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Summary 

The thesis consists of two parts: 1).Evaluation of cDNA Microarray Ratio 

Calculating Strategies; 2).Finding Transcriptional Factor Binding Sites for 

Co-regulated Genes by Combining Sequence Over-representation with 

Cross-species Sequence Conservation. 

Part One: Evaluation of cDNA Microarray Ratio Calculating Strategies 

There are different methods for calculating channel ratios for spots on two-color 

cDNA microarray slides. At image analysis step, microarray users have to choose 

one out of the available methods at their own discretion as no guidelines are 

provided by image analysis software such as GenePix Pro. The ratio values 

calculated using different methods to the same spot may be of substantial 

variations. Therefore, our study was to address one of the most frequently asked 

questions by microarray users: which ratio quantity provided by the image analysis 

software should be used? Standard microarray image analysis software such as the 

Axon GenePix Pro calculate the channel ratio out of the pixels that define a given 

feature using five different methods, i.e., Ratio of Means, Ratio of Medians, Mean 

of Ratios, Median of Ratios and Regression Ratio. We have evaluated the five 

different ratio calculation strategies using simulation approaches. Our results 

suggest that in most circumstances the Ratio of Means appears to be the prime 

approach, particularly when the CVs (Coefficient of Variance) of two channel pixel 

intensities are small (less than 0.5) and channel intensities are large. However the 
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Ratio of Medians and the Median of Ratios are more favorable when the CVs are 

large.  

Part Two: Finding Transcriptional Factor Binding Sites for Co-regulated Genes by 

Combining Sequence Over-representation with Cross-species Sequence 

Conservation 

One major challenge of modern biology is to understand how gene expression is 

regulated. An important step toward this understanding is to reliably identify the 

transcriptional factor binding sites (TFBSs) of co-regulated genes. Novel 

computational methods for finding TFBSs have long been sought owing to the 

arduous lab work. The current prevailing TFBS finding methods yield a large 

number of false positive predictions due to the short, variable nature of 

transcriptional binding sites (TFBSs). To reduce the false positive rate of motif 

finding we proposed a method here that combines sequence over-representation 

and cross-species sequence conservation to detect TFBSs in upstream regions of a 

given set of co-regulated genes. Putative motifs that are statistically 

overrepresented are selected to go through a filtering process which eliminates the 

candidates with low degree of conservation across multiple closely related species, 

and we proposed to measure the cross-species conservation of a putative motif by 

the average relative entropy of the corresponding blocks in the alignments of gene 

upstream sequences from multiple species. Only the candidate motifs exceeding 

certain threshold of relative average entropy will be kept for building the binding 

motif profile. We applied this method to 35 S. cerevisiae transcriptional factors 
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with known DNA binding motifs (with the support of orthologous sequences from 

genomes of S. mikatae, S. bayanus and S. paradoxus), and found that our method 

outperformed the single-genome based motif finding methods MEME and 

AlignACE as well as the multiple-genome based methods PHYME and Footprinter 

for the majority of these transcriptional factors.
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Chapter 1 Preprocessing of DNA Microarray Data  

 

1.1 DNA microarray 
 

Traditional methods in molecular biology generally work on a "one gene in one 

experiment" basis, which means that the throughput is very limited and the "whole 

picture" of gene function is hard to obtain. In the past decade, a new technology, 

called DNA microarray, has attracted tremendous interests among biologists[1]. 

This technology promises to monitor the whole genome on a single chip so that 

researchers can have a better picture of the interactions among thousands of genes 

simultaneously[2-5]. 

DNA microarray, or DNA chip is an orderly arrangement of samples. It provides a 

medium for matching known and unknown DNA samples based on base-pairing 

rules and automating the process of identifying the unknowns. An array is 

fabricated by high-speed robotics[6], generally on glass but sometimes on nylon 

substrates, for which probes with known identity are used to determine 

complementary binding, thus allowing massively parallel gene expression and 

gene discovery studies. The sample spot sizes in microarray are typically less than 

200 microns in diameter. An experiment with a single DNA chip can provide 

researchers information on thousands of genes simultaneously - a dramatic 

increase in throughput. The property that DNA microarray can be used to measure 
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Preprocessing of DNA Microarray Data 

the expression levels of thousands of genes in parallel makes it widely adopted in 

many fields[4, 7, 8] such as drug discovery[9] and disease study[10]. 

There are two major variants of the DNA microarray technologies, in terms of the 

property of arrayed DNA sequences[11]. They are cDNA microarray and 

oligonucleotide microarray[12]. 

1.2 cDNA microarray 

With cDNA microarray we measure the expression levels of genes using 

fluorescent dye intensities. The probes are pieces of DNA that are complementary 

to part of the genes under study. Usually cDNA probes for making the array can be 

generated from a commercially available cDNA library ensuring a close 

representation of the entire genome of an organism on the array. Alternatively, 

PCR using specific primers can be used to amplify specific genes from genomic 

DNA to generate the cDNA probes. 

Doing a cDNA microarray[13] experiment we need to prepare two samples for 

hybridization to the array: a control sample and an experimental sample(see 

Figure1-1)[14]. These samples are prepared with mRNA extracted from cells and 

reverse transcribed into cDNA, and during the reverse transcription step a 

fluorescent dye is incorporated into the newly formed cDNA. Different dyes 

should be employed to label the different samples. For example, the control sample 

can be labeled with a green-fluorescing dye called Cy3 and experimental sample 
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Preprocessing of DNA Microarray Data 

labeled with a red-fluorescing dye called Cy5. Since the samples are labeled 

differently they can be combined and hybridized to the microarray together (see 

Figure 1-1). The two samples will competitively bind to the probes on the array 

and the sample containing more gene expression for a particular probe will win out. 

That is, if there is more of an mRNA transcript in the control sample than in the 

experimental sample (i.e. the gene is down-regulated in the experiment) then more 

Cy3 will bind to the probe on the array and the spot will fluoresce green. If there is 

more experimental transcript, the reverse will happen and the spot will fluoresce 

red. When the two samples have the same amount of transcript, the dyes will 

cancel each other out and the spot will have a yellow color in the composite image 

for two channels. 
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Preprocessing of DNA Microarray Data 

 

 

 

Figure 1-1 cDNA Microarray  

• Preparation of targets:  Amplification and    purification  of  cDNA 

clones  

• Slide Surface Preparation:  Slide coating chemistry  

• Target DNA Attachment :  Binding and retention of arrayed DNA 

samples  

• Preparation of Probe:  Isolation of mRNA, and fluorescence dye 

labeling of the cDNA probe  

• Hybridization: Probe depletion and mixing  

• Washing: Eliminating non-hybridized and non specific binding probes  

• Scanning: Obtaining fluorescent  image of each  spot  
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Preprocessing of DNA Microarray Data 

• Data analysis: Extraction of intensity from both color channel, 

determination of local background and variance, estimation of error and 

standard deviation in the ratios, selection and identification of differentially 

expressed genes. (excerpted from [14]) 
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Preprocessing of DNA Microarray Data 

Four layers of a typical cDNA microarray project 

A typical research project using cDNA microarray can be considered as having 

four different layers, namely pixel, spot, slide and project (Figure 1-2). A 

microarray project usually comprises multiple (tens or hundreds of) slides that use 

samples under different conditions (different cell types, different development 

stage …, etc.). It is also quite often to make replicate slides for the same condition 

to make sure the microarray data are reproducible. A cDNA microarray slide 

consists of thousands of spots, and each spot usually represents one gene. A spot 

on microarray slide consists of hundreds of pixels. The two channel intensities of 

each pixel are detected by image analysis software, whereas the two channel 

intensities and the channel intensity ratio of the spot are estimated (after 

eliminating the effect of background signals) from the channel intensities of all the 

pixels in it.  
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Preprocessing of DNA Microarray Data 

 

 

 

 

 

 

 

Figure 1-2 Four layers of a typical cDNA microarray project 

A microarray project usually comprises multiple slides that use samples under 

different conditions. A cDNA microarray slide consists of thousands of spots, and 

each spot usually represents one gene. A spot on microarray slide consists of 

hundreds of pixels. 
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Preprocessing of DNA Microarray Data 

1.3 Oligonucletide array 

Oligonucletide array (trademarked as a GeneChip by Affymetrix) uses the same 

principle as cDNA but with different technology. In the oligonucleotide array 

system a known gene or potentially expressed sequence is represented on the chip 

by 11-16 unique oligomer probes, each 25 bases long. These probes are selected to 

have little cross-reactivity with other genes so that non-specific hybridization will 

be minimized. The synthesis for the probe Affymetrix arrays uses two techniques: 

photolithography and solid-phase DNA synthesis[12]. 

To deal with non-specific hybridization that may occur, a second probe is 

synthesized in an adjacent cell which is identical to the previous probe with the 

exception of a mismatched base at the central position.  This is called the Perfect 

Match/Mismatch (PM/MM) probe strategy. Any background hybridization with the 

MM probe is subtracted from the PM probe signal which results in perfect 

hybridization. 

After samples are prepared by extracting mRNA from a cell, the mRNA labeling 

process is initiated, in which the double stranded cDNA is synthesized from the 

mRNA, and the cDNA serves as a template in an in vitro transcription (IVT) 

reaction that produces biotin-labeled antisense mRNA which is called cRNA. Once 

labeled, the sample of cRNAs can be hybridized to the array and bound by the 

various oligonucleotide probes. Lastly, a staining reaction is performed in order to 

visualize the amount of hybridization. (Figure 1-3)[15] 
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Preprocessing of DNA Microarray Data 

 

 

 

Figure 1-3: oligonucleotide microarray 

This figure is the flowchart of oligonucleotide microarray. After samples are 

prepared by extracting mRNA from a cell, double stranded cDNA is synthesized 

from the mRNA, and then biotin-labeled cRNA is transcripted using cDNA as 

template. Once labeled, the sample of cRNAs can be hybridized to the array and 

bound by the various oligonucleotide probes. Lastly, a staining reaction is 
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Preprocessing of DNA Microarray Data 

performed in order to visualize the amount of hybridization(The figure was 

excerpted from [15][15]). 
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Preprocessing of DNA Microarray Data 

 

1.4 Microarray Image analysis 

With the help of a set of devices, including laser scanner and a charge coupled 

device (CCD) camera, we can obtain the fluorescent images. The scanner works in 

the flowing process (Figure 1-4)[16]: photons are excited by laser, after absorbing 

these photons, fluorescent molecules emit fluorescence photons. A fraction of these 

fluorescence photons are gathered by a lens. The detector of the scanner converts 

the emission photons into electric current. Photomultiplier tube (PMT) is the most 

popular detector. Finally, an analog to digital (A/D) converter is used to convert the 

electrons into a sequence of digital signals. In cDNA microarray experiment, the 

scanner produces two 16 bit tiff images, one for each fluorescence dye. Figure 1-5 

is a composite image for two channels. The slide shown in Figure 1-5 consists of 

16 blocks, and each block has 24 24×  spots. 
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Figure 1-4: From dye to signal 

This figure is the flowchart of how the scanner converts the dye to digit signal. 

Inside a scanner, fluorescence dyes absorb the energy from the excitation light 

given out by the laser and emit photons. A PMT detector then converts and 

amplifies the photons to electrons. An A/D converter finally converts the signal 

into a digital signal. (The figure was excerpted from [16]) 
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Figure 1-5 A composite image of cDNA microarray 

This figure is a composite image for two channels. The slide consists of 16 blocks, 

and each block has  spots.24 24×
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Preprocessing of DNA Microarray Data 

After obtaining the microarray image, mRNA abundance can be evaluated by 

measuring the intensity of fluorescence of each spot on the array. This process is 

called image analysis. Image analysis is an important aspect of microarray 

experiments, which can have great effect on the downstream analyses such as 

clustering or the identification of differentially expressed genes. The purpose of 

image analysis is to extract for each spotted DNA sequence a measure of transcript 

abundance in the two labeled mRNA samples, as well as to obtain background 

estimates and quality measures. 

 

There are mainly three steps in image analysis, i.e., addressing, segmentation and 

information extraction[16, 17]. 

 

1.4.1 Addressing 

Addressing is a fundamental step of microarray image analysis which detects grid 

structure for the accurate localization of each spot. Addressing deals mainly with 

separation between rows and columns of spots within each grid. Automating this 

part of the process can allow high throughput analysis.  

 

1.4.2 Segmentation 

The segmentation of an image allows the separation between foreground pixels or 

background pixels. There are different methods of microarray image segmentation, 

e.g. fixed circle segmentation, adaptive circle segmentation, adaptive shape 
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Preprocessing of DNA Microarray Data 

segmentation and histogram[16, 17]. Different microarray image analysis software 

use different regions to estimate the background intensity. For example, 

Quantarray consider the area between two concentric circles[18] (green circles in 

Figure 1.6). ScanAnalynze choose all the pixels in a square whose center is the spot 

but not within the circle region[19] (blue square).  Spot[20] and Genepix use four 

diamond areas to estimate the background[21]. All of these methods calculate the 

median of the pixels in the background region as background. 

 

1.4.3 Information extraction 

Addressing and segmentation allow us to detect the location and size of each spot, 

as well as to determine the foreground and the background of a spot. The next step 

is to extract information such as foreground and background intensities, ratio of 

two channel signal intensities, quality factor, etc. for each spot on microarray slides. 
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Figure 1-6 Different ways of defining local background region for a spot  

The region inside the red circle represents the spot mask and the other regions 

bounded by colored lines represent regions of local background used in different 

image analysis software. Green: used in Quantaray; blue: used in ScanAlyze; pink: 

used in Spot (The figure was excerpted from [16]). 
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Preprocessing of DNA Microarray Data 

1.5 Quality control  

Microarray technology enables measurements of the expression levels of genes in 

parallel. On one hand, replication experiment can reduce the random error and 

make the data more credible. On the other hand, due to the variability created 

during microarray printing, hybridization and staining, there may be great 

difference between replications. So the quality of data might be incredulous. As 

erroneous measurements may have a drastic impact on the results by disturbing the 

normalization schemes and by introducing expression patterns that lead to 

incorrect conclusions, it is crucial to discard low quality observations in the early 

phases of a microarray experiment. It is essential to employ a quality control 

strategy since a microarray experiment, even under optimal conditions, results in 

several spots whose intensities may vary due to experimental variation. It is also 

crucial to exclude spots whose quality is poor in the early stages of a microarray 

study. There are several factors that affect the quality of a spot on a microarray.  

1).Spot intensity: signal intensity is traditionally considered one of the most 

important features affecting spot quality. The reason is that if a signal is weak, it is 

very difficult to distinguish the actual signal from the background. Most weak 

spots are caused by the fact that many genes are physiologically expressed at very 

low levels, at or close to the sensitivity limit of the cDNA microarrays. In addition, 

experimental factors that may cause low signal intensities are: low amount of 

cDNA in the spot; suboptimal labeling; uneven or incomplete hybridization; signal 

bleaching, low sensitivity of the scanner. 
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Preprocessing of DNA Microarray Data 

 

2).Spot size: as microarray spots are produced by depositing an equal amount of 

liquid onto the microarray slide, all spots are expected to be of roughly equal size. 

Whether a spot is significantly larger or smaller than expected, it is an indication 

that there has been some error during manufacturing, which should be reflected 

when determining the quality of the spot. 

 

3.) Spot morphology: spot are expected to be roughly circular in shape, but 

manufacturing of the microarrays may cause some variation to spot morphology. 

 

Image analysis software such as GenePix Pro or Quantarray can automatically 

flag the spot as “bad” or “not found” according to a set of criteria related to pixels 

number, spot diameter, spot shape, signal vs. background ratio, etc. Moreover, for 

some spots the channel intensities after background subtraction may be less than 0, 

we eliminate these spots also from overall ratio calculation.  

 
 

1.6 Normalization 

For cDNA microarray, the purpose of dye normalization is to balance the 

fluorescence intensities of the two dyes (green Cy3 and Cy5 dye) as well as to 

allow the comparison of expression levels across experiments (slides). Dye bias 

can be most obviously seen in an experiment where two identical mRNA samples 

are labeled with different dyes and subsequently hybridized to the same slide. In 
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this situation, it is rare to have the dye intensities equal on average and often the 

intensities are higher for the green dye. This bias can stem from a variety of factors 

including physical properties of the dyes, efficiency of dye incorporation, 

experimental variability in probe coupling and processing procedures, and scanner 

settings at the data collection step. Many of these factors, whether internal or 

external to the sample, present unique difficulties to a global normalization 

procedure. Furthermore, the relative gene expression levels (as measured by log 

ratios) from replicate experiments may have different spreads due to differences in 

experimental conditions. Some scale adjustment may then be required so that the 

relative expression levels from one particular experiment do not dominate the 

average relative expression levels across replicate experiments. 

 

The current available microarray data normalization methods can be classified into 

two categories: 1. total intensity normalization, 2. regression based normalization. 

These methods could be performed either locally or globally on microarray slides. 

For example, normalization method used by GenePix Pro is a kind of global total 

intensity method. It is based on the assumption that most genes on the array will 

not be differentially expressed, and therefore the arithmetic mean ratio of two 

channel signal intensities of every gene (feature) on a given array should be equal 

to 1.0. If the mean is not 1.0, a scaling factor is computed and used to the ratio of 

each spot so that their mean value returns to 1.0. We referred this scaling factor as 

normalization factor.  In real practice, the gene expression data (the two channel 
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ratios) from microarray experiments are often transformed to log scale values. 

Transforming expression data to a log scale removes much of the proportional 

relationship between random error and signal intensity. Moreover, log 

transformation has the advantage of transforming the error model from a 

proportional to an additive one because log(a/b)=log(a)-log(b), although 

non-logged difference scores (a-b) have also been recommended for low signals. 

Distributions of replicated logged expression values and consequently of log ratios 

tend to be normal. 

To calculate normalization factor, GenePix Pro first takes the log of each ratio 

value, the geometric mean  x  of a set of n ratios {x} is therefore:   

⎥
⎦

⎤
⎢
⎣

⎡
= ∑

=

n

i
ix

n
x

1
ln1exp  ， 

where n is the total number of spots on the slide subtracted by the number of spots 

eliminated from further analysis in the quality control step. The inverse 1
x  is then 

defined by GenePix Pro as normalization factor.   
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Chapter 2 Simulation Study of cDNA Microarray 

Ratio Calculation Strategies 
 

 

2.1 Introduction 

We usually refer a spot on microarray slides as a feature. An important task in 

information extraction stage of microarray image analysis is to calculate the ratio 

of two-channel intensities for a feature from the intensities of the foreground and 

background pixels that define the spot.  Each of the above mentioned image 

analysis software offers one or more methods in quantifying the channel ratios of 

spots on a microarray slide. These methods can be roughly divided to three 

subgroups: those based on quantities derived from whole features (such as median 

and mean pixel intensities), those based on pixel-by-pixel ratios of intensities, and 

those based on regression of pixel intensities of two channels. In this chapter we 

focused on the evaluation of different ratio computing strategies as provided by 

Axon GenePix Pro. In order to check the general validity of our conclusion, we 

also used a series of mouse cDNA microarray data processed by another well 

known image analysis package QuantArray in our simulation studies.  

 

For each feature on the slide, Axon GenePix Pro extracts information such as 

feature intensities, background intensities, channel ratio, quality flag, etc. Axon 

GenePix Pro utilizes five different methods to calculate the channel ratio quantities 
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for an individual spot from image pixels that define the feature (see Figure 2-1). 

They are Ratio of Medians (Romd), Ratio of Means (Romn), Median of Ratios 

(Mdor), Mean of Ratios (Mnor) and Regression Ratio (Rg).  
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Figure 2-1 Spot and pixels 

This figure displays an amplified feature(spot) on a cDNA microarray slide. Each 

feature is defined by hundreds of pixels.

 23

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Comparison of Ration Calculating Methods 

 

 

Computing Ratio Quantities 

In the following discussion, is a single raw pixel intensity at channel k 

(k=1,2),  is a single background pixel intensity at channel k (k=1,2), 

kPI λ,

kBI λ,

i medS )(  is the median of dataset S that contains i terms,  n is the number of 

foreground pixels in a feature,  and m is the number of background pixels in a 

feature[21]. 

 

Axon GenePix Pro computes the channel ratio quantities for each of the spot on the 

microarray slide with the following five different methods: 

 

Ratio of Medians (Romd) 

The Romd is the ratio of the background subtracted median pixel intensity of the 

two channels (channel 2 vs. channel 1)[21]:   
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Ratio of Means (Romn) 

The Romn is the ratio of the arithmetic means of the background subtracted pixel intensities of 

the two channels (channel 2 vs. channel 1)[21]:   
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Median of Ratios (Mdor) 

The Mdor is the median of the pixel-by-pixel ratios of the pixel intensities 

(Channel 2 vs. Channel 1) that have the median background intensity 

subtracted[21]: 
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Mean of Ratios (Mnor) 

The Mnor is the arithmetic mean of the pixel-by-pixel ratios of the pixel intensities 

(Channel 2 vs. Channel 1) that have the median background intensity 

subtracted[21]:  
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Regression Ratio (Rg) 

The Rg is a method that does not require rigidly defining background and 

foreground pixels. Every pixel within a circle of twice the diameter of the feature 
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is used. The relationship between Channel 1 and Channel 2 is determined by a 

linear regression between two channel intensities of pixels. The slope of the best 

fitting straight line is the regression ratio quantity r5 for the given feature[21].  
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Feature (EST) Romd Romn Mdor Mnor Rg 

R30520 1.72 2.01 1.44 1.55 0.32 

H76742 0.37 1.97 0.56 0.63 0.80 

H37057 0.12 0.65 0.64 0.78 1.44 

R64931 0.20 0.39 0.97 1.31 21.15 

R83976 0.50 0.26 0.86 1.00 1.26 

H37434 0.05 0.32 0.72 0.72 38.30 

T45160 0.08 0.28 0.26 0.26 0.67 

 

Table 2-1 Ratios calculated with five different methods 

The ratio values calculated using five different methods for selected features from 

a real GPR file (accessing http://www.ntu.edu.sg/sbs/staff/jml/simu.html for GPR 

files). There are substantial differences in the ratio values calculated using the five 

methods. Thus choosing the most appropriate method in response to different data 

is of paramount importance. 
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For each feature there are five ratio quantities listed in the Genepix Pro Report file 

(GPR file). Before proceeding further microarray data analysis, a user has to 

decide which ratio quantity to be used. However, the software does not advice 

users on which ratio quantities to be chosen and the ratio quantities computed 

using different methods may vary substantially. Thus a frequently asked question 

by the cDNA microarray users is: Which computing method will confer the most 

reliable (accurate and precise) ratio quantity for a feature on a microarray slide? 

There is no answer for this question yet and a user has to select a method out of the 

five provided by the software at their own discretion.  In Table 2-1 we have listed 

the five ratio quantities for the ESTs selected from an Arabidopsis thaliana cDNA 

microarray slide which compares the light regulated gene expression under two 

different light conditions, i.e. white light vs. wild type[22, 23]. The table clearly 

shows that there are substantial differences among the five ratio values. 

 

In this study, we have implemented simulation approach to evaluate the five ratio 

computing methods. Our major objective is to provide microarray users, especially 

GenePix Pro users, with a general guideline on choosing an appropriate ratio 

quantity for a given feature during the cDNA microarray data processing. 

 

2.2 Method 

For a given feature the channel ratio can be computed (estimated) with different 

methods, but the optimal method is not known as the true channel ratio value is 
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inaccessible.  

 

We were evaluating the five methods using simulation approach.  The true values 

of the feature intensities and the background intensities have been assigned for 

both channels to a given spot.  Then the true ratio can be calculated by 

True ratio = (intensity1-background1) / (intensity2-background2). 

To perform simulation study we need to assume that pixel intensities of a given 

feature follow certain probability distribution, so that we can generate simulated 

datasets based on these distributions. We examined the histograms of pixel 

intensities of features on microarray slides using GenePix Pro Feature Viewer, and 

we found that the majority of features have an approximate normal distribution of 

pixel intensities, and for some of the features the pixel intensities are more likely to 

follow a log-normal distribution or a mixture of normal distributions (see Figure 

2-2 for examples). Since the distribution of pixel intensities depends on many 

factors in microarray experiment stage and image analysis stage, these three types 

of distributions may not cover all the possible cases. 
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a 
 

 

b 
 

 

c 
 

 

 

Figure 2-2 Intensity distribution of pixels 

Histograms of pixel intensities for three different features selected from an 

Arabidopsis cDNA microarray slide. The histograms were obtained using GenePix 

Pro Feature Viewer, and they are examples for three major types of pixel intensity 

distributions, i.e., a. normal distribution; b. log-normal distribution and c. a 

mixture of two normal distributions. 
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We firstly assigned true feature (foreground) intensities and background intensities 

to a given spot, and then we generated dataset of two channel pixel intensities for 

the spot under different distribution assumptions, namely normal distribution, 

log-normal distribution and a mixture of normal distributions, where the 

parameters of the distributions can be set or estimated with reference to the feature 

channel intensities and their standard deviations obtained from the output file of 

microarray image analysis software such as GenePix Pro and QuantArray. For the 

convenience of our simulation, we also assumed that the median of pixel 

background intensities for each channel equals to the true value of respective 

channel background intensity. Since the true values of the feature channel 

intensities and the background intensities have been assigned for a given spot, we 

can apply various simulated datasets generated under different conditions to the 

evaluation of the various ratio computing methods.  

 

Simulation under the assumption of normally distributed pixel intensities 

Assuming that pixel intensities of a given feature follow normal distribution, the 

mean of the pixel intensities should equal the true value of the feature intensity. We 

assigned the estimated feature (foreground) intensities, which we obtained from 

output files of image analysis software such as GenePix Pro and QuantArray, to µ1 

and µ2. Actually image analysis software use two methods to estimate the feature 

intensity, namely the mean of all pixel intensities or the median of all pixel 

intensities, and we only used the mean of pixel intensities to the value assignment 
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of µ1 and µ2, and took µ1 and µ2 as the true feature intensities. We also assigned the 

estimated background intensities listed in the image analysis output to β1, β2, and 

took β1, β2 as the true background intensities of the feature. 

So the true ratio of the net signal intensity of channel 1 over that of channel 2 was 

given by: 

 

22

11
βµ
βµ

−
−

=r      (2.1)                        

The two channel pixel intensities follow normal distributions as assumed, where µ1 

and µ2  are the means and the standard deviations iσ  (i=1, 2)  were set to the 

estimated standard deviations of pixel intensities listed in image analysis output. 

Without loss of generality, we assumed that each given feature consists of 100 

pixels. In order to evaluate the effect of the variances ( and ) of two channel 

pixel intensities we have also set the values of and  at different levels 

instead of just fixing them at the variance level obtained in image analysis output. 

So the pixel intensities  (i=1, 2) follow a normal distribution with mean 

2
1σ

2
2σ

2
1σ

2
2σ

iX iµ  

and variance 2
iσ  (i=1, 2). A dataset ( ){ }100,...2,1|, 21 == ixxS ii  has been 

generated using a computer program written in programming language C, which 

contains channel intensities of 100 pixels, where and were drawn 

randomly from the distribution of

ix1 ix2

2
1 1~ ( , )X N 1µ σ , and  

respectively.  

),(~ 2
222 σµNX

 

Since all the first four ratio computing methods took the median of pixel 
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background intensities as feature background intensity, the pixel background 

intensities of a feature were set to constants β1 and β2 in all three types of 

simulations.  

 

Simulation under the assumption of log-normally distributed pixel intensities 

Let  (i=1,2) be the random variables of pixel intensity distributions  with 

mean 

iX

iµ  and variance 2
iσ  (i=1, 2).  We assumed that  (i=1, 2) 

follows normal distributions with mean 

)log( iX

iν  and variance  (i=1, 2). If we set 

the values of 

2
iγ

iµ  and iσ  (i=1, 2) respectively by the estimated feature intensity 

and the estimated standard deviation of pixel intensities, which can be found in the 

image analysis output, then we can estimate iν  and variance   using formula 

(see 

2
iγ

http://www.riskglossary.com/link/lognormal_distribution.htm): 
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We took  (i=1, 2) as true log-intensity, so the true feature intensity should be 

(i=1, 2). So the true ratio can be calculated using formula 
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r             (2.4)          

Simulated dataset ( ){ 100,...2,1|, 21 }== ixxS ii  has been generated in following 

way:  and  (i=1, 2,…, 100) were firstly drawn randomly from the iy1 iy2
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distribution ) and  respectively, then we 

got   and , where i=1,2,…,100. 

),(~)log( 2
111 γvNX ),(~)log( 2

222 γνNX
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i ex 1
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Simulation under the assumption of a normal mixture distribution of pixel 

intensities 

In this case, the existence of a small proportion (  for channel 1, and for 

channel 2) of pixels with improbable signal intensities (outlier pixels) was allowed. 

Without the loss of the generality, the intensities of these outlier pixels were also 

assumed to follow certain normal distribution. Hence, we generated 

 from distributions  or 

 and  or , where  (k=1,2)  

denotes the signal intensity distribution of the outlier pixels with mean and 

variance  (k=1,2). To generate dataset S we have taken  from 

distribution  and  (with proportion 

1p 2p

( ){ 100,...2,1|, 21 == ixxS ii } ),(~ 2
111 οµNX

),,(~ 2
11

*
1 ΣΛNX ),(~ 2

222 σµNX ),(~ 2
22

*
2 ΣΛNX *

kX

kΛ

2
kΣ ix1

1X *
1X 11 p−  and  respectively), and  

from distribution  or (with proportion 

1p ix2

2X *
2X 21 p−  and  respectively). The 

true ratio was still calculated using formula (2.1). 

2p

 

For various datasets that have been generated, the channel intensity ratio 

 could be calculated using the above mentioned five computing 

methods.  In this way, we were able to evaluate the five methods by studying the 

absolute difference  (j=1, 2, 3, 4, 5) between the logarithm of true ratio value 

and the logarithm of the ratio quantity obtained using each method: 

)5,4,3,2,1( =jrj

jd
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|)ln()ln(| rrd jj −= ,   j=1, 2, 3, 4, 5.      (2.5) 

 

The advantage of using the difference of two log-ratios (instead of using the 

difference of two ratios) to define the error   (j=1, 2,...,5) is that this provides a  

more balanced consideration of two channel intensities.  In our study each 

simulation were repeated 100 times, so in the following text we actually used   

(j=1, 2,...,5) to denote the average of the 100 absolute differences,  and we call 

this the error of the respective ratio computing method at the given feature.   

jd

jd

 

2.3 Results 

Simulation 1: Assuming normal distribution of pixel intensities and assigning the 

variances to different levels  

To generate simulated datasets S, we set the mean iµ  (i=1,2) of pixel intensities 

at different levels,  and for fixed pairs of 1µ  and 2µ , we found that, with the 

accretion of the respective variance ( , i=1, 2), the error  of Mnor is always 

much greater than the error (

2
iσ 4d

)5,3,2,1, =jd j of any other methods (see Figure 2-3a).  

Moreover, the error  of Rg was significantly greater than  of Romn,  of 

Romd and  of Mdor for most of the datasets that have been generated in our 

simulation study (see Figure 2-3a for an example), even though Rg also appeared 

to be the best method (  is the smallest among the five errors ( , j=1, 2, 3, 4, 5) 

for a small proportion of the datasets. Thus we have decided to focus on the 

5d 1d 2d

3d

5d jd
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comparison of Romn, Romd and Mdor with a higher resolution (Figure 2-4a). 

When the variance of the pixel intensities were small,   was smaller than  

and , so Romn was the superior method. However, when the variance increased 

gradually, Romd and Mdor became the preferable methods (see Figure 2-4a).  

2d 1d

3d
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b 
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Figure 2-3 Results of simulation 1 and simulation 2 

Comparing all the five ratio computing methods by setting the variances of the 

pixel intensities or the log pixel intensities at different levels. a. assuming normal 

distribution of pixel intensities. 30001 =µ , 1001 =β , 80002 =µ , 1002 =β ,  2σ  

took value 2000, 3000, 4000, 5000, and 6000 respectively, and 1σ  was set at 500; 

b. assuming log normal distribution of pixel intensities, 3.71 =ν , 

1 70β = , 9.72 =ν , 2 250β = , 2γ  took value 0.23, 0.32, 0.41, 0.53, 0.61 

respectively  and 1γ  was set at 0.18. 
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Figure 2-4 High resolution results of simulation 1 and simulation 2 

Comparing three ratio computing methods (Romn, Romd and Mdor) by setting the 

variances of the pixel intensities or the log pixel intensities at different levels. a. 

assuming normal distribution of pixel intensities, for each simulation 30001 =µ , 

1001 =β , 80002 =µ , 1002 =β ,  2σ   took value 2000,  3000, 4000, 5000 

and 6000 respectively, and 1σ  was set at 500(a1), 750(a2), 1000(a3), 1250(a4)  

respectively. b. assuming log normal distribution of pixel intensities,  3.71 =ν , 

1 70β = , 9.72 =ν , 2 250β = , 2γ  took value 0.23, 0.32, 0.41, 0.53, 0.61 

respectively  and 1γ  was set at 0.18 (b1), 0.29(b2), 0.40(b3),0.50(b4) 

respectively. 
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Simulation 2: Assuming log-normal distribution of pixel intensities and assigning 

the variances to different levels  

Based on the values of iµ  and (i=1, 2) assigned in the same way as described 

in simulation 1 we estimated the values of  and  (i=1,2) using formulae 

(2.2) and (2.3), and the true ratio was calculated using formula (2.4).  The results 

were similar to that of Simulation 1.  For the datasets generated under the 

assumption of log-normal distribution of pixel intensities, the errors  and  

are much greater than the errors (

2
iσ

iv 2
iγ

4d 5d

)3,2,1, =jd j of the other three methods (see 

Figure 2-3b), and the error  of Rg was the largest among the five (see Figure 

2-3b).  Further comparison of Romn, Romd and Mdor (Figure 2-4b) suggested 

that when the variance of log pixel intensities were relatively small for both 

channels,   was smaller than  and , so Romn was the superior method 

(Figure 2-4b1, Figure 2-4b2). However, when the variance of log pixel intensities 

in one channel or in the both two channels became large enough, Romd and Mdor 

became the preferable methods (see Figure 2-4b3, Figure 2-4b4).   

5d

2d 1d 3d

 

Simulation 3: Assuming a mixture of normal pixel intensity distributions and 

assigning the outlier percentages to different levels 

 

If there were a small proportion of outliers (pixels with extremely large or small 

intensities) for a given feature, our simulation suggested that there were substantial 

advantages for the median based methods Romd and Mdor (see Figure 2-5),  
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since the mean statistics could be easily biased due to the existence of the outlier 

pixels.  Figure 2-5 also suggested that the errors  of Mnor and  of Rg 

were greater than the errors of the other three methods, and the error of Romn 

was moderate. 

4d 5d

2d
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Figure 2-5 Results of simulation 3 

Comparing the five ratio computing methods for different percentages of outlier 

pixels under the assumption of a mixture of normal distributions of pixel 

intensities. In our simulation 1 1700µ = , 1 300σ = , 2 3000µ = , 2 700σ =  for 

regular pixels,  and , 1 4000Λ = 1 2000Σ = , 2 7000,Λ = 2 3000Σ =  for outlier 

pixels,  and  took value 4%, 7%,  10%,  13%,  17%,  20% 

respectively. 

%,102 =p 1p
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Simulation 4: Evaluating the five ratio computing methods in terms of all features 

on microarray slides 

 

On a typical microarray slide there are thousands of features, the magnitudes of the 

pixel intensities and the variances of the pixel intensities are generally of great 

differences between two features.  For example, in the GenePix Pro output of one 

of our microarray slides with 9216 features, the estimated feature intensities ranges 

from 138 to 62541 with mean 4807 for the channel at wavelength 635nm, and 

from 115 to 52334 with mean 5066 for the channel at wavelength 532nm 

respectively, and the estimated standard deviation of pixel intensities ranged from 

41 to 22613 with mean 1852 for the channel 635nm, and from 23 to 25469 with 

mean 2005 for the channel 635nm respectively. In order to cover all possibilities 

and make our conclusions as general as possible, we carried out simulations for 

nearly all the spots on each of the eight microarray slides used in this study. The 

eight slides can be divided into two groups. The first group consists of four 

Arabidopsis thaliana cDNA microarray slides that were kindly provided by Deng’s 

Laboratory from the Department of Molecular, Cellular and Developmental 

Biology, Yale University[22, 23], and these four slides were scanned and processed 

by Axon GenePix scanner and GenePix Pro image analysis software respectively,  

with the output file in GPR format. The second group consists of four mouse 

cDNA microarray slides obtained from Yale Keck Microarray Facility, and these 

four slides were scanned using GSI Lumonics (Packard/Perkin Elmer) ScanArray 
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platform and images were processed using QuantArray package. On each of these 

microarray slides there were 9216 features. A small proportion of the spots on each 

slide have been eliminated due to the negative net channel intensities. Our 

simulations were done under two different assumptions: 1). normal distributions of 

pixel intensities for both channels; 2). log-normal distributions of pixel intensities 

for both channels.  For each feature on a microarray slide, we could extract 

information such as estimated feature (foreground) intensities, estimated 

background intensities and the estimated variances of pixel intensities from image 

analysis output.  We assigned these quantities to 1µ , 2µ , 1β , 2β , , , and 

generated  simulated dataset S  for each feature as described in simulation 1 

under the normal assumption. We estimated   and  (i=1,2) using formulae 

(2.2) and (2.3), and then generated simulated dataset S for each feature as 

described in simulation 2 under the log-normal assumption.    

2
1σ

2
2σ

iv 2
iγ

 

In order to compare the five ratio computing methods we have calculated the error 

(j=1, 2, …,) using simulated datasets generated for each feature.. The five error 

quantities were ranked in ascending order to indicate the most to the least 

favorable methods, for example, the first represents the best method and the fifth 

represents the worst method.  Table 2-2a and Table 2-2b summarized the results 

of simulations under normal assumption, whereas 2-2c and Table 2-2d listed the 

results of simulations under log-normal assumption. Table 2-2a and Table 2-2c 

display the distribution of the best methods whereas Table 2-2b and Table 2-2d 

jd
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display the distribution of the worst methods under two different assumptions.  

Under both assumptions of normal and log-normal pixel intensity distributions, 

Romn appears to be the best method in most cases  (Table 2-2a and Table 2-2c) on 

all eight microarray slides, and it has very little chance to be the worst method 

(Table 2-2b and Table 2-2d). Although Rg is relatively good as it ranked first for a 

substantial proportion of features on the eight arrays (Table 2-2a and Table 2-2c), 

the chances of it to turn up to be the worst method are also very high (Table 2-2b 

and Table 2-2d). Under both assumptions of normal and log-normal pixel intensity 

distributions, Mnor has large chance to be the worst method (Table 2-2b and Table 

2-2d). Therefore, we advise users to be cautious on using this Rg and Mnor 

methods. Our simulation suggested that Romn, Mdor or Rg ranked first for the 

most of the features on the eight microarray slides. 
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a  

slide Romn Romd Mnor Mdor Rg Total 
GP1 8369(92.7%) 4(0.0%) 4(0.0%) 131(1.5%) 522(5.8%) 9030 
GP2 5390(62.2%) 3(0.0%) 24(0.3%) 133(1.5%) 3114(36.0%) 8664 
GP3 7918(88.8%) 86(1%) 431(4.8%) 193(2.2%) 293(3.3%) 8921 
GP4 5604(64.8%) 20(0.2%) 37(0.4%) 577(6.7%) 2423(28.0%) 8661 
QA1 6960(75.7%) 5(0.0%) 7(0.1%) 3(0.0%) 2223(24.2%) 9198 
QA2 7491(81.5%) 12(0.1%) 0(0.0%) 1(0.0%) 1686(18.3%) 9190 
QA3 7498(81.6%) 12(0.1%) 1(0.0%) 0(0.0%) 1679(18.3%) 9190 
QA4 7488(81.5%) 12(0.1%) 0(0.0%) 0(0.0%) 1690(18.4%) 9190 

 

b 

slide Romn Romd Mnor Mdor Rg Total 
GP1 4(0.0%) 12(0.1%) 8983(99.5%) 7(0.1%) 24(0.3%) 9030 
GP2 11(0.1%) 88(1%) 8269(95.4%) 10(0.1%) 284(3.3%) 8664 
GP3 4(0.0%) 140(1.6%) 1752(19.6%) 20(0.2%) 7005(78.5%) 8921 
GP4 10(0.1%) 51(0.6%) 8159(94.2%) 7(0.1%) 434(5%) 8661 
QA1 0(0.0%) 450(4.9%) 3380(36.7%) 15(0.2%) 5353(58.2%) 9198 
QA2 0(0.0%) 468(5.1%) 3100(33.7%) 0(0.0%) 5622(61.2%) 9190 
QA3 0(0.0%) 471(5.1%) 3099(33.7%) 0(0.0%) 5620(61.2%) 9190 
QA4 0(0.0%) 462(5.0%) 3109(33.8%) 0(0.0%) 5619(61.2%) 9190 
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c 

slide romn romd mnor mdor rg Total 
GP1 8304(92.0%) 23(0.3%) 14(0.2%) 112(1.2%) 569(6.3%) 9022 
GP2 4332(50.3%) 46(0.5%) 35(0.4%) 517(6.0%) 3690(42.8%) 8620 
GP3 6379(71.8%) 1309(14.7%) 419(4.7%) 412(4.6%) 365(4.1%) 8884 
GP4 4730(55%) 347(4.0%) 59(0.7%) 905(10.5%) 2561(29.8%) 8602 
QA1 6600(71.8%) 22(0.2%) 6(0.1%) 405(4.4%) 2165(23.5%) 9198 
QA2 6640(72.3%) 27(0.3%) 0(0.0%) 702(7.6%) 1819(19.8%) 9188 
QA3 6640(72.2%) 28(0.3%) 1(0.0%) 713(7.8%) 1810(19.7%) 9192 
QA4 6655(72.4%) 21(0.2%) 1(0.0%) 710(7.7%) 1803(19.6%) 9190 

 

d 

Slide Romn Romd Mnor Mdor Rg Total 
GP1 4(0.0%) 18(0.2%) 7359(81.6%) 36(0.4%) 1605(17.8%) 9022 
GP2 14(0.2%) 46(0.5%) 7808(90.6%) 50(0.6%) 702(8.1%) 8620 
GP3 6(0.0%) 117(1.3%) 1149(12.9%) 40(5.0%) 7572(85.2%) 8884 
GP4 5(0.1%) 51(0.6%) 7227(84%) 44(0.5%) 1275(14.8%) 8602 
QA1 10(0.1%) 102(1.1%) 3305(35.9%) 22(0.2%) 5759(62.6%) 9198 
QA2 8(0.1%) 71(0.8%) 2828(30.8%) 2(0.0%) 6279(68.3%) 9188 
QA3 7(0.0%) 71(0.8%) 2827(30.8%) 1(0.0%) 6286(68.4%) 9192 
QA4 8(0.1%) 73((0.8%) 2826(30.8%) 2(0.0%) 6281(68.3%) 9190 

 

Table 2-2 Results of simulation 4 

On each microarray slide there are 9216 features. Some features were eliminated 

during the data quality control process (see supplement webpage for GPR files and 

QuantArray files used here); a. the number (percentage) of spots of each method 

being the best among the five (Normal distributions of pixel intensities assumed); 

b. the number (percentage) of spots of each method being the worst among the five 

(Normal distributions of pixel intensities assumed); c. the number (percentage) of 

spots of each method being the best among the five (Log-normal distributions of 
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pixel intensities assumed); d. the number (percentage) of spots of each method 

being the worst among the five (Log-normal distributions of pixel intensities 

assumed). 
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Figure 2-6 is a scatter plot that reveals the comparison of Romn, Mdor and Rg in 

terms of the estimated two channel intensities (obtained from image analysis 

output files) of the features on the slides. It is a plot of the estimated Channel 1 

intensity versus estimated Channel 2 intensity. Only the features that conferred one 

of the three methods ranked first were disclosed in the scatter plots. As is apparent 

from this figure, when the intensities of the two channels are over 10000, Romn is 

the best method for nearly all the features on the slide.  

 

We defined coefficient of variance (CV) of feature pixel intensities as their 

standard deviation divided by the mean. In practice we can calculate CV using 

estimated standard deviation of feature pixel intensities divided by the estimated 

feature intensity(the average of pixel intensities), and for a given feature on a slide, 

both these two quantities can be found from the output file of image analysis 

software such as GenePix Pro and QuantArray. Figure 2-7 is a scatter plot that 

demonstrates the comparisons of Romn, Mdor and Romd in terms of CVs of the 

two channel pixel intensities of the features that gave rise to one of the three 

methods ranked first. As seen in Figure 2-7, when Romd is the best method for a 

given feature, the CVs of both of the channel intensities are most likely to be 

greater than 0.5. This suggests the advantage of Romd when the CVs of the pixel 

intensities are large.  

 50

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Comparison of Ration Calculating Methods 

 

 

 

 

Figure 2-6 Impact of intensity of spot on the choice of ratio calculating method 

Scatter plots that reveal the comparisons of Romn, Mdor and Rg in terms of the 

two channel intensities of the features on the slide. Only the features that conferred 

Romn, Mdor or Rg ranking first were disclosed respectively in the scatter plot a, b 

or c. When the intensities of the two channels are over 10000, Romn is the most 

favorable method for nearly all the features on the slide.  
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Figure 2-7 Impact of CV of pixels on the choice of ratio calculating method 

Scatter plots that demonstrate the comparisons of Romn, Mdor and Rg in terms of 

the CVs (Coefficient of Variances, which is the standard variation divided by the 

mean) of the two channel pixel intensities of the features on the slide. Only the 

features that gave rise to Romn, Mdor or Rg ranking first were disclosed 

respectively in the scatter plot a, b or c. When Romd is the best method, the CVs of 

both channel intensities are most likely to be greater than 0.5. This suggests the 

advantage of Romd when the CVs of the pixel intensities are large.  
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Accuracy and Precision 

To evaluate the accuracy of each method we took average of errors of all features 

on four microarray slides (see Figure 2-8). Two of these slides were processed 

using GenePix Pro, and the other two were processed using QuantArray package. 

The results suggested that in average Mnor and Rg had much poorer accuracy 

comparing with the other three methods.  Romn, Romd and Mdor are comparable 

in average accuracy, and Romn had slightly higher accuracy than the other two. 

The results were consistent for all the four slides under the assumptions of both 

normal distribution (Figure 2-8a) and log-normal distributions (Figure 2-8b) of 

pixel intensities.  
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Figure 2-8 Accuracy of different methods 

Mean errors of each method for all features on microarray slides. Four microarray 

slides were used in the study. a. under the assumption of normal distributions of 

pixel intensities; b. under the assumption of log-normal distributions of pixel 

intensities. 
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Figure 2-9 Precision of different methods 

Variances of errors ( ) of 100 repeated simulations for 4 randomly given spots, 

i=1,2,3,4, 5; a. assuming normal distributions of  pixel intensities, 

id

1β =100, 

2β =100, the values set to the four spots are 1µ =3000, 1σ =500, 2µ =8000, 

2σ =2000 for Spot 1; 1µ =1000, 1σ =300, 2µ =5000, 2σ =2000 for Spot 2; 

1µ =3000, 1σ =500, 2µ =2000, 2σ =600 for Spot 3 and 1µ =5000, 1σ =2000, 
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2µ =4000, 2σ =1000 for Spot 4; b. assuming log-normal distributions of  pixel 

intensities, 1β =70, 2β =300, the values set to the four spots are =7.42, 1v

1γ =0.18, =7.98, 2v 2γ =0.23 for Spot 1; =8.96, 1v 1γ =0.25, =9.87, 2v 2γ =0.25  

for Spot 2; =8.14, 1v 1γ =0.23, =8.66, 2v 2γ =0.28 and =6.65, 1v 1γ =0.25, 

=7.75, 2v 2γ =0.34 for Spot 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 57

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Comparison of Ration Calculating Methods 

a 

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4

C
V

romn

romd

mnor

mdor

rg

 
 
b 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 2 3 4

C
V

romn

romd

mnor

mdor

rg

 
 

Figure 2-10 Precision of different methods (CV) 

CVs (Coefficient of Variance, defined as standard deviation divided by the mean) 

of errors ( ) of 100 repeated simulations for four randomly given spots, i=1, 2, 3, 

4, 5; a. assuming normal distributions of pixel intensities, and the values set to the 

four spots are the same as that in Figure 2-9a; b. assuming log-normal distributions 

of pixel intensities, and the values set to the four spots are the same as that in 

Figure 2-9b. 

id
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We did simulation study for four randomly given spots to evaluate the precision of 

each method, each simulation repeated 100 times, and the average of the 100 ratio 

values and their standard deviation, as well as the true ratio were displayed in 

Figure 2-9, and we found again that Rg and Mnor had relative low accuracy under 

the assumptions of both normal (Figure 2-9a) and log-normal (Figure 2-9b) 

distributions of pixel intensities.  Rg method had the highest precision (the lowest 

standard deviation of 100 ratios calculated for each spot), whereas the rest of 

methods are comparable in precision.  In order to further compare the different 

methods with regard to their precision, we displayed in Figure 2-10 the CV of 100 

ratios calculated for each method in our simulation study, where CV (coefficient of 

variance) were defined as the standard deviation of the 100 ratios divided by the 

mean of these ratio values. Under both normal assumption and log-normal 

assumption we found that Rg method had significantly higher precision than the 

other four methods, and Romn had the highest precision among the rest four 

methods (Figure 2-10). Under the normal assumption, Mnor had poorer precision 

than other four methods (Figure 2-10b). 

 

 

2.4 Discussion 

In DNA microarray image analysis, the channel ratios could be calculated by 

different methods for a given feature. These ratio quantities could be of great 

differences for some features on a microarray slide (see Table 2-1). However, 
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image analysis software such as Axon GenePix Pro and QuantArray provide no 

advice on which ratio quantity to be used for a given feature. In order to deal with 

this ambiguity, we have used simulation approaches to evaluate the five ratio 

computing methods in Axon GenePix Pro software. Current methods used to the 

ratio calculation of microarray slides can be roughly divided to three subgroups: 

those based on quantities derived from whole features (such as median and mean 

pixel intensities), those based on pixel-by-pixel ratios of intensities, and those 

based on regression of pixel intensities of two channels. The five methods used by 

GenePix Pro actually provide representative for each of the three subgroups. Based 

on the simulation studies, we have worked out a rough guidance for cDNA 

microarray users to choose an appropriate ratio computing method when using 

image analysis software. Although the simulations here were carried out for the 

output files (GPR file) of the microarray image processing software Axon GenePix 

Pro and QuantArray, the conclusions drawn from this study can be extended to the 

microarray data processed by other software, because most image processing 

software calculate the channel ratio quantities in terms of the intensities of 

foreground and background pixels that define a spot, so the selection of 

appropriate ratio computing method depends actually  on the distribution of pixel 

intensities. In theory, when a spot has a clear boundary and the hybridization is 

uniform, the pixel intensities of the feature would be approximately normally 

distributed[24]. But in practical situations, the distributions of the pixel intensities 

of some features might be skewed due to various experimental or instrumental 
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factors, for example, due to a small proportion of the outliers occurred during the 

slide printing process or hybridization process. We examined the histogram of 

pixel intensity distribution of feature on microarray slides, and found that the 

majority of features have an approximate normal distribution of pixel intensities, 

and for some of the features the pixel intensities are more likely to follow a 

log-normal distribution or a mixture of normal distributions (see Figure 2-2 for 

examples). Therefore our simulation studies take into consideration of these three 

cases. Our simulation study was conducted in two different ways. Firstly 

(Simulation 1, Simulation 2 and Simulation 3), fixed values of the means and 

variances of the pixel intensities for a feature have been assigned to different levels 

solely in terms of our observation of the real microarray datasets. The background 

intensity for each channel was set to a fixed value within a reasonable range.  One 

of the advantages of this type of simulation is that the value of the parameters in 

the distribution could be assigned according to our intention. However, the 

coverage of the simulation study using this approach is inadequate. Secondly 

(Simulation 4), from the real microarray data (Axon GenePix Pro or QuantArray 

output files) we have extracted the information about estimated feature/background 

intensities and the variances of the pixel intensities of both channels for each spots 

on the slide. Based on this information we set parameter values to generate 

simulated datasets under different distribution assumptions. The data generated 

using the second approach have a much more extensive coverage of real situations.   
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It is obvious that none of the ratio computing methods is universally optimal for all 

features on a microarray slide. For different features we have to select different 

ratio computing methods. Which method to be chosen for a given feature, depends 

on the intensity distributions of feature foreground and background pixels. The 

guidance suggested here might not be perfect and complete since there were 

thousands of features and they would form thousands of different possibilities. 

Thus it was very difficult for us to cover every case in our simulation study. 

Nevertheless we believe that it will serve its ultimate aim by facilitating users in 

selecting the appropriate methods for each feature within the pool of information in 

the output file of microarray image processing software. Last but not least, our 

simulation studies have been carried out for the Axon GenePix Pro and 

QuantArray output files, but the results could also be extended to the output files 

of other microarray image analysis software. 

 

2.5 Conclusion 

Based on the simulation studies we recommend Romn as the prime cDNA 

microarray ratio computing method, especially if the CVs of two channel pixel 

intensities of a given feature are less than 0.5. However, if the CVs of pixel 

intensities are much greater than 0.5, Romd is recommended. Moreover, we also 

advise cDNA microarray users to be cautious on using Mnor and Rg.
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Chapter 3 Gene Expression Profiling 
 

By measuring transcription levels of genes using microarrays in cells under various 

conditions, at different developmental stages and in different tissues, we can build 

a profile which characterizes the expression pattern of each gene in the genome. 

Here, the data from microarray experiments are usually in the form of large 

matrices of gene expression levels under different experimental conditions, and we 

call the analysis of this kind of data gene expression profiling.  

 

3.1 Clustering  

After we have processed the microarray raw data into gene expression profiles, the 

next task is to extract useful information about the underlying biological processes 

from the profile data. Clustering analysis is a major approach in gene expression 

profile analysis. A clustering algorithm groups genes or samples together by 

certain similar properties. Clustering in terms of microarray gene expression 

profile can be conducted for either grouping genes or classifying samples. The 

former is called gene based clustering in which genes are put into different 

partition based on their expression patterns. The latter is called sample based 

clustering in which samples can be partitioned into homogeneous groups. 

Clustering analysis of gene expression profile data facilitates greatly our 

understanding on gene functions, gene regulations, cellular processes and different 

subtypes of cells.  

 63

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Gene Expression Profiling 

 

Clustering algorithms group the objects with similar property, the objects in the 

same group have the similar property and the objects in different group have 

dissimilar property. So how to measure the similarity (or dissimilarity) level of two 

different objects is critical in clustering algorithms.  

 

Euclidean distance is one of the most commonly used methods to measure the 

dissimilarity of two data objects. It is defined as  

( ) ( )2

1

,
p

i j id jd
d

Euclidean O O o o
=

= −∑              (3.1) 

Where  and iO jO  are two data objects that we want to measure their distance. 

We can use vectors { }|1i ijO o j p= ≤ ≤
r

 (i=1, 2) to represent the data objects, 

where the means the j-th element in i-th data object and p is the total number of 

elements in a data object. 
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Pearson’s correlation coefficient is another popular similarity measure. It is 

defined as 
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Where oiµ  and ojµ  are the means of iO
r

 and jO
r

 respectively.  

 

Most of the clustering algorithms use either Euclidean distance or Pearson’s 
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correlation coefficient to measure dissimilarity/similarity between two objects. 

 

There are a couple of clustering methods available for dealing with gene 

expression profile data generated from DNA microarray data. Among them 

K-Means and Hierarchical Clustering are two of the most frequently used 

methods. 

 

3.1.1 K-Means 

K-Means is one of the simplest unsupervised learning algorithms that solve 

clustering problems. The procedure follows a simple and easy way to classify a 

given data set through a certain number of clusters (assume k clusters) fixed in 

advance. The main idea is to define k centroids, one for each cluster. These 

centroids should be placed in a proper way because of different location causes 

different result. So, a good choice is to place them as much as possible far away 

from each other. The next step is to take each point belonging to a given data set 

and associate it to the nearest centroid. When no point is pending, the first step is 

completed and an early group is done. At this point we need to re-calculate k new 

centroids according to the clusters resulting from the previous step. After we have 

these k new centroids, we reassign the points to new groups the same as first step. 

A loop has been generated. As a result of this loop, k centroids do not change their 

location step by step until no more changes are done. In other words centroids do 

not move any more. 
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This algorithm aims at minimizing an objective function, in this case a squared 

error function. The objective function 

( )
2

1 1

k n
j

i j
j i

J x
= =

= −∑∑ c   ,           (3.3) 

where ( ) 2j
i jx c− is a chosen distance measure between a data point ( )j

ix and the 

cluster center jc , is an indicator of the distance of the n data points from their 

respective cluster centers. 

 

3.1.2 Hierarchical clustering 

In contrast to partition-based clustering, which attempts to directly decompose the 

data set into a set of disjoint clusters, hierarchical clustering generates a 

hierarchical series of nested clusters which can be graphically represented by a tree, 

called dendrogram. The branches of a dendrogram not only record the formation 

of the clusters but also indicate the similarity between the clusters. By cutting the 

dendrogram at some level, we can obtain a specified number of clusters. By 

reordering the objects such that the branches of the corresponding dendrogram do 

not cross, the data set can be arranged with similar objects placed together.  

 

Hierarchical clustering algorithms can be further divided into agglomerative 

approaches and divisive approaches based on how the hierarchical dendrogram is 

formed. Agglomerative algorithms (bottom-up approach) initially regard each data 

object as an individual cluster, and at each step, merge the closest pair of clusters 

until all the groups are merged into one cluster. Divisive algorithms (top-down 
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approach) starts with one cluster containing all the data objects, and at each step 

split a cluster until only singleton clusters of individual objects remain.  

 

Eisen et al.[25] applied an agglomerative algorithm called UPGMA (Unweighted 

Pair Group Method with Arithmetic Mean) and adopted a method to graphically 

represent the clustered data set. In this method, each cell of the gene expression 

matrix is colored on the basis of the measured fluorescence ratio, and the rows of 

the matrix are re-ordered based on the hierarchical dendrogram structure and a 

consistent node-ordering rule. After clustering, the original gene expression matrix 

is represented by a colored table (a cluster image) where large contiguous patches 

of color represent groups of genes that share similar expression patterns over 

multiple conditions. 

 

3.2 Microarray gene expression profiling and DNA binding motif 

finding  

Gene expression profile data derived from DNA microarray has opened new 

opportunities to us in the identification of co-expressed genes. Clustering analysis 

of gene expression profiles could be used to detect and group those co-expressed 

genes which have similar expression patterns under various conditions. We can 

postulate that these co-expressed genes are co-regulated by common regulatory 

proteins. A major challenge to the computational biologist is to define novel 
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regulatory elements (motifs) in such sets of co-expressed (putatively co-regulated) 

genes. Co-regulated genes are known to share some similarities in their regulatory 

mechanism at the transcriptional level. So they might have consensus DNA motifs 

in their promoter region, and the motifs could be recognized by the same 

regulatory proteins. It is well established that DNA motifs located upstream of the 

transcriptional start site are important in facilitating the binding of regulatory 

proteins that control the transcription of genes[26, 27]. Genes have similar function 

are usually controlled by same transcription factor, therefore they may have 

common motif in their upstream sequence. So the information about DNA binding 

motifs in the upstream regions of co-regulated genes is useful for the investigation 

of transcription control of these genes. 

In addition to providing interim data about co-expressed genes for DNA motif 

finding, DNA microarray can also be used to develop techniques to find binding 

sites motifs directly. For example, ChIP-chip becomes a widely used method to 

find binding motifs in gene promoter regions. The first “ChIP” stands for 

chromatin immuno-precipitation, and the second “chip” refers to microarray (DNA 

chips). In chapter 4 we briefly review the current methods of computational motif 

finding, and we also provide a short introduction of ChIP-chip experiment.  

However, the identification of transcription factor binding sites with experimental 

methods is a time consuming, labor intensive and expensive work, so it is valuable 

to develop novel computational motif finding method. In chapter 5 we proposed a 
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method of finding transcriptional factor binding motifs for co-regulated genes 

using promoter region sequences of multiple closely related species.

 69

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



 

 

Chapter 4 Finding DNA Binding Motifs 

4.1 Transcriptional Factors and DNA Binding motifs 

Understanding the mechanisms that regulate the gene expression in eukaryotes is a 

major challenge in modern molecular biology. To a large extent, gene regulation is 

the control of transcription, and it is accomplished by a number of regulatory 

proteins called transcription factors binding to specific sites on DNA. These DNA 

binding sites contain about 6-25 base pairs and are usually located in the upstream 

regions of functionally related genes. These sites are important in facilitating the 

binding of regulatory proteins that control the transcription of these genes. Many 

transcription factors are able to bind to specific sets of short conserved sequences, 

whose consensus are called DNA binding motifs. Recognition of transcriptional 

factor binding motifs in the upstream regions of co-expressed (co-regulated) genes 

is crucial for elucidating gene regulatory networks. 

4.2 Representation of DNA Motifs 

There are two common ways to represent motifs: consensus sequence and position 

specific scoring matrix (PSSM). 

4.2.1 Consensus sequence 
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The consensus sequence describes a set of oligonucleotides with a single 

oligonucleotide in which each position is the most frequent nucleotide among that 

set of oligonucleotides. However, sometimes some positions do not show a definite 

preference to a certain nucleotide, but admit more than one base or even any base. 

Thus, instead of using a single nucleotide in one position to describe the consensus 

sequence, another strategy is adopted which use ambiguous symbols in each 

position to incorporate the different alternatives in the description of sequence. 

These ambiguous symbols are called IUPAC code (Table 4-1). This method allows 

a maximum number of substitutions for each position and it is used to describe 

binding site consensuses in transcriptional factor databases such as 

TRANSFAC[28] and SCPD[29]. For example, in consensus DNA sequence 

ARNV, the first base is always A; the second base can be A or G; the third base 

can be any nucleotide; and the fourth base can be A, C or G.  

The shortcoming of using consensus sequence is that it does not provide the 

relative nucleotide frequency at each base position. Sequence logo (Figure 4-1) is 

an alternative method of graphically representing a motif. It uses a graph to 

represent the nucleotide frequency at each position, in which the size of the symbol 

is related to the frequency of a nucleotide occurs at a certain position. 
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code Description 
A Adenine 
C Cytosine 
G Guanine 
T Thymine 
U Uracil 
R Purine (A or G) 
Y Pyrimidine (C, T, or U) 
M C or A 
K T, U, or G 
W T, U, or A 
S C or G 
B C, T, U, or G (not A) 
D A, T, U, or G (not C) 
H A, T, U, or C (not G) 
V A, C, or G (not T, not U) 
N Any base (A, C, G, T, or U)

 

Table 4-1 IUPAC code 
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Figure 4-1 A sequence logo 

Sequence logo gives a graphic representation of a motif. It displays the nucleotide 

frequency at each position, in which the size of the symbol is related to the 

frequency of a nucleotide occurs at the position. 
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4.2.2 PSSM 

Position Specific Scoring Matrix (PSSM), also called position specific weight 

matrix (PSWM) or Position Weight Matrix (PWM) is a more flexible 

representation of motifs. PSSM can be expressed in different ways. In the simplest 

way, a PSSM is obtained by aligning the TFBS (transcriptional factor binding sites) 

and computing the nucleotide frequency at each position of the alignment [30]. 

The result is a  matrix, where n is the length of the motif, and the sum of 

each column of the matrix equals to 1. In this way, the preference of each position 

to different alternative nucleotides can be expressed by nucleotide probability in 

the column. A PSSM score is defined as , where j represents position in 

the aligned oligonucleotides, i(j) is the symbol at position j in the aligned 

oligonucleotides, and 

4 n×

( ),
1

N

i j j
j

m
=
∏

mi,j is the score in row i, column j of the matrix. In other 

words, a PSSM score is the product of position-specific scores for each symbol in 

the aligned oligonucleotides. Most commonly, each column defines 

log-likelihoods for each of the different symbols, thus PSSM score is defined as 

. ( ),
1

N

i j j
j

m
=
∑

Instead of using log-likelihood values in the PSSM, as described in the previous 

paragraph, several methods uses log-odds scores in the PSSMs. An element in a 

PSSM is then calculated as m  = log(p  / b )i,j i,j i , where pi,j is the probability of 

observing symbol i at position j of the motif, and bi is the probability of observing 
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the symbol i in a background model. The PSSM score then corresponds to the 

log-odds of the substring being generated by the motif versus being generated by 

the background, in a generative model of the sequence. 

4.3 Experimental method for identifying transcription factor 

binding sites 

A lot of known TFBSs have been found by traditional experimental methods. 

Microarray based readout of chromatin immuno-precipitation assays (ChIP-chip), 

is currently the most widely used method for identifying transcription factor 

binding sites in vivo[31, 32]. In a ChIP-chip experiment a known transcription 

regulator is tagged with an antibody epitope, and the tagged regulator is expressed 

in a suitable system where it binds to DNA, either directly or via other proteins. 

The complex is then chemically crosslinked, the DNA is fragmented, and the 

protein-DNA complex is isolated by immunoprecipitation. The genomic position 

of the DNA fragment is then identified by a microarray experiment. This gives the 

location of binding sites for this specific regulator[33]. It has already been used to 

find many transcription factors in the yeast Saccharomyces cerevisiae[34-36] and 

in mammalian cells[37-39]. Since identification of transcription factor binding 

sites with experimental method is a time consuming and expensive work, more and 

more computational methods are developed recently, such as AlignACE[40], 

MEME[41], Consensus[42], MotifSampler[43], YMF[44], GLAM[45], etc. 
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4.4 Computational methods of finding DNA binding motifs 

Many algorithms to identify transcription factor binding sites in non-coding 

regions of DNA have been developed since the computational approaches became 

available to biology. Recently, applying computational methods to this area has 

become more and more popular with the development of microarray technique. 

With the power of gene clustering data from microarrays, now we can investigate 

transcriptional regulatory networks in the context of the whole genome, and 

finding of transcriptional factor binding sites in the regulatory regions of 

co-expressed genes is a crucial step of in this process. 

The main challenge of this problem always has been the development of effective 

algorithm that can treat all the intrinsic complexities associated with the nature of 

binding sites. The difficulty mainly arises from the nature of the binding site. The 

base sequence of most binding sites is often called a regulatory motif, and as we 

can easily infer from this name, it is a tiny, highly variable sequence. What makes 

it much worse to identify is that they usually have gaps in them.  

Now the DNA motif finding with computational methods is a popular field in 

modern biology, there are many different methods that have been published. 

Several computational methods have been introduced in the literature[46-48]. 

These methods can be generally divided into three groups depending on their 

principle. The first one is to find conserved sequences cross close relation species. 

This is called phylogenetic footprinting. The second approach makes use of an 

exhaustive calculation to evaluate the frequency of occurrence of all possible 
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sequences of length n (n-mers). A background sequence distribution (of n-mers 

found in a set of non-coregulated genes) is used as a basis for comparison and any 

n-mers that are more overly abundant than expected are saved for further analysis 

as putative motifs[49-52]. The third approach specifies the n-mer as a probability 

matrix and utilizes an iterative algorithm, typically represented as an expectation 

maximization[53-57] or Gibbs sampling procedure[58-62]. 

 

4.4.1 Expectation Maximization  

Expectation Maximization (EM) algorithm was proposed by Lawrence and Reilly 

in 1990[55].  There is an assumption that the binding sites for a regulatory protein 

have a fixed length l. This assumption is a critical limitation for this model. This 

model regards a motif as a 4×l matrix of probability values, each entry giving the 

probability of the nucleotides A, C, G, T occurring in that column position. This is 

called a probabilistic model of a motif. Then, motifs are compared with 

background sequence, where nucleotides are chosen independently from a 

common distribution. In a typical data set, each observed upstream sequence is 

assumed to have a single instance of the motif, but its exact location is unknown. 

EM algorithm use this missing data and it iteratively maximizes the expected log 

likelihood over the conditional distribution of the missing data, given the observed 

data and current estimates of parameters θ. 

 

MEME is one of the most popular programs for finding motifs. It uses the MM 
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algorithm, which is an extension of the expectation maximization algorithm. 

 

MM is basically the same as EM algorithm except for that it does not require that 

each sequence in the dataset contains one occurrence of the motif.  

 

4.4.2 Gibbs Sampling Algorithm 

In 1993, Lawrence et al. published a Bayesian version of the motif model which 

applies Gibbs sampling to estimate parameters and motif locations[59]. Gibbs 

sampling can stochastically find out motifs from a set of sequences which are 

believed to contain the motif. Gibbs sampling approach is essentially a special 

numerical approximation method, Markov Chain Monte Carlo (MCMC), which 

enables one to draw samples of high-dimensional random variables in an iterative 

fashion.  

 

The Gibbs sampling uses a randomized approach to iteratively improve a motif. 

Initially, a motif, represented as a PSSM, is generated by selecting one random 

length l segment (substring) from each of the m sequences involved. Then the 

Gibbs sampling will repeatedly perform a predictive update step and a sampling 

step to iteratively improve the motif. 

When using the Gibbs sampling, different runs will give different results. Normally, 

the motif is chosen from the best out of a number of runs. 

Also, there are various variants of the standard Gibbs sampling approach. These 
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include the Gibbs motif sampler, AlignACE and BioProspector[63]. 

 

4.4.3 Limitation of EM and Gibbs sampling 

The major drawback of EM based algorithms is that it cannot escape from a local 

optimum. Other limitations of EM based motif finding tools are: 1). the motif 

length l must be given fixed beforehand as input; 2). the expect number of different 

motifs found also need to be pre-defined as the input.  

By contrast, Gibbs sampling algorithms combine gradient search steps with 

random jumps in the search space, so they can spend an unpredictable number of 

iterations before converging. Gibbs Sampling algorithm is one of the pattern 

sampling methods like EM, which is always probabilistic. The pattern sampling 

method is usually very fast, but it only delivers approximate solutions.  

 

4.4.4 Phylogenetic footprinting 
 

Phylogenetic footprinting is a technique that uses functional/non-functional 

sequence dichotomy to identify regulatory elements. Functional sequences tend to 

evolve much slower than non-functional sequences, as they are subject to selective 

pressure. It is this difference in mutation rates that phylogenetic footprinting 

exploits. To identify regulatory elements associated with a given gene, one 

considers a set of orthologous non-coding sequences from a group of related 

species. If these sequences contain unusually well conserved regions, it is a 

reasonable conjecture that these regions have some regulatory function. Many 
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papers using this method have been published[64-70]. 
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Chapter 5 Finding TF binding motifs by combining 

sequence overrepresentation and cross-species 

conservation 
 

One major challenge of modern biology is to understand how gene expression is 

regulated. An important step toward this understanding is to reliably identify the 

transcriptional factor binding sites (TFBSs) of co-regulated genes. Novel 

computational methods for finding TFBSs have long been sought owing to the 

arduous lab work. The current prevailing TFBS finding methods yield a large 

number of false positive predictions due to the short, variable nature of 

transcriptional binding sites (TFBSs). To reduce the false positive rate of motif 

finding we proposed a method here that combines sequence over-representation 

and cross-species sequence conservation to detect TFBSs in upstream regions of a 

given set of co-regulated genes.  

 

5.1 Material 

In this study, we considered gene promoter regions of four yeast species, namely S. 

cerevisiae, S. mikatae, S. bayanus and S. paradoxus. The last three are believed to 

be separated from S. cerevisiae by an estimated 5-20 million years of evolution, 

and they were found to have sufficient sequence similarity to S. cerevisiae to allow 
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orthologous regions to be aligned reliably[71].  

We obtained the information about gene regulation network of S. cerevisiae from 

the database SCPD (The Promoter Database of Saccharomyces cerevisiae)[29], 

which provided us sets of co-regulated genes for different TFs.  The sequences of 

genes and their upstream regions for each of the four yeast species were 

downloaded from http://www.broad.mit.edu/. 

 

With the increment of the number of species, the sensitivity of the algorithm to 

find the motif will decrease, but the correspondence to known motif will enhance. 

It has been recommended that three or four species should be used [70]. 

 

The genes known to be co-regulated by specific TFs such as STE12 and GAL4 

were used to evaluate our method. We let PS (positive set) denote the collection of 

S. cerevisiae genes co-regulated by a common TF, in the meanwhile we built 

another collection NS (negative set) which consists all the genes from yeast 

genome except those in PS. For each gene in both PS and NS we extracted the 

upstream promoter region sequences for all the four species, and aligned them 

using multiple sequence alignment program ClustalW.   

 

We also applied our proposed method to Drosophila genomes. We got gene 

promoter regions of four Drosophila species, namely D. melanogaster, D. yakuba, 

D. erecta and D. ananassae, from the database FlyBase (http://www.flybase.org/), 
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and we got the information about gene regulation networks of D. melanogaster 

from DBSD (The Drosophila Binding Site Database). The known binding sites of 

the transcription factors were obtained from the TRANSFAC. 

 

5.2 Method 

The method proposed here requests gene upstream sequences from multiple 

closely related ortholog species. Usually we are interested in motif finding for only 

one of the species, namely the principal species, whereas the sequences from other 

species are helpful for the reduction of false positives. For a given TF we collect 

two sets of genes, namely positive set (PS) and negative set (NS). PS consists of 

the genes co-regulated by this TF, whereas NS is a set of genes randomly collected 

from the genome of the principal species. 

 

5.2.1 Finding overrepresented sequence patterns 

To find overrepresented sequences, we only need to consider the principal species. 

We first searched the upstream region of genes in NS for each possible sequence of 

length M ( ) under following constraints: the first three nucleotides in 

the left flank and the last three nucleotides in the right flank were the core elements 

and fixed, between the two core elements there might be 

6 M≤ ≤17

0M  nucleotides ( 0M =0, 

1, 2, …, 11) and each of them could be any of the nucleotides A, C, T and G.  So 

within the L bp upstream region of a gene there are 1L M− +  possible locations 

that can be occupied by a sequence of length M. We called the fraction 

 83

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Our Method 

c
cp n=                      (5.1) 

background probability of the given sequence, where  is the number of 

occurrences of the given sequence in the upstream regions of genes in NS,  and  

c is the total number of possible locations for a sequence of M bp in the upstream 

regions of genes in NS. In the same way we can obtain the number of the sequence 

occurrences K and the total number N of possible locations that could be occupied 

by a M bp sequence in upstream regions of genes in PS. Using binomial 

distribution[40, 72-74] we can calculate the probability of the considered sequence 

pattern occurring more than K times in the upstream regions of the genes in PS as 

following: 

nc

( )∑
=

−−
−

=
N

Kk

kNk pp
kkN

NP 1
!)!(

! ,              (5.2) 

where p is the background probability estimated by (5.1). We choose sequences 

with p–values less than a threshold p* (usually in magnitude of  after 

Bonferroni adjustment) for further analysis. If two sequences have an overlap of 

more than 80% of the entire length of one of them, then we removed the one with 

larger P-value from our collection of overrepresented sequences. Both DNA 

strands were considered when we calculated the number occurrences of a given 

sequence in the upstream region. For example, when we count the occurrence of 

sequence TGAAAC, we also count the occurrence of sequence GTTTCA. If the 

given sequence is not a palindrome, we add the two numbers together and regard it 

as the total occurrences. If the sequence is a palindrome, we just use the count in 

one strand as the total occurrence. 

610 −
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Bonferroni Adjustment  

To perform multiple statistical significance tests for determining overrepresented 

sequences, we use the Bonferroni adjustment to make it more "difficult" for any 

single test to be statistically significant. The Bonferroni adjustment usually is 

accomplished by dividing the significant level (usually set to 0.05, 0.01, etc.) by 

the number of tests being performed. In our case, the threshold of P-value we set as 

0.05 divided by the number of all possible sequences in the form of 

NNNnn…nnNNN, where NNN stands for three fixed nucleotides and nn…nn stands 

for unfixed number (from 0 to 11) of nucleotides that each of them could be any of 

the A, C , T and G. 

 

5.2.2 Relative entropy and Conservation criteria 

Let α be the background nucleotide distribution, and β be the nucleotide 

distribution at a given position in a multiple sequence alignment. For the two 

probability distributions α and β, the relative entropy (also known as 

Kullback-Leibler ‘distance’) is defined by:[75] 

( )|| log i
i

i i

H ββ α β
α

=∑ ,         (5.3) 

We can prove that relative entropy is always a non-negative value. It reflects the 

extent of the deviation of actual nucleotide distribution from background 
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distribution at a given site in the alignment. The larger the value, the greater the 

deviation between the actual distribution and the background distribution at that 

site 

Given an overrepresented sequence O obtained as described above, we search for 

O in the alignment of upstream sequences from four species for each gene in PS 

and NS, respectively. If we find an occurrence in the alignment for any gene in PS, 

we extract the corresponding sequence block from the alignment and put the four 

sequences that form this block to a sequence set . Similarly we also build a 

sequence set  for genes in NS.  

OPS

ONS

We further align all the sequences in either  or . These two alignments are 

used to evaluate the degree of conservation of O across closely related species. We 

define the average relative entropy (

OPS ONS

PARE ) of  as OPS

 

1

M

i
i

P

EP
ARE

M
==
∑

,     (5.4) 

where  is the relative entropy at the position i of the alignment of the sequences 

in , and M is the length of O.  If O is not found in the alignment of upstream 

sequences for any gene in NS, then we deposit O to the collection of candidate 

motifs for further consideration. Otherwise we could also calculate the average 

relative entropy  for the sequences in non-empty set . We define a 

Z-score as 

iEP

OPS

NARE ONS
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2
P N

N

A R E A R EZ
s
M

−
= ,      (5.5) 

where is the standard deviation of the relative entropies at different positions of 

the multiple upstream sequence (across multiple species) alignments of all genes in 

NS. 

Ns

Binding motifs tend to be conserve in the orthologous species (see Figure 5-2 and 

Figure5-3), so we removed the sequences that are overrepresented but not 

conserved from our collection of candidate sequences. We set Z=2 as our threshold 

of Z-score, an overrepresented sequence O with 2Z >  will be kept as candidate 

sequences for further considerations. 
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b 

 

 

c 

 

 

Figure 5-1 Conservation of motif sequence among close related species 

The known DNA binding motif TGAAACA of transcriptional factor Ste12 for S. 

cerevisiae genes YMR232W(a), YML047C(b) and YMR232W(c), which are 

commonly regulated by Ste12. The motif is conserve across the four closely related 

yeast species, namely S. cerevisiae, S. mikatae, S. bayanus and S. paradoxus. The 

subfigures (a), (b) and (c) are three segments of the alignment, in which the motif 

incidences are highlighted using boxes. 
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Figure 5-2 minus logarithm of p-value versus average relative entropy  

(for sequence segments with top 100 lowest over-representation p-values in the 

upstream of Ace2-regulated S. cerevisiae genes) The arrow points to the known 

binding motif GCTGGT of Ace2 in S. cerevisiae. We can see that the average 

relative entropy of this known binding motif is greater than that of most other 

sequences. 
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Figure 5-3 minus logarithm of p-value versus Z-value  

(for sequence segments with top 100 lowest over-representation p-values in the 

upstream of Ace2-regulated S. cerevisiae genes) The arrow points to the known 

binding motif GCTGGT of Ace2 in S. cerevisiae. We can see that the Z-value of this 

known binding motif is greater than that of most other sequences. 
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5.2.3 Building a profile for a candidate motif 

We searched for a given candidate motif in the alignments generated from 

upstream sequences of each genes in PS.  If an instance was found in any of the 

species, we extracted the corresponding sequence block from the alignment for 

further consideration. We used  to denote the average of the relative entropies 

of M different positions of an alignment block of length M. For each block 

obtained above we set 

Be

( )2 /P P Ph µ σ= + M   as our cutoff value for block 

selection, where Pµ  and Pσ  are the population mean and population standard 

deviation of the entropy, respectively, for a randomly chosen position in the 

alignment of the four upstream sequences of a randomly selected gene in PS. The 

value Pµ  and Pσ  could be estimated respectively by the average and standard 

deviation of entropies at all positions of the alignments of upstream sequences for 

genes in PS. For a given candidate motif, we used the blocks with  greater than Be

Ph to compute a profile for representing the potential motif. For example, we 

searched for a candidate motif GTTTCA in the alignments of upstream sequences 

of genes in PS.  If we found it in any species in the alignment we extracted the 

corresponding block, calculated  and compared it with Be Ph  to decide whether 

we would keep this block for further consideration. For the selected blocks we 

calculated the base frequencies at each position and created thereafter the profile to 

represent the candidate motif. Both strands were considered when we constructed 

the profile.  
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5.2.4 Building PSSM 

The profile obtained represents the candidate motif derived from all the ortholog 

species. Usually we are only interested in the motif finding for one species which 

was named as the principal species in our analysis, and it is necessary to build a 

species specific PSSM (Position Specific Score Matrix) for the candidate motif[76]. 

For genes in PS  from the principal species, we search their upstream sequences 

using the above motif profile, and all the significant hits found are included in 

building the species specific PSSM. The profile search is performed as following. 

For each M-bp segment of upstream sequences of genes in PS, we calculate a score  

1

M

i
i

Sc q
=

=∏ ,                  (5.6) 

where  is the probability of observing the i-th nucleotide of the segment, which 

is defined by the position specific nucleotide distribution in the profile of the initial 

candidate motif.  To determine the criteria for a segment to be considered as a 

significant match, we first calculate scores for all the possible M-bp segments of 

the upstream sequences (for principal species only) of genes in NS, and rank these 

scores in the descending order. We use the 0.001-quantile of these ranked scores, 

denoted as , as the threshold value to determine whether a match is significant 

in the profile search. For example, if there are 1000 genes in the NS and the length 

of each promoter region is L-bp, then there are totally 1000*(L-M+1) possible 

segments, so we have 1000*(L-M+1) scores. We sort the scores in the descending 

order and set the n-th value as the cut-off score with

iq

*Sc

*Sc 1n L M= − + . We calculate 

 for each possible segment in the upstream regions (principal species only) of Sc
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the genes in PS. If , we deposit the segment into set I, which is the set of 

incidences of the candidate motif under consideration. 

*Sc Sc≥

 

5.2.5 Optimal motif length 

Let k be the number of sequence segments in set I. In order to determine the 

optimal length of the potential motif, we extend 0 to 5 bp in both flanks of each 

M-bp segment in I in terms of its original mother sequence in the upstream of 

genes in PS. So we have totally 36 possible combinations (left flank extended by 

LM = 0, 1, 2, 3, 4 or 5 bp; right flank extended by RM =0, 1, 2, 3, 4 or 5 bp). For 

each possible combination ( , )L RM M  we put the newly added flanks into a block 

with k sequences and L RM M+  columns. We calculate the average relative 

entropies of all the 36 blocks and choose the combination ( *L
M , *R

M ) which 

delivers the maximum average relative entropy  for further consideration. In 

the meanwhile, we randomly generate 1000 sequence blocks, each with k 

sequences and 

*B
e

* *L R
M M+  columns, in terms of the background nucleotide 

distributionα . We calculate the mean and the standard deviation of the 

average relative entropies of these 1000 blocks. If  is greater 

than , then we accept the extension (

rande rands

*B
e

2rand rande s+ *L
M , *R

M ) and set the final 

motif length at * *L R
M M M+ + , otherwise we still keep the original motif length M . 

The extended sequences ( *L
M bp in left flank and *R

M  bp in right flank) of the 

segments in I form a new sequence set eI , which is the set of the incidences of the 

extended motif. Using all the sequences in eI  we build the PSSM for a general 
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representation of the final motif. 

 

5.3 Results 

We used 35 well studied yeast transcriptional factors (Ste12, Gal4, MET31, Mbp1, 

Leu3, Pho4, Cbf, etc.) to evaluate the proposed method. The criteria for selecting 

these TFs are: 1). their true DNA binding motifs are known; 2). the orthologous 

genes are available in all four yeast species, and the upstream sequences of these 

genes are available. For each TF we built a positive set (PS), which consists all the 

genes that are known to be co-regulated by the this TF (see Table 5-1), in the 

meanwhile we also built a negative set (NS), which consists all the genes from 

yeast genome except those in PS. The NS was used to evaluate the background 

information, as well as to serve as a control in our motif finding process.  For 

each gene in both PS and NS we extract its upstream promoter region sequences 

from genomes of four different yeast species, namely S. cerevisiae, S. mikatae, S. 

bayanus and S. paradoxus. We took S. cerevisiae as the principal specie in our 

study. 

 

We wrote a PERL script to implement our method for finding binding motifs of a 

given TF (see Table 5-1 for a subset of TFs considered in this study) in the 

upstream sequences of its co-regulated genes. We found the true motifs, which are 

identical or similar to the known binding motif, for 25 TFs among the total 35 used 

in the study. In table 5-2 we listed the known DNA binding motif of each TF and 
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the motif found using our method that is identical or most similar to the known 

motif. Three different threshold settings were used when we searched for binding 

motifs for these 35 TFs. We firstly applied the over-representation p-value 

threshold p* after Bonferroni Adjustment as described above to the motif searching. 

If none motif is reported, then we change the p-value threshold to 0.01, if there is 

still no motif reported, then we changed the default pARE threshold to 0.8 instead 

of the default value 1.0. We compared our method with four different popular 

motif finding tools: AlignACE, MEME, PHYME and Footprinter. AlignACE and 

MEME are fed with single-genome sequences, whereas PHYME and Footprinter 

use multi-genome sequences as inputs. To compare our method with AlignACE and 

MEME, we used the upstream sequences of S. cerevisiae genes in the PS of each 

TF as the input of MEME and AlignACE, respectively. All the parameters were set 

to default when we used AlignACE in finding motifs. To apply MEME to the motif 

finding, we need to specify some parameters. We set the minimum length of the 

potential motif as 6, which is the same as our method, and we set the number of 

motifs expected to be found at the same as the number of predicted motifs found 

using our method, and other parameters set as default. The comparisons are listed 

in Table 5-3 and Table 5-4 respectively. We can see that the number of predicted 

motifs found for each TF by our method is in general much less than that found by 

AlignACE (Table 5-3) or MEME (Table 5-4). Table 5-3 and Table 5-4 showed that 

our method is more efficient in finding the true motifs comparing to AlignACE and 

MEME, in the sense that it returned less number of potential motifs, and the ranks 
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of the true motifs are also generally higher than that in the output of AlignACE or 

MEME.  For example, there were 11 potential motifs found by AlignACE for 

Ste12, and the known motif of Ste12 ranked 2nd in the output; however, using our 

method only one motif was found, and it was the known motif. The results for 

other TFs showed the same tendency.  AlignACE and MEME could only find true 

binding motifs for 14 and 12 TFs, respectively, out of the 25 TFs whose true 

binding motifs were detected using our method.  

Unlike single genome based motif finding methods AlignACE and MEME, our 

methods uses sequence information from multi-genome sequences, so it is more 

reasonable to compare it with PHYME and Footprinter, which are two popular 

multiple-genome based methods. For a given TF, Footprinter usually predicts over 

1000 candidate motifs, and the overwhelming number of predictions makes it 

impractical. The reason of too many predicted motifs from Footprinter may be that 

it is very difficult to have an optimal or sub-optimal parameter setting for this 

method. So we focus here on the comparison of our method with PHYME.  To 

apply PHYME to the motif finding, we set the motif length limit as 17, which is the 

maximum length among all known binding motifs of 35 TFs. For each regulon the 

number of motifs predicted was set as 10 and the motifs were searched on both 

strands. The results of this comparison are listed in Table 5-5. Using our method 

we can find known binding motifs for 25 out of the 35 TFs. Using PHYME we can 

find known motifs for 17 out of the 25 TFs whose binding sites can be found by 

our method. In addition, PHYME can find known motifs for 6 out of the 10 TFs 

 96

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Our Method 

whose known motifs can not be found by our method. From Table 5-5 we can see 

that the two methods nearly have the same ability in motif finding, however the 

rank of the known motif found by our method is generally higher that that found 

by PHYME. Table 5-6 gives the rank frequencies of 35 known TF binding motifs 

found using different methods. We can see that 11 out of the 35 known binding 

motifs ranked 1 with our method, which is the highest among the four methods 

under comparison. In this sense the sensitivity of our method is higher than the 

others. 

Table 5-7 gives a list of TFs whose binding motifs could be found using our 

method, but could not be found by MEME, AlignACE and PHYME.  Our method 

could not find known binding motifs for 10 TFs out of the 35 (Table 5-8). Out of 

these 10 TFs, AlignACE and MEME can find known binding motifs for 5 and 3 

TFs, respectively. With PHYME, we can find known binding motifs for 6 TFs out 

of these 10 (Table 5-5). 

To further test our method, we also applied it to the TFBS finding of two 

Drosophila transcription factors, namely dl and ttk. The result (Table 5-9) shows 

that our method is able to find the known binding sites of these two transcription 

factors.  
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TF 
Number of 

co-regulated  
genes 

Genes regulated by the TF 

Ste12 9 
YBR083, YCL055W, YFL027C, YJL170C, YLR452C, YML047C, 
YMR232W, YNL279W, YPL156C 

Gal4 10 
GAL2, GAL3, GAL1/10, GAL7, MTH1, FUR4, PCL10, GAL80, 
PGM2, GCY1 

MET31 8 
YEL015W, YEL016C, STR3, MET16, NUT2, SSN8, YJL060W, 
YEL072W 

Mbp1 18 
YEL018W, MMS21, YCK2, MCD1, MCM2, RPS9A, MOT1, 
OPY2, CLB5, YER071C, VTC1, YJL045W, MSH6, YNR009W, 
HXT10, YER087C-A, TOF1, YNL274C 

Leu3 10 
YDR279W, LEU1, OAC1, YOR271C, YDL228C, YHR209W, 
YHR207C, BAT1, ILV2, RRP6 

Cbf1 16 
YAL026C, YBR089C-A, YBR225W, YDR438W, YIL074C, 
YIL126W, YIL127C, YJL167W, YJL168C, YJL209W, YJR010W, 
YKL191W, YKL192C, YNL094W, YNL095C, YNL282W 

Ace2 1 YLR286C 

Gcn4 6 
YBL103C, YDL170W, YKL015W, YLR451W, YML099C, 
YNL103W 

Abf1 15 
YAL038W, YBR248C, YCR012W, YFL038C, YFR031C, 
YGL234W, YGR059W, YHR174W, YIL160C, YJL166W, 
YKL112W, YLR203C, YLR204W, YOR116C, YPR110C 

Hap1 4 YEL039C, YJR048W, YML054C, YOR065W 

Ino4 6 
YDR050C, YER026C, YGR157W, YHR123W, YMR084W, 
YNR016C 

Mcb 6 
YDL102W, YDL164C, YJL194W, YMR199W, YNL102W, 
YOR074C 

Mse 1 YGR059W 
Nbf 1 YJL153C 
Pdr3 2 YBL005W, YGR281W 
Pho4 2 YDR481C, YGR233C 
Put3 1 YHR037W 

Rap1 8 
YFL014W, YFR031C, YGL123W, YKL062W, YLR399C, 
YNL216W, YOL082W, YPR102C 

Swi5 2 YDL227C, YNL327W 
Uasino 1 YJL153C 
Uasrad 2 YCR066W, YGL058W 
Adr1 2 YDR256C, YMR303C 

Mig1 7 
YBR019C, YBR020W, YDR009W, YDR146C, YIL162W, 
YKL109W, YPL248C 

T4c 2 YJL106W, YJL153C 
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Uasphr 14 
YBR114W, YDL200C, YDR217C, YEL037C, YER095W, 
YER142C, YGL058W, YIL066C, YJL026W, YJR035W, 
YJR052W, YML032C, YNL250W, YPL022W 

Ap-1 1 YGR209C 
Bas2 2 YCL030C, YGL234W 
Csre 2 YER065C, YNL117W 

Mac1 11 
YDR058C, YDR075W, YER145C, YER146W, YGR136W, 
YJR049C, YJR050W, YNL250W, YNL251C, YPR110C, 
YPR111W 

Gcr1 2 YAL038W, YGR215W 

Mcm1 17 

YAL040C, YBR160W, YBR202W, YDR146C, YDR403W, 
YER111C, YFL026W, YGL008C, YGR108W, YJL159W, 
YJL194W, YKL178C, YKL209C, YKR066C, YNL277W,  
YPR113W, YPR119W 

Reb1 12 
YCR012W, YDL164C, YDR007W, YDR050C, YDR146C, 
YER086W, YFL039C, YGL026C, YNL216W, YOL004W, 
YOL006C, YPL231W 

Rox1 2 YDR044W, YPR065W 
Scb 2 YDL227C, YMR199W 
Sff 3 YDR146C, YGR108W, YPR119W 

 

Table 5-1 Transcription factors and the genes being regulated 
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TF Genes  

in PS 

Known motif Motif Found  P-value Z-value AREP

Ste12a) 9 TGAAACA TGAAACA 5.6e-12 3.68 1.00 

Gal4 a) 10 CGGNNNNNNNNNNNCCG CGGNNNNNNNNNNNCCG 3.7e-12 2.43 1.22 

Mbp1 

a)
18 ACGCGTNA ACGCGT 3.0e-7 3.37 1.35 

Leu3 a) 10 CCGGNNCCGG CGGNNNCGG 7.0e-13 3.15 1.27 

Cbf1 a) 16 RTCACRTG CACGTG 7.7e-13 2.98 1.19 

MET31 

a)
8 CTGTGGC TGTGGC 6.7e-7 3.39 1.06 

Abf1b) 15 TCRNNNNNNACG TCANNNNNNACG 1.3e-3 3.73 1.26 

Ace2 b) 1 GCTGGT TGCTGGT 1.4e-3 6.07 1.55 

Gcn4 b) 6 TGANTN ATGACT 8.7e-4 4.45 1.10 

Hap1 b) 4 CGGNNNTANCGG TGCCGNNNNNNNCGG 2.3e-4 6.09 1.64 

Ino4 b) 6 CATGTGAAAT CATGTT 2.9e-4 5.60 1.31 

Mcb b) 6 WCGCGW CGCNTCG 4.1e-4 4.66 1.36 

Mse b) 1 CRCAAAW GACNCAA 8.3e-3 4.05 1.19 

Nbf b) 1 ATGYGRAWW CATGTG 5.9e-3 5.85 1.36 

Pdr3 b) 2 TCCGYGGA TCCNNGGA 4.3e-4 2.88 1.03 

Pho4 b) 2 CACGTK GCGCGT 1.8e-3 3.55 1.20 

Put3 b) 1 CGGNNNNNNNNNNCCG TCGNNNNNNNNNNNCG 2.6e-4 4.65 1.51 

Rap1 b) 8 RMACCCA GTCNNNNNCCCAT 8.8e-3 3.16 1.01 

Swi5 b) 2 KGCTGR TGCTGG 6.5e-4 4.45 1.19 

Uasino 

b)
1 ATCTGAAWW CATGTG 5.9e-3 5.83 1.36 

Uasrad 

b)
2 WTTTCCCGS TCCNGCT 1.1e-3 4.42 1.24 

Adr1c) 2 TCTCC CTCCNNNNNTCC 1.6e-3 2.18 0.88 

Mig1 c) 7 CCCCRNNWWWWW ACCCCA 7.2e-3 2.18 0.82 

Uasphr 

c)
14 CTTCCT TCTNNNNNNNNNNTCCT 2.2e-3 2.38 0.93 

T4c c) 2 TTTTCTYCG TTTTCNNNNNTCC 1.2e-3 2.69 0.96 

 

Table 5-2 Known motifs that can be found by our method 

Comparison of known motifs and the motifs found (using our method) that are the 

most similar to the known motifs. Different parameter threshold settings are used 

in motif finding. a) P-value in a magnitude of 10-6 (after Bonferroni correction), 

PARE =1.0, and Z-value =2.0; b) P-value = 0.01 (without Bonferroni correction), 
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PARE =1.0, and Z-value =2.0; c) P-value = 0.01 (without Bonferroni correction), 

PARE =0.8, and Z-value =2.0. 
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AlignACE Our Method 

TF The number of 

motifs found 

The rank of the 

known motif 

The number of 

motifs found 

The rank of the 

known motif 

Ste12 a) 11 2 1 1 

Gal4 a) 9 2 1 1 

Leu3 a) 22 3 1 1 

Mbp1 a) 20 7 2 1 

Cbf1 a) 29 1 4 2 

Met31 a) 20 15 1 1 

Abf1 b) 10 4 5 3 

Ace2 b) 7 Not found 4 2 

Gcn4 b) 11 4 39 6 

Hap1 b) 6 Not found 23 1 

Ino4 b) 13 Not found 22 4 

Mcb b) 18 2 11 1 

Mse b) 6 Not found 5 5 

Nbf b) 6 1 16 15 

Pdr3 b) 12 Not found 10 2 

Pho4 b) 8 Not found 9 1 

Put3 b) 2 Not found 4 1 

Rap1 b) 13 6 14 11 

Swi5 b) 9 Not found 3 1 

Uasino b) 4 Not found 14 13 

Uasrad b) 4 Not found 20 3 

Adr1 c) 4 2 14 2 

Mig1 c) 30 2 32 30 

Uasphr c) 14 Not found 47 13 

T4c c) 9 1 28 6 

 

Table 5-3 Comparison of our method with AlignACE 

Comparison of our method with AlignACE: For each TF, we listed the numbers of 

predicted motifs found using the two methods, as well as the rank of the known 

motif among the predicted motifs found using the two methods, respectively. In our 

motif finding method, three different parameter threshold settings a), b) and c) are 
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used as given in Table 5-2. 
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Meme Our Method 

TF 
The number of 

motifs found 

The rank of the 

known motif 

The number of 

motifs found 

The rank of the 

known motif 

Ste12 a) 1 Not found 1 1 

Gal4 a) 1 1 1 1 

Leu3 a) 1 1 1 1 

Mbp1 a) 2 1 2 1 

Cbf1 a) 4 1 4 2 

Met31 a) 1 Not found 1 1 

Abf1 b) 5 Not found 5 3 

Ace2 b) 4 Not found 4 2 

Gcn4 b) 39 Not found 39 6 

Hap1 b) 9 Not found 23 1 

Ino4 b) 22 10 22 4 

Mcb b) 11 1 11 1 

Mse b) 5 Not found 5 5 

Nbf b) 16 3 16 15 

Pdr3 b) 10 1 10 1 

Pho4 b) 9 4 9 1 

Put3 b) 4 Not found 4 1 

Rap1 b) 14 Not found 14 11 

Swi5 b) 3 Not found 3 1 

Uasino b) 14 Not found 14 13 

Uasrad b) 20 1 20 3 

Adr1c) 10 Not found 14 2 

Mig1 c) 32 2 32 30 

Uasphr c) 47 Not found 47 13 

T4c c) 28 23 28 6 

Table 5-4 Comparison of our method with MEME 

Comparison of our method with MEME: MEME requests for a pre-determined 

number of predicted motifs as its input, so when we compared our method with 

MEME, we let the number of predicted motifs fed to MEME be the same as the 

number of predicted motifs found using our method. For each TF, we also listed the 
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rank of the known motif among the predicted motifs found using the two methods, 

respectively. In our motif finding method, three different parameter threshold 

settings a), b) and c) are used as given in Table 5-2. 
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TF Known Motif Found by our method Rank Found by PHYME Rank 

Ste12a) TGAAACA TGAAACA 1 TGAAACA 3 

Gal4 a) CGGNNNNNNNNNNNCCG CGGNNNNNNNNNNNCCG 1 CCGAATAGTCTGCCCCG 8 

Mbp1 a) ACGCGTNA ACGCGT 1 ACGCGTCA 3 

Leu3 a) CCGGNNCCGG CGGNNNCGG 1 CCGGTACCGG 3 

Cbf1 a) RTCACRTG CACGTG 2 GTCACGTG 2 

MET31a) CTGTGGC TGTGGC 1 Not found  

Abf1b) TCRNNNNNNACG TCANNNNNNACG 3 Not found  

Ace2 b) GCTGGT TGCTGGT 2 Not found  

Gcn4 b) TGANTN ATGACT 6 TGAGTC 6 

Hap1 b) CGGNNNTANCGG TGCCGNNNNNNNCGG 1 Not found  

Ino4 b) CATGTGAAAT CATGTT 4 Not found  

Mcb b) WCGCGW CGCNTCG 1 ACGCGT 1 

Mse b) CRCAAAW GACNCAA 5 CACAAAA 3 

Nbf b) ATGYGRAWW CATGTG 15 ATGTGAAAT 1 

Pdr3 b) TCCGYGGA TCCNNGGA 1 TCCGCGGA 2 

Pho4 b) CACGTK GCGCGT 1 Not found  

Put3 b) CGGNNNNNNNNNNCCG TCGNNNNNNNNNNNCG 1 Not found  

Rap1 b) RMACCCA GTCNNNNNCCCAT 11 AAACCGA 4 

Swi5 b) KGCTGR TGCTGG 1 TGCTGAATG 1 

Uasino b) ATCTGAAWW CATGTG 13 Not found  

Uasrad b) WTTTCCCGS TCCNGCT 3 TTTCCCAC 4 

Adr1c) TCTCC CTCCNNNNNTCC 2 ACTCC 4 

Mig1 c) CCCCRNNWWWWW ACCCCA 30 CCCCGCCCC 4 

Uasphr c) CTTCCT TCTNNNNNNNNNNTCCT 13 GCTTTCTTT 8 

T4c c) TTTTCTYCG TTTTCNNNNNTCC 6 TTTTTCTTTT 1 

Ap-1 TTANTAA Not found  Not found  

Bas2 TAATRA,TAANTAA Not found  TAATAG 8 

Csre YCGGAYRRAWGG Not found  Not found  

Mac1 GAGCAAA Not found  GAGAAAA 3 

Gcr1 CWTCC Not found  Not found  

Mcm1 CCNNNWWRGG Not found  CCGTTTTGGG 5 

Reb1 YYACCCG Not found  CTACCCG 5 

Rox1 YYNATTGTTY Not found  Not found  

Scb CNCGAAA Not found  CACGAAA 1 

Sff GTMAACAA Not found  GTTAACAA 6 

Table 5-5 Comparison of our method with PHYME 

For each TF, we listed the numbers of predicted motifs found using the two methods, 

as well as the rank of the known motif among the predicted motifs found using the 
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two methods, respectively. In our motif finding method, three different parameter 

threshold settings a), b) and c) are used as given in Table 5-2. 
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Method R1 R2 R3 R4 R5 R6-R10 >R10 Not Found 
OM 11 3 2 1 1 2 5 10 
MEME 8 1 2 1 0 2 1 20 
AlighACE 4 6 2 2 1 2 2 16 
Phyme 5 2 5 4 2 5 0 12 

 

Table 5-6 Rank frequencies of the 35 known TF binding motifs found with 

different methods.  

OM stands for our method. Rn (n=1,2, …) gives the count of the known motifs 

ranked n in the output of a motif finding method. From this table we can see that the 

known motifs found by our method tend to have higher ranks than other methods. 
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TF Genes In 

PS  

Found by our method Known Motif 

Ace2 b) 1 GCTGGT TGCTGGT 

Hap1 b) 4 TGCCGNNNNNNNCGG CGGNNNTANCGG 

Put3 b) 1 TCGNNNNNNNNNNNCG CGGNNNNNNNNNNCCG 

Uasino b) 1 CATGTG ATCTGAAWW 

 

Table 5-7 The TFs whose known binding sites only can be found by our 

method 

The TFs whose known binding motifs were found using our method, but can not be 

found by MEME, AlignACE and PHYME. In our motif finding method, three 

different parameter threshold settings a), b) and c) are used as given in Table 5-2. 
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 Known AlignACE rank meme rank 
Ap-1 TTANTAA Not find  TTAGTAA 3/10 
Bas2 TAATRA,TAANTAA Not find  Not find  
Csre YCGGAYRRAWGG Not find  GTCCGGAC 8/10 
Mac1 GAGCAAA GGAAGCAAA 17/33 Not find  
Gcr1 CWTCC ATTGTTTTCC 5/5 Not find  
Mcm1 CCNNNWWRGG TTACCNNNTAGGAAA 2/11 TTTCCTAATTAGGAAA 1/10 
Reb1 YYACCCG TTACCCGCACGGC 3/8 Not find  
Rox1 YYNATTGTTY Not find  Not find  
Scb CNCGAAA AAGCCACGAAAA 1/13 Not find  
Sff GTMAACAA Not find  Not find  
 

Table 5-8 TFs whose binding site can not be found by our method 

MEME and AlignACE results for the TFs whose known binding site can not be 

found using our method. We set the expected number of motifs predicted by 

MEME as 10.  
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Transcription Factors Known Motifs  
(from TRANSFAC) 

Motifs found by our method 

dl HGRGAAAANCV GAGAANNNNNGAG 
ttk GGTCCTGC GGTCCT 

Table 5-9 Binding motifs of two Drosophila transcription factors  

To further test our method, we applied it to finding binding motifs for two 

Drosophila transcription factors dl and ttk. The result suggested that our method 

can also be used to other genomes if the requested data are available.
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5.4 Discussion 

Transcriptional factors and the sites within the DNA to which they bind are two of 

the most important functional elements in eukaryotic genomes. A thorough study 

of the interactions of TFs and their DNA binding sites is important for mapping the 

regulatory pathways and understanding the potential function of the genes 

regulated by the TFS and the newly identified DNA-binding sites[77]. In the past 

decade clustering of gene expression profiles obtained from large scale DNA 

microarray experiments has been successfully used in identifying co-expressed 

genes[23, 78], and we believed that these co-expressed genes may share common 

regulators that bind to their upstream regions. Finding TF binding motifs of these 

potentially co-regulated genes becomes critical for understanding the interaction of 

the genes and their regulators[74, 79-81]. So far the binding specificities are well 

characterized for only a small number of TFs[82]. TFBS are usually quite short 

(around 6-25 bp) and degenerate, which leads to the difficulties in finding them 

reliably using current motif finding tools. Even though the ab initio motif finding 

tools have been used successfully in many cases, their performances are far from 

satisfying. The major drawback of these tools is that they produce many false 

positive predictions. Under default parameter setting they yield usually tens or 

hundreds of putative motifs, and it is difficult to judge which candidate motif out 

of them is functional[82]. Phylogenetic footprinting method has been suggested 

recently[65, 69, 83, 84], by which the inter-species comparative sequence 

information is used for helping to signal the presence of TF binding sites that 
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might not have been predicted using sequences from a single genome. For example, 

binding sites found in human sequence that are also found in orthologous mouse or 

other mammalian sequences are far more likely to be functional than those found 

only in human[85]. We refer to theses short orthologous sequences that are 

conserved over 6 bp or more as phylogenetic footprint.  

 

The method proposed here considers both overrepresentation and cross-species 

conservation of potential binding motifs. We used binomial test to determine the 

statistically overrepresented candidate sequences, and the average relative entropy 

of the aligned sequence block was used to measure the cross-species conservation 

of these candidates.  The relative entropy is a popular measure of the degree of 

conservation at a site in a DNA or protein sequence alignment[75], and it is useful 

for finding unusual patterns in biological sequences. The input data of our method 

are the upstream sequences of two groups of genes, namely co-regulated genes of a 

TF (PS) and control genes (NS) randomly selected from the genome of the 

principal species under study, as well as the orthologous sequences from other 

species which are closely related to the principal species. Usually the co-regulated 

genes are collected through wet lab experiments, or predicted through gene 

expression profile analysis using microarray data. The upstream sequences of 

genes in PS and NS could be extracted from the genome of the principal species, 

and the corresponding upstream sequences from other species could be obtained by 

doing BLAST[86] or by downloading from the related databases that are publicly 
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available. 

 

Three parameters are considered in our method, they are 1). P-value, which is used 

to evaluate the over-representation of a candidate sequence, 2) average relative 

entropy PARE of , which gives the degree of conservation of a candidate motif, 

3) Z-value, which is used to assess the statistical significance of the conservation. 

In order to have a balanced consideration of the sensitivity and the specificity, and 

to deal with different situations, we applied three different parameter threshold 

settings to screen candidate motifs, and they are: a) P-value in a magnitude of 10

OPS

-6 

(after Bonferroni correction), PARE =1.0, and Z-value =2.0; b) P-value = 0.01 

(without Bonferroni correction), PARE =1.0, and Z-value =2.0; c) P-value = 0.01 

(without Bonferroni correction), PARE =0.8, and Z-value =2.0. Theoretically we 

can find most of the known motifs as long as the criteria for overrepresentation and 

conservation are set loose enough, however, the loose criteria may result in 

numerous putative motifs that are actually false positives. Considering the high 

cost of verifying a predicted motif through lab experiment, we used firstly the 

strict criteria for candidate sequence screening, so parameter setting a) was set as 

default in our method. Using this strict parameter threshold setting we may miss 

the true TF binding motifs (see table 5-3 and table 5-4), especially those without 

very high-level statistical significance of overrepresentation, and the method may 

not be able to return any predictions.  So we loosed the criteria to setting b) or 

setting c) in actual motif finding process, if there is no hit using the default 
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thresholds.  Setting b) has a moderate criterion for overrepresentation, so it allows 

more candidate motif to pass the screening.  With setting c) we loose the criterion 

of the degree of conservation, since there do exist some known TF binding motifs 

with PARE  less than 1.0 (See table 5-2).  

 

The method proposed by us is not a replacement of single-genome tools such as 

MEME and AlignACE. The major limitation of our method is its strong 

prerequisite. Multiple closely related species and the upstream sequences of each 

co-regulated gene for all species under study are requested in our method. In many 

cases these prerequisites may not be met, and the method is therefore not generally 

applicable. Another problem is how to choose the appropriate species to evaluate 

the cross-species conservation.  In principle, the species selected in the study 

should be close enough so that the conservation of motif sequences could be 

detected in a multiple alignment, in the meanwhile their evolutionary distances 

should not be too close, so that the signals could be distinguished from the 

noises[87]. The number of species used in this method is also a factor which needs 

to be considered. We recommended three or four species be used in the study, since 

too many species may bring up strong noise and reduce the detection power of the 

method. 

Even though we used yeast genomes to assess our method in this study, it could 

also be applied to other organisms if suitable related species are available and the 

upstream sequences of co-regulated genes could be obtained for the multiple 
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species.  

 

5.5 Conclusion 

Comparing with the motif finding software such as MEME,  AlignACE and 

PHYME our method has some advantages: 1) both overrepresentation and 

conservation criteria are used in screening candidate motifs, so the method gives 

relatively less predicted motifs for a group of co-regulated genes (Table 5-3,  

Table 5-4 and Table 5-5), hence it is helpful for reducing false positive predictions; 

2). The rank of a true motif in the output of our method is in general higher than 

that of other methods (see both Table 5-3, Table 5-4 and Table 5-5), and this is of 

practical importance, since we usually focus only on putative binding motifs with 

high ranks despite the large number of predicted motifs; 3) Unlike the most 

common motif finding tools, our method requests no prior inputs such as the 

length of the motifs or the number of predictions. 

 

5.6 Implement of the method 

We use a PERL script to implement the method described here.  The script and 

example input data are available for downloading as a Winzip package under URL: 

http://www.ntu.edu.sg/sbs/jmli/motif/index.html.  
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