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Abstract

With the development of microfluidics, electro-osmotic (EO) driven flow has gained

intense research interest as a result of its unique flow profile and the corresponding

benefits in its application in the transportation of sensitive samples. Challenges occur

when the EO driven mechanism encounters complex rheology and vital questions

such as "Can the zeta potential still be assumed to be constant when dealing with

fluids with complex rheology?", "Does the shear thinning effect enhances electro­

osmotic driven flow?" need to be answered. Experiments were conducted via using

current monitoring and microscopy fluorescent methods, and a analytical model was

developed by coupling a generalized Smoluchowski approach with the power-law

constitutive model. The zeta potential was calculated. The shear thinning effect is

also addressed via experimental data and theoretical calculations.

The mathematical model for the two immiscible layers of electro-osmotic driven

flow in the parallel microchannel was proposed. One layer is a conducting non­

Newtonian power-law fluid driven by electro-osmotic force. The other layer is a non­

conducting Newtonian layer driven by interface shear. The effects of Debye-Hueckel

parameter xhi, interfacial zeta potential If/I , the Newtonian viscosity 1'2' the non-

Newtonian fluid consistency coefficient m & flow behavior index n were discussed.

The complex flow behavior, namely fluid consistent coefficient and flow behavior

index, play important roles in the velocity distributions. The shear thinning effect is

also analyzed. The results show that the shear thinning fluid is not only ideal for

direct electro-osmotic driving but also for hybrid driving.

A flow-focusing geometry in a microfluidic device was studied for the formation of

uniform droplets and we qualitatively illustrated aspects of controlling the droplet
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size and breakup regimes when an active electric field is applied. The control of

droplet size was demonstrated with applied electric fields by changing the voltage

and frequency. Various droplet breakup regimes including squeezing, dripping,

unstable breakup and jetting induced under different electric field parameters were

observed. It is shown that the droplet size decreases with an increase in voltage.

Similar decreasing of the droplet size is also found with the increase of electric field

frequency, especially when the frequency IS less than 2 kHz. In addition, the

experimental results show the droplet size IS much more III uniform at a lower

frequency than that at a higher frequency.

Flow focusing microchannels with three orifice sizes and the non-contact type of

electrodes were designed and fabricated for investigations of non-Newtonian droplet

formation under the influence of applied AC electric fields. Non-Newtonian fluids

that have similar rheological behavior of bio samples were adopted for droplet

formation. Flow conditions of experiments, microchannel geometries, and AC

electric field parameters have been implemented systematically. The influences of

these variables were analyzed. Among them, the non-Newtonian droplet formation

was highlighted and addressed. The dependency of the flow condition and electric

field on the non-Newtonian droplet formation dynamics was presented and analyzed.

The flow field of the non-Newtonian droplet formation was measured and analyzed

quantitatively via a high speed /lPIV system. Different droplet formation regimes and

the impact of AC electric field were considered when the measurements were

conducted. Flow fields and the related vorticity distributions were used for flow

characterization.

A particle free method for flow field visualization was proposed and achieved by

analyzing liquid crystal polarization. The proposed concept is implemented by
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imagmg liquid crystal flow under microfluidic environment usmg a polarization

based optical interferometric configuration. Fringe patterns give good presentation of

flow characterizations for different nozzle/diffuser microchannel designs. The

obtained results demonstrate that the flow shear and flow recirculation under various

condi tions can be evaluated in terms of interferometric fringe patterns. It is envisaged

that the proposed methodology can make a potential impact in flow field

visualization studies and related analysis.

A novel method for the investigation of the dynamics of droplet formation was

proposed by liquid crystal polarization as the traditionally adopted ~PIV method had

its vulnerability in interfacial and filament measurement. The interfacial dynamics of

the droplet and the filament were observed and the associated flow characteristics

were analyzed. In addition to the formation dynamics, the control of liquid crystal

droplet generated in flow focusing micro channel was achieved by hydrodynamic

alteration and implementation of AC electric field. The exponential decrease in

liquid crystal droplet size in terms of capillary number was found. Micro level (urn)

of droplet size adjustment was obtained in the presence of AC electric field in a

microfluidic environment.
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Chapter 5 An Electric Field Activated Droplet Formation in Flow-focusing Device

computer and the input and output experimental data and Images can be collected

simultaneously.

I I
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High-voltage
amplifier

Syringe pump

I

Figure 5.1 Schematic diagram of experimental setup. The apparatus fundamentally consisted of six

parts: (I) Syringe pump system, (2) High-voltage generator system, (3) Flow focusing device (chip),

(4) Microscope system, (5) High-speed camera, and (6) Data collection system.

9F
(a) Top view (b) Side view

Figure 5.2 Schematic diagram of the flow-focusing geometry implemented in a microfluidic device.

DP, CP here denote dispersed phase and continuous phase, respectively. The main channel width Wch

= 100 urn; the height of micro channel is 35 urn. Wga = 50 urn. Three sizes of orifices Wor=25, 75 and

100 urn were designed.

89
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Chapter 1 Introduction

1.1 Background and motivation

Microfluidics has attracted much attention due to its rapid development and

promising applications in fields of bio-engineering, chemical industry [1-6].

Microfluidics can significantly lower cost as it requires small sample volume at the

order of 100 nL. With the development of microfluidics, the concept of lab-on-a-chip

was proposed. It integrates the sample preparation, transportation and analysis into a

single chip. Micro-electromechanical systems (MEMS) technologies prompted micro

scale system including the microfluidic systems, such as the complex microchannels

for lab-on-a-chip experiments. The bio based applications typically involve

transportation of the DNA samples and usually involve only minimal samples and

short time scales, for which microfluidics are ideal.

The electro-osmotic driven method has vanous advantages as compared to the

traditional pressure gradient driven method. The flow profile of the electro-osmotic

driven method shows a plug flow, rather than the traditional parabolic flow. This

indicates a lower shear rate in bulk flow, which causes less influence to the

molecular structures within bio samples, such as the long-chained DNA molecules.

Recently, the research on two or multi fluids electro-osmotic driven flow has gained

enormous achievements. Interfacial control of the two fluids was reported to be

controlled by the electro-osmotic method. The interfacial control forms the

foundation for applications of sorting, separation and mixing [7-9]. However, most

of the research carried out target the simple Newtonian flow, which exhibits a

different flow behavior from that of bio samples, as most of the biological samples
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are non-Newtonian fluids. The two or multi fluids electro-osmotic driven flow with a

non-Newtonian fluid has to expand application to the biological fields.

Microfluidic droplet deals with the formation and the manipulation of discrete

droplets in microfluidic environment. The impact of microfluidic droplets has been

increasing as the properties, such as the fast generation rate and monodispersity with

associated approaches for droplet sorting, splitting and merging making it suitable

for biochemical processes like fast chemical reaction tests, bio genetic transportation

and drug delivery. The fundamental concept of the droplet microfluidic, droplet

formation, attracts our attention. Fast response droplet formation and the precise

control of droplet sizes can be achieved via electric field applied in flow focusing

microchannels where contamination can be avoided by non-contact electrodes. Much

research has been carried out to investigate the dynamics responses of Newtonian

fluids in the process of the droplet formation. However fluids in the aforementioned

applications, such as DNA sample are the one with complex rheological behavior

owing to the presence of long DNA chain structure, explaining the increase m

attention of droplet formation process of non-Newtonian fluids in microfluidics.

Liquid crystals (LCs) are a group of non-Newtonian fluids whose orientations can be

tuned via various stimuli. The optical pattern varies with the external pressure

gradient such that LCs show distinct patterns under different flow conditions, making

perfect conditions for optofluidic research [10, 11]. The flow confinement of LCs

provided by microfluidics is flow visualization due to the refined control of flow

conditions. The coupling of flow fields with molecular reorientations at micro scale

to achieve a novel method for flow visualization has yet to be studied.

2
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1.2 Objectives and scopes

Investigations on flow of non-Newtonian fluids in microchannels form the

foundation of applications. The objective of the present study is to study the electro­

osmotic driven flow of non-Newtonian fluids theoretically and experimentally, to

investigate the droplet formation of both Newtonian and non-Newtonian fluids under

an applied AC electric field and to develop a novel method for flow visualization in

microfluidic environments.

The scope of the current study includes:

(1) To study a single layered non-Newtonian fluid driven by the electro-osmosis

in a rectangular microchannel theoretically and experimentally. To develop a

two fluids model driven by electro-osmosis involving one layer of conducting

non-Newtonian fluid and the other layer of non-conducting Newtonian fluid.

(2) To investigate the dynamics of droplet formation under an applied electric

field for both Newtonian fluids and non-Newtonian fluids in flow focusing

microchannels. To understand the strategy of precise control of droplet size

via varying the electrical parameters. To deepen the understanding of non­

Newtonian filament break up process with the presence of AC electric fields.

(3) To develop a novel flow visualization method based on the birefringence

property of liquid crystals and the dynamic response of the liquid crystals'

molecules to flow fields. Both single fluid flow in nozzle/diffuser

microchannels and two fluids flow in flow focusing microchannels are to be

visualized and analyzed.

3
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This chapter reviews the related literatures. The first part covers the fundamental

aspects of electric double layer, electro-kinetic phenomena in microchannels. The

following part covers electro-osmotic flow in non-Newtonian fluid. In the third part

of this chapter, droplet formation including non-Newtonian droplet formation is

present. Lastly, liquid crystal based optofluidic is reviewed.

2.1. Electric double layer

The concept of electric double layer (EDL) was first proposed by stern in 1924, by

combining two models: the Helmholtz and the Gouy-Chapman models [12, 13].

Among Helmholtz was the first researcher found out the charged electrodes repels

the co-ions and attract the counter-ions in the electrolyte solutions while Louis

Georges Gouy (in 1910) and David Leonard Chapman (in 1913) found out that the

charge distribution is a function of distance away from the metal plate. The EDL is

formed due to the surface ion attraction. Ion charge appears on the surface of the

substance when it is contacted with one polar medium due to the ionization, ion

adsorption and ion dissolution (Figure 2.1). Influenced by the surface charge density,

the ion with opposite charge will be attracted near the surface and the ion with same

charge will be repelled away from the surface. Thus, the ion distribution changes

near the surface. Far from the surface, the neutral ion distribution applies. As shown

in Figure 2.2, the electric double layer (EDL) is mainly composed of the stern layer

and the diffuse layer. The stern layer is a very thin layer (O.Snm) where the ions are

strongly bounded by attraction force with no mobility. While the in the diffuse layer,

the attraction force is not strong enough to bound the ions. The ions in this layer

obtain the mobility and spread out due to the thermal energy. The thickness usually

5
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varies from several to hundreds of nanometers resulting from the ionic concentration,

PH value, surface properties as well as the fluid properties.

The zeta potential If/ is defined as the electric potential at the shear plane, which is

an assumed plane between the stem layer and the diffuse layer. The fluid between the

wall and the shear plane remains stationary (as shown Figure 2.1 and Figure 2.2).
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Figure 2.1 Schematic diagram of ion distribution near the contact surface [12]

Figure 2.2 Schematic diagram of the EDL structure [14]

Under the influence of the EDL, the overall charge density Pe within the diffuse

layer is not zero. When an electric field is applied along the surface, the ions in the

diffuse layer move and hence drag the bulk fluid to flow. Since the diffuse layer is

6
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thin, a plug-shape velocity profile is generated. The flow generated by the applied

electric field and the EDL is called the electro-osmotic driven flow.

2.2. Electro-kinetic phenomena

Electro-osmosis is one of the four types of electro-kinetic phenomena. The four types

are electrophoresis, electro-osmotic, streaming potential and sedimentation potential

[12]. Electrophoresis and sedimentation potential describe the particle behavior

immersed in quiescence fluid while electro-osmotic and streaming potential describe

the motion that the flow of a fluid pass by a stationary charged surface. They can be

divided into two groups depending on whether an external electric field is needed.

For electrophoresis and electro-osmotic an external electric field is applied to drive

the particle or fluid. While for sedimentation and streaming potential, an electric

field is generated due to the movement of the charged particle or the fluid with non­

zero electric density.

2.2.1 Measurement ofelectro-osmotic velocity

Various methods have been proposed to measure the electro-osmotic velocity [12, 15,

16]. Theoretical predictions of the electro-osmotic velocity in microchannel have

been studied [12, 17-19]. Various channel shapes were presented, such as the slit

channel [20], rectangular channel [18, 21], cylindrical channel [22, 23], irregular

channel [24], and arbitrary shaped channel [25]. Experimental methods can be

classified into two types: the indirect and direct method.

One of the indirect methods is the current monitoring method as shown in Figure 2.3

[26-29]. It utilizes two solution with the same electrolyte and different ionic

concentrations, cj ' c2 (c2 > c.). Reservoir 1 and the microchannel are initially filled

7
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with a lower concentration c1and reservoir 2 is filled with a higher concentration c2 •

After an external electric field is applied along the microchannel, the solution of high

concentration C2 from reservoir 2 displaces the solution of low concentration c\

cause the flow towards the reservoir 1. By monitoring the change of electric current

in the microchannel, the displacement time tmax can be measured, hence the average

electro-osmotic velocity can be determined by :u = (Lchannel / t max ) where Lchannel is the

length of the microchannel.
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Figure 2.3 Indirect EDL measurement method [29]

The direct method uses fluorescent dye for flow field visualization. The position of

the dye can be captured at specific time. By comparing the dye positions at different

times, the whole velocity field can be visualized. The best known direct

8
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measurement method is the Micro-scale Particle Imagine Velocimetry (flPIV)

technology as shown in Figure 2.4 [30].

lluid
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Figure 2.4 Schematic diagram of a IlP1V setup. [30]

2.2.2 Zeta potential

The zeta potential is an important parameter to characterize the electro-kinetics effect.

The electric potential distributions including the characteristics of zeta potential have

been studied extensively. Yang et al. (Figure 2.5) [18, 21] studied the forced liquid

convection in rectangular microchannels with electro-kinetic effects. The electrical

potential distribution is obtained by solving the Poisson-Boltzmann equation both

analytically and numerically. The electric potential distribution in the overlapped

EDL region, which cannot be described by the classic Poisson-Boltzmann equation,

9
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was investigated by Qu et al. [31]. A new governing equation was derived, the result

indicates a lower electrical potential than that calculated by the classic theory.

Figure 2.5 Non-dimensional electrical potential profile in one quarter of a rectangular microchannel

(geometric ratio of height to width=2/3, non-dimensional electro-kinetic diameter K=24.7 ) [18]

The value of zeta potential holds the significant impact [32] on applications such as

electro-osmotic driven flow [33, 34], electrophoresis related particle moving [35],

membrane characteristics [36, 37] and biomedical polymer features. The indirect

measurement method provides the relation between the electric field, zeta potential

and flow or particle velocity. Three electro-kinetics phenomena, electrophoresis,

streaming potential and electro-osmotic, can be utilized to measure the zeta potential

[32].

Electrophoresis can be used to determine the zeta potential as the particle moves

under an external electric field [28]. The zeta potential of the interface can be

evaluated by the Smoluchowski equation: VIi = 4Jr&0&r 6'1' (l + Krp ) ' where VIi is the
JrJl

mobility of the particle, &0' e, are the electric permittivity of vacuum and the relative

10
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electric permittivity, j.1 is the fluid viscosity, x is the Debye-Hilkel parameter [38],

rp is the radius of the particle and IJI is the zeta potential [12].

Similarly, in streaming potential, the relation between pressure gradient and the

. d d 1 . fi ld' E., CaC IJI 1III uce e ectnc Ie IS: -' =__r - , where Es is the streaming
\lP f.l (Ab+2A /h)

potential, \lP is the pressure gradient, co' e, are the electric permittivity of vacuum

and the relative electric permittivity respectively, j.1 is the fluid viscosity, IJI is the

zeta potential, Ab and As are the bulk conductivity and surface conductivity, h is the

height of the microchannel. The disadvantages lie in the issues of measuring the

surface, bulk conductivity and the streaming potential [39-42].

Electro-osmotic driven velocity in a microchannel can be used to calculate the zeta

potential using uE = IJIcocr E [32]. Once Ufo' velocity is measured, the zeta potential
f.l

can be calculated. Among the three measurement techniques, electro-osmotic IS

easier to implement [43].

2.3. Electro-osmotic based applications

2.3.1 Electro-osmotic pump

The electro-osmotic (EO) pump utilizes the electro-osmotic force as the driven force

[44-47]. The EO pump can be cataloged as: direct, indirect and hybrid type.

The direct EO pump can be divided into directing current (DC) and alternating

current (AC). The direct DC EO pump gains its advantages mainly in velocity profile.

As EDL is thin, the velocity profile is a plug like profile, no shear is experienced in

most of the fluid, which is good in transporting fluids with large molecular weight,

11
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long-chain biofluid (blood, DNA). Chen et al. [48] designed an EO pump using the

monolithic silica with a stall pressure of 400 kPa. However, its disadvantages include:

bubbles generated from the fluid and a relatively high electric field which is required

to drive the flow [49]. The AC EO pump can be used to drive the fluid due to the

asymmetrical electrodes (Figure 2.6) [50]. The AC EO pump can be operated at a

lower voltage, usually smaller than 10 V [51, 52].

Net flow

Figure 2.6 Working principle of AC EO pump [50]

In indirect EO pump, the electrodes are separated by some barriers from the

conducting buffer. When the indirect EO pump operates, the ions can pass the

barriers from surface of the electrodes to bulk fluids, but the fluids cannot pass

through the barriers [45].

The idea of the hybrid EO pump is to use a conducting fluid to drive another non-

conducting fluid (Figure 2.7).The conducting fluid is to be driven by the direct EO

pump mechanism and the non-conducting fluid is to be dragged by the interface

shear [53, 54]. Gao et. al. [55] presented both numerical and mathematical models to

describe a two-fluid electroosmotic pump technique.

12
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Non-conduct uu. fluid

Figure 2.7 Working principle of hybrid EO pump [54]

2.3.2 Control ofthe fluid-fluid interface

The electro-osmotic based interface control for two or multi immiscible fluids has

been investigated extensively [55-58]. Wang et al. [29, 59] showed that the location

of the interface can by controlled by the combined effect of pressure and electro-

osmotic driven method (Figure 2.8).
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Figure 2.8 Fluid-fluid interface controlled by the combined effect of pressure and electro-osmotic

driven method: (a) no electric field; (b) under -0.8 kV; (c) normalized concentration distribution of the

fluorescent dye across the channel width under different applied voltages.[59]

Flow switching is an extension of the control of fluid-fluid interface: as the interface

can be located precisely, the fluid sample can be guided into the desired outlets. A

simple analytical model, flow-rate-ratio method was proposed to evaluate the

switching performance [60]. Figure 2.9 shows the experimental results of flow

switching.

Figure 2.9 Experimental results of flow switching [61]

2.4. Fluids properties of non-Newtonian fluids

Generally the non-Newtonian fluid can be classified as:

1. Time independent non-Newtonian fluids. The shear stress is independent of

the history of the shear rate but dependents only on the current value of shear

rate (the pressure and temperature are certain).

2. Time dependent non-Newtonian fluids. The shear stress does not only depend

on the current value ofthe shear rate, but also the shear rate variation history.

14
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3. Visco-elastic non-Newtonian fluids. Unlike the ideal Newtonian fluid, the

visco-elastic obtains partial viscous of the ideal fluid and partial elastic of

solid, which allows the fluid to partially recover from deformation.

This report focus on the time-independent fluid.

2.4.1. Time-independent non-Newtonian fluid

Figure 2.10, shows an overview of basic relationship between shear rate and shear

stress for fluids subjected for shear deformation.

The time-independent fluid can further classified as: shear thickening (Dilatant),

shear thinning (Pseudo plastic), Bingham plastic, Yield pseudo plastic.

For non-Newtonian fluids, the relationship between shear rate and shear stress is not

linear. A shear rate dependent viscosity is presented, termed as the apparent viscosity.

Shear rate

Figure 2.10 Schematic diagram for the time-independent fluid [62]

2.4.2. Shear thinning fluid

Most common type of time-independent non-Newtonian fluid is a shear thinning

fluid whose apparent viscosity decreases with the increase of the shear rate, as shown

15
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in Figure 2.11. The apparent viscosity at very low and high shear rate are known as

the zero shear viscosity f-lo and infinite shear rate viscosity f-lw' Frome f-lo to f-lw' the

shear stress-shear rate generally follows a linear relation. It's difficult to measure the

infinite shear viscosity f-lw' For example, the polymer solution which contains long

chains of molecular will face the degradation problem under high shear rate.
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Figure 2.11 Shear thinning fluid properties [62]

There is no unique model that can descript the behavior from the low shear rate (l0-2

S·I) to high range (l05 S-I) perfectly. Therefore, there are several mathematical

models presenting the shear stress and shear rate relation within limited scope.[63-67]

The power law or Ostwald de Waele model [63-65]

The power law model is particularly popular because of the number of exact solution

which can be obtained from this model. It can be written:

16
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For n <1, it describes the shear shinning fluid;

n=l, it represents the Newtonian fluid;

n >1, it shows the shear thickening f1uid.

It is a two-parameter constitutive law, where m and n are fluid consistency

coefficient and flow behavior index respectively. The model cannot describe the zero

shear viscosity uo and the infinite viscosity !-too. It also means the model is not

validated among all the shear rate range.

The Carreau viscosity model [66, 67]

This model considers the zero and infinite shear viscosity, uo, !-too respectively.

Ji-Ji", ={l+(A YyJ 2 } (n- l )12

Jio -Ji",
(2.3)

This model expands the limitation of usage by incorporating !-to and !-too, which also

makes the model more complicated.

2.4.3. Shear thickeningfluid

The apparent viscosity increases with shear rate increase. Although the shear

thickening f1uid is not as widespread as the shear thinning fluid, some typical

examples were found when dealing with high solid fluids (Figure 2.12).

The power law model is also capable of describing the shear thickening behavior.

When n > 1, Eq (2.1) and (2.2) represent the shear thickening property.

17
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Figure 2.12 Shear thickening fluid properties [68]

2.5. Electro-osmotic in non-Newtonian fluids

2.5.1 Theoretical approach

Non-Newtonian fluids are known for its complex fluid behavior. Most of the electro-

osmotic (EO) related research bears one common condition, that the fluid is a simple

Newtonian fluid. Limited work has been carried out on non-Newtonian fluid.

Currently, theoretical research of non-Newtonian fluids on microsystem for

biotechnology mainly concentrates on polymer solution, with which the bio-sample

behaviors similarly [69, 70]. Das and Chakraborty [71] firstly derived a analytical

model for electro-osmosis of non-Newtonian fluids in parallel plate. By utilizing the

Poisson-Boltzmann equation, momentum and energy equations, the velocity profile

and temperature distribution are obtained for the power law non-Newtonian fluid.

Zhao and Yang [72, 73] derived an exact solution for a single layer EO driven flow

of power law non-Newtonian fluids with a symmetrical EDL condition in a slit

microchannel (Figure 2.13). The flow behavior index n and the Debye-Hueckel

parameter K were investigated. The mathematical model was furthered expanded by

18
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indicating the Gouy-Chapman solution to the Poisson-Boltzmann equation and

applying the Carreau fluid constitutive model [74]. The non-linear ordinary equation

was solved numerically and a more general model is obtained. The results showed

that the Carreau fluid model performs well. Vasu and De [75] expanded the single

layer power law fluid model by solving the EDL potential distribution at a higher

zeta potential, upon which the Debye Hueckel linear approximation is no longer

valid. The possibility of using pseudoplastic fluid to achieve higher flow rate was

presented.

·2H·_··_··_l.-_-~
o

Figure 2.13 Schematic diagram for a single layer EO driven power-law fluid [72]

Berli and Olivares developed a analytical model to simulate the EO flow of non­

Newtonian fluids through slit and cylinder microchannel [69, 70]. Calculation are

based on constitutive models of the fluid viscosity and take into account the wall

depletion effects of the polymer solution. The output pressure and EO pumping

energy efficient were also exploited [76]. Khair et al. [77] proposed a analytical

model to calculate the coupling effect of the electrophoretics and rheology. The

charged colloidal particles are immersed in the shear rate dependent viscosity non­

Newtonian fluids. The model presents the general results of particles influenced by

the coupling effects. Li, et al. [78] derived a model for N layers of immiscible flow

under the electro-osmotic and pressure gradient driven respectively. The N-Iayer
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pressure driven power law fluid IS considered and compared with that of the

Newtonian fluid.

Besides those studies of inelastic non-Newtonian fluids, investigation on the

viscoelastic non-Newtonian fluid can be found. Afonsoa, et al. [79] obtained

analytical solutions for viscoelastic non-Newtonian fluid via incorporating the

Debye-Huckel approximation, simplified Phan-Thien-Tanner model (sPTT) and the

FENE-P model. Velocity distributions of the non-Newtonian fluid were presented

under the combined effect of fluid rheology, electro-osmotic and pressure gradient.

Dhinakaran et. al. [80] investigated the EO driven viscoelastic model in a slit

microchannel via the Phan-Thien-Tanner model. The maximum electrical potential

to be utilized to maintain the steady state flow is then proposed in the work.

2.5.2 Numerical investigation

Ahmed [81] studied forced convection heat transfer for non-Newtonian power law

fluids in a rectangular duct with an external magnetic field. The solution is obtained

via the finite difference method. Two different boundary conditions are considered:

constant wall temperature and constant heat flux. Cho, et al. [82] numerically

modelled the flow of electro-kinetically driven non-Newtonian fluid in rough

microchannels with complex-wavy surface (Figure 2.14). The results show that the

flow behavior index has significant impact on the flow characteristics such as the

volume flow rate. The flow near the wall is more sensitive to the roughness than that

in the center of the channel.
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Figure 2.14 Schematic illustration of rough micro channel with complex-wavy surface.[82]

The electro-osmotic driven Carreau non-Newtonian fluid in a T junction was

simulated by Craven, et al. [83]. The simulation was conducted via the finite element

method. The Carreau fluid parameters were discussed. Hadigol et.al [84] studied the

flow of biofluids within a microchannel (Figure 2.15). The biofluid is driven by the

asymmetrical zeta potential. The finite volume method was adopted in the numerical

investigation. The results show that the shear dependent viscosity has a great impact

on the mixing efficiency.

Ji!aw Directton..
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Figure 2.15 Microchannel with height of 30 urn and length of 210 urn. [84]

Wang and Ho [85] utilized a novel lattice Boltzmann method to investigate the shear-

thinning non-Newtonian blood flows described by the power-law, Carreau-Yasuda

and Casson rheology models. The results give a second order accuracy and provide a

new numerical method for simulating the flow of complex f1uids.

The numerical study of Carreau non-Newtonian behavior in a T junction was carried

out by Zimmerman et al.[86]. A two-dimensional finite element model was

developed to simulate the electro-kinetic f1ow. This research simplified the EDL
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characteristics by rending a slip velocity at the boundary. The flows near corners

were investigated.

2.5.3 Experimental investigation on non-Newtonian fluids

Pipe and McKinley [87] studied the rheological behavior of non-Newtonian

phenomena at micro-scale. The rheologist characteristics were measured and

discussed in both shear and extensional flows. Other flows including capillary,

stagnation and contraction were presented. luang et.a!. [88] conducted experiments

on the electrokinetic-induced stagnation flow in a cross microchannel. Two

dimensional elongation flow is observed. It is found that the DNA molecules and the

residence time are greatly affected by the extend of DNA stretching. The simulation

results match reasonably well with those in the experiments. Steinhaus et a!. [89]

tested the effects of the fluid elasticity and channel dimension. Different molecular

weights of polyethylene oxide solutions along with different geometry settings were

investigated. Various time scales such as the Rayleigh time,viscocapillary Tomotika

time and the polymer relaxation time were presented. Key dimensionless numbers

including the elasticity number, elastocapillary number and Deborah number were

investigated. The influences of the parameters of molecular weight, elastocapillary

and Deborah number were observed in the experiments. Sousa et.al.[90] also

performed the experiments on rectification effect of the viscoelastic. Two types of

polymer solutions: polyacrylamide and polyethylene oxide with different molecular

weights were adopted for experiments while the rectification effect is successfully

observed for the non-Newtonian viscoelastic fluid.

Blood is one of the most important bio-fluids, and is fundamental in bio-medical

research. Zeng and Zhao [91] investigated the measurement of blood sample
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rheological features under different flow conditions. Their major focus was the

electrical behavior of blood samples and the measurement was obtained by utilizing

the electrical impedance spectroscopy, through which the blood viscosity can be

obtained. This approach is potentially capable of healthy monitoring, providing an

easy method for blood sample testing.

2.6. Droplet microfluidics

2.6.1 Droplet formation

In application of droplet microfluidics, the fundamental process is the formation of

various droplets such as droplets with high monodispersity, size of sub micro level,

complex emulsion systems and high frequency generation [92-96]. The microchannel

geometries utilized for droplet generation can be generally classified into two major

types: cross microchannel also known as T junction and flow focusing microchannel

[97-99]. The generation procedure can also labelled passive or active method.

Droplets generated by Tjunction microchannel

)

Figure 2.16 A T junction for generation of droplets

As shown in Figure 2.16, two immiscible phases, continuous phase (CP) and

dispersed phase (DP) are introduced separately into a microchannel. The continuous

phase is introduced through the main channel while the dispersed phase is introduced

through the side channel. The competition between interfacial tension and viscous

stress results in three regimes of droplet formation: squeezing, dripping and jetting
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[94, 98, 100-102]. The size of the droplet produced depends on the flow rates of CP

and DP, viscosity of CP which influences the shear stress, interfacial tension and

channel geometries. Capillary number (Ca) is an important factor influencing the

process of droplet formation. Ca characterizes the effect between viscous force and

surface tension. Squeezing and dripping regimes were found by Menech [103].

Under low Ca where squeezing happens, the emerging droplet blocks the flow of

the CP. The hydrodynamic pressure builds up on the upstream of the emerging

droplet and pinches off eventually. Garstecki reported that the pressure gradient is

the dominating factor in squeezing regime rather than the shear stress in the dripping

regime [100].

Droplet formation in flow focusing microchannel

i Continuous phase

! Continuous phase

Dispersed
phase ) o o
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(b) Flow focusing geometry with orifice

Figure 2.17 Schematic diagram for flow focusing geometry

Figure 2.17 shows the geometry for flow focusing geometry. The dispersed phase is

introduced into the middle channel, while the continuous phase is introduced

symmetrically from the side channels [104, 105]. The formation of monodispersed

droplet generation has been reported [99,105-107]. The flow focusing geometry with

an orifice placed at a distance for the inlet is also proposed. Depending on the flow

and geometrical parameters, the interaction of the fluids results in the breakup of the

dispersed phase into droplet. The interplay of the viscous force and the interfacial

tension results in the distinct formation regimes [108]. The research shows that the

capillary number and Weber number are important parameters that can influence

droplet formation process and droplet size [109, 110]. Capillary number of flow

focusing junction with an orifice place at a distance from the inlet is given as:

(2.4)

Where u-, Qe, denotes the dynamic viscosity and the flow rate of continuous phase.

wo, We, and War are the width of dispersed phase, continuous phase and orifice

respectively. (J, h shows the interfacial tension and the distance from the end of the

inner microchannel to the entrance of the orifice. ~z is and the height of the

microchannel [108].
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(a)

(c)

(b)

(d)

Figure 2.18 Four regimes of droplet formation. (a) squeezing, (b) thread forming, (c) dripping and (d)

jetting.[108]

For a small value of Ca , droplets form in squeezing regime. The emerging interface

of the dispersed phase fluid squeezes through the orifice and blocks the flow. The

pressure drop of the continuous phase across the orifice squeezes the dispersed phase

at the neck and causes the tip of the dispersed phase to break up. The regime shifts to

dripping via increasing Ca . When Ca is large enough, the flow rate of the dispersed

phase is insufficient for droplet formation and the dispersed phase is pushed

downstream where the droplet is finally generated at the tip [111]. Hence in this

regime, the neck is stabilized by the outer flow, causing it to elongate further

downstream, away from the orifice.

Electric field controlled droplet formation

(a) (b)

Figure 2.19 Droplet formation under applied electric field. Com oil and glycerine flow rates are 0.27

IlLis and 0.75 IlLls, respectively.[95]

Ozen, et. al, proposed the monodiseperse droplet formation in square microchannels,

where the electrohydrodynamic instability of the interface is used, as shown in
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Figure 2.19. Droplet size can be adjusted via the flow rates applied and the electric

field strength across the microchannel [95].
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Figure 2.20 Electric field controlled droplet formation. (A) microchannel setup, (B), (C), (D), (E)

shoiws the droplet formation under the voltage of 0 V, 400 V, 600 V, 800 V, respectively. (F) Droplet

size as a function of voltage. [112]

Methods of adopting both contact and non-contact type of electrodes in flow

focusing microchannel were reported in success of droplet formation control [112,

113]. Figure 2.20 shows the results of droplet control via DC electric field. The

electrode was fabricated by patterned ITO coating on the glass plate. While the non-

contact type of electrode in AC electrode adopted in droplet formation of flow

focusing microchannel was also reported [113].
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Temperature field controlled droplet formation

Water~

Figure 2.21 Temperature controlled droplet formation in flow focusing micrcochannel. [114]

Figure 2.22 Droplet formation with (a) heater off and (b) heater on. [114]

The droplet formation controlled by temperature field was also reported [114].

Figure 2.21 depicts the microchannel setup. The design used a now focusing

microchannel imbedded with a microheater at the cross junction region. Figure 2.22

shows the results without and with temperature control respectively. The interfacial

tension between the two fluids is directly related to local temperature. By varying the

interfacial tension, the droplet size can be controlled.
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Magnetic field controlled droplet formation
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Figure 2.23 Magnetic field controlled droplet formation in microchannles. [101]

Tan et al. studied the dependency of magnetic polarity, flux strength and the

orientation to ferrofluidic droplet production in both T-junction and flow focusing

junction configurations [101]. The experimental setup is presented in Figure 2.23. As

a result of the alignment of magnetic nanoparticles in the direction of magnetic field,

this delays the necking process and the droplet formation. Droplet size increased with

the increase of magnetic flux as shown in Figure 2.24.

•

• 505 - First order Fit
70:7 - First order Fit

... 250:25 - First order Fit
..... , •....................................

.. ,.: T

\

T ~"'.- .... J~1)

~
.. , -~.~.-~ ; -o_,J -

r-· ,~; ....L

,i' ~ ,.J.'•.•.,,, ••...•••,( . ..",.. i

•90

100

E 80

.3
2
Q)

E 70
CO
i:5

60

(al

50

10 20 30 40 50

Magnetic flux density (rnT)

Figure 2.24 The dependency of droplet size to magnetic flux in flow focusing configuration. [101]
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2.6.2Non-Newtonian droplet formation

The breakup dynamics of non-Newtonian droplet formation in aT-junction

microchannel has been investigated by Husny and Cooper White [115]. The

appearance of thin filaments during the droplet production is caused by the elastic

properties of the non-Newtonian fluid. The necking process is classified into two

regions, the pre-stretch and exponential self-thinning region, as shown in Figure 2.25.

In the pre-stretch region, the droplet is in the necking region and accelerated away

from the cross junction, as a result of interfacial tension, viscous force and elastic

force. In the self-thinning region, the filament does not experience further extension

and necking is influenced by the interfacial tension and elastic force. Besides the two

distinct regions, numerous tiny beads develop along the filament termed as beads on

the string was observed. The migration and coalescence of these tiny is known as the

iterative stretching. The splitting phenomena of PEO droplet (a type of non-

Newtonian droplet) is observed by Christonpher and Anna at a lower capillary

number [116].

01

thl

«n

Ie)

Figure 2.25 (a)-(d) Pre-stretch region, (e)-0) exponential self-thinning region of non-Newtonian

droplet formation in a T junction microchannel. The interval between each image is 2.5 ms. [115]
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The dynamics of the filament length at break up and the break up time are a function

of the polymer relaxation time and the flow rate. Generally larger molecular weight

of the inherent microstructure and higher flow rate of the continuous phase leads to a

longer filament length at breakup.
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Figure 2.26 Filament thickness versus time for both Newtonian and non-Newtonian fluid. The flow

rate ratio is kept at 10, 30 and 60.[ 117]

The filament thinning behaviour is illustrated in Figure 2.26. The initial stage of

thinning is similar for both Newtonian and polymeric t1uids. After the filament is

stretched to a certain extent, the thinning rate of polymeric fluids is slower than that

of the Newtonian as a result of the elasticity of the fluids [117]. Polymeric fluids

with higher molecular weight exhibit a slower thinning rate of the filament due to

higher elastic stress (Figure 2.27) [118].
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Figure 2.27 Filament thickness versus time as a function of molecular weight of the non-Newtonian

fluids. Three flow rate ratio, 10, 30, and 60 are considered. [118]
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2.7. Liquid crystals based optofluidic

Liquid crystals (LCs) are a group of materials as it can exhibit intermediate state

between solid crystalline and isotropic fluid phase. LCs have the ordering properties

of solids but they flow like liquids.

LCs can generally be classified into two major types, lyotropic and thermotropic,

depending on their composition. Lyotropic LCs consist surfactant which has the

polar and non-polar parts. The phase behavior of lyotropic LCs are influenced by

both the chemical concentration and temperature of solvent. One the other hand,

thermotropic LCs are widely used. In this report, thermotropic LCs are adopted in the

experiment.

2.7.1 Thermotropic liquid crystal

Thermotropic LCs can be further divided into two types: calamities (rod-like) and

discotics (disc-like), as shown in Figure 2.28.

calamitic

R

R

R

R

discotic

Figure 2.28 Representative diagram of calamitic and discotic liquid crystal micro structure [119]

33

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 2 Literature Review

tow ternperature

smectic phase

(c)

nematic phase

(b)

isotropic liquid

(a)

Figure 2.29 Molecular alignment at different mesophase of liquid crystal [119]

Figure 2.29 shows the molecular arrangement with the axis denotes the direction of

increasing temperature. At the temperature of melting point, LCs are crystal solid.

Above the melting point, the compounds exist a smetic or nematic phase. In the

smetic phase, besides the long-range molecular orientation, there is also a one-

dimensional positional order. In the nematic phase, LCs are characterised by

possessing the molecular orientation only. At high temperature, the molecules will be

oriented arbitrarily forming an isotropic liquid.

Figure 2.30 Liquid crystal of 5CB [119]

The molecular structure of 4-Cyano-4'-pentylbiphenyl (SCB) is shown in Figure 2.30.

SCB is widely adopted as it remains nematic phase under room temperature. SCB is a

type of nematic liquid crystal (NCL) called calamities which has a rod-like molecular

structure [120].
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-
Figure 2.31 Schematic diagram of the director n and order parameter S [119]

There are two important parameters in the liquid crystal, director ~ and order

parameter S. The director ~ is a unit director that demonstrates the overall molecular

orientation (Figure 2.31). The definition of S is listed in Eq (2.5).

S = 0.5 < 3cos" e, -1 > (2.5)

Where e, is the angle between the long axis of the molecular and the director ~,

symbol < > denotes the overall average value. S=1 implies that the LC is in prefect

crystal phase while value a indicates a isotropic phase. Typical value of S is in the

range of 0.3 to 0.8. This value will decrease with increasing temperature [119].

2.7.2 Surface anchoring conditions

The spatial symmetry is influenced by the presence of surface boundaries so as the

LC molecular orientations. The interaction between LC and surface plays an

important role in determining LC dynamics. Therefore the surface properties known

as the surface anchoring conditions are important.
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(a)

(c)

Figure 2.32 Four types of surface anchoring conditions of nematic LC: (a) uniform planar anchoring,

(b) homeotropic anchoring, (c) degenerate anchoring and (d) tilted anchoring [121, 122]

Figure 2.32 demonstrates four types of LC surface anchoring conditions: uniform

planar, homeotropic, degenerate and tilted anchoring. In uniform planar anchoring

that the surface director is oriented parallel to the surface, for homeotropic anchoring

it is oriented an ideal perpendicular to the surface. Degenerate anchoring is similar to

the uniform planar anchoring, surface director anchors parallel to the surface plan but

in a random arrangement. The tilted anchoring presents a tilted angle between the

axis of the molecule and the surface. The anchoring condition is primarily

determined by the surface property. Various methods were proposed to modify the

surface anchoring condition for the microfluidics prevailing PDMS channel.

Mechanical treatment and chemical coating are the two major types [123, 124].

Figure 2.33 Two parameters describing the anchoring condition: azimuthal anchoring angle tp and

zenithal anchoring angle f) [119]

The energy due to the free distortion of the LC can be expressed by Eq (2.6) [125].
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2 2

F, =O.5[Wn sin (e-eo)+w sin (cp-CPo)]
Uo lpo

(2.6)

Where CPo and eo are the referenced azimuthal and zenithal anchoring angles

respectively. W'PIJ defines the azimuthal potential (the maximum energy required to

distort the director from CPo) . Similarly W
llo

denotes the polar potential which is the

maximum energy to deviate the director from eo (Figure 2.33). The surface

anchoring energy ranges from 10-6~10-4 11m2.

Sengupta et al. [121] reported that after the plasma treatment process, the freshly

prepared PDMS microchannel would become degenerated planar due to the

reduction of the wetting angle of SCB on the confining surfaces. The investigation

was carried out using polarizing optical microscope (POM) and fluorescence

confocal polarizing microscope (FCPM).

Figure 2.34 (a), (b) show polarizing optical microscope observation of the degenerate planar

anchoring in rectangular microchannel. The double head arrow indicates the orientation direction of

the polarizer and analyzer. (c) demonstrates the image of fluorescence confocal polarizing microscope

via laser polarization along the channel length as shown the double head arrow. [121, 126]

Figure 2.34 presents the POM and FCPM observation of the LC degenerate planar

anchoring. The birefringent domain was illustrated via randomly oriented SCB

(Figure 2.34 (a), (b)). The non-homogenous1y distributed fluorescence intensity

obtained from FCPM observation further confirmed the degenerate planar anchoring.
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Figure 2,35 (a) (b) POM observation ofLC uniform planar anchoring in a rectangular microchannel.

(c) FCPM results ofLC orientation in the azimuthal plane, (d) Normalized fluorescence for different

LC anchoring: uniform planar (UP), degenerate planar (DP), and homeotropic (H) anchoring, [122]

Figure 2.35 demonstrates results of LC uniform planar (UP) anchoring in rectangular

microchannels via both the POM and FCPM method. Uniform planar anchoring can

be achieved via photo-alignment method where the Para-fluoro polyvinyl cinnamate

(PVCN-F) coated microchannel wall is exposed to the polarized UV light. Figure

2.35 (a) shows a dark POM micrograph when one of the polarizers parallel to the

resultant liquid crystals director orientation. Figure 2.35 (b) shows the bright POM

micrograph when the director is 45° to the polarizers. Furthermore, the uniformly

high fluorescence signal confirms the orientation of liquid crystal which is along the

laser polarization (Figure 2.35 (c)). By performing FCPM imaging along the cross-

section (yz plane), the fluorescence intensity distribution along the channel depth

was established. This was used to measure the spatial homogeneity of equilibrium

orientation within the functionalized microchannels. Results show that UP has the

highest light intensity while homeotropic shows the lowest.

2, 7,3 Liquid crystal optics

Due to the birefringence property of LC and its inherent molecular structure, the

orientation cannot be observed via normal microscopy. Specialized optics are
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required to reveal the molecular orientation of LC. There are the polarization

microscopy and conoscopy microscopy.

Optical characteristics ofliquid crystal

The optical anisotropy in nematic LC is shown by the two distinct refractive indices,

along the optical axis n7 and the perpendicular to the optical axis nl-' The optically

positive and negative phase of LC are determined by the sign of value !Yz = ~ - n.L •

Generally, LC of sematic and nematic phase are optically positive Sn >O. When an

incoming light beam is transmitted within a birefringent material, it splits into two

components: the ordinary ray with the ordinary refractive index no and the

extraordinary ray with refractive index ne • The refractive indices can be derived from

the two principle refraction indices, n7 and nl-'

n, = (2 2"" 2· 2 ",,)0.5n, cos 'jJ + n.L Sin 'jJ

(2.7)

(2.8)

Where <t> is the angle between the optic axis and the direction of light propagation, as

shown in Figure 2.36.

y

Figure 2.36 Schematic diagram of uniformly oriented LC molecule in between optical polarizer and

analyser. [127]
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A phase difference 5 is generated between the ordinary ray and extraordinary ray,

(2.9)

Where A is the vacuum wave length of propagating beam, d is the thickness of the

optical cell.

Polarization optical microscoll.v

Polarization optical microscopy (POM) is used to reveal the molecular orientation of

LCs (Figure 2.37). White light first passes through a polarizer so that the light

transmitted is linearly polarized. The polarization direction can be adjusted via

turning the axis of the polarizer. This light then passes through a LC sample cell and

an analyser. The analyzer is also a polarizer, whose axis can be parallel,

perpendicular or at any intermediate angle relative to the initial polarizer. In POM,

crossed-polarized state is applied when both the polarizer and analyzer axis are

mutually perpendicular.

Normal samples without the ability of changing the orientation of light are placed in

between the polarizer and analyser. This allows no light to pass through the analyzer.

The LC, which is capable of altering the light's orientation allows light to pass

through the analyzer as shown in Figure 2.37 (b). Hence, bright image appears when

a component of elliptical polarized light passes through the analyzer (Figure 2.37 (b)).

Dark image appears when optical axis of the liquid crystal aligns parallel to analyzer

(Figure 2.37 (a)).
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a}

~
White Light---- Dark image appears.--------

Polarizer Sample Analyzer

b)

~
White Light---- Bright image appears.--------

Polarizer Sample Analvzer

Figure 2.37 Schematic diagram of transmittion of white light across polarizer and analyzer. (a) LC

orientated parallel to analyzer, (b) LC orientated arbitrarily but not parallel to analyzer.

Conoscopy microscopy

Conoscopy is an optical interferometric technique which is used in investigation of

birefringence samples. For a standard polarizing optical microscope, conoscopy can

be achieved by the insertion of a Bertrand lens between the analyzer and the ocular.

The working mechanisms of a standard orthoscopy and conoscopy are shown in

Figure 2.38.

orthoscopy conoscopy

Figure 2.38 Schematic diagram of orthocopy and COliOSCOPY imaging a liquid crystal sample. [127]
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uniaxial biaxial

Figure 2.39 Schematic diagram for uniaxial and biaxial material via conoscopy setup. [127]

Figure 2.39 shows the detecton of the axiality via using a conoscopy setup. A typical

cross pattern is obtained for the uniaxial material. The arm of the cross is called

isogyres which is parallel to the polarizers. The other type of interference pattern

obtained is biaxial. The two arms of interference pattern on the two sides with

different widths can be observed.

2.7.4 Applications ofLC in microfluidics

LCs has been incorporated into polarization microscopes by many researchers at

larger scale [128, 129]. Fast response speed of LCs-based components provides more

structural details. Owing to the fascinating properties, the LCs-based analysis has

great potential for developing rapid, simple and label-free detection.

LCs-aqueous interfaces

The effect of phospholipids at the LCs-aqueous interface was studied for analysing

LCs molecular re-orientation. The interface of LCs with an aqueous medium induces

a planar alignment (Figure 2.40 (a)) and the addition of lipids induces a change in

this orientation (Figure 2.40 (b,c)). Figure 2.40 demonstrates a schematic of the

reorientation with respect to time [130]. This approach provides a method to monitor

the enzymatic action using a phospholipid decorated liquid crystal surface.
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Water

(a) (b) (c)

Figure 2.40 LCs-aqueous interface in the presence of phospholipids (a) without phospholipids (b) after

20 minutes (c) after 2 hours [130].

LCs-Droplet

Instead of forming a planar LCs-aqueous interface, LCs can be emulsified to form

LCs droplets. LCs droplets have recently emerged as a unique optical probe for

detection of biological and chemical species. An interesting observation of using LCs

droplets to detect endotoxin from E.coli [131] was reported. Before expose to

endotoxin, LCs possesses a bipolar configuration Figure 2.41 (a)), with two point

defects at two poles of the droplets. After expose to endotoxin, it was observed that

the ordering of the LCs change to a radial configuration, with a defect located at the

center of the droplet (Figure 2.41 (b)). This response provided an approach of

screening biological and chemical species based on LCs' structural characteristics.

Bipolar

(a) : Before exposure to endotoxin (b) After exposure to endotoxin

Figure 2.41 Optical images and cartoon representation of LC droplets [131]
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2.8. Fabrications of microchannels

The rapid development of fabrication technology provides the microfluidics with

various possibilities. Among the fabrication methods, silicon has been used and

attracted extensive attention. The well-developed semiconductor technology and

chromatography method makes the silicon based fabrication dominant. Nguyen [132]

provided the brief silicon fabrication procedure and Lee [133] specifically focuses on

the electrokinetic micromixer based on silicon. The silicon based technology offers

the ways that the surface properties can be modified to prompt the micromixing.

Dreyfus [134] and Thorsen [135] also studied multi-phase flow within the silicon

based microchannels. It is a well-developed method comparatively, nonetheless, its

application are limited as a result of the drawbacks. For instances, the procedure is

complex and expensive, difficulty occurs in assembling and most of all it cannot be

adopted in biological applications. Poly-dimethylsiloxane (PDMS) and soft-

lithography are adopted commonly in microfluidics quite often recently. It is more

accessible to researchers than the conventional methods.

High-resolurlcu

Ttansparencv

Photo resist

I Pl!1"fonnphotolithngrapbv

+

I P"urPD;...{S ('YIT master aud cure

~
I P~d PDMS from master
I.

Seal aga,inst ,1 flat surface

Figure 2.42 Schematic procedure ofPDMS by soft-lithography fabrication [136]
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Figure 2.42 describes the PDMS fabrication method via soft-lithography. The pre­

lithography material in the liquid form is filled in the master. Cured PDMS layer can

be peeled off the master without damaging it. The master can be fabricated by

various methods, among which the commonly utilized are standard microelectronics

and photolithography. For photolithography, the microstructures are designed by

CAD software and then the patterns will be printed in transparencies. The lateral

resolution is 25 urn when operates at 5080 dpi and it can achieve 8 urn operating at

20000 dpi. The patterned transparencies are taken as photomasks in UV lithography

procedure, during which the patterns are transferred into the SU-8 resist mask. [136]

The research group in Harvard University [137] was the first group utilized the

PDMS in microfluidics applications. Ichikawa [138] and Kim [139] also used the

PDMS method for fabrication of rectangular microchannels. Sato [140] conducted

the microfluidics experiments in a T-shaped channel using the PDMS method for

fabrication.

2.9. Summary

Literature review show that most of EO related research conducted bears one

common condition that the fluid is a simple Newtonian fluid. However, most of the

bio samples are fluid with complex rheological behavior. Limited work has been

carried out on non-Newtonian fluids.

Droplet based microfluidics have shown great potentials in biomedical applications.

Up to now, very limited work has been reported on the droplet generation in the non­

Newtonian fluids. The coupling of electric field and hydrodynamics on droplet

formation in the non-Newtonian fluid is yet explored.
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Large amount of the reported work has been carried out to study the behavior of

isotropic fluid or isotropic-droplet-based microfluidics. The study of complex

anisotropic LCs flow is limited. Although, recently experimental investigations of

LCs in microchannels have been initiated, most of the existing literature focuses on

the flow of nematic LCs within very wide channels - or slits, as relevant in display

application. The LCs' flow behavior is still unexplored in modem microfluidics. The

coupling of flow field with molecular reorientation at microscale is yet to be studied.
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Chapter 3 Experimental and Theoretical Investigations of

Non-Newtonian Electroosmotic Driven Flow in Rectangular

Microchannels

3.1 Introduction

Electro-osmotic (EO) driven flow has gained intense focus in microfluidics due its

inherent benefits [55, 56, 141, 142]. The distinguishing phenomenon is that an EO

driven flow shows a plug flow profile rather than the traditional parabolic one, and

thus has great potentials in fluid transportation [57, 58]. The plug flow profile will

reduce the shear induced stress as there is little velocity gradient in the bulk flow,

and is thus a niche area for sensitive sample transportation [17, 141, 143]. Fluid

samples such as bio samples (blood and DNA) are known to be highly sensitively to

shear stresses and may degrade under a high level of shear [53, 74, 144, 145].

Unfortunately, the most commonly adopted transportation method, that is the

hydrodynamic driven method, shows a parabolic profile leading to a relatively high

shear stress in the bulk flow. The EO driven method can overcome this drawback.

Measurement methods, such as current monitoring and micro-PlY, were introduced

and utilized to determine velocity field of EO driven flow [26, 29, 30, 43, 59, 139].

These theoretical predictions have been proven to accurately model the experimental

measurements. It showed that the zeta potential If/ is a property related parameter

representing the attraction strength to ions at the wall boundary or interfaces for a

low-concentrated-ion solution.

However, most of the EO related research conducted bears one common condition in

that the fluid is a simple Newtonian fluid. Conversely most of the bio-samples are

47

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 3 Non-New. EO Driven Flow in Rectangular Microchannels

fluids with complex rheological behavior termed as non-Newtonian fluids [62, 76,

146]. Limited work has been carried out on non-Newtonian fluids [74, 82, 84, 142,

145, 147]. The challenge lies in the coupling of EO driven mechanism and the

complex rheological behavior. Currently, some analytical models have been

proposed for both single and two phase parallel plane flow, in which the power-law

and the Carreau model were chosen for simulating fluid behavior [69, 70, 75, 78, 79,

145]. However, the models lacked solid support from experiments and questions

arise when dealing with a double layer whose range is of the same order as the

microstructures of the non-Newtonian fluid. Will the micro structures influence the

physics of the double layer? Is the Smoluchowski approach still valid for a non­

Newtonian fluid?

To answer these questions, we systematically measured the average EO driven

velocity of one type of non-Newtonian fluid, polyethylene oxide (PEO) aqueous

solution, via varying the PEO concentration and applied electric field. Aqueous

solutions of PEO behave similarly to that of bio samples [148-150]. Comparisons

between the experimental results with a analytical model were made. To this end, the

shear thinning effect upon EO driven flow was analyzed.
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3.2 Experimental setup

Elcctnc Current

Figure 3.1 Representative diagram for experimental setup

Figure 3.1 shows the general experimental setup for current monitoring method [29].

The system consist of one high voltage supply, one set of signal acquiring system,

one microchannel and one computer used to control the applied electric field and

record the current value.

3.2.1 Data acquisition system

The data acquisition system consists of an acquisition card (National instrument PCI-

6052E), BNC connector (NI BNC-2110) and one custom program written in

LabVIEW. This system allows direct control of applied voltage (electric field

strength) via sending signals to the high voltage supply (CZE 1000R) as well as

automatically receiving and recording current values from the supply.

3.2.2 Fluid sample preparation

The fluid sample used in this experiment is polyethylene oxide (PEO) aqueous

solution, produced by stir-mixing PEO powder of molecular weight 4M (Sigma

Aldrich) for 24 hours at room temperature [144, 146]. Two different types of water
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samples, DI water (Mili-Q grade II) mixed with sodium chloride (Sigma Aldrich) at

concentrations of 1x 1O-3M and O.7x la-3M respectively, were prepared for each

specific concentration of PEO aqueous solution. The sodium chloride added is to

vary the ion concentrations so that the current will vary under a constant applied

electric field. Four different PEO concentrations, 0.1%, 0.3%, 0.5%, 0.7% (by

weight), were prepared for the experiment, with 1x 1O-3M and 0.7x la-3M of sodium

chloride.

3.2.3 Current monitoring method and microchannel

Reservoir I
00
Voltmeter Ammeter

High Voltage Supply

(a) Layout of the current monitoring method

Reservoir 2

l.Ox IO'M

Electric Resistant
Changed by the Interface

High Voltage Supply

(b) Equivalent electric circuit of the current monitoring method

Figure 3.2 Schematic diagrams for the current monitoring method
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Figure 3.2 shows the schematic diagram of the current monitoring method and the

geometry of the microchannel. The current monitoring method utilizes electro­

osmotic driven mechanisms by displacing electrolyte from reservoir 2 to reservoir 1

through an external electric field [29, 32, 43]. By monitoring the current change, the

electro-osmotic driven velocity can be obtained. As seen in Figure 3.2, the two

reservoirs are filled with PEO solutions of different sodium chloride concentrations,

O.7x10-3 M (reservoir 1) and 1x10-3 M (reservoir 2) respectively. When a constant

voltage is applied over the microchannel, the electric current through the

microchannel varies during the displacement process, which can be seen by the

variable electric resistant in Figure 3.2 (b). The data acquisition system recorded the

current versus time for later analysis. Two platinum wires (Sigma Aldrich) were used

to connect high voltage power supply and the reservoirs to avoid electro-chemical

reactions.

The microchannel is made of one rectangular channel of size 300x75x30000

micrometers (widthxheightxlength) connected by two cylinder-shaped reservoir of

size 10x5 mm at each end to store the fluid sample. The microchannel was fabricated

by standard soft lithographic procedures followed by polydimetylsiloxane (PDMS,

Dow Corning Sylgard 184) process and bonded via plasma bonding method with one

side of the microscope glass spin coated with a thin layer ofPDMS to ensure uniform

surface conditions [137]. The wettability changes from hydrophobic to hydrophilic

during the plasma bonding, but reverts back gradually within 1-2 hours depending on

the humidity and temperature. After plasma bonding, the microchannel was baked in

an oven for 2 hours at a temperature of 120°C to ensure a stable and hydrophobic

surface property.
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3.3 Results and discussion

3.3.1 Non-Newtonian EO driving velocity via current monitoring method
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Figure 3.3 Electric current evolution with time. Results were obtained by filling reservoir I and

microchannel with 0.1 % PEO aqueous solution whose concentration of sodium chloride is 0.7x 10-3 M,

while filling reservoir 2 with the same PEO solution with a sodium chloride concentration of 1.0x 10-3

M.

Figure 3.3 shows that the evolution of the electric current with time. Measurements

were repeated for minimum 3 times to ensure repeatability. As the PEO with a higher

concentration of sodium chloride (C2) replaces the lower one (Ci), the electric

resistance decreases resulting in the rising trend of electric current being observed

when the electric field strength is kept constant during the measurement. The current

will continue to rise until the microchannel is completely filled with C2. By tracking

the time when the current stops changing, the average EO driven velocity on non-

Newtonian fluid can be calculated.
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Figure 3.4 Average EO driven velocity versus applied electric field strength. Four different PEO

concentrations (by weight), 0.1%,0.3%,0.5%, 0.7%, are measured.

The average EO driven velocity obtained after analyzing the current variation record

is shown in Figure 3.4. The results show that the velocity increases with electric field

strength but decreases with PEO concentration. An higher electric field will transfer

more energy into the fluid, causing a higher flow speed, while a higher PEO

concentration will increase the fluid viscosity significantly. When the PEO

concentration increases to 0.7%, no EO induced flow occurs for a low electric field

strength due to the high apparent viscosity.

3. 3. 2Microscopy fluorescence study of the non-Newtonian electro-osmotic driven

flow

Figure 3.4 shows the average velocity of the EO driven flow without indicating other

details such as the flow profile [140]. It is well known that EO driven mechanism can

create 'plug-shape' flow profiles. To resolve the flow profile of non-Newtonian fluid
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driven by EO force (EOF), we conducted microscopy fluorescence imagmg

experiment to capture the flow profile. The general setup is shown in Figure 3.1. The

microchannel was placed under an inverted fluorescent microscope (Leica OM ILM)

for observation. Concentration of 0.2 mM fluorescent dye (Rhodamin B, Sigma

Aldrich) was added in fluid C2 (see Figure 3.2) to create a fluorescent trace. Images

were recorded with a Phantom V611 video camera at the frame rate of 50 fps.

(a) (b) (c) (d)

Figure 3.5 Fluorescent images of EO driven flow with a non-Newtonian fluid

Figure 3.5 represents the non-Newtonian fluid flow through the microchannel under

EO driving. The fluid with Rhodamin B lights up while the f1uid without dye appears

black. The light intensity boundary reveals the profile of the flow field. Results in

Figure 3.5 shows sharp 'plug' shape flow profile.

3,3.3 Zeta potentialfor non-Newtonian fluids

The zeta potential is one of the critical parameters used to study the EO flow and it

has been assumed to be a constant for Newtonian fluid. So far, a constant zeta

potential has been widely accepted when dealing with non-Newtonian problems

without solid evidence from experiments. We will couple the Smoluchowski

approach and the power-law model to determine the zeta potential for the non-

Newtonian EO flow given the EO driven velocity as shown in Figure 3.4.
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Rheology measurement
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Figure 3.6 Rheological behavior of PEO aqueous solutions. Four different PEO concentrations were

tested, 0.1%,0.3%,0.5%, 0.7% (by weight).

Figure 3.6 displays the viscosity against shear rate measured on a TA Instruments

Discovery Hybrid Rheometer (DHR-2), that was pre-calibrated using a standard

viscous oil. J.1o denotes the zero shear viscosity. It is inferred that the shear thinning

behavior becomes more pronounced with increasing PEO concentrations. The

viscosity to shear rate behavior of the PEO aqueous solutions is necessary before

calculation of the zeta potential and it can be described by the power-law model

n-I
Jl=my (3.1)

Where J.1 is the fluid apparent viscosity, r is the shear rate, m and n are fluid coefficient

and flow behavior index respectively.
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The power-law model is a two parameter constitutive law for fitting shear rate

dependent viscosity behavior. The two parameters are derived from rheological

measurments by Matlab curve fitting. The results are listed in Table 1.

Table 3.1 Fluid coefficient m and flow behavior index n for PEO aqueous solutions

PEa concentration (wt. %) m n

0.10% 0.0023 0.99

0.30% 0.0060 0.94

0.50% 0.0160 0.87

0.70% 0.0600 0.78

Table 3.1 shows that all the n values are smaller than 1 indicating a shear thinning

behavior. A smaller n suggests a higher degree of shear thinning behavior. The n

value decreases with increasing PEa concentration. The m value is the fluid

viscosity for a shear rate of 1 s-1.

Generalized Smoluchowski approach {or non-Newtonian fluids

The simplified parallel flow model is considered in this chapter as the rectangular

microchannel flow is too complex for theoretical analysis. The general trend of the

parallel flow is the same with the rectangular microchannel flow since the thin

electric double layer (EDL) condition determines the fully developed EO driven

velocity which is independent of the microchannel shape.

We will address the ion distributions first, which leads to the EO force in the fluidic

governing equation. Then, we will couple the EO force to the fluidic governing

equation. Finally, we solve the equation with the appropriate boundary conditions.

The electric potential distribution follows the Poisson-Boltzmann equation:

(3.2)
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where If! is the electric potential in the solution, Pc is the electric charge density, and

e is the electric permittivity of the solution.

The electric charge density, Pc' follows the distribution stated below:

(3.3)

where no is ionic concentration in the bulk solution, eo is the fundamental electric

charge, z; is the valence of the ion, e is the electric permittivity of the solution, K b is

the Boltzmann constant, and T is the absolute temperature.

Eq (3.3) can be linearized and simplified via the Debye-Hueckel approximation

under the condition that zeta potential value is smaller than 50 mY. Therefore the

electrical potential is expressed as:

(3.4)

(3.5)

where K is the Debye-Hueckel parameter and K-
1

IS normally considered the

thickness ofEDL.

The boundary conditions for the electric potential are:

Wall boundary zeta potential at y =h: lfI = lfIw ,

aty =0: lfI =lfIw'

The solution for the electric potential (Eq (3.4» under the boundary conditions is:

[
sinh(KY) sinh(Kh - KY)]

lfI= + lfIw'
sinh(Kh) sinh(Kh)

The EO force created by the presence of ion under an electric field is

(3.6)

r
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F =E =E (_s'l 2 )=-E 6X 2 [ sinh(KY) + sinh(Kh-KY)] (3.7)
x OPe 0 If/ 0 sinh(Kh) sinh(Kh) If/w

where Eo is the applied electric field strength.

The governing flow equation for a non-Newtonian fluid gives:

d ( Idu In-1 dU) _ E 2[sinh(KY) sinh(Kh - KY)]- m - - - 8K + If
dy dy dy 0 sinh(Kh) sinh(Kh) W

(3.8)

with the no slip boundary condition imposed for its solution, where y = 0 & y = h ,

u=o.

As the solution is symmetrical only half of the microchannel needs to be considered

for a solution. After substituting all the boundary conditions, the velocity distribution

of the half microchannel, where !:... < y < h , can be express as:
2

I

1 [] [1 -l+n 3 []2](cEOKljIwSeCh[hK]sinh[Kh])~(. [ ]2)-~+n
U = -coth «h F; -,--,-,cosh «h -smh «h n

K 2 2 2n 2 m

1 [ ] [1 -1 + n 3 [ ]2 ]-~coth K(2y-h) 2 F; 2'~'2,cosh K(2y-h)

I

(
cEoKljIw SeCh [ hK] s inh [K(2 Y- h) ] ) ~ ( . [ ]2)-~+n

-smh K(2y-h) n

m

Where 2 F; [ , , , ] denotes a four-parameter hypergeometric function.

(3.9)

Under the thin EDL condition which proves to be valid from our experiment, the EO

velocity can achieve a fully developed non-Newtonian EO driven velocity termed as

Generalized Smoluchowski velocity shown in Eq (3.10).

(3.10)

The expression of the non-Newtonian zeta potential is obtained by rearranging Eq (3.10):
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m n-l CU,. )nIf/w =---K -
&Eo n

(3.11)

The zeta potential If/w is calculated by substituting the EO velocity Us which is the

average EO velocity shown in Figure 3.4, the electric field strength Eo and the non-

Newtonian rheological behavior parameters (m and n) into Eq (3.11). The final

results are shown in Figure 3.7.
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Figure 3.7 Zeta potential values of PEO aqueous solutions under different electric field strength.

Figure 3.7 gives zeta potentials of four PEO aqueous solutions, 0.1%, 0.3%, 0.5%,

0.7% under different electrical field strengths. The zeta potential as shown in Figure

3.7 indicates there is some fluctuation under different electric field strength.

However, within experimental errors, the average value suggests a constant value.

Substitute the constant zeta potential value into Eq (3.9) and compare it with that of

the experimental results shown in Figure 3.4 to test if the constant zeta potential
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assumption will give acceptable estimation of the non-Newtonian EO driven

behavior.
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Figure 3.8 Comparison between theoretical approach and experimental results

Figure 3.8 is plotted to verify the constant zeta potential assumption when dealing

with non-Newtonian EO driven flow. The results are within an acceptable error

margin. The rising trend and the actual velocity can be predicted by using constant

zeta potential assumption, which provides a convenient method for EO flow analysis

as the complex rheology does not interfere with the inherent EO characteristics.

3.3.4 Effect ofshear thinning behavior on EO flow

The theoretical analysis shows an improvement in the magnitude of the EO driven

velocity caused by the shear thinning behavior. The shear thinning effect will be

addressed both experimentally and theoretically as the average shear rate can be

calculated by the model while the EO velocity is measured experimentally. The shear
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rate is defined as the velocity gradient and the average shear is evaluated via the

following formulation given the velocity distribution which is obtained from Eq (3.9).

Jh au
h/2 aydY

rave = hi 2

,...,....-~---.-..------.-..-----r--.----r--.----r--.---..--.---..--.......... 12

(3.12)
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Figure 3.9 Shear thinning effect on non-Newtonian EO driven flow.

Figure 3.9 shows both the dimensionless EO driven velocity and the average shear

rate versus the electric field strength. The average shear increases with increasing

applied electric field strength due the fact that a stronger electric field stimulates the

EO flow. It is inferred that flows with a smaller apparent viscosity and higher electric

field can generate a larger average shear rate.

The dimensionless EO driven velocity is defined as:

Us' fio I Eo
U=

, U '. 11 'I E I
S ro 0

(3.13)
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where U, is the generalized Smoluchowski velocity, flo is the zero shear viscosity of

the specific PEO solution, and Eo is the electric field strength. Eq (3.13) is made

dimensionless by Us I which denotes the velocity of 0.7% PEO solution flows under

the electric field of 500 Vfern. flo I and Eo' stands for the zero shear viscosity of 0.7%

PEO solution and the maximum electric field strength applied in the experiment.

Therefore the definition takes both zero shear viscosity and electric field into account.

Figure 3.9 demonstrates the significant enhancing effect of shear thinning. It reveals

that a stronger electric field can increase the shear rate leading to a more pronounced

shear thinning effect. On the other hand, the PEO concentration is vital to the

dimensionlessed EO velocity. As shown in Table 3.1, a PEO of concentration 0.7%

provides the most significant shear thinning effect (smallest n value). The results

prove that both the electric field and PEO concentration can promote EO driven

effect due to the shear thinning rheological behavior.

3.4 Summary

EO driven flow has developed significantly, both theoretically and experimentally, in

recent years. However challenges are still faced when dealing with EO driven flow

of a non-Newtonian fluid due to its complex rheological behavior. Experimental and

theoretical studies were conducted to tackle some of the challenges. The current

monitoring method adopted as the major method in the experiment to measure the

velocity of the non-Newtonian EO flow in a microchannel, is fabricated by soft

lithgraphy and standard PDMS procedures. The fluorescent microscopy imaging

method was utilized to measure the flow profile. The results demonstrate that plug

flow exist for a PEO solution at a moderate concentration. The zeta potential was

calculated through coupling a generalized Smoluchowski approach and the power-
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law constitutive model. The zeta potential values showed a slight variation with

different PEO concentrations and the applied electric fields. However, as the

variation were small, a constant zeta potential is suggested which was proven to be

valid through the comparison between theoretical and experimental results. It can

also be concluded that the for a shear thinning fluid, the EO driven flow can be

enhanced as the shear fields setup by the flow itself reduce the apparent viscosity.
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Chapter 4 Two Immiscible Layers of Electro-osmotic Driven

Flow with a Layer of Conducting non-Newtonian Fluid t

4.1 Introduction

Electro-osmotic driven flow gets wide applications in microfluidics, among which

the electro-osmotic (EO) pump utilizes the electro-osmotic force as the driven force.

The drawback is that the non-conducting fluid cannot be driven by the electro­

osmotic force directly. The idea of driving the non-conducting fluid by viscous shear

stress of the conducting fluid is proposed (hybrid EO pump) [53]. Gao et al. [55,56]

and Li et al. [57, 58] conducted a study on two or multi layers immiscible fluids

driven by electro-osmotic effect. Mathematical models were developed by solving

the Poisson-Boltzmann and Navier-Stokes equations.

The non-Newtonian fluid based applications, such as DNA sample transportation,

separation, mixing of lab-on-a-chip, are in high demand and received intense focus

[144, 151, 152]. Due to the complexity of non-Newtonian behavior, theoretical

investigations on the non-Newtonian electro-osmotic flow are limited. Currently,

theoretical research mainly focus on polymer solutions, with which the bio-sample

behavior similarly [70, 76, 77, 153].

This chapter aims to develop analytical model for two immiscible layers of electro­

osmotic driven flow in a parallel slit microchannel. One layer is a conducting non­

Newtonian fluid driven by electro-osmotic force, the other layer is a non-conducting

Newtonian fluid driven by interface shear. The constitutive equation of then non­

Newtonian layer is described by power-law. The shear thinning effect which prompts

the flow rate by reducing the shear rate dependent viscosity makes the shear thinning

fluid ideal for hybrid EO pump.
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4.2 Mathematical model

Figure 4.1 shows the model of the two immiscible layers flow between parallel plates.

There are two physical layers, a non-Newtonian layer 1 and a Newtonian layer 2

represented by hi and hz, respectively (Figure 4.1 (a)).

. Details are indicated
in Figure 4.I(b)

I \jfwj /
r--+/

~ - -.1 non-Newtonian Layer I ­
L __ ~I

. . . . J .~ I _ "/ J___. . . . . . . . . . _____. .

~ .", Newtonian Layer 2
~/

h2

E
,-- -; Ir-- ---.

1/ ..
./

(a) Two-fluid model over the whole channel

E
I
I

.' / ~ / /-'

nori-N ewtonian
Layer I

(b) Details in the non-Newtonian layer 1 near the wall boundary

Figure 4.1 Schematic diagram oftwo immiscible layers electro-osmotic driven flow model

The upper layer is a conducting non-Newtonian layer described by power-law model,

driven by an applied external electric field. The lower layer is the non-conducting

Newtonian layer driven by the interface viscous shear stress. To develop the
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analytical model, the non-Newtonian layer hi is sub-divided into different regions as

indicated in Figure 4.1 (b).

The heights of the non-Newtonian and Newtonian layers are hi and h2 respectively.

The zeta potentials on the wall and the interface are Ij/wand Ij/J respectively.

4.2.1Electric potential distribution in the conducting layer

The electric potential distribution only exists within the conducting non-Newtonian

fluid and it follows the Poisson-Boltzmann equation:

(4.1)

where: Ij/is the electric potential in the solution, p)s the electric charge density, 6' is

the electric permittivity of the solution.

The electric charge density can be expressed as:

(4.2)

where: no is ionic concentration in the bulk solution, eo is the fundamental electric

charge, z; is the valence of the ion, e is the electric permittivity of the solution, K b is

the Boltzmann constant, T is the absolute temperature.

For the parallel plate model, the equation can be simplified as:

(4.3)

Eq (3) can be linearized by using the Debye-Hueckel approximation,

electric potential distribution:
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(4.4)

(4.5)

where K is the Debye-Hueckel parameter and K-
1 is normally considered as the

thickness of electric Debye layer(EDL).

Boundary conditions for the electric potential:

Wall boundary zeta potential at Y = h.: If/ = If/w

Interface boundary zeta potential at y =0: If/ = If/I

The solution for the electric potential (Eq 4.4) under the boundary conditions is:

sinh(KY) sinh(Kh[ - KY)
If/ = .nh( h) If/w + . h( t; ) If/ f

Sl K 1 sm K/'1

4.2.2 Governing equations for the non-Newtonian layer

(4.6)

To evaluate the effect of electro-osmotic effect upon the non-Newtonian fluid, the

model assumes that :

(1) The non-Newtonian fluid is conducting and incompressible.

(2) The properties of the non-Newtonian fluid are not influenced by local electric

fields. While the local electric field may hold influence to the non-Newtonian

fluid properties, but it is neglected in the model [141].

(3) The liquid properties are independent of temperature. The Joule heating

effects is neglected due to the low electric field strength and dilute

electrolytes [154].
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(4) The flow is fully developed and the no-slip boundary condition is applied.

Viscous flow stands and the convection term in the momentum equation is

ignored due to low Reynolds number.

4.2.3Governing equation and powe- law model

The Cauthy momentum equation for an incompressible non-Newtonian liquid IS

given by:

d du, -
- (1/ -) - NP + F = 0
dy rl dy x

(4.7)

The viscosity depends on shear rate and is described by the power-law model. We

consider a non-Newtonian fluid whose viscosity depends only on the shear rate,

namely shear thinning and shear thickening fluids.

A power-law rheology [62] which is the relationship between the viscosity and shear

rate is given as follows:

n-l
du,

J1J =m-
dy

(4.8)

where m and n are fluid consistency coefficient and flow behavior index

respectively.

For 0< n <1, it indicates the shear thinning fluid;

n > I, it indicates the shear thickening fluid;

n=l, it represents the Newtonian fluid.

F, represents the effect of body force due to the electro-osmotic force.

(4.9)

Substituting Eq (4.9) into equation (4.7), the momentum equation of the non-

Newtonian layer gives:
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d ( I du, In - 1 dU1 ) _ E 2- m- - - &K!j/
dy dy dy 0

(4.10)

A typical electro-osmotic velocity profile is a plug flow [155]. To solve Equation

(4.1 0), different regions should be discussed separately referring to the sign of the

velocity gradient. As shown in Figure 4.1 (b), a turning point "P" exists where the

sign of velocity gradient changes. The non-Newtonian layer hi is sub-divided into

hlA and hIs accordingly.

In the region (hlA, hi) we have:

( dU1R )n-l
11\ =m - dy

The governing equation becomes:

d dU 1B n 2
-(-m(--) ) = Eo&K !j/
dy dy

Integrate twice gives:

(4.11 )

(4.12)

Similarly, in the region (0, hlA) the governing equation becomes:

Hence,

(4.14)

c1~ c4 are integration constants to be determined by boundary conditions.

At the location where the velocity gradient changes sign at point P (Figure 4.1 (b))

(y =~A ), the velocity gradient equals zero and the matching condition is applied:

(4.16)
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(4.17)

4.2.4Governing equation for Newtonian layer

Similar assumptions with that of the non-Newtonian layer can be made.

The governing equation is:

(4.18)

Hence, the velocity profile is:

(4.19)

c
5

and c6 are integration constants to be determined by boundary conditions.

Boundary conditions

At the wall (y =hi)' no-slip boundary condition is applied:

At the interface between the non-Newtonian and Newtonian (y =0), due to the

surface charge, shear stress is not continuous. The matching conditions are the

continuities of velocity and the shear stress balance:

(4.21)

(4.22)
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where T III IS VISCOUS shear stress for the non-Newtonian layer,

dU1A IdU1A In- 1 dU1A •T =I-'l--=m -- --,
III dy dy dy

r, is the electro-shear stress caused by the presence of the electric charge at the

interface, T = E(-E) d'll ; and T is the viscous shear stress for the Newtonian layer,
e dy 112

du
T =1-'2 _2 . So the shear stress balance (Eq (4.22)) becomes:

112 dy

E EK
[ .0 ('IIw COSh(KY)-'II1 cosh(K~ -KY))+C2 ]n
msmh(K~)

d[ sinh(KY) + sinh(K~ - KY) ]

+E(-E) sinh(K~) 'IIw sinh(K~) 'III = 1-'2 dU2

dy dy

For the Newtonian layer, at wall (y = -h2 ) , no-slip boundary is applied.

U -02 -

4.3 Results and discussion

(4.23)

(4.24)

In section 4.2, the EDL distributions were derived in the conducting non-Newtonian

layer and the velocity distributions for both the non-Newtonian layer and Newtonian

layer were obtained. The non-Newtonian layer height hr- 100 urn and the Newtonian

layer height h2 is 30 urn.

The wall zeta potential 'IIw depends on the wall properties and fluid ionic properties.

In the analysis, we choose 'IIw =-40mv. The interface zeta potential 'III is determined

by ionic properties of both fluids, PH value and the concentration of electrolyte. The

interface zeta potential 'III is chosen as -40mV. The applied electrical field E =1000
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Vim, the electrical permittivity e = 7.08x 10-10 Flm, fluid consistency coefficient

m =0.001 Pa-s" and fluid behavior index n = 0.5 , Newtonian fluid viscosity

)l2=0.001 Pa·s. The generalized Smoluchowiski velocity Vs is chosen as reference

l-n E I

velocity [72], Vs = n« ---;;- (_ &!fIw )-;;.
m

4.3.1 Effect of«hi

xhi means ratio ofthe non-Newtonian layer height over the EDL thickness. To better

understand the effect of xhr, the results present in this part is calculated under

symmetrical EDL condition, i.e. !fIw =!fI/ . As shown in Figure 4.2 and Figure 4.3, to

compare the proposed model with a single layer power law fluid [72, 73], ~2 is

chosen as 1000 Pa·s. The symmetrical EDL condition !fIJ =!fIw makes the Newtonian

layer fluid resemble that of the wall. In that case the non-Newtonian layer flow

resembles the single layer fluid EOF driven flow [72]. As shown in Figure 4.2 and

Figure 4.3, the proposed two layer model matches well with the single layer model,

which proves the validity of this model.

A larger value of xh. corresponds to a thinner EDL. When «h. is large, the electro-

osmotic force will be confined near the wall and the interface, while the electro-

osmotic effect takes negligible effect outside the thin EDL region. Under

symmetrical zeta potential, it forms the plug -like shape. The velocity accelerates to

its maximum value within the thin EDL region and maintains its maximum value

until it reaches the interface, where velocity reduces sharply to zero. When «h. =400 ,

the velocity profile represents a uniform profile in the non-Newtonian region. When

«h, =10, the electro-osmotic force is not confined near the wall and interface.
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Instead, it takes a large portion of the channel. Therefore, the profile is becoming

more parabolic.

--~"" _. _. ...)" -' - ..-.

1.0

0.8

0.6

0.4
»s:
--->. 0.2

0.0

-0.2

-0.4
0.0

Kh,=400

Kh,=lOO

0.2

Two Layer
Model

0.4

u/Vs

0.6 0.8 1.0

Details are
indicated in
ligure Ltb )

(a) Dimensionless velocity distributions ofthe whole channel under symmetric EDL
condition

74

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 4 EO Driven Flow with a Laver ofConducting non-New. Fluid

Two Layer Published
Model Mo dc l

Two Layer Published
Model Model

Khl=400 Khl=50

Khl=IOO xh l 10

+

",
\

\

~,
\
I
I

........
--

---\ "'-.7.-;:- __

\

\

\
\ 0

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

1.000

0.9625

0.9875

0.975

0.0 0.2 0.4 0.6 0.8 1.0

u/Vs

(b) Dimensionless velocity distributions near the wall boundary

Figure 4.2 Comparisons of the analytical solution between the two-fluid flow model and the single­

fluid model [72] for a larger value K~ .
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Figure 4.3 Comparisons of the analytical solution between the two-fluid flow model and the single­

fluid model [72] for a smaller value K~ .

As the value of K~ continue to reduce from K~ =5 to K~ =0.1, the electro-osmotic

force are distributed over the whole non-Newtonian layer. The maximum velocity

cannot reach the generalized Smoluchowiski velocity Vs and it becomes a parabolic-

shape profile.

4.3.2 Effect ofzeta potentials If/w & If/J

The zeta potential is related to both the material properties which form the boundary

and the interface. As such, the unsymmetrical EDL condition is considered. The

interface zeta potential will be set to zero to investigate the influence of wall zeta

potential If/w .
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Figure 4.4 Dimensionless velocity distribution for different values of wall zeta potential lfIw' K~

=400, E = 1000 Vim

Figure 4.4 shows the dimensionless velocity profile at the symmetric line of the two

fluids with the applied electric field E = 1000 Y1m. As shown in Figure 4.4, the

magnitude of wall zeta potential will determine the maximum speed hence the

velocity gradient, which will influence the non-Newtonian fluid apparent viscosity.

In shear thining fluid, higher wall zeta potential leads to a higher velocity gradient

hence a lower apparent viscosity. Results in Figure 4.4 show that when lfIw =-40 mV,

the velocity gradient is larger and the average apparent viscosity is smaller. When

lfIw changes from -40 mV to -10mV, the results indicate a smaller velocity gradient

and a larger apparent average viscosity.
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Figure 4.5 Dimensionless velocity distributions vary with the interface zeta potential. (K~ =400, E

=1000 Vim and If/w =-40 mV)

Figure 4.5 shows the influence of the interface zeta potential on the dimensionless

velocity distribution. The flow conditions remain the same with that of Figure 4.4,

except that a fixed wall zeta potential If/w =-40 mV and variable If// are used. When

If// =-50 mV, which is larger than If/w' the velocity profile is different from those

whose interfacial potentials are smaller than If/w' The velocity gradients in both the

non-Newtonian and Newtonian layers are negative due to a large velocity jump near

the interface. For the symmetrical EDL in the non-Newtonian layer, If// =If/w =-40 mY,

the Newtonian layer will have no obvious velocity. When If// <<If/w' fluid velocity

change decreases near the interface. When If// becomes smaller, the electro-osmotic

effect is also reduced, leading to a smaller velocity jump at the interface. Hence,

cause the velocity gradient of the Newtonian layer to be smaller.
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4.3.3Effect of the Newtonian layer viscosity f.l2 and the non-Newtonian layer fluid

consistency coefficient m
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Figure 4.6 Dimensionless velocity distributions for different values of Newtonian layer viscosity f.l2 .

(tch, =400, 1fI/ =-20 mY, m = 0.001 Pa-s" and n =0.5)

When f.l2 is small, the flow resistance of the layer 2 is also small. Hence layer 2 will

be driven easily (Figure 4.6). A steeper velocity gradient of layer 2 is observed when

the viscosity ratio is larger due to the higher flow resistance of layer 2. The viscosity

of Newtonian layer 2 (f.l2 ) influences the Non-Newtonian layer in several ways.

Firstly, the maximum speed of the non-Newtonian layer 1 is smaller when the

Newtonian layer 1 is more viscous. Secondly, the velocity profile of the non-

Newtonian layer 1 becomes steeper when it is beside a more viscous Newtonian

layer 2, so that the no-slip boundary condition can be satisfied. In Figure 4.6 and

Figure 4.7, f3 is defined as the viscosity ratio of non-Newtonian layer lover
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Newtonian layer 2 (fJ = 1-'1 I 1-'2)' where 1-'1 = f m 1 du) I
n

-
1dy. fJ is introduced to

layerl dy

indicate the overall viscosity ratio between non-Newtonian layer 1 and Newtonian

layer 2.
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Figure 4.7 Dimensionless velocity distributions affected by the non-Newtonian fluid consistency

coefficientm . (lfIw=-40mV, lfI[=-20mV, K~=400, 1-'2 =0.001Pa·sandn=O.5).

The non-Newtonian layer fluid consistency coefficient m is one of the two

parameters that describe the power-law of the non-Newtonian fluid behavior. The

influence of the parameter m to the velocity profile is shown in Figure 4.7. When m

is large (m =10xl0·3 Pa-s"), the non-Newtonian velocity can reach the generalized

Smoluchowiski velocity Vs and the drag from the Newtonian layer will have limited

influence upon the non-Newtonian layer. The velocity gradient in the non-Newtonian

layer 1 is small while in Newtonian layer 2 is large. However, when m is smaller,

the Newtonian layer 2 will take greater effects on the non-Newtonian layer 1. Figure

4.7 shows that when m is smaller, u1 cannot reach the generalized Smoluchowiski

velocity Vs. When m is small (m = 1x 10·4Pa·sn), the Newtonian layer velocity

gradient decreases.
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4. 3.4Effect offlow behavior index n
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Figure 4.8 Dimensionless velocity distributions for different values of the flow behavior index n .

(Kh" =10, E=lOOO Vim and lfIl = lfIw =-40 mV)

Figure 4.8 shows the dimensionless velocity profile for different values of the flow

behavior index of the non-Newtonian layer. In the analysis m =0.001 Pa-s", fl2

= IOOOPa·s. The flow behavior index n influences the shape of the velocity profile.

As n decreases, the velocity profile becomes more plug-like. This is because that

lower n will reduce the apparent viscosity. Considering the same shear rate, the

higher value n will increase the apparent viscosity making the flow more parabolic.

Note that the value of «h, is comparatively low and as such the effect of n is obvious.

While under a high value of kh, , a thin EDL region, the effect of n on the velocity

profile is limited. The flow behavior index takes great impact on the velocity profile

only under a relatively thick EDL condition.
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Figure 4.9 Variation of the maximum velocity with the fluid index n for different values of

K~.(E=1000V!m,If/I=lf/w=-40mV,m=a.aalPa·sn and n =0.5)

Figure 4.9 shows the variation of the maximum velocity of the non-Newtonian layer

1 with flow behavior index n. The flow behavior index influences the maximum

velocity. The maximum velocity varies from 1a·3 to 1a-6m/s as n varies from a.5 to

2.a for K~=40a. The larger n contributes to an exponential increasing in the

apparent viscosity which causes the reduction in the maximum velocity. This

parameter has a significant impact on the maximum velocity. It is also indicated that

smaller K~ will lead to a smaller value of maximum velocity for the shear thinning

fluid (n < 1). On the other hand, higher value of K~ can generate high maximum

velocity for shear thinning fluid. For shear thickening fluid, the influence is not

significant.
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One of the most important effects of driving by the non-Newtonian fluid is that the

shear thinning effect. Generally, for power-law fluid: Jl=m I du] In-I, m and n are
dy

fluid consistency coefficient and flow behavior index respectively. For shear

shinning fluid (n <1), higher shear rate will lower the viscosity, therefore the flow

rate will be enhanced.

The average flow rate for the non-Newtonian layer 1 is defined as:

QI = f u.dy
YE(O,h] )

and the average flow rate for Newtonian layer 2 is expressed as:

Q2 = f u.dy
yEt -h2,O)

= f [CsY + c6 ]dy
yE( -h2,O)

where c3 ~ c6 are parameters to be determined by boundary conditions.

(4.26)

Figure 4.10 shows the dimensionless volume flow rate of the non-Newtonian layer 1

versus the flow behavior index n. The non-Newtonian layer is driven by EOF. Q1 is

the volume flow rate of the non-Newtonian layer 1. Q1rn is the reference volume flow

rate of the non-Newtonian layer 1. When n=l and an electric strength E=1.0xl03V/m.

The impact of n is significant and is clearly shown in Figure 4.10. For the shear

thinning fluid (n <1), the flow rate is significant higher. For shear thickening fluid

(n>l), the increase of flow rate is not as significant as that of the shear thinning fluid

(n<l).
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Figure 4.10 Dimensionless non-Newtonian Layer volume flow rate versus the flow behavior index n.

(lfIw=-40mV, lfI/=-20mV, m=O.OOIPa·snand f-l2 =O.OOIPa·s)

One of the most promising applications for the two-layer model is to use the non-

Newtonian EOF effect to drive the non-conducting fluid. Figure 4.11 presents the

volume flow rate of the Newtonian layer 2, which is driven by the interface shear

generated by the non-Newtonian layer 1. Q2 is the volume flow rate of the

Newtonian layer, Q2rn is the reference volume flow rate of the Newtonian layer when

n=l and electric strength E = 1.0xIQ3V/m.

The results (Figure 4.11) shows that the shear thinning effect improves the flow rate

Q2' On the other hand, if the Newtonian layer is driven by shear thickening fluid,

marginal increase in flow rate Q2 is seen even though the electric field is increased

by 2 orders. This shows that the shear thinning fluid is more effective on fluid

driving.
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Figure 4.11 Dimensionless Newtonian Layer volume flow rate versus the flow behavior index n. (If/w

=-40 mY, If/, =-20 mY, m =O.OOIPa·s" and 112 =0.001 Pa-s)

The results show that the shear thinning effect makes the driving of both layers more

effectively. The increase in the flow rate is significant due to the reduction of the

apparent viscosity.

4.4 Summary

The two immiscible layers electro-osmotic driven flow model with one layer of

conducting non-Newtonian fluid was proposed. The non-conducting fluid is driven

by the interface shear.

Both the m and n take great impact on the shape of the velocity profile and the

volume flow rate. When flow index n reduces from 1 to 0.5, the flow rate increases

by 40 times. The results show that the shear thinning effect improves the volume

flow rate, which makes it ideal for both direct electro-osmotic driving and hybrid

driving.
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Chapter 5 An Electric Field Activated Droplet Formation in

Flow-focusing Device

5.1 Introduction

Droplets formation of one liquid in the other immiscible liquid are useful in a wide

range of applications, such as drug discovery, gene expression analysis, and high

throughput assays [156, 157], especially when the droplet size can be accurately

controlled on the micro- or nano-scale [156, 158]. Although there are still many

fundamental problems which need to be resolved, it is clear that microfluidic

technologies offer a promising new route for the generation of monodisperse droplets

[159,160], ranging from some micrometers to hundreds of micrometers [161].

The most common microchannel geometries for generating droplets are T-junction

[162-165] and flow focusing devices [158, 166-170]. Both types of systems are

capable of producing monodisperse droplets. The first microfluidic droplet generator

was reported by Thorsen et al. [171] who used a T-junction geometry to generate

water droplets in an organic oil. Similar micro fluidic approaches have been described

elsewhere [158,166-170,172].

The size of droplet in the microfluidic system is largely determined by the channel

geometry, the properties of the liquids and the flow rates of the two liquids involved

[104, 173-177]. Besides, several flow regimes, such as squeezing, dripping and

jetting, are formed in different flow rates for a specific geometry, which have a great

effect on the droplet size distributions. Therefore, a specific size of droplet is not

easy to form in the microchannel and the timing of the droplet production cannot be

controlled simultaneously. One potential means of overcoming these limitations is to

use active droplet formation methods. When an electric field is applied to the liquids
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by integrating electrodes into microchannel directly [178, 179] or with the use of

ITO glass [180-182], it has a great potential to rapidly control the droplet formation.

The geometry and location of the external electrodes usually has a strong influence

on the electric field distribution [183], making the droplet formation system sensitive

to electric field. In addition, electrochemical effects represent a major limitation in

the droplet formation devices when the electrodes are in direct contact with the liquid,

such as flow instabilities, degradation of the electrodes, droplet size drastic change,

satellites of droplet and bubble formation. A reliable method of non-contact

electrodes to avoid electrochemical effects needs further investigation.

In this study, an external electric field was implemented in a flow-focusing device.

The droplet size varying by changing the voltage and frequency of the electric field

were investigated. In addition, the droplet regimes and the droplet size distribution

under different external electric fields for a fixed flow rate of the liquids were also

analyzed.

5.2 Experimental

5.2.1 Experimental System

The schematic diagram of the experimental setup is shown in Figure 5.1. The flow

focusing device was connected to the syringe pump system (Centoni neMESYS) and

a high voltage generator system which were used to control the flow rates and the

applied electric field, respectively. Droplet formation behavior was observed under

an inverted microscope (Lecia DM ILM) and recorded via a high-speed camera

(Phantom V611, shutter speed up to 11100 000 s). Moreover, the camera, high

voltage generator system, and the syringe pump system are connected with a
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computer and the input and output experimental data and images can be collected

simultaneously.

Waste -I·····
Beaker __

Computer

Syringe pump

It"'" () 0 z

I High-voltage
i:'"i:lmplifi~r._
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Figure 5.1 Schematic diagram of experimental setup. The apparatus fundamental1y consisted of six

parts: (1) Syringe pump system, (2) High-voltage generator system, (3) Flow focusing device (chip),

(4) Microscope system, (5) High-speed camera, and (6) Data collection system.

Outlet
Inlet Inlet

CP

-~--'----~~P~~_._~~.-

(a) Top view (b) Side view

Figure 5.2 Schematic diagram of the flow-focusing geometry implemented in a microfluidic device.

DP, CP here denote dispersed phase and continuous phase, respectively. The main channel width Wch

= 100 urn; the height of microchannel is 35 urn. Wga = 50 urn. Three sizes of orifices W« = 25, 75 and

100 urn were designed.
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5.2.2 Flow Focusing Device

Figure 5.2 shows the overall view of the flow-focusing geometry implemented in the

experiment. The cross section of the channels was rectangular. Three channels of

liquids converges into a main channel and flow downstream through a contraction.

The dispersed phase flows in the center channel while the continuous phase flows in

the two side channels. Droplet breakup and formation occurs once the viscous force

overcome surface tension at the two-phase interface.

The flow-focusing chip under investigation was fabricated with a soft-lithography

technique [184]. Polydimethylsiloxane (PDMS, Dow Corning Co. SYLGARD® 184)

was used as the stamp resin to replicate the channel details from an SU-8 mold (SU-8

2075, Micro-Chern Co.) mold and the hardened PDMS with inlet and outlet holes

was then bonded to an Indium Tin Oxide (ITO) glass (One side of the glass was

coated with ITO to ensure its uniform conductive property) by oxygen plasma

bonding.

5.2.3 External Electric Field

Four electrodes (see Figure 5.2 (a)) were patterned parallel to the channels by using

the microsolidics technique [185]. The liquids and electrode channels were therefore

within the same plane and positioned within a micron accuracy. Electrodes 1 and 2

were connected with high voltage and Electrodes 3 and 4 were grounded, which

induce an electric field in the streaming direction. The electrodes are not in contact

with the liquids to avoid electrochemical effects. The bottom of the ITO glass was

grounded to prevent electrocoalescence downstream of the channel and ensure stable

droplet formation.
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Electric field was generated by the combination of Agilent 33500 B waveform

generator and Treck 5/80 high voltage amplifier. The waveform generator generated

one electric signal of specific voltage and frequency (sine wave is adopted), which

was then amplified by the amplifier at the constant amplification factor of 1000

before it reached the microchannel. A two-channel oscilloscope (Tektronix TDS21 0)

was attached to the amplifier to monitor the voltage and current to ensure

experimental safety. The experiments were carried out by increasing the applied

voltage ranges from 0 to 1 kV. The sinusoidal signal frequency changes in the range

of 500 Hz to 10kHz. In the following discussion, all voltages are peak to peak.

5.2.4 Experimental Measurement

DI water (Mili-Q grade II) was used as the dispersed phase and the continuous phase

was the mineral oil (M5904, Sigma Aldrich) with 5 wt% of non-ionic surfactant

(Span80, Sigma Aldrich), which was used to assistant droplet formation and avoid

droplet coalescence. The surfactant solution was prepared by mechanically mixing

the two components for approximately 30 min and then filtering to eliminate

aggregates and prevent clogging of the microchannel. Centoni neMESYS high

precision syringe pump and gas tight microliter syringes (Hamilton Gastight 1002)

were utilized to pump the DI water and mineral oil into the micro channel thus

creating a confined flow condition. The liquids were introduced into the

microchannel through flexible tubing and the flow rate can be controlled easily by

using separate syringe pumps. In this study, the flow rate of the continuous phase

liquid, QcP, was always greater than the flow rate of the dispersed phase liquid, QDP,

to create a reasonable conic water tip [178]. Four different flow rate ratios are chosen,

QDP/Qcp = 1/1, 1/2, 1/4 and 1/8 (QoP= 50, 100,200 ul/hr), where QcP is the total flow
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rate for both inlet streams. All of our experiments were conducted at room

temperature and atmospheric pressure. Tests were repeated to ensure repeatability.

5.3 Results and Discussion

5.3.1 Droplet Breakup Regimes

III kill

! kl!:l

::: k l lz

2 kl lz

I kilL

0.5 kill.

, _ _,

Figure 5.3 Droplet breakup regimes at different applied voltages and frequencies, QDp/Qcp = 200/400

ul/hr. Ca = 0.05, Wor = 100 urn, Weh = 100 urn.

In flow-focusing device, the droplet breakup regimes arise as the dispersed phase

liquid flow rate increases, such as dripping, jetting and the squeezing, based on the

change of the surface tension and viscous forces at the two-phase interface [158, 171,

182]. Interestingly, the size, shape, and frequency of the droplets can be tuned by

varying the electric strength. A thorough understanding of the breakup regimes in the

droplet generation is necessary to obtain high quality droplets. Several droplet

breakup regimes in the main channel can be observed by changing the magnitudes of

the applied voltages or frequencies at a fixed QDP/Qcp of both the continuous phase

and dispersed phase liquids were adopted (see Figure 5.3). Within each regime, the

droplet size and frequency of breakup varies with the electric field parameters. The

applied voltage varies from 0 V to 1000 V while the frequency ranges from 0 Hz to

10kHz. The details of the droplet breakup regimes are represented in Figure 5.4. It
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shows three droplet breakup regimes (I: dripping, here (a), (b) and (c) are drippings

with or without several visible satellite droplets; II: unstable breakup; III: jetting) at

the cross-junction in the flow-focusing device. Figure 5.4 (b) shows the typical

images of droplet breakup regimes in the main micro fluidic geometries.

The dripping regime (I) is characterized by droplets that pinch off within one

characteristic diameter of the flow focusing orifice, while the portion of the interface

left behind after pinch off remains at a fixed location within the orifice [170]. The

mechanism for droplet pinch off in the dripping regime is a mixture of

electrohydrodynamics instabilities combined with viscous force and surface tension

on the emerging droplet from the outer liquid, which stretches and thins the necked

region behind the droplet. However, one or more satellite droplets are observed in a

regular and reproducible manner in dripping regime. In l(a) regime, no satellite

droplet is observed; In dripping I(b) regime, a few of satellite droplets accompany the

large droplet and they are not absorbed by the large droplet; while in I(c) the satellite

droplets generated at the breakup tip are absorbed into the large droplet in the

downstream region.

At a higher applied voltage and frequency, a transition from dripping (I) to jetting (III)

is observed. The localized electrohydrodynamic stress at the interface disrupts the

balance of the viscous force and surface tension. In jetting regime, the dispersed

phase finger extends beyond the exit of the orifice and resembles a long jet. The jet

interface exhibits undulations that grow until discrete droplets pinch off. The

resulting droplets in jetting regime are smaller than that in dripping regime, which is

much different with the traditional transition by change the flow rate of the dispersed

phase liquid.
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Figure 5.4 Different droplet breakup regimes in flow-focusing device, here QDP/Qcp = 200/400 u l/hr

and the orifice width Wor=IOO urn. (I) Dripping. (II) Unstable breakup and (III) Jetting. The dripping

regime can be further classified based on the generated satellite droplets.

Figure 5.4 also shows that an unstable breakup regime were observed with an

increase in electric field strength. An unstable droplet is generated at the junction

with many satellite droplets. This phenomenon is seldom observed in the traditional
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flow-focusing device. The droplet production becomes unstable, leading to

polydisperse droplets, and no stable jets are formed in this unstable breakup regime.

5.3.2 Droplet Size Varying with Electric Field

As mentioned above, electric field effects on droplet size and droplet breakup

regimes. Here the droplet size denotes the average diameter of more than 100

droplets in each measurement. The ability to control the local flow field via changing

the electric field makes it possible to control the deformation and breakup of every

individual droplet.

Experiment was conducted via altering the applied voltage and frequency

systematically considering different dispersed phase flow rates and the associated

flow rate ratios. Figure 5.5 shows the droplet size as a function of applied voltage at

a fixed frequency f = 2 kHz, which is much larger than the droplet production

frequency (from 13 to 65.4). When the applied voltage increases from 0 to 1000 V,

the droplet size decreases almost linearly as electrohydrodynamics stress promotes

the interfacial instability.
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Figure 5.5 Effect of applied voltage on droplet size at a fixed frequency t : 2 kHz, Wor=lOO 11m.
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Figure 5.6 Effect of applied electric field frequency on droplet size at a fixed voltage U= 750 V, Wor=

100 urn,

Figure 5.6 shows the influence of applied frequency on the droplet size at a fixed

electric voltage U = 750 V. The droplet size decrease dramatically when the electric

frequency is increased from 0 to 2 kHz. Experimental results obtained at different

applied frequencies show negligible difference in the measured droplet diameter

when the applied frequency is more than 2 kHz.
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Figure 5.7 Influence of applied voltage at different frequencies on droplet size. QDPIQcp = 200/400

ul/hr, Wor=100 urn. Ca = 0.05.
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Figure 5.7 depicts the droplet size variation with different external electric

parameters (voltage and frequency), ranging from 0 to 1000 V in voltage and 0 to 10

kHz in frequency. The droplet size decreases continuously with increasing electric

strength. The dependence of the droplet size on applied voltage and frequency are

summarized below. When an electric field is applied, the induced Maxwell stress is

acting on the growing droplet.

Unlike in co-flowing and cross-flowing configurations, no simple model exists that

can predict the droplet size as a function of control parameters in micro fluidic flow-

focusing, in which capillary pressure and viscous stresses are generally more

significant than inertia [159, 186]. In micro fluidic droplet formation, the capillary

number Ca is the most important parameter characterizing the relative importance of

viscous force and surface tension at the two-phase interface. The capillary number is

defined in terms of the continuous phase flow field that acts to deform the droplet,

(5.1)

Where jlc represents the viscosity of the continuous phase, (J = 5 mN/m is the surface

tension of the continuous phase, Wd, We are the channel width of the dispersed phase

and continuous phase respectively, I:::.U stands for the velocity variation in the flow-

focusing region where the droplet formation happens, Qc describes the flow rate of

continuous phase, Wch, War and h denotes the channel width, orifice width and

channel height, respectively, as shown in Figure 5.2. This definition is consistent

with classic experiments examining the deformation and breakup of isolated droplets

in linear flows [187].
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5.3.3 Droplet Size Distribution
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Figure 5.8 Droplet size distribution with different electric field parameters. QoplQcp = 200/400 ul/hr,

Wor=lOO urn, The above and below "-" here are the maximum and minimum value of the droplet

diameter, respectively. The upper quartile is the 75th percentile, the lower quartile is the 25th

percentile, and the median is the 50th percentile. The blank box is the mean droplet diameter.

The precise control of droplet size is one of the most important objectives in the

droplet formation [158]. We also study the droplet size distribution effect under

different external electric strength. More than 200 droplets are taken into account in

each case to study the droplet size distribution. Figure 5.8 presents the droplet size

distribution under the effect of the two different electric fields. Droplets are relatively

uniform in size at low frequencies « 2 kHz). Hence low frequency is a better choice

in the droplet generation when accurately droplet sizes are required.

5.4 Summary

Three droplet breakup regimes including dripping, unstable breakup and jetting were

observed at the cross-junction in flow-focusing device by changing the magnitudes

of the applied electric voltages or frequencies at fixed flow rates of both phase

liquids. Within each regime, the droplet size and frequency of breakup also varies
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with the electric field parameters. In addition, droplets in jetting regime are smaller

than that in dripping regime when an electric field are applied, which is much

different with the traditional transition by change the flow rate of the dispersed phase

liquid.

The dependence of the droplet size on applied voltage and frequency are summarized,

ranging from 0 to 1000 V in voltage and 0 to 10kHz on frequency, respectively. As

electrohydrodynamics stress promotes the interfacial instability, the droplet size

shows an approximately linear decrease with the increasing of voltage and a

dramatically decrease trend by half an order of magnitude with the increasing of

electric frequency from 0 to 2 kHz.

The droplet SIze distribution under different voltages and frequencies were

investigated. Droplets are relatively uniform in size at low frequency « 2 kHz).
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Chapter 6 AC Electric Field Tuned Non-Newtonian Droplet

Formation in Flow Focusing Microchannels

6.1 Introduction

In recent years, the emergence of microfluidics has gained intense research focus

owing to its potentials in scientific research and industrial applications [99, 151, 188].

The impact of microfluidic droplets has been increasing as the properties such as the

fast generation rate and monodispersity [92-94, 108, 189-192] with associated

approaches for droplet sorting, splitting and merging [97,193-195] making it suitable

for biochemical processes such as fast chemical reaction test, bio genetic

transportation and drug delivery [93, 144, 196].

Droplet formation is the fundamental process for droplets microfluidics, by which

the monodispersity and formation rate are controlled. Microchannel geometries

utilized in this process can be generally classified as T shaped junctions [94, 97, 107,

197] and flow focusing (co-flowing is essentially the same) [98, 104, 105, 190], both

of which generate droplets via promoting interfacial instability. Flow focusing has a

more complex geometry, which allows more flexibility in the control of droplet size

and the formation frequency [108, 198, 199]. By tuning the flow parameters and

orifice geometry, flow focusing is more reliable in size control and small droplets

generation [99, 111]. The flow focusing concept was first proposed by Umbanwar

and then revised by Anna to be the current adopted microchannel geometry [104,

108].

Much research effort has been carried out to study the droplet size control using the

aforementioned two geometries, through external fields of various types as

microfluidic is an interdisciplinary research field. Electric [95, 113], temperature
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[200, 201], acoustic [189, 202], magnetic fields [111], etc. have been explored. As

the response time for temperature is relatively long, instant control in fast formation

is hardly achieved. Acoustic needs time for relaxation and magnetic field usually

contaminates the flows due to the presence of the magnetic particle. Fast response

droplet formation can be achieved via electric field applied in flow focusing

microchannels where contamination can be avoided by non-contact electrodes [113].

Experimental results show that AC electric field induced Maxwell stress is capable

of promoting interfacial instability and tuning the droplet size.

Most of the research carried out in microfluidics utilize Newtonian fluids with simple

rheological behavior. However fluids in the aforementioned applications such as

DNA sample are the one with complex rheological behavior owing to the presence of

long DNA chain structure, which explains the rising attention on non-Newtonian

fluids in microfluidics [145, 203, 204].

What is the dynamic response of non-Newtonian fluids under electric field given that

the relaxation time is in mili or even micro seconds order [62]? Can the electric field

fine-tune the droplet size? Questions as such attract our attention. In this chapter, we

have systematically investigated the ac electric field tuned non-Newtonian droplet

formation in flow focusing microchannels. Polymer aqueous solution with a long

chain micro structure, which behaviors similarly to DNA samples in rheological

perspective, was chosen for droplet formation characterization [66, 77, 142, 205].

Fluidic parameters such as capillary number ( Ca), dispersed phase flow rate (Qd );

applied voltage (U) and frequency (f ) were considered. Three types of flow

focusing microchannels with different orifice sizes were fabricated for investigation

of geometry induce interfacial instability on AC electric tuned non-Newtonian
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droplet formation. Finally, the flow field of droplet formation was quantitatively

measured via a high speed /l-PIV system. Characteristic flow field is shown and

analyzed.

6.2 Experimental setup

6.2.1 General setup

High-speed
camera

Computer

Microscope
Waveform

Syringe pump

Figure 6.1 Experimental setup for electric tuned non-Newtonian droplet formation

Figure 6.1 shows the schematic diagram of the experimental setup. The microchannel

is connected with the syringe pump, and a high voltage supply system, which is used

to control the flow rate and applied electric field respectively. Fluidic behavior is

observed through an inverted microscope (Lecia DM ILM) and recorded via a high

speed camera (Phantom V611). The camera and the pump is connected to the

computer and controlled by the software.
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6. 2.2Microchannel

Figure 6.2 Schematic diagram of the microchannel

Figure 6.2shows the overall view of the microchannel used in the experiment. The

microchannel is connected with three inlets. One of the inlets is for aqueous non-

Newtonian fluid and the other two are for mineral oil, forming the water in oil

emulsion system. Four electrodes, as indicated in Figure 6.2 are fabricated for

electric field implementation. Among them, two are connected to the high voltage

and another two are grounded, completing the electric circuit.
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Electrode I

Electrode 2

(a) Top view of the microchannel

Inlet
DP

ITO Layer

(b) Side view of the microchannel

Outlet

Figure 6.3 Layout ofthe flow focusing microchannel with non-contact type of electrode. DP, CP

denote dispersed phase and continuous phase respectively.

The flow focusing microchannel is fabricated by the standard soft lithographic

procedure followed by polydimethylsiloxiane (POMS, Dow Corning Sylgard ]84)

process and plasma bonding with one slice of ITO microscope glass. One thin layer

of Aquapel is coated on channel wall to ensure uniform hydrophobic surface

property. The ITO is connected with ground to avoid floating voltage and ensure

stable droplet formation (see Figure 6.3 (bj). As shown in Figure 6.3 (a), four
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electrodes are designed and fabricated by melting indium alloy (Indium Corporation

of America) into the electrode channel, which is then connected with the high

voltage supply system via electric wires.

The main channel width is U";.h =100 urn, the height of microchannel controlled by

spin coating is fabricated to be h=35 urn and the gap between the electrode and

channel wall, Wga , is designed to be 50 urn. Orifice is designed in the upstream

rather than the traditional downstream for the consideration of enhancing the impact

of electric field. Three different sizes of orifice w,Jr =25, 75 and 100 urn are

considered in our experiments.

6.2.3 Materials

Fluid samples adopted in this experiment are water in oil emulsion system. The

dispersed phase (DP) is polyethylene oxide (PEO) aqueous solution at the constant

ratio of 0.5% by weight, and the molecular weight is 4M (Sigma aldrich). The

solution is prepared by stir-mixing PEO powder in to DI (Mili-Q grade II) water for

24 hours under room temperature [144, 146]. In the continuous phase (CP) light

mineral oil (M5904, Sigma aldrich) is chosen, in which 5% wt. of surfactant (Span

80, Sigma aldrich) is added to assist droplet formation and avoid droplet coalescence.

6.2. 4Fluidic and electric system setup

Centoni neMESYS high precision syringe pump and gas tight microliter synnge

(Hamilton Gastight 1002) are utilized to pump the non-Newtonian fluid and mineral

oil into the microchannel to create a confined flow condition. PTFE micro tubing is

chosen to connect syringe and microchannel in case of chemical corrosion.
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Electric field is generated by the combination of Agilent 33500B waveform

generator and Treck 5/80 high voltage amplifier. The waveform generator generates

one electric signal of specific voltage and frequency (sine wave is adopted), which is

then amplified by the amplifier at the constant amplification factor of 1000 before it

reaches the microchannel. One two-channel oscilloscope (Tektronix TDS210) is

attached to the amplifier to monitor the voltage and current to ensure experimental

safety. The applied voltage ranges from 0 to 1 KV while the frequency varies from

500 to 7 KHz.

6.3 Results and discussion

The experiment was conducted systematically to investigate the influences of electric

field and orifice sizes on the non-Newtonian droplet formation. Parameters such as

flow rate ratio, flow rate of the dispersed phase, electric voltage, and electric

frequency are discussed. The impact of the orifice size is also addressed. Generally,

the flow rate ratios (QJ)p: Qcp) of 1:2, 1:4, 1:8, 1:16 are adopted while three flow

rates of dispersed phase (QDI') 5, 10, 20 ulzhr are considered for each set of the flow

rate ratios. Five different electric voltages, 0 V, 250 V, 500 V, 750 V, and 1 KV are

applied to the microchannel. Five electric frequencies, 500 Hz, 1 KHz, 2 KHz, 5

KHz, and 7 KHz are varied for each specific flow conditions and voltage. Three

types of microchannels with different orifice sizes, 25, 75, 100 urn are tested to

investigate the impact of orifice sizes on droplet formation. For each specific

experimental condition (QIJI" flow rate ratio, voltage, frequency, orifice size), each

experiment was performed three times to ensure the repeatability.
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6.3.1 Droplet breakup dynamics ofthe non-Newtonian fluid

(b) SOOV 2Kllz (e) 750V 7Kllz (d) IKV 7KHz

Figure 6.4 Non-Newtonian droplet formation processes under different electric fields. Flow rates are

Qf)I': Qp=10:40 /lL/hr, Orifice size ~>r =100 urn.

Figure 6.4 shows the dynamics of non-Newtonian droplet formation for flow rates of

Q[)F :QI' = 10:40 uLzhr under different electric fields. Figure 6.4 (a) illustrates the

formation dynamics without electric field (0 V). Two distinct regimes of droplet

formation exist in non-Newtonian fluid, namely pre-stretch and self-thinning regimes

[115]. The emerging droplet tends to form and flow away from the tip of the

dispersed phase within pre-stretching regime as shown in Figure 6.4 (a) t = 0~40 ms.

After the droplet forms, one thread is generated due to viscoelastic property of the

dispersed phase after which the self-thinning regime occurs. The self-thing process

of the thread caused by the elongation flow of the continuous phase is observed in

Figure 6.4 (a) t=60~100 ms. Another phenomena which differs from the Newtonian

fluid is the dynamics of satellite droplet formation. As inferred from Figure 6.4 (b),

relatively bigger satellite droplets are formed due to coalescence of small droplets
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formed by the self-thinning of the thread while there is no significant variation upon

main droplet generation. Results presented in Figure 6.4 (c) & (d) demonstrate the

influence of strong electric field on the droplet formation. Both of the results show a

significant reduction in droplet size and an obvious increasing droplet formation

frequency due to the electric field. It can be directly observed that stronger electric

field leads to smaller and faster formation.

100
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Figure 6.5 Filament thickness versus time. QIJp: Qc/'= 20:40 fJLlhr.

Figure 6.5 shows the dynamics of non-Newtonian filament thinning behaviour with

and without an electric field. A similar trend is reported by Arratia et al. [117, 206]

that the filament thickness exhibit obvious self-thinning behaviour, resulting in the

longer breakup duration. The results depict a negligible effect of the electric field on

the filament thickness during the initial stage as the continuous phase induced

shearing force is the dominate force in reducing the initial filament thickness.

Thereafter, the electric field helps to shorten the process after a critical time, causing
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the filament thickness to drop significantly. It can be inferred that the Maxwell stress

have a major influence on the filament breakup process.

During the self-thinning regime, the beads on string phenomenon can be observed

before they finally break up into satellite droplets. Experiments show that uniform

and miniature satellite droplets are formed at low electric field strength or without an

electric field. Relatively larger satellite droplets are seen in the presence of high AC

electric field due to the AC field induced instability. Therefore, formation of satellite

droplet can be controlled via electric field.

6.3.2 Electric field tuned non-Newtonian droplet sizes

Influence ofthe AC field voltage

The experiment were conducted Via altering the applied voltage and frequency

systematically considering different QDI' and the associated flow rate ratios. The

applied voltage varies from OV to 1000 V while the frequency ranges from aHz to 7

KHz. The droplet dynamics is captured with an inverted microscope attached with

the high speed camera (Phantom V611). Results are analyzed by a self-coded Matlab

programme which is capable of droplet identifying, tracking and measuring.
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Figure 6.6 Non-Newtonian droplet diameters versus applied voltages. AC frequency is fixed at 5 KHz.

Four groups of flow rate ratios are adopted. Qnp = I0 flLlhr

Figure 6.6 depicts the dynamics of non-Newtonian droplet formation under applied

voltage. Four different flow rate ratios at the frequency of 5 KHz are plotted. Droplet

formation is in the squeezing regime under the flow rate of QDP : QCi' =1 0:40. The

droplet diameter deceases with an increase in the voltage as Maxwell stress promotes

the interfacial instability. The droplet formation mechanism changes from squeezing

to dripping via increasing the flow rate ratio from 10:40 to 10:160. In addition, the

filament length decreases when the applied voltage increases within squeezing and

dripping regimes. The shifting from dripping to jetting occurs when the applied

voltage is larger than 500V under the flow rate ratio of 10: 160. There is a dramatic

size drop when the formation happens in jetting regime. The appearance of jetting in

flow focusing microchannel without electric field is due to the insufficiency of fluid

from the dispersed phase, therefore causing the droplet to form in the downstream

[Ill]. The AC field induced Maxwell stress prompts the fluid to move downstream,
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forcing it to shift from dripping to jetting. After the formation, the presence of a

higher applied electric field may tear the droplet apart, as shown in Figure 6.6. Hence,

the formation become unstable and monodispersity will not be achieved as indicated

by a large error bar at high voltages. Results on the influence of applied voltage on

other frequencies and flow rates can be seen in Appendix A.

Influence of the AC field frequency
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(a) Non-Newtonian droplet diameters at voltage of250V
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(b) Non-Newtonian droplet diameters at voltage of J KV

Figure 6.7 Droplet diameter dependence of AC frequency under various flow rate ratios.

Figure 6.7 (a) and (b) explains the influence of AC frequency on droplet diameter

under different applied voltages. Results also show a decreasing trend with the

increasing frequency. However the variation of the frequency is not significant when

the applied voltage is low, as shown in Figure 6.7 (a). A higher frequency will

dramatically increase the electric current and reduce the droplet size under the

condition that the voltage is high. Supplementary results are presented in the

Appendix for reference.

6.3. 3 Flow dynamics coupled electric .field effect upon non-Newtonian droplet

formation

In this section, droplets sizes are compared with different flow conditions under

specific applied voltage and frequency. Flow conditions are presented in terms of

QDP and capillary number ( Ca), as proposed by Anna, etc. [108]. The definition of

Ca is:
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(6.1)

Where J1c represents the viscosity of the continuous phase, a =5 mN/m is the surface

tension of the continuous phase, Wd , ~, are the channel width of the dispersed phase

and continuous phase respectively, f.."U stands for the velocity variation in the flow

focusing region where the droplet formation happens, Q,p describes the flow rate of

continuous phase, ~h' Wor & h denotes the channel width, orifice width and channel

height respectively as shown in Figure 6.2.
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Figure 6.8 Non-Newtonian droplet diameter varies as the function of Ca under different applied

voltages with a fixed AC frequency of 5 KHz. Qf)}' =10 flLlhr.

Figure 6.8 shows the influence of Ca on droplet diameter at different voltages. The

increasing Ca alters non-Newtonian droplet formation mechanisms from the

squeezing to dripping and finally to jetting. A high electric field reduces the non-

Newtonian droplet size and influences the regimes of droplet formation. It is

observed that at Ca =0.014 the flow regime transits from dripping to jetting when the

applied voltage is increased from 750 Y to 1 KY. In the jetting regime, the jet length

can be significantly enhanced via electric field and droplet merging becomes

observable leading to the non-uniform droplet formation.
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Capillary number versus frequency
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(a) Non-Newtonian droplet formation at voltage of250 V
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Figure 6.9 Non-Newtonian droplte diameter dependency on Ca under different AC frequencies with

fixed voltage of (a) 250 V and (b) 1 KV respectively. Qf)1' = 10 llL/hr.

Figure 6.9 (a) and (b) represent the dependency of non-Newtonian droplet diameter

to Ca under different frequencies at fixed voltages of 250 V and 1 KV respectively.
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Both (a) and (b) show the same tendency that droplet diameter decreases with

increasing of the Ca or frequency. However, the influence of frequency is

insignificant when the applied voltage is relatively low. As demonstrated in Figure

6.9 (a), the variation of the diameter with various frequencies is small at 250 V.

However, the dynamics of satellite droplet formation differs when the frequency

increases. As indicated in Figure 6.9 (a), the size of the satellite droplet shows a

smooth decreasing trend, with the largest satellite droplet close to the droplet and the

smallest near the formation region when the AC frequency is 500Hz. When the AC

frequency increases to 5 KHz, the coalescence of satellite droplet becomes

phenomenal, leading to the occurrence of large satellite droplet near the formation

region. The transition of the flow regime is not observed at this stage. In Figure 6.9

(b), when the applied voltage is increased to 1000 V, droplet diameter shrinks rapidly

with increasing the frequency. Moreover, the transition from dripping to jetting

occurs when frequency equals to or higher than 5 KHz, indicating that higher

frequency influence the regime for droplet formation. In addition, coalescence­

induced non-uniformity also occurs in the jetting regime due to the high frequency of

the electric field, as shown in Figure 6.10. The dynamics of the satellite droplets

formation is strongly disturbed by the electric field induced Maxwell stress, thus

irregular formation of satellite droplets are observed.
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t = O.OOms

Figure 6.10 Merging of droplets in jetting regime. QIJp: Qcp = 20: 160 ul/hr, applied electric field: 750

Y,5 KHz.

6.3.4 Effects ofOrifice sizes on non-Newtonian droplet formation

The purpose of this section is to investigate the formation of droplets In flow

focusing microchannels with three orifice SIzes (25 urn, 75 urn, and 100~m) at

specified flow conditions and applied AC electric field.

Figure 6.11 Non-Newtonian droplet formations for different orifice sizes. (a) ~)r = 100 11m, (b) W",

=75 11m, (c) ~)r =25 urn. QIJI!: Quo= 10:80 ul.zhr, electric field is applied at the voltage of 500 Y,

frequency of 5 KHz.
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Figure 6.11 shows the effect of orifice size on droplet formation, when the flow

condition is QDl': Qcp =10:80 llL/hr and the applied voltage is 500 V, frequency is 5

KHz. As shown in Figure 6.11, the presence of orifice at the upstream directly limits

the size of the necking region resulting in a smaller droplet generation. Therefore,

under the same flow rates and electric field, smaller droplet can also generated by

tuning the orifice size. We will also investigate the effect of orifice size in terms of

Ca since it considers both the flow condition and geometry.

Orifice size Electric field Electric field
OV 500V 5KHz

25IJm 0 •
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Figure 6.12 Non-Newtonian droplet diameter dependency of the orifice size in terms of Ca. QDP =10

IlLlhr.

Figure 6.12 investigates the influence of the orifice size. Besides the electric field

reducing the droplet sizes, we can see that orifice size has significant impact in the

formation process. It provides an alternative approach for the control of droplet size.

However, challenges can occur in the fabrication and experimental investigation due

to the limitation of soft lithographic and the immense pressure gradient required to

pump the fluid through the orifice.
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6.3.5 Effective capacitance electric model for AC electric field assisted non-

Newtonian droplet formation

The droplet diameter has been investigated for both T junction and flow focusing

microchannels. Good scaling laws of droplet diameter for T junction have been

proposed [94, 100], while only simply approximation can be seen in the literatures

for flow focusing microchannel due to the complexity of droplet breakup process. In

this section, we developed a "capacitance" model to describe the dependency of the

flow condition and electric field on the non-Newtonian droplet formation.

The parameters that influence the droplet diameter are: (i) flow rates, (ii) the fluid

properties (viscosity of the continuous and dispersed phase, and interfacial tension),

(iii) microchannel geometry (microchannel dimensions and orifice size), and (iv)

electric parameters ( applied voltage, frequency, electrical conductivity and

permittivity). We will address the diameter in terms of Ca and electric field

parameters.

AC Power Supply

Figure 6.13 Effective capacitance model of the microchannel

Figure 6.13 shows a simplified electric circuit model of the flow focusing system.

The model accounts for the electric field, which starts from the upstream electrode
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(Figure 6.3 (a)) and terminates on the downstream electrodes. The electric network

consists of the PDMS layer capacitance CPDMS ' the fluid resistance RFluid and the

single side coated ITO glass capacitance Cc;lass'

Results in Figure 6.9 show that droplet diameter and the regime of the droplet

formation are strongly influenced by AC frequency. Since the dispersed fluid and the

upstream electrode are separated by the PDMS layer capacitance, the voltage at the

tip of the dispersed fluid can be different from the applied voltage [113].

In this section, the difference between the applied voltage U and the voltage at the

tip of the dispersed fluid are modelled due to the frequency-dependent effective

capacitance model as shown in Figure 6.13.

The capacitance and resistance can be estimated as:

lc .
= cocrPDMSLelech ~ 0 15 F

PDMS d ~. P

1
Xc' =----

~l'fJ'Js 2;rrICPDMS

(6.2)

(6.3)

Eq (6.2) and Eq (6.3) shows the electrical resistance of the fluids and the capacitance

respectively, where K denotes the electric conductivity of the disperse phase, co'

CrI'DMS' L elec ' d represent the absolute electric permittivity, relative permittivity of

PDMS, length of the electrode and the gap of the capacitor respectively. The value of

the parameters are measured or determined via the literatures, thus we have K = 3.0

flS/cm, e.> 8.85xIO-12 F/m, crPDMS= 5, L e1ec= 20 mm, d = 200 urn. I in Eq (6.3)
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stands for the frequency of the AC electric field, which influences the electric

resistance ofthe system capacitance XCPDMS'

- U
UFllIId =--.------

Umax (1 + (XCm MS )2 )1/2
RFIII

(6.4)

U FlUId is the dimensionless voltage experienced by the dispersed phase. U and U max

refer to the applied voltage and the maximum voltage adopted in the experiment

respectively.

On a log-log scale, the results of droplet formation without electric field show a good

linear relation between the diameter and Ca. The fitted exponent corresponding to

the experimental data follows the relation: D ~Ca-OJ 7
, which is consistent with the

reported result [108].

Considering both the hydrodynamic and electric effects, the droplet diameter can be

expressed as Eq (6.5) from the frequency-dependent effective capacitance circuit.

D _ - fJ_ U 1 fJ
-OJ7 - a(UPlwd) - a[--· 1 1 ] (6.5)

Ca Umax (1 + ( .__ )2Y/2
2trjCpDMS RpllIId

Where a and f3 denote the coefficients of the scaling law.
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Figure 6.15 (b) Comparison between the capacitance model and experimental data (75 urn orifice).
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Figure 6.16 (c) Comparison between the capacitance model and experimental data (100 urn orifice).

Figure 6.14 shows comparison between the proposed model and the experimental

data with different orifice sizes. There is a good agreement between the model and

the experiment. It is worth mentioning that the experimental data utilized in Figure

6.14 excludes the jetting regime as the flow behavior is significantly differently when

compared to that of the dripping regime. Eq (6.5) indicates that the dimensionless

voltage U Fill can be used as a good approximation for the AC electric field when

both the applied voltage and frequency are considered. j3 represents the influence of

AC electric field. The value for j3 are /325 = -0.115 (25 urn orifice), /375 = -0.104 (75

urn orifice) and /3100 = -0.083 (l00 urn orifice). The variation trend of j3 indicates

that smaller orifice size amplifies the influence of AC electric field. a is a

coefficient that is highly influenced by QDP & Qcp,
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5.3.6 High speed pPIV measurement on non-Newtonian droplet formation dynamics

Droplet formation in microchannels enjoys the benefit of high monodipersity and

high frequency. The frequency, as high as the order of 1000 per second, makes the

droplet formation a typical transient problem. The time scale for experimental

observation usually stays at the millisecond or microsecond level. The observation

and measurement of the droplet formation becomes a big challenge for experimental

investigation and yet attracts intense research interest.

f!PIV has been a widely adopted approach for flow field visualization and results of

various flow field in microfluidic have been reported [102, 202, 207-210]. This study

reveals the detailed information on the formation dynamics by adopting a high speed

f!PIV system. The formation process of the non-Newtonian droplet in flow focusing

microchannels in different regimes is of our concern. The impact of electric field is

also addressed in this section.

The high speed f!PIV utilized the Phantom high speed camera (Phantom V611) with

6200 fps at the full resolution of 1280x800. A plan objective of 40x (Leica) is

adopted in the measurement. The dispersed phase is doped with 20% orange

fluorescent particles (Life Technology, 1 urn, 540/560 nm) by volume. The fluid

sample is illuminated by one double cavity high speed pulse laser (Litron, 527 nm)

whose working frequency ranges from 200 to 10KHz.
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 6.17 Fluorescent imaging of non-Newtonian droplet formation via high speed llPIV. ~)r = 25

11m. The scale bar indicates 25 11m. QDp: Qcr = I0:20 llL/hr

Figure 6.17 shows the fluorescent image of the non-Newtonian droplet formation,

which has to be processed in order to obtain the flow field. The imaging speed is

controlled at 2000 frames per second considering the speed of the dispersed phase

and the size of the integration window.
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1=120ms
(e)

Figure 6.18 Flow field of the non-Newtonian droplet formation in the squeezing regime (QDP : Qcp

=10:20 ul.zhr, no electric field applied)

Figure 6.18 shows the flow field of the non-Newtonian droplet formation with

reference to different formation stages in Figure 6.17. The vector form of the flow

field is obtained by advance particle imaging correlation from the PlY processing

software supplied by Dantech. The 50% window overlap and the 32 pixel based

coherent filter is adopted during the processing. It can be seen that during the initial

stage of formation (Figure 6.18 (a) ~ (d)), the maximum speed occurs in the necking

region. The continuous phase induced stress creates flow recirculation. The next
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coming stage (Figure 6.18 (e) & (f)) shows an accelerated flow field before it breaks

up.

(d)

Figure 6.19 Vorticity ofthe dispersed phase during the droplet formation process in the squeezing

regime (QDP: Qcp=10:20 !-!L!hr, no electric field applied)

Figure 6.19 is obtained via scalar processing with the flow field shown in Figure 6.1(

The vorticity is defined as:

- aw av - au aw - av au-
w=V'xV=(---)i +k(---)j +(---)k

ay az az ax ax ay

For the 2D flP1V measurement, it can be simplified as:
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Figure 6.19 (a)~(c) indicate that in the initial phase of droplet formation, the

recirculation occurs in the necking region. When more fluid is accumulated, flow

recirculation becomes observable in flow front of the droplet due to the shear stress

acted at the interface, see Figures 17 (d) ~ (t).

5mm/s -
5mm/s

t=O ms

5mm/s

(a)

Flow front

/
5mm/s

t=25 ms (b)

t=50 rns je)

5mm/s

t=100 ms (e)
. . ....

t=.75 rns (d)

5mm/s

t=125 ms (f)

Figure 6.20 Flow field of the non-Newtonian droplet formation in dripping regime (QDP : Qcp=10:80

llL/hr, no electric field applied)

Figure 6.20 shows the velocity distribution of the non-Newtonian droplet in dripping

regime. The overall speed is higher than that in the squeezing regime and the droplet

size is smaller due to the larger shear stress generated by the continuous phase.

Figure 6.20 (a)~(e) show similar distributions where the maximum speeds occurs

near the necking region. The major difference between squeezing and dripping is

indicated in Figure 6.18 (e) and Figure 6.20 (t). Droplet breakup in squeezing is

dominated by the pressure gradient caused by the blockage of microchannel while it
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is highly influenced by the elongated shear in dripping regime. Therefore the overall

speed is much higher in the dripping regime and droplet shape is elongated into thin

thread.

(a)

(c)

(b)

(d)

(e) (f)

Figure 6.21 Vorticity of the dispersed phase during the droplet formation process in the dripping

regime (QlJJ' : Qcp =10:80 u.L'hr, no electric field applied)

Figure 6.21 presents the corresponding vorticity distribution of droplet formation in

the dripping regime. When the droplet begins to form (Figure 6.21 (a) ~ d)), the

vorticity can be seen primarily in the necking region, similar to that in the squeezing

regime. In the final stage of formation, the vorticity becomes obvious at the flow

front of droplet. From Figure 6.21 (e) ~ (f), the vorticity at the flow front grows

significant, caused by elongated shear of the dripping. Figure 6.21 (f) clearly
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demonstrates two regions in both the upper and lower area at the flow front where

both positive and negative vorticity is presented.

8mm/s·

t=O ms

1mm/s

t=40 ms (e)

5mm/s

(a)

t=60 ms (d)

5mmls

t=20 ms (b)

t=80 ms (e)

3mm/s'

t=90 ms (f)

5mm/s········

t=100 rns (9)

t=110 ms (h)

Figure 6.22 Flow field of the non-Newtonian droplet formation in the dripping regime with AC

electric field (QDP :Qcp =10:80 flL/hr, V =1 KY, f =1 KHz)

Figure 6.22 illustrates the flow field of non-Newtonian droplet formation under the

influence of AC electric field. When compared to the results without the application

of electric field, the time required for the whole process is shortened. As seen in

Figure 6.22 (f) ~ (h), the forming and breakup of the droplet are accelerated by the

AC electric field. The non-Newtonian droplet is further deformed via the AC field so

that a "flat" interface is observed.
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(a)

(f) (9)

(h)

Figure 6.23 Vorticity distribution of the dispersed phase during non-Newtonian droplet formation with

AC electric field in the dripping regime (QDp: Qcp = l O:80 IlLIhr, V =1 KV, f =1 KHz)

Figure 6.23 shows the vorticity distribution under the influence of AC electric field.

The high level of vorticity is observed near the necking region and the flow front.

Evidence of flow recirculation at the flow front is shown in Figure 6.23 (g) & (h). In

both of the figures, vorticity at the flow front is the highest with the presence of AC

field, indicating that the AC field induced Maxwell stress prompts the vorticity in the

interface leading to the flow recirculation.
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6.4 Summary

Non-Newtonian droplet formation In flow focusing microchanne1s was

systematically studied by considering the combination of applied AC electric fields

(voltage & frequency), flow conditions (Ca & QlJp) and geometries (orifice size).

The dynamics of non-Newtonian droplet formation was first addressed, where the

formation of satellite droplet and evolution of filament thickness was analyzed. AC

electric field induced Maxwell stress were found to be a stimulation of interfacial

instability, thus prompting the formation process and leading to a smaller size of

droplet. The non-Newtonian droplet size control can be achieved by the

implementation of an AC electric field. More specifically, the applied voltage is

more crucial as the size control can only become significant when the voltage exceed

a certain value, while the frequency takes effect only under high voltages. Flow

conditions and geometries, which highly influenced the hydrodynamically induced

shear, plays an important role in tuning the droplet and its formation regime shifting.

The combination of all the parameters provides the flow focusing microchannel with

diverse formation possibilities.

The effective capacitance model for the AC field tuned non-Newtonian droplet

formation was proposed based on the discovery of frequency dependent formation

characteristics. The system capacitance circuit was analyzed. Comparisons between

the model and the experiment are made, good matching is achieved and the power

law index is analyzed for each geometry.

Finally, the high speed f..lPIV measurement was conducted to quantitatively address

the non-Newtonian droplet formation process. Droplet formation dynamics in the

squeezing, dripping regimes were measured. The influence of the AC electric field
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on non-Newtonian droplet formation was also explored. Flow fields were obtained

via advanced cross correlation processing method. The indication of flow

recirculation, vorticity, was also presented. Results show that flow recirculation is

more significant in dripping regime than that in squeezing due to the elongated shear.

The electric field generated Maxwell stress deforms the interface into a "flat" shape

and strengths the flow recirculation.
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Chapter 7 Particle Free Optical Imaging of Flow Field by

Liquid Crystal Polarization

7.1 Introduction

Liquid crystals (LCs) are well known for their optical properties, whose orientations

can be tuned via various stimuli. In fact, LCs' orientations are sensitive to

electromagnetic fields, chemical presence, surface property and hydrodynamic

pressure gradient [195, 211-213]. Recent studies showed that their sensitivity to bio

samples endure themselves to be bio sensor [195, 213, 214]. LCs also respond to a

surface treatment, namely surface anchoring condition [121, 122, 173]. More

importantly, flow field also can influence LCs' orientation, which makes a perfect

condition for optofluidic research [10, 11].

Investigation on behaviors of liquid crystal under external fields has been reported

for the past decades, such as electric field [124, 215-217], temperature field [200,

201, 211] and shear flow at normal scale [218]. But the LCs' flow behavior is still

unexplored in modem microfluidics. The coupling of flow field with molecular

reorientation at micro scale is yet to be studied so as to reveal the relation between

each other. The flow confinement of LCs provided by micro fluidics is ideal for

research upon surface treatment, bio sensor and flow visualization due to the refined

control of flow conditions. Microchannel fabricated by modem microfluidic

technology has a resolution of the order of urn [132, 137]. The ease in geometry

design and channel fabrication also provides benefits. Besides, nano-liter per hour

flow rates can be achieved by modem syringe pump, which opens the door for

exploring at a different scale. Under different flow conditions caused by varying flow

rates, channel geometries or surface anchoring conditions, LCs will display different
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fringe patterns illuminated by polarized light source. On one hand, all the refined

controls will add to maneuver LCs' molecular orientations. Reversely, fringe patterns

obtained by LCs' polarization reveal the flow condition, which achieved flow

visualization. Traditional flow visualization method utilizes the seeding particles to

track flow field, which is generally termed as particle image velocimetry (PIV).

However, the resolution of the traditional method is strongly limited by the size &

concentration of the seeding particle causing the vulnerability in micro-scale

measurements. Therefore, LCs show a great potential in flow visualization under

microfluidic environment.

4-Cyano-4'-pentylbiphenyl (5CB) is adopted in the investigations as it remams

nematic phase under room temperature. 5CB is a type of nematic liquid crystal (NCL)

called calamities which has a rod-like molecular structure [120]. The rod-like

molecular structural become observable illuminated by polarized light as it is in

nematic phase. Most of the literatures have been focusing on the its' dynamic

behavior under electric field [124,215-217,219]. Very few works have been done to

study the reorientation under hydrodynamic pressure gradient at micro scale [212].

The nozzle/diffuser microchannel, also called rectifier [90, 203, 220, 221], is a well

reported geometry which is utilized to show the inter connection of the flow field and

5CB molecular reorientations.

In this chapter, the dynamic responses of 5CB liquid crystal in the nozzle/diffuser

microchannel under different flow rates are represented. The nozzle/diffuser design

is also known for its ability to create flow recirculation [203,220]. When 5CB flows

within the geometry, the rod-like molecules are reoriented due to the flow induced

shear (flow shear) and the flow recirculation created. The interconnection between

the flow condition and molecular reorientation is investigated and analyzed. Three
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opening angles - 15°, 30°, 45° - are designed to study the geometrical effects on

the fluid field visualized by the LC polarization. The results clearly show the

influence of flow condition upon reorientation of molecular structure, which in tum

demonstrates 5CB' s potential application in flow visualization.

7.2 Materials and method

,,," ,,, '""f~

I
1I111Uulf¥\

Figure 7.1 Experimental setup for visualizing single phase liquid crystal flow in nozzle-di ffuser

microchannels

Figure 7.1 demonstrates the overall setup configured for performing the experiments.

The optical setup consists of a diode pumped solid state laser of wavelength 405 nm,

a collimating lens, two objective lenses, one set of polarizer-analyzer combination, a

tube lens and a high speed camera interfaced to a PC. The syringe which contains

5CB is driven by the syringe pump and connected with the nozzle-diffuser

microchannels via polytetrafluoroethylene (PTFE) tubing. The camera acquires the

images interfaced to the personal computer (PC). PC uses for image processing as

well as syringe pump control through the controllers as shown in Figure 7.1. Further
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details of the optical set up and fluidic set up configured for this study as given

below.

7. 2.1 Optical setup

The dynamic response of the 5CB liquid crystal in nozzle/diffuser microchannels is

observed with the optical setup as shown in Figure 7.1. A Diolde pumped Solid State

laser (MDL 100 mW) at 404 nm wavelength is chosen for illumination. A set of

polarizer and analyzer (from Thorlabs Inc.) is configured at cross polarization state

for the purpose of revealing 5CB dynamic response to the flow induced shear. A

microscope objective lens (Olympus 10X/O.3NA) is used to focus light into the

micro channel and an infinity-corrected objective lens (Olympus 50X/O.5NA) is used

for collection of images from the microchannel which is then mapped onto the high

speed camera (Phantom m310) through a tube lens (Thorlabs Inc.). The high speed

camera can capture 3,200 frames per second at full resolution of 1280 x 800, which

has the ability of capturing the 5CB response in the nozzle/diffuser microchannel. All

experimental results are recorded at the speed of 500 frames per second.

7. 2. 2Fluidic setup

Centoni neMESYS high precision synnge pump and gas tight microliter syringe

(Hamilton Gastight 1725) are utilized to create confined flow condition. PTFE micro

tubing is chosen to connect syringe and microchannel in case of chemical corrosion.

7. 2.3 Materials

The liquid crystal adopted IS the single component liquid crystal 4-Cyano-4'­

pentylbiphenyl (5CB), with chemical formula ClsHI9N, purchased from Frinton

Laboratories (FR-2240). 5CB is prepared without additional treatment and it is in the
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nematic phase as temperature of the microchannel is controlled at 24°C. It is

transition from nematic phase to isotropic phase occurs at temperature of 33 °C.

7.2.4 Microchannel

The nozzle/diffuser microchannel is prepared by standard soft lithographic procedure

followed by polydimethylsiloxiane (PDMS, Dow Corning Sylgard 184) process and

plasma bonding with one slice of microscope glass spin-coated with one thin layer of

POMS to ensure uniform surface property. After exposure to the plasma, the PDMS

surface becomes hydrophilic, the surface anchoring changes from homeotropic to

degenerate planar [122]. It will gradually turns back to hydrophobic and homeotropic

within 1-2 hours, depending on the ambient parameters such as room temperature

and humidity. The microchannel was generally stored for more than one day to

ensure the homeotropic surface anchoring.

Outlet

to
~
C/l
CD..,

Inlet

(a) Overall microchannel layout (b) Inner structure of the flow cell

Figure 7.2 Representative diagram ofthe microchannel,

Figure 7.2 (a) shows the overall layout of the microchannel while Figure 7.2 (b)

shows the flow cell of the microchannel. In total 10 flow cells built the microchannel,

Both nozzle and diffuser directions are tested in the experiments. Width of the
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microchannels are ~ =150 11m, W2 =25 11m respectively with the depth d =35 11m.

Here, 'a' represents the opening angle of the flow cell. Microchannels with three

opening angles - 150
, 300 and 450

- are designed and fabricated for investigations.

7.3 Results and discussion

7. 3.JFlow field inducedfringe patterns in JSO opening angle microchannel

(1)
,.....;

N
N
o
Z

5/lUh 7.5 ~lUh to ~lL!h 15 /lUh
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(a) Fringe patterns under flow rates of 5~25 microliter per hour
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(b) Fringe patterns under flow rates of 30~50 microliter per hour

Figure 7.3 Fringe patterns of 15° opening angle micro channel along diffuser and nozzle directions.

Figure 7.3 shows results for 15° opening angle microchannel at different flow rates

along both nozzle and diffuser directions. It is to be noted that the non-linear

convection term can be ignored for flow at low Reynolds number (Re ~ 10-3
) , and

the governing equation becomes linear. Under this condition, flow should be

reversible and insensitive to the flow direction and in this case, the fringe pattern

should be identical for flows of both directions [221]. However, fringe patterns

demonstrated in Figure 7.3 show a sensitive case, which is majorly due to the non-

linear fluid properties. When the liquid crystal flows along the nozzle and diffuser

directions, its rod like molecules experience the contraction and expansion

respectively causing the flow-direction-sensitive fringe patterns.

In this work, 15° is the smallest opening angle among all microchannels. Small angle

leads to less pressure variation along flow direction and thus the optical pattern

varies gradually. Figure 7.3 (a) shows the results when the flow rate varies from 5

IlLih to 25 IlLih along both diffuser and nozzle directions. The fringes shift by 20
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urn to 80 urn along the flow direction for both directions as flow rate increases from

5 ~L1h to 7.5 ~L1h, depending on the position of each fringe. Fringe pattern is

directly related to the LC molecular orientation which is influenced by the flow shear.

Within certain range of flow rates, larger flow rate results in a larger shear indicating

more influence on the molecular orientation. Fringe pattern shifts gradually along

both flow directions at 5, 7.5 and 10 ~L/h. Fringe pattern near the corner indicates

the occurrence of flow recirculation. The fringes continue to shift furtherly

increasing the flow rate. It shifts along the flow direction and the corner region is

occupied by more recirculation patterns. The major difference between nozzle and

diffuser directions is the sudden geometrical expansion of nozzle which facilitates

the recirculation. That explains why flow recirculation can be seen from flow rate of

5 ~L/h along nozzle direction while it occurs only at 10 ~L/h along the diffuser

direction.

The thread-like patterns, normally termed as topological defects, appear as shown in

Figure 7.3 (b). When large molecular reorientation gradient applied and 5CB's

molecular orientation cannot change continuously, "threads" will occur. We can

conclude from Figure 7.3 (b) that the diffuser direction encourages the threads as

compared to the nozzle direction. The diffuser inlet dimension is 25 urn which is

much smaller than the nozzle inlet's 150 urn, This leads to a much larger molecular

reorientation gradient. No significant variation can be observed via increasing flow

rates as the microchannel is covered with threads. The results in the diffuser direction

shows a relatively symmetric flow structure whereas the results in the nozzle

direction are asymmetric largely due to the sudden expansion geometry of the nozzle,

which agrees with other reported results [221]. The flow characteristics indicated

from Figure 7.3 agrees well with the literatures. The fringe pattern obtained by LC
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polarization gives a clear indication of flow field and thus is capable of flow field

characterization.

Left
Recirculation

Aqainst/'
Flow Direction

Along.
Flow Direction

Diffuser

Right
Recirculation

c

It
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Left
Recirculation

Nozzle
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Flow Direction

Along
Flow Direction

Right
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Figure 7.4 Fringe pattern characteristics along both diffuser and nozzle directions

Figure 7.4 presents the characteristics of the fringe patterns with emphasis on fringe

pattern distributions. Fringe patterns can be divided into two major groups based on

their locations: (1) at the central region and (2) at the comer region. With reference to

the flow direction, there are two types of fringes at the central region: (1) along and

(2) against flow direction. Fringes in the comer region are due to flow recirculation.

We will address these types of fringes in the following sections.
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7. 3.2Fringe density for different opening angles under various flow rates
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Figure 7.5 Variation in fringe density as function of flow rates for opening angles

Figure 7.5 shows that the fringe density is influenced by flow rate, opening angle and

flow direction as well. Fringe density is defined as:

(7.1)
N/A

XLJJ-15°,35

XX* =--=-=-­
X LJJ-15°,35

Where X * is the dimensionless fringe density, X is the dimensional fringe density,

XDI-W 35 represents the fringe density of the 15° opening angle channel along the

diffuser direction flowing at the rate of 35 uLh, N is the total number of fringes

and A is the area of one flow cell.

The general trend as seen in Figure 7.5 is that larger opening angles possess higher

X *. Although X * has a small fluctuation at relatively low flow rates, the overall

results indicates a decay in X * as the flow rate increases. At low flow rates, X *

tends to have a small value due to small molecular reorientation gradient caused by
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the flow shear. X *becomes stable when the shear is strong enough to realign the

molecular orientation. X * turns to decay on further increasing the flow rate as the

fringe number in the central part is reduced. It is seen that fringe density gradient

increases significantly when adopting the 45° opening angle.
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Figure 7.6 Variation in central fringe density as function offlow rate for various opening angles with

flow along and against diffuser direction

Figure 7.6 analyzes the fringe pattern located at the center. The influence of flow rate

on the central fringe density along diffuser direction is shown in Figure 7.6. The

fringe density along the flow direction is a clear evidence of flow shear induced 5CB

molecular reorientation while the one against is caused by contraction geometry. A

threshold of fringe densities exists for both along and against flow directions,

meaning flow field tuned fringe pattern is only sensitive under certain range of flow

rate. As the flow rate increases, the flow shear applied is strong enough to realign the

molecules. The threshold flow shear for the respective fringe density against flow

direction can also be deduced based on this. Results in Figure 7.6 show that the

opening angle is also one critical parameter. The threshold is noticeable for small
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opening angles. However, for large opening angles, the central fringe density tends to

stabilize due to the flow shear created by geometry.
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Figure 7.7 Variation in central fringe density as function of flow rate for different opening angles with

flow along and against nozzle direction

Figure 7.7 analyzes the results for nozzle direction. Similar to the previous case,

thresholds are observed for flow along and against nozzle directions. Both flow rate

and opening angle have influence on the fringe density.

7.3.3Flow recirculation patterns oj 5CB liquid crystal for diffuser and nozzle

directions

U
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Figure 7.8 Flow recirculation fringe pattern for different opening angles
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Figure 7.8 shows the fringe pattern due to flow recirculation which is one of the

distinctive flow features in nozzle/diffuser microchannel. We obtained fringe

patterns for diffuser/nozzle microchannels with three different opening angles: 15°,

30° and 45°. The flow recirculation is influenced by the flow rate and opening angle.

So does the 5CB molecular orientation.
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Figure 7.9 Variation of flow recirculation central positions in diffuser direction with flow rates for

different opening angles

Figure 7.9 shows central positions of recirculation pattern shift with flow rate and

opening angle along the diffuser direction. The position varies significantly with

flow rates and opening angles along horizontal direction (x direction). However, it

does not vary vertically. Therefore only the positon along the x direction is presented.

The central position of flow recirculation pattern is pushed to the comer when

increasing the flow rate. Smaller opening angles show a good trend with relatively

good symmetry. The largest opening angle, 45°, has a larger variation under flow

rates from 10 to 20 ~L/h. The reasonable trend of the central positon of flow

recirculation demonstrates the potential of flow visualization method via LC
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polarization involving flow recirculation in micro-scale, which is challenging for

traditional PIV measurement.
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Figure 7.10 Variation of flow recirculation central positions along nozzle direction with flow rates for

15° opening angle

Figure 7.10 presents central positions of flow recirculation patterns along nozzle

direction under different flow rates for 15° opening angle. The center position

depends on both flow rate and opening angle and it varies in both horizontal and

vertical directions (x and y directions, respectively) as shown in Figure 7.1O. The

center positon is pushed to two comer regions on increasing the flow rate which is

similar to the result in the diffuser direction. The central positon in y direction rises

initially with flow rates from 5 f..lL/h to 7.5 f..lL/h and then declines with flow rates

from 12.5 IlL/h to 35 f..lL/h. The initial increase is due that the central position is

close to the center of the microchannel and influenced by the flow. When the flow

rate is larger, the center positon is pushed to the comer. As the result of the flow

recirculation induced flow field, the central position in y direction drops. The results

obtained from the imaging of LC polarization demonstrate the characterizations of

flow recirculation along nozzle direction and shows its potential in flow visualization.
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7.3.4 Topological defects represented by Erikson number

Normal flow stability is characterized by Reynolds number Re. However, LCs flow

shows instability at very low Re (typically Re ~ 10-3
) . As such Erikson number

should be considered for LCs flow [121]. Erikson (Er ) number is defined as:

Er = vj.1L
K

(7.2)

Where v is the flow velocity, j.1 is the dynamic viscosity, L & K represent the

characteristic length and elastic constant respectively. For 5CB, we have j.1 =32 cSt,

K =5.5xlO-12 N
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Figure 7.11 Critical Er number for different opening angles

Figure 7.11 shows the critical Er number for different opening angles. Critical Er

number indicates the critical flow condition when the threads appear. We can

conclude that the critical Er number drops drastically when 5CB flows in larger

opening angle while difference between nozzle and diffuser direction is not

significant. Large opening angle promotes the flow shear and has a relatively high
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fringe density and it tends to show the thread even at low Er number. When Er

number is high enough, the thread will appear and make it hard for fringe pattern

observation. Therefore the critical Er number defines the range of the flow

condition, within which the flow visualization via liquid crystal polarization is

applicable.

7.4 Summary

In this chapter, we have investigated the flow field by analyzing the liquid crystal

polarization induced fringe patterns in nozzle/diffuse microchannels. The method is

implemented by imaging of the flow of the liquid crystal in microchannels under a

polarization based optical interferometric configuration. The flow field is visualized

and characterized by analyzing the obtained fringe patterns which indicate the flow

induced shear and demonstrate the characterization of the flow recirculation.

Asymmetrical flows between the nozzle and diffuser directions are proved VIa

analyzing the associated fringe patterns. Fringe density is proposed to relate the

fringe patterns to the flow induced shear. Central positions of the flow recirculation

obtained from the fringe patterns characterize the flow field. The critical Er number

is used to address the operational range of this method due to the occurrence of the

topological defects.

The concept of particle free imaging of flow field achieved by liquid crystal

polarization provides a distinctive method for flow field visualization and its related

analysis. It shows great advantages over the traditional adopted PIV method in flow

measurements at micro-scale.
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Chapter 8 Investigations of Interfacial Dynamics of Droplet

Production via Particle Free Flow Visualization Method

8.1 Introduction

Flows within microchannels differ from that at macroscales due to the drastic drop in

the inertial effects, and thus have very low Reynolds numbers [151, 220]. An

interesting aspect of LC microfluidics flow is the ability to precisely control and

manipulate flows [100, 105, 222]. The use of complex fluids as transport medium

has paved way to the creation and study of novel phenomena, leading to varieties of

applications. For example, the use of emulsions has emerged as droplet based

microfluidics [92, 97, 104, 108, 110, 223]. The emerging field of topological

microfluidics can control complex anisotropic interactions between molecular

structures of liquid crystalline phases with geometrical constraints provided by

microchannels, leading off a range of novel phenomena and potential nove]

applications on microfluidic platforms [10,121,126,212].

With the occurrence of microfluidic based droplet and its manipulation methods, the

production of liquid crystal droplet provides new opportunities on the investigatior

of droplet formation involving anisotropic fluids [195, 224]. Coupling with the

external AC electric field, the breakup dynamics of the LC droplet become more

interesting. The controlled production of LCs droplet offers applications for bio­

sensors, and other tunable fluidic component [131, 214, 215, 225].

The optically revealed flow field via the LC polarization essentially achieves the

flow field visualization. The widely adopted flow field visualization method vi,

tracking the seeding particle, namely micro particle imaging velocimetry (~PIV), is

well known in flow measurement at micro scale [202, 210, 226, 227]. However, it i:
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vulnerable in measurements of wall/interfacial boundary dynamics due to the nature

of the seeding particles. To overcome the challenges, particle free methods are to be

considered. LCs, whose molecular orientation is tunable via flow field and

observable via POM setup, show great potential in flow field visualization.

In this chapter, the experiment of LC droplet formation in flow focusing

microchannels considering both the conditions: with and without AC electric field

were conducted. The investigation of droplet formation dynamics of LC was

provided. Results of experimental observation under crossed polarization setup were

analyzed for illustration of its corresponding flow field. Droplet size control methods

via hydrodynamic shear and AC electric field were presented. The AC electric field

tuned liquid crystal droplet formation was highlighted.

8.2 Method and materials

/I IHIIM,*

Figure 8.1 Schematic diagram of the microchannel on liquid crystal droplet generation with AC

electric field

Figure 8.1 illustrates the overall experimental setup. It consists of the optical setup,

microchannel, fluidic setup and the electric setup. The optical setup is utilized to
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reveal the orientation of the LC within the microchannel. The microchannel is a flow

focusing geometry used to produce the LC droplet. Fluidic system is meant for the

refine control of flow conditions, namely the flow rates. Finally the electric system is

adopted for the application of the AC electric field.

8.2.1 Optical setup

The dynamic response of LC droplet formation in microchanne1s is observed and

recorded by the optical setup. Before the laser light (produced by A Diolde pumped

Solid State laser, 405 nm, MDL 100 mW) illuminates the microchannel, it has to be

collimated by the collimating lens (Thorlabs Inc.), polarized by a polarizer (Thorlabs

Inc.) and then focused by a microscope objective lens (Olympus 10X/O.3 ). Being

illuminated by the laser light, the image of the microchannel is magnified by another

objective lens (Olympus 50X/0.5 NA), polarized by a analyzer, mapped by a tube

lens (Thorlabs Inc.) and finally recorded by a high speed camera (Phantom m310).

The high speed camera can capture 3200 frames/s at the full resolution of 1280x800

and reaches its maximum speed of 650,000 frames/s at the resolution of 64 x8, which

is adequate for the experimental observation.
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8.2.2 Microchannel

Figure 8.2 Schematic diagram of the flow focusing microchannel

Figure 8.2 shows the schematic diagram for the microchannel. The microchannel

consists of two major parts: the flow focusing channel and the electrodes. The flow

focusing geometry consists of three inlets and one outlet. The center inlet severs the

dispersed phase (LC), while the other two inlets are symmetrically located for the

continuous phase flow. Fluids from the three inlets converges in the cross junction

where the LC droplet is generated.

Four electrodes are fabricated, among which two are connect to a high voltage

supplier and the other two are grounded, so that desired electric field can be achieved.
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Electrode 1

Electrode 2

L: lectrode 4

Figure 8.3 Layout and dimensions of the flow focusing microchannel with non-contact type of

electrodes. DP, CP denotes the dispersed phase and continuous phase respectively.

The flow focusing microchannel is fabricated by the standard soft lithographic

procedure, followed by the polydimethylsiloxiane (PDMS, Dow Corning Sylgard

184) process and plasma bonding with one slice of microscope glass. After the

plasma bonding procedure, the microchannel goes through the UV photoinitialized

Acrylic acid procedure to modify the surface wettability from hydrophobic to

hydrophilic so that the LC in water emulsion can be formed.

As shown Figure 8.3, four electrodes are designed and fabricated by melting indium

alloy (Indium Corporation of America) into the electrode channel, and are then

connected to the electric system via electric wires.

The major dimensions are illustrated in Figure 8.3. The microchannel width TY:h =100

urn, height of microchannel is fabricated to be h=35 urn and the gap between the

electrode and channel wall, Wga , is designed to be 50 urn, The orifice is designed
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downstream of the cross junction to facility droplet formation via enhancing the

viscous shear from the continuous phase. w,,, =50 11m is adopted in our experiments.

8.2.3 Fluidic setup

As shown in Figure 8.1, three synnges (Hamilton gas tight synnges 1725xl &

1750x2) are utilized for storing the dispersed phase (DP) and continuous phase (CP).

Then the fluids, driven by the Centoni neMESYS high precision syringe pump, flow

through the polytetrafluoroethylene (PTFE) tubing and enter the microchannel. The

controlling of the flow rates are achieved by the computer connected to the syringe

pump.

8.2.4 Fluids

Two types of fluids, liquid crystal and water, are used in the experiment,

corresponding to the dispersed phase and continuous phase respectively. The liquid

crystal selected in the experiment is the single component liquid crystal of 4-Cyano­

4'-pentylbiphenyl (5CB), with the chemical formula of ClsH19N, purchased from

Frinton Laboratories (FR-2240). 5CB is prepared without additional treatment and it

stays in the nematic phase as the temperature of the microchanne1 is controlled at 24

°C. Its transition from nematic phase to isotropic phase occurs at temperature of 33

°C. 2% by wt. of Sodium Dodecyl Sulfate (SDS, Sigma Aldrich) is added into the DI

water to assist the droplet formation and prevent the droplet coalescence.

8.2. 5 Electric setup

An AC Electric field is adopted to control the liquid crystal droplet formation, as

shown in Figure 8.1 and Figure 8.3. The electric field is generated by combining the

Agilent 33500 B waveform generator with the Treck 5/80 high voltage amplifier.
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The desired electric field is achieved by amplifying the sine wave signal generated

from the waveform generator. One two-channel oscilloscope (Tektronix TDS210) is

attached to the amplifier for experimental safety monitoring. The applied AC

frequency varies from 500 HZ to 5 KHz with a constant voltage of 500V (p-p).

8.3 Results and discussion

8.3.1 Interfacial dynamics ofLC droplet formation

t=O ms
~4

'= * """
% ~.".

%:/ -
50 m

~ t=Oms
,II
% *% ~ -50 m

t=Oms
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(a) 0IJp:Ocp=5:20 ~Llh

Squeezing Regime

(b) ODP:Ocp=5:60 ~Llh

Dripping Regime

(c) ODp:Oo,=5:100 ~Llh

Figure 8.4 Time evolutions of the LC droplet formation

Figure 8.4 illustrates time evolutions of LC droplet formation under different flow

ratios (QDP =5 uL'h}. The LC droplet formation sequence, the flow front of LC

dispersed phase, necking and the final break up are shown. The droplet formation in
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flow focusing microchannel is controlled by the elongated flow induced shear from

the continuous phase. The LC accumulates at the flow front and deformed by

elongation before entering the orifice region. The droplet size shows a strong

dependency on the flow rate ratio (QcP I Qf)I')' Higher flow rate ratio of Qcp I QDP

produces droplets of smaller size.

The fringes within the microchannel are indications of the LC molecular orientation

which is determined by the flow induced shear. Therefore, the fringe patterns

generated in the droplet production elude the corresponding flow fields. Figure 8.4 (a)

shows the fringe pattern produced in the LC droplet formation under low Qcp .

Droplet formation process starts with the advancement of the flow front the LC

droplet up the orifice (from [=0 to [=227 ms). The LC filament forms and continues

to fill the orifice ([ =227 ms to [=472 ms). Due to the pressure and viscous stress

exerted by the CP, necking occurs at [=490 ms and the final breakup appears at [

=509 ms. Figure 8.4 (b) & (c) shows the LC droplet formation at higher values of

Qcp. The fringe patterns differ due to the higher shear caused by flow fields of the

CP. The results show that the fringe patterns near the flow front indicate the

occurrence of flow recirculation ((b) [=318 ms & (c) [=250 ms). The topological

defects appeared as the "threads" in the LC, appear in both the necking ((b) [=364

ms & (c) [=342 ms) and breakup stages ((b) [=382 ms & (c) [=355 ms) as a result

of the large hydrodynamic stress. When the hydrodynamic stress is large enough

such that the molecules of the LC cannot reorient gradually, the threads appear [125,

126]. With an increasing of water flow rate, more threads appear at an early stage of

droplet formation.
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Figure 8.5 The time evolution of the LC droplet formation at higher flow rats.

Figure 8.5 shows the time evolution of the LC droplet formation at a constant

QDl' / Qu =1 :8. Similar formation stages are observed in Figure 8.5 (a) & (b). As

compared to those shown in Figure 8.4, the density of fringe pattern is higher due to

the higher flow rates. When the flow rate is further increased (Figure 8.5 (c)), the LC

droplet breakup process transits from dripping regime to jetting regime. The jetting

regime occurs as a result of the large elongate shear induced by the continuous phase.

The tip of the jet is pushed further downstream. The domination of the topological

defects inhibits the visualization of flow field, as illustrated in Figure 8.5 (c). The

occurrence of dominating "threads" defines the operational limit of this method.
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8.3.2 Droplet formation andfilament dynamics
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Figure 8.6 Dimensionless fringe density of the LC droplet versus dimensionless time.

Figure 8.6 shows the the dimensionless fringe density of the LC droplet increases as

the dimensionless time is increased. The dimensionless fringe density of the LC

droplet is defined as:

X N/A
X*=--=--

X2.5110 X2.5110

(8.1)

Where X * is the dimensionless fringe density, X is the fringe density, X25110 depicts

the fringe density of the LC droplet generated when QDp: Q:,p=2.5:10 flL/h, N is the

total number of fringes in the droplet and A is the area of the droplet. The time

begins when the last droplet breaks up and ends when the current droplet is formed

and detached. The time is non-dimensioned by the total time required for each

droplet formation.
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Ca = ,ucWd /2 /l,U = ,ucQI' [_1 1_]
a We Zoh W:)r 2W:'h

(8.2)

Where ,uc represents the viscosity of the continuous phase, a = 1.7 mN/m depicts the

interfacial tension between water and liquid crystal, W:" w: are the channel width of

the DP and CP respectively, /l,U stands for the velocity variation in the flow

focusing region where the droplet formation happens, QI' is the flow rate of the CP,

W:h , TJlor & h denotes the channel width, orifice width and channel height

respectively as shown in Figure 8.3. The definition considers both the geometry and

flow condition of the CP. Figure 8.7 shows that the fringe density increases with

increasing value of Ca . The increment of Ca is caused by the higher Qcp leading to

a higher induced shear, which is represented by a higher fringe density.

Shown in Figure (b)

(a)

T = 0.963

(b)

T =0 969

Figure 8.8 Filament evolution for QIJI' :QI' =2.5: I0 )JL/h.

In Figure 8.8 (b), we show a sequence of images of the filament deformation via the

LC reorientation induced fringe patterns. The fringe pattern of the filament varies

with the thinning process. The fringe number increases dramatically during the

thinning process and reaches a maximum value before it breaks up.
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Figure 8.9 Dimensionless fringe number of the filament versus the dimensionless time

Figure 8.9 shows that the fringe number inside the filament increases with the

dimensionless time. The fringe number is non-dimensioned by the maximum fringe

number when QDP : ~y =2.5: 10 ilL/h. A rising trend is observed indicating an

increasing shear during the thinning of a filament and breaking process. The filament

experiences a relatively low shear at the initial stage and goes through a strong shear

leading to a rapid thinning, hence the fringe number of the filament increases. The

results suggest an exponential increasing of the fringe number as the function of

dimensionless time in the final thinning stage.

8.3.3 LC droplet/ormation tuned by AC electric field

The LC droplet is reported to be functional in fields of bio-sensing and flow field

visualization [126, 130]. The size control of the LC droplet is fundamental and

critical. In this section we propose the controlling method of the LC droplet

formation, both without and with AC electric fields in flow focusing microchannels.
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LCdroplet formation without electric field.
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Figure 8.10 The LC droplet diameter as the function of Ca .

Figure 8.10 shows the LC droplet formation in the flow focusing microchannel via

elongate flow of the continuous phase. The dependency of the LC droplet diameter

on the Ca is illustrated. The decreasing tendency suggests that a stronger viscous

shear generates a smaller droplet. On a log-log scale, the results show a good linear

relation between the droplet diameter and Ca. The relationship between the size of

the droplet and Ca is fitted by the least square method as:

D=aCa fJ (8.3)

The average value of the fitted exponent f3 corresponding to the experimental data

in Figure 8.10 is -0.315, which is consistent with that reported by Anna et al. [108].

When QDP =40 j.lL/h and Ca ~ 0.0084, the droplet formation transits from the dripping

to jetting regime. The exponent changes with the transition of formation regime.
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LC droplet (ormation tuned by AC electric field.

(a) f= aHz (b) f= 500 Hz (c) f =5000 Hz

Figure 8.11 Fringe patterns of the LC droplet with diverse electric fields. Applied voltage<St'O V (p-p).

When the LC droplet is generated under the influence of an electric field, electric

field induced instability will change the diameter of the droplet [95, 112, 113, 228­

230]. Figure 8.11 (a) shows the fringe pattern of LC droplet generated in the absence

of electric field. Figure 8.11 (b) and (c) show the fringe pattern of the LC droplet

generated in the presence of AC electric field with the applied frequencies of 500 Hz

and 5000 Hz respectively. The droplet diameter is shrunk by the AC electric field.

However, the fringe patterns are strongly interfered with the presence of AC electric

field. The irregular fringe patterns cover the whole droplet at the frequency of 5000

Hz. The irregular patterns will disappear once the electric field is withdrawn.
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Figure 8.12 The dependency of the LC droplet diameter on the frequency of the AC electric field. The

applied voltage=500 V (p-p).

As aforementioned, the droplet size drops with the presence of AC electric field.

Experimental data (Figure 8.12) shows a rapid decrease in droplet size at f =500 Hz.

The droplet size shrinks slightly and gradually when the frequency increases. This

provides a method for the LC droplet size adjustment. Results in Figure 8.12 shows

that the adjustment of the LC droplet diameter at the resolution of urn level is

achieved via tuning the frequency of AC electric field.

8.4 Summary

The dynamics of the LC droplet formation was investigated VIa liquid crystal

polarization, which was observed under the polarizer and analyzer set at cross

position. The fringe pattern due to the LC molecular reorientation is caused by the

flow field induced shear. Hence, the fringe patterns are directly related to the flow

field, which achieves the flow visualization. The fringe patterns that occurred in the
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droplet formation elude the shear level of the droplet. The majorly interfacial

distributed fringes suggest an interfacial determined flow field in the process of

droplet formation. Fringes in the droplet grow until the droplet breaks up indicating a

higher level of shear during the process of necking and breaking up. The filament

dynamics is revealed via LC polarization as they are difficult to be explored via

means of traditional PIV system. Fringe number of the filament is found to increase

exponentially before breaking up, implying a rising level of shear within the filament

evolving with its thinning process.

The hydrodynamic controlled droplet diameter was achieved via altering the flow

rates which influence the flow induced shear. A droplet size drop was observed via

increasing the Ca. An exponential size drop with the Ca was observed. In addition

to vary the flow rates, the AC electric field was applied via the electrodes fabricated

in the microchannel. A rapid size reduction was gained with the presence of AC

electric field. An increased frequency of AC electric field results in a slight shrinkage

of droplet size. The AC electric field is capable of fine tuning the LC droplet size at

urn level.
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Chapter 9 Conclusions and Future work

9.1 Conclusions

The emergence of microfluidics has gained intense research focus owmg to its

potentials in scientific research and industrial applications. Investigations of the flow

behavior of non-Newtonian fluids in microfluidic environments attract limited

attention due challenges that occurred when dealing with fluids of complex rheology.

Our investigations show:

~ The current monitoring method is adopted as the major method in the

experiment to measure the velocity of the non-Newtonian EO flow in a

rectangular microchannel. The fluorescent microscopy imaging method was

utilized to visualize the flow profile. The results show that the plug flow

exists for a PEO solution at moderate concentration. The zeta potential was

calculated through coupling a generalized Smoluchowski approach and the

power-law constitutive model. The zeta potential values showed a slight

variation with different PEO concentrations and the applied electric fields. A

constant zeta potential is suggested, which was proven to be valid through the

comparison between theoretical and experimental results. It can also be

concluded that in a shear thinning fluid, the EO driven flow can be enhanced

as the flow shear reduces the apparent viscosity.

~ The two immiscible layers electro-osmotic driven flow model with one layer

of conducting non-Newtonian fluid was proposed. The non-conducting fluid

is driven by the interface shear. Both the fluid consistency coefficient m and

flow behavior index n take heavily influence on the shape of the velocity

profile and the volume flow rate. The results show that the shear thinning
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effect improves the volume flow rate, making it ideal for both direct electro­

osmotic driving and hybrid driving.

~ Flow-focusing microchannels were designed and fabricated for the

investigation of droplet formations of Newtonian fluid under the influence of

an AC electric field. The dependency of droplet breakup regimes, and droplet

sizes on the external electric fields were studied. Results show that both the

electric voltage and frequency can precisely control the size of the produced

droplet in flow focusing microchannels.

~ Non-Newtonian droplet formation in flow focusing microchannels is

systematically investigated by considering the combination of applied AC

electric fields (voltage & frequency), flow conditions (Ca & QlJp) and

geometries (orifice size). The non-Newtonian droplet size control can be

achieved by the implementation of an AC electric field. Flow conditions and

geometries, which majorly determine the hydrodynamically induced shear,

plays an important role in tuning the droplet and formation regime shifting.

The combination of all the parameters provides the flow focusing

microchannel with diverse formation possibilities. The high speed flP1V

measurement was conducted to quantitatively address the non-Newtonian

droplet formation process. Results show that flow recirculation is more

obvious in dripping regime than that in squeezing due to the elongated shear.

The electric field generated Maxwell stress deforms the interface into a "flat"

shape and strengths the flow recirculation.

~ The flow fields were investigated by analyzing the liquid crystal polarization

induced fringe patterns in nozzle/diffuser microchannels. Asymmetrical flows

between the nozzle and diffuser directions were proven via analyzing the

170

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 9 Conclusions and Future work

associated fringe patterns. Fringe density was proposed to relate the fringe

patterns to the flow induced shear. Central positions of the flow recirculation

obtained from the fringe patterns characterize the flow field. The concept of

particle free imaging of flow field achieved by liquid crystal polarization

provides a distinctive method for flow field visualization and its related

analysis.

Y The dynamics of 5CB liquid crystal droplet formation were investigated via

liquid crystal polarization. The majorly interfacial distributed fringes suggest

an interfacial determined flow field in the process of droplet formation. The

fringe number of the filament was found to increase exponentially before it

broke up, implying that a rising level of shear within the filament evolved

during its thinning process. An exponential droplet size decrease with

increasing of the Ca was observed. A rapid size reduction is achieved with

the presence of AC electric field. An increase in frequency of AC electric

field results in a slight shrinkage of the droplet size. The AC electric field has

been capable of fine tuning the 5CB droplet size at urn level. The novel flow

visualization method via the polarization of liquid crystals proves to be

feasible in visualizing flow fields of interfaces and thin filament shows great

potential in flow field visualization.

9.2 Future work

Having performed the aforementioned investigations, some recommendations are

listed to better understand the non-Newtonian fluids in microchannels in the future.
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• The application of the EO driven flow of non-Newtonian fluids can be

expanded. The transportation of bio-samples is the current focus and

dynamical details of the EO driven flow of real bio-sample are required.

• The influence of surfactant on the dynamics of non-Newtonian droplet

formation is to be explored. The surfactant, which influences the interfacial

tension significantly, plays an important role in the dynamics. The role of

surfactant in the non-Newtonian droplet formation in the presence of electric

field is yet to be studied.

• The filament dynamics in the process of non-Newtonian droplet formation

should be further discussed to reveal the mechanism so as to deepen the

understanding of the "beads on string" phenomenon.

• The applications of the liquid crystal polarization In microfluidic

environments can be considered in fields of chemical sensing. The orientation

of liquid crystals is sensitive to the presence of various chemicals.
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Appendix A

A.I Plots of droplet diameter as a function of applied voltage at various
frequencies
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Figure A-I: Droplet diameter as a function of applied voltage at 500Hz where QPEO is 5ul/hr
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Figure A-2: Droplet diameter as a function of applied voltage at IOOOHz where QpEO is Sul/hr
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Figure A-3: Droplet diameter as a function of applied voltage at 5000Hz where QPEO is Sul/hr

Figure A-4: Droplet diameter as a function of applied voltage at 7000Hz where QPEO is Sul/hr
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Figure A-5: Droplet diameter as a function of applied voltage at 500Hz where QpEO is l Oul/hr
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Figure A-7: Droplet diameter as a function of applied voltage at 7000Hz where QPEO is 10/l11hr
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Figure A-8: Droplet diameter as a function of applied voltage at 1000Hz where QPEO is 20/lllhr
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Figure A-9: Droplet diameter as a function of applied voltage at 2000Hz where QPEO is 20Jlllhr
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Figure A-lO: Droplet diameter as a function of applied voltage at 5000Hz where QpEO is 20JlI!hr
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A.2 Plots of droplet diameter as a function of frequency at various applied
voltages
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Figure A-II: Droplet diameter as a function of frequency at 500V where QpEO is 5ul/hr
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Figure A-12: Droplet diameter as a function of frequency at 750V where QPEO is Sul/hr
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Figure A-13: Droplet diameter as a function of frequency at 250V where QPEO is IOul/hr
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Figure A-14: Droplet diameter as a function of frequency at 500V where QPEO is IOul/hr
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Figure A-IS: Droplet diameter as a function of frequency at 250V where QpEO is 2OIll/hr
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Figure A-I6: Droplet diameter as a function of frequency at 750V where QpEO is 20Ill/hr
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A.3 Plots of droplet diameter as a function of capillary number at various
applied voltages
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Figure A-17: Droplet diameter as a function of capillary number at 250V where QpEO is 51ll/hr
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Figure A-18: Droplet diameter as a function of capillary number at 500V where QpEO is Sul/hr

181

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Appendix

• 500Hz
120 'It 1000Hz

I ... 2000Hz
T 5000Hz

110 ! + 7000Hz

---- ~

E 100:::t
'-'....
Q)...... IQ)

90E Ico
i:5
......

80 !Q)

0..
0.... iii0 I70 ,

60
0.000 0.005 0.010 0.015 0.020

Capillary Number

Figure A-19: Droplet diameter as a function of capillary number at 250V where QpEO is l Oul/hr

130

120

110

----E 100:::t
'-'....
Q) 90......
Q)

E
co 80

i:5
......
Q) 70
c..
0....

600

50

40
0.000

t
i
+

0.005 0.010

Capillary Number

I
y
•

0.015

Frequency
• 500Hz
~ 1000Hz
... 2000Hz
T 5000Hz
+ 7000Hz

I•
0.020

Figure A-20: Droplet diameter as a function of capillary number at 500V where QpEO is 20J.Lllhr
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A.4 Plots of droplet diameter as a function of capillary number at various
frequencies
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Figure A-21: Droplet diameter as a function of capillary number at 5000Hz where QPEO is Sul/hr
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Figure A-22: Droplet diameter as a function of capillary number at 2000Hz where QPEO is lOul/hr
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Figure A-23: Droplet diameter as a function of capillary number at 1000Hz where QPEO is 20/l11hr
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Figure A-24: Droplet diameter as a function of capillary number at 5000Hz where QpEO is 20/lllhr
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A.5 Plots of droplet diameter as a function of capillary number for
different orifice widths
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Figure A-25: Droplet diameter as a function of capillary number at 750V and 2000Hz where QpEO is

5/-!11hr
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Figure A-26: Droplet diameter as a function of capillary number at 750V and 5000Hz where QpEO is

IO/-!11h
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Appendix B
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Figure B-1 Optical pattems ofJO a opening channel for both diffuser and nozzle directions. Scale bar

represents 50 urn,

The fringe patterns for 30 0 opening channel are presented in Figure B-1. Similar

results are obtained that the fringe also grows with the flow rate. The recirculation

pattern and asymmetric character also repeat themselves. At high flow rates, threads

due to the orientation gradient are obtained. Diffuser direction induced threads are

still more obvious than that of the nozzle.
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5 ~lUh 7.5 pJjh I () pUh

(a) Fringe patterns under relatively low flow rates

15 ~l[jh 25 ~lUh 25 pUh

(b) Fringe patterns under relatively high flow rates

Figure B-2 Fringe patterns of 45 0 opening channel for both diffuser and nozzle directions. Scale bar

represents 50 urn.

For larger angle results, as presented in Figure B-2 for 45°, the recirculation pattern

becomes more interesting, which will be discussed in the next section. Optical

patterns become unstable at low flow rate and the threads appear at a relatively low

flow rate making the observation difficult.
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m

(a) Schematic diagram of applying electric field (b) Without electric field (c) With electric field

Figure B-3 Optical pattern without and with the electric field coupling

Figure B-3 shows one result of applying an electric field along with the flow field.

Electric field strength is 105 kV1m. The threads disappeared on the application of the

electric field. The coupling of electric field and now field are still at a very early

stage and it is not the focus of this paper. We will continue the research on the

coupling effect in the future.
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