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Abstract

Game theory deals with strategic interactions among multiple players, where each

player tries to maximize/minimize its utility/cost. It has been applied in a broad

array of areas such as economics, transportation, engineering, psychology, etc. Nash

equilibrium, a fundamental concept in the realm of noncooperative game theory, is

de�ned as the action pro�le of all players where none of the players can improve

its utility/cost by a unilateral move. However, it is widely known that a Nash

equilibrium often exhibits a suboptimal behavior compared with the socially optimal

assignment. Moreover, in repeated games where each player makes its decision based

on the available information at each stage, it is possible that the action pro�les of all

players fail to converge to a Nash equilibrium. This thesis presents research results

on existence, convergence and e�ciency analysis of Nash equilibrium in variety

classes of games and their applications.

First, we discuss a repeated noncooperative multiple choices congestion game in

which players have limited information about each other and make their decisions

simultaneously. Congestion games are a class of games in game theory, in which the

utility of each player depends on the resources each player chooses and the number

of players choosing the same resource. At each stage, players can calculate their best

choice if they know the number of players choosing each resource. However, in most

cases, each player does not know other players’ strategies before it makes its deci-

sion. Therefore, a player may need to estimate the number of players choosing each

resource. We introduce a consensus protocol to estimate the percentage of players

selecting each resource. At each stage, each player may exchange information with
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its neighbors randomly and independently. We show that the congestion game under

investigation has at least one pure strategy Nash equilibrium and the almost sure

convergence to a pure Nash equilibrium can be ensured after some sort of inertia is

adopted. Then, we apply our results to the trip timing and routing problem in traf-

�c congestion control. By introducing di�erent dynamic pricing schemes, the social

optimum is achieved and players’ choices are spread out, respectively. Simulation

results based on the real tra�c data of Singapore validate the e�ectiveness of the

designed pricing schemes.

Next, we analyze the e�ciency loss of Nash equilibrium in a nonatomic congestion

game, where there is a continuum of players, each of which is in�nitesimally small. A

network with one origin-destination pair is formulated, where each edge is assigned

a latency function. To characterize the worst-case e�ciency loss of all possible Nash

ow, price of anarchy (POA), de�ned as the worst possible ratio between the total

latency of Nash ow and that of the socially optimal ow, is adopted. In order

to improve the POA, a scaled marginal-cost is designed to a�ect players’ choices.

All players in the noncooperative congestion game are divided into groups based on

their price sensitivities. For the two groups and two routes case, it is shown that

the total latency of the Nash ow can always reach the total latency of the socially

optimal ow if the designed scaled marginal-cost is charged on each link. For general

case, if certain conditions are satis�ed, a scaled marginal-cost can be designed such

that the unique Nash ow can achieve the social optimal ow. An algorithm is also

proposed to �nd the price scheme that optimizes the POA for any distribution of

price sensitivity and any network with one origin-destination pair.

Besides the ine�ciency of Nash equilibrium, there is also e�ciency loss at each stage

in repeated play. Therefore, we study the performance of a sequence of action pro�les

generated by repeated play in multiple origin-destination networks. To analyze the

e�ciency of the sequence of action pro�les, the price of total anarchy (POTA),

de�ned as the worst-case ratio of the average total latency over a period of time and

the total latency of any optimal strategy, is adopted. It is shown that the sequence

of action pro�les generated by best response principle with inertia possesses almost
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sure no-regret property. Via smoothness arguments, the upper bound of POTA is

identi�ed for both linear and nonlinear latency networks respectively. To reduce the

upper bound of POTA, dynamic pricing is implemented for networks with linear

latency functions. The inuence of the inaccurate parameter information of the

latency function on the POTA is also discussed. For the network with heterogeneous

players, we show that the upper bound of POTA is the same as that in the network

with homogeneous players as time goes to in�nity. The results are applied to a

tra�c routing problem based on the real tra�c data of Singapore.

At last, we investigate the behavior of large population systems based on mean �eld

games where each agent evolves according to a dynamic equation containing the

input average and seeks to minimize its long time average (LTA) cost encompassing

a population state average (PSA), which is also known as the mean �eld term.

Due to the informational burden resulting from the PSA coupling to the states of

all agents, our idea is to �nd a deterministic function to estimate it. It is shown

that the deterministic function is an approximation of the PSA as the population

size goes to in�nity. The resulting decentralized mean �eld control laws lead the

system to mean-consensus asymptotically as time goes to in�nity and the stability

property of the mass behavior is also guaranteed. Furthermore, the optimal controls

generate an almost sure asymptotic Nash equilibrium, which implies that the LTA

cost of each agent can reach its minimal value as the number of agents increases

to in�nity. In addition, a nonlinear dynamic system is discussed and the inuence

of inaccurate mean �eld information on individual agent is analyzed. Then, we

consider the socially optimal case where the objective of each agent is to minimize

the social cost as the sum of all agents’ LTA costs containing the PSA. In this case,

it is shown that the decentralized mean �eld social control strategies are identical

to the mean �eld Nash controls for in�nite population systems.
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Symbols and Acronyms

Symbols

R set of real numbers

RN set of N dimensional real vectors

Z set of integer numbers

ZN set of N dimensional integer vectors

Si strategy set of player i

si strategy of player i

A0 transpose of A

Aij ijth entry of A

jjAjj Euclidean norm of vector A

j�j absolute value for a scalar or cardinality for a set

IN identity matrix with dimension N �N


 Kronecker product

:= de�ned as

end of proof

If�g indicator function

E(�) expectation

O(�) in�nitesimal function of the same order

b�c oor function

Acronyms
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POA price of anarchy

POS price of stability

POTA price of total anarchy

LTA long time average

PSA population state average

NCE Nash certainty equivalence

VOT value of time

ASFP average strategy �ctitious play

a.s. almost surely
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Chapter 1

Introduction

1.1 Motivation and Objectives

Game theory, a study of strategic decision making of intelligent rational players,

has been widely applied in a variety of areas such as economics, transportation,

engineering, social science, etc. In noncooperative games, all players behave sel�shly

by maximizing/minimizing their own utility/cost and the equilibrium point yielded

in this way is known as Nash equilibrium. However, Nash equilibria often exhibit

suboptimal behaviors [1{3], which may cause signi�cant e�ciency loss. For any non-

trivial game, the utility/cost of each player depends on the actions of at least one

other player or all the players. For example, in congestion games, the payo� of each

player depends on the resources it chooses and the number of players choosing the

same resource. Generally, a player has only limited information of other players. In

repeated games where the players are allowed to choose their actions based on the

available information at each stage, players need to learn the underlying structure

of the game by observing the decisions made by other players.

In networks of agents (players), each agent has a state which may change according

to a control law correlated with other agents’ states, and it monitors other agents’

states via sensing, communication, and computing devices. A consensus algorithm
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2 1.1. MOTIVATION AND OBJECTIVES

(protocol) is an interaction rule that speci�es the information exchange between an

agent and its neighbors in the network. If the initial state of each agent represents

its initial action, it is possible for each agent to estimate other agents’ actions by

introducing an appropriate consensus algorithm [4].

Besides the consensus algorithm, mean �eld games provide another technique to

estimate all interactions among players for large-scale dynamic systems [5]. The

main idea of mean �eld game is to replace all interactions to any player with an

average or e�ective interaction which can be obtained a priori. This reduces any

multi-body problem into an e�ective one-body problem. As a result, players can

update their strategies only according to their local information.

With the rapid development of our society, it becomes increasingly crucial to im-

prove the e�ciency of Nash equilibrium. To characterize the e�ciency loss of Nash

equilibrium, the price of anarchy (POA), de�ned as the worst possible ratio between

the total cost of Nash equilibrium and that of the socially optimal assignment, is

adopted. Dynamic pricing is an e�ective way to reduce the POA. For example,

marginal-cost pricing, which illustrates that players should pay a fee that is equal

to the di�erence between the marginal social cost and the marginal private cost [6],

can lead the Nash equilibrium to the social optimum for the case with homogeneous

players, i.e., POA=1. However, for the case with heterogeneous players, the POA

can’t achieve 1 any more by charging marginal-cost pricing. Besides the ine�ciency

of a Nash equilibrium, there is also e�ciency loss at each stage in repeated play. In

order to analyze the overall e�ciency loss in repeated play, a generalization of POA,

called price of total anarchy (POTA), is introduced in [7]. The POTA is de�ned

as the worst-case ratio between the average total cost over a period of time and

the total cost of the optimal outcome. Although the POTA of several classes of

games have been discussed in some literature [7,8], how to reduce the upper bound

of POTA has not been extensively studied.

The research in this thesis includes the analysis of Nash equilibrium in di�erent

game models and providing methods to improve its e�ciency. In summary, the

objectives to be achieved are:
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1. To estimate the mass behavior of all players by proposing a consensus protocol

or through mean �eld theory;

2. To analyze the e�ciency of Nash equilibrium and the performance of the whole

procedure in repeated play via POA and POTA, respectively;

3. To design dynamic pricing schemes to improve POA and POTA;

4. To apply our results to practical problems.

1.2 Main Contributions

This thesis discusses the existence of Nash equilibrium in di�erent models, the con-

vergence of Nash equilibrium in repeated games, and how to improve the e�ciency

of Nash equilibrium. The main challenges are: (1) estimating the mass behaviors

of all players in the game; (2) designing pricing schemes that improve the e�ciency

of Nash equilibrium or the overall e�ciency of the system in repeated games. In

this thesis, we �rst propose a consensus protocol to estimate the number of players

choosing each resource under random networks in Chapter 3, which can be applied

to the following chapters. Then, we analyze how to design a pricing scheme to im-

prove the e�ciency of Nash equilibrium in a routing problem in Chapter 4. Since

there is also e�ciency loss at each stage in repeated games, in Chapter 5, we inves-

tigate the overall e�ciency loss during the updating procedure and �nd a pricing

schemes to improve the overall e�ciency. Finally, in Chapter 6, we study mean �eld

games, which provide another technique to estimate the mass information for large

population stochastic multi-agent systems.

The main contributions of the thesis are listed as follows:

1. We analyze the existence and convergence of Nash equilibrium in a multiple

choices congestion game. A consensus protocol is implemented to estimate

the number of players choosing each resource under random networks. Several
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nonlinear dynamic pricing schemes are introduced to achieve some kind of

social optimum or spread out players’ choices in di�erent models.

2. We consider a routing problem in networks with one origin-destination pair,

in which the scaled marginal-cost pricing is charged on each link to a�ect

players’ routing choices. Players are assumed to have heterogeneous price

sensitivities and are divided into groups accordingly. For the special case with

two groups and two routes, we show that the POA can always achieve 1 by

an designed scaled marginal-cost pricing on each link. For general case, the

existence and uniqueness of Nash ow are discussed. Under certain conditions,

we prove that there exists an optimal scaled marginal-cost pricing such that

POA = 1. Otherwise, the POA can’t achieve 1. For any network with one

origin-destination pair and given distribution of price sensitivity, an algorithm

is provided to calculate a scaled marginal-cost that minimizes the POA.

3. We analyze the e�ciency of a series of action pro�les in networks with multiple

origin-destination pairs. By adopting the best response with inertia principle,

we show that the series of action pro�les possesses almost sure no-regret prop-

erty. The inuence of dynamic pricing on the upper bound of POTA for the

linear latency network is analyzed via smoothness arguments. It is proved

that the designed dynamic pricing can reduce the upper bound of POTA.

The e�ect of inaccurate parameter information of the latency function on the

POTA is also discussed. As is expected, the deviation of the parameter may

result in more e�ciency loss. In addition, the upper bound of POTA for the

nonlinear latency network is given. For networks with heterogeneous players,

we show that the upper bound of the POTA is the same as that in networks

with homogeneous players as time goes to in�nity.

4. We study a discrete-time dynamic system where each agent evolves accord-

ing to a dynamic equation containing all agents’ control inputs and seeks to

minimize its LTA cost encompassing the PSA. In the system we established, a

deterministic function  (0), which is shown to be the expectation of the initial
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1.3. OUTLINE OF THE THESIS 5

PSA, is constructed to approximate the PSA, and the convergence of the PSA

to  (0) is justi�ed. On the basis of  (0), the decentralized mean �eld Nash

control is established. It is shown that the mean-consensus property is ensured

by applying the decentralized mean �eld control law. The "-Nash equilibrium

is introduced to evaluate the performance of the set of decentralized mean

�eld controls. We show that the optimal controls generate an almost sure

asymptotic Nash equilibrium, which implies that the LTA cost of each agent

can reach its minimal value as the number of agents increases to in�nity. A

nonlinear dynamic example with similar properties as the linear system es-

tablished above is shown. The inuence of inaccurate mean �eld information

 (0) on individual agent is also analyzed. The social optimal case where all

agents work cooperatively to optimize the social cost as the sum of individual

agent’s LTA cost is analyzed. The decentralized mean �eld social controls are

proved to be equal to the mean �eld Nash controls as the number of agents

increases to in�nity.

5. We apply our results to trip timing and tra�c routing problems. Numerical

examples and simulations based on the real tra�c data of Singapore are given

to validate the results.

1.3 Outline of the Thesis

In Chapter 2, a literature review for historical developments and state-of-the-art

results on game theory, consensus theory and the techniques for improving the

e�ciency of Nash equilibrium is given.

In Chapter 3, we propose a consensus protocol to estimate the percentage of players

choosing each resource in noncooperative congestion games, where each player has

limited information on other players. We show that the action pro�les generated

by best response with inertia converge to a pure strategy Nash equilibrium almost

surely. Then, we apply our results to tra�c problems. Several dynamic pricing
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schemes are introduced to smooth the peak travel or achieve some kind of social

optimum. Simulations based on real tra�c data of Singapore are also provided to

illustrate the validity of the results.

In Chapter 4, we investigate how the scaled marginal-cost improves the POA in

networks with one origin-destination pair. We assume that all players have di�erent

price sensitivities and are divided into groups accordingly. The two groups two

routes case and the general case are analyzed respectively. We show that whether

we can �nd a scaled marginal-cost such that POA=1 depends on the distribution

of price sensitivity, topology and parameters of the network. An algorithm is also

provided to �nd the price schemes that minimize the POA for any given distribution

of price sensitivity and network with one origin-destination pair. Finally, numerical

examples and real data simulations are given to validate our results.

In Chapter 5, we analyze the performance of a sequence of action pro�les generated

by repeated play in multiple origin-destination networks. By adopting the concept

of almost surely no-regret, the upper bounds of POTA in networks with linear and

nonlinear latency functions are given via smoothness arguments, respectively. It

is also shown that dynamic pricing can reduce the upper bound of POTA for the

linear latency case. The inuence of inaccurate latency parameter on the POTA is

discussed. Furthermore, the POTA for networks with heterogeneous players is also

analyzed. Finally, the results are implemented to a tra�c routing problem based on

the real tra�c data of Singapore.

In Chapter 6, we consider large population dynamic games where each agent evolves

according to a dynamic equation containing the input average of all agents. The

long time average (LTA) cost that each agent aims to minimize is coupled with

other agents’ states via a population state average (PSA), which is also known as

the mean �eld term. In order to design decentralized controls, the Nash certainty

equivalence (NCE) is adopted. It is shown that the resulting decentralized mean

�eld control laws lead the system to mean-consensus asymptotically as time goes to

in�nity. The stability property of the mass behavior and the almost sure asymptotic
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Nash equilibrium property of the optimal controls are also guaranteed. In addition,

the inuence of inaccurate mean �eld information on individual agent is analyzed

and a nonlinear dynamic system is discussed. We also investigate the socially co-

operative formulation where the objective is to minimize the social cost as the sum

of all individuals’ LTA costs containing the PSA. In this case, we show that the

decentralized mean �eld social controls are identical to the mean �eld Nash controls

for in�nite population systems.

In Chapter 7, we conclude the thesis and highlight some possible future research

directions.
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Chapter 2

Literature Review

Game theory is about the study of strategic decision making, which is used in

many realms such as economics [9{11], political science [12], transportation [13],

computer science [14{16], and biology [17]. To our knowledge, game theory was

�rst discussed by James Waldegrave in 1713, who gave a mixed strategy solution

to a two-person game [18]. In 1928, John von Neumann published a paper proving

the existence of mixed-strategy equilibria in two-person zero-sum games [19]. After

that, game theory exists as a unique �eld. Around 1950, a criterion for mutual

consistency of players’ strategies was developed by John Nash, which is known as

Nash equilibrium [20]. In the 1950s, game theory experienced a prosperous time,

and the concepts of the core, extensive form games, repeated games, �ctitious plays,

and the Shapley value were developed. Nowadays with the rapid development of

our society, game theory has been applied to a wide range of behavioral relations

and considerable research has been done.

Game theory consists of a large variety of types, such as cooperative/noncooperative,

symmetric/asymmetric, zero-sum/non-zero-sum, perfect information/imperfect in-

formation, and so on. In the realm of perfect information games, every player knows

all other players’ actions previously. Therefore, all players can make their decisions

by maximizing/minimizing their utilities/costs based on this information. However,

in reality, most players or even all players don’t know all other players’ actions.
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Consensus protocols, which are distributed control policies based on neighbors’ s-

tate feedbacks that allow the coordination of multi-agent systems, provide a way to

estimate other players’ actions. Although there are many separate works on game

theory and consensus theory, the connection between them has not been extensively

studied.

In the following context, we summarize the established results on game theory,

consensus theory and e�ciency analysis of Nash equilibrium.

2.1 Game Theory

Game theory is about the study of multi-players decision problems. The normal-

form representation of a game consists of three parts:(i) the game players; (ii) the

available strategies to each player; (iii) the utility/cost received by each player for

each combination of strategies that could be chosen by the player [21].

Generally, there are two kinds of strategy for each player{pure strategy and mixed

strategy. Let Si denote the set of strategies available to player i, and let si 2 Si

denote the action chosen by player i. A strategy si is called a pure strategy for

player i, if it chooses si with probability one. Suppose that player i has K di�erent

choices, i.e., Si = fsi1; :::; siKg, then a mixed strategy for player i is a probability

distribution pri = fpri1; :::; priKg, where prik represents the probability for choosing

action sik, 0 � prik � 1 for k = 1; :::; K and
PK

k=1 prik = 1.

Nash equilibrium, a fundamental concept in game theory, is de�ned as the action

pro�le of all players where none of the players can improve its utility/cost by a

unilateral move. Considerable research has been done on the existence of Nash

equilibrium [22{25].

There are many classes of games possessing di�erent properties that we can choose

to construct di�erent models. Meanwhile, a model may contain the characters of

more than one types of games. In the following, we present several classes of games

and discuss learning processes in games.
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2.1.1 Congestion Games

In a congestion game, each player faces a �nite set of resources, and the utility/cost

of each player depends on the resource it chooses and the number of players choosing

the same resource. To be precise, the congestion game is de�ned as:

De�nition 2.1. A �nite N-player game with player set N = f1; 2; :::; Ng and

utility/cost function Ui; i 2 N is a congestion game if

� Each player i faces �nite choices, i.e., Si = fsi1; :::; siKg.

� The utility/cost of player i for choosing strategy si 2 Si is Ui(nsi), where nsi

is the number of players choosing strategy si.

It is well known that every �nite potential game is isomorphic to a congestion

game [26] and any congestion game is a potential game [27], which is de�ned as:

De�nition 2.2. A �nite N-player game with player set N = f1; 2; :::; Ng and util-

ity/cost function Ui; i 2 N is a potential game if there exists a potential function

�(s) such that for all players i = 1; :::; N and all possible s1
i ; s

2
i ; s�i

Ui(s
1
i ; s�i)� Ui(s2

i ; s�i) = �(s1
i ; s�i)� �(s2

i ; s�i) (2.1)

where �i denotes the complementary set N n fig.

From the de�nition of potential game, we can see that it requires perfect align-

ment between the global objective and the players’ local utility/cost functions in

the following sense: if a player changes its strategy unilaterally, the change in its

utility/cost function would be equal to the change in the potential function.

It is widely known that every potential game has at least one pure strategy Nash

equilibrium [26]. To our knowledge, potential functions for games in strategic form,

which is a way of describing a game using a matrix, were �rst used in [27], where

the existence of pure strategy Nash equilibrium is proved in a class of congestion
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12 2.1. GAME THEORY

games by explicitly constructing a potential function. In [28], the convergence to

Nash equilibrium in potential games using �ctitious play process is proved. Some

methods for calculating potential functions are introduced in [26, 29]. Upon the

concept of potential games, cooperative control problems are formulated, where

each agent (player) is assigned a local utility and the convergence to an equilibrium

is ensured [30].

In the congestion games we discussed above, all players have the same inuence up-

on the congestion. This congestion game model can be generalized by introducing

weights. Speci�cally, each player i 2 N is assigned a weight and the congestion

on each resource becomes the total weight of all players choosing that resource.

However, unlike the congestion games, weighted congestion games do not necessar-

ily possess pure strategy Nash equilibria [31]. The work in [32{34] discusses the

existence of pure Nash equilibria in weighted congestion games.

2.1.2 Fictitious Play

In noncooperative games, every player selects a strategy from a possible strategy set

sel�shly and independently and each player’s utility depends on the actions taken

by other players. If the game is repeated over multiple stages, players are allowed to

adapt their strategies in response to the available information gathered over prior

stages. This setup falls under the general subject of \learning in games".

One of the earliest learning rules is �ctitious play, which is �rst created by G.W.

Brown [35]. In a �ctitious play, each player computes the empirical frequencies of

the prior actions of all players and plays a myopic best response according to those

empirical frequencies [36]. Through several counterexamples, it is shown that the

convergence of �ctitious play can’t be ensured [37{39]. The work in [40] proves that

�ctitious play is likely to converge in certain special cases such as identical interest

games, zero-sum games, and two-player/two-move games. Owing to the good prop-

erties of potential games, the empirical frequencies generated by �ctitious play in

a potential game is proved to converge to a mixed strategy Nash equilibrium [26].
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However, one obvious disadvantage of �ctitious play is that it is computationally

infeasible for large-scale games, since the best response of a player depends on a

mapping over a joint action space of other players.

Joint strategy �ctitious play, a variant of �ctitious play, alleviates the computa-

tional burden of �ctitious play by introducing a utility updating process for each

player [36, 41]. Di�erent from �ctitious play, in joint strategy �ctitious play, each

player assumes that all other players make decisions jointly according to the em-

pirical frequencies of the joint actions of other players. In joint strategy �ctitious

play with inertia, the convergence to a pure Nash equilibrium is guaranteed for any

�nite generalized ordinal potential game [41]. The average strategy �ctitious play

established in [42] further reduces the computational burden of joint strategy �cti-

tious play by introducing a weighted running average of all other players’ actions

which is assumed to be broadcasted by the system supervisor. Besides, average

strategy �ctitious play with inertia also guarantees the convergence to a pure Nash

equilibrium.

2.1.3 Mean Field Games

In large-scale games, there are too many players to permit an equilibrium which is

determined by the interactions of players. The vast number of these interactions

makes a detailed model ine�ective. Nevertheless, it is still possible to construct an

approximation to the mass information by adopting one or more mean �eld that act

as intermediaries for describing interactions.

The mean �eld game theory was considered by Peter E. Caines and his co-workers

[43] and independently by Jean-Michel Lasry and Pierre-Louis Lions [5,44,45] around

the same time. The mean �eld game deals with the strategic decision making in a

large population of small interacting individuals. In a mean �eld game, individual

player has little impact on other players so that it can be ignored. While, the overall

e�ect of the population on any individual can’t be neglected. Therefore, players are

intrinsically faced with the limitations in both their observational and computational
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capabilities. This problem arises in many areas, such as tra�c assignment [6], factory

production [46], communication network [47] and so on. The main idea of mean �eld

games is to replace all inner-particle interactions by a deterministic function which

can be obtained a priori. A few examples and applications of mean �eld games are

shown in [48].

In multi-agent systems, interaction between individual agents may exist in each a-

gent’s dynamics and control objectives. For centralized control systems, such as

consensus [49], ocking [50], swarming [51], etc., the states of other agents are avail-

able for each agent. While for decentralized control systems [52, 53], only local

information is available for each agent. Due to the limited sensing ability, it is not

feasible for each individual agent to collect all other agents’ states, especially for

large-scale dynamic systems. Therefore, the design of decentralized control laws

is required. There has been a lot of research on decentralized control design which

provides techniques for dealing with large population dynamic systems [54{56]. One

technique is called the Nash certainty equivalence (NCE) principle [43, 57], which

deals with large population multi-agent systems where each agent is coupled with

other agents through its cost function encompassing the population state average (P-

SA). Through NCE principle, the PSA is approximated by a deterministic function

and decentralized controls are established. For mean �eld systems with non-coupled

stochastic dynamics, results in [56, 58, 59] show that the PSA can be approximat-

ed by the expectation of overall population’s state average as the population size

goes to in�nity, thereby the decentralized controls are designed accordingly to it.

However, if the information on population distribution is inaccurate for any agent,

there will be e�ciency losses in this agent’s cost [58]. For a mean �eld system with

stochastic dynamic equation coupled with other agents through the PSA, the work

in [60] shows that the estimate of the PSA can be computed iteratively at each

stage, and the decentralized control laws obtained based on it generate an asymp-

totic Nash equilibrium. However, for the mean �eld system considered in [60], the

control objective that each agent seeks to optimize doesn’t include a control input.

Following the work in [60], the paper [61] analyzes the situation when the coupling
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parameter of the PSA in the dynamic equation is unknown. A recursive LS algo-

rithm is used to estimate the unknown parameter and a decentralized control law is

constructed based on it and the approximation of the PSA. For the social optimal

control problem with the PSA coupled in the cost function, both the centralized

and decentralized solutions are discussed in [62,63].

2.2 Consensus Theory

The consensus problem requires to reach an agreement asymptotically or in a �nite

time, regarding a certain quantity of interest that depends on the state of all agents.

Speci�cally, the agreement is a common value which may be the average of the

initial states of the network, and often called average-consensus. There has been a

lot of research on consensus theory. Consensus conditions for discrete-time multi-

agent networks with �xed topology are explored in [49,64]. Necessary and su�cient

conditions on consensus over random networks are provided in [65, 66]. In [67, 68],

discrete-time average-consensus under switching network topologies is discussed.

The work in [69] analyzes a class of consensus problems under dynamically changing

environments using algebraic theory and graph theory. The consensus convergence

rates are investigated in [69{73].

Since both consensus theory and game theory consider the interactions among a

number of agents/players, the connection between them has been studied by some

researchers. In [74] and [30], a utility function is proposed such that any consen-

sus point is a Nash equilibrium, and it is also proved that every universal Nash

equilibrium constitutes consensus under certain circumstance. In [75], each agent

updates its state according to a replicator dynamics and the Nash equilibrium is

the stationary point for this dynamics. For �nite noncooperative games [76] where

the stage utility of a player associated with each decision is a monotonically nonde-

creasing function of the total number of players making the same decision, players

can calculate their best choice if they know the number of players choosing each

Nanyang Technological University Singapore



16 2.3. EFFICIENCY ANALYSIS OF NASH EQUILIBRIUM

resource. In [77], a continuous-time distributed protocol is proposed to estimate the

number of active players. Under this structure, a best response path algorithm is

established, where only one player updates its decision by the best response at each

stage. Such an algorithm generates a sequence of joint decisions that eventually

converges to a Nash equilibrium. In [4], a discrete-time consensus protocol under

a �xed network topology is designed to estimate the percentage of active players

and allow the best response strategy to converge to a unique Pareto optimal Nash

equilibrium. The results in [4,77] can only be applied to binary strategies, i.e., each

player only has two choices. In reality, every player often faces multiple choices.

Therefore, we aim at proposing a consensus protocol to estimate the percentage of

players for each choice in multiply choices congestion games.

2.3 E�ciency Analysis of Nash Equilibrium

With the rapid development of our society, creating systems with high e�ciency has

attracted a lot of attention. However, sel�sh behaviors of noncooperative decision-

makers may lead to ine�cient outcomes. This problem occurs in many realms such

as communication networks [78], cooling systems [79], market mechanisms [80], and

tra�c congestion [81,82].

In game theory, Nash equilibria in general are typically ine�cient. Early work s-

tudying the Pareto ine�ciency of Nash equilibrium can be found in [83]. To quantify

the e�ciency loss of a Nash equilibrium, the price of anarchy (POA) and the price of

stability (POS) are introduced in the literature [14,84,85]. The POA compares the

total cost of the worst-case Nash equilibrium to that of the socially optimal outcome,

while the POS considers the ratio between the cost of the best Nash equilibrium and

the socially optimal cost. The research on POA has spawned a lot of publications,

especially for nonatomic congestion games, in which there is a continuum of players,

each of them has negligible inuence on other players, see [86{92]. In nonatomic

congestion games with linear latencies, the upper bound of POA for pure strategy
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Nash equilibrium is determined as 4=3 [86]. The work in [93] improves the value

4=3 by means of coordination mechanisms for networks of parallel links. It is proved

in [87] that the upper bound of POA can be achieved for a certain class of latency

functions containing the constant functions. It is shown in [89] that the POA can be

arbitrarily large and an upper bound and a lower bound of the POA are given for a

class of latency functions. The bound of the POA in nonatomic congestion games

with nonlinear latency functions is discussed in [91,94]. Two models (latency model

and pricing model) are introduced in [95] to show the e�ciency of Nash equilibrium

in the context of sel�sh routing. In the latency model, it is proved that the POS is

unbounded, while in the pricing model, all Nash equilibria have optimal ow under

certain conditions. For a mixed strategy Nash equilibrium, in which each player

plays its available pure strategies with certain probabilities, it is shown in [84] that

the POA in two links networks with a�ne latency functions is at least 3=2. Using the

method of smoothness arguments, the bounds of POA on several generalizations of

pure Nash equilibria, such as mixed Nash equilibria, correlated equilibria and coarse

correlated equilibria, are discussed in [8]. In parallel networks, the POS is shown to

be sensitive to demand change when link ow is closed to its capacity [96]. The work

in [97] studies the bound of POA in routing games with incomplete information. In

weighted congestion games where each player is assigned a weight and the load on a

resource is the total weight using that resource, the lower bound of POA for parallel

networks is given in [98]. In [99], upper bounds of the POA in weighted and un-

weighted congestion games are established, provided that the latency functions are

polynomials with nonnegative coe�cients. Due to the computational complexity

of the Nash equilibrium, the concept of approximate Nash equilibrium is intro-

duced [14]. In [100], upper bounds of both the POA and the POS for approximate

Nash equilibria in atomic and nonatomic congestion games with linear latencies are

given. In nonatomic congestion games, it is discussed in [101] that, under certain

assumptions, a necessary and su�cient condition for the case where equilibria are

always socially optimum is that the player’ utility for choosing a resource decreases

logarithmically as the number of other players choosing the same resource increases.
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Besides the ine�ciency of a Nash equilibrium, there is also e�ciency loss at each

stage in repeated play where all players are allowed to choose their strategies based

on the available information at each stage. The idea of no-regret property provides

a method to analyze the performance of players’ actions over time. A sequence of

strategies is said to exhibit no-regret property if and only if the average di�erence

between the actual cost received by any player and the minimal cost it can receive

is less than any positive number as time approaches in�nity. For a game that exists

a unique and dominant strategy Nash equilibrium, no-regret algorithms make the

action pro�les of all players converge to a Nash equilibrium [102]. However, it is

possible that no-regret algorithms fail to converge to a Nash equilibrium [7]. In

order to analyze the overall e�ciency loss in repeated play, a generalization of POA,

called price of total anarchy (POTA), is introduced in [7]. The POTA is de�ned as

the worst-case ratio between the average total cost over a period of time and the

total cost of the optimal outcome. In [7], the POTA of several classes of games is

discussed and it is shown that the POTA exactly matches the POA in some cases.

In the fast-developing society, it becomes increasingly crucial to reduce the e�ciency

loss of equilibrium points. In the following, we focus on two methods to improve

the e�ciency of Nash equilibrium.

2.3.1 E�ciency Improvement of Nash Equilibrium via S-

tackelberg Games

In Stackelberg games [103], a fraction of the players (leaders) are assumed to move

�rst, then the rest of the players (followers) are considered to react sel�shly based

on the actions of the leaders. In order to improve the e�ciency of Nash equilibrium

and the performance of a system, our objective is to �nd a leader strategy that

induces the followers to react in a way that minimizes the total cost of the system.

The Stackelberg strategies have been well-studied in the literature [104{106]. In

repeated Stackelberg games where the followers’ types are unknown to the lead-

er, a method is presented to compute the best leader’s strategy at each stage to
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maximize the leader’s cumulative expected payo� upon the assumption that the

leader knows in advance the probability distribution of followers’ types [107]. The

situation when the followers observe the leader’s strategy with certain probabili-

ty is discussed in [108, 109] and an iterative algorithm is proposed to compute the

equilibrium in [109]. In [110], the existence and uniqueness of maximally e�cient

Stackelberg strategy that lead the system to the global optimum is investigated. For

Stackelberg routing games on parallel networks with nondecreasing latency function-

s, the Largest Latency First strategy (LLF strategy) is proposed to ensure that the

POA of the network is no more than 1=�, where � is the proportion of leaders [111].

In [96, 112], Stackelberg routing on parallel networks with horizontal queues is ad-

dressed and an algorithm is introduced to compute the best Nash equilibrium that

minimizes the total cost. In [113], a game theory controller is constructed based

on the feedback Stackelberg equilibrium framework to reduce fuel consumption and

oxides of nitrogen emissions for hybrid electric vehicles. One shortcoming of the

Stackelberg game is that it generally deals with systems with homogeneous players.

To promote the e�ciency of Nash equilibrium in systems with heterogenous players,

other methods need to be implemented.

2.3.2 E�ciency Improvement of Nash Equilibrium via Pric-

ing Schemes

It is widely known that an appropriate price scheme can improve the system e�cien-

cy. Take the tra�c system for example, a case study in California, USA documented

in [114] shows that transportation pricing such as congestion pricing, parking pric-

ing, fuel tax pricing, vehicle miles of travel fees, emissions fees, can better manage

the transportation systems to a great extent. As another example, the Electronic

Road Pricing (ERP) system in Singapore is designed to charge motorists when they

use the road during peak hours, and it is e�ective in maintaining an optimal speed

range for both expressways and arterial roads [115,116].
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As there are a variety of types of pricing schemes, the main problem is how to

choose an appropriate pricing scheme to develop the e�ciency of equilibrium points

in a simple yet practical model under complicated circumstances. First of all, we

illustrate several frequently-used pricing schemes.

Due to individual player’s failure to share the cost it imposes on other players,

the fundamental economic principle { marginal-cost pricing is introduced, which

illustrates that each player will be charged a fee that is equal to the di�erence

between the marginal social cost and the marginal private cost [117{119]. As a

result, players will face the marginal social cost other than the marginal private

cost, which means that each player should pay the value of loss that it exerts on

other players. In the case of homogeneous players, the marginal-cost pricing can

lead the Nash equilibrium to achieve the social optimum [120{123].

By expecting or observing the change of the supply and demand balance during time,

the service provider or commodity supplier may change the price on the basis of the

time of day. This type of pricing strategy is called time-based pricing. For example,

in the tourism industry, the hotel price is higher during the peak season and lower in

the o�-peak season [124]; in tra�c congestion control, higher price is charged during

rush-hours [123,125,126]. Dynamic pricing, a special case of time-based pricing, is a

pricing strategy in which the price is highly exible depending on current demands.

Generally, dynamic pricing is applied to increase revenue and has been used in

many �elds such as travel, online retail, entertainment and so on. For instance, the

transportation price usually is higher as time gets closer to departure [127].In [128],

it is shown that the optimal dynamic pricing indeed improves the revenue compared

with the optimal single (�xed) pricing.

There is a lot of research dealing with how the price schemes a�ect the e�ciency

of equilibrium points. For single commodity networks with heterogeneous players,

it is shown in [129] that the optimal static tolls that optimize the behavior of the

network can be computed in polynomial time. In [130], the inuence of taxes on

the total cost of Nash equilibrium is compared with the e�ect of edge removals
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in a single commodity network with linear latency functions and nonlinear latency

functions, respectively. For multi-commodity networks, the work in [131] shows that

there exist static tolls making sel�sh players act in a way that minimizes the average

latency. In order to get a desired equilibrium ow for tra�c networks, the inuence

of static tolls on drivers’ decisions is discussed in [132]. In [42], a dynamic road

pricing is established to achieve socially bene�cial trip timing in ASFP. The model

in [133] captures the di�erence in individual’s sensitivity to early or late arrival in

trip timing problems and a dynamic pricing is proposed to spread peak travel. In

transportation problems, di�erent players may have di�erent value of time (VOT),

which describes the tradeo�s between travel time and cost. In [134,135], the optimal

dynamic pricing for players with continuous VOT distributions is investigated, and

an algorithm is proposed to compute the optimal tolls that induce a system optimal

equilibrium. Under the circumstances where the system designer has incomplete

information on players’ price sensitivities, an optimal scaled marginal-cost is derived

to minimize the POA in congestion games with linear latency [136]. Even though

there are fruitful research results on the e�ciency improvement of Nash equilibrium,

the inuence of the pricing on POTA has seldom been studied. We will address this

problem in this thesis.
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Chapter 3

Distributed Consensus in

Congestion Games

In this chapter, we study a repeated noncooperative congestion game in which play-

ers have limited information about each other and make their decisions simultane-

ously. A multiple choices congestion game is formulated in Section 3.1. In Section

3.2, we �rst prove that the game under consideration has at least one pure strategy

Nash equilibrium. After that, a consensus protocol is introduced to estimate the

percentage of players selecting each resource, which alleviates the binary constraint

in [4, 77]. Based on the consensus protocol, the almost sure convergence to a pure

strategy Nash equilibrium is guaranteed by adopting the concept of inertia. In Sec-

tion 3.3, we apply our results to the trip timing problem and two nonlinear dynamic

price functions are designed to ensure the social optimum and spread peak travel,

respectively. A more practical model where each player faces both the routing and

trip timing problems is considered in Section 3.4. Section 3.5 concludes this chapter.

3.1 Problem Formulation

Consider an N -player congestion gameN = f1; 2; :::; Ng, in which each player i 2 N

faces two classes of resourcesRp = fr1; r2; :::; rvg andRt = frv+1; rv+2; :::; rv+mg. Rp
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represents some kinds of choices that player i will receive a �xed utility pij by choos-

ing rj 2 Rp, e.g., in tra�c congestion problem, road users will receive a �xed utility

by choosing public transportation such as subway, light rail trains. Rt represents

some choices that each player’s utility is related to the number of players choosing the

same resource. Denote the �nite resource set available to all players as R = Rp[Rt.

In repeated play, at each stage, player i chooses an action from R. Denote the strat-

egy of player i at stage k as si(k) = [si1(k); :::; siv(k); siv+1(k); :::; siv+m(k)]0 2 Zv+m,

where sij 2 f0; 1g, j 2 I0 = Iv [ Im and
v+mP
j=1

sij = 1. Here, Iv = f1; 2; :::; vg; Im =

fv + 1; :::; v + mg. sij(k) is equal to 1 if player i chooses an action rj at stage k

and 0 otherwise. Let s(k) = fs1(k); s2(k); :::; sN(k)g represent the action pro�le

of all players and s�i = fs1(k); :::; si�1(k); si+1:::; sN(k)g denote the complementary

strategy of player i.

At each stage k, the utility of player i is de�ned as:

Ui(si(k); s�i(k)) =
vX
j=1

sij(k)pij +
v+mX
j=v+1

sij(k)(fj(nrj(k)) + hi(rj)) (3.1)

where nrj(k) =
PN

i=1 Ifsij(k) = 1g is the number of players choosing resource rj.

Here, function If�g is the indicator function. fj(nrj(k)) is the utility due to the

congestion of players using the same resource, and it is nonincreasing with respect

to nrj(k). hi(rj); j 2 Im is the �xed utility received by player i for choosing action

rj. Denote nr(k) = [nr1(k); :::; nrv+m(k)]0 2 Zv+m. Note that player’s utilities are

heterogeneous in our model.

The pure strategy Nash equilibrium of the utility-maximization game is de�ned as

follows.

De�nition 3.1. A pro�le sne = fsne1 ; :::; s
ne
N g is called a pure strategy Nash equilib-

rium, if, for each player i 2 N :

Ui(s
ne
i ; s

ne
�i) = max

si2Zv+m
Ui(si; s

ne
�i): (3.2)
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In this thesis, we will use pure strategy Nash equilibrium and Nash equilibrium

interchangeably when no confusion is caused.

In the following, we will show the existence and convergence of a Nash equilibrium

in the repeated noncooperative congestion game via a consensus protocol. We will

also implement our results to tra�c problems and show the e�ect of dynamic pricing

on the Nash equilibrium.

3.2 Convergence Analysis of Nash Equilibrium

3.2.1 Existence of Nash Equilibrium

In Section 2.1.1, we have discussed potential games, which possesses a desirable

property regarding the existence of a pure strategy Nash equilibrium. In the fol-

lowing lemma, we will show that the game we formulated above is also a potential

game. Thus, it inherits the desirable property of potential games.

Lemma 3.1. The congestion game with utility function (3.1) is a potential game

with potential function:

�(s) =
vX
j=1

NX
i=1

sijpij +
v+mX
j=v+1

nrjX
d=1

fj(d) +
v+mX
j=v+1

NX
i=1

sijhi(rj): (3.3)

Proof: Based on the de�nition of potential games shown in Section 2.1.1, for the

case s1
i = s2

i , the proof is trivial.

For the case s1
i 6= s2

i ,

i)If player i changes its strategy from rj1 to rj2 ; j1; j2 2 Im, based on (3.1),

Ui(s
1
i ; s�1)� Ui(s2

i ; s�1) = fj1((nrj1 )1) + hi(rj1)� fj2((nrj2 )2)� hi(rj2): (3.4)
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Note that (nrj1 )1 = (nrj1 )2 +1 and (nrj2 )2 = (nrj2 )1 +1. From the potential function

(3.3),

�(s1
i ; s�1)� �(s2

i ; s�1)

=

(nrj1
)1X

d=1

fj1(d) +

(nrj2
)1X

d=1

fj2(d) + s1
ij1
hi(rj1) + s1

ij2
hi(rj2)

�
(nrj1

)2X
d=1

fj1(d)�
(nrj2

)2X
d=1

fj2(d)� s2
ij1
hi(rj1)� s2

ij2
hi(rj2)

=

(nrj1
)1X

d=1

fj1(d) +

(nrj2
)2�1X

d=1

fj2(d) + s1
ij1
hi(rj1)

�
(nrj1

)1�1X
d=1

fj1(d)�
(nrj2

)2X
d=1

fj2(d)� s2
ij2
hi(rj2)

=fj1((nrj1 )1) + hi(rj1)� fj2((nrj2 )2)� hi(rj2)

=Ui(s
1
i ; s�1)� Ui(s2

i ; s�1):

ii)If player i changes its strategy from rj1 to rj2 ; j1 2 Iv; j2 2 Im, we have s1
ij1

= 1

and s2
ij1

= 0. From (3.1),

Ui(s
1
i ; s�1)� Ui(s2

i ; s�1) = pij1 � fj1((nrj2 )2)� hi(rj2): (3.5)

Note that (nrj2 )2 = (nrj2 )1 + 1.

Thus,

�(s1
i ; s�1)� �(s2

i ; s�1)

=pij1 +

(nrj2
)1X

d=1

fj2(d) + s1
ij2
hi(rj2)�

(nrj2
)2X

d=1

fj2(d)� s2
ij2
hi(rj2)

=pij1 +

(nrj2
)2�1X

d=1

fj2(d)�
(nrj2

)2X
d=1

fj2(d)� hi(rj2)

=pij1 � fj2((nrj2 )2)� hi(rj2)

=Ui(s
1
i ; s�1)� Ui(s2

i ; s�1):
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iii)If player i changes its strategy from rj2 to rj1 ; j1 2 Iv; j2 2 Im, the situation is

similar to ii).

From i), ii) and iii), we can conclude that �(s) is the potential function of (3.1).

3.2.2 A Consensus Protocol

In the case of complete information, at stage k, each player i knows other players’

strategy s�i(k). Hence, they can compute all nrj(k); j 2 Im and choose their strate-

gies by optimizing Ui(si(k); s�i(k)). However, in most cases, each player does not

know other players’ strategies s�i(k) before it makes its decision. Therefore, player

i may use previous information, e.g., nrj(k � 1), to estimate nrj(k).

To obtain previous information, we introduce the following protocol.

Assume that, at each stage k, each player i may randomly exchange information

only with a subset of its whole neighbor set Ni(k) � Ni. Here, Ni � N is the

�xed whole neighbor set of player i. Let �GN denote the set of all possible undirected

graphs consisting of the node set N and an edge set E � N � N , in which the

necessary conditions for non-oriented pair (i; j) 2 E ; i 6= j are i 2 Nj and j 2 Ni.

As stated above, at stage k, the network is chosen from �GN randomly, independent

of other stages. We denote the graph at stage k as GN(k) = fN ; E(k)g 2 �GN and

the corresponding neighbor set of player i as Ni(k) = fj : (i; j) 2 E(k)g [ fig. Let

L(k) be the symmetrical Laplacian matrix associated with GN(k) and use Lij(k) to

denote the i; j entry of L(k). Note that, at stage k, GN(k) may not be connected

and some agents may be isolated as they may leave the system randomly. For an

isolated agent i at stage k, its neighbor set is Ni(k) = fig.

Motivated by the protocol introduced in [77] for binary case, a linear protocol is

proposed as:

xi(k + 1) = zi(k) + �(k)
X

j2Ni(k)

Lij(k)zj(k) (3.6)
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zi(k) = xi(k) + si(k)� si(k � 1) 8k � 1 (3.7)

zi(0) = xi(0) = si(0) (3.8)

where �(k) 2 (�1=�(k); 0) and �(k) = maxi(Lii(k)). xi(k) 2 Rv+m and zi(k) 2

Rv+m are pre-decision information and post-decision information, respectively. From

the above systems, we can see that zi(k) updates xi(k) according to the strategy

si(k). Later, we will show that xi(k) can be regarded as an estimate of the percentage

of players choosing each resource.

Denote x(k) = [x1(k); :::; xN(k)]0 2 R(v+m)N and s(k) = [s1(k); :::; sN(k)]0 2 R(v+m)N ,

then it follows from (3.6) and (3.7) that, for k � 1:

x(k + 1) =[(IN + �(k)L(k))
 Iv+m](x(k) + s(k)� s(k � 1))

=((IN + �(k)L(k))
 Iv+m)s(k)

+
k�1X
r=0

k�1X
j=r

[(IN + �(j + 1)L(j + 1))
 Iv+m]�(r)(L(r)
 Iv+m)s(r)

(3.9)

Lemma 3.2. The protocol described by (3.6)-(3.8) satis�es that at stage k:

avg(x(k)) =

NP
i=1

xi(k)

N
=

NP
i=1

si(k � 1)

N
(3.10)

Proof: Since the undirected graph GN(k) is balanced, for all k 2 N,

[Iv+mIv+m:::Iv+m| {z }
N

](L(k)
 Iv+m) = 0 (3.11)

According to (3.9),

[Iv+mIv+m:::Iv+m| {z }
N

]x(k + 1) = [Iv+mIv+m:::Iv+m| {z }
N

]s(k) (3.12)

which implies avg(x(k)) =

NP
i=1

xi(k)

N
=

NP
i=1

si(k�1)

N
.
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Lemma 3.3. Consider an undirected graph GN(k) 2 �GN for k 2 N. Assume that

no player changes strategy from stage r on. If there exists an in�nite sequence

of contiguous, nonempty, uniformly bounded time intervals [kj; kj+1); j = 1; 2; :::

with k1 = r + 1 such that the union of the undirected graphs across each interval

is connected, then the protocol described by (3.6)-(3.8) achieves average consensus

exponentially fast, which indicates for 8" � 0, there exists a �nite integer r̂ � 1

such that

jjxi(r + r̂)� avg(x(r + 1))jj

=jjxi(r + r̂)�

NP
i=1

si(r)

N
jj � "

(3.13)

for all players i = 1; :::; N , i.e., each entry of xi(r+ r̂) is approximately equal to the

corresponding percentage of players for each resource at stage r.

Proof: Since no player changes strategy from stage r on, si(k) � si(k � 1) = 0, for

k > r. Then (3.9) becomes x(k + 1) = [(IN + �(k)L(k)) 
 Iv+m]x(k) for k > r.

Since undirected graphs GN(k) 2 �GN are jointly connected along each time interval

[kj; kj+1); j = 1; 2; :::, starting at k1 = r+1, this discrete-time system asymptotically

reaches average-consensus avg(x(r + 1)) [68]. By [69] and [137], we conclude that

avg(x(r + 1)) can be approached exponentially fast. Therefore, for 8" � 0, there

exists a �nite number r̂ � 0 such that jjxi(r + r̂) � avg(x(r + 1))jj = jjxi(r + r̂) �
NP
i=1

si(r)

N
jj � ".

3.2.3 Convergence to Nash equilibrium

Using other players’ actions in the previous stage to estimate their actions in the

present stage, the best response of player i at stage k is de�ned as:

BRi(nr(k � 1)) := f�si 2 Zv+m : Ui(�si; nr(k � 1)) = max
si2Zv+m

Ui(si; nr(k � 1))g

(3.14)
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Obviously, Ui(si; nr) = Ui(si; s�i) according to the de�nition of the utility function

(3.1).

By Lemma 3.3, for an arbitrarily small jj"0( ~T )jj, there always exists a �nite num-

ber ~T such that after action s(r) is repeated ~T stages, each player i can estimate

the corresponding percentage of players for each resource rj with the tolerance

jj"0( ~T )jj; "0( ~T ) = ["01( ~T ); "02( ~T ); :::; "0v+m( ~T )]0 2 Rv+m. Thus, at stage r+ ~T , player

i estimates the number of players for each resource by previous stage r + ~T � 1 as:

�nr(r + ~T � 1) =[�nr1(r + ~T � 1); :::; �nrv+m(r + ~T � 1)]0

=Nxi(r + ~T ) =
NX
i=1

si(r) + "0( ~T ) = nr(r + ~T � 1) + "0( ~T )
(3.15)

To ensure the unique best response of each player and convergence of Nash equilib-

rium, we introduce the following assumption.

Assumption 3.1. For every player i 2 N ,

Ui(s
1
i ; s�i) 6= Ui(s

2
i ; s�i) (3.16)

for all possible s1
i 6= s2

i ; s�i.

De�ne � = mini;si2R jUi(s1
i ; nr)� Ui(s2

i ; nr)j for all s1
i 6= s2

i . Under Assumption 3.1,

we have � > 0 and the cardinality of BRi(nr( ~T � 1)) is 1. If sai = BRi(�nr( ~T � 1)),

then, for all sci 6= sai , Ui(s
a
i ; �nr( ~T�1))�Ui(sci ; �nr( ~T�1)) = Ui(s

a
i ; nr( ~T�1)+"0( ~T ))�

Ui(s
c
i ; nr( ~T � 1) + "0( ~T )) = Ui(s

a
i ; nr( ~T � 1))�Ui(sci ; nr( ~T � 1)) + �a;ci ( ~T ) > 0 must

be satis�ed. In addition, if j�a;ci ( ~T )j < � , we have sai = BRi(nr( ~T � 1)) for every

player i, i.e., Ui(s
a
i ; nr( ~T � 1))� Ui(sci ; nr( ~T � 1)) > 0 for all sci 6= sai . Therefore, to

ensure that sai = BRi(�nr( ~T � 1)) will result in sai = BRi(nr( ~T � 1)) for each player

i 2 N and any strategy sai 2 R, we introduce the following assumption.

Assumption 3.2. We choose ~T large enough such that j�a;ci ( ~T )j < � for all player

i 2 N and all strategies sai ; s
c
i 2 R.
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Note that ~T can be computed by the road manager and then be broadcast to all

players.

Remark 3.1. It is easy to verify that, under Assumption 3.2, the ~T we choose can

also guarantee that if sai = BRi(nr( ~T � 1)), sai = BRi(�nr( ~T � 1)) for all player

i 2 N .

Motivated by [41], we adopt some kind of inertia to players’ decision making process.

Assumption 3.3. (Inertia) If si(k � 1) 2 BRi(�nr(k � 1)), si(k) = si(k � 1), i.e.,

player i stays with the previous action. Otherwise, player i will choose an action

from BRi(�nr(k � 1)) with probability �i(k)1. In addition, there exist constants �1

and �2 such that, for every stage k � 1 and for all player i 2 N ,

0 < �1 � �i(k) � �2 < 1:

The convergence property of the congestion game is shown in the following theorem.

Theorem 3.1. Assume that undirected graphs GN(k) 2 �GN ; k � 0 are jointly con-

nected across each time interval [kj; kj+1); j = 1; 2; ::: with length ~T starting at

k1 = 0. All players with utility function (3.1) adhere to the best response with

inertia and do not change their strategies over each time interval [kj; kj+1). Then,

under Assumption 3.1-3.3 and by the average consensus protocol de�ned in (3.6)-

(3.8), the action pro�le of all players will converge to a pure Nash equilibrium almost

surely.

Proof: Let s(0) = s0 be the initial action pro�le. After s0 is repeated ~T times, i.e.,

s(0) = s(1) = � � � = s( ~T � 1) = s0, by Lemma 3.3, every player i can estimate the

corresponding percentage of players for each resource Tj with tolerance jj"0( ~T )jj.

Note that, through the above argument, ~T we choose is large enough such that

jj"0( ~T )jj won’t a�ect players’ choices under Assumption 3.1-3.2. The probability

1That is to say, player i will stay with the previous action si(k � 1) with probability 1� �i(k),
even when there is an opportunity for utility improvement.
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of the above event is at least (1 � �2)N( ~T�1). Then at stage ~T , if si( ~T � 1) =

BRi(�nr( ~T � 1)), for all i 2 N , s0 is a pure Nash equilibrium and s(k) = s0, for

all k � 0. The proof is completed. Otherwise, there exists at least one player

i1 such that Ui1(s1
i1
; �nr( ~T � 1)) > Ui1(s0

i1
; �nr( ~T � 1)). Assume that only player i1

switches its action to s1
i1

and all other players stay with their previous actions, i.e.,

s( ~T ) = s1 = (s1
i1
; s0
�i1). After s1 is repeated a su�ciently large ~T times, at stage 2 ~T ,

if si(2 ~T�1) = BRi(�nr(2 ~T�1)), for all i 2 N , then s1 is a pure Nash equilibrium and

s(k) = s1, for all k � ~T . According to Lemma 3.1, �(s0) < �(s1). The corresponding

probability is at least �1(1 � �2)N
~T�1(1 � �2)N( ~T�1) and the proof is accomplished.

Otherwise, following the arguments above, we can generate a sequence of action

pro�les such that

�(s0) < �(s1) < � � � < �(sM):

Since the action space R and the number of players N are �nite, we have M <

(v+m)N such that sM is a pure Nash equilibrium and the probability of such a event

is at least [�1(1 � �2)N
~T�1]M(1 � �2)N( ~T�1) > 0, which implies that s(k) generated

by utility function (3.1) with inertia using the estimate induced by the consensus

protocol (3.6)-(3.8) will converge to a pure Nash equilibrium almost surely.

3.3 Application to Trip Timing Problem

3.3.1 Model Setup

Tra�c congestion causes a lot of serious problems such as air pollution, energy

wastage, etc. Take Clementi Road in Singapore for example, Fig. 3.1 shows the

tra�c ow during 14:00 to 23:30 on 2nd August 2010. There is a manifest peak

hour around 18:00. To save energy and reduce air pollution, we prefer more people

to take public transportation. To alleviate tra�c congestion, we aim at designing a

dynamic pricing to diversify private car users’ choices of departure time. Therefore,

we formulate the following trip timing problem to solve these issues.
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Figure 3.1: The relationship between time and number of vehicles on Clementi
Road in Singapore, 2nd August 2010.

Let Rp represent di�erent choices of public transportation (e.g., subway, public

bus) and Rt represent trip timing choices (e.g., departure time) along one road with

private cars. Player i must decide whether to drive its private car or to receive a

�xed utility pij by choosing one kind of public transportation rj 2 Rp. The utility

received by each player is de�ned as (3.1).

In the following, we will design two dynamic pricing schemes to achieve social opti-

mum and smooth the peak travel, respectively.

3.3.2 Dynamic Pricing for Case with Public Transportation

Assume that the road pricing is applied to achieve some kind of social optimum and

it is charged when players choose to drive their private cars, i.e., when choosing an

action rj; j 2 Im.

Consider the case where the road pricing is a function of the number of private cars

on the road, we design the road pricing on each resource rj; j 2 Im as follows:

gj(nrj) = (nrj � 1)(fj(nrj � 1)� fj(nrj)): (3.17)
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Then, the utility function (3.1) is modi�ed as:

Ui(si(k); s�i(k)) =
vX
j=1

sij(k)pij +
v+mX
j=v+1

sij(k)(fj(nrj(k)) + hi(Tj)� gj(nrj(k)))

(3.18)

Lemma 3.4. The congestion game with utility function (3.18) is a potential game

with potential function

��(s) =
NX
i=1

(
vX
j=1

sijpij +
v+mX
j=v+1

sij(fj(nrj) + hi(rj))) (3.19)

Proof: We also consider the case s1
i 6= s2

i .

i)If player i changes its strategy from rj1 to rj2 ; j1; j2 2 Im,

Ui(s
1
i ; s�1)� Ui(s2

i ; s�1)

=fj1((nrj1 )1 + 1) + hi(rj1)� ((nrj1 )1 � 1)(fj1((nrj1 )1 � 1)� fj1((nrj1 )1))

� fj2((nrj2 )2)� hi(rj2) + ((nrj2 )2 � 1)(fj2((nrj2 )2 � 1)� fj2((nrj2 )2))

De�ne A1 = fi0 : (si0j1)1 = 1gnfig; B1 = fi00 : (si00j2)1 = 1gnfig; A2 = fi0 : (si0j1)2 =

1g n fig; B2 = fi00 : (si00j2)2 = 1g n fig and note that (nrj1 )1 = (nrj1 )2 + 1, (nrj2 )2 =

(nrj2 )1 + 1. Obviously, jA1j = (nrj1 )1 � 1; jB1j = (nrj2 )1; jA2j = (nrj1 )2; jB2j =

(nrj2 )2 � 1.

Thus,
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��(s1
i ; s�1)� ��(s2

i ; s�1)

=fj1((nrj1 )1) + hi(rj1) +
X
i02A1

(fj1((nrj1 )1) + hi0(rj1)) +
X
i002B1

(fj2((nrj2 )1) + hi00(rj2))

� fj2((nrj2 )2)� hi(rj2)�
X
i02A2

(fj1((nrj1 )2) + hi0(rj1))

�
X
i002B2

(fj2((nrj2 )2) + hi00(rj2))

=fj1((nrj1 )1) + hi(rj1)� (nrj1 )2(fj1((nrj1 )2)� fj1((nrj1 )1))

� fj2((nirj2 )2)� hi(rj2) + (nrj2 )1(fj2((nrj2 )1)� fj2((nrj2 )2))

=Ui(s
1
i ; s�1)� Ui(s2

i ; s�1)

ii)If player i changes its strategy from rj2 to rj1 ; j1 2 Im; j2 2 Iv,

Ui(s
1
i ; s�1)� Ui(s2

i ; s�1)

=pij2 � fj1((nrj1 )2)� hi(rj1) + ((nrj1 )2 � 1)(fj1((nrj1 )2 � 1)� fj1((nrj1 )2))

Note that (nrj1 )2 = (nrj1 )1 + 1.

Therefore,

��(s1
i ; s�1)� ��(s2

i ; s�1)

=pij2 +
X
i02A1

(fj1((nrj1 )1) + hi0(rj1))� fj1((nrj1 )2)

� hi(rj1)�
X
i02A2

(fj1((nrj1 )2) + hi0(rj1))

=pij2 � fj1((nrj1 )2)� hi(rj1) + ((nrj1 )2 � 1)(fj1((nrj1 )2 � 1)� fj1((nrj1 )2))

=Ui(s
1
i ; s�1)� Ui(s2

i ; s�1)

iii)If player i changes its strategy from rj1 to rj2 ; j1 2 Im; j2 2 Iv, the proof is similar

to ii).

According to the discussion above, ��(s) is the potential function of (3.18).

The construction of ��(s) can be viewed as the total utility of all players except for
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the price. By Theorem 3.1, we can conclude that, under the conditions of Theorem

3.1, the action pro�le generated by (3.18) will converge to a local maximum point

of ��(s) almost surely. In Example 3.1 on the trip timing problem, we can see that,

starting from the same initial conditions, the overall utility can always be improved

within the pricing strategy (3.17) compared to the case without pricing.

Remark 3.2. Since fj(nrj); j 2 Im is the only part associated with ow nrj in player

i’s utility function Ui and player i wants to maximize it, �fj(nrj) can be regarded as

the private cost for player i on resource rj. When player i chooses a departure time

rj, he/she may not perceive the cost he/she contributes to the total cost �nrjfj(nrj)

on resource rj. Therefore, we should make players aware of the social cost instead of

private cost in order to achieve social optimum. The social cost in time interval rj

with ow nrj is de�ned as the increase in total cost �nrjfj(nrj) caused by a marginal

player, i.e.,

�nrjfj(nrj)� (�(nrj � 1)fj(nrj � 1))

nrj � (nrj � 1)

=(nrj � 1)(fj(nrj � 1)� fj(nrj))� fj(nrj)
(3.20)

From (3.20), we can see that the di�erence between private and social cost is (nrj �

1)(fj(nrj � 1)� fj(nrj)), which is exactly the same as gj(nrj). From page 50 of [6],

we can see that gj(nrj) is a discrete-time extension of the continuous-time marginal

pricing.

Example 3.1. Now we apply the congestion game described above to the trip timing

problem along a road.

For each player i, through the travel time formulas introduced by [6], we set the

travel time function d(nrj) as

d(nrj) = t0 � (1 + 0:15(nrj=c0)m�): (3.21)

and

fj(nrj) =
R

d(nrj)
; (3.22)

Nanyang Technological University Singapore



3.3. APPLICATION TO TRIP TIMING PROBLEM 37

Figure 3.2: The map of Clementi Road, Singapore.

hi(rj) = cijrj � t̂ij; (3.23)

for all j 2 Im, where R is the length of the road, m� is a positive parameter, t0

is the free-ow travel time which is a measure of the travel time at zero ow, c0

is the practical capacity which is a measure of the ow from which the travel time

will increase very rapidly if the ow is further increased, ci is a negative constant,

and t̂i is the preferred departure time of player i. Here, (3.22) may be considered

as the average travel speed and (3.23) is the di�erence between each player’s actual

departure time and preferred departure time.

For real data analysis, we take Clementi Road (length 5.4km) as shown in Fig. 3.2

in Singapore for example. Fig. 3.3 shows the relationship between tra�c ow and

travel time on Clementi Road based on the whole month data of August 2010. We �t

the nonlinear function d(nrj) to real time data in Fig. 3.3 and get t0 = 0:0998; c0 =

1357;m� = 3:977.

Suppose there are 2000 players using Clementi Road everyday during 17:00-19:00.

t̂i; i 2 N is generated according to a triangular distribution randomly with the peak

hour at 18:00. ci is randomly generated according to a uniform distribution with the

interval [-1.5,-0.5].

Assume that there is only one kind of public transportation r1, i.e., v = 1 and, for

each player i, the �xed utility associated to it is pi1, which is randomly generated
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Figure 3.3: The relationship between tra�c ow and travel time.

according to a uniform distribution with the interval [30,53]. Assume that there are

4 choices, i.e., m = 3.

As shown in Fig. 3.4 and Fig. 3.5, the action pro�les generated by best response

with inertia is convergent to a pure strategy Nash equilibrium. Starting from the

same initial conditions, we can see that the number of players choosing public trans-

portation increases and the number of players on peak hour decreases after adding

price function (3.17). And we can further check that the overall utility without price

is ��(s) = 95219 and with price is ��(s) = 96781. As expected, the price function

(3.17) indeed increases the overall utility.

3.3.3 Dynamic Pricing for Case without Public Transporta-

tion

From the simulation results in Example 3.1, we can see that the number of private

cars on each resource rj; j 2 Im won’t spread out and there is still a large number of

players in peak hours even if we add the price function (3.17). In order to diversify
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Figure 3.4: Evolution of number of vehicles on each choice without price.
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Figure 3.5: Evolution of number of vehicles on each choice with price function
(3.17).
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40 3.3. APPLICATION TO TRIP TIMING PROBLEM

players’ choices while driving private cars, we add a weighted entropy function to

the potential function and design a price function according to it.

Note that v = 0, we revise the utility function (3.1) as follows:

Ui(si(k); s�i(k)) =
v+mX
j=v+1

sij(k)(fj(nrj(k)) + hi(rj)� ~gj(nrj(k))) (3.24)

For each player i, the price function ~gj(nrj(k)) on each resource rj; j 2 Im is designed

as:

~gj(nrj) = (nrj � 1)(fj(nrj � 1)� fj(nrj) +
w

N
log(

nrj
nrj � 1

)) +
w

N
log(nrj) (3.25)

where w > 0 is the weight.

Lemma 3.5. The congestion game with utility function (3.24) is a potential game

with potential function

~�(s) =
NX
i=1

(
v+mX
j=v+1

sij(fj(nrj) + hi(rj)))� w
v+mX
j=v+1

qj log qj (3.26)

where qj is the percentage of players choosing resource Tj; j 2 Im, i.e., qj = nrj=N .

Proof: Consider the case s1
i 6= s2

i .

If player i changes its strategy from rj1 to rj2 ,

Ui(s
1
i ; s�1)� Ui(s2

i ; s�1)

=fj1((nrj1 )1) + hi(rj1)� ((nrj1 )1 � 1)(fj1((nrj1 )1 � 1)

� fj1((nrj1 )1) +
w

N
log(

(nrj1 )1

(nrj1 )1 � 1
))� w

N
log((nrj1 )1)

� fj2((nrj2 )2)� hi(rj2) + ((nrj2 )2 � 1)(fj2((nrj2 )2 � 1)

� fj2((nrj2 )2) +
w

N
log(

(nrj2 )2

(nrj2 )2 � 1
)) +

w

N
log((nrj2 )2)

De�ne A1 = fi0 : (si0j1)1 = 1gnfig; B1 = fi00 : (si00j2)1 = 1gnfig; A2 = fi0 : (si0j1)2 =

1g n fig; B2 = fi00 : (si00j2)2 = 1g n fig and note that (nrj1 )1 = (nrj1 )2 + 1, (nrj2 )2 =
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(nrj2 )1 + 1. Obviously, jA1j = (nrj1 )1 � 1; jB1j = (nrj2 )1; jA2j = (nrj1 )2; jB2j =

(nrj2 )2 � 1.

Thus, from the potential function, we have

~�(s1
i ; s�1)� ~�(s2

i ; s�1)

=fj1((nrj1 )1) + hi(rj1) +
X
i02A1

(fj1((nrj1 )1) + hi0(rj1))

+
X
i002B1

(fj2((nrj2 )1) + hi00(rj2))� wq1
j1
log(q1

j1
)� wq1

j2
log(q1

j2
)

� fj2((nrj2 )2)� hi(rj2)�
X
i02A2

(fj1((nrj1 )2) + hi0(rj1))

�
X
i002B2

(fj2((nrj2 )2) + hi00(rj2)) + wq2
j1
log(q2

j1
) + wq2

j2
log(q2

j2
)

=fj1((nrj1 )1) + hi(rj1)� ((nrj1 )1 � 1)(fj1((nrj1 )2)� fj1((nrj1 )1))

� wq1
j1
log(q1

j1
)� wq1

j2
log(q1

j2
)

� fj2((nrj2 )2)� hi(rj2) + ((nrj2 )2 � 1)(fj2((nrj2 )1)� fj2((nrj2 )2))

+ wq2
j1
log(q2

j1
) + wq2

j2
log(q2

j2
)

=fj1((nrj1 )1) + hi(rj1)� ((nrj1 )1 � 1)(fj1((nrj1 )1 � 1)� fj1((nrj1 )1))

� w
(nrj1 )1

N
log(

(nrj1 )1

N
)� w

(nrj2 )1

N
log(

(nrj2 )1

N
)

� fj2((nrj2 )2)� hi(rj2) + ((nrj2 )2 � 1)(fj2((nrj2 )2 � 1)� fj2((nrj2 )2))

+ w
(nrj1 )2

N
log(

(nrj1 )2

N
) + w

(nrj2 )2

N
log(

(nrj2 )2

N
)

=Ui(s
1
i ; s�1)� Ui(s2

i ; s�1)

The form of ~�(s) consists of two parts. The �rst part is the overall utility of

all players except for the price and the second part is a weighted entropy term

�w
v+mP
j=v+1

qj log qj, which means that the number of players on each resource needs

to be equal to reach optimum. It is also easy to check that, under the condition of

inertia and by Theorem 3.1, the action pro�les generated by utility function (3.24)

converge to a pure Nash equilibrium almost surely.
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Figure 3.6: Evolution of number of private vehicles on each choice without price.

Example 3.2. Set fj(nrj) and hi(rj) as (3.22) and (3.23), respectively. Use the

parameters in Example 3.1 and assume that there are 4 choices, i.e., m = 4. Note

that v = 0. Let w = 200000. Comparing utility function (3.1) and (3.18), from

Fig. 3.6 and Fig. 3.7, we can see that, starting from the same initial conditions,

the dynamic price function (3.17) only releases the tra�c congestion slightly. While

with price function (3.25), as shown in Fig. 3.8, the disparity in the number of

players on each resource reduces a lot.

Remark 3.3. Compare potential function (3.3) and (3.19), we can see the only

di�erence is the term associated with fj(nrj(k)), which is only related with the num-

ber of players on each resource. However, the terms pij and hi(rj) associated with

players’ personality also play a crucial role in players’ decision making progress.

Therefore, after adding price function (3.17), the equilibrium point can’t be a�ected

signi�cantly. As potential function (3.26) shown, after introducing price function

(3.25), a weighted entropy term �w
v+mP
j=v+1

qj log qj appears. And if w becomes large

enough, the weighted entropy term dominates players’ choices. Besides, the entropy

function is strictly concave and only has one maximal point, i.e., qv+1 = ::: = qv+m.

Therefore, the disparity in the number of players on each resource will vanish as w
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Figure 3.7: Evolution of number of private vehicles on each choice with price
function (3.17).
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Figure 3.8: Evolution of number of private vehicles on each choice with price
function (3.25).
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44 3.4. APPLICATION TO ROUTING AND TRIP TIMING PROBLEM

goes to in�nity.

3.4 Application to Routing and Trip Timing Prob-

lem

In Section 3.3, we discuss the e�ect of the road pricing on road users’ trip timing

choices. In this section, we will study a more practical model considering both trip

timing and routing problem.

3.4.1 Model Setup

Consider a tra�c network (V ; E) with multiple origin-destination pairs, where V is

the vertex set and E is the edge set (e.g. Fig. 3.9). De�ne the routes set for all

players in this network as Rr = f�1; :::; �ng, where each route � 2 Rr consists of one

or several edges and an edge e 2 E can be contained by more than one routes.

Figure 3.9: A network with multiple origin-destination pairs

Assume that all players make their decisions by taking both routing choices and

departure time into account. Let Rt = fr1; :::; rmg represent the trip timing choices.

At each stage, each player i chooses its departure time r and route � simultaneously

from Rt and Rr, respectively. All possible combination of trip timing and routing

choices for all players is f% = (r; �) : r 2 Rt; � 2 Rrg and its cardinality is j% =

f(r; �) : r 2 Rt; � 2 Rrgj = mn. Denote the strategy of player i at stage k as si(k) =
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[si1(k); :::; simn(k)]0 2 Zmn, where sij equal to 1 if player i chooses %j; j = 1; :::;mn

and equal to 0 otherwise, and
Pmn

j=1 sij = 1. The latency le(fe;r) on each edge e 2 E

is associated with the number of players choosing this edge at the same departure

time r, where fe;r is the number of players departing at time r and routing on link

e. Denote f�;r as the number of players departing at time r and choosing route � .

Obviously, fe;r =
P

�2Rr:e2� f�;r. The latency received by player i by choosing route

� 2 Rr at departure time r 2 Rt is
P

e2� le(fe;r). Combine both trip timing and

routing, the cost that each player i aims to minimize is:

Ci;d(s(k)) =
mnX
j=1

sij(k)(
X

e2� :�2%j

le(fe;r:r2%j) + �ijr � t̂i : r 2 %jj) (3.27)

where �i is a nonnegative constant.

Note that, in this section, each player i tries to minimize its cost. Thus, the pure

strategy Nash equilibrium of the cost-minimization game is de�ned as: for each

player i 2 N :

Ci;d(s
ne
i ; s

ne
�i) = min

si2Zmn
Ci;d(si; s

ne
�i): (3.28)

Using the consensus protocol introduced in Section 3.2.2, the number of players

choosing each strategy %j; j = 1; :::;mn can be estimated.

Note that the cost of each player i (3.27) is equivalent to the following equation:

if player i chooses departure time ti 2 Rt and route &i 2 Rr, the cost he/she will

received is:

Ci;d(�) =
X
e2&i

le(fe;ti) + �ijti � t̂ij (3.29)

where � = f�1; :::; �Ng and �i = (ti; &i); i 2 N .

Now, fe;r and f�;r can be presented as fe;r =
PN

i=1 Ife 2 &i and ti = rg and f�;r =PN
i=1 If&i = � and ti = rg, respectively.

The following lemma shows that the model we formulated above is a potential game,

which guarantees the existence of pure strategy Nash equilibrium.

Nanyang Technological University Singapore



46 3.4. APPLICATION TO ROUTING AND TRIP TIMING PROBLEM

Lemma 3.6. The congestion game with cost function (3.29) is a potential game

with potential function

�̂(�) =
mX
j=1

X
e2E

fe;rjX
k=1

le(k) +
NX
i=1

�ijti � t̂ij (3.30)

Proof: For the case �1
i = �2

i , (3.30) obviously holds.

For the case �1
i 6= �2

i , without loss of generality, we assume that &1
i = fe1; e2g; &2

i =

fe2; e3g; t1i = r1; t
2
i = r2. Note that f 1

e1;r1
= f 2

e1;r1
+ 1; f 1

e2;r1
= f 2

e2;r1
+ 1; f 1

e2;r2
=

f 2
e2;r2
� 1; f 1

e3;r2
= f 2

e3;r2
� 1; f 1

e1;r2
= f 2

e1;r2
; f 1
e3;r1

= f 2
e3;r1

, we have

�̂(�1)� �̂(�2)

=

f1
e1;r1X
k=1

le1(k) +

f1
e2;r1X
k=1

le2(k) +

f1
e2;r2X
k=1

le2(k) +

f1
e3;r2X
k=1

le3(k) + �ijr1 � t̂ij

�
f2
e1;r1X
k=1

le1(k)�
f2
e2;r1X
k=1

le2(k)�
f2
e2;r2X
k=1

le2(k)�
f2
e3;r2X
k=1

le3(k)� �ijr2 � t̂ij

=le1(f 1
e1;r1

) + le2(f 1
e2;r1

) + �ijr1 � t̂ij � le2(f 2
e2;r2

)� le3(f 2
e3;r2

)� �ijr2 � t̂ij

=Ci;d(�
1
i ; ��i)� Ci;d(�2

i ; ��i)

The proof is completed.

Based on Theorem 3.1, we can conclude that, within the cost function (3.29), the

action pro�les generated by best response with inertia is convergent to a Nash

equilibrium almost surely.

3.4.2 Dynamic Pricing and Numerical Example

Suppose each edge e 2 E is charged a toll to reach some kind of social optimum.

Motivated by the road pricing (3.17), the toll on each edge e is designed as:

qe(fe;r) = (fe;r � 1)(le(fe;r)� le(fe;r � 1)) (3.31)
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Then, the cost function (3.29) is modi�ed as

Ci;d(�) =
X
e2&i

(le(fe;ti) + qe(fe;ti)) + �ijti � t̂ij (3.32)

Lemma 3.7. The congestion game with cost function (3.32) is a potential game

with potential function

��(�) =
mX
j=1

X
e2E

le(fe;rj)fe;rj +
NX
i=1

�ijti � t̂ij (3.33)

Proof: For the case �1
i = �2

i , (3.33) obviously holds.

For the case �1
i 6= �2

i , without loss of generality, we assume that &1
i = fe1; e2g; &2

i =

fe2; e3g; t1i = r1; t
2
i = r2. Note that f 1

e1;r1
= f 2

e1;r1
+ 1; f 1

e2;r1
= f 2

e2;r1
+ 1; f 1

e2;r2
=

f 2
e2;r2
� 1; f 1

e3;r2
= f 2

e3;r2
� 1; f 1

e1;r2
= f 2

e1;r2
; f 1
e3;r1

= f 2
e3;r1

, we have

��(�1)� ��(�2)

=f 1
e1;r1

le1(f 1
e1;r1

) + f 1
e2;r1

le2(f 1
e2;r1

) + f 1
e2;r2

le2(f 1
e2;r2

) + f 1
e3;r2

le3(f 1
e3;r2

) + �ijr1 � t̂ij

� f 2
e1;r1

le1(f 2
e1;r1

)� f 2
e2;r1

le2(f 2
e2;r1

)� f 2
e2;r2

le2(f 2
e2;r2

)� f 2
e3;r2

le3(f 2
e3;r2

)� �ijr2 � t̂ij

=le1(f 1
e1;r1

) + (f 1
e1;r1
� 1)(le1(f 1

e1;r1
)� le1(f 1

e1;r1
� 1))

+ le2(f 1
e2;r1

) + (f 1
e2;r1
� 1)(le2(f 1

e2;r1
)� le2(f 1

e2;r1
� 1)) + �ijr1 � t̂ij

� le2(f 2
e2;r2

)� (f 2
e2;r2
� 1)(le2(f 2

e2;r2
)� le2(f 2

e2;r2
� 1))

� le3(f 2
e3;r2

)� (f 2
e3;r2
� 1)(le3(f 2

e3;r2
)� le3(f 2

e3;r2
� 1))� �ijr2 � t̂ij

=Ci;d(�
1
i ; ��i)� Ci;d(�2

i ; ��i)

The proof is completed.

Actually, �� can also be written as ��(�) =
PN

i=1(
P

e2&i le(fe;ti) + �ijti� t̂ij), which is

the total cost of all players in the absence of the road pricing. Thus, �� can be viewed

as the social cost that all players tend to jointly minimize. According to Theorem

3.1, the action pro�les generated by best response with inertia will converge to a

local minimum point of �� almost surely.
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Remark 3.4. For the case where the number of players routing on each origin-

destination pair is �xed, the results still hold with some minor corrections.

Figure 3.10: A simple network (V ; E) with V = fv1; v2; v3; v4g and E =
fe1; e2; e3; e4; e5g. In this network,Rr = f�1; �2; �3g is described by �1 = fe1; e4g; �2 =
fe2; e3; e4g; r3 = fe2; e5g:

Example 3.3. Consider the tra�c network as shown in Fig. 3.10, which has 3

routes �1; �2; �3. Assume that there are 2000 players routing in this network and

they have 3 trip timing choices r1; r2; r3. Then, all possible choices for each player

are (r1; �1); (r2; �1); (r3; �1); (r1; �2); (r2; �2); (r3; �2); (r1; �3); (r2; �3); (r3; �3). The pa-

rameters �i; t̂i; i 2 N are randomly generated, respectively. Set the latency le(fe;r)

on each edge e 2 E as the form in (3.21). From Fig. 3.11 and Fig. 3.12, we can see

that the road pricing (3.31) releases the tra�c congestion. The total cost of all play-

ers without price is ��(�) = 26283 and with price is ��(�) = 26182, which indicates

that the price function (3.31) reduces the overall cost.

3.5 Conclusions

In this chapter, we have considered repeated noncooperative congestion games with

multiple choices. A consensus protocol was formulated under random networks to

estimate the percentage of players choosing each resource. It was shown that players’

strategies generated by the criterion of best response with inertia converge to a pure

strategy Nash equilibrium almost surely. We applied our results to trip timing and

routing problems and the inuence of dynamic road pricing on the Nash equilibrium
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Figure 3.11: Evolution of number of vehicles in each combination of trip timing
and routing choice without price.
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Figure 3.12: Evolution of number of vehicles in each combination of trip timing
and routing choice with price function (3.31).
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was discussed. From the simulation results, we can see that the road pricing schemes

indeed helped achieve social optimum or spread out players’ choices.
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Chapter 4

Analysis of E�ciency Loss of Nash

Equilibrium in Nonatomic Games

In this chapter, we investigate how the scaled marginal-cost road pricing improves

the price of anarchy (POA) in nonatomic congestion games. All players in the

noncooperative congestion game are divided into groups based on their price sensi-

tivities. The POA problem in a network with scaled marginal-cost pricing on each

link is formulated in Section 4.1. How to design the optimal dynamic pricing in

networks with heterogeneous players is discussed in Section 4.2. In Section 4.3, we

present numerical examples based on the real tra�c data in Singapore. Conclusions

are stated in section 4.4.

4.1 Problem Formulation

Consider a network (V ; E) with one origin-destination pair (e.g. Fig. 4.1). Each

player chooses its route from a common set of routes R = fr1; :::; rvg, where each

route r 2 R consists of one or several links. De�ne the vector of route ows as

f̂ = (fr1 ; :::; frv) and the total ow of all routes as F =
P

r2R fr.

Note that a link e 2 E , e.g., e1 in Fig. 4.1, can be contained by more than one

route. The latency of one link e 2 E is associated with the total ow on this link.
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Figure 4.1: A simple network (V ; E) with V = fv1; v2; v3g and E = fe1; e2; e3; e4g. In
this example, R = fr1; r2; r3g is described by r1 = fe1; e2g; r2 = fe1; e3g; r3 = fe4g:

Motivated by the relationship between delay and ow used in [86,87], we de�ne the

latency on link e as

le(fe) = aefe + be; (4.1)

where fe =
P

r2R:e2r fr is the total ow on link e, and ae � 0; be � 0 are known

constants.

The latency on route r 2 R is the sum of the latencies of links on this route:

lr(f̂) =
X
e2r

le(fe): (4.2)

Suppose that a toll �e(fe) is charged on each link e 2 E to a�ect players’ routing

behaviors, and each player has a price sensitivity � > 0 which may be di�erent

for di�erent players.1 We consider the case where there are �nite possible values

for � and all players are classi�ed into groups according to their price sensitivities.

Let B = f�1; :::; �Mg denote the set of price sensitivities and P = fp1; :::; pMg be

the corresponding distribution. Therefore, the total ow for group with �j 2 B is

Fj = pjF . Denote fr;� as the ow on route r 2 R contributed by group with � 2 B

and f = (fr1;�1 ; :::; fr1;�M ; :::; frv ;�1 ; :::; frv ;�M ). Note that
Pv

i=1 fri;�j = pjF = Fj

for all �j 2 B, and
PM

j=1 fri;�j = fri for all ri 2 R. By incorporating the price

1The price sensitivity can be obtained from the household survey which has been done by Land
Transport Authority (LTA) of Singapore.
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sensitivity, we de�ne the cost of route r 2 R for players in group with � 2 B as

Jr;�(f) =
X
e2r

(le(fe) + ��e(fe)): (4.3)

For the noncooperative congestion game formulated above, we assume that each

player sel�shly chooses to travel on route with minimal individual cost (4.3). A

Nash ow is de�ned as follows.

De�nition 4.1. A ow fne is called a Nash ow if for any �j 2 B and r1; r2 2 R,

fner1;�j
> 0; fner2;�j

> 0) Jr1;�j(f
ne) = Jr2;�j(f

ne); (4.4)

fner1;�j
> 0; fner2;�j

= 0) Jr1;�j(f
ne) � Jr2;�j(f

ne): (4.5)

Note that Nash ows always exist for congestion games of the type considered in

this chapter [27], [26].

In [123], it is shown that games with homogeneous players, i.e., all players have

the same price sensitivity (M = 1), can achieve the social optimum by charging all

players a marginal-cost price. The marginal-cost for the latency function given in

(4.1) is aefe. However, in our general formulation with M > 1, the social optimum

cannot be achieved by charging aefe on each link e 2 E , since each group of drivers

have di�erent price sensitivity. Therefore, we rede�ne the pricing function as the

scaled marginal-cost toll as

�e(fe) = �aefe; (4.6)

where � � 0 is a parameter to be designed. Note that Nash ow is a function of

the toll �e(fe) which is a function of �. Therefore, Nash ow is also a function of

�. In this chapter, we will use fne(�) and fne interchangeably when no confusion is

caused.

The total latency of the network is given by

L(f) =
X
r2R

fr � lr(f̂): (4.7)
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Then, the socially optimal ow f �, which is de�ned as the ow that minimizes the

total latency of the network, is described by

f � = arg inf
f
L(f) (4.8)

with X
r2R

fr = F

The POA, which is the worst possible ratio between the total latency of a Nash ow

and that of the optimal ow, is de�ned as

POA = sup
fne

L(fne)

L(f �)
: (4.9)

The POA characterizes the worst-case e�ciency loss of all possible Nash ows, and

the larger the POA the larger the e�ciency loss. Obviously, POA is always larger

or equal to 1 and POA = 1 indicates that the social optimum is achieved.

Our objective is to design the pricing function to minimize the POA for a given

distribution of price sensitivity. Namely, our goal is to �nd �� for (4.6) such that

L(fne(��)) = inf
��0

L(fne(�)): (4.10)

In other words, the Nash ow fne obtained after introducing the designed road

pricing �e(fe) = ��aefe leads to the minimal worst-case e�ciency loss.

4.2 Design of Optimal Pricing with Heterogeneous

Price-sensitivity Populations

In this section, we aim to design the optimal scaled marginal-cost pricing that mini-

mizes the POA for networks with heterogeneous players. Without loss of generality,

we assume �1 > �2 > � � � > �M . Denote �Fj0 = F1 + � � �+Fj0�1 as the total ow with
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� > �j0 and F̂j0 = Fj0+1 + � � �+ FM as the total ow with � < �j0 . Let �pj0 = �Fj0=F

and p̂j0 = F̂j0=F . For route ri 2 R, de�ne Vi =
P

e2ri be, which is called the free-ow

latency of route ri. For any ri; rj 2 R, denote

dij =
X

e2ri
T
rj

ae (4.11)

If Vi = Vj for some ri 6= rj, then there exist in�nite Nash ows as de�ned in

De�nition 4.1. However, the total latency is identical for all these Nash ows, and

so is the POA. For the special case with Vi = Vj for all ri 6= rj, there exist in�nite

Nash ows for any distribution of B, but the POA can always achieve 1 for any

� � 0 since fnerk = f �rk ; rk 2 R. In most practical cases, Vi are di�erent for di�erent

routes. Therefore, we make the following assumption.

Assumption 4.1. Vi 6= Vj for all i 6= j.

To further ensure the positivity property of Nash ows with road pricing, we give

the following assumption.

Assumption 4.2. For the un-tolled situation with � = 0, any Nash ow fne has

fner > 0 for all r 2 R.

Under Assumption 4.1, we can let V1 < V2 < � � � < VN . Assumption 4.2 indicates

that every route will be in use when all routes are free of charge.

4.2.1 Nash Flow Analysis for Case with Two Groups and

Two Routes

First, we consider the special case where there are two routes R = fr1; r2g in

the network with two di�erent groups B = f�1; �2g. We will show that, for any

distribution of B, there always exists �� such that POA=1.

In the following lemma, the existence and uniqueness of Nash ow for the special

case is guaranteed.
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Lemma 4.1. Under Assumptions 4.1 and 4.2, the Nash ow of the two groups case

always exists and is uniquely determined as follows:

(i) If 0 � p1 <
F (d11�d12)�V2�V1

1+��2

F (d11+d22�2d12)
,

fner1;�1
= 0; fner2;�1

= p1F;

fner1;�2
=
p1F (d22 � d12) + p2F (d22 � d12) + V2�V1

1+��2

d11 + d22 � 2d12

;

fner2;�2
=
p2F (d11 � d12)� p1F (d22 � d12)� V2�V1

1+��2

d11 + d22 � 2d12

:

(ii) If
F (d11�d12)�V2�V1

1+��2

F (d11+d22�2d12)
� p1 �

F (d11�d12)�V2�V1
1+��1

F (d11+d22�2d12)
,

fner1;�1
= 0; fner2;�1

= p1F; f
ne
r1;�2

= p2F; f
ne
r2;�2

= 0:

(iii) If
F (d11�d12)�V2�V1

1+��1

F (d11+d22�2d12)
< p1 � 1,

fner1;�1
=
p1F (d22 � d12)� p2F (d22 � d12) + V2�V1

1+��1

d11 + d22 � 2d12

;

fner2;�1
=
p1F (d11 � d12) + p2F (d11 � d12)� V2�V1

1+��1

d11 + d22 � 2d12

;

fner1;�2
= p2F; f

ne
r2;�2

= 0:

Proof: First, we prove Nash ow (i). By the price function (4.6) and fe =
P

r2R:e2r fr,

we rewrite (4.3) as

Jri;�j(f
ne) =

X
e2ri

((1 + ��j)de
X

rk:e2rk

fnerk + be) = (1 + ��j)
X
rk2R

fnerk dik + Vi: (4.12)

By the de�nition of Nash ow, if fner1;�2
> 0; fner2;�2

> 0,

2X
k=1

fnerk (d1k � d2k) =
V2 � V1

1 + ��2

: (4.13)
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Since �1 > �2 and V1 < V2, (V2 � V1)=(1 + ��2) > (V2 � V1)=(1 + ��1). Therefore,

(1 + ��1)
2X

k=1

d1kf
ne
rk

+ V1 > (1 + ��1)
2X

k=1

d2kf
ne
rk

+ V2 (4.14)

Thus, fner1;�1
= 0; fner2;�1

= p1F . Insert fner1;�1
+ fner1;�2

= fner1
and fner2;�1

+ fner2;�2
= fner2

into (4.13) and note that fner1;�2
+ fner2;�2

= p2F , we obtain

fner1;�2
=
p1F (d22 � d12) + p2F (d22 � d12) + V2�V1

1+��2

d11 + d22 � 2d12

; (4.15)

fner2;�2
=
p2F (d11 � d12)� p1F (d22 � d12)� V2�V1

1+��2

d11 + d22 � 2d12

: (4.16)

Obviously, fner1;�2
> 0. Under Assumption 4.2, fner2

= fner2;�1
+ fner2;�2

> 0 when � = 0.

Thus, (d11� d12)F > V2� V1. Therefore, (d11� d12)F � V2�V1

1+��2
> 0. Since fner2;�2

> 0,

0 � p1 <
F (d11�d12)�V2�V1

1+��2

F (d11+d22�2d12)
. Nash ow (i) is proved.

Similarly, we can show (ii) and (iii).

Based on Lemma 4.1, the total latency of Nash ow is given as follows.

Lemma 4.2. Under Assumptions 4.1 and 4.2, the total latency of Nash ow for the

two groups case is as follows:

(i) If 0 � p1 <
F (d11�d12)�V2�V1

1+��2

F (d11+d22�2d12)
,

L(fne) = LF (F )� (V2 � V1)2

d11 + d22 � 2d12

��2

(1 + ��2)2
(4.17)

with

LF (F ) =
(d11 � d12)(d22 � d12)

d11 + d22 � 2d12

F 2 +
(d11 � d12)V2 + (d22 � d12)V1

d11 + d22 � 2d12

F (4.18)

(ii)If
F (d11�d12)�V2�V1

1+��2

F (d11+d22�2d12)
� p1 �

F (d11�d12)�V2�V1
1+��1

F (d11+d22�2d12)
,

L(fne) = (d11 � d12)F 2 + (V2 � V1 � 2(d11 � d12)F )Fp1 + (d11 + d22 � 2d12)F 2p2
1

(4.19)
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(iii)If
F (d11�d12)�V2�V1

1+��1

F (d11+d22�2d12)
< p1 � 1,

L(fne) = LF (F )� (V2 � V1)2

d11 + d22 � 2d12

��1

(1 + ��1)2
(4.20)

Proof: Substitute all fner;�j in Lemma 4.1 into (4.7) and simplify to obtain L(fne).

In the following theorem, we give the main result of this section.

Theorem 4.1. Under Assumptions 4.1 and 4.2, for any given p1, there always exists

�� satisfying L(fne(��)) = inf��0 L(fne(�)) = L(f �), i.e., POA=1. Furthermore,

L(fne(��)) = L(f �) = LF (F )� 1

4

(V2 � V1)2

d11 + d22 � 2d12

(4.21)

where LF (F ) is as de�ned in (4.18).

Proof: The optimal ow of this network is:

f �r1
=
V2 � V1 + 2F (d22 � d12)

2(d11 + d22 � 2d12)
; (4.22)

f �r2
=
V2 � V1 + 2F (d11 � d12)

2(d11 + d22 � 2d12)
: (4.23)

Thus,

L(f �) = LF (F )� 1

4

(V2 � V1)2

d11 + d22 � 2d12

: (4.24)

For 0 � p1 <
F (d11�d12)�V2�V1

2

F (d11+d22�2d12)
, if we set �� = 1

�2
, the Nash ow is as in Lemma

4.1 (i). Based on the total latency (4.17), it is easy to verify that the social opti-

mum is reached at �� = 1
�2

, i.e., L(fne(��)) = L(f �) and POA=1. Similarly, for
F (d11�d12)�V2�V1

2

F (d11+d22�2d12)
< p1 � 1, the social optimum can be achieved at �� = 1

�1
with

the Nash ow as shown in (iii) of Lemma 4.1. If p1 =
F (d11�d12)�V2�V1

2

F (d11+d22�2d12)
, for any

�� 2 [ 1
�1
; 1
�2

], the Nash ow is as (ii) in Lemma 4.1, and we can obtain POA=1 by

substituting p1 into (4.19).
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4.2.2 Nash Flow Analysis for General Case

In this section, we will analyze the POA for the case with several groups and routes

connecting one origin and one destination.

Let fA1; :::; Avg, fB1; :::; Bvg be the set of solutions to the following equations:

X
rk2R

Ak = 1; (4.25)

X
rk2R

Bk = 0; (4.26)

X
rk2R

Akdik =
X
rk2R

Akdjk; 8ri 6= rj; (4.27)

X
rk2R

Bkdik + Vi =
X
rk2R

Bkdjk + Vj; 8ri 6= rj: (4.28)

We can see from the proof of Lemma 4.3 that fA1; :::; Avg, fB1; :::; Bvg always exist.

The following lemma shows that under certain conditions, a Nash ow always exists

and it is unique.

Lemma 4.3. Under Assumptions 4.1 and 4.2, for any � � 0 and a given distribution

of B, if there exists a group with �j0 2 B satisfying

8><>:p̂j0 < A1 + B1

(1+��j0 )F
;

�pj0 < Av + Bv
(1+��j0 )F

;

(4.29)

then a Nash ow always exists and it is uniquely determined as: (a) the Nash ow

for group �j0 is given by

fnerk;�j0 =

8>>><>>>:
A1F � F̂j0 + 1

1+��j0
B1; if k = 1,

AvF � �Fj0 + 1
1+��j0

Bv; if k = v,

AkF + 1
1+��j0

Bk; otherwise;

(4.30)

(b) all players with � < �j0 choose route r1, i.e., fner1;�j0+1
= Fj0+1; :::; f

ne
r1;�M

= FM ;

(c) all players with � > �j0 choose route rv, i.e., fnerv ;�1
= F1; :::; f

ne
rv ;�j0�1

= Fj0�1.
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The proof of Lemma 4.3 is provided in Appendix A.

Based on the proof of Lemma 4.3, the properties of Nash ows can be concluded as

follows.

� If there is a group choosing more than one routes at Nash ow, it must choose

several successive routes, e.g., fr1; r2g; fr2; r3; r4g.

� If players with �j 2 B choose routes frj1 ; :::; rj2g, then players with � > �j

choose some routes r 2 frj2 ; :::; rvg and players with � < �j choose some routes

r 2 fr1; :::; rj1g.

Consider the case where players with �j0 2 B choose routes frk1 ; :::; rk2g with k1 � k2

and fk : 1 � k < k1g [ fk : k2 < k � vg 6= ;, and all other players choose only one

route r 2 R at Nash ow. Based on the properties of Nash ows described above,

all players with � < �j0 only choose a route r 2 fr1; :::; rk1g and all players with

� > �j0 only choose a route r 2 frk2 ; :::; rvg. Therefore, for route rk =2 frk1 ; :::; rk2g,

fnerk is the sum of certain groups’ total ow.

Denote ~pk = fnerk =F , Fk1 =
Pk1�1

k=1 fnerk ;Fk2 =
Pv

k=k2+1 f
ne
rk

, �k1 = Fk1=F , and �k2 =

Fk2=F . Let f̂ � be the vector of route ows corresponding to the socially optimal

ow. A distribution of B is called a critical point, if it satis�es8>>>>><>>>>>:
~pk = f �rk=F; for 1 � k < k1 or k2 < k � v;

p̂j0 � �k1 < Ak1 +
Bk1

2F
;

�pj0 � �k2 < Ak2 +
Bk2

2F

(4.31)

where Ak1 ; Ak2 ; Bk1 ; Bk2 are the k1-th and k2-th elements of the sets fA1; :::; Avg and

fB1; :::; Bvg, respectively.

Note that conditions (4.29) and (4.31) are exclusive with each other. The next

theorem, as the main result of this chapter, shows how the road pricing and the

distribution of price sensitivity inuence the POA.
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Theorem 4.2. Under Assumptions 4.1 and 4.2, for a given distribution of B, if

(i) there exists a group �j0 2 B satisfying

8><>:p̂j0 < A1 + B1

2F
;

�pj0 < Av + Bv
2F

;

(4.32)

or (ii) the distribution of B is a critical point with8>>>>><>>>>>:
~pk = f �rk=F; for 1 � k < k1 or k2 < k � v;

p̂j0 � �k1 < Ak1 +
Bk1

2F
;

�pj0 � �k2 < Ak2 +
Bk2

2F
;

(4.33)

then �� = 1=�j0 satis�es

L(fne(��)) = L(f �) =
vX
k=1

Akdk1F
2 +

vX
k=1

AkVkF +
vX
k=1

BkVk
4

; (4.34)

i.e., POA = 1. Otherwise, POA > 1.

Proof: First, we consider case (i). From Lemmas 4.3 and the de�nition of L(f) in

(4.7), if group �j0 2 B satis�es (4.29), then the total latency of the Nash ow with

road pricing is

L(fne) =
vX
k=1

Akdk1F
2 +

vX
k=1

AkVkF +
vX
k=1

BkVk��j0
(1 + ��j0)2

; (4.35)

Taking the partial derivative of (4.35) with respect to �, we can see that the mini-

mum of L(fne) is achieved at �� = 1=�j0 . Substitute �� into (4.35), we have

L(fne(��)) =
vX
k=1

Akdk1F
2 +

vX
k=1

AkVkF +
vX
k=1

BkVk
4

(4.36)

Furthermore, we can check that the total latency of the Nash ow is equal to the

total latency of the socially optimal ow, i.e., POA = 1.
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For case (ii), only players with �j0 2 B choose more than one routes. Based on the

de�nition of critical point, the Nash ow is determined as

fnerk =

8>>>>>>><>>>>>>>:

f �rk ; if 1 � k < k1 or k2 < k � v;

F̂j0 �Fk1 + fnerk1
;�j0

; if k = k1,

�Fj0 �Fk2 + fnerk2
;�j0

; if k = k2,

fnerk;�j0 ; otherwise,

(4.37)

where fnerk;�j0
> 0 for all k1 � k � k2 and

Pk2

k=k1
fnerk;�j0

= Fj0 .

Similar to case (i), under Assumptions 4.1 and 4.2, we can show that �� = 1=�j0

can lead to L(fne(��)) = L(f �), i.e., POA = 1.

If the distribution of B does not satisfy (i) or (ii), there are at least two groups

choosing more than one routes at any Nash ow. Assuming that group �j1 chooses

ri1 ; ri2 and group �j2 chooses ri01 ; ri02 , by the de�nition of a Nash ow, we have

X
rk2R

fnerk (di1k � di2k) =
Vi2 � Vi1
1 + ��j1

; (4.38)

X
rk2R

fnerk (di01k � di02k) =
Vi02 � Vi01
1 + ��j2

: (4.39)

Therefore, the total latency of a Nash ow L(fne) is a function of both 1=(1 +��j1)

and 1=(1 + ��j2). It follows from �j1 6= �j2 that POA > 1.

Remark 4.1. Note that for a critical point, under Assumptions 4.1 and 4.2, if we

set �� = 1=�j0, then the Nash ow is uniquely determined as: (a) for group �j0:

fnerk;�j0 =

8>>>>>><>>>>>>:

0; if 1 � k < k1 or k2 < k � v;

Ak1F � F̂j0 + Fk1 + 1
2
Bk1 ; if k = k1,

Ak2F � �Fj0 + Fk2 + 1
2
Bk2 ; if k = k2,

AkF + 1
2
Bk; otherwise;

(4.40)

(b) all players with � < �j0 only choose one route r 2 fr1; :::; rk1g and fnerk = f �rk for
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1 � k < k1; (c) all players with � > �j0 only choose one route r 2 frk2 ; :::; rvg and

fnerk = f �rk for k2 < k � v.

From the above analysis, we conclude that, if the distribution of B satis�es certain

conditions, we can always �nd a �� � 0 such that the POA can achieve 1 by charging

the designed toll �e(fe) = ��aefe on each link e 2 E . Moreover, it is proved in [86]

that, in nonatomic congestion games, the POA can be bounded by 4
3

if the network

has linear latency functions.

For any distribution of B and any given � � 0, we can always �nd a Nash ow in

the congestion game we formulated. Under Assumptions 4.1 and 4.2, we provide

a method to design the optimal �� that minimizes the POA as summarized in

Algorithm 4.1.

4.3 Simulations

In this section, we �rst use numerical examples to illustrate that whether the POA

can achieve 1 for any given network depends on the distribution of B. Then, based

on the real tra�c data in Singapore, we analyze the POA for two di�erent tra�c

networks with identical distribution of B, which indicates that whether the POA

can reach 1 also depends on the topology and parameters of a tra�c network.

4.3.1 Numerical Examples

Consider the network with 3 routes as shown in Fig. 4.1, and suppose that there

are 5 groups of players with a total ow F = 2. The parameters of the network

are given by fae1 = 25; ae2 = 68; ae3 = 47; ae4 = 86g, fbe1 = 10; be2 = 21; be3 =

85; be4 = 98g, and B = f100; 1; 0:35; 0:18; 0:01g. The total latency of the Nash ow

without tolls is L(fne(0)) = 290:7, and the socially optimal ow on each route is

f �r1
= 0:8277; f �r2

= 0:5166; f �r3
= 0:6557 with L(f �) = 280:3. Next, we analyze the

POA for three di�erent distributions of B.
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Algorithm 4.1: Best POA

Input: Network parameters (e.g., ae; be) and network topology (e.g., Fig. 4.1),
total ow F , price sensitivities B and its distribution P
Output: Best POA
Calculate the social optimal ow f �;
for q1 = 1 : v
Group �1 choose a sequential routes rq1 ; :::; rv
with ow frq1 ;�1 > 0; :::; frv ;�1 > 0;

...
for qj+1 = 1 : qj

Group �j+1 choose a sequential routes rqj+1
; :::; rqj

with ow frqj+1 ;�j+1
> 0; :::; frqj ;�j+1

� 0;
...

for qM = qM�1 � 1 : qM�1

Group �M choose a sequential routes r1; :::; rqM
with ow fr1;�M > 0; :::; frqM ;�M > 0;

Solve the equations set generated by (A.1);
Return Nash ow fne(�);

Find �� by optimizing L(fne(�));
end

...
end

...
end

Return the largest value of L(fne(��))
L(f�)
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For the �rst case, assume the distribution of B is P = f0:25; 0:46; 0:04; 0:20; 0:05g.

According to Algorithm 4.2, we can check that condition (i) in Theorem 4.2 is

satis�ed. Therefore, we can set �� = 1=�2 = 1 to obtain L(fne(��)) = L(f �), i.e.,

POA = 1. As expected, the road pricing decreases the total latency.

Algorithm 4.2: Condition checking of Theorem 4.2

Data: Network parameters (e.g., ae; be) and network topology (e.g., Fig. 4.1),
total ow F , price sensitivities B and its distribution P
Result: Whether POA=1
Calculate the social optimal ow f � and Nash ow fne;
Find the solution of equations (4.25)-(4.28);
for i = 1 : M

Check condition (4.32);
if condition (4.32) is satis�ed
Return POA=1 with �� = 1=�i;

end
end
for i = 1 : M
for k1 = 2 : v � 1
for k2 = k1 : v � 1
Check condition (4.33);

if condition (4.33) is satis�ed
Return POA=1 with �� = 1=�i;

end
end

end
end
Return POA > 1

For the second case, let P = f0:1225; 0:2053; 0:2972; 0:2735; 0:1015g. There exists

a group �3 such that p̂3 < f �r1
=F = 0:4138; ~p3 = p1 + p2 = f �r3

=F = 0:3278, i.e.,

condition (ii) in Theorem 4.2 is satis�ed, which can be checked by Algorithm 4.2.

Thus, we can set �� = 1=�3 = 2:857 to achieve POA = 1.

For the third case, assume the distribution of B is P = f0:35; 0:40; 0:11; 0:09; 0:05g.

In this case, according to Algorithm 4.2, the conditions in Theorem 4.2 are not

satis�ed. Using Algorithm 4.1, we get �� = 0:9729 and L(fne(��)) = 281:0. The

road pricing reduces the total latency, but POA = 1:003 > 1.
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4.3.2 Real Data Simulations in Tra�c Networks

For real data analysis, we consider two road networks in Singapore. One road

network is in the east of Singapore (e.g. Fig. 4.2), and the other one is in Central

Business District (CBD) (e.g. Fig. 4.3). Assume that road users are divided into

groups according to their vehicle modes { car, motorcycle, taxi, bus. According to

the 2004 stated preference survey data, the price sensitivities (min/cent) for these

four groups are 0:25; 0:36; 0:20; 0, respectively. The vehicle distribution of these

four vehicle types provided by Singapore land transport statistics in brief 2005 is

f0:7239; 0:1884; 0:0281; 0:0596g. Assume that the total ow of the network is 500.

In the following simulation, we will show that, for the network as shown in Fig. 4.2,

the POA cannot achieve 1 since both condition (i) and (ii) in Theorem 4.2 are not

satis�ed. While for the CBD road network as shown in Fig. 4.3, the distribution

of B satis�es the condition (i) in Theorem 4.2. Therefore, we can �nd �� such that

POA=1.

Figure 4.2: A tra�c network in the east of Singapore

Example 4.1. (The East Road Network of Singapore) To see the road network in

Fig. 4.2 clearly, we extract its structure and show it in Fig. 4.4. For each edge

e in Fig. 4.4, we �t the latency function le(fe) to real tra�c data (e.g., the loop

count data to record the tra�c ow and the taxi data to record the average speed).

Then, we get the value of ae; be for each edge e. For example, as shown in Fig.

4.5, ae = 0:0932; be = 5:5409 for edge e1 in Fig. 4.4. The socially optimal ow for
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Figure 4.3: A tra�c network in the Central Business District (CBD) of Singapore

this network is f �r1
= 176:7981; f �r2

= 198:0003; f �r3
= 114:2368; f �r4

= 10:9648 with

L(f �) = 35922:807. We can check that this network doesn’t satisfy either condition

(i) or (ii) in Theorem 4.2. Through Algorithm 4.1, we get �� = 3:394 and the

corresponding Nash ow is fner1
= 177:028; fner2

= 197:966; fner3
= 113:710; fner4

=

11:296. We can further check that motorcycle group chooses route r3; r4, car group

chooses route r1; r2; r3 and both taxi and bus groups choose route r1. The total

latency of the Nash ow without toll is L(fne(0)) = 35950:711 and with toll is

L(fne(��)) = 35922:899. Compare L(fne(��)) and L(f �), we have POA > 1. As

shown in Fig. 4.6, the POA achieves its minimal point at �� = 3:394 where the

POA slightly deviates from 1. It is also veri�ed that the POA is bounded by 4=3.

Remark 4.2. Note that a given ow on a road can correspond to either a high

density of vehicles on a congested road, in which case the latency is large, or a low

density of vehicles on a free ow road, in which case the latency is small [138].

Due to this phenomenon, the latency is not uniquely determined by the ow, and

depends on the congestion state of the road. However, in our examples, we try to

grasp the main features of the relationship between the tra�c ow and travel time

before congestion. Therefore, we adopt the one-to-one relationship between delay
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Figure 4.4: The structure of the east road network of Fig. 4.2. In this tra�c
network, R = fr1; r2; r3; r4g is described by r1 = fe8; e9g; r2 = fe1; e2; e3; e10g; r3 =
fe4; e5; e10g; r4 = fe4; e6; e7; e3; e10g:
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Figure 4.5: The relationship between tra�c ow and travel time for edge e1 (i.e.,
le = 0:0932fe + 5:5409) in Fig. 4.4

and ow to formulate our problem as other researchers do [86, 87, 139, 140].

Example 4.2. (CBD of Singapore) In the CBD network, there are three routes

R = fr1; r2; r3g. Similar to the east road network case, we �t the latency function

le(fe) to real data for each edge e in Fig. 4.3 and get the value of ae; be. Then,

we can calculate the socially optimal ow for this network is f �r1
= 160:9258; f �r2

=
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Figure 4.6: The relationship between � and POA for road network in Fig. 4.2

226:7071; f �r3
= 112:3671 with L(f �) = 12532:291. It is easy to check that this

network satis�es the condition (i) in Theorem 4.2. Therefore, we can �nd �� = 4

such that POA=1, which is shown in Fig. 4.7. At the Nash ow, only car group

chooses more than one routes, i.e., r1; r2; r3. The motorcycle group chooses route

r3 and both taxi and bus groups choose route r1. The total latency without toll is

L(fne(0)) = 12547:216 and with toll is L(fne(��)) = 12532:291. Obviously, the

designed toll improves the social welfare.
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Figure 4.7: The relationship between � and POA for road network in Fig. 4.3

Remark 4.3. The simulation results of the above examples coincide with conditions
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in Theorem 4.2 since Ak; Bk; k = 1; N are related with the topology and parameters

ae; be; e 2 E of the network. To be precise, whether the POA can reach 1 depends on

the distribution of B, the topology and parameters of the network.

4.4 Conclusions

In this chapter, the Nash ow and the POA in networks with one origin-destination

pair have been analyzed. The scaled marginal-cost pricing has been introduced to

optimize the POA for the case where all players in the noncooperative congestion

game have heterogeneous price sensitivities. For the two groups and two routes case,

it has been shown that the social optimum can always be achieved after charging the

designed toll on each link. For general case, if the distribution of price sensitivity

satis�es certain conditions, the designed toll can guarantee that the unique Nash ow

approaches the optimal ow, i.e., POA = 1. However, the optimal POA can’t always

reach 1. For any network with one origin-destination pair and any distribution of

price sensitivity, an algorithm was introduced to �nd a price scheme to minimize

the POA. The numerical examples and real data simulations further validated our

results and showed that whether the POA can achieve 1 depends on the distribution

of B, the topology and parameters of the network.
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Chapter 5

Analysis of E�ciency Loss in

Repeated Games via Smoothness

Arguments

In this chapter, we analyze the e�ciency loss of a sequence of action pro�les gen-

erated by repeated play. In Section 5.1, a network with multiple origin-destination

pairs is described. An upper bound of POTA for almost sure no-regret sequences is

given in Section 5.2 via smoothness arguments. In Section 5.3, we analyze the in-

uence of dynamic pricing on POTA for networks with linear latency functions and

discuss how inaccurate parameter information a�ects the upper bound of POTA. In

Section 5.4, the upper bound of POTA for nonlinear latency case is shown. We give

an upper bound of POTA for networks with heterogeneous players in Section 5.5.

In Section 5.6, the results are applied to a tra�c routing problem via simulations.

Section 5.7 concludes this chapter.

5.1 Problem Formulation

Consider a network (V ; E) with multiple origin-destination pairs, where V is the ver-

tex set and E is the edge set (e.g., Fig. 3.9). Denote jEj as the cardinality of E with
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jEj > 1. Suppose there are K origin-destination vertex pairs (o1; d1); :::; (oK ; dK).

For each origin-destination pair (oj; dj), there are ~Nj players routing from oj to

dj. Denote N = f1; :::; Ng as the set of players and
PK

j=1
~Nj = N . Let Rj de-

note the set of routes from oj to dj and
SK
j=1Rj = R. Each player i selects a

route si from its strategy set Si and denote S = �i2NSi as the strategy space of

all players. Note that players in the same origin-destination pair have the same

strategy set. Let s = fs1; :::; sNg be the action pro�le of all players. Denote

s�i = fs1; :::; si�1; si+1; :::; sNg. The latency le(fe) of each link e 2 E is associ-

ated with the number of players on this link, where fe =
PN

i=1 Ife 2 sig is the

number of players on link e. Here, function If�g is the indicator function. De�ne

fr =
PN

i=1 Ifsi = rg as the number of players on route r and fR = ffr : r 2 Rg.

Obviously, fe =
P

r2R:e2r fr. The latency received by player i by choosing route

si 2 Si is the sum of the latencies of links on this route:

Ci(s) =
X
e2si

le(fe) (5.1)

Based on the de�nition of (5.1), Ci(s) can be also denoted as Ci(si; fR).

The total latency of the network is

C(s) =
NX
i=1

Ci(s) =
X
e2E

le(fe)fe (5.2)

Each player i tries to minimize its latency Ci(s). A strategy pro�le sne is called a

pure strategy Nash equilibrium, if for each player i,

Ci(s
ne) = min

si2Si
Ci(si; s

ne
�i) (5.3)

Note that the congestion game we formulated above always possesses at least one

Nash equilibrium [27].
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A socially optimal strategy s� of the network is

s� = arg inf
s2S

C(s) (5.4)

In Chapter 4, we discussed POA, which characterizes the worst-case e�ciency loss

of all possible Nash equilibria. According to the de�nition, the POA for this model

can be described as

POA = sup
sne2S

C(sne)

C(s�)
(5.5)

In this chapter, we analyze the POA through smoothness arguments. The following

de�nition gives the concept of (�; �)-smoothness in a cost-minimization game, in

which the objective of each player is to minimize its cost function.

De�nition 5.1. A cost-minimization game is (�; �)-smooth if for every two strate-

gies s1 and s2,
NX
i=1

Ci(s
2
i ; s

1
�i) � � � C(s2) + � � C(s1) (5.6)

Specially, for a Nash equilibrium sne and the optimal strategy s�, we have

C(sne) =
NX
i=1

Ci(s
ne) �

NX
i=1

Ci(s
�
i ; s

ne
�i) � � � C(s�) + � � C(sne) (5.7)

The �rst inequality follows from the de�nition of Nash equilibrium. If a game is

(�; �)-smooth with � > 0; � < 1, then POA � �
1�� .

Remark 5.1. Besides Nash equilibrium and optimal strategy, inequality (5.6) holds

for any strategies s1 and s2. Therefore, the worst-case bound �
1�� generated through

smoothness arguments may be larger than the supermum of POA.

To identify the best upper bound of POA that is provable via smoothness arguments,

we de�ne the robust POA as follows [8].
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De�nition 5.2. The robust POA of a cost-minimization game is

inff �

1� �
: (�; �) such that the game is (�; �)� smoothg (5.8)

with � < 1.

Remark 5.2. Given " 2 (0; 1
�
�1), for the "-Nash equilibrium, de�ned as the strategy

pro�le s" such that Ci(s
") � (1 + ")Ci(si; s

"
�i) for any player i and strategy si, its

total latency is at most (1+")�
1��(1+")

times that of any socially optimal assignment.

5.2 The Price of Total Anarchy

The POA only considers the e�ciency loss of the worst-case Nash equilibrium rather

than the e�ciency loss of the evolutionary process in repeated play. Therefore, we

adopt the price of total anarchy (POTA) in this section.

Consider a sequence of strategies s(1); s(2); :::; s(T ) generated by repeated play. For

each player i and stage t, de�ne

�i(s(t)) = Ci(s(t))� min
si2Si

Ci(si; s�i(t)) (5.9)

��i (s(t)) = Ci(s(t))� Ci(s�i ; s�i(t)) (5.10)

where s� is any optimal strategy. Obviously, �i(s(t)) � ��i (s(t)).

For any smooth game, according to (5.6), we have

C(s(t)) � �

1� �
C(s�) +

PN
i=1 �

�
i (s(t))

1� �
(5.11)

Therefore, the average total latency satis�es:

1

T

TX
t=1

C(s(t)) � �

1� �
C(s�) +

1

1� �
1

T

TX
t=1

NX
i=1

��i (s(t)) (5.12)
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Assume that each player i uses the total number of other players choosing each route

r 2 R at the previous stage to estimate its action at the present stage. The best

response of player i at stage t is de�ned as:

BRi(fR(t� 1)) := f�si 2 Si : Ci(�si; fR(t� 1)) = min
si2Si

Ci(si; fR(t� 1))g (5.13)

Similar to Chapter 3, we adopt some kind of inertia to players’ decision making

progress. In the presence of inertia, player i stays with the previous action, i.e.,

si(t) = si(t � 1), if there is no opportunity for cost reduction, i.e., si(t � 1) 2

BRi(fR(t� 1)). Otherwise, player i will choose an action from BRi(fR(t� 1)) with

probability �i(t). That is to say, player i will stay with the previous action si(t� 1)

with probability 1� �i(t), even when there is an opportunity for cost reduction.

Assumption 5.1. There exist constants �1 and �2 such that, for every stage t � 1

and for any player i,

0 < �1 � �i(t) � �2 < 1 (5.14)

Lemma 5.1. Under Assumption 5.1, the action pro�les generated by best response

with inertia will converge to a Nash equilibrium almost surely in �nite steps.

Proof: It is shown in Chapter 3 that the action pro�les generated by best response

with inertia is convergent to a Nash equilibrium almost surely. Thus, we only need

to prove that the Nash equilibrium can be achieved in �nite steps.

If s(1) is a Nash equilibrium, the proof is completed. Otherwise, there exists at

least one player who haven’t achieved its minimal cost. For players who still have

opportunities to reduce their costs at time t > 1, denote ~n1(t) as the number of

players who will choose actions from their best response sets and ~n2(t) as the number

of players who will stay with the previous actions. The probability of the above event

is �
~n1(t)
2 (1��1)~n2(t). If the Nash equilibrium is achieved at time T0, the corresponding

probability is at most
QT0�1

t=1 (�
~n1(t)
2 (1 � �1)~n2(t)). Since limT0!1

QT0�1
t=1 (�

~n1(t)
2 (1 �

�1)~n2(t)) = 0, the Nash equilibrium can be achieved in �nite steps almost surely.
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De�nition 5.3. A strategy sequence exhibits an almost sure "-no-regret property if

and only if for every player i 2 N , there exists a " > 0 such that

lim
T!1

1

T

TX
t=1

�i(s(t)) < " a.s. (5.15)

If the sequence exhibits the almost sure "-no-regret property for any " > 0, then it is

said to be almost sure no-regret.

Remark 5.3. Note that the almost sure "-no-regret property can be also de�ned as,

for any player i and any possible strategy si 2 Si,

lim
T!1

1

T

TX
t=1

�i(si; si(t)js�i(t)) < " a.s. (5.16)

where �i(si; si(t)js�i(t)) = Ci(s(t))� Ci(si; s�i(t)).

From the de�nition of �i(s(t)) and �i(si; si(t)js�i(t)), it is manifest that (5.15) is

equivalent to (5.16).

Based on Lemma 5.1, if the action pro�les are generated by best response with

inertia, there exists a t0 > 0 such that
PN

i=1 Ci(s(t))�
PN

i=1 minsi2Si Ci(si; s�i(t)) = 0

for all t � t0.

For any T � t0, there exists a "T > 0 such that

1

T

TX
t=1

NX
i=1

�i(s(t)) =
1

T

TX
t=1

� NX
i=1

Ci(s(t))�
NX
i=1

min
si2Si

Ci(si; s�i(t))
�
� "T a.s.

(5.17)

where "T decreases with respect to T and "T ! 0 as T !1.

Note that as T ! 1, the strategy pro�les generated by best response with inertia

possess almost sure no-regret property.
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The price of total anarchy (POTA) is de�ned as the ratio between the average total

latency and the total latency of the optimal assignment, i.e.,

POTA =
1
T

PT
t=1 C(s(t))

C(s�)
(5.18)

Lemma 5.2. Under Assumption 5.1, if the congestion game is (�; �)-smooth with

robust POA � and the action pro�les s(1); s(2); :::; s(T ) are generated by best response

with inertia, then, for any T � t0, there exists a "T > 0 such that POTA � � +

"T
(1��)C(s�)

almost surely, where "T ! 0 as T !1.

Proof: If action pro�les s(1); s(2); :::; s(T ) are generated by best response with in-

ertia, under Assumption 5.1, (5.17) is satis�ed. Since �i(s(t)) � ��i (s(t)), according

to (5.12), for any T � t0, we have

1

T

TX
t=1

C(s(t)) � �

1� �
C(s�) +

"T
1� �

a.s. (5.19)

Therefore, for the robust POA �, POTA � �+ "T
(1��)C(s�)

almost surely.

Remark 5.4. As shown in Section 5.3 and 5.4, for networks with linear and nonlin-

ear latency functions, we can �nd � and � such that the cost-minimization game is

(�; �)-smooth. As a result, we can analyze the POTA for these cases via smoothness

arguments.

Remark 5.5. For any almost sure no-regret sequence, as T goes to in�nity, POTA �

� almost surely.

5.3 Networks with Linear Latency

In this section, we consider a network with a linear latency function on each edge.

Set the latency on edge e 2 E as

le(fe) = aefe + be (5.20)
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where ae > 0; be � 0. That is, the latency on each edge will increase with the growth

of ow on this edge.

It is proved in [141] that, for any nonnegative integers y; z,

y(z + 1) � 5

3
y2 +

1

3
z2 (5.21)

Then, it is easy to verify that networks with linear latency functions is a (5
3
; 1

3
)-

smooth game. Then we have the following lemma.

Corollary 5.1. In congestion games with linear latency function (5.20), if the action

pro�les s(1); s(2); :::; s(T ) are generated by best response with inertia, then, under

Assumption 5.1, POTA � 5
2

+ 3"T
2C(s�)

for any T � t0 almost surely, where "T ! 0 as

T !1.

Proof: In congestion games with linear latency, � = 5=3; � = 1=3. Substitute �; �

into (5.19), we get the upper bound of POTA.

Remark 5.6. For the cases we discussed in Sections 5.3 and 5.4, the optimal strat-

egy s� is unique due to the convex latency function.

5.3.1 Analysis of POTA with Dynamic Pricing in Linear

Latency Networks

Suppose the authority charges a dynamic pricing on each edge to a�ect players’

travel behaviors and improve the network e�ciency. For the linear latency (5.20),

motivated by the pricing scheme in [42], we assume the toll for each edge e 2 E as

pe(fe) = we(fe � 1) (5.22)

where we is a nonnegative constant to be designed.

To reduce the e�ciency loss of the network, we aim to �nd fw�e ; e 2 Eg to optimize

the upper bound of the POTA.
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After charging the dynamic pricing (5.22), the cost that player i tries to minimize

becomes

Ui(s) =
X
e2si

(le(fe) + pe(fe)) (5.23)

and the best response of player i at stage t is modi�ed as:

BRi(fR(t� 1)) := f�si 2 Si : Ui(�si; fR(t� 1)) = min
si2Si

Ui(si; fR(t� 1))g (5.24)

Consider a sequence s(1); s(2); :::; s(T ) generated by repeated play. For each player

i and stage t, de�ne

�i;p(s(t)) = Ui(s(t))� min
si2Si

Ui(si; s�i(t)) (5.25)

��i;p(s(t)) = Ui(s(t))� Ui(s�i ; s�i(t)) (5.26)

where s� is the optimal strategy.

According to Lemma 5.1, under Assumption 5.1, in the network with dynamic pric-

ing (5.22), the action pro�les generated by best response with inertia will converge

to Nash equilibrium almost surely in �nite steps. Therefore, there exists a t0 > 0

such that
PN

i=1 Ui(s(t))�
PN

i=1 minsi2Si Ui(si; s�i(t)) = 0 for all t � t0.

For any T � t0, there exists a �T � 0 such that

1

T

TX
t=1

NX
i=1

�i;p(s(t)) =
1

T

TX
t=1

(
NX
i=1

Ui(s(t))�
NX
i=1

min
si2Si

Ui(si; s�i(t))) � �T a.s.

(5.27)

where �T decreases with respect to T and �T ! 0 as T !1.

Obviously, after adding the dynamic pricing on each edge, the strategy pro�les

generated by best response with inertia still possess almost sure no-regret property

as T approaches in�nity.
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Note that we can be viewed as the additional congestion cost due to one more player

on link e and be the cost due to free-ow travel time of link e. In practice, be should

be much larger than we since the increased cost (travel time) by one more player on

each link is much smaller than the free-ow travel time of this link. Therefore, we

have the following assumption.

Assumption 5.2. w � (2
3

+ 3w
8a

)b, where w = maxe2E we; w = mine2E we; a =

maxe2E ae; b = mine2E be

Theorem 5.1. For congestion game with linear latency function (5.20) and dynamic

pricing (5.22), if the action pro�les s(1); s(2); :::; s(T ) are generated by best response

with inertia, then, under Assumptions 5.1 and 5.2, w�e = ae for each edge e 2 E and

POTA � 49
24

+ �T
C(s�)

for any T � t0 almost surely, where �T ! 0 as T !1.

Proof: It is easy to verify that, for any nonnegative y; z,

yz � 2

3
z2 +

3

8
y2 (5.28)

For any two strategies s1; s2, note that f 1
e =

PN
i=1 Ife 2 s1

i g; f 2
e =

PN
i=1 Ife 2 s2

i g.

Since
P

e2E f
1
e =

P
e2E f

2
e = N , under Assumption 5.2, we have

X
e2E

wef
1
e �

X
e2E

(
2

3
+

3we
8ae

)bef
2
e (5.29)

Since the number of players using resource e in the outcome (s2
i ; s

1
�i) is at most one

more than that in s1, according to (5.21), (5.28) and (5.29),

(i) if we � ae for all e 2 E , for any strategy s1; s2,

NX
i=1

Ui(s
2
i ; s

1
�i) �

X
e2E

f 2
e (le(f

1
e + 1) + pe(f

1
e + 1))

�
X
e2E

((
5

3
+

3we
8ae

)(aef
2
e + be)f

2
e + we(f

1
e � 1)f 1

e )

�(
5

3
+

3

8
w0)C(s2) +

X
e2E

pe(f
1
e )f 1

e

(5.30)
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where w0 = maxe2E
we
ae
� 1.

According to (5.30), we have

C(s(t)) � (
5

3
+

3

8
w0)C(s�) +

NX
i=1

��i;p(s(t)) (5.31)

Thus
1

T

TX
t=1

C(s(t)) � (
5

3
+

3

8
w0)C(s�) +

1

T

TX
t=1

NX
i=1

��i;p(s(t)) (5.32)

For action pro�les generated by best response with inertia, (5.27) is satis�ed. Since

�i;p(s(t)) � ��i;p(s(t)), according to (5.32), for any T � t0, we have

1

T

TX
t=1

C(s(t)) � (
5

3
+

3

8
w0)C(s�) + �T a.s. (5.33)

i.e., POTA � 5
3

+ 3
8
w0 + �T

C(s�)
almost surely.

We can check that (5.33) reaches its minimal point at w�e = ae for all e 2 E with

POTA � 49
24

+ �T
C(s�)

.

(ii) if there exists at least one edge e 2 E such that we � ae, denote the edge set as

E0 = fe 2 Ejwe � aeg, for any strategy s1; s2,

NX
i=1

Ui(s
2
i ; s

1
�i) �

X
e2E

f 2
e (le(f

1
e + 1) + pe(f

1
e + 1))

�
X
e2E

((
5

3
+

3we
8ae

)(aef
2
e + be)f

2
e + we(f

1
e � 1)f 1

e )

+
X
e2E0

1

3
(1� we

ae
)(aef

1
e + be)f

1
e

�(
5

3
+

3

8
w0)C(s2) +

1

3
(1� q0)C(s1) +

X
e2E

pe(f
1
e )f 1

e

(5.34)

where q0 = mine2E0

we
ae
� 1.

According to (5.34), we have

1

T

TX
t=1

C(s(t)) �
5 + 9w0

8

2 + q0

C(s�) +
3

2 + q0

1

T

TX
t=1

NX
i=1

��i;p(s(t)) (5.35)
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Similar to (i), according to (5.35), for any T � t0, we have

1

T

TX
t=1

C(s(t)) �
5 + 9w0

8

2 + q0

C(s�) +
3

2 + q0

�T a.s. (5.36)

i.e., POTA � 5+
9w0

8

2+q0
+ 3

2+q0

�T
C(s�)

almost surely.

Specially, if we � ae for all e 2 E , i.e., E0 = E , (5.36) still holds.

It is easy to check that (5.36) reaches its minimal point at w�e = ae for all e 2 E

with POTA � 49
24

+ �T
C(s�)

.

By combining (i) and (ii), the proof is completed.

From Theorem 5.1, if the pricing scheme is designed as pe(fe) = ae(fe � 1), the

upper bound of the POTA will decrease compared to that without pricing.

Remark 5.7. If we set we = ae for all e 2 E, Assumption 5.2 becomes a � 25
24
b. In

the linear latency function (5.20), ae can be viewed as the increased travel time by

adding one player to link e and be is the free-ow travel time on link e. In reality,

be is much larger than ae. Therefore, Assumption 5.2 is reasonable.

5.3.2 POTA with Inaccurate Information

In Section 5.3.1, we show that if the parameter information ae of each edge e 2 E

is known to the authority, the toll can be designed as pe(fe) = ae(fe � 1) to reduce

the upper bound of the POTA. However, in reality the authority may have incorrect

information on ae. In this section, we will analyze the inuence of the inaccurate

parameter information on the POTA.

Assume that the dynamic pricing charged by the authority on each edge e 2 E is

p0e(fe) = âe(fe � 1) (5.37)

where âe = ae + e, e 2 [�ae; ae].

The cost received by each player i becomes Ui(s) =
P

e2si(le(fe) + p0e(fe)).
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Assumption 5.3. b � 2a.

Corollary 5.2. For congestion game with linear latency function (5.20) and dynam-

ic pricing (5.37), if the action pro�les s(1); s(2); :::; s(T ) are generated by best re-

sponse with inertia, then, under Assumptions 5.1 and 5.3, for any T � t0, POTA �
49
24

+ 9+8jEja
24a

+ �T
C(s�)

almost surely, where  = maxe2E e and a = mine2E ae, and

�T ! 0 as T !1.

Proof: Since jej � a for all e 2 E , by the Cauchy-Schwarz inequality, we have

X
e2E

(�1

3
e(f

1
e )2) � 1

3
a
X
e2E

(f 1
e )2 � 1

3
a(
X
e2E

f 1
e )2 =

1

3
a(
X
e2E

f 2
e )2 � jEj

3
a
X
e2E

(f 2
e )2)

(5.38)

Under Assumption 5.3,

X
e2E

(
25

24
+

3e
8ae

+
jEja
3ae

)bef
2
e � b

X
e2E

f 2
e � 2a

X
e2E

f 1
e �

X
e2E

(ae + e)f
1
e (5.39)

Therefore, for any strategies s1; s2, based on (5.21), (5.28), we obtain

NX
i=1

Ui(s
2
i ; s

1
�i) �

X
e2E

f 2
e (le(f

1
e + 1) + p0e(f

1
e + 1))

�(
49

24
+

9 + 8jEja
24a

)C(s2) +
X
e2E

p0e(f
1
e )f 1

e

(5.40)

For a sequence s(1); s(2); :::; s(T ) generated by repeated play, according to (5.40),

1

T

TX
t=1

C(s(t)) � (
49

24
+

9 + 8jEja
24a

)C(s�) +
1

T

TX
t=1

NX
i=1

��i;p(s(t)) (5.41)

If the action pro�les are generated by best response with inertia, for any T � t0,

1

T

TX
t=1

C(s(t)) � (
49

24
+

9 + 8jEja
24a

)C(s�) + �T a.s. (5.42)
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The proof is completed.

Obviously, the inaccurate dynamic pricing increases the upper bound of the POTA

compared to that with the accurate information, which means that the inaccurate

information may cause more e�ciency loss compared to the case with accurate

information of the latency function.

5.4 Networks with Nonlinear Latency

In this section, we consider networks with nonlinear latency functions. Motivated

by the delay time formulas summarized in [6], we set the latency function le(fe) as

le(fe) = te � (1 + de(fe=ce)
me) (5.43)

where me > 0, de � 0, te is the free-ow travel time which is a measure of the travel

time at zero ow, ce is the practical capacity which is a measure of the ow from

which the travel time will increase rapidly if the ow is further increased.

For any two strategies s1 and s2, we have

NX
i=1

Ci(s
2
i ; s

1
�i) �

NX
i=1

X
e2s2

i

le(f
1
e + 1) =

X
e2E

f 2
e le(f

1
e + 1) (5.44)

If there exist �; � such that

le(f
1
e + 1)f 2

e � �le(f
2
e )f 2

e + �le(f
1
e )f 1

e (5.45)

then, according to (5.44), (5.6) is satis�ed. Thus, for convenience, we only need to

�nd �; � with � < 1 that satisfy (5.45).

Lemma 5.3. For any nonnegative integers x; y and m > 0,

(x+ 1)my � (#+ 1)2m+1 � #m+1(#+ 2)m

(#+ 1)m+1 � #m+1
ym+1 +

(#+ 2)m � (#+ 1)m

(#+ 1)m+1 � #m+1
xm+1 (5.46)

Nanyang Technological University Singapore



5.4. NETWORKS WITH NONLINEAR LATENCY 85

where # = b’mc and ’m is the unique nonnegative real solution to (z+ 1)m = zm+1.

Proof: The proof is similar to the results shown in [99] by noting that m > 0.

Lemma 5.4. Let m0 = maxe2E me. A congestion game with nonlinear latency

function (5.43) is a ( (#+1)2m0+1�#m0+1(#+2)m0

(#+1)m0+1�#m0+1 ; (#+2)m0�(#+1)m0

(#+1)m0+1�#m0+1 )-smooth game.

Proof: According to Lemma 5.3 and latency function (5.43),

le(f
1
e + 1)f 2

e =te � (1 + de((f
1
e + 1)=ce)

me)f 2
e

�(#+ 1)2me+1 � #me+1(#+ 2)me

(#+ 1)me+1 � #me+1
te � (1 + de(f

2
e =ce)

me)f 2
e

+
(#+ 2)me � (#+ 1)me

(#+ 1)me+1 � #me+1
te � (1 + de(f

1
e =ce)

me)f 1
e

�(#+ 1)2me+1 � #me+1(#+ 2)me

(#+ 1)me+1 � #me+1
le(f

2
e )f 2

e

+
(#+ 2)me � (#+ 1)me

(#+ 1)me+1 � #me+1
le(f

1
e )f 1

e

(5.47)

Since both (#+1)2me+1�#me+1(#+2)me

(#+1)me+1�#me+1 and (#+2)me�(#+1)me

(#+1)me+1�#me+1 are nondecreasing with re-

spect to me, let m0 = maxe2E me, we obtain

NX
i=1

Ci(s
2
i ; s

1
�i) �

X
e2E

f 2
e le(f

1
e + 1)

�(#+ 1)2m0+1 � #m0+1(#+ 2)m0

(#+ 1)m0+1 � #m0+1
C(s2) +

(#+ 2)m0 � (#+ 1)m0

(#+ 1)m0+1 � #m0+1
C(s1)

(5.48)

which is a ( (#+1)2m0+1�#m0+1(#+2)m0

(#+1)m0+1�#m0+1 ; (#+2)m0�(#+1)m0

(#+1)m0+1�#m0+1 )-smooth game.

Corollary 5.3. Under Assumptions 5.1, for congestion game with nonlinear la-

tency function (5.43), if the action pro�les s(1); s(2); :::; s(T ) are generated by best

response with inertia, then for any T � t0,

POTA � (#+ 1)2m0+1 � #m0+1(#+ 2)m0

(#+ 1)m0+1 � (#+ 2)m0 + (#+ 1)m0 � #m0+1

+
((#+ 1)m0+1 � #m0+1)"T

((#+ 1)m0(#+ 2)� (#+ 2)m0 � #m0+1)C(s�)
a:s:

(5.49)

where "T ! 0 as T !1.
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Proof: From Lemma 5.4, we get the value of �; �. Substitute � and � into (5.19),

for any T � t0, we obtain the upper bound of POTA.

Remark 5.8. Note that the upper bound of POTA is tight. We can further check

that when me = 1 for all e 2 E, POTA� 5
2

+ 3"T
2C(s�)

, which is coincide with the linear

latency case in Section 5.3.

Remark 5.9. For the nonlinear latency network, we can adopt the discrete marginal-

cost toll, which is de�ned as pde(fe) = (fe � 1)(le(fe) � le(fe � 1)), to optimize the

POTA on an in�nite time horizon. By using the pricing scheme pde on each edge,

we can prove that sne is exactly s�, i.e., POA = 1. Furthermore, for action pro�les

generated by best response with inertia, POTA can reach 1 as T !1. However, it

is very hard to �nd the upper bound of POTA with price scheme pde in �nite steps.

5.5 Networks with Heterogenous Players

Di�erent players may have di�erent value of time. By taking the value of time into

consideration, the cost received by player i is de�ned as follows:

C�
i (s) = �i

X
e2si

le(fe) (5.50)

where �i > 0 measures the value of time for player i.

Theorem 5.2. Under Assumption 5.1, if the congestion game with cost function

(5.50) is (�; �)-smooth with robust POA �, then, for the action pro�les generated by

best response with inertia, POTA � � + "T
�0(1��)C(s�)

almost surely for any T � t0,

where �0 = maxi2N �i, "T ! 0 as T !1.
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Proof: Since the congestion game is (�; �)-smooth, there exist �; � satisfying (5.45).

Thus, for any s1 and s2,

NX
i=1

C�
i (s2

i ; s
1
�i) �

NX
i=1

�i
X
e2s2

i

le(f
1
e + 1)

��0

X
e2E

f 2
e le(f

1
e + 1)

��0�C(s2) + �0�C(s1)

(5.51)

where �0 = maxi2N �i; C(s) =
PN

i=1 C
�
i (s).

Denote

�i;�(s(t)) = C�
i (s(t))� min

si2Si
C�
i (si; s�i(t)) (5.52)

��i;�(s(t)) = C�
i (s(t))� C�

i (s�i ; s�i(t)) (5.53)

According to (5.51), we have

1

T

TX
t=1

C(s(t)) � �

1� �
C(s�) +

1

�0(1� �)

1

T

TX
t=1

NX
i=1

��i;�(s(t)) (5.54)

From Lemma 5.1, under Assumption 5.1, if the action pro�les are generated by best

response with inertia, for any T � t0, there exists a "T such that 1
T

PT
t=1

PN
i=1 �i;�(s(t)) �

"T , where "T ! 0 as T ! 1. Since �i;�(s(t)) � ��i;�(s(t)), based on (5.54), for any

T � t0, we have

1

T

TX
t=1

C(s(t)) � �

1� �
C(s�) +

"T
�0(1� �)

a.s. (5.55)

Since the robust POA is �, we obtain POTA � �+ "T
�0(1��)C(s�)

almost surely.

By comparing Theorem 5.2 and Lemma 5.2, we can see that, as T goes to in�nity,

the upper bound of the POTA for the cases with and without the heterogeneous

weight �i; i 2 N is the same.
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5.6 Real Data Simulations in Tra�c Networks

Consider a tra�c network in the east of Singapore as shown in Fig. 5.1. In this

network, there are two origin-destination pairs (O1; D) and (O2; D). The routes

from O1 to D and O2 to D are R1 = fr1; r2g and R2 = fr3; r4g, respectively, where

r1 = fe1; e5; e7g; r2 = fe1; e4; e6; e7g; r3 = fe2; e6; e7g; r4 = fe3g. Assume that each

edge possesses a linear latency (5.20). We �t the linear latency function (5.20) to

real tra�c data and get the value of ae and be for each edge e in Fig. 5.1.

Figure 5.1: A tra�c network in the east of Singapore

Assume that the number of players routing from O1 to D and O2 to D are 500 and

500, respectively. We can calculate that the total latency of the socially optimal

assignment is 1130100. At initial stage, each player chooses its route from R1 or R2

randomly. After that, players update their strategies based on best response with

inertia. As shown in Fig. 5.2 and Fig. 5.3, the action pro�les of all players �nally

converge to a Nash equilibrium for both the cases without and with road price. The

average total latency over 3000 stages without road price is 1131000 and with road

price scheme (5.22) is 1130300, which indicates that the road price improves the

average e�ciency of the network and the POTA of the network reduces from 1:0073

to 1:0059.
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Figure 5.2: Evolution of number of players on each route without price
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Figure 5.3: Evolution of number of players on each route with dynamic pricing
(5.22)

5.6.1 Tra�c Network with Public Transportation

Assume that players can choose to drive their private cars or to take a public trans-

port. If players choose a public transport, they will receive a �xed latency, which

can be regarded as a new route with ae = 0 for all edges on this route. Since play-

ers choosing public transport will not contribute to the tra�c congestion, we only

consider the total latency of private car drivers. In the tra�c network as shown in
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Fig. 5.1, we assume that the �xed latencies of the public transportation from O1 to

D and O2 to D are 1191:1 and 1500:4, respectively. We can show that the average

total latency of private car drivers over 3000 stages without road price is 790220.

After adding the road price (5.22), the average total latency of private car drivers

becomes 402260, which is only about 1=2 of the average total latency without road

price.

5.7 Conclusions

In this chapter, we have analyzed the POTA via smoothness arguments in network-

s with multiple origin-destination pairs. To identify the upper bound of POTA,

the concept of almost sure no-regret has been used. We have shown that the ac-

tion pro�les generated by best response with inertia possess almost sure no-regret

property. In the formulated congestion game, it has been proved that the designed

pricing schemes can improve the upper bound of POTA for linear latency networks,

and the e�ect of inaccurate parameter information on the upper bound of POTA

has been discussed. In addition, we gave the upper bound of POTA for a network

with nonlinear latency functions, and the POTA in a network with heterogeneous

players was also analyzed. The real data simulations were provided to validate our

theoretical results.
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Chapter 6

Decentralized Control Design

Based on Mean Field Games

In Chapter 3, a consensus protocol is proposed to estimate the interactions among

agents (players). In this chapter, we study mean �eld games, which provide another

technique to estimate the mass information in large population dynamic games.

A stochastic multi-agent system, where each agent evolves according to a linear

dynamic equation containing the input average of all agents, is formulated in Section

6.1. In this system, each agent aims to minimize its long time average (LTA) cost

coupling with other agents’ states via a population state average (PSA), which is also

known as the mean �eld term. In Section 6.2, an approximate PSA is constructed

via the Nash certainty equivalence (NCE) principle [57], and the properties of the

resulting decentralized mean �eld controls are discussed. In addition, the inuence

of inaccurate mean �eld information on individual agent is analyzed and a nonlinear

system with similar properties as the linear system considered above is studied. In

Section 6.3, we introduce the socially optimal model, where the objective of each

agent is to minimize the social cost as the sum of all agents’ LTA costs containing

the PSA. We show that the decentralized mean �eld social control is identical to the

decentralized mean �eld Nash control for an in�nite population system. In Section

6.4, we present some numerical simulations to verify our results. Conclusions are

stated in Section 6.5.
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6.1 Problem Formulation

We consider the following N -agent discrete-time linear dynamic system, where the

dynamic equation for agent i; 1 � i � N is described by:

xi(t+ 1) = xi(t) +Q1ui(t) +Q2

PN
i=1 ui(t)

N
+ wi(t+ 1) (6.1)

where xi(t) 2 R is the state; ui(t) 2 RM�1 is the control input; wi(t) is the random

noise; Q1; Q2 2 R1�M are time-invariant parameters; �u(t) =
PN
i=1 ui(t)

N
denotes the

input average. The initial states fxi(0); i 2 Ng are mutually independent and are

also independent of fwi; i 2 Ng, where N = f1; :::; Ng is the agent set. In addition,

the initial state satis�es Exi(0) <1.

The objective of each agent in the noncooperative game is to minimize its individual

long time average (LTA) cost function containing a population state average (PSA):

Ui(ui; u�i) = lim
T!1

1

T
E
T�1X
t=0

�
q(xi(t)�

PN
i=1 xi(t)

N
)2 + ui(t)

0Rui(t)

�
(6.2)

where q is a positive constant, R 2 RM�M is a positive diagonal matrix, u�i =

fu1; :::; ui�1; ui+1; :::; uNg. Here, the PSA �x(t) =
PN
i=1 xi(t)

N
is also known as the

mean �eld term. In order to minimize Ui(ui; u�i), the admissible control set of

agent i is taken as Ui = fuijui(t) is adapted to �(xj(s) : 0 � s � t; j 2 N )g,

where �(X ) represents the �-algebra generated by the set X . Specially, for a

decentralized control system, the admissible control set of agent i is de�ned as

Ui;d = fuijui(t) is adapted to �(xi(s); 0 � s � t)g.

For the dynamic system formulated above, we investigate a set of decentralized

controls fu�i ; i 2 Ng where u�i 2 Ui;d is only a function of time t and local information

xi. In addition, fu�i ; i 2 Ng possesses the property of almost sure asymptotic Nash

equilibrium with respect to the costs fUi; i 2 Ng.

In the following, we introduce a motivational example.
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Example 6.1. The input average in (6.1) can be justi�ed by several practical sce-

narios, e.g., 1) for tra�c assignment problem, the cost of each individual driver at

the next step, xi(t + 1), is a function of the average behavior of all other driver-

s,
PN
i=1 ui(t)

N
; 2) for factory production, the production level of each manufactory,

xi(t + 1), is associated with the average production actions of all manufactories,PN
i=1 ui(t)

N
.

Take the production output for example. Assume that there are a large number of

factories supplying the same product to the market. For any factory i; 1 � i � N ,

let xi 2 R be the production level of factory i and ui 2 R be the prior production

decision of increasing or decreasing the production level xi. The average production

decisions
PN
i=1 ui(t)

N
provides each factory the information about the changes of market

demand. Therefore, the production level xi of factory i is adjusted based on both

factory i’s myopic production decision ui and the macroscopic market demand, i.e.,PN
i=1 ui(t)

N
. Precisely speaking, the production level xi of factory i evolves according

to the following dynamics:

xi(t+ 1) = xi(t) + a1ui(t) + a2

PN
i=1 ui(t)

N
+ wi(t+ 1) (6.3)

where a1; a2 are constant; wi denotes the uncertainty of the production level, which

may result from mechanical breakdown, sudden blackout, etc.

Since increasing product price implies more market demand and decreasing product

price implies less demand, suppose each factory seeks a production level which is

approximately proportional to the current market price [58], i.e.,

xi � ��p0 (6.4)

with the price p0 of the product de�ned as

p0 = �0 � 0

�PN
i=1 xi
N

�
(6.5)

where �� > 0; �0 > 0 and 0 > 0.
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According to (6.4) and (6.5), each factory will receive a penalty due to the bias

between xi and ��p0, which is denoted by q(xi(t)� ��(�0�0(
PN
i=1 xi
N

)))2. On the other

hand, to adjust production level xi, factory i will face the cost due to shutting down

or restarting production lines. We denote the cost of adjustment corresponding to

ui by r0u
2
i ; r0 > 0. Thus, the LTA cost function of factory i is formulated by:

Ui(ui; u�i) = lim
T!1

1

T
E
T�1X
t=0

�
q
�
xi(t)� ��(�0 � 0�x(t))

�2

+ r0u
2
i (t)

�
(6.6)

which falls into function (6.2).

6.2 Mean Field Term Approximation And Decen-

tralized Control Design

For the minimization of the LTA cost function (6.2), the control of agent i must

depend on the PSA �x(t). In general, the states of other agents may not be available

to agent i. Therefore, we adopt the NCE (Nash certainty equivalence) principle [57]

to ensure the control law to be decentralized by constructing an estimate  (t) of

the PSA. We will show that  (t) converges to the PSA when N approaches in�nity,

and the decentralized control law can be designed by using  (t) instead of �x(t).

Firstly, we rewrite the dynamic equation (6.1) to a form containing PSA.

Motivated by the formula of optimal control law in [63, 142], we set the mean �eld

control law of system (6.1)-(6.2) as

u�i (t) = K1xi(t) +K2(t) (6.7)

where K1; K2(t) 2 RM�1. Hence, �u(t) = K1�x(t) +K2(t) and (6.1) becomes:

xi(t+ 1) = xi(t) +Q1ui(t) +Q2(K1�x(t) +K2(t)) + wi(t+ 1) (6.8)
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Secondly, we denote  (t) as an estimate of the PSA, and design the decentralized

control law according to it.

Based on (6.8), the auxiliary dynamic equation of player i is given by:

xi(t+ 1) = xi(t) +Q1ui(t) +Q2(K1 (t) +K2(t)) + wi(t+ 1) (6.9)

with the revised LTA cost function:

Ji(ui;  (t)) = lim
T!1

1

T
E
T�1X
t=0

�
q(xi(t)�  (t))2 + ui(t)

0Rui(t)
�

(6.10)

Before calculating the decentralized optimal control of system (6.9)-(6.10), we make

the following assumption.

Assumption 6.1. fwi(t); 1 � i � Ng is a sequence of mutually independent noises

satisfying:

1) Ewi(t) = 0,

2) E(wi(t)wi(s)) = rw if t = s, and E(wi(t)wi(s)) = 0 otherwise,

3) E(wi(t)wj(s)) = 0 for all i 6= j.

Lemma 6.1. Under Assumption 6.1, for the optimal control problem (6.9)-(6.10),

the algebraic Riccati equation

1

2
Q1R

�1Q01p
2 �Q1R

�1Q01qp� 2q = 0 (6.11)

has a unique positive solution. The optimal control law u�i = arg minui2Ui Ji is given

by

u�i (t) = �1

2
R�1Q01(p� 2q)xi(t)�

1

2
R�1Q01

�
2q (t)� ~(t)

�
(6.12)

where ~(t) satis�es:

~(t+ 1) =
�

1 +Mp
�

~(t)�Mp2 (t) (6.13)
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with M = (Q1 +Q2)R�1Q01=2.

Moreover, the unique bounded solution of (6.13) is given by:

~(t) =
1X
j=t

(1 +Mp)t�j�1Mp2 (j) (6.14)

Proof: De�ne the Hamilton’s equations of system (6.9)-(6.10) as:

H(t) =q(xi(t)�  (t))2 + u0i(t)Rui(t)

+ �i(t+ 1)
�
xi(t) +Q1ui(t) +Q2(K1 (t) +K2(t))

� (6.15)

then, we obtain
@H(t)

@ui(t)
= 2Rui(t) +Q01�i(t+ 1) = 0 (6.16)

�i(t) =
@H(t)

@xi(t)
= 2q(xi(t)�  (t)) + �i(t+ 1) (6.17)

Since the �rst term of u�i is a linear function of xi, assume �i(t) = p(t)xi(t)� ~(t).

According to (6.1), (6.16), (6.17), and note that T ! +1, we get equation (6.11),

(6.12) and (6.13).

Note that 1 + Mp > 1,
P1

j=0(1 + Mp)�j�1 is bounded. Thus, with the bounded

initial condition

~(0) =
1X
j=0

(1 +Mp)�j�1Mp2 (j) (6.18)

we get the unique bounded solution of (6.13).

Intuitively, the expectation of the mean �eld term �x should be an approximation

of itself. Therefore, we set  (t) = 1
N

PN
i=1 Ex�i (t), where x�i is the corresponding

solution to the optimal control (6.12). In the following corollary, we show that  (t)

remains constant and equals  (0).

Nanyang Technological University Singapore



6.2. MEAN FIELD TERM APPROXIMATION AND DECENTRALIZED
CONTROL DESIGN 97

Corollary 6.1. Under Assumption 6.1, if  (t) = 1
N

PN
i=1 Exi(t), the system has a

unique bounded solution

( (t); ~(t)) = ( (0); p (0)); t � 0 (6.19)

Proof: From (6.12), we have K1 = �1
2
R�1Q01(p � 2q); K2(t) = �1

2
R�1Q01(2q (t) �

~(t)). Take expectation of (6.9) and note that  (t) = 1
N

PN
i=1 Exi(t), we obtain

 (t+ 1) =
�
1� 1

2
(Q1 +Q2)R�1Q01p

�
 (t) +

1

2
(Q1 +Q2)R�1Q01~(t) (6.20)

Combine (6.20) with (6.13), and rewrite the system as:

0@ (t+ 1)

~(t+ 1)

1A =

0@1�Mp M

�Mp2 1 +Mp

1A0@ (t)

~(t)

1A (6.21)

where M = (Q1 +Q2)R�1Q01=2.

Therefore, the solution of (6.21) is:

0@ (t)

~(t)

1A =

0@�tMp+ 1 tM

�tMp2 1 + tMp

1A0@ (0)

~(0)

1A
=

0@  (0) + tM(~(0)� p (0))

~(0) + tMp(~(0)� p (0))

1A (6.22)

Hence, the unique bounded solution of system (6.13)-(6.20) is given in (6.19)

Based on Corollary 6.1, we can rewrite the optimal control (6.12) for any i 2 N as:

u�i (t) =
1

2
R�1Q01(p� 2q)( (0)� xi(t)) (6.23)

which is only associated with time t and local state xi.

Nanyang Technological University Singapore



98
6.2. MEAN FIELD TERM APPROXIMATION AND DECENTRALIZED

CONTROL DESIGN

According to (6.11) and (6.23), the solution of the dynamic system (6.9)-(6.10) is

given by:

x�i (t) =(1� 2q

p
)txi(0) +

2q

p

t�1X
m=0

(1� 2q

p
)t�1�m (0) +

t�1X
m=0

(1� 2q

p
)t�1�mwi(m+ 1)

=(1� 2q

p
)txi(0) +

�
1� (1� 2q

p
)t
�
 (0) +

t�1X
m=0

(1� 2q

p
)t�1�mwi(m+ 1)

(6.24)

The stability of the mean �eld system (6.9)-(6.10) under the decentralized control

(6.23) is shown in the following theorem.

Theorem 6.1. Under Assumption 6.1,

max
1�i�N

lim
T!1

1

T
E
T�1X
t=0

�
q
�
x�i (t)

�2
+ u�i (t)

0Ru�i (t)
�
<1 (6.25)

Proof: For each agent i, according to (6.24), we have

lim
T!1

1

T
E
T�1X
t=0

q
�
x�i (t)

�2 � lim
T!1

1

T
E
T�1X
t=0

3q
�

(1� 2q

p
)2t(xi(0)�  (0))2 +  (0)2

+
� t�1X
m=0

(1� 2q

p
)t�1�mwi(m+ 1)

�2
� (6.26)

Based on the algebraic Riccati equation (6.11), we have 0 < 2q=p < 1. Thus,

lim
T!1

1

T
E
T�1X
t=0

(1� 2q

p
)2t(xi(0)�  (0))2 = lim

T!1

p2
�
1� (1� 2q

p
)2T
�

4qT (p� q)
= 0 (6.27)

and

lim
T!1

1

T
E
T�1X
t=0

� t�1X
m=0

(1� 2q

p
)t�1�mwi(m+ 1)

�2

= lim
T!1

p2

4q(p� q)
rw

�
1�

p2
�
1� (1� 2q

p
)2T
�

4qT (p� q)

�
=

p2

4q(p� q)
rw

(6.28)
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Since Exi(0) < 1,  (0) < 1. Therefore, by (6.27) and (6.28), there exists a

constant 0 < �0 <1 independent of i and N such that

lim
T!1

1

T
E
T�1X
t=0

q
�
x�i (t)

�2
< �0 (6.29)

On the basis of (6.24),

lim
T!1

1

T
E
T�1X
t=0

x�i (t) = lim
T!1

p
�
1� (1� 2q

p
)T
�

2qT
(xi(0)�  (0)) +  (0) =  (0) (6.30)

Therefore, we have

lim
T!1

1

T
E
T�1X
t=0

�
u�i (t)

0Ru�i (t)
�

= lim
T!1

1

T
E
T�1X
t=0

(p� 2q)2

4
Q1R

�1Q01( (0)� x�i (t))2

= lim
T!1

1

T
E
T�1X
t=0

(p� 2q)2

4
Q1R

�1Q01
�
( (0))2 + 2 (0)x�i (t) + (x�i (t))

2
�

=
(p� 2q)2

4
Q1R

�1Q01
�
3( (0))2 + �0

�
<1

(6.31)

Combining (6.29) and (6.31), we get (6.25).

For the approximation of PSA  (t) and the decentralized mean �eld control u�i , the

following questions naturally come to our mind:

� Whether the state x�i of agent i achieves consensus as time goes to in�nity?

� Whether the PSA
PN
i=1 x

�
i (t)

N
converges to  (0) as the population size N goes

to in�nity?

� Whether the control laws fu�i ; i 2 Ng possess the property of almost sure

asymptotic Nash equilibrium?
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� Whether the inaccurate mass information  (0) a�ects individual agent’s LTA

cost?

� Whether these results apply to nonlinear systems?

In the following subsections, we will answer these questions.

6.2.1 Mean Consensus Property

Before discussing the consensus property of all agents under the decentralized control

law (6.23), we give the de�nition of mean-consensus.

De�nition 6.1. [143] If limt!1 jExi(t) � Exj(t)j = 0 for any i 6= j, then mean-

consensus is said to be achieved asymptotically.

Theorem 6.2. Under Assumption 6.1, by using the optimal control law (6.23), a

mean-consensus is achieved asymptotically as t ! 1 with asymptotic individual

variance p2

4q(p�q)rw.

Proof: Note that 0 < 2q=p < 1. Therefore, according to (6.24) and under As-

sumption 6.1, limt!1 Ex�i (t) =  (0); 1 � i � N , which means that all states reach

mean-consensus in  (0) asymptotically. For the asymptotic individual variance, we

have

lim
t!1

E(x�i (t)�  (0))2 = lim
t!1

E
� t�1X
m=0

(1� 2q

p
)t�1�mwi(m+ 1)

�2

=
p2

4q(p� q)
rw

(6.32)

for any i 2 N .

6.2.2 Convergence of the PSA

In the following theorem, we show that it is reasonable to approximate PSA by  (0)

when N approaches in�nity.
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Theorem 6.3. Under Assumption 6.1,

lim
N!1

E(
1

N

NX
i=1

x�i (t)�  (0))2 = 0 (6.33)

Proof: By (6.24), we have

lim
N!1

E(
1

N

NX
i=1

x�i (t)�  (0))2

= lim
N!1

E
�

(1� 2q

p
)t

1

N

NX
i=1

xi(0) +
�

1� (1� 2q

p
)t
�
 (0)

+
1

N

NX
i=1

t�1X
m=0

(1� 2q

p
)t�1�mwi(m+ 1)�  (0)

�2

= lim
N!1

E
�

(1� 2q

p
)t(

1

N

NX
i=1

xi(0)�  (0)) +
1

N

NX
i=1

t�1X
m=0

(1� 2q

p
)t�1�mwi(m+ 1)

�2

= lim
N!1

E
�

1

N

NX
i=1

t�1X
m=0

(1� 2q

p
)t�1�mwi(m+ 1)

�2

= lim
N!1

p2rw
4qN(p� q)

�
1� (1� 2q

p
)2t
�

= 0:

(6.34)

The third equation is based on the fact that  (0) = 1
N

PN
i=1 Exi(0). Under Assump-

tion 6.1, we obtain the forth equation.

Lemma 6.2. Under Assumption 6.1,

lim
N!1

lim
T!1

1

T

T�1X
t=0

E( (0)� 1

N

NX
i=1

x�i (t))
2 = 0 (6.35)

Proof: According to (6.34), for all t � 0, we have

E( (0)� 1

N

NX
i=1

x�i (t))
2 � p2rw

4qN(p� q)
(6.36)
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Hence,

lim
N!1

lim
T!1

1

T

T�1X
t=0

E( (0)� 1

N

NX
i=1

x�i (t))
2 � lim

N!1
lim
T!1

1

T

T�1X
t=0

p2rw
4qN(p� q)

= 0

(6.37)

From the above, we can see that  (0) is indeed an approximation of PSA when

N !1.

6.2.3 "-Nash Equilibrium

In this section, we analyze the performance of the decentralized mean �eld controls.

We �rst introduce the concept of "-Nash equilibrium to demonstrate that the mean

�eld control strategies may result in sub-optimal LTA costs. After that, we show the

mean �eld controls generate an almost sure asymptotic Nash equilibrium. Finally,

the minimal value that the LTA cost can reach is identi�ed.

De�nition 6.2. [76] A set of controls fu�i ; i 2 Ng is called an "-Nash equilibrium

with respect to the costs fUi; i 2 Ng, if there exists " > 0 such that for any i 2 N ,

Ui(u
�
i ; u
�
�i) � inf

ui2Ui
Ui(ui; u

�
�i) + " (6.38)

Next, we give the de�nition of almost sure asymptotic Nash equilibrium.

De�nition 6.3. A set of controls fu�i ; i 2 Ng is called an almost sure asymptotic

Nash equilibrium with respect to the costs fUi; i 2 Ng, if there exists a sequence of

nonnegative variables f"N ; N � 1g such that limN!1 "N = 0 and for any i 2 N ,

Ui(u
�
i ; u
�
�i) � inf

ui2Ui
Ui(ui; u

�
�i) + "N (6.39)
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Theorem 6.4. Under Assumption 6.1, the set of mean �eld control fu�i ; i 2 Ng

generates an almost sure asymptotic Nash equilibrium, i.e., for any i 2 N ,

Ui(u
�
i ; u
�
�i) � inf

ui2Ui
Ui(ui; u

�
�i) + "N (6.40)

where limN!1 "N = 0 and

("N)2 = lim
T!1

1

T

T�1X
t=0

E( (0)� 1

N

NX
i=1

x�i (t))
2 (6.41)

Proof: For any i 2 N , we have

Ui(u
�
i ; u
�
�i)

= lim
T!1

1

T
E
T�1X
t=0

�
q(x�i (t)�

PN
i=1 x

�
i (t)

N
)2 + u�i (t)

0Ru�i (t)

�

� lim
T!1

1

T
E
T�1X
t=0

�
q(x�i (t)�  (0))2 + u�i (t)

0Ru�i (t)

�

+ q lim
T!1

1

T

T�1X
t=0

E( (0)� 1

N

NX
i=1

x�i (t))
2

+ 2q lim
T!1

1

T

T�1X
t=0

E(x�i (t)�  (0))( (0)� 1

N

NX
i=1

x�i (t))

4
=Ji(u

�
i ;  (0)) + q("N)2 + �N

(6.42)

Since  (0) is bounded, by the Cauchy-Schwarz inequality and Assumption 6.1, we

have �N = O("N). Therefore, q("N)2 + �N = O("N).

Note that u�i is the optimal solution with respect to the LTA cost function Ji(ui;  (0)),

i.e., u�i = arg infui2Ui Ji(ui;  (0)). Similar to (6.42), we get

Ji(u
�
i ;  (0)) � inf

ui2Ui
Ji(ui;  (0)) � inf

ui2Ui
Ui(ui; u

�
�i) +O("N) (6.43)

Based on (6.42) and (6.43), we obtain (6.40). Lemma 6.2 implies limN!1 "N = 0.
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From Theorem 6.4, it can be seen that the LTA cost Ui(u
�
i ; u
�
�i) may be sub-optimal

due to the deviation between  (0) and PSA. Fortunately, as the population size

goes to in�nity, Ui(u
�
i ; u
�
�i) can reach infui2Ui Ui(ui; u

�
�i). In order to identify the

minimal value of Ui(ui; u
�
�i), we propose the following theorem.

Theorem 6.5. Under Assumption 6.1,

lim
N!1

jUi(u�i ; u��i)� Ji(u�i ;  (0))j = 0 (6.44)

where

Ji(u
�
i ;  (0)) =

p2rw
4q(p� q)

�
q +

1

4
Q1R

�1Q01(p� 2q)2
�

(6.45)

Proof: According to the Cauchy-Schwarz inequality,

jUi(u�i ; u��i)� Ji(u�i ;  (0))j

= lim
T!1

q

T
E
T�1X
t=0

�
(2x�i (t)�  (0)� 1

N

NX
i=1

x�i (t))� (
1

N

NX
i=1

x�i (t)�  (0))

�

� lim
T!1

q

T
E

vuutT�1X
t=0

(2x�i (t)�  (0)� 1

N

NX
i=1

x�i (t))
2 �

vuutT�1X
t=0

(
1

N

NX
i=1

x�i (t)�  (0))2

� lim
T!1

q�

vuut 1

T

T�1X
t=0

E(
1

N

NX
i=1

x�i (t)�  (0))2

(6.46)

where � > 0 is a constant. Note that  (0) is bounded, according to (6.24) and under

Assumption 6.1, � always exists. Through Lemma 6.2, we obtain (6.44). Next, by

(6.23) and (6.24), we get the value of Ji(u
�
i ;  (0)).

Remark 6.1. From the above analysis, we come to the conclusion that Ji(u
�
i ;  (0))

is the minimal cost that Ui(ui; u
�
�i) can achieve as the population size N approaches

in�nity, i.e.,

Ui(u
�
i ; u
�
�i) = inf

ui2Ui
Ui(ui; u

�
�i) =

p2rw
4q(p� q)

�
q +

1

4
Q1R

�1Q01(p� 2q)2
�

(6.47)
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It is manifest that the optimal LTA cost of each agent is the same by applying the

decentralized mean �eld Nash control (6.23).

Furthermore, we can verify that Ui(u
�
i ; u
�
�i) deviates from its minimum value by

p2rw
4N(p�q) , i.e.,

Ui(u
�
i ; u
�
�i)� Ji(u�i ;  (0)) =

p2rw
4N(p� q)

(6.48)

6.2.4 Inaccurate Mean Field Information

As discussed above, each agent can use the estimate of the PSA to make its decision

and the resulting decentralized optimal control will lead to minimal LTA cost as the

population size goes to in�nity.

However, in the case where any agent has incorrect information on the mass be-

havior, it will spontaneously minimize its LTA cost with respect to the inaccurate

information. Assume that there is only one agent i has inaccurate mass information

� (0) and all other agents have precise information  (0). Note that this assumption

is reasonable for large population case since agent i’s decision has little inuence

on the mass behavior. Denote � (0) =  (0) +4( (0)), where 4( (0)) is the dis-

turbance of accurate estimate  (0) of PSA. Hence, the optimal control of agent i

is:

u4i (t) =
1

2
R�1Q01(p� 2q)( � (0)� xi(t)) (6.49)

Using the optimal control (6.49), the state of agent i is given by:

x4i (t) = (1� 2q

p
)txi(0) +

�
1� (1� 2q

p
)t
�

� (0) +
t�1X
m=0

(1� 2q

p
)t�1�mwi(m+ 1)

(6.50)

Through (6.49) and (6.50), the expected LTA cost of agent i can be calculated as:

Ji(u
4
i ;

� (0)) =
p2rw

4q(p� q)

�
q +

1

4
Q1R

�1Q01(p� 2q)2
�

(6.51)
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while the actual LTA cost obtained by agent i is:

Ji(u
4
i ;  (0)) =

p2rw
4q(p� q)

�
q +

1

4
Q1R

�1Q01(p� 2q)2
�

+ q
�
4 ( (0))

�2
(6.52)

Therefore, we have the following theorem.

Theorem 6.6. Under Assumption 6.1, we have:

Ji(u
4
i ;  (0))� Ji(u4i ; � (0)) = q

�
4 ( (0))

�2
(6.53)

Ji(u
4
i ;  (0))� Ji(u�i ;  (0)) = q

�
4 ( (0))

�2
(6.54)

where u�i is the optimal control with respect to the accurate information  (0) given

by (6.23).

Proof: The result can be obtained immediately by (6.45), (6.51) and (6.52).

Remark 6.2. Compare (6.45) with (6.51), we can conclude that the optimal LTA

cost of agent i with accurate mean �eld information  (0) is equal to its expected

LTA cost with incorrect information � (0), i.e.,

Ji(u
�
i ;  (0)) = Ji(u

4
i ;

� (0)) (6.55)

Equation (6.55) indicates that agent i always tries to optimize its LTA cost with the

mass information it possesses no matter it is correct or not, and its desired optimal

LTA costs for both cases are identical. However, from Theorem 6.6, we can see that

the actual LTA cost obtained by agent i with inaccurate information deviates from

the minimal value it can achieve by q
�
4 ( (0))

�2
.

Remark 6.3. Similar as Section 6.2.3, given the optimal control u��i of all other

agents with accurate information  (0), we can show that the minimal LTA cost

Ui(ui; u
�
�i) of agent i with inaccurate information � (0) is Ji(u

4
i ;  (0)) as N ! 1,
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i.e.,

Ui(u
4
i ; u

�
�i) = inf

ui2Ui
Ui(ui; u

�
�i)

=
p2rw

4q(p� q)

�
q +

1

4
Q1R

�1Q01(p� 2q)2
�

+ q
�
4 ( (0))

�2
(6.56)

Remark 6.4. In the case where only one agent has inaccurate information � (0),

all other agents can achieve their minimal LTA costs de�ned in (6.2) as N ! 1.

However, if there are a portion of agents having inaccurate information, the agents

with accurate information  (0) can’t reach their minimal LTA costs due to the fact

that  (0) is not an approximation of PSA any more.

6.2.5 Nonlinear Dynamics

In this section, we shall show that certain classes of nonlinear system possess similar

properties as the linear systems discussed above.

Consider the following nonlinear dynamic system for agent i 2 N :

xi(t+ 1) = fi(xi(t)) + ui(t) + wi(t+ 1) (6.57)

where xi 2 RM�1 is the state of agent i; ui 2 RM�1 is the control input; wi 2 RM�1

is the random noise; fi(�) : RM�1 ! RM�1 is a Borel measurable function. The

initial states fxi(0); i 2 Ng with Exi(0) < 1 are mutually independent and are

also independent of fwi; i 2 Ng.

For the random noise wi, we have the following assumption.

Assumption 6.2. fwi(t); 1 � i � Ng is a sequence of mutually independent noises

satisfying:

(i) Ewi(t) = 0,

(ii) E(wi(t)wi(s)
0) = Rw if t = s, where Rw 2 Rm�m is a nonnegative de�nite

matrix, and E(wi(t)wi(s)
0) = 0 otherwise,

(iii) E(wi(t)wj(s)
0) = 0 for all i 6= j.
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Assume that each agent will receive a cost at each stage, which is associated with

the mass behavior of all agents. De�ne the cost ci of agent i as:

ci(t) = xi(t)
0(P1 + P2�x(t)) (6.58)

where P1 2 RM�1, P2 2 RM�M .

Note that the cost ci in (6.58) has practical meaning, e.g., 1) in large population

tra�c assignment problem, assume each driver faces M routes and denote xi as

driver i’s probability distribution on the M routes. Then, the jth component of

P1 2 RM�1 and the jth diagonal element of P2 2 RM�M can be viewed as the �xed

cost and cost due to congestion for choosing the jth route, respectively. 2) For

factory production, assume each factory produces M types of products and xi is the

production level of factory i. Then, the jth component of P1 2 RM�1 and the jth

diagonal element of P2 2 RM�M model �xed cost and cost due to mass behavior for

producing the jth product, respectively.

Suppose each agent pursues the average cost of all agents at previous stage. There-

fore, the LTA cost that each agent aims to minimize is de�ned as:

Ûi(ui; u�i) = lim
T!1

1

T
E
T�1X
t=0

�
q(ci(t+ 1)� �c(t))2

�
(6.59)

where q > 0, �c(t) =
PN
i=1 ci(t)

N
.

Similar as the linear system discussed above, in order to construct decentralized con-

trols,  (t) = E�x(t) is established to approximate the mean �eld term �x(t). Moreover,

we can verify that  (t) �  (0) = E�x(0).

Based on  (0), the decentralized optimal control of this nonlinear system is designed

as:

~ui(t) =  (0)� fi(xi(t)) (6.60)

The nonlinear system under the decentralized optimal controls f~u; i 2 Ng possess

the properties of stability, mean-consensus, convergence and "-Nash equilibrium.
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In the following theorem, we show the almost sure asymptotic Nash equilibrium

property of the control set f~u; i 2 Ng.

Lemma 6.3. Under Assumption 6.2, the set of mean �eld control f~u; i 2 Ng gen-

erates an almost sure asymptotic Nash equilibrium, i.e., for any i 2 N ,

Ûi(~ui; ~u�i) � inf
ui2Ui

Ûi(ui; ~u�i) + "N (6.61)

where limN!1 "N = 0.

The proof of Lemma 6.3 is similar as that of Theorem 6.4, thus we omit it here.

Remark 6.5. The minimal cost that Ûi(ui; ~u�i) can achieve as the population size

N approaches in�nity is given by:

Ûi(~ui; ~u�i) = inf
ui2Ûi

Ûi(ui; ~u�i) = q(P1 + P2 (0))0Rw(P1 + P2 (0)) (6.62)

Obviously, the optimal LTA cost of each agent is the same by applying the decen-

tralized mean �eld Nash control (6.60).

6.3 Mean Field Social Optimum Design with De-

centralized Information

Consider the case where all agents are cooperative and seek socially optimal strate-

gies. In this case, each agent should take into consideration the cost it imposes to

other agents because of its own cost reduction. To be precise, the goal of all agents

in the system is to minimize the social cost, which is de�ned as:

Usoc(u) =
NX
i=1

Ui(ui; u�i) (6.63)

where Ui(ui; u�i) is the individual LTA cost of agent i as de�ned in (6.2).
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We are interested in �nding decentralized solutions of the social optimal problem

where the control of each agent is only associated with its local information.

Denote the socially optimal control of Usoc(u) as û = fûi; i 2 Ng and let x̂i be

the corresponding solution to the dynamics (6.1) by applying ûi. Denote û�i =

fû1; :::; ûi�1; ûi+1; :::; ûNg.

In the following lemma, we introduce a quadratic cost function Usoc;i(ui) which has

the same solution as the social cost Usoc(u).

Lemma 6.4. The solution ûi of the socially optimal cost function Usoc(u) is the

same as the optimal solution of the quadratic cost function Usoc;i(ui), where

Usoc;i(ui)

= lim
T!1

1

T
E
T�1X
t=0

�
q
�

(1 +
1

N
)x2

i (t)� 2xi(t)
1

N
(xi(t) +

NX
j=1;j 6=i

x̂j(t))
�

+ u0i(t)Rui(t)

�
(6.64)

Proof: First, we show that if û achieves the minimum of Usoc(u), then, for each

agent i, ûi = arg infui2Ui Usoc(ui; û�i). Due to the convexity of Usoc(u) and R > 0,

the existence and uniqueness of û are guaranteed. Therefore, Usoc(ui; û�i) is strictly

monotonic with respect to ui.

Next, we rewrite Usoc(ui; û�i). Since ûj; j 6= i has been speci�ed in advance, ûj

won’t change with ui, and so does x̂j. Hence, for agent i 2 N ,

Ui(ui; û�i) = lim
T!1

1

T
E
T�1X
t=0

( ii(t) + �ii(t)) (6.65)

where  ii(t) = q((1 + 1
N2 )x2

i (t) + 2xi(t)(
P
j 6=i x̂j(t)

N2 � 1
N

(xi(t) +
PN

j=1;j 6=i x̂j(t)))) +

u0i(t)Rui(t), �
i
i(t) =

q
P
j 6=i x̂

2
j (t)

N2 .

For agent j 6= i,

Uj(ui; û�i) = lim
T!1

1

T
E
T�1X
t=0

( ij(t) + �ij(t)) (6.66)
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where  ij(t) = q(
x2
i (t)

N2 + 2xi(t)
N

(
P
j 6=i x̂j(t)

N
� x̂j(t))), �

i
j(t) = (x̂j(t) �

P
j 6=i x̂j(t)

N
)2 +

û0j(t)Rûj(t).

Note that �ik; k 2 N won’t change with ui, according to (6.65) and (6.66),

arg inf
ui2Ui

Usoc(ui; û�i) = arg inf
ui2Ui

lim
T!1

1

T
E
T�1X
t=0

NX
k=1

 ik(t) = arg inf
ui2Ui

Usoc;i(ui) (6.67)

which indicates ûi = arg infui2Ui Usoc;i(ui).

The cost (6.64) implies that all other agents’ e�ect on agent i is
PN

j=1;j 6=i x̂j(t)

which won’t change with ui(t). As discussed before, we may approximate x̂�i(t) =PN
j=1;j 6=i x̂j(t)

N
by a deterministic function  1(t) as N ! 1. Therefore, the in�nite

population approximation to the control problem (6.64) is:

U1soc;i(ui) = lim
T!1

1

T
E
T�1X
t=0

�
q
�
x2
i (t)� 2xi(t) 

1(t)
�

+ u0i(t)Rui(t)

�
(6.68)

By using the approximation of x̂�i(t), we rewrite the state updating process (6.8)

as:

xi(t+ 1) = xi(t) +Q1ui(t) +Q2(K1 
1(t) +K2(t)) + wi(t+ 1) (6.69)

Let  1(t) = 1
N

PN
i=1 Ex̂i(t). Similar to Lemma 6.1 and Corollary 6.1, we establish

the social mean �eld system of (6.68)-(6.69) as:

~(t+ 1) =
�

1 +
1

2
(Q1 +Q2)R�1Q01p

�
~(t)� 1

2
(Q1 +Q2)R�1Q01p

2 1(t) (6.70)

 1(t+ 1) =
�

1� 1

2
(Q1 +Q2)R�1Q01p

�
 1(t) +

1

2
(Q1 +Q2)R�1Q01~(t) (6.71)

which is exactly the same as (6.13) and (6.20). According to Corollary 6.1, we have

( 1(t); ~(t)) = ( 1(0); p 1(0)), for all t � 0. It is easy to verify that the mean

�eld optimal control of the in�nite social optimum system is:

ûi(t) =
1

2
R�1Q01(p� 2q)( 1(0)� xi(t)) (6.72)
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Applying the social optimal control (6.72) yields the trajectory of x̂i:

x̂i(t) = (1� 2q

p
)txi(0) +

�
1� (1� 2q

p
)t
�
 1(0) +

t�1X
m=0

(1� 2q

p
)t�1�mwi(m+ 1)

(6.73)

which is the same as (6.24).

Theorem 6.7. For the socially optimal case where the objective of each agent is

to minimize the social cost, the decentralized mean �eld social control laws ûi(t) are

equal to the mean �eld Nash controls u�i (t) for in�nite population games.

Proof: Based on the de�nition of  1(t) and  (t), we have  1(0) =  (0). Thus,

compared (6.72) with (6.23), the mean �eld social control law ûi(t) and the mean

�eld Nash control law u�i (t) are identical for an in�nite population system, i.e.,

ûi(t) = u�i (t) (6.74)

The proof is completed.

Remark 6.6. Since ûi(t) = u�i (t), we have x̂i(t) = x�i (t). According to Theorem 6.2,

as time goes to in�nity, x̂i(t) reaches mean-consensus asymptotically. Furthermore,

fûi; i 2 Ng also generates an almost sure asymptotic Nash equilibrium with respect

to the costs fUi; i 2 Ng.

Based on Theorem 6.3 and Lemma 6.2, we can verify that x̂�i(t) converges to  1(0)

in the mean square sense, which means  1(0) is an approximation of x̂�i(t) for

in�nite population game.

Remark 6.7. It is shown in [63] that for continuous mean �eld control systems, the

mean �eld social optimal control strategies can also approach the mean �eld Nash

controls for in�nite population systems.

To identify the gap between the in�nite population quadratic social cost U1soc;i(ûi)

and the �nite population quadratic social cost Usoc;i(ûi), we propose the following

lemma.
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Lemma 6.5. Under Assumption 6.1, for any i 2 N ,

jUsoc;i(ûi)� U1soc;i(ûi)j = O("N) (6.75)

where "N is de�ned in (6.41).

Proof: According to (6.64), (6.68) and by the Cauchy-Schwarz inequality,

jUsoc;i(ûi)� U1soc;i(ûi)j

= lim
T!1

1

T
E
T�1X
t=0

q

�
x̂2
i (t)

N
+ 2x̂i(t)( 

1(0)�
PN

i=1 x̂i(t)

N
)

�

� lim
T!1

1

T
E
T�1X
t=0

q
x̂2
i (t)

N
+ lim

T!1

2q

T
E

vuutT�1X
t=0

x̂2
i (t)

vuutT�1X
t=0

( 1(0)�
PN

i=1 x̂i(t)

N
)2

�q�1

N
+ 2q�2

vuut lim
T!1

1

T
E
T�1X
t=0

( 1(0)�
PN

i=1 x̂i(t)

N
)2

(6.76)

where �1 > 0; �2 > 0. Based on (6.73) and Under Assumption 6.1, �1; �2 always

exist.

According to (6.37) in the proof of Lemma 6.2, (6.75) is proved.

6.4 Numerical Examples

Consider a system of 500 agents who want to minimize their LTA costs (6.2) based

on the dynamics (6.1). Set the parameters in the dynamic system as Q1 = 1:5; Q2 =

3:2; q = 2; R = 8; rw = 2. The initial states of all agents are taken independently

from a Gaussian distribution with mean 9 and standard deviation 2. As shown in

Fig. 6.1, all agents eventually reach mean-consensus by implementing the optimal

mean �eld control law u�i in (6.23). Fig. 6.2 veri�es that "N as de�ned in (6.41)

�nally approaches 0 as the population size N goes to in�nity, which implies the gap

between the PSA and  (0) vanishes as N ! 1. For any given agent i, Fig. 6.3
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shows that Ui(u
�
i ; u
�
�i) can attain its minimal value Ji(u

�
i ;  (0)) as N ! 1. To

illustrate the e�ect of inaccurate mean �eld information on individual agent’s LTA

cost, we compare the LTA cost of agent i with accurate information and inaccurate

information with 4( (0)) = 0:5. As shown in Fig. 6.4, the LTA cost Ui(u
4
i ; u

�
�i)

with inaccurate information can’t achieve its minimal value Ji(u
�
i ;  (0)) and deviates

from it exactly by q(4( (0)))2 = 0:5.
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Figure 6.1: Trajectories of agents’ mean state.
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Figure 6.2: Convergence of "N with respect to the population size N .
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Figure 6.3: Convergence of the LTA cost Ui(u
�
i ; u
�
�i) to Ji(u

�
i ;  (0)).
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Figure 6.4: E�ect of the inaccurate information.

6.5 Conclusions

In this chapter, we have investigated a discrete-time mean �eld model where each

agent tries to optimize its LTA cost containing the PSA based on a dynamic equa-

tion coupled with the input average. A deterministic function  was introduced to

estimate the PSA such that each agent’s state can evolve only according to the local

information. We have shown that the resulting decentralized mean �eld controls

possess an almost sure asymptotic Nash equilibrium property. The e�ect of inaccu-
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rate mean �eld information and a nonlinear dynamic system with similar properties

have also been discussed. For the socially optimal case where the objective of each

agent is to minimize the social cost, it has been shown that the decentralized mean

�eld social control laws are equal to the mean �eld Nash controls for in�nite popu-

lation games. As a result, these mean �eld social controls inherit many properties

of mean �eld Nash controls. However, if the system doesn’t possess an adequately

large population, these two kinds of controls may not be identical.
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Chapter 7

Conclusions and Future Work

7.1 Conclusion

As the ine�ciency of Nash equilibrium may cause signi�cant economic loss, the e�-

ciency analysis of Nash equilibrium has attracted the attention of many researchers

in the past few years. In this thesis, we have discussed the inuence of dynamic

pricing on the e�ciency of Nash equilibrium. To estimate the mass information

which is associated with individual player’s utility/cost, the consensus control and

mean �eld theory are adopted. The contributions of the thesis can be summarized

in the following aspects.

� We have analyzed the existence and convergence of Nash equilibrium in con-

gestion games where each player faces multiple choices. A consensus protocol

was proposed to estimate the percentage of players choosing each resource.

Several dynamic pricing schemes were designed to achieve some kind of social

optimum or spread out players’ choices in di�erent models.

� We have studied the e�ect of scaled marginal-cost pricing on players’ routing

choices in networks with one origin-destination pair. All players in the network

were divided into groups according to their price sensitivities. For the special
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case with two groups and two routes, it has been proved that there always

exists a scaled marginal-cost such that the POA can achieve 1. For general

case, we have shown that, under certain conditions, POA can reach 1 by

charging a designed scaled marginal-cost on each link. An algorithm was also

given to calculate the optimal scaled marginal-cost for any network with one

origin-destination pair and distribution of price sensitivity.

� We have analyzed the upper bound of POTA in networks with multiple origin-

destination pairs via smoothness arguments. The inuence of dynamic pricing

on the upper bound of POTA for the linear latency case has been discussed.

How the inaccurate parameter information a�ects the POTA was also studied.

The upper bound of POTA for the nonlinear latency case was given. For

networks with heterogeneous players, we showed that the upper bound of the

POTA is the same as that in networks with homogeneous players as time goes

to in�nity.

� We have considered a discrete-time dynamic system where each agent evolves

according to a dynamic equation containing all agents’ control inputs and

seeks to minimize its LTA cost encompassing the PSA. We have constructed a

deterministic function  (0) to estimate the PSA, and the convergence of the

PSA to  (0) has been justi�ed. The stability, mean-consensus property and

"-Nash equilibrium property of the resulting decentralized mean �eld control

system were discussed. A nonlinear dynamic system with similar properties as

the linear system established above was shown. We also analyzed the e�ect of

inaccurate mean �eld information  (0) on individual agent. The social optimal

case where all agents work cooperatively to optimize the social cost as the sum

of individual agent’s LTA cost has been considered and the decentralized mean

�eld social control was shown to be equal to the mean �eld Nash control as

the population size goes to in�nity.

� We have applied our results to trip timing and tra�c routing problems. The

numerical examples and real data simulations were provided to illustrate the
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validity of the results.

7.2 Future Work

We list some possible directions for future studies.

� In this thesis, we have discussed the convergence of Nash equilibrium in re-

peated play. On the basis of the convergence property, the convergence rate

analysis should be one future research topic.

� In Chapter 4, we assume that the system manager has perfect information on

the distribution of price sensitivity. However, in reality, the distribution of

price sensitivity may be unknown to the system manager. Therefore, one of

our next steps is to estimate the distribution of price sensitivity and analyze

the robustness of the POA. In addition, the relaxation of the linear assumption

on the latency function and the relaxation of the single origin-destination pair

assumption on the network should also be brought into consideration.

� For the case of heterogeneous players we discussed in Section 5.5, we have not

investigated the inuence of dynamic pricing on the POTA. Designing a price

scheme to optimize the POTA in networks with heterogeneous players can be

an interesting topic.

� In this thesis, we have analyzed the e�ciency improvement of systems via

dynamic pricing. As pointed out in Section 2.3.1, Stackelberg games can also

be applied to improve the system e�ciency. For example, to improve the

performance of the network in routing problems, some routing advice can be

given to players to use less congested routes and rerouting players will be

rewarded. When providing routing advice, we should take into consideration

the possible impact of rerouting players on the network and the response of

other players to this change. Under this circumstance, rerouting players can
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be viewed as leaders and other players can be regarded as followers. This

conforms to the framework of Stackelberg games. Therefore, one possible

research direction is to analyze the e�ciency improvement of Nash equilibrium

via Stackelberg games, especially for networks with heterogeneous players.
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Appendix A

Proof of Lemma 4.3 in Chapter 4

We �rst show the construction of a Nash ow. Consider the group with the price

sensitivity �j0 .

Assume fnerk;�j0
> 0 for k = 1; v and any � � 0. We will show later that under

condition (4.29), fner1;�j0
> 0 and fnerv ;�j0

> 0 always hold. If fnerk;�j0
= 0 for some

rk 6= r1 or rv, by the de�nition of Nash ow, we have Jri;�j0 (fne) � Jrk;�j0 (fne),

for all i 6= k. Note that �j and Vj are ordered as �1 > �2 > � � � > �M and

Vr1 < Vr2 < � � � < Vrv , respectively. For groups with �j > �j0 , i.e., �1; :::; �j0�1,

since fnerv ;�j0
> 0, we have Jrv ;�j(f

ne) � Jri;�j(f
ne), for all i 6= v, which indicates

that fnerk;�j = 0 for all �j > �j0 . For groups with �j < �j0 , i.e., �j0+1; :::; �M , since

fner1;�j0
> 0 we have Jr1;�j(f

ne) � Jri;�j(f
ne), for all i 6= 1, which also indicates that

fnerk;�j = 0 for all �j < �j0 . Thus, we can conclude that fnerk = 0, which implies

fnerk = 0 when � = 0. This contradicts Assumption 4.2.

Therefore, fnerk;�j0
> 0 for all rk 2 R.

By the de�nition of Nash ow, for any ri 6= rj, we have

X
rk2R

fnerk (dik � djk) =
Vj � Vi
1 + ��j0

: (A.1)

For groups with �j > �j0 , Vv�Vi
1+��j0

> Vv�Vi
1+��j

, for all i < v. Therefore, Jrv ;�j(f
ne) <

Jri;�j(f
ne) for all i < v, i.e., fneri;�j = 0; fnerv ;�j = Fj, and fnerv = �Fj0 + fnerv ;�j0

. Similarly,
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for groups with �j < �j0 , V1�Vi
1+��j0

< V1�Vi
1+��j

, for all i > 1. Thus, Jr1;�j(f
ne) < Jri;�j(f

ne)

for all i > 1, i.e., fneri;�j = 0; fner1;�j
= Fj, and fner1

= F̂j0 + fner1;�j0
. In conclusion, the

Nash ow is given by

fnerk =

8>>><>>>:
F̂j0 + fner1;�j0

; if k = 1,

�Fj0 + fnerv ;�j0
; if k = v,

fnerk;�j0
; otherwise.

(A.2)

From (A.1), each fi; jg forms an equation. Take any distinct N � 1 equations and

combine them with
P

rk2R f
ne
rk;�j0

= Fj0 , we obtain a N-dimension linear equation.

The solution of this system uniquely exists and any solution fnerk;�j0
must be a linear

combination of Fj0 ; �Fj0 ; F̂j0 and 1
1+��j0

, and we denote them as

fnerk;�j0 = AkFj0 +
1

1 + ��j0
Bk + CkF̂j0 +Dk

�Fj0 ; (A.3)

where Ak; Bk; Ck; Dk are independent of �; �; Fj0 ; �Fj0 , and F̂j0 .

Since potential game guarantees the existence of a pure Nash equilibrium, the solu-

tion to the above system always exists. Substituting (A.3) into
P

rk2R f
ne
rk;�j0

= Fj0 ,

we have X
rk2R

Ak � 1

!
Fj0 +

 X
rk2R

Bk

!
1

1 + ��j0
+

 X
rk2R

Ck

!
F̂j0 +

 X
rk2R

Dk

!
�Fj0 = 0:

(A.4)

Since (A.4) holds for any Fj0 ; �Fj0 ; F̂j0 and �, we obtain

X
rk2R

Ak = 1; (A.5)

X
rk2R

Bk = 0; (A.6)

X
rk2R

Ck = 0; (A.7)

Nanyang Technological University Singapore



123

X
rk2R

Dk = 0: (A.8)

Substituting (A.2), (A.3) into (A.1), similarly to the above, we obtain

X
rk2R

Akdik =
X
rk2R

Akdjk; (A.9)

X
rk2R

Bkdik + Vi =
X
rk2R

Bkdjk + Vj; (A.10)

X
rk2R

Ckdik + di1 =
X
rk2R

Ckdjk + dj1; (A.11)

X
rk2R

Dkdik + diN =
X
rk2R

Dkdjk + djN : (A.12)

By (A.7) and (A.9),

vX
i=1

Ci

vX
k=1

Akdik =

 
vX
k=1

Akd1k

!
vX
i=1

Ci = 0: (A.13)

By (A.5) and (A.11),

vX
i=1

Ai

vX
k=1

Ckdik =
vX
i=1

Ai

 
vX
k=1

Ckd1k + d11 � di1

!

=
vX
k=1

Ckd1k + d11 �
vX
i=1

Aidi1

=
vX
k=1

Ckdik + di1 �
vX
k=1

Akdki:

(A.14)

Since
Pv

i=1 Ci
Pv

k=1 Akdik =
Pv

i=1 Ai
Pv

k=1 Ckdik, combine (A.13) and (A.14), for

all ri 2 R
vX
k=1

Ckdik + di1 =
vX
k=1

Akdik; (A.15)

i.e.,

(A1 � C1 � 1)di1 +
vX
k=2

(Ak � Ck)dik = 0: (A.16)
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Since (A.16) holds for all ri 2 R, we have

8><>:A1 = C1 + 1;

Ak = Ck; for all k 6= 1:

(A.17)

Similarly to the above, we have8><>:Ak = Dk; for all k 6= v;

Av = Dv + 1:

(A.18)

Insert (A.17) and (A.18) into (A.3), we obtain (4.30). According to (4.29), fnerk;�j0
> 0

for k = 1; v is guaranteed. By Assumption 4.2, fnerk;�j0
> 0; rk 2 R for � > 0 is

guaranteed. For the special case when F̂j0 = 0 or �Fj0 = 0, the results are the same.

Next, we show the uniqueness of the above Nash ow. For the given distribution

of B, we assume that there exists another group �j1 2 B satisfying fnerk;j1 > 0 for all

rk 2 R, thus,

fnerk;�j1 =

8>>><>>>:
A1F � F̂j1 + 1

1+��j1
B1; if k = 1,

AvF � �Fj1 + 1
1+��j1

Bv; if k = v,

AkF + 1
1+��j1

Bk; otherwise.

(A.19)

Since (4.30) and (A.19) also holds for � = 0, we consider the case when the routes

are free of charge. Therefore, for �j0 2 B,

fnerk;�j0 =

8>>><>>>:
A1F � F̂j0 +B1; if k = 1,

AvF � �Fj0 +Bv; if k = v,

AkF +Bk; otherwise.

(A.20)

For �j1 2 B,

fnerk;�j1 =

8>>><>>>:
A1F � F̂j1 +B1; if k = 1,

AvF � �Fj1 +Bv; if k = v,

AkF +Bk; otherwise.

(A.21)

Without loss of generality, we assume that group �j1 is next to group �j0 and �j1 <
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�j0 . Thus, �Fj1 = F � F̂j0 . Since fner1;�j1
� 0; fnerv ;�j1

� 0; fner1;�j0
� 0; fnerv ;�j0

� 0, we

have

F̂j0 � A1F +B1;

�Fj0 � AvF +Bv;

�Fj1 = F � F̂j0 � AvF +Bv:

Thus,

Fj0 = F � F̂j0 � �Fj0 � F � (A1 + Av)F � (B1 +Bv) > 0;

F � AvF �Bv � F̂j0 � A1F +B1;

i.e.,

F � (A1 + Av)F + (B1 +Bv);

F > (A1 + Av)F + (B1 +Bv):

This is a contradiction. Therefore, the Nash ow is unique for a given distribution

of B satisfying (4.29).
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