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Summary 

In general, hydrogel is a class of hydrophilic crosslinked polymeric network, consisting 

of the network matrix and interstitial fluid. Literature search reveals that the previously 

published studies focused on the bulk (single) phase behavior or the gel-gel phase 

transition. 

In this thesis, a thermo-electro-chemo-mechanical model is developed mathematically for 

simulation of the solution-gel phase transition of physical hydrogels. By coupling the 

multiphysics effects together, the presently developed model consists of the governing 

equations for the equilibrium of forces, and the conservations of mass and energy. The 

constitutive equations are formulated by the second law of thermodynamics, which can 

reduce to the corresponding constitutive equations based on the non-equilibrium 

thermodynamic theory developed by Suo’s group (Hong, Zhao et al. 2008, Hong, Liu et 

al. 2009, Hong, Zhao et al. 2010), if the interface is ignored when only a single bulk 

phase exists, i.e. no phase transition occurs. Therefore, as the first academic contribution, 

the presently developed constitutive equations generally accounts for both the bulk phase 

and interface behavior. In other words, the non-equilibrium model proposed by Suo’s 

group (Hong, Zhao et al. 2008, Hong, Liu et al. 2009, Hong, Zhao et al. 2010) is just a 

special case of the present model, when the present two-phase control volume reduces to 

a single-phase one, in which only the gel phase with constant crosslink density exists in 

the hydrogel system. 

As the second contribution, the density of crosslinks is used to identify the phases for the 

present domain covering the gel and solution states, which are considered as two distinct 
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phases, and an interface between them. The crosslink density is a much more accurate 

parameter for characterizing the phases, compared with the other options in the 

previously published studies, such as the volume fraction, temperature, or a simple 

numerical parameter, since the phase transition of the physical hydrogel between solid 

and liquid states is directly associated with the forming or breaking of the crosslinks 

subject to environmental stimuli. As a result, the solution phase is identified as the state 

when the crosslink density is small, while the gel as the state if the crosslink density 

becomes large. The interface is treated by two different methods, the sharp 

interface/configurational forces and the diffuse interface approaches, and an additional 

kinetic equation is imposed on the interface for its evolution during the phase transition. 

As the third contribution, a novel Ginzburg-Landau type of free energy is proposed to 

model the solution-gel phase transition, which accounts for the effects of crosslink 

density, and consists of the elastic, mixing, binding, polarization and interface 

contributions. The free energy is in a double-well profile with respect to the crosslink 

density. As mentioned above, there exist the solution and gel phases and the interface 

between the two phases, which are identified by the crosslink density  . In other words, 

of the two wells within the free energy density, the one with the smaller crosslink density 

  corresponds to the solution phase, and the other with the larger   to the gel phase. 

Finally, several case studies are conducted for analysis of the effect of chemical potential, 

pressure, surface tension and other parameters on the phase transition. After the reduction 

of the presently developed three-dimensional theoretical model to one-dimensional 

formulation, a MATLAB source code is developed, and then a spherically symmetrical 
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solution-gel phase transition is numerically simulated both in water and in ionic solution 

for analysis of the thermal, electrical, chemical and mechanical influences on the 

solution-gel phase transition. 

 



XI 

 

List of figures 

Fig. 3.1. Migrating control volume. .................................................................................. 25 

Fig. 3.2. Relation between the crosslink density   and stress S  at a stable state ........... 65 

Fig. 3.3. Relation between the stretch   and stress S  at a stable state. ............................. 65 

Fig. 3.4. Variation of non-dimensional interface coordinate Rw/  with time t  for 

different domain sizes R . ................................................................................................ 66 

Fig. 3.5. Effect of the non-dimensional mobility MvkTM *  on the variation of the 

interface coordinate w  with time t . ................................................................................ 67 

Fig. 3.6. Effect of the mobility kTmvm /*  on the variation of the interface coordinate 

w  with time t . ................................................................................................................. 68 

Fig. 3.7. Effect of the surface tension RkTv /*    on the variation of the interface 

coordinate w  with time t . ............................................................................................... 69 

Fig. 3.8. Variation of non-dimensional interface coordinate Rw/  with time t  for 

different domain sizes R . ................................................................................................ 71 

Fig. 3.9. Variation of interfacial electrochemical potential mu  with time t . .................... 72 

Fig. 3.10. Variation of the electrochemical potential 
m  with a non-dimensional 

coordinate Rr /  at different times. .................................................................................... 73 



XII 

 

Fig. 3.11. Variation of interfacial electrochemical potential 
u  with time t . .................. 74 

Fig. 3.12. Variation of interfacial electrochemical potential 
u  with time t . .................. 74 

Fig. 3.13. Variation of the electrochemical potential 
  with a non-dimensional 

coordinate Rr /  at different times. .................................................................................... 75 

Fig. 3.14. Variation of the electrochemical potential 
  with a non-dimensional 

coordinate Rr /  at different times. .................................................................................... 76 

Fig. 4.1. Profile of the free-energy Ψ  for a spherically symmetric homogeneous system 

on the variation of crosslink density   at different chemical potentials * . ............... 94 

Fig. 4.2. Several snapshots of the evolution progress of the crosslink density   

associated with the corresponding crosslink density profile at different non-dimensional 

times: 1.0* t  (a), 25.0*t  (b), 4.0* t  (c), 55.0*t  (d), 7.0* t  (e), 85.0*t  (f), and 

1* t  (g). ........................................................................................................................ 104 

Fig. 4.3. Variation of the non-dimensional coordinate of the interface middle 
*

mr  with a 

non-dimensional time *t  for the different domain sizes R . ......................................... 105 

Fig. 4.4. Several snapshots of the evolution progress of the crosslink density   

associated with the corresponding crosslink density profile at different non-dimensional 

times: 1.0* t  (a), 25.0*t  (b), 4.0* t  (c), 55.0*t  (d), 7.0* t  (e), 85.0*t  (f), and 

1* t  (g). ........................................................................................................................ 109 



XIII 

 

Fig. 4.5. Variation of the non-dimensional coordinate of the interface middle 
*

mr  with a 

non-dimensional time *t  for the different domain sizes R . ......................................... 110 

Fig. 4.6. Variation of the non-dimensional polymeric chemical potential * c

m  with a non-

dimensional coordinate Rr /  at different non-dimensional times. .................................. 112 

Fig. 4.7. Variation of the non-dimensional ionic chemical potential * c

ion  with a non-

dimensional coordinate Rr /  at different non-dimensional times. .................................. 113 



XIV 

 

Glossary 

   Bulk Helmholtz free energy density 

  Bulk free energy 

  Number of monomers in a Kuhn monomer 

  Permittivity 

  Entropy densities in the bulk phases 

S  Entropy densities on the interface 

  Principal stretches 

a  Electrochemical potential of species a  

  Constant coefficient of the crosslink density gradient 

  Crosslink density 

  Surface tension 

  Rate of relaxation to equilibrium 

  Interfacial Helmholtz free energy density 

  Dimensionless interaction parameter 

  Interfacial Helmholtz free energy density 

  Interfacial free energy 

  Electric potential 

  Volume fraction of polymer 

a  Species a  

b  Kuhn length 



XV 

 

b  External body force 

S
b  External interfacial force 

ac  Number concentration of particles of species a  in the bulk phase 

S

ac  Number concentration of particles of species a  on the interface 

0

ac  Reference concentration of species a  

vC  Specific heat capacity 

C  Bulk configurational stress 

S
C  Interfacial configurational stress  

D  Diffusion coefficient 

rD  Scalar electric displacement 

D  Electric displacement 

d  Normal part of tensor SS
SFC

T
  

E  Internal energy densities in the bulk phases 

SE  Internal energy densities on the interface 

aE  Activation energy required to break a crosslink 

rE  Scalar electric field 

E  Electric field 

e  Elementary charge 

F  Bulk deformation gradient 

S
F  Interfacial deformation gradient 

g  Body configurational force density 



XVI 

 

S
g  Interfacial configurational force density  

H  Configurational heating the bulk phases 

h  Configurational heating on the interface  

h  Heat flux 

aJ  Configurational mass supplies of species a  in the bulk phases 

aj  Configurational mass supplies of species a  on the interface 

aj  Bulk mass flux supplies of species a  

K  Total curvature 

L  Curvature tensor 

I  Interception SI P  between the control volume P  and the interface )(tS  

m  Kinetic modulus 

m  Unit normal vector pointing from the phase   to phase   

N  Average number of Kuhn monomers associated with each chain between two 

crosslinks 

n  Number density of the polymeric segments between neighboring crosslinks 

n  Unit normal vector to the boundary surface P  

S
n  Projection of n  onto the interface 

)(tP  Control volume 

P  Hydrostatic stress 

P  Superficial projection 

Q  Total electric charge density 

q  Bulk heat supply density 



XVII 

 

Sq  Interfacial heat supply density 

q  Velocity of the boundary surface P  

0R  Distance between the neighboring crosslinks at dry state 

R  Length of the one-dimensional domain, i.e., the radius of the spherical 

symmetrical system 

b

ar  External mass supply in the bulk phases 

S

ar  External mass supply on the interface 

*

mr  Non-dimensional coordinate of the interface middle 

)(tS  Interface  

S  Scalar stress 

S  Bulk deformation stress 

S
S  Interfacial deformation stress 

T  Temperature 

MT  Reference temperature 

t  Time 

aU  Electrochemical potential of species a  on the boundary 

au  Electrochemical potential of species a  on the interface 

PV  Normal velocity of the boundary surface P  

V  Normal component of the interface velocity v  

IV  Normal component of the boundary curve velocity w  

v  Specific volume of a monomer unit 

v  Interface velocity 



XVIII 

 

W  Working of the system 

w  Coordinate of the interface in the radial direction 

w  Velocity of the boundary curve of the interception SI P  

X  Reference coordinate 

y  Current coordinate 

Z  Trajectory 

az  Valence of species a  

 



 

1 
 

Chapter 1. Introduction 

1.1. Background 

When hydrophilic polymer chains form the crosslinks of a network in a designed water, 

the resulting material is called hydrogel, in which the polymer chains are crosslinked by 

chemical bonds, such as covalent bonds (Rubinstein and Colby 2003), or by weaker 

physical bonds, for instance, hydrogen bonding, van der Waals interactions or 

entanglements (Kamath and Park 1993, Peppas, Bures et al. 2000, Rubinstein and Colby 

2003). These elastic networks furnish the hydrogel structural and physical integrity, 

which guarantees the hydrogels exhibiting a thermodynamic compatibility with external 

solvent and allows them to swell/deswell in aqueous media (Flory and Rehner 1943, 

Flory and Rehner 1943). The characteristics of a solvent in the hydrogel determine the 

overall permeation of substance into and out of the hydrogels (Hoffman 2002). Due to the 

special network structure, hydrogels possess both the properties of solid and liquid, and 

are able to imbibe a large amount of water or other biological fluid, while maintaining the 

structure (Tanaka 1981, Osada and Gong 1993). 

1.1.1. Physical hydrogel 

There are several classifications of hydrogels, depending on their properties. For example, 

hydrogels may be affine or phantom according to the mechanical and structural 

characteristics of the network (Rubinstein and Colby 2003). They may also be classified 

into neutral or ionic hydrogels, based on the pendant groups bounded to the polymeric 

network. Furthermore, the type of bond forming the network of hydrogel may be used to 
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label the material as a chemical or physical hydrogel. Physical hydrogels are those whose 

polymer chains are cross-linked by weaker physical bonds, such as van der Waals 

interactions and hydrogen bonding (Qiu and Park 2001, Rubinstein and Colby 2003, Lee, 

West et al. 2006, An, Solis et al. 2010). They are different from chemical hydrogels, in 

which the polymer chains are cross-linked by chemical bonds, such as covalent bond. 

1.1.2. Solution-gel phase transition 

As mentioned above, the polymeric chains in the physical and chemical hydrogels are 

crosslinked by different types of bonds, while the different microscopic behaviors of 

chemical and physical crosslinks result in various macroscopic properties of chemical 

and physical hydrogels (Flory 1953, Rubinstein and Colby 2003). Since the covalent 

bonds in the chemical hydrogel prevent the chemical hydrogel from dissolving in the 

environmental solvent, the chemical hydrogel behaves mostly like solids. However, the 

weaker physical bonds are found capable of being dynamically created and dissolved in 

physical hydrogels. This property enables the physical hydrogels to exhibit phase 

transition between gel and solution phases, when the cross-links are formed and broken 

dynamically subject to environmental effects (Rubinstein and Colby 2003, An, Solis et al. 

2010). At short time scales, the cross-links do not have time to dissolve against quick 

deformation, such that the physical hydrogel shares the same solid-like behavior of 

chemical gels. However, at long time scales, the physical hydrogel may adapt to the 

presence of environmental stimuli in a similar way as a liquid to release all shear of 

anisotropic stress via bond dissolution. In other words, the physical hydrogels may transit 

from the gel phase to solution phase. On the contrary, when the gel phase is more 
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favorable under certain environmental stimuli, the physical hydrogel may transit phases 

inversely from solution to gel. 

Due to the unique properties, including swelling/shrinking behavior, significant liquid 

content, interesting mechanical properties, permeability, thermoreversibility and surface 

properties, physical hydrogels are used in diverse applications, and possess a lot of 

potential applications in both industry (cosmetics, food processing, pharmaceutics, etc.) 

and fundamental research (targeted drug delivery, biotechnology, etc.). For instance, 

physical hydrogels may be used for drug delivery system (Kim, Bae et al. 1992, Qiu and 

Park 2001, Huang, Yu et al. 2007, Hoare and Kohane 2008), tissue engineering (Lee and 

Mooney 2001, Biancamaria 2007, Studenovská, Šlouf et al. 2008, Putz and Burghelea 

2009), artificial organ (Peppas 1987, Li, H. et al. 2006, Sawa, Tatsumi et al. 2008), 

wound dressing (Jones and Vaughan 2005, Snyders, Shingel et al. 2007, Yoo and Kim 

2008), medical implants, tissue regeneration, and noninvasive intervertebral disc repair 

(Langer and Vacanti 1993, Hou, De Bank et al. 2004, Putz and Burghelea 2009). 

1.2. Motivation, objective and scope 

Based on the literature review conducted in the next chapter, it is noted that the bulk 

behavior of hydrogels is simulated due to different stimuli, such as mechanical loading, 

temperature, chemical potential, ionic concentration and electric field etc., by taking the 

hydrogel as a single-phase body, and applying the stimuli as boundary conditions. It is 

also known that the effects of the interface characteristics on the behavior of hydrogels, 

such as the surface tension and the kinetics related to the interface, were considered in the 

two-body hydrogel model for the interfacial behavior between phases. However, only the 
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gel-gel phase transition was modeled in the previous works, and the deformation was 

coupled with either temperature or diffusion only. On the other hand, the solution-gel 

phase transition may be modeled by the theory of configurational force, since it is 

independent of the specific constitutive theory, although it was proposed to describe 

coherent two-phase elastic solids and most of its use was linked to solids. Moreover, the 

theory may be improved to couple the thermal, electrical, chemical and mechanical 

effects together. In addition, the diffuse interface technique may also be used to model 

the solution-gel phase transition of hydrogels to obtain a deeper understanding of 

fundamental mechanism of phase transition and key material properties of hydrogels. 

Therefore, the objective of this thesis is to develop a thermo-electro-chemo-mechanical 

model for simulation of the solution-gel phase transition of physical hydrogels. The scope 

of this objective is detailed as follows. 

 Development of the mathematical model. The theoretical multiphysics models are 

developed for simulation of the solution-gel phase transition, in which the 

solution and gel states are considered as two distinct phases, with both sharp and 

diffuse interface approaches. The present governing equations account for the 

equilibrium of forces, the conservations of mass and energy, and an additional 

kinetic equation imposed for phase transition. Based on the second law of 

thermodynamics, the constitutive equations are formulated. The presently 

developed model couples the effects of thermal, electrical, chemical and 

mechanical fields together. It reduces to the non-equilibrium thermodynamic 
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theory, if the interface is ignored when only a single bulk phase exists, i.e. no 

phase transition occurs. 

 Comparison of the present constitutive equations with those derived by a different 

approach. The present constitutive equations are compared with those derived by 

a different approach, called the non-equilibrium thermodynamic theory. The 

present constitutive equations reduce to the non-equilibrium thermodynamic 

theory, if the interface is ignored when only a single bulk phase exists, i.e. no 

phase transition occurs. 

 Formulation of a novel free energy density. A novel free energy density is 

proposed, in which the gel and solution states are indicated by the density of 

crosslinks, in such a way that the solution phase is identified as a state when the 

crosslink density is small, while the gel is identified as another state with the large 

crosslink density. Therefore, a novel formulation of the free energy is presented, 

which accounts for the elasticity, mixing, polarization and bonding contributions 

with the effect of crosslink density. 

 Numerical case studies. Based on the presently developed governing equations 

and boundary conditions, a MATLAB source code is developed to analyze the 

behavior of the bulk phases and the evolution of their interface for phase 

transition between the solution and gel states. Different pressures P , chemical 

potentials  , electrical potentials   and other boundary conditions are imposed 

for investigation of their effects on the phase transition. As case studies, the 

spherically symmetrical solution-gel phase transitions of hydrogel in water and in 
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ionic solution are numerically simulated for analysis of the effect of diffusion 

coefficient, surface tension and other parameters on the interface behavior. 

All the four objectives mentioned above are motivated by different aspects of interests 

and applications, and they are achieved in this thesis. 

1.3. Outline of thesis 

This thesis is composed of five chapters, and each of them consists of several sections to 

make it well organized. 

Chapter 1 introduces the background of the physical hydrogel and phase transition, states 

the motivation to develop a thermo-electro-chemo-mechanical model for phase transition 

of physical hydrogel between solution and gel phases identified by crosslink density, and 

then elaborates the objectives of the present research work, followed by the outline of this 

thesis. 

Chapter 2 reviews the published research works on the phase transition of hydrogel, 

regarding the bulk behavior of single-phase hydrogel, two-phase hydrogels with phase 

transition, and phase transition of hydrogel with sharp and diffuse interfaces, respectively. 

Chapter 3 develops a thermos-electro-chemo-mechanical model for hydrogel phase 

transition with sharp interface/configurational forces in three-dimensional domain. Apart 

from the classical governing equations for mass and energy conservations, and the force 

equilibrium in the two bulk phases and on their interface, an additional equilibrium 

equation for a so-called configurational force is imposed in the two bulk phases and on 
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their interface for the effect of the solution-gel phase transition. After the reduced one-

dimension form is presented, the numerical case studies are conducted and then 

discussions on the interface characteristics are made in this chapter. 

Chapter 4 formulates a three-dimensional multiphysics model for hydrogel phase 

transition with diffuse interface, in which the crosslink density is defined as a novel 

thermodynamically-consistent order parameter, and a novel Ginzburg-Landau type of 

free energy is proposed. The reduced one-dimensional model is also given in this chapter 

for numerical simulation of spherically symmetrically evolving interface of the hydrogel 

during the solution-gel phase transition. 

Chapter 5 summarizes the present research work, and recommends the possible future 

work.  
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Chapter 2. Literature review: Theories of phase transition of hydrogel 

This chapter concentrates literature review on the theoretical studies for phase transition 

of hydrogel, including the bulk behavior of single-phase hydrogel, the two-phase 

hydrogels with phase transition, and the phase transition of hydrogel with sharp interface 

and diffuse interface, respectively. 

2.1. Single-phase hydrogels without phase transition 

Based on the second law of thermodynamics, a large amount of works were done to 

simulate the performance and property of hydrogels, where a hydrogel was considered as 

a single-phase body characterized by free energy as a function of the concentration and 

the deformation gradient, with an overall integration of the mechanical and chemical 

processes. One of popularly cited woks was carried out by Suo’s group (Hong, Zhao et al. 

2008), who accounted for the coupling between the deformation of the network and the 

migration of the solvent. By invoking the procedure of non-equilibrium thermodynamics, 

the swelling of hydrogels was numerically simulated. Two ways were assumed for doing 

work, namely the mechanical work done by a weight and the work due to injection of 

small molecules with chemical potential. The constitutive equations and kinetic law were 

given based on the second law of thermodynamics, and an incompressibility condition 

was introduced to couple diffusion and large deformation. The free energy was specified 

by a sum of the contributions of stretching and mixing (Hong, Zhao et al. 2008). Based 

on Hong’s work (Hong, Zhao et al. 2008), Zhao et al. formulated a theory of the hydrogel 

subject to electromechanical loads (Zhao, Hong et al. 2008, Zhao and Suo 2008). In 

addition to the mechanical and chemical work, a third way of doing work, the electrical 
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work, was considered. The free energy was thus modified by including the contribution 

of polarizing. This model was used to couple the quasilinear dielectric behavior and 

nonlinear elastic behavior for dielectric hydrogels, where the behavior of the hydrogel 

was significantly affected by mechanical constraints. Another field theory was also given 

by coupling large deformation and electrochemistry (Hong, Zhao et al. 2010). 

Different from the integration of the mechanical and chemical processes by an overall 

deformation gradient, a multiplicative decomposition of deformation gradient into 

mechanical and chemical parts was introduced by Duda et al. (Duda, Souza et al. 2010), 

by assuming that the mechanical deformation was isochoric and the volume change was 

solely due to the fluid-induced deformation, which was function of fluid content per unit 

reference volume. This model was used to study the influence of mechanical and 

chemical interactions on equilibrium state and diffusive dynamical process. Similar work 

was done by Chester et al. (Chester and Anand 2010, Chester and Anand 2011), in which 

a mechanical continuum theory was formulated and the multiplicative decomposition was 

also used to decompose the deformation gradient into elastic and swelling parts. A Flory-

Huggins model was used for the free energy change due to mixing of the fluid with the 

polymer network, and a non-Gaussian statistical mechanical model was proposed for 

large effective stretch (Chester and Anand 2010, Chester and Anand 2011). Several case 

studies were conducted using this model, such as three-dimensional swelling equilibrium, 

one-dimensional free swelling and pressure-difference-driven diffusion of solvent across 

elastomeric membranes (Chester and Anand 2010). This model was also numerically 

implemented through a finite element program to simulate swelling, squeezing of fluid by 
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mechanical forces, and thermally responsive swelling/deswelling of hydrogels (Chester 

and Anand 2011). 

Although the deformation gradient was considered in the integrated or decomposed form 

for the hydrogels as a homogeneous body, inhomogeneity phenomenon may exist in the 

concentration of the solvent and the deformation of the network, even though the 

chemical potential of the solvent molecules is homogeneous when the polymeric network 

equilibrates with a solvent and mechanical load. Studies on inhomogeneity of hydrogels 

were done by Zhao et al. (Zhao, Hong et al. 2008) and Hong et al. (Hong, Liu et al. 2009). 

Using a Legendre transformation, the free energy was transformed as function of 

chemical potential and deformation gradient, and then the inhomogeneity of hydrogels 

was studied. 

The instability of hydrogels also attracted attention from various researchers. Cai et al. 

studied the collapse of a void in an elastomer caused by osmosis (Cai, Bertoldi et al. 

2010), in which a phenomenon called breathing at low tension was investigated. Besides, 

two types of instabilities caused by high tension were studied, namely buckling and 

creasing. The formation of creasing was also investigated by Hong (Hong, Zhao et al. 

2009), in which critical conditions for creasing were calculated, and comparisons were 

made between the theoretical results and experimental observations. 

When the amount of surrounding fluid is limited, increasing loading may reach a critical 

level, at which no additional fluid is available to uptake into the hydrogel, resulting in the 

loss of saturation. Loss or gain of fluid in the mixture may be caused by change in the 

mechanical loading, since the swelling of hydrogel is influenced by surrounding solvent 
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and mechanical load. Deng thus discussed a continuum model and distinguished between 

liquid-saturated and non-liquid-saturated systems, such that the effect of loss of saturation 

was investigated (Deng and Pence 2010, Deng and Pence 2010). 

Instead of developing the governing and constitutive equations from the second law of 

thermodynamics, a multiphysics model of hydrogels was proposed for simulation of 

swelling equilibrium of ionized temperature sensitive hydrogels (Li, Wang et al. 2005), 

which consisted of the steady-state Nernst-Planck equation, Poisson equation and 

governing equation for swelling equilibrium. This model was used to study the influence 

of the salt concentration and initial fixed-charge density, and the volume phase transition 

(Li, Wang et al. 2005). Further modification was made to simulate the responsive 

behavior of hydrogels due to temperature (Li, Wang et al. 2005) electrical stimuli (Lam, 

Li et al. 2006), pH coupled with electrical voltage (Li, Luo et al. 2007), and ionic strength 

(Li, Luo et al. 2007, Lai, Li et al. 2010, Lai and Li 2011), in which the chemo-electro-

mechanical coupling effects were considered for simulation of the swelling and shrinking 

behaviors. 

In order to investigate the effect of glucose oxidation reaction catalyzed by enzyme, a 

multi-effect-coupling glucose-stimulus (MECglu) model was developed for the 

simulation of swelling behavior of hydrogels responding to changes in the environmental 

glucose concentration (Li, Luo et al. 2009). This model was composed of the Nernst–

Planck equation, the Poisson equation, and a nonlinear mechanical equation for the large 

deformations of the hydrogel due to the conversion of chemical energy to mechanical one. 
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The impact of various solvent parameters was investigated on the responsive swelling 

behavior of the hydrogel by steady-state simulations. 

From the viewpoint of classical continuum mechanics, Wu and Kirchner developed a 

second-order nonlinear elastic model for hydrogels (Wu and Kirchner 2010, Wu and 

Kirchner 2011). The elastic constants were estimated from the free energy densities. 

Several phenomena were studied, such as the stiffening of a biogel under tension, and a 

contraction under torsion (Wu and Kirchner 2010). The problem of a spherically 

symmetric dilatation in a spherical hydrogel was also solved by this model, and then an 

analytical solution was given by perturbation method (Wu and Kirchner 2011) . 

2.2. Two-phase hydrogels with phase transition 

Apart from taking the hydrogel as a single-phase body for the bulk behavior, the hydrogel 

may undergo phase transition due to change in temperature and other environmental 

conditions, because the amount of water in the hydrogel at equilibrium changes with such 

conditions discontinuously. The phase transition was also affected by the nonhydrostatic 

stress. By adopting the Flory-Rehner model, the problems associated with the phase 

transition were analyzed (Cai and Suo 2011), such as specifically coexistent phases in a 

rod, and coexistent phases undergoing inhomogeneous deformation. Another work was 

done by Li et al. (Li, Wang et al. 2005) who developed a chemo-electro-thermo-

mechanical multiphysics model, by the Poisson-Nernst-Planck nonlinear system and 

Flory-based swelling equilibrium equation, with the capability of quantitatively 

simulating the volume phase transition of the ionized thermal-stimulus responsive 

hydrogels immersed in bathing solution with temperature change. 



 

13 
 

A Flory-type mean field theory and the mode coupling theory were also used to study the 

phase transitions of both crosslinked gels and single chains (Tanaka 1979), where the 

phase diagram and the swelling curve of the gel were calculated. The critical divergence 

and slowing-down of concentration fluctuations were also numerically described. 

When polymer networks are charged, they are capable of undergoing large swelling 

transitions in response to the competition among the mechanical, chemical, and electric 

energies. This phenomenon was examined as a function of relative charge composition, 

bath salt concentration, and solvent quality (English, Tanaka et al. 1996). Based on a 

modified Flory–Huggins model, English et al. (1996) studied the nonlinear instabilities of 

hydrogels in swelling transitions over a restricted range of solvent and bath salt 

concentrations. 

The equilibrium and non-equilibrium phase transitions in copolymer polyelectrolyte 

hydrogels were also investigated (English, Tanaka et al. 1997). In their work, a 

continuum model of polyelectrolyte hydrogel phase transitions were developed based on 

a concise thermodynamic and geometric foundation, and used to analyze the swelling 

pattern of hydrogels. 

For investigation of the surface instability and phase coexistence, a macroscopic static 

theory was developed for gels upon swelling or volume phase transition (Sekimoto and 

Kawasaki 1989), which demonstrated that the surface modulational instability occurred 

as the result of softening of generalized Raylelgh surface waves. The stability criteria was 

derived for uniaxially strained bulk gels, and a three-dimensional model was also 

developed for phase coexistence of gels exhibiting a volume phase transition. In addition, 



 

14 
 

a two-dimensional model was also given for volumetric phase separation between the 

swollen and shrunken phases of gels (Sekimoto, Suematsu et al. 1989), where a peculiar 

percolating (spongelike) structure of the shrunken phase domain was found and 

qualitatively analyzed. 

The change of temperature may also induce discontinuous shrinkage of hydrogels, which 

is theoretically analyzed by accounting for hydrophobic interaction (Otake, Inomata et al. 

1989), where the free energy of a hydrogel is composed of the elastic, osmotic, mixing 

and hydrophobic parts. This model was able to explain the thermally induced shrinkage 

of gels, and the "convexo"-type volume phase transition. 

Compared with chemical hydrogel, less attention was paid to physical hydrogels which 

may exhibit phase transition between hydrogel and solution phases, when the cross-links 

were formed or broken dynamically under environmental effects. An et al. developed a 

thermodynamic model for physical hydrogels (An, Solis et al. 2010), which was capable 

of predicting the static thermodynamic properties of physical hydrogels. The crosslink’s 

reformation was captured by a connectivity tensor at a microscopic level, and the 

macroscopic quantities were defined as statistic averaging. Energy functional was 

constructed based on several averaged variables. The solution or gel state was indicated 

by s , the number of monomers between two cross-links, in such a way that large s  

denotes solution and finite s  is for gel state. This theory was used to examine the un-

constrained swelling or swelling under imposed stress conditions of physical hydrogels. 

Besides, the properties of the solution-gel transitions were studied, and critical stress and 

concentration were investigated for phase transition. 
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2.3. Sharp interface for phase transition 

Thermoelastic solid may undergo phase transition between solid phases, when some 

quantities suffer a jump on an interface. In order to discuss the phase transition of 

thermoelastic solid, a mechanical continuum theory was developed for stress-induced 

solid-solid phase transition of tensile bars at stable equilibrium, on the basis of the one-

dimensional theory of nonlinear elasticity using a non-monotonic relation between the 

longitudinal strain and the stress in the bar (Ericksen 1975). Afterwards, Abeyaratne and 

Knowles developed a continuum model (Abeyaratne and Knowles 1993). A Helmholtz 

free energy, a kinetic relation and a nucleation criterion were constructed for a one-

dimensional thermoelastic solid, which was capable of undergoing either mechanically- 

or thermally-induced phase transition (Abeyaratne and Knowles 1993). 

A non-equilibrium thermo-mechanics of two-phase continua was developed by allowing 

a sharp phase-interface endowed with energy and entropy (Gurtin 1988), in which an 

additional balance law, or called the balance of capillary forces, was imposed on the 

interface. This model took into consideration of both the interaction between the interface 

and the bulk material, and the micro-forces imposed across the boundary curve of the 

interface. According to the second law of thermodynamics, power due to the forces and 

energy inflow resulting from diffusion were used to characterize the evolution of the 

phase interface. Another model was given for the phase transition of perfect conductors 

(Angenent and Gurtin 1989), in which the constitutive equations subject to 

thermodynamic restrictions were derived by invoking the balance of capillary forces and 

a mechanical version of the second law of thermodynamics. A theory was also developed 
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for the dynamics of an interface in a two-phase elastic solid with kinetics driven by mass 

transport and stress (Gurtin and Voorhees 1993). The bulk regions were separated by a 

sharp interface, and the mass transport resulted from the bulk diffusion of a single 

independent species. The field equations and free-boundary conditions were expressed in 

terms of chemical potential and its time derivatives. This model was capable of 

describing the equilibrium shapes of misfitting particles and possible microstructures of 

the solid. However, only infinitesimal deformations were considered. By extending the 

concept of interfacial accretive forces to the bulk phases, the model was modified by 

including the bulk configurational force, but the thermal and compositional effects were 

neglected (Gurtin 1995). The configurational forces were systematically studied as a 

basic concept in continuum physics (Gurtin 2000), and found to coincide with the 

Eshelby tensor (Eshelby 1951, Eshelby 1956), which gave an insight into the relation 

among the bulk configurational forces, the bulk free energy, the standard bulk 

deformational stress, and the deformation gradient.  

Due to the environmental stimuli, the hydrogel may swell or shrink by absorbing the 

small molecules from the surrounding solvent, or by expelling them from the hydrogel. 

Generally, there is an interface inside the hydrogel, which separates the hydrogel into two 

phases, namely the collapsed and the swelled phases. A sharp interface approach dealing 

with the gel-gel transition of hydrogels was developed by allowing for finite strain 

(Dolbow, Fried et al. 2004, Dolbow, Fried et al. 2005), in which the balance of 

configurational forces played a key role in coupling the mechanical and chemical effects. 

The swelling of a spherical specimen was studied by assuming the constant concentration 

in each phase, and the linear free energy with chemical potential (Dolbow, Fried et al. 
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2004). Various features of stimulus-responsive hydrogels were also investigated, such as 

the regimes of unstable and stable phase transitions, surface pattern formation, and bulk 

phase separation (Dolbow, Fried et al. 2005). The volume transitions in stimulus-

responsive hydrogels induced by temperature was also studied by imposing an interfacial 

normal configurational force balance, in addition to standard bulk and interfacial force 

and energy balances (Ji, Mourad et al. 2006). This model was also used to examine the 

stability of the interface evolution. 

2.4. Diffuse interface for phase transition 

In order to study the interfacial structure in the case of dendritic growth, in which the 

properties of sharp interface approach may be quite subtle, the notion of a diffuse 

interface was introduced, of which the underlying idea was that the extensive quantities, 

e.g. the mass density, vary smoothly between two coexisting phases from their values in 

one phase to the other. The diffuse interface technique was first used as a numerical 

technique (Emmerich 2011), in order to overcome the necessity for solving the precise 

location of the interface by introducing one or several additional phase-field variables, 

which were continuous fields as functions of space and time. In this way, the diffuse 

interface method is also called phase-field method. With the development of 

understanding of the interface, an asymptotic analysis was conducted and demonstrated 

that the diffuse interface model may be reduced to the sharp interface formulation, when 

the width of the interface goes to zero, if a thermodynamically consistent phase-field 

model was assumed. Therefore, this method gains more and more attention for numerical 

efficiency and physical consistency. 
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The diffuse interface method, or called the phase-field method, was widely used to 

simulate the alloy solidification. One of the most cited works in this area was done by 

Wheeler et al. (Wheeler, Boettinger et al. 1992, McFadden, Wheeler et al. 1993, Wheeler, 

Boettinger et al. 1993), which was called the WBM model. The interfacial region was 

assumed to be a mixture of solid and liquid with the same composition, but the chemical 

potentials were different. The phase transition in binary alloys was simulated by relating 

the parameters in the phase-field model to material and growth parameters in real systems. 

In addition, an asymptotic analysis was conducted as the gradient energy coefficient of 

the phase field became small, showing that the classical sharp interface models were 

recovered when the interfacial layers were thin. Similar model was proposed by Caginalp 

and Xie (Caginalp and Xie 1993). Another model was developed by Tiaden et al. (Tiaden, 

Nestler et al. 1998), in which the compositions of solid and liquid of the mixture were 

different in the interfacial region, but the constant ratio was assumed. A mathematical 

method was presented for modeling and simulation of phase transitions in multiphase 

systems controlled by solute diffusion. In order to overcome the limit for the interface 

thickness in the WBM model (Wheeler, Boettinger et al. 1992, McFadden, Wheeler et al. 

1993, Wheeler, Boettinger et al. 1993), Kim et al. proposed a model by assuming the 

mixture of liquid and solid in the interfacial region with the same chemical potential but 

different compositions (Kim, Kim et al. 1999). 

In order to describe the evolution of multiphase boundaries, a phase field model for 

multiphase systems was developed (Steinbach, Pezzolla et al. 1996, Steinbach, Zhang et 

al. 2012), in which each phase is identified with an individual phase field and the 

transformation between all pairs of phases is treated with its own characteristics, and the 
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number of the order parameters has to be determined according to the number of phases. 

The multiphase-field model was used for numerical calculations of the peritectic reaction 

and transformation for Fe-C alloy system (Tiaden, Nestler et al. 1998), and was compared 

with the WBM model (Wheeler, Boettinger et al. 1992, McFadden, Wheeler et al. 1993, 

Wheeler, Boettinger et al. 1993) in a limited case. 

In the area of modeling of dendritic crystal growth, Kobayashi (Kobayashi 1993) 

developed a phase field model for one-component melt growth by considering Ginzburg-

Landau type free energy with a phase-field variable. Relations were discussed between 

the shape of crystals and some physical parameters, and the crucial influence of noises 

was revealed on the side branch structure. This model was also used to simulate the three-

dimensional dendritic solidification (Kobayashi 1994). 

In order to study the spinodal decomposition in gel, a Ginzburg-Landau model was 

developed for gels undergoing spinodal decomposition, in terms of the polymer volume 

fraction and a deformation tensor (Onuki and Puri 1999), which demonstrated that the 

domain growth is extremely slowed down in late stages, and that the surface tension force, 

which drives the coarsening in usual fluids, is cancelled by the elastic force. 

For the effect of mechanics, Levitas et al. developed a model to resolve some 

contradictions of melting problems (Levitas and Samani 2011). Recently, the phase-field 

method was used to model the phase transition of polymeric gels on the basis of Cahn-

Hilliard equation, which coupled large deformation with mass transport (Hong and Wang 

2013). 
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2.5. Remarks 

Based on the above literature review, it is known that the single-phase models were used 

to simulate the bulk behavior of hydrogels subject to different stimuli, such as mechanical 

loading, temperature, chemical potential, ionic concentration and electric field etc., by 

taking the hydrogel as a single-phase body, and applying the stimuli as boundary 

conditions. It is also noted that the effects of the interface characteristics on the behavior 

of hydrogels, such as the surface tension and the kinetics related to the interface, were 

considered in the two-body hydrogel model for the behavior of interface between phases. 

However, the sharp interface approach was used to study the gel-gel phase transition, and 

the deformation is coupled with either temperature or diffusion only. On the other hand, 

the mathematical theory of configurational force may be extended to model solution-gel 

phase transition, since it is independent of the specific constitutive theory, although it was 

proposed to describe coherent two-phase elastic solids and most of its use was for solids. 

By taking the gel and the solution as two distinct phases and allowing a sharp interface 

separating the solution and gel phases, it is reasonable to extend the concept of 

configurational force, which is related to phase transitions, for modeling of the solution-

gel phase transition of physical hydrogels. Moreover, the theory may be improved to 

couple the thermal, electrical, chemical and mechanical effects together. The behavior of 

the bulk phases and the evolution of their interface may thus be simulated for phase 

transition between solution and gel states. In addition, the diffuse interface technique may 

be extended for modeling the solution-gel phase transition of hydrogels as well, by taking 

the crosslink density as a novel thermodynamically-consistent order parameter, which is 
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homogeneous in each distinct phase with smooth variation over the interface from one 

phase to another, in order to obtain a deeper understanding of fundamental mechanism of 

phase transition and key material properties of hydrogels.  
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Chapter 3. Development of a multiphysics model for hydrogel phase 

transition with sharp interface/configurational forces 

This chapter develops a mathematic model for simulation of the solution-gel phase transition 

of physical hydrogels with sharp interface/configurational forces, which couples the thermal, 

electrical, chemical and mechanical effects together. The chapter is organized as follows. 

After an introduction in Section 3.1, the three-dimensional model is formulated in Section 

3.2, in which the conservation laws are employed, the constitutive equations are 

formulated and a novel formulation of free energy density is proposed. Section 3.3 

reduces the model into one-dimensional domain, and then corresponding numerical 

analysis is conducted in Section 3.4 for investigation of the behavior of the bulk phases 

and the evolution of their interface during solution-gel phase transition. Finally, several 

remarks are given in Section 0, including a review comment on the present sharp 

interface model for a further development of the model with diffuse interface. 

3.1. Introduction and assumptions 

In this chapter, a multiphysics model is developed for simulation of the interface behavior 

of hydrogel during solution-gel phase transition, in which the solution and gel states are 

considered as two distinct phases and separated by a sharp interface technique. Apart 

from the classical governing equations for mass and energy conservations, and the force 

equilibrium in the two bulk phases and on their interface, an additional equilibrium 

equation for a so-called configurational force is imposed in the two bulk phases and on 

their interface for modeling of the solution-gel phase transition (Gurtin and Voorhees 

1993, Gurtin 1995, Gurtin 2000). Correspondingly, the configurational heating and mass 
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supply are proposed to account for entropy change due to the migration of the control 

volume. By the second law of thermodynamics, the constitutive equations are formulated, 

including an evolution equation for the interface. In order to simulate the solution-gel 

phase transition of the physical hydrogel, a novel formulation of the free energy is 

proposed, which considers the effects of the crosslink density in such a way that the 

solution phase is identified as the state when the crosslink density is small, while the gel 

is identified as the state with the large crosslink density. The presently developed model 

couples the thermal, electrical, chemical and mechanical effects together. It can reduce to 

the non-equilibrium thermodynamic model (Hong, Zhao et al. 2008, Hong, Liu et al. 

2009, Hong, Zhao et al. 2010), if the interface is ignored when only a single bulk phase 

exists, namely when no phase transition occurs. For case studies, the spherically 

symmetrical solution-gel phase transitions in water and in ionic solution are simulated 

numerically for analysis of the kinetic effects of diffusion coefficient, surface tension and 

other parameters on the interface behavior. 

In order to develop the mathematic model for simulation of the solution-gel phase 

transition of physical hydrogels with sharp interface/configurational forces, the 

assumptions are made below. 

 The chemical potential is continuous across the interface, namely 0][ a . 

 The electrical potential is continuous across the interface, namely 0][  . 

 The motion is coherent, namely 0y ][ . 

 The permittivity   is constant. 

 The surface tension is constant, namely const . 
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 No heat supply exists. 

 No chemical reaction occurs. 

 No mass supply exists. 

 The diffusion is much faster than the interface evolution. 

 The mobility is isotropic and homogeneous, namely IM aa M . 

 The crosslinks are isotropically distributed in a diamond lattice at equilibrium 

state. 

 All crosslinks are assumed in the same structure. 

 The specific volume of a monomer unit is as the same as that of the solvent 

and the mobile ions. 

 The specific heat capacity vC  is constant and independent of temperature. 

3.2. Formulation of three-dimensional model 

By modifying the theory conducted by Gurtin et al. (Gurtin and Voorhees 1993, Gurtin 

1995, Gurtin 2000), a three-dimensional multiphysics model is developed in this section 

via coupling the thermal, chemical, electrical, and mechanical effects together, in which 

large deformation is allowed. 

3.2.1. Kinematics 

Let us consider a two-phase control volume )(tP , as shown in Fig. 3.1, which migrates 

with time and is separated by the interface )(tS  into two phases   and  . In the 
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present work, the phase   represents the gel, and the phase   the solution. The normal 

component of the velocity of P  as the boundary surface of P  is constrained by 

PVnq          (3.1) 

where q  is the velocity of the boundary surface P , n  is the unit normal vector to the 

boundary surface P  pointing outward from P , and PV  is the normal velocity of the 

boundary surface P . 

 

Fig. 3.1. Migrating control volume. 

The interface )(tS  is assumed as a smoothly evolving surface with the unit normal 

vector )(Xm  pointing from the phase   to phase  . The normal component of the 

interface velocity v  is constrained by 

Vmv          (3.2) 

S
n

n

m

S interface
 phase

 phase
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A similar constraint given by Equation (3.3) is imposed on the velocity w  for the 

boundary curve of the interception SI P  between the control volume P  and the 

interface )(tS , 

Vmw , I

S

 Vnw        (3.3) 

where S
n  is the projection of n  onto the interface. 

By nonlinear deformation theory, if a material point at a place with coordinate PX  

moves to a new place ),( tXyy   at time t , the deformation gradient is defined as 

X

Xy
yF






),( t
        (3.4) 

Similarly, the interfacial deformation gradient is defined as 

PFyF 
S

S
        (3.5) 

where y
S

  is the surface gradient of y , mmIP   is the superficial projection 

and Φ  is the average value of a bulk field Φ  across the interface. Here Φ is assumed 

to be smooth up to S  in each phase. The jump of Φ  across the interface is denoted as 

][Φ , i.e. 

)(
1  ΦΦ
2

Φ + , 
 ΦΦΦ +][  with )),((),( ttΦtΦ X,0mXX 

(3.6) 
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As well known, the trajectory )(Z  of a particle passing through )(tPX  at time t  is 

the unique solution of the following equation, 

 ττ
dτ

τd
),(

)(
Zq

Z
 , XZ )(t       (3.7) 

As such, the time derivative of a field ),( tΦ X  following P  is the time derivative along 

such trajectories and is given as 

    τ=t,ττΦ
dτ

d
Φ )(t, ZX 


       (3.8) 

In a similar way, the time derivatives of a field ),( tΦ X  following the interface S  and 

the boundary curve I  are denoted as 
□

Φ  and 
△

Φ , respectively (Gurtin 2000, Dolbow, 

Fried et al. 2005). 

The velocity following P  is thus related to the material velocity y  by 

Fqyy  


         (3.9) 

As a result, the velocity field following interface S  is given as 

vFyy  
□

        (3.10) 

Another velocity field, the velocity following the boundary curve I , is given in a 

similar form as 
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wFyy  
△

        (3.11) 

If the motion is coherent, i.e. 0y ][ , the compatibility conditions is given as 

0PF ][ , and 0vFy  ][][       (3.12) 

In general, a tangential vector t  on the interface S  is perpendicular to )(Xm  at 

)(tSX , i.e. 0mt  . The projection of n  onto the interface is denoted as S
n , and it 

is tangent to I  but normal to I . A superficial tensor field S
T  on S  is thus required 

to satisfy 

0mT S          (3.13) 

All superficial tensor fields may be decomposed into tangential and normal parts as 

tmTT  SS

tan         (3.14) 

in which 
SS PTT tan , mTt

S .  

Additionally, the curvature tensor L  and total curvature K  are defined as 

mL
S

          (3.15) 

and 

mLPL
S

DivtrK         (3.16) 
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The total curvature K , the superficial projection P  and the unit normal vector m  

follow the relations below, 

mP KDiv 
S

        (3.17) 

and 

VV  Pm
S

□

        (3.18) 

In addition, the two useful identities are given below for the formulation in the 

subsections 3.2.3 to 3.2.5. 

 




I

VdaΨdaΨVdvΨΨdv
dt

d

P

P

PP

][}{       (3.19) 





I

I

II

dsVdaKVda
dt

d
 )(}{

□

     (3.20) 

3.2.2. Balance of force 

In the present model, two force systems are considered: a standard force system for 

deformation and a configurational force system for phase transition (Gurtin and Voorhees 

1993, Gurtin 1995). All force fields in each system are assumed to comply with their 

equilibrium laws. 
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3.2.2.1. Standard force 

The standard force system generally consists of the bulk deformation stress S , the 

interfacial deformation stress S
S , the external body force b , and the external interfacial 

force S
b . The balance of force and momentum requires 

0bnSbSn  
 I

S

I

SS dadsdvda
PP

     (3.21) 

and 

0bynSybySny  
 I

S

I

SS dadsdvda
PP

   (3.22) 

Applying the bulk and surface divergence theorem gives the local bulk force balance as 

0bS Div  and TT
FSSF        (3.23) 

and the interfacial equation in the form of 

0bSmS  SS

S
Div][  and 

TT )()( SSSS
SFFS    (3.24) 

3.2.2.2. Configurational force 

Apart from the standard force system, a configurational force is required to characterize 

the material structure and phase interface (Gurtin and Voorhees 1993, Gurtin 1995, 

Gurtin 2000). The configurational force system consists of the bulk configurational stress 

C , the interfacial configurational stress S
C , the body configurational force density g , 
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and the interfacial configurational force density 
S

g . The configurational force balance 

thus requires 

0gnCgCn  ∫∫∫∫
I

S

I

SS dadsdvda
PP ∂∂

     (3.25) 

Using the bulk and surface divergence theorem gives the bulk equation as 

0gC Div          (3.26) 

and the interface equation in the form of 

0gCmC  SS

S
Div][        (3.27) 

3.2.3. Conservation of mass 

As well known, hydrogel is a mixture of polymeric network matrix and interstitial fluid. 

Here the number concentrations of particles of species a  in the bulk phase and on the 

interface are denoted by ac  and S

ac , the bulk mass flux by aj , and the external mass 

supply by b

ar  in the bulk phases and S

ar  on the interface. In order to account for the 

bulk and interface mass flux due to the migration of the control volume P , the 

configurational mass fluxes of species a  are required in the bulk phases and on the 

interface, and denoted as aJ  and aj . If no chemical reaction occurs, the conservation of 

mass for all P  at any time requires 













I

I

I

S

I

S dsVjdaVJdardvrdadacdvc
dt

d
a

P

Paa

P

b

a

P

aa

P

a nj}{ (3.28) 
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resulting in the bulk diffusion equation in the form of 

b

aaa rDivc  j         (3.29) 

and the interfacial diffusion equation as 

SSS

aaaaa rVcKVcc  mj ][][
□

      (3.30) 

as well as the following relations 

aa cJ  , S

aa cj         (3.31) 

which demonstrates the coincidence between the concentration and the configurational 

mass flux due to the migration of the control volume. 

3.2.4. Conservation of energy 

In the present model, the conservation of energy is included in the system, which is 

formulated in this subsection. 

3.2.4.1. Internal energy 

The internal energy densities in the bulk phases and on the interface are denoted as E  and 

SE , respectively. The total internal energy of P  is given as 

 
I

S daEEdv
P

        (3.32) 
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3.2.4.2. Heating 

Heating is a main contribution to the change of internal energy. Similarly, the bulk heat 

supply density, interfacial heat supply density and heat flux are denoted by q , 
Sq , and h  

for the control volume P . In order to account for the bulk and interfacial heat transfer 

into the control volume P , the configurational heating is required in the bulk phases and 

on the interface, and denoted by H  and h . Therefore, the overall heating is given as 













I

I

I

S dshVdaqdaHVqdvda
P

P

PP

nh     (3.33) 

By the divergence law in the bulk and on the surface, Equation (3.33) is rewritten as 








 
I

I

I

S

I

dshVdaqdaHVqdvdadvDiv
P

P

PP

mhh   (3.34) 

3.2.4.3. Working 

As mentioned before, the two force systems are included in the present model, such that 

the working of both the standard and configurational forces is required. According to 

classical mechanics, the standard traction Sn  is work-conjugate to the velocity y  when 

the control volume remains unchanged. However, it is appropriate to use 


y  as the work-

conjugate velocity for Sn  in a migrating control volume, when the material is added and 

removed continuously. Similarly, S
b  and SS

nS  are work-conjugate to 
□

y  and 
△

y  

respectively. On the other hand, the configurational force accounts for the change in the 

material structure and evolution of phase interface, such that Cn  and SS
nC  are work-
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conjugate to q  and w . Since the material points are fixed at the reference body, no work 

is done by g  and 
S

g . Therefore, the working of the system is given as 

 
 I

S

I

SSSS dadsdvdaPW
PP

□

ybynSwnCybySnqCn )()()(
△




(3.35) 

By Equations (3.23) and (3.24), applying the divergence theorem gives 













I

SSSS

I

ds

VdadvdaPW
PP

)(            

][)()(

△

ynSwnC

mSFmFSqSnFCn
TT 

   (3.36) 

By the constraint (3.1) on the normal component of the velocity q , it is required that the 

integrand in the first term has to be in the form of 

ISFC
T          (3.37) 

which is an explicit expression for the bulk configurational stress C . 

According to Equation (3.14), the superficial tensor SS
SFC

T
  is decomposed into 

the following form as 

dmPSFC  SS T
       (3.38) 

where d  is the normal part of tensor SS
SFC

T
 . 

As a result, the tangent part of S
C  is presented by 
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SSS SFPC
T

tan
       (3.39) 

where   is surface tension. 

Inserting Equations (3.37) and (3.38) into Equation (3.36), and applying the surface 

divergence law give 

















I

I

I

S

I

S

S

dsVdaKV

VdaDivdvdaVPW
PP

P





)(             

)][()(

□□

mdFS

CmmSFmFS
T

  (3.40) 

3.2.4.4. Formulation for energy conservation 

According to the conservation of energy, it is required that the change of internal energy 

is equal to the sum of the heating and working, given by 

)(][

}{

PWdshVdaqdaHVqdvdadvDiv

daEEdv
dt

d

P

P

PP

P

















I

I

I

S

I

I

S

mhh

 (3.41) 

Substituting Equation (3.40) into (3.41) gives the bulk conservation law as  

FSh   qDivE        (3.42) 

and the interfacial conservation law in the form of 

□□

□

mdFSCmmSFmmh 



KVVDivq

VEKVEE

T SS

S

S )][(][

][SS

 (3.43) 
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as well as the following two relations 

HE  , and hE S       (3.44) 

3.2.5. Entropy subject to the second law of thermodynamics 

In this subsection, the entropies subject to the second law of thermodynamics are 

formulated for the system. 

3.2.5.1. Heating 

The entropy change due to heating is given as 













I

I

I

S

dsV
T

h
da

T

q
daV

T

H
dv

T

q
da

T
P

P

PP

n
h

   (3.45) 

where T  is the temperature. 

By the divergence law in the bulk and on the surface, Equation (3.45) is rewritten as 








 



I

I

I

S

I

dsV
T

h
da

T

q
daV

T

H
dv

T

q
dv

T

T
da

T
dv

T

Div

P

P

PPP

2
][

h
m

hh
(3.46) 

3.2.5.2. Diffusion 

The diffusion of mass into and out of P  also contributes to the change in entropy. The 

electrochemical potential of species a , denoted by a , is required to account for the 

entropy change due to diffusion. In such a way, the entropy change resulting from 

diffusion of species a  is given as 
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











I

I

I

S

dsV
T

j
da

T

r
daV

T

J
dv

T

r
da

T

aaaa

P

P
aa

P

b

aa

P

aa 
n

j
 (3.47) 

where the continuity across the interface is assumed for the chemical potential, i.e. 

0][ a          (3.48) 

By the divergence theorem and Equation (3.31), Equation (3.47) is written as 











 







I

I

S

I

S

I

dsV
T

c
da

T
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daV

T

c
dv

T

r

dv
T
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dv
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T

Div

aaaa

P

P
aa

P

b

aa

P

aaa
a

P

aa

P

aa







2

][
j

m
jjj

  (3.49) 

3.2.5.3. Electricity 

If the valence of each species a  is az , and the electric potential relative to the ground is 

),( tX  , the contribution of the electric field to the entropy change for species a  is 

given as 













I

I

I

S

dsV
T

jez
da

T

rez
daV

T

Jez
dv

T

rez
da

T

ez aaaa

P

P
aa

P

b

aa

P

aa 
n

j
(3.50) 

where e  is the elementary charge. 

By the divergence theorem and Equation (3.31), Equation (3.50) is written as 
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


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Divez
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m
jjjj

][
2

 (3.51) 

where the continuity across the interface is assumed for the electric potential, i.e. 

0][            (3.52) 

According to electrostatics, Maxwell’s equation with neglecting magnetic effects reduces 

to (Wang, Wang et al. 1997) 

0 Dj 
a

aaez         (3.53) 

where D  is the electric displacement and is associated with the electric field E  

via 

  ED         (3.54) 

where   is the permittivity and is assumed to be constant in the whole system. 

Therefore, the Gauss’ law is formulated as 


a

aacezQDivDiv )( ED        (3.55) 

where Q  is the total electric charge density. 
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3.2.5.4. Application of the second law of thermodynamics 

According to the second law of thermodynamics, the entropy of the whole system must 

not decrease i.e. 

 

 

 

 
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(3.56) 

where   and 
S  are the entropy densities in the bulk phases and on the interface, 

respectively. 

As a result, the bulk inequality is in the form of 






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jjj

jjjhh

 (3.57) 

and the interfacial inequality in the form of 
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 
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(3.58) 

as well as the following two relations among the entropy densities η  for the bulk phases 

and 
S  for the interface, and the configurational heatings H  for the bulk phases and h  

for the interface as 

T

cezJH
a

aa

a

aa  





  
T

cezch
a a

aaaa 



SS

S



  (3.59) 

Substituting Equation (3.59) into Equation (3.44), and using Equation (3.31), we have 

 
a

aaa

a

aa

a

aa cezTEcezcTE )(    (3.60) 

  
a

aaa

a a

aaaa cezTEcezcTE SSSSSSS )(   (3.61) 

3.2.6. Constitutive equations 

In this subsection, the constitutive equations are formulated based on the second law of 

thermodynamics in the bulk phases and on the interface. 

3.2.6.1. Bulk constitutive equations 

According to thermodynamics, Helmholtz free energy density is given by TE  . 

By Equations (3.29), (3.42) (3.53) and (3.57), the inequality in the bulk phases is given in 

the form of 
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 (3.62) 

If ),,,(ΦΦ TcaF  is a function of ac , T , D , F  and  , the bulk constitutive 

equations in the bulk phases are given as follows, 

a

aa
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φezμ



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Φ
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η

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


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Φ

  (3.63) 

aaa  Mj , T Kh       (3.64) 

where aM  and K  are the mobility and thermal conductivity, and both are positive-

definite tensors. 

Meanwhile, we also have the following relation for an equilibrium state, 

0
Φ






ρ
        (3.65) 

In addition, a sufficient and necessary condition required by the second law of 

thermodynamics is imposed on the scalar thermal conductivity K , and scalar motility 

aM  as (Caginalp and Jones 1995) 

0)(
4

2  aa
a ez

M
KT         (3.66) 



 

42 
 

which is automatically satisfied when aa ez   is sufficiently small. 

By applying the Legendre transformation, the free energy densities are presented in the 

new form of  





a

aaa

a

a

a

)cez(μc
c

Φ
ΦΦΨ  in the bulk phases (Gurtin and 

Voorhees 1993). Equation (3.61) shows the coincidence between the surface free energy 

and surface tension, and Equation (3.60) demonstrates the classical Eshelby relation 

(Eshelby 1951) as 

SFISFISFIC
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    (3.67) 

Consequently, by using the new free energy density  
a

aaa )cφez(μΦΨ , the 

inequality in the bulk phases, Equation (3.62), is refined in the following form as 
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 (3.68) 

If Ψ  is a function of 
aa

c

a ez  , T , D  and F , the bulk constitutive equations 

(3.63) in the bulk phases are refined as follows, 

c

a

a
μ

c




Ψ

, 
T

η




Ψ

, 
D



Ψ

 , 
F

S




Ψ

   (3.69) 

and the rest remain unchanged. 
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3.2.6.2. Interfacial constitutive equations 

Similarly, the free energy density on the interface is given as TE SS   . By 

Equations (3.30), (3.43), (3.58) and (3.61), the inequality on the interface becomes in the 

form of 
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  (3.70) 

where the local thermal equilibrium, 0][ T , is imposed on the interface. 

If   is a function of S

ac , T , m , and F , the constitutive equations on the interface is 

presented in the form of 
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Similarly, by the Legendre transformation, the free energy density on the interface is 

given as  




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
 . By Equations (3.30), (3.43), (3.58), 

(3.60), (3.61) and (3.67), the inequality on the interface, Equation (3.70), is refined in the 

form of 
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If   is a function of T , 
aa

c

a ez  , m , and F , the constitutive equations on 

the interface is presented in the form of 

T





S , c

a

ac







S

, 
m

d






, 

F
S






S
   (3.73) 

and the evolution equation in the form of 

mVDivT  )][(]Ψ[ S

S
CmmSFm     (3.74) 

with the kinetic modulus 0)V,,,(  Fm mm . 

As well known, if the diffusion of molecules in each bulk phase is much faster than the 

interface evolution, the concentration of polymer is homogeneous in each phase during 

the phase transition. If the mobility is isotropic and homogeneous, i.e. IM aa M , and no 

mass supply exists in each phase and on the Interface, the diffusion equations (3.29) and 

(3.30) reduce to 

02  a          (3.75) 

m ][][
□

aaaaa MVcKVcc SS       (3.76) 

where the scalar mobility aM  is constant and )/(kTcDM aaa   with diffusion coefficient 

aD  of species a . 
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3.2.6.3. Reduced constitutive equations for a single-phase hydrogel 

In the present model, a two-phase control volume )(tP  is considered, which migrates 

with time and is separated by the interface )(tS  into two phases   and  , and the 

derivation of the constitutive equations is independent of the specific phase. Therefore, 

the constitutive equations in both bulk phases are formulated by Equations (3.69). In 

addition, Equations (3.73) are also included in the present model to account for the 

interfacial constitutive relations. When the system reduces into a single-phase hydrogel, 

namely when no interface exists, the interfacial constitutive equations (3.73) are ignored, 

and Equations (3.69) alone are enough to describe the bulk constitutive relations. 

3.2.6.4. Advantages of the present constitutive equations over a published non-

equilibrium model 

As mentioned above, when the system reduces into a single-phase hydrogel, the 

constitutive equations reduces into Equations (3.69) accordingly, which are in fact the 

same form as those derived by a different approach, called the non-equilibrium 

thermodynamic theory (Hong, Zhao et al. 2008, Hong, Liu et al. 2009, Hong, Zhao et al. 

2010). In other words, the non-equilibrium model proposed by Suo’ group (Hong, Zhao 

et al. 2008, Hong, Liu et al. 2009, Hong, Zhao et al. 2010) is just a special case of the 

present model with respect to constitutive relations, when the present two-phase control 

volume reduces to a single-phase one, in which only the gel phase with constant crosslink 

density exists in the hydrogel system. 
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3.2.7. A novel formulation of the bulk free energy with the effect of crosslink density 

In order to model the solution-gel phase transition of the physical hydrogel, the free 

energy is required. In this subsection, a novel free energy is developed to account for the 

effect of crosslink density  . As well known, the polymer chains of the physical 

hydrogel are crosslinked by weak physical bonds in general, such as van der Waals 

interaction and hydrogen bonds. As a result, the physical hydrogel is able to exhibit the 

phase transition between solid and liquid states, when the crosslinks are formed or broken, 

subject to environmental stimuli. Therefore, the crosslink density   has an important 

influence on the mechanical, thermal and chemical behavior of the hydrogel. 

3.2.7.1. Elasticity 

In the classical mechanics, usually an undeformed state is taken as a reference state. For 

modeling of the hydrogel, the dry state as the undeformed state is generally taken as a 

reference state (Hong, Zhao et al. 2008, Hong, Liu et al. 2009), in which there is no 

solution, and thus the elastic contribution to the free energy is formulated with respect to 

the dry state. It is noted that an isotropic distribution in a diamond lattice for the present 

crosslinks is assumed at the equilibrium state. As such, the functionality for each 

crosslink is equal to 4 (Rubinstein and Colby 2003), and the distance 0R  between the 

neighboring crosslinks at dry state is given as 

0

3

0
8

33


R          (3.77) 
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where 0  is the crosslink density at the dry state. 

The entropy of stretching a polymer chain may be expressed below (Rubinstein and 

Colby 2003) 

2

0

222

2
)3(

2

1
R

Nb

k
zyxelastic        (3.78) 

where x , 
y , 

z  are the principal stretches, b  is the Kuhn length, and N  is the average 

number of Kuhn monomers which are associated with each chain between two crosslinks. 

The entropy density of the hydrogel is formulated, based on the affine network model 

(Rubinstein and Colby 2003), 

)3(
4

3 222

23/2

0

 zyxelasticelastic
Nb

k
n 




     (3.79) 

in which n  is the number density of the polymeric segments between the neighboring 

crosslinks at the current state, and 2n  with Fdet/0   as the crosslink density at 

the current state. 

By the affine model (Rubinstein and Colby 2003), the relative deformation of each 

network strand is the same as the macroscopic relative deformation imposed on the whole 

network (Rubinstein and Colby 2003). As such, it can be reasonably assumed that all the 

monomers are connected to the network. Therefore, the average number of Kuhn 

monomers in subchains N  depends on the density of crosslinks  . If   represents the 
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number of monomers in a Kuhn monomer, the concentration of monomers mc  is thus 

associated with the average number N  and the crosslink density   via 

 NnNcm 2         (3.80) 

As such, the elastic energy is written in the scale form of 
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or in the tensor form of 

)3(
)(det4

3
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 ijijelastic FF
Nb

kT

F


      (3.82) 

in which the entropy is considered only to make contribution into the elastic free energy 

(3.81) or (3.82). 

3.2.7.2. Mixing 

The energy of mixing between the polymer and solvent per lattice site may be written as 

follows, according to the Flory-Huggins solution theory (Flory and Rehner 1943, Flory 

and Rehner 1943, Flory 1953) 
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in which m  is the volume fraction of polymer.   is a dimensionless interaction 

parameter, and TBA /  (Rubinstein and Colby 2003), where A  and B  are material 

dependent parameters. If the specific volume of a monomer unit is denoted by v  and 

assumed as the same as that of the solvent and the mobile ions, we have vcmm  , where 

mc  is the number concentrations of monomers in the bulk phases. Therefore, the free 

energy density of mixing between the polymer and solvent is given as follows. 
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  (3.84) 

In addition, the mobile ions also contribute to the energy of mixing. If the concentrations 

of the mobile ions are low, their contribution to the free energy results from the entropy 

of mixing, namely (Hong, Zhao et al. 2010) 
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where 0

ac  is a reference concentration of species a  when the chemical potential of the 

species is equal to zero. 

Therefore, the energy of mixing of the system is in the form of 
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3.2.7.3. Polarization 

If the hydrogel is an ideal dielectric, the energy of polarization is written in the form of 

(Zhao, Hong et al. 2007, Hong, Zhao et al. 2010) 

2/iipol DD         (3.87) 

3.2.7.4. Bonding 

Meanwhile, the contribution coming from the breaking and forming of crosslinks due to 

the environmental stimuli is also considered to the free energy of the system. In order to 

characterize the crosslink, the same structure is assumed for all crosslinks via a 

generalized weak physical bond (An, Solis et al. 2010). As such, the energy of the 

generalized weak physical bonding may be written in the form as (An, Solis et al. 2010) 

abonding E         (3.88) 

where aE  is an activation energy required to break a crosslink. 

3.2.7.5. Internal energy 

If the specific heat capacity vC  is constant and independent of temperature, the 

contribution of internal energy to free energy is given as 

)ln1(
M

vinternal
T

T
TC         (3.89) 
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where MT  is a reference temperature. 

3.2.7.6. Total bulk free energy 

In summary, the total free energy density total  of the system is contributed by the elastic, 

mixing, polarization, bonding, and internal energies. total  is thus obtained by Equations 

(3.82), (3.86), (3.87), (3.88) and (3.89) as 
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As mentioned above, the dry state is taken as the reference state. If the hydrogel is a 

condensed matter, namely both the polymer and solvent molecules are incompressible, 

we have the incompressibility condition, given below (Hong, Zhao et al. 2008), 
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1


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, or )det/(1 Fvcm        (3.91) 

After the Legendre transformation, the free energy densities are reformed as 
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By Equations (3.63) and (3.90), we have 
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and consequently, 
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Based on Equations (3.29), (3.63), (3.64), (3.92), and the relation 
a
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have the Nernst-Planck equation for the mass conservation, given as 
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Therefore, the free energy density Ψ  of the whole system is formulated as the following 

form, according to Equation (3.80), Equation (3.90), the incompressibility condition 

(3.91), and Equation (3.93), 
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By the relation that 
aa

c

a ez  , Equation (3.95) may be rewritten as 
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3.2.8. Surface tension 

For simplicity, a constant free energy density on the interface is assumed in the present 

model, namely 

constcezc
c a

aaa

a

a

a





  


 SS

S
)(    (3.97) 

resulting in 

0S , 0S

ac , 0d , 0S
S     (3.98) 

Therefore, the configurational force on the interface is in the form of 

PC S          (3.99) 

and thus 

KDiv  S

S
Cm         (3.100) 

with K  the total curvature.  

Consequently, the evolution equation (3.74) reduces to 

mVKT  mSFm ][][       (3.101) 

So far the formulation of the present model has been completed theoretically. It is 

composed of the force equilibrium equation (3.23) in the bulk phases and Equation (3.24) 

on the interface, the mass conservation equation (3.29) in the bulk phases and Equation 
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(3.30) on the interface, or their reduced form given by Equations (3.75) and (3.76), if the 

diffusion is much faster than the interface evolution and no mass supply exists, the 

energy conservation equation (3.42) in the bulk phases and Equation (3.43) on the 

interface, the Maxwell equations (3.53) and (3.55), and Equation (3.74) for the evolution 

of interface. By the second law of thermodynamics, the constitutive equations (3.69) are 

given in the bulk phases and Equations (3.73) on the interface, and the mas and heat flux 

are presented by Equation (3.64). The present model also includes the free energy density 

formulated by Equation (3.96) in the bulk phases and by Equation (3.97) on the interface. 

As mentioned above, this model couples the thermal, electrical, chemical and mechanical 

effects together, and it can perform the simulation of the interface kinetics of the physical 

hydrogel during the solution-gel phase transition. 

3.3. Reduced one-dimensional model 

In this section, the present model is reduced from a three-dimensional domain to a one-

dimensional one for case study by simulation of evolving interface of a spherically 

symmetrically physical hydrogel during the solution-gel phase transition. 

3.3.1. Force 

For a spherically symmetrically evolving interface during solution-gel phase transition of 

physical hydrogel, the deformation in the one-dimensional domain is the displacement 

)(ry  in the radial direction. As a result, the stretch in the circumstantial direction is given 

as 

ryt /          (3.102) 
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and the stretch in the radial direction is in the form of 

drdyr /          (3.103) 

By Equations (3.69) and (3.96), the stress is given as 
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in which the stress components are given in the radial and tangent directions respectively, 
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The force equilibrium thus requires 
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Specially, if the system is isotropic and homogeneous,   tr  gives 
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The boundary condition for forces is given below, if the hydrogel is under the hydrostatic 

stress IP ,  

PS Rr |          (3.109) 

where R  is the length of the one-dimensional domain, i.e., the radius of the spherical 

symmetrical system. 

3.3.2. Temperature 

By Equations (3.96) and the relation TE  , the bulk conservation of energy (3.42) 

reduce to the thermal conductivity equation as 

FS   qTKTCv

2
        (3.110) 

which is automatically satisfied under constant temperature and zero heat supply. 
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By Equations (3.73), (3.97), and the relation TE SS   , the interfacial conservation 

of energy (3.43) reduces to 

VqVEKVE T )][(][][ mSFmmh  SS
    (3.111) 

By the above assumption for constant temperature and zero heat supply, we have 0h   

and 0Sq . As a result Equation (3.111) may be further reduced to  

0][  KSE          (3.112) 

which demonstrates the relation among the latent heat, the surface tension, and the total 

curvature at constant temperature. 

3.3.3. Electrochemical potential 

For evolving interface of the physical hydrogel, the mass conservation equations (3.75) 

and (3.76) reduce to the one-dimensional domain, given by 
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The boundary condition due to the radial symmetry of a  is written as 

0| 0



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a
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         (3.115) 



 

58 
 

By Equations (3.113) and (3.115), the electrochemical potential is obtained in the form of 
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where aU  is the electrochemical potential of species a  on the boundary, au  is the 

electrochemical potential of species a  on the interface, w  is the coordinate of the 

interface in the radial direction, and thus wV  . By Equations (3.114) and (3.116), the 

chemical potential on the interface is gotten in the form of 

R
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M
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1 
        (3.117) 

3.3.4. Electric field 

By the constitutive equation (3.69), and the bulk free energy density (3.96), and Equation 

(3.54), the electric potential  , the scalar electric displacement rD , and the scalar 

electric field 
r

E r






 are associated via 

r
ED rr







         (3.118) 

If only two species of ions of valences 1  and 1  are mobile in the gel and in the 

external solution, and no fixed charges are considered, the electrochemical potential of 

the two species are 
  and 

 , respectively. As a result, Equations (3.53) and (3.55) thus 

reduce to 
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respectively. 

3.3.5. Crosslink density and the phase identification 

At stable state, the crosslink density is determined by 

0
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Therefore,  
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If   tr , 

)1(

ln
6

2

2

3/1













b

v
kT

Ea

        (3.123) 

Inserting Equation (3.123) into Equation (3.108) gives 
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According to Equation (3.91), if the concentration ac  is homogenous in each phase, the 

stretch   is also homogenous. As such, Equation (3.107) for force equilibrium reduces 

to 
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This equation (3.125) demonstrates the evolving relation between the crosslink density ρ  

and chemical potential c

a  in each phase during phase transition, with 
aa

c

a ez  . 

3.3.6. Equilibrium states 

At equilibrium state, there exists only one phase, and the derivatives with respect to time 

are zero. As a result, 0ja  , 0h  , 0V , and  , ac  and   are constants and 

determined entirely by the boundary conditions. 

By Equations (3.109) and (3.124), the stretch may be determined via  
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where c

mU  and c

aU  are the chemical potentials of the monomer and species a  on the 

boundary. 

Consequently, by Equation (3.123), the crosslink density is given as 
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by Equations (3.69) and (3.96), 
mc  and 

ac  are thus given as 
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respectively. 

Additionally, the electric potential is also homogenous, namely 

Rr |          (3.130) 

As a result, 
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3.3.7. Kinetic equation 

By Equations (3.101), (3.108) and the condition   tr , the evolution of the 

interface thus reduces to 

mVKS   ][][        (3.132) 

So far the model has been reduced to one-dimensional domain, consisting of the reduced 

force equilibrium equation (3.125), the reduced electric displacement (3.118) and (3.119), 

and the reduced evolution equation (3.132), with the interfacial chemical potential 

(3.117). As consequence, the spherical symmetrical evolution of interface may be 

simulated numerically in one-dimensional domain for the physical hydrogel with 

solution-gel phase transition. 

3.4. Numerical case studies and discussions 

In this section, a MATLAB source code is developed, based on the reduced one-

dimensional governing equations (3.107), (3.108), (3.110), (3.111), (3.116), (3.118), 

(3.119), and (3.132), and boundary conditions (3.109), (3.116), and (3.130), for 

simulation of spherical symmetrical evolution of interface of hydrogel with solution-gel 

phase transition. As case studies, the phase transitions of hydrogel are numerically 

simulated in water and in ionic solution respectively. 
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3.4.1. Phase transition of hydrogel in water 

In this subsection, the phase transition of hydrogel in water is numerically simulated. 

When the hydrogel is in water, no ionic species exists, such that 0az , 0rD , 

0rD , and 0
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respectively. 

By Equations (3.60) and (3.117), Equation (3.132) is rewritten in the form of 
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Based on Equations (3.116), (3.117), (3.133), (3.134), and (3.135), a MATLAB source 

code is developed for numerical simulation of phase transition of hydrogel in water. The 

inputs of parameters are given as follows. J104 23aE , 30 , 328 m10v , a 
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constant room temperature J104 21kT , a constant interaction parameter 1.1 , and 

the boundary conditions 0P  and 0U  for free swelling of the physical hydrogel. 

In order to identify the phases of solution and gel in the stable state, a couple of the 

crosslink densities   subject to a stress S  are required, where the smaller crosslink 

density corresponds to the solution phase, and the larger crosslink density to the gel phase. 

For this purpose, Fig. 3.2 is plotted by Equations (3.123), (3.124) and the boundary 

condition (3.109) for the relation between the crosslink density   and the stress S . It is 

observed from Fig. 3.2 that, for a given stress S , there always exist two values of the 

crosslink density  . In other words, of the two values of the crosslink density  , one 

corresponds to the solution phase and the other to the gel phase. It is also known from Fig. 

3.2 that no numerical solution exists for the crosslink density  , if the stress S  as a 

tension is very large (i.e. 0S ). The peak value of the stress S  corresponds to a 

critical state, where all the crosslinks are broken. On the other hand, if the stress S  as a 

compression is very large (i.e. 0S ), namely when the system is subjected to large 

pressure ( 0P ), a sole numerical solution exists and corresponds to a very large 

crosslink density  , indicating that large pressure results in the gel phase only. In 

addition, Fig. 3.3 is plotted by Equation (3.124) for the relation between the stretch   

and the stress S  for free swelling. As discussed above, there exist the phases of solution 

and gel that are identified by the crosslink density  . The two phases corresponds to two 

different deformation states. This phenomenon is also verified by Fig. 3.3, where there 

always exist two values of the stretch  accordingly for a given stress S . 
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Fig. 3.2. Relation between the crosslink density   and stress S  at a stable state 

 

 
Fig. 3.3. Relation between the stretch   and stress S  at a stable state. 
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Fig. 3.4. Variation of non-dimensional interface coordinate Rw/  with time t  for 

different domain sizes R . 

Fig. 3.4 demonstrates the evolution of the interface during phase transition with different 

domain sizes cm 8 and 4 2, 1,R , where vkTm /1000 , vkT /10 5  and 

Kg)/s(m 105.2 340 M . In general, the phase transition from the solution to gel phase 

is triggered when a gel core is formed at 0r  under certain environmental stimuli. 

Subsequently, the gel phase grows outward from the core to the boundary with the total 

curvature )/(2 sDivK  m
S . It is found in Fig. 3.4 that the interface evolves from 

the center towards the boundary, since the gel phase with larger crosslink density is more 

favorable for the physical hydrogel subject to the boundary conditions 0P  and 0U , 

compared with the solution phase. It is also seen from Fig. 3.4 that the curve is steep at 

the beginning or when the interface approaches the boundary, indicating a fast phase 

transition near the center or the boundary. 



 

67 
 

Fig. 3.5 shows the effect of non-dimensional mobility MvkTM *  on the phase 

transition, where vkTm /1000 , cm 1=R , and vRkT /001.0 . It is observed that 

larger values of *M  result in the faster transition, which is consistent with the fact that 

the larger values of *M  result in the faster diffusion of polymer molecules. 

 
Fig. 3.5. Effect of the non-dimensional mobility MvkTM *  on the variation of the 

interface coordinate w  with time t . 

The influence of kinetic modulus m  is also studied on the evolution of interface, as 

illustrated in Fig. 3.6, where /scm10 24D , cm 1=R , vRkT /01.0  and 

)/(* kTmvm  . It is observed from Fig. 3.6 that, when m is very small, m  has 

insignificant influence on the phase transition. If m  becomes large, the phase transition 

takes a longer time. 
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Fig. 3.6. Effect of the mobility kTmvm /*  on the variation of the interface coordinate 

w  with time t . 

As shown in Fig. 3.7, the surface tension   has significant influence on the evolution of 

interface when )/(* RkTv   is large, where vkTm /1000 , /scm10 24D , and 

cm 1=R . It is demonstrated in Fig. 3.7 that the large surface tension slows the transition 

down, which is also a direct result of Equation (3.135). 
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Fig. 3.7. Effect of the surface tension RkTv /*    on the variation of the interface 

coordinate w  with time t . 

3.4.2. Phase transition of hydrogel in ionic solution 

In this subsection, the phase transition of hydrogel in ionic solution is numerically 

simulated. As mentioned above, the concentration of polymer is homogeneous in each 

phase during the phase transition, and determined by Equations (3.108), (3.109), and 

aRra Uu | . Consequently, by Equations (3.93), (3.114), (3.116), the interfacial 

chemical potential au  is obtained by solving the following equation 
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As a result, Equation (3.55) is reduced to 
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The electric potential is thus given as 
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where outQ  is the total electric charge density in the outer phase, and is constant. 

Based on Equations (3.136), (3.138), and Equations (3.108), (3.109), (3.116), (3.117), 

(3.125) and (3.132), a MATLAB source code is developed for numerical simulation of 

phase transition of hydrogel in ionic solution. The inputs of parameters are given as 

follows. J104 23aE , 30 , 328 m10v , 1.1 , 
32500 m10 

  cc , a constant 

room temperature J104 21kT , a constant non-dimensional kinetic modulus 

510)/(*  kTmvm , and the boundary conditions 0P , 0aU  and 

ekTRr /01.0| 0   . 

In order to demonstrate the evolution of the interface during the phase transition for 

different domain sizes, cm2.0R , cm4.0R , cm8.0R , and cm1R , Fig. 3.8 is 

plotted. It is found in Fig. 3.8 that the interface evolves from the center towards the 

boundary, indicating that the gel phase with larger crosslink density is more favorable for 

the physical hydrogel subject to the boundary conditions 0P , 0aU  and 

ekTRr /01.0| 0   , compared with the solution phase. It is also shown from Fig. 3.8 
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that the curve is steep at the beginning, indicating a fast phase transition when the 

interface is near the center. 

 
Fig. 3.8. Variation of non-dimensional interface coordinate Rw/  with time t  for 

different domain sizes R . 

Fig. 3.9 demonstrates the variation of interface electrochemical potential of monomers 

mu  with time t . It is found that the interface electrochemical potential mu  is smallest at 

the beginning, and increases when the gel phase grows outwards, and that the 

electrochemical potential mu  is always less than zero, the boundary condition. The 

profiles of the electrochemical potential of monomers m are also plotted in Fig. 3.10 at 

different times (s) 1.0t , (s) 1t , (s) 5t , (s) 10t , (s) 15t , (s) 20t , and 

ftt  , where 
ft  is the time cost for the evolution of interface to the boundary. It is found 

that the electrochemical potential m  is homogeneous in the gel phase ( wr  ), and 
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varies with the coordinate in the solution phase ( wr  ), which is a direct result of 

Equation (3.116). Fig. 3.10 also shows that the electrochemical potential m  is 

homogeneous in the whole domain when the whole system is in the gel state, which also 

directly results from Equation (3.116). 

 

Fig. 3.9. Variation of interfacial electrochemical potential mu  with time t . 
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Fig. 3.10. Variation of the electrochemical potential 
m  with a non-dimensional 

coordinate Rr /  at different times. 

The electrochemical potentials of the ionic species are also investigated, as shown in Fig. 

3.11 and Fig. 3.12, which illustrate the variation of interface electrochemical potentials of 

ionic species 
u  and 

u  with time t , respectively. It is shown that the interfacial 

electrochemical potentials increase when the interface evolves outwards, and reaches the 

boundary electrochemical potentials when the whole system transits into the gel phase. It 

is also found that the electrochemical potential of the cation 
u  is positive, while the 

electrochemical potential of the anion 
u  is negative. 
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Fig. 3.11. Variation of interfacial electrochemical potential 
u  with time t . 

 

 

 

Fig. 3.12. Variation of interfacial electrochemical potential 
u  with time t . 
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Additionally, the profiles of the electrochemical potential of the cations 
  at different 

times are plotted in Fig. 3.13, and the electrochemical potential of the anions 
  at 

different times in Fig. 3.14. It is found that the electrochemical potentials are 

homogeneous in the gel phase ( wr  ), and varies with the coordinate in the solution 

phase ( wr  ), which results directly from Equation (3.116). 

 

Fig. 3.13. Variation of the electrochemical potential 
  with a non-dimensional 

coordinate Rr /  at different times. 
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Fig. 3.14. Variation of the electrochemical potential 
  with a non-dimensional 

coordinate Rr /  at different times. 

3.5. Remarks 

In this chapter, a multiphysics model has been developed for simulation of the interface 

evolution and characteristics for the physical hydrogel during solution-gel phase 

transition, which is based on a migrating control volume and couples the thermal, 

electrical, chemical and mechanical effects together. The present model includes the 

classical governing equations for mass and energy conservations, the force equilibrium 

equations for the two bulk phases and their interface, and additional equilibrium 

equations for a so-called configurational force imposed in the two bulk phases and on 

their interface for the effect of the solution-gel phase transition. Accordingly, the 

configurational heating and configurational mass supply are proposed for the change in 

entropy due to the migration of the control volume. Based on the second law of 
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thermodynamics, the constitutive equations are formulated, including an evolution 

equation for the interface. 

A novel formulation of the free energy is proposed to characterize the solution-gel phase 

transition of the physical hydrogel, with consideration of the effects of crosslink density, 

in such a way that the solution phase is identified as a state where the crosslink density is 

very small, while the gel phase as the state where the crosslink density is very large. It 

can reduce to the non-equilibrium thermodynamic theory (Hong, Zhao et al. 2008, Hong, 

Liu et al. 2009, Hong, Zhao et al. 2010), if the interface is ignored when a single bulk 

phase exists only, i.e. no phase transition occurs. In other words, the theory proposed by 

Suo’s group (Hong, Zhao et al. 2008, Hong, Liu et al. 2009, Hong, Zhao et al. 2010) is a 

special case of the present model. 

For case studies, the spherical symmetrical solution-gel phase transition are numerically 

simulated respectively for analysis of the effect of diffusion coefficient in water and in 

ionic solution, surface tension and other parameters on the interface evolution and 

behavior during the solution-gel phase transition. 

However, there are the following limitations in the presently developed model for 

simulation of the solution-gel phase transition of physical hydrogels with sharp 

interface/configurational forces. 

 Since the model presented in this chapter is based on the sharp interface model, in 

which all the physical parameters suffer a sudden jump over the interface, the 

precise location of the interface is required in the whole time domain during the 
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numerical simulation. Although the present model is able to describe the 

interfacial evolution and surface properties, it is difficult to track the interfacial 

location for geometrically complex system. 

 In the electric field, the present model considers only the limit of the concentrated 

solution, in which the fixed charges are negligible compared with the 

concentration of ions in the solution. However, in the limit of a dilute solution, the 

ions in the solution are fully compensated by the fixed charges. Therefore, the 

model needs to be further improved for the limit of a dilute solution.  
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Chapter 4. Development of a multiphysics model for hydrogel phase 

transition with diffuse interface 

In Chapter 3, a multiphysics model is developed with the sharp interface/configurational 

forces, where all the physical parameters suffer a sudden jump over the interface. As a 

result, the precise location of the interface is required in the whole time domain during 

the numerical simulation. This is difficult to track for geometrically complex system. 

Therefore, a diffuse-interface model is developed in the present chapter to overcome the 

difficulty in tracking the interface. This chapter is organized as follows. A brief 

introduction is given in Section 4.1. After that, the three-dimensional model is formulated 

in Section 4.2, in which the crosslink density is employed as a novel thermodynamically-

consistent order parameter, and a novel Ginzburg-Landau type of free energy is proposed. 

Section 4.3 presents the reduced one-dimensional model, and then the effects of the 

electrochemical potential, pressure and other boundary conditions on the phase transition 

are numerically analyzed in Section 4.4. Finally, the several conclusions are drawn in 

Section 4.4.2. 

4.1. Introduction and assumptions 

In this chapter, a thermo-electro-chemo-mechanical multiphysics model with the diffuse 

interface is developed for solution-gel phase transition of physical hydrogel, which 

couples the thermal, electrical, chemical and mechanical effects together. The present 

domain covers the gel and solution states that are considered as two distinct phases, and a 

diffuse interface between them, indicated by the density of crosslinks. As a result, the 

crosslink density is employed as a novel thermodynamically-consistent order parameter, 
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which is homogeneous in each distinct phase with smooth variation over the interface 

from one phase to another. Since all the parameters vary smoothly over the whole domain, 

the same constitutive equations are imposed on the two distinct phases as well as the 

interface. By the second law of thermodynamics, the constitutive equations are 

formulated. They include a novel Ginzburg-Landau type of free energy, which consists of 

the elastic, mixing, polarization and bonding contributions with the effect of crosslink 

density, as well as a gradient term of the crosslink density. The present governing 

equations account for the equilibrium of forces, the conservations of mass and energy, 

and an additional kinetic equation imposed for phase transition. As case studies, 

spherically symmetrical solution-gel phase transition of physical hydrogel is numerically 

simulated for analysis of the effect of electrochemical potential and pressure on the phase 

transition. 

In order to develop the thermo-electro-chemo-mechanical multiphysics model with the 

diffuse interface for solution-gel phase transition of physical hydrogel, the assumptions 

are made below. 

 The permittivity   is constant. 

 No heat supply exists. 

 No chemical reaction occurs. 

 No mass supply exists. 

 The diffusion is much faster than the interface evolution. 

 The mobility is isotropic and homogeneous, namely IM aa M . 
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 The crosslinks are isotropically distributed in a diamond lattice at equilibrium 

state. 

 All crosslinks are assumed in the same structure. 

 The specific volume of a monomer unit is as the same as that of the solvent 

and the mobile ions. 

 The specific heat capacity vC  is constant and independent of temperature. 

4.2. Formulation of three-dimensional model 

In this section, a three-dimensional diffuse interface model is developed, with the 

crosslink density as a novel thermodynamically-consistent order parameter. 

4.2.1. Balance of force 

According to nonlinear deformation theory (Gurtin 1981, Reddy 2007, Wang 2007), the 

deformation gradient can be defined as Equation (3.4), due to a material point at a place 

with coordinate PX  moving to a new place ),( tXyy   at time t , namely yF  . 

The present force system consists of a deformation stress S  and an external body force 

b , such that the equilibrium of force and momentum is required by 

0bSn  
PP

dvda         (4.1) 

and 

0bySny  
PP

dvda        (4.2) 
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By the divergence theorem, the local force is balanced by 

0bS Div          (4.3) 

and  

TT
FSSF           (4.4) 

4.2.2. Conservation of mass 

As mentioned above, due to the hydrogel being a mixture of polymeric network matrix 

and interstitial fluid, the conservation of mass is required by 

 
 P

b

a

P

a

P

a dvrdadvc
dt

d
nj}{       (4.5) 

where ac  is the number concentration of particles of species a , and ma   for monomer, 

aj  is the mass flux, and b

ar  is the external mass supply. As a result, the diffusion equation 

is in the form of 

b

aaa rDivc  j         (4.6) 

4.2.3. Conservation of energy 

In this subsection, the conservation of energy is formulated by the first law of 

thermodynamics. If the internal energy density is denoted as E , the total internal energy is 

expressed as 
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
P

Edv           (4.7) 

As required by the conservation of energy, the change of internal energy has to be equal 

to the sum of the heating and working, i.e. 

)(}{ PWqdvdvDivEdv
dt

d

PPP

  h      (4.8) 

where q  is the heat supply density, h  the heat flux, and W  the working in the form of 

 
PP

dvdaW ybySn         (4.9) 

where y  is the material velocity at each material point at time t . 

By the divergence theorem and Equation (4.3), we have 

 
P

dvW FS           (4.10) 

As a result of Equation (4.8), the conservation of energy is given as 

FSh   qDivE        (4.11) 

4.2.4. Entropy subject to the second law of thermodynamics 

In this subsection, the entropies subject to the second law of thermodynamics are 

formulated for the system. 
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4.2.4.1. Heating 

The entropy change due to heating is given as 

 
 PP

dv
T

q
da

T
n

h
        (4.12) 

where T  is the temperature. 

By the divergence law, Equation (4.12) is rewritten as 

 



PPP

dv
T

q
dv

T

T
dv

T

Div
2

hh
      (4.13) 

4.2.4.2. Diffusion 

The diffusion of particles into and out of P  also contributes to the change in entropy, 

given as 

 
 P

b

aa

P

aa dv
T

r
da

T


n

j
       (4.14) 

where a  is the electrochemical potential of species a , and ma   for monomer. 

By the divergence theorem, Equation (4.14) is written as 

 






P

b

aa

P

aa

P

aa

P

aa dv
T

r
dv

T

T
dv

T
dv

T

Div 
2

jjj
   (4.15) 
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4.2.4.3. Electricity 

Similarly, the electric field also contributes to the entropy change, given as 

   
 a P

b

aa

a P

aa dv
T

rez
da

T

ez
)()(


n

j
     (4.16) 

where e  is the elementary charge, az  is the valence of each species a , and ),( tX   is 

the electric potential relative to the ground. 

By the divergence theorem, Equation (4.16) is written as 

     






a P

b

aa

a P

aa

a P

aa

a P

aa dv
T

rez
dv

T

Tez
dv

T

Divez
dv

T

ez
)()()()(

2

 jjj
 

(4.17) 

Additionally, Equations (3.53) and (3.54) still hold for the present diffuse-interface model 

with neglecting magnetic effects (Wang, Wang et al. 1997), i.e. 

0 Dj 
a

aaez         (4.18) 

where D  is the electric displacement and is associated with the electric field E  

via 

ED           (4.19) 

where   is the permittivity and is assumed to be constant in the whole system. 
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Therefore, Gauss’ law is formulated as 


a

aacezQDivDiv )( ED        (4.20) 

where Q  is the total electric charge density. 

4.2.4.4. Application of the second law of thermodynamics 

According to the second law of thermodynamics, the entropy of the whole system must 

not decrease i.e. 

  

 


























a
2

a
2

2

)(   

)(   

}{

P P

b

aaaa

P

aa

P

aa

P

b

aa

P

aa

P

aa

P

aa

PPP

P

dv
T

rez
dv

T

Tez
dv

T

Divez
dv

T

ez

dv
T

r
dv

T

T
dv

T
dv

T

Div

dv
T

q
dv

T

T
dv

T

Div

dv
dt

d







jjj

jjj

hh

 (4.21) 

As a result, 









a

b

aaaaaaaa

a

b

aaaaaaaa

rezTez
T

Divezez

rT
T

DivqT
T

DivT

)
1

(      

)
1

(
1





jjj

jjjhh

(4.22) 

4.2.5. Constitutive equations 

In this subsection, the constitutive equations are formulated based on the second law of 

thermodynamics. 
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According to thermodynamics, Helmholtz free energy density is given by TE  . 

By Equations (4.6), (4.11), (4.18), and (4.22), we have 












a

a
aa

a

aa

a

aaa

T
T

ez

T
T

cezT

)(      

1
)(

j

jhDFS



 

 (4.23) 

If ),,,,(   TcaF  is a function of the deformation gradient F , number 

concentrations ac , temperature T , crosslink density   and its gradient  , the 

constitutive equations are given as follows, 

a

aa
c

ez



  , 

T


 , 

D


  , 

F
S




   (4.24) 

aaa  Mj , T Kh       (4.25) 

where aM  and K  are the mobility and thermal conductivity, and both are positive-

definite tensors. 

Meanwhile, we also have the following two relations for an equilibrium state, 

0





 and 0






       (4.26) 
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In addition, a sufficient and necessary condition required by the second law of 

thermodynamics is imposed on the scalar thermal conductivity K , and scalar motility 

aM  as (Caginalp and Jones 1995) 

0)(
4

2  aa
a ez

M
KT         (4.27) 

which is automatically satisfied when aa ez   is sufficiently small. 

If no mass supply exists, and when the molecules diffuse much faster than the phase 

transition with a constant mobility, i.e. IM aa M  is very large, where the scalar mobility 

aM  is constant and associated with the diffusion coefficient aD  via )/(kTvDM aa  , the 

diffusion equation (4.6) reduces to 

02  a          (4.28) 

Similarly, by the Legendre transformation, the free energy density is presented in the new 

form of  





a

aaa

a

a

a

cezc
c

)(   (Gurtin and Voorhees 1993). 

Consequently, the inequality (4.27), is refined in the following form as 












a

a
aa

a

aa

a

aaa

T
T

ez

T
T

cezT

)(        

)(
1

)(

j

jhDFS



 

 (4.29) 
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If ),,,,(Ψ   Tc

aF  is a function of 
aa

c

a ez  , T , D  F ,  , and  , the 

constitutive equations (4.24) are refined as follows, 

c

a

a
μ

c



 , 

T
η




 , 

D


  , 

F
S




    (4.30) 

Equations (4.26) are refined as 

0




ρ
 and 0





ρ
        (4.31) 

and the rest remain unchanged. 

It is observed that the present constitutive equations (4.30) formulated by the second law 

of thermodynamics are in the same form as those deduced by Suo’s group (Hong, Zhao et 

al. 2008, Hong, Liu et al. 2009, Hong, Zhao et al. 2010), and is a the same as the reduced 

constitutive equations derived in subsection 3.2.6 for a single-phase body. The identical 

constitutive equations (4.30) are imposed on the two distinct phases as well as the 

interface, since all the parameters vary smoothly over the whole domain. 

4.2.6. Kinetic equation: Crosslink density as a thermodynamically consistent phase 

field parameter 

Although there are several options for the order parameter, such as the volume fraction, 

or a simple numerical parameter, obviously the crosslink density   is a much more 

accurate parameter for characterizing the phases, compared with the other options, since 

the crosslink density   is directly associated with the elastic modulus. Definitely the 
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elastic modulus of the gel phase decreases as the crosslink density   lowers. If the 

crosslink density   lowers enough, or when certain amount of the crosslinks break, the 

hydrogel system transits into the solution phase, and then behave like a liquid. Therefore, 

the crosslink density   is a better candidate for the order parameter to characterize the 

system states and thus identify whether the gel/solution phase or interface occurs, for 

simulation of the solution-gel phase transition. 

In addition, the number of the order parameters has to be determined according to the 

number of phases (Steinbach, Pezzolla et al. 1996, Tiaden, Nestler et al. 1998, Steinbach, 

Zhang et al. 2012). As well known, for the two-phase transition problem between the 

present gel and solution phases, only one order parameter can be required (Kobayashi 

1993, McFadden, Wheeler et al. 1993, Kobayashi 1994, Hong and Wang 2013). In brief, 

taking the crosslink density   as the order parameter is one of the novelties in the present 

work, since the crosslink density   is a simple and crucial parameter without requirement 

of extra computational cost, especially it has significant advantage over other parameters 

such as the volume fraction. 

It is found from Equations (4.26) and (4.31) that the derivatives of the free energy density 

with respect to   and   have to be zero at an equilibrium state. However, when the 

system experiences a phase transition, the kinetics is governed by an Allen-Cahn 

equation regarding an order parameter and its gradient (Allen and Cahn 1979), which is 

defined as the crosslink density  . This novel thermodynamically-consistent order 

parameter is homogeneous in each distinct phase with smooth variation over the interface 

from one phase to another. Therefore, the kinetic equation is given as 
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δρ

δΨ
           (4.32) 

where   is constant and associated with the rate of relaxation to equilibrium. 

4.2.7. Double-well free energy identified by crosslink density 

In this subsection, a novel Ginzburg-Landau type of free energy is formulated and is 

shown in a double-well profile. As mentioned above in Subsection 3.2.7, the bulk free 

energy density is given by Equation (3.96). Additionally, in the present model, the 

interface also contributes to the free energy, and the interfacial energy i  is generally 

represented through the gradient term of the order parameter (Cahn and Hilliard 1958, 

Cahn 1961, Wheeler, Boettinger et al. 1992, Kobayashi 1993, McFadden, Wheeler et al. 

1993, Wheeler, Boettinger et al. 1993). In the present formulation, as mentioned above, 

the crosslink density   is taken as the order parameter, such that the interfacial 

contribution to the free energy is given as 

2
2

)(
2





kT

Ψ i          (4.33) 

where 0  is a constant coefficient of the crosslink density gradient. 

In summary, the total free energy density   of the present diffuse-interface model is 

thus obtained by Equations (3.96) and (4.33) as 



 

92 
 










ma

c

a

a

c

m

ii

aijij

M

v

kT
c

kT
v

v
v

kT

DD
EFF

b

vkT

T

T
TC

kT

)/exp(
detdet

      

)]
det

1
1(

det

1
)

det

1
1ln()

det

1
1()ln(det2[      

2
)3(

/

)det(

2

3
)ln1()(

2
Ψ

0

2

3/14
2

2
















FF

FFFF
F

F

(4.34) 

In particular, for a spherically symmetrical phase transition, the radial displacement )(ry  

is only the deformation in a one-dimensional domain, such that the circumstantial stretch 

is given as 

ryt /           (4.35) 

and the radial stretch is in the form of 

drdyr /           (4.36) 

Specially, if the system is isotropic and homogeneous,   tr , and no ionic species 

exists, the free energy density (4.34) may be reformulated in a scalar form as 
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  (4.37) 

At equilibrium state, the crosslink density becomes homogeneous. Therefore, 0 , 

and the crosslink density of the hydrogel determined by Equation (4.32) is given as 

0




ρ

Ψ           (4.38) 
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As a consequence, 
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b

v
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         (4.39) 

By Substituting Equation (4.39) into Equation (4.37), the free energy density at 

equilibrium state is given as 
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 (4.40) 

where  m
. 

In order to illustrate the variation of the free energy density Ψ  with the crosslink density 

3/1 , Fig. 4.1 is plotted according to Equations (4.39) and (4.40) for 0* , 10*   

and 50*  , where )/(* kT  . The inputs of parameters include )(m10 328v , 

(m)30/ 3 vb  , a constant room temperature (J)104 21-kT  , (J)006.0 kTEa  , and 

a constant interaction parameter 1.1 . It is shown that the free energy density Ψ  

becomes smaller when *  decreases. It is also demonstrated that Ψ  is in a double-well 

profile, of which one lies between )m(0 -13/1   and )m(105 -193/1  , and the other 

near )m(105.1 -1103/1  . As mentioned above, there exist the solution and gel phases 
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and the interface between them, which are identified by the crosslink density  . In other 

words, of the two wells within the free energy density Ψ , the one with the smaller 

crosslink density   corresponds to the solution phase, and the other with the larger   

to the gel phase. This phenomenon is also verified by Fig. 4.1. 

 
Fig. 4.1. Profile of the free-energy Ψ  for a spherically symmetric homogeneous system 

on the variation of crosslink density   at different chemical potentials * . 

So far the formulation of the present model has been completed. It consists of the force 

equilibrium equations (4.3) and (4.4), the mass conservation equation (4.6), or its reduced 

form given by Equation (4.28) if the molecules diffuse much faster than the phase 

transition and no mass supply exists, the energy conservation equation (4.11), the 

Maxwell equations (4.18) and (4.20), and the kinetic equation (4.32). By the second law 

of thermodynamics, the constitutive equations (4.30) are given, and the mas and heat flux 

are presented by Equations (4.25). The present model also includes the free energy 
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density formulated by Equation (4.34). This model provides a platform for simulation of 

the phase transition of the physical hydrogel between the solution and gel phases. 

4.3. Reduced one-dimensional model 

In order to investigate the effect of pressure P , electrochemical potential a  and other 

boundary conditions on the phase transition of physical hydrogel between solution and 

gel phases, an one-dimensional reduction is performed on the present model. 

4.3.1. Force 

As mentioned above, during a spherically symmetrical phase transition, the deformation 

)(ry  exists in radial direction only, such that the radial and circumstantial stretches are 

given by Equations (4.35) and (4.36). As a result, by Equations (4.30) and (4.34), the 

stress S  is explicitly given as 
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in which the radial and tangent components are given respectively as, 
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The force equilibrium thus reduces to 
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In particular, for an isotropic and homogeneous system, namely   tr , 
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and 
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If the hydrogel is under the hydrostatic stress IP , the boundary condition is imposed as 

PS Rr |          (4.47) 

where R  is the radius of the spherical symmetrical system, i.e. the dimension of the one-

dimensional domain. 

4.3.2. Temperature 

By Equations (4.34) and the relation TE  , the conservation of energy (4.11) 

reduces to the thermal conductivity equation as 

FS   qTKTCv

2
       (4.48) 

which is automatically satisfied under constant temperature and zero heat supply. 

4.3.3. Electrochemical potential 

For the one-dimensional phase transition of the physical hydrogel, the mass conservation 

equation (4.28) is reduced, given by 
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The radial symmetry of a  requires 
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The boundary condition on the border of the domain is given as 

aRra U|           (4.51) 

where aU  is the electrochemical potential on the boundary. 

Based on the symmetry condition (4.50), and the boundary condition (4.51), Equation 

(4.49) may be solved analytically, depending on the interface position. For simplicity, we 

take the homogeneous polymeric electrochemical potential for the system in the whole 

domain, namely, 

mm U          (4.52) 

As a result, 0mc , and by the incompressibility condition (3.91), 0F . 

4.3.4. Electric field 

By the constitutive equation (4.30), and the free energy density (4.34), and Equation 

(4.19), the electric potential  , the scalar electric displacement rD , and the scalar 

electric field 
r

E r






 are associated via 

r
ED rr







         (4.53) 

If only two species of ions of valences 1  and 1  are mobile in the gel and in the 

external solution, and no fixed charges are considered, the electrochemical potential of 
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the two species are 
  and 

 , respectively. Consequently, Equation (4.18) and (4.22) 

reduce to 
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The electric boundary condition is given as 

0|  Rr           (4.56) 

where 0  is the electric potential on the boundary. 

4.3.5. Kinetic equation 

In the one-dimensional domain, the kinetic Equation (4.32) is reduced to 
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So far the reduction of the present model into one-dimensional domain has been 

completed. It consists of the reduced force equilibrium equation (4.44), the reduced 

Maxwell equation (4.55), and the reduced kinetic equation (4.57) with the homogeneous 

electrochemical potential (4.52). In the following subsection, the phase transition for the 



 

100 
 

physical hydrogel is numerically simulated in the spherically symmetrical domain, for 

investigation of the influence of the pressure P , the electrochemical potential 
a  and 

other boundary conditions on the phase transition between solution and gel phases. 

4.4. Numerical case studies and discussions 

In this section, a MATLAB source code is developed based on the reduced one-

dimensional governing equations (4.46), (4.48), (4.49), (4.55), and (4.57), and boundary 

conditions (4.47) and (4.51), for simulation of spherical symmetrical evolution of 

interface of hydrogel with solution-gel phase transition. As case studies, the phase 

transitions of hydrogel are numerically simulated in water and in ionic solution 

respectively. 

4.4.1. Phase transition of hydrogel in water 

In this subsection, the phase transition of hydrogel in water is numerically simulated. 

When the hydrogel is in water, no ionic species exists, such that 0az , 0rD , 

0rD , and 0

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respectively. 

In the present case study for numerical simulation of the spherically symmetrical phase 

transition of physical hydrogel in water, the inputs of parameters are required, as given by 

)(m10 328v , 30 , a constant room temperature (J)104 21kT , kTEa 06.0 , 

(s) 105.0 13 , and a constant interaction parameter 1.1 . As discussed above, the 

values of crosslink density   for the two phases are calculated via the boundary 

conditions (4.47) and (4.52), and the crosslink density   varies smoothly over the 

interface. As well known, for solving a nonlinear system, an initial estimate is generally 

required for numerical iteration process. Furthermore, it is commonly understood that the 

actual profile of the interface should only have negligible effect on the numerical 

simulation (Steinbach, Zhang et al. 2012). Therefore, a gel core associated with an initial 

linear interface profile with finite width is assigned as initial estimates for numerical 

solution of the present nonlinear system (Cahn and Hilliard 1958, Langer and Sekerka 

1975). 

In order to simulate the solution-gel phase transition of physical hydrogel in the 

spherically symmetric domain, a MATLAB source code is developed, based on the 

governing equations (4.59) (4.52) and (4.57), and the boundary conditions (4.47) and 

(4.51). 
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(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 
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(g) 

Fig. 4.2. Several snapshots of the evolution progress of the crosslink density   

associated with the corresponding crosslink density profile at different non-

dimensional times: 1.0* t  (a), 25.0*t  (b), 4.0* t  (c), 55.0*t  (d), 7.0* t  

(e), 85.0*t  (f), and 1* t  (g). 

In order to investigate the interface evolution of physical hydrogel with time, the several 

snapshots of the numerically simulated region are captured at different non-dimensional 

times 
Tttt /*   associated with the corresponding profiles of the crosslink density  , as 

illustrated in Fig. 4.2, where )J(m/ 1 1/2 , (mm) 8R , 0)/(*  kT , (Pa) 0P , and 

Tt  is the total time to fulfill phase transition. According to Equations (4.47) and (4.51), 

the crosslink density subject to the present boundary condition is given as 

)(m 101416.3 -326gel  in the gel phase, and )(m 105749.1 -324solution  in the 

solution phase. It is observed from Fig. 4.2 that the phase transition occurs over an 

interface region. As mentioned above, the crosslink density   is associated with the 

phase of the physical hydrogel, in such a way that the crosslink density   increases 

when the physical hydrogel transits from solution phase into gel one. It is demonstrated 

in Fig. 4.2 that the crosslink density   increases in the region where phase transition 

occurs, i.e. over the interface, from solution phase into gel one, when the gel phase 
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propagates outwards. This phenomenon results directly from the phase transition from 

solution phase into gel one, when the crosslink density   increases. It is seen from Fig. 

4.2 that the crosslink density is distributed homogeneously in each phase and varies 

smoothly over the interface, and that the interface evolves outwards with finite width. It 

is also demonstrated by Fig. 4.2 that, when the interface reaches the boundary at time 

Ttt  , the whole domain is occupied by the gel phase with homogeneously distributed 

crosslink density )(m 101416.3 -326gel . 

 

Fig. 4.3. Variation of the non-dimensional coordinate of the interface middle 
*

mr  with a 

non-dimensional time *t  for the different domain sizes R . 

In order to study the rate of the phase transition, Fig. 4.3 is plotted for variation of the 

non-dimensional coordinate of the interface middle *

mr  with the non-dimensional time *t  



 

106 
 

subject to different domain sizes (mm) 8  and  4,  2,  ,1R , where )J(m/ 1 1/2 , 

0)/(*  kT , and (Pa) 0P . Since the interface evolves with finite width and the 

actual profile of the interface has negligible effect (Steinbach, Zhang et al. 2012), the 

non-dimensional coordinate of the interface middle 
*

mr  is workable to denote the position 

of the interface. It is found in Fig. 4.3 that the interface evolves from the center towards 

the boundary, since the gel phase with larger crosslink density is more favorable for the 

physical hydrogel subject to the boundary conditions 0P  and 0U , compared with 

the solution phase. It is seen from Fig. 4.3 that the interface evolves almost linearly 

outwards, i.e. a phase transition with quasi-constant velocity. It is also observed from Fig. 

4.3 that the total time to fulfill the phase transition is almost linearly proportional to the 

domain size. In other words, the domain size has insignificant influence on the evolution 

velocity. 

4.4.2. Phase transition of hydrogel in ionic solution 

In this subsection, the phase transition of hydrogel in ionic solution is numerically 

simulated, in the limit of the concentrated solution. When the concentration of ions in the 

external solution is much higher than the fixed charges, the fixed charges only have 

negligible effect. As a result, the hydrogel behaves the same as the neutral hydrogel gel, 

and the electroneutrality requires that the number of the ions is equal to the number of the 

anions, namely 
  cc  (Hong, Zhao et al. 2010). Based on the governing equations 

(4.45), (4.46), (4.49), (4.55), and (4.57), and the boundary conditions (4.47), (4.50), 

(4.51), (4.56), a MATLAB source code is developed for numerical simulation of phase 

transition of hydrogel in ionic solution with diffuse interface. The inputs of parameters 
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are given as follows. J104 23aE , 30 , 328 m10v , 1.1 , 
31500 m10 

  cc , 

1.1 , (s) 105.0 13 , )J(m/ 1 1/2 , a constant room temperature J104 21kT , 

and the boundary conditions 0P , ekT /01.00  , 0mU , eU 0 , eU 0 . 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

 

(f) 
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(g) 

Fig. 4.4. Several snapshots of the evolution progress of the crosslink density   

associated with the corresponding crosslink density profile at different non-

dimensional times: 1.0* t  (a), 25.0*t  (b), 4.0* t  (c), 55.0*t  (d), 7.0* t  

(e), 85.0*t  (f), and 1* t  (g). 

Fig. 4.4 shows the several snapshots of the numerically simulated region captured at 

different non-dimensional times 
Tttt /*   associated with the corresponding profiles of 

the crosslink density, where )J(m/ 1 1/2 , (mm) 8R , and 
Tt  is the total time to fulfill 

phase transition. It is observed from Fig. 4.4 that the phase transition from solution into 

gel occurs over an interface region. As mentioned above, the crosslink density   is 

associated with the phase of the physical hydrogel, in such a way that the crosslink 

density   increases significantly when the physical hydrogel transits from solution 

phase into gel one. It is demonstrated in Fig. 4.4 that the crosslink density   increases in 

the region where phase transition occurs, i.e. over the interface, when the gel phase 

propagates outwards. This phenomenon is a direct result of the phase transition from 

solution phase into gel one. As demonstrated Fig. 4.4, the crosslink density is distributed 

homogeneously in each phase and varies smoothly over the interface. It is also seen from 

Fig. 4.4 that, when the interface reaches the boundary at 1*t , the whole domain is 

occupied by the gel phase with homogeneously distributed crosslink density. 
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Fig. 4.5. Variation of the non-dimensional coordinate of the interface middle 
*

mr  with a 

non-dimensional time *t  for the different domain sizes R . 

Since the interface evolves with finite width and the actual profile of the interface has 

negligible effect (Steinbach, Zhang et al. 2012), the non-dimensional coordinate of the 

interface middle 
*

mr  is workable to denote the position of the interface. Therefore, Fig. 

4.5 is plotted to investigate the rate of the phase transition, which shows the variation of 

the non-dimensional coordinate of the interface middle *

mr  with the non-dimensional time 

*t  subject to different domain sizes (mm) 8  and  4,  2,  ,1R . It is found in Fig. 4.5 that 

the interface evolves almost linearly from the center towards the boundary, since the gel 

phase with larger crosslink density is more favorable for the physical hydrogel subject to 

the present boundary conditions, compared with the solution phase. It is also observed 

from Fig. 4.5 that the total time to fulfill the phase transition is almost linearly 
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proportional to the domain size. These results reveal that the gel phase propagates 

outwards with a quasi-constant velocity. In other words, the domain size has insignificant 

influence on the evolution velocity. 

In order to study the polymeric chemical potential during the phase transition, Fig. 4.6 is 

plotted to show the variation of the non-dimensional polymeric chemical potential * c

m  

with a non-dimensional coordinate Rr /  at different non-dimensional times, where 

kTc

m

c

m /*   . It is shown in Fig. 4.6 that the non-dimensional polymeric chemical 

potential * c

m  is also homogeneous in each phase and varies smoothly over the interface, 

which is similar to the profiles of the crosslink density  . This phenomenon reveals that 

the crosslink density  , and consequently the phase, may have significant effect on the 

polymeric chemical potential * c

m . It is also demonstrated in Fig. 4.6 that the value of the 

non-dimensional polymeric chemical potential * c

m  in the solution phase is equal to the 

boundary value, and that the value of the non-dimensional polymeric chemical potential 

* c

m  in the gel phase increases with time. When the whole domain is occupied by the gel 

phase with homogeneously distributed crosslink density at 1*t , the non-dimensional 

polymeric chemical potential * c

m  is also homogeneous in the whole domain, and equal 

to the boundary value * c

mU . 
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Fig. 4.6. Variation of the non-dimensional polymeric chemical potential * c

m  with a non-

dimensional coordinate Rr /  at different non-dimensional times. 

The ionic chemical potential is also numerically studied. As mentioned, in the limit of the 

concentrated solution, the number of the ions is equal to the number of the anions. As a 

result, according to (3.39), the chemical potential of the ions is the same as the anions. 

Therefore, Fig. 4.7 plots the variation of the non-dimensional ionic chemical potential 

* c

ion  with a non-dimensional coordinate Rr /  at different non-dimensional times, where 

kTc

m

c

m /*   . It is shown in Fig. 4.7 that the non-dimensional ionic chemical potential 

* c

ion  is homogeneous in each phase and varies smoothly over the interface, which is also 

similar to the crosslink density  . It is also demonstrated in Fig. 4.7 that the non-

dimensional polymeric chemical potential * c

ion  is also homogeneous in the whole domain, 

and equal to the boundary value * c

ionU  when 1*t . 
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Fig. 4.7. Variation of the non-dimensional ionic chemical potential * c

ion  with a non-

dimensional coordinate Rr /  at different non-dimensional times. 

4.5. Remarks 

In this chapter, a diffuse-interface based model has been developed for simulation of 

solution-gel phase transition for the physical hydrogel. The present domain includes the 

gel and solution phases, as well as a diffuse interface between them. They are indicated 

by the density of crosslinks in such a way that the solution phase is identified as the state 

when the crosslink density is small, while the gel as the state if the crosslink density 

becomes large. Therefore, a novel thermodynamically-consistent order parameter is 

defined as the crosslink density  , which is homogeneous in each distinct phase and 

varies smoothly over the interface from one phase to another. Since all the parameters are 

continuous over the whole domain, the same constitutive equations are imposed in the 
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two distinct phases as well as over the interface, by taking the free energy Ψ  as a 

function of the deformation gradient F , chemical potential 
c

a , temperature T , crosslink 

density   and its gradient  . In this model, the constitutive equations formulated by 

the second law of thermodynamics result in the same form as those derived by a different 

approach, called the non-equilibrium thermodynamic theory (Hong, Zhao et al. 2008, 

Hong, Liu et al. 2009). A novel Ginzburg-Landau type of free energy Ψ  is also included 

to account for the effect of crosslink density   on the elastic and mixing contributions to 

the free energy Ψ , as well as the interface effect by including a gradient term 

2/)( 22  kT  of the crosslink density. The governing equations account for the 

equilibrium of forces, the conservations of mass and energy, and an additional equation 

imposed for kinetics of phase transition. As case studies, spherically symmetrical 

solution-gel phase transition are numerically simulated respectively for analysis of the 

phase transition in water and in ionic solution, as well as the evolution of the chemical 

potentials, crosslink density and other parameters during the phase transition. 

However, there are following limitations in the presently developed model for the 

solution-gel phase transition of physical hydrogel with the diffuse interface. 

 In the numerical implementation, the present model considers only one-

dimensional spherical symmetric phase transition. Therefore, the numerical 

implementation needs to be improved for higher-dimensional phase transition in 

complicated geometric domains. 
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 In the electric field, only the limit of the concentrated solution is considered in the 

present model, in which the fixed charges are negligible compared with the 

concentration of ions in the solution. However, in the limit of a dilute solution, the 

fixed charges play a very important role to compensate the ions in the solution. 

Therefore, the model needs to be further improved to solve the problems in both 

concentrated and dilute solutions.  
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Chapter 5. Conclusions and future work 

This chapter summarizes the achievements of the research work presented in this thesis 

and provides recommendations for future work. 

5.1. Conclusions 

The achievements in this thesis are categorized as follows. 

 Theoretical development of a thermo-electro-chemo-mechanical model for simulation 

of the solution-gel phase transition, in which the solution and gel states are 

considered as two distinct phases, with both sharp and diffuse interface approaches. 

As the first contribution mentioned above, the thermo-electro-chemo-mechanical model 

has been developed theoretically for simulation of the solution-gel phase transition, with 

both sharp and diffuse interface approaches. The presently developed model couples the 

effects of thermal, electrical, chemical and mechanical fields together. Therefore, the 

governing equations consist of the equilibrium of forces, the conservations of mass and 

energy, and an additional kinetic equation imposed for phase transition. The present 

domain covers the gel and solution states that are considered as two distinct phases, and 

an interface between them. They are indicated by the density of crosslinks in such a way 

that the solution phase is identified as the state when the crosslink density is small, while 

the gel as the state if the crosslink density becomes large. The interface is treated by two 

different methods, the sharp interface/configurational forces and the diffuse interface 

approaches. 
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 Comparison between the present constitutive equations with those derived by a 

different approach, called the non-equilibrium thermodynamic theory. 

The second contribution extracted from the present thesis is comparison between the 

present constitutive equations with those derived by a different approach, called the non-

equilibrium thermodynamic theory. Based on the second law of thermodynamics, the 

present constitutive equations are formulated, in the bulk phases and over the interface. If 

the interface is ignored when only a single bulk phase exists, i.e. no phase transition 

occurs, the system reduces into a single-phase hydrogel. Consequently, the present 

constitutive equations reduce into the bulk constitutive equations accordingly, which are 

in fact the same form as those derived by a different approach, called the non-equilibrium 

thermodynamic theory (Hong, Zhao et al. 2008, Hong, Liu et al. 2009, Hong, Zhao et al. 

2010). In other words, the non-equilibrium model proposed by Suo’s group (Hong, Zhao 

et al. 2008, Hong, Liu et al. 2009, Hong, Zhao et al. 2010) is just a special case of the 

present model with respect to constitutive relations, when the present two-phase control 

volume reduces to a single-phase one, in which only the gel phase with constant crosslink 

density exists in the hydrogel system. 

 Proposal of a novel free energy density, in which the gel and solution states are 

indicated by the density of crosslinks, in such a way that the solution phase is 

identified as a state when the crosslink density is small, while the gel is identified as 

another state with the large crosslink density. 

A novel free energy is proposed as the third contribution, which accounts for the effects 

of crosslink density. The presently proposed free energy density is composed of the 
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elastic, mixing, internal, binding, polarization and interface contributions, and is in a 

double-well profile, of which one corresponds to the gel phase, and the other to the 

solution phase. In other words, of the two wells within the free energy density Ψ , the 

one with the smaller crosslink density   corresponds to the solution phase, and the other 

with the larger   to the gel phase. 

 Analysis for the behavior of the bulk phases and the evolution of their interface for 

phase transition between the solution and gel states by the presently developed 

multiphysics model.  

The last contribution from the present thesis is the analysis for the behavior of the bulk 

phases and the evolution of their interface for phase transition between the solution and 

gel states by the presently developed multiphysics model. The presently developed model 

has been reduced from a three-dimensional domain to a one-dimensional one, for case 

study by simulation of evolving interface of a spherically symmetrically physical 

hydrogel during the solution-gel phase transition. Based on the reduced one-dimensional 

governing equations and boundary conditions, a MATLAB source code is developed. 

And then the evolution of interface for spherical symmetrical hydrogel with solution-gel 

phase transition in water and in ionic solution is numerically simulated, and the effect of 

chemical potential, pressure, surface tension and other parameters on the phase transition 

is analyzed. 

In conclusion, the four contributions mentioned above constitute the entire thesis. It is 

believed that the present research work is significant in science for further understanding 
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of fundamental mechanism of phase transition and key material properties of physical 

hydrogels. 

5.2. Future work 

Based on the research results presented in this thesis, some potential studies for future 

work related to physical hydrogel phase transition modeling are recommended below. 

 In the electric field, the present model considers only the limit of the concentrated 

solution, in which the fixed charges are negligible compared with the 

concentration of ions in the solution. However, in the limit of a dilute solution, the 

ions in the solution are fully compensated by the fixed charges. Therefore, it is 

recommended to investigate the influence of concentration of the fixed charges in 

the limit of a dilute solution. 

 The present thesis has theoretically developed a general model for simulation for 

solution-gel phase transition of physical hydrogel in ionic solution. However, the 

effects of the specified ionic species, such as H  and -OH , need to be 

investigated further. Therefore, it is recommended to study the influence of the 

various specified ionic species, such as H , on the phase transition of physical 

hydrogels. 

 In the theoretical development of models, the interface is treated with two 

different methods, the sharp interface/configurational forces and the diffuse 

interface approaches. It would be interesting to compare the two models via 
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asymptotic analysis. It is expected that the diffuse interface model would reduce 

to the sharp interface when the interface width approaches zero. 

 In the numerical implementation, the present thesis considers only one-

dimensional spherical symmetric phase transition. However, higher-dimensional 

phase transition in complicated geometric domains is worth investigating. 

Therefore, it is recommended to analyze the influence of the surface tension, 

interfacial curvature and other parameters on the phase transition of physical 

hydrogel in a complicated geometric domain. 

 The present work has theoretically developed a thermo-electro-chemo-mechanical 

model for solution-gel phase transition of physical hydrogel, and numerically 

simulated one-dimensional spherical symmetric phase transition. Therefore, it is 

definitely a worthwhile work to conduct experiments under the guide of the 

present numerical simulations, and in turn to validate the present numerical results 

by the experimental observations.  
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