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Abstract 

The motion of small particles in a cylindrical tube at low Reynolds number can 

be found in many fields, ranging from the industrial and environmental 

applications such as fluidization and filtration, to biomedical applications such 

as drug delivery in blood vessels. The major challenges in the elucidation of the 

hydrodynamic behavior of these systems are particle interactions within the 

tube, which can facilitate analysis of the aggregation and collision of particles. 

More specifically, the fundamental knowledge of these mechanisms provides 

significant insight into modelling heat and mass transfer processes of particles. 

However, most of the current studies on this motion concentrate on a single 

particle or particles along the axis with same size. The mathematical treatment 

of multi particles interactions in a tube is still unclear.  

A logical beginning towards illustration of these behaviors is addressed in this 

thesis by considering the flow dynamics of two spherical particles with 

arbitrary positions traveling within a cylindrical tube at low Reynolds number. 

Such case is not only of fundamental interest of aforementioned applications, 

but also can significantly contribute to understand hydrodynamic interactions of 

multi particles flow field in the tube.  

In order to analyze the detailed hydrodynamic interaction between the two 

particles, we developed a mathematical model adopting the method of 

reflections. In general, when the two particles travel within a cylindrical tube, 

each of them has the translational velocity together with the rotational velocity. 

Due to the no-slip, three boundary conditions are applied for the entire flow 
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field: the surfaces of the two particles and the wall of the tube. To make the 

flow field analytically solvable, the method of reflections is utilized to treat the 

boundary conditions separately. We employ the Lamb’s general solution based 

on spherical harmonics and cylindrical harmonics to solve the flow field around 

the particles and the flow within the tube, respectively.  

By employing this mathematical procedure, we compute the hydrodynamic 

force coefficients of the particles which are dependent on the distance among 

the cylinder wall and the two particles. The hydrodynamic forces are also a 

function of particle velocities and background velocity. Our results are in 

agreement with the existing theory of a single particle traveling in the tube 

when the distance between the two particles increases. We found that the 

particle-particle interaction can be neglected when the separation distance is 

three times larger than the sum of particles radii. Furthermore, the direction of 

Poiseuille Flow, particle position relative to the axis and particle size can make 

the two particles attract and repel. Unlike the single particle case, the two 

particles can move laterally due to the hydrodynamic interaction. Such analysis 

can give us insights to understand the mechanisms of collision and aggregation 

of particles.  
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Chapter 1 

Introduction 

1.1 Background 

The motion of particles at low Reynolds number is ubiquitous. This problem is 

of interest in connection with a great variety of natural and industrial 

phenomena. In atmospheric circulation, the movements of particles contribute 

to the formation of aerosols, such as fog and clouds, which play crucial roles in 

influencing human health, relative air moisture and earth climate system [1, 2]. 

Meanwhile, the mass transfer process in the ocean is greatly affected by the 

hydrodynamic behaviors of moving particles. Typical examples include particle 

aggregation and sedimentation, which are important to the formation of organic 

and inorganic source [3, 4]. Additionally, the motion of particles appears in a 

wide range of industrial applications, such as fluidization, elutriation and 

filtration [5].  

The systematic investigation of particles traveling in an unbounded fluid at low 

Reynolds number involves both analytical and numerical studies tracing back to 

the work of Brenner [6, 7]. He found that the hydrodynamic resistance of a 

single particle can be represented as a symmetric tensor based on the external 

geometry of the particle. Later, the steady motion of two rigid spheres in an 

unbounded fluid has been studied by Stimson & Jeffery [8], Goldman et al. [9], 

Jeffrey & Onishi [10], Kim & Mifflin [11] and the unsteady flow field by 

Ardekani & Rangel [12]. Furthermore, Stokes flow past three spheres was 
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analyzed by Kim [13] theoretically and Wilson [14] numerically. The physical 

parameters such as drag force, torque, stresslet and pressure drop have mainly 

been considered from numerical and analytical point of view.  

Unlike in an unbounded fluid, the presence of a boundary will significantly 

affect the flow behavior. One typical example of a commonly used boundary is 

a cylindrical tube. This problem is of interest in connection with a great variety 

of phenomena, ranging from the industrial and environmental applications such 

as fluidization, elutriation and filtration [15, 16]. The cylindrical tube serves as 

transfer device: to generate flow carrying particles in a certain direction; to 

separate particles due to the surface properties; to transfer energy through the 

solid surface. Additionally, this motion has been used as a model for the flow of 

chemical drugs [17]. It is known, in the medical therapy, the dissolved drug will 

be dispersed in blood circulation and lymph circulation through capillaries. It 

also concerns the detailed flow field of particles in microchannel for 

microfluidic system, with the prospect of exploring the adaptability of such an 

instrument to industrial applications. Meanwhile, it is widely accepted that 

particulate interaction plays a critical role in these flow fields. Such 

hydrodynamic mechanism is responsible for the aggregation and collision of 

particles in the tube. Similarly, these processes can be exploited in microfluidic 

systems for particle separation. Problems of spherical particles travelling in a 

tube involve hydrodynamic interactions due to multiple objects. The 

characteristics of the flow field such as drag force will be more complex 

depending on the configuration of the geometry. Therefore, there is a 
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compelling need to understand the flow characteristics involving multiple 

particles within the tube.  

Generally, slow viscous flow containing particles moving along the tube, is 

driven by an externally applied force, such as pressure gradient, electric field 

and magnetic force [15, 18, 19]. The Reynolds number based on the particle 

scales is much smaller than 1. Such flow is governed by the Stokes equation in 

which the drag force is linearly proportional to translational velocity. In a low 

Reynolds number world, viscous forces dominate inertial effects. Physically, 

inertia is the character of the particle to remain in motion. On the other hand, 

viscous forces are the original source of the drag acting on the particle traveling 

through the fluid. These mechanisms make the particle move or stop 

instantaneously under application or removal of external forces. When the 

concentration of particles is small, each particle can be regarded as a single 

particle moving in the fluid. However, at large concentration, particle 

interactions will dominate the hydrodynamic behaviors. Such effects can lead to 

significant changes of the flow field, which is responsible for the aggregation 

and collision of particles in the tube.  

Brenner & Happel considered the flow dynamics of a single particle traveling 

within a cylindrical tube and found the drag force is larger than that in an 

unbounded fluid [20]. Later, another model was proposed by Greenstein & 

Happel [21]. Meanwhile, the hydrodynamic mechanism of a particle with an 

arbitrary viscosity property and slip surface translating through another 

immiscible fluid is numerically and theoretically investigated by Keh & Chang 
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[22]. Recently, a different approach was pursued by Bhattacharya et al. [17], 

which is capable of solving general problems containing particles within 

cylindrical tubes. The first step towards elucidation of the entire flow field is to 

consider the flow dynamics of two particles traveling within a cylindrical tube 

at low Reynolds number. Theoretical approaches have been conducted to 

investigate this case [23-25]. Their main focus has been on the 

parameterizations of the drag force and torque acting on the spherical particles. 

However, these studies are limited to symmetrical positions or constant 

velocities and the details of the flow field in such system have not been well 

studied.  

The slow viscous flow around two particles in a cylindrical tube is obtained 

theoretically in this study. We employ the Lamb’s general solution based on 

spherical harmonics and cylindrical harmonics to solve the flow field around 

the particles and the flow within the tube, respectively. The method of 

reflections is adopted to satisfy the boundary conditions. We compute the drag 

force and torque coefficients of the particles which are dependent on the 

distance among the cylinder wall and the two particles. These coefficients are 

also a function of particles velocities and background velocity. Our results are 

in agreement with the existing theory of single particle traveling in the tube 

when distance between two particles increases. Finally, we determine the 

characteristic distance where particle- particle interaction can be neglected. We 

can then extend the two-particle approach to multiple particles problem by 

extending the boundary conditions based on the method of reflections. Such 
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analysis could give us insights to understand the mechanisms of collision and 

aggregation of particles. 

 

1.2 Objective 

The main objective of this project is to analyze the flow dynamics of two 

particles traveling within a cylindrical tube at low Reynolds number. A 

systematic procedure is proposed. There are several crucial parameters to 

describe the hydrodynamic behaviors due to various geometries; they are the 

drag forces, torques and velocities of particles including both translational and 

rotational velocities. The previous approaches are still not adequate to solve the 

general motion of two particles within the tube with arbitrary velocities. 

Therefore, the current work aims to construct a new mathematical procedure 

which can solve the flow field analytically. We can then extend the two-particle 

approach to multiple particles problem by extending the boundary conditions 

based on the method of reflections. Constructing such models would contribute 

to the understanding of the particle interactions. Such mechanism can be 

utilized to predict particle aggregation and collision.  
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1.3 Scope 

The scope of this work consists of the following parts: 

a) To construct a mathematical procedure capable of solving the flow field of 

two particles traveling in an infinite tube at low Reynolds number. 

b) To determine the effect of geometries on the hydrodynamic force and torque 

acting on the particles at low Reynolds number within the tube.  

c) To calculate of translational and rotational velocities of particles. 

d) To determine the characteristic distance of particle interactions with various 

flow conditions before the particle-particle interaction can be neglected.  
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Chapter 2 

Literature Review 

The motion of particles and liquid droplets translating in a viscous fluid is one 

of the most classical problems, which can be traced back to Stokes’s 

investigation of a rigid particle in an unbounded fluid. Slow viscous flow 

involving micrometer-sized objects exhibits unique physics particular 

performances which are quite different from large scales. Since such typical 

scales supply a high surface to volume ratio, unusual transfer phenomena 

appear. As the dimensions contract, the surface forces with the first power or 

the second power of the typical scale length will be more significant than the 

body forces with the third power.  

 

2.1 Slow viscous flow of a single particle 

2.1.1 Slow viscous flow of a single particle in an unbounded fluid 

It is known that the flow behavior of a sphere at low Reynolds number is a 

typical model of heat and mass transfer applications such as filtration and 

sedimentation. One of the most comprehensive researches on the creeping 

motion of a sphere was reported by Brenner [6, 7]. He found that the 

hydrodynamic resistance of a particle translating in an unbound fluid can be 

represented as a symmetric tensor based on the external geometry of the particle. 

Meanwhile, the result was similar for rotational velocity except that the 

rotational tensor was a function of the position vector. Furthermore, Brenner 
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formulated the scheme of the hydrodynamic force and torque acting on a 

particle in a shear flow [26]. The tensor between the hydrodynamic resistances 

and the properties of the fluid were presented. Without loss in generality, the 

tensor was a function of the geometry of the particle. Meanwhile, he also made 

the extension of this problem which the flow field was an arbitrary Stokes flow 

[27].  

In oceans and lakes which can be treated as unbounded fluid, the density varies 

due to the temperature or salinity. This ubiquitous phenomenon is known as 

stratified fluid. The presence of stratification significantly influences the motion 

of particles in the flow. On account of this widespread problem, the effect of 

stratification has received attention. The investigation of a spherical particle 

settling in a stratified fluid at low Reynolds number combining the 

experimental and numerical simulation data was presented [28]. The result 

showed the first experimental evidence of stratification enhancing drag force 

which depended on the viscous Richardson number in a stratified fluid at low 

Reynolds number. Ardekani & Stocker focused on the fundamental solutions of 

slow viscous flow in a stratified fluid known as ‘‘Stratlets’’ [29]. As compared 

with the Stokes flow in homogeneous fluid, the analysis presented the 

fundamental length scale of the flow in a stratified fluid. This approach utilized 

the Fourier transform to derive the solution which was computed numerically 

through the Fast Fourier Transform. The structure of the stratification was one 

such factor that influence on the flow field of small organisms by generating 

toroidal eddies.  
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The material of the particle can be different according to the scope of 

application. In a low Reynolds number environment, the flow through porous 

particles occurs commonly such as lubrication and oil recovery. Therefore, 

understanding the mechanism of porous particles in a viscous flow can 

contribute to improve the efficiency of mass transfer. Prakash & Sekhar 

reported the hydrodynamics of the porous sphere in an unsteady stokes flow. 

The unsteady Stokes equation was applied for the exterior region of the porous 

sphere [30]. The drag force and torque can be acquired with Faxén’s law. At the 

same time, Brinkman equation was used to calculate the flow field of the 

interior area which is an extension of Stokes equation. They showed the inverse 

relation of the drag force and Darcy number in the uniform flow and the 

positive relation of the interface velocity and Darcy number with different 

frequency of the oscillation of the unsteady Stokes flow. The creeping motion 

of a porous cylindrical shell was also studied [31]. The mathematical treatment 

adopted the stream functions by means of the cell method technique based on 

different conditions. Saad investigated the same problem with the effect of 

stress jump condition and compared the result with the previous work [32]. The 

properties of the material and boundary condition can effect on the flow field 

significantly.  

 

2.1.2 Slow viscous flow of a single particle close to plane surfaces 

In general, slow viscous flow of particles involves the presence of boundaries. 

Unlike the creeping motion in an unbounded fluid, the additional boundary can 
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result in hydrodynamic effect on the flow field. Boundary effect on the viscous 

flow contains various cases. When a spherical particle translated towards to a 

steady plane, the resistance was larger than it in an unbounded viscous fluid or 

close to a free surface [33]. Goldman, Cox and Brenner analyzed the translation 

and rotation of a sphere parallel to a plane surface [34]. They succeeded in 

solving this motion with small gap between the sphere and the plane. Further 

improvement was also reported. Based on the bipolar coordinate system, an 

analytical solution was obtained for the motion of a sphere towards to a plane in 

a simple viscous shear flow [35]. This solution can be adopted for a wide range 

of the ratio of the particle radius and distance of the center to the wall. Dagan, 

Pfeffer and Weinbaum showed the theoretical result of the general creeping 

motion of a sphere close to a finite plain surface [36]. The physical model was 

axisymmetric and mathematical procedure was based on the stream function 

and cylindrical harmonics. The drag force of various background flows acting 

on the sphere was presented.  

In a later treatment, the exact solution of the flow field in a viscous fluid 

resulting from a steady particle in touch with a fixed plane wall was derived 

[37]. The surrounding fluid was supposed to be a simple uniform shear flow. 

Goren calculated the normal force acting on a sphere in contact with a steady 

wall in axisymmetric stagnation flow and plain stagnation flow [38].  

For the presence of two plane walls, the analytical investigation based on the 

method of reflections was given [39]. There are varieties of numerical 

techniques which are suitable to Stokes flow. Ganatos, Weinbaum and Preffer 
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showed the solution of the perpendicular and parallel motion of a sphere 

between two plane walls [40, 41]. They provided an analytical procedure 

according to the stream function. Dvinsky & Popel presented a general 

numerical procedure for the two dimensional Stokes flow of a cylinder between 

two planar walls [42, 43]. The background flow can be quiescent fluid, 

Poiseuille and Couette flow. The motion of a particle translating and rotating 

between two parallel wall surfaces was investigated with a new boundary-

integral algorithm. The mathematic model had a wide range of particles and 

depths of channels [44, 45]. For the spherical particle which is of slip surface, 

Chang & Keh showed the semianalytical study of the hydrodynamic 

mechanism of a fluid sphere and a particle with an arbitrary viscosity property, 

translating through another immiscible fluid perpendicular to two parallel 

surface walls at a random position at low Reynolds number [46].  

 

2.1.3 Slow viscous flow of a single particle in an axisymmetric 

container 

The most common boundary-value problem encountered in slow viscous flow 

is that of a sphere moving in an axisymmetric container. This kind of motion is 

a crucial phenomenon in nature and industrial process such as filtration and 

suspension in microfluidic systems.  

The problem of viscous fluid through a cylindrical tube involving particles is of 

interest in matter of various cases, such as fluidization and translating beds of 

solids. A rational beginning towards illustration of the mechanism of these 
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applications was undertaken by considering a single sphere translating along the 

axis within a cylindrical duct at low Reynolds number [20, 21]. The spherical 

particle was set up in an arbitrary position moving with a constant velocity 

along the axis of the cylinder. The crucial parameters of this problem were the 

ratio of spherical particle to cylindrical tube radius and the relative distance of 

the sphere from the axis of the cylinder. The general solution directed by Lamb 

was used for the spherical coordinate and cylindrical harmonics for the tube. 

The method of reflections was applied for constructing the entire procedure. 

The final results of the drag force and torque were obtained. However, this 

solution was limited to the case that the ratio of the sphere to cylinder radius 

was small. For the dramatical interactions between the particle and wall, a new 

mathematical procedure should be derived.  

Keh and Chang studied this motion with slip boundary condition of the sphere  

[22]. The drag force acting on the surface of the particle was presented. Based 

on the Dirichlet boundary condition, a semi-analytical approach can be adopted 

to solve the general motion of particle within cylinder at low Reynolds number  

[17].  

 

2.1.4 Slow viscous flow of a single particle close to a free surface 

In relation to the filtration and separation processes, the flow field of viscous 

fluid resulting from a particle or droplet can be significantly affected by the 

disturbance of the interface between immiscible fluids. The presence of the 

interfaces would have an effect on the drag force.  
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Lee, Chadwick and Leal investigated the motion of a sphere close to planar 

interface [47]. They derived the point force in the presence of the free surface 

and made an extension to define the flow field around the sphere. The general 

solution of creeping flow in bipolar-coordinates was subsequently concluded by 

Lee and Leal [48]. They calculated the drag force and torque of the sphere 

translating and rotating near the free surface and compared the numerical exact 

solution with the previous one. Much later, Berdan and Leal studied the motion 

of a sphere close to a free surface with small deformation theoretically [49]. Lee 

and Leal presented the numerical result of a sphere translating normal to the 

interface [50]. Yang and Leal used general solution for singularities to 

investigate the flow field of a slender close to a plain free surface [51]. The 

fluid was assumed to be steady at infinity and the particle was of arbitrary 

position relative to the surface. They also extended the theoretical work which 

the background flow was adopted to be linear undisturbed flow [52]. For a 

droplet near to a deformable surface, Yang and Leal derived the analytical 

solution based on the fundamental singularity solutions [53]. Their approximate 

drag force results were in agreement with the exact solution in some particular 

situations. Chi and Leal presented a theoretical study of a droplet towards a 

fluid interface by means of the boundary integral method [54]. Their solution 

contained large deformations of the droplet and interface with different 

capillary numbers and viscosity ratios. Danov, Gurkov, Raszillier and Durst 

presented the relationships of the intrinsic properties of the fluid and the drag 

force of the droplet. At small distances between the sphere and the viscous 
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interface, a crucial effect based on the surface viscosity gave rise to the 

augments of drag force and torque [55].  

Owing to the retardation of the interface, the velocity field of translation is 

more sensitive to the distance than the rotation. In a simple shear flow parallel 

to a viscous interface, the translational and rotational velocities of a spherical 

particle were functions of particle distance from the interface and the viscosity 

ratio [56]. Furthermore, in some special situations, the sphere could move 

across the surface into the other fluid. Referring to such cases, before the 

particle can pass through the interface, the thin film of liquid occupying the 

region between them must be compressed out. This model is the film drainage 

problem including substantial parameters such as viscosity ration, density 

difference, surface tension and relative position of the particle and interface 

[57].  

 

2.2 Slow viscous flow of two or more spheres  

2.2.1 Slow viscous flow of two or more spheres in an unbounded 

fluid 

The inter-particle interactions need to be involved in actual particles or droplets 

motions which are so frequently encountered in mass transfer and fabrication 

processes.  

A large body of literature has considered the motion of particles traveling in an 

unbounded fluid at low Reynolds number. Due to the complexity of particle 
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motion, a logic start to illustrate the hydrodynamic mechanism is to analyze the 

motion of two particles in an unbounded fluid. Stimson and Jeffery derived the 

exact solution of two particle traveling with identical velocities parallel to the 

line of centers [8]. The stream function was adopted to study the flow field. 

Later, Goldman et al calculated the exact numerical values for the velocities of 

two identical particles setting in an unbounded fluid by employing the Bipolar 

coordinates [9]. Oneill and Majumdar extended previous work and investigated 

the asymmetrical creeping flow caused by the movements of two particles [58, 

59]. They presented a comprehensive study of the dimensionless force 

coefficients with various geometries and investigated the hydrodynamic 

behaviors when the two particles were very close. In another direction, slow 

viscous flow of particles with slip boundary condition has also been considered 

by Keh & Chen [60] and Saad [61].  

In a low Reynolds number world, the inertia effect can be neglected requiring 

the mobility functions can be derived from the resistance functions. Jeffrey and 

Onishi showed the calculation of the drag force and mobility functions of two 

sphere at low Reynolds number [10]. They described the hydrodynamic 

interactions between spheres as a series by means of the linearity of the 

governing equation. Kim and Mifflin calculated the resistance and mobility 

function [11] using a boundary collocation technique. These functions can 

characterize the relationship between the movement and force coefficients of 

particles. Furthermore, Yoon and Kim showed a simple and direct method to 

calculate the mobility functions for the velocities and stresslets of two identical 
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particles [62]. Their results are also applicable for touching particles. Later, 

these functions have also been investigated by Ying & Peters with singular 

perturbation scheme [63] and summarized by Jeffrey [64].  

When the two particles contact with each other, the standard theory for the 

particle motion needs to be modified due to the specific surface shape. Cooley 

and Oneill provided the exact solution of two particles moving with identical 

velocity along their line of centers uniformly using stream function [65]. 

Meanwhile, Oneill presented an asymptotic theory for studying the motion of 

two particles almost in contact rotating with identical and opposite velocities 

[66]. Later, more accurate theoretical solutions have been given by Nir & 

Acrivos using tangent-sphere coordinates [67] and Sun & Chwang using an 

extended successive reflection method [68]. Their investigation validated two 

dynamic states in contact: pure rolling and rolling with slip. These phenomena 

have also been confirmed experimentally by Ekiel-Jezewska et al. [69, 70] and 

Zhao & Davis [71].  

In order to investigate the unsteady motion of two solid spherical particles in an 

unbounded fluid, Ardekani and Rangel introduced two approaches combining 

with the method of reflections to calculate the force acting on the surface of the 

particles [12]. The result of these two cases showed that the Basset force 

according with the motion of the particles was larger than the force for an 

individual sphere.  

For more particles cases, Brenner and Oneill presented a general theory to 

analyze resistance of an aggregate of particles of arbitrary shape traveling in a 
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linear shear flow [72]. They found that the hydrodynamic force of particles can 

be expressed by two intrinsic matrixes. Kim derived the analytical solution for 

Stokes flow past three particles based on the Legendre expansion [13]. Later, 

Clercx and Schram developed a method to construct the mobility function of 

three hydrodynamically interacting spheres with arbitrary positions [73]. 

Cichocki et al. numerically investigated the resistance and mobility function of 

many particles which can be extended for practical calculation [74]. 

Furthermore, Haber and Brenner studied the hydrodynamic drag force and 

torque acted on non-identical spheres in a quadratic flow at infinity. Explicit 

function has been expressed for the case of two particles [75]. Filippov 

proposed a scheme to calculate the drag force and torque acting on clusters of 

arbitrary spherical particles with slip boundary condition [76]. Ekiel-Jezewska 

and Wajnryb analyzed the dynamics of three identical particles falling due to 

gravity. The stability of different configurations and phase portraits for two 

symmetrical motions have been discussed [77]. Wilson presented a numerical 

method to track the mechanism of three spheres at low Reynolds number which 

is based on the Lamb’s general solution and the method of reflections [14]. The 

data gave an existence that the largest error appeared at a distance between 

particles around 0.1 radius. Recently, Ekiel-Jezewska and Felderhof derived the 

exact solutions for the two and three spheres hydrodynamic interactions [78]. 

The expressions are a combination of a solution for particle with no-slip and 

Green tensor.  
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The hydrodynamic interactions which depend on the spatial distance between 

droplets were experimentally and theoretically reported. The agreement of 

experimental data with droplet motion containing the drag correction in chain 

was testified [79]. Faltas, Sherief and Ashmawy studied the hydrodynamic 

interactions of two unequal spherical particles with different rotational 

movement along the same direction connecting their geometry center in the 

micro polar fluid [80]. Fuentes, Kim and Jeffrey gave the investigation of two 

unequal droplets at low Reynolds number which provided a closed analytical 

expression for the interactions [81, 82]. The surface tension was assumed to be 

high enough which made the droplets keep spherical shape. Exact solutions of 

the velocity field for Stokeslets and singularities close to a viscous droplet were 

obtained. Stoos, Yang and Leal analyzed the interactions between a small 

droplet and a much larger viscous droplet moving in a quiescent fluid [83]. The 

mathematical solution was a balanced expansion of the local boundary 

conditions and the disturbed flow. Keh and Tseng presented an analytical-

numerical study for interactions of a group of droplets in a viscous fluid 

through the boundary collocation technique [84]. A general solution of the 

resistance and mobility function was given with a good agreement with 

previous work in some special cases. Baldessari and Leal solved the motion of 

two contacted spherical droplets in uniaxial background flow at low Reynolds 

number [85]. The stream function was employed for the axisymmetric creeping 

motion. Pozrikidis studied the motion of two spherical fluid droplets 

suspending in an unbounded fluid at low Reynolds number [86]. The 
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investigation of this problem would contribute to the understanding of the 

breakup and deformation of droplets and bubbles.  

 

2.2.2 Slow viscous flow of two or more spheres in a cylindrical 

tube 

Unlike in an unbounded fluid, the extra surface will make an inevitable 

influence on the flow behavior of particles. One typical example of a commonly 

used boundary is a cylindrical tube. As is well known, the flow field has a 

parabolic profile within the tube with maximum value at the center. Due to the 

interactions among the spheres and the cylindrical wall, the sphere can move 

towards or away from the other one. To better highlight the collision and 

aggregation of particles in the tube, it is necessary to analyze the hydrodynamic 

force coefficients and particle velocities.  

Greenste and J. Happel presented numerical values of the force and torque of 

two particles within a cylindrical tube in a viscous fluid using the method of 

reflections [24]. However, the physical model is based on a specific 

configuration and boundary condition. The two particles were placed 

symmetrically about the axis of the cylinder traveling in a direction normal to 

the line connecting their centers with constant translational and rotational 

velocities. Sonshine and Brenner investigated the motion of two or more 

particles translating along the axis of an infinite cylindrical tube [23]. The 

spheres had the identical size and were equally settled. They calculated the drag 

force encountered by the sphere and found that the hydrodynamic interaction 
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caused by adjacent sphere could decrease the drag force. Wang and Skalak 

derived the general solution of the same physical model employing stream 

function [87]. They presented numerical results for the pressure difference and 

drag force for a range of configurations, together with stream lines and velocity 

profile. Later, Chen and Skalak extended previous mathematical model [88]. 

They analyzed the slow viscous flow of a line of spheroidal particles within a 

cylindrical tube and showed the drag force was primarily related to the 

spheroidal diameter perpendicular to the axis of the tube. Both prolate spheroids 

and oblate spheroids were also equally placed along the axis. Leichtberg, 

Pfeffer and Weinbaum investigated the Stokes flow past finite coaxial clusters 

of spheres equally spaced along the axis of a cylindrical tube using a Fourier 

transform of the general disturbance [89]. They presented the drag force 

solution and for a wide range of particle spacing and particle to cylinder radii 

ratios. Meanwhile, the velocities of each particle has been calculated which 

demonstrate the hydrodynamic interactions among particles. Recently, Navardi 

and Bhattacharya proposed a general methodology to calculate the 

hydrodynamic force of two particles traveling in a cylindrical tube [25]. The 

drag force and torque can be obtained due to specific motion with arbitrary 

radial positions. Nevertheless, the velocities including translation and rotation 

of the two particles have not been investigated.  
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2.3 Current study 

The motion of small particles in a cylindrical tube can be found in many fields, 

ranging from the industrial and environmental applications such as fluidization 

and filtration, to biomedical applications such as drug delivery in blood vessels. 

When fluid passes particles, the flow field could make them collide or 

aggregate due to particle interactions. The characteristics of the flow field, such 

as drag force, will be more complex depending on the geometric configuration 

of the particles. The analytical solution of one single particle moving inside the 

cylindrical tube has been previously studied. Neither of the aforementioned 

investigation is, however, applicable to solve the general motion of two 

particles traveling within a cylindrical tube. This is why the previous theories 

are inadequate in analyzing various physically significant phenomena such as 

collision and aggregation of particles. Also, the existing theories were primarily 

concentrated on the motion of particles equally placed along the axis with 

identical size or only the hydrodynamic forces of two particles with arbitrary 

position. However, in the presence of general configuration, the particle can 

move perpendicular to the axis, together with rotation due to the hydrodynamic 

interaction between particles. To our knowledge, such systematic analysis on 

the flow behavior of the multi particles traveling in a cylindrical tube is still not 

available. Therefore, there is a compelling need for constructing a theoretical 

model to quantify particle interactions for the flow characteristics involving 

multiple particles. A logical beginning towards illustration of these behaviors 

can be addressed by considering the flow dynamics of two spherical particles 
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traveling within a cylindrical tube at low Reynolds number. This motivates us 

to analyze the mechanism of this case. The following chapters will propose a 

comprehensive procedure to solve the problem. We can then extend the two-

particle approach to multiple particles problem by extending the boundary 

conditions based on the method of reflections. Such analysis can give us 

insights to understand the mechanisms of collision and aggregation of particles.  
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Chapter 3 

Problem Formulation 

The mathematical formulation is set up. Lamb’s general solution is used to 

calculate the flow field around the particle in spherical coordinates. We extend 

the previous method presented by Brenner and Happel [20] and construct a 

general solution in cylindrical coordinates. The solutions adopted in different 

coordinate systems are combined with the method of reflections [90, 91].  

 

3.1 Governing equations and Boundary conditions  

In order to investigate the hydrodynamic interaction of particles in a low 

Reynolds number flow, we develop a mathematical model to analyze the flow 

dynamics of two particles moving in a cylindrical tube at low Reynolds number.  

 

 

Figure 3.1: Sketch of two particles moving in a cylindrical tube  
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Two particles, named as particle A and particle B with radius a and b 

respectively, are placed in arbitrary positions in a tube radius R0. The 

background flow field of the cylinder is of parabolic profile with the maximum 

value U0 at the axis known as the Poiseuille Flow. Each particle has a 

translational velocity U and a rotational velocity ω with subscript a and b with 

respect to particle A and particle B. La represents the distance between the 

center of particle A and the axis of the tube, the same for Lb in relation to 

particle B. L is the particle spacing.  

At low Reynolds number, the governing equation for the steady motion of 

Newtonian fluid are the Stokes equation:  

 

 2 1
v p


     (3.1) 

Together with the continuity equation 

 0v    (3.2) 

Using a reference frame attached to the center of particle A (variable Z  

described the axial direction of the coordinates), the boundary conditions are: 

 

0

( )

a a a

b a b b b

a

v r at r a

v Z U U r at r b

v U Z at R R





   



    


  

  (3.3) 

With no slip, particle A only has a rotational velocity while particle B has the 

relative translational velocity and rotational velocity.  
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3.2 The Method of Reflections 

As described earlier, there are three boundary conditions in the model and the 

governing equation cannot be solved directly. In this study, we conduct the 

calculations by utilizing the method of reflections due to the complex 

interactions among the particles and the cylindrical tube. This method can be 

adopted for multiple objects and is proposed by previous researchers [90, 91]. 

By using the method of reflections, the velocity and pressure fields can be 

expressed as an infinite series since the governing equations and boundary 

conditions are linear.  

 
           0 1 2 3 4 5

c a b c a bv v v v v v v         (3.4) 

 
           0 1 2 3 4 5

c a b c a bp p p p p p p         (3.5) 

where the superscript i refers to the ith reflection and subscript (a, b, c) refers to 

the boundary conditions satisfied for particle A, particle B and cylinder, 

respectively. The whole flow field is the summation of the series and the added 

term in the calculation can be considered as a modification of the previous 

result (summation of previous terms). Each term of v and p, separately satisfy 

Eq (3.1) (3.2) and the boundary condition resulting from previous term. For 

example, if the subscript of the last term is b, the summation of the terms will 

satisfy the boundary condition of particle B. Therefore, the following relations 

can be derived. 

We start the calculation with the initial flow field 
 0

cv  corresponds to the 

pressure-driven parabolic flow in a cylinder: 
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  0 2 2

0 0(1 / )c av Z U R R U       (3.6) 

Then we add a reflection due to the presence of particle A. The subsequent 

reflection  1

av  can be obtained from the boundary condition of particle A. The 

entire flow field, which is the summation of the first two terms, satisfies the 

boundary condition of particle A:  

    0 1

c a a a av v r at r a      (3.7) 

This makes: 

 
 

 0

1

0

c a a a

a

v r at r a
v

at z

   
 

 

  (3.8) 

Similarly, the next reflection due to particle B, the added term need to make the 

summation satisfy the boundary condition of particle B.  

 
     0 1 2

( )c a b b a b bv v v Z U U r at r b         (3.9) 

So we have: 

 
 

   1 0

2
( )

0

a c b a b b b

b

v v Z U U r at r b
v

at z

      
 

 

  (3.10) 

In order to make the result closer to the exact flow field, more terms should be 

added by repeating the process. Therefore, the following reflection (
 3

cv ) is 

conducted based on the boundary condition of the tube. The summation is 

required to satisfy the boundary condition: 

 
       0 1 2 3

0c a b c av v v v U Z at R R        (3.11) 

This makes: 
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  
   1 2

03

0

a b

c

v v at R R
v

at z

  
 

 

  (3.12) 

Then the following reflections (  4

av  and  5

bv ) can be calculated by satisfying 

the boundary condition of particle A and B, respectively .The procedure 

continues repetitively by adding more terms and as the number of terms goes to 

infinity, the solution will be closer to the exact flow field.  

Based on this relationship and the method of reflections, the process of the 

generation of the total velocity fields can be summarized in a flow chart (Figure 

3.2).  

 

Figure 3.2: The method of reflections procedure 
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The pressure can then be acquired from the governing equations related to 

velocity.  

Note that the sequential steps are similar to the perturbation method. Thus, it is 

necessary to consider the convergence of the method of reflections.  

In general, the first reflection (1)

av  arising from (0)

cv  brings in the representative 

geometry dimension a (the radius of particle A) in the form a/r with positive 

power, where r is the radial variable of the spherical coordinate with reference 

to particle A. The next reflection (2)

bv  (only consider particle A and B, the 

principle is similar for wall of the cylinder) introduces the term a/L. L is the 

characteristic dimension between the two particles. Further improvement which 

is the term (4)

av  will possess a magnitude in the order of O(a2
/L2

). Therefore, the 

subsequent reflection can correct the error of the flow field to higher order, 

depending on the number of terms.  

Once the flow field is acquired to a desired accuracy, the drag force F , which 

is operated on the surface of the particle by the surrounding fluid, is a 

summation of the contributions resulting from each reflected velocity.  

        1 2 3 4
F F F F F       (3.13) 

Similarly, the torque is: 

        1 2 3 4
T T T T T       (3.14) 

Since the method of reflections can treat the boundary conditions individually, 

it is necessary to obtain the general solution for the flow field around the 
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particle and within the cylindrical tube and the detailed calculation procedure is 

shown in section 3.6.  

 

3.3 Spherical harmonics for the flow around the particle 

Lamb provided a general solution for the flow field outside the particle at low 

Reynolds number in spherical coordinate system [92]. After taking the 

divergence of the Stokes equation (Eq.(3.1)), it is straightforward that the 

pressure satisfies the Laplace equation.  

 2 0p   (3.15) 

So the pressure field can be expanded with the solid spherical harmonics [90]: 

 
n

n

p 




    (3.16) 

Upon adopting the homogeneous and special solutions of the equations, the 

expansion constructs the general solution [90]: 
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 (3.17) 

where 
n , 

n  and 
n  are solid spherical harmonics which are of the normal 

form [91]: 

   
0

cos cos sin
n

n m

n n mn mn

m

r P a m a m   


    (3.18) 

   
0

cos cos sin
n

n m

n n mn mn

m

r P b m b m  


     (3.19) 
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   
0

cos cos sin
n

n m

n n mn mn

m

r P c m c m   


    (3.20) 

m

nP  is the Associated Legendre Polynomial. Due to the properties of the 

Legendre Polynomial, the connections of the boundary condition and the solid 

spherical harmonics are as follows [90]: 
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  (3.21) 
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  (3.22) 
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

  
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  (3.23) 

V  represents the boundary condition which is the velocity on the sphere surface. 

These relationships cover both the regions inside and outside the sphere.  

In order to eliminate the summation and solve the solid spherical harmonics, the 

right hand side of these equations must be transformed into similar form. It is 

concluded that a function f (θ, φ) can be expanded in a series of surface 

spherical harmonics [93, 94].  
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  (3.24) 

where nP  and m

nT  are Legendre polynomials and associated Legendre 

polynomials, respectively. nA , m

nA  and m

nB  are coefficients of transformation 

with following formulas [94]: 
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Thus, based on the transformation of surface spherical harmonics, a set of 

algebra equations can be generated. Since the general solution is applicable for 

the flow inside and outside the sphere, it is necessary to consider them 

separately.  

 

Region inside the sphere 

According to the flow field occupies the region inside the sphere, with the face 

that the velocity should be finite, it provides the simplification to positive 

spherical harmonics: 

 0, 0n n n n       (3.28) 

This makes the general solution [90]: 
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(3.29) 

According to the transformation (Eq(3.24)), the right hand side of Eq(3.21)

(3.22)(3.23) can be expanded as [90]: 
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So the fundamental relations for the region interior to a sphere are [90]: 
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Rearranging, we can obtain: 
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Based on the velocity on the surface of the sphere, the flow field arising from 

the effect of the boundary conditions can be solved.  

 

Region outside the sphere  

Similarly with the previous analysis, since the velocity has to disappear at 

infinity, the harmonics functions should be restricted with negative order. The 

general solution outside the sphere is [90]: 
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where v  is the background flow.  

By employing the boundary conditions and surface spherical harmonics, the 

solution is [90] 
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  (3.42) 

In this study, the two particles are solid spheres. So we only focus the flow field 

around the two particles without the region inside. In our study, we find that the 

first five terms of the spherical harmonics are enough to get the accurate 

solution. By including the five terms, the solution can satisfy the boundary 

condition with the difference less than 0.1%.  

 

3.4 Cylindrical harmonics for the flow field of cylinder 

In cylindrical coordinates, the velocity components are shown by (R, Φ, Z). The 

general solution is given by Happel & Brenner [90]:  

 ( ) k
Z k k k Z
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v i R i
R Z
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 
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  (3.43) 
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where 
k , 

k  and 
k  are cylindrical harmonics functions. We assume the 

standard forms: 
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  (3.47) 

ik , 
ik  and 

ik , where , , ,i a b c d  are unknown functions of   with respect 

to k , k  and k . So the velocity components can be described as: 
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In order to construct a relationship between the cylindrical harmonic functions 

and boundary conditions, we assume the boundary conditions at the wall of 

tube (R=R0) has the following form: 

  0 , , R R Z ZB R Z B i B i B i       (3.49) 

So we have: 
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 (3.52) 

We now proceed to construct algebra equations between the coefficients and 

boundary conditions. A considerate mathematical treatment must be applied in 



37 

 

order to eliminate the variable   of the right hand side of the equation. Owing 

to the Orthogonality Relations: 
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the cancellation of   is achievable. For k ≠ 0, Eq. (3.50) can be transformed as: 

 

       

 
 

       

 
 

' ''

0 0 0
2

0 0
0

0

' ''

0 0 0

0
0

0

cos cos

sin

ck k ck k

R dk

k

ak k ak k

bk

k

I R R I R

k B d Zd
kI R

R

I R R I R

Zd
kI R

R



      

  




      

  








 
 

    
 

 

 
 

  
 

 

 



 

  (3.55) 

 

       

 
 

       

 
 

' ''

0 0 0
2

0 0
0

0

' ''

0 0 0

0
0

0

sin cos

sin

dk k dk k

R ck

k

bk k bk k

ak

k

I R R I R

k B d Zd
kI R

R

I R R I R

Zd
kI R

R



      

  




      

  








 
 

    
 

 

 
 

  
 

 

 



  

 (3.56) 

The Fourier integral [95] can be used to eliminate variable Z: 
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0
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      (3.57) 

where 
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So Eq. (3.55) can be written as: 
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Similarly, Eq. (3.56) becomes: 
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Applying the same method, similar equations can be obtained from boundary 

condition in  and Z direction (Eq. (3.51) and Eq. (3.52)), which are applied to 
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solve the unknown coefficients simultaneously. For k=0, the procedure is 

similar. Similar with the spherical harmonics, the first five terms of the 

cylindrical harmonics are enough to get the accurate solution.  

 

3.5 Coordinate transformation 

Based on the general solution with respect to sphere and cylinder, the velocity 

transformation between different coordinates must be considered. In the 

settlement to follow, it is inevitable to utilize a series of different coordinate 

systems.  

 

 

(a) 
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(b) 

Figure 3.3: (a) axonometric drawing of the coordinate system of two particles in a 

cylindrical tube; (b) projection of the coordinate system of two particles in a cylindrical 

tube along the axis. 

 

Consider an arbitrary point P in space (Figure 3.3); the position can be 

described with various coordinates. Pa (Pb) is the projection of P on the surface 

perpendicular to the axis of the tube and passes the center of particle A (B).  

The two particles have arbitrary positions. For each particle, there are Cartesian 

coordinates (Xa(b), Ya(b), Za(b)); spherical coordinates (ra(b), θa(b), φa(b)), which are 

distinguished by appending the subscripts a and b in relation to particle A and B 

with the common origin at the sphere center, respectively. We employ two 

coordinates systems: Cartesian coordinates (X, Y, Z) and cylindrical 

coordinates (R, Φ, Z), to describe the flow field in the cylindrical tube.  
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The coordinates’ transformation between two particles, it can be acquired 

through geometry. Relative distances such as La, Lb and L are involved in the 

following relations.  

 cos cosa a b br r L     (3.64) 

 sin cos sin cos cosa a a b b b a b abr r L L          (3.65) 

 sin sin sin sin sina a a b b b b abr r L        (3.66) 

 2 2cos sin 1a a     (3.67) 

 2 2cos sin 1a a     (3.68) 

Solving the equations simultaneously, the transformation can be obtained.  

Similarly, the coordinates’ transformation between particle and tube can be 

obtained:  

 cosa ar Z    (3.69) 

 sin cos cosa a a ar R L       (3.70) 

 sin sin sina a ar R      (3.71) 

 2 2cos sin 1a a     (3.72) 

 
2 2cos sin 1     (3.73) 

 cosb br L Z     (3.74) 

 sin cos cos cosb b b b abr R L        (3.75) 

 sin sin sin sinb b b b abr R L        (3.76) 

 2 2cos sin 1b b     (3.77) 
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3.6 Calculation procedure and velocities of particles 

By means of the method of reflections, each velocity can be acquired according 

to general solution with respect to individual coordinate systems. The 

superscript of series represents the computation sequence.  
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Figure 3.4: Calculation procedure 

 

We start the calculation from the background flow named as (0)

cv  with 

parabolic profile which is a typical model in a tube at low Reynolds number. As 

described earlier, the boundary condition of the following reflection (1)

av  due to 

the presence of particle A comes from the previous reflection (0)

cv . Therefore, 
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the expression of (0)

cv  derived in cylindrical coordinates should be transformed 

into spherical coordinates (section 3.5). Then the boundary condition of (1)

av  can 

be acquired by using the method of reflections (Figure 3.2) and the expression 

can be calculated with the spherical harmonics (section 3.3). The next reflection 

(2)

bv  can be obtained with the same procedure in the spherical coordinate of 

particle B.  

The first three reflections are derived based on the three boundary conditions: 

two particles and the tube. In order to make the result closer to the exact flow 

field, more terms should be added by repeating the process. Thus, the following 

reflection (3)

cv  is conducted based on the boundary condition of the tube. Due to 

the procedure described in Figure 3.2, the added reflection is related to the 

previous result: (1)

av  and (2)

bv . So the expressions derived in spherical 

coordinates of particle A and particle B should be transformed into cylindrical 

coordinates (section 3.5). Then the boundary condition of (3)

cv  can be obtained 

by utilizing the method of reflections (Figure 3.2) and the velocity expression 

can be calculated by taking advantage of the cylindrical harmonics (section 3.4). 

Similar calculations can be adopted with reference to particle A and particle B. 

In our study, we find that the first five terms of the spherical harmonics and 

cylindrical harmonics are enough to get the accurate solution. By including the 

five terms, the solution can satisfy the boundary condition with the difference 

less than 0.1%. We can continue the procedure by adding more terms to make 

the solution closer to the exact flow field. It is noted that the expression of the 
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velocity of each reflection is a function of the particle velocities including the 

translational and rotational velocities.  

To solve the particle velocities, it is necessary to obtain the hydrodynamic force 

acting on the particle surfaces. Once the velocity of each reflection step has 

been solved, it is essential to calculate the drag force and torque of particles. 

The stress tensor acting on the surface of the particles is given by Lamb [96]: 

 ( ) ( )r

r r v v
p r v

r r r r r





         


  (3.78) 

Application of the general solution in spherical coordinates (Eq (3.17)) 

ultimately yields [90]: 

 

  

 

  

2
2

( 1) ( ) 2( 1)

2(2 4 3)

1 2 3 1 2 3

n n

r
n

n n

n r n

n nn n
rp r pr

n n n n




 





     
 

       
     

  (3.79) 

Therefore, the drag force and torque conducted by the surround fluid on the 

particles can be acquired by integration of the stress tensor acting throughout 

the particle surface. Since the general solution is a function of spherical 

harmonics (represented with Hn in the following equations), there are general 

surface theories to adopt the integration [90]: 
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   0n
s

rH dS all n    (3.83) 

Again, the drag force and torque are the integrals of the stress tensor around the 

surface of the spheres [90] 

 r
s

F dS    (3.84) 

 r
s

T r dS    (3.85) 

Thus, the expressions of drag force and torque yield [90] 

 3

24 ( )F r p      (3.86) 

 3

28 ( )T r      (3.87) 

Therefore, the total drag force and torque can be obtained by summing all the 

results with Eq. (3.13) and (3.14).  

It is noted that the calculation procedure is an iterative process and it should be 

terminated under specific conditions. Due to the principle of the method of 

reflections, the magnitude of the drag force and torque will be smaller and 

smaller during the iteration. In this study, when the magnitude of the drag force 

and torque are three orders smaller than the sum of the previous results, we can 
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terminate the calculation because the following results are negligible for the 

whole results.  

Similar with the expression of the velocity, the drag force and torque are also 

functions of the particle velocities. The Reynolds number represents the ratio of 

the effect of inertial force to viscous force in the flow. In slow viscous flow, the 

Reynolds number is smaller than 1. Therefore, it is reasonable that the inertial 

force need not be considered and the total drag force and torque are zero. So we 

have:  
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  (3.88) 

By solving these two equations simultaneously, the relationship of translational 

and rotational velocity of particle and the background flow can be obtained. By 

substituting the particle velocities back into the expression of the velocity, the 

flow field can be obtained. Meanwhile, the number of the iteration is related to 

the specific configuration of the model. If the two particles are small (a/R0 and 

b/R0 <0.25), the calculation can converge within 20 items. However, when the 

two particles are bigger (a/R0 and b/R0 >0.3), the calculation needs more terms 

to converge.  

The calculation procedure presented in this chapter can also be developed for 

multi particles problem due to the method of reflections. For example, if there 

are three particles (named as particle A, particle B and particle E) travelling in a 

cylindrical tube, the velocity field and the pressure field can be expressed as: 

 
               0 1 2 3 4 5 6 7

c a b e c a b ev v v v v v v v v           (3.89) 
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                0 1 2 3 4 5 6 7

c a b e c a b ep p p p p p p p p           (3.90) 

The superscript i refers to the ith reflection and subscript (a, b, e, c) refers to the 

boundary conditions satisfied for particle A, particle B, particle E and cylinder, 

respectively. Similar with the current calculation, we can derive the boundary 

conditions due to the method of reflections which is similar to the two particles 

case. The origin of the coordinate system is also set at the center of particle A.  
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The boundary conditions can be derived continually during the calculation with 

a loop. During each reflection, there will be one more coordinate transformation 

due to the presence of particle E. Then the entire flow field can be solved with 

the similar procedure of the two particles case. 
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Chapter 4 

Result and Discussion 

We consider a physical model of two rigid spherical particles translating and 

rotating within a long cylindrical tube with radius R0 at low Reynolds number 

(Figure 4.1). Each particle has a translational velocity U and a rotational 

velocity ω with subscript a and b with respect to particle A and particle B, 

respectively.  

 

Figure 4.1: Schematics of two rigid particles moving in a cylindrical tube.  

 

Due to the interactions among the two particles and the cylindrical wall, the 

sphere can move towards or away from the other sphere. To better highlight the 

interactive process it is necessary to analyze the drag force coefficients and 

particle velocities.  
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4.1 Two spheres along the axis of the cylindrical tube 

4.1.1 Two particles with same size 

We first consider two particles moving along the axis of the tube (La = Lb = φab 

=0), with axisymmetric condition that each particle only involves translational 

velocity and drag force in Z-direction (Figure 4.2).  

 

 

Figure 4.2: Schematic of two particles along the axis of the tube.  

 

When a single particle travels in the tube, the flow pattern is symmetrical front 

to back. The flow field can be distorted in the presence of the particle due to the 

hydrodynamic interaction. To better highlight this mechanism, it is necessary to 

plot the flow pattern. Figure 4.3 shows the streamlines between the two 

particles (Region marked in Figure 4.2 with dashed rectangle). For convenience, 

we plot half of the whole flow field due to the axisymmetric geometry. The 

flow field is symmetric since the two particles are identical, which agrees well 

with the kinematic reversibility. Due to the hydrodynamic interaction between 

the particles, the flow around each particle cannot recover back to the upstream 

streamline as it passes around the particle, as compared to the case of single 
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particle. Figure 4.4 shows the velocity profile along the radial direction. It can 

be concluded that due to the presence of the particle, the previous parabolic 

flow has been pressed into an annular flow between the particle and the wall.  

When a particle travels through a fluid, there are drag force and torque acting 

on it which stem from the frictional action of the fluid. Mathematically, the 

drag force and torque are the integrals of the stress tensor around the surface of 

the particle (Eq. (3.84)(3.85)). The stress tensor is attributed to the strain rate 

which indicates the velocity gradient is responsible for the drag force and 

torque.  

 

 

Figure 4.3: Streamlines of two particles with the same size along the axis in the tube 

(Region marked in Figure 4.2 with dashed rectangle).  

 

A B 
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Figure 4.4: Velocity profile along the radial direction of the two particles with the same 

size 

 

The final expression of the drag force of the spheres can be calculated by 

summing the individual reflections. Referring to the particle in axial position, 

the drag force can be described as:  

 06a a a a ab bF a D U K U K U Z   (4.1) 

 06b b ba a b bF a D U K U K U Z   (4.2) 

where F  are the drag forces of particles exerted by the fluid with subscript a 

and b corresponding to particle A and particle B. Da, Db and Ka, Kb are the 

coefficients related to the background flow and the particle velocities, 

respectively. Kab and Kba are the coefficients referring to the hydrodynamic 

interaction between the particles. First we consider the two particles with the 

same size and plot the result as a function of L/R0. For comparison, we choose 

a/R0 = b/R0 =0.1 and 0.3.  

In a low Reynolds number world, the coefficients of the two particles must be 

identical when they have the same size due to the kinematic reversibility. Our 
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analytical results have validated that they agree well. In such case, for 

convenience, the new variable D (D=Da=Db), K (K=Ka=Kb) and K
*
 

(K*
=Kab=Kba) are utilized to represent the coefficients.  

 

 

Figure 4.5: Normalized drag force coefficient D (D = Da = Db) with two different particle 

sizes.  

 

Figure 4.5 shows the variation of coefficient D (D = Da = Db) with two different 

particle sizes. It is not unexpected that the coefficient D is positive, since the 

drag force is in the same direction as the flow. The coefficient increases 

monotonically from a minimum value to a constant elucidated by a horizontal 

line which indicates that the interaction between particles is negligible. When 

the two particles are closer, the streamlines are deformed by the neighboring 

particle and the fluid between them has negligible velocity gradient (Figure 4.3). 
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As expected, this behavior causes the smaller drag force acting on the surface 

particle. Hence the closer the two particles are from each other, the smaller is 

the necessary values for coefficient D. In addition, the bigger particle has a 

larger drag force coefficient due to the stronger wall effect. This result also 

agrees well with the previous work [90]. Also, the characteristic distance related 

to the particle interaction can be obtained. When a/R0 = b/R0=0.1 and L/R0>1.0, 

the difference between the coefficient D and the single particle case is less than 

1 percent, which manifests the hydrodynamic interaction is negligible. The 

same conclusion can be obtained for a/R0 = b/R0 = 0.3 with L/R0>1.5.  

 

 

Figure 4.6: Normalized drag force coefficient K
*
 (K

*
 = Kab = Kba) with different particle 

sizes.  

 



55 

 

It is noteworthy that with given configuration, the coefficient K*
 represents the 

contribution from the movement of the neighboring particle which indicates the 

hydrodynamic interactions between them. In such case, the drag force has the 

same direction as the neighboring particle which makes the coefficient K
*
 

positive (Figure 4.6). In both cases, when the two particles are very close, the 

coefficient K
*
 has the maximum value which arises from the larger velocity 

gradient due to the neighboring particle. As the particle spacing increases, the 

coefficient decays to zero with similar tendency which indicates the 

hydrodynamic interaction can be neglected. The characteristic distance related 

to particle-particle interaction for the coefficient K is the same as the coefficient 

D.  

 

 

Figure 4.7: Normalized drag force coefficient K (K = Ka = Kb) with different particle sizes.  
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Unlike the previous coefficients, K demonstrates the drag force subjected to the 

movement of the particles themselves (Figure 4.7). The coefficient is negative 

since the drag force is against the direction of the particle motion. The 

increment of the magnitude of coefficient K at smaller particle spacing is 

attributed to the neighboring particle which enhances the velocity gradient. 

Furthermore, the bigger particle has stronger velocity gradient together with the 

larger magnitude of drag force coefficient for certain particle spacing.  

The mechanism of low Reynolds number requires that the total drag force 

should be zero, implying the velocities of particles can be calculated (Figure 

4.8). The velocities are normalized by the maximum value of the background 

flow U0 and plotted as a function of particle spacing. From the kinematic 

reversibility, the velocity of particle A is the same as the one of particle B since 

the two particles are identical and the new variable Uz (Uz =Uaz Ubz) is used to 

represent the velocity.  
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Figure 4.8: Normalized velocity of the two particles Uz (Uz = Uaz = Ubz) with different 

particle sizes.  

 

In Figure 4.8, the variation of translational velocity of both particles is very 

small. When the two particles are almost in contact, the velocity has a minimum 

value and increases to a constant as the particle spacing increasing. Furthermore, 

if the particle spacing is three times larger than the sum of particles radii, the 

particle-particle interaction can be neglected, which agrees well with the 

previous discussion.  
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4.1.2 Two particles with different sizes 

A more informative analysis of the hydrodynamic interaction is provided by 

comparing the two particles with different sizes. We set the size of particle A as 

a/R0=0.1 and vary the radius of particle B with b/a=2, 3, 4, 5. Figure 4.9 shows 

the normalized drag force coefficient Da as a function of the normalized 

distance L/R0. The horizontal line refers to the coefficient of a single particle 

case with a/R0=0.1.  

 

 

Figure 4.9: Normalized drag force coefficient Da for two particles with different sizes. The 

horizontal line refers to the coefficient of a single particle case with a/R0=0.1.  

 

As we discussed above, when the two particles become sufficiently close 

together, a larger region where the velocity gradient of the fluid is negligible is 

developed in between them that causes the smaller Da. Hence the bigger particle 
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B is moving ahead, smaller is the necessary value for coefficient Da which 

stems from the stronger hydrodynamic interaction.  

 

  

       (a)                                                          (b) 

 

         (c)                                                         (d) 

Figure 4.10: Normalized drag force coefficient Db. It is plotted as L/R0. We choose a/R0=0.1 

and (a) b/a=2, (b) b/a=3, (c) b/a=4, (d) b/a=5, respectively. The horizontal line refers to the 

coefficient of single particle case accordingly.  

 

Interestingly, the variation of the drag force coefficient Db is not monotonous 

when particle B is bigger than particle A (Figure 4.10). As the particle spacing 

increasing, the coefficient Db decreases first to a minimum value and then 
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increases to a constant referring to the single particle case. We choose three 

characteristic particle spacing with b/a=3 (Figure 4.10(b)) and plot the 

streamlines.  

The streamlines in Figure 4.11 show the flow field between the two particles. 

When the two particles are sufficiently close together, the remarkable distortion 

of the flow field is generated between them influencing the drag force. The 

characteristic feature is the asymmetric circulation area which is related to the 

coefficient Db. When the two particles are very close (Figure 4.11(a)), there 

exists the strong viscous interaction. However, the circulation area is limited 

due to the small particle spacing. With L/R0 increasing, the circulation area 

increases to a maximum value causing the minimum coefficient Db (Figure 

4.11(b)). If the two particles are far away, the circulation area vanishes with the 

larger coefficient Db (Figure 4.11(c)). It is instructive to analyze the impact of 

the circulation area on the drag force. In the circulation area, both of the 

velocity magnitude and velocity gradient are significantly smaller than those 

outside. As mentioned earlier, the velocity gradient is responsible for the drag 

force acting on the surface of the particle. Hence the larger circulation area 

exists, smaller is the necessary value for coefficient Db. 

Figure 4.12 shows the velocity profile along the radial direction of the two 

particles with different configurations. It can be concluded that due to the 

presence of the particle, the previous parabolic flow has been pressed into an 

annular flow between the particle and the wall. Meanwhile, the velocity along 
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the radial direction on the surface of particle A is larger than the one of particle 

B since particle A is smaller.  

 

            

(a)                                                              (b) 

 

(c) 

Figure 4.11: Streamlines with a/R0=0.1 and b/a=3. We choose (a) L/R0=0.405, (b) L/R0=0.5, 

(c) L/R0= 0.9, respectively. Since the geometry is under axisymmetric condition, we plot 

half of the streamlines with Ua=Ub=0 to represent the flow field.  

 

A 

A 

A B 

B 

B 
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(a) 

 

(b) 

 

(c) 

Figure 4.12: Velocity profile along the radial direction of the two particles with a/R0=0.1 

and b/a=3. We choose (a) L/R0=0.405, (b) L/R0=0.5, (c) L/R0= 0.9, respectively.  
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Figure 4.13: Normalized drag force coefficients Ka with different radii ratios.  

 

Similar to the behavior described in Figure 4.7, Ka or Kb shows the drag force 

due to the movement of the particles themselves. Figure 4.13 represents the 

coefficient Ka related to the translational velocity of particle A. For a certain 

radii ratio, the magnitude of Ka decreases monotonously to a horizontal line 

which refers to the value of the single particle case. Furthermore, the bigger 

particle B moving ahead induces smaller velocity gradient between the two 

particles causing the coefficient K with smaller magnitude.  

Similar tendency is also obtained for the coefficient Kb (Figure 4.14). The 

magnitude of the coefficient increases with the radius increasing which is 

similar with the phenomenon in figure 4.7.  



64 

 

  

       (a)                                                        (b) 

  

         (c)                                                         (d) 

Figure 4.14: Normalized drag force coefficient Db with different radii ratios.  

 

The drag force coefficients corresponding to the hydrodynamic interactions 

(Figure 4.15) show a similar pattern to that of Figure 4.6. Our analytical results 

have validated that the two coefficients are identical which are represented by 

the new variable K*
 (K*

 = Kab = Kba). It is noted that these coefficients decrease 

monotonically to zero as L/R0 increases which indicates that the particle-particle 

interaction is negligible. The kinematic reversibility does not rule out the 

possibility of Kab being unequal to Kba. Happel and Brenner have demonstrated 
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the identity of the coefficients based on the resistance matrix [90]. They showed 

that when the two particles travel in a low Reynolds number world, the 

resistance matrix is symmetric. That is why the two coefficients are still 

identical when the particle B is bigger.  

 

 

Figure 4.15: Normalized drag force coefficients K
* 

(K
*
 = Kab = Kba) with different radii 

ratios.  
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                 (a) 

 

                 (b) 

Figure 4.16: (a) Normalized velocity of particle A; (b) Normalized velocity of particle B.  
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The mechanism of low Reynolds number requires that the total drag force 

should be zero, implying the velocities of particles can be calculated. We 

investigate the effect of the particle spacing and radii ratios on the velocities of 

particle A and B (Figure 4.16). The velocities are normalized by the maximum 

value of the background flow U0 and plotted as a function of particle spacing. In 

general, the nonlinear evolution of the particle velocities is related to the flow 

field around it. The horizontal line in Figure 4.16(a) refers to the velocity of a 

single particle travelling along the axis within a tube. As L/R0 increasing, the 

velocity of particle A increases monotonously to a constant referring that the 

particle-particle interaction can be neglected. It is interesting, however, the 

effect of the interaction on particle B is weak.  

As mentioned earlier, the total drag force is zero in a low Reynolds number 

world. The variation of the velocities of particles should be considered to 

represent the particle-particle interaction which is more informative. In such 

case, the characteristic distance related to this interaction can be obtained from 

Figure 4.16. When b/a= 4 and L/R0 >1.5, for example, the particle-particle 

interaction is negligible since the difference between the velocity of particle A 

and the single particle case is less than 1 (Figure 4.16 (a)). Based on these 

results, we find that the particle-particle interaction can be neglected when the 

separation distance is three times larger than the sum of particles radii. 

Furthermore, as shown in this figure, the velocity of particle A is always larger 

than that of particle B when b/a>1. This implies the two particles are 
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approaching. Meanwhile, if we reverse the direction of the Poiseuille Flow, the 

two particles will repel subjected to the kinematic reversibility.  

In this section, we investigate the flow behavior of the two particles travelling 

along the axis of the tube. The drag force coefficients are presented and the 

characteristic distance of the particle-particle interaction can be obtained 

corresponding to different cases. We find that the particle-particle interaction 

can affect the velocity gradient significantly which is responsible for the drag 

force coefficients. When the two particles are very close, the particle-particle 

interaction can enhance the drag force magnitude arising from the particle 

motion and reduce the one related to the background flow. Meanwhile, there 

exists a circulation area when the two particles have the different sizes. The 

presence of the circulation area can reduce the drag force since the velocity 

gradient inside the area is smaller than the one outside. Furthermore, it is noted 

that the movement of the particle can be influenced by the one moving ahead. 

The effect on the smaller particle is significantly stronger than the bigger one. 

The mechanism of such case is not only of fundamental interest for the 

hydrodynamic interactions of multi-particles flow field in the tube, but also 

contribute significantly to the insight of the aggregation and separation 

phenomena of particles.  
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4.2 Two spheres with one off the axis 

In this section, we explore more general cases. The two particles have 

symmetrical positions with respect to X-axis (Figure 4.17). A lateral distance is 

given to particle B, named as Lb in the coordinate system. The kinematic 

reversibility indicates that a single particle cannot move laterally in a cylindrical 

tube. However, in the two particles case, with such lateral distance, particle A 

and particle B have translational velocities in Z and X-direction and rotational 

velocity in Y-direction.  

 

 

Figure 4.17: Schematics of two rigid particles with the symmetric positions in a cylindrical 

tube. Particle A is located on the axis and Particle B has a lateral distance perpendicular 

to the axis named as Lb.  

 

To better analyze the flow behavior, it is necessary to set up different cases. 

Meanwhile, since the coefficients have been discussed in the previous section, 

we focus on the velocities of particles in the following sections.  
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4.2.1 Two particles with same size 

We first consider these two particles with the same normalized radius 

a/R0=b/R0=0.02. Two different particle spacings are applied (L/R0=0.02 and 

0.05) and the normalized lateral distance Lb/R0 is changed as a variable to 

analyze the velocities of the particles.  

Figure 4.18 and 4.19 show the normalized velocities of the particles in the X-

direction with two different particle spacings: L/R0=0.05 and L/R0=0.02. In 

these two cases, the fluid pushes the two particles into the opposite directions. 

Particle A moves downward with the negative translational velocity and particle 

B has the opposite movement.  

 

 

Figure 4.18: Normalized velocities the two particles in X-direction with a/R0=b/R0=0.02 

and L/R0=0.05.  
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In Figure 4.18, since the particle spacing is larger than the sum of the radii of 

particle A and particle B, the lateral distance Lb/R0 can be varied from zero. 

When particle B is situated on the axis of the tube (Lb/R0=0), the two particles 

have the axisymmetric geometry which makes the translational velocity in X-

direction zero. As Lb/R0 increasing, the lateral distance breaks the axisymmetric 

configuration and the two particles have velocities towards to the wall. The 

velocity increases to a maximum value and then decreases to zero which 

indicates the particle-particle interactions can be neglected. When the particle 

spacing is smaller (Figure 4.19), we vary Lb/R0 from a minimum value to ensure 

the two particles will not collide. With Lb/R0 increasing, the magnitude of the 

velocities decreases dramatically to zero form the maximum value which is 

significantly larger than previous case (Figure 4.18). This indicates the particle-

particle interaction is stronger comparing with the larger particle spacing case.  
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Figure 4.19: Normalized velocities the two particles in X-direction with a/R0=b/R0=0.02 

and L/R0=0.02.  

 

 

 

Figure 4.20 and 4.21 shows the normalized velocities of the particles in Z-

direction with the two different particle spacings. The Z-velocities of the two 

particles are dominated by the advection due to the Poiseuille Flow, so the two 

cases have similar pattern. The variation of Uaz/U0 is negligible and Ubz/U0 

decreases monotonously.  
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Figure 4.20: Normalized velocities the two particles in Z-direction with a/R0=b/R0=0.02 

and L/R0=0.05.  

 

In the Poiseuille Flow, the fluid pushes the two particles moving forward. 

Particle A is set along the axis of the tube so the translational velocity is close to 

the maximum value of the Poiseuille Flow. Particle B is located with the lateral 

distance as a variable causing the velocity decreases nonlinearly corresponding 

to the Poiseuille Flow.  

It should be noted that when the two particles are very close to each other, the 

particle-particle interactions can still impact the movements of the particles. In 

Figure 4.20, the velocity of particle B is larger than the one of particle A when 

Lb/R0 is sufficiently small. As expected, the movement of particle B is enhanced 

by particle A moving behind. In the smaller particle spacing case (Figure 4.21), 

the impact is stronger due to the particle-particle interaction.  
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Figure 4.21: Normalized velocities the two particles in Z-direction with a/R0=b/R0=0.02 

and L/R0=0.02.  

 

Unlike the translational velocity, the rotational velocity can be in the opposite 

direction when the two particles are very close to each other. When L/R0=0.05 

(Figure 4.22), the rotational velocity of particle A has little variation and 

particle B has a linear relationship with Lb/R0 increasing due to the linear 

gradient of the Poiseuille Flow in the radial direction. 
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Figure 4.22: Normalized rotational velocities the two particles in Y-direction with 

a/R0=b/R0=0.02 and L/R0=0.05.  

 

It is interesting, however, particle B has a negative rotational velocity first and 

then turns to positive with Lb/R0 increasing when L/R0 = 0.02 (Figure 4.23). The 

reason behind such mechanism is the balance of the parabolic background flow 

and the particle-particle interactions. When a single particle travels towards to 

the wall in the positive X-direction from the axis position, it has the positive 

rotational velocity (anticlockwise in Figure 4.23) due to the parabolic profile. 

The magnitude is related to the velocity gradient. Hence the further the particle 

is from the axis, larger is the necessary value for rotational velocity. However, 

when the two particles are very close, the flow sustains a lower velocity 

between the particles due to the particle-particle interaction than for the flow 

nearer to the cylindrical tube. This makes the rotational velocity of particle B 
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negative (clockwise in Figure 4.23). As Lb/R0 increasing, the Poiseuille Flow 

will dominate the particle motion with the linear and positive rotational velocity.  

 

 

Figure 4.23: Normalized rotational velocities the two particles in Y-direction with 

a/R0=b/R0=0.02 and L/R0=0.02.  

 

As discussed earlier, the particle-particle interaction can be neglected when the 

separation distance is three times larger than the sum of particles radii, which is 

concluded from the case when the two particles are along the axis. However, 

when particle B has a lateral distance, the lateral and rotational velocities should 

be considered as well. When the two particle are identical and the separation 

distance is three times larger than the sum of particles radii, the particle-particle 

interaction can be neglected, which agrees with our previous discussion. With 

such configuration, the Poiseuille Flow dominates the translational velocity in 
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the Z-direction and rotational velocity in the Y-direction and the lateral velocity 

is negligible.   

 

4.2.2 Two particles with different sizes 

In this section, we set the two particles with different sizes: a/R0=0.05 and 

b/R0=0.1. Two particle spacings are also adopted to analyze the velocities of the 

particles with L/R0=0.1 and 0.2. As described earlier, the normalized lateral 

distance Lb/R0 is changed as a variable.  

 

 

Figure 4.24: Normalized translational velocities of the two particles in X-direction with 

a/R0=0.05, b/R0=0.1 and L/R0=0.2.   

 

Figure 4.24 shows the translational velocities of the two particles in X-direction 

with the larger particle spacing L/R0=0.2. Similar to the configuration described 
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earlier, the lateral distance Lb/R0 can be changed from zero. As discussed in the 

previous section, particle A moves downward with the negative translational 

velocity. With Lb/R0 increasing, the magnitude of the velocity increases to a 

maximum value and then decreases. Interestingly, the change rate of the 

velocity before and after the maximum magnitude is different. When Lb/R0=0, it 

is an axisymmetric model. However, the presence of the lateral distance will 

break the axisymmetric conditions immediately. So when the flow passes 

around particle A and recovers back, the fluids above and below the axis are 

different due to the distortion of particle B. This variation causes the significant 

net movement of the fluid in the X-direction between the two particles which 

induces the lateral movements of them. With Lb/R0 increasing, the fluid is easier 

to flow between the two particles causing the lateral velocity rapidly increases 

to the maximum value. As the two particles are far away from each other, the 

velocity decreases with smaller change rate indicating the particle-particle 

interaction weakens. However, the variation of the velocity of particle B is 

negligible indicating the particle-particle interaction on particle B is weak. This 

phenomenon is similar with the one discussed in Figure 4.16.  

The case with the smaller particle spacing is also considered (Figure 4.25). We 

vary Lb/R0 from a minimum value to ensure the two particles will not collide. 

When the two particles are very close to each other, the magnitude of the 

velocity of particle A does not reach the maximum value even the particle-

particle interaction is the strongest. The reason is that the space between the two 

particles is narrow and the volume of the fluid going through is limited. As 
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Lb/R0 increasing, the magnitude increases to the maximum value and then 

decreases indicating the particle-particle interaction dwindles. However, the 

change of the velocity of particle B is monotonous with Lb/R0 increasing which 

is similar as the one described in Figure 4.19.  

 

 

Figure 4. 25: Normalized translational velocities of the two particles in X-direction with 

a/R0=0.05, b/R0=0.1 and L/R0=0.1.  

 

Figure 4.26 and 4.27 represent the translational velocities in Z-direction of the 

two particles. The advection due to the Poiseuille Flow dominates the flow 

behavior even when the two particles are very close. The velocity of particle A 

is nearly a constant and always larger than the one of particle B.  
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Figure 4.26: Normalized translational velocities of the two particles in Z-direction with 

a/R0=0.05, b/R0=0.1 and L/R0=0.2.  

 

 

Figure 4.27: Normalized translational velocities the two particles in Z-direction with 

a/R0=0.05, b/R0=0.1 and L/R0=0.1. 
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Unlike previous discussion, the particle-particle interaction on the rotational 

velocities of the two particles is weak (Figure 4.28 and 4.29). In these two 

figures, the rotational velocity of particle B follows a straight line due to the 

linear gradient of the Poiseuille Flow in the radial direction even when the two 

particles are very close. This indicates the particle-particle interaction on the 

rotational velocity of particle B is negligible.  

The variation of the translational velocity of particle A is small. When the two 

particles are very close, the magnitude has a maximum value and then decreases 

to zero with the particle spacing increasing.  

 

 

Figure 4.28: Normalized rotational velocities of the two particles in Y-direction with 

a/R0=0.05, b/R0=0.1 and L/R0=0.2. 
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Figure 4.29: Normalized rotational velocities of the two particles in Y-direction with 

a/R0=0.05, b/R0=0.1 and L/R0=0.1.  

 

As discussed earlier, the particle-particle interaction can be neglected when the 

separation distance is three times larger than the sum of particles radii. It is 

interesting, when particle B is bigger, the particle-particle interaction cannot be 

neglected even if the separation distance is large. When the separation distance 

is three times larger than the sum of particles radii (Figure 4.24), the magnitude 

of the velocity of particle A is about eighty percent of the maximum value 

indicating the particle-particle interaction has certain influences on the particle 

behavior.  Although the particle-particle interaction has negligible influences on 

the translational velocity in the Z-direction and rotational velocity in the Y-

direction, it cannot be neglected. Nevertheless, by comparing Figure 4.24 with 

4.26, we find that the translational velocities of the two particles in the Z-
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direction are two orders of magnitudes higher than that in the lateral direction. 

This indicates the lateral shift is small. Therefore, the separation distance to 

neglect the particle-particle interaction should be considered depending on the 

specific application.  

In this section, we focus on the velocities of the two particles with one off the 

axis. We find that when the two particles travel within the tube, the fluid can 

pushes them into opposite lateral directions which are different from the single 

particle case. The Poiseuille Flow dominates the translational velocities of the 

two particles along the axis. Meanwhile, the hydrodynamic interaction can 

make the particle rotate in an opposite direction of the single particle case. Such 

analysis can provide unprecedented flow prediction for the motion of multi 

particles case.  
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4.3 Two particles in the same cross sectional area  

We also consider the two particles moving in the same cross sectional area 

(L=0). The two particles are identical with normalized radius a/R0=b/R0=0.02. 

We set particle A along the X-direction with lateral distance La/R0=0.02 and 

particle B with Lb/R0= 0.07 (Figure 4.30). The azimuthal angle φab is changed as 

a variable to analyze the velocities of the two particles. To better highlight the 

velocities of particle B, we further construct a body-fixed frame xyz such that 

the origin is set at the center of particle B and its z-axis is always parallel to the 

axis of the tube. Due to this configuration, particle A has the translational 

velocity in Z direction (UaZ) and rotational velocities in X (ωaX) and Y-direction 

(ωaY). Similarly, particle B has the translational velocity in z-direction (Ubz) and 

rotational velocities in x (ωbx) and y-direction (ωby) of the body-fixed frame.  

 

 

Figure 4.30: Schematics of two rigid particles in the same cross sectional area in a 

cylindrical tube.  

 

Figure 4.31 shows the normalized translational velocities of the two particles in 

the same cross sectional area. As discussed earlier, the velocities of the two 
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particles are dominated by the advection due to the Poiseuille Flow. The 

velocities are nearly a constant and the magnitude for particle A is larger than 

the one for particle B since particle A is closer to the axis of the tube.  

 

 

Figure 4.31: Normalized translational velocities of the two particles in the same cross 

sectional area.  

 

Since the difference of the lateral distance of particle A and particle B is larger 

than the sum of the radii of the two particles, the azimuthal angle φab can be 

varied from zero. When φab=0, particle B is situated above particle A and the x-

axis is parallel to the X-axis. The two particles have symmetrical positions with 

respect to the X-axis, so the rotational velocities ωaX and ωbx are zero (Figure 

4.32). With φab increasing, the fluid is allowed to flow between the two 

particles which pushes them rotate in the opposite directions. The magnitude of 



86 

 

the two velocities increases to a maximum value and then decreases to zero 

which indicate the particle-particle interaction can be neglected.  

 

 

Figure 4.32: Normalized rotational velocities of the two particles in the same cross 
sectional area: ωaX/U0 and ωbx/U0.  
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Figure 4.33: Normalized rotational velocities of the two particles in the same cross 

sectional area: ωaY/U0 and ωby/U0.  

 

Figure 4.33 shows the rotational velocities of the two particles due to the 

Poiseuille Flow. When the two particles are very close, the magnitude of the 

velocities has a maximum value and then decreases to a constant with φab 

increasing. Similar with the discussion of Figure 4.22, the velocity of particle B 

is larger than the one of particle A.  

In this section, the motion of the two particles travelling in the same cross 

sectional area has been analyzed. The Poiseuille Flow dominates the 

translational velocity and the magnitude is nearly a constant. Unlike the single 

particle case, the particle-particle interaction can induce extra rotational 

velocities of the two particles. Such analysis can give us insights to predict the 

motion of multi particles case.  
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusions  

In this thesis, a systematic procedure to calculate the slow viscous flow of two 

particles with arbitrary positions travelling in a cylindrical tube is presented. 

This procedure is established with the method of reflections which can treat the 

boundary conditions of particles and the tube separately. Lamb’s general 

solution is employed to calculate the flow field in spherical coordinates 

according to the spherical harmonics. In the cylindrical coordinates, a 

systematic procedure is proposed by using the orthogonally relationships and 

Fourier integral with reference to cylindrical harmonics which is more general 

than the previous method.  

By utilizing this procedure, we investigate three specific cases of the two 

particles travelling in the cylindrical tube. The three characteristic cases can 

cover all the possible configurations, since the motion of two particles with 

arbitrary positions can be considered as a combination of the three cases. The 

main conclusions of this thesis consist of the following parts:  

(1) The particle-particle interaction can affect the velocity gradient 

significantly which is responsible for the drag force coefficients. When 

the two particles travel along the axis of the tube, the particle-particle 

interaction can enhance the drag force magnitude arising from the 

particle motion and reduce the one related to the background flow.  
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(2) There exists an asymmetric circulation area when the two particles have 

the different sizes. The presence of the circulation area can reduce the 

drag force since the velocity gradient inside the area is smaller than the 

one outside. This indicates the circulation area can enhance the 

movement of the particle.  

(3) The fluid can pushes the two particles into opposite lateral directions 

which are different from the single particle case. The magnitude of the 

lateral velocities of the two particles is two orders smaller than that in 

the axis direction. The effect of particle-particle interaction on the 

smaller particle is significantly stronger than the bigger one. The 

Poiseuille Flow dominates the flow behavior along the axis and the 

variation of the velocity in this direction is small. In addition, unlike the 

single particle case, the particle-particle interaction can induce extra 

rotational velocities of the two particles.  

(4) The direction of Poiseuille Flow, particle position relative to the axis 

and particle size can make the two particles attract and repel. The 

particle-particle interaction can be neglected when the separation 

distance is three times larger than the sum of particles radii when the 

two particles are identical. If the two particles have different sizes, the 

separation distance to neglect the particle-particle interaction should be 

considered depending on the specific application. Such analysis can 

give us insights to understand the mechanisms of collision and 

aggregation of particles.  
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The main objective of this work has been achieved. A developed mathematical 

procedure which is capable of solving the motion of two particles with arbitrary 

positions in the tube has been successfully carried out. Furthermore, the two-

particle approach can then be extended to multiple particles problem by 

extending the boundary conditions based on the method of reflections. The 

investigation on such case has provided significant flow prediction for the 

motion of particles travelling in a tube.  
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5.2 Future work  

With the systematic procedure proposed in this thesis, the motion of two 

particles travelling in a cylindrical tube at low Reynolds number has been 

analyzed. The investigation has provided the insight to carry on the further 

research for particles travelling in a channel.  

(1) In general, microfluidics channels have rectangular cross sections in the 

experiment due to the fabrication process of objects with small scale. 

As the extension of current study, the theory of slow viscous flow past 

two spheres in a rectangular channel will be investigated. For 

rectangular channel which is described in Cartesian coordinates, the 

general solution will be derived. We intend to employ conformal 

mapping method to transform the rectangular boundary into cylinder. 

The procedure we proposed in chapter 3 can be then used. Developing 

such model concerns the detailed flow field of particles in microchannel 

for microfluidic system, with the prospect of exploring the adaptability 

of such an instrument to industrial applications  

(2) Furthermore, we intend to conduct experiments using a microfluidic 

system to validate the theoretical model. The rectangular channel can be 

fabricated using soft lithography technique or 3D printer. Using image 

processing technique, we can capture the velocity of two particles.  
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Appendix 

 

Mathematica code: Solution of slow viscous flow of two particles travelling 

along the axis of a cylindrical tube. The two particles have different sizes with 

a/R0=0.1 and b/R0=0.3. a and b are the radius of particle A and particle B 

respectively. The particle spacing is L/R0=0.5. The two particles only have the 

translational velocity in the axial direction.  
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(*Initial conditions*)

mat = {{Sin[θa] * Cos[ϕa], Cos[θa] * Cos[ϕa], -Sin[ϕa]},

{Sin[θa] * Sin[ϕa], Cos[θa] * Sin[ϕa], Cos[ϕa]},

{Cos[θa], -Sin[θa], 0}};

mata = {{Cos[ϕa] Sin[θa], Sin[θa] Sin[ϕa], Cos[θa]},

{Cos[θa] Cos[ϕa], Cos[θa] Sin[ϕa], -Sin[θa]},

{-Sin[ϕa], Cos[ϕa], 0}};

mbt = {{Sin[θb] * Cos[ϕb], Cos[θb] * Cos[ϕb], -Sin[ϕb]},

{Sin[θb] * Sin[ϕb], Cos[θb] * Sin[ϕb], Cos[ϕb]},

{Cos[θb], -Sin[θb], 0}};

mbtb = {{Cos[ϕb] Sin[θb], Sin[θb] Sin[ϕb], Cos[θb]},

{Cos[θb] Cos[ϕb], Cos[θb] Sin[ϕb], -Sin[θb]},

{-Sin[ϕb], Cos[ϕb], 0}};

mct = {{Cos[Φ], -Sin[Φ], 0}, {Sin[Φ], Cos[Φ], 0}, {0, 0, 1}};

mctc = {{Cos[Φ], Sin[Φ], 0}, {-Sin[Φ], Cos[Φ], 0}, {0, 0, 1}};

rc0 = 1.;

a = 0.1;

b = 0.3;

La = 0.;

Lb = 0.;

L = 0.5;

ϕab = 0.;

kh = 1;

sphenumber = 4;

slimitupp = 0.00005;

slimitup = 0.00005;

h = 1000;

λh = 40;

ωax = 0;

ωay = 0;

ωaz = 0;

ωbx = 0;

ωby = 0;

ωbz = 0;

v[0] = 0, 0, U0 * 1 - rc * rc * rc0-1
* rc0-1

 - Ua

ωa = {ωax, ωay, ωaz};

ωb = {ωbx, ωby, ωbz};

rav = {ram * Sin[θa] * Cos[ϕa],

ram * Sin[θa] * Sin[ϕa], ram * Cos[θa]};

rbv = {rbm * Sin[θb] * Cos[ϕb], rbm * Sin[θb] * Sin[ϕb],

rbm * Cos[θb]};
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vam = Cross[ωa, rav] - v[0] /.

rc →
√
a2 * Sin[θa] * Sin[θa] + La * La +

2 * La * a * Sin[θa] * Cos[ϕa], ram → a

(*Spherical harmonics with reference to particle A*)

fgetXa[vam_] :=

Vaxm = ({Sin[θa] * Cos[ϕa], Sin[θa] * Sin[ϕa], Cos[θa]}).

(vam) /. ϕa → 0.2;

Fori = 1, i < sphenumber + 1, i++,

Xa[i] = Chop2 * i + 1 * 4-1
* π

-1
*

Ua * NIntegrate2 * π * Sin[θa] * Coefficient[Vaxm, Ua,

1] * LegendreP[i, Cos[θa]], {θa, 0, π},

AccuracyGoal → 5 + U0 * NIntegrate2 * π *

Sin[θa] * Coefficient[Vaxm, U0, 1] * LegendreP[

i, Cos[θa]], {θa, 0, π}, AccuracyGoal → 5 +

Ub * NIntegrate2 * π * Sin[θa] * Coefficient[

Vaxm, Ub, 1] * LegendreP[i, Cos[θa]], {θa, 0, π},

AccuracyGoal → 5 * LegendreP[i, Cos[θa]];

fgetYa[vam_] :=

Vaym = -D{0, 1, 0}.(Sin[θa] * (mata.vam)), θa  Sin[θa] -

{1, 0, 0}.(mata.vam) * 2 /. ϕa → 0.2;

Fori = 1, i < sphenumber + 1, i++,

Ya[i] = Chop2 * i + 1 * 4-1
* π

-1
*

Ua * NIntegrate2 * π * Sin[θa] * Coefficient[Vaym, Ua,

1] * LegendreP[i, Cos[θa]], {θa, 0, π},

AccuracyGoal → 5 + U0 * NIntegrate2 * π *

Sin[θa] * Coefficient[Vaym, U0, 1] * LegendreP[

i, Cos[θa]], {θa, 0, π}, AccuracyGoal → 5 +

Ub * NIntegrate2 * π * Sin[θa] * Coefficient[

Vaym, Ub, 1] * LegendreP[i, Cos[θa]], {θa, 0, π},

AccuracyGoal → 5 * LegendreP[i, Cos[θa]];
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fgetXa[vam];

fgetYa[vam];

Fori = 1, i < sphenumber + 1, i++, pa-i + 1 = μ * 2 * i - 1 *

a-1
* i + 1-1

* (a / ra)i+1 * i + 2 * Xa[i] + Ya[i];

Fori = 1, i < sphenumber + 1, i++, Φa-i + 1 =

2-1
* a * i + 1-1

* (a / ra)i+1 * (i * Xa[i] + Ya[i]);

v[1] = Chopmat.Sum GradΦa-i + 1, {ra, θa, ϕa},

"Spherical" - i - 2 * ra * ra * μ
-1

* 2-1
* i-1

* 2 * i - 1-1
*

Gradpa-i + 1, {ra, θa, ϕa}, "Spherical" +

i + 1 * μ
-1

* i-1
* 2 * i - 1-1

* {ra, 0, 0} * pa-i + 1,

{i, sphenumber}

F[1] = FullSimplifymat.

-4 * π * Gradra3 * pa[-2], {ra, θa, ϕa}, "Spherical"

(*Coordinate transformation*)

vbm =

ChopCross[ωb, rbv] + {0, 0, Ub - Ua} - v[0] - TrigExpand[v[1]] /.

rc → b * Sin[θb], rbm → b,

Cos[θa] → (L + b * Cos[θb])  b2 + 2 * b * (L * Cos[θb]) + L * L ,

Sin[θa] →  1 -
(L + b * Cos[θb])2

b2 + L2 + 2 * b * L * Cos[θb]
,

Cos[ϕa] → (Lb * Cos[ϕab] + b * Sin[θb] * Cos[ϕb] - La) 


√
b2 + 2 * b * Lb * Sin[θb] * Cos[(ϕab - ϕb)] +

2 * b * (L * Cos[θb] - La * Sin[θb] * Cos[ϕb]) +

La * La + Lb * Lb + L * L - 2 * La * Lb * Cos[ϕab] *

√
1 - (L + b * Cos[θb])2  b2 + L2 + La2 + Lb2 + 2 *

b * L * Cos[θb] - 2 * La * Lb * Cos[ϕab] + 2 * b *

(Lb * Cos[ϕab - ϕb] - La * Cos[ϕb]) Sin[θb],

Sin[ϕa] → (Lb * Sin[ϕab] + b * Sin[θb] * Sin[ϕb]) 


√
b2 + 2 * b * Lb * Sin[θb] * Cos[(ϕab - ϕb)] +

2 * b * (L * Cos[θb] - La * Sin[θb] * Cos[ϕb]) +

La * La + Lb * Lb + L * L - 2 * La * Lb * Cos[ϕab] *

√
1 - (L + b * Cos[θb])2  b2 + L2 + La2 + Lb2 + 2 * b *

L * Cos[θb] - 2 * La * Lb * Cos[ϕab] + 2 * b *

(Lb * Cos[ϕab - ϕb] - La * Cos[ϕb]) Sin[θb],

ra →
√
b2 + 2 * b * Lb * Sin[θb] * Cos[(ϕab - ϕb)] +

2 * b * (L * Cos[θb] - La * Sin[θb] * Cos[ϕb]) +

La * La + Lb * Lb + L * L - 2 * La * Lb * Cos[ϕab],

Tan[θa] →
√
1 - (L + b * Cos[θb])2  b2 + L2 + La2 + Lb2 +

2 * b * L * Cos[θb] - 2 * La * Lb * Cos[ϕab] + 2 * b *

(Lb * Cos[ϕab - ϕb] - La * Cos[ϕb]) Sin[θb] 
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 

(L + b * Cos[θb]) 
√
b2 + 2 * b * Lb * Sin[θb] *

Cos[(ϕab - ϕb)] +

2 * b * (L * Cos[θb] - La * Sin[θb] * Cos[ϕb]) +

La * La + Lb * Lb + L * L - 2 * La * Lb * Cos[ϕab],

Cot[θa] → (L + b * Cos[θb]) 
√
b2 + 2 * b * Lb *

Sin[θb] * Cos[(ϕab - ϕb)] +

2 * b * (L * Cos[θb] - La * Sin[θb] * Cos[ϕb]) +

La * La + Lb * Lb + L * L - 2 * La * Lb * Cos[ϕab] 


√
1 - (L + b * Cos[θb])2  b2 + L2 + La2 + Lb2 +

2 * b * L * Cos[θb] - 2 * La * Lb * Cos[ϕab] + 2 * b *

(Lb * Cos[ϕab - ϕb] - La * Cos[ϕb]) Sin[θb],

Sec[θa] →
√
b2 + 2 * b * Lb * Sin[θb] * Cos[(ϕab - ϕb)] +

2 * b * (L * Cos[θb] - La * Sin[θb] * Cos[ϕb]) +

La * La + Lb * Lb + L * L - 2 * La * Lb * Cos[ϕab] 

((L + b * Cos[θb])), Csc[θa] →

1 
√
1 - (L + b * Cos[θb])2  b2 + L2 + La2 + Lb2 +

2 * b * L * Cos[θb] - 2 * La * Lb * Cos[ϕab] + 2 * b *

(Lb * Cos[ϕab - ϕb] - La * Cos[ϕb]) Sin[θb];

(*Spherical harmonics with reference to particle B*)
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fgetXb[vbm_] :=

Vbxm = ({Sin[θb] * Cos[ϕb], Sin[θb] * Sin[ϕb], Cos[θb]}).

(vbm) /. ϕb → 0.2;

Fori = 1, i < sphenumber + 1, i++,

Xb[i] = Chop2 * i + 1 * 4-1
* π

-1
*

Ua * NIntegrate2 * π * Sin[θb] * Coefficient[Vbxm, Ua,

1] * LegendreP[i, Cos[θb]], {θb, 0, π},

AccuracyGoal → 5 + U0 * NIntegrate2 * π *

Sin[θb] * Coefficient[Vbxm, U0, 1] * LegendreP[

i, Cos[θb]], {θb, 0, π}, AccuracyGoal → 5 +

Ub * NIntegrate2 * π * Sin[θb] * Coefficient[

Vbxm, Ub, 1] * LegendreP[i, Cos[θb]], {θb, 0, π},

AccuracyGoal → 5 * LegendreP[i, Cos[θb]];

fgetYb[vbm_] :=

Vbym = -D{0, 1, 0}.(Sin[θb] * (mbtb.vbm)), θb  Sin[θb] -

{1, 0, 0}.(mbtb.vbm) * 2 /. ϕb → 0.2;

Fori = 1, i < sphenumber + 1, i++,

Yb[i] = Chop2 * i + 1 * 4-1
* π

-1
*

Ua * NIntegrate2 * π * Sin[θb] * Coefficient[Vbym, Ua,

1] * LegendreP[i, Cos[θb]], {θb, 0, π},

AccuracyGoal → 5 + U0 * NIntegrate2 * π *

Sin[θb] * Coefficient[Vbym, U0, 1] * LegendreP[

i, Cos[θb]], {θb, 0, π}, AccuracyGoal → 5 +

Ub * NIntegrate2 * π * Sin[θb] * Coefficient[

Vbym, Ub, 1] * LegendreP[i, Cos[θb]], {θb, 0, π},

AccuracyGoal → 5 * LegendreP[i, Cos[θb]];

fgetXb[vbm];

fgetYb[vbm];

Fori = 1, i < sphenumber + 1, i++, pb-i + 1 = μ * 2 * i - 1 *

b-1
* i + 1-1

* (b / rb)i+1 * i + 2 * Xb[i] + Yb[i];

Fori = 1, i < sphenumber + 1, i++, Φb-i + 1 =

2-1
* b * i + 1-1

* (b / rb)i+1 * (i * Xb[i] + Yb[i]);

v[2] = Chopmbt.Sum GradΦb-i + 1, {rb, θb, ϕb},

"Spherical" - i - 2 * rb * rb * μ
-1

* 2-1
* i-1

* 2 * i - 1-1
*

Gradpb-i + 1, {rb, θb, ϕb}, "Spherical" +

i + 1 * μ
-1

* i-1
* 2 * i - 1-1

* {rb, 0, 0} * pb-i + 1,

{i, sphenumber}

F[2] = ChopFullSimplifymbt.

-4 * π * Gradrb3 * pb[-2], {rb, θb, ϕb}, "Spherical";

(*Coordinate transformation*)
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vm[2] = Chop-TrigExpand[-v[1] - v[2]] /.

1 - Cos[θa]2 → Sin[θa]2, 1 - Cos[θb]2 → Sin[θb]2 /.

ra → rc02 + Z * Z , Cos[θa] → Z  rc02 + Z * Z ,

Sin[θa] → rc0  rc02 + Z * Z , Cos[ϕa] → Cos[Φ],

Sin[ϕa] → Sin[Φ], rb → rc02 + (Z - L) * (Z - L) ,

Tan[θa] → rc0  Z, Cot[θa] → Z  rc0,

Sec[θa] → rc02 + Z * Z  Z, Csc[θa] → rc02 + Z * Z  rc0,

Cos[θb] → (Z - L)  rc02 + (Z - L) * (Z - L) ,

Sin[θb] → rc0  rc02 + (Z - L) * (Z - L) ,

Tan[θb] → rc0  (Z - L), Cot[θb] → (Z - L)  rc0, Cos[ϕb] →

Cos[Φ], Sec[θb] → rc02 + (Z - L) * (Z - L)  (Z - L),

Csc[θb] → rc02 + (Z - L) * (Z - L)  rc0, Sin[ϕb] → Sin[Φ];

(*Cylindrical harmonics*)

fgetcharmonics[vm_] := 

UaR = Coefficientvm.{Cos[Φ], Sin[Φ], 0}, Ua, 1;

U0R = Coefficientvm.{Cos[Φ], Sin[Φ], 0}, U0, 1;

UbR = Coefficientvm.{Cos[Φ], Sin[Φ], 0}, Ub, 1;

UaZ = Coefficientvm.{0, 0, 1}, Ua, 1;

U0Z = Coefficientvm.{0, 0, 1}, U0, 1;

UbZ = Coefficientvm.{0, 0, 1}, Ub, 1;

cosAR[0] =

1 * π
-1

* Ua * Integrate[Fit[Table[{Z, 2 * π * UaR /. Φ → 0.2},

{Z, -h - slimitupp, -40 - slimitupp, 100}],

{Z^-1, Z^-2, Z^-3, Z^-4}, Z] * Cos[λ * Z],

{Z, -h, -40. - slimitupp}] + Integrate[

Fit[Table[{Z, 2 * π * UaR /. Φ → 0.2},

{Z, 42. + slimitupp, h + slimitupp, 100}],

{Z^-1, Z^-2, Z^-3, Z^-4}, Z] * Cos[λ * Z],

{Z, 42. + slimitupp, +h + slimitupp}] + Sum

IntegrateFitTableZ, 2 * π * UaR /. Φ → 0.2, {Z,

i * 10 - slimitupp, i * 10 + 10 - slimitupp, 1},

{1, Z, Z^2}, Z * Cos[λ * Z], {Z, i * 10 - slimitupp,

i * 10 + 10 - slimitupp}, {i, -4, -2, 1} +

IntegrateFitTableZ, 2 * π * UaR /. Φ → 0.2,

{Z, -10. - slimitupp, -6. - slimitupp, 0.5},

{1, Z, Z^2}, Z * Cos[λ * Z],
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

{Z, -10. - slimitupp, -6. - slimitupp} +

SumIntegrateFitTableZ, 2 * π * UaR /. Φ → 0.2,

{Z, i - slimitupp, i + 1 - slimitupp, 0.1},

{1, Z, Z^2}, Z * Cos[λ * Z], {Z, i - slimitupp,

i + 1 - slimitupp}, {i, -6, -3, 1} +

SumIntegrateFitTableZ, 2 * π * UaR /. Φ → 0.2,

{Z, i * 0.5 - slimitupp, i * 0.5 + 0.5 - slimitupp,

0.1}, {1, Z, Z^2}, Z * Cos[λ * Z],

{Z, i * 0.5 - slimitupp, i * 0.5 + 0.5 - slimitupp},

{i, -4, -1, 1} + SumIntegrate

FitTableZ, 2 * π * UaR /. Φ → 0.2, {Z,

i * 0.25 + slimitupp, i * 0.25 + 0.25 + slimitupp,

0.05}, {1, Z, Z^2}, Z * Cos[λ * Z],

{Z, i * 0.25 + slimitupp, i * 0.25 + 0.25 +

slimitupp}, {i, 0, 15, 1} +

SumIntegrateFitTableZ, 2 * π * UaR /. Φ → 0.2,

{Z, i * 0.5 + slimitupp, i * 0.5 + 0.5 + slimitupp,

0.1}, {1, Z, Z^2}, Z * Cos[λ * Z],

{Z, i * 0.5 + slimitupp, i * 0.5 + 0.5 + slimitupp},

{i, 8, 13, 1} + SumIntegrate

FitTableZ, 2 * π * UaR /. Φ → 0.2, {Z,

i + slimitupp, i + 1 + slimitupp, 0.1},

{1, Z, Z^2}, Z * Cos[λ * Z], {Z, i + slimitupp,

i + 1 + slimitupp}, {i, 7, 11, 1} +

SumIntegrateFitTableZ, 2 * π * UaR /. Φ → 0.2,

{Z, i * 10 + 2 + slimitupp, i * 10 + 10 + 2 +

slimitupp, 0.1}, {1, Z, Z^2}, Z *

Cos[λ * Z], {Z, i * 10 + 2 + slimitupp,

i * 10 + 10 + 2 + slimitupp}, {i, 1, 3, 1} +

U0 * Integrate[Fit[Table[{Z, 2 * π * U0R /. Φ → 0.2},

{Z, -h - slimitupp, -40 - slimitupp, 50}],

{Z^-1, Z^-2, Z^-3, Z^-4}, Z] * Cos[λ * Z],

{Z, -h, -40. - slimitupp}] + Integrate[

Fit[Table[{Z, 2 * π * U0R /. Φ → 0.2},

{Z, 40. + slimitupp, h + slimitupp, 50}],

{Z^-1, Z^-2, Z^-3, Z^-4}, Z] * Cos[λ * Z],

{Z, 40. + slimitupp, +h}] + SumIntegrate

FitTableZ, 2 * π * U0R /. Φ → 0.2, {Z,

i * 10 - slimitupp, i * 10 + 10 - slimitupp, 0.1},

{1, Z, Z^2}, Z * Cos[λ * Z], {Z, i * 10 - slimitupp,

i * 10 + 10 - slimitupp}, {i, -4, -2, 1} +

IntegrateFitTableZ, 2 * π * U0R /. Φ → 0.2,
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    

{Z, -10. - slimitupp, -6. - slimitupp, 0.1},

{1, Z, Z^2}, Z * Cos[λ * Z],

{Z, -10. - slimitupp, -6. - slimitupp} +

SumIntegrateFitTableZ, 2 * π * U0R /. Φ → 0.2,

{Z, i - slimitupp, i + 1 - slimitupp, 0.1},

{1, Z, Z^2}, Z * Cos[λ * Z], {Z, i - slimitupp,

i + 1 - slimitupp}, {i, -6, -3, 1} +

SumIntegrateFitTableZ, 2 * π * U0R /. Φ → 0.2,

{Z, i * 0.5 - slimitupp, i * 0.5 + 0.5 - slimitupp,

0.1}, {1, Z, Z^2}, Z * Cos[λ * Z],

{Z, i * 0.5 - slimitupp, i * 0.5 + 0.5 - slimitupp},

{i, -4, -1, 1} + SumIntegrate

FitTableZ, 2 * π * U0R /. Φ → 0.2, {Z,

i * 0.25 + slimitupp, i * 0.25 + 0.25 + slimitupp,

0.05}, {1, Z, Z^2}, Z * Cos[λ * Z],

{Z, i * 0.25 + slimitupp, i * 0.25 + 0.25 +

slimitupp}, {i, 0, 1, 1} +

SumIntegrateFitTableZ, 2 * π * U0R /. Φ → 0.2,

{Z, i * 0.1 + slimitupp, i * 0.1 + 0.1 + slimitupp,

0.02}, {1, Z, Z^2}, Z * Cos[λ * Z],

{Z, i * 0.1 + slimitupp, i * 0.1 + 0.1 + slimitupp},

{i, 5, 9, 1} + SumIntegrate

FitTableZ, 2 * π * U0R /. Φ → 0.2, {Z,

i * 0.25 + slimitupp, i * 0.25 + 0.25 + slimitupp,

0.05}, {1, Z, Z^2}, Z * Cos[λ * Z],

{Z, i * 0.25 + slimitupp, i * 0.25 + 0.25 +

slimitupp}, {i, 4, 11, 1} +

SumIntegrateFitTableZ, 2 * π * U0R /. Φ → 0.2,

{Z, i * 0.5 + slimitupp, i * 0.5 + 0.5 + slimitupp,

0.1}, {1, Z, Z^2}, Z * Cos[λ * Z],

{Z, i * 0.5 + slimitupp, i * 0.5 + 0.5 + slimitupp},

{i, 6, 11, 1} + SumIntegrate

FitTableZ, 2 * π * U0R /. Φ → 0.2, {Z,

i + slimitupp, i + 1 + slimitupp, 0.1},

{1, Z, Z^2}, Z * Cos[λ * Z], {Z, i + slimitupp,

i + 1 + slimitupp}, {i, 6, 9, 1} +

SumIntegrateFitTableZ, 2 * π * U0R /. Φ → 0.2,

{Z, i * 5 + slimitupp, i * 5 + 5 + slimitupp, 1},

{1, Z, Z^2}, Z * Cos[λ * Z],

{Z, i * 5 + slimitupp, i * 5 + 5 + slimitupp},

{i, 2, 3, 1} + SumIntegrate

FitTableZ, 2 * π * U0R /. Φ → 0.2, {Z,
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   

i * 10 + slimitupp, i * 10 + 10 + slimitupp, 0.1},

{1, Z, Z^2}, Z * Cos[λ * Z], {Z, i * 10 + slimitupp,

i * 10 + 10 + slimitupp}, {i, 2, 3, 1} +

Ub * Integrate[Fit[Table[{Z, 2 * π * UbR /. Φ → 0.2},

{Z, -h - slimitupp, -40 - slimitupp, 50}],

{Z^-1, Z^-2, Z^-3, Z^-4}, Z] * Cos[λ * Z],

{Z, -h, -40. - slimitupp}] + Integrate[

Fit[Table[{Z, 2 * π * UbR /. Φ → 0.2},

{Z, 40. + slimitupp, h + slimitupp, 50}],

{Z^-1, Z^-2, Z^-3, Z^-4}, Z] * Cos[λ * Z],

{Z, 40. + slimitupp, +h}] + SumIntegrate

FitTableZ, 2 * π * UbR /. Φ → 0.2, {Z,

i * 10 - slimitupp, i * 10 + 10 - slimitupp, 0.1},

{1, Z, Z^2}, Z * Cos[λ * Z], {Z, i * 10 - slimitupp,

i * 10 + 10 - slimitupp}, {i, -4, -2, 1} +

IntegrateFitTableZ, 2 * π * UbR /. Φ → 0.2,

{Z, -10. - slimitupp, -6. - slimitupp, 0.1},

{1, Z, Z^2}, Z * Cos[λ * Z],

{Z, -10. - slimitupp, -6. - slimitupp} +

SumIntegrateFitTableZ, 2 * π * UbR /. Φ → 0.2,

{Z, i - slimitupp, i + 1 - slimitupp, 0.1},

{1, Z, Z^2}, Z * Cos[λ * Z], {Z, i - slimitupp,

i + 1 - slimitupp}, {i, -6, -3, 1} +

SumIntegrateFitTableZ, 2 * π * UbR /. Φ → 0.2,

{Z, i * 0.5 - slimitupp, i * 0.5 + 0.5 - slimitupp,

0.1}, {1, Z, Z^2}, Z * Cos[λ * Z],

{Z, i * 0.5 - slimitupp, i * 0.5 + 0.5 - slimitupp},

{i, -4, -1, 1} + SumIntegrate

FitTableZ, 2 * π * UbR /. Φ → 0.2, {Z,

i * 0.25 + slimitupp, i * 0.25 + 0.25 + slimitupp,

0.05}, {1, Z, Z^2}, Z * Cos[λ * Z],

{Z, i * 0.25 + slimitupp, i * 0.25 + 0.25 +

slimitupp}, {i, 0, 13, 1} +

SumIntegrateFitTableZ, 2 * π * UbR /. Φ → 0.2,

{Z, i * 0.5 + slimitupp, i * 0.5 + 0.5 + slimitupp,

0.1}, {1, Z, Z^2}, Z * Cos[λ * Z],

{Z, i * 0.5 + slimitupp, i * 0.5 + 0.5 + slimitupp},

{i, 7, 11, 1} + SumIntegrate

FitTableZ, 2 * π * UbR /. Φ → 0.2, {Z,

i + slimitupp, i + 1 + slimitupp, 0.1},

{1, Z, Z^2}, Z * Cos[λ * Z], {Z, i + slimitupp,

i + 1 + slimitupp}, {i, 6, 9, 1} +
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 

SumIntegrateFitTableZ, 2 * π * UbR /. Φ → 0.2,

{Z, i * 5 + slimitupp, i * 5 + 5 + slimitupp, 1},

{1, Z, Z^2}, Z * Cos[λ * Z],

{Z, i * 5 + slimitupp, i * 5 + 5 + slimitupp},

{i, 2, 3, 1} + SumIntegrate

FitTableZ, 2 * π * UbR /. Φ → 0.2, {Z,

i * 10 + slimitupp, i * 10 + 10 + slimitupp, 1},

{1, Z, Z^2}, Z * Cos[λ * Z], {Z, i * 10 + slimitupp,

i * 10 + 10 + slimitupp}, {i, 2, 3, 1};

cosBR[0] = 1 * π
-1

* Ua * Integrate[Fit[Table[{Z, 2 * π * UaR /.

Φ → 0.2}, {Z, -h - slimitupp, -40 - slimitupp,

100}], {Z^-1, Z^-2, Z^-3, Z^-4}, Z] *

Sin[λ * Z], {Z, -h, -40. - slimitupp}] +

Integrate[Fit[Table[{Z, 2 * π * UaR /. Φ → 0.2},

{Z, 42. + slimitupp, h + slimitupp, 100}],

{Z^-1, Z^-2, Z^-3, Z^-4}, Z] * Sin[λ * Z],

{Z, 42. + slimitupp, +h + slimitupp}] + Sum

IntegrateFitTableZ, 2 * π * UaR /. Φ → 0.2, {Z,

i * 10 - slimitupp, i * 10 + 10 - slimitupp, 1},

{1, Z, Z^2}, Z * Sin[λ * Z], {Z, i * 10 - slimitupp,

i * 10 + 10 - slimitupp}, {i, -4, -2, 1} +

IntegrateFitTableZ, 2 * π * UaR /. Φ → 0.2,

{Z, -10. - slimitupp, -6. - slimitupp, 0.5},

{1, Z, Z^2}, Z * Sin[λ * Z],

{Z, -10. - slimitupp, -6. - slimitupp} +

SumIntegrateFitTableZ, 2 * π * UaR /. Φ → 0.2,

{Z, i - slimitupp, i + 1 - slimitupp, 0.1},

{1, Z, Z^2}, Z * Sin[λ * Z], {Z, i - slimitupp,

i + 1 - slimitupp}, {i, -6, -3, 1} +

SumIntegrateFitTableZ, 2 * π * UaR /. Φ → 0.2,

{Z, i * 0.5 - slimitupp, i * 0.5 + 0.5 - slimitupp,

0.1}, {1, Z, Z^2}, Z * Sin[λ * Z],

{Z, i * 0.5 - slimitupp, i * 0.5 + 0.5 - slimitupp},

{i, -4, -1, 1} + SumIntegrate

FitTableZ, 2 * π * UaR /. Φ → 0.2, {Z,

i * 0.25 + slimitupp, i * 0.25 + 0.25 + slimitupp,

0.05}, {1, Z, Z^2}, Z * Sin[λ * Z],

{Z, i * 0.25 + slimitupp, i * 0.25 + 0.25 +

slimitupp}, {i, 0, 15, 1} +

SumIntegrateFitTableZ, 2 * π * UaR /. Φ → 0.2,

{Z, i * 0.5 + slimitupp, i * 0.5 + 0.5 + slimitupp,

0.1}, {1, Z, Z^2}, Z * Sin[λ * Z],
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 

{Z, i * 0.5 + slimitupp, i * 0.5 + 0.5 + slimitupp},

{i, 8, 13, 1} + SumIntegrate

FitTableZ, 2 * π * UaR /. Φ → 0.2, {Z,

i + slimitupp, i + 1 + slimitupp, 0.1},

{1, Z, Z^2}, Z * Sin[λ * Z], {Z, i + slimitupp,

i + 1 + slimitupp}, {i, 7, 11, 1} +

SumIntegrateFitTableZ, 2 * π * UaR /. Φ → 0.2,

{Z, i * 10 + 2 + slimitupp, i * 10 + 10 + 2 +

slimitupp, 0.1}, {1, Z, Z^2}, Z *

Sin[λ * Z], {Z, i * 10 + 2 + slimitupp,

i * 10 + 10 + 2 + slimitupp}, {i, 1, 3, 1} +

U0 * Integrate[Fit[Table[{Z, 2 * π * U0R /. Φ → 0.2},

{Z, -h - slimitupp, -40 - slimitupp, 50}],

{Z^-1, Z^-2, Z^-3, Z^-4}, Z] * Sin[λ * Z],

{Z, -h, -40. - slimitupp}] + Integrate[

Fit[Table[{Z, 2 * π * U0R /. Φ → 0.2},

{Z, 40. + slimitupp, h + slimitupp, 50}],

{Z^-1, Z^-2, Z^-3, Z^-4}, Z] * Sin[λ * Z],

{Z, 40. + slimitupp, +h}] + SumIntegrate

FitTableZ, 2 * π * U0R /. Φ → 0.2, {Z,

i * 10 - slimitupp, i * 10 + 10 - slimitupp, 0.1},

{1, Z, Z^2}, Z * Sin[λ * Z], {Z, i * 10 - slimitupp,

i * 10 + 10 - slimitupp}, {i, -4, -2, 1} +

IntegrateFitTableZ, 2 * π * U0R /. Φ → 0.2,

{Z, -10. - slimitupp, -6. - slimitupp, 0.1},

{1, Z, Z^2}, Z * Sin[λ * Z],

{Z, -10. - slimitupp, -6. - slimitupp} +

SumIntegrateFitTableZ, 2 * π * U0R /. Φ → 0.2,

{Z, i - slimitupp, i + 1 - slimitupp, 0.1},

{1, Z, Z^2}, Z * Sin[λ * Z], {Z, i - slimitupp,

i + 1 - slimitupp}, {i, -6, -3, 1} +

SumIntegrateFitTableZ, 2 * π * U0R /. Φ → 0.2,

{Z, i * 0.5 - slimitupp, i * 0.5 + 0.5 - slimitupp,

0.1}, {1, Z, Z^2}, Z * Sin[λ * Z],

{Z, i * 0.5 - slimitupp, i * 0.5 + 0.5 - slimitupp},

{i, -4, -1, 1} + SumIntegrate

FitTableZ, 2 * π * U0R /. Φ → 0.2, {Z,

i * 0.25 + slimitupp, i * 0.25 + 0.25 + slimitupp,

0.05}, {1, Z, Z^2}, Z * Sin[λ * Z],

{Z, i * 0.25 + slimitupp, i * 0.25 + 0.25 +

slimitupp}, {i, 0, 1, 1} +

SumIntegrateFitTableZ, 2 * π * U0R /. Φ → 0.2,
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{Z, i * 0.1 + slimitupp, i * 0.1 + 0.1 + slimitupp,

0.02}, {1, Z, Z^2}, Z * Sin[λ * Z],

{Z, i * 0.1 + slimitupp, i * 0.1 + 0.1 + slimitupp},

{i, 5, 9, 1} + SumIntegrate

FitTableZ, 2 * π * U0R /. Φ → 0.2, {Z,

i * 0.25 + slimitupp, i * 0.25 + 0.25 + slimitupp,

0.05}, {1, Z, Z^2}, Z * Sin[λ * Z],

{Z, i * 0.25 + slimitupp, i * 0.25 + 0.25 +

slimitupp}, {i, 4, 11, 1} +

SumIntegrateFitTableZ, 2 * π * U0R /. Φ → 0.2,

{Z, i * 0.5 + slimitupp, i * 0.5 + 0.5 + slimitupp,

0.1}, {1, Z, Z^2}, Z * Sin[λ * Z],

{Z, i * 0.5 + slimitupp, i * 0.5 + 0.5 + slimitupp},

{i, 6, 11, 1} + SumIntegrate

FitTableZ, 2 * π * U0R /. Φ → 0.2, {Z,

i + slimitupp, i + 1 + slimitupp, 0.1},

{1, Z, Z^2}, Z * Sin[λ * Z], {Z, i + slimitupp,

i + 1 + slimitupp}, {i, 6, 9, 1} +

SumIntegrateFitTableZ, 2 * π * U0R /. Φ → 0.2,

{Z, i * 5 + slimitupp, i * 5 + 5 + slimitupp, 1},

{1, Z, Z^2}, Z * Sin[λ * Z],

{Z, i * 5 + slimitupp, i * 5 + 5 + slimitupp},

{i, 2, 3, 1} + SumIntegrate

FitTableZ, 2 * π * U0R /. Φ → 0.2, {Z,

i * 10 + slimitupp, i * 10 + 10 + slimitupp, 0.1},

{1, Z, Z^2}, Z * Sin[λ * Z], {Z, i * 10 + slimitupp,

i * 10 + 10 + slimitupp}, {i, 2, 3, 1} +

Ub * Integrate[Fit[Table[{Z, 2 * π * UbR /. Φ → 0.2},

{Z, -h - slimitupp, -40 - slimitupp, 50}],

{Z^-1, Z^-2, Z^-3, Z^-4}, Z] * Sin[λ * Z],

{Z, -h, -40. - slimitupp}] + Integrate[

Fit[Table[{Z, 2 * π * UbR /. Φ → 0.2},

{Z, 40. + slimitupp, h + slimitupp, 50}],

{Z^-1, Z^-2, Z^-3, Z^-4}, Z] * Sin[λ * Z],

{Z, 40. + slimitupp, +h}] + SumIntegrate

FitTableZ, 2 * π * UbR /. Φ → 0.2, {Z,

i * 10 - slimitupp, i * 10 + 10 - slimitupp, 0.1},

{1, Z, Z^2}, Z * Sin[λ * Z], {Z, i * 10 - slimitupp,

i * 10 + 10 - slimitupp}, {i, -4, -2, 1} +

IntegrateFitTableZ, 2 * π * UbR /. Φ → 0.2,

{Z, -10. - slimitupp, -6. - slimitupp, 0.1},

{1, Z, Z^2}, Z * Sin[λ * Z],
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

{Z, -10. - slimitupp, -6. - slimitupp} +

SumIntegrateFitTableZ, 2 * π * UbR /. Φ → 0.2,

{Z, i - slimitupp, i + 1 - slimitupp, 0.1},

{1, Z, Z^2}, Z * Sin[λ * Z], {Z, i - slimitupp,

i + 1 - slimitupp}, {i, -6, -3, 1} +

SumIntegrateFitTableZ, 2 * π * UbR /. Φ → 0.2,

{Z, i * 0.5 - slimitupp, i * 0.5 + 0.5 - slimitupp,

0.1}, {1, Z, Z^2}, Z * Sin[λ * Z],

{Z, i * 0.5 - slimitupp, i * 0.5 + 0.5 - slimitupp},

{i, -4, -1, 1} + SumIntegrate

FitTableZ, 2 * π * UbR /. Φ → 0.2, {Z,

i * 0.25 + slimitupp, i * 0.25 + 0.25 + slimitupp,

0.05}, {1, Z, Z^2}, Z * Sin[λ * Z],

{Z, i * 0.25 + slimitupp, i * 0.25 + 0.25 +

slimitupp}, {i, 0, 13, 1} +

SumIntegrateFitTableZ, 2 * π * UbR /. Φ → 0.2,

{Z, i * 0.5 + slimitupp, i * 0.5 + 0.5 + slimitupp,

0.1}, {1, Z, Z^2}, Z * Sin[λ * Z],

{Z, i * 0.5 + slimitupp, i * 0.5 + 0.5 + slimitupp},

{i, 7, 11, 1} + SumIntegrate

FitTableZ, 2 * π * UbR /. Φ → 0.2, {Z,

i + slimitupp, i + 1 + slimitupp, 0.1},

{1, Z, Z^2}, Z * Sin[λ * Z], {Z, i + slimitupp,

i + 1 + slimitupp}, {i, 6, 9, 1} +

SumIntegrateFitTableZ, 2 * π * UbR /. Φ → 0.2,

{Z, i * 5 + slimitupp, i * 5 + 5 + slimitupp, 1},

{1, Z, Z^2}, Z * Sin[λ * Z],

{Z, i * 5 + slimitupp, i * 5 + 5 + slimitupp},

{i, 2, 3, 1} + SumIntegrate

FitTableZ, 2 * π * UbR /. Φ → 0.2, {Z,

i * 10 + slimitupp, i * 10 + 10 + slimitupp, 1},

{1, Z, Z^2}, Z * Sin[λ * Z], {Z, i * 10 + slimitupp,

i * 10 + 10 + slimitupp}, {i, 2, 3, 1};

sinAR[0] = 0;

sinBR[0] = 0;

cosAΦ[0] = 0;

cosBΦ[0] = 0;

sinAΦ[0] = 0;

sinBΦ[0] = 0;

cosAZ[0] =

1 * π
-1

* Ua * Integrate[Fit[Table[{Z, 2 * π * UaZ /. Φ → 0.2},

{Z, -h - slimitupp, -40 - slimitupp, 50}],
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{Z^-1, Z^-2, Z^-3, Z^-4}, Z] * Cos[λ * Z],

{Z, -h, -40. - slimitupp}] + Integrate[

Fit[Table[{Z, 2 * π * UaZ /. Φ → 0.2},

{Z, 40. + slimitupp, h + slimitupp, 50}],

{Z^-1, Z^-2, Z^-3, Z^-4}, Z] * Cos[λ * Z],

{Z, 40. + slimitupp, +h}] + SumIntegrate

FitTableZ, 2 * π * UaZ /. Φ → 0.2, {Z,

i * 10 - slimitupp, i * 10 + 10 - slimitupp, 0.1},

{1, Z, Z^2}, Z * Cos[λ * Z], {Z, i * 10 - slimitupp,

i * 10 + 10 - slimitupp}, {i, -4, -2, 1} +

IntegrateFitTableZ, 2 * π * UaZ /. Φ → 0.2,

{Z, -10. - slimitupp, -6. - slimitupp, 0.1},

{1, Z, Z^2}, Z * Cos[λ * Z],

{Z, -10. - slimitupp, -6. - slimitupp} +

SumIntegrateFitTableZ, 2 * π * UaZ /. Φ → 0.2,

{Z, i - slimitupp, i + 1 - slimitupp, 0.1},

{1, Z, Z^2}, Z * Cos[λ * Z], {Z, i - slimitupp,

i + 1 - slimitupp}, {i, -6, -3, 1} +

SumIntegrateFitTableZ, 2 * π * UaZ /. Φ → 0.2,

{Z, i * 0.5 - slimitupp, i * 0.5 + 0.5 - slimitupp,

0.1}, {1, Z, Z^2}, Z * Cos[λ * Z],

{Z, i * 0.5 - slimitupp, i * 0.5 + 0.5 - slimitupp},

{i, -4, -1, 1} + SumIntegrate

FitTableZ, 2 * π * UaZ /. Φ → 0.2, {Z,

i * 0.2 + slimitupp, i * 0.2 + 0.2 + slimitupp,

0.05}, {1, Z, Z^2}, Z * Cos[λ * Z],

{Z, i * 0.2 + slimitupp, i * 0.2 + 0.2 + slimitupp},

{i, 0, 4, 1} + SumIntegrate

FitTableZ, 2 * π * UaZ /. Φ → 0.2, {Z,

i * 0.5 + slimitupp, i * 0.5 + 0.5 + slimitupp,

0.1}, {1, Z, Z^2}, Z * Cos[λ * Z],

{Z, i * 0.5 + slimitupp, i * 0.5 + 0.5 + slimitupp},

{i, 2, 9, 1} + SumIntegrate

FitTableZ, 2 * π * UaZ /. Φ → 0.2, {Z,

i + slimitupp, i + 1 + slimitupp, 0.1},

{1, Z, Z^2}, Z * Cos[λ * Z], {Z, i + slimitupp,

i + 1 + slimitupp}, {i, 5, 9, 1} +

SumIntegrateFitTableZ, 2 * π * UaZ /. Φ → 0.2,

{Z, i * 5 + slimitupp, i * 5 + 5 + slimitupp, 1},

{1, Z, Z^2}, Z * Cos[λ * Z], {Z, i * 5 + slimitupp,

i * 5 + 5 + slimitupp}, {i, 2, 3, 1} + Sum

IntegrateFitTableZ, 2 * π * UaZ /. Φ → 0.2, {Z,
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i * 10 + slimitupp, i * 10 + 10 + slimitupp, 1},

{1, Z, Z^2}, Z * Cos[λ * Z], {Z, i * 10 + slimitupp,

i * 10 + 10 + slimitupp}, {i, 2, 3, 1} +

U0 * Integrate[Fit[Table[{Z, 2 * π * U0Z /. Φ → 0.2},

{Z, -h - slimitupp, -40 - slimitupp, 50}],

{Z^-1, Z^-2, Z^-3, Z^-4}, Z] * Cos[λ * Z],

{Z, -h, -40. - slimitupp}] + Integrate[

Fit[Table[{Z, 2 * π * U0Z /. Φ → 0.2},

{Z, 40. + slimitupp, h + slimitupp, 50}],

{Z^-1, Z^-2, Z^-3, Z^-4}, Z] * Cos[λ * Z],

{Z, 40. + slimitupp, +h}] + SumIntegrate

FitTableZ, 2 * π * U0Z /. Φ → 0.2, {Z,

i * 10 - slimitupp, i * 10 + 10 - slimitupp, 0.1},

{1, Z, Z^2}, Z * Cos[λ * Z], {Z, i * 10 - slimitupp,

i * 10 + 10 - slimitupp}, {i, -4, -2, 1} +

IntegrateFitTableZ, 2 * π * U0Z /. Φ → 0.2,

{Z, -10. - slimitupp, -6. - slimitupp, 0.1},

{1, Z, Z^2}, Z * Cos[λ * Z],

{Z, -10. - slimitupp, -6. - slimitupp} +

SumIntegrateFitTableZ, 2 * π * U0Z /. Φ → 0.2,

{Z, i - slimitupp, i + 1 - slimitupp, 0.1},

{1, Z, Z^2}, Z * Cos[λ * Z], {Z, i - slimitupp,

i + 1 - slimitupp}, {i, -6, -3, 1} +

SumIntegrateFitTableZ, 2 * π * U0Z /. Φ → 0.2,

{Z, i * 0.5 - slimitupp, i * 0.5 + 0.5 - slimitupp,

0.1}, {1, Z, Z^2}, Z * Cos[λ * Z],

{Z, i * 0.5 - slimitupp, i * 0.5 + 0.5 - slimitupp},

{i, -4, -1, 1} + SumIntegrate

FitTableZ, 2 * π * U0Z /. Φ → 0.2, {Z,

i * 0.25 + slimitupp, i * 0.25 + 0.25 + slimitupp,

0.05}, {1, Z, Z^2}, Z * Cos[λ * Z],

{Z, i * 0.25 + slimitupp, i * 0.25 + 0.25 +

slimitupp}, {i, 0, 9, 1} +

SumIntegrateFitTableZ, 2 * π * U0Z /. Φ → 0.2,

{Z, i * 0.5 + slimitupp, i * 0.5 + 0.5 + slimitupp,

0.1}, {1, Z, Z^2}, Z * Cos[λ * Z],

{Z, i * 0.5 + slimitupp, i * 0.5 + 0.5 + slimitupp},

{i, 5, 7, 1} + SumIntegrate

FitTableZ, 2 * π * U0Z /. Φ → 0.2, {Z,

i + slimitupp, i + 1 + slimitupp, 0.1},

{1, Z, Z^2}, Z * Cos[λ * Z], {Z, i + slimitupp,

i + 1 + slimitupp}, {i, 4, 9, 1} +
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 

SumIntegrateFitTableZ, 2 * π * U0Z /. Φ → 0.2,

{Z, i * 5 + slimitupp, i * 5 + 5 + slimitupp, 1},

{1, Z, Z^2}, Z * Cos[λ * Z],

{Z, i * 5 + slimitupp, i * 5 + 5 + slimitupp},

{i, 2, 3, 1} + SumIntegrate

FitTableZ, 2 * π * U0Z /. Φ → 0.2, {Z,

i * 10 + slimitupp, i * 10 + 10 + slimitupp, 1},

{1, Z, Z^2}, Z * Cos[λ * Z], {Z, i * 10 + slimitupp,

i * 10 + 10 + slimitupp}, {i, 2, 3, 1} +

Ub * Integrate[Fit[Table[{Z, 2 * π * UbZ /. Φ → 0.2},

{Z, -h - slimitupp, -40 - slimitupp, 50}],

{Z^-1, Z^-2, Z^-3, Z^-4}, Z] * Cos[λ * Z],

{Z, -h, -40. - slimitupp}] + Integrate[

Fit[Table[{Z, 2 * π * UbZ /. Φ → 0.2},

{Z, 40. + slimitupp, h + slimitupp, 50}],

{Z^-1, Z^-2, Z^-3, Z^-4}, Z] * Cos[λ * Z],

{Z, 40 + slimitupp, +h}] + SumIntegrate

FitTableZ, 2 * π * UbZ /. Φ → 0.2, {Z,

i * 10 - slimitupp, i * 10 + 10 - slimitupp, 0.1},

{1, Z, Z^2}, Z * Cos[λ * Z], {Z, i * 10 - slimitupp,

i * 10 + 10 - slimitupp}, {i, -4, -2, 1} +

IntegrateFitTableZ, 2 * π * UbZ /. Φ → 0.2,

{Z, -10. - slimitupp, -6. - slimitupp, 0.1},

{1, Z, Z^2}, Z * Cos[λ * Z],

{Z, -10. - slimitupp, -6. - slimitupp} +

SumIntegrateFitTableZ, 2 * π * UbZ /. Φ → 0.2,

{Z, i - slimitupp, i + 1 - slimitupp, 0.1},

{1, Z, Z^2}, Z * Cos[λ * Z], {Z, i - slimitupp,

i + 1 - slimitupp}, {i, -6, -3, 1} +

SumIntegrateFitTableZ, 2 * π * UbZ /. Φ → 0.2,

{Z, i * 0.5 - slimitupp, i * 0.5 + 0.5 - slimitupp,

0.1}, {1, Z, Z^2}, Z * Cos[λ * Z],

{Z, i * 0.5 - slimitupp, i * 0.5 + 0.5 - slimitupp},

{i, -4, -1, 1} + SumIntegrate

FitTableZ, 2 * π * UbZ /. Φ → 0.2, {Z,

i * 0.25 + slimitupp, i * 0.25 + 0.25 + slimitupp,

0.05}, {1, Z, Z^2}, Z * Cos[λ * Z],

{Z, i * 0.25 + slimitupp, i * 0.25 + 0.25 +

slimitupp}, {i, 0, 15, 1} +

SumIntegrateFitTableZ, 2 * π * UbZ /. Φ → 0.2,

{Z, i + slimitupp, i + 1 + slimitupp, 0.1},

{1, Z, Z^2}, Z * Cos[λ * Z],
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

{Z, i + slimitupp, i + 1 + slimitupp}, {i, 4, 9, 1} +

SumIntegrateFitTableZ, 2 * π * UbZ /. Φ → 0.2,

{Z, i * 5 + slimitupp, i * 5 + 5 + slimitupp, 1},

{1, Z, Z^2}, Z * Cos[λ * Z],

{Z, i * 5 + slimitupp, i * 5 + 5 + slimitupp},

{i, 2, 3, 1} + SumIntegrate

FitTableZ, 2 * π * UbZ /. Φ → 0.2, {Z,

i * 10 + slimitupp, i * 10 + 10 + slimitupp, 1},

{1, Z, Z^2}, Z * Cos[λ * Z], {Z, i * 10 + slimitupp,

i * 10 + 10 + slimitupp}, {i, 2, 3, 1};

cosBZ[0] = 1 * π
-1

* Ua * Integrate[Fit[Table[{Z, 2 * π * UaZ /.

Φ → 0.2}, {Z, -h - slimitupp, -40 - slimitupp,

50}], {Z^-1, Z^-2, Z^-3, Z^-4}, Z] *

Sin[λ * Z], {Z, -h, -40. - slimitupp}] +

Integrate[Fit[Table[{Z, 2 * π * UaZ /. Φ → 0.2},

{Z, 40. + slimitupp, h + slimitupp, 50}],

{Z^-1, Z^-2, Z^-3, Z^-4}, Z] * Sin[λ * Z],

{Z, 40. + slimitupp, +h}] + SumIntegrate

FitTableZ, 2 * π * UaZ /. Φ → 0.2, {Z,

i * 10 - slimitupp, i * 10 + 10 - slimitupp, 0.1},

{1, Z, Z^2}, Z * Sin[λ * Z], {Z, i * 10 - slimitupp,

i * 10 + 10 - slimitupp}, {i, -4, -2, 1} +

IntegrateFitTableZ, 2 * π * UaZ /. Φ → 0.2,

{Z, -10. - slimitupp, -6. - slimitupp, 0.1},

{1, Z, Z^2}, Z * Sin[λ * Z],

{Z, -10. - slimitupp, -6. - slimitupp} +

SumIntegrateFitTableZ, 2 * π * UaZ /. Φ → 0.2,

{Z, i - slimitupp, i + 1 - slimitupp, 0.1},

{1, Z, Z^2}, Z * Sin[λ * Z], {Z, i - slimitupp,

i + 1 - slimitupp}, {i, -6, -3, 1} +

SumIntegrateFitTableZ, 2 * π * UaZ /. Φ → 0.2,

{Z, i * 0.5 - slimitupp, i * 0.5 + 0.5 - slimitupp,

0.1}, {1, Z, Z^2}, Z * Sin[λ * Z],

{Z, i * 0.5 - slimitupp, i * 0.5 + 0.5 - slimitupp},

{i, -4, -1, 1} + SumIntegrate

FitTableZ, 2 * π * UaZ /. Φ → 0.2, {Z,

i * 0.2 + slimitupp, i * 0.2 + 0.2 + slimitupp,

0.05}, {1, Z, Z^2}, Z * Sin[λ * Z],

{Z, i * 0.2 + slimitupp, i * 0.2 + 0.2 + slimitupp},

{i, 0, 4, 1} + SumIntegrate

FitTableZ, 2 * π * UaZ /. Φ → 0.2, {Z,

i * 0.5 + slimitupp, i * 0.5 + 0.5 + slimitupp,
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0.1}, {1, Z, Z^2}, Z * Sin[λ * Z],

{Z, i * 0.5 + slimitupp, i * 0.5 + 0.5 + slimitupp},

{i, 2, 9, 1} + SumIntegrate

FitTableZ, 2 * π * UaZ /. Φ → 0.2, {Z,

i + slimitupp, i + 1 + slimitupp, 0.1},

{1, Z, Z^2}, Z * Sin[λ * Z], {Z, i + slimitupp,

i + 1 + slimitupp}, {i, 5, 9, 1} +

SumIntegrateFitTableZ, 2 * π * UaZ /. Φ → 0.2,

{Z, i * 5 + slimitupp, i * 5 + 5 + slimitupp, 1},

{1, Z, Z^2}, Z * Sin[λ * Z],

{Z, i * 5 + slimitupp, i * 5 + 5 + slimitupp},

{i, 2, 3, 1} + SumIntegrate

FitTableZ, 2 * π * UaZ /. Φ → 0.2, {Z,

i * 10 + slimitupp, i * 10 + 10 + slimitupp, 1},

{1, Z, Z^2}, Z * Sin[λ * Z], {Z, i * 10 + slimitupp,

i * 10 + 10 + slimitupp}, {i, 2, 3, 1} +

U0 * Integrate[Fit[Table[{Z, 2 * π * U0Z /. Φ → 0.2},

{Z, -h - slimitupp, -40 - slimitupp, 50}],

{Z^-1, Z^-2, Z^-3, Z^-4}, Z] * Sin[λ * Z],

{Z, -h, -40. - slimitupp}] + Integrate[

Fit[Table[{Z, 2 * π * U0Z /. Φ → 0.2},

{Z, 40. + slimitupp, h + slimitupp, 50}],

{Z^-1, Z^-2, Z^-3, Z^-4}, Z] * Sin[λ * Z],

{Z, 40. + slimitupp, +h}] + SumIntegrate

FitTableZ, 2 * π * U0Z /. Φ → 0.2, {Z,

i * 10 - slimitupp, i * 10 + 10 - slimitupp, 0.1},

{1, Z, Z^2}, Z * Sin[λ * Z], {Z, i * 10 - slimitupp,

i * 10 + 10 - slimitupp}, {i, -4, -2, 1} +

IntegrateFitTableZ, 2 * π * U0Z /. Φ → 0.2,

{Z, -10. - slimitupp, -6. - slimitupp, 0.1},

{1, Z, Z^2}, Z * Sin[λ * Z],

{Z, -10. - slimitupp, -6. - slimitupp} +

SumIntegrateFitTableZ, 2 * π * U0Z /. Φ → 0.2,

{Z, i - slimitupp, i + 1 - slimitupp, 0.1},

{1, Z, Z^2}, Z * Sin[λ * Z], {Z, i - slimitupp,

i + 1 - slimitupp}, {i, -6, -3, 1} +

SumIntegrateFitTableZ, 2 * π * U0Z /. Φ → 0.2,

{Z, i * 0.5 - slimitupp, i * 0.5 + 0.5 - slimitupp,

0.1}, {1, Z, Z^2}, Z * Sin[λ * Z],

{Z, i * 0.5 - slimitupp, i * 0.5 + 0.5 - slimitupp},

{i, -4, -1, 1} + SumIntegrate

FitTableZ, 2 * π * U0Z /. Φ → 0.2, {Z,
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   

i * 0.25 + slimitupp, i * 0.25 + 0.25 + slimitupp,

0.05}, {1, Z, Z^2}, Z * Sin[λ * Z],

{Z, i * 0.25 + slimitupp, i * 0.25 + 0.25 +

slimitupp}, {i, 0, 9, 1} +

SumIntegrateFitTableZ, 2 * π * U0Z /. Φ → 0.2,

{Z, i * 0.5 + slimitupp, i * 0.5 + 0.5 + slimitupp,

0.1}, {1, Z, Z^2}, Z * Sin[λ * Z],

{Z, i * 0.5 + slimitupp, i * 0.5 + 0.5 + slimitupp},

{i, 5, 7, 1} + SumIntegrate

FitTableZ, 2 * π * U0Z /. Φ → 0.2, {Z,

i + slimitupp, i + 1 + slimitupp, 0.1},

{1, Z, Z^2}, Z * Sin[λ * Z], {Z, i + slimitupp,

i + 1 + slimitupp}, {i, 4, 9, 1} +

SumIntegrateFitTableZ, 2 * π * U0Z /. Φ → 0.2,

{Z, i * 5 + slimitupp, i * 5 + 5 + slimitupp, 1},

{1, Z, Z^2}, Z * Sin[λ * Z],

{Z, i * 5 + slimitupp, i * 5 + 5 + slimitupp},

{i, 2, 3, 1} + SumIntegrate

FitTableZ, 2 * π * U0Z /. Φ → 0.2, {Z,

i * 10 + slimitupp, i * 10 + 10 + slimitupp, 1},

{1, Z, Z^2}, Z * Sin[λ * Z], {Z, i * 10 + slimitupp,

i * 10 + 10 + slimitupp}, {i, 2, 3, 1} +

Ub * Integrate[Fit[Table[{Z, 2 * π * UbZ /. Φ → 0.2},

{Z, -h - slimitupp, -40 - slimitupp, 50}],

{Z^-1, Z^-2, Z^-3, Z^-4}, Z] * Sin[λ * Z],

{Z, -h, -40. - slimitupp}] + Integrate[

Fit[Table[{Z, 2 * π * UbZ /. Φ → 0.2},

{Z, 40. + slimitupp, h + slimitupp, 50}],

{Z^-1, Z^-2, Z^-3, Z^-4}, Z] * Sin[λ * Z],

{Z, 40. + slimitupp, +h}] + SumIntegrate

FitTableZ, 2 * π * UbZ /. Φ → 0.2, {Z,

i * 10 - slimitupp, i * 10 + 10 - slimitupp, 0.1},

{1, Z, Z^2}, Z * Sin[λ * Z], {Z, i * 10 - slimitupp,

i * 10 + 10 - slimitupp}, {i, -4, -2, 1} +

IntegrateFitTableZ, 2 * π * UbZ /. Φ → 0.2,

{Z, -10. - slimitupp, -6. - slimitupp, 0.1},

{1, Z, Z^2}, Z * Sin[λ * Z],

{Z, -10. - slimitupp, -6. - slimitupp} +

SumIntegrateFitTableZ, 2 * π * UbZ /. Φ → 0.2,

{Z, i - slimitupp, i + 1 - slimitupp, 0.1},

{1, Z, Z^2}, Z * Sin[λ * Z], {Z, i - slimitupp,

i + 1 - slimitupp}, {i, -6, -3, 1} +
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 

SumIntegrateFitTableZ, 2 * π * UbZ /. Φ → 0.2,

{Z, i * 0.5 - slimitupp, i * 0.5 + 0.5 - slimitupp,

0.1}, {1, Z, Z^2}, Z * Sin[λ * Z],

{Z, i * 0.5 - slimitupp, i * 0.5 + 0.5 - slimitupp},

{i, -4, -1, 1} + SumIntegrate

FitTableZ, 2 * π * UbZ /. Φ → 0.2, {Z,

i * 0.25 + slimitupp, i * 0.25 + 0.25 + slimitupp,

0.05}, {1, Z, Z^2}, Z * Sin[λ * Z],

{Z, i * 0.25 + slimitupp, i * 0.25 + 0.25 +

slimitupp}, {i, 0, 15, 1} +

SumIntegrateFitTableZ, 2 * π * UbZ /. Φ → 0.2,

{Z, i + slimitupp, i + 1 + slimitupp, 0.1},

{1, Z, Z^2}, Z * Sin[λ * Z],

{Z, i + slimitupp, i + 1 + slimitupp}, {i, 4, 9, 1} +

SumIntegrateFitTableZ, 2 * π * UbZ /. Φ → 0.2,

{Z, i * 5 + slimitupp, i * 5 + 5 + slimitupp, 1},

{1, Z, Z^2}, Z * Sin[λ * Z],

{Z, i * 5 + slimitupp, i * 5 + 5 + slimitupp},

{i, 2, 3, 1} + SumIntegrate

FitTableZ, 2 * π * UbZ /. Φ → 0.2, {Z,

i * 10 + slimitupp, i * 10 + 10 + slimitupp, 1},

{1, Z, Z^2}, Z * Sin[λ * Z], {Z, i * 10 + slimitupp,

i * 10 + 10 + slimitupp}, {i, 2, 3, 1};

sinAZ[0] = 0;

sinBZ[0] = 0;

ωca[0] = 0;

ωcb[0] = 0;

ωsa[0] = 0;

ωsb[0] = 0;

ψca[0] =

-1.` λ BesselI[1, λ] cosAR[0] - 0.5` λ BesselI[2, λ] cosBZ[

0] + BesselI[0, λ] -1.` cosAR[0] - 0.5` λ cosBZ[0] 

1.` λ BesselI[0, λ]
2
- 2.` λ BesselI[1, λ]

2
+ BesselI[0, λ]

-2.` BesselI[1, λ] + 1.` λ BesselI[2, λ];

ψcb[0] = 0.5` λ BesselI[2, λ] cosAZ[0] +

BesselI[0, λ] 0.5` λ cosAZ[0] - 1.` cosBR[0] -

1.` λ BesselI[1, λ] cosBR[0] 

1.` λ BesselI[0, λ]
2
- 2.` λ BesselI[1, λ]

2
+ BesselI[0, λ]

-2.` BesselI[1, λ] + 1.` λ BesselI[2, λ];

ψsa[0] = 0;

ψsb[0] = 0;

γca[0] =
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1.` BesselI[0, λ] cosAR[0] + 1.` BesselI[1, λ] cosBZ[0] 

1.` λ BesselI[0, λ]
2
- 2.` λ BesselI[1, λ]

2
+ BesselI[0, λ]

-2.` BesselI[1, λ] + 1.` λ BesselI[2, λ];

γcb[0] = -1.` BesselI[1, λ] cosAZ[0] +

1.` BesselI[0, λ] cosBR[0] 

1.` λ BesselI[0, λ]
2
- 2.` λ BesselI[1, λ]

2
+ BesselI[0, λ]

-2.` BesselI[1, λ] + 1.` λ BesselI[2, λ];

γsa[0] = 0;

γsb[0] = 0;



fgetcharmonics[vm[2]]

v[3] =

Chopmct.-π-1
* Cos[0] * ψca[0] * 0.5 * BesselI[1, λ * rc] +

BesselI[-1, λ * rc] + γca[0] * λ * rc *

0.25 * BesselI[-2, λ * rc] + 2 * BesselI[0, λ * rc] +

BesselI[+2, λ * rc] * Cos[λ * Z] +

Cos[0] * ψcb[0] * 0.5 * BesselI[+1, λ * rc] +

BesselI[-1, λ * rc] + γcb[0] * λ * rc *

0.25 * BesselI[-2, λ * rc] + 2 * BesselI[0, λ * rc] +

BesselI[+2, λ * rc] * Sin[λ * Z], 0,

-π
-1

* Cos[0] * ψcb[0] * BesselI[0, λ * rc] + γcb[0] * λ * rc *

0.5 * BesselI[+1, λ * rc] + BesselI[-1, λ * rc] +

γcb[0] * BesselI[0, λ * rc] * Cos[λ * Z] +

Cos[0] * -ψca[0] * BesselI[0, λ * rc] - γca[0] * λ * rc *

0.5 * BesselI[+1, λ * rc] + BesselI[-1, λ * rc] -

γca[0] * BesselI[0, λ * rc] * Sin[λ * Z];
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fgetcXa[vam_] :=

Vacxm = ({Sin[θa] * Cos[ϕa], Sin[θa] * Sin[ϕa], Cos[θa]}).

(vam) /. ϕa → 0.2;

Fori = 1, i < sphenumber + 1, i++,

Xca[i] = Chop2 * i + 1 * 4-1
* π

-1
*

Ua * NIntegrate2 * π * Sin[θa] * Coefficient[Vacxm,

Ua, 1] * LegendreP[i, Cos[θa]],

{θa, 0, π}, {λ, slimitup, Infinity}, Method →

{"GlobalAdaptive", Method → "CartesianRule"},

AccuracyGoal → 3 + U0 * NIntegrate

2 * π * Sin[θa] * Coefficient[Vacxm, U0, 1] *

LegendreP[i, Cos[θa]], {θa, 0, π}, {λ, slimitup,

Infinity}, Method → {"GlobalAdaptive",

Method → "CartesianRule"}, AccuracyGoal → 3 +

Ub * NIntegrate2 * π * Sin[θa] * Coefficient[

Vacxm, Ub, 1] * LegendreP[i, Cos[θa]],

{θa, 0, π}, {λ, slimitup, Infinity}, Method →

{"GlobalAdaptive", Method → "CartesianRule"},

AccuracyGoal → 3 * LegendreP[i, Cos[θa]];

fgetcYa[vam_] :=

Vacym =

-D{0, 1, 0}.(Sin[θa] * (mata.vam)), θa  Sin[θa] -

{1, 0, 0}.(mata.vam) * 2 /. ϕa → 0.2;

Fori = 1, i < sphenumber + 1, i++,

Yca[i] = Chop2 * i + 1 * 4-1
* π

-1
*

Ua * NIntegrate2 * π * Sin[θa] * Coefficient[Vacym,

Ua, 1] * LegendreP[i, Cos[θa]],

{θa, 0, π}, {λ, slimitup, Infinity}, Method →

{"GlobalAdaptive", Method → "CartesianRule"},

AccuracyGoal → 3 + U0 * NIntegrate

2 * π * Sin[θa] * Coefficient[Vacym, U0, 1] *

LegendreP[i, Cos[θa]], {θa, 0, π}, {λ, slimitup,

Infinity}, Method → {"GlobalAdaptive",

Method → "CartesianRule"}, AccuracyGoal → 3 +

Ub * NIntegrate2 * π * Sin[θa] * Coefficient[

Vacym, Ub, 1] * LegendreP[i, Cos[θa]],

{θa, 0, π}, {λ, slimitup, Infinity}, Method →

{"GlobalAdaptive", Method → "CartesianRule"},

AccuracyGoal → 3 * LegendreP[i, Cos[θa]];
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fgetcXb[vbm_] :=

Vbcxm = ({Sin[θb] * Cos[ϕb], Sin[θb] * Sin[ϕb], Cos[θb]}).

(vbm) /. ϕb → 0.2;

Fori = 1, i < sphenumber + 1, i++,

Xcb[i] = Chop2 * i + 1 * 4-1
* π

-1
*

Ua * NIntegrate2 * π * Sin[θb] * Coefficient[Vbcxm,

Ua, 1] * LegendreP[i, Cos[θb]],

{θb, 0, π}, {λ, slimitup, Infinity}, Method →

{"GlobalAdaptive", Method → "CartesianRule"},

AccuracyGoal → 3 + U0 * NIntegrate

2 * π * Sin[θb] * Coefficient[Vbcxm, U0, 1] *

LegendreP[i, Cos[θb]], {θb, 0, π}, {λ, slimitup,

Infinity}, Method → {"GlobalAdaptive",

Method → "CartesianRule"}, AccuracyGoal → 3 +

Ub * NIntegrate2 * π * Sin[θb] * Coefficient[

Vbcxm, Ub, 1] * LegendreP[i, Cos[θb]],

{θb, 0, π}, {λ, slimitup, Infinity}, Method →

{"GlobalAdaptive", Method → "CartesianRule"},

AccuracyGoal → 3 * LegendreP[i, Cos[θb]];

fgetcYb[vbm_] :=

Vbcym =

-D{0, 1, 0}.(Sin[θb] * (mbtb.vbm)), θb  Sin[θb] -

{1, 0, 0}.(mbtb.vbm) * 2 /. ϕb → 0.2;

Fori = 1, i < sphenumber + 1, i++,

Ycb[i] = Chop2 * i + 1 * 4-1
* π

-1
*

Ua * NIntegrate2 * π * Sin[θb] * Coefficient[Vbcym,

Ua, 1] * LegendreP[i, Cos[θb]],

{θb, 0, π}, {λ, slimitup, Infinity}, Method →

{"GlobalAdaptive", Method → "CartesianRule"},

AccuracyGoal → 3 + U0 * NIntegrate

2 * π * Sin[θb] * Coefficient[Vbcym, U0, 1] *

LegendreP[i, Cos[θb]], {θb, 0, π}, {λ, slimitup,

Infinity}, Method → {"GlobalAdaptive",

Method → "CartesianRule"}, AccuracyGoal → 3 +

Ub * NIntegrate2 * π * Sin[θb] * Coefficient[

Vbcym, Ub, 1] * LegendreP[i, Cos[θb]],

{θb, 0, π}, {λ, slimitup, Infinity}, Method →

{"GlobalAdaptive", Method → "CartesianRule"},

AccuracyGoal → 3 * LegendreP[i, Cos[θb]];

(*calculation procedure with loop*)

Forn = 4,

AbsReCoefficientChopF[n - 2].{0, 0, 1}  μ, Ub, 1 >
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      

0.001 || Abs

ReCoefficientChopF[n - 3].{0, 0, 1}  μ, Ub, 1 > 0.001,

n = n + 3, vm[n] = -TrigExpand[v[n - 2]] /. rc → a * Sin[θa],

Z → a * Cos[θa], Cos[Φ] → Cos[ϕa], Sin[Φ] → Sin[ϕa],

Cos[θb] → (a * Cos[θa] - L)  a2 + L2 - 2 * a * L * Cos[θa] ,

Sin[θb] →  1 -
(a * Cos[θa] - L)2

a2 + L2 - 2 * a * L * Cos[θa]
,

Cos[ϕb] → Cos[ϕa], Sin[ϕb] → Sin[ϕa],

rb → a2 + L2 - 2 * a * L * Cos[θa] ,

Tan[θb] →  1 -
(a * Cos[θa] - L)2

a2 + L2 - 2 * a * L * Cos[θa]


(a * Cos[θa] - L)  a2 + L2 - 2 * a * L * Cos[θa] ,

Cot[θb] → (a * Cos[θa] - L)  a2 + L2 - 2 * a * L * Cos[θa] 

 1 -
(a * Cos[θa] - L)2

a2 + L2 - 2 * a * L * Cos[θa]
,

Sec[θb] → a2 + L2 - 2 * a * L * Cos[θa]  ((a * Cos[θa] - L)),

Csc[θb] → 1   1 -
(a * Cos[θa] - L)2

a2 + L2 - 2 * a * L * Cos[θa]
;

fgetXa[vm[n]]; fgetYa[vm[n]];

vcm[n] = -v[n - 1] /. rc → a * Sin[θa],

Z → a * Cos[θa], Cos[Φ] → Cos[ϕa], Sin[Φ] → Sin[ϕa],

Cos[θb] → (a * Cos[θa] - L)  a2 + L2 - 2 * a * L * Cos[θa] ,

Sin[θb] →  1 -
(a * Cos[θa] - L)2

a2 + L2 - 2 * a * L * Cos[θa]
,

Cos[ϕb] → Cos[ϕa], Sin[ϕb] → Sin[ϕa],

rb → a2 + L2 - 2 * a * L * Cos[θa] ,

Tan[θb] →  1 -
(a * Cos[θa] - L)2

a2 + L2 - 2 * a * L * Cos[θa]


(a * Cos[θa] - L)  a2 + L2 - 2 * a * L * Cos[θa] ,

Cot[θb] → (a * Cos[θa] - L)  a2 + L2 - 2 * a * L * Cos[θa] 

 1 -
(a * Cos[θa] - L)2

a2 + L2 - 2 * a * L * Cos[θa]
,

Sec[θb] → a2 + L2 - 2 * a * L * Cos[θa]  ((a * Cos[θa] - L)),
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Csc[θb] → 1   1 -
(a * Cos[θa] - L)2

a2 + L2 - 2 * a * L * Cos[θa]
;

fgetcXa[vcm[n]]; fgetcYa[vcm[n]];

For[i = 1, i < sphenumber + 1, i++, Xta[i] = Xa[i] + Xca[i]];

For[i = 1, i < sphenumber + 1, i++, Yta[i] = Ya[i] + Yca[i]];

Fori = 1, i < sphenumber + 1, i++,

pa-i + 1 = μ * 2 * i - 1 * a-1
* i + 1-1

*

(a / ra)i+1 * i + 2 * Xta[i] + Yta[i];

Fori = 1, i < sphenumber + 1, i++, Φa-i + 1 =

2-1
* a * i + 1-1

* (a / ra)i+1 * (i * Xta[i] + Yta[i]);

v[n] = Chopmat.Sum GradΦa-i + 1, {ra, θa, ϕa},

"Spherical" - i - 2 * ra * ra * μ
-1

* 2-1
* i-1

* 2 * i - 1-1
*

Gradpa-i + 1, {ra, θa, ϕa}, "Spherical" +

i + 1 * μ
-1

* i-1
* 2 * i - 1-1

* {ra, 0, 0} * pa-i + 1,

{i, sphenumber};

F[n] = ChopFullSimplifyChopmat.-4 * π *

Gradra3 * pa[-2], {ra, θa, ϕa}, "Spherical";

Print["F[n]", "=", F[n]];

vm[n + 1] =

-TrigExpand[v[n]] /. rc → b * Sin[θb], Z → b * Cos[θb] + L,

Cos[Φ] → Cos[ϕb], Sin[Φ] → Sin[ϕb], rbm → b, Cos[θa] →

(L + b * Cos[θb])  b2 + 2 * b * (L * Cos[θb]) + L * L , Sin[θa] →

 1 -
(L + b * Cos[θb])2

b2 + L2 + 2 * b * L * Cos[θb]
, Cos[ϕa] → Cos[ϕb],

Sin[ϕa] → Sin[ϕb], ra → b2 + 2 * b * (L * Cos[θb]) + L * L ,

Tan[θa] →  1 -
(L + b * Cos[θb])2

b2 + L2 + 2 * b * L * Cos[θb]


(L + b * Cos[θb])  b2 + 2 * b * (L * Cos[θb]) + L * L ,

Cot[θa] → (L + b * Cos[θb])  b2 + 2 * b * (L * Cos[θb]) + L * L 

 1 -
(L + b * Cos[θb])2

b2 + L2 + 2 * b * L * Cos[θb]
, Sec[θa] →

b2 + 2 * b * (L * Cos[θb]) + L * L  ((L + b * Cos[θb])),

Csc[θa] → 1   1 -
(L + b * Cos[θb])2

b2 + L2 + 2 * b * L * Cos[θb]
;

fgetXb[vm[n + 1]]; fgetYb[vm[n + 1]];

vcm[n + 1] = -v[n - 1] /. rc → b * Sin[θb], Z → b * Cos[θb] + L,

Cos[Φ] → Cos[ϕb], Sin[Φ] → Sin[ϕb], rbm → b,
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Cos[θa] → (L + b * Cos[θb])  b2 + 2 * b * (L * Cos[θb]) + L * L ,

Sin[θa] →  1 -
(L + b * Cos[θb])2

b2 + L2 + 2 * b * L * Cos[θb]
,

Cos[ϕa] → Cos[ϕb], Sin[ϕa] → Sin[ϕb],

ra → b2 + 2 * b * (L * Cos[θb]) + L * L ,

Tan[θa] →  1 -
(L + b * Cos[θb])2

b2 + L2 + 2 * b * L * Cos[θb]


(L + b * Cos[θb])  b2 + 2 * b * (L * Cos[θb]) + L * L ,

Cot[θa] → (L + b * Cos[θb])  b2 + 2 * b * (L * Cos[θb]) + L * L 

 1 -
(L + b * Cos[θb])2

b2 + L2 + 2 * b * L * Cos[θb]
, Sec[θa] →

b2 + 2 * b * (L * Cos[θb]) + L * L  ((L + b * Cos[θb])),

Csc[θa] → 1   1 -
(L + b * Cos[θb])2

b2 + L2 + 2 * b * L * Cos[θb]
;

fgetcXb[vcm[n + 1]]; fgetcYb[vcm[n + 1]];

For[i = 1, i < sphenumber + 1, i++, Xtb[i] = Xb[i] + Xcb[i]];

For[i = 1, i < sphenumber + 1, i++, Ytb[i] = Yb[i] + Ycb[i]];

Fori = 1, i < sphenumber + 1, i++,

pb-i + 1 = μ * 2 * i - 1 * b-1
* i + 1-1

*

(b / rb)i+1 * i + 2 * Xtb[i] + Ytb[i];

Fori = 1, i < sphenumber + 1, i++, Φb-i + 1 =

2-1
* b * i + 1-1

* (b / rb)i+1 * (i * Xtb[i] + Ytb[i]);

v[n + 1] = Chopmbt.Sum GradΦb-i + 1, {rb, θb, ϕb},

"Spherical" - i - 2 * rb * rb * μ
-1

* 2-1
* i-1

* 2 * i - 1-1
*

Gradpb-i + 1, {rb, θb, ϕb}, "Spherical" +

i + 1 * μ
-1

* i-1
* 2 * i - 1-1

* {rb, 0, 0} * pb-i + 1,

{i, sphenumber};

F[n + 1] = ChopFullSimplifymbt.

-4 * π * Gradrb3 * pb[-2], {rb, θb, ϕb}, "Spherical";

Print["F[n+1]", "=", F[n + 1]];

vm[n + 2] =

Chop--v[n + 1] - v[n] /. Cos[2 ϕa] → Cos[ϕa]2 - Sin[ϕa]2,

Sin[2 ϕa] → 2 * Cos[ϕa] * Sin[ϕa],

Cos[3 ϕa] → Cos[ϕa]3 - 3 * Cos[ϕa] * Sin[ϕa]2,

Sin[3 ϕa] → 3 * Cos[ϕa]2 * Sin[ϕa] - Sin[ϕa]3,

Cos[2 ϕb] → Cos[ϕb]2 - Sin[ϕb]2,

Sin[2 ϕb] → 2 * Cos[ϕb] * Sin[ϕb],

Cos[3 ϕb] → Cos[ϕb]3 - 3 * Cos[ϕb] * Sin[ϕb]2,
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Sin[3 ϕb] → 3 * Cos[ϕb]2 * Sin[ϕb] - Sin[ϕb]3 /.

1 - Cos[θa]2 → Sin[θa]2, 1 - Cos[θb]2 → Sin[θb]2 /.

ra → rc02 + Z * Z , Cos[θa] → Z  rc02 + Z * Z ,

Sin[θa] → rc0  rc02 + Z * Z ,

Cos[ϕa] → Cos[Φ], Sin[ϕa] → Sin[Φ],

rb → rc02 + (Z - L) * (Z - L) ,

Tan[θa] → rc0  Z, Cot[θa] → Z  rc0,

Sec[θa] → rc02 + Z * Z  Z,

Csc[θa] → rc02 + Z * Z  rc0,

Cos[θb] → (Z - L)  rc02 + (Z - L) * (Z - L) ,

Sin[θb] → rc0  rc02 + (Z - L) * (Z - L) ,

Tan[θb] → rc0  (Z - L),

Cot[θb] → (Z - L)  rc0, Cos[ϕb] → Cos[Φ],

Sec[θb] → rc02 + (Z - L) * (Z - L)  (Z - L),

Csc[θb] → rc02 + (Z - L) * (Z - L)  rc0,

Sin[ϕb] → Sin[Φ];

fgetcharmonics[vm[n + 2]];

Print["n+2", "=", n + 2];

v[n + 2] = Chopmct.-π-1
* Cos[0] * ψca[0] *

0.5 * BesselI[1, λ * rc] + BesselI[-1, λ * rc] +

γca[0] * λ * rc * 0.25 * BesselI[-2, λ * rc] +

2 * BesselI[0, λ * rc] + BesselI[+2, λ * rc] *

Cos[λ * Z] + Cos[0] * ψcb[0] * 0.5 * BesselI[+1,

λ * rc] + BesselI[-1, λ * rc] + γcb[0] * λ * rc *

0.25 * BesselI[-2, λ * rc] + 2 * BesselI[0, λ * rc] +

BesselI[+2, λ * rc] * Sin[λ * Z], 0,

-π
-1

* Cos[0] * ψcb[0] * BesselI[0, λ * rc] + γcb[0] * λ * rc *

0.5 * BesselI[+1, λ * rc] + BesselI[-1, λ * rc] +

γcb[0] * BesselI[0, λ * rc] * Cos[λ * Z] +

Cos[0] * -ψca[0] * BesselI[0, λ * rc] - γca[0] * λ * rc *

0.5 * BesselI[+1, λ * rc] + BesselI[-1, λ * rc] -

γca[0] * BesselI[0, λ * rc] * Sin[λ * Z];

Fa = FullSimplify[Sum[F[i], {i, 1, n - 3, 3}]]

Fb = FullSimplify[Sum[F[i], {i, 2, n - 2, 3}]]

Solve[Fa.{0, 0, 1} == 0 && Fb.{0, 0, 1} == 0, {Ua, Ub}]
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