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Abstract

The “bag-of-words” (BoW) model is a staple in the field of computer vision,
spanning applications within object, scene, and action recognition. An assump-
tion inherent in the “bag-of-words” model is that each patch involved in the
process is independent and unordered. As a result, BoW naturally neglects the
important information of spatial locations and arrangements, leading to several
drawbacks. Spatial Pyramid Matching (SPM) is the most popular framework
used in incorporating spatial information into the BoW model. The model re-
defines an image as a pyramid consisting of several layers made of copies of
the same image. Each layer l ∈ {0, 1, ..., L − 1} is divided into 2l × 2l sub-
windows/spatial windows, and from each sub-window a BoW descriptor is ex-
tracted. These descriptors are then concatenated, creating the SPM image de-
scriptor.

SPM therefore offers a simple and efficient way to approximate spatial ar-
rangements within the previously unordered collection of codeword histograms.
Due to its simplicity, it has been very successful in many applications, and is
even used in non-BoW methods. Very few works have questioned the effective-
ness of this approach. The efficiency of spatial pyramids as an image descriptor
and the appropriateness of SPM construction are simply taken for granted. This
work will present a detailed investigation of the importance of spatial informa-
tion in object recognition, and challenge the traditional SPM arrangement.

This thesis is divided into two parts. The first part presents an argument
for the necessity of such knowledge, by showing how spatial information can
significantly improve recognition systems. The Hierarchical Dirichlet Process
(HDP) for image recognition is used to show this. The HDP suffers from the
"rich-get-richer" effect caused by the way sampling is carried out. The first part
of this thesis shows that spatial information can alleviate this issue, considerably
improving the reliability of the HDP. We show that spatial information in the
form of the cardinality coefficient and approximate shape masks is not only able
to produce overall improvement in terms of accuracy ofobject recognition, but
is also able to mitigate the detrimental effect inherent to the HDP.

With the realization that spatial information plays an important role in image
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recognition, the second part offers a systematic investigation of the architecture
of SPM. This study is done to show that SPM representation is sub-optimal, and
at the same time present possible ways for improvement. In doing so, this thesis
presents a few novel paradigms. From the second part, two novel paradigms are
presented based on our investigation of the optimality of traditional SVM. Over-
lapping spatial windows (OWSPM) and circular spatial windows (CWSPM)
present a new way of constructing the spatial pyramids, strengthening the dis-
criminability of SPM representations by adding a broader context to each spatial
window.

While OWSPM and CWSPM come from investigating the process of craft-
ing SPM representation, the investigation of the arrangement of SPM led to our
introduction of optimal spatial window arrangements. This comes in the form
of Optimal Window SPM (OA-SPM) and a linear approximation of it in the
form of LA-SPM. Combined, these proposed models were tested using vari-
ous dataset and compared with several baseline methods such as ScSPM, LLC,
Object Bank, and Deep Learning. A consistent and significant increase in per-
formance, up to 4.38% with a lesser memory cost of nearly 40%, was reported,
showing that the traditional spatial window arrangement of SPM is indeed inef-
ficient.

The thesis will present the conclusion that SPM is sub-optimal on multiple
fronts. In terms of structure, the disjointed window arrangement of traditional
SPM actually performs poorly, and can be improved by the overlapping window
arrangement. Furthermore, usage of overlapping windows enabled us to further
explore the topic of optimality of SPM. The usage of all spatial windows inside
a spatial pyramid proved to be more damaging than beneficial, as it hampers
the discriminability of image representation, and adds unnecessary cost to the
training and testing process.
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Chapter 1

Introduction

1.1 Motivation

The visual capability of a human being is a wondrous creation. It is easy to

take this ability for granted, simply because we have grown accustomed to it

in our daily routines. The human visual system enables us not only to see, but

also to comprehend the information contained in what we see. The human visual

system can distinguish between individual objects based on their shape and prior

knowledge of the nature of objects. It is able to recognize the type of the object,

from a very general (it is a round object) to a very specific classification (it

is an IKEA meatball). Furthermore, it can adapt very well to variations in its

surroundings: light, intensity, different points of view, color changes, occlusion,

and moving objects. It is a wonder that we can do all these tasks in a split-

second.

However, this is not the case with current man-made computer visual sys-

tems. Computer vision, as researchers call this area of study, is limited by the

computational power of the system as well as current scientific understanding

of how it works. While humans can integrate all the above tasks into a sin-

gle action, current advances in computer vision research only allow us to do a

few tasks a time. Often, we are forced to confine ourselves to a specific task:
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tracking a moving object, localizing and segmenting the object of interest in an

image, or recognizing what the person in the image is doing, or what kind of

object is within the image.

Object recognition and categorization is a fundamental problem in image

visualization. It remains a challenging task given both the variability of images

that objects from the same class can produce, and the substantial expenses in-

curred from providing high-quality image annotations to train the detectors [4].

Advancements in this area can greatly contribute to our society: take for ex-

ample the release of the Microsoft Kinect™. The idea behind it is in fact very

simple: the camera only has to detect the existence of one or two people inside

its field of view, segment their bodies, and track their movements to make a new

breed of human-computer interface [5]. Why not extend this beyond the bounds

of the human body to the detection of any item that the person is holding on to?

Other examples of usage come from the bloom of social networking web-

sites such as Facebook, Google+, and Twitter. Thousands of images are up-

loaded to the internet via these social networks, and users are given a choice

to tag these pictures or provide the location where they were taken. This also

applies to picture-sharing services provided by websites such as Instagram. Cur-

rently, it is the user that needs to provide all this information, often with a great

deal of trouble that comes from hash-tagging. With an improved detector, we

can create an automated system to assist the user. Therefore, the data generated

can also be used to train a more advanced system, propagating progress in this

field.

Take, for example, the now growing topic of self-driving cars. The realiza-

tion of such technology will involve a comprehensive visual system inside an

automobile, in terms of both driving assistance and decision making based on

the situation present on the road. These are just some of the many possible uses

that this area of study can contribute to, not to mention the more sophisticated

application of such advancements in areas like artificial intelligence, robotics,
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automation, and manufacturing.

Thus, it is not surprising that one of the critical tasks in this field is to find

a representation of the images involved. Such a representation needs to be in-

formative, and able to provide information on the contents and contexts of the

image, and at the same time be compact and efficient, to enable a real system to

process it swiftly.

Several works have presented the idea that the visual perception of an object

extends beyond the object itself [6–9]. Preliminary work in this area tended to

confine the visual extent to within the object’s silhouette, by segmenting the ob-

ject from the image [10]. This led to the idea that an object should be correctly

segmented before it is itself recognized. With time, the use of powerful descrip-

tors, increased numbers of datasets for learning, and the advances of statistical

learning have circumvented the necessity of identifying the object’s location be-

fore classifying it, such as in the "bag-of-words" model (BoW) representation.

From the BoW representation, the work on crafting image representation

flourished, but Spatial Pyramid Matching (SPM) might be the most commonly

used technique throughout the literature. SPM is a staple of object recogni-

tion techniques. Ever since its initial conception, it has been attractive to many

researchers due to its simplicity and ease of use. SPM models the spatial infor-

mation in a rough fashion, by dividing an image into 2l×2l disjoint windows of

equal size at each pyramid level l. These spatial windows are then used for the

pooling step to create the final representation of the image.

Although this method seems simple, it has functioned very well in many

practical applications. Its ability to be implemented in various existing ap-

proaches also makes it desirable. SPM has therefore been widely accepted as

an essential component in many computer vision techniques. Few works have

questioned the effectiveness of SPM; however, this thesis will discuss how SPM

is actually not optimal, and how it can be further improved without introducing

significant additional cost to image representation.
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This work was motivated by two factors. The first is the confidence that

spatial information, even in its crudest form in SPM, contains important infor-

mation that is invaluable for ensuring discriminability in image representation.

The second factor is the fact that SPM is able to evaluate this spatial information,

but is highly inefficient in doing so. This work therefore proposes to improve

SPM by providing a highly discriminable but compact image representation.

This work will show how spatial information can enhance image represen-

tations that do not traditionally contain them, such as BoW representations, by

introducing them into the Hierarchical Dirichlet Process (HDP). After estab-

lishing that spatial information is integral to image representation, the thesis

will touch on improving SPM by optimizing its very core: the partitioning of an

image into spatial pyramids.

1.2 Objectives

As discussed in the previous section, the objectives of this research are

1. Investigating the effects of spatial information on object recognition.

2. Formulating a novel image representation that is highly discriminative and

compact.

3. Evaluating the optimality of Spatial Pyramid Matching (SPM).

4. Optimizing the SPM model based on the evaluation.

To achieve these objectives, we define the following scope for our research

activities:

1. Finding a representation of an image to be processed by the system, in-

cluding the selection of features inside the image, describing it appropri-

ately, and/or simplifying its description.

2. Derivating suitable techniques to enable the system to learn, given the

image database.

3. Using the learnt knowledge to find suitable classification methods.
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4. Optimizing each methods and moving beyond it to tackle the weaknesses.

5. Implementing/adapting the idea into various current trends in the field.

1.3 Contributions

The following contributions have been made in this research:

1.3.1 Minimizing the "rich-get-richer" effect of HDP

The Hierarchical Dirichlet Process (HDP) involves breaking and merging clus-

ters of data to produce a distribution of latent themes from the resulting clusters.

However, the computation of such distribution favors clusters with a large mem-

bership size which tend to absorb smaller clusters. This effect is aptly named

the “rich-get-richer” effect, and in the worst-case scenario, we will end up with

one large cluster which will absorb all data points from the whole sample. Ob-

viously, such a scenario will render classification impossible.

This thesis proposes to modify the learning method HDP to ease this effect

using two techniques: (a) strengthening meaningful data by creating a linkage

between clusters that occur frequently in a class, and (b) weakening background

clutter by approximating the object mask for an image. These two approaches

modify the representation of each image being fed to the HDP to minimize the

snowballing of the “rich-get-richer” effect.

This contribution is discussed in detail in Chapter 3.

1.3.2 Usage of overlapping spatial regions to improve SPM

Viewing an image as several disjointed groups, as is done in SPM, is rarely done

in real life. When we identify an image, we evaluate what we see over several

overlapping areas that share information between them. Imitating them on SPM

will strengthen image representations due to the sharing of information between

windows. In view of this, this thesis proposes to improve SPM by introducing
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the overlapping spatial windows of two shapes: rectanges and circles. These two

schemes have been proven to be beneficial for improving the discriminability

of SPM image representation, allowing us to achieve up to a 3% increase in

recognition accuracy compared to classical SPM.

This contribution is discussed in detail in Chapters 4 and 5.

1.3.3 Optimization of spatial window arrangement in SPM

The introduction the overlapping spatial window improved the discriminabil-

ity of each spatial window to the extent that it was unnecessary for the whole

set of windows to be included into the image representation to achieve the per-

formance level of the traditional SPM. This fact leads us to question not only

the setup of these spatial windows, but also the arrangement of windows in the

traditional SPM. It was also found that including all spatial windows led to a

lower overall classification accuracy, compared with smaller subsets of possible

arrangements.

This means that there exists an optimal arrangement for SPM, and if we can

search for an arrangement that can maximize classifier performance, we will not

only be able to achieve better accuracy, but also lower memory and computa-

tional cost. A greedy method called Optimized Arrangement SPM (OA-SPM)

is proposed to find such an arrangement, and experiments show that almost half

the number of spatial windows in SPM are not needed for an optimal arrange-

ment.

The optimization process of OA-SPM allows us to obtain a highly efficient

image representation that is able to outperform the traditional SPM while having

a shorter representation (which leads to lower memory and computational cost

in training the classifier). However, the optimization involves a process that

is of O(W 2) complexity, where W is the number of candidate windows. We

pushed OA-SPM further by formulating a linear approximation of the OA-SPM

process, resulting in an optimization process that performs similarly to OA-SPM
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but runs in linear complexity. We call this the Linearly-optimized Arrangement

SPM (LA-SPM).

This contribution is discussed in detail in Chapter 6.

1.4 Organization of thesis

This thesis is divided into three main parts. First, we show that spatial infor-

mation is important in order to understand the objects contained in the image

for the bag-of-words model. This is achieved using a modified Dependent Hi-

erarchical Dirichlet Process (DHDP). Following this, the second part will show

that there is much room for improvement in SPM, and discuss the definition of

the spatial window, introducing two novel spatial window models: Overlapping

rectangular windows SPM (OWSPM) and Overlapping circular windows SPM

(CWSPM). Finally, the third part investigates systematic approaches to learning

the optimal arrangement of spatial windows in OA-SPM and LA-SPM.

The thesis is organized as follows:

Chapter 2 reviews the background of the research related to this work. This

chapter begins by describing the existing datasets for object recognition, fol-

lowed by a review of the BoW model and SPM. The chapter then proceeds to

discuss feature extraction and the description of the image, followed by a review

of the non-parametric learning paradigm. The chapter will also cover object

segmentation/localization techniques, and end with a review of the recognition

algorithm itself.

Chapter 3 describes the first part of this thesis, which is the usage of the car-

dinality of codewords to assist in the learning process of the HDP. The chapter

describes the original algorithm of [1] and integrates the cardinality coefficient

into the algorithm. Furthermore, the proposed solution is expanded by integrat-

ing approximated shape mask generation to assist in feature selection and learn-

ing. At the end of the chapter, the improvement in recognition performance is
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discussed in detail.

Chapter 4 explains the second part of this thesis. This chapter presents over-

lapping windows as a means to include more holistic context in the SPM model.

The idea leads to two novel paradigms for SPM arrangement: the overlapping

rectangular window (OWSPM) and circular overlapping window (CWSPM).

The chapter describes the construction of both arrangements, and shows that the

two proposed methods are better than the traditional SPM.

Chapter 5 covers the third part of this thesis. The chapter discusses the sub-

optimality of the spatial window arrangement of SPM by using an Interleaved

Window arrangement as an example (referred to as the IW scheme), and dis-

cusses the findings in detail, explaining why it is possible to conclude that the

arrangement of SPM is highly redundant.

Chapter 6 continues the discussion from the previous chapter by introduc-

ing the algorithm for finding the optimal arrangement of SPM in the form of

OA-SPM. OA-SPM was limited by having O(n2) complexity, which made it

slow to perform with increasing window candidates. A linear approximation

to OA-SPM, in the form of LA-SPM is proposed to alleviate this issue. Both

approaches are evaluated, and the results indicate that our claim of SPM sub-

optimality is true.

Chapter 7 presents the conclusions of this thesis and suggestions for future

work.
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Chapter 2

Literature Review

2.1 Existing datasets for object recognition

Currently, there are a huge number of vast image databases for object recogni-

tion, available for free. With the proliferation of the internet today, and increas-

ing interest in research on object recognition, these image databases are easily

accessible, and the results obtained by different researchers are then compared

with each other.

Caltech datasets (Caltech-4, Caltech-101 [11], and Caltech-256 [12]) com-

prise several classes of objects (the dataset Caltech-C means that there are C

classes inside the dataset), centered within the image with little or no clutter in

the background. Each class contains 30 to 400 images.

The 15-Scene [13] dataset contains scene images categorized into 15 classes.

This is a dataset of fifteen natural scene categories with around 200-300 images

in each class.

The PASCAL Visual Object Challenge Database [14] is updated yearly, with

each dataset containing typically 20 classes (since the 2007 version) with the

purpose of providing a standardized image dataset for object class recognition.

Most work is based on either the 2007 or 2008 version of the dataset.

CIFAR-10 is an established computer-vision dataset used for object recog-
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nition. It is a subset of the 80 million tiny image dataset and consists of 60,000

32x32 color images containing 1 of 10 object classes, with 6000 images per

class. It was collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hin-

ton [15].

Another good source of images is the internet. Websites such as Picasa, In-

stagram, Google Image Search or even Facebook can used as virtually limitless

sources of images in a very broad context. Tagging and categorizing, however,

are different issues as they can be freely labeled by users. The labeling process

tends to involve a great amount of noise. Image quality poses another problem,

as it tends to be inconsistent across many images in terms of both size and res-

olution. Recently, an active area of research has been the creation of databases

by mining images from the internet, categorizing them using the information

from the tags and the image itself, propagating them into a large database. Re-

searchers have been reporting success with this approach and demonstrating its

application in object recognition [16].

Naturally, a hybrid database comprising both is also possible. Starting from

an existing database, one can develop a system to propagate and obtain more

images for its database. In addition, due to progress in the area of object recog-

nition, the problem has been intensified to tackle more detailed categorization,

such as distinguishing between different species of birds or trees [17]. Yao et al.

used the Caltech-UCSD Birds dataset [18] for fine-grained image categorization

of birds in [19].

2.2 The bag-of-words model

The “bag-of-words” (abbreviated as BoW from here on) model has been receiv-

ing a lot of interest from the research community in the area of object recogni-

tion. This model has existed since 1954 [20], and was originally used for topic

detection in methods such as Latent Dirichlet Allocation (LDA) [21], until re-
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Figure 2.1: Illustration of two keypoint extraction method. (a) Using keypoint
detection, salient image patches are located and extracted. Algorithms described
in chapter 3 utilize this method. (b) Image patches are extracted over dense grid
covering the entire image. Grid sizes are usually set such that patches extracted
are overlapping with each other. In this figure, the spacing of grids are enlarged
for clarity. Algorithms discussed in chapter 4 to 6 utilize this method.

searchers such as Zhang et al. pioneered its usage in the imaging domain [22].

Analogous to its counterpart for documents, we extract patches from an image

using a variety of possible approaches, like keypoint extraction [1, 3] or dense

sampling [23–25]. These patches are then categorized as codewords, obtained

from a specific codeword dictionary. The dictionary is learned from a collection

of patches using techniques such as K-means clustering.

The process of categorizing patches into codewords is known as the coding

step. In early BoW models, a patch was only associated with its nearest code-

word center in the dictionary. If ui was the code for patch xi, then ui would

have exactly one element (also referred as the membership cooefficient) with a

value of 1 and 0 everywhere else. Let X be a matrix where each column is a col-

lection ofN patch descriptors withD dimensionality, i.e., X = [x1,x2, . . . ,xN ]

(xi ∈ R1×D, X ∈ RN×D). Let V ∈ RD×K be the codeword dictionary with K

entries learnt from collecting random patches from datasets, and associate xi to

the entries of V. In practice, each column of V stores the cluster center of the

codewords. Associating patches to dictionary entries is achieved with a simple
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K-means algorithm by optimizing the following:

min
U,V

N∑
n=1

‖xn − Vun‖2

subject to {uni = 1,unj = 0,∀i 6= j}

and ‖un‖ = 1,uni ≥ 0,∀n = {1, 2, ..., N}.

(2.1)

U= [u1,u2, ...,uN ]T ∈ RN×K is the cluster membership indicator and || ·

|| denotes the L2 norm. In other words, the membership indicator will have

exactly one element with a value of 1 and 0 everywhere else. This encoding

scheme is called hard assignment.

Membership assignment evolved in further works to allow for multiple as-

signments of dictionary entries, called soft assignment. The objective function

to be optimized is now written as:

min
U,V

N∑
n=1

‖xn − Vun‖2 + λ ‖un‖

subject to ‖vk‖ ≤ 1, ∀k = 1, 2, ..., K.

(2.2)

where V= [v1,v2, ...,vK ] where vk is the dictionary entry of the kth code-

words. Under this scheme, the assignment coefficient un is forced to be sparse

by adding the L2-norm into the objective function. The constraint ‖vk‖ ≤ 1 is

added to avoid trivial solutions and λ is a constant to modify the degree of spar-

sity. Sparse assignment proves to be beneficial in object recognition, enabling

performance boosts when applied to SPM [13]. The encoded patches are then

pooled together to create the image representation.

This soft coding approach shows a powerful understanding on how to en-

code patches, which gives rise to powerful encoding methods such as Sparse

Coded Spatial Pyramid Matching (ScSPM) [25], Locality-constrained Linear

Coding (LLC) [23], Laplacian [24], or Dictionary Learning: Commonality and

Particularity (DL-COPAR) [26]. Other encoding methods that have been able to

achieve large success includes Fisher Vector [27, 28], Vector of Locally Aggre-
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gated Descriptors (VLAD) [29], and t-embedding [30, 31]. As an alternative to

these, Poselets [32, 33] and Deformable Part Model (DPM) [34] have also been

used, mainly in the field of human detection. More detailed explanations on the

optimization of U and V can be found in [25, 31]. Liu et al. give a thorough

description on the benefit of soft coding for object recognition in [35].

Each of the encoded patch will then be aggregated into a single feature

vector by a pooling operation. This step is known as the pooling step. Ko-

niusz et al. presented a detailed report on various pooling methods in [36].

Among the options, two pooling schemes that are commonly used are aver-

age pooling and maximum pooling. Let zw be the image representation and

U = [u1,u2, . . . ,uN ] be the set of all ui belonging to that image. The average

pooling is given as:

z =
1

N

N∑
i=1

ui (2.3)

On the other hand, the maximum pooling can be given as:

z = [z1, z2, ..., zk]
T = [max

j
u1j,max

j
u2j, ...,max

j
uNj]

T

where ui = [ui1, ui2, ..., uiK ]T and j = 1, ..., N

(2.4)

z is the BoW image representation and is used to learn the classifier. Figure

2.2 illustrates the bag-of-words model.

In the earlier stages of object recognition research, it was widely accepted

that before we started taking information from the image, we first needed to

localize the object. Some researchers used silhouette information [37] while

others used edge detection techniques combined with other methods [38]. How-

ever this segmentation task is another problem in itself, as it is very difficult

to precisely locate the object. The BoW model is introduced as an alternative

approach. Basically, it shows that background clutter does not affect detection

accuracy; its presence may even improve the detection result [10]. In this model,

an image is represented simply as a collection of patches from detected points
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Figure 2.2: Illustration of the “bag-of-words” model.

of interest.

The concept of patch locations and their relation towards other patches are

neglected, due to the assumption of conditional independence imposed on the

documents (images) [39]. This is due to the fact that we consider each image

to be only a collection of patches. Hence, we assume that these patches are

independent from each other. It should also be noted that this assumption may

discard useful information for learning and recognition.

Another problem is that the BoW model treats each patch as being equal to

the others, although we can never be sure that even the most advanced salient

point detector will return patches from only the object itself. In real life, we may

have multiple objects in a scene, or some backgrounds that stand out extremely

well.

There has been a significant amount of research done to improve the bag-of-

words model, whether in feature descriptors and encoding [23,25,40], dictionary

learning [26, 41–45], classifiers used [46–48], or the pipeline in general [13,

46, 49]. Liu and Wang presented a tool called Restricted Support Region Set

Detection in [35], to visualize what the classifier had learned from a specific

algorithm. Other works focus their efforts on reducing the dimensionality of the

feature learned [50, 51].

14



2.3 Spatial Pyramid Matching

As mentioned in the previous section, one challenge of the BoW model comes

from the exclusion of spatial information in the final image representation.

Lazebnik et al. presented a solution to this problem in [13] by incorporating

a rough spatial arrangement of patches into the image representation. This ap-

proach is called wthe Spatial Pyramid Model (abbreviated as SPM).

In SPM, an image is now duplicated L times such that we have multiple

layers of the same image, creating a pyramid. Each layer l ∈ {0, 1, 2, . . . , L−1}

is divided into 2l × 2l equal-sized, disjoint regions. The BoW representation is

applied to each of this spatial windows. This means that a single patch can

be pooled more than once based on their spatial window membership. At the

end of the process, multiple codeword histograms are obtained, one for each

spatial window. The final image representation is obtained by concatenating the

histograms into a single vector.

SPM might seem overly simplistic at a first glance. However, it is able to

offer a considerable improvement to the results of the learnt classifier. The

simplicity and power of SPM have attracted many researchers, putting it as

a mainstay in most computer vision pipelines. Many state-of-the-art perfor-

mances have been achieved with SPM as an integral part of the image represen-

tation [23–25, 28, 52–59].

It is worth noting, however, that the SPM approach is used with very little

to no modification. While coding and pooling schemes have received much at-

tention in the research community, the SPM model itself is challenged by very

few works. Most works focus their attention on finding suitable pooling func-

tions, neglecting the spatial arrangement used by SPM. Jia and Huang proposed

a scheme to adaptively learn receptive fields (spatial regions) based on a collec-

tion of possible spatial windows in [60]. Yan et al. proposed to use all possible

spatial window arrangements (covering a spatial window’s aspect ratio, size,

and location), and to apply Principal Component Analysis (PCA) for feature
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Figure 2.3: The spatial pyramid matching model on an image from “dalmatian”
class with L = 3.

selection [58]. Krapac et al. have shown in [28] that using the Fisher Vector

(FV) as an appearance descriptor not only allows a smaller codeword dictionary

(a property that is very important in FV), but also when combined with spatial

pyramids, it is able to achieve state-of-the-art performances with only two lay-

ers of the pyramid. This is particularly interesting, as it indirectly asserts that

the current SPM architecture is sub-optimal.

2.4 Key-point detectors

In the BoW model, patches are normally obtained using three methods: (a) ran-

dom sampling, (b) dense sampling, or (c) key-point extraction based on salient

regions. An illustration for (b) and (c) can be found in figure 2.1. The first two

methods are straightforward, even though it is possible to yield significant re-

sults using these methods. There are, however, several ways to execute the last

method.
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Figure 2.4: SIFT detection result with step-by-step filtering of key-points (image
taken from [2]).

Various techniques have been developed to extract these salient points that

can be regarded as being representative of the object(s) inside an image. For a

start, the Scale Invariant Feature Transform (SIFT) algorithm, while primarily a

feature descriptor, provides a way to collect key points before being described.

Through a combination of scale-space pyramids, the key points are filtered using

their local extrema, followed by localization and elimination of edge responses

[2]. An image of 200× 200 pixels may produce up to 500 key-points.

Kadir and Brady [61] proposed to detect interest points based on the saliency

within the image being detected. This algorithm, known as the KB saliency-

scale detector, searches for a visually salient region over different image scales

based on the image’s appearance (geometric features, rarity and local complex-

ity), creating measures of intra- and inter-scale entropies which are used to de-

tect key points. One can control the number of key points detected by adjusting

the threshold where entropy is considered a salient point.

The Harris-Laplace detector [62] provides another alternative for extracting

regions of interest. It is invariant to scale transformations, and detects points
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Figure 2.5: Kadir-Brady detection result.

that correspond to corner-like regions. The outputs of the detector are circular

regions at certain characteristics of scale. Another similar type of detector is the

Laplacian detector [63] which extracts blob-like regions from the image. The

Harris-Laplace detector tends to produce comparable results with fewer detec-

tions, as compared to the Laplacian detector. However, it might be necessary to

use the Laplacian detector especially when the test image is small in size.
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Figure 2.6: Harris-Laplace and Laplacian detection result (Image taken from
[3]).

2.5 Feature descriptor

Mapping image patches directly onto the bag-of-words model is costly and non-

beneficial. The collected patches need to be expressed in another representa-

tion xi that has more efficiency in utilization. This representation is commonly

known as a feature descriptor, as it describes the feature points within the images

that represent these patches.

Such descriptors need to be designed to match the needs of object recogni-

tion tasks. Considering that images may be taken from different distances and

perspectives, the descriptor should be invariant to these changes. In other words,

it needs to be at least scale-invariant (due to variations in object size or distances

from which the image is taken) and rotation-invariant (due to variations in object

orientation or perspective).

One of the best and popular descriptors used in recent times is the SIFT [2].

Patches of a specific scale are divided into 4 × 4 sub-regions (the number 4

can be substituted with other numbers as well). An edge detection is done to
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each of the sub-region, and the resulting magnitude/orientation pair from each

pixel position is aggregated in an 8-dimensional vector. The aggregation is done

by pooling the magnitudes based on their orientation with respect to 8 general

direction. Hence, we transform the representation of the patches into a 128-

dimension vector (depending on the number of sub-regions and the number of

the gradient bin, in this case 4× 4× 8 = 128). Although the dimensionality of

the descriptor could be very high, we can also utilize the PCA to reduce its size.

Speeded Up Robust Features (SURF) [64] is a robust feature partly inspired

by SIFT. SURF is several times faster than SIFT, and is more to different trans-

formations compared to SIFT. It makes use of the sum of 2D Haar-wavelet

responses around the point of interest with the aid of integral images.

The Histogram of Oriented Gradients (HOG) [65] is another example of

a widely used feature descriptor. First publicized by Dalal and Triggs, HOG

describes local object appearances and shapes based on the distribution of in-

tensity gradients or edge directions. Similar to SIFT, during implementation,

HOG divides the patch into small connected regions (termed cells), obtains the

histogram, and combines them into the descriptor. Since HOG operates on lo-

calized cells, the method upholds invariance to geometric and photometric trans-

formations, with the exception of orientation.

2.6 Non-parametric Bayesian Learning

One milestone in the development of Artificial Intelligence is the acceptance of

uncertainty and inductive reasoning as primary concerns within the field. While

the term “uncertain” seems to convey an opposite message from “intelligent”,

it was Judea Pearl who managed to shift that opinion. Early AI researchers

tended to focus on mimicking the deductive capabilities of human intelligence.

This changed in post-Pearl research, which accepted the uncertainty surround-

ing a realistic environment, and tried to explicitly represent these uncertainties
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so as to mitigate their effects. It might well be that the only way to bridge the

gap between systems of limited and robust intelligence is by embracing uncer-

tainty. Computationally, it involves two aspects: explicit representations of un-

certainty and the algorithmic manipulations of these representations to reduce

uncertainty. Pearl showed that these two aspects are intimately related [66]

obtaining a compact representation of uncertainty will lead to an efficient al-

gorithm for marginalization and conditioning, which in turns leads to reducing

uncertainty.

Uncertainty about an environment can also be reduced by observing the en-

vironment, i.e., learning from a collection of data, which has been an early focus

of deduction in AI. However, many researchers of machine learning do not wish

to make the assumption that the learner needs to maintain an explicit probabilis-

tic model of the environment. Many learning algorithms involve some degrees

of algorithmic procedures that are not necessarily interpretable as computations

of conditional probability. Their unconditional performance is used over and

over on various datasets as justification of these procedures.

It is worth noting that statistics involves the interplay of both the conditional

(Bayesian) and the unconditional (frequentist) perspectives that underline much

development in AI research. Ever since Pearl’s work in the 1980s, there has

been a trend to blend reasoning and learning: one does not need to learn from

the data that which one can infer from the model, and vice versa. Thus, learning

and reasoning interact. The most difficult problems in AI are currently being

approached with methods that blend reasoning with learning. There remain,

however, several limitations of probabilistic and statistical approaches.

It is generally accepted that to use probabilistic methods in AI, one is forced

to write out a list of assumptions. While this is often a helpful exercise, some

of the assumptions are not well motivated. Assumptions of independence, for

example, are often imposed for reasons of computational convenience, and not

because they are deemed to be true in the environment. Also, some choices of
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convenience influence the adoption of various assumptions.

The non-parametric Bayesian learning pursues a different approach to ex-

pressive probabilistic representations, and a less assumption-laden approach to

inference. The idea is to move beyond the simple fixed-dimensional random

variables that have been generally used in graphical models, and to consider

a wider range of probabilistic representations. With the usage of flexible data

structures that can expand and contract as needed, e.g. trees, list and collec-

tions of sets, it is possible to produce an efficient algorithm. The existing field

of stochastic processes essentially provides this kind of flexibility. Within the

general theory of stochastic processes, it is quite natural to define probability

distributions on spaces of probability distributions to yield an appealing recur-

sivity; or to apply it to trees, lists and collection of sets.

One way to use stochastic processes in inferences is by taking a Bayesian

perspective and replacing the parametric distributions in classical Bayesian anal-

ysis with stochastic processes. For example, we could consider a model in which

the prior distribution is a stochastic process that ranges over trees of arbitrary

depth and branching factors. By combining it with the likelihood, we obtain a

posterior distribution (which is also a stochastic process) that ranges over trees

of arbitrary depth and branching factors. Bayesian learning amounts to updat-

ing one flexible representation into another flexible representation (prior to the

posterior). This idea is called Bayesian nonparametrics.

The word ‘nonparametrics’ does not mean ‘no parameters’, in fact, many

stochastic processes have been described in many (or even infinitely many) pa-

rameters. It instead means ‘not parametric’, in the sense that inference is not

restricted to objects whose dimensionality stays fixed over increasing amounts

of data, thus giving flexibility of data structures, where representations can grow

as needed. As such, the Bayesian nonparametric approach is less assumption-

laden than classical Bayesian parametric learning.
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2.6.1 De Finetti’s theorem

De Finetti’s theorem [66] provides a natural point of departure for the discus-

sion of non-parametric Bayesian learning, as it provides as one of the pillars of

Bayesian inference.

De Finetti’s theorem. Suppose X1,X2,X3, ... is an infinite exchangeable

sequence of Bernoulli random variables. Then X1,X2,X3, ... are conditionally

independent and identically distributed given some random variable Y with

probability distribution m ∈ [0, 1].

A random variable X has a Bernoulli distribution if Pr(X = 1) = p and

Pr(X = 0) = 1 − p. De Finetti’s theorem states that the probability distri-

bution of any infinite exchangeable sequence of Bernoulli random variables is

a "mixture" of the probability distributions of independent and identically dis-

tributed sequences of Bernoulli random variables. "Mixture" in this sense means

a weighted average, but this not necessarily means a finite or countably finite

weighted average, it can also be an integral rather than a sum. This theorem

suggests the need of prior distributions in a statistical model and directly im-

plies the consideration of stochastic processes as Bayesian priors.

Consider an infinite sequence of random variables (x1,x2, . . . ), assumed to

be discrete. We say that such a sequence is infinitely exchangeable, if the joint

probability distribution of any finite subset of those random variables is invariant

to permutation. De Finetti’s theorem states that (x1,x2, . . . ) are infinitely ex-

changeable, if and only if, the joint probability distribution of any finite subset

can be written as a marginal probability in the following way:

p(x1,x2, ...,xN) =

∫ ∞
−∞

N∏
i=1

p(x|G)P (dG) (2.5)

As such, the theorem can be interpreted as stating that exchange-ability im-
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plies the existence of an underlying parameter as well as a prior distribution

on that parameter, hence it is often viewed as the foundational support for the

Bayesian paradigm. There are also no restrictions that G should be a finite di-

mensional object.

2.6.2 The Pólya urn model

In Pólya urn model, objects of real interest are represented as colored balls in

an urn or other container. Suppose the urn contains x white and y black balls.

One ball is drawn randomly from the urn and its color observed and is then

returned into the urn. An additional ball of the same color is added to the urn,

and the selection process is repeated. In this way, every time a particular value is

observed, it becomes more likely to be observed again. Additionally, successive

acts of measurement over time has less and less effect on future measurements.

The model provides an example in which the count of balls in the urn is not

concealed. A Bayesian analysis of the observer’s uncertainty about the urn’s

initial content can be made, using a particular choice of prior distribution. This

basic Pólya urn model has been enriched in several ways, and in this thesis we

are particularly interested in Dirichlet Process. Suppose that we start with an

urn of α black balls. If we draw a black ball, put the ball back along with a new

ball that is non-black, randomly generated from a uniform distribution over an

infinite set of available colors, and consider the generated color as the value of

the draw. If a non-black ball is drawn, put the ball back into the urn along with

a ball of the same color (instead of generating a new color), as with standard

Pólya urn scheme.

This modified Pólya urn model gives a simple example of the realization of

infinite-dimensional G and the stochastic process P . While the model defines

a distribution on labels, it can also be used to induce distribution on partitions.

Such a model leads to the Chinese restaurant process [67].
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Chinese Restaurant Process. Imagine a Chinese restaurant with an infinite

number of circular tables. Assuming that each table have infinite capacity, the

first customer of the restaurant is seated at an unoccupied table with probability

1. At time n+ 1 a new customer visits the restaurant and chooses at random to

sit at the possible n + 1 places: to the left of the n customer already seated at

an occupied table, or seat at a new, unoccupied table.

2.6.3 The Dirichlet Process

Consider a distribution π = (π1, π2, ...) on positive integers. We can view them

as a sequence of a non-negative numbers that sum to one. To obtain a random

sequence that sums to one, the “stick-breaking” sequence is introduced: Define

an infinite sequence of independent random variables

βk ∼ Beta(1, α0), k = 1, 2, ... (2.6)

where α0 > 0 is a parameter. The beta distribution follows the following

probability density function:

f(x;α, β) =
1

B(α, β)
xα−1(1− x)β−1

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt for Re(x), Re(y) > 0

(2.7)

Now define an infinite random sequence

π1 = β1

πk = βk

k−1∏
l=1

(1− βl)
(2.8)

Clearly, the sum of the numbers is equal to one.

We can exploit this construction to generate a large class of random distribu-

tions on sets other than these integers. Consider an arbitrary measurable space

Ω, and letG0 be a probability distribution over that space. In this thesis, the term
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measure in the context of Dirichlet Process is referring to probability measures.

Probability measures. a function µ is a probability measure on a prob-

abilty space if (1) µ return results in the unit interval [0, 1], returning 0 for

empty set and 1 for the entire space, and (2) µ must satisfy the countable ad-

ditivity properti that for all countable collections {Ei} of pairwise disjoint sets

µ(E1 ∪ ... ∪ En) = µ(E1) + ...+ µ(En).

Draw an infinite sequence of points {φk} independently from G0. Now de-

fine

G =
∞∑
k=1

πkσφk (2.9)

where σφk is a unit mass at the point φk. Clearly, G is a measure, and in-

deed for any measurable A subset of Ω, G(A) adds up the values πk for those

k where φk ∈ A. This process also satisfies the countable additivity needed in

the definition of a measure. Since G(Ω) = 1, G is a probability measure. In

this definition, G is a stochastic process where the indexing variables are the

measurable subsets of Ω; since for any fixed A subset of Ω, G(A) is a random

variable ranging over subsets {A1, A2, . . . , Ak}, hence the joint distributions of

the collections of random variables G(Ai) are consistent with each other. If

we specialize the sets {A1, A2, . . . , Ak} as a partition of Ω, the random vector

{G(A1), G(A2), . . . , G(Ak)} can be shown to have a finite-dimensional Dirich-

let distribution of

{G(A1), G(A2), ..., G(Ak)} ∼ Dir{α0G0(A1), α0G0(A2), ..., α0G0(Ak)}

(2.10)

from which the required properties for consistency follow immediately from

the properties of the Dirichlet distribution. Hence, the stochastic process de-
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scribed by equation 2.9 is known as the Dirichlet Process, while equation 2.10

shows that the Dirichlet process has a Dirichlet marginal.

Further inspection on the Pólya urn model will show that the Dirichlet pro-

cess is the De Finetti mixing distribution underlying the Pólya urn. Equation

2.10 is usually expressed as follows:

G ∼ DP(α0, G0) (2.11)

Here we say that the Dirichlet Process has two parameters: the concentration

parameter α0 (proportional to the probability of obtaining a new color in the

Pólya urn) and the base measure G0, which is the source of the “atoms” φk.

2.7 Dirichlet process mixture model

The Dirichlet process defines a prior on partitions of objects, and this prior can

be used to develop a Bayesian non-parametric approach to clustering. As dis-

cussed earlier, with this non-parametric approach, one does not have to fix the

number of clusters a priori. Let (x1,x2, . . . ,xN) be a sequence of random vec-

tors whose realizations we want to model in terms of an underlying set of clus-

ters. We treat these variables as exchangeable and conditionally independent

(as suggested by De Finnetti), given an underlying random element G. Draw-

ing G from a Dirichlet process, we define a Dirichlet Process Mixture Model

(DP-MM) [67] as

G ∼ DP(α0, G0)

θi ∼ G, i = 1, ..., N

xi ∼ p(x|θi), i = 1, ..., N

(2.12)

where p(xi|θi) is a cluster-specific distribution. The use of the intermediate

variable θi is simply an expanded way to write the factor p(xi|G). In particular,

G is a sum across atoms, and thus θi is one of the atoms in G, chosen with a
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Figure 2.7: Graphical model representation of Dirichlet Process Mixture Model.

probability equal to the weight assigned to that atom. The graphical model of

the DP-MM is shown in Figure 2.7.

2.7.1 Inference for Dirichlet process mixtures

We briefly describe on Markov Chain Monte Carlo (MCMC) inference proce-

dure for the DP-MM in this thesis, which is attributed to Escobar [68]. It should

be noted that there are various procedures existing in other forms, as described

by Neal in [69].

Consider the equation

p(θ,x) = p(θ1, θ2, ..., θN)
N∏
i=1

p(xi|θi) (2.13)

We note that the equation induces a Pólya urn marginal distribution on θ =

(θ1, θ2, . . . , θN). Equation (2.13) shows the joint distribution on θ and X =

{x1,x2, . . . ,xN} where the first factor is the Pólya urn model. This can be

viewed as the product of the prior and its likelihood.

The variable x is deemed as fixed through inference (as observed data) with

the goal to sample θ. A Gibbs sampler is developed to achieve this purpose.

Using the property of exchangeability, the joint probability of (θ1, θ2, . . . , θN) is

invariant to permutation, meaning that we can permute the vector to move θi to

the end of the list. By integrating the product of the urn representation and the

likelihood, we can obtain the conditional distribution of θi for all i.
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2.7.2 Hierarchical Dirichlet Process

In a hierarchical Bayesian model, the joint distribution of all the variables in

the model is obtained as a product over conditional distributions, where each

conditional may depend on other variables in the model. The literature on this

graphical model has focused almost entirely on parametric hierarchies, where

each of the conditionals is a finite-dimensional distribution. However, it is also

possible to build hierarchies where its components are stochastic processes. Ap-

plying this to the Dirichlet process, we obtain the Hierarchical Dirichlet Process

(HDP).

Recall that a Dirichlet process Gi ∼ DP(α0, G0) is a random measure Gi,

that has a ‘parameter’ G0 that is itself a measure. If we treat G0 itself as a draw

from a Dirichlet process and let the measures G1, G2, . . . , Gm be conditionally

independent for a given G0, we obtain the following hierarchy:

G0|γ,H ∼ DP(γ,H)

Gi|α,G0 ∼ DP(α0, G0)

(2.14)

Where γ andH are concentrations and base measure parameters at the top of

the hierarchy. This construction yields an interesting kind of ‘shrinkage’. Recall

that G0 is a discrete random measure, with its support on a countable infinite set

of atoms. Drawing Gi ∼ DP(α0, G0) means that each Gi will also have its

support on the same set of atoms. The weights are obtained via conditionally

independent stick-breaking processes.

The HDP is useful when we want to tackle multiple clustering problems,

in applications where we wish to relate the groups formed to each other, as in

this thesis. To achieve this, the hierarchical Dirichlet process mixture model is
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Figure 2.8: Graphical model representation of Hierarchical Dirichlet Process.

described as

G0|γ,H ∼ DP(γ,H)

Gi|α,G0 ∼ DP(α0, G0), i = 1, ...,m

θij|Gi ∼ Gi, j = 1, ..., Ni

xij|θij ∼ F(xij, θij), j = 1, ..., Ni

(2.15)

F(x, θ) is the distribution of x given θ. The graphical model of HDP is

shown in Figure 2.8.

2.8 Localization Technique

In the problem of object detection, the possibilities of having cluttered real-

world scenes are very high. In such cases, it is not only necessary to assign

the correct category label to an image, but also to firstly find the objects and to

separate them from the background. Historically, this step of figure-ground seg-

mentation has long been seen as an important, and even necessary, precursor for

object recognition, as discussed in the previous section. However, researchers

have generally been faced with the failure of achieving task-independent seg-

mentation. Coupled with the success of appearance-based methods to provide

recognition without segmentation, the two areas have since diverged.

The criteria for measuring localization accuracy have evolved over time.
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Agarwal and Roth [70] evaluated the center-point of an object and classified its

localization as correct when the marked point was considered in close neighbor-

hood with the actual center of the object. Modern localization methods should

go even further, to return additional information like poses, viewpoints, articu-

lations and aspects.

A few methods that interweave object detection and segmentation have

been recently developed by researchers such as Leibe et.al. [71], Fusseneger

et.al. [72], and Liu et.al. [37]. Liu et al. proposed a scheme of unsupervised

segmentation, where object detection and object segmentation help each other

to produce better results in segmentation. This has been shown to be beneficial

in the work of Marzalek and Schmid [3], by using training information to pro-

duce an approximate image mask to filter out (or reduce the effect) of codeword

clutter. This work tried to tackle the problem with the same approach in Chapter

3, to see the effects of such segmentation on non-parametric learning.

2.9 Convolutional Neural Network

More recently, several works have shifted their focus onto unsupervised feature

learning by the means of Deep Convolutional Neural Network (CNN) [73]. In

contrast to crafted features like SIFT and HOG, unsupervised learning utilizes

the neural network with a non-linear layer on each stage to learn a suitable fea-

ture descriptor. The resulting features are inexpensive to compute, and are able

to model the latent features shared by the patches. Some works [55–57, 74]

have succeeded in producing results on par with results from state-of-the-art

crafted features, or performing even better. Also called Deep Learning, with its

introduction invariant features have learned to adapt to intra-class image varia-

tions [75, 76].

Deep Learning has been picking up paces swiftly since 2013. Deep Learning

first appearance can be traced as far back as back as 1980s in the form Convo-
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Figure 2.9: Common structure of a Convolutional Neural Network. (a) a typical
CNN consists of a convolutional layer which is depicted by the bottom con-
nected network, and a non-linear layer (usually accompanied by pooling step)
depicted by the top connected network. This pooling layer is also referred to as
subsampling layer. (b) Deep CNN stacks multiple CNNs into one single, deep
network. In this figure, two CNN units are stacked together.

lutional Neural Network. The design was then improved in the period of 1998

to 2003, and started to be noticed in 2006. It was around 2013 when some good

results on computer vision can be seen, although it was still being outperformed

by the bag-of-words approach. It was not until early 2014 that CNNs started to

outperform bag-of-words and sparse coding approach.

With the advent of deep convolutional neural networks, we are witness-

ing a rapid, revolutionary change in the vision community. Deep learning-

based approaches have shown substantial improvement in current technologies

of image classification, object detection, and various other recognition and non-

recognition tasks. A single layer unit in a CNN mainly consists of two parts:

convolutional layers (connected sparsely) and fully connected layers following

it. The convolutional layers operate in the manner of sliding windows, which

give feature map outputs that represent the spatial arrangement of activations.
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The second part involves inputs of fixed size that represent non-linearity and

pooling. Several layer unit can be stacked together to create deep architecture,

thus the name Deep Learning.

This thesis will not cover CNNs and Deep Learning extensively, as chapter

3 does not utilize them in any way, and the contributions from Chapter 4 to 6,

was mostly tested on bag-of-words methods. The reasoning against inclusion

of an extensive review on CNNs is that it leads to swamping the thesis with

information that does not directly relate to the work in this thesis. As ground-

breaking and important the works on CNNs and Deep Learning are, this work is

not on object recognition methods but improving SPM that is basically a com-

mon element among most object recognition algorithm. This work, however,

will translate its proposed method in chapter 6 to 8 into CNNs, and show that

the improved SPM paradigm is beneficial not only to bag-of-words approach

but to Deep Learning as well.

SPM, however, is used widely on all family of methods, be it bag-of-words,

regionlets, sparse-coding, or deep learning. Some of these algorithms do not

mention SPM by name, but a quick look to the pooling mechanism will enable

us to make the association to SPM. In the case for convolutional neural network,

SPM is present in the form of the fully connected layer. In this layer, responses

from previous layer are aggregated by pooling based on their spatial location

and memberships with respect to several sub-windows. The architecture of such

pooling mechanism are identical to SPM, without calling SPM specifically by

name. As one of this thesis goal is to show that SPM is sub-optimal, it will also

touch on how the proposed model in this thesis can be translated to instances of

SPM in Convolutional Neural Network.
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Chapter 3

Region Cardinality and

Approximate Shape Mask

3.1 Introduction

The BoW (bag-of-words) approach is one of the most popular approaches for

image representation within object categorization. The usage of such a model

normally follows the four basic steps: extraction of patches, feature description,

vocabulary construction (encoding), and image representation (pooling/aggre-

gation) [77]. These steps are performed independently with respect to the in-

tended object classes for detection. This model is therefore considered a bottom-

up approach.

Normally, the BoW model assumes that the patches of an image are inde-

pendent. This assumption considerably simplifies the complexity of the model.

However, it is evident from real-world experience that there can be connections

between components of an object. These connections enable our vision sys-

tem to easily categorize the object. The assumption of independence between

patches will therefore results in the discarding of useful information contained

in the dependencies between the image patches.

Let us consider two objects, a table and a wooden bed frame (as shown in
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Figure 3.1: Dependent patches as assistive information for object recognition.
A “wooden leg” can explain both “table” and “bed” as illustrated in the top
row. However, the existence of a “pillow” might enhance the recognition per-
formance.

Figure 3.1), to illustrate this phenomenon. For the wooden bed frame, the parts

“wooden leg” and “pillow” tend to occur in the same image. However, if we

tackle both vocabularies independently, we might misclassify the bed frame as

a table because of its “wooden leg”. If we know that there is a “pillow” near a

“wooden leg”, and include that information in our recognition process, we can

easily distinguish between the two objects. This concept is the foundation of the

Dependent Hierarchical Dirichlet Process (DHDP) proposed by Wang et al. [1].

The Hierarchical Dirichlet Process (HDP) is a non-parametric Bayesian

model that extends the Dirichlet Process to multiple levels [67]. Since the pro-

cess is layered hierarchically, it is possible for us to fit our model into the HDP to

share latent themes between multiple object categories. The DHDP extends the

HDP by introducing linkages between patches to measure the strength of their
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dependencies. This model aims to learn the theme distribution of the objects

and train a classifier for object categorization.

Even with carefully set parameters for salient scale detectors, it is unavoid-

able that some patches collected would not be help achieve our goal of object

categorization. This may happen when the object has bad contrast with the sur-

roundings, or if there are many objects cluttered in the background. Let us call

such patches noise patches. Noise patches tend to cluster together in the DHDP

training process as they often have similar descriptors. This in turn creates a

large group of noise patches from all image categories.

The Dirichlet Process (and consequently HDP and DHDP) tends to pull

smaller groups of patches into a group of patches, which in turn has a large

number of associated patches (referred to as the "rich-get-richer" effect). This

effect is strengthened in DHDP, as the linkage strength always multiplies the

distribution in favor of the stronger category. With a large number of training

images, a large number of noise patches will be accumulated. This collection of

noise patches will in turn merge the other latent themes to itself, which is very

detrimental to recognition performance as discriminative parts may be merged

along with it. One particular solution is to prevent this from happening by set-

ting appropriate settings for the detector. However, this is not an easy task to

perform, and the settings could differ depending on the application as well. This

work proposes a new approach to tackle this problem, which involves incorpo-

rating the cardinality of the patches into the training and recognition steps of the

algorithm.

Going back to the example of the “table”, we may observe that a table tends

to have three or four “wooden leg” vocabularies, depending on the viewpoint of

the image. Different viewpoints may give rise to the occlusion of some parts, but

the number of parts will not deviate too far from a certain value. The same also

applies to images og a “car” and “motorcycle”, which we know have four and

two “wheels” respectively. This work proposes to integrate this information, in
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addition to the patches and their dependencies, into the learning and recognition

system, to improve overall performance and reduce the effect of noise patches.

3.2 Basic notations

An image is modeled as a collection of patches. Each patch is represented by a

codeword selected from a dictionary of codewords. These patches are assigned

to a single latent theme, and it is possible for a theme to be shared by multiple

patches. We want to ensure that patches that are both dependent and relevant

to each other share the same themes. The posterior distribution for each class

is sampled in the training process to obtain a probability matrix, as well as the

theme distribution of the class.

The following notations are used throughout this chapter:

• A patch x is described by membership in the visual dictionary of code-

words.

• An image is represented as a group of patches, denoted by X= {x1,x2, . . . ,xn}.

• A category is a collection of images.

3.3 Dependent and relevant Hierarchical Dirichlet

Process

Figure 3.2 below shows the graphical model of the DHDP, in contrast to the

HDP model by [67]. We have a probability measure H over a measurement

space Ω and a positive real number γ. θ is a parameter that takes values in

the measurement space with prior H , i.e. θk|H ∼ H . θk corresponds to

the latent themes shared with multiple image categories. A Dirichlet Process
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Figure 3.2: The graphical model of (a) DHDP and (b) HDP. The node “L”
signifies the linkage between the patches, and their dependency.

G0 ∼ DP(γ,H) is a distribution over measures Ω, which can be constructed as

G0 =
∞∑
k=1

βkθk

β′k|γ,H = Beta(1, γ)

βk = β′k

k−1∑
l=1

(1− β′l)

(3.1)

G0 is an unobservable variable in the model, and βk denotes the probability

of drawing θk. We associate each image with another Dirichlet Process Gi,

acting as the prior of the mixture models in different images. Equation 3.1 is in

fact the stick-breaking construction discussed in Section 2.6.3. Since we want

latent themes to be shared between different images, we force Gi to be drawn

from G0:

Gi =
∞∑
k=1

πjkδθk

πj|α0, β ∼ DP(α0, β)

(3.2)

Denote xji as the ith patch in the jth image. The component drawn from the

mixture is denoted by zji and is drawn from πj , which is also affected by the

linkage L:

zji|πj, L ∼ (πj, L) (3.3)
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Then, xji is generated by the following likelihood:

xji|zji, θk ∼ F (xji, θji) (3.4)

The original HDP sampling is illustrated by the Chinese Restaurant Fran-

chise (CRF) metaphor. Note that the normal DP is illustrated by Chinese Restau-

rant Process (CRP) metaphor. Assume that for a set of restaurants, each restau-

rant has its own set of tables, and each table orders one dish. These dishes are

identical throughout the set of restaurants, i.e. the dishes are shared between

different restaurants. As with the CRP metaphor, in CRF, the restaurant rep-

resents the image, while the dishes represents the latent themes. Customers

(corresponding to the image’s patches) in each restaurant pick their table and

can either order what has been ordered for that table, or choose a new table.

The dependency arises as customers tend to be seated together and thus order

the same dishes as other customers they know, according to the Acquaintance

Coefficient, signifying the strength of dependencies between two patches.

In the original works of Wang et al., the linkage Λ is composed only of the

strength of the dependency between two codewords from the dictionary. This

work proposes to extend the linkage Λ to take the cardinality of the patches

inside each image into account as well. Consider a new coefficient called the

Cardinality Coefficient, which will redefine the strength of dependencies de-

pending on the known category of the patches being considered. We would

therefore intend to seat the customer along with other customers whom he/she

is both acquainted with (high dependency) and relevant to (closer cardinality to

the known category).

Let ϕji denote the ith customer at the jth restaurant. Each ϕji is associated

with one φjt, denoting the tth table of the jth restaurant. In this model, this table

could be regarded as the intra-image mixture component. Naturally, there can be

multiple customers associated with one table, and the number of customers at a

table is denoted by njt. Each φjt is associated with one θk, which is the kth dish
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of the entire franchise ordered by the table. Similarly, multiple tables can be

associated with one dish, and the number of tables ordering that dish is denoted

by mk. Denote mjk as the number of tables in the jth restaurant ordering θk. In

all, this illustrates the “Chinese Restaurant Franchise” metaphor for a two-level

HDP as mentioned by [67], which is sampled using Gibbs sampling.

Wang et al. incorporated the dependency criterion into the sampling scheme

of the HDP, and also introduced the DHDP. Using the same rationale, it is pos-

sible to incorporate the cardinality relevancies into the learning process. That

is, given ϕj1, ϕj2, . . . , ϕj(i−1), we can choose a table for ϕji using

Λ(j, φ1, φ2) = C(φ1, phi2)D(j, c(j), φ2) (3.5)

φji|φj1, φj2, ..., φj(i− 1), α0, G0 ∼
Tj∑
t=1

njt

njt∏
q=1

1 + Λ(j, φji, φ
q
ϕjt

)σϕjt
+ α0G0

(3.6)

in which Tj is the number of tables occupied with customers, and C(·, ·) de-

notes the acquaintance coefficient between the customer that is to be seated and

the customer already seated at the table. D(·, ·, ·) denotes the cardinality coef-

ficient of the customer already seated at the table. c(j) denotes the actual class

of image j. By modifying the equation in this manner, we force the incoming

customer to sit at the same table with customers that are more dependent as well

as more relevant to it.

These dependencies also affect the sampling of dishes for each table. That

is, given ϕ11, ϕ12, ..., ϕ21, ..., ϕj(t−1), a table ϕjt will sample its dishes with the

following likelihood:

ϕjt|ϕ11, ϕ12, ..., ϕ21, ..., ϕj(t− 1), γ,H ∼
K∑
k=1

mk

P∏
p=1

mk∏
q=1

1 + Λ(j, φϕp
jt
, φqθk)σθk + γH

(3.7)
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in whichK denotes the number of dishes that have been ordered by previous

customers. The probability matrix and the theme distribution are trained for

every category using the Markov Chain Monte Carlo sampling scheme. For a

given patch x, the scheme will sample a theme. These samples, in turn, are used

to train the posterior probability matrix. The theme distribution is modeled as

the ratio of the number of times it is sampled over the total number of samples

during the training process.

The acquaintance coefficient that is used for sampling is defined as

C(w1, w2) =
R(w1, w2, I)

R(w1) +R(w2)
− R(w1, w2, I)

R(w1) +R(w2)τ
(3.8)

In this equation, R(w1, w2, I) denotes the number of times two codewords

appear in the same image I , while R(wi) is the total number of times the code-

word wi appears in the corpus. τ is an experimental parameter, set at ‘greater

than one’ as a penalty factor to prevent patches that rarely appear from becoming

highly dependent.

Let j(w) be the number of times the codeword w appears in an image I . The

cardinality coefficient given j(w), is modeled as a Gaussian:

D(j, c, w) = exp(−
(j(w)− µw|c)2

2σ2
w|c

) (3.9)

in which µw|c and σ2
w|c denote the mean and variance of the occurrences of

codewords w appearing throughout class c, respectively. j(w) is the number of

times a patch belonging to codeword w appears in image j.

The Gaussian distribution is chosen to model the cardinality coefficient since

it is centered on an expectation value. This is due to the fact that said coefficient

reaches its highest value when the cardinality fits the knowledge basis of the

image class. Additionally, with a smooth distribution, the cardinality coefficient

will still return values that are less than the values obtained at the expected point,

which may happen in some special cases (e.g. an image of a car taken directly
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from the side will yield 2 “wheel” codewords instead of the usual 3 or 4). If

a distribution based solely on training data is used, it could result in cases of

inaccurate data models. Modeling the cardinality coefficient as a Gaussian may

not be the only suitable method. However, this thesis will only use a Gaussian

to model this coefficient.

Rather than dealing with ϕji and φjt directly, HDP samples index variables

tji and kjt respectively, as the index of the table and the dishes.

t is sampled by observing (3.7). In the case of sampling an unoccupied table

from H , a new sample is generated from it, denoted by kjtnew , using

kjtnew |k ∼
K∑
k=1

mkσk + γδknew

δknew ∼ H

(3.10)

After the new dish is obtained, the index tji is sampled directly from (3.6)

as 
a0f(xji|θkjt) if t = tnew ,

n−ijt
∏n−i

jt

q=1(1 + Λ(j, xji, x
q
t )) · f(xji|θkjt) otherwise .

(3.11)

in which njt denotes the number of customers seated at the t-th table of

the j-th restaurant. The superscript −i means that customer i is excluded from

consideration. If the t sampled is tnew, then kjtnew is inserted as a temporary

value into the data structure; otherwise, it is discarded.

Similarly, we follow (3.7) to sample k by first generating a new mixture

parameter σknew ∼ H to anticipate the event when the sampling of k produces a

new dish. The sampling of k is then done with the likelihood of


γ
∏

i:tji=t
f(xji|θk) if k = knew ,

m−ik
∏

p

∏mk

q (1 + Λ(j, xpjt, x
q
k))

∏
i:tji=t

f(xji|θk) otherwise .
(3.12)
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3.4 Reducing rich-get-richer effect via D(·, ·, ·)

If we take a closer look at equations (3.6) and (3.7), the linkage factor is sig-

nified by the (1 + Λ) term, in which Λ is the Acquaintance Coefficient (in the

original DHDP) or the product of the Acquaintance Coefficient and Cardinal-

ity Coefficient in our modified DHDP. Observe that the two (1 + Λ) terms in

(3.6) and (3.7) are tied with one or two product sequences, and are multiplied as

many times as there is a customer sitting at a specific table or ordering a specific

menu. The "rich-get-richer" effect is very strong in DHDP, since (1 + Λ) > 1,

and when a large cluster is formed, the product term will exponentially increase,

producing a huge imbalance in the sampling probability. This results in the new

customer being co-opted into said cluster, which in turn leads to an even higher

probability.

With increasing amount of patches evaluated in Chinese Restaurant Fran-

chise, ensuring that customers be spread out evenly with respect to both tables

and restaurants becomes a challenging problem. However, we can’t simply ig-

nore this issue, as it would eventually render the resulting probability matrix

useless due to all customers being sampled into one table and one restaurant,

leading to a scalar probability matrix with value 1. In fact it does not take many

iterations for this to happen when the number of patches evaluated are very

large. The cardinality coefficient D(·, ·, ·) strives to reduce this particular effect

by acting as an adjusting factor to the (1 + Λ) term by reducing the value of Λ

closer to 0. In turn this dampens the growth of (1 + Λ) factor in equations (3.6)

and (3.7), which reduces the rich-get-richer effect.

To be more detailed, let us consider the case of finding a single patch be-

longing to the "wheel" codeword inside an image as we are considering a "Car"

category. If we know that the "Car" category in our dataset tends to have be-

tween 3 or 4 "wheels" then the statistic of this image does not agree with the

class being considered. In this case the cardinality coefficient will return a value

closer to 0, lowering the value of Λ, and dragging (1 + Λ) closer to 1. This will
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effectively slow down the rich-get-richer effect because for this particular patch

(customer), its linkage would no longer affect the computation. At the very

least, this particular patches will be less significant compared to those patches

coming from other codewords with agreeable statistics. While it does not com-

pletely negate the rich-get-richer effect, it does considerably dampens the rate

at which it happens. If HDP offers a model where a latent theme can be shared

among different classes of image, then DHDP improves that model by allowing

dependency between patches, but at the cost of a faster "rich-get-richer" effect.

The proposed approach makes it possible to have this dependency without the

adverse effect.

This property is very important in downplaying the noise patches within an

image, as noise patches are random in terms of both occurrence and frequency

(the number of patches in an image). At the same time, codewords that agree

with the statistics are more likely to belong to the object itself. In this case, the

cardinality coefficient will make sure that its contribution to the sampling of t

and k in equations (3.6) and (3.7) predominates.

We call this DHDP with cardinality coefficient the modified DHDP through-

out this thesis.

3.5 Approximate shape masks

Several works have shown that the visual extent of an object extends beyond the

object itself [6–9]. Interestingly, in the early days of computer vision research, it

was thought that the useful components of an object were only confined within

its silhouette. This eventually led to the paradigm that objects should be cor-

rectly segmented from an image before they could be recognized. However, the

general task of finding this location of an object, as bounded by its contours, is

in fact very difficult. As time passed, and with the increasing popularity of the

BoW approach, this approach was found to be unimportant for object recogni-
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tion. Nevertheless, there remains support for research that uses such segmenta-

tion techniques for object recognition.

With the increase in computational power over recent years, powerful de-

scriptors and large databases are now accessible to researchers. Along with the

advances in statistical pattern recognition, the need to achieve localization be-

fore recognition has been circumvented in favor of using local region descriptors

in a specific spatial arrangement [70, 78, 79]. This approach led researchers to

identify an object based only on its discriminative features, which in turn led

to the introduction of the bag-of-words method that was discussed in the previ-

ous chapter [80]. The method was then generalized by Csurka et al. [81], who

removed its spatial verification, thus making the method rely solely on the inter-

est point detector to extract visual "codewords" from the object. Furthermore, it

was then found that the quantity of visual "codewords" was more important than

the quality of the location of these visual "codewords" [82, 83], which shifted

the extraction of "codewords" from salient points to a dense, regular grid. This

development divorced the concept of object location from its method, mixing

context and object indiscriminately.

Marzalek and Schmid’s approach to generate the approximate shape mask

presented in [3] is adopted in this phase of our work. Using the Kadir-Brady

Saliency Detector [61], as in the previous section, salient keypoints are extracted

from the image and described using the SIFT descriptor. Aggregating all key-

points from the database, one can construct the visual words dictionary using a

simple K-means algorithm. Each of these key-points corresponds to a codeword,

which is used to describe images.

In contrast to the previous section, a user-defined segmentation mask of the

training images is provided. This binary segmentation mask separates the back-

ground and foreground within the objects, and will be used as a reference point

in creating an approximate mask for a queried image. Each key-point is then as-

signed rectification parameters to complement the invariant description of local
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image features, in this case SIFT.

The design of the SIFT is such that it is invariant to both scale and rotational

transformations [2], which means that the rectification parameters need to take

these two transformations into account (it has been shown that it can undergo

affine transformation as well, which is not incorporated into the design of this

experiment). To express this mathematically, consider a feature descriptor x =

d(p) of a patch p. It is known that the descriptor is invariant to a transformation

T (p, ρ) with ρ as the parameter of the transformation. Then, for each local

image region pi, the parameter of this transformation ρi ∈ Dρ(T ) is included in

its rectification ri ∈ R. This can be written as

R =
∏
T∈S

Dρ(T ) (3.13)

in which
∏

in this equation denotes the Cartesian product, Dρ(T ) is a do-

main of transformation, and S is the set of transformations to which the descrip-

tion is invariant:

S = {T : ∀ρ, r d(p) = d(T (p, ρ))} (3.14)

As the SIFT normalizes the local image region before computing the de-

scription, the rectification parameters express the normalization of the image.

Therefore, assume that we have two features xi and xj that are declared a

match after their descriptors are considered. Both features possess their own

rectification parameters, which are expressed in the transformation matrices ri

and rj respectively. We can thus align them with a transformation matrix Pij ,

computed as

rij = r−1i rj (3.15)

Fig. 3.3 shows an example, in toy form, of the alignment of shape masks

between two images, as described by Marzalek and Schmid in [3]. Consider the
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Figure 3.3: Visualization of shape mask alignment as depicted in [3].

two heads and water droplet as features, each associated with the shape mask

of an umbrella. The droplet is associated with the top of the umbrella, and

the heads are associated with being located either on the right or the left side

under the umbrella. The presence of a droplet or a head gives us the probable

location of the associated umbrella masks, depending on the position, scale, and

orientation of the features. It should be noted that the size of the umbrella varies

with respect to the size of the features (droplet and heads); as the size of the

features changes, so will the size of the umbrella, in corresponding fashion. The

“Big Ben” feature represents the background.

As shown in this example, one droplet and one head can give rise to multiple

shape masks, which can be considered mistakes, but the two heads and droplet

in the center of Figure 3.3 agree on the position of the shape mask, giving us the

best approximate shape mask of the image, due to them being aligned with each

other.
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Figure 3.4: Example of user-defined segmentation.

Observe that from Figure 3.3, the alignment of shape masks can be used

to produce approximate object segmentations. That is, given a set of features,

each feature may produce a set of hypotheses about the localization of the ob-

ject. Even if the quality of the resulting approximate segmentation varies, those

masks usually tend to focus on the object.

To construct an approximate segmentation, the following steps are per-

formed:

3.5.1 Compute sparse local features

For a given image, compute a set of sparse local features using the saliency

detector and describe them using SIFT. A user-defined set of segmented training

images is provided as a ground truth to help the system learn the shape mask

from a training viewpoint. In addition, as we have the data for the ground truth,

it is possible to filter out the background features in the training image. The

system will then learn the rectification parameters of each feature.

49



Figure 3.5: Example of the approximate mask generating process. The first row
shows the original image, the second row shows the approximate shape mask,
and the last row shows the multiplication of the two. The results were based on
100 training shape mask datasets created manually.

3.5.2 Cast hypotheses

Pairs of similar features obtained from Section 3.5.1 generate hypotheses about

possible object locations, by applying the rectification parameter to the shape

mask that correlates with the features saved in the training database. These

ground truth masks will then be scaled, rotated, or shifted accordingly, depend-

ing on the pair’s rectification parameters.

3.5.3 Stack hypotheses

As a large number of closest features is collected, numerous hypotheses will be

formed. The system will then try to aggregate these hypotheses to create the

approximate shape mask. Each hypothesis is summed together, weighted by

a Gaussian function (with zero mean and σ = 0.15 standard deviation) of the

distance between the training and test features. The sums of all hypotheses are

then normalized to unity, to create the approximate segmentation maskM(x, y).

Figure 3.5 shows some examples of results generated using this algorithm.

With the ground truth data from the shape masks, it is possible to filter out any
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detected points of interest that lie outside the shape mask. As such, this process

can focus on specific points of interest, with fewer noise patches. There will

be no changes, in terms of sampling and computation of distribution, to the

Dirichlet Process (equations (3.6) and (3.7)).

3.6 Object Recognition

The previous process trains the posterior probability matrix p(xj|θj) for every

object category. Let us say that for an image I containing the set of patches X

to be categorized, it will have |X| patches extracted from the detector. In con-

trast to the original recognition method by Wang et al., this proposed method

treats these patches individually, instead of aggregating their probabilities as

independent events. To incorporate knowledge of cardinalities into the recog-

nition steps, a new recognition paradigm is proposed. First, we calculate the

probability p(xk|c) for each class using

p(xk|c) =
∑
i

p(xk|θi)p(θi|c) (3.16)

A voting system is then introduced. For each class c, define a favored weight

V (c) based on the probability in equation (3.16) and the cardinality coefficient

given in equation (3.8):

V (c) =

|X|∑
k=1

p(xk|c)D(I, c, wxk
) (3.17)

In equation (3.17), wxk
denotes the codeword membership of xk. Equation

(3.17) is expanded further to take the generated shape mask into account. Let

M(x, y) be the shape mask that gives a score towards the localization value

of each feature, given its position (x, y) in the image. The voting system in
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equation (3.17) is modified into

V (c) =

|X|∑
k=1

p(xk|c)D(I, c, wxk
)M(x, y) (3.18)

in which x and y denote the position of xk. All the components needed to

calculate the voting coefficient are available from the previous process.

The categorization comes from finding the category which yields the highest

voting coefficient

class detected = arg max
c
V (c) (3.19)

Incorporating the cardinality into the linkage for DHDP helps improve the

model as it accounts for the fact that some categories would have similar num-

bers of codewords. The theme distribution p(θi|c) is modeled as the ratio of the

frequency of the theme sampled to the total number of samples.

3.7 System implementation

As in Wang et al.’s work [1], each image is represented as a collection of patches,

as discussed in Section 3.2. The feature point is extracted using the Kadir-Brady

scale-saliency detector [61], in such a way that the best 30-40 patches per image

are extracted. It should be noted that the image is resized such that all images

have exactly the same height for uniformity. Each patch is resized into a 48×48

pixel window, and divided into four 24×24 sub-regions. A SIFT-like descriptor

is used by utilizing an 18-bin orientation histogram. Hence, each feature is

described by a 72-dim vector. It is also desirable to reduce computational cost

by reducing the dimensionality to a 15-dim vector using PCA. The PCA basis

is obtained from the Caltech-101 “Background” category by sampling patches

at regular intervals. For vocabulary construction, K-means clustering is used

to group these vectors to form a large “Codewords Dictionary”. Classification

of feature vectors is done based on the center-points found by the K-means
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Algorithm 1 Learning process
Input: Image database
Output: Probability matrix p(xj|θj)

1: for all image class c do
2: for all image Ijc do
3: extract Xjc from Ijc
4: if using approximate shape mask then
5: get user-defined mask Mjc(x, y)
6: filter Xjc using Mjc(x, y)
7: end if
8: end for
9: end for

10: run K-Means to form dictionary V
11: assign xjck ∈ Xjc to an entry θk ∈ V
12: precompute C(·, ·) using (3.8)
13: set max_iter
14: for iter = 0 to max_iter do
15: for all j and i do
16: sample t following eq. (3.10) and (3.11)
17: end for
18: for all t and j do
19: sample k following eq. (3.12)
20: end for
21: end for
22: calculate p(xj|θj) from the samples

algorithm.

Algorithm 1 summarizes the Learning part of our modified DHDP that we

have discussed so far:

• Extracting local regions (Steps 1 to 9) is done using the Kadir-Brady

scale-saliency detector. All hits and their scores are collected, with the

top 30 to 40 patches picked depending on their scores. These patches are

then described using SIFT, and their dimensionality reduced using PCA.

If we want to use approximate shape mask, steps 4 to 7 will be run. In

these steps, the known ground truth of the object’s shape and location

from the dataset is used to discard all local regions that fall outside the

shape mask.

• Cluster extracted regions to form dictionary (Step 10) is done by clus-

tering the gathered patches using the K-means algorithm. The learned
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Algorithm 2 Recognition process

Input: Image I , dictionary V and p(xj|θj)
Output: Assigned class cr

1: extract X form I
2: assign all xi ∈X to a codewords in V
3: if using approximate shape mask then
4: compute M(x, y)
5: assign coefficient to each xi based on M(x, y)
6: end if
7: recognize class cr using eq. (3.16) - (3.19)

cluster centers are used as codewords.

• Represent regions as codewords (Step 11) is then performed on each of

the gathered local image regions/patches. Hard-assignment is used to as-

sociate each patch with exactly one cluster center.

• Computing “Acquaintance Coefficient” (Step 12) is then possible since

we now have complete knowledge of patches’ identities from the previous

step. C(w1, w2) can be pre-computed prior to DHDP sampling and be

represented as a matrix. Note that the cardinality coefficient is dynamic

and constantly changes over the course of DHDP sampling.

• Learn probability matrix using DHDP and “Cardinality Coefficient”

(Steps 13 to 22) is done by utilizing equations (3.10)-(3.12). Set every

patch xi in image j as the customer ϕji, each seated at a table φjt or-

dering θkjt , initialized as their codeword membership from V. Having

fully established the needed identities for the Chinese Restaurant Fran-

chise process, we iterate sampling for a certain number of times, utilizing

Gibbs sampling in the form of equations (3.10)-(3.12) for all customers

and tables within the set, for each iteration. The final membership for

tables and dishes is computed as the probability matrix.

Having done the learning step, we have trained the classifier to help us rec-

ognize the class of an input image I . For the recognition process, Algorithm 2

describes the steps in detail:

• Extracting local regions (Step 1) is done in the same way as in Algorithm
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1. The only difference is that in Recognition process, extraction is done

only for the input image, and we do not have the user-defined shape mask

to assist in filtering noisy patches.

• Represent regions as codewords (Step 2) is then performed on the ex-

tracted patches using the dictionary learned in Algorithm 1 using hard-

assignment.

• Compute approximate shape mask and assign score (Steps 3-6). This is

the approximate shape mask generation step as explained in Section 3.5

(finding M(x, y)). Based on the computed shape mask, a coefficient is

assigned to each patch as weight for the last step, as in equation (3.18).

• Recognition of class cr (Step 7) is done using equation (3.16) to (3.19).

3.8 Experiment and results

3.8.1 Experimental settings

The experiment was carried out on Caltech-4 datasets. This dataset contains

the classes “Airplanes”, “Faces”, “Leopards”, and “Motorcycles”. Each class

consists of 800, 435, 200 and 798 images respectively. We tested our proposed

method with two settings: without approximate shape mask (hereby denoted as

E1) and with approximate shape mask (E2).

For E1, the first 100 images from each class were used to train the system to

construct a dictionary of 1200 codewords, while another 100 images from each

class were chosen randomly, to test recognition performance. The parameters

of α0,γ, and τ were set as 0.1, 1, and 1.2 respectively, while the sampling was

iterated 100 times.

For recognition of salient regions, cases with patches that did not belong to

an object but were included in the training and recognition process (as illustrated

in Figure 2.2) were considered. In Figure 2.2, the patches coming from the trees

in the background are included in the detected patches. However, the keyword
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“trees” is not a descriptor of an airplane. By taking note of the occurrence of the

keywords across training images, we can assign the weight of relevance to each

keyword from a given category using D(j, c, w).

For E2, the number of iterations in the Modified DHDP is set to be consider-

ably smaller (20 compared to the 100 of E1) as the initial number of codewords

is significantly smaller (1200 without approximate shape mask vs 300 with the

mask). Hence, it will take fewer iterations for the training step to be disturbed

by the rich-get-richer effect. The experiments were run multiple times, and it

was found that a number in the region of 20-30 iterations was acceptable.

User-defined segmentations of training images were collected manually us-

ing MATLAB, with users asked to specify the boundary box of all images in

the database (2233 images in total), as a training dataset and ground truth for

evaluating the approximate segmentation. The three information sets of C(·, ·),

D(·, ·, ·), and M(x, y) were combined, to assist the training and recognition as

depicted in the previous sections.

3.8.2 Theme distribution

In E1, the sampling of Modified DHDP was run 100 times with the first 1200

codewords from the dictionary as the initial "dish". The Modified DHDP

merged these codewords into 118 latent themes to be shared among the four

object categories. While it would have been possible to continue with further

iterations to reduce the number of latent themes, this was not done in this exper-

iment due to the fact that as the iterations proceed, the "rich-get-richer" effect is

more likely to occur.

It was found that even though it is possible to push the number of latent

themes to a low number (as low as 20), the "rich-get-richer" effect will be in

play. Latent themes with large numbers of members assigned to them tend to

absorb other themes into themselves, especially in the sampling k step of the

Modified DHDP (as described in Section 3.3). This leads to one latent theme
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Figure 3.6: Theme distributions of the four classes in Caltech-4 from E1 test
case with 118 latent themes.
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Figure 3.7: Theme distributions of the four classes in Caltech-4 from E2 test
case with 188 latent themes.
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with a considerably large membership. This high membership makes the value

of f(xji|θk) disproportionately large for a specific k value, compared with other

latent themes. Hence, it will be more likely for a latent theme to get co-opted

into this specific k, and eventually the cluster will become too big and much less

informative.

It was found that stopping at 100 iterations (which gave 118 latent themes)

gave considerably good results. It should be noted that the number of codewords

was reduced by more than 90% (from 1200 to 118), which made calculations

more efficient; however, at the same time, the distinction between the four cat-

egories in the distribution of latent themes was visible. Figure 3.6 shows the

theme probability distribution by object classes p(θi|c) for E1. While we can

see that some peaks and valleys of theme distributions tend to be similar across

classes, their probabilities can differ considerably. One such example is evi-

dent from the “Leopards” class in the distribution of Theme #19 and #24, which

exhibits a considerably higher probability value than the other three classes.

These differences in distributions between themes are the features that will

be used in the categorization of test images, as explained in Section 3.4. It

should also be noted that by the corollary of equation 3.19, we are basically

using the winner-takes-all paradigm in our approach, assigning test images to

class c that produce the best favored weight V (c).

As for E2, with the inclusion of approximate mask the Modified DHDP

scheme started with 300 codewords from the dictionary as the initial "dish";

the Modified DHDP merged the codewords into 188 latent themes to be shared

among the four object categories. This number is slightly higher than the latent

themes obtained from E1 because a smaller number of initial codewords were

used. This made it easier for the cluster to merge, since it was more likely that

the codewords were similar to each other.

While the latent themes were 50% greater in quantity than those obtained

in E1, the theme distributions still show distinctive features throughout the four
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different classes. Figure 3.7 shows the theme distribution obtained from the

DHDP iterations.

As with the previous process, these differences in theme distribution will be

the features used in the categorization of test images, as explained in Section

3.6.

3.8.3 Cardinality coefficient reduced rich-get-richer effect

E1 was tested and compared with the framework provided by Wang et al. in [1],

which confirmed the hypothesis that noise patches decrease the overall perfor-

mance of DHDP, and, in turn, the accuracy of object category recognition.

From the experiment, it was found that without the contribution of cardinal-

ity coefficients, the rich-get-richer effect is very severe. In other word, it takes

fewer steps of iterations for DHDP to merge codewords into a smaller number

of latent themes, but in these latent themes, one latent theme tends to domi-

nate the others; hence the data set loses information. It has been shown that

on average, it takes 40 iterations for DHDP to start showing the rich-get-richer

effect, compared with 150 iterations of the Modified DHDP. When cardinality

coefficient was included, it was found that although the speed of the merging of

codewords was slower, the resulting theme distributions were less prone to the

"rich-get-richer" effect.

3.8.4 Approximate shape mask

Examples of approximate shape mask results are shown in Figure 3.5. While it

is clear that the resulting approximate shape mask is far from an ideal segmen-

tation, the resulting segmented images are close enough to our intended results,

after filtering out the background clutter and giving weight to each individual

key-point.

It is interesting to observe that the approximate segmentation tended to filter

out pixels at the top of the images. This is actually not a surprising fact, as the
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top of the image usually shows only the background, which is not directly infor-

mative to the object of interest within the picture. However, it is encouraging to

see that this algorithm managed to catch this trend and reflect it in the resulting

shape mask.

The approximate shape mask, however, encountered much difficulty trying

to create a useful approximation for the "Faces" class. This was mainly because

some of the images in this class had bad contrast (some faces were very unclear

and some pictures even focused more on the background instead of the face),

or their backgrounds were cluttered with a large number of objects. The high

variations in the shapes of the objects were also a significant factor affecting the

accuracy of the shape mask, as reflected in the accuracy of recognition.

The generated shape mask might closely resemble the saliency map from

the key-point detector. This is to be expected, as we use key-points generated

from the salient point detector to generate the shape masks. However, the main

difference here is that while the salient point detector looks for all points that

stand out in an image, the proposed method generates a shape mask from a

selection of only the 30-40 most salient points detected, in the hope of ruling

out false positives (background and noise patches) from the overall recognition.

While it is true that not all the tops of images depict the foregrounded object, it

was found that this led to a lower number of background patches being included

in the training set. In a way, the shape mask can be seen as a pruned subset of

the saliency map from the key-point detector, albeit one that focuses more on

the predicted location of foreground objects.

It is worth mentioning that the approximate shape mask would likely fail

when the object inside an image is not dominant, or when there are several

salient objects within an image. Whenever this happens, we would see a weak

mask over several regions inside the image, as illustrated in the third column

of Figure 3.5. This, however, is not a big limitation for the Caltech dataset,

since the images in that dataset often contain dominant objects. On the other
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hand, this approximate shape mask could be used to assist recognition in later

stages (in example, as a preliminary proposal for objectness of an image as

presented in [84]). Object window candidates can be narrowed down from these

preliminary proposals, to obtain a more accurate location of the object.

In terms of the "rich-get-richer" effect, we found that anything beyond 30

iterations of E2 has a high risk of the effect occuring. However, this does not

mean that E2 is worse than E1 in terms of reducing this effect. It should be noted

that the number of starting codewords in E2 is merely a quarter of the number

used in E1. When the number of codewords was increased to the level of E1

(by lowering the KB detector saliency threshold so we have more patches to

cluster), it was found that E2 could run up to 130-150 iterations without risking

the "rich-get-richer" effect. This represents approximately 20% more resistance

to the effect, compared with E1.

3.8.5 Accuracy

In terms of recognition accuracy, the experiment results show significant im-

provement from the framework used in [1]. The algorithm is tested using 100

randomly selected test images from each class, and detects these images using

the theme distribution trained by the DHDP and Modified DHDP. The overall

results showed increased accuracy, from 70.5% with the framework from [1] to

76.75% for this algorithm. Table 3.1 shows the recognition rate for each class.

Figure 3.8 also shows these results as a bar chart for a more graphical represen-

tation of the results.

An interesting point arise from the result of the normal DHDP. While it

seems that average accuracy increased, the accuracy of the "Airplanes" class

dropped significantly from 91% using DHDP, to 68% using the proposed algo-

rithm. This may seem odd initially, but we should be aware that the recognition

scheme used was basically a winner-takes-all algorithm. In other words, all

recognitions will assign a class label to a test image based on the evaluation of
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Table 3.1: Detailed class-by-class performance comparision between results ob-
tained by normal DHDP mentioned in [1], DHDP with cardinality coefficient
(E1), and DHDP with cardinality coefficient and approximate shape mask (E2).

Object Classes DHDP E1 E2
Airplanes 91% 68% 96%
Faces 68% 83% 70%
Leopards 55% 86% 70%
Motorbikes 68% 70% 91%
Average 70.5% 76.75% 81.75%

Figure 3.8: Performances comparison between Normal DHDP, E1, and E2.

V (c). It was found that for the result obtained using normal DHDP, there was a

tendency to assign errors from any of the classes to the "Airplanes" class. This

explains the very high success ratio of the "Airplanes" class (91%) compared

with those of the other classes (68%, 55%, and 68% for "Faces", "Leopards",

and "Motorbikes" respectively). In other words, the detector inherently favored

the "Airplanes" class in its recognition.

This biased recognition was corrected in E1, as the theme distribution is

more distinguishable and evident from the result obtained: 68%, 83%, 86%,

and 70% recognition rates for "Airplanes", "Faces", "Leopards", and "Motor-

bikes" respectively. The differences in accuracy between classes are less strik-

ing, which shows that the recognition was less biased than the recognition ob-

tained from normal DHDP.
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This result comes from the addition of the cardinality coefficient, which sup-

presses the effect of noise patches in the recognition step. Any patches that do

not agree with the statistics will be downplayed by D(·, ·, ·), and object patches

(which usually agree with the statistics) will be prioritized by the same coef-

ficient. This ensures that the contribution of informative patches will be more

dominant than those of noise patches. This becomes very important, especially

in the bag-of-words method, where we pool salient patches in an indiscrimi-

nate fashion; naturally, more and more noise patches may arise from an image

containing a cluttered background, poor contrast, or multiple objects.

In fact, the cardinality coefficient D(·, ·, ·) acts as a segmentation procedure

for patches detected by the keyword recognition system. This finding encour-

ages us to investigate the effect of segmentation on object recognition - more

specifically, how we are able to fit a segmentation method into a non-parametric

Bayesian framework. It should be clear by now that the DHDP training pro-

cess can be computationally costly; adding accurate segmentation would only

increase the complexity of it, not to mention that obtaining an accurate segmen-

tation would be very hard to achieve.

Table 3.1 also shows a detailed comparison of the recognition results of E1

and E2. Overall, a significant increase can be observed for E2 (up to 81.75% cor-

rect matches), compared with the result obtained from E1. This result confirms

the hypothesis that while the bag-of-words method offers acceptable results with

a relatively low computational cost, it ignores the information that is possessed

by the spatial location of patches, and the relationship between patches.

It is interesting, however, to observe that the method that utilizes an approx-

imate mask had very high success rates with rigid objects like "Airplanes" and

"Motorbikes" (96% and 91% respectively). This is a very significant increase

from the result of E1, where the two classes had success rates of only 68% and

70% respectively. The success rate for non-rigid objects, however, dropped to

70% in both the "Faces" and "Leopard" classes, compared with 83% and 86%
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of correct matches for E2, respectively.

As discussed earlier, the quality of the approximate shape mask was rela-

tively lower in the "Faces" class than in the other classes. The non-rigid objects

are harder to approximate since they have a high degree of freedom in their

shapes. A human head in an image can have various slants and different facial

shapes, while a leopard can show a different pose in every image. The approxi-

mate segmentation, in this case, would be a very rough estimate with a broader

support area, making the standard deviations of M(x, y) throughout the image

more widely spread out. Hence, it is natural that the coefficient for these two

classes plays a less significant role.

However, for the rigid objects, it is evident that the shape masks are effective

enough to produce a high recognition rate. This is not surprising, as variations

of shape within these objects are low. Even with different models of airplanes

and motorbikes, the shapes within the two classes remain generally similar.

This result leads to an interesting conclusion: localization works well with

rigid objects. In other words, spatial information has a significant contribution

to objects that have low variations in shape, but contribute less to non-rigid ob-

jects. As information about object rigidity would be readily available before

training and recognition, it may be possible to switch between the two recogni-

tion methods to achieve better performance. In addition, and interestingly, the

two algorithms (with or without segmentation masks) have the same training

process. Hence, with the same initial conditions, both algorithms possess the

same latent theme distributions. However, some adjustments should be made to

ensure that the favored weights, V (c) in equation (3.17) and V (c) in equation

(3.18), are normalized, so that we can directly compare the two.
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3.9 Concluding remarks

Throughout this chapter, we have investigated the effect of adding additional

information to the Hierarchical Dirichlet Process with the motivation of reduc-

ing its shortcomings in terms of the "rich-get-richer" effect. The additional in-

formation has two sources. The first is the knowledge that certain codewords

tend to appear in a consistent arrangement. Utilizing the cardinality coefficient,

we model this relationship into the learning process. The second sorce of ad-

ditional information is the spatial information in the form of the approximate

shape mask, as background clutter is the root cause of the "rich-get-richer" ef-

fect. Using this approximate shape mask, the negative effect of HDP is slowed

down considerably.

At the end of our experiment, however, we found that HDP-based ap-

proaches were not performing as well as other approaches simultaneously con-

ducted. The lesson from the research described in this chapter is that spatial

information can be a powerful addition to image representation. This served as

the motivation for the research described in subsequent chapters.
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Chapter 4

Overlapping Spatial Window

4.1 Introduction

As discussed in previous chapter, knowledge of the spatial information of

patches can be beneficial to the discriminability of the image descriptor or the

learning process of the classifier. While we are able to produce encouraging

result from non-parametric Bayesian learning system, it was clear at that mo-

ment that sparse coding based recognition paired with Support Vector Machine

(SVM) produces more promising result. Interestingly enough, these approaches

utilizes Spatial Pyramid Matching (SPM) to incorporate spatial information into

"bag-of-words" (BoW) method.

SPM was first proposed by Lazebnik et al. [13] to extend the traditional BoW

approach, with the aim of incorporating spatial configurations into image repre-

sentation. Under SPM, each image is described by a concatenation of multiple

histograms based on the spatial pyramid, built on L layers of image partitions.

The lth layer (where l ∈ {0, 1, . . . , L − 1}) is obtained by dividing the image

into 2l×2l disjoint sub-windows (with a typical setting of L = 3). Thus, a pyra-

mid is defined as a collection of sub-windows, with each sub-window acting as

a “bag-of-words”. From each sub-window, a histogram is extracted by assign-

ing patches of codeword entries from a learned dictionary (encoding). These
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histograms are then concatenated to produce the SPM representation.

As encoding of patch descriptors into discrete dictionary entries shifted from

hard-assignment (assigned to a single dictionary entry) to soft-assignment (as-

signed to several dictionary entries using membership coefficients), combining

soft-assignment with SPM representation proves to be very powerful, especially

when coupled with sparse coding. With sparse coding, the membership of each

image patch can be assigned to more than one entry, while at the same time it

forces the membership coefficient of each patch to have few non-zero elements.

This approach is known as Sparse Coding SPM (ScSPM) [25] and it has since

become the foundation of various state-of-art object recognition research.

However, only few researchers have challenged the usage of disjoint sub-

windows in SPM. Overlapping spatial windows, at half the original size, have

been proposed by Ergul and Arica [85] for scene recognition, but it retains the

same window size for each pyramid level. This leads to an increased num-

ber of sub-blocks, and consequently increases its memory cost (the size of the

image representation is tripled, as 59 sub-blocks are used in computing these

features, compared to 21 with traditional SPM at L = 3). Yan et al. [58] used

dense spatial sampling to replace SPM with sub-blocks of variable sizes. The

differently-sized spatial windows may overlap with each other, but its memory

complexity considerably increases with the higher degree of variability.

This work is inspired by the fact that it is very rare for humans to examine

an image in disjoint parts. More often than not, we examine local regions in

our field of vision that are likely to overlap with each other. This work pro-

poses to extend the traditional SPM further afield by introducing two types of

overlapping windows: overlapping rectangular windows SPM (OWSPM) and

overlapping circular windows SPM (CWSPM). By utilizing overlapping sub-

windows, we inherently improve the probability that a sub-window will enclose

a higher proportion of an object, leading to increased discriminability of image

representation, while still at the same memory cost. This work is the first to pro-
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pose the usage of overlapping spatial windows while retaining the same storage

and computational cost.

This proposed concept is tested on both ScSPM and LLC (Locality-

constrained Linear Coding) frameworks. A variety of popular databases (Cal-

tech 101, Caltech 256, and 15-Scene) is used in experiments, achieving up to

3.68% improvement in recognition rates. Further experiments lead us to an in-

teresting discovery, where it is found that the l = 2 layer contributes to the

majority of information used in recognition. While obviously the full pyramid

still provides the best recognition result, the experiments show that using only

the overlapping layers at l = 2 can give a better result than the traditional SPM

with all three layers. By doing so, it is possible to save 24% of memory con-

sumption (a resource that will be used extensively in the training process) while

achieving a better result altogether.

This chapter’s contributions are thus summarized in three points:

1. Introduction of overlapping rectangular windows and their optimal size of

overlap to increase the rate of recognition of traditional SPM,

2. Introduction of overlapping circular windows, and

3. Bypassing the first two layers of traditional SPM.

4.2 The design of overlapping sub windows

In the proposed concept, the rectangular overlapping spatial window is designed

such that for all layers with l > 0, the number of spatial windows needed to

represent an image remain unchanged. Imagine the case for l = 1 in Figure 4.1.

Only the sub-windows on the top half of the image are shown for clarity.

Let hI , wI , hs, ws be the height of the image, width of the image, height of

the sub-window and width of the sub-window, respectively. Let As be the area

of S1. As all the windows have the same size, S2 also have the same area As.

Let Aω be the area of overlap between S1 and S2. We define overlap parameter
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Figure 4.1: Illustration of proposed sub-window division at layer l = 1. Bottom
two sub-windows are omitted in the figure for clarity.

ω as the ratio of the overlapping area between two adjacent sub-windows over

the area of a single sub-window in the same layer (adjacency is defined in a

top-bottom and side-by-side fashion), i.e. for all l > 0

ω =
Aω
As

(4.1)

By definition the width of the overlapping area in Figure 4.1 will be wω =

ω × ws, and since wI = (2l × ws) − ((2l − 1) × wω) a simple mathematical

manipulation yield:

ws =
wI

2l(1− ω) + ω

hs =
hI

2l(1− ω) + ω

(4.2)

All patches inside the sub-window would then be pooled together to form

the histogram, using max-pooling as shown in equation (2.4). As with SPM,

the image representation is then constructed by concatenating all resulting BoW

representations from all sub-windows. This approach is referred as the overlap-
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Figure 4.2: Example of OWSPM sub-window definition.

ping rectangular windows SPM (OWSPM) scheme throughout this thesis. Fig-

ure 4.2 illustrate the OWSPM sub-windows on a Dalmatian image from Caltech

101 dataset.

4.3 Finding the best-performing ω

As mentioned in Section 4.1, we use ScSPM and LLC as the baseline of our test

on overlapping sub-window scheme.

Sparse Coding SPM (ScSPM) [25] is a “bag-of-words” approach to image

representation utilizing the SPM model, with two main features. First, as the

name implies, instead of using hard-assignment in encoding the patches, ScSPM

encodes these patches using soft-assignment; the end result is forced to be sparse

by following equation 2.2 in Chapter 2. The other main feature is that instead

of using average pooling for each spatial window, ScSPM utilizes maximum

pooling.

Locality-constrained Linear Coding (LLC) [23] is an extension to ScSPM.

The model adds a new rule to the sparsity constraint in encoding patches, by

forcing it to be assigned to the codeword center that is close to the patches.

4.3.1 Building codeword dictionary

The sparse coding in ScSPM is obtained from optimizing equation (2.2) in

Chapter 2. 50000 random patches are extracted from various images (i.e. the

"Background" class in Caltech 101 or Caltech 256) as training patches, which

are then described using SIFT. These patches are then clustered using the K-
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Algorithm 3 Finding V

Input: Random M patches from a dataset, pm.
Output: Dictionary V.

1: for all Patches pm do
2: Extract SIFT descriptor xm
3: end for
4: Cluster using K-means algorithm to K clusters.
5: for iter=1 to max_iter do
6: for all Patch descriptor pm do
7: Solve equation (2.2) by fixing V.
8: end for
9: Solve the equivalent of equation (2.2) obtained by fixing U:

minV ||X−VU||.
10: end for

means algorithm as an initial guess for V. Following that, the optimization of

equation (2.2) is done iteratively, by fixing V and U in an alternating pattern.

The details can be observed in Algorithm 3.

4.3.2 Obtaining ScSPM/OWSPM representation

The dictionary V obtained in Section 4.3.1 is then used to encode the patch

descriptor sparsely with equation (2.2). Given a specific SPM configuration

(be it traditional SPM or our proposed OWSPM), the sparsely coded features

are pooled using maximum-pooling as described in equation (2.4), based on the

window memberships. The resulting window descriptors are then concatenated

to form the mid-level representation of an input image. The process of finding

the mid-level image descriptor Z is shown in Algorithm 4.

4.3.3 Training classifier using multi-class linear SVM

This section describes the implementation of linear SVM used Chapter 4 to 6.

Given training data {(Z, yi)}ni=1, yi ∈ Y = 1, ..., C, a linear SVM aims to learn

C linear functions {wT
c z|c ∈ Y} such that, for a test image descriptor Z, its
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Algorithm 4 Representing image I using ScSPM/OWSPM (also CWSPM).
Input: Input image I .
Output: Mid-level image representation Z.

1: Using dense grid over image I , extract patches xm, described using SIFT.
2: for all patches descriptor xm do
3: Using V from Algorithm 3, encode xm into its sparse-coded descriptor

um using equation (2.2).
4: end for
5: for all Spatial window w in the SPM representation do
6: Find the boundaries of w based on traditional SPM/OWSPM/CWSPM
7: for all Dictionary entry k do
8: Do maximum pooling on kth-dimension: zwk = maxxm∈w umk.
9: end for

10: zw = [zw1, zw2, ..., zwK ]T .
11: end for
12: Construct the mid-level image representation Z = [zT1 , z

T
2 , ..., z

T
W ]T .

class membership is predicted by

y = max
c∈Y

wT
c z (4.3)

A one-against-all strategy is adopted to train C binary linear SVMs, each

solving the optimization problem

min
wc

{J(wc) = ||wc||2 + C
n∑
i=1

l(wc; y
c
i ,Zi)} (4.4)

in which yci = 1 if yi = c; otherwise −1. l(wc; y
c
i ,Zi) is a hinge loss

function, which is defined as

l(wc; y
c
i ,Zi) = [max (0,wTz · yci − 1)]2 (4.5)

which is designed to be differentiable so the training process can be done

with gradient-based optimization. As with [25], we use LBFGS to train the

classifier.
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Table 4.1: Recognition rate of ScSPM with rectangular overlapping windows
OWSPM under different ω values.

ω 15-Scene Caltech-101 Caltech-101
100 train 15 train 30 train

0 80.28% 66.28% 72.46%
0.1 81.06% 66.74% 73.73%
0.2 81.19% 67.44% 73.74%
0.3 81.54% 67.57% 73.72%
0.4 81.09% 67.49% 73.60%
0.5 80.76% 66.78% 73.72%

4.3.4 Searching for ω

Having discussed how to extract features and train classifiers, the first step in

our OWSPM experiment was to determine what value of ω maximizes recog-

nition accuracy. Different settings of ω were tested on three different experi-

ment settings: (1) 15-Scene dataset with 100 training images, (2) Caltech 101

dataset with 15 training images, and (3) Caltech 101 dataset with 30 training im-

ages. Every other parameter is set to be as similar as possible to those reported

in [23, 25], to allow for direct comparison. The mean recognition rate over 10

iterations is reported in Table 4.1.

From these experiments, it is evident that the disjoint spatial windows

method does not give the best accuracy. As the overlap increases, the accu-

racy also increases, until a certain maximum point within the 0.2 ≤ ω ≤ 0.3

region, after which it decreases. This decrease after a certain point in ω is fully

expected, because the more ω increases, the less difference there will be be-

tween windows (which will become the entire image when ω= 1). Based on

these findings, ω is set to be 0.3 whenever the OWSPM scheme is used in this

thesis.

4.4 Circular overlapping spatial windows

To further extend the proposed concept, the circular overlapping window

(CWSPM) is introduced in this section. Traditionally, SPM divides each layer
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Figure 4.3: Sub-window division of (a) traditional SPM, (b) OWSPM with its
overlapping rectangular windows, and (c) CWSPM with its overlapping circular
windows. In this illustration, l and ω is set to 1 and 0.3 respectively and only
the top two sub-windows are shown for clarity.

into rectangular sub-windows with sizes proportional to the image, and patches

are then pooled based on the membership of sub-windows. This is also appli-

cable to OWSPM sub-windows. As OWSPM aims to achieve better coverage

from its sub-windows, it is intuitive that a rectangular shape will not give the

optimal result.

Let us consider the rectangle’s center of gravity as the focal point of a given

sub-window. As such, the farthest point that can be pooled by the sub-window

will be located at the four corners of the rectangle. If we wish to fully consider

the context surrounding that point, a circular window would be the obvious

choice. By doing so, we hope to be able to improve the descriptive power of

image representations, since: (1) the contexts are fully described in all direc-

tions, and (2) the circular sub-windows inherently overlap with each other, and
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Figure 4.4: Example of CWSPM sub-window definition.

as such, CWSPM will receive the same benefits as OWSPM.

Construction of the circular windows is done by first defining the regular

overlapping sub-windows of OWSPM. Then, we construct a circumcircle over

each sub-window, creating circular windows with a radius of 0.5
√
w2
s + h2s cen-

tered at the rectangle’s center of gravity. hs and ws are the height and width of

the individual sub-windows, respectively.

4.5 Finding ω for CWSPM scheme

Similar to OWSPM, the same experiment is performed using the CWSPM

scheme, and Table 4.2 reports the experimental results.

Under CWSPM, it was shown that the peak accuracy value occurs when ω

is within the 0 to 0.1. It should be noted, however, that this does not mean

that the spatial windows did not overlap with each other. ω controls the amount

of overlap between two adjacent rectangular windows used as the basis of the

circle. As such, the case of ω= 0 depicts a non-overlapping situation for the

base rectangles; however, the circular windows generated are already in overlap

with each other.

Based on these findings, ω is set to be 0 throughout this paper whenever the

CWSPM scheme is involved.
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Table 4.2: Recognition rate of ScSPM with circular overlapping windows
OWSPM under different ω values.

Algorithm 15-Scene Caltech-101 Caltech-101
100 train 15 train 30 train

0 81.62% 67.68% 74.14%
0.1 81.52% 67.84% 73.91%
0.2 81.06% 66.70% 73.83%
0.3 81.46% 66.92% 72.63%
0.4 80.84% 66.46% 71.85%
0.5 80.06% 64.95% 71.09%

4.6 Testing of OWSPM and CWSPM scheme

Table 4.3: Recognition rate of OWSPM and CWSPM when applied to ScSPM
and LLC on 15-Scene and Caltech 101.

Algorithm 15-Scene Caltech-101 Caltech-101
100 train 15 train 30 train

ScSPM 80.28% 67.00% 73.20%
ScSPM + OW 81.54% 67.57% 73.72%
ScSPM + CW 81.62% 67.68% 74.14%
LLC 80.11% 64.03% 72.54%
LLC + OW 80.27% 65.89% 72.34%
LLC + CW 80.58% 66.33% 73.06%

Using the obtained ω values, the performance of ScSPM under six differ-

ent schemes are compared: (1) ScSPM, (2) OW-ScSPM, (3) CW-ScSPM, (4)

LLC, (5) OW-LLC, and (6) CW-LLC. Note that we use OW and CW to denote

OWSPM and CWSPM being used to replace traditional SPM in ScSPM/LLC.

Table 4.3 and Table 4.4 show the result for the 15-Scene, Caltech 101, and Cal-

tech 256 datasets. The results obtained in this work may differ from [23] due

to two reasons: (1) the original LLC method in [23] utilized HOG features with

3 different scales to describe patches (instead of SIFT used by ScSPM) and (2)

unavoidable differences in some parametric settings. SIFT is chosen for both

ScSPM and LLC in this work, for purposes of direct comparison.

ScSPM and LLC: From the results gathered in the experiments, the us-

age of OWSPM and CWSPM outperforms the traditional SPM for both ScSPM

and LLC in term of recognition rate. It is possible to achieve up to 3.68%
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Table 4.4: Recognition rate of OWSPM and CWSPM when applied to ScSPM
and LLC on 15-Scene and Caltech 101.

ω Caltech-256 Caltech-256 Caltech-256 Caltech-256
15 train 30 train 45 train 45 train

ScSPM 27.73% 34.02% 37.46% 40.14%
ScSPM + OW 31.31% 36.57% 39.15% 41.27%
ScSPM + CW 31.41% 36.59% 39.32% 41.50%
LLC 26.17% 31.78% 34.52% 36.64%
LLC + OW 27.09% 32.35% 34.68% 37.21%
LLC + CW 27.91% 32.85% 35.72% 37.30%

improvement in recognition accuracy, which is quite a significant increase con-

sidering the simplicity of this concept. Additionally, the results are obtained at

a similar computational cost. Another observation is that CWSPM constantly

outperforms the OWSPM across all experiments, confirming that the disjoint

rectangular sub-windows omit important information and context.

The proposed method is tested with more challenging datasets such as STL-

10, MIT-Indoor, and UIUC-Event. Furthermore, with these datasets, differ-

ent classification algorithms are used to test the feasibility of this overlapping

paradigm on other methods that are different from ScSPM and LLC. Object

Bank [16] is used for MIT-Indoor and UIUC-Event, while the deep network

from [55] (Simulated Fixation) is used for STL-10.

Object Bank [16] is a high-level image representation, using a scale-

invariant response map of a large number of pre-trained generic object detec-

tors that are blind to the testing dataset or visual task. For each object detector,

its map response will fire one of the spatial windows designed using the SPM

paradigm, and the final image representation is found by concatenating the map

responses from each detector, as depicted in Figure 4.5.

As such, for each object detector, we will have a single SPM model. The

proposed OWSPM and CWSPM paradigms are used to modify the architecture

of SPM in the map response of Object Bank, noting that overlapping regions

will provide a map response that is less precise due to the non-disjoint nature of

OWSPM and CWSPM, but being more accurate since there will be less confu-
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Figure 4.5: Overview of object bank and how it utilizes SPM’s spatial pooling.
The step highlighted in red is replaced with OWSPM and CWSPM scheme with
ω= 0.3 and 0 , respectively.

sion when the object lies in the middle of two windows.

Each object detector will undergo its own OWSPM and CWSPM pooling.

As for overlapping parameter, we found that ω= 0.3 for OWSPM and ω= 0

for CWSPM still produce the best results. The Object Bank pipeline is highly

similar to conventional BoW with SPM models, thus the benefits of overlapping

spatial windows are also transferable to Object Bank. Details of comparison

between Object Bank with overlapping windows and without can be seen in

Table 4.5.

Deep Convolutional Neural Network (Deep CNN) with Simulated Fix-

ation [55] is a deep learning paradigm to learn image representations. The

framework was originally designed and learned in video sequences, by simulat-

ing fixation on salient objects, giving meaning to the sequence. However, the

image representation itself is spatial in nature, instead of being spatial-temporal.

As such, it is possible to simulate the same fixation on salient objects within a

still image.

Unlike Object Bank, the Deep CNN framework is very different compared

to ScSPM framework. However, throughout the layers of CNN, there exists a

pooling step, which surprisingly utilizes the same ideas as SPM. In fact, a quick

look to this pooling step will make us able to identify the step as SPM model,
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Table 4.5: Average recognition success rate for other image database under dif-
ferent baseline.

Baseline Dataset Standard OW CW
Object Bank [11] UIUC-Event 76.30% 78.56% 78.83%

MIT-Indoor 37.60% 38.41% 39.33%
15-Scene 80.90% 82.60% 83.00%

Simulated Fixations [55] STL-10 61.00% 62.11% 62.91%
Caltech-101 74.60% 75.90% 76.45%

although most works in CNN does not explicitly called it spatial pyramid. CNN

utilizes SPM windows to pool the response from convolutional layers. The pro-

posed OWSPM and CWSPM is used to replace the disjoint SPM arrangement

in the pooling stage within this deep architecture.

Their performances are listed in detail in Table 4.5. These results further

confirm that the usefulness of overlapping windows is not only confined to sim-

ple datasets. Both Object Bank and Simulated Fixations are used because they

make use of the non-BoW approach, but still utilize the Spatial Pyramid. Fur-

thermore, the two methods are chosen because we want to show that OWSPM

and CWSPM can be applied to both methods that is similar to BoW (Object

Bank) or completely different to BoW approach (CNNs).

4.7 Qualitative results

In terms of overall accuracy, we can see that OWSPM and CWSPM are an

upgrade from the traditional SPM. In this section, however, we will evaluate the

two proposed methods more deeply by looking into the results. Figure 4.6 shows

the false negatives obtained from Caltech 101 with 30 training images from class

"Leopard". We choose this class as an example since it exists in the Caltech 4,

Caltech 101, and Caltech 256 datasets. Furthermore, the class "Leopard" has

some similar classes in the dataset, such as "Cougar_body", "Cougar_face", and

"Wild Cat". These classes are of a different category but have some degree of

similarity, enough for them to get easily mistaken for each other.
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Figure 4.6: List of all false negatives from class "Leopard" in Caltech 101 under
Traditional SPM, OWSPM, and CWSPM. The labels below the images indicate
what classes they were falsely classified as.

Figure 4.7: List of all false positives from class "Leopard" in Caltech 101 under
Traditional SPM, OWSPM, and CWSPM.

Figure 4.8: True positives from class "Leopard" in Caltech 101.
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Figure 4.9: Comparison of confusion matrices between Traditional SPM, OWSPM, and CWSPM. Detailed label names are not displayed due to
space limitation; instead, the label number is displayed. Heat maps are shown next to each matrix.
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As expected, for Traditional SPM, we have more false negatives (a total of

6 images from the class "Leopard"). Of these false negatives, some are classi-

fied as classes that are particularly close to the class "Leopard". "Cougar_body"

and "Cougar_face" are obvious examples, while the class "Dalmatian" can be

attributed to the form and texture of the leopard being considered. However,

traditional SPM also returned misclassification into classes that do not have any

semblance at all, like "Saxophone" and "Mayfly". In contrast, the overlapping

scheme performed much better, with each method registering 2 false negatives.

OWSPM performed less desirably, registering false negatives from two classes

that are far from "Leopards", while CWSPM performed better, returning one

close class in "Llama" and one seemingly odd misclassification in "Scorpion".

Qualitatively, we see improvements coming from a broader context being inte-

grated into the image representation.

Figure 4.7 shows the false positives from the same class. Here we see that

traditional SPM was again the worst performer of the 3 methods, registering 3

images, followed by 2 from OWSPM and 1 from CWSPM. The classes falsely

assigned to "Leopard", however, are a bit confusing as the assignment was seem-

ingly random, both for traditional SPM and for overlapping schemes. Interest-

ingly, we can observe that the class "Pyramid" appears again after being in the

false negative list, which indicates that SVM learns that the image descriptors

of "Pyramid" and "Leopard" are somewhat close.

Finally, Figure 4.8 shows examples of true positives. However, as we have

already listed all the false negatives from the recognition process, if we split

them into three categories the same list will be displayed three times, with only

minor differences in terms of the false negatives. Therefore, we only show them

as one list, noting that the three methods managed to classify the majority of the

images in class "Leopard", aside from those listed in the false negative list.

Figure 4.9 shows the confusion matrices (in the form of heat maps as each

matrix is a 101 × 101-sized matrix) derived from each method. What we can
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observe from these confusion matrices is that traditional SPM has a tendency

to have more distributed values throughout the matrices. Overlapping schemes

produce confusion matrices that are more sparse, but with stronger points in the

heat map. This indicates that the false negatives are grouped together in fewer

classes.

4.8 The l = 2 layer

Let us define pyramid configuration P to denote the configuration of the pyra-

mid layers used in a specific experiment. The setting P= {0, 1, 2} refers to the

traditional SPM arrangement under the condition L= 3. When subscripts o and

c appear under a number, it means that the layer was set up using the OWSPM

or CWSPM respectively (i.e., 2c refers to the set of windows at l = 2 arranged

under the CWSPM scheme).

An important discovery can be made by inspecting the performance of each

layer for the traditional SPM, OWSPM and CWSPM. Table 4.6 shows the recog-

nition rate of Caltech 101 with 30 training images under selected pyramid con-

figurations (all results were obtained using ScSPM or its OWSPM/CWSPM

variant). The results from the complete pyramids (Pnw, Pow, Pcw) compared

to results coming from only the l = 2 layer are of a particular interest. It is

interesting to see that the overlapping schemes shrunk the distance between full

pyramid and l = 2 layer considerably, compared to traditional SPM arrange-

ment (Pow −P2o = 0.53% for OWSPM and Pcw −P2c = 0.66% for CWSPM,

compared Pnw −P2 = 2.33% for traditional SPM).

These results suggest that when memory allocation is limited, we can bypass

the first two layers of the pyramid and use the l = 2 layer directly for image

representation. That is, instead of using 21 sub-windows (when L = 3), we

need only use 16 sub-windows. This cuts the memory consumption by 24%

while achieving similar results to the method utilizing the complete pyramid.

84



Table 4.6: Average recognition rate of Caltech 101 database with 30 training
images for various spatial pyramid configurations.

Pyramid Configurations Recognition Rate
P2 = {2} 70.13%
P2o = {2o} 73.19%
P2c = {2c} 73.48%
Pnw = {0, 1, 2} 72.46%
Pow = {0, 1o, 2o} 73.72%
Pcw = {0, 1c, 2c} 74.14%

Table 4.7: Average recognition rate of Caltech 101 database, Caltech 256
database, and 15 scene database using various pyramid configurations.

Database Pnw P2o Pow

15-Scene (100 train) 80.28% 80.30% 81.54%
Caltech 101 (15 train) 66.28% 66.83% 67.57%
Caltech 101 (30 train) 72.46% 73.19% 73.72%
Caltech 256 (15 train) 27.73% 29.79% 31.31%
Caltech 256 (30 train) 34.02% 34.96% 36.57%
Caltech 256 (45 train) 37.46% 37.60% 39.15%
Caltech 256 (60 train) 40.14% 40.36% 41.27%

Database Pnw P2c Pcw

15-Scene (100 train) 80.28% 80.48% 81.62%
Caltech 101 (15 train) 66.28% 67.28% 67.68%
Caltech 101 (30 train) 72.46% 73.48% 74.14%
Caltech 256 (15 train) 27.73% 30.83% 31.41%
Caltech 256 (30 train) 34.02% 35.19% 36.59%
Caltech 256 (45 train) 37.46% 38.86% 39.32%
Caltech 256 (60 train) 40.14% 40.38% 41.50%

This can be very useful when the database is very large, as in the case of Caltech

256, with 60 training images (in such a case, we would need at least 2.5 GB of

memory just to store the training data).

Furthermore, these results are still consistent when tested on different

datasets and training numbers, as shown in Table 4.7. While it is clear that the

complete pyramid gives the best results, the experiment shows that image rep-

resentation using the l = 2 layer does not fall too far behind, and can be used as

a reasonable compromise when memory cost is critical. It should be noted that

the results shown here are solely based on ScSPM and its OWSPM/CWSPM

variants.
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4.9 Concluding remarks

Two extensions of the traditional SPM have been proposed and tested, using

the concept of overlapping spatial windows. The first proposal extends the rect-

angular sub-windows to overlap with each other without increasing memory

complexity, while the second proposal strives to further increase the discrim-

inability by using circular windows. Experiments show that the recognition rate

for both rectangular (OWSPM) and circular (CWSPM) overlapping windows

outperforms the traditional SPM across the two different frameworks of ScSPM

and LLC.

Furthermore, it has been shown that the OW and CW variants allow us to

bypass the lower layers of traditional SPM, cutting memory complexity by 24%.

It is important that both OWSPM and CWSPM improve the recognition rate

of ScSPM and LLC, as both have been used as the building blocks of current

state-of-art object recognition systems, and thus, we can expect both of them to

contribute to other frameworks as well.
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Chapter 5

Interleaved Spatial Window

5.1 Introduction

As discussed in the last chapter, the lth layer of the SPM pyramid divides the

image equally into 2l × 2l sub-windows. Experiments with the OWSPM and

CWSPM schemes led to the discovery that the bulk of the information is located

in the bottom layer of the pyramid. That is, when L= 3, most of the information

is stored in the layer where l = 2. Knowing this, it is possible to bypass all other

layers during training without losing much in the recognition rate, effectively

reducing the size of the mid-level feature by 24%. Furthermore, it was found

that the performance of this single layer was superior to the traditional SPM,

even with all its layers included.

These findings from the topic of overlapping spatial windows lead us to

some questions. Firstly, with the introduction of overlapping spatial windows,

is there a way to make the SPM model more efficient in terms of memory cost,

without sacrificing performance? Secondly, assuming that this is possible; can

we utilize the saved cost in memory by introducing more complexity into the

dictionary used by the overlapping window model, with the aim of improving

the recognition rate? To answer these two questions, this chapter proposes to

delve deeper OWSPM and CWSPM schemes.
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Figure 5.1: The repeated usage of a single patch in (a) traditional SPM and (b)
OWSPM with ω= 0.3. Differences in color denote how many times a patch at a
particular location is used to form the mid-level image representation.

With overlapping windows, each spatial window covers a larger area of the

image for pooling. A patch can be used multiple times in the process of creating

mid-level features, adding redundancy within the process. In fact, in the tradi-

tional SPM model, a patch is used exactly L times. Motivated by this fact and

the increasing coverage brought by overlapping windows, this work proposes

to extend the concept further, by designing an interleaved pooling scheme that

will reduce the cost of SPM representation, while maintaining a similar level of

performance. This concept will be referred to as the Interleaved window SPM

(IWSPM) throughout this thesis.

5.2 Interleaved window

Assuming low-level features are extracted from the dense grid, let X and V be

the collection of N low-level descriptors, and the codeword dictionary with K

cluster centers, respectively, as described in the previous section. As mentioned

in Section 2.2, each low-level feature xi is coded as ui with i ∈ 1, 2, 3, . . . , N

using a pre-trained codebook V. If the mid-level feature z is collected from each

spatial window by max-pooling, a total of
∑L

l=0 4l vectors will be collected and

concatenated as an image representation, with a dimension of K
∑L

l=0 4l.

If we use the overlapping scheme instead of the traditional scheme, some
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Figure 5.2: The case of missing information. Left: two letters "R" and "H" with
severe case of missing information, middle: having prior knowledge that the
image is occluded at particular locations lead to easier recognition, and right:
the original "R" and "H" letters.

portions of the image will be covered by the spatial windows more often than

the others. Figure 5.1 illustrates this behavior by putting different shades of blue

in the frame of an image. The darker the shade, the more sub-windows cover

a specific portion of an image. Observing the shading detail in Figure 5.1, it is

possible to come up with several observations.

Firstly, a patch will be used multiple times in the formation of the image

representation. In the case of traditional SPM, each patch will be used exactly

L times. In the overlapping scheme, a patch can be used more than L times in

the process. This shows us that there is a degree of redundancy in the pooling

process of the overlapping window scheme. While at times these redundancies

may be beneficial, one might wonder if it is possible to reduce them without

lowering the overall recognition performance.

Secondly, to consider the problem of missing information, in recognizing

the letters shown in left-most column of Figure 5.2, the letters "R" and "H"

have large portions of the image removed in the first column, making it very

difficult for human eyes to correctly identify both letters. In middle column,
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Figure 5.3: Spatial window arrangement of IWSPM with ω set as 0.3. Left to
right: the arrangement at l = 0, l = 1, and l = 2, respectively. Colored boxes
are included in the image representation.

the boxes with deleted information are visible. In this case, since we know

the parts where the image is incomplete, we are able to easily identify the two

letters. This demonstrates that prior knowledge of the location where missing

information occurs can make the task of recognizing incomplete objects much

easier.

Thirdly, with overlapping windows, the larger size of each spatial window

means that the context within an image of interest will be covered more ex-

tensively. Removing a spatial window from OWSPM will be less costly to the

recognition result, compared to removing a spatial window from the traditional

SPM.

Using these observations, this thesis proposes to simplify the pooling

scheme by using a checkerboard-like layer as shown in Figure 5.3. That is,

if a particular spatial window is used, then the window adjacent to it will be

removed from the layer. By doing so, each layer l will have half its content

removed (except for l= 0).
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Figure 5.4: Coverage of IWSPM, the darker the color in a particular location,
the more frequent a patch will be used for constructing mid-level image repre-
sentation.

5.3 Experiments

During the experiments, the proposed concept was implemented and compared

with ScSPM and OWSPM, which served as benchmarks. The three-layered

SPM (L = 3) was used in this particular approach, and we tested the ScSPM,

OWSPM, and IWSPM using three databases: Caltech 101, Caltech 256, and 15

Scene.

As presented in Figure 5.3, we included the first sub-window of each spatial

layer in the representation and discarded any sub-window adjacent to it. We

then proceeded to include the next sub-window that was not adjacent to any

window already in the representation, and repeated the process (without loss

of generality we can pick the top-left sub-window as the first, but there is no

restriction to using the complement arrangement). This process was done for all

layers l = 0, 1, 2, however, it should be noted that there is no difference between

traditional SPM and the IWSPM scheme t layer l = 0.

As in Chapter 4, the settings in [25] were followed to allow for direct

comparisons. The size of the codebook V was set as K= 1024 for all three

databases. As the number of sub-windows involved in the representation was

cut down by almost half, the final length of the image representation was also

cut down by the same amount. Thus, increasing the size of V became viable (al-
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though it also resulted in the increase of both memory and computational cost).

The steps for training dictionary, extracting descriptors, and training classifier

were the same as those discussed in Sections 4.3.1 to 4.3.3, with the exception

of the pooling step, in which the IWSPM arrangement was used.

ω was set as 0.3 for the overlapping rectangular window, in accordance with

the result from Chapter 4. All three layers were included in the experiments.

Similarly, each experiment was repeated 10 times, using randomly selected

training and testing sets. The experiment for IWSPM itself did not differ much

from those for OWSPM and CWSPM. The only difference here was that not

all sub-windows were included in the image representation; a selection process

was performed on them first. The experiment was designed as an exploratory

experiment, to observe how the result would change with a simple modification

of SPM.

IWSPM was executed using two test cases:

1. Testing of IWSPM: In this test scenario, the performance of interleaved

spatial windows in recognizing databases was evaluated.

2. Completing the dictionary: In this test scenario, a broader codewords dic-

tionary was evaluated by increasing the number of K, to capitalize on the

memory saved by IWSPM.

Any unmentioned parameter settings follow similar settings to those in

Chapter 4, to allow for direct comparison. Both sets of possible arrangement

were tested (i.e. the set from Figure 5.3 and its complement), and we used

the arrangement with better results for comparison. This was done because the

selection of the top-left sub-window as the first is rather intuitive, and the com-

plement arrangement is, logically also viable for experimentation.

The purpose of these experiments was mainly to further investigate the ques-

tion “Is the current SPM arrangement optimal?” Based on the results from the

previous chapter, it was found that SPM is likely to be sub-optimal. The fact

that most information is located in the lowest layer of the pyramid, with the
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higher level only contributing to a minimum increase in recognition accuracy,

is very surprising. By setting the SPM arrangement in an interleaved manner as

designed here, we can further examine whether all sub-windows in one layer of

the pyramid are really necessary. Considering the increasing coverage provided

by overlapping window schemes, it seems likely that not all the sub-windows

are necessary.

5.4 Results

5.4.1 Results on 15 Scene database

100 images from each class were randomly selected for the purpose of training

the classifier, and it was tested using the remaining images. Table 5.1 shows

the recognition rate for ScSPM, OWSPM and IWSPM. In this database, we can

see a reduction in performance from OWSPM to IWSPM of 1.06%, which is

expected since we are using fewer spatial windows. However, the performance

of IWSPM was still higher (by 0.2%) as compared to ScSPM. This result shows

us that some of the information in a complete set of spatial windows might be

redundant for the task of scene classification. As information is spread through-

out the image in scene classification, removing a number of spatial windows

will not bring about a severe reduction in terms of performance.

5.4.2 Results on Caltech 101 database

While information in scene recognition is spread throughout the images, the

same advantage is not experienced in the case of object recognition. In most

cases, information about the object of interest will be localized in the vicinity

of the object. However, it is also worth noting that most current state-of-the-art

object recognition techniques do not detect the location of the image by using

keyword detectors, but by sampling patches over a dense grid. This is due to

the fact that the contextual information spread outside of the object’s location
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15-Scene
Algorithms 100 train
ScSPM 80.28± 0.93%
OWSPM 81.54± 0.46%
IWSPM 80.48± 0.32%

Table 5.1: Recognition rate of ScSPM, OWSPM and IWSPM on 15-Scene.

Caltech 101 Caltech 101
Algorithms 15 train 30 train
ScSPM 67.00± 0.45% 73.20± 0.54%
OWSPM 67.57± 0.41% 73.72± 0.83%
IWSPM 66.28± 0.47% 73.22± 0.98%

Table 5.2: Recognition rate of ScSPM, OWSPM and IWSPM on Caltech 101.

proves to be very beneficial for recognition purposes.

Caltech 101 is a database containing a total of 9146 images over 101 classes

of objects (living and still). As the number of images within a single class

can vary from 31 to 800 images, the maximum number of training images is

restricted to 30. ScSPM, OW-SPM and IW-SPM are used to test the proposal

using 15 and 30 training images. The results are shown in Table 5.2.

In this dataset, it was found that the performance of IWSPM drops to be-

low that of ScSPM when 15 training images were used, recording a difference

of 0.72% and 1.29% as compared to ScSPM and OWSPM respectively. This

difference in performance became less severe when more training images were

used, scoring slightly better results than ScSPM (73.22% compared to 73.20%)

and closing the gap with OWSPM to a mere 0.5%. The reduction of the recog-

nition rate is expected, as less data is involved in IWSPM. The reason ScSPM

performs better than IWSPM under 15 training images is because in Caltech

101, the objects are localized with low intra-class variance in term of appearance

and location, hence the omission of spatial windows will remove discriminative

data. The gap, however, is shortened when more training data was used. In such

cases, IWSPM was able to match ScSPM.
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Algorithms 15 train 30 train 45 train 60 train
ScSPM 27.73± 0.51% 34.02± 0.35% 37.46± 0.55% 40.14± 0.91%
OWSPM 31.31± 0.22% 36.57± 0.24% 39.15± 0.33% 41.27± 0.61%
IWSPM 30.02± 0.27% 35.10± 0.23% 38.48± 0.40% 40.77± 0.70%

Table 5.3: Recognition rate of ScSPM, OWSPM and IWSPM on Caltech 256.

5.4.3 Results on Caltech 256 database

Caltech 256 offers an extension to Caltech 101. As the name implies, it contains

256 object classes with over 30607 images; hence it is considered a challenging

dataset, not only due to its sheer size, but also because of the high intra-class

variability in terms of shape and location. In contrast to Caltech 101, each class

contains at least 80 images, thus it is possible to train the classifier with a higher

number of training images as compared to Caltech 101. The settings of 15, 30,

45 and 60 training images are used to test IWSPM, and the results are shown in

Table 5.3.

Here we can observe that IWSPM consistently performs in the region be-

tween ScSPM and OWSPM. Again, IWSPM is expected to give a worse perfor-

mance than OWSPM, as it is after all, the simplified version of OWSPM. How-

ever, the average drop in performance is small (1.2%). In contrast to ScSPM,

IWSPM performs surprisingly well, recording some significant improvements

over various numbers of training images. The level of intra-class variability

plays an important part in making IWSPM perform well, as missing informa-

tion became less costly as variability increased.

5.4.4 Comparing IWSPM to OWSPM at l = 2

The results consistently show that IWSPM outperforms ScSPM, with an ex-

ception of Caltech 101 with 15 training images. In addition to this, OWSPM

does not fall behind OWSPM much. Generally, it was found that IWSPM offers

a recognition rate somewhere in between ScSPM and OWSPM. Moreover, all

this was achieved at half the memory cost of ScSPM and OWSPM each. As
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Database Pnw P2o Piw

15-Scene (100 train) 80.28% 80.30% 80.48%
Caltech 101 (15 train) 67.00% 66.83% 66.28%
Caltech 101 (30 train) 72.46% 73.19% 73.22%
Caltech 256 (15 train) 27.73% 29.79% 30.02%
Caltech 256 (30 train) 34.02% 34.96% 35.10%
Caltech 256 (45 train) 37.46% 37.60% 38.48%
Caltech 256 (60 train) 40.14% 40.36% 40.77%

Table 5.4: Comparison of recognition performance between ScSPM, OWSPM
with only l = 2 layer, and IWSPM.

described in the last chapter, using only the l = 2 layer in OWSPM led to an

improvement over ScSPM, even though it utilized 24% lesser memory. Since

IWSPM and OWSPM at layer l = 2 performs generally at the same level, it

will be interesting to compare the performance between them both. A detailed

comparison can be found in Table 5.4.

Clearly, we can see that IWSPM offers better performance than l2-OWSPM,

even with less memory cost compared to the l2-OWSPM (except, again, at

Caltech 101 with 15 training images). Our results shows that IWSPM can be

considered as an effective way of obtaining mid-level image representation for

scene and object recognition, offering efficiency in terms of memory consump-

tion and performance.

Clearly, IWSPM offers better performance than OWSPM at l = 2, even at a

lesser memory cost compared to this l2-OWSPM (except, again, in the case of

Caltech 101 with 15 training images). These results show that IWSPM can be

considered as an effective way of obtaining mid-level image representations for

scene and object recognition, offering efficiency in terms of memory consump-

tion and performance.

5.4.5 Discussions on the effectiveness of traditional SPM ar-

rangement

To summarize the findings from the experiment, it was found that:
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1. IWSPM performs at a similar level to traditional SPM (it is higher than

except for Caltech 101 with 15 training images),

2. Complete OWSPM achieves the best results, but with 100% more cost

compared with IWSPM, and a return of around 1% of performance,

3. Intelligent selection of sub-windows is essential to achieve efficient (in

terms of storage cost and performance) image descriptor, and

4. IWSPM scheme, which sits at 50% memory cost of the traditional SPM,

performs very close to the P2o scheme, which sits at 75% memory cost of

the traditional SPM.

From these four findings, it is possible to conclude that the traditional SPM

is sub-optimal when compared to the IWSPM scheme (in terms of memory

cost) and to the OWSPM scheme (in terms of performance). In addition, it was

found that the selection of windows in SPM was pertinent, as a good selection

of windows can lead to better performance at a lower memory cost, saving both

time and space within the system.

What is most surprising, however, is that from findings (2) and (4) it is pos-

sible to see that IWSPM, P2o, and the full pyramid did not differ much with

respect to the increase in memory cost. The results of this experiment indicate

that there is a point of saturation, lying in the region between half and full mem-

ory, in SPM. Furthermore, if increasing the number of spatial windows led to

increasing recognition accuracy, it is possible that a local or global maximum

may exist between these two points in the spatial window selection. Determin-

ing these points would therefore lead us to the actual optimization for the SPM

model.

Finding these points, however, will prove a difficult task, as they are specific

to each dataset. Finding local maxima will be considerably easier as compared

to proving that a local maxima is actually the global maximum. This thesis shall

present two such selection processes in the next chapter to see if the conjecture

made in this chapter is indeed true.
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5.5 Concluding remarks

This chapter proposed a novel mid-level image representation that is cost-

effective, with respect to memory consumption and recognition performance.

The new representation takes its inspiration from overlapping sub-windows,

noting that omitting a sub-window will be less detrimental here as compared

to when it is done on traditional SPM. The Interleaved Window scheme extends

the normal SPM arrangement by omitting adjacent sub-windows, resulting in a

checkerboard-like arrangement, and using overlapping sub-windows to reduce

the negative effect of the windows omitted.

Experiments run on 15 Scene, Caltech 101 and Caltech 256 datasets showed

that IWSPM performs well, with recognition rates in between ScSPM and

OWSPM, but at half the memory cost. In turn, the memory saved can be used

to accommodate more complex models.
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Chapter 6

Optimal Window Arrangement

6.1 Introduction

SPM has proved to be very simple and effective, which led to it being used

in most systems that utilize the BoW model. Under this spatial modelling, re-

searchers have been able to produce state-of-the-art results. Additionally, the

main idea of SPM implementation has gone beyond the BoW approach. One

example is the spatial pooling process used in unsupervised feature learning,

such as Deep Learning. It is evident that the computer vision community has

accepted SPM as a basic approach towards the construction of image represen-

tations.

The aim of this chapter is to challenge the traditional SPM model by show-

ing the sub-optimality of its current configuration. A simple example of sub-

optimality can be found when we consider the representation cost brought on

by the SPM model. With a codeword dictionary of size K, the traditional BoW

model would represent an image as a K-dimensional vector. Conversely, when

we apply the SPM model, an image would be represented using K
∑L

l=0 4l di-

mensions. Most models utilize L= 3, which leads to a representation 21 times

larger than BoW. As the number of training images increases with the introduc-

tion of more complex datasets, this limitation will become problematic.
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Krapac et al. have shown in [28] that using the Fisher Vector (FV) as an

appearance descriptor not only allows a smaller codeword dictionary, but also

when combined with spatial pyramids, it is able to achieve state-of-the-art per-

formances with only two layers of the pyramid. This is particularly interesting,

as it indirectly asserts that the current SPM architecture is sub-optimal.

In previous chapters, the traditional disjoint arrangement of spatial windows

was found to be ineffective, hence, image representations would benefit from a

broader context offered by overlapping spatial windows. It was found that the

introduction of this new concept of spatial windows led to a significant increase

in recognition accuracy. This chapter will affirm the conclusion from the previ-

ous chapter that the traditional SPM is sub-optimal, by showing that in a 3-layer

overlapping spatial window of SPM (L= 3), the contributions of the 0th and 1st

layers are very small compared to the 2nd layer. In fact, representations of an im-

age (using the overlapping spatial window with only the 2nd layer) consistently

outperform the traditional SPM. These findings show that the arrangement of

spatial windows in SPM is highly redundant, and can be further optimized.

Taking the aforementioned aspects into consideration, this chapter will

present in detail how SPM can be improved. The OWSPM and CWSPM scheme

will be utilized in the SPM to show the benefit of overlapping spatial windows.

To extend this further, this chapter proposes a novel method to learn the opti-

mal spatial arrangement that is superior to the traditional SPM in terms of both

memory consumption and performance. This scheme shall be referred as Opti-

mal Arrangement Spatial Pyramid Matching (OA-SPM). This chapter will also

introduce a cheap and fast way to approximate the optimal arrangement of the

spatial pyramid in this chapter.

As such, the contributions in chapter can be broken down into several points:

• Investigating the extent of sub-optimality in the traditional SPM model.

• Introducing overlapping spatial windows as a possible optimization mod-

ule.
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• Finding the optimal spatial window arrangement through the combination

of overlapping spatial windows and learning their arrangement using the

OA-SPM.

6.2 The sub-optimality of traditional SPM

OWSPM and CWSPM both exhibit consistent improvement compared to the

traditional SPM when applied to both ScSPM and LLC (up to 3.7% in the aver-

age recognition rate). These improvements confirm the hypothesis that the cur-

rent disjoint spatial window arrangement is sub-optimal. The fact that these im-

provements are reproducible when applied to different recognition frameworks

tell us that the benefits of overlapping windows are not limited to a particular

framework.

In addition to that, the 2nd layers of both the OWSPM and CWSPM schemes

outperform traditional SPM (that has all three layers). As such, it is possible

to save nearly 24% of memory cost in the training step, by using overlapping

spatial windows and discarding the 0th and 1st layers of OWSPM or CWSPM,

and yet still outperforming traditional SPM.

Interestingly, even with incomplete information, our vision system is able

to evaluate and infer a meaningful conclusion from what we see. Furthermore,

when the identity of some missing information (what information is missing,

where is the missing data located, etc.) is known, the deduction becomes more

efficient. Under the IWSPM model, it is possible to reduce the memory cost

of image representation by approximately 50%, as the total number of windows

involved decrease from
∑L−1

l=0 4l to
∑L−1

l=0 2l. While IWSPM performs less ac-

curately than in the OWSPM and CWSPM scheme, it proves to be more efficient

than the traditional SPM model. In fact, Caltech 101, under the 15 training im-

ages condition, is the only exception where the IWSPM scheme performs worse

than ScSPM (by 0.22%).
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It is interesting to note that the decrease in performance between OWSPM

and IWSPM schemes is very small (around 1% in difference). This means that

50% of the data in the complete SPM set contributes to only 1% of additional

discriminability. The most interesting result can be seen when we compare the

result of IWSPM with the l = 2 layer of OWSPM. Note that the l = 2 layer com-

prises approximately 76% of the image representation, which is more than the

IWSPM scheme. However, as listed in Table 5.4, it was found that the IWSPM

scheme consistently outperforms the l2-OWSPM scheme (with the exception of

Caltech 101 with 15 training images). These results show that even though less

information was contained in the spatial pyramid, it does not necessarily yield a

worse performance.

In other words, if we could formulate a way for selecting spatial windows

in SPM, we might be able to see improvements in terms of both accuracy and

memory consumption. From these findings, it is possible to conclude with ut-

most confidence that the traditional arrangement of spatial windows in SPM is

highly sub-optimal.

Throughout the discussion of the results from the OWSPM, CWSPM and

IWSPM schemes, it is possible to list several points of interest:

1. The disjoint arrangement of spatial windows is sub-optimal,

2. The usage of overlapping windows allows for broader context at no addi-

tional cost,

3. The current spatial pyramid arrangement of traditional SPM is inefficient,

and

4. Recognition systems will benefit from a scheme that learns the best spatial

window arrangement for construction of image representation.
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6.3 Finding the optimal arrangement

6.3.1 OA-SPM

Let us denote W as the total number of candidate spatial windows (in the case

where L= 3, then W= 21). Excluding the case where we did not use any

of the windows, there are a total of (2W − 1) possible arrangements varying

from 1 spatial window to all W candidates. To evaluate all of them will be

very expensive and intractable. As such, we require a way to learn the optimal

arrangement with a cheap yet tractable approach. This thesis adopts a greedy

approach by maintaining a set of selected windows and iteratively adding a new

unselected window to the set, after which the performance obtained is evaluated.

Let R(P) be the recognition performance of the image representation con-

structed using P, where P is defined as in section 4.8. In addition, let W

be the set of all candidate windows. By definition, if a window w is a mem-

ber of P, then w ∈W. Denote the operation of adding a window w to P as

U(P, w)= P ∪ {w}. The best arrangement is then obtained by looking for the

best candidate window wmax to be included into P using

wmax = max
w

R(U(P, w)) (6.1)

and update P= U(P, wmax). This process is then iterated from P = ∅ un-

til all candidates have been selected. Using this model, the complexity of the

process is a mere O(W 2) as compared to O(2W ) of the exhaustive search. This

process is called Optimal Arrangement SPM (OA-SPM).

There are some similarities shared between this proposed model and the

models adopted in [60], whereby those models propose to evaluate the repre-

sentations from a collection of spatial windows (or receptive fields) and then

learn the optimal representations. The model proposed in this thesis differs in

three main factors. Firstly, OA-SPM utilizes overlapping spatial windows due to
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Algorithm 5 OA-SPM
Input: Complete mid-level dataset representation D.
Output: Optimal arrangement Popt.

1: P(0) = ∅, W = {w1, w2, ..., w21}, P(t) denotes the configuration at step t.
2: for t = 1 to 21 do
3: for w = 1 to |W |, w /∈ P(t− 1) do
4: Pw(t) = U(P(t− 1),W (w)).
5: Train classifier based on Pw(t).
6: Test the classifier and obtain performance score Rw(t) = R(Pw(t)).
7: end for
8: P(t) = P(t− 1) ∪W (wmax) : wmax = maxw/∈P(t−1)Rw(t).
9: end for

10: Popt = maxtR(P(t)).

their efficiency, as detailed in Chapter 4. Secondly, the base collections of spa-

tial window candidates greatly differ from each other: 21 spatial windows are

selected from the OWSPM/CWSPM in OA-SPM, as opposed to the overcom-

plete set of windows based on the 4 × 4 superpixel method proposed in [60],

where a total of 100 candidates are evaluated. Finally, the aforementioned pa-

per adopted a learning strategy to optimize the arrangement of each dictionary

index k within every spatial window instead of the spatial window itself, as in

our proposed learning scheme.

6.3.2 Implementations and results

Let us denote B as the collection of all mid-level representation inside a

specific database of size S. That is,

B = [Z1,Z2, ...,ZS] (6.2)

As we want to examine the effect of individual windows, we note that we

can write Z as [z1, z2, ..., z21] (assuming we are using standard L= 3 spatial

pyramid, without loss of generality). As such we can partition B as

B = [BT
1 ,B

T
2 , ...,B

T
21]

T

Bi = [Z1i,Z2i, ...,ZSi]

(6.3)
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SPM
Dataset |P| = 21 Peak
15 Scene (100 train) 80.22% 81.67%(15)
Caltech 101 (15 train) 67.00% 67.02%(14)
Caltech 101 (30 train) 74.02% 74.68%(18)

CWSPM
Dataset |P| = 21 |P| = 11 |P| = 12 |P| = 13 |P| = 14

15 Scene (100 train) 81.54% 81.94% 81.96% 82.28% 81.54%
Caltech 101 (15 train) 67.57% 66.81% 67.68% 67.83% 67.12%
Caltech 101 (30 train) 73.72% 74.65% 74.62% 75.05% 74.21%

Table 6.1: Average recognition rate based on OA-SPM process. Any number
inside a bracket signifies the number of spatial windows needed to produce the
corresponding result.

Using this notations, we can say that R(P = {w}) = R(Bw), and

R({w1, w2, ..., wn}) = R([BT
w1
,BT

w2
, ...,BT

wn
]T ) (6.4)

Using these notations, Algorithm 5 shows the details of OA-SPM imple-

mentations as discussed in section 6.3.1.

Extraction of features and training of classifier all follows the approach dis-

cussed in sections 4.3.1 to 4.3.4, especially Algorithm 3 and 4. Furthermore,

CWSPM is used as it was found to be the most consistent among the two over-

lapping methods.

Experiments were run using 15 Scene and Caltech 101 databases, as they

represent two different problems: scene and object recognitions. The training

and testing processes is repeated for 5 times, with the performance average mea-

sured. Figure 6.1 shows the progression of performances as more candidates are

included into the set for both databases, while a detailed comparison can be ob-

served in Table 6.1. Based on these results, it is possible to see some interesting

properties of the SPM arrangement.
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Figure 6.1: The progression of R(P) as more spatial windows is added into
P for CWSPM and traditional SPM. Complete set of spatial windows (the tail
of the graphs) performs less effective compared to those in the middle of the
graphs. All experiment tested with ω= 0 for CWSPM scheme using ScSPM as
baseline.

6.3.3 Discussions

First, including all spatial windows in the image representation does not neces-

sarily yield the best performance. It was found that for both CWSPM and tra-

ditional SPM, pyramid configuration with complete set of sub-windows is not

the best performing arrangement. It appears that the non-crucial information

contained in the spatial windows actually had a detrimental effect to the overall

performance of the system. As such, a feature selection process is essential on

top of SPM representation.

Furthermore, it was found that the peak performance was achieved from

using 11 to 14 candidates out of the full collection. In other words, it consists of

nearly 60% of the full collection of windows in the traditional SPM. Compared

with the P2c arrangement, it is possible to cut the memory cost even further,

but at the same time achieve better performance than that of Pcw. This result is

very important, as it proves that it is possible to increase the accuracy of SPM

representation, while at the same time reducing its memory complexity.

Finally, OA-SPM affirms the importance of overlapping windows in the ef-
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ficiency of an individual spatial window when comparing the findings from

CWSPM and traditional SPM. With the overlapping scheme, it is possible to

find higher performance from each individual window. Each overlapping spa-

tial window demonstrates a noticeable increase in discriminability as compared

to the traditional (disjoint) window.

Additionally, another interesting observation is that the global spatial win-

dow (the single window at l = 0) is always selected first in all cases. Thus,

the results at that particular window, for both traditional SPM and CWSPM

schemes, always coincide with each other. To some extent, this finding is fully

understandable as the global window contains the most information from the

image. This learning scheme suggests that, in any case, the usage of the global

window is highly recommended.

The average recognition performance and their optimal spatial window ar-

rangements are presented in Table 6.2 and Figure 6.2 respectively. It can be ar-

gued that a unique optimal arrangement should exist for a specific dataset, and it

is highly recommended that the optimization process be repeated for each new

dataset. OA-SPM yields a significant increase in performance as compared to

the traditional SPM, at a typically 40% lesser memory cost. Even though these

results are lower than those offered by state-of-the-art technologies, this pro-

posed model can be adopted to any SPM-based image representation to achieve

even better performance at lesser memory cost.

As mentioned in Section 5.4.5, finding the global maximum over such a

large space without an exhaustive search is not possible. The term optimal that

is used throughout this chapter for the proposed method does not necessarily

refer to the global maximum out of all possible 2W windows. If P(t) denotes

the set at iteration t, OA-SPM only considers the window that maximizes the

increment R(P(t + 1)) − R(P(t)). In other words, it is possible that there

are other maxima in the space of all possible arrangements that return higher

recognition accuracy than those found by OA-SPM.
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Dataset Training Algorithm Best OA-SPM SPM Improvement Space saved
Image Recognition Rate R1 |P| Recognition Rate R2 |P| (R1 −R2)

15 Scene 100 ScSPM 82.28± 0.35% 13 80.28± 0.93% 21 2.00 38%
Caltech 101 15 ScSPM 67.83± 0.66% 13 67.00± 0.41% 21 0.83 38%
Caltech 101 30 ScSPM 76.24± 0.40% 12 73.20± 0.54% 21 3.04 42%
Caltech 256 15 ScSPM 32.11± 0.52% 12 27.73± 0.51% 21 4.38 42%
Caltech 256 30 ScSPM 37.22± 0.38% 12 34.02± 0.35% 21 3.20 42%
Caltech 256 45 ScSPM 40.20± 0.35% 12 37.46± 0.55% 21 2.74 42%
Caltech 256 60 ScSPM 42.40± 0.67% 12 40.14± 0.91% 21 2.26 42%
Caltech 101 30 Simulated Fixations 75.71± 0.44% 13 74.60% 21 1.11 38%
STL-10 500 Simulated Fixations 63.26± 0.33% 13 61.00% 21 2.26 38%
UIUC-Event 70 Object Bank 79.13± 0.41% 10 76.30% 21 2.83 52%
MIT-Indoor 80 Object Bank 39.95± 0.64% 11 37.60% 21 2.35 47%
15 Scene 100 Object Bank 83.50± 0.39% 11 80.90% 21 2.60 47%

Table 6.2: Recognition rate using optimized arrangement SPM based on the findings of OA-SPM.
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Figure 6.2: Optimized arrangement obtained from OA-SPM for (a) 15 Scene (b)
Caltech 101 with 15 training image and (c) Caltech 101 with 30 training image.
Overlapping regions are omitted in the illustration for clarity purposes. Shaded
regions are selected by OA-SPM to be included into the image representation.

However, this does not cancel the hypothesis that the traditional SPM is

sub-optimal. In fact, OA-SPM proves to some extent that there exists a peak

(or at least a saturation point) between the half-pyramid and full-pyramid ar-

rangement. The existence of such points gives rise to the necessity of having a

selection algorithm.

Additionally, the window arrangement is dataset-specific. OA-SPM needs

to be retrained whenever a new dataset is taken into consideration, with the

complexity of O(W 2). This means that the training step of the classifier will

take longer than those without OA-SPM. However, the testing side will become

much faster, as it involves much shorter image representation, which means less

computational cost. This is an acceptable trade-off, since its implementation in

the real world will focus on user experience; thus, having a faster testing step is

more important than a faster training step.

If we look at Figure 6.2 again, we can find out the relation between what

OA-SPM learn and the dataset that it is being subjected to. Take the result from

15 Scene dataset for example (6.2a). Interestingly enough, on layer l = 1, the

two windows at the bottom half of the layer are not included while both top

half are. The bottom half, however are included in its entirety at layer l = 2.

This tells us that when OA-SPM learns for 15 Scene dataset, it is sufficient for

it to only consider the top half of the image in broader context, but the bottom
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Figure 6.3: Examples of OA-SPM arrangement on Caltech 101 dataset with (a)
15 training images, and (b) 30 training images. Row (c) shows the complete
arrangement of CWSPM. Black regions where sub-windows are missing when
compared to (c) means that the sub-window are discarded.

half of the image need extra details for recognition to return best result. This

suits how most images in this set, since an image of a scene normally have more

information at the bottom half, and the top half either does not contribute much

to classification (i.e. outdoor pictures will most likely contain sky at the top half,

indoor picture will contain ceiling, both are not as informative) or considerably

less object and is enough to be covered by the larger l = 1 sub-windows.

As we move to Caltech 101 (6.2b and 6.2c), the narrative becomes very

different. The l = 1 layer is selected less (only once at Caltech 101 with 30

training image, that is 1 in 8), and OA-SPM favors sub-windows from l = 2
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layer more. Furthermore, there is a tendency to pick the middle sub-window

(those at row 2/3 and column 2/3). This is consistent with Caltech 101 images

since most objects in this dataset are centered. The tendency to pick up more

detailed description from l = 2 rather than from l = 1 is also not surprising, as

objects came in varying size and texture. Our results show good adaptability to

various dataset, and it shows that OA-SPM is able to not only learn the optimal

arrangement, but also the locations where most of the informations are located.

As such, it can also be used to analyze a dataset in a broader context.

Furthermore, if we compare l = 1 layer and l = 2 from each of the dataset,

surprisingly there does not seem to be much overlap between the regions cov-

ered by the two layers. Caltech 101 with 15 training images does not have any

overlapping regions between l = 1 and l = 2 (because l = 1 is completely

discarded), while 15 Scene and Caltech 101 with 30 training images both have

overlap with the size of two l = 2 sub-windows (12.5% of image size). As such,

we can deduce that there is a tendency to not cover an area of an image when

it has been covered by another sub-windows before. This directly contradicts

the traditional SPM, and evidently, we are able to obtain better performances

and better memory cost compared to it. The finding supports our claim (and

conclusion) that the traditional SPM arrangement is not optimal.

Another interesting findings from Figure 6.2 is that the global sub-window

at l = 0 is always selected in all experiments. This tells us that the 0th layer in

SPM holds the most important information regardless of dataset used.

6.4 Approximating the optimal arrangement

The model given in Section 6.3 gives us a reliable way to obtain the optimal

spatial window arrangement for the SPM model that is both cheaper and more

accurate than the traditional SPM arrangement. However, OA-SPM involves the

evaluation of (W − k + 1) arrangements at step k, which can prove to be very
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costly as the number of windows for consideration (W ) increases. With the

current model, it takes O(W 2) windows to compute. While this is much more

convenient than a complete evaluation of all possible arrangements as given by

O(2W ), dropping the computational complexity to a linear cost would make

prediction faster and tractable to more advanced datasets.

To this end, an assumption on a linear relationship between recognition

performance R(P) and individual window performance R(wi) is made (P =

{w1, w2, . . . , wn}). Assume that the base window at l = 0 is always included

inside P without loss of generality. Then, the index i = 1 is assigned to this

window (i.e. w1 denotes this global window). As any arrangement P will con-

tain the base window from this point onwards, the index 1 will be omitted for

brevity. As such, let us redefine the notation of recognition accuracy made by the

set {w1, wi} as Ri, i.e. Ri = R({w1, wi}). Similarly, Rij = R({w1, wi, wj}).

This redefinition is done to improve the readability of this section.

To model the relationship between spatial pyramid arrangement and recog-

nition accuracy, the following assumption are made:

Ri = R1 + ∆i

Rij = R1 + ∆i + ∆j + εij

(6.5)

In these equations, ∆i is the adjustment factor needed to correct the recognition

accuracy when including wi to w1. Similarly and εij denotes the correction fac-

tor for the linear model of the next order. Essentially, the assumption made will

approximate recognition performance by considering it as being linear to an ex-

tent, and then learn a correction factor to straighten the model. The assumption

in Eq. (6.5) is then extended to a larger number of windows. For example, in a

four-window condition with P = {w1, wi, wj, wk}, the recognition performance

is expressed as

Rijk = R1 + ∆i + ∆j + ∆k + εijk (6.6)
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Dataset Training Best OA-SPM Best LA-SPM
Image Recognition Rate |P| Recognition Rate |P|

15 Scene 100 82.28± 0.35% 13 82.08± 0.43% 12
Caltech 101 15 67.83± 0.66% 13 67.61± 0.51% 14
Caltech 101 30 76.24± 0.40% 12 75.10± 0.63% 14
Caltech 256 15 32.11± 0.52% 12 31.98± 0.62% 13
Caltech 256 30 37.22± 0.38% 12 37.04± 0.44% 12
Caltech 256 45 40.20± 0.35% 12 40.16± 0.49% 12
Caltech 256 60 42.40± 0.67% 12 42.14± 0.80% 13

Table 6.3: Comparing the recognition rate of OA-SPM and LA-SPM.

The value of ∆i can be easily obtained using empirical method by consider-

ing all Ri values in the set. However, to compute the correction factor ε, another

assumption is needed:

εa1a2...an =
1

n
(ε−a1a1a2...an

+ ε−a2a1a2...an
+ ...+ ε−ana1a2...an

) (6.7)

In this equation, the subscript ai denotes a window wai within the set; while

the superscript −ai denotes a window wai that is excluded from the selected set

(i.e. εijk = (εij+εik+εjk)/3). By using this assumption and some mathematical

manipulations, the approximate performance can be computed as:

Ra1a2...an = R1 +
n∑
i=1

∆i + εa1a2...an

=
(n− 2)!

n!

i 6=j∑
i,j

Raiaj + (1− 2

n
)

n∑
i=1

∆i

=
1

n(n− 1)

i 6=j∑
i,j

Raiaj +
n− 2

n

n∑
i=1

∆i

(6.8)

That is, given a set P, R(P) can be approximated by averaging the recogni-

tion performance of all possible 2-window combinations from P with a correc-

tion factor obtained from the increment coefficient ∆i. This simple approxima-

tion method provides us with a fast and inexpensive way to select the optimal

arrangement for SPM.

The framework is tested using 15 Scene, Caltech 101 and Caltech 256
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Figure 6.4: Recognition performance vs number of window on 15 Scene. Result
tested using Traditional SPM, CWSPM with OA-SPM, and CWSPM with LA-
SPM.

Figure 6.5: Recognition performance vs number of window on Caltech 101
with 15 training images. Result tested using Traditional SPM, CWSPM with
OA-SPM, and CWSPM with LA-SPM.

datasets. Let us denote |P| as the cardinality of the set P, and select the best

arrangement using the linear approximation for |P| = 1 (containing the l = 0

window) to |P| = W , after which we compare the results with traditional SPM

and OA-SPM (refer to Figure 6.4 to 6.6 for the complete results of the exper-

iment). It was found that linear approximation returned similar peaks when

compared with OA-SPM (11 ≤ |P| ≤ 14), with comparable performance.

However, the performance from |P| = 1 until the peak builds up slower. This is

understandable as the arrangement was obtained from the approximation of the

performance at a particular cardinality of set.

On the other hand, it is interesting to note that even though performance un-
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Figure 6.6: Recognition performance vs number of window on Caltech 101
with 30 training images. Result tested using Traditional SPM, CWSPM with
OA-SPM, and CWSPM with LA-SPM.

der the linear approximation increases at a slower rate than performance under

OA-SPM, their peaks generally coincide within a certain number of cardinality

of set, with similar performance results. Both OA-SPM and the linearly ap-

proximated arrangement (referred to as LA-SPM from here on) perform better

than the traditional SPM, in both cases of optimized and complete sets, for all

tested datasets. Based on this result, it can be concluded that the spatial win-

dow arrangement will reach a saturation point as more windows are added into

the set for representation, which also represents the system’s peak performance.

As more windows are added to the set, recognition performance does not im-

prove; in fact, it deteriorates. As such, contrary to current practice, utilizing the

complete set of spatial windows in SPM is not optimal.

6.5 Comparison to current state-of-the-art approach

It has been shown in table 6.2 that the proposed approach is not just appli-

cable to BoW, but also to other families of image representation, through the

application of OA-SPM and LA-SPM on ObjectBank and deep learning with

simulated fixations. It is possible to achieve up to 2.83% and 2.26% improve-

ments for ObjectBank and simulated fixations, respectively. It shows that the

proposed optimization approach to Spatial Pyramid Matching is not confined to
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the BoW approach, but to spatial pyramid usage in general. More importantly,

it is possible to improve the performance of deep convolutional neural network

approaches, using the proposed method.

Currently, Convolutional Neural Networks have consistently shown great

and rapid improvements in the field of image recognition. During the course

of completing this thesis, several works which significantly outperform the pro-

posed approach here have been published. One of the best results recently pub-

lished in [86] reports results (with Caltech 101 and PASCAL VOC 2007) as high

as 93.42± 0.5% accuracy (the author would like to point out that that work was

published during the process of revising this thesis, and was therefore unable

to investigate the effects of OA-SPM or LA-SPM when applied to the method).

That result is significantly higher than what is reported in this thesis, even on

the CNN-based approach.

However, it is interesting that [86] utilizes SPM to circumvent the need of

having an image input of fixed size, which would reduce recognition accuracy.

As discussed in Section 2.9, the second part of the CNN-based approach utilizes

highly connected layers, which requires an input of fixed size to be fed into the

network. Prior to [86], the patch fed to the network was obtained using the

sliding window technique, which resulted on the omission (clipping) of impor-

tant information. He et al. circumvented this by using warped versions of the

window containing the whole object, and fed the SPM response to the network.

As such, it is possible to achieve more accurate recognition results with faster

computational cost.

Although it does seem that this work performs poorly as compared to current

state-of-the-art technologies, it was not the aim of this work to compete with

them from the start. Rather, the aim of this thesis is to enforce the importance of

spatial information, and repudiate the assumption that SPM is already efficient

enough. In fact, the SPM used in [86] follows the traditional architecture, and it

should benefit from the proposed method, pushing its results to an even higher
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accuracy.

6.6 Concluding remarks

This chapter presented a detailed investigation on the effectiveness of the tra-

ditional SPM architecture. Based on the findings from overlapping and inter-

leaved windows, it is possible to conclude that the traditional SPM model is

sub-optimal in at least two regards: its disjoint arrangement of spatial windows

and the construction of image representations. It was found that by introduc-

ing overlapping spatial windows, the discriminative power of each window was

strengthened, and half of the information in the complete SPM pyramid con-

tributed to a mere 1% in recognition performance.

As such, this chapter introduced two schemes to learn the optimal spa-

tial window arrangement for SPM, OA-SPM and LA-SPM. Both frameworks

show us that the feature selection process is essential, on top of the usual SPM

pipeline, to filter out redundant spatial images in image representation. By doing

so, it is possible to consistently achieve significant performance improvements

(up to 4.38%) and at the same time reduce the memory cost by nearly 40%,

compared to that within the traditional SPM arrangement.

It is important to note that some may consider the graph in Figure 6.4-6.6

to be inconclusive to claim that the recognition performance peaks at a certain

arrangement when 11 ≤ |P| ≤ 14; it can also be interpreted as a saturation

point where the results plateau with slight variations. However, this does not

contradict the hypothesis that SPM is not optimal, as it is possible to achieve a

very similar result with much lower spatial windows adopted when picking the

point where recognition starts to saturate.
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Chapter 7

Conclusion and Recommendations

for Future Work

7.1 Conclusion

Spatial information is crucial to the task of image recognition. The fact that

it is useful and powerful should be apparent to vision researchers. This the-

sis presents an example of the influential impact of spatial information on the

quality of image representation, learning processes, and system performance,

through deterministic approaches such as Support Vector Machine (SVM) and

non-parametric approaches such as the Hierarchical Dirichlet Process (HDP).

This work can be categorized in two major parts: improving DHDP and intro-

ducing new paradigms for Spatial Pyramid Matching.

The work on improving HDP through modified-DHDP with approximate

shape masks validate our belief that spatial information is an integral part to

a successful object recognition. While DHDP suffers greatly from the "rich-

get-richer" effect, the addition of spatial information in the form of cardinality

coefficient and approximate shape mask led to the mitigation of the effect. This

is why the proposed modified-DHDP in this thesis are able to reach better per-

formances (by 11%) compared to the original DHDP which does not utilize
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spatial information in any kind. The proposed method tackles the problem of

"rich-get-richer" effect on two fronts. Cardinality coefficient makes sure that

only relevant codewords are grouped together by rejecting noise patches, while

at the same time approximate shape masks filter out noise patches that do not

belong to the predicted object shape.

As evident in DHDP, "bag-of-words" (BoW) method suffers from the inher-

ent assumption that spatial information can be discarded. The modified-DHDP

demonstrate that there is a need to include spatial information back into BoW

image representation. The second part of this thesis focused on this goal.

The Spatial Pyramid Matching (SPM) model is a staple in BoW-based rep-

resentation. SPM provides rough spatial information from the image into BoW

image representation. SPM is used by many works since they are both cheap

and simple to implement, but offer considerable improvements to the final re-

sults of object recognition. However, most works in computer vision tends to

take SPM without questioning its efficiency. This work aims to investigate SPM

and attempts to improve the model.

This work improves the traditional SPM model by proposing two novel spa-

tial window arrangements in overlapping rectangular windows (OWSPM) and

overlapping circular windows (CWSPM). These arrangements question the tra-

ditional SPM spatial window arrangement, which is disjoint in nature. Replac-

ing them with overlapping windows have been shown to improve recognition

accuracy upwards of 3.68%. This improvement occurs without imposing addi-

tional strain on memory allocation or increasing training cost. It was also shown

that the lowest layer in the pyramid at l = 2 contains the bulk of the information,

and 25% of the information contained in the preceding layers contributes to a

mere 1% to recognition accuracy. These findings propel us to push our work

further, as it proves that traditional SPM model is sub-optimal.

The interleaved window (IWSPM) scheme confirms the hypothesis that the

architecture of SPM is sub-optimal. With a systematic way of selecting the ar-
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rangement of spatial windows, it is possible to push the boundaries of SPM fur-

ther in the task of object and scene recognition. This work introduces proposals

for finding this optimal arrangement using two approaches: OA-SPM and LA-

SPM. For both optimization procedures it was found that approximately 40% of

the spatial windows do not contribute additional information to the rest, as well

as having a detrimental effect on recognition performance. It was found that ex-

cluding them would not only lead to a reduction in cost, but also improvements

in performance. Improvements as high as 4.38% with OA-SPM were found dur-

ing the experiments conducted for this thesis. This confirms our claim that SPM

is sub-optimal, and at the same time validate our proposed optimization method.

7.2 Recommendations for future work

Several extensions of OA-SPM come to mind:

7.2.1 Finding global maximum within all possible P

As mentioned in Chapter 6, OA-SPM searches along the line that maximizes

the increment of accuracy between the tth and (t + 1)th iteration. While this

can be an acceptable optimization, it is not sufficient to guarantee the global

maximum throughout all possible P, and is only a local maximum. Therefore,

the OA-SPM arrangement does not refer to the real best arrangement possible,

which may even be shorter than those found from OA-SPM. In any case, further

research on this topic could be interesting.

7.2.2 Class-specific arrangement and adaptive classifier

It is worth noting that OA-SPM utilizes the same optimized arrangement for all

classes. This might not be optimal as the arrangement that comes as a product

of OA-SPM is evaluated to meet the need of all classes in contention. The idea

is to extend OA-SPM to cater to the need of a specific class, and in doing so
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produce an optimal arrangement for each class.

The caveat of such an approach is that the classifier also needs to be adaptive.

When considering one class, a specific arrangement must be used, and when

considering another class, another arrangement should be used. Furthermore,

the results of each class-specific classifier will not be directly comparable, and

will need some kind of normalization. Constructing the optimal arrangement

for each class might be a simple task, but formulating the classifier will prove to

be a challenge.

7.2.3 Application to other family of methods

While we have presented our models largely using ScSPM as a baseline, the

BoW family of methods is losing ground to the Fisher Vector (FV) and Deep

Learning (CNN). Although, in this thesis we also demonstrate that OA-SPM

can be readily extended to CNN, OA-SPM was not created specifically for it.

A proper investigation into adapting OA-SPM to Deep Learning or other more

current topics may prove worthwhile.
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