In 

this chapter, we describe a novel method based on an inhomogeneous hidden 

Markov model (HMM) developed to predict plant miRNA targets without 

additional conservation constraint. This model was trained by the information 

about one third of all the confirmed miRNAs, whereas it was capable of finding 

all the experimentally validated targets for all the known miRNAs. 
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3.1 Introduction 

Recent studies have shown that a number of known functional elements are 

noncoding sequences, which include regulatory signals, RNA genes and structure 

elements [63]. Posttranscriptional regulation through RNA-RNA interaction has 

recently arrested much attention due to the discovery of microRNAs (miRNAs) 

[99,100]. Figure 3.1.1 illustrated the biogenesis of plant miRNAs (Figure 

3.1.1).Transcription regulation is thought to occur primarily through the binding 

of TFs to cis-regulatory motifs, whereas posttranscriptional regulatory mechanism 

such as miRNA-mediated degradation has also been reported [76,145,146]. 

miRNAs are a class of endogenous small RNAs that negatively regulate mRNA 

expression either by inducing degradation of the targeted transcript or by 

decreasing translational efficiency [9,45,111]. Hutvagner and Zamore suggested 

that the different regulatory mechanisms are due to the degree of complementarity 

between miRNAs and their targets [45]. Plant miRNAs are commonly perfectly 

complementary to their targets and cause the cleavage of the targets by 

RNA-induced silencing complex (RISC), whereas in animals targets with weaker 

complementarity appear to have decreased translational efficacy 

[100,122,147-149]. Recent evidence raised the possibility that miRNAs can also 

guide transcriptional silencing in plants [150,151]. 
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Figure 3.1.1 A model for miRNA biogenesis in Arabidopsis6. 

The pri-miRNA is processed by DCL1, perhaps with the aid of HYL1, to a miRNA-miRNA* 
duplex with 5’ phosphates (P) and 2-nt 3’ overhangs. The 3’ sugars of the miRNA-mRNA* 
duplex are methylated by HEN1. The mature, methylated miRNA is incorporated into a 
silencing complex that can include AGO1 and the miRNA* is degraded. Within the 
silencing complex, the miRNA is capable of targeting complementary RNAs for cleavage 
by AGO1, and perhaps also for translational repression. 

 

One of the most important steps to understand the mechanisms of miRNAs is to 

identify their regulatory targets. Since the miRNAs recognize their regulatory 

targets through base pairing, computational methods can be applied to predict 

miRNA targets based on the high complementarity between miRNA-mRNA 

                                                 
6 Reproduced from http://arjournals.annualreviews.org/doi/full/10.1146/annurev.arplant.57.032905.105218 

with permission. 
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duplex. All the reported prediction approaches detect potential targets with up to 4 

mismatches between miRNA-mRNA duplex and many of the predicted targets 

have been experimentally validated [122,124,152]. Our approach to detect 

miRNA target motifs consists of two steps. Firstly, we worked out a direct search 

approach which detected the miRNA potential targets with at most N  

mismatches. When we set N to 4, the signal (number of potential targets for 

miRNAs) was significantly greater than the noise (number of potential targets for 

randomly shuffled sequences), which suggested that the false positive rate under 

this setting was relatively low. However, there are natural targets with more than 4 

mismatches [153]. Although the direct search approach can be used to find 

potential targets with any number of mismatches, the more the mismatches 

allowed the higher the false positive rate would be. Therefore how to determine 

the optimal value of N  in plant miRNA target prediction remains an open 

question. Most published miRNA prediction algorithms have not included the 

information about position-specific matches/mismatches of miRNA-mRNA 

duplex, which treated all the mismatches equally regardless of their positions. We 

assumed that there might be some position-specific rule of particular 

matches/mismatches and this information was a general rule contained (hidden) in 

each miRNA-mRNA duplex. We chose an inhomogeneous HMM to detect this 

hidden information by using a relatively small training dataset and further applied 

it to each identified miRNAs. This approach dramatically extends our knowledge 
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of underlying miRNA-mediated regulatory role and enlarges the dataset of 

miRNA target motifs by loosing the requirement for the degree of 

complementarity between miRNA-mRNA duplex while reserves the information 

about position-specific mismatches/matches. 

3.2 Materials and Methods 

3.2.1 Materials 

3.2.1.1 Sequences of known mature miRNA 

The Arabidopsis mature miRNA sequences were downloaded from miRBase 

(Release 9.1) released in Feb 2007 [154,155]. The 19 miRNA sequences in 

Release 3.0 (released in Jan 2004) [154,155] were used to generate the training set 

of potential miRNA targets for the HMM of miRNA target prediction.  

3.2.1.2 Coding sequences of Arabidopsis 

Sequences of all the transcripts were retrieved from the TAIR 

(ftp://ftp.arabidopsis.org/seq_analysis_updates/ ), released in Feb 2006. 

3.2.2 Methods 

3.2.2.1 Training set preparation 

The direct search approach detected the mRNA sequences that were 

complementary, with at most N  mismatches, to at least one of the identified 
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miRNAs (released in miRBase 3.0), where N  was the number of the 

mismatches allowed for a miRNA target. Strings of “0” and “1” were generated in 

order to represent the position specific complementarity (match/mismatch) 

between miRNA-mRNA duplex, where 0 represented a position specific match 

and 1 represented a position specific mismatch. For example, 

00000001110000000000 and 00000000100010000001 both represented 20-nt 

sequences that had three mismatches with miRNAs, though the position of 

matches/mismatches were different. Each string was then converted to sequence 

patterns which had the corresponding position specific match/mismatch with 

miRNA. Gap was not allowed in this algorithm and the noncanonical pairs such 

as G-U were treated as mismatches. 

3.2.2.2 Randomly shuffled sequences  

Simulation study to assess the statistic significance of the detected miRNA target 

candidates was performed using randomly shuffled sequences that had identical 

length and base composition as the mature miRNA sequences. There were four 

different ways of generating randomly shuffled sequences to evaluate the 

sequence specific recognition between miRNA and their targets, i.e. monoshuffled 

and zeroshuffled (based on the mononucleotide distribution of the miRNA 

sequences), firstshuffled and dishuffled methods (based on the dinucleotide 

distribution of the miRNA sequences) [156]: 

 Monoshuffled sequences: The counts of the mononucleotide of each miRNA 
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sequence were calculated and bases were drawn iteratively and randomly 

according to the nucleotide composition. 

 Zeroshuffled sequences: The mononucleotide frequencies 

))(),(),(),(( UPGPCPAP  for each miRNA sequence were calculated and 

used to generate a random sequence in which bases were chosen at random 

with probability )(iP , where UGCAi ,,,= , until the length of the miRNA 

sequence was reached. 

 Firstshuffled sequences: From each miRNA sequence, the conditional 

probability )|( baP  for nucleotide a  givenb  was calculated from the 

frequencies of the 16 possible nucleotide pairs. A random sequence was 

generated by first choosing a random nucleotide ix  using zeroshuffled 

method, then the rest of the nucleotides were generated iteratively based on 

the conditional probabilities )|( 1 ii xxP +  (first order Markov process), where 

1+ix  could be any of the four nucleotides. The process was stopped when the 

sequence had reached the same length as the miRNA sequence. 

 Dishuffled sequence: A random trinucleotide was chosen (e.g. AUU) 

iteratively and all the non-overlapping trinucleotides that began and ended 

with the same bases (i.e. AAU, ACU, AGU and AUU) were shuffled at 

random. The whole process was done R  times, where R was 10 times of 

the length of the miRNA sequence. 
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3.2.2.3 miRNA target motifs detection based on an inhomogeneous 

HMM 

In our HMM model, hidden states were defined over the binary space },{ NP , 

where P meant a conserved matching state, namely an endogenous miRNA needs 

to consistently match to its target on the specific site. And the hidden symbol is 

regarding to the conservation level of each position, whether it should be 

consistently matching or mismatching in the miRNA-target duplex. Each 

conserved matching state could generate A-U, U-A, G-C or C-G as an emission 

symbol. N meant a nonconserved matching state, namely a miRNA does not need 

to consistently match to its target on this specific site. Each nonconserved 

matching state could emit one of the remaining combinations except the 

aforementioned four symbols (Figure 3.2.1).  

 

 

Figure 3.2.1 An exemplar diagram of inhomogeneous HMM. 

The position specific transition probabilities and emission probabilities would be estimated 
using a training set of potential miRNA targets (The transition probabilities and emission 
probabilities shown in the diagram were arbitrarily assigned). O: Observations; H: Hidden 
States.  
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Hidden states: 
P: conserved matching state 

N: nonconserved matching state 
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Two types of probabilities needed to be estimated: transition probabilities and 

emission probabilities. These probabilities were position specific in the 

inhomogeneous HMM. The parameters were estimated from a training set of the 

potential targets with up to 4 mismatches to one of the 19 miRNAs. Baum-Welch 

algorithm was used to update the parameters in the model until it reached (local) 

maximal log likelihood [139,140,157,158]. 

The Baum-Welch algorithm calculated t
ijA  and )(kE t

j  as the expected counts of 

each transition or emission at position t  for given training sequences [139]:  
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where t
ija  and )( 1

1 s
t

t
j xe +
+ were the position specific transition probability and 

emission probability, respectively, and the values of the two parameters were 

updated iteratively in terms of (3) and (4). The s-th observation was denoted 

by sx ( ,...2,1=s ) and 1
s
tx +  is the symbol observed at position t+1. The forward 

variable and the backward variable for the s-th observation were given by )(tf s
i  

and )(tb s
j , respectively. All possible sequence patterns that found by the direct 

search approach were used as members of the training set of the inhomogeneous 
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HMM. Convergence of the negative log likelihood was checked up to a precision 

of 1e-12.  

We used I  to denote a transition path of the hidden states. For each training 

sequence, the optimal path *I  with the highest probability should be chosen as 

follows: 

),(maxarg* IxPI
I

= ,  (5) 

where ),( IxP was the probability of an observation x with a state transition path I . 

The Viterbi algorithm was used to find the most probable (optimal) state transition 

path in the HMM [139,141]:  

))((max)()1( 1
t
ijiit

t
jj atvxetv +=+ ,  (6) 

where )(tvi was the probability of the most probable path ending in state i  at 

position t . We got 103 optimal paths in total after removing the redundant ones. 

The experimentally verified miRNAs and the optimal state paths obtained above 

were then used to scan for miRNA target motifs in the Arabidopsis genome. 

The inhomogeneous HMM was implemented as a Perl script and a genome-scale 

scanning for miRNA targets took about 10 hrs on a UNIX workstation with 2GHz 

processor and 2G memory. 

3.3 Results 

3.3.1 Training set preparation 

When the maximum number of mismatches tolerated was set to 4, the direct 
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search approach detected 215 genes whose mRNAs had the complementary site 

with at least one of the 19 miRNAs. Table 3-1 listed the 215 potential targets that 

had less than or equal to 4 mismatches (Table 3-1), and 36 of the 215 potential 

targets had been experimentally validated [124,150,152,153,159-166]. 

 

Table 3-1 miRNA potential targets detected by the direct search approach 

miRNA Targets Protein 
Family 

Target Genes (Number of Mismatches) 

SBP (squamosa promoter 
binding protein) 

At1g27360/SPL11(1), At1g27370/SPL10(1)a, 
At1g69170/SPL6(1), At2g42200/SPL9(1), At3g47170(3), 

At3g57920/SPL9(1), At5g43270/SPL2(1)a, 
At5g50570/SPL9(1) a, At5g50670/SPL9(1) a, 
At2g33810/SPL3(2)a, At1g53160/SPL4(2)a, 

At3g15270/SPL5(3)a, At3g28690(3) 

F-box family protein At1g22000(4), At3g17480(4), At3g58860(4) 

miR156 

Expressed proteins 

At3g47170(3), At1g30240(4), At1g48430(4), At1g53240(4), 
At1g71400(4), At2g21840(4), At3g20840(4), At3g46280(4) , 
At4g25440(4), At4g27470(4), At4g35170(4), At4g35620(4), 

At5g11380(4) 

SBP (squamosa promoter 
binding protein) 

At1g27360/SPL11(1), At1g27370/SPL10(1) a, 
At1g69170/SPL6(2), At2g42200/SPL9(1), 

At3g57920/SPL9(1), At5g43270/SPL2(1) a, 
At5g50570/SPL9(2) a, At5g 50670/SPL9(2) a, 

At1g53160/SPL4(3)a 

F-box family protein At1g22000(3), At1g32140(4), At3g58860(4) 

miR157 

Expressed proteins 
At3g47170(3), At1g09170(4), At1g30450(4), At5g08620(3), 
At1g48090(4), At2g45990(4), At3g07160(4), At3g15950(4), 

At5g18590(4), At5g63060(4) 

PPR (pentatricopeptide) 
repeat containing protein 

At1g64100/PPR(2), At3g03580/PPR(3), At1g03540(4),  
At2g17525(4), At3g15130(4), At4g32430(4) 

WD-40 repeat family 
protein 

At1g49910(3), At3g19590(4) 

miR158 

Fucosyltransferase 
At2g03210/ FUT2(3), At2g03220/FUT1(3), 

At1g14070/FUT7(4) 
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Expressed proteins 

At1g09040(3), At1g63770(3), At3g07400(3), At1g04190(4), 
At1g09050(4), At1g11480(4), At1g23070(4), At1g48460(4), 
At1g55050(4), At2g27240(4), At2g31620(4), At2g41210(4), 
At2g45810(4), At3g01590(4), At3g23310(4), At3g28890(4), 
At3g56620(4), At3g60400(4), At4g17565(4), At4g27180(4), 
At5g07270(4), At5g07720(4), At5g16910(4), At5g17240(4), 
At5g23870(4), At5g52920(4), At5g54180(4), At5g58510(4), 

At5g59490(4), At5g61010(4), At5g64310(4) 

MYB family transcription 
factors 

At2g26950/AtMYB104(3), At2g32460/AtMYB101(2), 

At3g11440/AtMYB65(3)a, At3g60460(3), 
At5g06100/AtMYB33(3)a, At4g26930/AtMYB97(4),  
At2g26960/AtMYB81(4), At5g55020/AtMYB120(4) 

miR159 

Expressed protein At1g29010(3), At3g53570(4), At4g37770(4) a, At5g04020(4)

miR160 Auxin Response Factors 
At2g28350/ARF10(2)a, At4g30080/ARF16(3), 

At1g77850/ARF(1) a 

PPR repeat containing 
proteins 

At1g63080(3), At1g63400(3), At5g41170(3), At1g63150(3), 
At5g16640(3), At1g62720(3), At1g64580(3), At1g06580(3), 
At1g62670(3), At1g08610(4), At1g10270(4), At1g12700(4), 
At1g62590(4), At1g62860(4), At1g62910(4), At1g62930(4), 
At1g63070(4), At1g63130(4), At1g63230(4), At1g63330(4), 
At1g63630(4), At2g16880(4), At3g18020(4), At4g26800(4), 

At5g65560(4) 

miR161 

Expressed protein At4g17910(4), At5g27400(4) 

miR162 Expressed protein 
At1g03080(4), At1g48430(4), At3g20260(4), At3g21140(4), 

At3g50530(4), At3g54010(4), At5g55330(4) 
miR163 F-box family protein At1g64840(4) 

NAC domain proteins 

At1g56010/NAC1(2)a, At3g15170/CUC1(3)a, 
At5g07680(2)a, At5g53950/CUC2(3)a, At5g61430(2) a , 

At5g39610(4) a miR164 

Expressed protein At1g10530(4), At1g77770(4), At4g01210(4), At4g27520(4) 

HD-Zip transcription 
factors 

At1g30490/PHV(3)a, At2g34710/ATHB-14(3)a, 
At4g32880/ATHB-8(3), At5g60690/REC(3)a , At1g52150(4)miR165 

Expressed protein At1g32750(4), At5g24150(4) 

HD-Zip transcription factor
At1g52150/ATHB-8(3), At1g30490/HB-9(4) a, 

At2g34710/HB-14(4) a, At4g32880/HB-8(4), At5g60690(4) a
miR166 

Expressed protein 
At1g76590(4), At2g39415(4), At4g22620(4), At5g24150(4), 

At5g49250(4), At5g54390(4) 

Auxin Response Factor At5g37020/ARF8(3)a, At1g30330/ARF6(4) 
miR167 

Expressed proteins At1g67080(4), At2g38920(4), At3g06060(4), At5g64830(4) 

miR168 ARGONAUTE protein At1g48410/AG01(3)a 
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RNA helicase / RNAseIII At3g20420(4)  

Expressed protein At3g58030(4), At2g25070(4), At4g15420(4) 

miR169 Expressed protein At1g50840(4), At2g17930(4) 

Scarecrow transcription 
factor family protein 

At2g45160(2), At3g60630/SCL6(2) a, At4g00150/SCL6(2) a

F-box family protein At1g59675(4), At2g44700(4) 
miR170 

Expressed protein At1g27710(4), At3g27470(4), At3g55410(4) 
Scarecrow transcription 

factor 
At2g45160(0), At3g60630/SCL6(0) a, At4g00150/SCL6(0) a

miR171 
Expressed protein At2g22030(4), At4g04850(4) 

AP2 domain containing 
transcription factors 

At4g36920(2) a, At5g12900(3), At5g60120(1) a, 
At5g67180(3) a, At2g28550(3) a , At2g35130(4) 

MYB family transcription 
factor 

At1g09710(4), At5g65790(4) 

miR172 

Expressed protein 

At1g15960(4), At1g05805(4), 
At1g17030(4),At1g21060(4),At1g30920(4), At1g32340(4), 
At1g72980(4), At2g37590(4), At2g39110(4), At2g45720(4), 
At3g11570(4), At3g47360(4), At3g47670(4), At4g04650(4), 

At4g23950(4), At5g19560(4), At5g60310(4) 

miR173 
PPR repeat-containing 

protein 
At1g12300(4), At1g12770(4), At3g16710(4) 

MYB family transcription 
factor 

At2g26950(2), At3g11440/MYB65(2) a, 
At5g06100/MYB33(2) a, At1g52000(4), At2g26960(4), 

At3g60460(4), At5g55020(4) 

TCP family transcription 
factor 

At1g30210(4) a, At1g53230(4) a, At2g31070(4) a, 
At3g15030(4) a, At4g18390(4) a 

miR319 

Expressed protein 

At1g14200(3), At3g06450(3), At1g27800(4), At1g34720(4), 
At1g48090(4), At1g50610(4), At1g74200(4), At2g07787(4), 
At2g16290(4), At3g10980(4), At3g21140(4), At3g24370(4), 
At3g25720(4), At3g66658(4), At4g19860(4), At4g39850(4), 
At5g18100(4), At5g19260(4), At5g19790(4), At5g36840(4), 

At5g67090(4) 

 
a Experimentally validated targets. 
 

Most of the miRNAs are found to be complementary to more than one mRNA and 

some of the potential targets are members from the same family. Many of the 

predicted miRNA targets were members of the transcription factor families. For 
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instance, there were 16 SBP (Squamosa promoter binding protein) reported in 

Arabidopsis, 11 of them had miR156 complementary sites. They were At1g27360 

(SPL11), At1g27370 (SPL10), At1g69170 (SPL6), At2g42200 (SPL9), At3g57920 

(SPL9), At5g43270 (SPL2), At5g50570 (SPL9), At5g50670 (SPL9), At2g33810 

(SPL3), At1g53160 (SPL4), and At3g15270 (SPL5). Other transcription factor 

families such as MYB, HD-Zip and TCP also had members to be predicted as 

potential miRNA targets. 

Most predicted targets for these 19 miRNAs had function annotation involved in 

the plant development. For example, miR160 targeted auxin response factors 

At2g28350 (ARF10), At4g30080 (ARF16) and At1g77850 (ARF1). Auxin 

response factors (ARFs) are family of transcription factors that bound to TGTCTC 

auxin response elements in promoters of early auxin response genes and mediated 

gene expression in response to auxin [167,168]. Genes known to encode F-box 

family proteins, such as At1g22000, At1g32140, At3g28860, At1g59675, and 

At2g44700, were also predicted to be potentially targeted by miRNAs. F-box 

proteins regulate diverse cellular processes, including cell cycle transition, 

transcriptional regulation and signal transduction [169]. Lu et al. [170] identified 

that miR774 targets the mRNA of at least on F-box protein. Till now, seven F-box 

mRNAs have been identified to be targeted by miRNAs, suggesting that the 

protein degradation machinery is subject to considering miRNA regulation. 

miR164 was predicted to target NO APICAL MERISTEM (NAM) family proteins, 
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i.e. At1g56010 (NAC1), At3g15170 (CUC1) and At5g53950 (CUC2), which are 

required for apical meristem formation [122,171]. HD-Zip transcription factor 

At1g30490 encodes PHAVOLUTA (PHV), which regulates axillary meristem 

initiation and leaf development [122,172]. Moreover, one of the experimentally 

validated targets, At5g06100, encoding AtMYB33, was reported to bind to the 

promoter of the floral meristem-identity gene LEAFY [122,173]. Some target gene 

families have the function in DNA/RNA binding, such as PPR repeat containing 

proteins. PPR proteins were reported to be sequence-specific RNA- or 

DNA-binding proteins and play constitutive roles in mitochondria and 

chloroplasts, probably via binding to organellar transcripts [174]. TCP 

transcription factors were also reported to implicate in processes related to cell 

proliferation, which are recruited during evolution to control cell division and 

growth in various developmental processes [175-178]. APETALA2 (AP2) domain 

containing transcription factors play important role in the control of Arabidopsis 

flower and seed development [179]. miR156 and miR157 both target SBP which 

regulates the Antirrhinum floral meristem-identity gene SQUAMOSA [122,180]. 

The mRNA complementary sites for miR161, miR165, miR170 and miR171 are 

within the conserved domain among family members. And there is evidence that 

miRNAs regulate homologous mRNAs in basal plants with various reproductive 

structures and leaf morphology, which leads to the speculation that miRNAs are 

parts of ancient, conserved regulatory modules underlying developmental 
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outcomes [150,181]. These two facts suggested that some miRNAs might mediate 

the formation of the conserved domain which defined particular protein families. 

For other miRNAs, namely miR156, miR160, miR164 and miR169, the 

complementary sites were not within the conserved domain among family 

members. For example, two of the 11 SBP proteins that were found to be targeted 

by miR156, namely At2g33810 and At1g53160, were located on the 3’ 

untranslated regions (3’ UTR), whereas the other 9 were located on coding 

regions. 

3.3.2 Simulation study using randomly shuffled sequences 

The simulation study was applied to test whether an algorithm (method) could 

distinguish a miRNA from its shuffled version during the detecting process. If the 

high level of complementarity was due to the miRNA functional requirement, the 

complementary sites obtained for a randomly shuffled sequence should be 

substantially less than the miRNA target motifs obtained with the same 

parameters, for the pattern (miRNA-target) recognized to induce downstream 

function (e.g. posttranscriptional gene silencing) would be destroyed by the 

randomization. In contrast, if the number of complementary sites was only due to 

the base composition of miRNAs, there would be little difference in the results for 

miRNAs and their shuffled sequences. Herein four kinds of randomly shuffled 

sequences were generated, i.e. monoshuffled, zeroshuffled, firstshuffled and 
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dishuffled sequences.  

The monoshuffled method generated a truly permuted random sequence while the 

dishuffled further made the count of each dinucleotide the same as that of 

miRNAs. Although the later kept more information, it was less general, since the 

intention to maintain the dinucleotide count would result in relatively fewer kinds 

of permutations allowed. The other two randomization methods, namely 

zeroshuffled and firstshuffled, maintained the mononucleotide and dinucleotide 

distribution, respectively, instead of the exact counts, while the exact count of 

each mononucleotide and dinucleotide would fluctuate around that in miRNA 

[156].  
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Figure 3.3.1 Signal to noise ratio I 

The number of potential targets detected by the direct search approach for the miRNAs 
compared to that for 50 cohorts of randomly shuffled sequences. The blue bars 
represented the number of complementary sites for 19 miRNAs. The average number of 
complementary sites from dishuffled, firstshuffled, monoshuffled and zeroshuffled 
methods was represented by the green, khaki, purple and yellow bars, respectively. The 
error bars represented 2 standard error (SE). 
 

miRNAs had significantly more complementary sites than that of randomly 

shuffled sequences (Figure 3.3.1a) when relatively fewer mismatches were 

allowed, i.e. 2≤N . If no mismatches were allowed, the complementary sites for 

the randomly shuffled sequences from dishuffled, firstshuffled, monoshuffled and 

zeroshuffled methods were 0, 1, 0, and 0, respectively. So for the 50 cohorts, 

complementary site had only been found once for one of the firstshuffled 

sequence, whereas three perfectly complementary sites had been detected for 

miR171. However, the high signal to noise ratio could only be observed when two 

or fewer mismatches were allowed, namely 1:150 )1( =N  and 1:8 )2( =N . In 

view of the low probability that so many complementary sites occurred by chance, 

we suggested that the complementarity between miRNA-mRNA reflected a 

functional requirement, thus these protein coding genes were quite likely to be 

regulatory targets of miRNAs. When more mismatches were allowed )4,3( =N , 

the signal to noise ratio decreased (Figure 3.3.1b). Since three (that from 

dishuffled, monoshuffled and zeroshuffled randomization methods) of the four 

signal to noise ratios remained substantially high when N was 4, we used 4 as the 

maximal allowed number of mismatches in our direct search approach and we 
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chose the 215 genes (listed in Table 3-1) as the training set for the inhomogeneous 

HHM. The differences among the four different shuffled methods will be further 

discussed below (see Discussion).  

When we compared the genes complementary either to miRNAs or to randomly 

shuffled sequences, we found that the functional annotations for those genes 

complementary to randomly shuffled sequences were lack of enrichment. In 

contrast, target candidates for miRNAs had enriched functional annotations as 

members of some protein families, most of which belonged to transcription factor 

families (Table 3-1). For example, the three genes, i.e. At2g45160, At3g60630 and 

At4g00150, that perfectly complementary to miR171 all belonged to the 

scarecrow transcription factor family. When N  was set to 4, the fact that 

miRNAs tended to target transcription factors and other regulatory genes 

belonged to the same protein family was still clear, whereas the function 

annotation of genes having complementary sites with randomly shuffled 

sequences became quite diverse. 

3.3.3 Detecting miRNA target motifs using inhomogeneous 

HMM 

Various algorithms have been developed to predict plant miRNA targets based on 

the miRNA-mRNA complementarity and most of the algorithms predicted targets 

through detecting mRNA sequences that had up to 4 mismatches to miRNA 
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sequences [124,152]. However, there do exist natural miRNA targets with more 

than 4 mismatches [153], such that they were not able to be found by these 

algorithms. Moreover, we suggested that sequences with the same number of 

mismatches might not have the same possibility to be targeted cleavage by 

miRNAs owing to the mechanism of RISC. In several cases, particular 

miRNA-target mismatches are conserved through the evolutionary distance that 

separated Arabidopsis and rice, suggesting that certain mismatches might be 

under positive selective pressure rather than merely be tolerated [122,182]. 

Furthermore, properly placed mismatches might improve the enzyme turnover 

rate [75,182]. Schwab suggested that the presence of UG :  plays only a minor 

role in plant miRNA-target interaction compared to other mismatches, so we 

regarded the UG :  pair as mismatch [153]. 

We chose inhomogeneous HMM because of its capability of capturing the 

position specific information about particular matches/mismatches. In spite of the 

diverse miRNA sequences, the complementarity between miRNA-target duplex 

might follow some rules according to the RISC mechanisms, and we believed that 

the inhomogeneous HMM could find these hidden rules by learning from a 

training set of potential miRNA targets obtained for only 19 mature miRNAs 

contained in miRBase 3.0, a three years old release, and in this way we also assess 

the ability of our method to extrapolate from a limited prior knowledge [183]. To 

obtain the training set, we set the maximum number of mismatches tolerated at 4, 
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and the direct search approach detected 215 genes whose mRNAs had the 

complementary site with at least one of the 19 miRNAs. The inhomogeneous 

HMM was trained using the Baum-Welch algorithm based on EM (expectation 

maximization). The optimal state chain of each miRNA-mRNA pair was 

computed using Viterbi algorithm, which represented one possible miRNA-target 

duplex that could be recognized by RISC and cleaved by its Argonaute 

component. 

In total 103 non–redundant optimal state chains were produced by using Viterbi 

algorithm. Most of the resulted 103 optimal chains are not limited to 4 

mismatches, which is consistent with our aim of developing the inhomogeneous 

HMM. Most predicting algorithms for miRNA targets are limited to potential 

targets with up to 4 mismatches, but there do exist targets with more than 5 

mismatches [153]. 

After scanning the genome, we found about 160,000 potential miRNA target 

motifs. This result covered almost all the experimentally validated miRNA targets 

(90/91) in Arabidopsis [124,150,152,153,159-166]. The majority of the 91 

experimentally validated miRNA targets (58/91) were the targets for those 

miRNAs that were not included in the training set, namely miR393 to miR870 

[124,153,160-163]. Our results substantiated the notion that the inhomogeneous 

HMM could enhance the power of capturing the information about 

position-specific mismatches/matches between miRNA-target duplex. 
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3.4 Discussion 

3.4.1 Four methods used to generate randomly shuffled 

sequences  

We used four different ways to generate randomly shuffled sequences, namely 

monoshuffled, zeroshuffled, dishuffled and firstshuffled methods [68,111,156,184]. 

As aforementioned, these methods preserved four different kinds of sequence 

specific characteristics of each miRNA, say mononucleotide count (monoshuffled), 

dinucleotide count (dishuffled), mononucleotide distribution (zeroshuffled) and 

dinucleotide distribution (firstshuffled). And the results from these were not 

identical. Among the four methods, the shuffled sequences generated by the 

firstshuffled always had more complementary sites than any of the other shuffled 

methods. Why were there substantially more complementary sites for firstshuffled 

sequences, even more than that for miRNAs, when N  was 4? It reminded us 

that Workman and Krogh reported that when the folding free energies of mRNA 

and tRNA were compared to that of randomly shuffled sequences, there was no 

significant difference between them if the dinucleotide distribution of RNA was 

preserved. But this was not true for the randomly generated sequences with the 

same mononucleotide distribution, which suggested that dinucleotide composition 

of RNA sequences played a more important role in the RNA stability [156,184]. 

From Figure 3.3.1, we could conclude that the specific mononucleotide 
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distribution of miRNAs would not result in many false positives. Another finding 

was that the firstshuffled method was more sensitive than the other three methods 

in capturing the sequence requirement for both RNA stability and recognition. In 

our study, the randomly shuffled sequences generated by firstshuffled always had 

more complementary sites, and Bonnet et al. reported that the folding free energy 

of sequences obtained by this method was always smaller than that of sequences 

from other methods [184]. Bonnet suggested the former might be due to the 

fluctuations in the energies of the Markov sequences [156,184]. Although the 

dishuffled method maintained even more information than firstshuffled method, 

namely both dinucleotide distributions as well as dinucleotide count, the 

complementary sites for this kind of shuffled sequences were less than that from 

firstshuffled method. Based on the method itself, the shuffled sequences might 

contain similar pattern, such as AAAAUUUU, which would not change any more 

in the further shuffling process. 

The aforementioned methods were also applied to test if there were substantially 

more complementary sites for miRNAs than that for randomly shuffled sequences, 

based on the 103 optimal state chains obtained from HMM. 
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Figure 3.4.1 Signal to noise ratio II. 

The number of potential targets detected by inhomogeneous HMM compared to that of 10 
cohorts of randomly shuffled sequences. The blue bar represented the number of 
complementary sites for 123 miRNAs. The average number of complementary sites from 
dishuffled, firstshuffled, monoshuffled and zeroshuffled methods was represented by the 
green, khaki, purple and yellow bars, respectively. The error bars represented 2 standard 
error (SE). 

 

The signal to noise ratio observed for inhomogeneous HMM was similar to that of 

the direct search approach )4( =N , i.e. the signal was greater than the noise 

from monoshuffled, zeroshuffled, and dishuffled methods, whereas less than the 

noise from firstshuffled method (Figure 3.4.1).  
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By using the inhomogeneous HMM, we found that the average number of 

potential targets for each miRNA increased by two orders of magnitude, and the 

complementary sites for miRNAs were still significantly more than that for three 

kinds of shuffled sequences. The results suggested that the inhomogeneous HMM 

could dramatically increase the number of miRNA target motifs while retained the 

comparable specificity as that of the direct search approach ( 4=N ). 

3.4.2 miRNA targets prediction without conservation 

requirement 

Most miRNA target prediction methods applied an additional conservation 

constraint to each target candidate in order to increase the specificity, at the cost 

of discarding species-specific candidates [124,164,185,186]. We did not include 

this constraint in our miRNA target prediction algorithm so that our study was not 

merely on conserved miRNA targets. The number of predicted target sites for 

miRNAs increased dramatically when the conservation constraint was not used. 

However, there is increasing evidence that many of these nonconserved target 

sites may be indeed functional [187,188]. For instance, 30% to 50% nonconserved 

miRNA binding sites in the human genome might be functional when the miRNA 

and mRNA are expressed in the same tissue [189,190]. 
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3.4.3 miRNAs are biased toward target TFs and other 

regulatory genes 

Noncoding RNAs can specifically recognize another nucleic acid [191]. One of 

the main advantage of RNA as regulatory molecule is its compact size and 

sequence specificity. Moreover, RNA duplex can allow for stable mismatches and 

form particular structures [192]. Many miRNAs, such as miR156, miR159, 

miR160, miR164, miR166, miR172 and miR319, are reported to target TFs and 

play important functional roles in cell differentiation [150]. TFs work as “on” or 

“off” switches [193]. As cell differentiates, it needs to switch from one set of TFs 

to another. If it has to merely rely on the promoter binding proteins to inhibit 

DNA transcription of the earlier TFs, those TFs would not be turned off until all 

the TF transcripts are degenerated; on the contrary, a miRNA may function during 

plant differentiation to clear regulatory gene transcripts thereby facilitating more 

rapid and robust transitions to new expression programs [111,122,150]. 

Furthermore, TFs and miRNAs can act cooperatively on their targets in a largely 

combinatorial manner, that is, many different TFs or miRNAs control a particular 

gene [193].  

3.4.4 Posttranscriptional regulation of gene expression by 

miRNA 

Although there are substantial differences between the animal and plant kingdoms 
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in regards to the mechanisms and scopes of miRNA-mediated gene regulation, the 

new discovery from recent studies on animal miRNAs can still help to shed light 

on the future plant miRNA studies. Lall et al. predicted that miRNAs regulate at 

least 10% of nematode genes [119]. The algorithms based on the near perfect 

matching to the 5’ miRNA sequence to predict targets found that more than one 

third of human genes might be under miRNA regulation [62,63,119,121]. 

Furthermore, the difference in the miRNA-mediated gene regulation between 

animal and plant miRNAs, namely mRNA cleavage by plant miRNA and 

translational repression by animal miRNA, may not always be compelling. For 

example, Lim et al. showed that animal miRNAs reduced the transcript 

abundance of a large number of genes with limited sequence complementarity 

[149]. And there was increasing evidence that miRNA could directly induce 

mostly weak but significant negative effects on the steady-state mRNA levels of 

their targets [194]. Sood et al. found that the mRNA levels of nucleus 3’ UTRs 

were significantly lower in the tissue of cognate miRNA expression compared 

with a background set simply comprising all genes [194]. A quite interesting 

finding was that even the mere presence of the central recognition motifs, referred 

to as “nucleus” or “seed” sequence [61,62,121,195] for each miRNA in human 3’ 

UTRs which was typically a few thousand, without any cross-species analysis, 

was sufficient for observing expression changes in mRNAs [194]. If this is also 

true for plant miRNA targets, that a limited complementarity between miRNA- 
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mRNA duplex is enough to result in the observed reduction in the steady-state 

mRNA level, then current prediction algorithm relied on the near perfect 

complementarity and cross-species comparison almost certainly underestimated 

the number of genes under plant miRNA regulation, which was suggested to 

comprise less than 1% of protein-coding genes in Arabidopsis [150]. 
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Chapter 4: Reconstructing Regulatory Networks 

We conducted a systematic study on the transcriptional and posttranscriptional 

regulatory role at sequence level in Arabidopsis. Both miRNA target motifs 

(miRNA-mediated posttranscriptional regulatory sites) and TFBS (transcription 

factor binding motifs) were incorporated with microarray time-course gene 

expression profiles to determine their probabilistic dependences. We could 

correctly predict expression patterns for more than 50% of 1,132 genes, which 

was statistically significant, based solely on the sequence motifs adopted in the 

network model. 

4.1 Introduction 

Owing to the complete sequencing of a large number of genomes and the growing 

amount of high-throughput gene expression data, a comprehensive understanding 

of the regulatory mechanisms of gene expression becomes the next important 

issue of genomics [138,196]. It has been generally assumed that genes responding 

to a common environmental challenge should be co-regulated and show similar 

patterns of expression [79]. General components of regulatory networks are the 

genes involved in a specific system and the transcription factors (TFs) that 

regulate the system. DNA microarrays provide rapid and parallel surveys of 

gene-expression profiles for hundreds or thousands of genes in a single assay. 
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When expression data are not enough to accurately reconstruct these networks, a 

possible intermediate solution is to construct networks from gene modules – sets 

of genes that are assumed to share a common function or be involved in the same 

pathway [97], and these co-regulated genes are believed to be mediated by short 

DNA elements called regulatory sequences, which include TF binding sites [103]. 

A large number of experimental and computational studies have been done on 

locating transcriptional regulator binding DNA sequences and understanding their 

functions [9-11]. TFs regulate gene expression by binding selectively to sequence 

sites in promoters of genes, and genes regulated by the same TFs have been 

assumed to share the common binding sites in their promoter regions and exhibit 

similar expression profiles [12]. These binding motifs can be used as building 

blocks of large networks and several approaches were developed to identify how 

the set of cis-regulatory elements in a gene’s promoter region governed its 

behavior and explained the observed expression profiles [6-8,10,197]. Kim et al. 

reported a Z-score based method that combined gene expression data analysis 

with promoter region sequence analysis to infer transcription regulatory elements 

of human genes [196]. Using Adaboost algorithm, Kundaje et al. learned a 

decision rule for predicting whether a gene was up- or down-regulated in a 

particular microarray experiment based on the presence of specific motifs and the 

expression levels of TFs [198]. Using different approaches, Segal et al. and Beer 

and Tavazoie both showed that a substantial fraction of yeast gene expression 
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profiles could be explained in terms of the combination of cis-regulatory elements 

[6,7]. The combinatorial code underlying gene expression is composed of logic 

gates (OR, AND, NOT) and spatial configurations [7,8,197]. However, these 

approaches have not been broadly applied in multicellular organisms in spite of 

the reported success in model organisms. A key limitation of such approaches is 

that many regulators are regulated posttranscriptionally [8]. While progresses 

have been made in mapping transcriptional regulatory networks, 

posttranscriptional regulatory roles just begin to be uncovered. 

Posttranscriptional regulatory mechanism had been reported to occur through the 

binding of miRNAs to their targets [76,145,146]. However, the role of 

Arabidopsis miRNA in network topology and dynamics remains unexplored [199]. 

To address this need, we developed a combinatorial approach to determine the 

transcriptional and posttranscriptional regulatory elements based on gene 

expression profiles. We applied this approach to a CONSTITUTIVE 

PHOTOMORPHOGENIC1 (COP1) mutant time course microarray dataset kindly 

provided by Dr. Deng Xingwang’s lab in Yale Department of Biology to detect 

sequence elements that selectively bind to TFs and miRNAs in the process. 

Inspired by Beer and Tavazoie [7], we used Bayesian network -- a probabilistic 

model that integrated both the gene expression data and transcription factor 

binding sites (TFBS) as well as miRNA target motifs (discussed in Chapter 3) to 

deduce the combination of sequence elements that modulate gene expression, and 
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we tried to explain the observed gene expression patterns in terms of the 

transcriptional and posttranscriptional regulatory motifs [128-130,133]. Firstly, 

genes in the cop1 mutant time course microarray dataset were clustered into 12 

expression patterns and overrepresented sequence elements in the upstream of the 

genes belonged to the same cluster were detected using AlignACE [110]. 

Secondly, Bayesian network strategy was applied to selecting these motifs in both 

upstream sequences and transcript sequences that were most related to the gene 

expression patterns. Lastly, we measured the degree to which gene expression 

patterns could be determined merely by these adopted regulatory motifs. Figure 

4.1.1 illustrated the flow diagram of the approach. 
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Figure 4.1.1 Flowchart of the combinatorial approach. 
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4.2 Materials and methods 

4.2.1 Materials 

4.2.1.1 Upstream sequences of Arabidopsis genes 

The entire intergenic region or 3000 bp, whichever was shorter, in the upstream of 

the transcriptional start site (TSS) for each Arabidopsis gene was retrieved from 

the TAIR (ftp://ftp.arabidopsis.org/seq_analysis_updates/) released in Mar 2006. 

4.2.1.2 GO annotation of Arabidopsis genes 

GOSLIM annotation file of Arabidopsis genes was downloaded from the TAIR 

(ftp://ftp.arabidopsis.org/home/tair/Ontologies/Gene_Ontology/) released in April, 

2007. 

4.2.1.3 Microarray time-course dataset of Arabidopsis cop1 mutant 

We used an Arabidopsis cop1 mutant time course microarray dataset kindly 

provided by Prof Deng Xingwang’s lab in Yale Department of Biology. Light is 

an important environmental signal that governs plant growth and development. 

One important light-signaling component involved in plant light responses is 

COP1 (CONSTITUTIVE PHOTOMORPHOGENIC1), which regulates not only 

photomorphogenesis but also other developmental processes [200]. Both wild 

type (reference sample) and cop1 mutant (test sample) were grown at 30 degree 

for a series of time periods (0, 12, 24 hr …) before transferred to 22 degree.  
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This experiment was designed to determine COP1 regulated genes by modulating 

the endogenous activity of COP1. The protocols for hybridization to the 

Arabidopsis microarray, microarray slide washing, and scanning were as 

described previously in Ma et al. [201]. Microarray spot intensity signals were 

acquired by using Axon GenePix Pro 3.0 software package (Axon Instruments 

Inc). All the ratios were the expression intensities of cop1 mutant divided by that 

of wild type seedling, respectively. Average normalized log-transformed 

expression ratios of 5,689 genes were subjected to clustering analysis. 

4.2.2 Methods 

4.2.2.1 Clustering and motif finding 

To take into account the temporal relationship between time-points, a HMM based 

clustering approach was chosen [90,202,203]. The related software was 

downloaded from: http://ghmm.org/gql. BIC (Bayesian Information Criterion) 

was used to determine the ‘optimal’ number of clusters for the dataset and the 

5,689 genes were divided into 12 clusters. AlignACE was then used to detect 

overrepresented sequence motifs (TFBS candidates) in the 3000 bp upstream of 

the genes in the same cluster [84,109,110]. The upstream sequences of all the 

genes were scanned using ScanACE for the motifs found by AlignACE [7,109].  
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4.2.2.2 Building Bayesian network 

We followed the approach established by Beer and Tavazoie [7] and considered 

two-layer networks with parent nodes representing sequence motifs (TFBSs or 

miRNA target motifs) and descendent nodes representing gene expression profiles. 

Edges were directed and connected only sequence elements to expression profiles. 

The network structure could be described with a 0-1 matrix, with M  rows, as 

many as genes under consideration, and N  columns, where N  was the number 

of nodes [138]. The descendent nodes were gene expression pattern cv , 

where Cc ,...2,1= , andC was the total number of clusters (expression patterns). 

The parent nodes were sequence motifs with specific constraints. The constraint 

of a sequence element was its presence in the 5’ upstream region of a gene as a 

TFBS or its presence in the transcript as a miRNA target motif, its orientation, its 

distance to TSS, and the presence or absence of other TFBSs or miRNA target 

motifs. If two or more TFBSs or miRNA target motifs were present, the 

interactive constraints were the distance between them, and/or their order relative 

to TSS, respectively. Let ),...,,( 21 Nσσσω = be the sequence constraints. If a 

constraint n  was satisfied for a particular gene, then we have 1=nσ , 

otherwise 0=nσ . The final network encoded the distribution 

of )...,,|( 21 NcvP σσσ , the probability of the gene being ( 1=cv ) or not being 

( 0=cv ) a member of cluster c , given the states of the sequence constraintsω . 

About 80% of the total genes were used as training set and the rest 20% genes 
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were used as test set [7]. 

From Bayes’ theorem, we had: 

)(/)|()()|( DpSDpSpDSp = , 

where D  was the data and S was the network structure. The probability )(Dp  

did not depend on the structure, and )|( SDp  was the marginal likelihood. 

Assuming unrestricted multinomial distribution, parameter independence, 

Dirichlet priors and complete data, the )|( SDp  was given by: 
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where d , ir  and iq  were the number of descent nodes, the number of unique 

instantiations for descent node i  and the number of the parent nodes of node i , 

respectively. In our case, 1=d  and 2=ir . We used ijkN  to denote the number of 

cases in D  in which variable cv  had the value k and its parent was instantiated 

as j , and ∑ =
= ir

k ijkij NN
1

. We assumed uniform priors, such that 1=ijka  

and ∑ =
= ir

k ijkij 1
αα . Parents were added progressively to a node until no additional 

parent could increase the structure probability [130,143].  

4.2.2.3 Predicting gene expression patterns using the Bayesian 

network model 

A model with the highest log marginal likelihood (or the highest posterior 

probability, assuming equal priors on structure) is the best sequential predictor of 

the data D . For any given gene, the probability that this gene exhibits the 
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expression pattern c  could be calculated by [144]:  
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The algorithms for Bayesian network building and gene expression pattern 

prediction were implemented as C++ programs and the whole process took about 

1 hour on a desktop PC with 1GB memory. 

4.2.2.4 Enrichment of functional annotation terms from Gene 

Ontology 

The number of genes in a specific group with the same annotation term from 

Gene Ontology (GO) was compared to the total number of genes having this GO 

annotation term in the Arabidopsis genome. P-Value which indicated the 

significance of enrichment was calculated from the hypergeometric distribution:  

)(
))((

G
g

CG
cg

C
cP

−
−= , 

where C  was the number of genes with a particular GO annotation term in the 

Arabidopsis genome, G  was the total number of genes in Arabidopsis which 

was 25,676, c  was the number of genes in a specific group with the particular 

GO annotation term and g was the total number of genes in that group. 
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4.3 Results 

4.3.1 Gene expression dynamics in cop1 mutant time course 

experiment 

In the cop1 mutant time course experiment, there were in total 10 time points, i.e. 

0th hour (0 h), 12th hour (12 h) , 24th hour (24 h), 36th hour (36 h), 48th hour (48 h), 

60th hour (60 h), 72nd hour (72 h), 4th day (4 d), 5th day (5 d) and 6th day(6 d). The 

log expression ratio reflected the difference between the expression level of cop1 

mutant and that of wild-type for each gene, and rapid and transient changes were 

observed in the log expression ratios of many genes. At each time point, log 

expression ratios are very diverse (Table 4-1), for example, 1,218 genes and 1,180 

genes had the highest and lowest log expression ratios at time point 48 h, 

respectively. There might be many explanations for the observation, two of which 

were given as below. One was that transcription factors may switch on/off at a 

particular time point, which resulted in the up-regulation or down-regulation of 

their targets. Another possibility was that a certain transcription factor might be 

turned on at a particular time point, which activated the transcription of certain 

protein-coding genes as well as miRNA genes through binding to their 5’ 

proximal promoters. The up-regulation of miRNAs would cause the 

down-regulation of their targets, and this down-regulation could further cascade to 

the targets of the targets of miRNAs [204]. 
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Table 4-1 Changes in the log expression ratios 

Time point 

The number of genes 
with the highest log 

expression ratios among 
the 10 time points 

The number of genes 
with the lowest log 
expression ratios 
among the 10 time 

points 
0 h 686 649 
12 h 585 474 
24 h 447 459 
36 h 134 403 
48 h 1218 1180 
60 h 690 1016 
72 h 120 88 
4 d 335 268 
5 d 639 460 
6 d 835 692 

 

Maximal log likelihood value obtained by BIC showed that the optimal number of 

clusters was 12, so we divided the 5,689 genes into 12 clusters using GQLCluster 

[90,202]. Each cluster contained 755, 157, 400, 509, 275, 638, 725, 374, 658, 422, 

186 and 590 genes, respectively. 
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Figure 4.3.1 The expression patterns of the genes in cluster 1 (output of GQLCluster 
software). 

Cluster 1 comprised 755 genes, and there was no enriched functional annotation 

found in this cluster. 

0.0

-2.0

2.0

-4.0

4.0

-6.0

6.0

-8.0

8.0

-10.0

10.0

-12.0

12.0

-14.0

14.0

-16.0

16.0

-18.0

18.0

 

Figure 4.3.2 The expression patterns of the genes in cluster 2 (output of GQLCluster 
software). 

Cluster 2 comprised 157 genes. Many genes in cluster 2 had annotations related to 

the stress response of plants, such as “response to water” or “response to light 
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stimulus”.  
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Figure 4.3.3 The expression patterns of the genes in cluster 3 (output of GQLCluster 
software). 

Cluster 3 comprised 400 genes. The average log expression ratio kept increasing 

after the time point 72 h. There was no enriched functional annotation found in 

this cluster. 
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Figure 4.3.4 The expression patterns of the genes in cluster 4 (output of GQLCluster 
software). 
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Cluster 4 comprised 509 genes. Different from the expression patterns of the 

genes in cluster 3, the average log expression ratio kept decreasing after the time 

point 72 h. Many genes in cluster 4 had GO annotations related to the ribosome 

function (Table 4-2). 

Table 4-2 The number of genes in cluster 4 which had GOSLIM annotation related to 
ribosome 

GOSLIM annotation The number of genes 
RNA binding 9 

Structural constituent of ribosome 47 
Translation initiation factor activity 10 

Ribosome 30 
Cytosolic small ribosomal subunit 9 

Eukaryotic translation initiation factor 3 complex 2 
Eukaryotic translation elongation factor 1 

complex 
2 

Translation 43 
Translational initiation 6 

Translational elongation 6 
Translational termination 1 
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Figure 4.3.5 The expression patterns of the genes in cluster 5 (output of GQLCluster 
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software). 

Cluster 5 comprised 275 genes and the average log expression ratio 

monotonically decreased along the time course (in total 6 days). Similar to that in 

cluster 2, some genes in cluster 5 also had annotations related to the stress 

response of plants, such as “response to jasmonic acid stimulus” or “response to 

auxin stimulus”. The gene At5g63110 had the GO annotation term 

“posttranscriptional gene silencing”, and a dozen of genes had GO annotation 

terms related to photosynthesis. 

Table 4-3 Genes in cluster 5 which had GOSLIM annotation related to photosynthesis 

GOSLIM annotation Gene name 

Response to light stimulus 
At1g58290,  At1g77760, 

At3g26650, At3g62410 
Photosystem I At1g55670 

Photosystem I reaction center At2g20260, At3g16140 
Photosynthesis, light harvesting At3g08940 

Photosynthetic electron transport in photosystem I At1g55670, At2g46820 
Photosynthetic NADP+ reduction At1g55670 

Photorespiration At2g35370 
Response to UV-B At5g63860 

Phytochrome binding At2g20180 

Photosynthesis 
At1g55670, At3g16140, 

At4g05180 
Chloroplast photosystem I At1g55670, At2g46820 
Chloroplast photosystem II At4g05180 
Photosystem I stabilization At1g55670 
Photosystem II stabilization At5g01920 
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Figure 4.3.6 The expression patterns of the genes in cluster 6 (output of GQLCluster 
software). 

Cluster 6 comprised 638 genes, and 15 of them had the GO annotation term 

“RNA binding”. Furthermore, one gene, namely At1g01040, had the GO 

annotation term “miRNA-mediated gene silencing, mRNA cleavage”. 
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Figure 4.3.7 The expression patterns of the genes in cluster 7 (output of GQLCluster 
software). 

Cluster 7 comprised 725 genes, and 13 of them had the GO annotation term 
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“oxidoreductase activity” and 8 genes had the GO annotation term “oxygen 

binding”. It has been well known that oxidoreductase are involved in response to 

many stresses, including light stress [204-207]. 
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Figure 4.3.8 The expression patterns of the genes in cluster 8 (output of GQLCluster 
software). 

Cluster 8 comprised 374 genes. Similar to that in cluster 2 and cluster 5, a large 

portion of genes in cluster 8 had annotations related to the stress response of 

plants. 
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Figure 4.3.9 The expression patterns of the genes in cluster 9 (output of GQLCluster 
software). 

Cluster 9 comprised 658 genes and we did not find obvious functional annotations 

enriched in this cluster. 
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Figure 4.3.10 The expression patterns of the genes in cluster 10 (output of GQLCluster 
software). 

Cluster 10 comprised 422 genes and 13 genes had the GO annotation term “RNA 

binding”. 
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Figure 4.3.11 The expression patterns of the genes in cluster 11 (output of GQLCluster 
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software). 

Cluster 11 comprised 186 genes and the average log expression ratio decreased 

along the time course. Among the 186 genes, 15 genes and 10 genes had GO 

annotation terms “plastoglobule” and “chlorophyll binding”, respectively. 

Furthermore, many genes had GO annotation terms related to photosynthesis 

(Table 4-4). 

Table 4-4 Genes in cluster 11 with GOSLIM annotations related to photosynthesis 

GOSLIM annotation Gene name 
Photosystem I At1g30380, At5g64040 
Photosystem II At1g67740, At1g79040 

Photosystem I reaction center 
At1g03130, At1g31330, 
At4g12800, At4g28750 

Phototropism At2g30520 
Photosynthetic electron transport At1g60950 

Photosynthesis, light harvesting in photosystem I At3g54890, A3g61470 
Photosynthesis, light harvesting in photosystem II At2g34420, At2g34430 
Photosynthetic electron transport in photosystem I At5g64040 

Photosystem I antenna complex At3g61470 
Photosystem II antenna complex At1g15820, At4g10340 

Photorespiration 
At1g23310, At1g63750, 
At2g13360, At5g04140 

Photoinhibition 
At3g15850, At5g50820, 

At5g66570 
Photosystem II assembly At3g50820, At5g66570 

Response to UV-B At1g51400, At3g55120 
Photosystem II oxygen evolving complex 

assembly 
At1g79040 

Response to light stimulus At1g60950, At5g04140 

Photosynthesis 

At1g03130, At1g15820, 
At1g29930, At1g30380, 
At1g31330, At1g67740, 
At1t79040, At2g05070, 
At2g34420, At2g34430, 
At3g47470, At3g54890,  
At3g61470, At4g10340, 
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At5g01530, At5g54270 

Light-harvesting complex 

At1g29930, At2g05070, 
At2g34420, At2g34430, 
At3g47470, At3g54890, 
At3g61470, At4g10340, 
At5g01530, At5g54270 

Chloroplast photosystem I At5g64040 

Chloroplast photosystem II 
At1g67740, At3g50820, 

At5g66570  

Photosystem II stabilization At3g50820, At5g66570 
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Figure 4.3.12 The expression patterns of the genes in cluster 12 (output of GQLCluster 
software). 

Cluster 12 comprised 590 genes. We found that some genes in this cluster had 

function related to translation regulation, for example, 29 genes had the GO 

annotation term “structural constituent of ribosome”. There were 30 genes in 

cluster 12 had the GO annotation term “translation”, among which 4, 6 and 1 

genes had the annotation terms “translation initiation”, “translation elongation” 
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and “translation termination”, respectively.  

Sequences 3000 bp upstream of TSS were retrieved for each gene and potential 

transcription factor binding motifs (TFBS) were detected using AlignACE for the 

genes belonged to the same cluster. There were 33, 21, 27, 24 31, 25, 27, 20, 30, 

23, 27, 33 TFBSs found for each cluster, respectively. We also added 15 known 

hexamer motifs (Table 4-5) described in Gao et al. to the TFBS dataset [208]. 

 

Table 4-5 Hexamer motifs described in PlantCARE database 

Motif name Consensus 
sequences 

Annotation 

G-box GACGTG Light response element 
HexamerAtH4 CCGTCG Hexamer motif of histone H4 promoter 
MYCAtERD1 CATGTG MYC recognition motif 
TBoxAtGAPB ACTTTG Tbox found in GAPB gene promoter 

GCC-core GCCGCC Core of GCC-box 
My-CAtRD22 CACATG Binding site for MYC (rd22BP) in 

dehydration-responsive gene, rd22 
CAT-box GCCACT Cis-acting regulatory element related to 

meristem expression 
CCGTCC-box CCGTCC Cis-acting regulatory element related to 

meristem specific activation 
GT1-motif GGTTAA Light responsive element 

MBS TAACTG MYB binding site involve in 
drought-inducibility 

TCT-motif TCTTAC Part of a light responsive element 
Wbox TTGACC Wounding and pathogen response 
Cbox TGACGT Light responsive element 
I-box GATAA[T/G] Part of a light responsive element 

MYB1At [A/T]AACCA MYB recognition site found in the promoters 
of the dehydration-responsive genes 
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4.3.2 Discovery of transcriptional and posttranscriptional 

regulatory motifs using cop1 mutant time-course 

microarray data 

The TFBSs and miRNA target motifs were fed to the Bayesian network model 

and the model weighted sequence motifs according to their contribution to the 

expression profiles. There had been no evidence that the TF binding to a gene’s 

upstream region could also posttranscriptionally affect its cleavage by miRNAs 

and vice versa, therefore the TFBSs and miRNA target motifs were treated 

independently in the network construction. No interactions were allowed between 

two motifs of different kinds, whereas for motifs of either kind, their distances to 

TSS, their orientations, their copy numbers and the interaction between any two 

adopted motifs were all taken into account. The cop1 mutant microarray time 

course experiment was not specially designed to test miRNA targets expression, 

so we gave upstream motifs the priority in the network construction. Therefore, a 

network might only have upstream motif nodes without any miRNA target nodes, 

but could not only have miRNA target nodes instead. About 80% of the genes 

(4,557) were used to train the Bayesian network model and the rest 20% genes 

(1,132) were used to estimate the proportion of the genes whose expression 

patterns could be correctly predicted by merely the adopted transcriptional and 

posttranscriptional regulatory motifs in the networks.  

Table 4-6 TFBS nodes adopted in the networks 
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Network Motif nodes adopted Motif nodes constraints 

a 

Reverse strand 
Distance to TSS up to 2060 bp 

b 

 
Distance to TSS up to 2200 bp 

1 

 
Motifs a and b with a distance up to 1020 

bp 

a 

Distance to TSS up to 380 bp 
 

b 

 
Distance to TSS up to 460 bp 

 

c 

 
Distance to TSS up to 1040 bp 

 

2 

 Motifs a and b with a distance up to 80 bp

a 

 
 
 

b 

 
Distance to TSS up to 20 bp 

 

c 

 
Distance to TSS up to 1160 bp 

 

3 

 Motif b not present together with motif a

a 
Distance to TSS up to 340 bp 

4 

b 

 
Distance to TSS up to 900 bp 

 

5 
a 

Distance to TSS up to 1420 bp 
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b 

 
Distance to TSS up to 340 bp 

 

 
Motifs a and b with a distance up to 340 

bp 

a 
 

b 
 

c 

 
Distance to TSS up to 420 bp 

d 

 
Reverse strand 

e 
 

f 
 

6 

g 

 

 

7 
a 

Distance to TSS up to 2040 bp 

a 
Distance to TSS up to 80 bp 

b 

More than one copy 
 

8 

 
Motifs a and b with a distance up to 1020 

bp 

9 
a 

Distance to TSS up to 60 bp 
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b 

 
 

10 
a 

Distance to TSS up to 120 bp 

a 
Distance to TSS up to 2520 bp 

b 

Forward strand 
Distance to TSS up to 160 bp 

c 
Distance to TSS up to 300 bp 

 Motifs a and b present together 
 Motifs a and c present together 

11 

 
Motifs a and c with a distance up to 1340 

bp 

a 
Distance to TSS up to 2960 bp 

b 
Distance to TSS up to 980 bp 

c 
More than one copy 

 Motif b not present together with motif a

12 

 
 Motifs c and b with a distance up to 

2480 bp 

 

Table 4-7 miRNA target nodes adopted in the networks 

Network miRNA nodes adopted miRNA nodes constraints 
miR405 Distance to TSS up to 700 bp 

1 
miR835-3p Distance to TSS up to100 bp 

2 miR835-5p  
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miR414  
3 

miR401 Distance to TSS up to 100 bp 

miR852  

miR836  4 

 
miR852 and miR836 targets with a 

distance up to 300 bp 

5 miR823  

miR390  

miR406  6 

miR842  

miR413 Distance to TSS up to 2100 bp 

miR833-5p Distance to TSS up to 1200 bp 

miR826 Distance to TSS up to 800 bp 7 

 
miR413 and miR833-5p targets with a 

distance up to 1900 bp 

8 miR163 Distance to TSS up to 200 bp 

miR165  

miR166 Distance to TSS up to 600 bp 

miR823  

miR773 Distance to TSS up to 400 bp 

 
miR165 targets more distant to TSS than 

miR166 targets 

9 

 
miR823 and miR773 targets with a 

distance up to 1700 bp 

10 N/A  

11 miR396  

12 miR845 Distance to TSS up to 500 bp 

 

The average number of nodes was 5 for the 12 networks, and in average 3 were 

upstream motif nodes and 2 were miRNA target nodes (listed in Tables 4-6 and 
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4-7). Most networks had at least one miRNA target node except network 10, 

which only had a single upstream motif node. The most frequent constraint added 

to each node (both upstream motif node and miRNA target node) was its distances 

to TSS. Two known upstream motif nodes had been added, respectively, to two 

networks, namely MYB1At to network 8 and I-box to network 12 (Table 4-8). We 

compared the adopted upstream motifs with the known motifs stored in 

PlantCARE database [209,210], and found that ten of our adopted upstream 

motifs contained functional sites of the known motifs. Moreover, four of them 

contained motifs that had been annotated to function as light responsive elements 

(Table 4-8). 

Table 4-8 Known TF binding motifs adopted in the networks 

Network Known motif 
adopted Function description 

1 TGACG-motif c 

 

Cis-acting regulatory element involved in the 
MeJA-responsiveness (binding site of Arabidopsis bZIP protein 

TGA1a) 

2 CAAT-box c Common cis-acting element in promoter and enhancer regions 

4 TGA-1 c Auxin-responsive element 

GAG-motif c 
Part of a light responsive element; part of the rbcA conserved 

DNA module array (rbcA-CMA1) involved in light 
responsiveness 

GT1-motif c 
Light responsive element binding site for GT1 nuclear protein 

factor 

GATA-motif c 
Part of a light responsive element; part of the fed conserved DNA 

module array (fed-CMA1) involved in light responsiveness 

5 

GA-motif c 
Glycine max; part of a light responsive element; part of the LRE 

rbcS-(I-G) unit in a rbcS gene 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Reconstructing Regulatory Networks  

 110

 
CAAT-box c Common cis-acting element in promoter and enhancer regions 

TGACG-motif c 

 

Cis-acting regulatory element involved in the 
MeJA-responsiveness (binding site of Arabidopsis bZIP protein 

TGA1a) 
6 

GAG-motif c 
Part of a light responsive element; part of the rbcA conserved 

DNA module array (rbcA-CMA1) involved in light 
responsiveness 

CAAT-box c Common cis-acting element in promoter and enhancer regions 

8 
MYB1At s 

MYB recognition site found in the promoters of the 
dehydration-responsive gene rd22 and many other genes in 

Arabidopsis 

11 CAAT-box c Common cis-acting element in promoter and enhancer regions 

12 I-box s Part of light responsive element 

 
c The known motif was contained within a adopted motif 

s The known motif was adopted in the networks 

 

In total 20 miRNA target nodes were adopted in the 12 networks, which were 

miR163, miR165, miR166, miR390, miR396, miR401, miR405, miR406, miR413, 

miR414, miR773, miR823, miR826, miR833-5p, miR835-3p, miR835-5p, 

miR836, miR842, miR845 and miR852 (Table 4-9). 

 

Table 4-9 miRNAs whose target motifs were adopted in the networks and the protein 
classes of these potential targets 

Network miRNA nodes 
adopted Protein classes of potential targets 

1 miR405 DTW domain-containing protein 
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miR835-3p 

Zinc finger family protein 
F-box family protein 

2 miR835-5p 
Exostosin family protein 
MYB transcription factors 

miR414 

F-box family protein 
PHD finger family protein 
PWWP domain-containing protein 
RNA recognition motif (RRM)-containing protein 
WD-40 repeat family protein 

3 

miR401 Exostosin family protein 

miR852 WRKY family transcription factor 

4 
miR836 

Heat shock family protein 
Exostosin family protein 

5 miR823 
Protease-associated (PA) domain-containing protein 
Exostosin family protein 

miR390 
Leucine-rich repeat family protein 
One of 3 loci encoding tasiR-ARF (a small interfering RNA that 
regulates the accumulation of ARF2, 3 and 4) 

miR406 Pentatricopeptide (PPR) repeat-containing protein 6 

miR842 
Jacalin lectin family protein 
Glycoside hydrolase starch-binding domain-containing protein 
WRKY family transcription factor 

miR413 Basic helix-loop-helix (bHLH) family protein 

miR833-5p 
Long-chain-fatty-acid--CoA ligase 
ABC transporter family protein 

7 

miR826 2-oxoglutarate-dependent dioxygenase (AOP2) 

8 miR163 
WRKY family transcription factor 
F-box family protein 

miR165 Homeobox-leucine zipper transcription factor 

miR166 Homeobox-leucine zipper transcription factor 

miR823 
Protease-associated (PA) domain-containing protein 
Exostosin family protein 

9 

miR773 
ATPase, plasma membrane-type 
PHD finger transcription factor 

10 N/A  
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11 miR396 
Growth regulation factor transcription factors 
Elongation factor Tu family protein 

12 miR845 Jacalin lectin family protein 

 

Only one of the 20 adopted miRNA nodes, miR823, was present in more than one 

network, namely in both network 5 and network 9. About half of the miRNA 

target nodes adopted in our networks were newly identified [185]. We found that 

for the 9 adopted miRNA target nodes which were newly identified, at least 6 had 

been reported to express in seedlings. Furthermore, 3 of them, namely miR823, 

miR842 and miR845 were preferentially sequenced in seedlings [185]. 

Mallory and Vaucheret suggested that most miRNAs are involved in overlapped 

regulatory networks rather than working independently, pointing to a coordinating 

role in fine-tuned adjustment of mRNA levels within these networks [211]. Our 

result supported the hypothesis that miRNAs might act together to regulate target 

mRNAs [112]. We found that some miRNA target motifs were present together, 

for example the distance between target motifs of miR836 and miR852 were 

always within 450 bps (Table 4-7). 

4.3.3 Predicting gene expression patterns 

We used the upstream motif nodes and miRNA target nodes adopted in the 

Bayesian network model to predict gene expression patterns. Each of the 1,132 

genes was assigned to the network having the highest probability ),|1( cc SDvp = . 

Some expression patterns were quite similar, so we first calculated the correlation 
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coefficient of the mean expression profiles between any two of the 12 clusters. If 

two expression patterns had a correlation coefficient greater than 0.9, the two 

clusters were regarded as overlapped expression patterns. And a gene assigned to 

any of the overlapped expression patterns would also be regarded as correctly 

assigned [7]. 

About 50% genes (572/1132) were correctly assigned. We did simulation study by 

randomly assigning the 1,132 genes to 12 clusters for 100,000 times. The number 

of correctly assigned genes was 329 in average, and the P-Value of correctly 

assigning 572 genes was less than 10-8. Moreover, 552 out of the 572 genes could 

still be correctly assigned without miRNA nodes and the introducing of miRNA 

nodes could further correctly assign 20 genes. We retrieved the functional 

annotations of these 20 genes (Table 4-10) and found that At5g12840, a 

CCAAT-binding domain-containing protein, was one of the experimentally 

validated miRNA targets. Furthermore, At5g54900 and At5g57870 both had the 

term “RNA-binding” in GO and At5g59780 (MYB59) was one of the MYB 

transcription factors, which was reported to serve as LONG HYPOCOTYL5 

(HY5) binding target and response to GA, JA, salt stress, ABA, ethylene, and 

auxin [212]. 

Table 4-10 The annotation of the 20 genes that could not be correctly assigned without 
involving miRNA target motifs in the networks 

Gene name Gene annotation 
At5g19520 Mechanosensitive ion channel domain-containing protein 
At5g44380 FAD-binding domain-containing protein 
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At5g12840 
CCAAT-binding transcription factor (CBF-B/NF-YA) family 

protein 
At5g14800 Pyrroline-5-carboxylate reductase 
At5g54370 Late embryogenesis abundant protein-related 

At5g57870 
Eukaryotic translation initiation factor 4F, putative / eIF-4F, 

RNA binding 
At5g63280 Zinc finger (C2H2 type) family protein 
At5g18210 Short-chain dehydrogenase/reductase (SDR) family protein 
At5g64500 Membrane protein-related 
At5g54900 RNA-binding protein 45 (RBP45) 
At5g47730 SEC14 cytosolic factor 
At5g63790 No apical meristem (NAM) family protein 
At5g35460 Expressed protein 
At5g36290 Expressed protein 
At5g57910 Expressed protein 
At5g53850 Haloacid dehalogenase-like hydrolase family protein 
At5g27150 Sodium proton exchanger 
At5g59780 MYB family transcription factor (MYB59) 

At5g24760 
Alcohol dehydrogenase, putative, contains Pfam zinc-binding 

dehydrogenase domain 

At5g26570 
Contains InterPro domain glycoside hydrolase, starch-binding 

domain 

 

4.4 Discussion 

4.4.1 COP1 acting as a repressor in Arabidopsis 

photomorphogenic development 

Various plant growth and development processes are critically influenced by light 

[213-215]. Wild type Arabidopsis seedling development follows two patterns, 

etiolation in darkness and photomorphogenesis in the light [216]. COP/DET/FUS 

(CONSTITUTIVE PHOTOMORPHOGENIC/DE-ETIOLATED/FUSCA) is a class 

of genes which were identified as downstream signaling components of all 
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photoreceptors [200,217,218]. Mutation in COP/DET/FUS causes constitutive 

photomorphogenic development even in the dark [200,219].  

One of the important light signaling components involved in plant light response 

is COP1. The constitutive photomorphogenic phenotype of cop1 mutation 

indicated that COP1 acts as a negative regulator, or a light-inactivated repressor, 

of photomorphogenesis [216]. Shin et al. showed that COP1 is required to repress 

a flower-specific transcription factor, AtMYB21, in seedlings. They also suggested 

that the abundance of some genes in cop1 mutant is at least partially due to the 

ectopic expression of MYB genes, including AtMYB21 [200]. Shin et al. further 

suggested that COP1 regulated not only photomorphogenesis, but also other 

developmental processes, that is, in addition to the constitutive photomorphogenic 

phenotypes, the mutants stop further development in the seedling stage and 

ectopically express genes that are not related to light signaling [215,220]. 

In the 12 clusters, 15 genes had the GO annotation term “photomorphogenesis” 

(Table 4-11). Among them, 5 were annotated to encode COP9 signalosome 

subunits (CSN). 

Table 4-11 Genes which had GOSLIM annotation related to photomorphogenesis 

GOSLIM annotation Gene name Cluster 
At2g46370, At3g28860, 

At3g61140/CSN8, 
At5g14250/CSN3 

Cluster 1

At5g56280/CSN6A Cluster 6

At2g36910 Cluster 7

Photomorphogenesis 

At1g79810 Cluster 8
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 At1g22920/CSN5B, 
At2g26990/CSN2, 

At3g55370, At4g08920 
Cluster 9

At4g02440 Cluster 5
Regulation of photomorphogenesis 

At2g24790 
Cluster 

12 

A5g46210 
Cluster 

10 Negative regulation of 
photomorphogenesis 

At4g05420 
Cluster 

12 

 

Most COP/DET/FUS genes, such as COP9(AtCSN8), encode components of the 

COP9 signalosome which resemble the components of the 26S proteosome 

[200,221-224]. We retrieved the expression profiles of the 15 genes (Figure 4.4.1) 

and found that the log expression ratios of these genes, especially the 5 genes that 

were annotated to encode COP9 signalosome subunits, had not changed much 

during the time course (Figure 4.4.2). 
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Figure 4.4.1 The expression profiles of the 15 genes that had the GO annotation term 
“photomorphogenesis”. 

 

If cop1 mutant is grown at 20 degree, it will show mutant phenotype; whereas it 

will show wild type phenotype if it is grown at higher temperature (e.g. 30 

degree). The longer it has been grown at 30 degree, the more similar the 

phenotype of wild type and that of cop1 mutant will be. This was consistent with 

the observation that despite the up-regulation or down-regulation of the 15 genes 

at the earlier time points (before 72h), the expression differences (cop1 mutant 

versus wild type) diminished gradually at later time points. 
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Figure 4.4.2 The expression profiles of the 5 genes encoding COP9 signalosome 
subunits. 

 

The log expression ratios of the 5 genes encoding COP9 signalosome had not 

changed significantly across the 10 time points, which suggested that though 

COP9 signalosome regulated the nucleocytoplasmic portioning of COP1 [216], 

there was no observed feedback regulation under the present experimental 

condition. 

4.4.2 Transcriptional and posttranscriptional regulatory 

networks 

There seems to be more computationally predicted motifs without a known 
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matching transcription factor, than transcription factors without a known binding 

sequence [225]. Since motifs are usually short, they may randomly present in the 

upstream regions of many genes without a functional role [6].  

Bayesian network models weight sequence motifs according to their contribution 

and are greatly helpful for selecting motifs that are functional under specific 

experimental conditions [226,227]. Among the many possible machine-learning 

methods that could be applied to predicting interactions, Bayesian network 

possesses two advantages: (a) it allows features of more than one data type to be 

represented together and converted into a common probabilistic framework 

without unnecessary simplification [5,227]; (b) it is capable of dealing with 

incomplete information and encoding dependencies between variables [7]. In this 

study, Bayesian network was used to infer the probabilistic dependence between 

sequence elements and expression patterns [7,129,133].  

The steady-state of an mRNA results from the balance between transcription and 

decay [228]. TFs and miRNAs are two groups of well-known factors involved in 

the regulation of gene transcription as well as decay. Most genomic studies of 

gene expression regulation focused on transcription rather than on mRNA decays. 

Based on a model in which upstream motifs contribute additively to the 

log-expression level of a gene, Bussemaker presented a computational method for 

discovering cis-regulatory elements that circumvented the need to cluster genes 

based on their profiles [127]. Beer and Tavazoie correctly predicted 70% of the 
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gene expression patterns by use of Bayesian network based only on upstream 

motifs [7]. Li et al. developed a promoter classification method using a Relevance 

Vector Machine (RVM) and Bayesian statistical principles to identify 

discriminatory features in the promoter sequences of genes that could classify 

transcriptional responses and they correctly predicted 70% genes as being up- or 

down-regulated, based on a small set of discriminative promoter motifs [229]. In 

the meanwhile, Foat et al. identified functional 3’ UTR motifs (including miRNA 

target sites) that best correlated with the observed changes in mRNA levels 

[112,228]. Sood et al. used computational methods to explore the effects of 

endogenous miRNA expression on endogenous steady-state mRNA levels. In their 

model, changes in mRNA levels of a given gene (measured by the microarray 

experiment) are written as a sum over contributions from all sequence motifs in 

the 3’ UTR of that gene, which could explain changes in mRNA levels for 50% 

genes [194]. Although Beer and Tavazoie as well as Rajewsky both in their work 

suggested the integration of posttranscriptional and transcriptional motifs in the 

future study of gene regulatory networks, respectively [7,112], none of the groups 

had correlated both transcriptional and posttranscriptional regulatory elements 

together with the mRNA steady-state level. 
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4.4.3 Microarray data used in constructing the regulatory 

networks  

Gene expression is thought to be a temporal process. Under different conditions, 

different proteins are required for different functions; even under stable conditions, 

due to protein degradation mRNA is transcribed continuously and new proteins 

are generated. A TF gene also takes time to express its protein product and then 

affect (directly of indirectly) the transcript level of its target gene [230]. In static 

experiments, the expression of genes in different samples is measured, whereas in 

time series experiments, the expression of genes during a temporal process is 

measured. Static data are assumed to be independent and identically distributed, 

whereas time series data exhibit a strong autocorrelation between successive time 

points [97]. 

Beer and Tavazoie used large data set obtained under many experimental 

conditions and identified, by reverse engineering, the regulatory elements 

dictating their expression patterns [3,7]. Foat et al. used 750 microarray datasets 

in 750 conditions, respectively, in his study [228]. However, the algorithm that is 

able to predict expression in a single condition solely based on promoter 

sequences has not been described [3]. To address this need, we used a single 

condition time course data in order to gauge the capability of our method to 

capture the underlying mechanism of gene expression in this process at sequence 

level. 
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4.4.4 Contribution of miRNAs in gene regulation networks 

Lee et al. investigated the regulation of 61 TFs expressed in a tissue-enriched 

manner in Arabidopsis roots. They suggested that the sequence within 3 kb 

upstream of a TF was sufficient for driving the endogenous mRNA expression 

pattern in 80% (35/44) of the cases. 25% of the TFs underwent posttranscriptional 

regulation via miRNA (2/24) or via intercellular protein movement (6/24). Lee et 

al. suggested that promoter region had major contribution to the steady-state of 

Arabidopsis TF transcripts, while posttranscriptional regulation of gene 

expression was also frequently observed [146].  

In our study, 3.4% of the 572 genes could only be correctly assigned after 

introducing miRNA target nodes, which might suggest that the consequence of 

miRNA-mediated posttranscriptional regulation was marginal in our time course 

expression profiles although miRNA was considered as one of the most important 

posttranscriptional gene regulators. This might result from a possible bias in the 

predictive power of TFBS since the motif finding was done for each fixed cluster. 

In view of this, we did a reference test using only the aforementioned 15 known 

hexamer motifs (Table 4-5) and miRNA target motifs. Using the 15 known 

hexamer motifs, we could only correctly assign 296 genes, which was even less 

than that from random assignment (P-Value = 0.98) and this suggested that the 

observed expression profiles could not be explained solely by the combination of 

the15 known motifs. After adding miRNA target nodes, we could correctly assign 
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500 genes (P-Value <10-8). On the other hand, without TFBSs adopted, we could 

only correctly assign 386 genes solely on the adopted miRNA target motifs. The 

result suggested that miRNAs might confer additional layers of robustness on 

gene regulation networks. Exploration of miRNA regulatory mechanism together 

with known transcriptional regulatory interactions and other functional genomics 

data might help to further elucidate the function of miRNAs at a system-wide 

level [112]. 

Plants have evolved sophisticated gene regulatory networks that mediate 

developmental changes in response to light [231]. In Arabidopsis, COP1 interacts 

with specific TFs to repress their activities in the dark and HY5 is one of such TFs 

[232-234]. The first nuclear target identified for COP1 was the bZIP- type 

transcription factor HY5, characterized as a positive regulator of 

photomorphogenic development and as a suppressor of cop1 mutation 

[216,235,236]. HY5 inhibits hypocotyl elongation in the light and is a key TF in 

seedling photomorphogenesis [231]. A recent Chip-on-chip approach 

systematically identified direct targets of HY5 [212,231]. Five of the 

aforementioned 204 genes, that could not be correctly assigned solely by the 15 

known motifs but could be correctly assigned once miRNA nodes were adopted, 

were reported to be HY5 binding targets [212]. The five genes were At5g23010, 

At5g05410, At5g49280, At5g59780 and At5g59820, which showed functional 

enrichment (P-Value =0.01). This result suggested that miRNA might also involve 
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in the light responsive network. Furthermore, we suggested that many of the 204 

genes might have function related to miRNA regulation mechanism. Hence we 

grouped the 204 genes according to their GO annotations. Some genes had 

significantly enriched GO annotation terms. It was not surprising to find that both 

functional annotation terms “DNA or RNA binding” and “transcription factor 

activity” were enriched as it was well-known that plant miRNAs were biased 

toward to target TFs and other regulatory genes [150]. Functional annotations 

“response to abiotic or biotic stimulus” and “response to stress” were also 

enriched with high significance (both P-Value <10-8), which was consistent with 

the fact that miRNA played important roles in plant responses to environmental 

stresses as well as in development and genome maintenance [159]. 

Table 4-12 Functional enrichment of the 204 genes from GOSLIM annotations 

GOSLIM annotation Within 
group 
(204 

genes) 

Not within 
group 

(25,472 
genes) 

All 
(25,676 
genes) 

P-Value 

DNA or RNA binding 22 1806 1828 0.020 
Transcription factor 

activity 
21 1667 1688 0.016 

Transferase activity 27 1625 1652 <10-8 
Kinase activity 21 1677 1698 0.017 

Nucleotide binding 20 1227 1247 0.001 
Nucleus 28 2409 2437 0.019 

Mitochondria 24 990 1114 <10-8 
Transport 29 1259 1288 <10-8 

Response to abiotic or 
biotic stimulus 

34 1276 1310 <10-8 

Response to stress 18 76 94 <10-8 
Chloroplast 38 2457 2495 <10-8 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Reconstructing Regulatory Networks  

 125

Chapter 5: Conclusion 

It comes the era of systems biology, which has two key elements, namely 

large-scale molecular measurements and computational modeling [237]. The 

molecular constituents of a system and their variations across a series of dynamic 

phenotypic changes can be measured and the measurements are collectively 

referred to as “omics”, such as genomics, transcriptomics, proteomics, 

metabolomics, pharmacogenomics, physiomics etc. They are quantitative study of 

sequences, expression, metabolites and so on. The computational systems biology 

uses computational approaches to understand biological systems in system-level, 

which integrates various types of data in multiple levels and phases; one of such 

efforts is to reconstruct transcriptional regulatory networks using various types of 

gene expression data and regulatory sequence motifs. 

To date, a lot of studies have been done to explain the gene expression profiles in 

terms of the combination of transcriptional factor binding motifs or cis-regulatory 

elements [6,7]. However, these approaches have not been broadly applied in 

multi-cellular organisms in spite of the reported success in model organisms. A 

key limitation of such approaches is that many regulators are regulated 

posttranscriptionally [8]. While progress is made in mapping transcriptional 

regulatory networks, posttranscriptional regulatory networks just begin to be 

uncovered. Aiming at integrating both transcription factor binding motifs and 
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posttranscriptional regulatory motifs toward a better quantitative modeling of 

changes in mRNA level, we proposed a probabilistic approach to determine the 

context-dependent role of genomic TF binding motifs together with miRNA 

binding motifs in transcriptional and posttranscriptional regulation. Regardless the 

simple strategy employed, our method may provide an incomplete or 

coarse-grained portrait of the underlying transcriptional and posttranscriptional 

regulatory network, which can correctly predict the expression patterns for more 

than 50% genes in our test dataset. Consequently, our method facilitated the 

incorporation of diverse sources with limited prior knowledge. The relationship 

between sequence motifs and gene expression patterns could be investigated more 

precisely from datasets that observe expression profiles of miRNAs, mRNAs and 

proteins from the same samples simultaneously. Furthermore, other gene 

regulatory mechanism besides that regulated by TFs and miRNAs should also be 

taken into consideration in the future network model, such as : cell signaling, 

miRNA splicing, polyadenylation and localization; chromatin modifications; and 

mechanisms of protein localization, modification and degradation [189].  

To facilitate our transcriptional regulatory network study, we proposed a novel 

Hidden Markov Model based method for prediction plant miRNA target motifs. 

Comparing to the exiting methods of plant miRNA prediction, our method does 

not have conservation constraints and is capable of capturing the position specific 

information about particular matches/mismatches. We assume here that the 
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complementarity between miRNA-target duplex might follow some rules 

according to the RISC mechanisms, and the HMM method could find these 

hidden rules by learning from a training set of known plant miRNA targets. 

Despite the substantial advances in the past few years, molecular network biology 

was still in its infancy [2]. Future progress may be expected in two directions, 

namely the development of new theoretical methods in order to improve the 

capability of charactering the network topology and the development of highly 

sensitive tools to enhance our data collecting abilities. Once the concentrations, 

fluxes and interactions of various types of molecules at high resolution both in 

time and space can be identified and quantified, the global signaling networks can 

be comprehensively studied. 
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