
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Massively parallelized GA based optimal path
planning for single and dual crane lifting in
complex industrial environments

Cai, Panpan

2016

Cai, P. (2016). Massively parallelized GA based optimal path planning for single and dual
crane lifting in complex industrial environments. Doctoral thesis, Nanyang Technological
University, Singapore.

https://hdl.handle.net/10356/68893

https://doi.org/10.32657/10356/68893

Downloaded on 20 Mar 2024 20:25:13 SGT



MASSIVELY PARALLELIZED GA BASED 
OPTIMAL PATH PLANNING FOR SINGLE AND 

DUAL CRANE LIFTING IN COMPLEX 
INDUSTRIAL ENVIRONMENTS

2016 

CAI PANPAN 

SCHOOL OF MECHANICAL AND AREOSPACE ENGINEERING 



 Massively Parallelized GA Based Optimal Path 
Planning for Single and Dual Crane Lifting in 

Complex Industrial Environments

Cai Panpan

School of Mechanical and Aerospace Engineering

A thesis submitted to the Nanyang Technological University 
in partial fulfilment of the requirement for the degree of 

Doctor of Philosophy

2016 



Abstract

Heavy lifting is an important task in petrochemical and pharmaceutical plants. It is

frequently conducted during the time of plant construction, maintenance shutdown,

and new equipment installation. Mobile cranes are lifting machines widely used in a

variety of industries. The two primary issues that industries concern are safety and

productivity. Accidents may happen in work sites of mobile cranes due to various rea-

sons such as lack of operation knowledge, lack of safety awareness, lack of information

about the environment, inadequate guidance, and wrong calculations in lifting. These

factors may also influence the productivity by wasting time, energy and resources

in unnecessary operations or stoppages. Computer-aided Lift Planning (CALP) for

mobile cranes is an effective and efficient tool highly desired by industries.

This research aims to develop a new CALP system for automatic lift planning in

complex industrial environments such as petrochemical and pharmaceutical plants,

and construction sites. The research focuses on the lifting path planning problems for

single and cooperative dual mobile cranes in these complex environments. The lifting

path planning takes inputs such as plant environments, mechanical and positioning

information of cranes, and start & end lifting configurations to generate optimal lift-

ing paths by evaluating costs and risks involved. In this research, the single-crane

and dual-crane lifting path planning are both formulated as multi-objective nonlinear

optimization problems with multiple implicit constraints. The objective is to optimize

the energy costs, time costs and safety factors of the lifting paths under constraints

such as collision avoidance, coordination, and operational limitations. To solve the

optimization problems, two master-slave parallel genetic algorithm based path plan-

ners are designed and developed on Graphic Processing Units (GPUs) using CUDA

programming. The genetic algorithms in the planners are customized for the lifting

i



path planning problems with their efficiency and search abilities improved. In order to

handle complex environments, an image-based collision detection algorithm is devel-

oped to support the planners. The image-space parallel collision detection algorithm

constructs multi-level depth maps for industrial environments and takes advantage of

GPU parallel computing. Based on this algorithm, a hybrid C-space collision detec-

tion strategy is introduced to trade off the pre-processing and planning time for the

planners. To reduce the computation time for continuous collision detection for the

lifting target in dual-crane lifting path planning, triangle swept spheres are introduced

to model the swept volumes. Finally, a lift planner cum crane simulator system is

developed based on the collision detection algorithm and the path planners enhanced

by a lexicographical goal programming strategy. This system can serve the purposes

of automatic lift planning, interactive lift planning, and training, and thus improve

the safety and productivity of lifting operations.

ii



Acknowledgments

The author would like to express her sincere thanks and appreciation to her supervisor,

Dr. and Associate professor Cai Yiyu (MAE), and co-supervisor, Dr. and Associate

professor Zheng Jianmin (SCE) for their invaluable guidance, support and suggestions.

Their knowledge, suggestions, and discussions help me to become a capable researcher.

Their encouragement also helps me to overcome many difficulties encountered in my

research.

The author also wants to thank the colleagues in the CAE Visualization Room, for

their generous help. I want to thank Dr. Indhumathi Chandrasekaran for providing

the crane simulation environment and technical suggestions. I want to thank for Mr.

Huang Lihui’s help on converting PDMS data and the help of Dr. Ma Yuewen, Dr. Wu

Xiaoqun, Dr. Zhang Yuzhe and Mr. Chen Yong on scanning and processing data in

point cloud form. I also want to thank the FYP student Zhang Tianci for developing

the physical model crane. My gratitude also goes to Dr. Li Qing and Dr. Chen Wenyu

for their friendship and support.

I am very grateful to the members of our research team in NTU. It is a pleasure to

collaborate with my project team mates, particularly Dr. Indhumathi Chandrasekaran

and Mr. Huang Lihui.

Last but not least, I want to thank my husband Zhang Juzheng for his constant

companion and my family in China for their love and encouragement.

iii





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

List of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Literature Review 12

2.1 Collision Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Collision detection for polygonal models . . . . . . . . . . . . . 14

2.1.3 Parallel collision detection . . . . . . . . . . . . . . . . . . . . . 18

2.1.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Basic theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Simple genetic algorithm . . . . . . . . . . . . . . . . . . . . . . 26

2.2.3 Parallel genetic algorithms . . . . . . . . . . . . . . . . . . . . . 28

2.2.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

v



2.3 Robotic Path Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Discrete search based path planning . . . . . . . . . . . . . . . . 31

2.3.2 Sampling-based path planning . . . . . . . . . . . . . . . . . . . 33

2.3.3 GA-based path planning . . . . . . . . . . . . . . . . . . . . . . 36

2.3.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Lifting Path Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1 Computer-aided heavy lift planning . . . . . . . . . . . . . . . . 38

2.4.2 Path planning for single-crane lifting . . . . . . . . . . . . . . . 39

2.4.3 Path planning for dual-crane lifting . . . . . . . . . . . . . . . . 41

2.4.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 GPU-based Real-time Collision Detection Engine 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Overview of the Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Pre-processing Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Runtime Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Extension to Point Cloud Environments . . . . . . . . . . . . . . . . . 49

3.6 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6.1 MDMs of triangular meshes . . . . . . . . . . . . . . . . . . . . 50

3.6.2 Collision check and proximity warning . . . . . . . . . . . . . . 50

3.6.3 Execution time . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Single-Crane Lifting Path Planning Using GPU-enabled Parallel

Genetic Algorithm 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . 58

4.2.3 Fitness function . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 MSPGA-based Path Planner for the Single-crane Lifting . . . . . . . . 63

4.3.1 MSPGA framework . . . . . . . . . . . . . . . . . . . . . . . . . 64

vi



4.3.2 Adaptive plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.3 Post processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Collision Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.1 Discrete collision detection . . . . . . . . . . . . . . . . . . . . . 69

4.4.2 Continuous collision detection . . . . . . . . . . . . . . . . . . . 70

4.4.3 Self-collision clearance . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.4 Hybrid C-space strategy . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.1 Comparison on the fitness function . . . . . . . . . . . . . . . . 75

4.5.2 Validation of the hybrid C-space strategy . . . . . . . . . . . . . 79

4.5.3 Discussion on parameter design . . . . . . . . . . . . . . . . . . 81

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel

Genetic Algorithm 87

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 The Manipulation Sub-system . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 The Suspension Sub-system . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 Solving the dual-crane suspension sub-system . . . . . . . . . . 95

5.4.2 Coordination of cranes . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 MSPGA-based Path Planner for Dual-crane Lifting . . . . . . . . . . . 100

5.5.1 Framework of the LGP-enhanced MSPGA . . . . . . . . . . . . 100

5.5.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5.3 Dual-crane adaptive plan . . . . . . . . . . . . . . . . . . . . . . 101

5.6 Collision Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.7 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.7.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.7.2 Dual-crane lifting path planning in complex environments . . . 112

5.7.3 Performance comparison with a GA-based method . . . . . . . . 112

5.7.4 Comparison with a PRM-based method . . . . . . . . . . . . . . 116

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

vii



6 System Design of the Lift Planner cum Crane Simulator 121

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2.1 Hardware and software components . . . . . . . . . . . . . . . . 123

6.2.2 Engines and supporting methodologies . . . . . . . . . . . . . . 125

6.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3.1 Validation of automatic lifting with a scaled model crane . . . . 135

6.3.2 Case study of offline lift planning in industrial projects . . . . . 140

6.3.3 Training and interactive lift planning using 3D simulation . . . 143

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7 Conclusions and Future Work 146

7.1 Summary of the Research . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . 147

Publications 151

References 153

Appendix A Kinematics 170

Appendix B Configuration Space 175

viii



List of Figures

Figure 2.1 Scenes from the game “Grand Theft Auto”. . . . . . . . . . . . 13

Figure 2.2 Two examples of physical simulation. Upper row: Hair simula-

tion; Lower row: Particle simulation. . . . . . . . . . . . . . . . 13

Figure 2.3 The robot “Robonaut” is performing grabbing, holding, hand

shaking and writing. . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2.4 Different crossover strategies: (a) One-point crossover; (b) Two-

point crossover; (c) Direct selection from parents; (d) Parameter

based crossover. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 2.5 Two permutation crossover operators: (a) Ordered crossover;

(b) Partially mapped crossover. . . . . . . . . . . . . . . . . . . 26

Figure 2.6 Two mutation strategies: (a) One point “flip bit” mutation; (b)

Two point “flip bit” mutation. . . . . . . . . . . . . . . . . . . 26

Figure 2.7 Standard procedure of simple genetic algorithm. . . . . . . . . . 27

Figure 3.1 Workflow of the collision detection engine. . . . . . . . . . . . . 46

Figure 3.2 Flow chart of the pre-processing stage of the proposed collision

detection algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 3.3 Workflow of the runtime stage of the proposed collision detection

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 3.4 Checking the primitives with the multi-level depth map for ac-

curate 3D collision detection . . . . . . . . . . . . . . . . . . . . 49

Figure 3.5 Illustration of multi-level bounding boxes of objects. (a) in solid

shape; (b) in wire frame. . . . . . . . . . . . . . . . . . . . . . . 49

Figure 3.6 Digitization of the plant model using an MDM: (a) Original

scene, (b) The MDM generated using the proposed algorithm.

Different colors stand for layers in the MDM . . . . . . . . . . . 50

ix



Figure 3.7 Multi-level proximity and collision warning: (a) Distance to

plant objects is smaller than 3 meters; (b) Distance to plant

objects is smaller than 1 meters; (c) Colliding with plant objects. 52

Figure 3.8 Sample plant models for testing the performance of the collision

detection engine. (a) test plant 1; (b) test plant 2; (c) test plant

3; (d) test plant 4. . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 3.9 Scalability of the 2.5D and 3D versions of the proposed collision

detection algorithm regarding the triangle numbers. . . . . . . . 53

Figure 3.10 Scalability of the 2.5D and 3D versions of the proposed collision

detection algorithm regarding the triangle numbers. . . . . . . . 53

Figure 4.1 The structure of terrain cranes: (a) DOFs of the terrain cranes,

(b) boom clearance and (c) body clearance . . . . . . . . . . . . 58

Figure 4.2 Structure of chromosomes in the proposed algorithm . . . . . . 65

Figure 4.3 Framework of the path planner for single-crane lifting . . . . . . 65

Figure 4.4 The post processing strategy: (a) when the target position in c1

is higher; (b) when the target position in c2 is higher. . . . . . . 68

Figure 4.5 Demonstration of the swept frontier of the swinging and luffing

operations: (a) target swept frontier from top view; (b) target

swept frontier of luffing from side view; (c) boom swept frontier

from top view. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 4.6 Demonstration of variables used in the computation of internal

clearance for terrain cranes . . . . . . . . . . . . . . . . . . . . 74

Figure 4.7 Result path generated using different fitness functions in Exper-

iment 4.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 4.8 Fitness convergence trend using different fitness functions in Ex-

periment 4.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 4.9 Additional plants used in Experiment 4.1.2. . . . . . . . . . . . 78

Figure 4.10 Trajectory of the load of the result paths using the three strate-

gies in Experiment 4.2. Green: the C-space strategy; Red: the

online strategy; Yellow: the hybrid strategy . . . . . . . . . . . 82

Figure 4.11 Experiment plant models . . . . . . . . . . . . . . . . . . . . . 83

x



Figure 4.12 Topographic maps of success rates and average fitness values

different combinations of reproduction rates in Experiment 4.3.1 84

Figure 4.13 Topographic maps of success rates and average fitness values

different combinations of reproduction rates in Experiment 4.3.2 84

Figure 5.1 Kinematics and DOFs of the manipulation sub-system of dual-

crane lifting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 5.2 The manipulation sub-system of dual-crane lifting: (a) names

of the nodes in terrain cranes; (b) joints and links in the manip-

ulation sub-system; (c) DOFs of the manipulation sub-system. . 94

Figure 5.3 Kinematics, forces and moments of the suspension sub-system

in dual-crane lifting. . . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 5.4 The two types of coordination of the suspension sub-system: (a)

node coordination; (b) continuous coordination. . . . . . . . . . 97

Figure 5.5 Workflow of the MSPGA-based path planner for dual-crane lifting.101

Figure 5.6 Continuous collision detection of the lifting targets: (a) swinging

threshold of the attach anchors; (b) triangles approximating the

swept path of the lifting target during neighboring steps; and

(c) volume generated by the CCD triangles with dilation factor. 109

Figure 5.7 Simulation result for dual-crane lifting with sling forces and tilt-

ing angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Figure 5.8 Dual-crane lifting path generated in Experiment 5.1: (a) top

view; (b) side view . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 5.9 Fitness convergence trend in Experiment 5.1 . . . . . . . . . . . 113

Figure 5.10 Comparison of the success rate using Ali’s method and the pro-

posed method under different numbers of iterations (Experiment

5.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Figure 5.11 Comparison of the solution qualities using Ali’s method and

the proposed method under different numbers of iterations (Ex-

periment 5.2): (a) using Ali’s measure; (b) using the proposed

measure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

xi



Figure 5.12 Sample path generated with the method of [1]: (a) top view; (b)

side view; And the path generated with the proposed method:

(c) top view; (d) side view. . . . . . . . . . . . . . . . . . . . . 119

Figure 5.13 Comparison of two paths generated by: (a) and (b) the method

of [2] and (c) the proposed method. (d) is the C-space path

of the major crane conducting the lifting path shown in (c).

Lighter green stands for smaller luffing angle. . . . . . . . . . . 120

Figure 6.1 System architecture of the lift planner cum crane simulator. . . 124

Figure 6.2 Digital environments used in the proposed lift planner cum crane

simulator system: (a) A PDMS plant; (b) A point cloud plant. . 126

Figure 6.3 Pipeline for processing PDMS data . . . . . . . . . . . . . . . . 127

Figure 6.4 Steps for processing point cloud data: (a) registration of mul-

tiple scans; (b) feature extraction; (c) colored data; (d) sub-

sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Figure 6.5 Illustration of the scene graph containing the crane models and

the industrial environment . . . . . . . . . . . . . . . . . . . . . 129

Figure 6.6 Overall flow of the MSPGA-based path planner. . . . . . . . . . 131

Figure 6.7 Indication of the data flow inside the evolutionary iteration. . . 132

Figure 6.8 GPU implementation details of the fitness evaluation process. . 133

Figure 6.9 GPU implementation details of mating pool generation. . . . . 133

Figure 6.10 GPU implementation details of the parameter-based crossover

operator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Figure 6.11 The model crane and the environment used in 6.1 . . . . . . . . 136

Figure 6.12 Lifting path used in Experiment 6.1 displayed in the point cloud

environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Figure 6.13 Lifting path simulated using point cloud data in the proposed

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Figure 6.14 Lifting path conducted by the scaled model crane. . . . . . . . . 139

Figure 6.15 Lifting path generated by the system using an accurate digital

version of the crane and the scanned point cloud of the site. . . 141

Figure 6.16 The lifting path documentation for guidance of lifting operations.141

xii



Figure 6.17 The proposed system used for communication in the lifting team.142

Figure 6.18 Lifting conducted using the suggestions from the system: (a)

real lifting operations; (b) simulated lifting using point cloud

data in the proposed system. . . . . . . . . . . . . . . . . . . . 143

Figure 6.19 The proposed system used for operator training and interactive

lift planning purposes with joystick interactions and stereoscopic

display. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Figure A.1 Demonstration of linkages composed of rigid bodies attached by

joints: (a) A linkage of rigid bodies with loops; (b) A kinematic

chain of rigid bodies; (c) A kinematic tree of rigid bodies. . . . 171

Figure A.2 Body frame of a link in R2 (diagram courtesy of LaValle [3]) . . 172

Figure A.3 The definition for the four DH parameters: (a) di; (b) θi; (c)

ai−1; (d) αi−1 (diagram courtesy of LaValle [3]) . . . . . . . . . 173

Figure A.4 A looped linkage of rigid bodies: (a) The closed kinematic chain

and (b) its corresponding open kinematic tree. . . . . . . . . . . 174

Figure B.1 A simple kinematic chain for C-space analysis . . . . . . . . . . 176

xiii



List of Tables

Table 2.1 Crossover strategies. . . . . . . . . . . . . . . . . . . . . . . . . . 24

Table 2.2 Commonly used selection strategies and their descriptions. . . . 28

Table 4.1 Parameters and variables used in solution representation . . . . . 59

Table 4.2 Parameters and variables in the objective function . . . . . . . . 61

Table 4.3 Parameters and variables used in the fitness function design . . . 63

Table 4.4 Parameters and variables in adaptive mutation rates . . . . . . . 66

Table 4.5 The initialization strategy used in the single-crane path planner 67

Table 4.6 The crossover strategy used in the single-crane path planner . . 67

Table 4.7 The mutation strategy used in the single-crane path planner . . 67

Table 4.8 Parameters and variables in the swept frontiers . . . . . . . . . . 72

Table 4.9 Parameters and variables in the internal clearance inequalities . 74

Table 4.10 Inputs into Experiment 4.1.1 . . . . . . . . . . . . . . . . . . . . 76

Table 4.11 Comparison of the success rates in the three plants using the

fitness function in [1] and the proposed fitness function in Exper-

iment 4.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Table 4.12 Solution qualities in the three plants using the fitness function in

[1] and the proposed fitness function in Experiment 4.1.2 . . . . 79

Table 4.13 Inputs into Experiment 4.2 . . . . . . . . . . . . . . . . . . . . . 80

Table 4.14 Results of Experiment 4.2 . . . . . . . . . . . . . . . . . . . . . . 81

Table 4.15 Probabilities of finding feasible solutions under different combi-

nations of reproductive rates for Experiment 4.3.1 . . . . . . . . 84

Table 4.16 Average fitness value for collision-free results under different com-

binations of reproductive rates for Experiment 4.3.1 . . . . . . . 85

Table 4.17 Probabilities of finding feasible solutions under different combi-

nations of reproductive rates for Experiment 4.3.2 . . . . . . . . 85

xiv



Table 4.18 Average fitness value for collision-free results under different com-

binations of reproductive rates for Experiment 4.3.2 . . . . . . . 85

Table 5.1 Parameters and variables used in solution representation . . . . . 91

Table 5.2 Parameters and variables in the objective function . . . . . . . . 92

Table 5.3 The dual-crane initialization strategy for the major portion in

the population . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Table 5.4 The dual-crane initialization strategy for the seeds in the population102

Table 5.5 Parameters and variables used in the fitness function design . . . 103

Table 5.6 Parameters and variables in adaptive mutation rates . . . . . . . 106

Table 5.7 The bitwise mutation strategy used in the dual-crane planner . . 107

Table 5.8 Comparison on the number of iterations required for finding fea-

sible solution and the execution time for each iteration with Ali’s

method (Experiment 5.2) . . . . . . . . . . . . . . . . . . . . . . 115

Table 5.9 Comparison on the balancing properties in the sample paths out-

put by Ali’s method and the proposed method in Experiment 5.3

(maximum values) . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Table 5.10 Comparison on the balancing properties in the sample paths out-

put by Ali’s method and the proposed method in Experiment 5.3

(average values) . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Table 6.1 Node configurations in the lifting path generated in Experiment

6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Table B.1 C-space contributed by the six types of joints in 3D kinematic

chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

xv



xvi



List of Abbreviations

CALP Computer-aided Lift Planning
GPU Graphic Processing Unit
CPU Central Processing Unit
GPGPU General Purpose Graphic Processing Unit
CUDA Compute Unified Device Architecture
CD Collision Detection
DCD Discrete Collision Detection
CCD Continuous Collision Detection
BV Bounding Volume
AABB Axis-Aligned Bounding Box
OBB Oriented Bounding Box
BVH Bounding Volume Hierarchy
BSP Binary Spatial Partitioning
SV Swept Volume
SSV Sphere Swept Volume
PSS Point Swept Volume
LSS Line Swept Volume
LDI Layered Depth Image
VOI Volume of Interest
MDM Multi-level Depth Map
RSS Rectangle Swept Volume
TSP Traveling Salesman Problem
PRM Probabilistic Roadmap Method
RRT Rapidly exploring Random Tree
GA Genetic Algorithm
SGA Simple Genetic Algorithm
MSPGA Master-Slave Parallel Genetic Algorithm
LGP Lexicographical Goal Programming
IK Inverse Kinematics
FK Forward Kinematics
C-Space Configuration Space
ASV Analytical Swept Volume
TSS Triangle Swept Sphere
NASA National Aeronautics and Space Administration

xvii





List of Notations

αLF Luffing angle
αSW Swinging angle
lHS Hoisting length
αLR Load rotation angle
s Chromosome or string
Ls Length of a string
Lp Size of population
c A node configuration in a string
e An edge segment in a string
C C-space of a crane
F (s) Fitness value of a string s
sc(s) Operation switching cost in string s
d(s) Motion cost in string s
rm Mutation rate
rc Crossover rate
A Swept frontier
R Working radius
λ Constant scaling factor
mo Coordination violation number of nodes
me Edge coordination violation number of edges
no Collision violation number of nodes
nf Edge collision violation number of cranes
nr Edge collision violation number of the single-crane load
nli Edge collision violation number of the dual-crane load
nc Collision violation number of internal clearance
sc Operation switching count
<<< a, b, c >>> Launch parameters for CUDA kernel functions
{. . .} Sets
(. . .) Ordered sets
||x− y|| Distance between x and y
|x| Absolute value of x
((v))xy The 2D vector formed by the x and y coordinates of v
((v))z The z coordinate of v

xix





Chapter 1

Introduction

1.1 Background

Heavy cranes are widely used by the petrochemical, pharmaceutical, construction, and

other industries for critical lifts. To lift large and heavy loads, the capacity of cranes

can reach up to thousand tons. Lifting operations work with potential accidents. The

OSHA database [4] reported a total 3135 crane-related accidents in the US till the year

2013. Many of them caused human death. Lifting safety is thus utmost important.

Many reasons may lead to crane safety problems at the work site including inadequate

guidance, insufficient training, lack of safety awareness or poor site assessment. Any

accident may cause substantial losses of money and time, and waste of other resources

especially when fatalities are involved. Cost reduction is another major concern in

the lifting industry. According to a rental rate survey conducted by Cranes & Access

in 2011 [5], the average daily rental of a terrain crane with a capacity of 350 tons

can cost approximately 8,394 US dollars. Electric power and fuel consumption also

takes up a significant portion of the cost in lifting operations. For instance, the power

consumption of the terrain crane LTM 1200 from Liebherr is 370 KW per hour [6].

Therefore, optimizing the time and energy cost in heavy lifting is highly desired. On

the other hand, manpower cost is increasingly becoming a critical factor in lifting. A

lifting team is responsible for lift planning which involves a complicated and sophisti-

cated decision-making process. The team consists typically of one lifting supervisor or

manager, one engineer, one crane operator, one or more signalmen, and one or more

1



Chapter 1. Introduction

riggers. Therefore, efficient lift planning is crucial for the safety and productivity of

any related industries.

Heavy lift planning typically involves crane selection, crane setup planning and lift-

ing path planning. For projects with multiple lifts, the planning also requires schedul-

ing. If multiple cranes are used simultaneously, the interference between these cranes

also need to be considered. If the plant or site contains dynamic objects, the pro-

cess may also include replanning mechanisms to alter the lifting path according to

the changed environment. There are different types of commonly used cranes: tower

cranes, terrain cranes, crawler cranes and so on. Among them, tower cranes have the

least Degree of Freedoms (DOFs) (4 or less) and crawler cranes have the most (up to

7 DOFs). In this thesis, the name “mobile crane” is used mostly for terrain cranes

and sometimes crawler cranes. Lift planning is usually done manually, which can be

error-prone and very time-consuming. Even with an experienced lifting team, it easily

takes a few weeks to complete the entire planning procedure. For the reasons men-

tioned above, it is desired to have an effective and efficient solution for intelligent lift

planning.

Computer-aided Lift Planning (CALP) uses computer simulations and intelligent

algorithms to assist the lift planning process and thus improve the lifting safety and

productivity. CALP systems can serve two purposes: lift planning for real-life projects

and vocational training for crane operators. For training purpose, CALP systems sim-

ulate the manipulations and monitor the safety factors for trainees to practice lifting

in virtual environments. For planning purpose, CALP systems either focus on interac-

tive lift planning or automatic lift planning. Interactive lift planning enables users to

define lifting paths through trials and errors. Automatic lift planning aims to compute

feasible or optimal lifting plans automatically with minimum user interventions.

In prior studies, researchers have developed simulation-based CALP systems with

various safety monitoring functions embedded. Many of them have also automated

procedures in crane setup planning. Among these systems, some focus on interactive

lift planning using 2D drawings. However, these drawings have to be combined with

many other materials to feature specific lifting tasks, making these planners tedious

to use. Other systems require users to construct site models manually using CAD

2



Chapter 1. Introduction

software. Such approaches result in simple and less accurate models and are thus

more suitable for training purposes. Moreover, automatic lifting path planning has

seldom been addressed by previous CALP systems.

Instead of using 2D drafting and conventional CAD models, modern industrial

plants and buildings have their digital versions in intelligent management systems

such as Plant Design Management Systems (PDMS), Smartplant, and Building Infor-

mation Modeling (BIM) systems. These systems manage the comprehensive geometric,

scheduling and cost information for plants and sites. The information can be utilized to

produce complete and accurate models of the environment objects and lifting targets.

Schedules and lifting task specifications might also be extracted from these commercial

systems. For existing plants or sites that do not have digital versions, laser scanning

is an alternative. Laser scanning technology has experienced rapid developments in

recent years. By combining with geometric processing techniques, laser scanning can

quickly produce accurate point clouds for large and complex environments. However,

as the technologies mentioned above always generate huge data sets, previous CALP

systems have not made use of them.

Lifting path planning is one of the core technologies supporting automatic lift plan-

ning which has rarely been implemented. Using the information such as crane spec-

ifications, crane setups, environments, and task requirements, lifting path planning

outputs safe and optimized paths to guide lifting operations automatically or semi-

automatically. Most lifting tasks are conducted by using a single crane with enough

capacity required. In this case, lifting path planning considers the interactions of three

parties: the crane, the lifting target, and the environment. The lifting target and the

crane components (e.g. booms, jibs and hooks) usually follow nonlinear movements.

During lifting, the lifted target should always be kept at a safe clearance of distance

from the crane and the obstacles. Under these constraints, the operational costs of

lifting should be minimized. Aside from using a single large crane to fulfill the task,

dual-crane lifting is also a common strategy in heavy lifting when large cranes with

sufficient capacities to lift the load are neither available nor allowed due to space and

budget restrictions. Therefore, two cranes with relatively lower individual capacities

are alternatively used as a cheaper solution to share the load of the lifting target. In

3



Chapter 1. Introduction

dual-crane lifting operations, the major crane and the assistant crane collaborate to

maintain the equilibrium of the lifting target. The slings should be restricted as close

as possible to the vertical direction during the lifting operations. When performing

cooperative lifting, the safety risk increases dramatically due to the intensive synchro-

nizations between the cranes, as well as the highly nonlinear movements of the lifting

target. Therefore, it is much harder to determine optimal dual-crane lifting paths

under these safety constraints.

Lifting path planning for both single crane and dual cranes have been investigated

as stand-alone motion planning problems. Some previous studies have tried to produce

feasible but not necessarily optimal lifting paths using fast search algorithms (see

Section 2.4 for details). Other approaches apply global optimization algorithms like

Genetic Algorithms (GAs) to obtain optimized lifting paths. Most studies still rely

on conventional CAD models and are thus restrained in relatively simple cases. Real

industrial plants in 3D are seldom used for lifting path planning in the literature.

Global optimization based approaches also suffer from the computationally forbidden

feature of GAs. Many practical issues in lifting path planning such as easiness of

conduction and coordination of cooperative cranes in terms of sling angles have not

been well considered.

1.2 Problem Statement

This research aims to develop a CALP system for automatic lift planning in complex

industrial environments such as petrochemical plants, pharmaceutical plants and con-

struction sites. Except developing simulation and interaction components, it mainly

focuses on solving the path planning problems of single-crane and dual-crane lifting.

The lifting path planning problems take inputs such as plant environments, crane me-

chanical data, crane setup locations, start and end configurations and produce outputs

as optimal lifting paths via cost and risk evaluations. The aim is to optimize prac-

tical factors such as the energy cost, time cost, and human operation conformity of

the lifting path under constraints of collision avoidance, dual-crane coordination, and

crane operational limitations. Achieving these goals requires the system to handle effi-

ciently the complex environments in digital formats such as PDMS and laser scanned

4



Chapter 1. Introduction

point clouds. Therefore, this research also introduces a unified representation of plant

data and develops an efficient collision detection algorithm to handle the interactions

between cranes and these environments.

When solving the multi-objective multi-constraint problems, path planning algo-

rithms can be easily trapped into local optima or converge to sub-optimal solutions.

To achieve highly optimized lifting paths, GA is chosen to build the targeted path

planners taking advantage of its global optimization capability. Formulation, com-

putational efficiency, and convergence are the three major challenges in solving the

targeted lifting path planning problems.

Firstly, the lifting path planning problems are required to be formulated in a way

that is compatible with GA’s representations. Many prior algorithms use keyframe

positions in the Euclidean spaces as chromosomes. This formulation of paths is suitable

for point-shaped or rigid robots. However, for articulated robots, this approach makes

it difficult to evaluate the manipulation costs. On the other hand, objectives and

constraints in the lifting path planning problems need to be formulated taking into

consideration of the performances, costs and safety factors of lifting paths. The safety

constraints are determined by the unique kinematic and physical properties of the

problems which are substantially different in the single-crane and dual-crane scenarios.

The crane is represented as a manipulation robot in single-crane lifting. The movement

of the lifting target (the end effector) is completely determined by the manipulation

variables through forward kinematics. Formulating the single-crane problem requires

defining problem-specific metrics for lifting paths to evaluate their costs and safeties

quantitatively. In dual-crane lifting, the two cranes and the lifting target form a

closed kinematic chain which is not able to be solved with forward kinematics [3].

Moreover, differed from other cooperative robots, the dual-crane system contains a

cable-suspended target which is lifted by the slings of two cranes. Thus, the position

and orientation of the lifting target are not only affected by the manipulation variables,

but also by the forces, torques and mass distribution of the lifting target. Therefore,

the formulation of dual-crane lifting path planning is much more difficult than the

single-crane problem.

Efficiency is the another challenge in GA-based lifting path planning. The path

planners need to conduct collision detection for all paths in each iteration. They are

5



Chapter 1. Introduction

also required to handle properly the continuous motions along the local paths between

genes using sound algorithms to be described. This results in huge computational effort

considering the nonlinear movements of the cranes and the lifting target. Moreover,

the computational loads can be drastically increased if highly complex environments

are involved. Thus, it is critical to find efficient representations of the environments as

well as the nonlinear motions of the cranes and the lifting target. Parallelization may

also improve the computational efficiency of GA.

One more challenge is the search ability of the GA-based path planners. Although

Simple GA (SGA) guarantees global optimization, it is much more complicated in

real-world path planning problems. For instance, the path planning problem for dual-

crane lifting has four hard constraints: node (gene) collision violation, edge (movement

between genes) collision violation, node coordination violation and edge coordination

violation. The resulting feasible space of the problem is highly non-linear and com-

posed of narrow tunnels, especially for complex environments. This complex feasible

space challenges the search ability of GA and any other general path planning method-

s. Prior path planning algorithms usually transfer constraints to safety penalties and

incorporate them into evaluation functions as weighted sums. However, linear com-

binations cannot effectively ensure GA to eliminate violations of all hard constraints.

Instead, it is important for these problems to have the GA monitoring different stages

of evolution and adjusting the selection pressures and reproduction strategies accord-

ingly.

1.3 Objectives

The goal of this research is to solve the problems mentioned above with four objectives

described below:

(i) To develop a novel collision detection algorithm for lifting path planning pur-

poses. This collision detection algorithm should efficiently handle the complex

environments represented as meshes and point clouds. It should also be able to

perform efficient continuous collision detection for the cranes and lifting targets.

6



Chapter 1. Introduction

(ii) To provide formulations of the optimization problems of single-crane and dual-

crane lifting path planning. Lifting paths, costs, and safety factors are to be

mathematically modeled as solutions, objectives, and constraints. These formu-

lations should also be suitable for GA’s representations and implementations.

(iii) To design effective and efficient planners for the single-crane and dual-crane lift-

ing. The path planners should produce highly optimized lifting paths. In the

meantime, they also need to be sound in handling motion non-linearity and un-

certainties, effective in searching within narrow spaces and efficient in processing

complex environments.

(iv) To develop a lift planner cum crane simulator system to help improve the safety

and productivity in crane lifting operations. The system should be able to make

use of accurate geometric data of real industrial plants to perform automatic

lifting path planning. To achieve fast interactions and plannings, it also requires

the system to unify various types of geometric data and implement the collision

detection and path planning algorithms efficiently.

1.4 Contributions

To achieve the above-mentioned objectives, this research has developed several novel

algorithms and techniques. In summary, the contributions of this study include:

(i) An MDM representation of complex industrial plants and sites is proposed to

enable efficient collision detection. Based on this representation, image-space

collision detection is conducted. This image-space approach provides a basis

for the efficiency of the GA-based path planners. For single-crane lifting, this

representation is combined with Analytical Swept Volumes (ASVs) for efficient

continuous collision detection. That is, the space swept by the lifting target

when moving from one gene (configuration) to the next is defined analytically.

These ASVs are constructed with information acquired through forward kine-

matics. For dual-crane lifting, the Triangle Swept Spheres (TSSs) are used as

7



Chapter 1. Introduction

swept volumes of the lifting target to be checked with the MDMs. During col-

lision detection of candidate paths in the population, the proposed image-space

collision detection enables three levels of parallelization: pixel level, chromosome

level, and population level. It deals with chromosomes in the population, genes

in the chromosomes and pixels in the MDM simultaneously with parallel threads.

This type of image-space collision detection has not been applied before for path

planning of articulated robots.

(ii) Comprehensive mathematical formulations are proposed for both single-crane

and dual-crane lifting path planning which are highly suitable for GA’s repre-

sentations. The path planning problems for single-crane and dual-crane lifting

are formulated as multi-objective nonlinear optimization problems with implicit

constraints. To fit into the representations of GA, the lifting paths are defined

as linear chromosomes with each gene containing a set of values of the manip-

ulation variables. As a consequence, a lifting path comprises a set of nodes

which are key-frame configurations and a set of edges which are the local paths

between neighboring nodes. The evaluation functions are formulated as piece-

wise continuous functions which enable GA to control the selection pressures

for paths in different stages. Constraints are formulated based on analysis of

the kinematic and physical structures of the single-crane and dual-crane lifting

systems. Particularly, in the dual-crane lifting problem, the closed kinematic

chain is decomposed into two sub-systems: a manipulation sub-system regarding

the two cranes which can be solved through forward kinematics and a suspend-

ed sub-system regarding the lifting target whose state can be approximated by

information acquired from forward kinematics.

(iii) MSPGA-based path planners (for both single-crane and dual-crane lifting) are

developed to achieve high success rates and solution qualities in complex and

narrow free spaces. The planners exploit the Lexicographical Goal Program-

ming (LGP) strategy used in general multi-objective optimization. Based on

this strategy, novel adaptive plans are developed to improve the search ability

of GA in the narrow and complex feasible spaces. This customization of the

8



Chapter 1. Introduction

MSPGAs is innovative which significantly contributes to the problem solving in

this research. In the planners, the multiple hard constraints and objectives are

embedded in the fitness functions and crossover operators with predefined pri-

orities. The fitness functions are designed in piece-wise continuous forms which

reflect multiple stages of optimization according to the priorities of objectives

and penalties. High priority objectives or constraints are optimized ahead of

low priority ones. The crossover operators are designed in a way that candi-

dates violating higher priority constraints are more likely to be filtered. With

the help of the prioritized fitness functions and crossover operators, the multiple

constraints are solved from high to low priority during the evolutionary itera-

tions and finally produce feasible solutions. Moreover, the research also proposes

adaptive mutation operators to perform local disturbance and smoothing of the

candidate paths. In the dual-crane scenario, a coordination mutation operator

is also introduced to help supply well-coordinated genes for the population.

(iv) A hybrid C-space collision detection strategy is proposed to achieve optimal com-

putational performances of the MSPGA-based path planners. In this strategy,

collision detection information of the manipulation components of the cranes

is coded into 2D C-spaces. Each entry in the C-spaces represents the validity

of a certain swinging and luffing angle of a crane. Collision detection of the

lifting target is computed online using updated ASVs and TSSs during GA iter-

ations. This novel collision detection strategy provides a trade-off between the

pre-processing and query time for the MSPGA-based path planners. The use of

hybrid C-spaces, especially to handle the manipulation sub-system of dual-crane

lifting, is new to the best of our knowledge.

(v) TSS based swept volumes are developed and utilized to handle effectively and

efficiently the dual-crane lifting target. The motion uncertainty of the dual-crane

lifting target is bounded by introducing distance thresholds from the approxi-

mated center lines which are acquired from forward kinematics. These center

lines and thresholds are then used to construct the TSSs. The TSSs serve as

swept volumes of the lifting target between neighboring genes in the dual-crane

9



Chapter 1. Introduction

path planner. This is the first time that TSSs are proposed and used to bound

the motion between consecutive path steps.

(vi) A prototype system for the lift planner cum crane simulator is developed to

serve both training and planning purposes. By integrating the technologies

developed in this research, the system incorporates many functions including

simulation, proximity warning, safety monitoring, lifting path generation and

validation functionalities. It supports and processes various types of geometric

data to model industrial environments efficiently and accurately. Data from laser

scanning, PDMS, Smartplant and BIM are unified into MDM representations in

the system. The parallel collision detection and path planning algorithms are fit-

ted into the hierarchical architecture of CUDA to take advantage of GPU powers.

Consequently, the prototype system could provide a novel solution of automatic

lift planning as well as intelligent and realistic training.

1.5 Outline of the Thesis

The rest of the thesis is organized as follows:

Chapter 2 reviews the existing technologies and applications of collision detection

and robotic path planning. Particularly, in-depth discussions of prior arts on image-

space collision detection and lifting path planning closely related to this research are

given in this chapter. In order to make the thesis self-contained, a short survey of the

basic concepts and designs on GAs are also provided in Chapter 2.

Chapter 3 describes the proposed GPU-based image-space collision detection al-

gorithm designed for simulation and lifting path planning purpose which is targeted

for complex environments. Multi-level depth maps are introduced in this chapter.

The performance and scalability of the collision detection algorithm are validated and

presented in the experiments.

Chapter 4 investigates an MSPGA-based path planning algorithm for single-crane

lifting. The mathematical formulation of the single-crane lifting path planning problem

is discussed. The design of the GA-based path planner including the fitness function

and reproductive operators are introduced. This chapter also presents the ASV-based

10



Chapter 1. Introduction

continuous collision detection which handles the nonlinear motions of the crane and

the lifting target in single-crane lifting. The hybrid C-space strategy which helps to

reduce the planning time is also introduced in this chapter. Comparison between the

fitness function in [1] and proposed one is provided. Finally, the chapter discusses the

influence of parameter designs on the performance of the planner.

Chapter 5 presents the MSPGA-based path planner for dual-crane lifting. This

planner also applies the MSPGA framework and the hybrid C-space strategy intro-

duced in Chapter 4. However, contents in Chapter 5 focus on the unique problems

encountered in dual-crane lifting path planning which is totally different from the

single-crane scenario. This chapter firstly illustrates how the dual-crane lifting sys-

tem can be decomposed into two sub-systems. Then, the mathematical formulation of

the dual-crane lifting path planning problem is developed based on the kinematic and

physical analysis of these two sub-systems. This chapter also shows how the dual-crane

coordination constraints are formulated and incorporated into the fitness function and

the crossover operator using the LGP strategy. Moreover, It introduces the construc-

tions and applications of TSSs to handle the motion nonlinearity and uncertainty of

the lifting target. Finally, comparisons to two methods in [1] and [2] are presented to

show the effectiveness and efficiency of the proposed algorithm.

In Chapter 6, the design, implementation and applications of the lift planner cum

crane simulator are discussed. This chapter shows how the information of real in-

dustrial plants and sites can be captured, processed and imported into the system.

GPU parallelizations of the collision detection and the MSPGA-based path planning

algorithms are also presented in this chapter. An experiment in an industrial plant is

provided as a case study to validate the system.

Finally, Chapter 7 concludes the research by highlighting the achievements and

discussing the limitations. It also discusses possible future work to address these

limitations.

11



Chapter 2

Literature Review

2.1 Collision Detection

2.1.1 Introduction

Collision detection (CD), sometimes called intersection detection or interference detec-

tion, is widely used in many fields. Collision detection is a building block of physical

simulations, robotic motion planning and virtual reality and games. The collision de-

tection problem is to determine the interference between a set of objects represented as

geometric models. These objects can be either static or dynamic, possibly deforming

with time. Outputs of collision detection include boolean result indicating whether

two or more objects collide, the proximity between objects and the set of colliding

features. Often, for the purpose of calculating collision response, penetration depth

is also computed in the CD process. The collision of moving or deforming objects

can be handled in either a discrete or continuous way. Discrete Collision Detection

(DCD) typically considers the interference between objects at discrete time points,

while Continuous Collision Detection (CCD) handles the continuous motion of objects

during simulation time steps.

The popular game “Grand Theft Auto” (Figure 2.1) illustrates how heavily is

the collision detection process performed in virtual environments. In this game, the

character explores big cities represented as polygonal models. The scene contains

buildings, street lamps, and trees that comprise the static portion of the environment.

Many dynamic obstacles such as walking people, moving cars and bicycles also exist

in the scene. Collisions and the subsequent responses when encountering static or

12



Chapter 2. Literature Review

Figure 2.1: Scenes from the game “Grand Theft Auto”.

Figure 2.2: Two examples of physical simulation. Upper row: Hair simulation; Lower
row: Particle simulation.

dynamic obstacles are required to be computed accurately and interactively, which

contributes directly to the realism of the games.

Physical simulations have higher requirements of accuracy than games do. Serious

simulations demand accurate collision detection and responses which must be not only

visually acceptable but also scientifically accurate. High accuracy CD required in

physical simulations is computationally expensive and time-consuming [7]. Examples

of physical simulations include hair modeling [8], cloth simulations [9] and particle

simulations [10]. Figure 2.2 shows the snapshot captured from Nvidia’s simulation

demos [11, 12]. In the case of hair simulation, both hair-hair and hair-body interactions

need to be handled. The huge amount of hairs in a character result in millions of

tessellated triangles, bringing enormous challenges to the collision detection.

Figure 2.3 shows a robot “Robonaut” designed by NASA’s Johnson Space Center

in Houston, Texas [13]. When the robot is asked to conduct tasks such as grabbing,

holding, hand shaking and writing, it needs to recognize the shapes and locations of

the targets and obstacles. Interferences between the robot and these obstacles need

13



Chapter 2. Literature Review

Figure 2.3: The robot “Robonaut” is performing grabbing, holding, hand shaking and
writing.

to be handled efficiently in order to quickly plan applicable motion paths. For these

robotic motion planning applications, the complex nonlinear movements of the robots

pose challenges on the efficiency and accuracy of CD.

2.1.2 Collision detection for polygonal models

Polygonal models are widely used to represent agents, robots and environment objects

in virtual reality, physical simulations and robotic motion planning. The models may

vary from raw polygon soups containing no topology information to highly structured

representations like the winged-edge [14] and half-edge meshes [15]. This section re-

views prior studies on collision detection and continuous collision detection for 3D

polygonal meshes, especially triangular meshes.

Collision detection for polygonal meshes is conducted by detecting interference be-

tween primitives (triangles, edges and vertices). A naive and robust way is to consider

all possible pairs of triangles and check interferences between them. This direct ap-

proach is valid for a small amount of triangles. However, when shapes become complex,

this approach suffers from its O(n2) complexity. A commonly used strategy to improve

the efficiency is to divide the CD and CCD process into two phases: the broad phase

and the narrow phase [16].

The narrow phase of collision detection detects the interference within the Poten-

tial Colliding Sets (PCS). A classical way to test the interference between a pair of 3D

triangles is to consider the 6 elementary Edge-Face (VF) contacts [17]. In this method,

co-planar or degenerate cases are handled specially. For CCD cases where triangles

are conducting linear continuous motions between successive time steps, 15 elementary

tests including 6 Vertex-Face (VF) tests and 9 Edge-Edge (EE) tests are required [18].

14



Chapter 2. Literature Review

In this case, the proximity or collision tests can be handled by two steps: calculat-

ing the time when the features (vertices, edges and faces) become co-planar, which is

solved with cubic equations, and determining the planar distance between the features

at the co-planar time [19]. Another approach for narrow phase checking is to combine

the separating-axis test with convex decomposition. The separating-axis test projects

the triangles onto 11 separating axes taking into account the direction of the triangle

normals and Cartesian products of the edges. If non-intersecting intervals of the trian-

gles appear on any tested axes, the pair of triangles are regarded as separated. On the

other hand, if the projected intervals intersect for all the 11 axes, the pair of triangles

are surely colliding with each other. Similar concepts have been used to determine the

collision between Oriented Bounding Boxes (OBBs) [20] and Axis Aligned Bounding

Boxes (AABBs) [21]. In the narrow phase of CCD algorithms, Swept Volumes (SVs)

can be used to bound the space swept by primitives during continuous motions.

The major task of the broad phase is to produce the PCS which contains a reduced

number of primitives for narrow phase tests through culling distal or non-colliding

primitive pairs. Typical solutions include the Sweep and Prune methods [22], Spatial

Partitioning (SP) [23], and Bounding Volume Hierarchies (BVHs) [24]. In the Sweep

and Prune method introduced in [22], objects are projected onto a predefined sweeping

axis and coded as an interval [b, e]. The b and e values of projected objects can be then

sorted in an ascending manner. When sweeping through the axis, an object is marked

as active when encountering its b value and deactivated when leaving its e value.

Two objects are considered as potentially colliding if they appear in the active object

list at the same time. This technology can be naturally combined with the AABBs

by regarding them as three-dimensional intervals. The sorted list of intervals in the

three coordinate axes is maintained in order to prune non-colliding AABB pairs. This

method has been further developed into the I-COLLIDE system [25] which deals with

exact distance computation for multiple convex bodies and the V-COLLIDE system

[26] which aims to output binary object-level collision results for arbitrary-shaped

triangular models. These sweep and prune methods can achieve good performance

when the objects are evenly distributed, but the sorting performance may become

O(n2) when objects are clustered [17].

15



Chapter 2. Literature Review

Octrees [17] are one example of spatial partitioning hierarchies. The initial purpose

of designing octrees is to efficiently represent graphic data [27]. The use of octrees

in collision detection is introduced by Shaffer [23]. Differed from uniform spatial

partitioning, octrees exploit the idea of Level of Details (LOD) by dividing the space

into eight sub-spaces uniformly and recursively until meeting the termination criteria.

For example, the construction can be terminated when the numbers of primitives

contained in all leafs are smaller than a certain preset number. By maintaining an

octree, only objects or primitives in the same or neighboring nodes are required to be

tested. Octrees have been applied later to construct an Octree Distance Map (ODM)

in [28] for assisting motion planning. In their algorithm, pre-computed and float-coded

distances to obstacle nodes are stored in each node of the octree for later look-up in

the planning process.

Other spatial partitioning hierarchies include k-D trees and Binary Spatial Parti-

tioning (BSP) trees. A k-D tree recursively partitions the k-dimensional space into

half-spaces using hyperplanes whose normals are aligned with the coordinate axes.

Herzen et al. [29] have applied the k-D trees in subdividing parametric spaces and

have observed good culling performance on the time-dependent parametric surfaces.

The BSP trees can be regarded as a generation of the k-D trees where the partitioning

hyperplanes are allowed to have arbitrary orientations. Work of [30] has illustrated

how a self-customizing BSP tree can offer significant speedups by making use of tem-

poral coherence. The SP hierarchies can help to quickly localize the CD tests in static

or almost static situations. However, for dynamic environments, the mentioned SP

hierarchies suffer from the frequent reconstructions of the trees which can be quite

costly for complex environments.

Many studies make use of BVHs to perform the broad-phase culling. The Bounding

Volumes (BVs) are typically chosen as simple shapes such as spheres, AABBs, OBBs,

k-dops and convex hulls that are easy to represent and perform collision tests. These

hierarchies may contain a single type of BVs or combine multiple types of BVs. The

more complex the BVs are, the more time-consuming is the construction of the BVH-

s. The trade-off between simplicity and tightness of the BVs is important but often

problem-specific. For far-separating objects, simple BVs such as spheres and AABBs

16



Chapter 2. Literature Review

bring superior performance. However, for scenes with many closely distanced objects,

tighter BVs are more suitable [17]. [31] have shown how a BVH-based CCD algorithm

outperforms a BSP tree based one by using 4D bounding boxes for broad-phase culling

and sphere trees for approximate narrow-phase collision tests. A benchmark RAPID

system based on OBB hierarchies has been introduced and tested against AABBs by

[20]. The results have shown that the OBB trees perform specifically well in close

proximity situations. Recently, the OBB trees have been utilized by [32] to calculate

continuous penetration depth between two objects. Since the objects are already inter-

secting each other, the OBB trees can help to quickly localize the penetration position.

The potential benefits of using AABBs trees for complex and deforming objects has

been shown in the work of [21, 33] by comparing its performance with OBB trees on

several benchmark cases. This feature of AABB trees has been further exploited in [34]

where dynamic link-level AABB trees are constructed using Taylor models and used

to perform spatial culling for an articulated robot. This algorithm uses Conservative

Advancement (CA) for exact contact determination and investigates temporal culling

to further reduce the complexity of CCD. The k-dops (DOP for“Discrete Orientation

Polytope”) introduced by [35] targeted especially at dynamic objects and complex en-

vironments. A k-dop is a convex polytope whose faces have orientations chosen from a

fixed set of directions of size k. The performance is comparable to the RAPID system

[20] with its parameters carefully designed. For the purpose of CCD in [19], the k-dop

trees are used to bound the SVs of triangles and perform spatial culling. Lately, a

BVH using k-dops based on clustering of triangles has been developed in [36] to han-

dle the continuous self-collision detection of complex skeleton models. This method

has improved the classical k-dop trees by constructing a tree for each triangle cluster

corresponding to observation points and have shown comparable performance with the

ICCD method using connectivity-based culling [37].

A special family of BVs is the Sphere Swept Volumes (SSVs) introduced in [38].

The family of SSVs includes the Point Swept Spheres (PSSs) that are represented

as sets of spheres, the Line Swept Spheres (LSSs) that have capsule-like shapes and

the Rectangle Swept Spheres (RSSs) which are the shape swept by spheres along

3D rectangles. Interference checking of the SSVs is particularly simple since it can

17



Chapter 2. Literature Review

be reduced to the proximity computation between the core primitives (points, line

segments, and rectangles) and the obstacles. Larsen et al. [38] have illustrated the

use of SSV based BVHs containing single or multiple types of SSVs for broad-phase

culling. External Voronoi regions are utilized to perform the narrow-phase proximity

tests for the core rectangles. Work of [39] has illustrated how LSSs can be used as

narrow-phase SVs by combining them with dynamic AABB trees and OBB trees for

broad-phase culling. In the field of robotics, [40] has applied LSSs to bound the motion

of the skeleton links of robotic manipulators. A dynamic BVH consisting of LSSs is

constructed for the manipulator with the radii of the LSSs taking into account the

velocity bounds of the links. The results of [40] have indicated that the LSSs can offer

much tighter bound than spheres for the tested manipulator. Tight-fitting RSSs are

applied by [41] to conduct proximity calculations. Their algorithm has achieved fast

performance with the help of GPUs.

2.1.3 Parallel collision detection

The above-mentioned acceleration data structures can speed up CD and CCD ap-

plications significantly. However, when the objects and environments get large and

complex, it becomes more and more challenging to achieve real-time performance.

This limitation leads to the popularization of parallel collision detection algorithms

[7].

2.1.3.1 Collision detection on multi-core CPUs

The multi-core CPU based methods usually decompose the traversal, updating or

checking of BVH nodes into parallel tasks. The load balancing of the threads is

attempted by estimating the expected number of further expansions brought by ex-

panding the considered node or node pair. Thomaszewski et al. [9] have introduced

a dynamic task-parallel approach for multi-core collision detection. Their algorithm

takes advantage of temporal coherence by keeping track of the number of children for

each node in the BVH. Tasks are then dynamically assigned to parallel threads from

the shared task pool according to the number of children to be expanded. Similar

18



Chapter 2. Literature Review

to the idea in [9], Kim et al. [42] have made use of multi-core CPUs to perform B-

VH updates and traversals. Their algorithm decomposes the traversal of BVHs into

inter-CD task units in a way such that each of them accesses a different set of nodes.

These task units are then assigned to parallel CPU threads for processing. For CCD

of deformable objects, Tang et al. [43] has developed a MCCD system based on multi-

core CPUs. In their algorithm, load balancing is achieved by constructing a Bounding

Volume Traversal Tree (BVTT) and maintaining a BVTT front which records the

number of nodes that have been expanded at the locations where the traversal of the

branch terminated. A Front Based Decomposition (FBD) is then performed to assign

the fine-grained tasks to threads. The performance speed-ups obtained by these multi-

core CPU based algorithms are heavily dependent on how well balanced the loads are

on parallel threads. The load balancing is essentially influenced by the accuracy of the

load estimation hypothesis. These methods can perform well occasionally if temporal

coherence could be exploited. In other cases, they are easy to be trapped in bottlenecks

because of the difficulties to estimate the load distributions on BVHs.

2.1.3.2 Image-space collision detection

An alternative approach is the image-space collision detection which avoids the time-

consuming pre-processing such as constructing BVHs [44]. Image-space collision de-

tection usually takes advantage of the hardware accelerated graphic libraries such as

OpenGL and DirectX. The objects are rendered, and information such as depth and

visibility values are coded and stored in the GPU depth buffers, stencil buffers and

color buffers. Interference tests on pair-wise or multiple objects can thus be conducted

on the rendered images.

The idea of image-space collision detection has been introduced in [45]. The al-

gorithm proposed in [45] rasterized objects by sweeping scan lines. When an object

surface is encountered, their algorithm stores a depth value and a link to the original

object in the pixel. Intersection tests are then conducted on the sorted z-list on each

pixel. Collisions of objects are reported if overlaps of z-intervals are found. Later, a

hardware-accelerated image-space collision detection algorithm called REndered COl-

lision DEtection (RECODE) has been introduced by [46]. Their algorithm renders

19



Chapter 2. Literature Review

pair-wise convex objects on the Minimum Overlapping Region (MOR). Collisions are

determined by comparing the min-max values on the depth maps. Their results show

that the image-space system can outperform the I-COLLIDE system which uses SAT

and OBB trees to perform object-space collision detection in complex scenes. Hei-

delberger et al. [47] have introduced the use of Layered Depth Images (LDIs) as the

representation of the intersection volumes. In their algorithm, a Volume of Interest

(VOI) is firstly acquired through performing pairwise AABB intersection tests. Then

the two objects are rendered in directions restricted by the VOI. Two LDIs are thus

produced for each object with entry points and leaving points of the object recorded.

The actual collision detection is conducted by performing intersection tests on the

entry-leave pairs. This work has been extended into [48] by adding on face orienta-

tions in order to handle self-collisions. Research in [49] has further investigated the

LDIs by rasterizing the objects in the PCS on three orthogonal directions. The LDIs

are then used to analyze the repulsion forces on penetrating surfaces. Another group

of studies perform broad-phase culling using image-space approaches. The CULLIDE

system proposed in [50] employs OpenGL occlusion queries to obtain the PCS in the

broad phase. Serial exact primitive tests are conducted in the narrow phase. The

method has been further developed into the Quick-CULLIDE system [51] where intra-

object collision are handled by generalizing the formulation of PCS. The idea has also

been adapted to a CCD algorithm by [16]. In this case, the visibility queries are con-

ducted to cull non-colliding SVs of primitives. These image-space methods based on

graphic libraries are easy to implement, and their performances have been verified.

However, the first class of these algorithms performing narrow phase checks in the

image space requires reading back the images from the graphical hardware. These

read-backs, however, should be avoided due to the unsymmetrical design of the mem-

ory bandwidth between the CPU and GPU. The second class using occlusion queries

to perform broad-phase culling can be highly dependent on the choice of projection

directions. This restriction is similar to the sweep and prune methods.

2.1.3.3 GPU-based collision detection

GPUs are equipped with tremendous computational horsepower and high memory

bandwidths. They can bring significant speed-ups to various applications [52]. General

20



Chapter 2. Literature Review

Purpose GPUs (GPGPUs) are new generation GPUs aiming at handling more general,

complex and computational-intensive processing. GPGPUs provide a complete func-

tional set of operations working on arbitrary length data. A GPGPU contains several

Streaming Multiprocessors (SMs) which can run hundreds of threads concurrently.

The SMs are equipped with caches and control units shared by internal threads.

CUDA C [52] is a typical GPU accessing API designed by nVIDIA as an exten-

sion of the standard C language. It allows programmers to allocate GPU memories

and run kernels on parallel threads in a C/C++ style [52, 53]. Various accesses to

GPU memories are provided in CUDA C/C++. Global memory, constant memory

and texture memory lie in the global physical memory while shared memory resides

inside SMs. Local memory and register memory are only usable for the threads who

have allocated them. CUDA has a hierarchical thread structure which reflects the hi-

erarchical hardware architecture. Each launched kernel is handled by one thread grid.

The thread grid consists of an array or matrix of thread blocks and the blocks contain

similar matrices of threads.

The GPGPU architecture has been applied to speed up collision detection. Most

of them use GPUs to accelerate object-space algorithms. These investigations include

those using GPUs to perform parallel narrow-phase primitive tests. [39] has investi-

gated the use of GPUs on CCD of articulated robots. Their algorithm uses LSSs as

the SVs of the links and uses GPU to check the interference between the LSSs and the

environment in parallel. The HPCCD (short for Hybrid Parallel Continuous Collision

Detection) system introduced in [42] uses GPUs to perform elementary tests for poten-

tially intersecting triangles remained from the BVH-based culling. Other algorithms

apply GPUs in both phases. The research in [54] has shown how GPUs can be used

both to traverse AABB trees and conduct primitive tests through occlusion queries.

Their algorithm applies breath-first traversal on the AABB trees by constructing a 2D

node pair index map. Task decomposition of the node pair index map is obtained by

maintaining an overlap count map accumulating the number of expanded nodes. The

method in [41] conducts parallel BVH construction, updating and traversal in GPUs

to perform proximity computation. Their algorithm also uses GPUs to conduct the

complex elementary tests between the tight-fitting RSSs and OBBs. Recently, GPUs

21



Chapter 2. Literature Review

have been utilized to perform parallel collision detection for motion planning of high

DOF robots [55]. GPU parallelization is applied in both the traversal of BVTTs and

the collision test of the BVs. Their algorithm uses a clustering scheme to improve the

coherence of the parallel traversal of BVTTs. The advantage of using GPUs against

multi-core CPUs have been proven by previous studies. For example, the GPU im-

plementation of the k-D tree based algorithm in [56] have shown significant speedup

compared to that on multi-core CPUs. The investigation in [57] has also demonstrated

that the GPU-based object-space algorithm with deferred front tracking outperforms

their previous one [43] using multi-core CPUs.

2.1.4 Discussions

Serial object-space collision detection algorithms handle simple scenes efficiently by ap-

plying BVHs and SP hierarchies. However, the construction, updating and traversal

of these acceleration data structures become costly in complex environments. Paral-

lel collision detection speeds up these algorithms with multi-core CPUs and GPUs.

However, the task decomposition and load balancing for these complex tree structures

might be difficult for many occasions. Therefore, this research investigates GPU-based

image-space collision detection and optimizes the procedures and data structures for

the hierarchical CUDA architecture.

2.2 Genetic Algorithms

GAs are a set of evolutionary search algorithms targeting at global optimization. GAs

are widely used in complex optimization problems such as scheduling and path plan-

ning. They offer a basis for the path planning algorithms proposed in this thesis. This

section introduces fundamental ideas, designs and variations of GA.

2.2.1 Basic theory

The idea of GA has been first put forward by John Henry Holland in the 1960s. In the

book “Adaptation in Natural and Artificial Systems”, Holland has described GA as

a computational abstraction of Darwinian biological evolution [58, 59]. He has intro-

duced a simple mathematical model for GAs consisting of the following components:

22



Chapter 2. Literature Review

(i) α = A1, A2, A3, . . .: The set of possible solutions.

(ii) Ω = ω1, ω2, ω3, . . .: The set of adaptive operators which maps into a probability

distribution over α.

(iii) I: Set of inputs from the environment to the adaptive system.

(iv) τ = α×I → Ω: The adaptive plan doing operation selection based on the inputs

and the current solution set.

The adaptive plan is conducted in discrete time steps. With the time step param-

eter denoted as t, Holland has proposed the abstraction of the GA process as:

τ(α(t), I(t)) = ωt(α(t)) ∈ Ω, ωt(α(t)) = δ(t+ 1) (2.1)

Where δ(t+ 1) denotes the probability distribution over α according to which α(t)

is sampled and produces α(t+ 1).

He has then illustrated adaptive optimization plans in six different domains: genet-

ics, economics, game playing, pattern recognition, control and function optimization

and central nervous systems. As a conclusion, he has suggested a similar set of pa-

rameters for all the problems:

(i) α: The domain of possible solutions represented in problem-specific ways.

(ii) Ω: The reproductive operators.

(iii) T : The reproductive plans scheduling application of operators.

(iv) ε: The evaluation functions for solutions.

(v) X: A ranking of plans in T .

A formal format of GA can be given with the following standard components:

(i) Chromosomes: Genetic representation of solutions. The chromosomes can either

have fixed or variable length

23



Chapter 2. Literature Review

Table 2.1: Crossover strategies.

Strategies Descriptions
One point crossover [60] Split each chromosome into two sub-ones and exchange

between parents
Two point crossover [61] Split into three sub-ones and exchange the middle por-

tions
Uniform crossover [62] For each bit or element in the chromosome, randomly

choose to inherit from its mother or father
Arithmetic crossover [63] Conduct arithmetic calculations between parent genes to

obtain the child gene

(ii) Genes: Basic components of a chromosome. The genes can be organized in

different ways such as linear arrays, trees and so on.

(iii) Population: The set of chromosomes. A GA may contain one or multiple popu-

lations.

(iv) Generations: Discrete time steps or the populations associated with time steps.

(v) Crossover: Recombination operators.

(vi) Mutation: Reproduction operators which alter the chromosomes randomly.

(vii) Fitness function: Evaluation criteria for chromosomes.

(viii) Selection: Selecting chromosomes to perform reproductions.

Among those notations, selection, crossover and mutation are usually called ge-

netic operators. There are many designs for each genetic operator. Variations of the

crossover operator include one-point, two-point, multi-point, parameter-based strate-

gies and so on. For mutation, common strategies include single-point, multi-point and

parameter-based mutations. Both the crossover and mutation operators are conducted

under certain possibilities which may vary adaptively during the evolution process.

Table 2.1 and Figure 2.4 show some common crossover operators. The simplest

crossover strategy is selecting one of the parents according to certain criteria and

directly copying it into the off-spring. This strategy may cause a total loss of the

24



Chapter 2. Literature Review

Figure 2.4: Different crossover strategies: (a) One-point crossover; (b) Two-point
crossover; (c) Direct selection from parents; (d) Parameter based crossover.

information from one of the parents and thus is not commonly used. One-point or

multi-point crossover exchange sub-strings from parents and combine them into new

offspring. In parameter based crossover or bitwise crossover, bitwise arithmetic calcu-

lations on parent genes are conducted for each gene in offspring. When dealing with

specific problems, the crossover strategy should be carefully chosen to ensure that the

operator reserves and combines important features from parents.

GAs have been used in solving the Traveling Salesman Problem(TSP) [64] which

considers the shortest path problem in a graph of cities to be traveled by a salesman.

In a TSP problem, solutions are represented as permutations of IDs indicating different

cities. The crossover strategies involved in the TSP problem are called “permutation

crossover” operators. There are mainly three typical types of permutation crossover

operators: Partial Mapped Crossover (PMX), Ordered Crossover (OX) and Cycle

Crossover (CX) [65]. Figure 2.5 illustrates the mechanisms of PMX [65] and OX

discussed in Hamidinia’s work [66].

Instead of taking two parents to produce offspring, mutation operators directly

alter independent chromosomes. Figure 2.6 shows two typical mutation strategies:

single-point and multi-point mutations [59].

25



Chapter 2. Literature Review

Figure 2.5: Two permutation crossover operators: (a) Ordered crossover; (b) Partially
mapped crossover.

Figure 2.6: Two mutation strategies: (a) One point “flip bit” mutation; (b) Two point
“flip bit” mutation.

The process of applying fitness function on chromosomes (strings) is called fitness

evaluation. Fitness functions are highly problem-specific. However, there are some

common classifications such as adaptive (improving with time) and non-adaptive, s-

caled (by scaling functions) and non-scaled. Among various fitness functions, several of

them are selected as benchmarks for testing GA designs as general function optimizers

[62].

2.2.2 Simple genetic algorithm

A SGA is a GA with the following features [60, 67]:

(i) The genes are binary bits

(ii) Use linear chromosomes with a fixed length

(iii) Follow the simple GA procedure (Figure 2.7)

26



Chapter 2. Literature Review

Figure 2.7: Standard procedure of simple genetic algorithm.

There exist a variety of selection strategies. Typical selection criteria are listed in

Table 2.2.

When all the reproduction and selection strategies are determined, an additional

step for designing SGA is to decide the termination criteria. Proper termination

criteria can save processing time of GA in the sense of preventing unnecessary iteration

runs after the desired goal has been achieved. Common termination criteria [73, 74]

are listed below:

(i) When achieving a certain number of improvements;

(ii) When the average quality of the population has not been improved for a certain

number of generations;

(iii) When reaching some predefined fitness value;

27



Chapter 2. Literature Review

Table 2.2: Commonly used selection strategies and their descriptions.

Strategies Descriptions
Roulette wheel selection Probability of each chromosome to be selected is pro-

portional to its fitness value
Rank selection [68, 69] Probability of chromosomes to be chosen is propor-

tional to the rank
Steady-state selection [70] Only select a few of chromosomes to produce off-

spring. Replace the worst ones with the new chromo-
somes. Most chromosomes survive to the next gener-
ation

Elitism [71] Copying the best chromosomes directly into the next
generation.

Tournament selection [60] Selecting crossover parents through tournaments be-
tween a randomly selected fixed-size group

Reward-based selection [72] Chance of strings being selected for crossover is pro-
portional to the fitness that the individual have accu-
mulated and inherited from its parents

(iv) When all the individuals are identical (in genetic drift cases);

The first strategy is the simplest and most commonly used one. The second one

may easily lead to termination in local minima. The third one can be more effective,

but since the fitness value of global optimum can not be predicted in most occasions,

the design of the termination fitness is tricky.

New genetic operators like migration, inversion, fitness sharing and mating restric-

tion may also be used for some particular cases. Migration is a part of multi-deme

parallel GA, which helps the sub-populations to escape from local optima. Inversions

are mainly used in messy GAs. The fitness sharing [75] operation can alternatively be

added to the GA scheme to encourage niching in landscape peaks. Mating restrictions

[76] are required for scenarios when mating between strings with large difference brings

lethal to the population.

2.2.3 Parallel genetic algorithms

Most execution time of GA is usually taken by the fitness evaluation process. This pro-

cess if performed on a population with fixed size and consisting of uniform-structured

28



Chapter 2. Literature Review

chromosomes, however, can be parallelized by decomposing the tasks of evaluating

independent strings. Other operations like crossover and mutations also have simi-

lar parallel features at the chromosome level. Thus, SGAs are naturally suitable for

parallelization.

This feature of GAs leads to the design of Master Slave Parallel GAs (MSPGAs)

which are parallel versions of serial SGAs. In an MSPGA, the host processor is re-

sponsible for the flow control and tasks are decomposed and assigned to the slave

processors to be performed parallelly. Ismail and Ali [77] have implemented MSPGA

with MPI and have observed a prominent speedup due to parallelization. Zhao and

Man [78] have applied MSPGA in optimizing reactive powers in power systems and

have reported better results than other approaches.

Another type of parallel GAs are called multi-population GAs or multi-deme GAs

[79, 80]. This type of PGA divides the population into several sub-populations and

makes each sub-population evolve independently. Multi-population PGA introduces

a new operator into the GA family called migration. The main idea of migration

is to exchange individuals between connected sub-populations with some possibility

for each given or adaptively chosen time step. The effect of the migration operators

and the efficiency of multi-deme PGA have been investigated by many researchers. It

has been shown that the migration operators can break the trap at local optima and

bring new driving force to the convergence of sub-populations. With careful parameter

designs, multi-deme PGA can obtain population quality as good as serial GA with a

faster speed.

Apart from the course-grained multi-deme PGA, fine-grained GAs are also a pop-

ular category of PGAs. A fine-grained PGA assigns each parallel processor a single

chromosome and constrains the communication within neighborhoods. Fine-grained

PGA shows a slower propagation of new schemas through the population due to the

lack of global accessibility. However, a significant decrease in execution time can also

be expected. Fine-grained PGAs may compromise solution qualities, but have good

computational performances [81, 82].

29



Chapter 2. Literature Review

2.2.4 Discussions

GAs have superior optimization capabilities even for difficult optimization problem-

s. Parallel GAs improve the efficiency of traditional GAs by parallelizing them in

various ways. Among these algorithms, multi-deme PGAs exploit coarse-grained par-

allelizations. Although they have improved the search ability of standard GAs, the

computational efficiency has been sacrificed. Fine-grained PGAs are highly suitable

for massive parallelizations. However, the convergences of fine-grained PGAs are s-

low due to the lack of global communications in the population. Therefore, MSPGAs

which maintain the global optimality of SGAs are chosen and customized to perform

path planning in this research. When massively parallelized in GPUs, MSPGAs can

produce highly optimized solutions with excellent efficiency.

2.3 Robotic Path Planning

The concept of motion planning comes from the classic piano mover’s problem [3]

which requires a piano to be moved between rooms without hitting the ground, stairs

or furniture. Motion planning takes inputs like the geometric representations of the

agents and environments and outputs paths or trajectories which the agents can follow

to travel from the initial states to the desired goal states.

In robotic motion planning, the collection of all configurations (a complete set of

independent parameters in the robot) is called the configuration space (C-space in

short) of the robot. A path P = ci is a collection of configuration in the C-space of

the robot while a trajectory also encodes dynamic information such as velocities and

angular velocities. The term path planning represents queries aiming to generate paths

without considerations of dynamics and a trajectory planning problem is to output

trajectories with dynamic information. This section reviews existing path planning

algorithms that either produce feasible paths meeting hard constraints such as collision

avoidance and DOF limits or optimal paths evaluated under optimality criteria like

motion, time and energy costs.

30



Chapter 2. Literature Review

2.3.1 Discrete search based path planning

Early path planning algorithms adopt concepts from graph search algorithms and

perform incremental searches on discretized workspaces. A classic example of these

spaces is the map of cities with transportation costs between cities precisely known.

In this case, the path planning problem aims to find the shortest path in the graph for

traveling from a start node to an end node. The workspaces can also be represented

as grids or lattices. A uniform grid or lattice in 2D is equivalent to a graph where each

internal node is connected to four or eight neighboring nodes.

Dijkstra’s algorithm [83] is a classical algorithm for optimal path planning in graphs

or grids. This method propagates from the start node to the goal node by expanding

already explored nodes. The algorithm maintains a list of nodes already explored (set

A), a list of candidate nodes for expansion (set B) and a list of rejected or unexplored

nodes (set C). For each iteration, the node from set B with minimum traveling distance

from the start node is chosen to be expanded, and its neighbors are added to set B. The

original node is then moved to set A. Dijkstra’s algorithm tries to minimize the cost-

to-come (cost to travel from the start node to the current position) for expanded nodes

and is guaranteed to find optimal paths. Unlike Dijkstra’s algorithm which explores

the workspace uniformly, the A* algorithm (A* in short) [84] tries to use heuristics

(domain knowledge) to guide the search and optimizes the number of node expansions.

A* maintains an open list and a closed list. The open list is sorted according to a

heuristic function f(n) = g(n) + h(n) where g(n) defines the cost-to-come and h(n)

represents a lower bound estimation of the cost-to-go (cost to reach the goal node from

the current node). By defining an ideal h(n), the ideal A* defined by [84] has been

proven to expand fewer nodes than other admissible heuristic searches. However, when

h(n) overestimates the cost-to-go, A* might be trapped into local optimums.

[85] has conducted a comparison on the optimization performance of A* and the

Dijkstra’s algorithm. The two algorithms and a GA have been used to conduct multi-

objective planning tasks using the weighted sum of the objective values to guide the

search in a 2D grid represented environment. The results have shown that A* and

the Dijkstra’s algorithm have similar performance in finding short paths but can be

easily trapped into local optima for other objectives. In this case, the Dijkstra’s

31



Chapter 2. Literature Review

algorithms can provide better solutions. Kala et al. [86] have applied A*, together

with a GA and an Artificial Neural Network (ANN), in path planning within a 2D

grid containing moving objects. With re-planning conducted after each step of motion,

A* has generated near optimal paths for a point-shaped robot. The algorithm in [87]

has applied A* for high-level path planning in a probability based map. Each node

in the map contains a possibility of collision estimated using the number of objects

in the node. A* is then performed to optimize the cost function which measures the

motion distance and collision probability of the path. The detailed low-level path

determination is conducted using fuzzy rules considering non-holonomic constraints.

Their algorithm has improved the path smoothness of A* and its scalability to higher

resolution maps.

To handle environments that are unknown, partially-known or those containing

dynamic objects, the A* algorithm has been extended to D* [88], Lifelong Planning A*

(LPA*) [89] and D* Lite [90]. D* [88] also maintains an open list like A*. The search

starts from the goal position. D* captures the overestimation and underestimation

of the cost-to-go for newly explored nodes. These inconsistencies of the cost may be

brought by newly found shortcuts or obstacles. When the node about to be expanded

has reduced the cost-to-go due to the state update of the map, its neighbors are added

to the open list, and the lower costs are propagated to them. For nodes whose cost-to-

go have increased after updating the map, D* tends to find alternative shorter ways

through its neighbors. If the cost is not able to be recovered, the increase will be

propagated to the neighbors. For some cases, closed nodes are also required to be

reopened in D*. The LPA* algorithm (LPA* in short) [89] aims to deal with static

environments which are not precisely known. Similar to A*, it uses the estimated

length of the full path (by summing up the cost-to-come and estimated cost-to-go) to

sort the open list. However, LPA* also monitors the consistency of the cost-to-come

for newly explored nodes. It only opens inconsistent nodes along the original path. If

the old cost-to-come of a node obtained in the initial planning state is larger than the

updated value, the cost is updated, and the successors of the node are added to the

open list. For nodes whose updated cost-to-come have increased from the old values,

the node itself remains in the open list to be expanded in the future. Instead, LPA*

32



Chapter 2. Literature Review

reopens its successors and recalculates the paths for them. LPA* is not able to handle

changing environments at traveling since it does not take care of changes in unexplored

areas. The D* Lite algorithm (D* Lite in short) is developed from LPA* to handle

re-planning in dynamic environments. In D* Lite, if a node u causes increased key

value in the path, its expansion is denied. In other occasions, if the cost-to-go has

decreased for u, its predictors are updated and inserted into the open list. Otherwise,

D* Lite opens u and its predictors and calculates shorter alternative paths for them.

Different from D* who sorts the open list using cost-to-go alone, D* Lite optimizes

the accumulated length of the whole path.

2.3.2 Sampling-based path planning

Sampling-based path planning algorithms build trees or roadmaps by generating dense

incremental sampling sequences. The tree-based searches are performed similarly as

the discrete searches except for the new nodes are randomly sampled points instead of

unexplored grid or graph neighbors. Sampling-based methods are especially suitable

for high-DOF problems since fewer vertices or nodes are used. Popular sampling-based

methods include randomized potential fields [91], Probabilistic Roadmaps (PRMs) [92]

and Rapidly-exploring Random Trees (RRTs) [93].

The randomized potential field algorithm [91, 94] is one of the earliest sampling-

based methods. It improves the original potential field methods which have been

applied in guiding the navigation of vehicles [95] and robots [96] in 2D spaces. This

algorithm assigns a potential function that combines the attractive forces to the goal

and repulsion from the obstacles for each node in the grid. Expansions of the tree

try to minimize the potential function that is equivalent to the cost-to-go in many

cases. Therefore, the randomized potential field method propagates in a greedy and

depth-first manner. When the tree is trapped in local optima, a random walk process

is conducted for escaping. The algorithm in [97] uses a heuristic search instead of

random walk to help the randomized potential field jump out of local optima.

The PRM method (PRM in short) [92, 98] targets at multi-query problems. PRM

constructs a roadmap that can be easily reached from any start or end locations in the

pre-processing stage. In this construction process, collision-free sampling points are

33



Chapter 2. Literature Review

inserted into the roadmap and be connected with its nearest neighbors in the roadmap

using local planners. Sampled points which do not help to reduce the number of dis-

connected sub-graphs in the roadmap are ignored. The last ignoring step is eliminated

in the simple PRM method (sPRM). As the sampling goes on, the resolution of the

roadmap is reduced, and the roadmap gets closer to random start and goal positions.

PRM then apply discrete search algorithms to find the shortest path in the roadmap

in the query phase. With much fewer nodes used to construct the roadmap, PRM

is much more effective than discrete search based methods like A* in exploring high-

dimensional spaces. PRMs have been proven to be probabilistically complete [98] in

terms of the failure rates decrease to zero when the iterations go on. The sPRM has

also been proven to be asymptotic optimal. That is, the cost of the found solution con-

verges to the optimal cost with probability 1 when the number of samples increases to

infinity [99]. However, the roadmap constructed by the sPRMs are usually too large

to be handled efficiently, especially for large or high dimensional workspaces. [100]

has further studied the behavior of PRMs. They have stated that the performance of

PRMs relies critically on the visibility properties of the search space. Problems con-

taining narrow passages can be the main bottleneck of the standard PRM. To reduce

the computational complexity of PRMs, Bohlin and Kavraki [101] have developed a

lazy PRM algorithm. It initially constructs a roadmap without collision information,

and delays the checks into the query phase when searching for optimal paths. Collid-

ing nodes found in the focused optimal path are removed from the roadmap and new

paths are considered until a collision-free optimal path is found in the roadmap. The

lazy PRM has been proven to be still probabilistic complete. Fuzzy PRM [102] is an

alternative approach to reduce the number of collision tests. The fuzzy PRM avoid-

s collision detection of edges in the initial construction of the roadmap. Instead, it

assigns the estimated probability of collision to the connections, and used these prob-

abilities to guide the selection of paths and the scheduling of collision tests. Later,

a bi-directional single-query variation of PRMs has combined the collision detection

strategies in [101, 102] to develop a SBL planner (short for Single-query, Bi-directional,

Lazy collision-checking planner) [103]. The SBL planner maintains two trees from the

initial and goal positions respectively. New points are sampled near sparse areas of

34



Chapter 2. Literature Review

the trees and connected to the expanded node. The other tree then tries to connect

with the new vertex if it lies within the neighborhood of the tree. By delaying collision

detection, the algorithm has been shown to be very efficient in solving multi-robot

problems with many DOFs. Denny et al. [104] have borrowed this lazy collision detec-

tion strategy to develop a lazy toggle PRM for single-query purpose. The lazy toggle

PRM maintains two graphs: a free graph Gfree and obstacle graph Gobs. Initially,

Gfree performs lazy connects to newly sampled points. When the initial and goal n-

odes are connected, the feasibility of the paths are checked and invalid nodes and edges

are culled from Gfree and inserted into Gobs (witness points are considered for invalid

edges). Gobs then tries to connect with these new vertices in a non-lazy manner. If

two vertices are not able to be connected in Gobs, the witness in Cfree along the path

is used to augment Gfree. The results have shown that the lazy toggle PRM reduces

the number of CD calls for several scenarios and maintains the ability to find feasible

paths through narrow tunnels from the original toggle PRM. Other trials include the

PRM* algorithm [99] developed by Karaman et al. by extending the sPRM method.

The PRM* applies adaptive ball radii when choosing nearby vertices to be connected

with newly sampled points. This adaptive strategy decreases the ball radius when

the number of vertices in the graph have increased, by which the PRM* reduces the

number of connection attempts compared to the original sPRM. PRM* reduces the

O(n2) complexity of sPRM to O(nlog(n)). The efficiency of PRM* has been further

improved in [105] by applying graph spanners to reduce the density of the roadmaps.

This algorithm has relaxed the optimality of PRM* and can guarantee convergence to

near optimal solutions.

The RRT method ( RRT in short) [93] maintains a dense tree expanding from

the start position to newly sampled points. RRT expands the position nearest to the

sampled collision-free point found in the tree and constructs an edge to connect them

using a local planner. In this way, RRT explores Cfree in a fractal style. Possible

connections to the goal position are attempted periodically. The search terminates if

the goal is reached. The bi-directional RRT approach (bi-directional RRTs in short)

[106] has improved the capability of RRTs to escape from traps. Bi-directional RRTs

maintains two trees from the start and end position and extends the trees alternatively.

35



Chapter 2. Literature Review

When one of the trees expands towards a newly sampled point, the other tree tries to

approach the same point. As proven by Karaman et al. [98], standard RRTs always

converge to sub-optimal solutions. Thus, [107] and [99] introduce a revised version

called RRT* which is asymptotic optimal. RRT* first steers the sampled point to the

nearest position in the tree and then inserts the steered point as a vertex if it can reach

the tree. Afterward, RRT* considers the k-nearest vertices in the tree and selects the

one with the minimum cost-to-come to connect with the new vertex. Parents of the

remaining vertices are also revised if the new vertex can offer shorter paths towards

them. Many improvements of RRTs have been proposed recently. The algorithm in

[108] has performed RRT* in an anytime style. The vector field RRT [109] optimizes

the upstream criteria of expansion directions. RRTX [110] refines the path during

navigation and repairs its optimal sub-tree when changes happen in the scene.

2.3.3 GA-based path planning

Genetic algorithms are capable of solving complex optimization problems. In the field

of robotic path planning, GAs are mainly applied in 2D and 3D navigation guidance

in both discrete and continuous spaces.

Many such algorithms use discrete search spaces. The algorithm in [111] uses a GA

with variable length chromosomes to search in simple environments represented as 2D

grids. It assigns damping coefficients to the grid nodes such that obstacle nodes have

positive values and free nodes have negative ones. The fitness function of the GA then

optimizes the damping coefficients and distances traveled by the path. Their algorithm

has shown effectiveness in both static and dynamic environments. The algorithm in

[112] performs binary-coded GA searches in an existing graph with nodes and edges in

Cfree. In this algorithm, the chromosome length is chosen as a function of the number

of obstacles in the map based on their observation on the test case. Chung et al. [113]

have applied GA in solving TSP in a 3-D grid space. The chromosome length is chosen

to be the number of checkpoints. This work has proposed an operator recombining

the elite chromosomes in a greedy manner to improve the efficiency of GA for feasible

path planning. The work of [114] applies a real-coded GA to search in a coarse-

grained graph generated from 2D grids using Dijkstra’s algorithm. The algorithm

36



Chapter 2. Literature Review

has achieved similar optimality with better computational performance compared to

the original Dijkstra’s algorithm. Tuncer et al. [115] have used a decimal-coded GA

to search in 2D grids. The GA assigns penalties to infeasible paths and optimizes

the total distance of feasible paths. They have also proposed a mutation operator to

perform local optimizations. For each gene subject to mutation, the operator selects

neighboring free nodes which can reduce the cost of the candidate most to replace the

original one.

For continuous search spaces, Tian et al. [116] have applied a binary-coded GA

for reverse kinematics path planning to optimize interior points on a 2D polynomial

constructed by Hermite cubic interpolations. The problem considered in [116] includes

a two-DOF line-shaped robot and several point-shaped obstacles. The results have

shown that GA is effective in optimizing joint rotation angles. Shi et al. [117] have also

performed GA searches in a continuous 2D space. Their algorithm uses the direction

from the initial point to goal point as the z-axis. It distributes via points uniformly

on the selected x-direction and regards their y-values as genes. Their fitness function

considers path distances, smoothness and security factors. The research in [118] applies

GA to optimize the control points of a 2D B-spline using variable length chromosomes.

Cakir et al. [119] have utilized a GA with tournament selection mechanism to guide

the 2D navigation of Unmanned Aerial Vehicles (UAVs). The algorithm considers

UAV navigation as a continuous version of the TSP problem. [120] has also addressed

the UAV navigation problem. Their algorithm uses a real-coded multi-population GA

to optimize initial paths generated by a greedy heuristic search.

2.3.4 Discussions

Discrete search based path planning algorithms are efficient especially in 2D graphs

and grids when dealing with point-shaped or rigid robots. However, when extending

to problems with more DOFs like articulated robots, the sizes of the discretized search

spaces of these algorithms increase exponentially with the number of DOFs. Therefore,

these algorithms can be extremely inefficient for high-DOF problems. Sampling-based

path planning algorithms have solved the above-mentioned problem by avoiding explic-

it representation of the C-space of robots. However, most sampling-based algorithms

37



Chapter 2. Literature Review

only provide feasible solutions. Some of them have achieved asymptotic optimality

which ensures to find optimal solutions when the sampling goes on. However, refining

the samples leads to increased numbers of vertices in trees or graphs. Thus, due to the

memory space limitations, the sampling-based methods are usually used for feasible

or near-optimal path planning instead of optimal path planning.

GA-based path planning algorithms can generate higher-quality paths than other

types of methods discussed. However, prior explorations on GA-based path planning

are mostly restrained within 3 DOFs. Moreover, multi-robot problems have seldom

been investigated in previous GA-based algorithms. Part of the reason is due to the

exponential size increase of search spaces in higher-DOF problems. Therefore, the

GAs may require much more iterations to converge, leading to significant increases in

the computation time.

This research explores the superior optimization ability of GA compared to the

sampling-based algorithms and, in the meantime, improve the convergence speed and

computational performance of GAs for higher DOF-problems.

2.4 Lifting Path Planning

2.4.1 Computer-aided heavy lift planning

Heavy lift planning is an important task in many industries. During occasions like

maintenance shutdown and turnaround of industrial sites, hundreds of heavy lifting

tasks are required to be conducted within a short time. CALP systems make use of

computer simulations and intelligent computations to assist the lift planning process.

Early efforts on CALP focus on developing simulation systems to help in automat-

ing common practices in interactive lift planning. Hornaday et al. [121] have proposed

the their conceptual design of the HeLPS (short for Heavy-Lift Planning System)

framework. Lin and Haas [122] have continued the work and have designed a system

being able to perform initial setup planning for cranes and performance measurements

for user-defined paths. Varghese et al. [123] have extended the HeLPS system by

monitoring safety factors during interactions. Chadalavada and Varghese [124] have

developed their CLPS (short for Critical Lift Planning System) prototype as a plug-in

38



Chapter 2. Literature Review

for the Autodesk Inventor. Their solution enables plant modeling, interactive manip-

ulation, and comprehensive safety monitoring.

Other studies address one or several sub-problems of lifting planning such as crane

selection, feasibility checking, and crane layout. Determination of crane locations has

been described and attempted as an optimization problem in the work of [125–128].

Olearczyk et al. [128] have discussed the crane selection and positioning problem

concerning lifting capacities and clearances. Their algorithm solves the crane location

determination problem by optimizing weighted distances from crane locations to pick

& place locations of the lifting targets constrained by clearances of tail swing, boom

and outriggers. Lei et al. [126] has also suggested a feasibility checking method for

lifting paths by mapping the pick and place areas into the configuration space (C-

space) and testing against the obstacle regions (C-obstacle). Another research of Lei

et al. [127] has discussed the feasibility checking for crawler cranes walking towards

distal place locations. Similar to Safouhi’s idea in [125], Lei’s method dilates the

obstacle regions by the size of the lifting target and the tail-swing radius of the crane.

Lei’s method is able to provide walking paths of crawler cranes as 2D lines with no

interference between the dilated obstacles. Sometimes, multiple cranes are required

to work together. The algorithm in [129] addresses the multiple tower crane layout

problem in construction sites. A hybrid particle bee algorithm is applied to solve the

layout problem.

2.4.2 Path planning for single-crane lifting

So far, in all studies and existing systems, automatic lifting path planning has been

attempted mostly at the theoretical level with rare implementation reported for prac-

tical uses. This is partially caused by that the problem itself is very challenging due to

the complexity of plant environments and cranes. The three major concerns of lifting

path planning are efficiency, solution quality and success rate. The existing methods

use combinations of different search algorithms and collision detection strategies to

fulfill the above-mentioned criteria. The first class of methods utilize global optimiza-

tion search algorithms to achieve high solution qualities. These algorithms are usually

combined with pre-computed free spaces. Sivakumar et al. [130] have considered the

39



Chapter 2. Literature Review

simplified representations of cranes as planar kinematic chains with two rotational D-

OFs. SGA is performed on the 2D C-space where pre-computed collision results are

imported into the fitness function as violation penalties. Ali et al. [1] have applied

a two-stage serial GA to search in pre-calculated C-spaces. Both of the GA-based

methods are able to achieve highly optimized solutions. However, these methods are

impractical due to the computationally intensive nature of GA. Ali’s method also suf-

fers from the high computational cost of generating the 3D C-space. As a result, the

methods only managed to deal with simple CAD plants.

The second class of methods also rely on pre-computed collision information. In-

stead of using the global optimization algorithms, this class of methods use fast search

algorithms for finding good but not necessarily optimal collision-free lifting paths. A-

mong these algorithms, some also rely on pre-calculated C-spaces to improve the run-

time efficiency. The method by Reddy and Varghese [131] represents cranes as linked

rigid bodies with three DOFs (swinging, luffing and hoisting). A heuristic depth-first

search is performed in the free space. Given a simple CAD plant environment, their

planner is able to achieve good solutions as arrays of independent configurations. Their

algorithm, however, still requires the substantial time and memory to generate the 3D

free space. Chang et al. [2] have used a PRM to generate paths for swinging and

luffing in a pre-calculated 2D C-space. The 2D C-space stores the maximum and min-

imum hoist heights allowed for each pair of swinging and luffing angles. Rule-based

hoisting planning are then conducted on the output path by the previous stage. Their

algorithm are able to achieve near real-time solution in simple environments. How-

ever, the optimality of the paths cannot be guaranteed since the problem has been

decomposed. The algorithm in [132] constrains the movement of the lifting target into

a single horizontal plane to improve the efficiency of planning. A* search is conducted

in the pre-computed 2D ray-arc intersection map. Their algorithm has the problem

overly constrained and thus can only produce sub-optimal paths. Other methods do

not rely on the pre-computed free space. Instead, collision detection is performed on

the fly during the search (which is referred to as “online collision detection” in this

thesis). This online collision check strategy is less affected by the number of DOFs

and thus can be efficiently extended to high-DOF cranes. Kang et al. [133] have used

40



Chapter 2. Literature Review

bounding spheres to perform online collision detection and CCD for a bi-directional

expanding trees in order to solve the lifting path planning problem for tower cranes.

Their algorithm involves three sub-phases: path planning for the end effector (lifting

target), crane trajectory coordination and trajectory smoothing. This feasible plan-

ning algorithm is efficient. But the success rate is restricted due to the overestimated

proximity information. The research in [134] has addressed the lifting path planning

problem for 7-DOF crawler cranes. The algorithm have utilized a bi-directional RRT

and reported reasonable planning time. However, it tends to produce zigzagged paths

when most of the DOFs are enabled.

2.4.3 Path planning for dual-crane lifting

Simulation and planning of dual-crane lifting are much more complex than that of

single-crane lifting. The automatic path planning of cooperative dual-crane lifting

is performed within a known static environment and aims to optimize the motion

cost of the dual-crane lifting paths. This problem possesses a highly multi-objective

nature due to the multiple constraints involved such as collision avoidance (geometric

constraints), crane cooperation (kinematic constraints) and equilibrium of the lifting

target (physical constraints).

Different from normal robotic arms or articulated robots, the dual-crane system can

be regarded as a cable-driven robot [135] with the lifting target as the end effector.

Most discussions on cable-driven robots are on their control and stability analysis

[136–138]. It is more challenging performing automatic path planning for these type

of robots. In particular, for the dual-crane lifting problem, the cranes, the lifting

target, and the ground form a looped kinematic tree. Determining the equilibrium

position of the lifting target requires dealing with a highly non-linear system. Earlier

efforts to determine the equilibrium states include optimizing potential energies with

geometric constrains [139] and assigning ball-in-socket joints to the suspension sub-

system [140]. In this research, the equilibrium of the lifting target is modeled by a set

of non-linear equations characterizing the geometric and physical constraints of the

suspension system.

41



Chapter 2. Literature Review

Prior investigations on automatic path planning of dual-cranes are restrained in

simple environments. Early explorations include [141] which applies hill climbing and

A* to search in the dual-crane C-space. The algorithm in [1] applies a serial GA to

produce highly optimized dual-crane lifting paths. However, their method is prohib-

ited due to the expensive computation cost. The PRM-based method in [2] also deals

with dual-crane lifting planning. For each iteration, a configuration is sampled for the

major crane and the assistant crane is used to coordinate with it. The major crane

and assistant crane are switched after each iteration. In this way the swinging and

luffing operations of the cranes are generated. Hoisting planning is then conducted by

choosing minimum feasible heights along the dual-crane path. This problem decompo-

sition makes the algorithm efficient but not valid for dual-crane lifting cases requiring

tilting of the target.

2.4.4 Discussions

The existing CALP systems have automated some components in lift planning in con-

ventional CAD environments. However, automatic lifting path planning has seldom

been touched, especially for cooperative lifting using dual or multiple cranes. There-

fore, the previous systems are more suitable for training applications. The targeted

system in this research aims to deal with more general industrial environments and

provide optimized path suggestions for versatile lifting tasks.

Unlike other high-DOF robotic path planning scenarios that may rely on fast algo-

rithms to achieve good but not necessarily optimal results, crane lifting path planning

is eager for global optimization. Thus, in this research, MSPGA [142] is chosen taking

advantage of its superior optimization capability inherited from SGA and possibility to

be massively parallelized. The MSPGA-based path planners exploit the LGP strategy

to deal with the complex search space, which has also been applied in [143] for robotic

arms. The planners make use of a hybrid collision detection strategy to balance the

pre-processing and online computations. In this strategy, collision detection informa-

tion for the cranes is pre-computed in the hybrid C-spaces, while online collision checks

of the target are performed for each query.

42



Chapter 3

GPU-based Real-time Collision
Detection Engine

3.1 Introduction

Collision detection takes the geometric representations and motion information of scene

objects as inputs to calculate Boolean interference and separation distances (or pene-

tration depths) for two or more objects. Path planning and simulations require collision

detection to be handled robustly, accurately and efficiently. The proposed 3D colli-

sion detection algorithm is designed for both path planning and simulation of crane

lifting. It deals with lifting scenes containing one or more dynamic cranes and a static

environment to produce Boolean results and proximity warnings. The plants or sites

in the scenes can be highly complex. The cranes used can vary in terms of types and

structures.

Over the past decade, image-space collision detection has been proven to be ca-

pable of handling complex scenes efficiently. Early explorations include the LDIs [47]

which represent the intersection volumes as multiple rendered depth images. In their

algorithm, a VOI is firstly acquired through performing pairwise AABB intersection

tests. Then the two objects are rendered in directions restricted by the VOI. One LDI

is thus generated for each object with entry points and leaving points of the object

recorded. After the LDIs are read back from the GPU to the CPU side, the actual

This chapter is partially based on the conference paper: P. Cai, C. Indhumathi, Y. Cai, J. Zheng,
“A framework of the crane simulator using GPU-based collision detection”, Workshop on Serious
Game & Simulation, CASA, May 2012, Singapore.

43



Chapter 3. GPU-based Real-time Collision Detection Engine

collision detection is conducted by performing intersection tests using the entry points

and leaving points. Their work has been extended in [48] by adding face orientation

information in order to detect self-collisions. Entries on the z-list with downward face

normals are considered as entry points, and those with upward normals are regarded

as leaving points. Self-penetrations can also be identified by performing similar entry-

leaving pairing test. Research in [49] has further exploited the LDIs by rasterizing

the pairs of potentially colliding objects on three orthogonal directions. The LDIs

are then used to analyze the repulsion forces on penetrating surfaces. Cai, et al.[144]

has proposed an image-space method using multiple projection directions to detect

collision between convex objects.

These previous methods require reading back images from the GPU, which is rel-

atively slow due to the asymmetric memory bandwidths in graphic cards. This data

read-back can be avoided by performing the whole collision detection process in the

GPU and return only the final results to the CPU side. Moreover, for path planning in

static environments, instead of performing a rendering process for each object, captur-

ing the information of all static obstacles with a single rasterization can bring obvious

performance improvements.

Different from these prior methods which use OpenGL rendering to generate depth

images and read them back to the CPU for collision detection, the proposed algorithm

in this research avoids this data read-back. It uses CUDA programming to generate

Multi-level Depth Maps (MDMs) and performs collision checks in the GPU. Pixels in

the MDMs do not necessarily contain equal numbers of data entries. The memory

usage is thus reduced by avoiding the allocation of multiple images containing many

empty entries in pixels. This chapter first introduces the procedures of the collision

detection algorithm including the pre-processing and runtime stages. Then, it illus-

trates results in the simulation environment and conducts experiments in several test

plants to validate the efficiency and scalability of the algorithm. The MDMs are used

to represent the complex environments of plants and sites in Chapters 4 and 5 for path

planning purpose. In those chapters, the ASVs (Section 4.4.2) and TSSs (Section 5.6)

are checked against the MDMs to perform the continuous collision detection of lifting

paths. The proposed algorithm also performs as a supporting engine for the simulation

and path planning functionalities of the targeted CALP system detailed in Chapter 6.

44



Chapter 3. GPU-based Real-time Collision Detection Engine

3.2 Overview of the Engine

The collision detection engine uses a novel MDM representation for the digital plants

and sites, and checks the OBBs, ASVs and TSSs of crane components and the lifting

target against this representation. This MDM-based method does not require adjacen-

cy information or topological constraints of the environment and supports both mesh

and point cloud formats.

Figure 3.1 shows the workflow of the proposed collision detection algorithm. The

algorithm involves a pre-processing stage and a runtime stage. The first stage generates

the MDM for the environment. For simulation purpose, the runtime stage checks the

crane component OBBs with the MDM. This process is conducted for each frame in a

DCD manner. For path planning purpose, this stage tests the ASVs or TSSs against

the MDM. In this case, the algorithm performs CCD for lifting paths.

3.3 Pre-processing Stage

Figure 3.2 illustrates the workflow of the pre-processing stage which converts triangular

meshes into MDMs and stores them in the GPU memory for further use in the runtime

stage. Inspired by the concept of OpenGL rasterization, a GPU-enabled MDM genera-

tor is designed and implemented with CUDA. To enable efficient parallelizations, this

generator is further decomposed into two sub-processes: a pre-rasterization process

and a rasterization process.

The pre-rasterization process prepares information of candidate triangles for ras-

terization uses. It maps the AABBs of the triangles on to the x-y plane and calculates

the corresponding pixel blocks to be invoked. The edge function parameters of the tri-

angles are also prepared for quick determination of the positional relationship between

the pixels and the triangles.

After all the required data are ready in the GPU memory, the rasterization process

is then launched to produce the MDM. In this process, the triangular meshes are

divided into batches. Each batch contains triangles to be handled parallelly. In order to

achieve a compact MDM for memory saving, a counting kernel is firstly launched. The

kernel casts vertical rays from the ground to intersect with triangles and records the

45



Chapter 3. GPU-based Real-time Collision Detection Engine

Figure 3.1: Workflow of the collision detection engine.

number of intersections detected in each pixel to create a count map. The MDM is then

allocated as a linear array using the total number of intersections acquired from the

count map. Afterwards, this generator repeats the ray casting process to fill the MDM

entries with intersection heights of the ray and the triangles. This time, each pixel on

the x-y plane corresponds to a sub-array of entries from a specific starting position

with a pre-counted length in the MDM. The intersection heights with the triangle faces

are recorded in the corresponding positions in the MDM. Finally, the generator sorts

the arrays in the MDM in an ascending manner, and the process is complete. For

some special cases, this generator can be simplified to produce single-level depth maps

which only take the highest intersection depth into consideration. In this case, the

generator uses atomic functions [52] to prevent conflicts in memory locations. When

using the single-level depth maps, the algorithm performs 2.5D collision detection.

46



Chapter 3. GPU-based Real-time Collision Detection Engine

Figure 3.2: Flow chart of the pre-processing stage of the proposed collision detection
algorithm.

3.4 Runtime Stage

When the MDM is ready in the GPU memory, the runtime collision check is launched

and performed for each simulation time step. The workflow of the runtime stage is

shown in Figure 3.3.

In this stage, crane component OBBs are firstly updated according to the config-

urations of the crane at the time step. Then, pixels in the affected MDM regions of

the OBBs are invoked and processed parallelly. For each pixel, a vertical ray is cast

to intersect with the OBBs. The intersection intervals of the crane OBBs are then

used to compare with the corresponding array of the pixel in the MDM. A collision is

reported if an odd number of MDM depth points are found below the crane interval

47



Chapter 3. GPU-based Real-time Collision Detection Engine

Figure 3.3: Workflow of the runtime stage of the proposed collision detection algorithm.

or if there exist MDM points lying between the crane interval. Otherwise, the pixel is

regarded as collision free. Figure 3.4 illustrates this checking process. In case when the

MDM is simplified to a single-level depth map for 2.5D collision detection, collisions

are reported if any of the MDM points lie above the crane intervals. For path planning

purpose, the runtime CCD checks are performed similarly for the ASVs or TSSs of

neighboring genes in the GA population (see details in Chapters 4 and 5).

The runtime stage can also produce proximity information using multi-level OBBs.

In this case, each crane component is equipped with a tight fitting OBB and two looser

OBBs to generate discrete proximity information. In the current system developed,

the two looser OBBs are respectively 2 and 6 meters larger than the tight OBB in

edge lengths as shown in Figure 3.5.

48



Chapter 3. GPU-based Real-time Collision Detection Engine

Figure 3.4: Checking the primitives with the multi-level depth map for accurate 3D
collision detection

(a) (b)

Figure 3.5: Illustration of multi-level bounding boxes of objects. (a) in solid shape;
(b) in wire frame.

3.5 Extension to Point Cloud Environments

Point clouds can digitize 3D environments in high accuracy with detail information.

However, they usually contain huge data sets which make it difficult for efficient colli-

sion detection. Conventional approaches would require big and complex SP hierarchies

to help localize the contacts. The MDM representation proposed in this research can

reorganize the point clouds into uniform data structures which is very suitable for colli-

sion localization. In this case, points are linked into the corresponding pixels according

to its x-y coordinates. Instead of calculating intersection heights, the MDM generator

for point clouds directly record the height of the points in the arrays. Compared to

49



Chapter 3. GPU-based Real-time Collision Detection Engine

Figure 3.6: Digitization of the plant model using an MDM: (a) Original scene, (b) The
MDM generated using the proposed algorithm. Different colors stand for layers in the
MDM

the original point cloud data, the MDMs have highly uniform structures and can be

efficiently used for collision detection.

3.6 Results and Discussions

This section shows the MDMs generated using the proposed algorithm and demon-

strates the collision checking and proximity warning functionalities enabled by the

algorithm. Scalability of the proposed collision detection algorithm, in terms of the

execution time with environments of different complexities, are also shown in this

section.

3.6.1 MDMs of triangular meshes

Figure 3.6 shows the result of the generated MDM compared with the original trian-

gular model. Higher resolution MDMs have more accurate shapes of the environment.

On the other hand, lower resolution MDMs lead to less time for both pre-processing

and runtime collision checks. Thus, the proposed image-space collision detection al-

gorithm enables users to trade off between the accuracy and the efficiency of collision

detection.

3.6.2 Collision check and proximity warning

Figure 3.7 illustrates the collision checking and proximity warning results achieved

by the proposed algorithm. If the distance between the lifting target and the plant

50



Chapter 3. GPU-based Real-time Collision Detection Engine

structures is within the given proximity thresholds, multiple levels of safety warnings

are triggered in the algorithm. When collision happens, a crash sound is played and

OBBs of the colliding crane components are shown in red color. In lifting simulation,

these warning feature can be used for crane safety training.

3.6.3 Execution time

Four plants with different levels of complexities (Figure 3.8) are used to test the per-

formance of the proposed collision detection algorithm. These plants are selected to

ensure that majority of the environment triangles are covered by the crane components

and thus take part in the collision detection process. The configuration of the crane is

shown in Figure 3.9(a). The MDM of the plant with the highest complexity is shown

in Figure 3.9(b). Execution times for both the 2.5D and 3D versions of proposed

collision detection algorithm are plotted in Figure 3.10 to show the performance and

scalability. When the number of triangles in the plant increases, the execution time

of the 2.5D collision detection remains almost the same. This results indicate that,

the collision detection components in the path planning algorithms to be introduced

in later chapters are independent of the complexities of the environments, making the

resulting path planners also unaffected by plant complexities. On the other hand, the

execution time of the 3D collision detection shows an almost linear relationship with

the number of triangles. Moreover, the time only increases approximately by a factor

of 2 when the number of plant triangles has increased for around 5 times. These result-

s show that the proposed collision detection algorithm is highly suitable for complex

environments.

3.7 Summary

In this chapter, a GPU-enabled image-space collision detection algorithm for both

collision and proximity queries is presented. The algorithm uses OBBs and MDMs

to represent the cranes and environments accordingly. For static environments, the

collision detection algorithm only requires to perform one rasterization process for

all objects. The algorithm has a good scalability regarding the complexity of the

51



Chapter 3. GPU-based Real-time Collision Detection Engine

Figure 3.7: Multi-level proximity and collision warning: (a) Distance to plant objects
is smaller than 3 meters; (b) Distance to plant objects is smaller than 1 meters; (c)
Colliding with plant objects.

environment and is highly suitable for handling complex environments. Particularly,

the performance of the 2.5D version of the collision detection algorithm is independent

52



Chapter 3. GPU-based Real-time Collision Detection Engine

(a) (b) (c) (d)

Figure 3.8: Sample plant models for testing the performance of the collision detection
engine. (a) test plant 1; (b) test plant 2; (c) test plant 3; (d) test plant 4.

(a) (b)

Figure 3.9: Scalability of the 2.5D and 3D versions of the proposed collision detection
algorithm regarding the triangle numbers.

Figure 3.10: Scalability of the 2.5D and 3D versions of the proposed collision detection
algorithm regarding the triangle numbers.

53



Chapter 3. GPU-based Real-time Collision Detection Engine

of the environment complexities. These features of the proposed algorithm provides a

good foundation for the path planning algorithms in Chapters 4 and 5.

54



Chapter 4

Single-Crane Lifting Path Planning
Using GPU-enabled Parallel
Genetic Algorithm

4.1 Introduction

This chapter considers the path planning problem for single-crane lifting in complex

environments. The cranes involved are terrain cranes. The planning aims to output

single-crane lifting paths with optimized motion cost, safety factor and simplicity of

operations under constraints of collision avoidance including self collisions. The plant

environments considered in this chapter are represented as triangular meshes. The

complexity of industrial plants and sites makes it difficult for path planners to achieve

high success rates and solution qualities.

Prior researches can be categorized into two classes. The first class of work makes

use of pre-computed C-spaces to speed up the runtime performance by sacrificing pre-

processing time [1, 2, 131, 132]. This class of methods often utilize global optimum

searches in the C-space to acquire high quality paths. Another group of studies rely

on an online collision detection strategy which performs collision checks during the

searches [39, 133, 134, 145, 146]. Instead of using the global optimization algorithms,

these methods use fast search algorithms for finding good but not necessarily optimal

This chapter is based on the journal paper: Panpan Cai, Yiyu Cai, Indhumathi Chandrasekaran,
Jianmin Zheng, Parallel genetic algorithm based automatic path planning for crane lifting in complex
environments, Automation in Construction, Volume 62, February 2016, Pages 133-147, ISSN 0926-
5805, http://dx.doi.org/10.1016/j.autcon.2015.09.007.

55



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

collision-free lifting paths. Among the former class, Ali et al. [1] have designed a

two-stage GA for lifting path planning in simple environments. Their algorithm uses

parameter-based reproduction operators for the GA search in pre-computed C-spaces.

Their method is able to achieve highly optimized solutions but is computationally for-

bidding due to the intensive computations required by serial GA. It also suffers from

the cost for generating the pre-computed C-space. Another example is the algorithm

in [2] that investigates the use of PRM in dealing with crane erection planning. They

have proposed a useful idea that, given a 2.5D site with only the maximum height of

the plant taken into consideration, a 2D configuration space is enough for the compu-

tation. Each position of the 2D configuration space stores the maximum and minimum

hoist height of the crane. Hoisting planning is then performed for the 2D path output

by the PRM planner. By decomposing the problem, their algorithm is able to achieve

near real-time performance in simple environments. Olearczyk et al. [132] have tried

to conquer the lifting path planning problem by constraining the movement of the lift-

ing target into a single horizontal plane. A* search is conducted in the pre-computed

2D ray-arc intersection map. Their algorithm is fast but relatively impractical be-

cause of the planar constraint of the position of the lifting target. The algorithms by

[2] and [132] can quickly generate sub-optimal lifting paths. Representatives of the

later class include the work of Kang et al. [133] who have developed a lifting path

planning system using bonding sphere based online collision detection. The bonding

spheres are also used in the CCD to detect the interference between the environment

and the objects between consecutive time steps. Bi-directional expanding trees are

used to search in the Cartesian space for 4-DOF tower cranes. Their algorithm first

performs path planning for the end effector (lifting target). A trajectory of the crane

is then generated through inverse kinematics. Their method can produce collision-free

lifting trajectories in short time. But the success rate is restricted because of the

overestimated proximity information and the multiple sub-phases. Lin et.al [134] have

introduced their impressive work on the crawler crane lifting path planning problem.

The crawler crane is regarded as a robot with seven DOFs. The problem is solved

by a bi-directional RRT in a 7D C-space. Their algorithm has reported reasonable

planning time. The solution quality is good for low-DOF lifting (≤ 3). However, their

algorithm produces more zig-zaged paths for higher-DOF lifting.

56



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

In the proposed solution, the terrain cranes are treated as 4-DOF robots. This

chapter first provides the mathematical formulation of the path planning problem of

single-crane lifting. In order to achieve highly optimized solutions, an MSPGA-based

path planner is developed based on this formulation. The planner uses both online

collision detection and a pre-computed 2D C-space to trade off the pre-processing

and planning query time. The image-space collision detection algorithm introduced

in Chapter 3 is combined with ASVs to handle the online collision detection of the

crane and the lifting target with the environment. This chapter then introduces a

hybrid C-space collision detection strategy to further reduce the planning time. The

MSPGA framework and the hybrid C-space strategy also serve as a foundation of the

dual-crane path planner in Chapter 5.

4.2 Problem Formulation

This section discusses the mathematical model for the path planning problem of single-

crane lifting where the solution space, objective function and constraints are analyzed.

4.2.1 Assumptions

The mathematical model of the problem is established upon the following observations

and assumptions:

(i) The terrain crane is not allowed to drive during lifting;

(ii) Booms of the terrain cranes are strictly not allowed to extend or retract during

lifting processes.

(iii) The lifting target can be rotated (manually by the rigging man) near the start

or end positions.

(iv) It is not permitted to perform the three classes of operations below simultane-

ously: boom swinging, boom luffing & sling extension, and target rotation.

(v) The speeds of elementary operations are constant (usually very low) and the

corresponding energy cost of the crane is proportional to the movement units.

57



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

Figure 4.1: The structure of terrain cranes: (a) DOFs of the terrain cranes, (b) boom
clearance and (c) body clearance

(vi) Components of the cranes, including the lifting targets, are not supposed to be

operated below any plant structures.

4.2.2 Mathematical formulation

According to observations 1, 2 and 3, a terrain crane has four DOFs during lifting

operations: boom swinging, boom luffing, hoisting (sling extension & shortening) and

target rotation (restrained in start & end positions) (Figure 4.1(a)). Parameters of the

DOFs are constrained into limits determined by the internal clearances including boom

clearance and body clearance (Figure 4.1(b)). A whole set of parameters specifying

the four DOFs form a configuration of the crane. The set of all possible configurations

is defined as the configuration space (denoted as C in this paper).

Typically, a crane lifting path is defined as an array of configurations. This con-

figuration array stands for a general poly-line in C that is equivalent to an operation

sequence of the crane. However, this definition of lifting path is not going to assure

assumption 4 which stated that the operations are decoupled. Therefore, some por-

tions of the poly-line need to be axis-aligned. This constraint requires the GA to

handle inter-dependent genes (configurations), arising difficulties in designing parallel

crossover and mutation operators.

58



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

Table 4.1: Parameters and variables used in solution representation

Symbol Expression
ci The ith configuration in the string
ej The jth edge in the string
Ls Length (number of configurations) of the string
αLF The luffing angle in degrees (angle between main boom and ground)
αSW The swinging angle in degrees (rotation angle of main boom along

the z axis)
lHS The hoisting length in centimeters (extension length of the sling)
αLR The rotation angle of the load along the z axis

To solve this problem, the proposed solution uses independent configurations as

genes. Local paths between genes are defined as axis-aligned poly-lines in C. In this

way, the genes can be conveniently used by the MSPGA and the local paths between

genes are handled in online collision detection and post processing.

In the proposed algorithm, the lifting path is represented as a string s = {O,E},
where O is the set of nodes (configurations) and E represents the set of edges (internal

paths between independent nodes). Thus the variables of the optimization problem

can be written as (see in Table 4.1 for explanations of the symbols):

s = {ci}i=0,1,...,Ls−1 ∪ {ej}j=0,1,...,Ls−2 (4.1)

ci = (αLF , αSW , lHS, αLR) (4.2)

The edges ej are composed by set of key frame configurations determined by its

neighboring nodes cj and cj+1 in a pre-defined way which will be discussed in Section

4.3.3. This definition of inputs will be reorganized as chromosomes in the GA search

in Section 4.3. The task of the planning algorithm is to find an optimal s∗ composed

of c∗j that maximizes the evaluation function.

In order to design an evaluation function for the strings, metric functions are defined

in C, so that C becomes a metric space. Those two metrics, d1 and d2, can be defined

as:

d1(a, b) =
∑3

i=0
ri|ai − bi|; d2(a, b) =

∑3

i=0
g(ai − bi). (4.3)

Here a, b denote two configurations in space C and ai, bi (i = 0, . . . , 3) are the unified

representationS of the four parameters of a, b (Equation 4.1). Note that a scaling

59



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

factor ri is applied to the absolute difference value for each dimension in d1. Function

g in d2 is defined as:

g(x) =

{
1 if x 6= 0, x ∈ R
0 if x = 0, x ∈ R

(4.4)

Here d1 measures the total number of movement units along the four dimensions

(weighted). d2 represents the number of non-identical parameters between the two

configurations. Now the evaluation function of a string s in the solution space S can

be expressed as (see in Table 4.2 for explanations of the symbols):

F (s) = λ1

(
1 +

λ1
d(s) + λ2(1 + sc(s))

)
(4.5)

where

d(s) =
∑Ls−2

i=0
d1(ci, ci+1) (4.6)

sc(s) =
∑Ls−2

i=0
d2(ci, ci+1) (4.7)

s ∈ S, ci ∈ C and i = 0, . . . , Ls − 1 (4.8)

Then the maximizing optimization problem for the lifting path planning scenario

can be accordingly written as:

60



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

Table 4.2: Parameters and variables in the objective function

Symbol Expression
F (s) The evaluation value of string s
sc(s) The operation switching cost in string s
d(s) The distance cost in string s
cj The jth configuration in the string
λ1 The constant scaling factor 1
λ2 The constant scaling factor 2

max F (s) (4.9)

s.t. nnode(s) = 0, s ∈ S (4.10)

nedge(s) = 0, s ∈ S (4.11)

cl(s) = 0, s ∈ S (4.12)

B ≤ ci ≤ B, (4.13)

i = 0, 1, . . . , Ls − 1 (4.14)

where nnode(s) =
∑Ls−1

i=0
δ(ci) (4.15)

nedge(s) =
∑Ls−2

i=0
δ(ei) (4.16)

cl(s) =
∑Ls−1

i=0
σ(ci) (4.17)

δ(ci) ∈ {0, 1}, i = 0, 1, 2 . . . , Ls − 1 (4.18)

δ(ei) ∈ {0, 1}, i = 0, 1, 2 . . . , Ls − 2 (4.19)

σ(ci) ∈ {0, 1}, i = 0, 1, 2 . . . , Ls − 1 (4.20)

Here B and B stand for the lower and upper bound values for the configurations.

δ(ci) and δ(ei) represent the collision detection results of elements ci and ei in string

s. σ(ci) stands for internal clearance checking result for configuration ci. Accordingly,

nnode(s), nedge(s) and cl(s) represent the collision violation factors of node configu-

rations, edge paths and internal clearance within the crane itself. These values are

calculated from the complex geometric information in the Euclidean space.

Feasible solutions of the maximization problem contain no violation for collision and

inter-collision. The motion cost d(s) and operation switching cost sc(s) are minimized

61



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

through maximizing function F (s), making the optimal solution s∗ short in distance

and comfortable for human operators. The scale factors enlarge the difference between

good solutions and bad solutions, and thus helps the convergence of the GA. As a

result, the optimal solution s∗ of the maximization problem is a collision-free lifting

path which is optimized in energy cost and human operation conformity.

The mathematical and algorithmic details of the computations will be discussed in

Section 4.4.

4.2.3 Fitness function

When transferring the optimization problem into the language of GA, hard constraints

of the optimization problem (Equation 4.9) are incorporated into the fitness function

as penalties. The fitness function for a given chromosome si in the population P is

defined as (see in Table 4.3 for explanations of the symbols):

f(si) =

{
λ1/ni if ni > 0

λ1(1 + λ1/mi) if ni = 0
(4.21)

where

ni = noi + nfi + nri + nci (4.22)

mi = di + λ2(1 + sci) (4.23)

i = 0, 1, 2, . . . , Lp − 1 (4.24)

When ni > 0, some of the nodes or edges in string si are colliding with the environ-

ment or the crane itself. In such case, the fitness function focuses on the elimination

of collisions. Once ni = 0, it means that si becomes a feasible solution. The func-

tionality of GA turns into optimization of the objective function in the feasible space.

This fitness function includes the internal clearance as a hard constraint and counts

the number of operation switching into the motion cost.

62



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

Table 4.3: Parameters and variables used in the fitness function design

Symbol Expression
f(si) The fitness value of string si
si The ith string in the population
ni The collision violation number
mi The motional cost
Lp The size of population
noi The collision violation number of OBBs in string si
nfi The collision violation number of boom swept volumes in string si
nri The collision violation number of load swept volumes in string si
nci The collision violation number of internal clearance in string si
sci The operation switching count in string si

4.3 MSPGA-based Path Planner for the Single-

crane Lifting

As a multi-objective non-linear integer optimization model, the lifting path planning

problem is challenging for common combinatory optimization methods. GA, as a

general optimization algorithm which is mathematically proved to be able to achieve

global optimum, is highly suitable for the task. It has good potentials for customiza-

tion and parallelization. This section presents an in-depth discussion on designing

the customized adaptive plan for the path planning problem of single-crane lifting in

complex environments. A post processing stage is also introduced to improve the hu-

man conformity of the result path. Based on the framework, the collision detection

algorithm introduced in Chapter 3 is investigated to deal with discrete and continuous

collision detection in complex environments. A hybrid C-space collision strategy is

proposed for improving the efficiency of the collision detection module. The collision

detection module will be further discussed in Section 4.4. The GPU implementations

of the MSPGA-based path planner will be discussed in Chapter 6.

A chromosome (Figure 4.2) in the proposed MSPGA framework is defined as the

array of configurations (genes) taking all the node configurations ci (i = 0, . . . , Ls− 1)

from the solution s in Equation 4.1. The population is thus a set of chromosomes

carrying different path candidates evolving in the GA process.

63



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

4.3.1 MSPGA framework

The functioning of the MSPGA relies on a complete system with software and hard-

ware components. The software components provide a simulation environment for

generating necessary inputs (crane position, boom length, destination configurations,

and so on) and displaying outputs (paths, costs, capacities and so on). Figure 4.3 is a

brief denotation of the system.

The master processor used for the MSPGA is the CPU. The four functional compo-

nents, fitness evaluation, selection, crossover and mutation, are handled by the GPU.

In each iteration of GA, GPU kernels for the four components are executed in se-

quence. Among these components, selection and crossover select good candidates from

the population to produce offsprings. The mutation process randomly alters genes in

offsprings in order to help GA find better configurations in the neighbouring spaces.

At the end of each iteration, fitness values of the new population are returned to the

CPU to be checked against the termination fitness value. Once the termination fitness

is met, the CPU stops the GA process and extracts the optimum chromosome from

the GPU memory. If the search exceeds a certain number of iterations, the CPU will

stop the search and report failure. As MSPGA preserves the property of probabilistic

completeness of SGA, the possibility of failure will decrease to zero when the number

of iterations increases.

It is difficult to find a set of termination conditions that guarantee a fully optimized

result for a randomized search algorithm like GA. Thus, apart from the basic termina-

tion criteria stated above, additional help is sought from the simulation environment.

The final solution, or lifting path, with its properties is displayed as animations with

real-time monitoring. Based on the graphical results, users can choose whether to

conduct further searches.

4.3.2 Adaptive plan

Initialization of the population is the basis of GA. It provides the initial resources and

information for the GA to start the search. The proposed initialization uses the strat-

egy shown in Table 4.5. c0 and cLs−1 in the strings are the start and end configurations

of the task. For c1 and cLs−2, the hoisting lengths are randomly generated and other

64



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

Figure 4.2: Structure of chromosomes in the proposed algorithm

Figure 4.3: Framework of the path planner for single-crane lifting

values are kept as in the start (for c1) or the end configuration (for cLs−2). Internal

configurations are generated randomly within the bound values.

Selection, crossover and mutation are referred to as the reproductive operators in

GA. They are the key components of an adaptive plan which are performed in the evo-

lutionary iterations. By designing proper reproductive operators, the GA can achieve

higher convergence speed and, in the meanwhile, produce high quality solutions.

The selection operator reflects the concept of “survival of the fittest” in Darwinian

evolution. A good selection operator provides better chance for “fitter” individual to

survive and reproduce. In the proposed algorithm, a proportional selection scheme is

used together with the elitism strategy. Namely, the “fittest” chromosome in the pop-

ulation always survives and remains in the next generation. For other chromosomes,

the chances of producing off-springs are proportional to their fitness values.

65



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

Table 4.4: Parameters and variables in adaptive mutation rates

Symbol Expression
rm(s) The mutation rate of string s
rm The basic mutation rate

f The average fitness value in the population
f(s) The fitness value of string s

Crossover happens with a given rate rc when parent strings are mating. Its math-

ematical essence is to direct the search to “fitter” areas in the solution space by com-

bining information in existing solutions. In the proposed method, crossover is also

responsible for eliminating invalid (colliding) configurations from the population. The

proposed approach applies a parameter based crossover strategy as illustrated in Table

4.6. For c1 and cLs−2, the off-springs inherit the higher target positions between their

parents. In-between configurations inherit valid configurations from the parents in the

sense of collision avoidance and internal clearance. The purpose of this strategy is to

help GA enter the feasible (collision-free) space through giving higher priority to genes

with better potential for collision avoidance.

The mutation operator alters bits (genes) in existing chromosomes with a given rate

rm. Chromosomes with lower fitness values can thus perform as seeds for exploring

unknown areas in the solution space. Larger mutation rates can help the GA in finding

new possibilities, but at the same time increase the likelihood of damaging existing

good chromosomes. On the other hand, lower mutation rates help to preserve known

solutions but slow down the convergence.

This analysis leads to adaptive mutation rates. In the proposed approach, the

mutation rates for chromosomes are formulated as (see in Table 4.4 for the symbols):

rm(s) =

{
rm + (f − f(s))/f, if f(s) < f

rm, if f(s) ≥ f
(4.25)

The mutation strategy used in the proposed algorithm is shown in Table 4.7. Note

that for c1 and cLs−2 in each chromosome, the mutation only alters the hoisting length

(sling length). This design comes from the observation that the first and last step of

lifting operations are always hoisting or lowering the target.

66



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

Table 4.5: The initialization strategy used in the single-crane path planner

Configuration Strategy
c1 Randomly generate sling length; Keep other parameters as the

start configuration
c2 ∼ cLs−3 Randomly generate parameters
cLs−2 Randomly generate sling length; Keep other parameters as the

end configuration

Table 4.6: The crossover strategy used in the single-crane path planner

Configuration Parents Strategy

c1

Both valid Choose shorter sling length
Both invalid Random choose
One valid, one invalid Choose valid

c2 ∼
cLs−3

Both valid Random choose
Both invalid Random choose
One valid, one invalid Choose valid

cLs−2

Both valid Choose longer sling length
Both invalid Random choose
One valid, one invalid Choose valid

Table 4.7: The mutation strategy used in the single-crane path planner

Configuration Case Strategy
c1 &
cLs−2

Valid Randomly alter sling length in smaller scale
Invalid Randomly alter sling length in larger scale

c2 ∼
cLs−3

Valid Randomly alter all parameters in smaller scale
Invalid Randomly alter all parameters in larger scale

4.3.3 Post processing

The task of post processing is to build configurations in the edges from the node

configurations returned by the GA search. As mentioned in Section 4.2, the cranes are

not allowed to perform the three classes of operations simultaneously. Thus an edge

e also contains three segments: boom swinging, luffing & hoisting and load rotation.

With the movement units already provided by the node configurations, the key of

the edge building strategy is to define the sequence of conducting the three classes of

operations.

67



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

(a)

(b)

Figure 4.4: The post processing strategy: (a) when the target position in c1 is higher;
(b) when the target position in c2 is higher.

From observations of lifting operations, when conducting boom swinging, it is safer

for the target to be in higher positions than in lower ones. Accordingly, the order of

boom swinging and hoisting for a given edge e should be determined by the target

height in the two neighbouring node configurations c1 (left neighbour) and c2 (right

neighbour). For example, if the target is at higher position in the configuration c1,

then boom swinging should be conducted ahead of hoisting. Rotation of the target

is located in-between the other two types of operations. Figure 4.4 shows the stated

strategy of edge building which identifies the key frame configurations (c1, c1.1, c1.2, c2)

for edge e.

This strategy is also applied when performing the CCD for edge paths (Section

4.4.2). In this way the solution provided by the GA search will be guaranteed to be

valid after the post-processing.

68



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

4.4 Collision Avoidance

The proposed algorithm may not rely on pre-computed collision information in the

configuration space. The GA, therefore, needs to perform online collision detection

when running its iterations. For collision detection of the nodes, the image-space

collision detection proposed in Chapter 3 is utilized. This section discusses how this

collision detection algorithm is integrated into the context of GA. For CCD of the

edges, analytical representations of the swept volumes of the crane are developed and

used.

4.4.1 Discrete collision detection

Petrochemical and pharmaceutical plants usually have highly complicated structures.

According to assumption 6 in Section 4.2, terrain cranes are not supposed to move or

operate below any plant structures. Thus, for a crane, the frontier of contact with the

plant structure is determined by the plant structure’s highest portions. As such, the

plant model is transferred into a histogram shaped structure by computing a single-

level depth map of the model. This representation will be used in both the collision

detection for nodes and edges in strings. Benefiting from the highly ordered feature

of the depth maps, the collision detection can be parallelized in three levels: pixel

level, gene level and chromosome level. This three-level parallelization enables the

high efficiency of the collision detection components of the planner. Details of the

GPU parallelizations will be discussed in Chapter 6.

The procedure of the collision detection of genes in the MSPGA-based path planner

is:

(i) Computing an initial OBB hierarchy for the crane model

(ii) Generating the depth map for the plant model

(iii) Updating the crane OBBs for each gene in the population, and

(iv) Performing collision checks between the crane OBBs and the plant depth map

for each gene in the population

69



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

The OBB hierarchy of a terrain crane contains five OBBs. They are OBBs of body,

cockpit, counterweight, boom and load, respectively. Bottom portions of these OBBs

are the contact frontiers to the plant depth map. As the hook and slings are always

above the load for terrain cranes, they are not going to affect the contact frontier.

During the GA search, each gene possesses one such set of OBBs. In each iteration,

the set of OBBs are updated in the GPU parallelly for the whole population. In the

stage of fitness evaluation, another GPU kernel is launched to compute the contact

frontiers for the OBBs in parallel and compares the OBB frontiers with points in the

depth map. The Boolean results returned by the kernel are used to calculate no values

in the fitness function (see Equation 4.21).

4.4.2 Continuous collision detection

In order to enable sparsely sampled paths and reduce the number of steps in the lifting

path, collision detections for the internal trajectories between consecutive configura-

tions become crucial. This goal is achieved by applying the CCD technology using

analytical estimations of the swept volumes between consecutive configurations.

During the movements along the internal paths between neighboring genes, the

booms and the lifting target have the highest possibility to collide with the plant

structure. When the crane moves from one configuration to another, the spaces that

the booms and the load swept through are called swept volumes. Bottom faces of these

swept volumes are denoted as swept frontiers that are used to perform contact check

with the plant depth map. By applying the pre-defined movement strategy (Section

4.3.3), a unique swept frontier can always be obtained for each pair of neighboring

genes. Figure 4.5 shows the 2D illustrations of the swept frontiers. In the illustrated

case, the crane first performs swinging in the counter-clockwise direction, then ro-

tates the target and lowers down the boom to reach the destination working radius.

Analytically, the swept frontiers for this case are represented as (see in Table 4.8 for

70



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

explanations of the symbols):

ATG = ATG SW ∪ ATG LF ∪ ATG LR (4.26)

ATG SW =
(
{dxy(p, p0p1) ≤ d11} ∪ {dxy(p, p0p2) ≤ d11} ∪ {α1

SW ≤ α(p0p) ≤ α2
SW}

)
∩{R1 − d12 ≤ pxy(p− p0) ≤ R1 + d12} ∩ {z = hTG} (4.27)

ATG LF = {dxy(p, p0p2) ≤ d21} ∩ {R2 − d22 ≤ pxy(p− p0) ≤ R2 + d22}

∩
{
z = zc +

√
L2
BM − (x− x0)2 − (y − y0)2

}
(4.28)

ATG LR = {pxy(p− pR) ≤ RR} ∩ {z = hTG} (4.29)

ABM = {‖p− p0‖ ≤ LBM} ∩ {α1
SW ≤ α(p0p) ≤ α2

SW}

∩
{
z = z0 + tan(αLF )

(
(x− x0)2 + (y − y0)2

)}
(4.30)

Here function dxy gets the distance between a point (the first parameter) and a

line (the second parameter) on the x-y plane. Function pxy represents the projection

length of a vector onto the x-y plane. Function α calculates the planar angle between

a given vector and the x axis. In each loop of fitness evaluation, these swept frontiers

are compared with points in the depth map of the plant model. The Boolean CCD

results are used to calculate nf and nr values in the fitness function (Equation 4.21).

4.4.3 Self-collision clearance

Apart from collision between the crane and environment objects, internal collision-

s, especially interferences between the lifting target and crane components, are also

crucial.

Two types of possible internal contacts are considered (Figure 4.6) (see Table 4.9

for the explanations of symbols). The first type is the clearance between the target

and boom segments. This type of clearance check becomes more important when the

sling length gets shorter. The mathematical representation would be:

cot(αLF )(lHS + lRG) > rTG (4.31)

The second type of internal clearance is the clearance between the target and the crane

body. This type of check is significant when the target is moving in lower positions.

The mathematical representation can be written as:

hTG > δBD, if rw ≤ γBD + rTG (4.32)

71



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

Table 4.8: Parameters and variables in the swept frontiers

Symbol Expression
ATG The swept frontier for the lifting target
ATG SW The swept frontier for the lifting target during swinging
ATG LF The swept frontier for the lifting target during luffing
ATG LR The swept frontier for the lifting target during target rotation
ABM The swept frontier of booms
p A point on the swept frontier
p0 Center of rotation of the main boom
x0 X coordinate value of p0
y0 Y coordinate value of p0
z0 Z coordinate value of p0
zc Height of the virtual center of rotation of the lifting target during

luffing
p1 The location of load center at the first swinging angle
p2 The location of load center at the second swinging angle
pR The location at which load rotation happens
αLF The constant luffing angle during swinging in the internal path
α1
SW The swinging angle in gene 1
α2
SW The swinging angle in gene 2
d11 Width of the lifting target at the tangential direction in gene 1
d12 Width of the lifting target at radial direction in gene 1
d21 Width of the lifting target at the tangential direction in gene 2
d22 Width of the lifting target at radial direction in gene 2
R1 The working radius of the crane at gene1
R2 The working radius of the crane at gene2
RR The working radius at which load rotation happens
hTG The height of the target during swinging
LBM The total length of the boom

The clearance test results are used to calculate nc values in the fitness function (see

Equation 4.21)

4.4.4 Hybrid C-space strategy

The analytical swept frontier based CCD proposed in Section 4.4.2 has good potential

scalability in terms of the DOFs of the cranes. However, it will also result in longer

planning time compared to the C-space based approaches. For cranes with four DOFs,

72



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

(a)

(b) (c)

Figure 4.5: Demonstration of the swept frontier of the swinging and luffing operations:
(a) target swept frontier from top view; (b) target swept frontier of luffing from side
view; (c) boom swept frontier from top view.

the 2D C-space with minimum-maximum hoisting values proposed by [2] can be a good

solution for reducing the planning time. But this approach ignored the fourth DOF of

the crane (load rotation). Thus it results in over-estimated proximity information in

the 2D C-space. For lifting cases where the crane has to rotate the load into a certain

73



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

Table 4.9: Parameters and variables in the internal clearance inequalities

Symbol Expression
αLF The main boom angle (luffing angle)
lHS The length of the sling (hoisting length)
lRG The distance between bottom tip of the hook and center of the target
rTG The radius of the bounding sphere of the target
hTG The height of the bottom face of the target
δBD The height of the crane body
rw The working radius of the crane
γBD The distance between head of the crane body and the rotational axis

of booms

Figure 4.6: Demonstration of variables used in the computation of internal clearance
for terrain cranes

angle to avoid the obstacles, this approach will have low success rates.

In this section, a hybrid C-space strategy is proposed to trade off the pre-processing

time and the planning time. In this strategy, collision information for the first two

DOFs of the crane (swinging and luffing) are stored in a 2D C-space while the collision

check (DCD & CCD) for the last two DOFs (hoisting and load rotation) are conducted

74



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

during the MSPGA search. Internal clearance check is also conducted during the

search. Given the simplicity of the 2D C-space, the hybrid strategy would be able to

acquire the C-space in a short time and in the meantime reduce the planning time.

4.5 Results and Analysis

4.5.1 Comparison on the fitness function

To evaluate the fitness function in the proposed method, it is compared with the fitness

function used in Ali’s work [1]. Their algorithm is initially targeting at the dual-crane

erection problem, but the fitness function can be easily adapted to the single-crane

lifting problem. By eliminating the coordination violation coefficient in their fitness

function (which is not necessary in the single-crane case), a single-crane version of

Ali’s fitness function is obtained:

F (s) =

(
λ

d(s)(1 + C)

)
(4.33)

d(s) =
Ls−1∑
i=1

(
4∑

j=1

(Li,j − Li+1,j)
2

) 1
2

(4.34)

C =
1

Ls

Ls∑
i=1

Ci (4.35)

Parameters used in Equation 4.33 are identical as in the proposed fitness function.

Experiment 4.1.1 is performed in one of the test plants in Ali’s paper and compared

the success rates and solution qualities. All the runs are performed in the same GA

procedure as stated in the Section 4.3 with fitness function differed. The inputs of

Experiment 4.1.1 are shown in Table 4.10.

Figure 4.7 shows the result paths using the two fitness functions. The elementary

operations are displayed in different colors. The red color dotted line denotes the

trajectory performed by the target during the swinging operations. The green and

blue colored lines stand for the load center trajectory for the luffing and hoisting

movements accordingly. The yellow fan represents the rotation of the load. In the

path generated with Ali’s fitness function, the crane undergoes 67 degrees of swinging,

10 degrees of luffing, 23.74 meters of hoisting and 67 degrees of load rotation above the

75



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

Table 4.10: Inputs into Experiment 4.1.1

Input Value
Crane model Terex AC700
Size of population 100
Length of string 6
Crossover rate (rc) 0.15
Mutation rate (rm) 0.75
Scale of mutation 1 0.016
Scale of mutation 2 0.16
Boom length (m) 62.4
Start configuration (67, 119, 4972, 119)
End configuration (67, 52, 4972, 52)
Termination iteration 400

start position. The path consists of 9 configurations. In the path generated with the

proposed fitness function, the terrain crane need to conduct 67 degrees of swinging, 0

degrees of luffing, 26.52 meters of hoisting and 67 degrees of load rotation. The human

operators have 2 less steps to conduct and there is no luffing operation involved. The

results shows that the proposed fitness function can produce better solution quality.

The convergence trends using the two fitness functions are shown in Figure 4.8 with

the fitness value of the best candidate and the average fitness value of the population

during the iterations plotted. The convergence of the GA search with Ali’s fitness

function shows a highly unstable trend. This instability results in a very low success

rate (8%). The convergence with the proposed fitness function shows a much more

stable pattern. The search achieves convergence within 250 iterations in this test. The

success rate reaches 100% using the proposed fitness function.

Similar comparisons (Experiment 4.1.2) are conducted in three additional plants

as shown in Figure 4.9. As indicated in Table 4.11, the success rates using Ali’s fitness

function of lifting cases in plants 1 and 3 are very low (8% or lower) for 50 trials. The

success rate of the lifting case in plant 2 using Ali’s fitness function is much higher

(88%) than in plants 1 and 3. A possible reason is that, the place position of the

lifting target in plant 2 is higher than the obstacles, making it easy to achieve collision

avoidance. For the lifting case in plant 3 where the obstacles are much higher than

76



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

(a) Result path generated using Ali’s fit-
ness function: extra luffing (as shown in
green colored lines) required.

(b) Result path generated using the pro-
posed fitness function: no luffing required.

Figure 4.7: Result path generated using different fitness functions in Experiment 4.1.1

Table 4.11: Comparison of the success rates in the three plants using the fitness
function in [1] and the proposed fitness function in Experiment 4.1.2

Success rate
Ali’s fitness function The proposed fitness function

Plant 1 8% 100%
Plant 2 88% 100%
Plant 3 0% 96%

the target pick and place positions, it is more challenging to find valid paths. The

proposed fitness function is able to achieve nearly 100% success rate for all the cases.

Table 4.12 shows the average movement units and number of operation steps of

the result paths using Ali’s fitness function and the proposed fitness function for 50

trials. Although the success rates of the lifting case in plant 2 are both high using the

two fitness functions, the solution qualities are quite different. The path generated

with the proposed fitness function performs around 16 less degrees of luffing while the

hoisting height remains similar. For plant 1 and plant 2, the proposed fitness function

can produce paths with 2∼4 less operation steps.

The comparisons indicate that the fitness function use by Ali et al. may not

77



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

(a) Fitness convergence trend using Ali’s fitness function

(b) Fitness convergence trend using the proposed fitness function

Figure 4.8: Fitness convergence trend using different fitness functions in Experiment
4.1.1

(a) Plant 1 (b) Plant 2 (c) Plant 3

Figure 4.9: Additional plants used in Experiment 4.1.2.

78



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

Table 4.12: Solution qualities in the three plants using the fitness function in [1] and
the proposed fitness function in Experiment 4.1.2

Solution quality

Plant 1 Plant 2 Plant 3

Alis fitness func-
tion

Motion units

Swinging (degree) 93 131 -
Luffing (degree) 8.22 17.19 -
Hoisting (m) 14.34 20.92 -
Target Rotation
(degree)

93 131 -

Operation steps 10.67 12.14 -

The proposed
fitness function

Motion units

Swinging (degree) 93 131 83
Luffing (degree) 1.2 1.28 28.4
Hoisting (m) 17.29 21.45 50.29
Target Rotation
(degree)

93 131 8

Operation steps 6.86 10.08 9.68

be suitable for the MSPGA framework for single-crane lifting path planning. The

proposed fitness function can achieve significant improvement on the success rate of

the GA search and in the meantime produce better solution qualities (fewer motion

units and operation steps). The improvements are due to three major reasons:

(i) The separation of collision avoidance and optimization of path quality. The

fitness value of collision-free paths are much higher than invalid paths. This

enables the valid paths fast conquer the population;

(ii) Taking into consideration of the human operational conformities and easiness

(fewer operation steps involved);

(iii) Scaling of the fitness function. Big scaling factors in the fitness function increase

the difference between valid paths, which increase the selection pressure in the

population and push the GA towards convergence.

4.5.2 Validation of the hybrid C-space strategy

To elaborate the benefits of the hybrid C-space strategy (hybrid strategy in short

for this section), the proposed algorithm is applied in a complex industrial site to

79



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

Table 4.13: Inputs into Experiment 4.2

Input Value
Crane model Terex AC700
Size of population 100
Length of string 6
Crossover rate (rc) 0.15
Mutation rate (rm) 0.75
Scale of mutation 1 0.016
Scale of mutation 2 0.16
Weight of boon swinging 1.0
Weight of boom luffing 1.5
Weight of sling extension 0.06
Weight of target rotation 1.0
Boom length (m) 62.4
Start configuration (55, 349, 4212, 349)
End configuration (52, 72, 4001, 341)
Termination iteration 200

compare the hybrid strategy with the other strategies: C-space and online. The C-

space strategy uses the 2D C-space described in [2] and the online strategy uses the

analytical swept frontiers to perform online CCD during the GA search as described

in Section 4.4.2. The hybrid strategy uses a 2D C-space to store precomputed collision

information for swinging and luffing, and applies the analytical swept frontiers for

load movements (which reflect the other two DOFs). Experiment 4.2 is conducted

in a complex plant containing 274,108 vertices and 376,205 triangle faces. With the

same set of experiment setting (Table 4.13), the average computation time, success

rates and solution qualities for 100 trial runs are indicated in Table 4.14. The hybrid

strategy spends only half the planning time of the online strategy and obtains similar

solution qualities. The preprocessing time is also reduced compared with the C-space

strategy. Figure 4.10 shows sample result paths generated with the three strategies.

While both the online and hybrid strategies manage to rotate the load in order to

pass through the plant structure, the C-space strategy needs to pass through the other

direction which requires much more movements.

80



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

Table 4.14: Results of Experiment 4.2

Strategy Preprocessing

time (ms)

Planning time

(ms)

Success rate Average suc-

cess fitness

C-space 10535 789.33 66% 3611.06
Online 0 3998.75 93% 3943.66
Hybrid 1034 2133.79 92% 3965.83

4.5.3 Discussion on parameter design

In fact, the selection of parameters, especially the reproduction rates, affect significant-

ly the performance of the algorithm. Experiment 4.3.1 conducts a statistical study for

the reproductive rates (rc & rm). Using the plant model as shown in Figure 4.11(a), 50

samples of execution are conducted for each combination of reproductive rates. The

reproduction rates are spread from 0.05 to 0.75. The results, in terms of fitness value

of the final solution and the success rates (probability of obtaining collision-free paths),

are illustrated in Tables 4.15-4.16 and Figure 4.12. In this particular plant model, the

best solution is achieved with rc = 0.25 and rm = 0.55. Meanwhile, the best ability of

collision avoidance is obtained with the crossover rate and mutation rate set as 0.25

and 0.75. It comes to a conclusion that, for this particular plant, the best setting of

reproduction rates is: rc = 0.25, rm = 0.55 ∼ 0.75.

But the result above is not necessarily suitable for other plant environments. Thus,

another experiment (Experiment 4.3.2) is conducted. The height of the major obstacles

is reduced in the previous plant so that the crane does not need to raise its booms

to avoid them (Figure 4.11(b)). The experiment is conducted with the same set of

parameters and the results are listed in Tables 4.17-4.18 and Figure 4.13. From the

data it can be observed that, the best collision avoidance ability for this occasion is

achieved at rc = 0.40 and rm = 0.75. The best solution quality is obtained at rc = 0.15

and rm = 0.40;

In the two experiment cases, similar patterns are observed in the topographic maps.

Figure 4.12(a) and Figure 4.13(a) show that larger mutation rates helps to avoid col-

lisions in the MSPGA search. On the other hand, the best solution qualities would be

obtained in the center areas according to Figures 4.12(b) and 4.13(b). The complex-

ity of the environment between the destinations do affect the shapes of the patterns,

81



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

(a) Path generated using the C-space strat-
egy

(b) Path generated using the online strate-
gy

(c) Path generated using the hybrid strate-
gy

Figure 4.10: Trajectory of the load of the result paths using the three strategies in
Experiment 4.2. Green: the C-space strategy; Red: the online strategy; Yellow: the
hybrid strategy

especially on the distribution of solution qualities. It may be possible that, the sta-

tistical patterns can be represented as functions of the complexity of the environment

between the start and end position. Although the performance of the algorithm is

82



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

(a) Plant model for Experiment 4.3.1: Higher blue color obstacle.

(b) Plant model for Experiment 4.3.2: Lower blue color obstacle.

Figure 4.11: Experiment plant models

somehow dependent on its parameter design, there is a chance to predict the optimum

parameter by the pre-analysis of the complexity of the plant environment. This might

be a future direction of the investigation.

83



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

(a) Success rates (b) Average fitness values

Figure 4.12: Topographic maps of success rates and average fitness values different
combinations of reproduction rates in Experiment 4.3.1

(a) Success rates (b) Average fitness values

Figure 4.13: Topographic maps of success rates and average fitness values different
combinations of reproduction rates in Experiment 4.3.2

Table 4.15: Probabilities of finding feasible solutions under different combinations of
reproductive rates for Experiment 4.3.1

rm = 0.05 rm = 0.15 rm = 0.25 rm = 0.40 rm = 0.55 rm = 0.75

rc = 0.05 0.18 0.42 0.62 0.68 0.86 0.94

rc = 0.15 0.12 0.32 0.56 0.76 0.9 0.92

rc = 0.25 0.2 0.38 0.72 0.7 0.82 1

rc = 0.40 0.2 0.36 0.72 0.66 0.88 0.88

rc = 0.55 0.18 0.46 0.6 0.74 0.76 0.72

rc = 0.75 0.12 0.12 0.32 0.32 0.5 0.54

84



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

Table 4.16: Average fitness value for collision-free results under different combinations
of reproductive rates for Experiment 4.3.1

rm = 0.05 rm = 0.15 rm = 0.25 rm = 0.40 rm = 0.55 rm = 0.75

rc = 0.05 2621.57 2641.26 2697.87 2695.51 2669.43 2687.2

rc = 0.15 2583.56 2689.6 2690.29 2695.53 2661.03 2680.24

rc = 0.25 2671.82 2691.26 2690.43 2680.13 2698.68 2695.71

rc = 0.40 2690.81 2698.15 2693.12 2683.36 2687.22 2693.53

rc = 0.55 2676.43 2688.1 2683.17 2668.07 2673.2 2678.88

rc = 0.75 2692.9 2659.97 2673 2684.72 2673.45 2677.55

Table 4.17: Probabilities of finding feasible solutions under different combinations of
reproductive rates for Experiment 4.3.2

rm = 0.05 rm = 0.15 rm = 0.25 rm = 0.40 rm = 0.55 rm = 0.75

rc = 0.05 0.26 0.46 0.64 0.7 0.82 0.86

rc = 0.15 0.14 0.42 0.7 0.82 0.84 0.94

rc = 0.25 0.26 0.64 0.58 0.84 0.96 0.96

rc = 0.40 0.24 0.54 0.7 0.78 0.9 0.98

rc = 0.55 0.26 0.38 0.56 0.66 0.88 0.86

rc = 0.75 0.08 0.44 0.54 0.42 0.46 0.6

Table 4.18: Average fitness value for collision-free results under different combinations
of reproductive rates for Experiment 4.3.2

rm = 0.05 rm = 0.15 rm = 0.25 rm = 0.40 rm = 0.55 rm = 0.75

rc = 0.05 2732.36 2816.53 2878.26 2894.7 2852.79 2898.74

rc = 0.15 2873.98 2884.97 2889.7 2912.74 2892.72 2887.05

rc = 0.25 2792.33 2876.66 2872.2 2887.83 2892.21 2888.91

rc = 0.40 2845.68 2844.28 2875.95 2885.69 2879.5 2871.27

rc = 0.55 2797.59 2748.11 2808 2870.67 2871.94 2874.16

rc = 0.75 2841.87 2839.74 2834 2846.18 2832.1 2862.73

4.6 Summary

This chapter have proposed a new automatic path planning algorithm for single-crane

lifting. A comprehensive mathematical formulation is provided for the problem and

a customized MSPGA is developed to tackle the optimization problem. Compared

to Ali’s fitness function, the proposed fitness function shows great advantage on the

success rates. In order to deal with complex environments, the image-space collision

85



Chapter 4. Single-Crane Lifting Path Planning Using GPU-enabled Parallel Genetic Algorithm

detection introduced in Chapter 3 is combined with ASVs to perform DCD and CCD

in the GA search. Finally, to further improve the computational efficiency, a hybrid

C-space collision detection strategy is proposed. This strategy preserves the good

solution quality of the online strategy and reduces the pre-processing time of the C-

space strategy significantly.

The lifting path planning algorithm is able to handle complex plant environments

and output safe lifting paths highly optimized in terms of energy cost and human

conformity. The result paths are smooth and concise which are ready to be used by

real cranes. Although the performance of the algorithm is somehow dependent on its

parameter design, it is possible to predict the optimum parameter by the pre-analysis

of the complexity of the plant environment.

86



Chapter 5

Dual-Crane Lifting Path Planning
Using LGP-enhanced Parallel
Genetic Algorithm

5.1 Introduction

Cooperative dual-crane lifting is a common strategy applied in heavy and critical lifting

tasks. The intensive coordination and synchronization required in dual-crane lifting

lead to difficulties in planning and executions. Safety is crucial when dealing with the

irregular movements of the suspended lifting target. This chapter concerns the dual-

crane lifting path planning problem in complex environments such as construction

sites, petrochemical and pharmaceutical plants. It is a multi-agent path planning

problem involving a closed kinematic chain formed by the suspended lifting target.

The inputs to the problem include crane setup information, the pick & place locations

of the lifting target, and the plant environment. The goal is to obtain well-coordinated,

collision-free and short dual-crane lifting paths for complex environments.

Early exploration of the problem is in [141] where discrete searching algorithms

such as hill climbing and A* are performed in the C-space of the cranes as a 2 × 3

manipulator. The cranes are modeled as simple sets of boxes. The 6D C-space is

explicitly calculated, taking up the majority of its computation time. The work has

This chapter is based on the journal paper: P. Cai, Y. Cai, J. Zheng and I. Chandrasekaran,
“Automatic path planning for dual-crane lifting in complex environments using GPU-enabled parallel
genetic algorithm”, to be submitted.

87



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

been further extended in [1] using a GA to optimize the candidate dual-crane paths in

the C-space. The GA-based approach in [1] is able to provide highly optimized solu-

tions. However, their method is still prohibited due to the expensive computation cost

and thus restrained in simple environments and crane representations only. The latest

work conducted in [2] utilizes a PRM in dual-crane lifting planning. The algorithm

separates the optimization of hoisting heights from swinging and luffing operations by

constraining zero tilting angle of the lifting target. Optimization of swinging and luff-

ing operations are conducted using a PRM where the roles of the major and assistant

cranes are switched in each iteration. Rule-based hoisting planning is then conducted

along the swinging and luffing path by choosing optimal heights for the lifting target.

Their method is able to achieve near real-time performance in simple environments.

However, the problem decomposition used is not valid for lifting cases requiring tilting

of the target.

This chapter first analyzes the DOFs of the dual-crane lifting problem and formu-

lates the mathematical model. Then, the manipulation and suspension sub-systems

are handled separately to determine the exact state of the dual-crane lifting system

accurately. The proposed solution solves the equilibrium of the lifting target by for-

mulating a non-linear equation system considering kinematic constraints and physical

constraints such as force balancing and moment equilibrium. This chapter then dis-

cusses efficient representations of coordinations between the cranes. Based on these

mathematical formulations, the MSPGA-based path planner for dual-crane lifting is

then developed. The proposed planner exploits the LGP strategy to handle the multi-

objective nature of the dual-crane path planning problem. The adaptive plan and the

fitness function are designed to reflect the priorities of the multiple objectives and thus

help the GA towards convergence. The planner avoids explicit representation of the

high DOF C-space of dual-crane lifting. Instead, it decomposes the 6D C-space into

two 2D C-spaces and handles the rest of the motions by online collision checks. The

proposed planner employs hybrid C-spaces and TSSs to evaluate the safety factors of

the dual-crane lifting paths. This chapter details on how this CCD algorithm deal-

s with the uncertain motion of the dual-crane lifting target soundly and efficiently.

Finally, this chapter presents comparisons with two previous algorithms to show the

88



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

effectiveness and efficiency of the proposed solution. The algorithm developed in this

chapter, together with the ones introduced in Chapters 3 and 4 provide technology

supports for the lift planner cum crane simulator system that will be presented in

Chapter 6.

5.2 Mathematical Formulation

The industrial plant or construction site that the cranes are working in is considered as

a complex static environment. Assumptions made to the motion of the cranes and the

lifting target are similar to those stated in the Chapter 4. During the process of dual-

crane lifting, the cranes, the lifting target, and the ground form a closed kinematic

chain which brings high non-linearity and motion uncertainty to the path planning

problem.

In order to deal with the closed kinematics chain in dual-crane lifting, The system

is divided into two sub-systems: the manipulation sub-system and the suspension

sub-system. The manipulation sub-system is composed of two cranes that can be

represented as two open kinematic chains. The lifting target suspended from the

boom tips of the cranes via slings is the suspension sub-system. A single terrain crane

has 2 DOFs excluding target rotation and sling length. Thus, the manipulation sub-

system has 2 × 2 DOFs considering the two terrain cranes. Figure 5.1 shows the 4

DOFs of the dual-crane manipulation sub-system.

Generally, each sling in the suspension sub-system has 3 variables: sling length l,

yaw angle θ and tilt angle φ. The lifting target also has 5 variables in the suspension

sub-system: anchor position A = (Ax, Ay, Az), tilt angle ϕ and yaw angle ϑ. However,

these motion variables are not independent. Under the constraints of kinematics and

equilibrium, the two sling lengths l1 and l2 can determine the rest of variables (details

will be discussed in Section 5.4). Consequently, the suspension sub-system only has

two Degrees of Freedom (DOFs): l1 and l2. In total, the dual-crane lifting system has

2× 2 + 2 = 6 DOFs. In other words, the dual-crane lifting paths are defined in a 6D

C-space, denoted as Cdual in this chapter. The structure of the suspension sub-system

can be found in Figure 5.3(a).

89



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

Figure 5.1: Kinematics and DOFs of the manipulation sub-system of dual-crane lifting.

Based these analyses, the mathematical representation of the optimization problem

of dual-crane lifting path planning can be formulated following a similar procedure as

Section 4.2.2 in Chapter 4.

In the proposed algorithm, the dual-cane lifting path is represented as a string

sdual = {Odual, Edual}, where Odual is the set of nodes (dual-crane configurations) and

Edual represents the set of edges (internal dual-crane paths between independent n-

odes). Thus, the variables of the optimization problem can be written as (see Table

5.1 for explanations of the symbols):

sdual = {ci}i=0,1,...,Ls−1 ∪ {ej}j=0,1,...,Ls−2 (5.1)

ci = (α1
LF , α

1
SW , l

1
HS, α

2
LF , α

2
SW , l

2
HS) (5.2)

The edges ej are composed by the set of dual-crane configurations determined by

nodes cj and cj+1 through linear interpolation of parameters. This definition of inputs

will be reorganized as chromosomes in the GA search in Section 5.5. The task of the

planning algorithm is to find an optimal s∗dual composed of c∗i which maximizes the

evaluation function.

A metric function is defined in space Cdual in order to evaluate the distances. The

metrics d′ is defined as:

d′(a, b) =
6∑

i=0

ri|ai − bi| (5.3)

90



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

Table 5.1: Parameters and variables used in solution representation

Symbol Expression
ci The ith dual-crane configuration in the string sdual
ej The jth edge in the string sdual
Ls The length (number of configurations) of the string sdual
α1
LF The luffing angle of crane 1 in degrees
α1
SW The swinging angle of crane 1 in degrees
l1HS The hoisting length of crane 1 in centimeters
α2
LF The luffing angle of crane 2 in degrees
α2
SW The swinging angle of crane 2 in degrees
l2HS The hoisting length of crane 2 in centimeters

Here a and b denote respectively two configurations in space Cdual and ai, bi (i =

0, . . . , 6) are the unified representation of the six parameters of a and b (Equation

(5.1)). A scaling factor ri is applied to the absolute difference value for each dimension

in d′. Generally, d′ measures the total number of weighted movement units of the two

terrain cranes. The weights indicate the energy cost of the correspondent crane when

unit movement is conducted. When ri is set as 1 for all i, function d′ is equivalent to

the L1 norm defined on 6D vectors.

Now the evaluation function of a string sdual in the solution space Sdual can be

expressed as (see Table 5.2 for explanations of the symbols):

F (sdual) = λ

(
1 +

λ

d(sdual)

)
(5.4)

where

d(sdual) =
Ls−2∑
i=0

d′(ci, ci+1) (5.5)

sdual ∈ Sdual, ci ∈ Cdual and i = 0, . . . , Ls − 1 (5.6)

Then the maximization problem for the dual-crane lifting path planning scenario can

be accordingly written as:

91



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

Table 5.2: Parameters and variables in the objective function

Symbol Expression
F (s) The evaluation value of string sdual
d(s) The distance cost in string sdual
cj The jth configuration in string sdual
λ, λ′ Constant scaling factors

max F (sdual)

s.t. nnode(sdual) = 0, sdual ∈ Sdual (5.7)

nedge(sdual) = 0, sdual ∈ Sdual (5.8)

mnode(sdual) = 0, sdual ∈ Sdual (5.9)

medge(sdual) = 0, sdual ∈ Sdual (5.10)

Bdual ≤ ci ≤ Bdual, (5.11)

i = 0, 1, . . . , Ls − 1 (5.12)

where nnode(sdual) =
Ls−1∑
i=0

δ(ci) (5.13)

nedge(sdual) =
Ls−2∑
i=0

δ(ei) (5.14)

mnode(sdual) =
Ls−1∑
i=0

σ(ci) (5.15)

medge(sdual) =
Ls−2∑
i=0

σ(ei) (5.16)

δ(ci) ∈ {0, 1}, i = 0, 1 . . . , Ls − 1 (5.17)

δ(ei) ∈ {0, 1}, i = 0, 1 . . . , Ls − 2 (5.18)

σ(ei) ∈ {0, 1}, i = 0, 1 . . . , Ls − 2 (5.19)

σ(ci) ∈ {0, 1}, i = 0, 1 . . . , Ls − 1 (5.20)

The goal function of this maximization problem is the evaluation function defined

in Equation (5.4). Differed from the single-crane problem, the dual-crane problem

92



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

has five constraints: discrete collision constraint (Equation (5.7)), continuous collision

constraint (Equation (5.8)), coordination constraint (Equation (5.9)), continuous co-

ordination constraint (Equation (5.10)) and DOF limit constraint (Equation (5.11)).

δ(ci) and δ(ei) represent the collision detection results of elements ci and ei in string

sdual. σ(ci) and σ(ei) represent the coordination test results of elements ci and ei in

string sdual. The two types of collision constraints require that there are no collision

violations in the node configurations (discrete) or the edge paths (continuous). Details

of the collision detection computations will be discussed in Section 5.6. The two coor-

dination constraints require the cranes to be coordinated in each node and during the

movement along the edges (continuous). Details about the coordination of cranes will

be discussed in Section 5.4.2. Bdual and Bdual stand for the lower and upper bound

values for the 6 DOFs in the dual-crane configurations. Bdual and Bdual are empirically

set as (0, 0, 100, 0, 0, 100) and (82, 360, 7000, 82, 360, 7000). The optimal solution s∗dual

of the maximization problem is a dual-crane lifting path which is well-coordinated,

collision-free and optimized in energy cost.

5.3 The Manipulation Sub-system

The manipulation sub-system includes components of the terrain cranes except the

sling and hook. The position and orientation of these components are fully determined

by the kinematics as shown in Figure 5.2.

Oi in Figure 5.2(b) stands for the ith node in the manipulation sub-system. As

shown in Figure 5.2(a), the nodes represent different components of the terrain cranes.

O0 is the center of the crane body. O1 stands for the center of the rotational plate

supporting the cockpit and the upper structures. O2 is the rotational anchor of the

main boom which usually has a cylindrical shape. O3 represents the tip of the boom.

The connection line of O2 and O3 is parallel to the boom. O4 stands for the anchor

where the sling is connected with the boom. Li is the ith link in the manipulation sub-

system that connects node Oi−1 and Oi. The manipulation sub-system has 3 DOFs

as shown in Figure 5.2(c). αBD, αSW and αLF represent the angle of body rotation,

cockpit swinging, and boom luffing respectively. Among them, αLF is the angle from

the x-y plane while the rest two are angles along the z-axis.

93



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

(a) (b) (c)

Figure 5.2: The manipulation sub-system of dual-crane lifting: (a) names of the nodes
in terrain cranes; (b) joints and links in the manipulation sub-system; (c) DOFs of the
manipulation sub-system.

Solving the manipulation sub-system is to obtain the position of the end effector

O4 from the kinematic structure. The sling anchor O4 will serve as the input for the

dual-crane suspension sub-system. The position of O4 can be calculated through the

following equation:

O4 = O0 + Rz(αBD)

(L1 + Rz(αSW ) (L2 + Rx(αLF ) (L3 + L4))) (5.21)

where Rz(α) stands for the matrix representing the rotation along the z axis with

angle α. Similarly, Rx(α) stands for the rotation matrix along the x axis.

5.4 The Suspension Sub-system

The suspension sub-system of dual-crane lifting considers the load suspended on the

sling anchors through the slings and riggings. The positions of the sling anchors are

acquired from solving the manipulation sub-systems. Components of the suspension

sub-system include the slings and hooks of the cranes, the lifting target and rigging

components connecting them.

94



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

5.4.1 Solving the dual-crane suspension sub-system

In order to solve the suspension sub-system, the weight of the slings and rigging com-

ponents are ignored due to they are much smaller than the weight of the lifting target

in heavy lifting. Moreover, in an equilibrium state, the mass center of the lifting target,

and rigging anchor points must lie in a single vertical plane. As a result, the suspension

sub-system is simplified as a lifting target suspended from the sling anchors through

two weightless links in a 2D plane. Figure 5.3(a) shows the kinematic structure of the

suspension sub-system. The 4 nodes in the suspension sub-system include P1 and P1

which are the sling anchors, and A1 and A2 which are the attach anchors on the lifting

target. The 5 variables in the system include φ1 and φ2 that are the angles between

the slings and the z-axis, L1 and L2 (the lengths of the slings) and ϕ (the tilt angle

of the lifting target). Because of the 2 hinge joints at A1 and A2, the DOF of the

suspension sub-system is reduced to 3.

The lifting target is simplified as a triangle structure containing the two attach

anchors A1, A2 and the mass center O (Figure 5.3(b)). The length between the two

attach anchors on the lifting target is denoted as L12. The distances from the attach

anchors to the mass center are denoted as L10 and L20.

The positions of the mass center and attach anchors cannot be determined by the

kinematic alone since the sub-system has 3 DOFs but only has 2 parameters L1 and

L2 to manipulate. To compute all the parameters, it is also necessary to consider the

equilibrium of forces and moments of the lifting target under the effect of gravity and

the sling forces.

In order to formulate the balancing equation of the suspension sub-system, the

following parameters are introduced as variables of the equations: φ1, φ2, ϕ, f1, f2 and

O. f1 and f2 are the magnitudes of forces F1 and F2. Other variables are the same as

defined previously. The relationships among the variables are defined by 4 constraints:

kinematics of the suspension sub-system, shape preservation of the lifting target tri-

angle, equilibriums of forces and moments. The equation system is written as below

accordingly:

95



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

(a) (b) (c)

Figure 5.3: Kinematics, forces and moments of the suspension sub-system in dual-crane
lifting.

P1 + L1

(
sin(φ1)
−cos(φ1)

)
+ L12

(
cos(ϕ)
sin(ϕ)

)
= P2 + L2

(
−sin(φ2)
−cos(φ2)

)
(5.22)

||P1 + L1

(
sin(φ1)
−cos(φ1)

)
−O|| = L10 (5.23)

||P2 + L2

(
−sin(φ2)
−cos(φ2)

)
−O|| = L20 (5.24)

F1 + F2 = G (5.25)

r1 × F1 + r2 × F2 = 0 (5.26)

Equation (5.22) represents the kinematic constraint. It states that the attach

anchor A2 on the lifting target has to be aligned with the tip of the second sling.

Equations (5.23) and (5.24) describe the shape of the triangle in the lifting target. They

require the mass center to be in a fixed relative position in the lifting target. Equation

(5.25) containing 2 dimensions represents the equilibrium of gravity force and the sling

forces. Equation (5.26) states the equilibrium of moments on the mass center of the

lifting target applied by the gravity and the sling forces. These nonlinear equations are

solved using the “hybrids” solver in the GNU Scientific Library [147] which uses the

finite difference approximation of Jacobian functions to guide the direction of searches.

96



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

(a) (b)

Figure 5.4: The two types of coordination of the suspension sub-system: (a) node
coordination; (b) continuous coordination.

5.4.2 Coordination of cranes

The purpose of using dual cranes for lifting is to share the load of the lifting target on

the two cranes. The capacities of the two cranes are usually chosen as slightly larger

(with a safety factor) than half of the load to handle the extra forces caused by sling

tilting. However, the forces or load on the sling increase non-linearly with the tilt

angle of the slings. Thus in practice, a safety threshold, denoted as φmax, is set to

the tilt angle of the slings. When the absolute values of φ1 and φ2 are smaller than

φmax, the dual-crane configuration is called “coordinated” in the equilibrium state.

Otherwise, the configuration is not properly coordinated. There are two possible ways

to check coordination during the lifting path planning. The first method is to solve

the suspension equation system and check φ1 and φ2 against φmax. This method is

accurate but computationally prohibited due to the high computational cost to solve

the 7D non-linear equation system. The alternative way is to approximate φ1 and φ2

with some easy-to-get value (details see below).

For the approximation, two points B1 and B2 are introduced as estimated attach

anchors. As shown in Figure 5.4(a), B1 and B2 stand respectively for the positions of

97



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

A1 and A2 when both φ1 and φ2 are set to zero. Thus there are two relationships:

|A1B1| = L1 sin(φ1) = L1φ1 +O(φ3
1) (5.27)

|A2B2| = L2 sin(φ2) = L2φ2 +O(φ3
2) (5.28)

For small φ1 and φ2, Equation (5.28) is further written as:

|A1B1|+ |A2B2| = L1|φ1|+ L2|φ2|+O(|φ1|3) +O(|φ2|3)

≈ L1|φ1|+ L2|φ2| (5.29)

The value L1|φ1| + L2|φ2| can thus be used to monitor the coordination for dual-

crane lifting as indicated in the following equation:

L1|φ1|+ L2|φ2| < min(L1, L2)φmax (5.30)

It is a sufficient condition for coordination because it always has:

min(L1, L2)(|φ1|+ |φ2|) < L1|φ1|+ L2|φ2| (5.31)

Therefore, satisfying Equation (5.30) can make sure that |φ1|+ |φ2| < φmax. However,

this value is still dependent on φ1 and φ2 which can only be acquired through solving

the suspension sub-system. Evaluating these values during lifting path planning is

computationally forbidden. Therefore, more steps are used to simplify the represen-

tation. Note that when we translate A1A2 so that A2 coincide with B2, a triangle is

formed by A1, B1 and B2 with the length of the bottom edge to be L = L1|φ1|+L2|φ2|.
By performing projections of A1A2 and B1A1+A2B2 on B1B2, we can get the following

relationships:

Lcos(φ0) = D12 − L12cos(φ
′) (5.32)

Lcos(φ0) = D12 −
D2

12 + L2
12 − L2

2D12

(5.33)

L =
D12

2cos(φ0)
− L2

12

2D12cos(φ0)
+

L2

2D12cos(φ0)
(5.34)

Here φ0 is the tilting angle of B1B2 and φ′ is the angle between A1A2 and B1B2 (see

Figure 5.4(a)). L12 and D12 refer to the length of A1A2 and B1B2 respectively. Since

98



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

it always has:

L < D12cos(φ0) (5.35)

By substituting D12cos(φ0) into Equation (5.34), we get:

L <
D12

2cos(φ0)
− L2

12

2D12cos(φ0)
+
L

2
(5.36)

L <
D12

cos(φ0)
− L2

12

D12cos(φ0)
=

D2
12 − L2

12

D12cos(φ0)
(5.37)

In the proposed planner, the value e = |D2
12−L2

12|/ (D12cos(φ0)) is used to approx-

imate L1|φ1|+ L2|φ2|. The final coordination constraint is formulated as:

|D2
12 − L2

12|
D12cos(φ0)

< min(L1, L2)φmax (5.38)

When this inequality is met, combining Equations (5.30), (5.31) and (5.37), it can

be easily seen that |φ1| and |φ2| will be smaller than φmax. This proves that the

simplified constraint formulated in Equation (5.38) is still a sufficient condition for

coordination.

When the cranes are conducting the output path of lifting planning, there also

exists possibility of violating the dual-crane coordination when moving from one node

configuration to another. Thus in lifting path planning, the coordination during the

movements along the edges (continuous coordination) shall also be considered. The

continuous coordination is implemented through constraining the distance traveled

by the estimated attach anchors and the angle between the lifting target direction in

neighboring steps. The continuous coordination constraint is written as:

||(B1
1 −B2

1)xy||+ ||(B1
2 −B2

2)xy|| 6 λ(L1 + L2)φmax (5.39)

|(B2
1 −B1

1)z − (B2
2 −B1

2)z| 6 λ′(L1 + L2)φmax (5.40)

As illustrated in Figure 5.4(b), B1
1 and B1

2 are the estimated attach anchors on the

lifting target in time step 1, and B2
1 and B2

2 are the estimated attach anchors in the

neighboring time step 2. Equation (5.39) states that the distance traveled by the two

99



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

attach anchors has to be within a small threshold related to φmax. The scaling factor

λ is used to control the tightness of the threshold. Equation (5.40) constrains the

tilting of the lifting target in a threshold related to φmax. Synchronized hoisting which

does not affect the coordination of the cranes is not constrained in this equation. The

continuous coordination constraint helps to control the sling angles in a small range

during the whole path. Even though it is not a sufficient condition, the parameters can

be fine-tuned with the help of the suspension sub-system solver introduced in Section

5.4.1 to produce strictly coordinated paths.

5.5 MSPGA-based Path Planner for Dual-crane Lift-

ing

This section presents the customized and LGP-enhanced MSPGA for the dual-crane

lifting path planning problem. Collision avoidance of the planner is based on the

hybrid C-space collision strategy as introduced in Chapter 4 with approximated swept

volumes for the lifting target and multi-level depth maps introduced in Chapter 3.

The collision detection module will be further discussed in Section 5.6.

A chromosome in the MSPGA-based path planner for dual-crane lifting is defined

as the array of dual-crane configurations (genes). The chromosome is composed of all

the node configurations ci (i = 0, . . . , Ls− 1) from the solution sdual in Equation (5.1)

in Section 5.2. The population is a fixed-size set of chromosomes carrying different

dual-crane lifting paths (candidates) to evolve in the GA process.

5.5.1 Framework of the LGP-enhanced MSPGA

The MSPGA-based path planner takes the inputs from the simulation system and

output optimized lifting paths through the MSPGA evolutions. The start and end

configurations predefined by the user are the major inputs to the MSPGA-based path

planner. The parameters such as string length, population size and the rates of adap-

tive operators are also passed to the planner as inputs. Moreover, the kinematics and

hybrid C-spaces of the cranes are input into the planner for coordination and collision

checking. Figure 5.5 is a brief denotation of the work flow.

100



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

Figure 5.5: Workflow of the MSPGA-based path planner for dual-crane lifting.

5.5.2 Initialization

The search space of path planning for dual-crane lifting is much larger than that for

single-crane lifting. Good initialization of paths can greatly increase the performance

of GA. The initialization strategy applied in the MSPGA-based path planner for dual-

crane lifting includes two parts. The major part of the population is generated through

randomly selecting parameters within DOF constraints. For the rest of the population,

swinging angles and luffing angles are generated through interpolating the start and

end values. The hoisting values for genes are determined by choosing a random hoisting

height same for both the major crane and assistant crane. The sling lengths are

acquired through subtracting the maximum hoist height (related to luffing angle) with

the selected hoist height. These candidates are called “seeds” fed into the population.

These seeds are initial guesses of how the good solutions should look like. Although the

seeds are usually not feasible solutions, they are more likely to provide good building

blocks through mutation (see Section 5.5.3.2).

5.5.3 Dual-crane adaptive plan

This section focuses on the fitness function and adaptive operators of the MSPGA-

based path planner for dual-crane lifting. These components of the planner have

101



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

Table 5.3: The dual-crane initialization strategy for the major portion in the popula-
tion

Configuration Strategy
c1 Randomly generate hoist height; Keep other parameters as the

start configuration
c2 ∼ cLs−3 Randomly generate parameters
cLs−2 Randomly generate hoist height; Keep other parameters as the

end configuration

Table 5.4: The dual-crane initialization strategy for the seeds in the population

Parameter Strategy

α1
SW&α2

SW Interpolate start and end swinging angles

α1
LF&α2

LF Interpolate start and end luffing angles

l1HS&l2HS Randomly choose hoisting height

encoded the multiple constraints in the optimization problem (see Equation (5.2)).

The dual-crane fitness function and crossover operator are prioritized following the

LGP principle. A coordination mutation operator is introduced to help supply well-

coordinated genes.

5.5.3.1 Fitness function

Similar to the single-crane scenario, the MSPGA-based path planner for dual-crane

lifting uses a proportional selection scheme where the survival chance for a string is

proportional to its fitness value. The elitism strategy is also applied in order to pre-

serve the “fittest” chromosomes. The fitness function used in the dual-crane planner

is a combination of the objective function (see Section 5.4) and the hard constraints in

the optimization problem (Equation (5.2)). Through this way, the multi-constraint op-

timization is transferred to a multi-objective optimization problem without constrain-

t. In order to tackle the multi-objective problem, priorities are assigned to different

objectives. The priorities are given from high to low as: coordination, continuous co-

ordination, collision avoidance and continuous collision avoidance. Based on the same

though as for the single-crane scenario, the fitness function is designed as a step func-

tion to differ strings in different stages. This dual-crane fitness function reflects the

102



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

Table 5.5: Parameters and variables used in the fitness function design

Symbol Expression

f(sidual) The fitness value of string sidual

sidual The ith dual-crane string in the population

mi The violation number
ni The collision violation number
Lp The size of population
moi The coordination violation number of the nodes in sidual

mei The continuous coordination violation number of the edges in sidual

noi The collision violation number of nodes in string sidual

nfi The continuous collision violation number of boom, cockpit and coun-
terweight in string sidual

nli The continuous collision violation number of the lifting target in
string sidual

priority of the multiple constraints. The fitness function for a given chromosome sidual

in the population Pdual is defined as (see Table 5.5 for explanations of the symbols):

f(sidual) =


λ1/mi if mi > 0

λ1(1 + 1/ni) if mi = 0, ni > 0

λ1(2 + λ1/di) if mi = 0, ni = 0

(5.41)

where

mi = moi +mei (5.42)

ni = noi + nfi + nti (5.43)

i = 0, 1, 2, . . . , Lp − 1 (5.44)

mi > 0 stands for the cranes not well coordinated at the some dual-crane config-

urations in the string or during the movement to neighboring configurations. When

ni > 0, some nodes or edges in string si are colliding with the environment. The fitness

value lies in (0, λ1] when mi > 0 and (λ1, 2λ1] when mi = 0 and ni > 0. For the cases

when mi = 0 and ni = 0, the fitness values are larger than 2λ1. This incremental step-

wise function ensures that the strings violating higher priority constraints have lower

103



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

survival chances. The evolutionary search of GA will minimize the violation numbers

from high priority to low priority. When all the constraints are met, the evolution will

optimize the motion cost of the string.

5.5.3.2 Adaptive operators

The increase in the number of constraints makes the solutions much harder to find in

the dual-crane lifting scenario. Thus, the success rate relies heavily on the ability of

the crossover and mutation operators to provide better offspring from parents.

The MSPGA-based path planner for dual-crane lifting uses a parameter-based

crossover strategy. The crossover happens with a rate rc for each pair of parent strings

in the mating pool. For each location ci in the offspring string, the constraint violation

numbers of the parent genes are compared following roughly the priority defined in

Section 5.5.3.1. If one parent gene has a lower violation number for a higher priority

constraint, the parent gene is picked as the offspring gene. The purpose of this strategy

is to help GA enter the feasible (collision-free) space through eliminating configura-

tions which violate the current highest priority constraint from the population. The

flow of the crossover operator is illustrated in Algorithm 5.1.

Three types of mutations are used in the dual-crane planner: bitwise mutation,

smoothing mutation and coordination mutation. The bitwise mutation alters bits

(genes) in the population with a mutation rate rm. A random variable in the gene is

selected to add a real value within a given range. the mutation range is set larger when

the coordination and collision violation numbers are greater than 0. In the smoothing

mutation, genes are picked from the population with the mutation rate and one of

the variables is changed as a random convex combination of those in the neighboring

genes. The smoothing mutation helps the genes to be coordinated between the cranes.

The coordination mutation takes a selected chromosome with the mutation rate and

replaces the invalid dual-crane configurations with new coordinated configurations. It

supplies the population with coordinated configurations through forcing selected genes

to be coordinated.

The MSPGA-based path planner for dual-crane lifting also uses adaptive rates in

all the three types of mutations. the mutation rates for a chromosome are formulated

104



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

Algorithm 5.1 Pseudo-code of the crossover strategy in the MSPGA-based path
planner for dual-crane lifting

for all String sidual in the population Pdual do
for all Gene cj in string sidual do

Load parent genes c1j and c2j from the mating pool;
Penalty g1 ← σ(c1j), penalty g2 ← σ(c2j);
if g1 > g2 then

cj ← c1j ;
else if g1 < g2 then

cj ← c2j ;
else

Remain undetermined;
end if
Penalty g1 ← δ(c1j), penalty g2 ← δ(c2j);
if g1 > g2 then

cj ← c1j ;
else if g1 < g2 then

cj ← c2j ;
else

Remain undetermined;
end if
g1 ← σ(e1j−1) + σ(e1j), g2 ← σ(e2j−1) + σ(e2j);
if g1 > g2 then

cj ← c1j ;
else if g1 < g2 then

cj ← c2j ;
else

Remain undetermined;
end if
g1 ← δ(e1j−1) + δ(e1j), g2 ← δ(e2j−1) + δ(e2j);
if g1 > g2 then

cj ← c1j ;
else if g1 < g2 then

cj ← c2j ;
else

Remain undetermined;
end if

as (see Table 5.6 for the symbols):

rm(sdual) =

{
rm + (f − f(sdual))/f, if f(sdual) < f

rm, if f(sdual) ≥ f
(5.45)

105



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

Algorithm 5.1 (continued) Pseudo-code of the crossover strategy in the MSPGA-
based path planner for dual-crane lifting

g1 ← d(c1j , c
1
j+1), g2 ← d(c2j , c

2
j+1);

if g1 > g2 then
cj ← c1j ;

else if g1 < g2 then
cj ← c2j ;

else
Remain undetermined;

end if
if Undetermined then

cj ← RandomChoose(c1j , c
2
j)

end if
end for

end for

Table 5.6: Parameters and variables in adaptive mutation rates

Symbol Expression
rm(sdual) The mutation rate of string sdual
rm The basic mutation rate

f The average fitness value in the population
f(sdual) The fitness value of string sdual

The bit-wise mutation strategy used in the proposed algorithm is shown in Table

5.7. Similar to the single-crane scenario, the mutation only alters the hoisting height

(sling lengths of the cranes) for c1 and cLs−2 in each chromosome. Mutation scales of

well-coordinated or collision-free genes are kept small in order to preserve the good

features. The bad genes are disturbed largely for exploring the solution space.

The smoothing mutation is done only for collision-free strings. It smooths the

candidate paths by forcing the selected variable in a gene to be the interpolated value

of the corresponding value in its neighbors. The procedure of the smoothing mutation

is illustrated in Algorithm 5.2.

In the coordination mutation, coordinated dual-crane configurations are generated

from the selected genes with the original location and orientation of the lifting target

kept. The workflow of the coordination mutation is given in Algorithm 5.3.

106



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

Table 5.7: The bitwise mutation strategy used in the dual-crane planner

Configuration Case Strategy

c1 & cLs−2

δ(ci) + δ(ei) = 0 Alter hoisting height in smaller scale

δ(ci) + δ(ei) > 0 Alter hoisting height in larger scale

c2 ∼ cLs−3

σ(ci) + σ(ei) = 0 or
δ(ci) + δ(ei) = 0

Alter any configuration parameter in
smaller scale

σ(ci) + σ(ei) > 0 and
δ(ci) + δ(ei) > 0

Alter any configuration parameter in
larger scale

Algorithm 5.2 Pseudo-code of the smoothing mutation strategy in the MSPGA-based
path planner for dual-crane lifting

for all String sidual in the population Pdual do
if ni = 0 then

for all Gene cj in string sidual do
Randomly choose variable ajk for mutation;
λ← Rand(0, 1);
ajk ← λajk−1 + (1− λ)ajk+1

end for
end if

end for

Algorithm 5.3 Pseudo-code of the coordination mutation strategy in the MSPGA-
based path planner for dual-crane lifting

for all sidual in Pdual do
if mi > 0 then . Coordination constraints violated

for all cj in sidual do
if σ(cj) = 1 then . Node Coordination Violated

Dir ← Normalize(B2 −B1);
L← ||B2 −B1||;
d← (L− L12)/2;
B′1 ← B1 + d(Dir), B′2 ← B2 − d(Dir)
cj ← (IK(B′1), IK(B′2)); . IK: Inverse kinematics

end if
end for

end if
end for

107



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

5.6 Collision Avoidance

The collision avoidance in dual-crane lifting path planning considers both discrete and

continuous collision types. Because the string length required in dual-crane lifting is

much larger than in single-crane lifting, the computational load is also much heavier,

especially for collision checks. Therefore, the hybrid C-space strategy proposed in

Chapter 4 is also utilized here to reduce the collision detection time. In the pre-

processing stage, the hybrid C-spaces of both cranes are generated and stored in the

GPU memory. Collision check using the hybrid C-space is exactly as represented in

Chapter 4. When the MSPGA evaluates the violation of discrete collision constraint of

candidate genes, it looks up the boolean collision information from the hybrid C-space

for each crane using the αSW s and αLF s defined in the gene being evaluated. The dual-

crane gene is marked as colliding if the boolean value for any of the cranes indicates

a collision. The continuous collision checks for booms, cockpit and counter-weight are

also performed using the hybrid C-space. Edges in candidate strings are mapped into

the hybrid C-spaces of the cranes. Collision information is checked along the mapped

paths in the hybrid C-spaces. If a collision is found in any of the mapped paths for

the two cranes, the edge is marked as colliding.

Collision detection of the lifting target for dual-crane lifting path planning is chal-

lenging because of the nonlinearity of the suspension sub-system. Using the exact

position of the lifting target for collision check is impractical due to the high com-

putational load. Thus, TSSs are proposed as the representations of swept volumes

of the lifting target. A TSS is a volume generated by a sphere sweeping through a

triangle. The TSS can also be defined as the volume dialect from the core triangle

with a uniform radius. The concept of TSS is inspired from the PSS, LSS and RSS

[38, 148].

The method first builds an LSS for the lifting target where the length of the core

line A′1A
′
2 is d12. The radius r of the LSS is obtained from the OBB of the lifting target

such that the LSS covers the whole OBB. As the slings in the suspension sub-system

are only allowed to move within a threshold φmax, position of A′1 and A′2 are constraint

in the neighborhood of the approximated attach anchors B1 and B2 (Figure 5.6(a)).

108



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

(a) (b)

(c)

Figure 5.6: Continuous collision detection of the lifting targets: (a) swinging threshold
of the attach anchors; (b) triangles approximating the swept path of the lifting target
during neighboring steps; and (c) volume generated by the CCD triangles with dilation
factor.

Radii R1 and R2 of the neighborhoods are written as:

R1 = (L1 + r)sin(φmax) (5.46)

R2 = (L2 + r)sin(φmax) (5.47)

109



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

which are simplified to:

R1 ≈ (L1 + r)φmax (5.48)

R2 ≈ (L2 + r)φmax (5.49)

since φmax is a small angle.

For any two configurations c1 and c2, the estimated attach anchors B1
1 , B1

2 in c1 and

B2
1 , B2

2 in c2 form two triangles B1
1B

2
1B

1
2 and B2

1B
1
2B

2
2 (Figure 5.6(b)). The triangle

also inherits the error radii R1
1, R

1
2, R

2
1 and R2

2. As a result, two TSSs are constructed:

T1 with vertices B1
1 , B2

1 , B1
2 and radius RT1 = max(R1

1, R
1
2, R

2
1) and T1 with vertices

B2
1 , B1

2 , B
2
2 and radius RT2 = max(R1

2, R
2
1, R

2
2) (Figure 5.6(c)).

The continuous collision detection of the lifting target has now been simplified

as the collision check between the TSSs and points in the depth map. The collision

detection workflow is described in Algorithm 5.4.

The whole collision detection process including the DCD and CCD using the hybrid

C-spaces and the CCD for the lifting target using the TSSs is conducted as GPU kernels

to evaluating collision violation values in the MSPGA-based path planner.

5.7 Results and Analysis

5.7.1 Simulation results

In order to demonstrate the simulation of dual-crane lifting operations. The proposed

balancing solver is used to simulate dual-crane lifting in an industry plant. Two

Terex AC700 terrain cranes of capacity 700 tons are employed to erect a cylindrical

equipment. In the specific configuration shown in Figure 5.7, the major crane shares

of 47.03% the overall load and the assistant crane shares 52.97% of the load. The sling

slopes are 0.68 and 0.61 degrees accordingly for the two cranes. The lifting target is

tilted by 60.94 degrees.

110



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

Algorithm 5.4 Pseudo-code of the continuous collision detection for the lifting target

for all String sidual in the population Pdual do
for all Edge ej in string sidual do

B1
1 ← Crane1ForwardKinematics(cj);

B2
1 ← Crane1ForwardKinematics(cj+1);

B1
2 ← Crane2ForwardKinematics(cj);

B2
2 ← Crane2ForwardKinematics(cj+1);

T1 ← (B1
1 , B

2
1 , B

1
2 ,max(R1

1, R
1
2, R

2
1));

T2 ← (B2
1 , B

1
2 , B

2
2 ,max(R1

2, R
2
1, R

2
2));

AABBT1 ← Boundx−y(T1), AABBT2 ← Boundx−y(T2);
for all point p in the plant depth map which lies within AABBT1 do

d← Proximity(p,B1
1B

2
1B

1
2);

if d <= RT1 then
δ(ej)← 1; Report collision;

end if
end for
for all point q in the plant depth map which lies within AABBT2 do

d← Proximity(q, B2
1B

1
2B

2
2);

if d <= RT2 then
δ(ej)← 1; Report collision;

end if
end for
if No collision reported then

δ(ej)← 0 ;
end if

end for
nedge(s

i
dual)←

∑Ls−2
i=0 δ(ej);

end for

Figure 5.7: Simulation result for dual-crane lifting with sling forces and tilting angles.
111



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

5.7.2 Dual-crane lifting path planning in complex environ-
ments

In order to verify that the proposed method supports dual-crane lifting path planning

in complex environments, Experiment 5.1 is conducted on a complex industrial plant.

The plant model contains 376,205 triangles and 274,108 vertices with a great number of

complex piping structures and various equipment. The experiment lifting case moves

the 10-meter long target from the ground into the gap between two sets of complex

piping structures. The lifting target is required to side-pass the 23 meter high obstacles

and rotate the lifting target horizontally for over 90 degrees.

The dual-crane lifting path generated by the proposed method is illustrated in

Figure 5.8. The trajectory of the lifting target is displayed in yellow. The lifting

path consists of 26 steps. The target is first hoisted to the height of the obstacle and

slowly rotated to the destination orientation. Finally, the lifting target is lowered into

the gap between the structures. This solution is achieved within 200 iterations which

consumes 2s execution time. As shown in the fitness value trend plotted in Figure 5.9,

the GA have found a feasible solution near the 50th iteration and come to convergence

near the 100th iteration. No violation of collision or coordination happens during the

movements. For this specific lifting case, the success rate of the planner is 0.98 out of

1 for 50 trials.

5.7.3 Performance comparison with a GA-based method

To verify the performance of the proposed algorithm, Experiment 5.2 is conducted in

the benchmark environment containing three cuboid obstacles proposed in [1]. The

lifting target of over 10 meters long is lifted to undergo a parallel movement from

one side of the obstacles to another. 200 runs of trials are conducted with both the

proposed method and Ali’s method. For fairness of the comparison, we also use the

proposed parallel collision detection engine in the implementation of Ali’s method.

Moreover, the original serial components in Ali’s method are parallelized by us to

benefit from GPU acceleration. Performance of the methods, in terms of success rates

and solution qualities with different number of iterations, are shown in Figures 5.10

and 5.11. The success rate of the proposed method in Experiment 5.2 reaches 0.94

112



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

(a) (b)

Figure 5.8: Dual-crane lifting path generated in Experiment 5.1: (a) top view; (b) side
view

Figure 5.9: Fitness convergence trend in Experiment 5.1

out of 1 in the first 200 iterations while that of Ali’s method is still 0.03; With the

increase of iteration number, the success rate of the proposed method approaches to

1. With 2000 iterations, the proposed method is able to achieve a success rate of 0.995

out of 1, about 54% higher than that of Ali’s method. Figures 5.11(a) and 5.11(b)

illustrate the solution qualities measured in both the proposed fitness function and

113



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

Ali’s fitness function. The trend is similar to that of the success rates. At finishing the

first 200 runs, the ratio of the average fitness value in the proposed method with that

in Ali’s method is nearly 11 when measuring with Ali’s fitness function. The ratio is

around 29 when both measured with the proposed fitness function. At the end of 2000

iterations, the average fitness value of the best chromosome achieved by the proposed

method is 41∼54% higher than that obtained by Ali’s method. In this specific lifting

case, the average iteration required for finding feasible solutions using the proposed

method is 61 iterations (see Table 5.8), far smaller than the 743 iterations required by

Ali’s method. The time required to complete one iteration using the proposed method

is slightly higher than using Ali’s method (this is the result with GPU parallelization

and the proposed collision detection engine. The original planning time stated in [1]

is 12 min). This is because the proposed method considers more constraints such as

continuous coordination.

The lack of consideration for internal movements between path steps in Ali’s

method leads to possible violation of constraints in the output paths. As an example,

two dual-crane lifting paths output from the Ali’s method and the proposed method

are shown in Figure 5.12. The path generated with Ali’s method, even though looks

smoother and shorter than that in Figures 5.12(c) and (d), violates the coordination

constraint in five sections of movements (highlighted in red).

In order to produce a clearer view of the difference. Experiment 5.3 is conducted to

compare the sling angles, extra loads caused by sling angles, tilting of the lifting target

and the coordination errors e = |D2
12 −L2

12|/ (D12cos(φ0)) between paths produced by

the two methods. Ten successful runs of executions are tested for both the proposed

method and Ali’s method. Figures 5.9 and 5.10 show the maximum and average values

respectively. The maximum sling angle of the cranes during conduction of the paths

generated with Ali’s method are 3 times larger than that for the paths generated with

the proposed method. The tilting of slings causes up to maximum 3.28% more load

shared on one of the cooperative cranes, which leads to higher overloading risks. This

risk may also be measured by the coordination errors, which is 72.8% smaller in the

paths generated with the proposed method. On the other hand, the average tilting

of the lifting target in the paths generated with the proposed method is maintained

114



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

Table 5.8: Comparison on the number of iterations required for finding feasible solution
and the execution time for each iteration with Ali’s method (Experiment 5.2)

Number of iter-
ations

Time per itera-
tion (ms)

The proposed method 61 8.28

Ali’s method (GPU parallelized and with
the proposed CD engine)

743 7.64

Table 5.9: Comparison on the balancing properties in the sample paths output by Ali’s
method and the proposed method in Experiment 5.3 (maximum values)

Maximum

sling angle

(degree)

Maximum

extra load

(%)

Maximum tilt

angle of the

lifting target

(degree)

Maximum co-

ordination er-

ror (cm)

The proposed method 1.82 1.26 7.14 266.68

Ali’s method 5.38 3.28 18.4779 980.05

Table 5.10: Comparison on the balancing properties in the sample paths output by
Ali’s method and the proposed method in Experiment 5.3 (average values)

Average

sling angle

(degree)

Average ex-

tra load (%)

Average tilt

angle of the

lifting target

(degree)

Average coor-

dination error

(cm)

The proposed method 1.69 0.84 5.31 240.30

Ali’s method 3.56 2.31 14.72 533.19

around 5 degrees, nearly 64% reduction compared with the paths generated with Ali’s

method.

The above results show that the proposed method has largely improved the conver-

gence of the GA searches and is able to achieve higher quality solutions within much

shorter time. The proposed method is able to output well-coordinated paths for the

whole conduction process.

115



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

5.7.4 Comparison with a PRM-based method

The effectiveness of the proposed algorithm is also compared with a previous one [2]

based on the state-of-art PRM path planning method which samples configurations

in the C-space to construct road maps. Their method have simplified the problem

by constraining both the sling angles and the tilting angle of the lifting target so

that the dual-crane lifting system can be solved by inverse kinematics. An optimal

path generated in the proposed algorithm is shown in Figure 5.13 together with two

paths presented in Chang’s paper [2]. Both paths from [2] let the lifting target follow

linear motions interpolating key-frame locations in the Euclidean space, one of which

climbed along the obstacles. The other path traveled around the main obstacle. The

underlying problem of paths is brought by the fact that the tips of crane booms who are

driving the lifting target through cables are only allowed to move on a sphere surface.

Linear motions of the end effector, when projected back to the polar system of the

configuration space, would be non-linear arcs. Comparatively, the path generated by

the proposed algorithm appears to be slightly irregular in the Euclidean space. But,

when the path is drawn in the C-space, it reveals a linear, smooth and axis-aligned

pattern which is much easier for the cranes and human operators to track. On the

other hand, Chang’s algorithm relied on zero tilting angle of the lifting target. This

constraint reduced the complexity of the planning by reducing two degree of freedom

for the PRM searches. However, This assumption will be invalid when the cranes are

asked to fulfill erection tasks requiring tilting of the lifting target which are frequently

demanded in industrial applications. Consequently, the proposed algorithm performing

forward kinematic planning using GA is able to produce optimized paths in a more

smooth and nature way. By accepting tolerable sling angles and allowing tilting of the

lifting target, it also suits for more types of demands.

5.8 Summary

A method for simulating and automatic planning dual-crane lifting operations is pro-

posed in this chapter. The dual-crane lifting kinematics is decomposed into the manip-

ulation sub-system and the suspension sub-system. The suspension system is modeled

116



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

through forming and solving a nonlinear equilibrium equation system. Dual-crane

lifting path planning is formulated as a nonlinear optimization problem with collision

constraints, coordination constraints, and DOF constraints. The optimization prob-

lem is solved by a GPU-based and LGP-enhanced MSPGA to obtain optimized lifting

paths. A TSS based method is introduced to deal with the CCD of the lifting target.

The method is able to provide optimal dual-crane lifting paths which are smooth,

collision-free and properly coordinated. The output paths by algorithm maintain the

balance of the lifting target properly. Due to the increased complexities of the dual-

crane lifting problem, the dual-crane planner takes more iterations to enter the feasible

region compared to the single-crane planner. But it still shows fast convergence even

in complex and narrow feasible regions.

117



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

Figure 5.10: Comparison of the success rate using Ali’s method and the proposed
method under different numbers of iterations (Experiment 5.2)

(a)

(b)

Figure 5.11: Comparison of the solution qualities using Ali’s method and the pro-
posed method under different numbers of iterations (Experiment 5.2): (a) using Ali’s
measure; (b) using the proposed measure.

118



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

(a) (b)

(c) (d)

Figure 5.12: Sample path generated with the method of [1]: (a) top view; (b) side
view; And the path generated with the proposed method: (c) top view; (d) side view.

119



Chapter 5. Dual-Crane Lifting Path Planning Using LGP-enhanced Parallel Genetic Algorithm

Figure 5.13: Comparison of two paths generated by: (a) and (b) the method of [2] and
(c) the proposed method. (d) is the C-space path of the major crane conducting the
lifting path shown in (c). Lighter green stands for smaller luffing angle.

120



Chapter 6

System Design of the Lift Planner
cum Crane Simulator

6.1 Introduction

Crane accidents may happen due to various reasons. Inadequate planning, lack of

knowledge, bad communication, as well as machine and human errors may all lead to

severe accidents causing unpredictable financial loss, equipment damage, time delay

and even death [149, 150]. CALP systems aim to improve the safety and productivity

in lifting operations. Systems for interactive lift planning enable users to define lifting

paths with trial and error approaches in a simulation environment. However, this

approach can not produce high-quality solutions efficiently especially for novice users.

Therefore, automatic and optimal lift planning with minimum user interference is

increasingly desired in the industry. This chapter aims to design a practical and

efficient lift planner cum crane simulator which can fulfill the requirements of automatic

lift planning and vocational training.

Prior efforts on CALP systems have focused on the use of simulations to assist inter-

active lift planning. These systems have been designed to assist mechanical checking,

safety monitoring, and evaluations for interactive lifting paths. HeLPS is a conceptual

This paper is based on the book chapter: P. Cai, Y. Cai, I. Chandrasekaran, and J. Zheng, “A
GPU-enabled parallel genetic algorithm for path planning of robotic operators”, in Y. Cai and Simon
See (eds.), GPU Computing and Applications, pp. 1-13, Springer, 2015 and the conference paper:
P. Cai, C. Indhumathi, and Y. Cai, “High-performance simulation for vocational training of heavy
mobile cranes”, the Second Asia-Europe Symposium on Simulation and Serious Games, October 2014,
Zwolle, the Netherlands.

121



Chapter 6. System Design of the Lift Planner cum Crane Simulator

design of CALP systems introduced by Hornaday et al. in [121] based on interviews

and lift studies with experts. Lin and Haas [122] have developed a COPE (short for

Critical Operations Planning Environment) system being able to perform the site anal-

ysis, equipment placement and lifting path generations on 2D drawings. Varghese et

al. [123] have implemented part of the functionalities described in the HeLPS system

design. Their system enables interactive lifting by simulating crane operations in a

3D environment and monitoring safety factors during interactions. Chadalavada and

Varghese [124] have developed a CLPS simulation system as a plug-in approach of the

Autodesk Inventor. Their system is able to assist common lift planning components

such as crane selection and setup, pick & place location determination and interactive

lifting operation planning.

Although the 2D drawings used in some systems mentioned above are easily acces-

sible in the lifting industry, most of them are more or less simplified the information in

the vertical direction and need to be combined with many non-graphical data to fea-

ture the environment and lifting tasks. Other systems using conventional CAD models

can simulate more realistic environments. However, building the CAD models from

the scratch for complex environments (especially for those existing old plants) would

be highly time-consuming with no guarantee for the desired accuracy of the resulting

models. Therefore, previous systems mentioned above are usually more suitable for

training and interactive lifting planning.

Unlike the existing solutions, the proposed lift planner cum crane simulator can deal

with actual industrial environments accurately to perform automatic lift planning. The

system makes use of both data in mesh and point cloud forms. Many new industrial

plants have digital versions in the PDMS, Smartplant systems or BIM systems. In this

case, the system developed extracts geometric information from these digital plants.

For old plants or sites that do not have digital versions, the proposed system uses

laser scanning to capture high-resolution point cloud data for representing the exact

geometric information. Based on these accurate digital environments, the proposed

system enables automatic lift planning by implementing and integrating the collision

detection algorithm and the lifting path planners for single and dual cranes introduced

in previous chapters.

122



Chapter 6. System Design of the Lift Planner cum Crane Simulator

This chapter firstly presents the overall design of the system followed by a de-

tailed introduction on its functional components. In these contents, the processing

procedures for handling PDMS and point cloud data are also discussed. GPU imple-

mentations of the algorithms introduced in previous chapters are elaborated to show

how the hierarchical architecture of CUDA can be fully utilized. Finally, a case study

is provided to illustrate the potential applications of the proposed system for real-life

industrial projects.

6.2 System Architecture

Figure 6.1 illustrates the overall system structure of the lift planner cum crane simu-

lator which consists of four engines. The digital cranes considered by the system are

mobile cranes whose structures are defined in Section 4.2. The planner cum simulator

acquires data from PDMS, BIM and laser scanning technologies to represent complex

industrial environments. These geometric data together with the digital crane from

the database are imported to the modeling engine and organized into a scene graph.

The interaction engine receives user inputs from the GUI and interactive devices to

manipulate the cranes or launch lifting path planning tasks. This engine handles the

interactions between cranes, the lifting target, as well as the environment, and pro-

duces safety warnings for invalid operations. The safety monitoring is achieved by

incorporating the collision detection algorithm introduced in Chapter 3 and the bal-

ance solver for the dual-crane suspension sub-system introduced in Chapter 5. The

optimization engine takes the user-defined lifting task specifications to produce auto-

matic optimal path suggestions. This is realized by implementing the MSPGA-based

path planners introduced in 4 and 5. The optimization engine can also be used to

evaluate of user-defined lifting paths. Finally, the visualization engine collects infor-

mation on the scene and lifting paths to produce 3D visual outputs and to display

lifting animations.

6.2.1 Hardware and software components

The hardware components supporting the system is a normal PC equipped with 3.40

GHz Intel Core(TM) I7-3770 processor and 16GB system memory based on windows

123



Chapter 6. System Design of the Lift Planner cum Crane Simulator

Figure 6.1: System architecture of the lift planner cum crane simulator.

operating system. The basic components of the lift planner cum crane simulator such

as modeling, visualization, and crane manipulation are handled by the CPU. More

computational intensive components such as real-time collision detection and auto-

matic path planning are handled by the GPU. The use of GPU in collision detection

and path planning can significantly improve the performance of the system. This sys-

tem uses the NVIDIA Tesla K20c graphic card which possesses 5GB graphic memory

and 2496 CUDA cores.

The proposed lift planner cum crane simulator is developed using C++ and is

compatible with both Windows XP and Windows 7 platforms. OpenGL is used to

develop the rendering engine performing transformation, rasterization (for rendering)

and display of models. Microsoft Foundation Class (MFC) is used for designing the

Graphical User Interface (GUI) of the system. GPU-based collision detection (present-

ed in Chapter 3) and path planning algorithms (presented in Chapters 4 and 5) are

developed using CUDA C/C++. CUDA has a hierarchical architecture which reflects

the hardware structure of NVIDIA GPUs. The parallel algorithms in this system are

optimized to take advantage of the hierarchical CUDA architecture. Details of the

implementations will be introduced in Section 6.2.2.3.

124



Chapter 6. System Design of the Lift Planner cum Crane Simulator

6.2.2 Engines and supporting methodologies

This section provides a detailed presentation of the functional engines and their sup-

porting technologies, especially on how data from PDMS, BIM and laser scannings

are processed and made use of by the system to represent complex industrial plants

and sites. These technologies usually produce huge data sets which are difficult to be

used efficiently in simulation environments. In the proposed system, all these data are

unified into the MDM representation for simulation, interactions and optimization. In

this way, the proposed system deals with meshes and point cloud models uniformly

for collision detection and path planning.

6.2.2.1 Modeling engine

The modeling engine of the planner cum simulator system takes care of both the digital

cranes and the digital environments. For the digital cranes, the engine manages their

geometries, kinematic structures and mechanical data. For the environments, the

engine processes different types of raw data into accessible formats and constructs a

unified representation for them. As a result, the modeling engine produces a scene

graph which organizes all the above-mentioned data in a hierarchical way.

The proposed modeling engine maintains a database of digital cranes which records

all their geometrical, mechanical and operational properties. The CAD models of

digital cranes are constructed using the actual structures and measures of the physical

cranes. When a digital crane is imported into the system, a branch of the scene graph

is constructed following the actual kinematic structures of the cranes. Therefore,

different types of cranes result in different branch structures in the scene graph. This

difference in kinematics also affects how the hybrid C-spaces, ASVs, and TSSs are

constructed in the lifting path planners.

In the scene graph branches of cranes, internal nodes record transformations to be

applied on their child nodes, and components of cranes are linked to leaf nodes. OBBs

are also constructed for these crane components for later use in collision detection and

path planning. The lifting targets are initially outside the crane scene graph. They

are inserted into the crane scene graph when attached by one or more cranes.

125



Chapter 6. System Design of the Lift Planner cum Crane Simulator

(a)

(b)

Figure 6.2: Digital environments used in the proposed lift planner cum crane simulator
system: (a) A PDMS plant; (b) A point cloud plant.

126



Chapter 6. System Design of the Lift Planner cum Crane Simulator

Figure 6.3: Pipeline for processing PDMS data

An example of a digital plant from the PDMS system is shown in Figure 6.2(a). In

order to make use of the geometric data in the PDMS system, the proposed system first

converts these data into triangular meshes. Figure 6.3 shows the processing pipeline

for the PDMS data. Initially, all objects in the PDMS system are represented as eleven

elementary parametric shapes. The proposed system extracts these parametric data

such as positions, transformations, radii and height values, and uses a tessellation to

convert them into polygon meshes. Afterwards, the triangulation process takes over

the polygons and decomposes them into triangles. These triangles, represented by

vertices, normal values, faces, and texture coordinates are written into the hard disk

for further use. Similar pipelines are applied when dealing with data from Smartplant

and BIM systems.

To deal with old plants who do not have digital versions and construction sites

changing after each day’s work, this research uses laser scanners to capture the envi-

ronment in 3D point cloud form (Figure 6.2(b)). High accuracy point clouds can keep

the fine details for complex industrial environments. Therefore, the proposed system

makes use of the point clouds for both simulations and path planning.

However, the raw data produced by laser scanning are not directly usable. They

have to go through a processing procedure to produce a usable point cloud models. 6.4

illustrates the processing procedure for point cloud data. Capturing the whole indus-

trial environment involved in a lifting task often requires multiple laser scans. These

point clouds produced by these scans are initially located in their own coordinate sys-

tems. Therefore, a registering (stitching) process is required to unify the coordinate

frames of multiple scans. This stitching process is achieved by matching feature points

127



Chapter 6. System Design of the Lift Planner cum Crane Simulator

(a) (b)

(c) (d)

Figure 6.4: Steps for processing point cloud data: (a) registration of multiple scans;
(b) feature extraction; (c) colored data; (d) sub-sampling.

in different scans. The resulting data still possess all original points from the regis-

tered scans and thus can be very inefficient to use. Therefore, the system also runs

a sub-sampling process [151] to down-sample or re-sample the points. Through this

process, the size of the final data set is reduced to a tractable scale. In some occasions,

the system needs extra geometric information other than points. For instance, when

performing crane setup planning, it requires information about the ground. In these

cases, the system also runs a feature recognition process [152] to extract the ground

points.

When the processing of raw geometric data has finished, the system loads the final

data sets and constructs MDMs for them (see details in Chapter 3). The orginal trian-

gular meshes and point clouds are also inserted into the scene graph as an environment

128



Chapter 6. System Design of the Lift Planner cum Crane Simulator

Figure 6.5: Illustration of the scene graph containing the crane models and the indus-
trial environment

branch. Figure 6.5 shows the resulting hierarchical tree structure of the scene graph

which usually contains one plant branch and several crane branches.

6.2.2.2 Interaction engine

The interaction engine simulates the crane manipulations for users and evaluates the

safety factors during lifting. This engine supports the following four types of interac-

tions:

(i) Crane selection (by using mechanical data in the crane database)

(ii) Crane setup (locating, out-trigger extension, counter-weight loading and so on.)

(iii) Crane manipulation (rotating the cockpit, main boom, jibs and the lifting target,

extending booms and the sling)

(iv) Execution of lifting path planning and modification of result paths.

This engine allows users to interact with the scene with keyboards, mouses, and

joysticks. When using joysticks to manipulation the cranes, the proposed system

129



Chapter 6. System Design of the Lift Planner cum Crane Simulator

simulates real crane operations. During the simulations, the engine provides proximity

warnings and collision responses by implementing the collision detection algorithm

introduced in Chapter 3. For dual-crane lifting, it also calculates the tilting angle of

the slings and the lifting target, as well as the load shared by the two cranes using

the balance solver introduced in Section 5.4.1. In this sense, the system could perform

as a training tool to help trainees practice safe lifting operations in realistic virtual

environments.

The interaction engine also enables users to define lifting task specifications for

automatic planning. The users can also select a most suitable plan from several can-

didate optimal paths and modify them to meet further requirements. In this case,

the system serves as an automatic lift planning tool with interactive improvements

enabled.

6.2.2.3 Optimization engine

The optimization engine implements the single-crane lifting path planner introduced

in Chapter 4 and dual-crane path planner introduced in Chapter 5 to produce optimal

lifting paths for guiding lifting operations. In order to obtain an efficient GPU-enabled

automatic lift planning system, the implementations of these parallel path planning

algorithms are optimized for the CUDA architecture.

This section presents the GPU implementation of the MSPGA-based path planner

for single-crane lifting introduced in Chapter 4 as an example. A summary of the work-

flow of the planner is first presented. Then the details on the GPU implementations

of the algorithms is discussed.

Figure 6.6 provides an overview of the single-crane planner. The planner first

generates an initial population in the GPU and passes it to into the evolutionary

iterations. In each iteration, the population goes through a fitness evaluation process,

a roulette wheel selection, crossover operators, and mutation operators successively.

While the flow is controlled by the CPU, GPU handles the functional components of

the MSPGA-based path planner following the data flow shown in Figure 6.7.

In each iteration, a fitness evaluation kernel is first launched to generate the fitness

value pool for the population in GPU memory. The kernel parameters of the fitness

130



Chapter 6. System Design of the Lift Planner cum Crane Simulator

Figure 6.6: Overall flow of the MSPGA-based path planner.

evaluation kernel are defined as <<< N,L, 1 >>> where N is the population size and

L is the chromosome length. The GPU implementation is shown in Figure 6.8. Each

chromosome in the population is assigned to a thread block while genes in the string

are handled by separate threads. Within each thread, continuous collision detection

is done for genes. A synchronized shared memory unit is used to count the number

of collision violations (denoted as ni in the Equations 4.21 and 5.41) and coordination

violations (denoted as mi in the Equations 4.21 and 5.41) in the chromosome. These

counted numbers are further used to calculate the fitness values. The kernel returns

when all fitness values are settled in the GPU global memory.

These fitness values are then normalized and accumulated to produce a chance pool

encoding the chance of survival of each chromosome. The mating pool is represented

as indexes of chromosomes instead of actual chromosomes. In order to achieve global

communications in parallel processors, a specially designed parallel kernel is used to

generate the mating pool (as shown in Figure 6.9). Firstly a CUDA kernel is launched

with kernel parameters specified as <<< 1, N, 1 >>> where N is the population size.

Then, a uniform random float number r ∈ [0, 1) is generated by each thread and is

131



Chapter 6. System Design of the Lift Planner cum Crane Simulator

Figure 6.7: Indication of the data flow inside the evolutionary iteration.

compared between the array of survival chances of chromosomes. Suppose that the

accumulated chance pool is denoted by (c0, c1, . . . , cN−1), then the task of threads is

to find the index i that satisfies ci−1 ≤ r < ci. Here c−1 is counted as zero. The index

found by this process is then stored in the corresponding position in the mating pool.

A roulette wheel selection is conducted in parallel using information from the

chance pool. In this selection process, chromosomes with higher fitness values have

better chances to be selected into the mating pool for reproduction. After the mating

pool data are settled, the crossover operator is applied immediately (Figure 6.10). The

CUDA kernel parameters are specified as <<< N,L, 1 >>>. In the GPU kernel, the

jth thread block Bj (j ≤ 0) handles a pair of chromosomes (sij−1
, sij) where ij stands

for the index in the jth entry of the mating pool (B0 is reserved for elitism). Data of

the two chromosomes are poured into the shared memory of the block for future use.

132



Chapter 6. System Design of the Lift Planner cum Crane Simulator

Figure 6.8: GPU implementation details of the fitness evaluation process.

Figure 6.9: GPU implementation details of mating pool generation.

133



Chapter 6. System Design of the Lift Planner cum Crane Simulator

Figure 6.10: GPU implementation details of the parameter-based crossover operator.

The pairs of genes from parents are then assigned accordingly into the parallel

threads in the block. The kth thread in the jth block retrieves gj−1k , gjk and their

neighboring genes into its local c. The two parent genes are compared by applying

the crossover strategies presented in Table 4.6 for single-crane cases and the strategy

stated in Algorithm 5.1 for dual-crane cases. After all gene positions are determined,

the kernel terminates and the offsprings remain in the GPU global memory.

Finally, adaptive mutations using the fitness values are conducted. The mutation

tasks for the population are distributed into the GPU blocks and threads in a similar

way. After the mutation, the MSPGA enters the next iteration or outputs results if

the termination criteria have been met.

6.2.2.4 Visualization engine

The visualization engine takes the scene graph from the modeling engine and renders

the scene using OpenGL. It also visualizes the outputs from the interaction engine

and the optimization engine. For example, when performing automatic lift planning,

this engine animates the optimal lifting paths output by the planners. Users can

thus examine the paths and communicate the plan with team members or clients.

The lifting animations can be displayed with stereoscopic rendering to enhance the

134



Chapter 6. System Design of the Lift Planner cum Crane Simulator

visualization of the paths. For simulation purpose, the engine displays safety warnings

in occasions when the cranes are proximate to the obstacles or when the balancing of

the lifting target has failed in dual-crane lifting.

6.3 Results and Discussions

The proposed system might be used to guide the automatic lifting for physical cranes.

This application can be fulfilled under circumstances where the crane supports auto-

matic control. In other words, the lifting operations can be highly automated. Human

interference is only required for defining lifting tasks once the crane is set up on the

site. However, automatic control of cranes is not yet favorable due to limitations of

hardware developments and government safety regulations as the modification of ac-

tual crane for site operation is under very strict control. In this case, the proposed

system can perform off-line planning for human operators, signal men and riggers.

Lifting paths are generated in the simulation environments based on accurate geomet-

ric information for the plants or sites. These data can be acquired from laser scanning

or the PDMS system. The lifting path is then used to guide the operation conduct-

ed by the lifting team like a GPS car navigation system. Another application of the

proposed system is to perform vocational training for crane operators. Unlike training

using real cranes which are expensive and time-consuming, trainees can practice safe

crane operations in the realistic simulation environments in a cost-effective way.

6.3.1 Validation of automatic lifting with a scaled model crane

To validate the potential and efficiency of the system in guiding automatic lifting, Ex-

periment 6.1 is conducted to test the four steps in automatic lifting: data acquisition,

data processing, lifting path generation and lifting path conduction. The experiment

uses a scaled physical model of a tower crane which resides in an environment consist-

ing of several obstacles and many other objects in a room (Figure 6.11(a)). Actuators

and sensors are added onto the model crane to enable the three basic DOFs of the

tower crane: swinging, trolley in/out and hoisting. The model crane communicates

with the system using file exchanging. In the software side, a digital version of the

crane is modeled and stored in the database.

135



Chapter 6. System Design of the Lift Planner cum Crane Simulator

(a) The model crane and the real environment

(b) The virtual environment in point cloud form

Figure 6.11: The model crane and the environment used in 6.1

Experiment 6.1 is conducted in an environment mainly containing two box-shaped

obstacles and a cylinder-shaped obstacle. The environment is captured by laser scan-

ning to produce a high-definition point cloud which combines 4 scans taken at different

angles. The final point cloud shown in Figure 6.11(b) contains 21,000,716 points with

a resolution less than 1 millimeter. Even using this large point cloud, the simulation

136



Chapter 6. System Design of the Lift Planner cum Crane Simulator

Figure 6.12: Lifting path used in Experiment 6.1 displayed in the point cloud environ-
ment

Table 6.1: Node configurations in the lifting path generated in Experiment 6.1

Step Operation Type Amount
1 Hoisting 2.68 cm
2 Trolley out 8.88 cm
3 Swinging -7 degrees
4 Hoisting 6.27 cm
5 Trolley out 5.65 cm
6 Swinging -58 degrees
7 Hoisting -12.93 cm

performs in real-time with 15 ∼ 80 frame rates in the system.

Experiment 6.1 uses the proposed system to calculate a lifting path for a user

defined lifting task in the point cloud environment. The lifting task requires the tower

crane to lift the target from one side of box 1 to another location and place it onto the

137



Chapter 6. System Design of the Lift Planner cum Crane Simulator

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6.13: Lifting path simulated using point cloud data in the proposed system.

138



Chapter 6. System Design of the Lift Planner cum Crane Simulator

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6.14: Lifting path conducted by the scaled model crane.

139



Chapter 6. System Design of the Lift Planner cum Crane Simulator

top of box 2. During the process, the lifting target should also be kept at a clearance

from all the obstacles. It takes the system 584 ms to rasterize the point cloud and

2031 ms to calculate a collision-free lifting path. The lifting path (Table 6.1 and Figure

6.12) contains 8 steps, conducting totally 65 degrees of swinging, 14.53 centimeters of

trolley movements and 21.88 centimeters of hoisting. Figure 6.13 demonstrates the

key-frame configurations of the ideal lifting path in the simulation environment. The

point cloud is simplified in the figure to show the path more clearly.

After the planning stage is finished, the lifting plan is exported and sent to the

physical crane to be automatically conducted. The real lifting path conducted by the

model crane is shown in Figure 6.14. The model crane is able to conduct the path

generated by the system to move the lifting target following the trajectory as displayed

in the simulation (Figure 6.13). No collision happens during the entire lifting process.

Due to the difficulty to have an actual crane for this research including this ex-

periment, Experiment 6.1 is conducted on a model crane and a room environmen-

t. Although they are much smaller in size than those in real lifting scenarios, the

complexity of the problem is comparable to the real cases. This complexity can be

observed from the number of points in the point cloud environments. The number of

points in Experiment 6.1 (21,000,716 points) is even larger than that in Experiment

6.2 (13,341,982 points) which is from a real industrial plant. Therefore, the results of

Experiment 6.1 show that it is promising to use the proposed system for real lifting

applications. Experiment 6.1 and its results have proven that the proposed system is

able to fulfill the entire workflow of automatic lifting and could perform it efficiently

and accurately.

6.3.2 Case study of offline lift planning in industrial projects

To demonstrate the application of the system for off-line lift planning, a case study is

conducted in an industrial plant in Singapore. A Terex AC435 terrain crane is parked

in the center of the plant to lift a bundle of pipes. In this case study, the proposed

system is used as a planner to produce an optimal single-crane lifting path for this

specific crane and industrial site. The path is then used to guide the operations of the

physical crane on the same site.

140



Chapter 6. System Design of the Lift Planner cum Crane Simulator

Figure 6.15: Lifting path generated by the system using an accurate digital version of
the crane and the scanned point cloud of the site.

Figure 6.16: The lifting path documentation for guidance of lifting operations.

The planning starts from taking laser scans of the site. Nine scans are taken at the

site within two days. Data from these scans are then registered as a single point cloud

and sub-sampled by a rate of 1/9. The final point cloud data set contains 13,341,982

points. The digital version of the Terex AC435 terrain crane is designed according

141



Chapter 6. System Design of the Lift Planner cum Crane Simulator

Figure 6.17: The proposed system used for communication in the lifting team.

to its actual sizes and structures, and loaded in to the crane database of the system.

The digital crane is located in the virtual scene as where the physical crane is on the

site. This is fulfilled by matching the digital crane with the scanned point cloud of the

physical crane which has already been settled on the site before the laser scans. For

other cases where the crane is not present during scanning, markers can also be used to

help record its setup location. Automatic lifting path planning is then performed using

user inputs such as crane setup details and pick & place locations. The lifting path

output from the automatic planning engine is reviewed and validated in the simulation

environment (Figure 6.15). Data of the optimal path are then exported as a lifting

plan document clearly stating the operation sequence and movement amounts (Figure

6.16) for the guidance of lifting operations. Before starting the real lifting process,

the lifting operations are briefed to the lifting team with simulations and animations

(Figure 6.17). Finally, the real lifting is conducted following the guidance of the lift

plan documentation (Figure 6.18). This case study shows that, the proposed system

is feasible and provides a complete solution for off-line lift planning.

142



Chapter 6. System Design of the Lift Planner cum Crane Simulator

(a)

(b)

Figure 6.18: Lifting conducted using the suggestions from the system: (a) real lifting
operations; (b) simulated lifting using point cloud data in the proposed system.

6.3.3 Training and interactive lift planning using 3D simula-
tion

Figure 6.19 shows the scenario when the system is used as a simulator where the

user manipulates the virtual crane with a joystick. When the crane is moving, the

143



Chapter 6. System Design of the Lift Planner cum Crane Simulator

Figure 6.19: The proposed system used for operator training and interactive lift plan-
ning purposes with joystick interactions and stereoscopic display.

manipulation parameters are also updated on the GUI. The user wears a pair of 3D

glasses to perceive the stereoscopically rendered lifting scene. When trying to fulfill

a task in the simulation environment, invalid behaviors of the user will trigger safety

warnings. In this way, the user is trained to perform safe lifting operations. On the

other hand, the operation steps conducted by the user are recorded. These user-defined

lifting paths can be evaluated by the fitness functions to check their safety factors and

optimally. Users are also allowed to modify the paths according to the evaluation

results and output them as plans. In this case, the system also serves interactive lift

planning purpose.

6.4 Summary

A lift planner cum crane simulator system making use of PDMS, BIM, Smartplant,

and laser scanning technologies has been designed to help industries improve safety

and efficiency in lifting. The system has unified various types of environment data and

144



Chapter 6. System Design of the Lift Planner cum Crane Simulator

embedded the technologies introduced in the previous chapters to serve interactive

and automatic lift planning purpose. Using accurate modeling of industrial plants

and sites, the system is able to produce path suggestions for the guidance of real-life

lifting tasks. It also enables better training for crane operators to practice safe lifting

operations in realistic virtual environments.

145



Chapter 7

Conclusions and Future Work

7.1 Summary of the Research

The research has solved two path planning problems regarding the lifting operations

of single and cooperative (dual) cranes. An efficient and scalable image-space collision

detection algorithm has been developed to deal with complex environments. Based on

this collision detection algorithm, two efficient MSPGA-based path planners for single-

crane and dual-crane lifting have been prototyped. Problem-specific fitness functions

and genetic operators have been designed using an LGP strategy. These planners

use ASVs and TSSs to perform CCD and employ a hybrid C-space collision detection

strategy to reduce the planning time.

The MSPGA-based path planner for single-crane lifting can produce short, safe and

easy-to-conduct lifting paths in near real-time performance for any complex environ-

ments. Compared to previous methods, the planner for dual-crane lifting can better

handle the cooperation between the two cranes and balance of the cable-suspended

lifting target. The planner developed has also achieved good search abilities with high

success rates in complex industrial plants and sites. Finally, the proposed algorithm-

s have been developed into a lift planner cum crane simulator which enables both

interactive and automatic lift planning. By combining with laser scanning, PDMS, S-

martplant and BIM technologies, the system has been designed to serve as a practical

tool for automatic lift planning and vocational training.

In summary, novelties of the proposed solution in this research are listed below:

146



Chapter 7. Conclusions and Future Work

(i) A unified MDM representation has been proposed and implemented for complex

industrial plants and sites. This representation, combined with OBBs, ASVs

and TSSs, enables efficient collision detection for the crane components and the

lifting target.

(ii) Comprehensive mathematical formulations considering practical issues in single-

crane and dual-crane lifting path planning have been developed.

(iii) LGP enhanced MSPGA-based path planners with customized adaptive plans

and multi-level GPU parallelization have been designed and developed.

(iv) A hybrid C-space collision strategy has been proposed and incorporated into the

planners to achieve optimal computational performance.

(v) A TSS-based swept volume for continuous collision detection has been proposed

and integrated.

(vi) A novel prototype system for lift planning and crane simulation which supports

various formats of digital plants and sites has been designed, implemented and

initially validated.

7.2 Limitations and Future Work

The potentials of the proposed algorithms are not fully exploited yet due to the time

constraints. The paths output by the planners are more suitable for off-line lift plan-

ning. To achieve autonomous control of cranes, dynamics of the cranes shall be includ-

ed to generate trajectories with time information. The collision detection algorithm

proposed in Chapter 3 only considers static environments with one or two cranes inter-

acting with them. To make the algorithm more general, dynamic environments need to

be considered. For the proposed path planning algorithms, handling dynamic environ-

ments requires a re-planning mechanism to fast produce revised lifting paths according

to the partially changed environments. Moreover, the proposed path planning algo-

rithms only consider mobile cranes without jibs. The ASVs and hybrid C-spaces need

to be generalized before being applied to crawler cranes with jibs or other crane-like

147



Chapter 7. Conclusions and Future Work

robots. In some occasions, one may use more than two cranes to lift a heavy load

cooperatively. Thus, the existing dual-crane planner needs to be generalized for multi-

crane occasions. To address these limitations, the future work of the research includes

the following aspects:

(i) Trajectory generation from output lifting paths. Trajectories with time

information are necessary for automatic control of cranes. The trajectories are

required to contain smooth movements. Velocities and accelerations might also

be constrained due to mechanical limitations. For the lifting problem, trajec-

tories can be built from the lifting paths by assigning time information to the

paths according to the estimated speed of operations. Then, the key frame

configurations can be interpolated or approximated by a smooth trajectory as

a general or rational polynomial curve. The trajectories may also need to be

further smoothed according to the dynamic constraints.

(ii) Adding re-planning mechanisms to deal with dynamic environments.

The optimal paths need to be modified when the environment has changed. This

requirement comes up in many occasions. For example, when finishing a lifting

task in a construction site, the detached lifting target becomes a new obstacle

in the scene. This also happens when objects are removed or added in the

plant after laser scans have been conducted. In this case, the previous plan can

be reused to fast generate a new plan for the updated point cloud. The re-

planning functionality can be achieved by using the GA population obtained at

the last termination as the initial population for the new GA search. However,

the existing population might have been conquered by several elite paths and

are not able to provide enough diversity for future searches. In this case, new

random chromosomes should be generated and used to replace a portion of the

duplicated elite paths in the population. In order to make the random seeds

survive, the selection pressure should be decreased in the starting phases.

(iii) Supporting more types of cranes. To handle crawler cranes with jibs and

other types of crane-like robots, more general CCD methods need to be applied.

148



Chapter 7. Conclusions and Future Work

However, it is difficult to achieve accurate CCD within reasonable execution time

and with balanced load for GPU parallelization. A possible way is to represent

the swept volumes of the booms and jibs as SSVs. For single-crane lifting, the

centroid primitives can be analytically represented based on forward kinematics

since the operations are decoupled. For dual-crane lifting, as the cranes perform

small-scale movements between consecutive steps, the RSSs can be chosen as the

SVs.

(iv) Cooperative lifting with more than two cranes. The complexity of the

lifting path planning problem increases exponentially with the number of cranes

involved. The balancing equations of the suspension system need to be reformu-

lated to support a larger number of cranes. When the number of cooperative

cranes equals to three, twelve equations can be formulated taking into consider-

ation of the force and torque balancing, the shape of the target and crane-target

linkages. The same number of variables can also be defined by including six sling

angles, three sling lengths and the mass center of the lifting target. However, the

equation system will be overdetermined if the number of cranes exceeds three.

In these cases, three featuring cranes can be selected to determine the location

and orientation of the target. The motion of the lifting target can be handled

similarly in path planning by using SSVs with uncertainty thresholds. In these

cases, the centroid primitives in SSVs will be the polygons.

(v) Improving the support of big geometric data. The amount of data ac-

quired from the PDMS, Smartplant, BIM and laser scanning technologies can

be huge, especially for accurately modeling large and complex industrial plants

or sites. Handling the big data sets brings challenges to the proposed system.

A possible way to handle these data would be utilizing the idea of LOD for

rendering and MDM generations. This idea can be implemented by construct-

ing quadtrees for the geometric data sets in the x-y plane and organizing the

depth information according to quadtrees. In this way, the load of handling

large data sets can be shifted to the pre-processing stage where the quadtrees

are constructed and MDMs for leaf nodes are generated.

149



Chapter 7. Conclusions and Future Work

(vi) Improving GPU parallelization. The performance speedups brought by G-

PUs can be further exploited. The usages of different memory types need to

be balanced in order to minimize the data transfer time. The communication

frequency between the CPU and GPU are to be minimized to reduce the latency

in simulation and the execution time of path planning. Global memories need

to be aligned properly to maximize the concurrency in memory accessing.

(vii) Further validations of the lift planner cum crane simulator system.

The experiment presented in this thesis is a preliminary validation on the sys-

tem. More case studies will be conducted for more complex environments, for

cooperative dual-crane lifting tasks, and for dynamic scenes.

150



Publications

Patent:

Y. Cai, P. Cai, C. Indhumathi, J. Zheng, N. M. Thalmann, P. Wong, T. S. Lim

and Y. Gong, “Method and system for intelligent crane lifting”, PCT filing (US-

A/German/China/Singapore) PCT/SG2014/000472, 8 October 2014.

Journal papers1:

P. Cai, Y. Cai, I. Chandrasekaran, and J. Zheng, “Parallel GA based automatic crane

lifting path planning in complex environments”, Automation in Construction (5-year

impact factor: 2.414), Volume 62, February 2016, Pages 133-147, ISSN 0926-5805,

http://dx.doi.org/10.1016/j.autcon.2015.09.007.

P. Cai, Y. Cai, I. Chandrasekaran, and J. Zheng, “Automatic path planning for

dual-crane lifting in complex environments using LGP-enhanced parallel genetic al-

gorithm”, under review by Automation in Construction.

Conference papers:

P. Cai, C. Indhumathi, Y. Cai, J. Zheng, “A Framework of the crane simulator using

GPU-based collision detection”, Workshop on Serious Game & Simulation, CASA,

May 2012, Singapore.

P. Cai, Y. Cai, I. Chandrasekaran, and J. Zheng, “A GPU-enabled parallel genetic

algorithm for path planning”, 2013 Symposium on GPU Computing and Applications,

Oct 2013, Singapore. (Best Paper Award)

1The 5-year impact factors are obtained from the 2014 Journal Citation Reports.

151



Publications

P. Cai, C. Indhumathi, and Y. Cai, “High performance simulation for vocational

training of heavy mobile cranes”, the Second Asia-Europe Symposium on Simulation

and Serious Games, October 2014, Zwolle, The Netherlands.

Book chapters:

P. Cai, C. Indhumathi, Y. Cai, J. Zheng, Y. Gong, T. Lim, and P. Wong, “Collision

detection using axis aligned bounding boxes”, in Simulations, Serious Games and

Their Applications (Y. Cai and S. L. Goei, eds.), Gaming Media and Social Effects,

pp. 1-14, Springer Singapore, 2014.

P. Cai, Y. Cai, I. Chandrasekaran, and J. Zheng, “A gpu-enabled parallel genetic

algorithm for path planning of robotic operators”, in Y. Cai and Simon See (eds.),

GPU Computing and Applications, pp. 1-13, Springer, 2015.

152



References

[1] M. A. D. Ali, N. R. Babu, and K. Varghese, “Collision free path planning of

cooperative crane manipulators using genetic algorithm,” Journal of Computing

in Civil Engineering, vol. 19, no. 2, pp. 182–193, 2005.

[2] Y. C. Chang, W. H. Hung, and S. C. Kang, “A fast path planning method for

single and dual crane erections,” Automation in Construction, vol. 22, pp. 468–

480, 2012.

[3] S. M. LaValle, Planning Algorithms. New York, NY, USA: Cambridge University

Press, 2006.

[4] OSHA, “Industry injury and illness data.” http://www.bls.gov/iif/oshsum.htm,

2013. Online: accessed 19-Dec-2013.

[5] A. Ltd, “A guide to rental rate in 2011.”

http://www.vertikal.net/uploads/tx filelinks/ca 2011 9 p16-27.pdf, 2011.

Online: accessed 19-July-2014.

[6] Liebherr, “Product advantages - mobile crane LTM 1200-5.1.”

http://www.liebherr.com/AT/en-GB/products at.wfw/id42940/measure-

metric/tab3742 1477, 2007. Online: accessed on 21-JUL-2015.

[7] Q. Avril, V. Gouranton, and B. Arnaldi, “New trends in collision detection

performance,” VRIC’09 Proceedings, vol. 11, 2009.

[8] K. Ward, F. Bertails, T. Y. Kim, S. R. Marschner, M. P. Cani, and M. C.

Lin, “A survey on hair modelling: Styling, simulation, and rendering,” IEEE

Transactions on Visualization and Computer Graphics, vol. 13, no. 2, pp. 213–

234, 2007.

153



REFERENCES

[9] B. Thomaszewski, S. Pabst, and W. Blochinger, “Parallel techniques for physical-

ly based simulation on multi-core processor architectures,” Computers & Graph-

ics, vol. 32, no. 1, pp. 25–40, 2008.

[10] Y. Tsuji, T. Kawaguchi, and T. Tanaka, “Discrete particle simulation of two-

dimensional fluidized bed,” Powder technology, vol. 77, no. 1, pp. 79–87, 1993.

[11] NVIDIA Corporation, “CUDA code samples.”

https://developer.nvidia.com/cuda-code-samples, 2007. Online: accessed

on 21-JUL-2015.

[12] NVIDIA Corporation, “Fermi hair demo.” http://www.geforce.com/games-

applications/pc-applications/fermi-hair-demo, 2010. Online: accessed on 21-

JUL-2015.

[13] T. N. A. Administration and Space, “Nasa homepage,” 2015.

[14] B. G. Baumgart, “A polyhedron representation for computer vision,” in Pro-

ceedings of the May 19-22, 1975, National Computer Conference and Exposition,

AFIPS ’75, (New York, NY, USA), pp. 589–596, ACM, 1975.

[15] M. McGuire, “The half-edge data structure.”

http://www.flipcode.com/archives/The Half-Edge Data Structure.shtml,

2000. Online: accessed 17-April-2015.

[16] N. Govindaraju, I. Kabul, M. Lin, and D. Manocha, “Fast continuous collision

detection among deformable models using graphics processors,” Computers &

Graphics, vol. 31, no. 1, pp. 5–14, 2007.

[17] C. Ericson, Real-Time Collision Detection (The Morgan Kaufmann series in

Interactive 3-D Technology). San Francisco, CA, USA: Morgan Kaufmann Pub-

lishers Inc., 2004.

[18] X. Provot, “Collision and self-collision handling in cloth model dedicated to de-

sign garments,” in Computer Animation and Simulation ’97: Proceedings of the

Eurographics Workshop (D. Thalmann and M. Panne, eds.), (Vienna), pp. 177–

189, Springer Vienna, September 1997.

154



REFERENCES

[19] S. K. Wong, C. M. Liu, G. Baciu, and C. C. Yeh, “Robust continuous collision

detection for deformable objects,” in Proceedings of the 17th ACM Symposium

on Virtual Reality Software and Technology, VRST ’10, (New York, NY, USA),

pp. 55–62, ACM, 2010.

[20] S. Gottschalk, M. C. Lin, and D. Manocha, “OBBTree: A hierarchical structure

for rapid interference detection,” in Proceedings of the 23rd Annual Conference

on Computer Graphics and Interactive Techniques, SIGGRAPH ’96, (New York,

NY, USA), pp. 171–180, ACM, 1996.

[21] G. van den Bergen, “Efficient collision detection of complex deformable models

using AABB trees,” J. Graph. Tools, vol. 2, pp. 1–13, Jan. 1998.

[22] D. Baraff, Dynamic Simulation of Non-penetrating Rigid Bodies. PhD thesis,

Cornell University, Ithaca, NY, USA, 1992. PhD thesis.

[23] C. Shaffer and G. Herb, “A real-time robot arm collision avoidance system,”

IEEE Transactions on Robotics and Automation, vol. 8, pp. 149–160, Apr 1992.

[24] B. Faverjon, “Hierarchical object models for efficient anti-collision algorithms,”

in Proceedings of IEEE International Conference on Robotics and Automation,

pp. 333–340 vol.1, May 1989.

[25] J. D. Cohen, M. C. Lin, D. Manocha, and M. Ponamgi, “I-collide: An interactive

and exact collision detection system for large-scale environments,” in Proceedings

of the 1995 Symposium on Interactive 3D Graphics, I3D ’95, (New York, NY,

USA), pp. 189–196, ACM, 1995.

[26] T. C. Hudson, M. C. Lin, J. Cohen, S. Gottschalk, and D. Manocha, “V-

COLLIDE: accelerated collision detection for vrml,” in Proceedings of the second

symposium on Virtual reality modeling language, pp. 117–ff, ACM, 1997.

[27] K. Zhou, M. Gong, X. Huang, and B. Guo, “Data-parallel octrees for surface

reconstruction,” IEEE Transactions on Visualization and Computer Graphics,

vol. 17, no. 5, pp. 669–681, 2011.

155



REFERENCES

[28] D. Jung and K. K. Gupta, “Octree-based hierarchical distance maps for collision

detection,” in Proceedings of 1996 IEEE International Conference on Robotics

and Automation, vol. 1, pp. 454–459, IEEE, Apr 1996.

[29] B. Von Herzen, A. H. Barr, and H. R. Zatz, “Geometric collisions for time-

dependent parametric surfaces,” SIGGRAPH Comput. Graph., vol. 24, pp. 39–

48, Sept. 1990.

[30] S. Ar, B. Chazelle, and A. Tal, “Self-customized BSP trees for collision detec-

tion,” Computational Geometry, vol. 15, no. 13, pp. 91 – 102, 2000.

[31] P. Hubbard, “Interactive collision detection,” in In Proceedings of IEEE Sympo-

sium on Research Frontiers in Virtual Reality, pp. 24–31, 1993.

[32] X. Zhang, Y. J. Kim, and D. Manocha, “Continuous penetration depth,” Com-

put. Aided Des., vol. 46, pp. 3–13, Jan. 2014.

[33] G. Van den Bergen, “A fast and robust GJK implementation for collision detec-

tion of convex objects,” J. Graph. Tools, vol. 4, pp. 7–25, Mar. 1999.

[34] X. Zhang, S. Redon, M. Lee, and Y. J. Kim, “Continuous collision detection

for articulated models using Taylor models and temporal culling,” ACM Trans.

Graph., vol. 26, July 2007.

[35] J. Klosowski, M. Held, J. Mitchell, H. Sowizral, and K. Zikan, “Efficient collision

detection using bounding volume hierarchies of k-DOPs,” IEEE Transactions on

Visualization and Computer Graphics, vol. 4, pp. 21–36, Jan 1998.

[36] S. K. Wong, W. C. Lin, C. H. Hung, Y. J. Huang, and S. Y. Lii, “Radial view

based culling for continuous self-collision detection of skeletal models,” ACM

Trans. Graph., vol. 32, pp. 114:1–114:10, July 2013.

[37] M. Tang, S. Curtis, S.-E. Yoon, and D. Manocha, “ICCD: Interactive continuous

collision detection between deformable models using connectivity-based culling,”

IEEE Transactions on Visualization and Computer Graphics, vol. 15, pp. 544–

557, July 2009.

156



REFERENCES

[38] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, “Fast proximity queries

with swept sphere volumes,” tech. rep., Technical Report TR99-018, Department

of Computer Science, University of North Carolina, 1999.

[39] S. Redon, Y. J. Kim, M. C. Lin, and D. Manocha, “Fast continuous collision de-

tection for articulated models,” in Proceedings of the Ninth ACM Symposium on

Solid Modeling and Applications, SM ’04, (Aire-la-Ville, Switzerland), pp. 145–

156, Eurographics Association, 2004.

[40] J. Corrales, F. Candelas, and F. Torres, “Safe humanrobot interaction based

on dynamic sphere-swept line bounding volumes,” Robotics and Computer-

Integrated Manufacturing, vol. 27, no. 1, pp. 177 – 185, 2011.

[41] C. Lauterbach, Q. Mo, and D. Manocha, “gProximity: Hierarchical GPU-based

operations for collision and distance queries,” Computer Graphics Forum, vol. 29,

no. 2, pp. 419–428, 2010.

[42] D. Kim, J.-P. Heo, J. Huh, J. Kim, and S.-e. Yoon, “HPCCD: Hybrid paral-

lel continuous collision detection using CPUs and GPUs,” Computer Graphics

Forum, vol. 28, no. 7, pp. 1791–1800, 2009.

[43] M. Tang, D. Manocha, and R. Tong, “MCCD: Multi-core collision detection

between deformable models using front-based decomposition,” Graphical Models,

vol. 72, no. 2, pp. 7–23, 2010.

[44] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi,

A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-Thalmann, W. Strasser, and

P. Volino, “Collision detection for deformable objects,” Computer Graphics Fo-

rum, vol. 24, no. 1, pp. 61–81, 2005.

[45] M. Shinya and M.-C. Forgue, “Interference detection through rasterization,” The

Journal of Visualization and Computer Animation, vol. 2, no. 4, pp. 132–134,

1991.

157



REFERENCES

[46] G. Baciu, W. Wong, and H. Sun, “Recode: an image-based collision detection

algorithm,” The Journal of Visualization and Computer Animation, vol. 10,

pp. 181–192, 1999.

[47] B. Heidelberger, M. Teschner, and M. H. Gross, “Real-time volumetric intersec-

tions of deforming objects,” in Proceedings of Vision, Modeling, and Visualiza-

tion, vol. 3, pp. 461–468, AKA, 2003.

[48] B. Heidelberger, M. Teschner, and M. Gross, “Detection of collisions and self-

collisions using image-space techniques,” Journal of WSCG, vol. 12, no. 3, p-

p. 145–152, 2004.

[49] F. Faure, S. Barbier, J. Allard, and F. Falipou, “Image-based collision detection

and response between arbitrary volume objects,” in Proceedings of the 2008

ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’08,

(Aire-la-Ville, Switzerland), pp. 155–162, Eurographics Association, 2008.

[50] N. K. Govindaraju, S. Redon, M. C. Lin, and D. Manocha, “CULLIDE: Inter-

active collision detection between complex models in large environments using

graphics hardware,” in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS

Conference on Graphics Hardware, HWWS ’03, (Aire-la-Ville, Switzerland), p-

p. 25–32, Eurographics Association, 2003.

[51] N. Govindaraju, M. Lin, and D. Manocha, “Quick-CULLIDE: fast inter- and

intra-object collision culling using graphics hardware,” in Virtual Reality. Pro-

ceedings of VR 2005, pp. 59–66, IEEE, March 2005.

[52] NVIDIA Corporation, “NVIDIA CUDA C programming guide,” 2010. Version

3.2.

[53] J. Sanders and E. Kandrot, CUDA by example: an introduction to general-

purpose GPU programming. Addison-Wesley Professional, 2010.

[54] A. Greß and G. Zachmann, “Object-space interference detection on pro-

grammable graphics hardware,” in SIAM Conf. on Geometric Design and Com-

puting, pp. 311–328, 2003.

158



REFERENCES

[55] J. Pan and D. Manocha, “GPU-based parallel collision detection for fast motion

planning,” Int. J. Rob. Res., vol. 31, pp. 187–200, Feb. 2012.

[56] S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. Lin, D. Manocha, and P. Dubey,

“Clearpath: highly parallel collision avoidance for multi-agent simulation,” in

Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Com-

puter Animation, SCA ’09, (New York, NY, USA), pp. 177–187, ACM, 2009.

[57] M. Tang, D. Manocha, J. Lin, and R. Tong, “Collision-streams: fast GPU-

based collision detection for deformable models,” in Symposium on interactive

3D graphics and games, I3D ’11, (New York, NY, USA), pp. 63–70, ACM, ACM,

2011.

[58] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control and Artificial Intelligence. Cam-

bridge, MA, USA: MIT Press, 1992.

[59] J. Holland, “Genetic algorithms,” Scientific American, vol. 267, no. 1, pp. 66–72,

1992.

[60] D. E. Goldberg, Genetic algorithms in search, optimization, and machine learn-

ing, vol. 412. Addison-wesley Reading Menlo Park, 1989.

[61] W. M. Spears and K. A. De Jong, “An analysis of multi-point crossover,” tech.

rep., DTIC Document, 1990.

[62] K. A. De Jong, An Analysis of the Behavior of a Class of Genetic Adaptive

Systems. PhD thesis, University of Michigan, Ann Arbor, MI, USA, 1975.

AAI7609381.

[63] Z. Michalewicz and G. Nazhiyath, “Genocop III: A co-evolutionary algorithm

for numerical optimization problems with nonlinear constraints,” in IEEE Inter-

national Conference on Evolutionary Computation, vol. 2, pp. 647–651, IEEE,

Nov 1995.

159



REFERENCES

[64] J. Biegel and J. Davern, “Genetic algorithms and job shop scheduling,” Com-

puters & Industrial Engineering, vol. 19, no. 1, pp. 81–91, 1990.

[65] P. Poon and J. Carter, “Genetic algorithm crossover operators for ordering ap-

plications,” Computers & Operations Research, vol. 22, no. 1, pp. 135–147, 1995.

[66] A. Hamidinia, S. Khakabimamaghani, M. Mazdeh, and M. Jafari, “A genetic

algorithm for minimizing total tardiness/earliness of weighted jobs in a batched

delivery system,” Computers & Industrial Engineering, vol. 62, no. 1, pp. 29–38,

2012.

[67] D. E. Goldberg, “Simple genetic algorithms and the minimal, deceptive prob-

lem,” in Genetic Algorithms and Simulated Annealing (L. Davis, ed.), Research

Notes in Artificial Intelligence, pp. 74–88, Pitman, 1987.

[68] D. E. Goldberg and K. Deb, “A comparative analysis of selection schemes used in

genetic algorithms,” Foundations of genetic algorithms, vol. 1, pp. 69–93, 1991.

[69] B. Miller and D. Goldberg, “Genetic algorithms, selection schemes, and the

varying effects of noise,” Evolutionary Computation, vol. 4, no. 2, pp. 113–131,

1996.

[70] J. Smith and T. C. Fogarty, “Self adaptation of mutation rates in a steady

state genetic algorithm,” in Proceedings of IEEE International Conference on

Evolutionary Computation, pp. 318–323, IEEE, 1996.

[71] D. Bhandari, C. Murthy, and K. Sankar, “Genetic algorithm with elitist model

and its convergence,” International Journal of Pattern Recognition and Artificial

Intelligence, vol. 10, no. 6, pp. 731–747, 1996.

[72] B. Chen, Y. Cheng, and C. Lee, “A genetic approach to mixed h2/h∞ optimal

pid control,” Control Systems, IEEE, vol. 15, no. 5, pp. 51–60, 1995.

[73] J. Renders and S. Flasse, “Hybrid methods using genetic algorithms for global

optimization,” IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics, vol. 26, no. 2, pp. 243–258, 1996.

160



REFERENCES

[74] M. Safe, J. Carballido, I. Ponzoni, and N. Brignole, “On stopping criteria for

genetic algorithms,” in Advances in Artificial Intelligence SBIA 2004 (A. Bazzan

and S. Labidi, eds.), vol. 3171 of Lecture Notes in Computer Science, pp. 405–

413, Springer Berlin Heidelberg, 2004.

[75] S. W. Mahfoud, “Population size and genetic drift in fitness sharing,” in Pro-

ceedings of the Third Workshop on Foundations of Genetic Algorithms. Estes

Park, Colorado, USA, July 31 - August 2 1994, pp. 185–223, 1994.

[76] C. Fonseca and P. Fleming, “Multiobjective genetic algorithms made easy: s-

election sharing and mating restriction,” in Genetic Algorithms in Engineer-

ing Systems: Innovations and Applications. First International Conference on

GALESIA. (Conf. Publ. No. 414), pp. 45–52, Sep 1995.

[77] M. A. Ismail, “Parallel genetic algorithms (pgas): master slave paradigm ap-

proach using mpi,” in E-Tech 2004, pp. 83–87, IEEE, July 2004.

[78] T. h. Zhao, Z. b. Man, and X. y. Qi, “A MSM-PGA based on multi-agent and its

application in reactive power optimization of power systems,” in Third Interna-

tional Conference on Electric Utility Deregulation and Restructuring and Power

Technologies, pp. 2037–2041, 2008.

[79] B. Skinner, H. Nguyen, and D. Liu, “Performance study of a multi-deme parallel

genetic algorithm with adaptive mutation,” in Proceedings of the 2nd Interna-

tional Conference on Autonomous Robots and Agents, 2004.

[80] J. Wakeley, “The coalescent in an island model of population subdivision with

variation among demes,” Theoretical population biology, vol. 59, no. 2, pp. 133–

144, 2001.

[81] B. Manderick and P. Spiessens, “Fine-grained parallel genetic algorithms,” in

Proceedings of the 3rd International Conference on Genetic Algorithms, (San

Francisco, CA, USA), pp. 428–433, Morgan Kaufmann Publishers Inc., 1989.

[82] H. Mühlenbein, M. Schomisch, and J. Born, “The parallel genetic algorithm as

function optimizer,” Parallel computing, vol. 17, no. 6, pp. 619–632, 1991.

161



REFERENCES

[83] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer.

Math., vol. 1, pp. 269–271, Dec. 1959.

[84] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic deter-

mination of minimum cost paths,” IEEE Transactions on Systems Science and

Cybernetics, vol. 4, pp. 100–107, July 1968.

[85] A. Soltani, H. Tawfik, J. Goulermas, and T. Fernando, “Path planning in con-

struction sites: performance evaluation of the Dijkstra, A*, and GA search algo-

rithms,” Advanced Engineering Informatics, vol. 16, no. 4, pp. 291 – 303, 2002.

[86] R. Kala, A. Shukla, R. Tiwari, S. Rungta, and R. Janghel, “Mobile robot navi-

gation control in moving obstacle environment using genetic algorithm, artificial

neural networks and A* algorithm,” in WRI World Congress on Computer Sci-

ence and Information Engineering, vol. 4, pp. 705–713, March 2009.

[87] R. Kala, A. Shukla, and R. Tiwari, “Fusion of probabilistic A* algorithm and

fuzzy inference system for robotic path planning,” Artif. Intell. Rev., vol. 33,

pp. 307–327, Apr. 2010.

[88] A. Stentz, “Optimal and efficient path planning for partially-known environ-

ments,” in Proceedings of IEEE International Conference on Robotics and Au-

tomation, pp. 3310–3317 vol.4, May 1994.

[89] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A*,” Artificial Intel-

ligence, vol. 155, no. 12, pp. 93 – 146, 2004.

[90] S. Koenig and M. Likhachev, “Fast replanning for navigation in unknown ter-

rain,” IEEE Transactions on Robotics, vol. 21, pp. 354–363, June 2005.

[91] J. Barraquand and J.-C. Latombe, “A Monte-Carlo algorithm for path planning

with many degrees of freedom,” in Proceedings of IEEE International Conference

on Robotics and Automation, pp. 1712–1717 vol.3, May 1990.

[92] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces,” IEEE

Transactions on Robotics and Automation, vol. 12, pp. 566–580, Aug 1996.

162



REFERENCES

[93] S. M. LaValle, J. J. Kuffner, and Jr., “Rapidly-exploring random trees: Progress

and prospects,” 2000. Technical report.

[94] J. Barraquand and J.-C. Latombe, “Robot motion planning: A distributed rep-

resentation approach,” Int. J. Rob. Res., vol. 10, pp. 628–649, Dec. 1991.

[95] B. Krogh and C. Thorpe, “Integrated path planning and dynamic steering control

for autonomous vehicles,” in Proceedings of IEEE International Conference on

Robotics and Automation, vol. 3, pp. 1664–1669, Apr 1986.

[96] Y. Koren and J. Borenstein, “Potential field methods and their inherent limita-

tions for mobile robot navigation,” in Proceedings of IEEE International Con-

ference on Robotics and Automation, pp. 1398–1404 vol.2, Apr 1991.

[97] S. Caselli, M. Reggiani, and R. Rocchi, “Heuristic methods for randomized path

planning in potential fields,” in Proceedings of 2001 IEEE International Sympo-

sium on Computational Intelligence in Robotics and Automation, pp. 426–431,

2001.

[98] L. Kavraki, M. Kolountzakis, and J.-C. Latombe, “Analysis of probabilistic

roadmaps for path planning,” IEEE Transactions on Robotics and Automation,

vol. 14, pp. 166–171, Feb 1998.

[99] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion

planning,” Int. J. Rob. Res., vol. 30, pp. 846–894, June 2011.

[100] D. Hsu, J. C. Latombe, and H. Kurniawati, “On the probabilistic foundations

of probabilistic roadmap planning,” International Journal of Robotics Research,

vol. 25, no. 7, pp. 627–643, 2006.

[101] R. Bohlin and L. Kavraki, “Path planning using lazy PRM,” in IEEE Interna-

tional Conference on Robotics and Automation. Proceedings of ICRA ’00, vol. 1,

pp. 521–528 vol.1, April 2000.

[102] C. Nielsen and L. Kavraki, “A two level fuzzy PRM for manipulation planning,”

in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

2000), vol. 3, pp. 1716–1721 vol.3, Oct 2000.

163



REFERENCES

[103] G. Sánchez and J.-C. Latombe, “On delaying collision checking in prm planning

- application to multi-robot coordination,” International Journal of Robotics

Research, vol. 21, no. 1, pp. 5–26, 2002.

[104] J. Denny and N. M. Amato, “Toggle PRM: Simultaneous mapping of c-free

and c-obstacle - a study in 2d -,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 2632–2639, 2011.

[105] J. D. Marble and K. E. Bekris, “Asymptotically near-optimal planning with

probabilistic roadmap spanners,” IEEE Transactions on Robotics, vol. 29, no. 2,

pp. 432–444, 2013.

[106] J. Kuffner and S. LaValle, “RRT-connect: An efficient approach to single-query

path planning,” in IEEE International Conference on Robotics and Automation.

Proceedings of ICRA ’00, vol. 2, pp. 995–1001 vol.2, 2000.

[107] S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning using in-

cremental sampling-based methods,” in 49th IEEE Conference on Decision and

Control (CDC), pp. 7681–7687, Dec 2010.

[108] S. Karaman, M. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime motion

planning using the RRT*,” in IEEE International Conference on Robotics and

Automation (ICRA), pp. 1478–1483, May 2011.

[109] I. Ko, B. Kim, and F. C. Park, “Randomized path planning on vector fields,”

Int. J. Rob. Res., vol. 33, pp. 1664–1682, Nov. 2014.

[110] M. Otte and E. Frazzoli, “RRTX: Asymptotically optimal single-query sampling-

based motion planning with quick replanning,” International Journal of Robotics

Research, 2015.

[111] J. Tu and S. X. Yang, “Genetic algorithm based path planning for a mobile

robot,” in Proceedings of IEEE International Conference on Robotics and Au-

tomation, pp. 1221 – 1226, 2003.

164



REFERENCES

[112] G. Nagib and W. Gharieb, “Path planning for a mobile robot using genetic

algorithms,” in International Conference on Electrical, Electronic and Computer

Engineering. ICEEC ’04, pp. 185–189, Sept 2004.

[113] W. K. Chung and Y. Xu, “A generalized 3-d path planning method for robots us-

ing genetic algorithm with an adaptive evolution process,” in 8th World Congress

on Intelligent Control and Automation (WCICA), pp. 1354–1360, 2010.

[114] C. Zeng, Q. Zhang, and X. Wei, “Robotic global path-planning based modified

genetic algorithm and A* algorithm,” in Proceedings of the Third International

Conference on Measuring Technology and Mechatronics Automation, vol. 03,

pp. 167–170, 2011.

[115] A. Tuncer and M. Yildirim, “Dynamic path planning of mobile robots with

improved genetic algorithm,” Computers & Electrical Engineering, vol. 38, no. 6,

pp. 1564–1572, 2012.

[116] L. Tian and C. Collins, “An effective robot trajectory planning method using a

genetic algorithm,” Mechatronics, vol. 14, no. 5, pp. 455–470, 2004.

[117] P. Shi and Y. Cui, “Dynamic path planning for mobile robot based on genetic

algorithm in unknown environment,” in The 22nd China Control and Decision

Conference, pp. 4325 – 4329, 2010.

[118] M. Y. Ju and C. W. Cheng, “Smooth path planning using genetic algorithms,” in

9th World Congress on Intelligent Control and Automation (WCICA), pp. 1103–

1107, 2011.

[119] M. Cakir, “2d path planning of UAVs with genetic algorithm in a constrained

environment,” in 6th International Conference on Modeling, Simulation, and

Applied Optimization (ICMSAO), 2015.

[120] J. D. S. Arantes, M. D. S. Arantes, C. F. M. Toledo, and B. C. Williams, “A

multi-population genetic algorithm for UAV path re-planning under critical sit-

uation,” in IEEE 27th International Conference on Tools with Artificial Intelli-

gence (ICTAI), 2015.

165



REFERENCES

[121] W. Hornaday, C. Haas, J. O’Connor, and J. Wen, “Computer-aided planning for

heavy lifts,” Journal of Construction Engineering and Management, vol. 119,

no. 3, pp. 498–515, 1993.

[122] K.-L. Lin and C. T. Haas, “An interactive planning environment for critical

operations,” Journal of construction Engineering and Management, vol. 122,

no. 3, pp. 212–222, 1996.

[123] K. Varghese, P. Dharwadkar, J. Wolfhope, and J. T. O’Connor, “A heavy lift

planning system for crane lifts,” Computer-Aided Civil and Infrastructure Engi-

neering, vol. 12, no. 1, pp. 31–42, 1997.

[124] S. Chadalavada and K. Varghese, “Development of a computer aided critical

lift planning system using parametric modeling software,” in Proceedings of In-

ternational Conference on Engineering, Project, and Production Management,

pp. 1–12, October 2010.

[125] H. Safouhi, M. Mouattamid, U. Hermann, and A. Hendi, “An algorithm for the

calculation of feasible mobile crane position areas,” Automation in Construction,

vol. 20, no. 4, pp. 360–367, 2011.

[126] Z. Lei, H. Taghaddos, U. Hermann, and M. Al Hussein, “A methodology for

mobile crane lift path checking in heavy industrial projects,” Automation in

Construction, vol. 31, pp. 41–53, 2013.

[127] Z. Lei, S. Han, A. Bouferguène, H. Taghaddos, U. Hermann, and M. Al-Hussein,

“Algorithm for mobile crane walking path planning in congested industrial

plants,” Journal of Construction Engineering and Management, 2014.

[128] J. Olearczyk, M. Al-Hussein, and A. Bouferguène, “Evolution of the crane se-

lection and on-site utilization process for modular construction multilifts,” Au-

tomation in Construction, vol. 43, pp. 59–72, 2014.

[129] L.-C. Lien and M.-Y. Cheng, “Particle bee algorithm for tower crane layout with

material quantity supply and demand optimization,” Automation in Construc-

tion, vol. 45, pp. 25–32, 2014.

166



REFERENCES

[130] P. Sivakumar, K. Varghese, and N. Babu, “Path planning of construction manip-

ulators using genetic algorithms,” in IAARC/IFAC/IEEE. International sympo-

sium, pp. 555–560, 1999.

[131] H. Reddy and K. Varghese, “Automated path planning for mobile crane lifts,”

Computer Aided Civil and Infrastructure Engineering, vol. 17, no. 6, pp. 439–448,

2002.

[132] J. Olearczyk, A. Boufergune, M. Al Hussein, and U. R. Hermann, “Automating

motion trajectory of crane-lifted loads,” Automation in Construction, vol. 45,

pp. 178–186, 2014.

[133] S. Kang and E. Miranda, “Planning and visualization for automated robotic

crane erection processes in construction,” Automation in Construction, vol. 15,

no. 4, pp. 398–414, 2006.

[134] Y. Lin, D. Wu, X. Wang, X. Wang, and S. Gao, “Lift path planning for a

nonholonomic crawler crane,” Automation in Construction, vol. 44, pp. 12–24,

2014.

[135] M. Gouttefarde, J.-F. Collard, N. Riehl, and C. Baradat, “Geometry selection

of a redundantly actuated cable-suspended parallel robot,” IEEE Transactions

on Robotics, vol. 31, pp. 501–510, April 2015.

[136] J. Park, W.-K. Chung, and W. Moon, “Wire-suspended dynamical system: sta-

bility analysis by tension-closure,” IEEE Transactions on Robotics, vol. 21, p-

p. 298–308, June 2005.

[137] S.-R. Oh and S. Agrawal, “Cable suspended planar robots with redundant ca-

bles: controllers with positive tensions,” IEEE Transactions on Robotics, vol. 21,

pp. 457–465, June 2005.

[138] M. Carricato and J. Merlet, “Stability analysis of underconstrained cable-driven

parallel robots,” IEEE Transactions on Robotics, vol. 29, pp. 288–296, Feb 2013.

167



REFERENCES

[139] Y. Lin, D. Wu, X. Wang, X. Wang, and S. Gao, “Statics-based simulation ap-

proach for two-crane lift,” Journal of Construction Engineering and Manage-

ment, vol. 138, no. 10, pp. 1139–1149, 2012.

[140] H.-L. Chi and S.-C. Kang, “A physics-based simulation approach for cooperative

erection activities,” Automation in Construction, vol. 19, no. 6, pp. 750 – 761,

2010.

[141] P. Sivakumar, K. Varghese, and N. R. Babu, “Automated path planning of

cooperative crane lifts using heuristic search,” Journal of Computing in Civil

Engineering, vol. 17, no. 3, pp. 197–207, 2003.

[142] M. Nowostawski and R. Poli, “Parallel genetic algorithm taxonomy,” in

Knowledge-Based Intelligent Information Engineering Systems, 1999. Third In-

ternational Conference, pp. 88–92, IEEE, Dec 1999.

[143] Y. Tazaki and T. Suzuki, “Constraint-based prioritized trajectory planning for

multibody systems,” IEEE Transactions on Robotics, vol. 30, pp. 1227–1234,

Oct 2014.

[144] Y. Cai, Z. Fan, H. Wan, S. Gao, B. Lu, and K. Lim, “Hardware-accelerated

collision detection for 3d virtual reality gaming,” Simulation & Gaming, vol. 37,

no. 4, pp. 476–490, 2006.

[145] P. Cai, Y. Cai, I. Chandrasekaran, and J. Zheng, “A GPU-enabled parallel

genetic algorithm for path planning of robotic operators,” in Y. Cai and Simon

See (eds.), GPU Computing and Applications, pp. 1–13, Springer, 2015.

[146] P. Cai, Y. Cai, I. Chandrasekaran, and J. Zheng, “Parallel genetic algorithm

based automatic path planning for crane lifting in complex environments,” Au-

tomation in Construction, vol. 62, pp. 133 – 147, 2016.

[147] B. Gough, GNU Scientific Library Reference Manual - Third Edition. Network

Theory Ltd., 3rd ed., 2009.

168



REFERENCES

[148] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha, “Fast distance queries

with rectangular swept sphere volumes,” in IEEE International Conference on

Robotics and Automation. Proceedings of ICRA ’00, vol. 4, pp. 3719–3726 vol.4,

2000.

[149] V. W. Tam and I. W. Fung, “Tower crane safety in the construction industry:

A hong kong study,” Safety Science, vol. 49, no. 2, pp. 208 – 215, 2011.

[150] R. A. King, Analysis of crane and lifting accidents in North America from 2004

to 2010. PhD thesis, Massachusetts Institute of Technology, 2012.

[151] C. Moenning and N. A. Dodgson, “Intrinsic point cloud simplification,” Proc.

14th GrahiCon, vol. 14, p. 23, 2004.

[152] S. Gumhold, X. Wang, and R. MacLeod, “Feature extraction from point clouds,”

in Proceedings of 10th international meshing roundtable, 2001.

169



Appendix A

Kinematics

Most of “robots” considered in path planning are composed of rigid bodies linked

together to form a linkage (Figure A.1(a) ). In many cases the linkage can be simplified

as kinematic chains (Figure A.1(b)) or kinematic trees (Figure A.1(c)). In a linkage,

each rigid body is called a link A. two links A1,A2 in the kinematic tree are attached

according to some motion constraints. The location where the two links are attached

is referred to as joints as denoted as O in this Chapter. Studying the kinematics of a

robot is beneficial for characterizing the C-space of the path planning problem. The

C-spaces will be further discussed in Appendix B. It is also used for determine the

position and motion ranges of the end-effector or other components of the robot which

is required in collision detection. This section will start from the simplest kinematic

chains then move to kinematic trees and introduce linkages with loops (Figure A.1(a)).

170



Appendix A: Kinematics

(a) (b) (c)

Figure A.1: Demonstration of linkages composed of rigid bodies attached by joints:
(a) A linkage of rigid bodies with loops; (b) A kinematic chain of rigid bodies; (c) A
kinematic tree of rigid bodies.

In R2, a free rigid body possesses 3 independent parameters: xt, yt, θ. xt and yt

stands for the amount of translation of the rigid body. θ represents the rotation of

the rigid body along an anchor which can be either a randomly selected point or the

joint position with another rigid body. For free rigid bodies in R3, 6 independent

parameters are required to characterize the motion: xt, yt, zt, α, β, γ. Here xt, yt, zt

characterize the translational motion of the rigid body in R3 and α, β, γ can be the

yaw-pitch-roll angles or the Euler angles or any variance of them. Quaternions may

also be used to represent the rotational motion of the rigid bodies. The number of

independent parameters to completely define the configuration of the rigid body is

called the Degree Of Freedom (DOF) of the rigid body. The DOF is defined similarly

for kinematic chains and trees.

Before considering the transformation of kinematic chains, the selection body coor-

dinate systems of the rigid bodies in the kinematic chain need to be introduced. Given

a 2D kinematic chain as in Figure A.1(b), the body frame of a link Ai is assigned such

as the center is aligned to the joint Oi−1 which links Ai−1 and Ai and the x-axis is

aligned to the direction from Oi−1 to Oi. The center of the body frame of link A1 can

be placed randomly is since A0 and O0 are not defined. A denotation of the 2D body

frame is shown in Figure A.2. The motion of Ai is constraint in only two ways in its

body frame which leads to two types of 2D joints. When only rotation is allow in joint

171



Appendix A: Kinematics

Figure A.2: Body frame of a link in R2 (diagram courtesy of LaValle [3])

Oi−1, the joint is referred to as a revolute joint. Else if the only motion allowed is to

move Oi−1 along xi−1, the joint is called a prismatic joint.

Joints for 3D kinematic chain have six major types. The revolute joints and pris-

matic joints are analogical to the 2D joints. A screw joint allows the link to rotation

along a single axis. After each revolution, a uniform displacement along the rotational

axis is conducted. A cylindrical joint allows to rotate and translate along a single axis.

A planar joint enables a link to “slide” on the surface of another one. The last type

which is the sphere joints allows to change all the rotational parameters. To select

the body frames in a 3D kinematic chains, a common approach is to use the Denavit-

Hartenberg (DH) parameters. To construct the DH parameters, the rotational axis of

joint Oi−1 is taken as the z axis zi of link Ai. The direction perpendicular to both

zi−1 and zi is chosen as the x axis xi. The y axis is selected as yi = zi × xi. The DH

parameters include four values: di, θi, ai−1 and αi−1. di and θi are the signed distance

and angle from xi−1 to xi measured along zi. ai−1 and αi−1 represent the distance from

zi−1 to zi measured along xi−1.

172



Appendix A: Kinematics

Figure A.3: The definition for the four DH parameters: (a) di; (b) θi; (c) ai−1; (d)
αi−1 (diagram courtesy of LaValle [3])

Each set of DH parameters for link Ai can be interpreted as a homogeneous trans-

formation matrix represented as:

Ti =


cos(θi) − sin(θi) 0 ai−1

sin(θi) cos(αi−1) cos(θi) cos(αi−1) − sin(αi−1) − sin(αi−1)di
sin(θi) sin(αi−1) cos(θi) sin(αi−1) cos(αi−1) cos(αi−1)di

0 0 0 1

 (A.1)

Given a kinematic chain {A1, A2, ..., An}, the world coordinates of the end effector

at (x, y, z) in the body frame of Ai is computed as:

Ti = T1T2 . . . Tn


x
y
z
1

 (A.2)

When a joint in the chain connects more than two links, the kinematic chain

becomes a kinematic tree. The root of a kinematic tree is a link with only one joint

attached. In order to determine the world coordinates of a point on link Ai, one need

173



Appendix A: Kinematics

first find a path connecting the root A0 and Ai. For example, to determine the position

of a point on A6 in the kinematic tree shown in Figure A.1(b), the path A1, A4, A5, A6

shall be considered. The world coordinates of a point (x, y, z) in the body frame of A6

can be calculated as:

Ti = T1T4T5t6


x
y
z
1

 (A.3)

kinematic linkages with loops can be treated as kinematic trees through adding

additional constraints. Consider a looped linkage shown in Figure A.4(a), a kinematic

tree can be obtained through breaking the joint attaching link A4 and link A6. In

order to make the kinematic tree a loop, the position of the joints at the end of the

two branches have to be in the same position, which means that:

T1T2T3t4

 a
0
1

 = T5T6

 b
0
1

 (A.4)

Where a and b stands for distance between the two joints in A4 and A6 accordingly.

This constraint contains two nonlinear equations (the last equation do not contain

any variable) and therefore eliminates two degree of freedoms from the kinematic chain.

(a) (b)

Figure A.4: A looped linkage of rigid bodies: (a) The closed kinematic chain and (b)
its corresponding open kinematic tree.

174



Appendix B

Configuration Space

Configuration space is the set of all possible configurations undertaken by a robot.

Generally, the configuration space for a path planning problem with n DOFs is a n-

dimensional manifold embedded in Rn. The shape of the C-space of robots differs

according to their kinematic structure and operational limits. This section introduces

the shapes of C-space of kinematic chains.

Consider a kinematic chain in which link A1 is fixed on the x axis and A2 is linked to

A1 through a revolute link. The only parameter to characterize this system is the angle

θ2 (or simply denoted as θ). The value of θ can be picked from a continuous range

[0, 2π) with 0 identified with 2π. Thus the C-space of this 2-body kinematic chain

is homomorphic to the unit circle S1. If the links are attached through a prismatic

joint instead, the parameter should be changed to x2, the value of which lies between

0 and the length of A1. In this case the C-space of the simple kinematic chain is

R. Furthermore, for a 2D kinematic chain {A1, A2, ..., An+1} connected with revolute

joints, the C-space is T n = S1 × S1... × S1. If the first revolute joint is changed to

prismatic joint, the C-space of the kinematic chain will become R×T n−1 = R×S1...×

S1.

175



Appendix B: Configuration Space

Table B.1: C-space contributed by the six types of joints in 3D kinematic chains

Joint type C-space
Revolute joint S1

Prismatic joint R
Screw joint R
Cylindrical joint R× S1

Spherical joint SO(3)
Planar joint R2

Figure B.1: A simple kinematic chain for C-space analysis

For 3D kinematics chains the representations are more complicates as there are

more types of joints. Each type of joint contribute one or more dimensions to the

overall C-space. Table B.1 lists the C-space contributed by the six types of joints

in 3D kinematic chains. The overall C-space of the kinematic chain is the Cartesian

product of the C-space contributed by each of the joints.

176




