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Summary

With the rapid development of wireless communications, location-based services (LB-

Ss) have received extensive researchers’ attention. Many LBSs are dependent on the

tracking of continuously varying positions of a large set of mobile users, which are also

called mobile objects or clients. In this thesis, we consider three spatial queries based on

three related LBSs.

First, given a road network, a group of moving objects together with their friendships,

and a network distance threshold for each pair of friends, the problem of proximity detec-

tion in road networks is to find friend pairs whose network distance is within the threshold.

The problem of proximity detection is often encountered in massively multiplayer virtual

games and friend-locator applications. Because of the limited battery power and band-

width, we need a solution which incurs low communication cost. Hence, the primary

goal of this problem is to reduce the total communication cost. However, most existing

proximity detection solutions focus on the Euclidean space which cannot be used in road

network space and the solutions for road networks incur substantial communication costs.

Motivated by this, we propose two types of solutions to the proximity detection problem

in road networks. In the first type of solution, each mobile client is assigned a mobile

region of a fixed size. We design algorithms with a fixed radius for the server and client

respectively, with the purpose of reducing unnecessary probing messages and updating

messages. Second, we present a self-adjustment strategy to automatically adjust the size

of the mobile region for the purpose of minimizing the communication cost. Experiments

show that our second type of solution works efficiently and robustly with a much lower

communication cost with respect to various parameters. In addition, we propose server-

side computational cost optimization techniques to reduce the total computational cost.

Second, points of interest (POI) recommendation with real-world applications is an-

other research issue that has attracted researchers’ much attention. Given a set of moving

users, i.e., moving objects, and their historical GPS trajectories, the POI recommenda-

tion problem is to recommend semantic POIs, based on the GPS trajectories of the user-

s. We first develop a novel algorithm, namely, SEM-DTBJ-Cluster, which stands for

xv



semantics-enhanced density-based clustering, for extracting semantic points of interest

from GPS trajectories. We subsequently take three different factors (popularity, tempo-

ral influence and geographical influence) into consideration, and describe the impacts of

popularity, temporal and geographical information, by deriving three different scoring

functions based on three recommendation models. We finally combine the three scoring

functions together and obtain a unified framework PTG-Recommend for recommending

candidate POIs to a moving user. Our work is the first that considers the influence of

popularity, the influence of temporal features, and the influence of geographical features

of a POI together. Results of experiments on two GPS trajectory datasets not only prove

the effectiveness of our framework, but also show that it performs better than the baseline

POI recommendation methods with regard to precision and recall.

Third, route queries are important problems that find applications in many location-

based services. Considerable existing studies address routing problems in static road

networks. However, the travel costs on edges in road networks always change over time.

Such road networks are referred as time-dependent road networks. Most existing studies

on time-dependent road networks focus on simply finding a shortest path with the min-

imum travel time without considering waiting at some nodes, or fuel consumption and

toll fee. In fact, waiting at a node is likely to happen and one edge can be traversed at

different speeds. Additionally, traveling along a route consumes both fuels and toll fee. In

many cases, an optimal route is the minimum-cost route under time and speed constraints.

Motivated by this, we study the Cost-Optimal routing problem in Time-dEpendent Road

networks with time and speed constraints, denoted as COTER for short, where the travel

cost of a route is composed of fuel cost and toll fees. We utilize two fuel consump-

tion models and compute the minimum fuel consumption of an edge under the constraint

that the travel time on this edge is exactly the given time, for helping users determine

optimal speeds on each edge. We allow the toll fee to be an arbitrary single-valued time-

dependent function of the departure time for each edge. We define a time-dependent

OC function (Optimal Cost function) for each node ni, and derive the recurrence relation

formula between ni’s incoming neighbors’ OC-functions and ni’s OC-function. We pro-

xvi



pose a five-step approximate algorithm, namely, ALG-COTER, which answers COTER

using optimized single-source shortest-path algorithm, topological sorting, dynamic pro-

gramming, nonlinear programming and backtrack algorithms. Experimental results show

that our algorithm answers COTER queries efficiently and our algorithm is scalable with
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Chapter 1

Introduction

In this chapter, we first present the background of location-based services (LBSs). We

subsequently present the architecture and the relation among three LBSs-based spatial

queries. Then, we present the motivations, problem statements, objectives and outlines of

proposed approaches, of these three spatial queries. Finally we outline the contributions

and organization of this thesis.

1.1 Background: Location-Based Services

Location-based Services (LBSs) refer to services that provide location-based information

to mobile users. They are dependent on positional information associated with the mobile

users. They might also depend on other factors, e.g., users’ interests or preferences [28].

LBSs take the geographical positions of the moving objects into account, for creating,

compiling, combining, filtering or selecting information to users. Location information

transmitted to a user refers to his own position, and that is why most LBSs are regarded

as self-referencing services.

LBSs offer customized information by considering mobile users’ locations. LBSs

are so appealing that they motivate the development of numerous applications, such as

location-aware services (e.g., proximity detection), tracking services (e.g., tracking peo-

ple of importance, or vehicles), finder services (e.g., locating points of interest like muse-

ums or auditorium), navigation services (e.g., location-dependent yellow pages, or digital

travel assistants), and emergency services (e.g., roadside assistance) [59].
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An LBS may inform its users of a traffic jam which might affect many users. A user

might be informed of the current whereabouts of his/her friends. Some other LBSs may

trace the positions of public transport, hazardous materials, security personnel, police

cars, or emergency vehicles. The “catch the monster” game, which is a typical example

of more developed LBSs, may allow a set of users to work together, for the purpose of

surrounding and catching a geo-positioned monster in the virtual world. Other LBSs may

provide mobile users with useful information, e.g., to find an appropriate route in road

networks.

1.2 Three LBSs-Based Spatial Queries

1.2.1 The Client-Server Architecture for Three Queries

Location
Update

POI 
Recommendation

GPS points

POIs
GPS

User 2
GPS

User 1
GPSGPS

Location-Based Services

Location
Update

Proximity 
Detection

Road    Network

Route
Query

Optimal
Route 

GPS 
trajectories

Server

1 3 2

Figure 1.1: Three LBSs-based spatial queries. (The brown flow, blue flow, and green flow
represent (1) the proximity detection problem, (2) the POI recommendation problem, and
(3) the optimal routing problem, respectively.)

As shown in Fig. 1.1, three LBSs-based spatial queries are depicted. The first spa-

tial query problem is proximity detection in road network. User 1 and User 2 send their

location update messages to the central server. The server detects whether they are in
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proximity or not. The second spatial query problem is points of interest recommenda-

tion. The server clusters GPS points into semantic POIs, and recommends POIs to a user

according to a certain recommendation method. The third spatial query problem is op-

timal route query. The user wants to find an optimal route and the server computes a

cost-optimal route for this user and returns the optimal route to him.

1.2.2 The Relations between Three Spatial Queries

The three spatial query problems are all based on location-based services. For each of

these three problems, the user sends queries to the server while the server solves the

queries and finally replies the user with the query results.

In addition, all these three spatial queries find plenty of applications in both the real

world and computer games. For instance, proximity detection is useful for real-world

traffic safety; and in some computer games such as the Counter-Strike game, a soldier

should be always aware of his friend who is in proximity with him. Take the second spatial

query for another example, a traveller may prefer those POIs that are recommended by

a POI recommendation system; and it is also possible that an interesting computer game

uses some POI recommendation technique to advise a virtual user to visit some POIs. For

the third spatial query, optimal route query, no matter in our real-world road networks or

the virtual road networks in some computer games, it is very common that a driver queries

an optimal route which consumes the least total cost from a source to a destination.

Moreover, all these three spatial queries are based on network graphs. The first and

the third spatial queries are based on road network graphs, while the second spatial query

is based on a POI network graph if we regard each POI as a node and connect two POIs

using an edge.

To evaluate the performance of our approaches to these three queries, we use sev-

eral road network datasets and GPS trajectory datasets. The method for detecting the

proximity relations among mobile users for the first spatial query, can also be used to

solve the second query, e.g., judging whether two users have similar geographical/region-

al preferences if one user always checks in stay points which are in proximity with those
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stay points checked in by the second user. As the first spatial query and the third spatial

query are both based on road network graphs, we can use similar road network datasets

to evaluate the performances of our solutions to these two queries.

1.3 Proximity Detection in Road Networks

In this section, we present the first LBS related spatial query problem, i.e., proximity

detection in road networks.

1.3.1 Background

Proximity detection is an important advanced LBS function. The function of proximity

detection is an LBS which automatically and continuously detects whether two users in-

side a set of moving users approach each other towards a pre-defined proximity distance.

In Euclidean space, the definition of the proximity detection problem is as below. Given

a group of moving objects, a social network Gs describing their friendship, as well as

an Euclidean distance threshold εi,j per friend pair, the server reports whether each pair

〈ui, uj〉 that satisfies two conditions: (i) the objects ui and uj are neighbors in Gs, and

(ii) dist(ui, uj) which denotes the Euclidean distance between ui and uj is at most εi,j .

Representative applications include child tracking, dating services, fleet management and

logistics, mobile gaming, and instant messaging, etc. In addition, proximity detection

is the foundation of higher-level queries, e.g., cluster detection or convoy query, which

checks whether over two users stay close by and is the generalization of the proximity

detection query.

1.3.2 Motivation

For a person who is walking on a road, does the distance between him and each of his

friends exceed a certain threshold? For a car which is running on a road, how to check

whether the car and any other car are too close to avoid collision? The questions above

are proximity detection queries in road networks.
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The proximity detection query associated to moving objects finds popular applications

in either the real or the virtual world. Most applications of GIS (Geographic Information

System) like traffic mining tasks, traffic network monitoring, and routing applications,

require efficient support of proximity queries in large road networks.

Generally, a moving object equipped with a GPS transmitter in a road network can

record its geo-positions and the moving objects may have communications with each

other or the server, for example, through mobile phones. There are two communication

models in general. Many existing studies adopt the client-server model whereas some

others use the distributed architecture. In a centralized client-server architecture, the s-

tationary central server can monitor the traffic. A key point for proximity detection is

to figure out at each time stamp whether each pair of friends are close by. This can be

computed by the central server. The server can probe the objects regarding their exact

positions and the moving objects can update their locations to the central server. This is

called communications between the server and each client. In a distributed architecture,

the mobile clients communicate with each other directly, and judge whether they are in

proximity. No matter which architecture we adopt, the most important optimization goal

is to reduce the communication cost, because of limited bandwidth and battery power on

clients’ mobile devices.

Therefore, the challenge is how to cut down the quantity of messages exchanged,

between the server and clients under the client-server architecture. If there are a lot of up-

date or probing messages, the communication cost will be definitely high. At the server

side, the server periodically checks whether the distance between each pair of friends is

within proximity. It is obvious that the probing cost will be definitely high if the server

probes each client which has not reported his locations regularly. Therefore it is impera-

tive to prune unnecessary probing messages. At the client side, a straightforward update

strategy is immediate update, which means the clients report their new positions to the

central server every time they move to new locations. Another simple update strategy

is periodic update, which means the client periodically updates his location. The above

mentioned two strategies are straightforward but too naive as lots of update messages will
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be incurred. Therefore we must develop an efficient update method for the purpose of

reducing the update cost.

Most existing solutions to the problem of proximity detection concentrate on Eu-

clidean space. These solutions include distributed solutions like the strips algorithm [5],

and centralized solutions like the self-tuning policies applied in Euclidean space pro-

posed by [134]. There are several existing proximity detection strategies based on sev-

eral update methods. These update methods include immediate update, periodic update,

distance-based update and zone-based update and so on. As proximity detection can find

many an application in road networks, it is essential to develop proximity solutions in

road networks. There are only a few existing solutions addressing the proximity detection

problem in road networks. In addition, before our work, there are no automatic tuning

techniques for optimizing the communication cost in road networks.

To speed up k-nearest neighbor (k-NN) and distance-range queries, a network graph

embedding technique is proposed in [67]. However, they do not provide any solution for

the query of proximity detection. A region-based (zone-based) update strategy to monitor

proximity continuously in road networks is proposed in [68]. However, their method is

different from ours and they also do not propose self-tuning strategies. Therefore, the

demand of developing self-tuning policies to minimize the communication cost for the

proximity detection query becomes critical.

1.3.3 Problem Statement

Analogous to the definition of the proximity detection problem in Euclidean space, the

definition of the proximity detection query in road networks is as follows: Given a group

U of mobile objects, a network graph Gs which describes their friendship, a road network

G that all the mobile users move along, and a network distance threshold εi,j per friend

pair, the server needs to report each friend pair 〈ui, uj〉 that satisfies the condition that the

network distance dist(ui, uj) between this friend pair is at most εi,j .
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1.3.4 Objectives and Outlines of Proposed Approaches

For the proximity detection query, our objective is to develop efficient solutions that can

be used to answer the proximity detection query in road networks so that the communica-

tion cost of the solution is largely reduced.

To achieve this objective, we propose the following approaches.

1. We propose update and probing algorithms with fixed-radius mobile regions for the

clients and server in road networks. In a client-server architecture, clients need to

report to the server about their locations, speed and other movement parameters.

Meanwhile, the server needs to check periodically (e.g., each period equals ∆T )

whether these moving objects are within proximity. The server also probes the

objects regarding their locations. A simple and direct strategy is that the clients

send update messages to the server every ∆T time or the server probes the clients

whenever they fail to provide update. This is simple and direct but inefficient in that

it will lead to high communication cost. As a result, we propose a mobile region

based update approach in which a client will not report his current location to the

server as long as he has not moved outside his mobile region, to save the update

cost. We also propose three lemmas that prune unnecessary probing messages that

are sent by the server by making use of the lower bound and upper bound of the

network distance between the mobile regions of two clients, with the purpose of

reducing the probing cost.

2. We propose a self-tuning policy to further reduce the total communication cost.

We have designed algorithms for the clients and server respectively as mentioned

in the first approach. However, with fixed-radius mobile regions, a small radius

induces a large update cost while a large radius induces a large probing cost and

therefore, there must be such a radius that minimizes the total cost. In order to

minimize the communication cost more automatically, we subsequently propose a

self-tuning policy which can automatically adjust the radius of each mobile region,

by performing expansion and contraction, to reduce the update and probing costs,
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respectively.

1.4 Points of Interest Recommendation From GPS Tra-

jectories

In this section, we present the second LBS related spatial query problem, i.e., points of

interest recommendation from GPS trajectories.

1.4.1 Background

The pervasiveness of mobile devices and LBSs is leading to an increasing volume of

mobility data [89]. Recently the success of location-aware mobile devices and location-

aware applications has fueled more LBSs. During the past few decades, there is a sub-

stantial increase in the number of mobile devices together with the utilization of wire-

less communication, such as GPRS, WI-FI, and Bluetooth. These devices are usually

equipped with position sensors with GPS (Global Positioning Systems), which can pre-

cisely figure out the locations of the devices. For instance, GPS-enabled devices record

their latitude-longitude positions and transfer these trajectory records to a central serv-

er. With these devices, individuals are able to acquire their current locations, discover

personal important places close to them and plan convenient routes to a destination. The

ubiquity of such pervasive technologies results in increasing availability of a huge amount

of GPS trajectory data ([89]). For example, many users like recording their open-air ac-

tivities to form GPS trajectories, for life logging, movement analysis, travel experience

sharing, or multimedia content management, etc. Meantime, with forums or Websites

appearing on the Internet, people can establish geo-related Web communities. After their

GPS logs are uploaded to the communities, people can visualize and manage their GPS

trajectories on a Web map. By sharing the GPS logs among each other, people are also

able to gain reference information from other people’s travel trajectories. For example, a

user can find from other users’ travel trajectories some appealing places, and thus, design

a fulfilled trip for himself.
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It is straightforward that people have larger probability of enjoying high-quality travel

experience while saving more time for location discovery, if they are given the recommen-

dation suggestions of the interesting places or say, points of interest and travel sequences

around them. A point of interest (POI) refers to a concentrated geographic location, e.g.,

a landmark, a museum, a building, or a restaurant .

1.4.2 Motivation

A majority of existing systems for POI recommendations, such as travel booking Websites

[98] focus recommending POIs based on the set of POIs which are given, instead of

based on raw GPS trajectories. However, a huge number of GPS trajectories have been

accumulating continuously in Web communities, due to the pervasiveness of the GPS-

enabled devices. Therefore POI recommendation from GPS trajectoies has significant

meanings for the research field of POI recommendation.

It is notable that many LBSs still use raw GPS data directly, like time stamps and

coordinates, without enough semantic information. Therefore, such LBSs cannot pro-

vide much support when giving users suggestions on geographical locations. Thus, we

need to design a framework to give users efficient recommendation on POIs, from GPS

trajectories.

Many researches on data mining have studied the problem of recommending a lo-

cation which a user might make as his next destination. There are works on location

identification and recommendation from numerous users’ GPS trajectories during a long

period. Zheng et al. [143] take the lead in the area of mining and ranking locations from

GPS data. In [142], they extract interesting travel sequences and locations, which we can

recommend to many users.

In [129], Ye et al. address the problem which is most closely relevant to our work.

They adapt the CF (collaborative filtering) model for POI recommendations, to gain an

improvement of the recommendation accuracy. They model the spacial influence by using

a CF based Bayesian method. However, their assumptions and techniques are significantly

different from our work. In addition, our framework is the first one that tackles POI
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recommendation queries by combining popularity, temporal, and geographical influences.

1.4.3 Problem Statement

The POI recommendation query is defined as below. Given a group U of moving users,

and their GPS trajectories Traj, our objective is to recommend semantic POIs l to a user,

based on users’ trajectory patterns, by utilizing the influence of popularities of POIs, the

influence of the temporal features of POIs, and the influence of the geographical features

of POIs.

1.4.4 Objectives and Proposed Approaches

For POI recommendation query, we take not only the temporal influence into consider-

ation, but also the semantics along with the geographical influence into account. Our

objective is to extract semantic POIs from GPS trajectories and develop a unified solution

that combines the popularity, temporal and geographic influences together to answer the

POI recommendation query for each mobile user.

To achieve this objective, we propose the following approaches.

1. We propose a semantics-enhanced clustering algorithm, SEM-DTBJ-Cluster, aim-

ing at extracting semantic POIs from GPS trajectories.

2. We analyze the popularity influence, temporal influence as well as geographical in-

fluence from historical GPS trajectories, and derive three scoring functions based

on these three kinds of influences. We then propose a novel unified POI recommen-

dation framework, PTG-Recommend, which combines the three scoring functions

into one combinatorial scoring function, by which, the unified recommendation s-

core for each POI can be computed.

3. We carry out experiments on two GPS trajectory datasets, aiming at evaluating

the performance of our recommendation method PTG-Recommend, with regard to

precision and recall.
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1.5 Cost-Optimal Route Queries in Time-Dependent Road

Networks

This section presents the third LBS related spatial query problem, i.e., cost-optimal route

query in time-dependent road networks.

1.5.1 Background

The past decades have witnessed a great many studies in the area of routing in static

road networks ([30, 32, 13]). In navigation applications, a foremost query is to find such

possible routes along which a user travels from the current point to the target point with

the smallest expected cost. A widely adopted metric for evaluating cost is the shortest

network distance between the source and target. Although the classic Dijkstra’s algorithm

performs well on small graphs, it does not scale well to large graphs. Therefore, more

efficient techniques such as [85, 22, 6, 112, 35] have been proposed. These speedup

techniques can calculate shortest network distances much faster than Dijkstra’s algorithm,

even by several orders of magnitude.

Because of weather conditions or traffic jams, road networks are dynamic or time-

dependent rather than static. Hence, developing efficient route planning algorithms for

time-dependent road networks has become researchers’ focus. The smallest cost of a

route is greatly dependent upon the departure time. For example, people might change

their planned routes to avoid highways during rush hours.

1.5.2 Motivation

Road networks are time-dependent which means edge weights might change over time [34].

It turns out that switching to a time-dependent scenario from a static one is much more

challenging. The size of input increases significantly since edge weights on time-dependent

road networks often change in different time periods of one day. Further, edge weights

are not limited to the length of the edge but extended to toll fee, energy cost, and travel

time of an edge. Taking energy consumption into account is a means of saving money and
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reducing carbon dioxide emissions. In the study of [118], a model based on VSP (vehicle

specific power) is developed to calculate vehicle fuel consumption. [109] utilizes the real-

world vehicle operation and emission data to establish a set of fuel consumption models,

based on the influences of several driving parameters on emissions and fuel consumption.

For the sake of saving energy resources and environmental protection ([112]), users might

want to find a route with minimum consumption of fuels. Therefore, it is crucial to devel-

op energy-efficient routing algorithms in time-aware road networks based on these energy

consumption models. Meanwhile, toll fee of a road is also time-dependent. For example,

according to [74], there are “London congestion charge” and “Road pricing policy” to

reduce traffic congestion and control traffic pollution in UK. The vehicles are charged if

they pass through the major roads in rush hours. Similar policies are also applied in Sin-

gapore [128]. This results in the variation of the toll fee of a road in different hours of a

day, which shows the toll fee is time-dependent. Moreover, there are research works that

study the pricing mechanism for the time-dependent toll fee ([78]). Another commonly

considered metric is the travel time since people certainly prefer a route which takes ac-

ceptable time to travel. It is worth noting that vehicles usually have different speeds when

running along a road during different time periods of a day. The maximum speed allowed

on one road segment is time-dependent. For example, the speed is low in rush hours.

Consider a user who would like to have an appointment with his friends. He might

pose such a query:“ Find a route r from my home to the destination, so that if I depart at

or after 8:00 a.m., I can arrive at the rendezvous before or at 9:00 a.m. Meanwhile, the

total cost which includes fuel cost and toll fees can be minimized.” In this example, there

are three kinds of weights for every road, travel time, fuel cost, and toll fee, which are

all time-dependent. This example query has one hard constraint: a budget (travel time)

constraint that the route should satisfy. This query attempts to discover the optimal route

under this constraint, such that the route has an optimal objective score (e.g., the fuel cost

plus toll fee on the route). In the example query, it is likely that the minimum-cost route

takes more than 1 hour’s travel time. Furthermore, cost-optimal routes are dependent on

the departure time. Users might change their planned routes to avoid highways during

12



1.5. Cost-Optimal Route Queries in Time-Dependent Road Networks

rush hours. It is also likely that there may be several candidate routes satisfying the time

constraint from the source to the destination. Hence, users want to find an optimal route

which has the minimum cost among all candidate routes satisfying the time constraint. In

other words, a route searching system should be able to balance the tradeoff between the

time budget constraint and the objective score.

1.5.3 Problem Statement

We define the aforementioned type of queries as a Cost-Optimal Time-dEpendent Routing

problem, which is denoted as COTER. Given a time-dependent road networkGT , a source

ns, a destination ne, an earliest departure time stamp td from ns, and a latest arrival time

stamp ta at ne (which also indicates there is a travel time constraint that the total travel

time plus waiting time should be less than ∆ = ta−td), find an optimal (most economical)

route R from ns to ne, satisfying the following three conditions: (i) waiting at a node is

allowed and if departing from ns after time td, one can arrive at ne before time ta along

route R; (ii) the speeds on each edge e ∈ R satisfy the time-dependent maximum speed

constraints; and (iii) route R has the minimum cost (fuel cost plus toll fees) among all the

routes satisfying both condition (i) and (ii). To our best knowledge, none of the existing

solutions to route queries or path planning are applicable for COTER. Therefore, our

problem and solutions are novel.

1.5.4 Objectives and Proposed Approaches

The objective of COTER is to find the optimal route R which has the minimum cost

among all the routes from source ns to destination ne under the travel time constraint in

the given time-dependent road network.

To achieve our objectives, we propose approaches as follows.

• We propose a novel problem, namely, COTER, i.e., Cost-Optimal Time-dEpendent

Routing under time and speed constraints, which allows waiting at some nodes.

• We compute the minimum fuel cost of an edge when the travel time of this edge is
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given, via nonlinear programming. We allow the toll fee of each road segment to be

an arbitrary single-valued function of the departure time. We measure the cost of a

route by the sum of fuel cost and toll fees.

• We define an OC (Optimal Cost) function opti(t) for each candidate node ni. We

derive the recurrence relation formula between the OC-functions of the incoming

neighbors of ni and the OC-function of ni.

• We propose a five-step approximate algorithm, namely, ALG-COTER, to solve

COTER, by using Fibonacci-heap optimized Dijkstra’s algorithm, topological sort-

ing, dynamic programming, minimum heap optimization, nonlinear optimization,

and backtracking algorithms. We also analyze the time complexity of ALG-COTER.

• We carry out experiments on three real-world road network datasets, to evaluate the

efficiency, sensitivity, and scalability of our ALG-COTER algorithm, by exploring

the influences of different parameters on running time.

1.6 Summary of Contributions

In this thesis, three LBSs related spatial query problems are addressed. We summarize

the contributions of this thesis in the following outline.

First, we introduce the problem of proximity detection in road networks. We propose

two types of solutions based on the client-server architecture to answer the query of prox-

imity detection in road networks. In the first kind of solution, the mobile region for each

moving client has a fixed radius. Unless a client moves beyond its mobile region, he has

no need to update his location to the server. Additionally, we propose three lemmas for

the purpose of reducing the probing cost at the server side. We design the second kind

of solution RRMD along with RMDRN and CMDRN methods, by making use of a self-

adjustment policy which tunes the radius of the mobile region automatically, so that the

total communication cost can be minimized. Experimental results demonstrate that our

self-adjustment method can reduce communication cost to a large extent, and is robust
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and scalable to various parameters. Moreover, we also use some optimization methods to

diminish the server-side computational cost.

Second, we propose a new POI recommendation query, aiming at recommending

popularity-temporal-geographical specific POIs for users from GPS data. We propose

a novel semantics-enhanced density-based clustering algorithm, namely, SEM-DTBJ-

Cluster, to cluster stay points and extract semantic POIs from stay points. We analyze the

popularity influence, temporal influence, and geographical influence from users’ histori-

cal GPS trajectories, and combine the three scoring functions based on these three kind-

s of influences, to obtain a unified framework, namely, PTG-Recommend (Popularity-

Temporal-Geographical-Recommend). Experimental results show that our PTG-Recommend

framework can recommend POIs to users with higher accuracy and recall than baseline

recommendation methods.

Third, we study the cost-optimal time-dependent route query in road networks. In our

setting, we allow waiting at some nodes. By taking time-dependent maximum speed and

travel time constraints into account, we utilize two polynomial fuel consumption models

and allow an arbitrary toll fee function of the departure time for each edge in a time-

dependent road network. We define the OC (Optimal-Cost) function for each node and

derive the recurrence relation between the OC function of a node and the OC functions

of its incoming neighbors. We subsequently propose an approximate algorithm, namely,

ALG-COTER, that can efficiently address this time-aware routing problem. The ALG-

COTER finds the optimal route by utilizing the optimized Dijkstra’s algorithm, the topo-

logical sorting algorithm, as well as dynamic programming, nonlinear programming, and

backtracking techniques. We also analyze the time complexity of our ALG-COTER algo-

rithm. Experiments demonstrate that our proposed algorithms are efficient and scalable

to different parameters which have influences on the running time.

1.7 Thesis Organization

The structure of this thesis is arranged as follows. The context of related work on LBSs

and existing proximity detection techniques as well as existing studies on POI recom-
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mendation, and existing works on route queries are reviewed in Chapter 2. Two types of

proximity detection solutions in road networks are proposed in Chapter 3. A novel rec-

ommendation method, namely, PTG-Recommend is presented in Chapter 4, which takes

into consideration three different factors that influence the recommendation score of a

POI. Chapter 5 deals with cost-optimal route queries with time and speed constraints in

time-dependent road networks. We take time-dependent maximum speed constraint and

the travel time constraint, the fuel consumption cost, as well as the toll fee cost into con-

sideration and propose an ALG-COTER algorithm to answer the time-dependent route

queries in road networks. Finally, conclusions and ideas for prospective future work are

summarized in Chapter 6.
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Chapter 2

Literature Review

In this chapter, we first present existing works on Location-based Services and continuous

spatial query processing. We subsequently review the related literature on three different

LBSs based spatial query problems which are proximity detection problem in road net-

works, point of interest recommendation problem, and cost-optimal routing problem in

time-dependent road networks, respectively.

2.1 Location-Based Services

This section presents related work on LBSs and the LBS position management frame-

work.

2.1.1 Related Work on LBSs

The advancement of mobile devices and the improvement of continuous positioning sys-

tems have fueled location-based services [103, 71]. In many cases, LBSs are regarded as

reactive services [117], which means location information is transmitted to the user only

on demands.

Several recent studies identify LBSs as critical research topics. An architecture to

support flexible LBSs while maintaining users’ location privacy is proposed in [113]. In

this architecture, users’ location information is allowed to be shared at different levels of

granularity and with different levels of user control. A cost-effective recommender sys-

tem is developed in [97] for taxi drivers, with the design goal of maximizing their profits
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when following the recommended routes for finding passengers. The problem of learning

spatial density models and focusing specifically on individual-level data is addressed in

[79]. A citywide and real-time model for estimating the travel time of any path (represent-

ed as a sequence of consecutive road segments) in real time in a city is proposed in [120].

It is based on GPS trajectories of vehicles received in current time slots and over a period

of history as well as map data sources. A large human mobility database (GPS records

of 1.6 million users over one year) and several different datasets to capture and analyze

human emergency behavior and their mobility after the Great East Japan Earthquake and

Fukushima nuclear accident are built up in [108]. They also develop a model of human

behavior that takes into account these factors, for accurately predicting human emergency

behavior and their mobility following a large-scale disaster. Based on users’ daily com-

munication patterns, the work [40] automatically infers users’ demographics by making

use of the power of big data, on a real-world large mobile network which contains over 1

billion communication records (CALL and SMS) and over 7 million users.

2.1.2 LBS Position Management

Range 
queries

Proximity
Detection

CNN 
queries

Clustering

Distance 
based 

update Polling 
based 

update

Periodic 
update

Route 
queries

Low-level position management

High-level position management

Figure 2.1: LBS position management framework.

The LBS position management framework in [72] is constructed for processing and
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collecting positions of multiple clients efficiently. The framework supplies a collection

of basic blocks. A wide range of LBS applications applying these basic blocks so that

demands of accuracy and up-to-dateness on positions can be satisfied. As depicted in

Fig. 2.1, the framework is adapted, in order to be used in conjunction with terminal-based

positioning methods and a collection server.

The framework is organized between two layers which represent terminal-based posi-

tioning methods (inside the light blue circles) and the LBS applications (inside the orange

circles), respectively. The framework is partitioned into high-level and low-level function-

s. The high-level functions are widely studied in recent years. For example, in [26], the

authors propose a UNICONS algorithm for NN queries and CNN queries performed on a

network. Proximity detection is another widely studied and applied high-level function,

see [5, 64] for example. Some other researchers propose proximity detection methods

for medical applications [100]. The low-level functions layer is based on position update

methods and supplies distinct methods for position exchanges between the server and

a client. The position update methods include polling, periodic update, distance-based

update, zone (region) based update, dead reckoning, trajectory updates and query-based

updates [75, 72, 117], and so on.

It is desirable to minimize the number of messages induced by the methods while

satisfying the requirements of the LBS applications or high-level functions. As a result,

different position update methods are adapted and applied on demands.

2.2 Continuous Spatial Query Processing

The past few decades have witnessed a broad study of spatial database, which leads to the

development of a huge number of multi-dimensional indices and query processing algo-

rithms [101]. Because of the simplicity and efficiency of R-trees [52, 105, 14], they have

become the most widely used indices to process Euclidean queries. For range queries, Q-

index [96] utilizes an R-tree to index the ranges. [47] and [19] relieve the burden of the

server by utilizing the computing power of the objects. For approximate k-NN queries,

[66] proposes a general scheme to reduce information while still answering the ekNN
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problem with some error bound, and proposes a technique called DISC (aDaptive Index-

ing on Streams by space-filling Curves) to facilitate efficient maintenance of K (a user

specified constant) points in each cell. For exact k-NN monitoring, at least three methods

in the Euclidean space exist: CPM [91], SEA-CNN [125] and YPK-CNN [135]. For prox-

imity queries, [5] proposes a distributed solution called “strips algorithm” in Euclidean

space and [134] presents a centralized FMD model together with two self-tuning policies

in Euclidean space.

Instant monitoring and predictive evaluation are two categories of server-side contin-

uous spatial query processing methods [134]. On the basis of the unpredictable future

locations of queries and objects, instant monitoring is utilized by [91] and [88] to main-

tain the query results up to date. In a client-server architecture, the server refreshes the

results periodically (every ∆T time units), based on update messages sent from the mobile

clients. In the instant monitoring category, two representative solutions are CPM [91] and

SINA [88] which can efficiently maintain the results of k-NN queries and range queries,

respectively, by utilizing a spatial partitioning grid. Predictive evaluation [61, 140] pre-

dicts the query results from present to future by modeling clients’ prospective locations

through linear functions. The server recalculates the future query results corresponding

to an object according to the update message sent by the object when the motion function

of the object changes. In [61], the authors check temporal events that result in prospec-

tive results updates, and develop approaches for maintaining the results of k-NN queries

and spatial join queries. All the works above focus on reducing computational cost rather

than the expense caused by communication between moving objects and the server. In

addition, algorithms of [61, 140] ignore friend pairs and disallow personalized threshold

εi,j .

For the purpose of minimizing the communication cost, the idea of safe region has

been extensively explored. The safe region SR(p) of a client p for static (range or k-NN)

queries on moving clients [17, 57, 90], is a zone within which it is guaranteed that the

query results are the same. For a query point q, the safe region SR(q) for moving queries

on static clients [94, 139], is a zone within which it is guaranteed that the query results
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remain the same. [5] proposes a distributed solution where mobile users communicate

with one another and a safe region is set up for each friend pair.

In many real-world settings, the mobile clients or queries are usually restricted by

a transportation network [92]. However, existing works seldom process queries in road

networks. In [95], the authors propose a model which combines Euclidean and network

information, and develops a framework that can be performed to the most popular queries

successfully. In [26], the authors present an approach called UNICONS to answer the

CNN query in road networks. In [92], the authors propose two algorithms that can deal

with freeform objects and query moving patterns in a road network. In [24], the SQUARE

algorithm is proposed, to construct the network in a way similar to that used in decoupling

models, and exploit the coupling idea to maintain the k-NN information relative to areas

with frequent queries in the past history.

2.3 Proximity Detection Query

Proximity detection among mobile objects is a well-known problem in the LBS commu-

nity in recent years. Related work on proximity detection is part of research in the field of

LBSs on moving clients (see [2] and [65] for example). There are plenty of research work-

s proposing algorithms for proximity queries. For example, in [93], the authors develop

methods for proximity and some other queries in spatial databases.

As one of our spatial query problems is proximity detection in road networks, we

present different communication models and existing solutions for proximity detection in

road networks in the remainder of this section.

2.3.1 Communication Models in Road Networks

We differentiate between two commonly used communication architectures. One archi-

tecture is centralized client-server framework, and the other one is peer-to-peer (P2P )

framework.

In the client-server architecture, clients and the server communicate with each oth-

er through messages but no communication is allowed between different clients. At the
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client side, each user measures his location periodically (every ∆T time units). Several

motion parameters describing locations and predicted prospective movements are main-

tained at the client side. Clients are allowed to transfer their locations and other motion

parameters to a central server. At the server side, the server stores a bunch of users U , mo-

tion parameters, a friendship network G, together with a distance threshold εi,j for each

friend pair 〈ui, uj〉. The server has the task of keeping track of locations and friend lists

for each client, and is supposed to compute and send probing messages or notification

messages to each pair of friends.

In the peer-to-peer model [99], no server is involved. Instead, clients are supposed to

keep every friend of theirs updated about their locations. The clients will measure their

locations in each ∆T time epoch. Each user can update his up-to-date location to each

of his friends, or send a probing message to his friends. When the proximity condition is

satisfied, the two clients are notified by a proximity alert message.

Most of existing proximity detection methods either adopt the client-server model or

the P2P model. For example, [5] adopts distributed P2P architecture; whereas works

such as [117, 116, 126, 140, 61, 134] adopt the client-server architecture.

Studies like [110, 111] have proposed several other models such as mobile agents [111,

60], client/agent/server (c/a/s) [8], client/agent/agent/server (c/a/a/s) [102, 123, 9, 56],

mixed client and server [62].

2.3.2 Existing Solutions For Proximity Detection Query

Existing proximity detection methods assume that mobile objects are fitted with a cellular

mobile devices with GPS enabled either in a client-server [134] or P2P [5] architecture.

In a client-server architecture, the client transfers location-based information to a central

server; while in a P2P architecture, the client transfers its location information to another

client of interest.

As a result of the limited bandwidth and battery power of the clients’ mobile devices,

reducing the communication cost is one of the most important optimization goals [68]. A

straightforward update solution is that mobile clients send update messages periodically,
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for example, every second. This is simple but too inefficient. In most of existing works,

mobile objects are usually assigned with a region and thus a region (zone) based update

strategy is applied. As long as a user locates within the region, no update messages will

be triggered. At the same time, in a client-server architecture, the server needs to check

whether each pair of users is in proximity or not. Therefore a huge number of probing

messages will be caused. To address this problem, the filter-refinement step is applied at

the server side.

In [134], the authors adopt the client-server architecture and solve the proximity de-

tection problem in Euclidean space. In their setting, the server detects the friend pairs

whose Euclidean distance is within the proximity threshold.

However, in road networks, the problem of proximity detection should be redefined.

Only a few existing solutions resolve the proximity detection problem in road networks.

In addition, before our work, there are no automatic tuning techniques for optimizing the

communication cost in road networks. In [67], a network graph embedding technique for

speeding up distance-range and k-NN queries is proposed. However, the key issue in the

paper is distance-range and k-NN queries instead of the proximity detection. Therefore

they have not given any solutions for proximity detection. A more related work [68] pro-

poses a region-based (zone-based) update strategy for continuous proximity monitoring

in road networks. The key technique of this strategy is to maintain a separation region

as well as a proximity region for each client and when the client has not moved across

the boundary of his region, it is unnecessary to update the proximity/separation results.

However, it should be noticed that (i) this method is different from ours (see Chapter 3

for details) although this paper also uses region based update strategy, (ii) our algorithm

can deal with road networks with larger number of users, and (iii) they have not proposed

self-tuning strategies.

2.4 Points of Interest Recommendation Query

In this section, we first present existing clustering methods and traditional similarity mea-

sures which can be adopted when measuring the similarity of two POIs. Subsequently,
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we introduce related literature on location identification and recommendation. Finally we

review related works on temporal POI recommendation and geographical POI recommen-

dation.

2.4.1 Clustering Algorithms

For gathering POIs from GPS points, we usually perform a clustering algorithm. We

mainly introduce three types of clustering approaches: partitioning clustering, time-based

clustering, and density-based clustering [144].

2.4.1.1 Partitioning clustering

A typical partitioning clustering algorithm is the famous K-Means. Ashbrook and Starner

use K-Means to learn a client’s important locations from historical location data [7].

K-Means partitions the total points into K sets, so as to minimize the quadratic sum

of the distances from each point to its cluster centroid. K-means is simple and is rather

efficient. However, K-Means is sensitive to outliers as the final clustering results contain

all the points, even outliers or noise.

2.4.1.2 Time-based clustering

In [54], a time-based clustering method was developed to “extract places” by making use

of the continuous WI-FI positioning. Each time the distance between a new location and

the previous location is larger than a distance threshold d, and meanwhile the new location

spans a time threshold t, the method discovers a new place of interest.

This algorithm works on mobile devices in a new incremental way. However, this kind

of algorithms require continuously collecting location data with very subtle intervals, and

therefore much memory is consumed.

2.4.1.3 Density-based clustering

A density-based clustering algorithm named DJ-Cluster is designed by Zhou et al. to dis-

cover personally meaningful places [43]. DBSCAN [44, 87, 138] is another representative
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density-based algorithm. Generally speaking, this kind of algorithms have strong abilities

to deal with geographical characteristics, and therefore they are excellent candidates for

discovering places.

Density-based clustering can discover clusters of freeform shapes. It especially favors

clusters of symmetric shapes like circles or spheres. In addition, it is less probable for

noise and unusual points to take part in the final clustering results.

2.4.2 Similarity Measures

Given a set of POIs, we evaluate the similarity of different POIs when making POI rec-

ommendations. For example, if a user visits a POI Li frequently, then we can recommend

another POI Lj to him when the similarity between Li and Lj is high.

This section presents three different methods for measuring similarity, which are

similarity-by-count, Pearson similarity, and cosine similarity, respectively.

Similarity by Count. The similarity-by-count method is an intuitive method in that the

similarity of two clients is measured by counting the shared regions of the two clients.

On Layer i of the shared framework, we generate N = |Ci| (Cij ∈ Ci, 1 ≤ j ≤ N )

clusters. Suppose in cluster Ci, u1 and u2 have mj and m′j stay points, respectively, then

two vectors are expressed as follows.

U1 = {m1,m2, ...,mj}

U2 = {m1′ ,m2′ , ...,mj′}
(2.1)

The similarity by count is defined as Eq. 2.2.

simcount =
N∑
j=1

min (mj,mj′) (2.2)

Pearson Similarity. The metric Pearson similarity [77] varies from -1.0 to +1.0. It mea-

sures how highly two variables are correlated. A score of 1 means that these two variables

are perfectly correlated while a score of -1 indicates that these two variables are not cor-

related at all. The Pearson correlation score is a measurement of how well two variables

fit a line. In essence, this score computes the ratio between the standard deviation and
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the covariance of two objects. This score can be derived in the mathematical form as the

following equation:

simPearson =

∑
xy −

∑
x
∑
y

N√
(
∑
x2 − (

∑
x)2

N
)(
∑
y2 − (

∑
y)2

N
)

(2.3)

Here, N represents the number of properties. (x, y) denotes the data objects.

Cosine Similarity. Cosine similarity [50] is a widely applied metric to measure the sim-

ilarity of two vectors. Given vectors A and B, we can derive the cosine similarity cos(θ)

between them from the dot product.

simcos = cos θ =
A ·B
|A| ∗ |B|

=
A ·B√

(A)2
√

(B)2
(2.4)

Cosine similarity ranges from -1 to 1, where -1 means exactly opposite, 0 indicates orthog-

onality, 1 means exactly the same, and in-between values indicates intermediate similarity

or dissimilarity.

Specifically, the cosine similarity ranges from 0 to 1, when applying cosine similarity

on information retrieval. This is because the frequencies must be no smaller than 0, and

the angle between a pair of frequency vectors must be no larger than 90◦. Cosine similarity

is easy to compute and usually has a relatively accurate results. That is why researchers

often take cosine similarity as the similarity measure in the field of information retrieval.

For instance, we make use of cosine similarity to measure the similarities of two POIs,

for recommending POIs to users, which is detailed in Chapter 4.

2.4.3 Location Identification and Recommendation

During the past few decades, studies on location identification and recommendation have

appeared. [142] and [143] extract locations of interest and travel sequences based on

multiple users’ trajectories. However, they do not consider the semantics of locations

and temporal information of users’ GPS trajectories. Further, they use HITS algorithm,

which may cause improper weights to be assigned to links, as discussed in the work [21].

In [21], the authors design a framework to extract semantically significant and meaningful
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locations from GPS data. They rank semantic locations according to the significance

of the locations. However, they do not consider temporal effects. The most significant

difference of our work from the work reviewed above is that the work above does not

consider personalized information (e.g., visiting history of the user for whom we make

recommendations). Therefore, they will recommend the same set of locations for every

user. In contrast, our work aims to provide personalized recommendation by making use

of personal preferences. Hence our work reveals the periodic property of users’ regular

behavior and mines the semantics of a location.

[130] mines a novel Individual Life Pattern to form individual trajectory data. They

use this pattern for describing and modeling periodic behaviors of mobile clients. [16]

discovers more patterns of interest by using a layer of geographic semantic information.

[129] deals with the POI recommendation problem most closely relevant to ours. They

adapt the collaborative filtering (CF) model for POI recommendations, so that the recom-

mendation precision can be improved. They model the spatial influence by making use

of a Bayesian CF model-based algorithm. However, they have different assumptions and

significantly different techniques from our work since they emphasize the geographical

influence while we extract semantic POIs from GPS data, and consolidate all the popu-

larity, temporal, and geographical influences and propose a unified framework to address

this problem. Another related work that copes with POI recommendation problems is

time-aware POI recommendation ([137]). However, they focus on recommending POIs

from a set of POIs rather than from users’ GPS trajectories.

As far as we know, there are several works studying GPS trajectories but not for POI

recommendation. The authors of [133] mine user similarity from trajectories. One year

later, the same authors ([132]) study the geographical features and semantic features of

GPS trajectories for prediction of users’ movements. However, our work is intrinsically

different from these two works. Compared to their works, our framework studies the pop-

ularity and semantic, temporal, and geographical features of the extracted POIs whereas

their works only consider the geographical features and semantic features of the GPS tra-

jectories. In addition, note that the purpose of their works is to predict users’ movements
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whereas our work focuses on POI recommendation for multiple users. Therefore, our

work is the first one to recommend POIs to clients, by considering the semantics, popu-

larity, temporal and geographical features of POIs together, from the raw GPS trajectory

data.

2.4.4 Recommendation with Temporal Information

With the broad utilization of graphs ([124]), matrix factorization ([141]), and decision-tree

([146]), the last decades have witnessed many works on time-aware recommendation.

[124] considers the influence of people’s short-term and long-term preferences on

people’s behaviors. For the purpose of modeling the above two types of preferences, the

authors propose a graph STG, i.e., Session-based Temporal Graph. The nodes of an STG

graph fall in the following three categories: user, item, and session. They propose an

‘MS-IPF’ algorithm, which stands for Multi-Source Injected Preference on the basis of

the STG, for the purpose of propagating the preference from user and session nodes to

candidate item nodes. [38] suggests that current ratings play a more important role than

previous ones. In this way, the authors estimate similarities between items by decaying

the weights of older ratings.

However, these studies only considers the temporal influences of different POIs. They

do not take popularity or geographical information into consideration.

2.4.5 Recommendation with Geographical Information

A majority of POI recommendation works utilize the geographical influences. [25] uses

a matrix factorization model to exploit geographical information by a Gaussian mixture

model (GMM). [80] incorporates matrix factorization into a probabilistic model for POI

recommendation. [119] filters out those POIs which are far away from the target client

by utilizing the framework of personalized Pagerank. [73] also utilizes a model-based

approach to sample a POI on the basis of the geographical distance to historical POIs

checked-in by a client. [131] studies the different topics of different cities and an LDA-

based model is proposed for recommending POIs for a specified client in a given city.
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However, these studies only considers the geographical influences of different POIs.

They do not take popularity or temporal information into consideration.

2.5 Cost-Optimal Route Queries in Time-Dependent Road

Networks

This section reviews existing studies on route planning. We first present existing works on

traditional route planning problem, followed by routing problems in static road network-

s, traditional time-dependent routing problem, energy-efficient path planning, and other

works on path planning, respectively.

2.5.1 Traditional Route Planning Problem

Routing services have become ubiquitous in the past years. The algorithm community

has conducted a great amount of work regarding speedup-techniques to the original Di-

jkstra’s algorithm. For the purpose of accelerating the minimum-cost route calculation, a

HiTi (Hierarchical MulTi) graph model is established by [63], providing a novel method

for structuring a topographical road map hierarchically. Another speedup technique is

Contraction Hierarchies (CH) ([11] and [48]), which can conveniently balance the lever-

age between preprocess and query time. Multi-level techniques have been studied for

answering shortest-path queries by [55]. [83] works with OpenStreetMap (OSM) data

and provides users with real-time and exact shortest path on large networks with millions

of road segments. [76] also uses OSM data and proposes an approach to extract multi-lane

roads from urban road networks. [46] investigates shortest distance queries in outsourcing

graph and designs methods to save computational costs while satisfying security require-

ments. However, these works do not consider time-dependent cost or speed, and they also

do not consider travel time constraints.
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2.5.2 Route Planning in Static Road Networks

For route search in static road networks, [32, 35] propose Customizable Route Planning

(CRP). However, they do not consider time-aware scenarios. Geisberger and Vetter also

address routing problems in their paper [49], however, the setting is also in static road net-

works. The study [122] defines, investigates and discusses a model that can handle costs

of turns in route planning, but their setting is also restricted to static road networks. Based

on predefined waypoints, [27] proposes a real-time route-planning algorithm, which can

provide an optimal route and avoid static obstacles for one kind of autonomous vehicle.

However, it focus on the smoothness, safety cost and consistency of the path, whereas

in our work, we consider the total financial cost of a path, i.e., fuel cost plus toll fee. In

addition, their setting is in static road networks. [106] develops the Capacity Constrained

Route Planner (CCRP), which honors capacity constraints and is a generalization of short-

est path algorithms. [106] also proposes algorithms for exploiting the spatial structures of

road networks to speedup routing for large networks. However, their problem setting is

different from ours since they neither consider fuel consumption or toll fees, nor consider

the time constraint.

2.5.3 Traditional Time-Depenent Routing Problem

There exist some studies on time-dependent route planning ([104, 37, 23]). In [104], the

authors use graphs of multiple levels, for timetable information in train systems, but they

do not take energy consumption into account. [37] defines a time-dependent shortest-path

(TDSP) problem and proposes a solution to answer the LTT (least total travel time) query.

[23] corrects and extends a few state-of-the-art dynamic shortest-path-tree algorithms to

handle multiple edge weight updates. All these studies assume that the departure time of

a node ni is always the same as the arrival time of ni. However, this property does not

hold in our setting as we allow waiting at any node. Therefore, these solutions cannot

solve COTER.
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2.5.4 Energy-Efficient Path Planning

As mentioned in Chapter 1, when answering route queries for moving users, the key point

is to find a path that minimizes travel cost. Some studies consider the energy consumption

by a vehicle as the travel cost. For example, [115] and [36] focus on energy consumption

when planning routes in static road networks.

In [12], the authors consider the speed-energy tradeoff for electrical vehicles and use

multi-criteria optimization to obtain Pareto sets of routes that trade energy consumption

for speed. In [53], they not only make use of variation of the routes to save energy but

also allow variation of driving speed along the route to achieve energy savings. The two

works above aim to minimize energy consumption by considering speeds, but they do not

take time-dependent toll fee of an edge into account. In addition, the problems addressed

by these two works neither allow waiting at a node, nor have time constraints, e.g., the

departure time should be after td and the arrival time should be before ta.

2.5.5 Other Works on Path Planning

The study [70] considers multiple preferences such as driving time, distance, etc, to pro-

cess skyline queries in a static road network. The paper [20] defines the keyword-aware

optimal route query (KOR), with the aim of finding an optimal route covering all the

user-specified keywords, satisfying a specified budget constraint and inducing an optimal

objective score. But their setting is restricted to static road networks. The problem of

KSP (computing the top K-Shortest Paths in a network) as well as NSP (Near-Shortest

Paths problem), has a long history. For example, [85] studies KSP and NSP by propos-

ing algorithms which are faster than other algorithms in literature at that time by more

than one order of magnitude. [3] proposes a K∗ algorithm, for solving KSP in a directed

weighted graph. [41] proposes a “simplest” path algorithm and deduces that the length of

a simplest path is just 16% longer than that of the corresponding shortest path on average.

However, the problem setting and objectives of KSP or NSP are obviously different from

ours. [58] considers safety, costs and security when planning optimal routes for HAZ-

MATs (trucks that carry hazardous materials) in road networks, but this work does not
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have time constraint and has different problem setting from ours.

2.5.6 Comparison with Other Cost-Optimal Routing Problems

The most relevant studies, [18], [128], and [10] solve cost-optimal problems under travel

time constraints. Compared with the first two works ([18, 128]), they also allow waiting

at a node and use dynamic programming to calculate the optimal cost, However, (i) they

consider neither multiple costs, nor maximum speed constraints, and therefore the prob-

lem proposed in our work is novel; (ii) they either disallow waiting at any node or allow

waiting at all nodes, but we only allow waiting at some nodes and at other nodes waiting is

disallowed; (iii) our toll fee function could be any arbitrary single-valued function where-

as [128] only allows the toll fee to be a piecewise constant function; (iii) our approach

employs the technique of nonlinear programming optimization whereas [18, 128] do not;

(iv) our paper can compute the optimal cost faster than [128], since our algorithm first

computes the feasible arrival time interval and gains a topological sorting for the candi-

date nodes, which prunes much search space for recursively computing the optimal cost.

Compared with the third work ([10]), though [10] also adopts the technique of nonlinear

programming optimization, (i) it does not allow waiting at any node; (ii) it only considers

the total energy cost (fuel and electricity) and does not consider other kinds of cost, e.g.,

time-dependent toll fee, at all.
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Chapter 3

Proximity Detection in Road Networks

This chapter solves the problem of proximity detection in road networks. This chapter is

structured as follows. Section 3.1 discusses the problem setting of proximity detection,

and gives some definitions to model the road network. Section 3.2 proposes a fixed-

radius mobile detection solution to address this problem. Section 3.3 proposes a self-

adjustment solution to address this problem. Section 3.4 discusses methods for server-

side computational cost optimization. Section 3.5 presents the experimental results of our

methods. Finally, Section 3.6 concludes this chapter.

3.1 Definitions and Problem Setting

We first give some definitions to model road networks, and then present the problem

setting.

Definition 1 junction. A junction is an intersection of two or more different line seg-

ments. ♥

As shown in Fig. 3.1(a), J2, J5 are typical junctions, and J3, J6, J7, J8 are degenerated

junctions.

Definition 2 edge. An edge is a line segment between two adjacent junctions. ♥

As shown in Fig. 3.1(a), 〈J1, J2〉, 〈J1, J4〉, 〈J4, J5〉, 〈J2, J5〉, 〈J5, J6〉 are all edges.

Definition 3 road network. Let J = {junction}, E = {edge}, a road network G = (J ,

E). ♥

For example, Fig. 3.1(a) depicts a simple road network.

33



3.1. Definitions and Problem Setting

Definition 4 network point. A network point is a point on the edges of a road network.♥

For example, P1, Q1, P2, Q2, J2 and J6 in Fig. 3.1(a) are all network points.

Definition 5 network distance. Given two locations (network points) P , P ′ in the road

network, their network distance is given by

D(P, P ′) = min
a∈{s,t},
b∈{s′,t′}

(D(P, Ja) +D(Ja, Jb) +D(Jb, P
′)) (3.1)

♥

The network distance between two network points is equal to the shortest-path length

of the two points. For example, in Fig. 3.1(a), the Euclidean distance between P1 and Q1

is denoted as |P1Q1|, while the network distance between them is:

D(P1, Q1) = min
a∈{2,3},
b∈{5,6}

(D(P1, Ja) +D(ja, Jb) +D(Jb, Q1)).

Definition 6 line segment. A line segment is a segment between two network points on

the same edge. The first network point is the starting point and the second network point

is the ending point. ♥

As shown in Fig. 3.1(a), P1P2, Q1Q2 are line segments.

Definition 7 mobile region. A mobile region of a client is a line segment on one edge or

several line segments on several edges. More formally, a mobile region is a tree composed

of a sequence of line segments. The network distance from the root of this tree, to each of

its leaves is equal. We represent a mobile region of an object Om at time t by Rm(t). ♥

Suppose (A1, A2, . . . , Ap) are vertices of Rm(t), and (B1, B2, . . . , Bq) are vertices of

Rn(t), then Rm(t) and Rn(t) have (p− 1) edges and (q − 1) edges, respectively.

Rm(t) =
⋃

1≤i≤p−1

emi , Rn(t) =
⋃

1≤j≤q−1

enj . (3.2)

where, emi and enj represent an arbitrary edge of Rm(t) and Rn(t). emi = Ai1Ai2 , e
n
i =

Bj1Bj2 . As shown in Fig. 3.1(b), the mobile region of O1 at time t R1(t) = {P1P2} and

the mobile region of O2 at time t R2(t) = {Q1J5, J5Q2, J5Q2′ , J5Q2”}. We shall explain

mobile regions in detail in Section 3.2.1.

Definition 8 proximity detection in road network. We are given a set of moving objects

O on a road network G, each with different speed at different time, their friendship, and
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3.2. Fixed-Radius Mobile Detection (FRMD)

a network distance threshold for every pair of friends. Our task is to design efficient

algorithms with a low communication cost, to find each pair of friends whose network

distance does not exceed the distance threshold, based on the client-server architecture.♥

We assume that every moving client has a positioning device. The server is equipped with

a map of the road network and knows the length of each edge, and the coordinates of

each junction of the road network. The server detects whether each friend pair is within

proximity periodically (e.g., every second).

Notations. Table 3.1 lists the symbols used in Chapter 3.

Table 3.1: Notations.
Notation Meaning
〈Js, Jt〉 edge (route) connecting junctions Js and Jt
PQ line segment PQ
|PQ| Euclidean distance between P and Q

D(P,Q) network distance between P and Q
Rm(t) mobile region of Object Om at time t

dmin(Rm(t), Rn(t)) Euclidean distance based lower bound of D(Rm(t), Rn(t))
Dmin(Rm(t), Rn(t)) network distance based lower bound of D(Rm(t), Rn(t))
Dmax(Rm(t), Rn(t)) network distance based upper bound of D(Rm(t), Rn(t))

3.2 Fixed-Radius Mobile Detection (FRMD)

In this section, we present a basic client-server solution with a fixed-radius mobile region

(FRMD) for each client. We first present the mobile regions used in our method, and

then propose three pruning lemmas which make use of two lower bounds and one upper

bound of the distance between the mobile regions of two clients, for the server to prune

unnecessary probing messages. We subsequently present the algorithms at the client and

server side, and finally analyze the communication cost model of this FRMD method.

3.2.1 Mobile Regions

We define a mobile region for each client. It is designed in such a way that unless a client

moves outside its mobile region, no update is needed. Unlike the mobile region proposed
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3.2. Fixed-Radius Mobile Detection (FRMD)

in [134] which is a circle, our mobile region is a line segment or several line segments

along the road network.
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Figure 3.1: Fixed-radius mobile region. (a) mobile region at time T1 ; (b) mobile regions
at time T2=T1+∆T .

Suppose λ denotes the fixed radius of the mobile region of each client. The position

of the center of the mobile region at Tlast+∆T is calculated as follows:

P(Tlast+∆T ) = PTlast + vlast ·∆T (3.3)

where, Tlast is the time of last update, PTlast is the position of the client at time Tlast, and

vlast is the speed at the time of last update. We give an example to explain the mobile

regions.

As shown in Fig. 3.1, O1 and O2 are two clients moving along edges 〈J1, J2〉 and 〈J4,

J5〉. In Fig. 3.1(a), suppose the two clients O1 and O2 have just reported their position

update messages to the server at time T1, and the line segments P1P2 and Q1Q2 with

length 2λ in BLUE are the mobile regions of O1 and O2, with O1 and O2 being the

midpoints of P1P2 and Q1Q2, respectively. In Fig. 3.1(b), at time T2, O1 and O2 send

position update messages to the server again, then line segment P1P2 with length 2λ is

the new mobile region of O1 with the midpoint O1. As O2 approaches J5, its mobile

region is no longer completely within the edge 〈J4, J5〉. Suppose O2 is a-unit distance
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away from J5, where a < λ, then the leftmost point Q1 of its mobile region is (λ + a)

units away from J5. Here, O2 has three different directions to move along when it arrives

at junction J5, then our method includes edges J5Q2, J5Q2′ , J5Q2” into its mobile region.

Suppose |J5Q2| = |J5Q2′ | = |J5Q2”| = b, then b = λ - a.

3.2.2 Pruning Lemmas

The server does not have to probe each client even if the client does not send an update

message in one epoch. We propose three pruning lemmas that make use of the lower

bounds and upper bounds of the network distance between two clients’ mobile regions to

reduce unnecessary probing messages.

3.2.2.1 Euclidean distance based Lower bound pruning

S T

P Q

On

Om

(a)

A1 ApAp-1A2

BqBq-1B2B1

Om

On

(b)

Figure 3.2: Two moving objects and their mobile regions

Theorem 3.1. Given two mobile regions Rm(t) and Rn(t), then the following formula

holds.

dmin(Rm(t), Rn(t)) = min
1≤i≤p,1≤j≤q

|AiBj|, (3.4)

where, (A1, A2, . . . , Ap) are vertices ofRm(t), and (B1, B2, . . . , Bq) are vertices ofRn(t).♠

PROOF. From Eq. 3.2, we obtain,

dmin(Rm(t), Rn(t))

= min
1≤i≤p−1,1≤j≤q−1

dmin(emi , e
n
j )

= min
1≤i≤p,1≤j≤q

|AiBj|
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For example, as shown in Fig. 3.2(a), ∀Om ∈ PQ, ∀On ∈ ST , then,

D(Om, On)

= min{D(Om, P ) +D(P, S) +D(S,On),

D(Om, P ) +D(P, T ) +D(T,On),

D(Om, Q) +D(Q,S) +D(S,On),

D(Om, Q) +D(Q, T ) +D(T,On)}

≥ min{D(P, S), D(P, T ), D(Q,S), D(Q, T )}

≥ min{| PS |, | PT |, | QS |, | QT |}

Therefore, min{| PS |, | PT |, | QS |, | QT |} is the lower bound of D(PQ, ST ).

Lemma 1. Unqualified-pair pruning I. If dmin(Rm(t), Rn(t))> εm,n, then the exact net-

work distance between Om and On must be larger than εm,n, therefore this friend pair

should be pruned. ♣

PROOF. Since dmin(Rm(t), Rn(t)) is the lower bound of the distance between Rm(t) and

Rn(t), thus dmin(Rm(t), Rn(t)) is also the lower bound of the network distance between

Om and On. Obviously, D(Om, ON) ≥ dmin(Rm(t), Rn(t)) > εm,n. Therefore Lemma 1

holds.

Discussion. As dmin(Rm(t), Rn(t)) is calculated by using the metric of Euclidean dis-

tance, Lemma 1 is also called an Euclidean distance based lower bound pruning lemma.

3.2.2.2 Network-distance based lower bound and upper bound pruning

Theorem 3.2. Given two clientsOm,On as well as their mobile regionsRm(t) andRn(t),

as depicted in Fig. 3.2(b), we obtain,

Dmin(Rm(t), Rn(t)) ≤ D(Rm(t), Rn(t))

≤ Dmax(Rm(t), Rn(t))
(3.5)
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where

Dmin(Rm(t), Rn(t)) = min
1≤i≤p,1≤j≤q

D(Ai, Bj) (3.6)

Dmax(Rm(t), Rn(t))

= max
1≤i≤p−1
1≤j≤q−1

{min(D(Ai1 , Bj1), D(Ai1 , Bj2), D(Ai2 , Bj1),

D(Ai2 , Bj2)) + |emi |+ |enj |}. (3.7)
♠

PROOF. ∀P ∈ Ai1Ai2 , ∀P ′ ∈ Bj1Bj2 ,

D(P, P ′) = min{

D(Ai1 , Bj1)+ | Ai1P | + | Bj1P
′ |,

D(Ai2 , Bj1)+ | Ai2P | + | Bj1P
′ |,

D(Ai1 , Bj2)+ | Ai1P | + | Bj2P
′ |,

D(Ai2 , Bj2)+ | Ai2P | + | Bj2P
′ |

}

Observe that ∀i ∈ {1, 2, . . . , p − 1}, ∀j ∈ {1, 2, . . . , q − 1}, |Ai1P | ≥ 0, |Bj1P
′| ≥ 0,

|Ai2P | ≥ 0, |Bj2P
′| ≥ 0 always hold, so it is obvious that

D(Rm(t), Rn(t)) ≥ min
1≤i≤p,1≤j≤q

D(Ai, Bj).

Meanwhile, observe that for 1 ≤ i ≤ p − 1, ∀P ∈ Ai1Ai2 , |Ai1P | ≤ |Ai1Ai2 |, |Ai2P | ≤
|Ai1Ai2| always hold, and for 1 ≤ j ≤ q − 1, ∀P ′ ∈ Bj1Bj2 , |Bj1P

′| ≤ |Bj1Bj2|,
|Bj2P

′| ≤ |Bj1Bj2| always hold. Therefore, we obtain

D(Rm(t), Rn(t))

≤ max
1≤i≤p−1
1≤j≤q−1

{min(D(Ai1 , Bj1), D(Ai1 , Bj2), D(Ai2 , Bj1),

D(Ai2 , Bj2)) + |Ai1Ai2|+ |Bj1Bj2 |}.

As a result, Theorem 3.2 holds.

Lemma 2. Unqualified-pair pruning II.
If Dmin(Rm(t), Rn(t)) > εm,n, then the exact network distance between Om and On

must be larger than the proximity threshold εm,n, then this pair of moving objects must be
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pruned. ♣

PROOF. From Theorem 3.2, we know that D(Rm(t), Rn(t)) ≥ Dmin(Rm(t), Rn(t)). S-

ince Om and On locate inside Rm(t) and Rn(t), thus D(Om, On) ≥Dmin(Rm(t), Rn(t)).

If Dmin(Rm(t), Rn(t)) > εm,n, then D(Om, On) > εm,n. That is to say, the network

distance between Om and On is larger than εm,n, and therefore Lemma 2 holds.

Lemma 3. Qualified-pair pruning.
If Dmax(Rm(t), Rn(t)) ≤ εm,n, then the exact network distance between Om and On

must be at most the same as the proximity threshold εm,n, then this pair must be within

proximity. ♣

PROOF. This proof is analogous to that of Lemma 2. We know that D(Rm(t), Rn(t))

≤ Dmax (Rm(t), Rn(t)) from Theorem 3.2 and because Om and On locate inside Rm(t)

and Rn(t), thus D(Om, On) ≤Dmax(Rm(t), Rn(t)). If Dmax(Rm(t), Rn(t)) ≤ εm,n, then

D(Om, On) ≤ εm,n holds. That is to say, the exact network distance between Om and On

is no larger than the threshold εm,n and this pair is within proximity. Therefore Lemma 3

holds.

Discussion. As Dmin(Rm(t), Rn(t)) and Dmax(Rm(t), Rn(t)) are computed by using

the metric of network distance, Lemma 2 and Lemma 3 are also called network-distance

based lower bound and upper bound pruning lemmas.

3.2.3 Server-Side and Client-Side Algorithms

Based on the concept of mobile regions for each client and the pruning lemmas presented

above, we propose the algorithms for the client and server respectively.

The server-side algorithm is described in Algorithm 1.

When the Euclidean distance and the network distance based lower bounds between

two friends are not larger than ε and the network distance based upper bound between two

friends is smaller than or equal to ε, the server needs to notify the two friends. Otherwise,

the server probes the client that has not updated the server at the current epoch, and

computes the exact network distance between the two clients and then notify them if the

distance is smaller than or equal to ε.

The client-side algorithm is as follows.
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Algorithm 1: Server-side algorithms of FRMD
1 for (t = initTS; t ≤MaxTS; t += ∆T ) do
2 server.receiveUpdateFromClient(speed, loc);
3 for each friend pair Om and On do
4 if dmin(Rm(t), Rn(t)) > εm,n then
5 continue;
6 end
7 if Dmin(Rm(t), Rn(t)) > εm,n then
8 continue;
9 end

10 if Dmax(Rm(t), Rn(t)) ≤ εm,n then
11 server.notify(Om, On);
12 end
13 else
14 if client.notUpdate(Om) then
15 server.probe(Om);
16 end
17 if client.notUpdate(On) then
18 server.probe(On);
19 end
20 if D(Om, On) ≤ εm,n then
21 server.notify(Om, On);
22 end
23 end
24 end
25 end

(i) When moving beyond its mobile region, the client updates the server.

(ii) When probed by the server, the client updates the server.

3.2.4 Communication Cost Analysis of FRMD

Now we analyze the total communication cost of our solution induced per epoch. First,

suppose there are N clients in total and each client has an average of m friends. Let

∆T denote the length of one epoch. All of the friend pairs share the same proximity

threshold. The total communication cost CCtotal can be decomposed into three kinds of

cost: (i) the update cost CCupdate, which measures how many messages issued by the

clients to the server; (ii) the probing cost CCprobe, which is induced by the server which

probes the clients regarding the exact positions in the “refinement step”, together with the

associated invoked update messages replied by the clients; (iii) The proximity notification
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cost CCnotify, which counts how many notification messages delivered by the server to

clients which are within proximity. We disregart CCnotify since it has nothing to do with

the radius of mobile regions.

3.2.4.1 Cost of update

Assume the actual average speed in this time interval is v′ and the client measures its

location every ∆T time units, then we obtain the number of updates for it in this time

interval is min {v′·∆T
λ

, 1}.

pupdate = min{v
′ ·∆T
λ

, 1}

Therefore CCupdate for N drivers can be expressed as follows.

CCupdate = N ·min{v
′ ·∆T
λ

, 1} (3.8)

From Eq. 3.8, we see we should maximize λ to minimize CCupdate.

3.2.4.2 Cost of probing

As discussed in Section 3.2.3, the server first checks whether a pair of friends satisfies

Lemma 1, then Lemma 2 and Lemma 3 in sequence. The refinement step is carried out

by the server only if all the three lemmas are not satisfied by a friend pair.

Figure 3.3: The area Q1Q2 may lie in to satisfy Lemma 1.

Probability of not satisfying Lemma 1. Let E denote the total number of edges in G

and S denote the entire area of the road network G. Assume that the edges are randomly
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deployed in the road network area according to a two-dimensional Poisson process with

average edge density ξ. We sample the edges from the road network to calculate the

average edge density. In such cases, the position of each edge is independent.

There are
(
E
1

)
different choices of choosing one edge for line segment P1P2 to lie on.

As long as the position of segment P1P2 has been determined, if Lemma 1 is satisfied,

since the minimum Euclidean distance is larger than ε, Q1 and Q2 must lie inside the road

network area but outside the two green circles (Fig. 3.3). The area in which Q1Q2 may

lie in order to satisfy Lemma 1 can be calculated by Eq. 3.9.

Area(Q1, Q2) = S − 2 · π · ε2 + Areacommon (3.9)

where, Areacommon is the area of overlapping region (yellow part in Fig. 3.3) of the two

circles.

Areacommon = 2 · [arccos(min{λ
ε
, 1})− λ ·

√
λ2 − ε2]

Therefore, there are a total of
(
E
1

)
·ξ·Area(Q1, Q2) different choices for selecting two

edges on which the two line segments P1P2 and Q1Q2 lie according to Lemma 1. Since

the total number of choices in selecting two edges from the whole network is E2, the

probability for the two mobile regions to satisfy Lemma 1 is obtained as follows.

pLemma1 =

(
E
1

)
· ξ · Area(Q1, Q2)

E2
(3.10)

We can derive the probability of not satisfying Lemma 1 as Eq. 3.11.

p1(λ) = 1− pLemma1 = 1−
(
E
1

)
· ξ · Area(Q1, Q2)

E2

= 1− ξ ·
{S − 2πε2 + 2[arccos(min{λ

ε
, 1})ε2 − λ

√
ε2 − λ2]}

E

(3.11)

Our objective is to minimize the probability of probing therefore we need to first minimize
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this p1(λ). We calculate its derivative.

p′1(λ)

= −2 · ξ
E
· [−

1
ε
· ε2√

1− ( ξ
ε
)2

− ε2 − 2 · λ2

√
ε2 − λ2

]

= −2 · ξ
E
· (−2 ·

√
ε2 − λ2)

= 4 · ξ
E
·
√
ε2 − λ2

≥ 0

(3.12)

From Inequality 3.12, we know p1(λ) becomes smaller as λ gets smaller. Therefore we

need to minimize λ to minimize p1(λ).

Probability of not satisfying Lemma 2 and Lemma 3. Since Lemma 2 and Lemma 3

have very small relationship with λ, we disregard this part. Thus we obtain the probability

of the refinement step is: prefine ≈ p1(λ). The total probing cost is:

CCprobe

= N · (1− pupdate) · [1− (1− prefine)m] · 2

= 2 ·N · (1−min{v
′ ·∆T
λ

, 1 }) · [1− ξ·

{S − 2πε2 + 2[arccos(min{λ
ε
, 1})ε2 − λ

√
ε2 − λ2]}

E
)m]

(3.13)

From Eq. 3.13 and the above discussion, we know CCprobe can be minimized if λ is

minimized.

Discussion. In summary, we see that a large λ induces a small CCupdate while a small

λ induces a small CCprobe, so there must exist an optimal λ that induces a small sum of

CCupdate and CCprobe.

In order to address this problem as well as reducing the total communication cost,

developing efficient methods to minimize the communication cost is crucial.
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3.3 Methods with Self-Adjustment

In this section, we present three self-adjustment methods to automatically adjust the size

of a mobile region. We first give the RMDRN/CMDRN method and then propose the

RRMD method.

Two operations are introduced to adjust the mobile regions to control the update cost

and probing cost when necessary. Here, there is a tuning parameter α to adjust the length

of our mobile regions.

(i) Expansion: The radius of a mobile region is multiplied by α. Thus the total length

of the mobile region has expanded.

(ii) Contraction: The radius of a mobile region is divided by α. Thus the total length

of the mobile region has contracted.

Note that we use division and multiplication instead of subtraction and addition, since

division and multiplication can contract and expand a mobile region to a larger extent than

subtraction and addition.

Adjust rule:

(i) When the probability of probing is too high, that is, the radius is too large, we

should conduct the contraction operation.

(ii) When the probability of update is too high, that is, the radius is too small, we

should conduct the expansion operation.

3.3.1 RMDRN/CMDRN Method

We adopt the idea of self-tuning methods, Reactive Mobile Detection (RMD) and Cost-

based Mobile Detection (CMD) designed for proximity detection in Euclidean space

in [134] and propose self-adjustment methods RMDRN (Reactive Mobile Detection for

Road Network) and CMDRN (Cost-based Mobile Detection for Road Network) by taking

road network constraints into consideration.

For RMDRN method, when a client is about to transmit an update to the server, it

conducts an expansion operation to reduce future update possibility, which follows the
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idea of the RMD method [134]. When a client receives a probing message from the

server, it conducts a contraction operation.

For CMDRN method, each client maintains two counters UpdateCount and ProbeCount

which represent the probabilities of update and probing messages, following the idea of

the RMD method [134]. When a client finds it is outside its mobile region, its UpdateCount

increases by 1. If UpdateCount > ProbeCount, it conducts an expansion. When a client

receives a probing message from the server, its ProbeCount increases by 2. If ProbeCount

> UpdateCount, it performs a contraction.

We have conducted experiments to study the behavior of these two methods and found

that these two methods can reduce the total communication cost to some extent.

3.3.2 Radius-Based Reactive Mobile Detection Method (RRMD)

Our RRMD method is designed on the basis of the FRMD and RMDRN methods. In

addition to the tuning parameter α, we introduce a second parameter β. In order to make

our RRMD method more efficient, we set up the relationship between the initial radius,

optimal radius of FRMD and β. The goal is to take advantage of the RMDRN method and

make use of the relation of initial radii and the optimal radius and thus incur a lower total

communication cost.

It is intuitive that no matter how much the initial radius is, the optimal radius in our

FRMD method that minimizes the total communication cost fluctuates slightly around a

fixed value. Without loss of generality, the relationship between the initial radii λinitial

and the optimal radius λoptimal together with the adjustment factor β can be described as

follows.

β =
λoptimal
λinitial

(3.14)

The value of λoptimal is 20 by default. Then the tuning factor β can be calculated ac-

cording to Eq. 3.14. The update and probing related method of RRMD is described in

Algorithms 2 and 3. ts is the current time stamp and id is the ID of this client.

In Algorithm 2, when a client is outside its mobile region, if β is no more than 1.0 or

β is no more than α, the client applies expansion to its mobile region which multiplies
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Algorithm 2: update related method of RRMD
1 if client.IsOutsideMobileRegion(ts, id) then
2 if β > 1 and β > α then
3 r’ = client.expandMobileRegion(β, r);
4 server.computeMobileRegionForObject(ts, id, r’);
5 end
6 else
7 r’ = client.expandMobileRegion(α, r);

server.computeMobileRegionForObject(ts, id, r’);
8 end
9 if client.IsOutsideMobileRegion(ts, id) then

10 client.updateToServer(ts, id);
11 costOfUpdate++;
12 if server.notReceivedUpdateFrom[id] then
13 server.receivedUpdateFrom[id] = true;
14 end
15 end
16 end

its λinitial by α. Otherwise, the client applies expansion which multiplies its λinitial by β.

Therefore the radius of the mobile region always oscillates around the optimal radius to

avoid it from getting too small or too large. After this step the client checks whether it is

still outside its new mobile region, if so the client updates the server with its location.

In Algorithm 3, when a client receives a probing message from the server, it applies a

contraction operation to its mobile region, which divides its radius λinitial by β when β is

larger or equal to α, and divides its λinitial by α when β is smaller than α.

Algorithm 3: probe related method of RRMD
1 if server.notReceivedUpdateFrom[id] then
2 server.probeClient(id, ts);
3 if β < α then
4 r’ = client.contractMobileRegion(α, r);
5 server.computeMobileRegionForObject(ts, id, r’);
6 end
7 else
8 r’ = client.contractMobileRegion(β, r);
9 server.computeMobileRegionForObject(ts, id, r’);

10 end
11 client.updateToServer(ts, id);
12 end
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The advantage of our RRMD method is that it automatically uses different β instead

of one fixed α to tune the radii of mobile regions. It is efficient and scalable to various

radii and reduces communication cost greatly. Detailed experiments are explained in

Section 3.5.

3.4 Server-Side Computational Cost Optimization

This section presents server-side cost optimization algorithms, covering proximity notifi-

cation optimization, junction-to-junction network distance computation, and trigger time

technique.

3.4.1 Proximity Notification Optimization

In our original server-side algorithm described in Section 3.2.3, if a friend pair is within

a proximity threshold for a long time interval, for example, from time stamp T1 = 3 to T2

= 60, the server has to send notification messages to them at every time stamp during the

time interval [3, 60]. Thus a high notification cost is incurred. Hence we use the proximity

notification optimization technique to reduce the number of notification messages.

Let S, S′ denote the result set in current and previous epochs. The numbers of friend

pairs in S and S′ are n and n′, respectively.

(i) Suppose the friend pair belongs to S but not S′, then the server sends a true-status

message to this pair.

(ii) Suppose the friend pair belongs to S′ but not S, then the server sends a false-status

message to this pair.

To speed up the search, we use a red-black tree (a kind of binary search tree) with

unique friend pair IDs as search keys. In this way, the time complexity for searching the

friend pairs of S in the previous result set S′ is O(n log n′). The space complexity of this

technique is O(n+n′).
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3.4.2 Junction-to-Junction Network Distance Computation

Junction-to-junction network distance is the shortest length between two junctions on a

road network. The server needs to computeDmax(Rm(t), Rn(t)) andDmin(Rm(t), Rn(t))

between two mobile regions in Lemma 2 and Lemma 3. According to Eq. 3.6 and 3.7, we

first calculate the network distance between each vertex Ai of Rm(t) and each vertex Bj

of Rn(t). We compute D(Ai, Bj) by substituting the related junction-to-junction network

distance into Eq. 3.1. We implement two methods of computing junction-to-junction

network distance.

• Method 1: Direct junction-to-junction network distance precomputation. This

method precomputes the shortest path between any two junctions by using the

classical Dijkstra’s algorithm. Thus, to calculate Dmax(Rm(t), Rn(t)) and Dmin

(Rm(t), Rn(t)), the server computes D(Ai, Bj) by directly substituting the cor-

responding precomputed junction-to-junction network distance into Eq. 3.1. The

advantage of Method 1 is that it saves computational cost during execution by pre-

computation.

• Method 2: “SKETCH” and Bourgain algorithm. In [29], for every node in the

graph, a small “sketch” is computed and stored. The precomputed values will be

looked up and a simple computation will be performed to estimate the distance at

query time. We calculate the lower bound and upper bound of the network distance

between every two junctions. Thus the server uses the lower and upper bound of

a junction-to-junction distance to approximately compute Dmax(Rm(t), Rn(t)) and

Dmin(Rm(t), Rn(t)). The advantage of this method is that it computes the lower

and upper bound of the junction-to-junction network distance much faster in large

road networks. In addition, this method saves much memory.

3.4.3 Trigger Time Technique

The server needs to check each friend pair 〈Om, On〉 in each epoch. To ease the computa-

tion burden at the server side, a trigger time technique is applied to filter out more friend
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pairs.

3.4.3.1 Trigger time

Inspired by the trigger time concept in [61] and [134], we propose our trigger time. The

trigger time ω(Om, On) for objects Om and On is defined as the earliest time t (t ≥ tcur)

when the minimum Euclidean distance between Rm(t) and Rn(t) is within ε. Only when

the minimum Euclidean distance is smaller than ε, the network distance between them is

possibly within ε. The server does not need to handle the pair 〈Om, On〉 until the time

ω(Om, On).

ω(Om, On) = min{t|t ≥ tcur ∧ |(Rm(t), Rn(t))| ≤ ε}

Trigger time computation. Suppose two moving objects move toward each other on a

straight line, in this way the Euclidean distance between them becomes smallest. Suppose

their speeds at the time of their last update are spdm and spdn, and their positions are (xm,

ym) and (xn, yn). Let tcur represent the current time stamp, and let t represent the trigger

time we want to obtain. Thus, we only need to solve a one-variable linear inequality to

obtain t.

s− (t− tcur) · (spdm + spdn)− 2 · r ≤ ε

where, s =
√

(xm − xn)2 + (ym − yn)2.

3.4.3.2 Efficient indexing of trigger times

We use two-level heap structures to index the trigger time, which is similar to [134].

Both the high-level and low-level heaps are min-heaps. For every object Om, each of his

friend pairs 〈Om, On〉 corresponds to a trigger time ω(Om, On), which is stored in a local

min-heap Hm (the low-level heap), and the only pair which is pushed into the high-level

heap H, is the pair on the top of Hm. By using this two-level heap indexing, the time

complexity is efficiently decreased to O(logN+m logm), which is much smaller than the

one-level heap indexing method whose time complexity is O(m · log N ·m
2

).
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3.5 Experimental Study

We carry out experiments to compare the communication cost of our proposed algorithms.

3.5.1 Experimental Setting

The default value and range of each parameter used in our experiments can be found from

Table 3.2. We generate moving objects by using the framework of network-based moving

objects [17], on different road networks (one is Oldenburg∗ road network, and the other

one is a part of New York city (NY)† road network, called pNY for short). In total, we

generate N = 100,000 during 100 time stamps. We normalize the spatial domain size of

the road networks to [0, 1000]2.

Table 3.2: Parameter values.
Parameter Meaning Default Range

N Number of users 100,000 500 - 100,000
m Number of friends per user 10 5 - 100
ε Proximity threshold 10 1 - 100

Vlimit Maximum speed 42.8032 2.0 - 200
λ Radius of mobile region 7.395 0.01 - 200
α Tuning parameter 2 1 - 16
β Tuning parameter 20/λ >0 - 60

3.5.2 Experimental Study of FRMD

We carry out experiments to study the behavior of the FRMD cost model, as shown in

Fig. 3.4(a) and (b), where m = 30, ε = 10, and ∆T = 1. Figure 3.4(a) and (b) depict

the decomposition of the communication cost as a function of different fixed radius λ.

Observe that the probing cost is high when λ is large and the update cost is high when λ is

small. Without doubt, the notification cost is independent of λ. Meanwhile, we find there

is an optimal λ which can minimize the total communication cost. This result coincides

with our analysis in Section 3.2.4.

∗http://www.cs.fsu.edu/%7Elifeifei/SpatialDataset.htm
†http://www.dis.uniroma1.it/challenge9/download.shtml
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Figure 3.4: FRMD results.

Next, for each case, we conduct experiments to determine the optimal λ at which the

communication cost can be minimized. We set N = 100,000. Figure 3.4(c) depicts the

optimal λ as a function of the average number of friends m per user while ε = 10, and

Fig. 3.4(d) shows the optimal λ w.r.t. various ε while m = 10. Observe that the optimal λ

depends on the value of m and ε that we select.

3.5.3 Self-Adjustment Experimental Study

We study the performance of our self-adjustment methods.

3.5.3.1 Sensitivity experiment

We first study the sensitivity of our FRMD, RMDRN, CMDRN, and RRMD methods. We

compare the results of these methods w.r.t. (with respect to) parameter λ on both the

Oldenburg and pNY road networks.

Figure 3.5 depicts the communication cost of these methods w.r.t. the initial radius λ

of each mobile region. In the scenario of Fig. 3.5(a), the values of parameters such as N ,
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m, ε, Vlimit, α and β are set as the default values in Table 3.2. In the scenario of Fig. 3.5(b),

the number of users N on the pNY road network equals 10000, and the other parameters

remain the same as that in Fig. 3.5(a). We observe that the shape of the curve representing

the FRMD method coincides with the analysis in Section 3.2.4 and the RRMD method

substantially reduces the communication cost of FRMD method to a greater extent than

the RMDRN and CMDRN methods. Observe that the RMDRN and CMDRN methods os-

cillate wildly while RRMD method oscillates much more slightly. When the initial λ is

large, the RRMD method can greatly reduce the communication cost but the RMDRN and

CMDRN seem to be inefficient. In addition, our RRMD method reduces the communi-

cation cost of FRMD more greatly compared to the RMDRN or CMDRN method for all

values of λ.
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Figure 3.5: Communication vs. λ.

3.5.3.2 Scalability experiment

We subsequently compare our RRMD method to other competitors (RMDRN/CMDRN)

with respect to various parameters such as N , Vlimit, ε and m, on both the Oldenburg road

network and pNY road network. Results demonstrate that our RRMD method is robust

and scalable for these different parameters.

In the scenarios of Fig. 3.6, 3.7, 3.8, 3.9, the value of each parameter N , m, ε, α, β, λ
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Figure 3.7: Communication cost vs. Vlimit.

is set as the default value given in Table 3.2. Figure 3.6 depicts the communication cost

induced by these methods with respect to N , which denotes the number of objects, and

our RRMD method achieves the lowest cost of all the four methods. Figure 3.7 plots the

communication cost induced by these methods as a function of the speed limit Vlimit and

observe that the RRMD method induces lower communication cost compared to other

methods and scales linearly to Vlimit. Figure 3.8 shows the communication cost incurred

by these methods as a function of the threshold ε and we find the cost of our RRMD

method is also the lowest of all the four methods. Figure 3.9 plots the communication cost

incurred by these methods as a function of m, which denotes average number of friends

for each user. It is obvious that the cost of our RRMD method also incurs the lowest
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Figure 3.9: Communication cost vs. m.

communication cost among all the four methods and it scales approximately linearly to

m.

3.5.3.3 Comparison with related work (CPMRN [68])

We also compare our results with the CPMRN [68]. As shown in Fig. 3.10, CPMRN in-

curs much more communication cost than our RRMD method. This is because in CPM-

RN, the server has to send messages to each client c to transfer information to it, even

after the server builds the sets P (c), S(c), or after the server builds a proximity region and

separation region for it. In addition, a client has two kinds of update messages, proximity

alert and separation alert. Thus the update of a client is much more frequent than that in
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our method.
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Figure 3.10: Comparison with CPMRN.

3.5.4 Experiments of Server-Side Computational Cost Optimization

3.5.4.1 Junction-to-junction network distance computation

We conduct experiments to compare the two methods described in Section 3.4.2 in terms

of communication cost, server time and memory. From Fig. 3.11, we find that the server

time of using Method 2 is much more than that of using Method 1. This is because

this server time does not include the precomputation time in Method 1. The difference

between the communication costs of Method 1 and Method 2 is small. Table 3.3 shows

that Method 2 requires less memory than Method 1. If the road network is quite large, the

memory used by Method 1 is much larger than that of Method 2 (see Table 3.3) and we

can choose Method 2.

Table 3.3: Memory comparison.

road network memory of method 1
(K)

memory of method 2
(K)

Oldenburg 3,507,252 116,820
pNY 25,456 6,176
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3.5.4.2 Experiments of trigger time technique

We conduct experiments on the pNY road network and the value of each parameter N ,

ε, α, β, λ is set as the default value in Table 3.2, with respect to different m. From

Table 3.4, we observe that our trigger time technique (see Section 3.4.3) greatly reduces

the total server time.

Table 3.4: Total server time.

m
server time without

trigger time technique
(seconds)

server time with
trigger time technique

(seconds)
5 562 167

10 933 176
20 2087 267
30 4911 297
40 8998 336
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3.5.5 Experiments on Real-World Moving Objects

The experimental results reported above are based on generated moving objects in real-

world road networks. As the movements of real objects are different from the generated

objects, now we discuss the experiments on real-world moving objects. We take the taxi

(T-Drive) trajectory data set‡ as an example.

The real taxi trajectory data does not have speed information or edge information but

the generated objects data contains the edge and speed information at each time stamp.

However, from the real taxi trajectory data, we can compute the average speed during

each fine time interval, e.g., every 5 seconds. We can also compute the direction of each

moving object, and obtain the very edge on which the object is running at current time

stamp, which makes the difference between the real-world data and the generated data

small enough. Thus the difference between the movements of real-world objects and the

movements of generated objects plays a minor role in the performance of our algorithms.

Hence the communication cost model is similar. This difference would affect the relative

performance by only a little bit, which is acceptable. The overall performance is still very

similar. Therefore, here we omit the details of the experimental results on the real-world

moving objects data set.

3.6 Conclusions

Motivated by various proximity detection applications and multiplayer online games in

road networks, we propose two types of methods based on the client-server architecture to

address the query of proximity detection in road networks. In the first type of method, we

define a fixed-radius mobile region for each moving client. Unless a client exits its mobile

region, the client need not update its location. In addition, we state three lemmas which

are used to reduce the probing messages sent by the server. The size of the mobile region

affects the update cost and probing cost. Inspired by this, we design the second kind

of method RRMD together with RMDRN and CMDRN methods, using a self-adjustment

‡http://research.microsoft.com/apps/pubs/?id=152883
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policy to automatically tune the size of the radius of the mobile region so as to reduce the

total communication cost. Experiments demonstrate that our self-adjustment method can

substantially reduce the cost, and is robust and scalable with respect to various parameters.

In addition, we also propose optimization methods to reduce the total computational cost

at the server side.

Another similar query is convoy query which finds many applications for traffic jam

analysis. Therefore, for future work, we can adapt the methods proposed in this chapter

to the problem of convoy query.
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Chapter 4

Points of Interest Recommendation
From GPS Trajectories

This chapter solves the problem of points of interest recommendation. This chapter is

arranged as follows. Section 4.1 proposes the problem setting and our main framework

to recommend POIs for moving users based on their GPS trajectories. Section 4.2 stud-

ies the efficiency and accuracy as well as recall of our method. Experiments prove that

our framework outdoes the state-of-the-art method. Finally, Section 4.3 concludes this

chapter.

4.1 Points of Interest Recommendation Framework

We present the problem setting and our recommendation methods in detail in this section.

4.1.1 Problem Setting and Framework Overview

Given a set of moving clients U, as well as their historical GPS trajectories Traj, we aim

to recommend interesting semantic locations (POIs) l, based on the trajectory patterns of

the clients, by taking popularity, temporal and geographical influences into consideration.

We propose a framework, namely, PTG-Recommend, with a vigorous probabilistic

foundation for POI recommendation, based on density-based clustering algorithms and

the Bayes rule. The novelty of our approach is that we recommend POIs from users’

GPS trajectories rather than from a set of POIs. The advantage of our approach is that
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Figure 4.1: An overview of the unified framework PTG-Recommend.

we consider semantics when extracting POIs and exploit the popularity information as

well as temporal and geographical effects together from GPS trajectories, leading to an

improvement of POI recommendation accuracy.

Generally speaking, the unified PTG-Recommend framework comprises of the fol-

lowing six steps. (i) data preprocessing; (ii) extracting semantic POIs; (iii) popularity

mining; (iv) temporal mining; (v) geographical mining; (vi) deriving a unified recom-

mendation scoring function for extracted POIs. As shown in Fig. 4.1, this framework first

transforms the raw GPS trajectories of each client into stay points sequences, and sub-

sequently utilizes semantically enhanced clustering technique to extract semantic POIs.

Then we get a popularity score by considering popularities of each POI; and derive a tem-

poral recommendation score by considering temporal influence; and afterwards obtain a

geographical recommendation score after geographic mining. Finally, we combine the

three scores together for deriving a unified combinatorial score for each POI.

We give some definitions as follows prior to detailing the six steps of the unified

framework.

Definition 9 GPS trajectory. Each client’s GPS trajectory is represented as a time-

dependent sequence of triples in the form of (latitude, longtitude, t), which are collected

from the GPS records. ♥

Definition 10 Stay points. A stay point is a geo-point where a client stays for a certain

time period. A stay point consists of the latitude-longitude information of a geographical

point in the form of a quadruple (latitude, longitude, tin, tout). We construct a mapping
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from each tuple (latitude, longitude) to a location point p. tin and tout denote the checking-

in and the checking-out time stamps, respectively. ♥

Definition 11 Point of interest. A point of interest refers to a location (region) which

people are interested in, and which contains multiple stay points and the coordinates of

the centroid of this region is the average of coordinates among all the stay points inside

it. We obtain points of interest by clustering stay points. The detailed information is

illustrated in Section 4.1.3. ♥

Definition 12 Density-based ε neighborhood. For a given point p, its density-based ε

neighborhood is denoted by NB(p) whose definition is as follows.NB(p) = {o ∈ S|dist(p, o) ≤ ε}

|NB(p)| ≥MinPts

where S denotes the stay points set, o denotes an arbitrary point in S, ε defines the density

and represents the radius of the neighborhood circle centred at p, and MinPts represents

the least number of stay points required in the neighborhood. ♥

Definition 13 Density-joinable. Set A is density-joinable to another set B, if there exists

a point o belonging to both A and B. ♥

Definition 14 Density-threshold-based-joinable. Given two sets A and B, A is density-

threshold-based-joinable to B, if there are at least MinPtsOfJ stay points, that belong to

both A and B. ♥

Figure 4.2 illustrates the density-based ε neighborhood and density-threshold-based-joinable

relation, where MinPtsOfJ = 3 and ε = 8.

4.1.2 Data Preprocessing

As depicted in Fig. 4.1, we first transform the raw GPS trajectory data of each user into

stay points sequences. Raw trajectory data contains the latitude-longitude information of

a location at a specified time stamp for a set of users. We record each item of the raw GPS

trajectory data as a triple in the form of (latitude, longitude, t). Then each user’s trajectory

is represented as a sequence of triples.

In addition, we use a two-dimensional array to store the latitude-longitude tuple and

construct a mapping from each tuple (latitude, longitude) to a location point p, which is
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(b) Density-Threshold-Based-Joinable(a) Density - NB(p) (c) DTBJ-Cluster
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Figure 4.2: Density-threshold-based-join (DTBJ) clustering. (a) NB(p) of a point p con-
tains points inside a circle; (b) NB(p) is density-threshold-based-joinable to NB(q); (c) the
final cluster is inside the boundary.

represented by a numeric value (a key number). The advantage of using Maps is that

we can acquire the latitude-longitude information from the key number with a time com-

plexity of O(log n) and meanwhile we can obtain the key number of a location point p

from the latitude-longitude information with the same time complexity O(log n), where

n denotes the total number of the stay points. Therefore, each user has a sequence of stay

location points.

For the purpose of obtaining qualified candidate stay points, we use two rules to filter

out ineligible original stay points: (i) Stay points that are visited by target clients for less

than a time threshold tε are filtered. (ii) Stay points that are visited by the clients for fewer

than T times are filtered. After performing this preprocessing step, only those stay points

visited by users for more than T times and more than a time threshold tε are selected into

the candidate stay points sequences set.

4.1.3 Extracting Semantic POIs

We now present our methods of extracting the semantic POIs from candidate stay points

sequences.

4.1.3.1 Extracting clusters

We use a three-layer model as shown in Fig. 4.3 to mine points of interest from GPS

trajectories. Figure 4.3 describes the bottom-up process. First, the base layer is GPS

trajectory. As described in Section 4.1.2, from users’ GPS trajectories, we extract stay

points from each of the GPS trajectories according to Definition 10. We use this def-
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Figure 4.3: Three-layer model for extracting POIs.

inition to filter some invalid GPS points and select valid stay points. Second, after we

obtain those stay points, according to Definition 11, we are ready to extract points of

interest. Then based on the work ([144]) which presents a density-based clustering algo-

rithm DJ-Cluster ([145]), we introduce a third parameter MinPtsOfJ and propose a new

density-based clustering algorithm, namely, DTBJ-Cluster, and perform DTBJ-cluster on

candidate stay points to obtain interesting locations (POIs).

DJ-Cluster. We briefly introduce the algorithm of DJ-Cluster. For every stay point

p, DJ-Cluster calculates its density-based ε neighborhood. If it finds no neighborhood of

p, p is marked as a noise; Otherwise, if there exists one of its neighbors belonging to an

existing cluster ci, the algorithm merges NB(p) with ci; Otherwise, if none of its neighbors

lies inside an existing cluster, the algorithm creates NB(p) as a new cluster.

DTBJ-Cluster. Our DTBJ-Cluster algorithm is devised on the basis of the afore-

mentioned DJ-Cluster algorithm and the density-threshold-based-joinable property. In

addition to the two parameters ε and MinPts which are already defined in DJ-Cluster,

DTBJ-Cluster algorithm introduces a third parameter MinPtsOfJ, which represents the

number of common points in the intersection area of NB(p) and its density-based cluster.

The main idea of this algorithm is outlined in Lines 2 - 24 of Algorithm 1.

We calculate the density-based neighborhood NB(p) for an unprocessed stay point p

with respect to the pre-determined parameters ε and MinPts. If NB(p) is empty which

means no neighbors can be found for point p, then we make a new cluster for it. Other-

wise, we find a set of density-joinable clusters Cdj for NB(p). For each cluster ci ∈ Cdj, if

the number of common points between NB(p) and ci is larger than or equal to MinPtsOfJ,

then we merge NB(p) with cluster ci. If for all the clusters ci ∈ Cdj, the number of common
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points between NB(p) and ci is smaller than MinPtsOfJ, then a new cluster c is created

based on NB(p). Finally, if there are no density-joinable clusters of NB(p) existing, we

also make a new cluster c on the basis of NB(p).

4.1.3.2 Semantics-enhanced POIs extraction by SEM-DTBJ-Cluster

Given n stay points, after data preprocessing and DTBJ-Cluster, we extract some clus-

ters. In order to get semantic POIs, many applications allow users to manually tag and

comment these locations. However, man-made tagging causes users to spend time on

tagging and thus should be avoided. Therefore, much existing work uses reverse geo-

coding technique to extract semantic information. Then following the idea of SEM-CLS

(semantics-enhanced clustering) in [21], we apply two steps split and merge, to each

cluster, and thus propose our SEM-DTBJ-Cluster (SEMantics-enhanced DTBJ-Cluster)

algorithm (Algorithm 1).

In the split step (Lines 25 - 34 of Algorithm 1), points are sampled from each cluster.

we then gain street addresses by reversely geocoding the sampled points using Google

Map API. We subsequently gain the semantics using a yellow pages directory. In case the

semantics of these sampled points inside one cluster are different, this cluster will be split

in that it might contain multiple semantic POIs.

In the merge step (Lines 35 - 44 of Algorithm 1), the clusters will be merged if they

refer to the same semantic POI. We use a semantic list vector ~ls to contain all the semantic

features of the cluster. We compare ~ls of two clusters (Line 40) for determining whether

they should be merged.

4.1.4 Applying Effect of Popularity

It is observed that in tourism, places of interest receive diverse popularity; in catering

industry, restaurants obtain distinct popularity. Places of interest with high popularity

may be more meaningful or valuable and restaurants with high popularity may produce

high-quality food or more delicious food. From this point of view, POIs of high popularity

should attract more tourists or customers. These are simple facts which demonstrate the
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Algorithm 1: The SEM-DTBJ-Cluster Algorithm
Input: ǫ, MinPts, MinPtsOfJ, stay points set S, existing clusters set Cdj

Output: points of interest (a set of clusters) C

1 C ← the set of clusters;
2 while ∃p ∈ S where p is unprocessed do
3 if NB(p) = ∅ then
4 p← noise;
5 end
6 else if NB(p) is density-joinable to a set of existing clusters Cdj then
7 flag← 0;
8 for i = 0 to |Cdj | do
9 PtsOfJ← number of common points of ci and NB(p);

10 if PtsOfJ ≥MinPtsOfJ then
11 ci ← ci ∪ NB(p);
12 flag← 1;
13 end
14 end
15 if not flag then
16 c← NB(p);
17 C.push_back(c);
18 end
19 end
20 else
21 c← NB(p);
22 C.push_back(c);
23 end
24 end
25 for i = 0 to |C| do
26 Sample n stay points in ci;
27 for each sample point sp do
28 Reverse geocode sp;
29 Obtain semantics of sp;
30 end
31 if ci contains ns different semantics then
32 Split ci into ns clusters according to semantics of each stay point;
33 end
34 end
35 for i = 0 to |C| do
36 for j = 0 to |C| do
37 if cj = ci then
38 continue;
39 end
40 if ~ls of ci = ~ls of cj then
41 ci ← ci ∪ cj ;
42 end
43 end
44 end
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existence of popularity effect over different POIs.

Let tcur represent the current date, l stand for a semantic POI, and x(t)
up denote whether

a user u visited stay point p at date t. We have

x(t)
up =


1, u visited p at t,

0, u did not visit p at t.

Thus, let L denote the extracted POI set and N denote the number of semantic POIs

in L. Then from users’ trajectory history, we record a cumulative score to evaluate the

popularity for each POI l over all users by the following scoring function.

ˆ
c

(p)
t,l = popScore

(t)
l =

∑
u∈U

∑
0≤t≤tcur&&p∈l

x
(t)
up∑

u∈U

∑
0≤i≤N

∑
0≤t≤tcur&&p∈li

x
(t)
up

(4.1)

where li denotes the i-th POI in set L. Note that in Eq. 4.1, we use the check-in history

of each POI across all the users instead of a certain user u. This is because we assume

that those POIs visited by more people tend to be more valuable. Therefore, we can

recommend those POIs which get high popularity scores to users.

4.1.5 Applying Temporal Effect

In temporal mining, we utilize the periodic temporal property and partition time into

periodic time slots (by date).

4.1.5.1 Exploiting temporal influence

It can be observed that a user goes to several identical or at least similar places day by day.

For example, a person goes to a park for doing exercise every morning, and afterwards

travels to his work place in the daytime, and subsequently goes to a specific restaurant for

dinner everyday. These are similar or identical behaviors that we can easily find from a

person’s regular behaviors between this date and another date. In light of these facts, we

are ready to exploit temporal influence on users’ check-in behaviors by making use of the

extracted POIs.
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Given a client, client-based CF firstly computes the similarities between this client and

other clients. Analogous to the general idea of [137], based on a weighted combination of

other clients’ access logs at each POI, we use CF to produce a temporal recommendation

score for this POI. The conspicuous difference between our work and [137] is that they

focus on the temporal influence on the POI recommendation from POIs data; whereas

our work takes into account the popularity, temporal, and geographical influence together

from GPS data and propose a unified framework. Another difference lies in the different

metrics used. We use ‘days’ to measure time slots whereas [137] adopts ‘hours’ to mea-

sure time slots. We use ‘days’ in that we focus on the effects of ‘days’ on users’ regular

behaviors and ‘days’ better reveals the daily regularity and similarity.

To be more specific, suppose v ∈ U is a client, and l ∈ L is a POI where L is the

set containing extracted POIs. If v has accessed l before, then let cv,l = 1; otherwise, cv,l

= 0. Thus, for a client u, the recommendation score of u visiting l can be calculated as

follows, where su,v denotes the similarity of client u and client v.

ĉu,l =

∑
v su,vcv,l∑
v su,v

su,v can be calculated by various measures. Among all the measures, we adopt a widely

used measure, namely, cosine similarity for implicit data. Eq. 4.2 defines the cosine

similarity of u and v, where a binary accessing vector over the entire POI set L is used to

represent each client.

su,v =

∑
l cu,lcv,l√∑

l c
2
u,l

√∑
l c

2
v,l

(4.2)

We split the total time period into multiple equal time intervals based on dates. We utilize

a user-date-POI (UDP) cube to store the temporal accessing records. Each element cv,t,l

of the UDP cube specifies whether a user v visits POI l on date t, where

cv,t,l =


1; if v visits l at date t

0; elsewise
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Thus, the recommendation score for user u to visit a POI l on date t is:

ĉ
(t)
u,t,l =

∑
v s

(t)
u,vcv,t,l∑
v s

(t)
u,v

where s(t)
u,v refers to the temporal behavior similarity of u and v.

Now, we present the process of computing s(t)
u,v in detail. We estimate the similarity of

two users on the basis of their daily regular behaviors over all dates. It is straightforward

that the similarity value will be high, if the clients access the same POIs at the same date

with high frequency. Moreover, in this case, one client’s access history will significantly

influence the recommendation score for the other client. Thus, the similarity of u and v

can be calculated by extending the cosine similarity as expressed in Eq. 4.3.

s(t)
u,v =

∑T
t=1

∑L
l=1 cu,t,l · cv,t,l√∑T

t=1

∑L
l=1 c

2
u,t,l

√∑T
t=1

∑L
l=1 c

2
v,t,l

(4.3)

Suppose client u visits l1 and l2 at dates t1 and t2, while client v visits l1 and l2 at

dates t2 and t1, respectively. By Eq. 4.2, the similarity between the two clients is 1 if

irrespective of time. However, the similarity becomes 0 by Eq. 4.3 when we take time

into consideration. This is because compared to the user-POI matrix, the UDP cube is

much sparser. Note that in Eq. 4.3, we estimate the similarity by considering temporal

effect based on the UDP cube.

In order to handle this problem stemmed from sparsity, let cu,t = {cu,t,1, cu,t,2, ...,

cu,t,l} represent the accessing vector of client u on date t. For every client u, we compute

the cosine similarity of every two accessing vectors cu,ti and cu,tj on dates ti and tj (see

Eq. 4.4). Thereafter, let λtitj denote the similarity value between two dates ti and tj ,

which refers to the average of the similarities of ti and tj over all clients (Eq. 4.5).

s
(u)
titj =

∑L
l=1 cutil · cutj l√∑L

l=1 c
2
util

√∑L
l=1 c

2
utj l

(4.4)

λtitj =
1

U
·

U∑
u=1

s
(u)
titj (4.5)

Figure 4.4 shows the cosine similarity between four different given dates (Date 27, Date
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Figure 4.4: Mobile user behavior similarities between different dates.

108, Date 216, Date 351) on Geolife trajectory dataset∗, which has a number of 182

mobile users and the whole time period is more than five years. We divide each year

to 365 days. Each record in this dataset records which user visits which point at what

time (hour:min:sec) on which day. (Section 4.2.1 gives the details of this dataset.) In

this figure, we describe the date-date similarities for all users. Observe that the similarity

curve for Date 27 depicts the accessing similarity between Date 27 and every other date

during the whole period, analogously for the other three curves. We see that for a specific

user, the similarity between two close dates, for instance, the similarity of Date 27 and

Date 27 - 54 is much higher than that between Date 27 and another date far away. To sum

up, the accessing activity on one date is more analogous to that on a few dates than other

dates. The fact encourages us to devise a framework with temporal factor utilized for POI

recommendations.

By Eq. 4.5, the UDP cube is smoothed by using the accessing similarity of different

dates. Every accessing vector can be calculated by utilizing the accessing vectors on

similar dates. Thus, the value of cu,t,l is updated as Eq. 4.6. Consequently, the similarity

of two clients u and v enhanced by smoothing is computed in Eq. 4.7.

c̃u,t,l =
T∑
t′=1

λt,t′∑T
t′′=1 λt,t′′

cu,t′,l (4.6)

∗http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/
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s̃(t)
u,v =

∑T
t=1

∑L
l=1 c̃u,t,l · c̃v,t,l√∑T

t=1

∑L
l=1 c̃

2
u,t,l

√∑T
t=1

∑L
l=1 c̃

2
v,t,l

(4.7)

The accessing behavior similarity between two dates additionally helps recommend POIs

to user u on date t by introducing another enhancement. If user v visits POI l at date t′,

then the temporal scoring function, ˆ
c

(t)
u,t,l, that a user u visits the same POI l at a different

date t is therefore updated as Eq. 4.8.

ˆ
c

(t)
u,t,l =

∑
v s̃

(t)
u,v

∑
t′ c̃v,t′,l · λt,t′∑
v s̃

(t)
u,v

(4.8)

4.1.5.2 A running example

Given: Let T = {1, 2}, U = {u, v}, and L = {1, 2}. User u checks in POI 1 at t=1;

checks in POI 2 at t=2. Similarly, user v visits POI 1, 2 at t=1; visits POI 2 at t=2.

Goal: To derive the temporal recommendation score for user u to visit POI 1 at date t=2,

that is, to compute ˆ
c

(t)
u,2,1.

Analysis: we can derive the following equation by expanding Eq. 4.8.

ˆ
c

(t)
u,2,1 =

s̃
(t)
u,u · (c̃u,1,1 · λ21 + c̃u,2,1 · λ22) + s̃

(t)
u,v · (c̃v,1,1 · λ21 + c̃v,2,1 · λ22)

s̃
(t)
u,u + s̃

(t)
u,v

(4.9)

Therefore, to compute ˆ
c

(t)
u,2,1, we need to first compute s̃(t)

u,u, s̃(t)
u,v, c̃u,1,1, c̃u,2,1, c̃v,1,1, c̃v,2,1,

λ21, and λ22.

First, based on the given conditions, we update values in the UDP cube.

cu,t,l =

 cu,1,1 cu,1,2

cu,2,1 cu,2,2

 =

 1 0

0 1

 cv,t,l =

 cv,1,1 cv,1,2

cv,2,1 cv,2,2

 =

 1 1

0 1


After substituting corresponding cu,t,l, cv,t,l into Eq. 4.4, we obtain the following:

s(u) =

 s
(u)
11 s

(u)
12

s
(u)
21 s

(u)
22

 =

 1 0

0 1

 s(v) =

 s
(v)
11 s

(v)
12

s
(v)
21 s

(v)
22

 =

 1 1√
2

1√
2

1


Where, each element of the above two matrices represents s(u)

ij , and s(v)
ij , respectively. Ac-
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cording to Eq. 4.5, we can compute λij, i, j ∈ {1, 2}.

λ =

 λ11 λ12

λ21 λ22

 =

 1
√

2
4

√
2

4
1

 ≈
 1 0.353553

0.353553 1


We substitute λij into Eq. 4.6, to compute the new values of cu,t,l as follows.

c̃u,t,l =

 c̃u,1,1 c̃u,1,2

c̃u,2,1 c̃u,2,2

 =

 0.738796 0.261204

0.261204 0.738796



c̃v,t,l =

 c̃v,1,1 c̃v,1,2

c̃v,2,1 c̃v,2,2

 =

 0.738796 1

0.261204 1


By using Eq. 4.7, we obtain:

s̃(t)
u,u =

∑2
t=1

∑2
l=1 c̃u,t,l · c̃u,t,l√∑2

t=1

∑2
l=1 c̃

2
u,t,l

√∑2
t=1

∑2
l=1 c̃

2
u,t,l

=

∑2
t=1

∑2
l=1 c̃

2
u,t,l∑2

t=1

∑2
l=1 c̃

2
u,t,l

= 1

s̃(t)
u,v =

∑2
t=1

∑2
l=1 c̃u,t,l · c̃v,t,l√∑2

t=1

∑2
l=1 c̃

2
u,t,l

√∑2
t=1

∑2
l=1 c̃

2
v,t,l

=
c̃u,1,1c̃v,1,1 + c̃u,1,2c̃v,1,2 + c̃u,2,1c̃v,2,1 + c̃u,2,2c̃v,2,2√

c̃2
u,1,1 + c̃2

u,1,2 + c̃2
u,2,1 + c̃2

u,2,2

√
c̃2
v,1,1 + c̃2

v,1,2 + c̃2
v,2,1 + c̃2

v,2,2

= 0.900832

Up to now, all the values in Eq. 4.9 are known. Hence, we substitute these values into

Eq. 4.9 to obtain ˆ
c

(t)
u,2,1 = 0.522408.

4.1.6 Applying Geographical Effect

When dealing with POI recommendation problems, the geographical influence is bound

to be considered. As far as we know, many events that occur conform to a normal distri-

bution. [25] utilized Gaussian distribution to model users’ check-in behavior and denoted

the normalized probability of a check-in stay point which belongs to the clustered regions.

In our work, we utilize normal distribution in a different way.

It is obvious that clients tend to visit nearby places rather than a place further away.
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Therefore, we adopt a normal distribution model to characterize a client’s willingness to

access a POI dist kilometers away. Suppose µ = 0, σ2 = 1 (σ2 may be also equal to other

values) are the parameters of the normal distribution, since a normal distribution model

can demonstrate the property that the nearer a place is, the greater the client’s willingness

to visit this place. Let x = dist(li, lj), then x ∝ N(0, σ2). The density function of the

normal distribution is defined as follows.

will(x) =
1√
2πσ
· exp− x2

2σ2

As depicted in Fig. 4.5, when x ≥ 0, the value of this function decreases monotonically

0 0.5 1 1.5 2 2.5 3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

distance between two POIs (km)

p
ro

b
a
b
ili

ty

σ =1.3

σ =1.0

σ =1.1

σ =1.2

Figure 4.5: Normal distribution of probabilities.

and accordingly with respect to different σ. Here, σ can be regarded as a second factor that

affects people’s willingness in addition to the distance factor. For instance, a user might

sometimes take into consideration both the distance and the attraction or other features of

a POI. However, the willingness of a user complies with the normal distribution. Suppose

currently a client is at POI li. The next POI to visit is lj , which is dist(li, lj) away from

li. Then the probability of the client visiting lj is in proportion to the client’s willingness
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to visit a POI which is dist(li, lj) away from li. The conditional probability is calculated

by using the following equation (Eq. 4.10).

prob(lj|li) =
will(dist(li, lj))∑
lk∈Lwill(dist(li, lk))

(4.10)

The equation above shows the conditional probability will decrease if the distance be-

tween two POIs increases. This indicates that clients are less probable to access far-away

POIs. Based on Bayes rule, the score for recommending a POI l to a given client u on the

basis of his/her POIs trajectory Lu is obtained as Eq. 4.11.

ˆ
c

(g)
u,t,l =

∑
l′∈Lu

prob(l|l′)

=
∑
l′∈Lu

will(dist(l′, l))∑
lk∈Lwill(dist(l

′, lk))

(4.11)

4.1.7 Unified Recommendation Score for POIs

Finally, we derive a unified scoring function for POI l, by applying a linear weighting on

the three scoring functions (Eq. 4.1, 4.8, and 4.11). Since the three scoring functions are

based on different measures and differ from each other, a min-max normalization is used

to normalize the three scoring functions before we combine them.

c
(p)
u,t,l =

ˆ
c

(p)
t,l −minl′(

ˆ
c

(p)
t,l′)

maxl′(
ˆ
c

(p)
t,l′)−minl′(

ˆ
c

(p)
t,l′)

(4.12)

c
(t)
u,t,l =

ˆ
c

(t)
u,t,l −minl′(

ˆ
c

(t)
u,t,l′)

maxl′(
ˆ

c
(t)
u,t,l′)−minl′(

ˆ
c

(t)
u,t,l′)

(4.13)

c
(g)
u,t,l =

ˆ
c

(g)
u,t,l −minl′(

ˆ
c

(g)
u,t,l′)

maxl′(
ˆ

c
(g)
u,t,l′)−minl′(

ˆ
c

(g)
u,t,l′)

(4.14)

minl′(·) andmaxl′(·) in the above equations denote the minimum visiting score and max-

imum visiting score for client u on date t over all POIs.

Subsequently, the unified recommendation scoring function for a client u to visit POI

l on date t is given as follows, where α and β are tuning parameters and 0 ≤ α ≤ 1,
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Figure 4.6: Distribution of stay points in Geolife trajectory dataset.

0 ≤ β ≤ 1.

Scoreu,t,l = α ∗ c(p)
u,t,l + β ∗ c(t)

u,t,l + (1− α− β) ∗ c(g)
u,t,l (4.15)

According to Eq. 4.15, we can compute the unified recommendation scores for all POIs.

Finally we return the POIs with the highest scores to the client.

4.2 Experimental Study

Several groups of experiments are conducted to evaluate our PTG-Recommend method.

We now report the experimental results. We firstly present two trajectory datasets that

we use in the experiments, the training data and testing data distribution of each dataset.

We then study the changes of the number of stay points along with T (times of visiting)

and tε (stay duration) in the preprocessing step. We subsequently study the performance

of our SEM-DTBJ-Cluster algorithm for extracting semantic POIs. We Finally evaluate

the precision and recall of our POI recommendation methods: the method equipped with

popularity influence, method equipped with temporal influence, method equipped with

geographical influence, and the final unified method.
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Figure 4.7: Distribution of stay points in Illinois trajectory dataset.

4.2.1 Experimental Setup

Datasets. The datasets we used are two real-world trajectory datasets: Geolife Trajecto-

ries 1.3† and Illinois real trajectory dataset‡. The distribution of the stay points of these

two datasets are illustrated in Fig. 4.6 and 4.7. Table 4.1 lists the statistics of these two

datasets.

Table 4.1: Information about the Geolife trajectory dataset and Illinois trajectory dataset
(after pre-processing).

Dataset #Check-ins #Users #Trajectories #Nodes
Geolife 24,876,978 182 17,621 22,276,521
Illinois 357,786 2 124 313,239

Geolife trajectory dataset was obtained by 182 users at Microsoft Research Asia for

more than five years (from April 2007 to August 2012). Different GPS loggers and GPS-

phones were used to record the trajectories in a dense representation. In addition, the tra-

jectories have various sampling rates. 17,621 trajectories with a total duration of 48,000+

hours and a total distance of roughly 1.2 million km are contained in this dataset. We use

a sequence of points to represent each GPS trajectory. These points contains the infor-

†http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/
‡http://www.cs.uic.edu/%7Eboxu/mp2p/gps%5Fdata.html
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mation of latitude, longitude, altitude and the time stamps. The Geolife dataset originally

contains 24,876,978 geographical points. We select the points collected by the first 130

users as training data which contains 18,516,628 points in total, and the points collected

by the remaining 32 users as testing data, whose distribution is shown in Fig. 4.8(a) and

(b).
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(a) Training data − Geolife trajectory dataset
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Figure 4.8: Training data and testing data distribution over users.

The Illinois trajectory dataset was collected in 2006 by two members of Databases

and Mobile Computing Laboratory at University of Illinois in Chicago. Each trajectory

records a continuous journey around the Dupage county and the Cook county of Illi-

nois. Each record (sampled every second) of a trajectory contains latitude, longitude,

time stamps, and (x projection, y projection) which are the coordinates projected from

(latitude, longitude) by the projection of NAD 1983 HARN StatePlane Illinois East in-

cluded in ESRI ArcView 3.1. This dataset originally contains 357,786 points before the

preprocessing step. We select the data of the first 87 trajectories as training data and the

remaining trajectories as testing data, whose distribution is shown in Fig. 4.8(c) and (d).

4.2.2 Preprocessing

In the preprocessing step, we evaluate the number of qualified stay points as a function of

T (times of visiting) and tε (stay duration), as shown in Fig. 4.9 and 4.10. In the scenario of
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Figure 4.9: T versus number of stay points. tε = 3.
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(b) Illinois trajectory data

Figure 4.10: tε versus number of stay points. (a) T=10; (b) T=2.

Fig. 4.9, stay duration tε is set to 3 seconds. In the scenario of Fig. 4.10, visiting times T is

set as 10 for Geolife trajectory dataset, and 2 for Illinois trajectory dataset. From Fig. 4.9

and 4.10, we see that much more points have been filtered out with the increase of T or

tε. For example, for Geolife trajectory dataset, when tε=3 seconds, and T=3 times, after

filtering out unqualified points, 107,335 stay points have left, and when tε=3 seconds and

T=10 times, after we have filtered out ineligible geographical points in data preprocessing

step, 5,113 points were left. For Illinois trajectory dataset, when tε=3 seconds, T=1, 1,811

stay points are qualified; when T=2, tε=3 seconds, 60 stay points are qualified.

4.2.3 Comparing DTBJ-Cluster with DJ-Cluster

We subsequently compare our DTBJ-Cluster algorithm with the existing DJ-Cluster algo-

rithm. The results on Geolife trajectory dataset and Illinois trajectory dataset are reported

in Table 4.2 and Table 4.3. Table 4.2 plots the number of clusters on Geolife dataset as a
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Table 4.4: SEM-DTBJ-Cluster and DJ-Cluster comparison on Geolife trajectory dataset.
ε=1 km, MinPts=3, MinPtsOfJ=2

#Samples Entropy Purity NMI #Final Clusters
DJ-Cluster 0.4598 0.8686 0.6512 356

SEM-DTBJ-Cluster

2 0.4305 0.8743 0.6568 400
3 0.3694 0.8852 0.6745 416
4 0.3528 0.9190 0.6758 453
5 0.3302 0.9305 0.6780 489

function of the parameter MinPtsOfJ where MinPtsOfJ varies from 2, to 4, 6, 8, respec-

tively. In the scenario of Table 4.2, ε is set to 1 km, 2 km respectively, and MinPts is set to

3, 4, and 5 respectively. In Table 4.3, ε varies from 20 metres to 30 metres and 40 metres,

MinPts varies from 3 to 4 and 5, and MinPtsOfJ varies from 2 to 4, 6, and 8. Observe

that the number of clusters by using DJ-Cluster remains unchanged as long as the value

of MinPts remains unchanged no matter how the value of MinPtsOfJ changes, whereas

the number of clusters by using DTBJ-Cluster varies as long as the value of MinPtsOfJ

changes.

Discussion: Merely from the comparison results of DTBJ-Cluster and DJ-Cluster,

DTBJ-Cluster algorithm generates more clusters (POIs) than DJ-Cluster in that only when

the intersection of two clusters contains more than MinPtsOfJ common points, DTBJ-

Cluster merges the two clusters into one cluster. This is actually more reasonable since

DTBJ-Cluster considers POIs at a finer granularity.

In order to study the performance of our proposed SEM-DTBJ-Cluster algorithm, we

give the metrics and the results in Table 4.4 and Table 4.5.

Metrics: We adopt three widely used metrics, namely purity ([114]), entropy, and

normalized mutual information (NMI) ([84]) to study the performance of clustering al-

gorithms when there exists a ground truth. An algorithm with smaller entropy, or larger

purity or NMI indicates that it is a better clustering algorithm.

We can find that SEM-DTBJ-Cluster outperforms DJ-Cluster, in terms of all three

metrics on the two datasets. These results demonstrate that, the DTBJ-Cluster algorithm,

together with the split and merge steps based on the semantics of clusters makes SEM-

DTBJ-Cluster effective.
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Table 4.5: SEM-DTBJ-Cluster and DJ-Cluster comparison on Illinois trajectory dataset.
ε=30 metres, MinPts=4, MinPtsOfJ=2.

#Samples Entropy Purity NMI #Final Clusters
DJ-Cluster 0.4501 0.8702 0.6437 116

SEM-DTBJ-Cluster

2 0.4356 0.8796 0.6599 130
3 0.3769 0.8876 0.6731 158
4 0.3501 0.9257 0.6756 164
5 0.3285 0.9286 0.6769 185

4.2.4 Performance Evaluation of Our PTG-Recommend Framework

We evaluate the methods utilizing popularity influence, the methods applying temporal

influence, and the methods applying geographical influence, and the final unified frame-

work, respectively. This subsection first gives the metrics for performance evaluation, and

subsequently reports the performance of the proposed methods.

4.2.4.1 Evaluation metrics

For the purpose of studying the effectiveness of our proposed methods, we adopt the fol-

lowing two metrics as the main measurements for the experimental evaluation. Precision,

defined as P = TP/(TP+FP), is used to measure how many POIs in the first N recommend-

ed POIs corresponding to the number of hold-off POIs in the testing data. Recall, R =

TP/(TP+FN), is a measure of the number of POIs in the hold-off POIs in the testing data

selected among the first N recommended POIs, where TP and FP indicate the number of

correct recommendations and false recommendations, and FN represents false negative

recommendations , i.e., the number of POIs which are supposed to be in the set of first N

recommended POIs but actually not in the set.

Analogously to [137], for user u and date t, in the testing data, let Ru,t and Tu,t de-

note the group of recommended POIs and the group of corresponding groundtruth POIs,

respectively. We divide the POIs of the two groups into three categories and obtain the

following three values: TPu,t, FNu,t, and FPu,t.

• TPu,t: The quantity of POIs belonging to both Tu,t and Ru,t.

• FNu,t: The quantity of POIs belonging to Tu,t but not to Ru,t.
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• FPu,t: The quantity of POIs belonging to Ru,t but not to Tu,t.

After considering the time slots (date) t, the precision and recall is calculated as fol-

lows.

precision(t) =

∑
u′∈U TPu′,t∑

u′∈U (TPu′,t + FPu′,t)
(4.16)

recall(t) =

∑
u′∈U TPu′,t∑

u′∈U (TPu′,t + TNu′,t)
(4.17)

The average precision and recall can be calculated by the following equations, where t

denotes each date.

precision =
1

T

∑
t∈T

precision(t) (4.18)

recall =
1

T

∑
t∈T

recall(t) (4.19)

4.2.4.2 Methods utilizing popularity influence

Analogously, we name our proposed methods utilizing popularity influence UP for short,

and abbreviate the state-of-the-art method utilizing semantic influence proposed by [132]

as P. We measure the performance of these two methods by depicting the precision and

recall of them as a function of the number of POIs N in the recommendation results in

Fig. 4.11. We observe that the recommendation accuracy of UP is much higher than P

with regard to precision and recall. Furthermore, the precision and recall of using UP

method is scalable to various N values. This clearly illustrates that our proposed method

is effective.
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Figure 4.11: Performance of methods utilizing the influence of popularity.

4.2.4.3 Methods utilizing temporal influence
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Figure 4.12: Our method applying temporal influence vs. baseline CF method.

For convenience, we name our methods utilizing temporal influence UT for short. Let

BU denote the baseline user-based CF method. We compare the effectiveness of UT with

BU on Geolife dataset and Illinois dataset. Figure 4.12 depicts the precision and recall

of UT and BU. Observe that UT which applies the temporal influence outperforms BU,

since time is not considered by BU. As for precision, UT is superior to BU on average by

20% to 30% on Geolife dataset or Illinois dataset. These results indicate that time factor

is essential for POI recommendation. Among all the experiments, UT always performs
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better than BU with respect to various N values on the datasets. This superior perfor-

mance is since UT not only takes temporal influence into account, but also addresses the

data sparsity problem by taking a further step of smoothing enhancement.

4.2.4.4 Methods utilizing geographical influence
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Figure 4.13: Comparison of methods utilizing geographical influence.

With the aim of comparing our proposed methods utilizing geographical influence

(named UG for short) with the baseline method (denoted as G) proposed by [129], we plot

the precision and recall of UG and G as a function of the number of the top recommended

N POIs respectively in Fig. 4.13. Observe that UG performs better than G on either

Geolife dataset or Illinois dataset, in terms of precision and recall. At the same time, the

precision and recall of UG is scalable to different N values. These results show that our

methods utilizing geographical influence are more effective than the baseline method G.

4.2.4.5 Unified framework

Finally, we evaluate our unified framework PTG-Recommend. For PTG-Recommend,

two parameters α and β are used to tune the weights of the three parts in Eq. 4.15. We

tune α and β separately, and plot the average precision and recall with respect to different

α and β, respectively. As depicted in Fig. 4.14, we set β to a fixed value β = 0.2, and

the optimal precision and recall can be achieved by setting α = 0.4 and 0.6 on Geolife

dataset and Illinois dataset, respectively. Likewise, we set α = 0.4 in Fig. 4.15, and the
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optimal precision and recall can be achieved if β equals about 0.2 and 0.4 on Geolife

dataset and Illinois dataset, respectively. We subsequently compare PTG-Recommend

with the above three methods. Without loss of generality, we set α = 0.4, and β = 0.2

and 0.4 for Geolife dataset and Illinois dataset, respectively. As shown in Fig. 4.16,

PTG-Recommend accomplishes the best performance with respect to precision and recall.

The results demonstrate that our framework makes good use of semantics, popularity,

temporal, and geographical effects and outperforms the best method available in literature

with regard to effectiveness.

Discussion on precision and recall. Observe that the precision and recall shown in the

above figures are a bit low. The evaluation is to compare the relative performance of

the different methods. actually, it is possible that a recommended POI are interesting to

a user, but it does not appear in testing data. So in other words, the precision/recall is

higher in practice. Almost all the recommendation problems have the same problem for

evaluation.

4.3 Conclusions

In this chapter, we develop a semantic-temporal-geographical framework, namely, PTG-

Recommend, for recommending POIs to a user from users’ GPS trajectories. Our frame-

work firstly develops a SEM-DTBJ-Cluster algorithm, which is a novel semantics-enhanced
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Figure 4.16: Performance of the unified framework.

clustering algorithm, to extract semantic POIs from GPS data. Our framework then

takes the influence of popularity, the influence of temporal features, and the influence

of geographical features of each POI into consideration, and derives a popularity scoring

function, a temporal scoring function, and a geographical scoring function, respectively.

Finally, our framework combines the above three functions together and obtains a uni-

fied recommendation score for each POI for a user. To the best of our knowledge, our

framework is the first one that recommends POIs by exploiting the popularity, temporal

information, and geographical information of trajectories. We carry out experiments to

evaluate the proposed methods respectively. Experimental results demonstrate that the

PTG-Recommend framework outperforms the baseline methods with regard to recom-

mendation precision and recall by 20% to 30%.

87



4.3. Conclusions

88



Chapter 5

Cost-Optimal Route Search in
Time-Dependent Road Networks

This chapter solves the problem of cost-optimal time-dependent routing (COTER). Sec-

tion 5.1 models the time-dependent road network, defines the cost-optimal route query

problem in detail, and analyzes fuel consumption model, travel time function, as well as

the toll fee function. We propose our approximate algorithm, namely, ALG-COTER, to

answer the COTER query in Section 5.2. We subsequently carry out several groups of

experiments to evaluate our algorithms and report the experimental results in Section 5.3.

We finally summarize this chapter in Section 5.4.

5.1 Problem Formulation

5.1.1 Problem Setting and Definitions

Definition 15 Time-dependent road network: A time-dependent road network GT = (V ,

E, L, W , C, F ), where V = {ni} represents a set of nodes, E ⊆ V × V represents a

set of edges, L is the set of lengths of edges, and W , C and F are three sets of time-

dependent functions. Every edge e = (ni, nj) ∈ E has four functions: the length len(e)

∈ L, travel time function wi,j(T,v) ∈ W , fuel consumption ci,j(T,v) ∈ C, and toll fee

function fi,j(T ) ∈ F , where the time variable T denotes the departure time from ni. Note

that the length of an edge is a fixed value which is independent of time. wi,j(T,v) specifies

how much time is needed to traverse (ni, nj), if departing from ni at time instance T .

ci,j(T,v) specifies the fuel cost for traversing (ni, nj) if departing from ni at time instance

T . Note that v refers to a row vector containing average speeds on edge e during each
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5.1. Problem Formulation

time interval. fi,j(T ) specifies how much toll fee it costs to traverse (ni, nj), if departing

from ni at time instance T . ♥

We assume that wi,j(T,v) ≥ 0, ci,j(T,v) ≥ 0, and fi,j(T ) ≥ 0. In GT , for each edge (ni,

nj), wi,j(T,v), ci,j(T,v), and fi,j(T ) are all dependent on the departure time T .

Definition 16 Time-dependent maximum speed: The time-dependent maximum speed

vmax(e, t) for edge e is a piecewise constant function of time t ∈ (I0, Ip] where p denotes

the number of piecewise time intervals. It is formally defined as:

vmax(e, t) =



v0; t ∈ (I0, I1]

v1; t ∈ (I1, I2]

· · ·

vp−1; t ∈ (Ip−1, Ip]

(5.1)

where vi denotes the maximum speed allowed on edge e during time interval (Ii, Ii+1] for

i ∈ [0, p− 1]. ♥

Note that the time period t is different from the departure time T . vmax(e, t) gives an

upper bound of the speeds on an edge during different time periods. We assume that

among all the edges, the maximum value and the minimum value of vmax(e, t) are 130

km/h denoted as Vmax, and 40 km/h denoted as Vmin, respectively.

Definition 17 Waiting time: We allow some waiting time (measured by non-negative

integers) at some nodes. Let γ(ni) denote the waiting time at node ni. Let Vw and Vnw
denote the set of nodes which allow waiting, and the set of nodes which disallow waiting,

respectively (Vw ∩ Vnw = ∅ and Vw ∪ Vnw = V ). ♥

If ni ∈ Vw, then waiting is allowed at node ni which means γ(ni) ≥ 0 and meanwhile

γ(ni) ∈ N where N denotes the set of integers which are not smaller than 0; otherwise,

if ni ∈ Vnw, then no waiting is allowed at ni, i.e., γ(ni) strictly equals 0.

Definition 18 Arrival (Departure) time: The arrival time at node ni and the departure

time from ni are denoted by Arr(ni) and Dep(ni), respectively. Then we have the equation

below:
Dep(ni) = Arr(ni) + γ(ni)

Let R = n1 → n2 → · · · → nh be a given route. The earliest departure time from n1

is td, and we have
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Arr(n1) = td

· · ·

Dep(nh−1) = Arr(nh−1) + γ(nh−1)

Arr(nh) = Dep(nh−1) + wh−1,h(Dep(nh−1))

♥

Definition 19 (Travel) cost: The (travel) cost of a route refers to the expenses (fuel ex-

pense plus toll fee) of this route. Given a route R = n1 → n2 → · · · → nh, for any node

ni ∈ R, let costR(ni) denote the cost from n1 to ni by route R. costR(ni) is as follows:

costR(n1) = 0

costR(nh) =
h−1∑
i=1

[fi,i+1(Dep(ni)) + ci,i+1(Dep(ni))]

where fi,i+1(Dep(ni)) denotes the toll fee of edge (ni, ni+1) if leaving ni at time Dep(ni),

and ci,i+1(Dep(ni)) denotes the fuel cost of edge (ni, ni+1) if leaving ni at time Dep(ni).

The cost of route R is defined as cost(R) = costR(nh). Let c(R) and f(R) denote the fuel

cost, and the toll fee of R, then cost(R) = c(R) + f(R). ♥

Definition 20 COTER (Cost-Optimal Time-dEpendent Routing): Given a time-dependent

road network GT , a start node ns, an end node ne, an earliest departure time stamp td,

and a latest arrival time stamp ta, the COTER query, denoted as 〈GT , ns, ne, td, ta〉, aims

to find the cost-optimal route R such that

R = argminRcost(R)

subject to Dep(ns) ≥ td

Arr(ne) ≤ ta

γ(ni) = 0, for each ni ∈ Vnw

γ(nj) ∈ N, for each nj ∈ Vw

v(e, t) ≤ vmax(e, t), where t ∈ [td, ta] for any e ∈ R

♥

COTER queries a route R which starts at ns and ends at ne, such that R minimizes

cost(R) with (i) time constraints: (Dep(ns) ≥ td) ∧ (Arr(ne) ≤ ta) ∧ (γ(ni) = 0 for ni ∈
Vnw) ∧ (γ(nj) ∈ N for nj ∈ Vw); and (ii) speed constraints: the average speed v(e, t) on

each edge e ∈ R during each time interval should be no larger than the maximum speed

allowed during each corresponding time interval.

Theorem 5.1. The problem of solving COTER queries is NP-hard. ♠

PROOF. From [86], we know that resource constrained shortest path problem (denoted as

CSP) is NP-complete even for the case of one resource. CSP asks for the computation
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of a least cost path obeying a set of resource constraints. The problem of COTER can

be regarded as an extension of the NP-hard CSP. Our COTER problem has three kinds of

constraints: (1) the travel time budget constraint; (2) the speed constraint; (3) the waiting

time constraint. If we disregard the speed constraint as well as the waiting time constraint,

the problem of solving COTER becomes CSP with one resource constraint.

Definition 21 Feasible arrival time interval: The feasible arrival time interval of a n-

ode ni is an interval of time stamps at which one possibly arrives at node ni, satisfying

Dep(ns)≥td and Arr(ne)≤ta. Let λi denote the earliest arrival time at node ni if depart-

ing ns at or after time td, and θi denote the latest arrival time at node ni if a user wants

to arrive at the destination node ne before or at time ta by passing ni. Then the feasible

arrival time interval of ni is [λi, θi]. ♥

Definition 22 Candidate node: A candidate node is a node ni whose feasible arrival

time interval [λi, θi] is within the entire time interval [td, ta], because only these nodes

can be reached from ns and meanwhile can reach ne under the given time constraints. ♥

Notations. We give the notations in Table 5.1.

5.1.2 Fuel Consumption and Travel Time Functions

The fuel consumption and travel time on edge (ni, nj) are dependent on the departure

time T from node ni and the driving speeds.

5.1.2.1 Fuel consumption models

According to the previous study [51], it is suggested that the SIDRA-Avg model can only

be used in urban road networks and that the average travel speed should be below a certain

threshold v∗ (usually v∗ ≥ 50km/h), e.g., v∗=50km/h. When the average speed exceeds

v∗, the SIDRA-Running model should be used instead.

(i) SIDRA-Avg. The fuel consumption per unit distance fa(vs) (mL/km) of the SIDRA-

Avg model is defined as follows.

fa(vs) =
1600

vs
+ 73.8, (5.2)

where vs is the average travel speed (km/h).
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(ii) SIDRA-Running. The fuel consumption of the running mode Fs (mL) is estimated

as

Fs = Fidle + fr(vr) · xs, (5.3)

where Fidle = 0.444 · tidle is the fuel consumption during idle periods and fr(vr) (mL/km)

indicates the average fuel consumption per unit distance excluding idle periods, which is

computed as follows.

fr(vr) =
1600

vr
+ 30 + 0.0075 · v2

r + 108 · kE1 · Ek+

+ 54 · kE2 · E2
K+ + 10.6 · kG · θ

(5.4)

where vr is the average running speed (km/h), xs (km) is the total travel distance; θ (%) is

the road grade; Ek+ is the marginal fuel consumption due to speed fluctuations; and kE1,

kE2, and kG are calibration parameters.

Let len(e) denote the length of an edge e = (ni, nj). Suppose the fuel price is $a5 per

milliliter (in our experiments, we set a5 = 0.00054155), and the average speed on edge

(ni, nj) is v̄, then we derive the fuel cost ci,j on edge (ni, nj) as Eq. 5.5.

ci,j =


fa(v̄) · len(e) · a5, v̄ < v∗

(fr(v̄) · len(e) + Fidle) · a5, v̄ ≥ v∗
(5.5)

We compute the derivative of ci,j as follows:

(i) v̄ < v∗

d(ci,j)

dv̄
= len(e) · a5 · (−

1600

v̄2
) < 0

Hence, when v̄ < v∗ km/h, the larger the average speed v̄ is, the less fuel cost is consumed.

(ii) v̄ ≥ v∗
d(ci,j)

dv̄
= len(e) · a5 · (−

1600

v̄2
+ 2 ∗ 0.0075 · v̄)

When v̄ > 47.43, we find that d(ci,j)

dv̄
> 0. Hence, when v̄ ≥ v∗, the smaller the average

speed v̄ is, the less fuel cost is consumed and the minimum fuel cost is achieved by setting

v = v∗ for v̄ ≥ 50 km/h.

To minimize the fuel consumption, the average speed v̄ in Eq. 5.5 should be:
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v̄ =


v∗; if vmax(e, t) ≥ v∗

vmax(e, t); if vmax(e, t) < v∗

5.1.2.2 Fuel cost minimization for an edge when travel time is fixed

For an edge e = (ni, nj), its maximum speed function vmax(e, t) is given as Eq. 5.1.

Suppose the departure time T falls within the k-th time interval, i.e., T∈ (Ik, Ik+1] where

0 ≤ k ≤ p − 1, if the travel time on e is w, then obviously the arrival time at nj should

be T + w. Suppose T + w falls within the m-th time interval, i.e. T + w ∈ (Im, Im+1],

then k ≤ m ≤ p−1, and thus (i) the whole edge is split into (m − k + 1) line segments;

(ii) travel time w on this edge is split into (m − k+1) portions, each of which is denoted

as each element of a column vector t in Eq. 5.6; (iii) the corresponding departure time for

each time interval of t is denoted as each element of a column vector T in Eq. 5.7; and

(iv) the corresponding average speed during each time interval is denoted as each element

of a row vector v in Eq. 5.8.

From Eq. 5.6 and Eq. 5.7, we see that

• If m equals k, then both the departure time T and the arrival time T +w fall within

the same time interval (Ik, Ik+1], so we have Ik ≤ T ≤ T + w ≤ Ik+1 within only

one time interval and the travel time is w;

• If m = k + 1, then we have Ik ≤ T ≤ Ik+1 ≤ T + w ≤ Im+1, so the travel

time is split into two time intervals, [T, Ik+1] and (Ik+1, T +w]. The corresponding

departure time for these two time intervals is T and Ik+1, respectively.

• If m > k + 1, then we have Ik ≤ T ≤ Ik+1 ≤ · · · ≤ Im ≤ T + w ≤ Im+1, so

the travel time is split into (m− k+ 1) time intervals. The corresponding departure

time for the (m− k + 1) time intervals is T , Ik+1, · · · , Im, respectively.

t =


[w] if m = k

[Ik+1 − T, T + w − Ik+1]T if m = k + 1

[Ik+1 − T, Ik+2 − Ik+1, · · · , T + w − Im]T if m > k + 1

(5.6)
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T =


[T ] if m = k

[T, Ik+1]T if m = k + 1

[T, Ik+1, · · · , Im]T if m > k + 1

(5.7)

v =


[v̄k] if m = k

[v̄k, v̄k+1] if m = k + 1

[v̄k, v̄k+1, · · · , v̄m] if m > k + 1

(5.8)

where, v̄i (k ≤ i ≤ m) refers to the average speed during time interval (Ii, Ii+1] on edge

e, and v̄i ≤ vmax(e, (Ii, Ii+1]) = vi.

Meanwhile, the edge e is split into (m− k+1) segments. The length of each segment

is equal to the corresponding average speed multiplied by the corresponding travel time

during each time interval.

len(e) = len1 + · · ·+ lenm−k+1 = v · t

Then, with the departure time T and travel time w, the fuel cost on edge e, ci,j(T,v),
is computed as Eq. 5.9:

ci,j(T,v) =
m−k+1∑
n=1

cn(Tn,1,v1,n) (5.9)

where, ∀ n ∈ [1,m-k+1]:

cn(Tn,1,v1,n)

=

fa(v1,n) · (v1,n · tn,1) · a5, v1,n < 50

(fr(v1,n) · (v1,n · tn,1) + Fi) · a5, v1,n ≥ 50

(5.10)

where, Tn,1 and tn,1 refer to the element in the n-th row and 1st column of T and t; v1,n

refers to the element in the 1st row and n-th column of v.

In order to minimize the fuel cost under the constraint that the travel time is exactly

w, we formulate this nonlinear programming optimization problem as follows:
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min
v

ci,j(T,v)

subject to wi,j(T,v) = w

v · t = len(e)

v̄k ≤ vk

· · ·

v̄m ≤ vm

(5.11)

Objective function in Eq. 5.11 minimizes the fuel cost of edge e=(ni, nj) with given

departure time T . Constraints in Eq. 5.11 include (i) the sum of the (m−k+1) travel-time

intervals equals the total travel time w; (ii) the sum of the distances of (m − k + 1) time

intervals equals the total length len(e); (iii) ∀n ∈ [1,m − k + 1]: the average speed v1,n

= v̄n of each time interval (Ik+n−1, Ik+n] should satisfy the maximum speed allowed on

edge e during the current time interval.

Algorithm 1: Compute-Minimum-Fuel-Cost (e, T , w, vmax(e, t), tk, tm)

Input: e = (ni, nj), T , w, vmax(e, t), tk, tm
Output: a quadruple q = 〈ci,j(T,v), w, T , v 〉

1 solve the nonlinear optimization problem in Eq. 11;
2 return quadruple q = 〈ci,j(T,v), w, T , v〉;

Figure 5.1: Algorithm 1: Compute-Minimum-Fuel-Cost.

Figure 5.1 describes Algorithm 1 (Compute-Minimum-Fuel-Cost). Algorithm 1 solves

the nonlinear programming problem of minimizing fuel cost of edge e under the con-

straint that the travel time is exactly w by using the genetic algorithm. After retrieving

the optimal v which leads to the minimum ci,j(T,v), Algorithm 1 returns a quadruple

encapsulating the minimum fuel consumption, the corresponding travel time w, departure

time T , and speed v.

5.1.3 Toll Fee Functions

In our setting, the toll fee function fi,j(T ) of edge (ni, nj) is an arbitrary single-valued

function of the departure time T , and our algorithm could solve COTER with arbitrary
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Algorithm 2: ALG-COTER(GT , ns, ne, td, ta)
Input: GT , ns, ne, td, ta
Output: optimal route R from ns to ne

1 // Step 1:
2 COMPUTE-EARLIEST-ARRIVAL-TIME(GT , ns);
3
4 // Step 2:
5 Gc

T ← the converse graph of GT ;
6 COMPUTE-LATEST-ARRIVAL-TIME(Gc

T , ne);
7
8 // Step 3:
9 Vec← an empty vector that will contain the sorted nodes;

10 |V | ← the number of nodes in GT ;
11 bool MarkByTopo[|V |];
12 memset(MarkByTopo, 0, sizeof(MarkByTopo));
13 TOPOLOGICAL-SORT(ne, MarkByTopo);
14
15 // Step 4:
16 COMPUTE-MINIMUM-COST(Vec, td, ta);
17
18 // Step 5:
19 if τe <∞ then
20 BACKTRACK-OPTIMAL-ROUTE(GT , ge(te), te);

Figure 5.2: Algorithm 2: ALG-COTER algorithm.

single-valued toll fee functions.

5.2 Algorithms

As the problem of COTER is NP-hard, we propose our approximate ALG-COTER algo-

rithm for tackling COTER and analyze its time complexity in this section.

Our ALG-COTER algorithm has five steps and is shown in Fig. 5.2. Step 1 is com-

puting the earliest arrival time λi for each node ni if departing from the source node ns

at td. Step 2 is computing θi, which is the latest feasible arrival time at ni if one wants to

arrive at ne before or at time ta, for each candidate node ni. Step 3 is getting a topological

sort of the candidate nodes. Step 4 is computing the minimum cost when arriving at each

candidate node ni at different arrival time by recursively computing the OC-functions

according to the topological order. Step 5 is backtracking the cost-optimal route R and

finding the waiting time at each node together with the speeds on each edge in the optimal

route R.
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5.2.1 Computing the Earliest Arrival Time λi for Each Descendant
Node of ns

We present the first step of the ALG-COTER, i.e., computing the earliest arrival time λi

for descendant nodes of ns.

Suppose the earliest departure time λj ∈ (tk, tk+1] from nj for edge e = (nj , ni) is

given, then if a user always traverses edge ewith the maximum speed allowed on e, we can

obtain the minimum travel time for the specific departure time λj for e, i.e., min
v
{wj,i(λj ,

v)}, and λj + min
v
{wj,i(λj , v)} is the earliest arrival time at ni.

Initially, for each node ni ∈ V , we set λi =∞. For the source node ns, λs is set as td,

then we easily compute the earliest arrival time at each of the outgoing neighbors of ns.

Analogously, the earliest arrival time at every descendant node ni of ns can be obtained

by performing the time-dependent single-source shortest path algorithm on GT from ns.

Obviously, a time-dependent Fibonacci-heap optimized Dijkstra’s algorithm is enough.

(According to [107], this combination is still the fastest known algorithm for solving

the SSSP problem with non-negative real edge weights.) The worst time complexity is

O(|V | log |V | + |E|) (in the worst case, the whole road network is involved), where |V |

and |E| represent the number of nodes and number of edges in GT .

5.2.2 Computing the Latest Arrival Time θi for Candidate Nodes

We now present Step 2 of our ALG-COTER, i.e., computing the latest arrival time θi for

each candidate node ni.

Let Gc
T denote the converse graph of GT . In Gc

T , the source node is ne and θe = ta.

The shortest travel time of the edge in Gc
T can be easily obtained by setting the speed

on this edge as the upperbound of maximum speeds Vmax. Then the edge weight on

edge e = (nj , ni) in Gc
T is equal to − len(e)

Vmax
. Hence, for edge e and node ni, the latest

arrival time θi = max{θi, θj − len(e)
Vmax
}. In other words, this problem is adapted to the

single-source longest path problem with negative weights which can also be solved by

Fibonacci-heap optimized Dijkstra’s algorithm. The worst time complexity of this algo-

rithm is O(|V | log |V |+ |E|).
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5.2.3 Topologically Sorting Candidate Nodes

The algorithm for Step 3 is named as TOPOLOGICAL-SORT (Algorithm 3), and is

shown in Fig. 5.3.

Algorithm 3: TOPOLOGICAL-SORT(ni, MarkByTopo)
Input: ni, MarkByTopo
Output: a vector Vec of all the nodes on any route from ns to ne in topological order

1 MarkByTopo[ni]← 1;
2 for each node nj ∈ N−(ni) do
3 if MarkByTopo[nj]6= 1 and λj ≥ td and λj ≤ ta and θj ≥ td and θj ≤ ta then
4 TOPOLOGICAL-SORT(nj , MarkByTopo);

5 Vec.push_back(ni);

Figure 5.3: Algorithm 3: TOPOLOGICAL-SORT (Step 3).

In Algorithm 3, topological sorting is designed as a recursive function based on depth

first search. MarkByTopo[ni] = 0 means the node ni has not been traversed; and MarkByTopo[ni]

= 1 means the node ni has been traversed already. If node ni has not been traversed, i.e.,

MarkByTopo[ni] = 0, then the algorithm traverses ni. Then for each of ni’s predecessor

node nj , if nj has not been traversed, and meanwhile its arrival time interval is within

the entire time interval [td, ta], then the algorithm traverses nj (Lines 3 - 4). Line 3 of

TOPOLOGICAL-SORT guarantees that we only sort candidate nodes, namely, those n-

odes whose feasible arrival time interval is within the entire time interval [td, ta], because

only these nodes can be reached from ns and meanwhile can reach ne under the given time

constraints. Finally, after all of ni’s predecessor nodes have been traversed, which means

after all of ni’s predecessor nodes have been added into the vector Vec, the algorithm adds

ni to the vector Vec (Line 5). This guarantees that all of ni’s predecessor nodes locate in

front of ni in the vector Vec. The time complexity of the TOPOLOGICAL-SORT in the

worst case is the same as the time complexity of a plain depth first search in the worst

case, i.e., O(|V |+ |E|).

The topological order is the input of the fourth step detailed in Section 5.2.4. The

fourth step is recursively computing the values of the optimal-cost (OC) function at each

node according to the recurrence relation formula between the OC-functions of each node

and the OC-functions of its predecessor nodes. The topological order obtained by Step
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3, guarantees that, the minimum cost at a node ni which locates in the topological order,

can be computed by the minimum cost at those nodes which locate in front of ni in the

topological order. The topological order also guarantees that the OC-function values of

ni’s ancestor nodes are computed before we compute ni’s OC-function value.

5.2.4 Computing the Minimum Cost

We now details the fourth step of our ALG-COTER algorithm, i.e., computing the mini-

mum cost for the candidate nodes by computing the OC-functions according to the topo-

logical order. The algorithm for Step 4 is named as COMPUTE-MINIMUM-COST (Al-

gorithm 4) and shown in Fig. 5.4.

5.2.4.1 Optimal cost function opti(t)

We introduce the “Optimal Cost when arriving at t function”, or OC-function for short,

opti(t), for each candidate node ni ∈ GT . For each candidate node ni, we use Ri(t) to

denote the set of all the routes which departs from the source ns at or after time td and

arrives at ni at time instance t.

The data structure of opti(t) is a quadruple which encapsulates: (i) the value of op-

timal (minimum) cost opti(t).val when arriving at ni at time t, that is, opti(t).val =

min{cost(r)|r ∈ Ri(t)}; (ii) the previous node opti(t).pre which is the very incoming

neighbor of ni from which the minimum cost opti(t).val can be obtained; (iii) the cor-

responding quadruple opti(t).q which contains the corresponding fuel consumption cost,

the travel time, the departure time T from opti(t).pre, and speed v; (iv) and the previous

minimum cost opti(t).preCost when arriving at the previous node opti(t).pre before or at

time instance T .

opte(te) is the quadruple to encapsulate the minimum value of opte(t).val at destina-

tion ne, where te is the time instance at which opte(t).val is minimized. Spontaneously,

opte(te).val is the optimal cost from ns to ne under the constraints. Our ultimate goal is

to obtain opte(te).
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5.2.4.2 Recurrence relation formula of OC-functions

Suppose node nj is one incoming neighbor of node ni, i.e., nj ∈ N−(ni), then the re-

currence relation between ni’s OC-functions and nj’s OC-functions can be expressed by

Eq. 5.12. The key idea of COMPUTE-MINIMUM-COST (Algorithm 4) is to use Eq. 5.12

to compute the value of the OC-function opti(ti).val recursively.

opti(ti).val = optj(tj).val + fj,i(opti(ti).q.T ) + cj,i(opti(ti).q.T,v) (5.12)

5.2.4.3 COMPUTE-MINIMUM-COST algorithm

COMPUTE-MINIMUM-COST algorithm computes opte(te) iteratively. This algorithm

uses the output of the previous three steps.

In Fig. 5.4, it is straightforward that the first element of Vec is the source node ns and

the last element of Vec is the destination node ne. Initially (Lines 1 - 5), for any node ni,

opti(t), and τi are initialized as opti(t).val←∞, and τi←∞. Then a loop (Lines 6 - 35)

is performed for each node in the topologically sorted candidate nodes vector Vec.

In the first iteration (Lines 7 - 13), Vec[0] is ns, the time domain for ns is [λs, θs],

opts(t) and τs are set as opts(t).val ← 0, opts(t).pre ← NULL, opts(t).q ← NULL,

opts(t).preCost← 0, and τs← 0, respectively. Obviously, the cost from ns to ns is zero

for any arrival time t. It means the OC-function opts(t).val of ns is zero for any t ∈

[λs, θs].

In each of the subsequent iterations (Lines 14 - 35), suppose the current node Vec[it]

is ni. Then, for each incoming neighbor nj of ni, if td ≤ λj ≤ ta && λj ≤ θj ≤ ta (Line

17), then nj must be a candidate node, which is reachable from ns and can reach ne under

the given time constraint, and which is thus definitely in the vector Vec. Additionally,

according to the topological order, nj must have been already processed before ni. Let T

denote the departure time from nj . The time domain of T is [λj , θj].

Note that waiting is allowed only at some nodes. Then, for each time stamp T (Line
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Algorithm 4: COMPUTE-MINIMUM-COST(Vec, td, ta)
Input: Vec, td, ta
Output: OC function opte(te) from ns to ne

1 for it ∈ [0, Vec.size() - 1] do
2 ni← Vec[it];
3 for t ∈ [λi, θi] do
4 opti(t).val←∞;

5 τi←∞;

6 for it ∈ [0, Vec.size() - 1] do
7 if Vec[it] = ns then
8 opts(t).val← 0 for t ∈ [λs, θs];
9 opts(t).pre← NULL for t ∈ [λs, θs];

10 opts(t).q← NULL for t ∈ [λs, θs];
11 opts(t).preCost← 0 for t ∈ [λs, θs];
12 τs← 0;
13 µs← λs;

14 else
15 ni← Vec[it];
16 for each node nj ∈ N−(ni) do
17 if λj ≤ θj and λj ≥ td and θj ≤ ta and θj ≥ td then
18 // Make sure nj ∈ Vec, and nj is before ni in Vec
19 for each departure time instance T ∈ [λj , θj] from nj do
20 if waiting is not allowed at nj then
21 τj ← optj(T ).val;

22 else if waiting is allowed at nj then
23 // The plain way of computing τj is:
24 τj ←mint∈[λj ,T ]{optj(t).val};
25 /∗ Note that heap optimization is used to speed

up the computation ∗/
26 e← (nj , ni);
27 for each possible travel time w ∈ [λi - T , θi - T ] do
28 q← Compute-Minimum-Fuel-Cost(e, T , w, vmax(e, t), tk, tm);
29 optj→i(T+w)←min{optj→i(T + w),τj + fj,i(T ) + q.cj,i(T , q.v)};
30 if opti(T + w) > optj→i then
31 // if so, we use optj→i to update opti(T + w)
32 opti(T + w).val← optj→i(T + w);
33 opti(T + w).pre← nj ;
34 opti(T + w).q← q;
35 opti(T + w).preCost← τj ;

36 τe←mint∈[λe,ta]{opte(t).val};
37 if τe =∞ then
38 return "No feasible routes exist!";

39 else
40 te←min{t|opte(t).val = τe, t ∈ [λe, ta]};
41 return opte(te), τe, te;

Figure 5.4: Algorithm 4: COMPUTE-MINIMUM-COST (Step 4).
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19), if waiting is disallowed at nj , let τj denote the current optj(T ).val, i.e., the minimum

cost when arriving at node nj exactly at time T (Lines 20 - 21); if waiting is allowed at

nj , then let τj denote the current minimum cost of optj(t).val among all t ∈ [λj , T ], i.e.,

the minimum cost when arriving at node nj before or at time T (Lines 22 - 25).

Heap optimization to obtain τj . In the case that waiting is allowed at nj , the traditional

way to obtain τj is to perform a loop to find the minimum value of optj(t).val for all

t∈[λj , T ] (Line 24), whose time complexity is O(T − λj), and whose time complexity

is O(θj − λj) in the worst case. In our implementation, in order to compute the value of

τj more efficiently, we use a binary min-heap for each node nj to maintain the values of

optj(t) for all t ∈ [λj , T ]. The min-heap always maintains the specific optj(t) with the

minimum value of optj(t).val among all t ∈ [λj , T ] as the root element. Thus finding the

minimum takes only O(1) time. Each insertion and each deletion take O(log(θj − λj))

time at the node nj . Therefore, compared to the plain way of finding the minimum, the

min-heap structure helps reduce much time complexity.

Next, for edge e = (nj, ni), since the domain of the arrival time at node ni is [λi, θi],

then the range of travel time of this edge e, i.e., w, should be [λj − T , θj − T ]. Hence,

Lines 27 - 35 of Algorithm 4 (COMPUTE-MINIMUM-COST) perform a loop for each

travel time stamp w. Line 28 calls Algorithm 1 (Compute-Minimum-Fuel-Cost) to obtain

a quadruple which specifies the minimum fuel cost q.cj,i(T, q.v) when the travel time of

edge e is exactly w. If the current optj→i(T +w) is larger than τj+fj,i(T )+q.cj,i(T, q.v),

then Line 29 uses τj + fj,i(T ) + q.cj,i(T, q.v) to update optj→i(T +w). Finally (Lines 30

- 35), we use optj→i(T + w) to update opti(T + w). Let t = T + w, then opti(T + w) is

rewritten as opti(t). Note that the current opti(t) is not guaranteed to be the final optimal

(or correct) OC-function. In conclusion, Algorithm 4 updates opti(t) iteratively for node

ni by three loops: the first-layer loop (Lines 16 - 35) iterates each incoming neighbor nj

of ni; the second-layer loop (Lines 19 - 35) iterates each departure time T from nj; the

third-layer (Lines 27 - 35) loop iterates each w ∈ [λi−T, θi−T ]. In this way, opti(t).val

approaches its optimal value.

In the last iteration of the outermost loop, Algorithm 4 processes the last node of Vec,
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i.e., the destination node ne. During this iteration, Algorithm 4 processes the incoming

edges of ne and updates opte(t) iteratively.

Ultimately, Lines 39 - 41 of Algorithm 4 find opte(te) and corresponding time stamp

te.

5.2.5 Backtracking the Cost-Optimal Route

Algorithm 5: BACKTRACK-OPTIMAL-ROUTE(GT ,opte(te),te)

Input: GT ,opte(te),te
Output: Cost-optimal route R

1 R← an empty vector of sextuples <node, tarr, γ, q, minCost, next_node>;
2 ReverseR← an empty vector of quintuples <ni, ti, γi, q, opti>;
3 ni← ne;
4 ti← te;
5 γi← 0;
6 q← NULL;
7 opti← opte(te);
8 while ni 6= ns do
9 ReverseR.push_back(<ni, ti, γi, q, opti>);

10 nj ← opti.pre ;
11 tj ←min{t|optj(t).val = opti.preCost, t ∈ [λj , opti.q.T ]};
12 γj ← opti.q.T − tj ;
13 q← opti.q;
14 optj ← optj(tj);
15 i← j;
16 if ni = ns then
17 ReverseR.push_back(<ni, ti, γi, q, opti>);
18 break;

19 for id = ReverseR.size() − 1 to 0 do
20 node← ReverseR[id].ni;
21 tarr ← ReverseR[id].ti;
22 γ← ReverseR[id].γi;
23 q← ReverseR[id].q;
24 minCost← ReverseR[id].opti.val;
25 if id equals 0 then
26 next_node← NULL;

27 else
28 next_node← ReverseR[id− 1].ni;

29 R.push_back(<node,tarr,γ,q,minCost,next_node>);

30 return R;

Figure 5.5: Algorithm 5: BACKTRACK-OPTIMAL-ROUTE (Step 5).

104



5.2. Algorithms

We now present the algorithm for the last step of the ALG-COTER, i.e., backtracking the

cost-optimal route R from destination ne to source ns and computing the waiting time

γ(ni) for every node ni ∈ R such that cost(R) = opte(te).val.

We first introduce the data structure. The reversed optimal route is stored in a vector

named “ReverseR”. Each element of this vector encapsulates: (i) the current node ni,

(ii) the optimal arrival time ti at ni, (iii) the waiting time γi, (iv) a quadruple q and (v)

a quadruple opti. The quadruple q specifies a user leaves the previous node at departure

time q.T with speeds v and arrives at ni at time instance ti. The quadruple opti equals

to opti(ti) specifying the minimum cost opti.val when arriving at ni at time ti, the pre-

vious node opti.pre, opti.q, and opti.preCost, as discussed in the second paragraph in

Section 5.2.4.1.

Then we useR to store the optimal route from source ns to destination ne by traversing

each element inReverseR backward. Each element ofR encapsulates (i) the current node

node; (ii) the arrival time Arr(node) = tarr at node node; (iii) the waiting time γ(node)

at node node, (iv) a quadruple q which specifies how a user departs from node to the

next node, i.e., at which departure time q.T , at which speeds q.v, etc; (v) the current

minimum cost minCost when arriving at node at tarr; (vi) the successor node next node.

Observe R contains very detailed information about the cost-optimal route. Therefore it

is guaranteed that a user following route R step by step spends the minimum cost (fuel

cost and toll fee).

The algorithm is denoted as BACKTRACK-OPTIMAL-ROUTE (Algorithm 5) and

depicted in Fig. 5.5. The key idea of the BACKTRACK-OPTIMAL-ROUTE algorithm

is to find the predecessor iteratively for every node of the optimal route backward from

destination ne to source ns. Initially (Lines 3 - 7), ni ← ne. We initialize opti(ti) as

opte(te) and ti as te. In every iteration, Lines 10 - 15 are used to find the predecessor nj

of ni in the optimal route R. Thereby nj = opti(ti).pre is the predecessor of ni in the

optimal route R, opti(ti).q.T is the departure time from nj , opti(ti).q.v is the speed with

which the user travels on edge (nj , ni). tj = min{t|optj(tj).val = opti(ti).preCost, t ∈

[λj, opti(ti).q.T ]} is the arrival time at nj in the optimal route R, and optj(tj).val =
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opti(ti).preCost. Such a predecessor nj is guaranteed to exist, since opti(ti).val is com-

puted by Algorithm 4 using optj(tj).val as expressed in Eq. 5.12. The waiting time at nj

∈ R is given as Eq. 5.13.

γ(nj) = opti(ti).q.T − tj (5.13)

The ‘while-loop’(Lines 8 - 18) in Algorithm 5 finds the predecessor node one by one

from the destination ne, and terminates when the source ns is found as a predecessor

(Lines 16 - 18), i.e., ni = ns. Here, all the nodes in the optimal route are found and the

waiting time γ(ni) for ni ∈ R is computed.

The ‘for-loop’ (Lines 19 - 29) in Algorithm 5 traverses each element of ReverseR

backward. For each iteration, Lines 20 - 28 extract the current node node, the optimal

arrival time tarr at node node, the waiting time γ at node, the quadruple q which specifies

how a user departs from node to the next node, and the next node next node. Line

29 stores each node of the optimal route from source ns to destination ne with related

information into the vector R. The first element in R is a sextuple containing ns, tarr, γ,

q,minCost, next node, and corresponds to the last element inReverseR. The ‘for-loop’

terminates when the sextuple which contains ne is pushed into R. Note that for node ne

(Lines 25 - 26), the successor node next node is set as NULL.

5.2.6 Time Complexity Analysis

We analyze the time complexity of our ALG-COTER algorithm (Algorithm 2) in this

subsection.

For Step 1 and Step 2, the single-source shortest path algorithm, namely, Fibonacci-

heap optimized Dijkstra, is used. Its time complexity in the worst case is O(|V | log |V |+

|E|).

For Step 3, i.e., TOPOLOGICAL-SORT algorithm (Algorithm 3), as analyzed in Sec-

tion 5.2.3, the time complexity in the worst case is O(|V |+ |E|).

For Step 4, i.e., computing the minimum cost opti(t) for node ni. Algorithm 4

COMPUTE-MINIMUM-COST (Fig. 5.4) conducts a loop (Lines 6 - 35) to process each
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node in the topologically sorted vector Vec. The maximum size of Vec (in the worst case)

is |V |. (In fact, from our experiments, we find the size of Vec is usually much smaller than

|V |, i.e., |Vec| << |V |.) In the it-th iteration of the first-layer loop, the current node ni is

Vec[it], and Algorithm 4 performs a second-layer loop (Lines 16 - 35) to process ni’s in-

coming edges. It is easy to know that the number of Vec[it]’s incoming edges is at most it,

that is, the number of nodes which locate before Vec[it] in Vec. Thus the total time com-

plexity for the first-layer loop and the second-layer loop is
∑it=|Vec|−1

it=0 it = |Vec|2−|Vec|
2

. (In

the worst case, the total number of operations of the first-layer loop and the second-layer

loop is O(|V |+ |E|), which means in the worst case, the whole road network is involved

in the topological sorting.) For each incoming neighbor nj , the departure time T from nj

may have at most (θj − λj) possible time stamps. For every time stamp T , Algorithm 4

finds τj by heap optimization with time complexity O(log(θj − λj)), and then performs

another loop (Lines 27 - 35) for each possible travel time w ∈ [λi − T , θi − T ]. For each

w, Algorithm 4 calls Algorithm 1 (Compute-Minimum-Fuel-Cost) once. The time com-

plexity of Algorithm 1 is O((m− k + 1)2) since we can simply use genetic algorithm to

solve the nonlinear optimization problem. Therefore, the time complexity of Algorithm 4

is:

T (Step 4)

= O(min{ |Vec|2 − |Vec|
2

, |V |+ |E|}) · max
nj∈Vec

{θj − λj}

· (O(log(θj − λj)) + (O(θi − T − (λi − T )) ·O((m− k + 1)2)))

≤ O(min{ |Vec|2 − |Vec|
2

, |V |+ |E|})

· (ta − td) · (O(log(ta − td)) +O(ta − td) ·O(p2))

= O((ta − td)2p2 ·min{ |Vec|2 − |Vec|
2

, |V |+ |E|})

For Step 5, i.e., backtracking the optimal route R and computing the waiting time for

each node in R, which is shown in Fig. 5.5. The time complexity of the ‘while-loop’

and the time complexity of the ‘for-loop’ are O(|Vec|), and in the worst case, O(|Vec|) =

O(|V |).

In conclusion, the total time complexity of our ALG-COTER algorithm in the worst
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case is given as follows:

T (ALG-COTER)

= O(|V | log |V |+ |E|) +O(|V |+ |E|)

+O((ta − td)2p2 · (min{ |Vec|2 − |Vec|
2

, |V |+ |E|}))) +O(|V |)

= max{O(|V| log |V|+ |E|), O((ta − td)2p2 min{ |Vec|2 − |Vec|
2

, |V|+ |E|})}

Discussion: The above equation gives the upperbound of the time complexity of our

algorithm in the worst case. Actually, the number of the candidate nodes |Vec| is much

smaller than |V |, usually no more than 100; and the degree of each node in road networks

is very small, no more than 10. Therefore, |Vec|2−|Vec|
2

< 103 << |V |+ |E|.

5.3 Experiments

In this section, we study the performance of our proposed ALG-COTER algorithm.

5.3.1 Experimental Datasets

We use three real-world road networks: City of Oldenburg (OL), City of San Joaquin

County (TG) Road Network†, and Florida (FLA) Road Network‡. OL has 6,105 nodes

and 7,035 edges. TG has 18,263 nodes and 23,874 edges. FLA has 1,070,376 nodes and

2,712,798 edges. The average lengths of edges in OL, TG, and FLA road network are

73.679, 34.9, and 0.2043 km, respectively. Note that each road segment in the original

FLA corresponds to two edges which have opposite directions. we only preserve the

unidirectional edges and delete the redundant opposite edges to avoid loops. Thus the

number of valid edges in FLA is halved to 1,456,400, as given in Table 5.2. Meanwhile

we get a directed acycline graph of FLA, which satisfies the requirement of topological

sorting.

†http://www.cs.utah.edu/%7Elifeifei/SpatialDataset.htm
‡http://www.dis.uniroma1.it/challenge9/download.shtml
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5.3.2 Simplified Toll Fee Function for Experiments

Note that our algorithm can deal with any toll fee function with respect to the departure

time as long as the toll fee function is an arbitrary single-valued function. For the sake of

convenience, without loss of generality, we temporarily use the following toll fee function

in our experiments:

fi,j(T ) =



f1; T0 ≤ T ≤ T1

f2; T1 < T ≤ T2

· · ·

fl; Tl−1 < T ≤ Tl

(5.14)

where, [T0, Tl] is the time domain of function fi,j(T ). fx (1 ≤ x ≤ l) is a constant

value, which represents the value of fi,j(T ) when T ∈ (Tl−1, Tl]. Specifically, T0 = td, Tl

= ta.

5.3.3 Experimental Objective and Perspective

We evaluate the efficiency, sensitivity, and scalability, of our ALG-COTER algorithm

from the following aspects: (i) running time with respect to the number of nodes; (ii)

running time with respect to the number of candidate nodes and the number of candi-

date routes; (iii) running time with respect to the distances between the source ns and

destination ne; (iv) running time with respect to the length of time interval [td, ta]; (v)

running time with respect to the average number of piecewise intervals of fi,j(T ); (vi)

running time with respect to the number of piecewise intervals of vmax(e, t); (vii) running

time with respect to the average length of edges; (viii) running time of ALG-COTER vs.

running time of a baseline method.

Table 5.2: Input road networks.
graph ]nodes ] valid edges average length of edges

OL 6,105 7,035 73.679 (km)

TG 18,263 23,874 34.9 (km)

FLA 1,070,376 1,456,400 0.2034 (km)

Experiments are implemented in C/C++ Microsoft Visual Studio 2010 on a machine
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with an Intel(R) Xeon(R) CPU X5650 2.67GHz, 6 cores and 24.0 GB of memory running

Windows 7 professional.

5.3.4 Default Values of Parameters and Experimental Setup

Table 5.3 lists the default values of some parameters. All the experiments below are

conducted by changing the value of one parameter while keeping the default values of

other parameters.

Table 5.3: Default values of some parameters.
parameter default value

td 0

ta 1440 min

l: number of segments of fi,j(T ) for T ∈[td, ta] 100

p: number of segments of vmax(e, t) for t ∈[td, ta] 24

Vmax 130 (km/h)

Vmin 40 (km/h)

number of candidate routes from ns to ne 4 (OL & TG); 3 (FLA)

number of candidate nodes in Vec for OL 9 ∼ 10

number of candidate nodes in Vec for TG 8 ∼ 10

number of candidate nodes in Vec for FLA 17

avglen of OL, TG, FLA 73.68, 34.9, 0.2034 (km)

distance from ns to ne in OL, TG, FLA 600, 75, 3 (km)

Unless specified in particular, we conduct experiments on the original OL or TG or

FLA network, which means the number of nodes, number of edges and avglen of OL, TG

and FLA are the same as those in Table 5.2. In our experiments, td is always set as 0, and

ta is set as 1440 by default. Note that we use minutes to measure the time stamps.

Notice that the default value of p, i.e., number of segments of vmax (e, t), is 24. As

mentioned in Definition 16, Vmax(e, t) = 130 km/h and Vmin(e, t) = 40 km/h. Hence

we assume the values of vmax(e, t) are from the array v[10] = {130, 120, 110, 100, 90,

80, 70, 60, 50, 40}. We divide the whole time domain into p = 24 equal intervals, and

the length of each interval is ta−td
p

minutes. For each time interval [tk, tk+1] where k ∈

[0, p − 1], the maximum speed allowed on edge e during this interval, i.e., vmax(e, t), is
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set as v[(e.ID + k)%10], where e.ID is an integer denoting the identifier of edge e. In this

way, we guarantee that the number of segments of vmax(e, t) for each edge e is a fixed

number, equal to p.

Without loss of generality, likewise, we set the values of fi,j(T ) for T ∈ [td, ta] for

each edge e = (ni, nj) by Eq. 5.14. Suppose the number of segments of fi,j(T ) for edge e,

i.e., l, is 100, then the whole time domain [td, ta] is divided into 100 equal time intervals.

We use an array f [4] = {20, 15, 10, 5} to simulate the values of the toll fee for each edge.

For T ∈ [Tx−1, Tx] where x ∈ [1, l], the value of fi,j(T ) is set to be f [(e.ID+(x−1))%4],

where e.ID is the identifier of edge e. In this way, we guarantee the number of segments

of fi,j(T ) for each edge is a fixed value, equal to l.

Note that we keep the default value of the number of candidate routes as 4 for OL and

TG road networks, and the default value of the number of candidate routes for FLA road

network is 3. Likewise, we keep the default value of the number of candidate nodes in Vec

for the OL, TG, FLA networks as 9∼10, 8∼10, 17, respectively. In fact, in order to study

the influence of the number of candidate routes on the running time, we compute all the

routes from ns = 0 to all nodes reachable by it for the OL network, and compute all the

routes from ns = 23 to all nodes reachable by it for the TG network, and we also compute

all the routes from ns = 83 to all nodes reachable by it for FLA network, regardless of

the time constraint, in our preprocessing step. Thus, we have known there are how many

routes from ns = 0 to any node in the OL network, how many routes from ns = 23 to

any node in the TG network, and how many routes from ns = 83 to any node in the

FLA network in advance. Thereby, we can control the number of candidate routes in our

experiments.

5.3.5 Experimental Results

We now report the detailed experimental results.
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5.3.5.1 Exploring the influence of the number of nodes

We first generate smaller subgraphs from the three original road networks. The number

of nodes in the subgraphs of OL increases from 2K to 6K. The number of nodes in the

subgraphs of TG increases from 2K to 18K. The number of nodes in the subgraphs of

FLA increases from 0.2 million to 1.07 million. The process of generating smaller graphs

is as follows. Suppose the number of nodes in the smaller graph is Ni. From the original

nodes set V , we preserve the first Ni nodes and abandon the remaining nodes. From the

original edge set E, we only preserve the edges whose starting node and ending node

are among the first Ni nodes. Thus, a subgraph is generated. The details of generated

subgraphs of OL, TG and FLA are given in Table 5.4, 5.5, and 5.6, respectively.

The number of piecewise intervals of fi,j(T ) and number of piecewise intervals of

vmax((ni,nj),t) are set as their default values 100, and 24. To better reflect the relation

between the runtime of our ALG-COTER and the number of nodes of a graph, we conduct

5 groups of experiments: the entire time interval [td, ta] is set as [0, 600], [0, 800], [0,

1000], [0, 1200], and [0, 1440], respectively. In each group, as said in the last paragraph

of Section 5.3.4, we always choose suitable ne to guarantee the number of candidate

nodes in Vec and the number of candidate routes from ns to ne are their default values in

Table 5.3, to avoid the effects of the number of candidate nodes or routes on runtime.

In Fig. 5.6, we explore the influence of the number of nodes on the running time on the

OL, TG, and FLA road network, respectively. As shown in Fig. 5.6(a), 5.6(b), and 5.6(c),

the running time of ALG-COTER is hardly affected by the changes of the total number

of nodes, which means the running time has a low sensitivity to the number of nodes in

a graph. The reason is that the difference of the number of candidate nodes is only 1 or

2, and the number of candidate routes is kept the same, which means the search space of

our ALG-COTER algorithm does not change much and guarantees the increases of nodes

and edges do not contribute to the search space of the subsequent algorithms (Algorithms

4 and 5). Meanwhile, we can also find our algorithm is scalable to the number of nodes

Ni.
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Figure 5.6: The runtime with respect to the number of nodes.

5.3.5.2 Exploring the influence of the number of candidate nodes in Vec and candi-
date routes

We carry out experiments to study the influences of the number of candidate nodes in

Vec and candidate routes from the source ns to the destination ne on running time. From

Section 5.3.4, if we set ns as a fixed node, then we can group the nodes ni that are

reachable by ns according to how many routes existing from ns to ni in our preprocessing

step. Meanwhile, if we set ns as a fixed node, then we can also group the nodes by how

many candidate nodes in Vec from ns to ni.

For the OL road network, we set ns = 0, and we find that the number of routes from

ns to any other node reachable by ns ranges between 1 to 16. We plot the number of can-

didate routes as a function of the identifier of ne in Fig. 5.7(a). The numbers of candidate

routes which have high frequency are 1, 2, 3, 4, 5, and 6. However, the numbers such as

7, 8, 10, 12, 16 also exist although they have relatively low frequency. Therefore, in order

to study the effects of the number of candidate routes, we depict the average running time

as a function of the number of candidate routes in Fig. 5.8(a). Meanwhile, the numbers

of candidate nodes in Vec which have high frequency are 6, 7, 9, 13, and 26, respectively.

Hence, we also depict the average running time as a function of the number of candidate

nodes in Vec, as shown in Fig. 5.9(a).

For the TG road network, we set ns = 23, and we find many nodes are reachable by ns

and a great many routes exist from ns to its reachable nodes, as shown in Fig. 5.7(b). The

numbers of routes which have high frequency are 1, 2, 3, 4, 6, 8, 16, 112, 280, 840, 1680,

4480 and 10080. In fact, even if the number of routes is large, the number of candidate
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Figure 5.7: The number of candidate routes with respect to ne from fixed ns.
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Figure 5.8: The runtime with respect to the number of candidate routes.

nodes in Vec is still small. For instance, from ns = 23 to ne = 6805, there are 10080

different routes but the number of candidate nodes is only 76. Imagine that for Algorithm

4, if we perform iterations for each candidate route instead of performing iterations for

candidate nodes, the time complexity will be definitely much higher. This fact strongly

demonstrates that the topological sorting in Step 3 can reduce the search space of Step 4.

In order to explore the effects of the number of candidate routes, we depict the average

running time as a function of the number of candidate routes in Fig. 5.8(b). Meanwhile,

the numbers of candidate nodes in Vec which have high frequency are 2, 4, 8, 14, 17, 41,

44 and 52, respectively. Hence, we also depict the average running time as a function of

the number of candidate nodes in Vec, as shown in Fig. 5.9(b).

For the FLA road network, we set ns = 83, and we find the number of routes from

ns to other nodes ranges between 1 to 21. We plot the number of candidate routes as a

function of ne in Fig. 5.7(c). The numbers of candidate routes which have high frequency

are 1, 3, 6, 12 and 21. We depict the average running time as a function of the number of

candidate routes in Fig. 5.8(c). We also depict the average running time as a function of

the number of candidate nodes in Vec while keeping the number of routes unchanged, as
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Figure 5.9: The runtime with respect to the number of candidate nodes.

shown in Fig. 5.9(c).

In Fig. 5.8 and 5.9, we conduct 5 groups of experiments: ta is set as 600, 800, 1000,

1200, and 1440, respectively. Observe the running time increases when the number of

candidate routes or the number of candidate nodes increases in each group of experiment.

First, it is straightforward that if more candidate routes exist, which means each node

may have more incoming edges, then Algorithm 4 (COMPUTE-MINIMUM-COST) must

perform more iterations for the second-layer loop (Lines 12 - 35). Second, if there exist

more candidate routes from ns to ne, more nodes may be involved, which means the size

of Vec may be larger and thus Algorithm 4 (COMPUTE-MINIMUM-COST) must perfor-

m more iterations for the outermost loop (Lines 6 - 35). This is why the average runtime

increases when the number of candidate routes increases in each group of experiment

shown in Fig. 5.8.

Likewise, from Algorithm 3 (TOPOLOGICAL-SORT) and Algorithm 4 (COMPUTE-

MINIMUM-COST), we know that if more candidate nodes exist in the topologically sort-

ed vector Vec, which means there are more nodes involved from ns to ne, then the run-

ning time should be relatively larger, since Algorithm 3 (TOPOLOGICAL-SORT) may

have larger depth and Algorithm 4 (COMPUTE-MINIMUM-COST) may have to perfor-

m more iterations. This is why the average running time increases when the number of

candidate nodes in Vec increases in each group of experiment shown in Fig. 5.9.

From Fig. 5.8 and 5.9, we can also find that our algorithm is efficient even when the

number of routes or number of nodes in Vec is very large. In addition, we also see our

algorithm is scalable to the number of candidate routes.
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Figure 5.10: The runtime with respect to the distances between ns and ne.
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Figure 5.11: The runtime with respect to the length of time interval [td, ta].

5.3.5.3 Exploring the influence of the distances between ns and ne

We conduct a group of experiments to study the influence of the distances between ns and

ne on runtime. Usually, the number of edges in a route from ns to ne may be affected

when the distances between ns and ne increase.

If the number of edges from ns to ne increases, then (i) the recursive depth of Algo-

rithm 3 (TOPOLOGICAL-SORT) is larger and thus Algorithm 3 search more edges to

traverse ne until ns; (ii) Algorithm 4 (COMPUTE-MINIMUM-COST) computes opti(t)

iteratively for more edges; and (iii) the optimal route may contain more nodes and thus

Algorithm 5 (BACKTRACK-OPTIMAL-ROUTE) performs more iterations to get the w-

hole optimal route.
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Figure 5.12: The runtime with respect to the average number of piecewise intervals of

fi,j(T ).
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Figure 5.13: The runtime with respect to the number of piecewise intervals of vmax(e, t).

As analyzed above, the runtime should increase if the distance between ns and ne

increases. In Fig. 5.10(a), 5.10(b), 5.10(c), the distance from ns to ne ranges from 37

to 600 km, 37 to 300 km, 3 to 96 km, for OL, TG, and FLA. Observe that the running

time is still small even when the distance between ns to ne is very large, which proves the

efficiency of our algorithm. Meanwhile, observe that the running time increases when the

distance between ns and ne increases on all road networks, which indicates our algorithm

is scalable with respect to the distance from ns to ne.

5.3.5.4 Exploring the influence of the length of time interval [td, ta]

We conduct experiments to study the influences of the length of time interval [td, ta] on

the running time. The earliest departure time td is fixed as 0, while the latest arrival time

ta ranges from 600 to 1440. avglen is the average length of edges of a road network. From

Table 5.2, we know avglen is originally 73.679, 34.9 and 0.2034 for OL, TG and FLA.

In Fig. 5.11(a), we keep the number of nodes and number of edges the same, and
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set the length len(e) of each edge e to len(e)/16, len(e)/8, len(e)/4, len(e)/2 and len(e)

respectively. Thus avglen of OL becomes 73.679
16

= 4.605, 73.679
8

= 9.21, 73.679
4

= 18.42,

73.679
2

= 36.84, and 73.679, respectively.

In Fig. 5.11(b), we set the length len(e) of each edge e to len(e)/8, len(e)/4, len(e)/2,

len(e) and len(e)*2, respectively. Thus avglen of TG becomes 34.9
8

= 4.363, 34.9
4

= 8.726,

34.9
2

= 17.45, 34.9, and 34.9*2 = 69.8, respectively.

In Fig. 5.11(c), we set the length len(e) of each edge e to len(e), len(e)*4, len(e)*8,

len(e)*16 and len(e)*32, respectively. Thus avglen of FLA becomes 0.2034, 0.2034*4 =

0.8136, 0.2034*8 = 1.6272, 0.2034*16 = 3.2544, and 0.2034*32 = 6.5088, respectively.

From Fig. 5.11, we see the running time is still small when the time interval is large,

which demonstrates our algorithm is efficient. Observe that the running time increases

with the increase of the length of the time intervals, for different average lengths of edges.

The reason is Algorithm 4 (COMPUTE-MINIMUM-COST) performs a loop (Lines 19 -

35) for each departure time instance T ∈ [λi, θi]. As the time interval [td, ta] becomes

wider, the interval [λi, θi] becomes wider accordingly, since a user has looser time con-

straint and if ta becomes larger, then θi becomes larger accordingly. Hence the loop (Lines

19 - 35) contains more iterations, and thus, more running time is required. Moreover,

Fig. 5.11 indicates our algorithm is scalable to the length of the entire time interval.

5.3.5.5 Exploring the influence of the average number of piecewise intervals of
fi,j(T )

Recall we take a simplified model of the toll fee function in Eq. 5.14 for example in our

experiments. We study the influence of the number of piecewise intervals of fi,j(T ) on

runtime. Let l represent the number of segments of fi,j(T ) for T ∈ [td, ta] in Eq. 5.14.

We vary l according to a set {30, 100, 300, 600, 1200} while the entire time interval [td,

ta] does not change. The lengths of the piecewise intervals of fi,j(T ) are set as follows:

if (ta − td)%l = 0, then the length of each piecewise interval is ta−td
l

; otherwise, we set

the length of each of the first bl/2c piecewise intervals as b ta−td
l
c, and set the length of

each of the rest b ta−td−b
ta−td

l
c·bl/2c

d ta−td
l
e

c piecewise intervals as d ta−td
l
e; and the length of the
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last interval is (ta − td − b ta−tdl
c · bl/2c)%d ta−td

l
e.

Figure 5.12 shows that the runtime is not affected by l. The reason is that Algorithm 4

(COMPUTE-MINIMUM-COST) processes each time instance T in the time interval [λi,

θi] (Line 19), which is independent of the number of piecewise intervals of fi,j(T ). In

other words, our algorithm is not sensitive to the number of piecewise intervals of fi,j(T )

and that’s why our algorithm allows arbitrary toll fee functions.

5.3.5.6 Exploring the influence of the number of piecewise intervals of vmax(e, t)

We study the runtime with respect to the number of piecewise intervals of vmax(e, t), i.e.,

p. The entire time interval [td, ta] = [0, 1440] is kept unchanged while the value of p is

set to 120, 144, 240, 360, 480, 720 and 1440, for OL or TG; and the value of p is set to

12, 24, 48, 60, and 96, for FLA. Thus the length of each piecewise interval of vmax(e, t)

is 12, 10, 6, 4, 3, 2 minutes and 1 minute for OL and TG; and the length of each interval

is 120, 60, 30, 24, and 15 minutes for FLA. As the number of candidate routes affects

the runtime, we use different groups of ns and ne (according to the number of candidate

routes). The two groups shown in Fig. 5.13 contain 4 and 8 candidate routes for OL and

TG, and contain 3 and 21 candidate routes for FLA.

From Fig. 5.13, we observe that the runtime increases with the increase of the number

of segments of vmax(e, t). This indicates that our algorithm is sensitive and scalable to

the number of segments of vmax(e, t). This is since when the number of segments of

vmax(e, t) is large, the travel time on edge e spans more piecewise intervals of vmax(e, t),

which means (m−k+1) becomes larger. Under such circumstances, the dimensions of v

and t get larger, and thus Algorithm 1 (Compute-Minimum-Fuel-Cost) shown in Fig. 5.1

has to take more steps for solving the nonlinear programming optimization problem (Line

1), which leads to higher runtime. In addition, observe that under the same conditions,

running time on OL is always higher than that on TG. This is because the lengths of most

edges in OL are longer than TG.
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Figure 5.14: The runtime with respect to the average length of edges.

5.3.5.7 Exploring the influence of the average length of edges

In Fig. 5.14, we depict the runtime as a function of the average length of edges.

For the OL road network, the number of nodes and number of edges are fixed as 6105

and 7035, but the length len(e) of each edge e is set to len(e)/16, len(e)/8, len(e)/4,

len(e)/2, len(e), respectively. Hence the average length of edges in OL is 4.605, 9.21,

18.42, 36.84, 73.679 km, respectively.

For the TG road network, the number of nodes and the number of edges are fixed as

18,263 and 23,874, but the length of each edge e is set to len(e)/8, len(e)/4, len(e)/2,

len(e), len(e)*2, respectively. Hence the average length of edges in TG is 4.363, 8.726,

17.45, 34.9, 69.8 km, respectively.

For the FLA road network, the number of nodes and the number of edges are fixed

as 1,070,376 and 1,456,400, but the length of each edge e is set to len(e), len(e)*4,

len(e)*8, len(e)*16 and len(e)*32, respectively. Thus avglen of FLA becomes 0.2034,

0.8136, 1.6272, 3.2544, 6.5088, respectively.

The number of piecewise intervals of vmax((ni, nj), t) is 24. The entire time inter-

val [td, ta] ranges from [0, 600], to [0, 1440]. As shown in Fig. 5.14(a), 5.14(b), and

5.14(c), we find ALG-COTER runs fast with respect to different avglen on the three road

networks. In addition, ALG-COTER runs faster if the average length is shorter, on the

three road networks. This shows our algorithm is efficient, and is sensitive and scalable

to the average length of edges.
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Figure 5.15: ALG-COTER vs. “BM”.

5.3.5.8 Comparison with a baseline method

As our problem of COTER is novel, there are no baseline method for solving COTER.

However, in order to show the superiority of our ALG-COTER algorithm, we design a

baseline method which does not use topological sorting algorithm.

A baseline method. To distinguish from our ALG-COTER method, we name this base-

line method as “BM”. “BM” also has five steps and its first two steps and the last step

are the same as that of our ALG-COTER. The differences between our ALG-COTER

and “BM” lie in Step 3 and Step 4. For Step 3, “BM” computes all feasible candidate

routes from ns to ne instead of computing the topological order of candidate nodes. For

step 4, “BM” enumerates all candidate routes and in each iteration, it uses the recurrence

formula to calculate the values of the optimal functions of the descendant nodes until the

destination node ne is reached.

We compare “BM” with our ALG-COTER algorithm. As shown in Fig. 5.15, we see

that the runtime of “BM” is much higher than that of ALG-COTER. Therefore, we con-

clude that our ALG-COTER algorithm is more efficient than the baseline method “BM”.

These results strongly demonstrate the superiority and efficiency of our ALG-COTER

algorithm.

5.4 Conclusion

We resolve the problem of the cost-optimal routing in time-dependent road network-

s (COTER) with time and speed constraints in this chapter. We allow waiting only at
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some nodes, and at some other nodes, waiting is strictly forbidden. We consider two

kinds of cost, i.e., fuel consumption cost and toll fee. We employ nonlinear programming

optimization technique to compute the minimum fuel consumption on an edge when the

travel time of this edge is fixed. We allow arbitrary single-valued toll fee functions with

respect to different departure time for each edge. We propose an approximate ALG-

COTER algorithm to solve COTER. Our ALG-COTER first computes the earliest arrival

time λi for each node ni and the latest arrival time θi for each candidate node ni, by

using the Fibonacci-heap optimized Dijkstra’s algorithm. Subsequently, ALG-COTER

conducts the topological sorting of all the candidate nodes that are reachable from ns

and meanwhile can reach ne under time constraint. Afterwards, ALG-COTER uses dy-

namic programming, min-heap optimization, and nonlinear optimization techniques to

compute the optimal cost functions opti(t) at each feasible arrival time instance t ∈ [λi,

θi] for each candidate node ni iteratively, according to their topological sorting and the

recurrence formula of their OC-functions, and finally obtains the minimum value of the

optimal cost function at ne. Ultimately, ALG-COTER traces back the cost-optimal route

and computes the waiting time at each node in the optimal route. We also analyze the

time complexity of our ALG-COTER algorithm. We evaluate the efficiency, sensitivity,

and scalability of our ALG-COTER algorithm, by studying the influences of different

parameters on running time. Experimental results on large-scale data sets demonstrate

that our algorithm can find the minimum-cost route from a source to a destination under

time and speed constraints efficiently, and is scalable to different parameters which have

influences on the running time.
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Table 5.1: Notations
Notation Meaning
GT time-dependent road network GT = (V , E, L, W , C, F ), where V is the

set of all nodes in GT ; E is the set of edges in GT ; L is the set of edge
lengths; W is the set of the travel time for traversing each edge; C is the
set of the fuel consumption for traversing each edge; F is the set of the
toll fee cost for traversing each edge.

Vw; Vnw the set of nodes which allow waiting; the set of nodes which disallow
waiting

ns; ne the source node; the destination node
td; ta the earliest departure time from ns; the latest arrival time at ne
wi,j(T,v) the travel time for traversing edge (ni, nj) with departure time T and

speed v for t ∈ [T, T + wi,j(T,v)]
ci,j(T,v) the fuel cost for traversing edge (ni, nj) with departure time T , and speed

v for t ∈ [T, T + wi,j(T,v)]
vmax(e, t) the maximum velocity allowed on edge e at time t
p the number of segments of vmax(e, t)
l the number of segments of fi,j(T )
vi the maximum velocity allowed during time interval (Ii, Ii+1] for

i ∈ [0, p−1]
t the column vector of travel time on one edge as given in Eq. 5.6
T the column vector of departure time on one edge as given in Eq. 5.7
v the row vector of speed on one edge as expressed in Eq. 5.8
Vmax the upperbound of the maximum velocities allowed on each edge: 130

km/h
Vmin the lowerbound of the maximum velocities allowed on each edge: 40

km/h
avglen the average length of the edges in GT

γ(ni) the waiting time at node ni
λi; θi the earliest arrival time at node ni; the latest arrival time at node ni
N−(ni);
N+(ni)

the set of ni’s incoming neighbors; the set of ni’s outgoing neighbors

optj→i(t) the optimal (minimum) cost if arriving at ni at t through edge (nj ,ni)
opti(t) the optimal-cost-function of ni (a quadruple 〈val, pre, q, preCost〉)
te the smallest time stamp at which opte(t).val can be minimized for t∈[λe,

ta]

Table 5.4: Subgraphs of OL.
subgraph ID ]nodes ]edges

1 2,001 2,285
2 3,001 3,421
3 4,001 4,577
4 5,001 5,749

5 (original OL) 6,105 7,035
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Table 5.5: Subgraphs of TG.
subgraph ID ]nodes ]edges

1 2K 1,335
2 6K 5,306
3 10K 10,235
4 14K 16,113

5 (original TG) 18,263 23,874

Table 5.6: Subgraphs of FLA.
subgraph ID ]nodes ]edges

1 200,000 252,772
2 400,000 506,768
3 600,000 764,006
4 800,000 1,017,156

5 (original FLA) 1,070,376 1,456,400
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Chapter 6

Conclusions and Future Work

We conclude this thesis and propose several promising research topics for future work in

this chapter.

6.1 Conclusions

This research work investigates three LBSs related spatial queries among moving objects,

aiming to propose novel solutions to proximity detection, points of interests recommen-

dation, and cost-optimal time-dependent route queries, respectively. The objectives of

these three spatial queries are to (i) present new efficient algorithms that induce low com-

munication cost for proximity detection in road networks, (ii) design a unified framework

for POI recommendation, and (iii) find a cost-optimal route in a time-dependent road

network, respectively.

We answer the query of road-network proximity detection by proposing two types of

solutions. With modern GPS-equipped mobile devices being pervasively utilized, LBSs

have a strong appeal to a large number of researchers. Among these LBSs, proximity

detection proves to be a typically hot topic. Motivated by various applications like real-

world LBSs and a huge number of virtual games, efficient approaches are required to

continuously detect proximity among mobile clients. We have studied existing research

on proximity detection problems and found that some of these existing research focus on

reducing the communication cost while some others focus on reducing the computational

cost. In addition, existing research mainly concentrate on proximity detection problems
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in Euclidean space rather than road network space and to our best knowledge, no exist-

ing works before ours propose self-adjustment algorithms in road networks. That is the

motivation for us to develop algorithms with self-adjustment policy that can be used in

road network. Our main goals are to design algorithms that detect proximity in road net-

works with the client-server communication cost minimized by adopting the client-server

architecture. We first develop fixed-radius algorithms for the client and server separately,

which aim to prune unnecessary update messages sent by the clients to the server, as well

as unnecessary probing messages sent by the server to the friend pairs that are guaranteed

to be or not to be within proximity. No update messages will be sent unless the client

moves beyond its mobile region and no probing messages will be sent unless none of the

three pruning lemmas is satisfied. Experiments demonstrate that our fixed-radius solution

has a relatively low probing cost but a relatively high update cost when the radius is small,

and a relatively low update cost but a relatively high probing cost when the radius is large.

Therefore, we develop our second type of solution by utilizing a self-adjusting policy that

automatically tunes mobile regions of each client for minimizing the total communication

cost. Based on this self-adjustment policy, we present a new self-adjustment algorithm

called RRMD (Radius-based Reactive Mobile Detection), which automatically tunes the

radius to approach the optimal radius. Experiments show that this policy performs well

and reduces the total communication cost greatly compared to the fixed-radius method

and other competitors (RMDRN/CMDRN method). In addition, experiments also show

that our self-tuning solution is robust and has high scalability to different parameters such

as number of moving objects, average number of friends for each user and proximity

threshold, etc.

For the second query related to POI recommendation, we develop a Popularity-Temporal-

Geographical framework, namely, PTG-Recommend, for recommending POIs to a user.

The framework firstly proposes an algorithm, namely, SEM-DTBJ-Cluster, which clus-

ters and reversely geocodes GPS points for extracting semantic POIs. Afterwards the

framework considers the influence of popularity, temporal influence, and the geographi-

cal influence of the POIs, and combines them, for the purpose of deriving a unified rec-
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ommendation score for each POI for a user. Our PTG-Recommend is the first framework

that studies the influences of popularity, temporal and geographical features from GPS tra-

jectories for location recommendation. We carry out experiments to evaluate the effects

caused by popularity, temporal features, and geographical features of POIs, respective-

ly. Experiments indicate that the PTG-Recommend framework outperforms the baseline

methods with regard to the precision and recall by 20% to 30%.

For the third query, i.e., the cost-optimal time-dependent routing problem, we aim at

finding a minimum-cost route that begins from the source node ns and ends at the desti-

nation node ne, and meanwhile satisfies time and speed constraints in a time-dependent

road network. The aforementioned query is named as COTER. We design an approximate

ALG-COTER algorithm to solve COTER. This ALG-COTER algorithm first computes

the earliest and latest arrival time for each candidate node, which refers to a node that

is reachable from ns and meanwhile can reach ne; then computes the topological order

of these candidate nodes by utilizing the topological sorting algorithm; and subsequently

computes the minimum cost functions for each node iteratively by dynamic program-

ming according to their topological order and the recurrence relation formula; and finally

backtracks the optimal route R and computes the waiting time for each node in the op-

timal route. We also analyze the time complexity of the ALG-COTER. We carry out

experiments to evaluate the performance of our ALG-COTER algorithm by studying the

influences of different parameters on run time. Results of experiments indicate that our al-

gorithms can answer the COTER query efficiently, and are scalable to various parameters

which can influence the run time differently.

6.2 Future Work

This research also brings some promising topics for further studies:
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6.2.1 Optimal Route Search from A Place to A Recommended POI

6.2.1.1 Motivation

As discussed in Chapter 1 and Chapter 2, POI recommendation and optimal route search

have many applications in both the real world and the virtual computer games. Consider

the following situation: A group of users want to visit several far-away points of interest.

However, as there are many POIs, they plan to visit only one POI with the highest rec-

ommendation score. Meanwhile, they need an optimal route so that the total cost on this

route from their current place to the POI can be minimized.

The above problem is a combination of POI recommendation and optimal route search.

This problem is very common in tourism industry. Therefore, solving such a combined

problem is in high demand.

6.2.1.2 Problem statement

We give the definition of this problem as follows: Given a road network G, a group of

users U , a set of POIs along the road network, users’ POI check-in trajectories, and a

source node ns, our goals are to find: (i) a POI li which has the highest recommendation

score for user ui ∈ U ; (ii) a cost-optimal route from ns to POI li.

6.2.1.3 Suggested solutions

To answer the above query, we propose the following approaches.

• Compute user’s similarity by checking the proximity relation of two POIs. If

two users always check in the POIs which are within proximity, or even the same

POIs, then the similarity between these two users is relatively high. Thus, in this

step, we can use the proximity detection method to obtain users’ similarity, which

is also the basis of computing the recommendation score of each POI.

• Find the POI li which has the highest recommendation score for each user

by using our PTG-Recommend framework. For each user, we use our PTG-

Recommend framework to compute the recommendation score for each POI, and
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then selects the one whose recommendation score is the highest one with respect to

each user.

• Find the optimal route from ni to POI li for each user ui. We can use our ALG-

COTER algorithm to compute a cost-optimal route from ni to POI li for each user

ui.

6.2.2 Proximity Detection in Dynamic Road Networks

6.2.2.1 Motivation

Either in reality or the virtual games, the structure of a road network, or the throughput

of the road network may vary at different time intervals. We can distinguish two typical

categories of events in dynamic networks.

1. Structure changes of the network due to road maintenance or repairing, make us

deal with a new road network. For instance, introducing a new route or removing

an existing route, introducing a new junction or removing an existing junction, etc.

2. Flow changes of the road network due to rush hours or unexpected events make the

road network a dynamic one. For instance, during rush hours, maximum flow may

happen and the speed of flows may decrease accordingly. When a flow changes to a

halt state, its speed may be reduced to zero; when a flow changes to a starting state,

its speed increases again. Another example is the drying up of a flow indicates its

density decreases to zero.

In [15], considering that the possible beneficial and counter-productive effects may

be caused by enhanced motorist information and that information on network conditions

influences the set of routes considered by a driver and also affects the perceived values

of the level of service attributes, the authors present the structure of a dynamic model in

which newly acquired information may affect pretrip and en-route travel decisions.

In [39], to model the dynamic road network, a temporal attribute is defined to describe

the state history of the junction or route. It is represented in a form tp = ((Ii, si))
n
i=1,
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indicating that in time interval Ii, the state of this junction or route is si. Here, si can be

open during normal periods or blocked because of a traffic jam.

In [45], the authors describe processes and events in dynamic road networks which

are claimed to contribute to the general research effort toward a generic ontology [1] of

dynamic geographic-scale phenomena and its application to the provision of modeling,

analysis, and retrieval of data in a spatial-temporal GIS.

In [136], a directed graph Gr = (Vr, Er), where Vr and Er denote the sets of nodes

and edges, is used to define a dynamic road network. The time needed for traversing an

edge is dynamic at least in the following two aspects: (i) Time-dependent. Typically, the

traffic flow on a road surface varies over days of the week and time of a day, e.g., a road

may become crowded in rush hours while be quite smooth at other times; (ii) Location-

variant. Different roads have different time-variant traffic patterns. For instance, some

streets could still be very fast even in the morning rush. However, the rush hours of a few

roads may last for an entire day.

The works above are all focused on the properties of dynamic road network itself,

rather than proximity detection problems. Only few works resolve the proximity detection

problem in time-aware road networks. The work [69] studies proximity queries in time-

dependent road networks using graph embedding technique. In addition, the work [69]

aims at reducing the computational cost instead of reducing communication cost. There-

fore, there is still a large potential to extend our current work to dynamic road networks.

6.2.2.2 Problem statement

The problem of proximity detection in dynamic road networks can be defined as follows.

Suppose GT = (V,E) represents a dynamic road network, where V and E represent the

sets of junctions and routes. At different time intervals, V and E may be different in

that some routes or junctions may be blocked during some time intervals. In addition

to GT , a collection of moving users U in GT , as well as their friendships and the time

threshold tε between them are given, our task is to develop efficient algorithms together

with a feasible dynamic road network model to find whether the time distance between
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each pair of friends is within tε. Similarly to our previous work [82], the main objective

of addressing this problem is to cut the total communication cost.

6.2.2.3 Suggested solutions

To solve this problem, we propose suggested solutions as follows.

• Extend current static network model so that it can describe the properties of

dynamic networks. Considering the events that may occur in a dynamic road

network, we introduce new attributes, e.g., states of a junction or route, and time

interval, into current network model. Thus we can represent different status of a

route or junction at different time intervals. Meanwhile, the speeds of a moving ob-

ject may vary at the same route at different time intervals. When a route is blocked

by traffic jams or obstacles, many objects may have to stop and wait, therefore at

such time stamps their speeds become zero. We need to take this into consideration

when modeling the dynamic road network.

• Use the metric of time distance to measure proximity instead of network dis-

tance. In dynamic road networks which is time-dependent, the time distance be-

tween them, is defined as the time needed for a user to reach his friend from his

current position. In dynamic road networks, the speed of each object is dependen-

t upon time, and therefore users care more about the time distance between them

rather than network distance between them. Hence, we adopt the metric of time

distance to measure the proximity relation instead of network distance. If the time

distance between a pair of friends does not exceed the proximity threshold, we say

this friend pair is within proximity.

• Precompute the shortest road network distance and keep a record of the short-

est paths between any two junctions in the initial-state road network. We need

to compute the time distance by using the network distance. The network distance

changes when the structure of the road network changes. Moreover, the network

distance in a dynamic road network can be recomputed on the basis of the network
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distance computed on the initial-state road network which refers to the road net-

work at the first time stamp. As a result, we precompute the shortest paths between

any two junctions based on the initial-state road network and store the paths for

later use.

• At a new time stamp, when an edge Ei or a node Vi is blocked, recompute the

road network distances between the junctions that are affected by Ei or Vi. We

have known all the shortest paths between two junctions in our previous step, and

therefore if the state of a route Ei or a junction Vi has changed, all the shortest paths

that pass Ei or Vi must be recomputed. Other paths that are not affected by Ei or Vi

do not need to be recomputed.

• Apply update methods and pruning lemmas proposed in current work to this

problem to reduce the exchanging messages. Aiming to reduce the probing cost,

we propose two pruning lemmas by using the lower bound and upper bound of

the time distance: (i) for objects Om and On, in case the lower bound of their time

distance, i.e., Tmin(Rm(t), Rn(t)), is larger than the time threshold Tε, then the time

distance between this friend pair must be larger than Tε, thus this friend pair should

be pruned; and (ii) for moving objects Om and On, in case the upper bound of their

time distance, i.e., Tmax(Rm(t), Rn(t)), is no larger than Tε, then this friend pair

must be selected into the result set. Aiming to reduce the update cost, similarly

to our previous work [82], we also use region-based update strategy at the client

side. As long as the object does not move beyond its mobile region, no updates are

needed.

6.2.3 Mining Semantic Patterns From GPS Trajectories

This subsection proposes the problem of mining semantic patterns from GPS trajectories.

First we present the motivation as well as the problem statement, and subsequently we

give suggested solutions for addressing this problem.
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6.2.3.1 Motivation

The increasing pervasiveness and wide utilization of GPS-enabled devices guarantee the

availability of a huge amount of GPS data. Mobile devices equipped with GPS are able

to generate a great many GPS records that collect continuously changing geolocations

with time stamps, and some other information, e.g., direction and speed. As a continuous

function from time to space, a client’s trajectory can be approximated by the sequence of

GPS records for the mobile client. Trajectories contain important semantic information

since the interaction between the moving clients and geographical space can be captured

by the GPS trajectories.

The fact that GPS data is receiving great attention from scientists and researchers,

encourages us to study more about GPS data. A majority of Web sites based on com-

munities enable users to share travel trajectories among each other. There exist several

works studying the GPS trajectories. For example, the authors of [133] mine user similar-

ity from semantic trajectories. A semantic trajectory data mining query language, namely,

ST-DMQL, is proposed by the study [16]. Another work [4] proposes a framework for

semantic trajectory knowledge discovery. Cao et al. mine important semantic locations

from GPS data in their work [21]. We also propose a framework for POI recommenda-

tion from GPS trajectories in our work [81]. However, existing literature does not mine

sufficient semantic patterns from GPS trajectories. Patterns are important to users as they

provide the “text-understanding” information. Therefore, we aim to consider semantic

locations throughout, and discover semantic patterns of moving clients from their GPS

trajectories.

6.2.3.2 Problem statement

We give the definition of the problem of mining semantic patterns from GPS trajectories

as follows. Given a group of moving users U, together with their GPS trajectories Traj,

our objective is to find the semantic patterns, that is, the patterns of textual semantic

information of locations from GPS trajectories. These patterns include the influence of

different occupations, different religions, and different social status, etc.
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6.2.3.3 Suggested solutions

To address this problem, we propose suggested solutions as follows.

• Identify the GPS points from GPS trajectories.

• Cluster GPS locations from GPS points.

• Translate the GPS trajectories into semantic texts on the basis of trajectory ontolo-

gy [121, 127]. This step includes finding out the name of the building at the specific

location, and the usage of this semantic location, and so on.

• Use the patterns that have been already mined to further help to translate the re-

maining GPS trajectories into semantic information.

6.2.4 Multi-preference Routing in Dynamic Road Networks

This subsection proposes another promising query problem, i.e., multi-preference routing

in dynamic road networks.

6.2.4.1 Motivation

Routing problems have attracted researchers’ much attention in the past decades. Existing

works like [30, 33, 32] propose customizable route planning algorithms in road networks.

There are also some other works [42, 20] presenting algorithms for finding optimal routes.

Due to weather conditions, traffic jam, or other unexpected emergency, road networks are

more probably dynamic or time-dependent rather than static. Therefore, some works such

as [34] and [31] study routing in time-dependent road networks. Currently, as mentioned

in Chapter 5, we also propose an ALG-COTER algorithm to find the cost-optimal route

in a time-dependent road network.

Because of limited energy resources, people prefer more economic routes rather than

an energy costing one. Therefore, saving energy cost is a common objective when dealing

with routing problems. Further, nowadays, people enjoy traveling around the world. In

such a situation, people tend to design a route with cheaper money cost and more places
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of interest. Moreover, if a traveler has limited time for traveling, then she might prefer

viewing as many as possible places of interest, with as cheap as possible money cost

(usually there is a money budget), without consuming much physical capacity, within

limited time.

Routing problem in such circumstances results in a multi-preference routing problem.

However, there exists few works studying such kind of multi-preference routing problems.

Therefore, researchers are expected to develop algorithms to design a multi-preference

route according to users’ multiple preference.

6.2.4.2 Problem statement

Given a user u with a money budget b, a limited physical capacity c, a limited time budget

T , and a set of places of interest P , as well as a time-dependent road network GT . The

edge length in GT is independent of time. But the money cost, physical cost, and max-

imum speed allowed on each edge are all dependent upon time. The objective is to find

such a route, along which the user u can view as many as possible places of interest in P ,

but the money cost does not exceed her money budget b, the physical cost does not exceed

her physical capacity c, and the total time does not exceed T .

6.2.4.3 Suggested solutions

To resolve the aforementioned multi-preference routing problem, some suggested ap-

proaches are given as follows.

• Model the problem using mathematical linear programming with constraints.

• Develop a dynamic programming algorithm to address this problem. We first define

a most-POIs function for each node which denotes the largest number of POIs that

a user could view when arriving at this node at time point t, and then derive the re-

cursive relation of the most-POIs functions of this node and its incoming neighbors.

• Design a greedy algorithm with acceptable approximation accuracy to answer this

multi-preference route query.
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• Evaluate solutions using both the simulated dataset and the real-world dataset.
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Kurzbeiträge und Workshop, pages 81–88, 2005.

[72] A. Küpper and G. Treu. Efficient proximity and separation detection among mo-

bile targets for supporting location-based community services. ACM SIGMOBILE

Mobile Computing and Communications Review, 10(3):1–12, 2006.

[73] T. Kurashima, T. Iwata, T. Hoshide, N. Takaya, and K. Fujimura. Geo topic model:

joint modeling of user’s activity area and interests for location recommendation. In

Proc. of WSDM, pages 375–384. ACM, 2013.

[74] J. Leape. The london congestion charge. The Journal of Economic Perspectives,

pages 157–176, 2006.

[75] A. Leonhardi and K. Rothermel. Protocols for updating highly accurate location

information. Geographic Location in the Internet, pages 111–141, 2002.

144



References

[76] Q. Li, H. Fan, X. Luan, B. Yang, and L. Liu. Polygon-based approach for extracting

multilane roads from openstreetmap urban road networks. International Journal of

Geographical Information Science, 28(11):2200–2219, 2014.

[77] Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, and W.-Y. Ma. Mining user similarity

based on location history. In Proceedings of the 16th ACM SIGSPATIAL interna-

tional conference on Advances in geographic information systems, page 34. ACM,

2008.

[78] X. Li, W. Szeto, and M. OMahony. Modeling time-dependent tolls under transport,

land use, and environment considerations. In Applications of Advanced Technology

in Transportation (2006), pages 852–857. ASCE, 2006.

[79] M. Lichman and P. Smyth. Modeling human location data with mixtures of kernel

densities. In Proceedings of the 20th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’14, pages 35–44, New York, NY,

USA, 2014. ACM.

[80] B. Liu, Y. Fu, Z. Yao, and H. Xiong. Learning geographical preferences for point-

of-interest recommendation. In Proc. of SIGKDD, pages 1043–1051. ACM, 2013.

[81] Y. Liu and H. S. Seah. Points of interest recommendation from gps trajectories.

International Journal of Geographical Information Science, 2015.

[82] Y. Liu, H. S. Seah, and G. Cong. Efficient proximity detection among mobile ob-

jects in road networks with self-adjustment methods. In Proceedings of the 21st

ACM SIGSPATIAL International Conference on Advances in Geographic Informa-

tion Systems, SIGSPATIAL’13, pages 124–133. ACM, 2013.

[83] D. Luxen and C. Vetter. Real-time routing with openstreetmap data. In Proceedings

of the 19th ACM SIGSPATIAL International Conference on Advances in Geograph-

ic Information Systems, pages 513–516. ACM, 2011.

145



References

[84] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to information retrieval,

volume 1. Cambridge university press Cambridge, 2008.

[85] W. Matthew Carlyle and R. Kevin Wood. Near-shortest and k-shortest simple paths.

Networks, 46(2):98–109, 2005.

[86] K. Mehlhorn and M. Ziegelmann. Resource constrained shortest paths. Lecture

Notes in Computer Science, 1879:326–337, 1999.

[87] B. L. Milenova and M. M. Campos. O-cluster: Scalable clustering of large high

dimensional data sets. In ICDM 2003, pages 290–297. IEEE, 2002.

[88] M. F. Mokbel, X. Xiong, and W. G. Aref. Sina: scalable incremental processing of

continuous queries in spatio-temporal databases. In Proc. of the ACM SIGMOD,

pages 623–634, 2004.

[89] A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti. Wherenext: a location pre-

dictor on trajectory pattern mining. In Proc. of SIGKDD, pages 637–646. ACM,

2009.

[90] K. Mouratidis, D. Papadias, S. Bakiras, and Y. Tao. A threshold-based algorithm

for continuous monitoring of k nearest neighbors. IEEE Transactions on Knowl-

edge and Data Engineering, 17(11):1451–1464, 2005.

[91] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou. Conceptual partitioning: an

efficient method for continuous nearest neighbor monitoring. In Proceedings of

the 2005 ACM SIGMOD international conference on Management of data, pages

634–645. ACM, 2005.

[92] K. Mouratidis, M. Yiu, D. Papadias, and N. Mamoulis. Continuous nearest neigh-

bor monitoring in road networks. Very Large Data Bases Conference (VLDB),

2006.

146



References

[93] J. Myllymaki and J. Kaufman. High-performance spatial indexing for location-

based services. In Proceedings of the 12th international conference on World Wide

Web, WWW ’03, pages 112–117. ACM, 2003.

[94] S. Nutanong, R. Zhang, E. Tanin, and L. Kulik. The v*-diagram: a query-

dependent approach to moving knn queries. Proc. VLDB Endow., 1:1095–1106,

August 2008.

[95] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in spatial

network databases. In Proceedings of the 29th international conference on Very

large data bases-Volume 29, pages 802–813. VLDB Endowment, 2003.

[96] S. Prabhakar, Y. Xia, D. Kalashnikov, W. Aref, and S. Hambrusch. Query indexing

and velocity constrained indexing: Scalable techniques for continuous queries on

moving objects. IEEE Transactions on Computers, 51(10):1124–1140, 2002.

[97] M. Qu, H. Zhu, J. Liu, G. Liu, and H. Xiong. A cost-effective recommender system

for taxi drivers. In Proceedings of the 20th ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, KDD ’14, pages 45–54, New

York, NY, USA, 2014. ACM.

[98] A. Rae, V. Murdock, A. Popescu, and H. Bouchard. Mining the web for points of

interest. In Proc. of the 35th international ACM SIGIR conference on Research and

development in information retrieval, pages 711–720. ACM, 2012.

[99] P. Reiher, J. Popek, M. Gunter, J. Salomone, and D. Ratner. Peer-to-peer reconcil-

iation based replication for mobile computers. In European Conference on Object

Oriented Programming, Second Workshop on Mobility and Replication. Citeseer,

1996.

[100] R. Richa, M. Balicki, R. Sznitman, E. Meisner, R. Taylor, and G. Hager. Vision-

based proximity detection in retinal surgery. IEEE Transactions on Biomedical

Engineering, 59(8):2291, 2012.

147



References

[101] P. Rigaux, M. Scholl, and A. Voisard. Spatial databases with application to gis.

SIGMOD Record, 32(4):111, 2003.

[102] G. Samara and A. Pitsillides. Client/intercept: a computational model for wireless

environments. In ICT9́7, International Conference on Telecommunications, 2-4

April 1997.

[103] J. Schiller and A. Voisard. Location-based services. Morgan Kaufmann, 2004.

[104] F. Schulz, D. Wagner, and C. Zaroliagis. Using multi-level graphs for timetable

information in railway systems. In Algorithm Engineering and Experiments, pages

43–59. Springer, 2002.

[105] T. Sellis, N. Roussopoulos, and C. Faloutsos. The r+-tree: A dynamic index for

multi-dimensional objects. 1987.

[106] S. . Shekhar. Experiences with evacuation route planning algorithms. International

Journal of Geographical Information Science, 26(12):2253–2265, 2012.

[107] J. Sneyers, T. Schrijvers, and B. Demoen. Dijkstra’s algorithm with Fibonacci

heaps: An executable description in CHR. In 20th Workshop on Logic Program-

ming (WLP’ 06), 6:182–191, 2006.

[108] X. Song, Q. Zhang, Y. Sekimoto, and R. Shibasaki. Prediction of human emergency

behavior and their mobility following large-scale disaster. In Proceedings of the

20th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’14, pages 5–14, New York, NY, USA, 2014. ACM.

[109] Y.-y. Song, E.-j. Yao, T. Zuo, and Z.-f. Lang. Emissions and fuel consumption

modeling for evaluating environmental effectiveness of its strategies. Discrete Dy-

namics in Nature and Society, 2013.

[110] C. Spyrou, G. Samaras, E. Pitoura, and P. Evripidou. Wireless computational mod-

els: Mobile agents to the rescue. In Proceedings of the 10th International Workshop

on Database and Expert Systems Applications, pages 127–133. IEEE, 1999.

148



References

[111] C. Spyrou, G. Samaras, E. Pitoura, and P. Evripidou. Mobile agents for wireless

computing: the convergence of wireless computational models with mobile-agent

technologies. Mobile Networks and Applications, 9(5):517–528, 2004.

[112] S. Storandt. Quick and energy-efficient routes: computing constrained shortest

paths for electric vehicles. In Proceedings of the 5th ACM SIGSPATIAL Interna-

tional Workshop on Computational Transportation Science, pages 20–25. ACM,

2012.

[113] Y. Sun, T. F. L. Porta, and P. Kermani. A flexible privacy-enhanced location-based

services system framework and practice. IEEE Trans. Mob. Comput., 8(3):304–

321, 2009.

[114] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to data mining, volume 6.

Addison-Wesley Longman Publishing Co., 2006.

[115] T. Tielert, D. Rieger, H. Hartenstein, R. Luz, and S. Hausberger. Can v2x commu-

nication help electric vehicles save energy? In 12th International Conference on

ITS Telecommunications, pages 232–237, 2012.
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