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Abstract
Compliant mechanisms are flexible structures that utilize elastic deformation

to achieve their desired motions. Using their unique mode of actuation, com-
pliant mechanisms can achieve highly repeatable motions that are essential for
high precision micro/nano-positioning applications. As a result, they have been
utilized for a wide range of applications like positioning mechanisms for high
resolution imaging systems, industrial nano-imprint and nano-alignment appli-
cations, and numerous other micro/nano-manipulation tasks. The performance
of the compliant mechanisms is highly dependent on their stiffness and dynamic
properties because these properties dictate their workspace, transient responses
and capabilities to reject disturbances. However, despite the importance of com-
pliant mechanisms, it is still an open challenge to optimize such properties when
these structures have multi-degrees-of-freedom.

This thesis addresses these limitations by developing an integrated design
methodology that can create multi-degrees-of-freedom compliant mechanisms
with optimal dynamic and stiffness properties. This methodology first employs
a kinematic approach to select suitable parallel-kinematic configurations for the
compliant mechanisms. Subsequently, a structural optimization approach is used
to automatically synthesize and optimize the sub-chains’ structural topology,
shape and size. In order to integrate the kinematic and structural optimization
approaches, a new topological optimization algorithm termed the mechanism-
based approach has been created. In comparison with existing algorithms, a no-
table benefit for the mechanism-based approach is that it can eliminate infeasible
solutions that have no physical meanings while having a flexible way to change
its topology during the optimization process. This algorithm has been shown to
be able to develop various devices such as a µ-gripper, a compliant prismatic
joint, and a compliant prismatic-revolute joint. A generic semi-analytical dy-
namic model that can accurately predict the fundamental natural frequency for
compliant mechanisms with parallel-kinematic configurations has also been de-
veloped for the proposed integrated design methodology.

The effectiveness of the proposed methodology is demonstrated by synthesiz-
ing a X− Y− θz flexure-based parallel mechanism (FPM). This FPM has a large
workspace of 1.2 mm×1.2 mm×6◦, bandwidth of 117 Hz, and translational
and rotational stiffness ratios of 130 and 108, respectively. The achieved stiffness
and dynamic properties show significant improvement over existing 3-degrees-
of-freedom, centimeter-scale compliant mechanisms that can deflect more than
0.5 mm and 0.5◦. These compliant mechanisms typically only have stiffness ra-
tios and bandwidth that are less than 50 and 45 Hz, respectively. The stiffness
and dynamic properties of the optimal FPM were validated experimentally and
they deviated less than 9% from the simulation results. Based on the inspirational
performance of the X− Y− θz FPM, we envision that the proposed methodology
can inspire a variety of high precision machines that have optimal performances.
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Chapter 1

Introduction

1.1 Motivation

Compliant mechanisms are flexible structures that are designed to have high com-

pliance in their actuating directions while having high stiffness in their off-axis

directions. As compliant mechanisms achieve their motions via elastic deforma-

tion, they can effectively eliminate dry friction, mechanical play, backlash and

wear-and-tear [1, 2, 3, 4, 5]. These unique characteristics allow the compliant

mechanisms to achieve highly repeatable motions, making them the ideal candi-

dates for a wide range of high precision applications; they have been employed as

positional mechanisms for high-resolution imaging systems [6], industrial nano-

imprint [7, 8] and nano-alignment applications [9, 10, 11], and numerous other

micro/nano-manipulation tasks [12, 13, 14, 15, 16]. Furthermore, as compliant

mechanisms can be miniaturized easily, they have also been extensively used for

MEMS devices [17, 18, 19, 20, 21, 22].

The performance of the compliant mechanisms is highly dependent on their

stiffness properties. For example, the actuating stiffness have a direct impact on

the workspace because it will be easier to produce large desired deflections when

1



these stiffness are low. Likewise, when the compliant mechanisms have higher

off-axis stiffness, they can reduce the undesired deflections induced by distur-

bances. Thus, it is desirable to maximize the compliant mechanisms’ stiffness

ratio, i.e. the ratio of off-axis to actuating stiffness, to optimize the compliant

mechanisms’ workspace and capabilities to resist disturbances. In addition to at-

taining good stiffness properties, it is also essential for the compliant mechanisms

to achieve a fast dynamic response. However, higher bandwidth requires higher

stiffness, and this will generally reduce the workspace and compromise the stiff-

ness ratio of the compliant mechanisms. Therefore, despite the importance of

compliant mechanisms, it is still a great challenge to synthesize compliant mech-

anisms with optimal stiffness and dynamic properties. This is especially true

when the compliant mechanisms have multi-degrees-of-freedom.

There are generally two approaches to synthesize compliant mechanisms: the

kinematic and the structural optimization approaches. The kinematic approach

is an established way to synthesize compliant mechanisms with multi-degrees-

of-freedom. The general design procedure is to use a combination of flexural

and rigid components such that the compliant mechanism can achieve its de-

sired kinematics. A typical method for the kinematic approach is to first select a

traditional mechanism that can fulfill the desired kinematic requirements. Sub-

sequently, a compliant mechanism is synthesized with the selected mechanism’s

kinematic configuration by using flexures (compliant joints) to replace the tradi-

tional joints. The deformation characteristics of the compliant joints are designed

to mimic motions achieved by traditional joints. Thus, when the compliant joints

are integrated with rigid linkages, the achievable motions of the compliant mech-

anism are similar with the selected traditional mechanism. As a result, the com-

pliant mechanism’s motion can be approximated by using the traditional rigid-

2



(a) Traditional mechanism

Kinematic 

Approach

(b) Compliant mechanism        

Compliant joint       

Figure 1.1: An example that illustrates the kinematic approach. A compliant
mechanism, shown in (b), is synthesized by replacing the joints of a traditional
mechanism, shown in (a), with elastic-bodies called compliant joints. As an ex-
ample, a compliant joint located on the extreme right of (b) is highlighted.

body kinematics and stiffness analyses. Since there are well-established synthesis

guidelines, the kinematic approach has been an effective approach to synthesize a

variety of compliant mechanisms [1, 23]. An example of the kinematic approach

is illustrated in Fig. 1.1 where the joints of a traditional mechanism’s joints are

replaced with compliant joints. The main drawback of the kinematic approach,

however, is that while the selected topology is feasible, it is not necessarily opti-

mal [24, 25]. As a result, the flexural designs of these compliant mechanism may

not have optimal stiffness and dynamic properties, limiting them from fulfilling

their maximum potential.

On the other hand, the structural optimization approach synthesizes compliant

mechanisms by using optimization algorithms to determine their optimal topol-

ogy, shape and size [26, 27, 28, 29, 30]. Because the topology has the high-

est hierarchical rank in the structural form, topological optimization forms the

utmost critical aspect in this approach. The general approach for topological

optimization is to first determine the fitness function, loading points, the fixed

points and the output points of the design domain. Subsequently, the design do-

3



main is discretized into a mesh of finite elements and the aim is to determine the

final state for each element - either solid or void. This is determined by itera-

tively evolving the performance of the compliant mechanism via an optimization

algorithm. The performance of the compliant mechanism is determined quanti-

tatively by the fitness function and the behavior of the compliant mechanism is

approximated numerically via finite element analysis (FEA). Figure 1.2 shows

the general procedure to implement topological optimization method. After ob-

taining the optimal topology, the performance of the compliant mechanism can be

further enhanced with shape and size optimizations. As the structural optimiza-

tion method synthesizes compliant mechanisms via mathematical programming,

it has the potential to select an optimal topology for the structure [28]. Therefore,

their synthesized compliant mechanism generally would have better performance

compared to their kinematic counterparts.

Unfortunately, the structural optimization approach has its limitations too.

For example many established topological optimization algorithms may produce

infeasible final designs such as having disconnected solid elements, or elements

that are neither solid nor void. Furthermore, unlike the kinematic approach, for-

mulation for the structural optimization problem becomes difficult for compliant

mechanisms with more than 1-degree-of-freedom [21, 22, 31, 32] and thus ma-

jority of them have only one degree-of-freedom.

In summary, both the kinematic and topological optimization approaches have

their corresponding benefits and limitations. For example, although structural

optimization method can synthesize compliant mechanisms with optimal charac-

teristics, most of the synthesized compliant mechanisms have only 1-degree-of-

freedom. Conversely, the kinematic approach is an established way to synthesize

compliant mechanisms with multi-degrees-of-freedom but their obtained stiffness

4



1 

Step 1 

Specify the fitness function 

and constraints 

 

Design Domain 
 

   Finite elements 

Design domain 

Step 2 

Discretize the design domain 

Objective: To identify the state for 

each element (void or solid) 

Step 3 

Select an appropriate 

structural optimization 

technique 

Figure 1.2: The general procedure to implement topological optimization
method. Step 1 formulates the optimization problem by specifying the fitness
function, constraints, and loading and boundary conditions. This is followed by
step 2 where the design domain/space of the compliant mechanism is discretized
into a mesh of finite elements. The state of each element can only either be solid
or void. Lastly, step 3 uses an appropriate algorithm to perform the structural
optimization method, and eventually an optimized design can be obtained.
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and dynamic properties might not be optimized. Thus, it is still a great challenge

to synthesize multi-degrees-of-freedom compliant mechanisms that have optimal

stiffness and dynamic properties.

1.2 Objective and Scope

The objective of this research is to propose a new design methodology that can

synthesize multi-degrees-of-freedom compliant mechanisms with optimal stiff-

ness and dynamic properties. The results in this study would enable engineers to

synthesize a variety of high precision machines that have optimal performances.

6



The scope of this thesis is as follows:

• A new topological optimization algorithm will be proposed. The aim of

this algorithm is to eliminate the possibility of having infeasible final de-

signs that have disconnected solid elements or ambiguous elements that are

neither solid nor void, while having a flexible way to alter their topologies

during the optimization process. The effectiveness of this algorithm will be

evaluated by creating various flexure mechanisms, including a µ-gripper,

a compliant prismatic joint and a compliant prismatic-revolute joint. The

stiffness properties of these flexures will also be evaluated experimentally.

• We will also develop a generic dynamic model that can accurately

predict the fundamental natural frequency for compliant mechanisms

with parallel-kinematic configurations. This model will help to evaluate

the dynamic properties of the compliant mechanism during the design

optimization process. The accuracy of the model will be evaluated by

various compliant mechanisms with random geometries.

• An integrated design methodology that can incorporate the benefits of

both the kinematic and structural optimization approaches will be devel-

oped. This methodology will provide the critical design steps to create

multi-degrees-of-freedom compliant mechanisms with optimal dynamic

and stiffness properties.

• An optimal X −Y − θz compliant mechanism will be created based on the

proposed design methodology. The stiffness and dynamic properties will

7



be compared with the ones in the literature to illustrate the benefits of the

proposed methodology. These properties will also be evaluated experimen-

tally.

1.3 Organization of the Report

The following chapters are organized in the following manner:

Chapter 2 provides the literature review on the synthesis methods for

compliant mechanisms. Both synthesis approaches for compliant mechanism

- the kinematic and structural optimization approaches will be discussed in detail.

Chapter 3 introduces a new topological optimization algorithm. The per-

formance of this algorithm will be evaluated via the synthesis of a small-scale

gripper.

Chapter 4 shows the feasibility of using the structural optimization approach

to create various compliant joints, and subsequently assembling them into a

multi-degrees-of-freedom compliant mechanism. This will be demonstrated via

the development of a 3PPR compliant mechanism.

Chapter 5 introduces the proposed design approach for optimal compliant

mechanisms that have multi-degrees-of-freedom. This will be demonstrated via

the development of a X − Y − θz planar-motioned compliant mechanism.

Chapter 6 provides the conclusion of this thesis, discusses about possible fu-

ture works and also the contributions of this work.
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Chapter 2

Literature Review

This chapter provides a detail review for the available methods to synthesize com-

pliant mechanisms. The two general approaches, the kinematic and structural

optimization approaches, are discussed in sections 2.1 and 2.2, respectively. A

summary of the chapter is given in section 2.3.

2.1 Kinematic Approach

The kinematic approach uses a combination of flexural and rigid-body compo-

nents such that the compliant mechanism can achieve its desired kinematics. An

advantage of the kinematic approach is that it can easily synthesize compliant

mechanisms with multi-degrees-of-freedom. Two main methods, the rigid-body-

replacement and the constraint-based design methods, are established synthesis

procedures that can select suitable kinematic configurations for their compliant

mechanisms.
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2.1.1 Rigid-body-replacement method

The rigid-body-replacement method synthesizes compliant mechanisms by mim-

icking the motions of traditional mechanisms [1]. This is achieved by replacing

the joints of the traditional mechanisms with suitable flexures known as compli-

ant joints. The elastic deformation characteristics of these compliant joints are

designed to mimic motions achieved by corresponding traditional joints. Thus,

by assembling corresponding compliant joints with “rigid” bodies, the motions

of these compliant mechanisms can be similar to the traditional mechanisms.

This resemblance allows the rigid-body-replacement method to predict its end-

effector’s motion accurately by using traditional inverse kinematics and stiff-

ness analyses [33, 34]. Furthermore, similar to traditional mechanisms, well-

developed Lagrangian equations can be used to describe the dynamic behavior

of these compliant mechanisms. By using these valuable analyzes, a vast vari-

ety of compliant mechanisms had been developed by the rigid-body-replacement

method.

Unfortunately, while the rigid-body-replacement method can select a feasible

kinematic configuration, its topology is not necessarily optimal. As a result, the

performance of these compliant mechanisms, i.e. their stiffness and dynamic

properties, are generally not optimal.

2.1.2 Constraint-based design method

The constraint-based design method models the off-axis stiffness axes of the flex-

ures as constraint lines, which can restrict specific motions on the rigid compo-

nents [4, 5, 34, 35]. Each constraint line is assumed to be able to provide infinite

resistive force, restricting the rigid components from moving along it. Once a

topology of constraint lines has been set, a line that can intersect all these con-

10



straint lines is known as a freedom line. This line represents a permitted rota-

tional axis for the rigid component because all the resisting forces do not have

an effective moment arm that can supply a resisting torque along that axis. This

argument is also true for translational motions as they can be represented by ro-

tations about axes that are located infinitely away from the rigid component. As

a result, the number of linearly independent freedom lines that a rigid compo-

nent possesses, dictates its degrees-of-freedom. Thus, by properly designing the

constraint topologies, the desired kinematics for the compliant mechanism can be

realized. Although it seems difficult to use intuition to create a suitable constraint

topology, all feasible constraint topologies can now be visualized by the freedom

and constraint topology (FACT) method [36, 37, 38]. Furthermore, this design

process can be further simplified by using the screw theory to mathematically

represent the FACT method [39]. As an illustration, Fig. (2.1) shows a compliant

mechanism that is synthesized by using five wire flexures (rods) to constrain the

end-effector.

Ideally, if all the constraint lines can indeed provide infinite resistive forces to

the rigid components, any selected constraint topology would have perfect per-

formance. Unfortunately, this assumption is not true because the off-axis stiffness

of the flexures are not infinite, and as the constraint-based design method cannot

determine an optimal topology for the compliant mechanism, the overall perfor-

mance of these compliant mechanisms are not necessarily optimal too.

2.1.3 Compliant joints

In addition to the wire flexures that are shown in Fig. (2.1), there are two other

types of elementary compliant joints - the leaf-spring design and the notched-type

design (Fig. 2.2 [2, 40, 41]). The leaf-spring compliant joints, also known as

11



(a)

(b)

Figure 2.1: A compliant mechanism that is constrained by five wire flexures [36].
(a) A rigid-body (triangular prism) is constrained by five wire flexures (rods). (b)
Each wire flexure can be represented as a constraint line that is indicated by a
blue line. The freedom line, which is represented in red, shows the permitted
rotation achievable by the rigid-body.
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blade flexures, are simple beam designs where the flexural thickness and width

of the beam are intentionally reduced and increased respectively as shown in

Fig. 2.2. By having this configuration, certain planes of this design would have

low area moment of inertia while other planes would have high area moment

of inertia. Thus, this allows the leaf-spring compliant joint to bend easily in

the high compliance directions as shown in Fig. (2.2). This actuating compli-

ance of the leaf-spring designs can be determined by using the classical Euler-

Bernoulli equations. In comparison with the notch-type design, the leaf-spring

design have higher actuating compliance but with lower off-axis stiffness. Thus,

the leaf-spring compliant joints can achieve a larger workspace but at the expense

of compromising their off-axis stiffness characteristics.

The last elementary compliant joint, the notched-type design, has cutouts on

both sides of a blank to form a necked-down section. While there are various

types of notch shaped joints, we have presented three examples in Fig. 2.3. Ex-

tensive studies have been carried out to determine the actuating stiffness for dif-

ferent types of compliant joints [2, 41]. The notch-type compliant joints are ideal

for applications that only require small workspace where the compliant mecha-

nism does not have to compromise its off-axis stiffness.

Compliant joints with more complex deformation characteristics can be ob-

tained by amalgamating the elementary compliant joints. Some examples of such

compliant joints include the cart-wheel and prismatic joints that are shown in Fig.

2.4(a) and (b), respectively. It should, however, be noted that the stiffness char-

acteristics of these elementary compliant joints may not be optimal because their

selected topology did not undergo an optimization process.

13



Leaf-spring Notched-type

Front

View

Plan

View

Notch

Length

Width

Thickness

Width

Length

Figure 2.2: The elementary leaf-spring and notched-type compliant joints. The
leaf-spring design is a simple beam design that has a high width to thickness ratio.
The notch-type design has cutouts on both sides of a blank to form a necked-down
section.
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Circular

Filleted leaf 

Elliptical

Figure 2.3: Examples of some notch-type compliant joints: the circular, the fil-
leted leaf and elliptical notch-type joints [2, 41].

(a) Cartwheel (b) Prismatic 

Figure 2.4: Based on the elementary compliant joints, complex compliant joints
such as the (a) cartwheel and (b) prismatic compliant joints can be constructed.
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2.1.4 Kinematic configurations

The overall topology of the compliant mechanism, i.e. the connectivity between

the compliant joints and the rigid linkages, can be classified into either the se-

rial or parallel kinematic configurations. A compliant mechanism with a serial

configuration consists of a chain of compliant joints and rigid linkages that are

serially connected to one another. Conversely, a compliant mechanism with a

parallel configuration has an end-effector that is articulated by several parallel

sub-chains. The parallel-kinematic compliant mechanisms are also commonly

termed as a flexure-based parallel mechanism (FPM). An example of a compliant

mechanism with a serial configuration is shown in Fig. 2.5(a) while an example

of a FPM is illustrated in Fig. 2.5(b).

In comparison, compliant mechanisms with the serial kinematic configura-

tion generally have a larger workspace compared to the FPMs. This is because

the elastic deflections of the compliant joints are accumulated for a compliant

mechanism with serial kinematic configuration, while the overall stiffness of the

FPM is accumulated by the stiffness of each sub-chain. The FPMs, however, have

several advantages over their serial counterparts. These include having superior

dynamic responses, lower sensitivity towards disturbances and higher off-axis

stiffness.

2.1.5 Performances for existing centimeter-scale X − Y − θz

compliant mechanisms

The kinematic approach had been used to develop a variety of compliant mecha-

nisms with multi-degrees-of-freedom. Examples of such compliant mechanisms

include those with X−Y [35, 42, 43, 44, 45], X− Y− θz [9, 10, 46], θX− θY−Z

[7, 8], X− Y−Z [47, 48, 49] motions, or high precision grippers [14, 15]. As this
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(a) Serial configuration (b) FPM configuration

Figure 2.5: There are generally two types of kinematic configurations. (a) A
serial configured compliant mechanism has a chain of compliant joints and rigid
linkages that are serially connected to one another [40]. (b) A FPM has an end-
effector that is articulated by several parallel sub-chains [7]. As an example, a
sub-chain of a FPM is highlighted.
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(a)   Serial-kinematic X-Y-z
(b)  Parallel-kinematic X-Y-z

Figure 2.6: (a) A X−Y −θz compliant mechanism with a serial kinematic con-
figuration [46]. (b) A FPM constructed by Yi et al. that can achieve X-Y-θz [51].

report illustrates the proposed integrated design approach via the synthesis of a

X− Y− θz compliant mechanism, this sub-section will discuss the performances

of such existing structures in detail.

In the literature, X− Y− θz compliant mechanisms can be synthesized with

either the serial or FPM configurations as shown in Fig (2.6). In comparison, the

FPMs are more popular as they have superior dynamic responses, lower sensi-

tivity towards disturbances and higher off-axis stiffness. Among the developed

X−Y− θz FPMs, many are synthesized by replacing the traditional revolute joints

with compliant notch joints [9, 10, 12, 50]. Due to the high actuating stiffness

of the notch-type compliant joints, the resultant workspaces for these FPMs are

small. The allowable translational and rotational motions of these FPMs are

only within hundreds of micrometers and arcseconds, respectively. The small

workspace characteristics for these FPMs are primarily restricted by the high ac-

tuating stiffness nature of the notch joints.

Larger workspace FPMs, however, can be obtained by replacing the com-

pliant notch joints with the more compliant beam joints [11, 52]. For exam-

ple, the beam-type X −Y − θz FPM constructed by Yang et al. can achieve
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a large workspace of ±2.5 mm×±2.5 mm×±2.5◦[11]. However, the non-

actuating stiffness of these FPMs are lower than their notch joint counter-

parts and this results in lower resistance towards unwanted external distur-

bances. Thus, the stiffness characteristics for both the notch-type and beam-

type FPMs are not optimal as the former is too stiff while the latter is too

compliant. Furthermore, the typical stiffness ratio of their end-effector, i.e.

Kzz/Kyy, Kzz/Kxx, Kθxθx/Kθzθz , Kθyθy/Kθzθz , only range between 0.5-50, re-

gardless of the type of elementary compliant joints the X−Y −θz FPM utilized

[7, 8, 9, 10, 11, 46, 50, 51, 52, 53]. The variables Kxx, Kyy, Kzz refer to the

end-effector’s stiffness along the x−, y− and z−axes, respectively. Likewise,

the variables Kθxθx , Kθyθy , Kθzθz refer to the end-effector’s stiffness about the

x−, y− and z−axes, respectively. Although it is possible to increase the FPMs’

stiffness ratio by increasing the aspect ratio of their compliant joints (the flexures’

width to thickness ratio), the maximum achievable aspect ratio is constrained by

two factors. Firstly, in order to operate the FPM within its elastic regime, the

induced stress on the compliant joints must not exceed their fatigue stress. This

dictates that the flexural thickness of the compliant joints cannot be too small.

Secondly, if the flexural width of the compliant joints is too large, the FPM’s

actuating stiffness might become too high for the FPM to achieve its required

workspace. Therefore, the development of a X− Y− θz FPM that has a high

stiffness ratio greater than 100 is still a great challenge.

In addition to attaining good stiffness properties, it is also essential for the

X− Y− θz compliant mechanism to obtain a fast dynamic response. However,

higher bandwidth requires higher stiffness, and this will reduce the workspace of

the compliant mechanism. As an example, the bandwidth for the X− Y− θz com-

pliant mechanisms that have workspace of 0.22 mm×0.22 mm×0.22◦ and 0.52
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mm×0.6 mm×0.3◦ are reported to be 84 Hz [50] and 45 Hz [46] respectively.

Large workspace 3-degrees-of-freedom compliant mechanisms that can deflect

more than 0.5 mm and 0.5◦, have yet to achieve a high bandwidth that is greater

than 45 Hz [7, 8, 46, 52].

2.2 Structural Optimization Approach

The structural optimization approach synthesizes compliant mechanisms auto-

matically via numerical methods such as optimization algorithms and finite el-

ement analysis (FEA). By following the structural hierarchy of the compliant

mechanism, this synthesis approach will sequentially determine the structure’s

topology, shape and size. A compliant mechanism’s topology can be described

as its overall connectivity. For a selected topology, the curvature of a segment

that connects different portions of the compliant mechanism can be described as

shape. Lastly, based on the selected topology and shape, the physical dimensions

of the compliant mechanism can be described as size. In particular, the topolog-

ical optimization is the most essential component in the structural optimization

method and it will be discussed in detail in this section.

Topological optimization determines the compliant mechanisms’ optimal

overall connectivity via optimization algorithms. This is achieved by first defin-

ing the fitness function, loading and boundary conditions of the design domain.

Subsequently, the design domain is discretized into a mesh of finite elements and

the aim is to identify the state of the elements. Note that topological optimization

is a discrete-natured optimization problem as the state of the elements can only

either be solid or void. The final state of the elements is determined after the

performance of the compliant mechanism had gone through iterations of evolu-

tion. Performance is quantitatively defined by the fitness value, which is in turned
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Continuous Structure Ground Structure

Finite element 

representation

Figure 2.7: Comparison between continuous structure and ground structure topol-
ogy. The design domain of a ground structure topology is made of discrete com-
ponents such as bars, beams or frames.

evaluated via FEA.

From the current literature, there are a number of algorithms developed to

perform topological optimization. These include the homogeneous [28, 40, 54],

simple isotropic material with penalization (SIMP) [26, 55, 56, 57, 58, 59, 60, 61],

evolutionary structural optimization (ESO/BESO) [27, 62, 63], genetic algo-

rithm (G.A.) based algorithms [29, 32, 64, 65, 66, 67], level set methods

[68, 69, 70, 71], ground-structure [31, 72, 73, 74, 75, 76, 77] and building block

algorithms [30, 78]. Continuum structure topologies can be optimized by homo-

geneous, SIMP, BESO, level set and G.A. based algorithms. Ground structure

algorithms, on the other hand, optimize the topology that is composed by dis-

crete bars/beams/frames. The comparison between the topology of continuous

structure and ground structure is illustrated in Fig. 2.7.

As these algorithms differ from one another in their modeling and optimiza-

tion schemes, each of them has their corresponding benefits and limitations. The
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following sub-sections will describe these various algorithms.

2.2.1 Homogeneous

The homogeneous algorithm introduces a hole within every finite element in the

design domain [54]. This is illustrated in Fig. 2.8 where the variables a and b

determine the size of the hole and θ determines its orientation. Performance of

the topology will change when the size and orientation of the holes vary. Thus,

by doing a size optimization on the holes, the optimal topology can be deter-

mined. If the size of the hole is as large as the element, this element is considered

as a void element. Likewise, if the hole vanishes, it means that this element is

considered as a solid element. As the design variables are continuous, the opti-

mization problem can be converted from a discrete-natured one into a continuous

one. This simplifies the optimization problem and allows the homogeneous algo-

rithm to utilize a gradient-based solver. Note that gradient-based solvers can only

be used for continuous optimization problems. Based on the fitness function, the

solver will iteratively search for a new solution until the fitness value converges

to a solution. The resultant topology will be deemed as the optimal topology.

The homogeneous algorithm has two advantages. Firstly, it has good conver-

gence as it uses a gradient-based solver. Secondly, as the homogeneous algorithm

factors in the orientation of the inner hole, this optimization can be extended to

composite materials as well.

However, this algorithm has also two drawbacks. The homogeneous algo-

rithm may produce infeasible designs such as having microscopic sized holes

and disconnected solid elements. Figure 2.9 illustrates an example of a topology,

which consists of disconnected solid elements. In addition, since the homoge-

neous method uses gradient-based solvers, the optimal topology is very sensitive
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a
b



Design variables 

for homogeneous 

method
Figure 2.8: Illustration of the design variables for homogeneous method. Within
each finite element, a void with the size of a× b is introduced. The orientation of
each void can be specified by the angle θ.

to the initial guess. This implies that there is a higher probability to converge to

a local solution, instead of the global one.

2.2.2 Solid isotropic material with penalization (SIMP)

The SIMP algorithm assigns each element with an artificial density [26]. These

densities are continuous design variables that range between ‘0’ and ‘1’. Ele-

ments with density values of ‘1’ and ‘0’ represent solid (black) and void (white)

elements, respectively. As the densities are continuous design variables, SIMP

can also convert the discrete natured topological optimization problem into a con-

tinuous one too. Gradient-based solvers can thus be utilized to perform a “size”

optimization on the densities to obtain the optimal topology. The gradient for the

fitness function can be obtained from the FEA.

Ideally, all the elements in the optimal topology should be either ‘1’ or ‘0’.

However, in actual implementations, SIMP will usually generate elements that
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Solid elements

Void elements

Invalid 

disconnected 

solid elements

Figure 2.9: Illustration of an infeasible design that consists of disconnected solid
elements. In this illustration, the final design is composed of three solid pieces
which are disconnected to one another.

are in between ‘0’ and ‘1’. These are termed as ‘grey’ elements and they do

not have any physical representations. Thus, designers would have to use their

intuition to determine the final state of these ‘grey’ elements. As a result, the per-

formance of the topology usually deteriorates. Figure 2.10 illustrates the ‘grey’

elements that are produced by SIMP. In addition to having ambiguous ‘grey’ ele-

ments, SIMP may also produce disconnected solid elements that are invalid too.

Despite the shortcomings of SIMP, it is important to note that SIMP is able to

demonstrate good converge capability [26, 56]. It is also an established topolog-

ical optimization algorithm that is highly robust, and has been utilized for a vast

range of applications.
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Solid elements

Void elements

Ambiguous 

‘grey’ elements

Figure 2.10: Ambiguous ’grey’ elements that maybe produced by SIMP. Ideally,
all the elements in the mesh should either be solid or void. The ’grey’ elements
are ambiguous as they are neither solid nor void.

2.2.3 Evolutionary structure optimization/bi-directional evo-

lutionary structure optimization (ESO/BESO)

The ESO/BESO algorithm uses identical design variables as SIMP, where each

element is assigned a continuous artificial density. Similarly, the gradient of the

fitness function is evaluated via FEA. However, in contrast to SIMP, ESO/BESO

does not rely on mathematical programming. Instead, it relies on a set of rules to

determine the state of the elements [27, 62, 63]. The earlier version of ESO has

only rules to remove solid elements [27] while recent progress allows BESO to

add solid elements back to the structure [63]. As ESO/BESO uses a rule-based

approach, the artificial densities for all elements remain either a ’zero’ or a ’one’

at all times. Thus, the possibility of having ’grey’ elements does not occur for

BESO.
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Nevertheless, ESO/BESO was largely criticized for its heuristic approach to

perform the optimization process. It has been illustrated that on several occasions,

the ESO/BESO algorithm is unable to converge into a solution [79]. Furthermore,

similar to homogeneous and SIMP, the ESO/BESO algorithm may produce dis-

connected solid elements as well.

2.2.4 Genetic algorithm based algorithm

Genetic algorithm (G.A.) is a search and find optimization solver and it will cre-

ate an initial population of random chromosomes to represent the design param-

eters. By employing the concept of “survival of the fittest”, G.A. can evolve the

population gradually until the optimal solution is obtained. When G.A. was first

employed for topological optimization, each chromosome maps a corresponding

topology by assigning every element in the design domain with a binary number

of either a ‘0’ or a ‘1’. A value ‘1’ corresponds to a solid element while a ‘0’

indicates a void. As genetic algorithm is a discrete solver in nature, it can tackle

the topological optimization efficiently and thus it does not produce any ‘grey’

elements like SIMP [80]. However, this modeling has a high possibility to pro-

duce disconnected solid elements. Fortunately, this issue was eventually resolved

when the morphological method was introduced. Instead of using the state of

every element as the design variables, the chromosomes of the morphological

methodology use the geometrical structure of animals to represent a topology

[29, 32, 64, 65, 66]. Each topology differs from one another in terms of the

locations of their loading, support and output points and the Bezier curves that

connect these points. These Bezier curves form the skeleton of the ‘animal’ and

corresponding flesh are added onto the skeleton to form a corresponding topol-

ogy. Figure 2.11 shows a typical mapping for the morphological method. The
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(a) Discretize the design domain (b) Connect input/output with 

Bezier curves with control points ()

(d) Add flesh to the skeleton to form 

the final structure

(c) Skeleton made of elements 

along the curves

Figure 2.11: A typical mapping for the morphological method [29]. The output,
input and fixed points are connected to one another via a skeleton that is formed
by various Bezier curves. Subsequently, additional flesh are added to the skeleton
to form a corresponding compliant mechanism.

solver will continue to evolve the population of chromosomes until the fitness

function converges to a minimum. With the mutation function, the G.A. solver

has a higher chance to search for the global minimum while exhibiting good

convergence capability [64]. Furthermore, it is important to highlight that the so-

lution is always feasible as it does not produce checkerboard, ambiguous ‘grey’

elements and disconnected solid elements.

Recent advances of this method introduce the concept of “passive” and “ac-

tive” Bezier curves [32, 66]. The “passive” curves are curves that do not appear

on the topologies while the “active” curves do appear. Based on the performance,

all the Bezier curves have the option to switch between “active” and “passive”.

This essentially increases the search space for the optimization and adds more

flexibility in choosing the number of curves. However, the main drawback of
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this method is that the designer would not know the maximum number of Bezier

curves required (active plus passive). In addition, new holes cannot be introduced

within each Bezier curve as all elements within the “flesh” components are always

solid. Lastly, it requires more computational time and power to implement this

algorithm.

2.2.5 Level set method

The level set method uses moving boundaries as its design variables. Elements

that are within the boundaries are considered solid while others are void. This

effectively allows the optimization process to be performed discretely and elimi-

nates the possibility of having ambiguous “grey” elements. The moving bound-

aries are represented by a scalar function of a higher dimensionality known as

the level set function [68, 69, 70, 71]. This function allows the topology/shape

of the compliant mechanism to undergo drastic changes while it remains simple

and continuous. A speed function is used to represent the motion of the moving

boundaries and it can be determined by FEA. One notable advantage of using the

level set method is that it does not require a seed; thus, it does not have limited

sets of solutions. When the boundaries move, a boundary can be spilt to form

more boundaries or several boundaries may form into one. By using the topo-

logical derivatives in conjunction with the level set method, new holes can be

generated [69].

As the optimization is usually solved by using steepest descent, it is very sen-

sitive on the initial guess. Thus, it is very likely that the final design will converge

to a local minimum instead of the global solution. In terms of the computational

power, the level set method is computationally more expensive than SIMP and

homogeneous algorithms. Similar to other algorithms, the level set method may
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Fully connected
Reduced/partially 

connected
Figure 2.12: The two types of ground structure topology. The fully connected
topology has a more inclusive topology compared to its reduced/partially con-
nected counterpart.

produce disconnected solid elements as well.

2.2.6 Ground structure algorithms

As mentioned earlier, the ground structure algorithm differs from all of the above

methods as it uses a discrete form of topology to represent its design domain

[31, 72, 73, 74, 75, 76, 77]. In general, there are two different types of ground

structure topology - the reduced/partial topology and the fully connected topology

as shown in Fig. 2.12. Regardless if it is fully- or partially-connected, each

connecting element is typically modeled as a bar, beam, or frame.

The fully connected topology will allow the user to have a more inclusive

topology. However, this will also increase the complexity of the problem and the

optimal topology is usually harder to be manufactured. Solutions obtained from

the fully-connected topology are also generally stiffer than the ones obtained from

the reduced connected topology.

Once the design domain has been selected, the cross-sectional area of the el-
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ements will be optimized by the ground structure algorithm. This allows both

topological and size optimization to be carried out simultaneously. The major

drawback of this method is that even if one is using a fully-connected ground

structure topology, it is still not as inclusive as the ones obtained via continu-

ous structure. In addition, ground structure topology is highly sensitive to the

modeling of each element. Based on different types of modeling, the optimized

topology will change accordingly.

2.2.7 Building block algorithms

There are generally two types of building block algorithms. The first algorithm

uses the concept of ‘divide and conquer’ to synthesize their compliant mecha-

nisms [78]. This is achieved by first pre-defining the required stiffness proper-

ties of the compliant mechanisms and decomposing the synthesis process into

multiple sub-problems. The objective of each sub-problem is to match specific

stiffness ratios by using a combination of basic building blocks. Based on this ap-

proach, the building block method is similar to the kinematic approach because

it aims to identify feasible topologies for the compliant mechanism. Thus, there

may exist multiple feasible topologies, and the selected topology may not have

optimal performance.

The second algorithm uses the reduced connected topology to represent the

design domain [30]. Instead of using elementary bars, beams or frames, however,

this algorithm uses a library of basic blocks to represent each sub-block in the

design domain. Similar to other topological optimization algorithms, it is difficult

to use this algorithm to construct compliant mechanisms with multi-degrees-of-

freedom. Furthermore, similar to the ground structure algorithms, the represented

topology is not as inclusive as the ones obtained via continuous structure.
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2.2.8 Fitness functions for topological optimization

In addition to the fitness function mentioned for the building block algorithm,

other available fitness functions for topological optimization include the geo-

metric advantage, mechanical advantage, energy efficiency and reduced path er-

ror [28]. Geometric advantage fitness functions minimize the ratio of the input

displacement against the output displacement while the mechanical advantage

minimizes the ratio of the input force against the output force. If the designer

considers both geometric and mechanical advantage concurrently, the energy ef-

ficiency fitness function can be used. The reduced path error fitness function

is used when one tries to design a compliant mechanism, which can follow a

prescribed path indicated by the designer. In addition to these fitness functions

that focus on the static behavior of the compliant mechanisms, the topological

optimization method has been shown to be able to optimize their dynamic re-

sponses too. The popular approach for dynamic optimization is to maximize

the fundamental natural frequencies of the compliant mechanism by using the

Rayleigh principle. Despite the variety of available fitness functions, it should be

noted that most of these functions are only valid for compliant mechanisms with

1-degree-of-freedom, and the optimization formulations become difficult when

multi-degrees-of-freedom are required.

2.3 Summary

Based on the current literature, the kinematic and structural optimization ap-

proaches are two main ways to synthesize compliant mechanisms. The advan-

tage of the kinematic approach is that it is an established way to design compliant

mechanisms with multi-degrees-of-freedom. However, its major drawback is that
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the flexural designs of these compliant mechanisms are generally not optimized

as their selected topology are not necessarily optimal. On the other hand, al-

though the structural optimization approach can produce optimal configurations,

it has several limitations too. For example, algorithms such as SIMP and homo-

geneous methods may produce infeasible solutions that have ambiguous “grey”

elements and microscopic voids, respectively. Many algorithms also suffer from

having infeasible solutions that have disconnected solid elements. A brief sum-

mary of these limitations can be found in Table 2.1. Furthermore, the formulation

of the structural optimization problem becomes difficult for compliant mecha-

nism with multi-degrees-of-freedom [31, 32]. As a result, most of the compliant

mechanisms synthesized via structural optimization method generally only have

1-degree-of-freedom. It is still an open challenge to develop a new approach

that can synthesize multi-degrees-of-freedom compliant mechanisms with opti-

mal dynamic and stiffness properties.
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Chapter 3

The Mechanism-based Topological

Optimization Algorithm

This chapter introduces a new topological optimization algorithm termed the

mechanism-based approach. This algorithm is specifically created for the pro-

posed integrated design methodology. The procedure to carry out the mechanism-

based approach will be discussed in Section 3.1. Subsequently, the performance

of the proposed algorithm will be evaluated by a test problem in Section 3.2 and

a summary will be given in Section 3.3.

3.1 Geometrical Mapping for the Mechanism-

based Approach

Inspired by the morphological algorithm that can eliminate infeasible solutions,

we develop a new topological optimization termed the mechanism-based ap-

proach. This algorithm uses traditional mechanisms as seeds to represent the

topology of the continuum compliant mechanism. In order to implement the
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mechanism-based approach, traditional mechanisms that have the same degrees-

of-freedom as the compliant mechanism are selected as seeds. If there are mul-

tiple seeds, a discrete variable, m, will be used to select a seed to superimpose

onto a design domain where all the finite elements are initially selected as void.

The position of links’ tip for the selected seed will be defined by other design

variables.

Once the seed has been superimposed, there are two ways to represent its

links. The first way is to represent each link with a straight line and all the fi-

nite elements that are in contact with the selected seed are converted into solid

elements. As the solid elements are selected in a discrete manner, no ambiguous

“grey” elements can be formed.

Alternatively, the second way represents each link of the mechanism with one

cubic curve, one harmonic curve (sinusoidal curve), and their reflected curves

about the link. As an example, the second way of mapping is illustrated with

a four-bar linkage seed in Fig. 3.1. The four curves form the boundaries used

in the selection of solid elements. Based on the value of γ assigned to each link

(γ ∈ Z+, 1 ≤ γ ≤ 3) , different combinations of solid elements can be generated.

If γ = 1, all the elements bounded between the original curves and the link are

solid. When γ = 2, all the elements bounded by the reflected curves and the

link are solid. When γ = 3, the solid elements will be the combined elements

of γ = 1 and γ = 2 cases. Similar to the first way of mapping, the second way

selects their solid elements in a discrete manner and this prevents any ambiguous

“grey” elements from forming.

Using the second way of mapping, the cubic curves are designed to have

one stationary point within the link length so that the harmonic curves can be

enclosed. With this configuration, it is possible to create holes within each link.
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Reflected 
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Superimpose a 
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 = 1
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 = 3

Figure 3.1: The procedure to implement the mechanism-based approach. In this
example, a four-bar linkage seed is superimposed onto a mesh of void elements.
Each link of the seed is represented with four curves and based on the value of
the variable γ, different combinations of solid elements can be generated.

The number of holes for γ = 3 is equal to 2nh − 1 where nh is a positive integer

that represents the number of troughs and peaks of the harmonic curve. The

cubic curves can be described by using three parameters - the link length, L, and

another two parameters, α and β. These three parameters define the coordinates

of the stationary point (xL,max, yL,max) such that xL,max = αcL and yL,max = βcL.

With the boundary conditions (0, 0) and (L, 0) in the x1 − y1 frame, the cubic

curves’ equations are:
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yL = ±(acx
3
L + bcx

2
L + ccxL + dc) where

ac = −βc
2αc − 1

(αc(αc − 1))2
,

bc = βc
3α2

c − 1

(αc(αc − 1))2 L

cc = −(acL
2 + bcL) and dc = 0.

(3.1)

Equation (3.1) with the plus sign represents the original cubic curves. Four

independent parameters sh, nh, eh and h are used to define the harmonic curves.

The parameters sh and eh determine the starting and ending point of the curve

respectively and h determines the amplitude of the curve. If (sh + eh) ≥ 1 or

h = 0, no harmonic curves are produced and thus no holes are formed. Figure

3.2 shows the corresponding parameters for the original curves and nh = 1 for

the harmonic curve as there is only one peak. The equations of the harmonic

curves for shL ≤ x1 ≤ L− ehL are:

yL = ±hsin
[

2π

λh
(xL − shL)

]
(3.2)

where λh is the wavelength and it is expressed as:

λh = 2
L− (shL+ ehL)

nh
. (3.3)

Note that Eq. (3.2) with the plus sign represents the original harmonic curves.

A corresponding topology is produced when all the links follow the above-

mentioned description and a particular representation example is shown in Fig.

3.3 An advantage for introducing γ is that it enables a wider range of topology that

are able to be generated by the continuous cubic and harmonic curves. In com-
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cubic curve
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(b) Parameters for the 
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Figure 3.2: The design variables required to map the cubic and harmonic curves.
(a) The design variables, α, β and L, will define the curvature of the cubic curves.
(b) The design variables, h, sh, eh andL, will define the curvature of the harmonic
curves.
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Mapping

Geometrical properties 

of seed

Illustration for Mechanism-based approach

The created compliant 

mechanism

Figure 3.3: A corresponding compliant mechanism is formed based on the
curves’ parameters, and the seed’s topology and posture. The black and white
elements represent the solid and void elements, respectively.

parison, the second mapping has the potential to create topologies that are more

complex but this will require more computational time and resources. Thus, if the

computational resources permits, the second mapping might be a better option to

represent the linkages of the seed.

Regardless of the way to represent the links, this algorithm will not produce

disconnected solid elements because the links of the traditional mechanism are

always physically connected to one another. In addition, topologies created via

the mechanism-based approach are not limited by its seeds because if any links’

length approaches zero during the optimization process, even the seeds’ “topol-

ogy” can be changed. This effectively allows the mechanism-based approach to

have a more flexible way to perform the optimization process. The optimiza-

tion problem will be solved by using G.A. and each chromosome contains the

information of the design variables (the position of the links’ tip, and possibly

the curves’ parameters). Based on the specified fitness function, G.A. will grad-
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ually evolve these solutions until an optimum solution is found. As G.A. is used

as the solver, the possibility of arriving at the global solution is higher than the

gradient-based methods. However, it should also be noted that in comparison

to gradient-based methods, more computational time and power are required to

achieve this. Note that generally methods like SIMP, ESO and homogeneous will

require minutes to complete while our method may require a few hours.

3.2 Design of a Small Scale Flexure-based Mobile

µ-grippers

The performance of the mechanism-based approach is investigated via a test prob-

lem - synthesizing a millimeter-scale mobile gripper known as a µ-gripper . This

µ-gripper is designed to function as an untethered small-scale device that can per-

form effectively micro-manipulation by grabbing and manipulating micro-scale

objects. The conceptual design of the µ-gripper is shown in Fig. 3.4, where each

arm of the µ-gripper has a rigid component and a flexure (compliant mechanism).

The function of the rigid component is to grab and manipulate micro-objects

while the compliant mechanism allows the µ-gripper to achieve its desired de-

flections.

The desired motion of the compliant mechanism can be seen in Fig. 3.4 where

the flexure can provide a large x-axis translational deflection when it is subjected

to a torque in the z-axis. In order to create this torque, Mz, via magnetic actua-

tion, the rigid component has a magnetic moment that is parallel to its y-axis body

frame (Fig. 3.4); the actuating torque can be generated by placing the µ-gripper

at the center of an electromagnetic coil system and use this system to supply an

external magnetic field that is parallel to the x-direction (Bx) (see Fig. 3.5). The
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Rigid 

component 

Compliant mechanism 

component 

m m 

Bx 

Mz Mz 

Deflection  

x 

y 
K6×6 

Figure 3.4: The conceptual design of the µ-gripper. The gripper has two arms
and each arm has a rigid and a compliant mechanism component. The compliant
mechanism component is represented by a spring with stiffness in all 6 axes. The
rigid component is magnetized in the body frame’s y-axis direction and it will
experience a torque about the z-axis when a magnetic field that is along the body
frame’s x-axis is applied. Ideally, upon actuated, the compliant mechanism com-
ponent should have a large translational deflection along the body frame’s x-axis.
Furthermore, the compliant mechanism component should have high stiffness for
all other directions.
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 Workspace 

Top Camera 

Magnetic 

 coils 

Side Camera 

Figure 3.5: The magnetic coil system that is used to actuate the µ-grippers. The
µ-grippers are located within the workspace indicated in the figure. There are
two cameras - side and top, to provide vision feedback.

electromagnetic coil system is composed by eight independent coils that function

as electromagnets. By varying the electrical current of each coil, we can inde-

pendently control the magnetic field and its spatial gradients in the workspace,

allowing us to in turn control the µ-gripper. Other than the desired compliance,

the µ-gripper should exhibit high stiffness in all other directions so that it can

easily reject mechanical disturbances when it is grabbing and transporting other

objects. This implies that the flexure has only 1-degree-of-freedom.

Based on the degree-of-freedom of the flexure, we have used the Grübler

equation [81] to select two appropriate traditional mechanisms as seeds. The

selected seeds are the 6-bar Watt- and Stephenson-Chains, and their topologies

can be seen in Fig. 3.6(b). These mechanisms are chosen because they can be

constrained to generate compliant mechanisms with symmetrical features that can

help to reduce the parasitic compliances.
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m = 1

m = 2

(b) Seeding (c) Structure

Watt Chain

Stephenson Chain

(a) -gripper

w

w

Figure 3.6: Implementing the mechanism-based approach on the (a) µ-gripper.
(b) shows the design domain of the flexure being discretized into a mesh of 25×25
identical finite elements. The area of the design domain is 1.25 mm × 1.25 mm.
Based on the valuable of m , different seeds will be used to represent the flexure.
A Watt chain seed is used when m = 1 while a Stephenson chain is used when
m = 2. (c) shows the obtained structure created via their corresponding seed.

During the optimization process, the topologies can be evolved by varying the

position of the seeds’ link tip. The topology of the seeds can also be changed if

any link lengths are reduced to zero. As the position of the links’ tip are the design

variables, they are encoded in G.A.’s chromosomes. To reduce computational

resources, we represent the linkages of the seeds with straight lines in this test

problem (first way of mapping).

The design domain for each of the µ-gripper’s compliant mechanism compo-

nent is bounded within an area of 1.25 mm×1.25 mm with 50 µm thickness. The

design domain’s dimensions is chosen to facilitate fabrication via photolithogra-

phy and replica molding. The utilized material is a flexible elastomer material

(ST-1087, BJB Enterprises), with Young’s modulus and Poisson ratio estimated
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to be 9.8 MPa and 0.45 respectively. The design domain is discretized into a

mesh of 25 × 25 identical 20-node quadratic finite element where each element

can only be either solid or void, and they are all initially selected as void.

The stiffness characteristics of the µ-gripper can be evaluated by using FEA

to determine the deformation characteristics of its loading point (indicated by the

point where an arbitrary wrench, w, is applied on the gripper (see Fig. 3.6)). To

implement FEA, we shall first define the translational deformation of any arbi-

trary point within a finite element, #»u , to be the product of the shape function

matrix, N, and the nodal deformation vector ue:

#»u =


u

v

w

 = Nue

where N =


N1 0 0 ... 0

0 N1 0 ... 0

0 0 N1 ... N20

 and ue =



u1

v1

w1

...

w20


(3.4)

Note that u, v and w represent the deformation in the x−, y− and z−axis

respectively. Subsequently, the strain vector of the point, εe, can be obtained by

partial differentiating corresponding rows in Eq. (3.4):
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εe =



∂u
∂x

∂v
∂y

∂w
∂z

∂v
∂z

+ ∂w
∂y

∂u
∂z

+ ∂w
∂x

∂v
∂x

+ ∂u
∂y


= Bue,

where B =



∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

0 ∂
∂z

∂
∂y

∂
∂z

0 ∂
∂x

0 ∂
∂x

∂u
∂y




N1 0 0 ... 0

0 N1 0 ... 0

0 0 N1 ... N20

 . (3.5)

Note that the matrix B is the commonly used deformation matrix in FEA. By

using Hooke’s law, the stress vector at that point, τ e, can be expressed as:

τ e = Dεe = DBue,

where D =
E

(1 + υ)(1− 2υ)



1− υ υ υ 0 0 0

υ 1− υ υ 0 0 0

υ υ 1− υ 0 0 0

0 0 0 1−2υ
2

0 0

0 0 0 0 1−2υ
2

0

0 0 0 0 0 1−2υ
2


.

(3.6)

Note that D is also known as the compliance matrix in solid mechanics. The

element’s total strain energy, Se, is:
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Se =
1

2

∫∫∫
τ T
eεe dV =

1

2
uT
e

[∫∫∫
BTDBdV

]
ue =

1

2
uT
eKFEue,

where KFE =

[∫∫∫
BTDBdV

]
. (3.7)

The variable V represents the volume of the finite element and KFE represents

the stiffness matrix for one element. The FEA global n×n stiffness matrix for the

gripper, Kgripper, can then be obtained by summing all elements’ stiffness matrix:

Kgripper =
all elements∑

i=1

(siKFE,i) . (3.8)

The variable s represents the state of the finite element, if element i is solid, si

= 1; if it is void, si = 10−6 (to prevent numerical instabilities). The loading point

will be loaded with six unit wrenches, i.e. three unit forces along the x-, y- and z-

axes, and three unit torques about the x-, y- and z-axes. The corresponding work

functions for these wrenches are simply the deformation of the loading point that

is parallel to the unit wrench. Note that the rotational deformation of the loading

point can be derived from the infinitesimal element. Using Fig. 3.7 as illustration

aid, the angular displacement in the z-direction of the loading point is:

θz =
1

2
(α− β) =

1

2
(
∂v

∂x
− ∂u

∂y
)

∴ θz =
1

2

[
8∑
i=1

(
∂Ni

∂x
vi −

∂Ni

∂y
ui

)]
.

(3.9)

Likewise, the rotational displacement in the x and y-axes can be obtained as:

47



x

y

Output Finite 

Element

dx

dy





Infinitesimal 

Element

u
dy

y





v
dx

x





Figure 3.7: A graphical representation of rotary deflection for any point within
the finite element. By zooming into the infinitesimal element of a finite element,
the average rotary deflections about the z-axis of any given point is 1

2
(α− β).

θx =
1

2

[
8∑
i=1

(
∂Ni

∂y
wi −

∂Ni

∂z
vi

)]

θy =
1

2

[
8∑
i=1

(
∂Ni

∂z
ui −

∂Ni

∂x
wi

)]
.

(3.10)

The translation and rotational work functions are represented by φT,j and φR,j ,

j ∈ [x, y, z], respectively. The global nodal deformation vector is represented by

ugripper and thus the six work functions are expressed as:

φT,x = uT
gripperfx φR,x = uT

grippermx

φT,y = uT
gripperfy φR,y = uT

grippermy

φT,z = uT
gripperfz φR,z = uT

grippermz.

(3.11)
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By partial-differentiating the work functions with respect to the global nodal

deflections, the six loading vectors are represented in FEA format as fx, fy, fz,

mx, my and mz, respectively. After applying the boundary conditions, the cor-

responding deformation vectors are obtained by pre-multiplying the six loading

vectors with the structure’s inverse stiffness matrix. The six 6×1 position vectors

which describe the position and orientation deformations at the loading point can

be obtained by using Ni, and ui, vi and wi from the corresponding global nodal

deformation vectors. This is represented by pre-multiplying the six global nodal

deformations vectors with a constant 6× n matrix A.

∴ Cgripper, 6×6 = AK−1gripper[fx fy fz mx my mz]. (3.12)

The matrix, Cgripper, 6×6, represents the compliance matrix of the compliant

mechanism. The six columns of the matrix represent the rigid-body deflections

induced by corresponding loadings. The first three rows of Cgripper, 6×6 repre-

sent the translational deflection while the last three rows represent the rotary de-

flection. As the actuating compliance of the µ-gripper is represented by C61 in

Cgripper, 6×6, we will use the following fitness function to optimize its stiffness

characteristics:

minimize Fgripper =
C51C15

[∏3
δ=1Cδδ

] [∏6
η=4C

2
ηη

]
|C61|8

subject to: Kgripperugripper = fgripper,

(3.13)

The numerator of the fitness function is composed by the product of promi-

nent off-axis compliances that will be minimized by the optimization process.

The rotary parasitic compliances, i.e. C44, C55 and C66, are regarded as more

49



important for robust gripper operations, thus they have a higher exponential to

represent a greater emphasis. The denominator of the fitness function aims to

maximize the actuating compliance, C61, and its exponent is raised to eight be-

cause there are eight different components in the numerator. The governing FEA

equation for evaluating the stiffness characteristics of the µ-gripper is represented

by the equality constraint. This optimization process is conducted with a popula-

tion of 100 chromosomes. Each of the chromosomes include the design variables

m, the position of the links’ tip. The optimization took 4-5 hours to converge

within 50 generations as shown in Fig. 3.8 and the solution is shown in Fig.

3.9(b). Thanks to the nature of the mechanism-based approach, the obtained so-

lution did not have any ‘grey’ or disconnected solid elements. Furthermore, it

is interesting to note that the topology has evolved from the six-bar seeds into a

non-uniform thickness beam; this implies that the search space of the mechanism-

based approach is not limited by the topologies of the initial seeds. Finally, by

smoothening the jagged edges to remove the stress concentration, we obtained

the final design of the µ-gripper (Fig. 3.9(c)).

The performance of the gripper is evaluated by comparing it with a

thin-beam design that is developed via human intuition (Fig. 3.9(d)).

The thickness of the thin-beam was adjusted to match the actuat-

ing compliance with the gripper; this allows an easier comparison be-

tween these two designs. The Cgripper,6×6 of the optimized design,

COpt,6×6, and the intuitively-designed beam-type µ-gripper, CInt,6×6, are evalu-
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ated via FEA to be:

COpt,6×6 =



19.3

0 3.57× 10−2 SYM

0 0 7.81

0 −530 8.06× 103 1.17× 107

900 0 0 0 1.87× 107

−1.71× 104 0 0 0 0 1.77× 107



CInt,6×6 =



14.0

0 6.22× 10−2 SYM

0 0 9.11

0 −941 1.12× 104 2.00× 107

1.72× 103 0 0 0 3.55× 107

−1.71× 104 0 0 0 0 3.04× 107


(3.14)

A superior design is one that has more components with lower magnitude

in their compliance matrix as this implies that it can better reject disturbances.

Based on the compliance matrices for both designs, it is apparent that the optimal

structure have better stiffness characteristics as eight out of nine components are

better(smaller). Some of these components are even approximately two times

better - demonstrating the effectiveness of the mechanism-based approach.

3.2.1 Experimental results for the µ-gripper

In order to evaluate the accuracy of the FEA comparison in Eq. (3.14), an up-

scale prototype had been constructed as shown in Fig. 3.11(a). We had selected

a larger prototype because it would be easier to measure its deflections and input

51



10 20 30 40 50

20

30

40

Generations

lo
g

1
0
(F

g
ri
p
p
e
r)

Generation Mean

Generation Best

Figure 3.8: The convergence plot for the µ-gripper. The optimization process is
shown to converge as the fitness value for the generation mean and generation
best converges to one another eventually.

(b) Optimal 

Topology
(d) Beam 

Design 

(a) Conceptual 
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Optimize Smoothened

(c) Final Design

Figure 3.9: A comparison between the optimized gripper with an human-
intuitively created beam design. (b) is the optimized gripper. (c) smoothen the
sharp corners of (b) to prevent stress concentration. (d) is the human-intuitively
created beam design.
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Figure 3.10: The experimental set up for the large-scale prototype. After applying
dead weights at the loading point of the prototype, the deflection of the gripper
will be measured by the sensor (dial).

forces experimentally. As the accuracy of the FEA will not be affected by the size

of the prototype, this implies that if the compliances of the up-scale prototype

can match its FEA prediction, the FEA comparison for the µ-grippers’ stiffness

characteristics will be valid too.

The up-scale prototype was constructed with acetal, and its Young’s modulus

and Poisson ratio were estimated to be 3.1 GPa and 0.45, respectively. Precise

force loading was applied on the prototype by hanging calibrated weights, and

the induced deflections were measured by a dial gauge indicator. The compli-

ances of the prototype were determined experimentally from the slope of their

load against deflection plots. By changing the orientation of the prototype and

the location of the dial, different compliances could be evaluated. Eight compli-

ances, C11, C22, C33, C44, C55, C66, C61 and C43 had been validated. For all the

evaluated compliances, three sets of data were collected and each set had 5 data

points. As an example, Fig. 3.11(b) showed the deflection plot for the prototype’s

actuating compliance, and the complete experimental data and simulation results
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Figure 3.11: The experimental result for the large-scale prototype shown in (a).
(b) Experimental data for the actuating compliance of the prototype is shown as
an example. The slope of the plot represents the experimental actuating compli-
ance is -14.1×10−3 m/(Nm) and it agrees with the FEA prediction of -16.1×10−3

m/(Nm) within 12% deviation. Each datapoint represents the mean from three
measurements, and error bars indicate standard deviation.
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were shown in the following two equations:

Cupscale, experiments, 6×6 =



0.98× 10−3

0 1.50× 10−6

0 0 0.434× 10−3

0 0 8.56× 10−3 0.27

0 0 0 0 0.402

−16.1× 10−3 0 0 0 0 0.35


(3.15)

Cupscale, FEA, 6×6 =



0.834× 10−3

0 1.85× 10−6

0 0 0.471× 10−3

0 0 8.40× 10−3 0.335

0 0 0 0 0.343

−14.1× 10−3 0 0 0 0 0.423


.

(3.16)

Based on the experimental results, the maximum deviation between the exper-

iments and FEA predictions was 20%, and the mean deviation was computed to

be 15%. The small deviation between the experiments and predictions for the up-

scale prototype suggested that the comparison made in Eq. (3.14) for the at-scale

µ-gripper was accurate as well - suggesting the superior stiffness characteristics

of the optimal compliant mechanism over the thin-beam design.

While we did not evaluate the stiffness characteristics of the at-scale grippers,

we had constructed these grippers with photolithography and replica molding.

To fabricate µ-grippers from soft elastomer with included magnetic particles, a
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500 µm

Figure 3.12: At-scale fabricated µ-grippers with optimized flexure designs.

replica molding technique was used. The process included shape definition by

photolithography, replica molding to achieve flexible elastomer gripper shapes,

and a magnetization process. The µ-grippers were made from a flexible elastomer

material (ST-1087, BJB Enterprises) to allow for larger deflections given the same

magnetic actuation. By pouring the uncured liquid elastomer that is mixed with

magnetic particles (NdFeB) into the mold, the desired shape of the gripper can be

fabricated after the elastomer cured. Because the cured elastomer encompasses

the magnetic particles, it would be possible to magnetize the µ-gripper and allow

it to be responsive towards magnetic actuation. The design required that each

gripper tip be magnetized in opposite directions. This could be accomplished

by deforming the µ-gripper arms 90◦ prior to exposing the gripper with a large

magnetizing field (∼ 1.2 T). This would magnetize the µ−gripper, allowing it to

open and close its rigid components by adjusting the magnitude of the magnetic

field (Bx) shown in Fig. 3.4. Note that when the magnetic field is applied, the

rigid component will generate a magnetic torque that will in turn bend and deform

the compliant component. The manufactured µ-gripper was shown in Fig. 3.12.

When the fabricated µ-gripper was placed in the magnetic coil system, it
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Figure 3.13: At-scale fabricated µ-grippers (a) opening and closing its grippers
and (b) rolling on the substrate.

could move on a planar surface by using a rolling locomotion. This locomo-

tion could be made possible because its base (represented by the ground in Fig.

3.9) was also magnetized and could respond to the magnetic actuation. When

the µ-gripper was subjected to a magnitude fields of 10 mT, it could create grip-

ping motions by making the 2D deflection indicated in Fig. 3.4. Some snapshots

during the actuation are shown in Fig. 3.13 .

57



3.3 Summary

This chapter introduces a new topological optimization algorithm known as the

mechanism-based approach. In contrast to existing topological optimization tech-

niques, this proposed algorithm is able to eliminate infeasible designs that have

either disconnected solid elements or ambiguous ’grey’ elements, while having a

flexible way to change the structure’s topology during the optimization process.

The mechanism-based approach maps the geometrical characteristics of a tradi-

tional mechanism as a seed to represent the topology of a compliant mechanism.

As the links of the seed are always physically connected, the obtained topology

will never produce disconnected solid elements. Furthermore, as the selection of

the solid elements is done in a discrete manner, the possibility of having ambigu-

ous “grey” elements is eliminated. Topologies of the compliant mechanism are

not restrained by the seed as even the seed can be evolved during the optimization

process. This is demonstrated during the synthesis process for the µ-gripper as

the seed changes from six-bar linkages into a beam with non-uniform thickness.

Convergence plot for the synthesis of the µ-gripper had also indicated that the

mechanism-based approach can converge smoothly. Furthermore, the obtained

design has shown improvement over an intuitive design, illustrating the poten-

tial of the proposed algorithm. Thus, the advantages of the mechanism-based

approach can be summarized as:

• The generated topology does not have disconnected solid elements

• The optimization procedure was done in a discrete manner, thus there are

no ambiguous ”grey” elements

• Convergence plot indicates that the algorithm can converge and evolve

gradually

58



• By using a global optimization solver, G.A., the mechanism-based ap-

proach has a higher probability to arrive a global solution compared to

other gradient-based techniques

• The topology of the compliant mechanism is not fixed by the seed, even the

‘topology’ of the seed can be changed

• By using two curves to represent one link of the seed, it is possible to add

holes within the linkage representation

The disadvantage of this algorithm is that the optimization procedure requires

more computational power and time. However, as the design process is generally

conducted as off-line programming, computational time is not a critical factor.

59



60



Chapter 4

Synthesis of a 3PPR Flexure-based

Parallel Mechanism

This chapter further investigates the effectiveness of the proposed topological

optimization algorithm - the mechanism-based approach. In particular, the al-

gorithm will create compliant joints that can be assembled into a X − Y − θz

FPM. The effectiveness of the algorithm will be evaluated by comparing the syn-

thesized FPM’s stiffness characteristics with a similar FPM that is composed by

traditional compliant joints. We have selected the synthesis of a X−Y −θz FPM

to illustrate the effectiveness of our method because this structure has the poten-

tial to be deployed across many applications pertaining to micro/nano-alignment,

biomedical science, SEM, x-ray lithography and many other similar technologies

[9, 50, 51]. The chapter is organized as follows: Section 4.1 introduces the over-

all configuration of the FPM and Section 4.2 will present the synthesis process

for the compliant joints. This is followed by Section 4.3 where the joints will

be assembled into the FPM. Lastly, section 4.4 will provide a summary for the

chapter.
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4.1 Overall Configuration

Based on the rigid-body-replacement method, there are three possible parallel-

kinematic configurations that can realize aX−Y −θz FPM. The three configura-

tions are the 3-legged revolute-revolute-revolute (3RRR), the 3-legged prismatic-

revolute-revolute (3PRR), and the 3-legged prismatic-prismatic-revolute (3PPR).

We will select the 3PPR configuration because compliant prismatic joints are gen-

erally more deterministic than the compliant revolute joints. The schematic of the

3PPR architecture is shown in Fig. 4.1 where the end-effector is articulated by

three identical parallel sub-chains that are arranged in a rotary symmetrical man-

ner. Each sub-chain has an active prismatic joint (P) that is serially connected to

a passive prismatic-revolute (PR) joint. The active P joint is placed nearer to the

fixed base to prevent the weight of the actuator from contributing to the overall

moving masses of the FPM.

Based on Fig. 4.1, we fix a global frame, {g}, at the center of the mechanism

when it is at the home pose. Next, we attach a mobile frame, {m}, to the moving

platform where it coincides with {g} when the mechanism is at the home pose.

This frame can have an arbitrary translational displacement, re = [xe ye]T , and

a rotational displacement about the z-axis, θz. A corresponding local frame, i.e.

{1}, {2} and {3}, will be assigned to each sub-chain, and their origins are fixed

at the home position of their active P joint. The orientation of the frames {1}, {2}

and {3} have a relative z-axis rotation angle of [α1, α2, α3] = [π/3, π, −π/3]

from the global frame, respectively.

The inverse kinematics analysis that correlates the displacement of the active

P joints with the end-effector’s motion can be determined by using simple vector

analyses. As these analyses are similar for all the sub-chains, we will only analyze

sub-chain 1 as an example (see Fig. 4.2). In this figure, the magnitude for the
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Sub-chain 2

Sub-chain 3

Sub-chain 1

End-effector

Active

Prismatic joint 

(nearer to base)

Passive 

prismatic-revolute 

joint

Figure 4.1: The selected overall configuration for the FPM: A 3PPR configura-
tion. The FPM has three symmetrical sub-chains that are arranged in a rotary
symmetrical manner. Each sub-chain consists of an active P joint and a passive
PR joint. The active joint is placed closer to the fixed base. The variable r repre-
sents the distance between the end-effector and the PR joint.
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Figure 4.2: Using sub-chain 1 as an example to derive the inverse kinematics of
the FPM. After the end-effector is displaced translationally with re and have a
rotational deflection of θz, we can use the vectors indicated here to determine the
magnitude of p1. For simplicitly, we have also assigned a global frame indicated
by {g}, a mobile frame {m} that is attached to the end-effector and a local frame
for sub-chain 1 (indicated by {1}).
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vector bi will be r while the magnitude of the active P joint’s displacement is

represented by p1. To make our analysis clearer, we will put superscripts for the

vectors to indicate their prescribed frame. For example, a vector {g}r means that

this vector is viewed in the global frame. According to Fig. 4.2, the vector d1 can

be computed to be:

{g}d1 ={g} re + Rz(θz)(
{m}c1)−{g} b1 (4.1)

When the mechanism is in its home pose, {m}c1 ={g} b1 and Rz is a standard

rotational matrix give as:

Rz =


cos(θz) −sin(θz) 0

sin(θz) cos(θz) 0

0 0 1

. (4.2)

Since both the vectors {1}a1 and {1}e1 do not have x-axis components and

{1}p1 does not have a y-axis component, the calculation of p1 is best done in

frame 1. Therefore, we can simply compute p1 by:

{1}p1 ={1} a1 + [RT
z (α1)]

{g}d1 −{1} e1

∴ {1}p1 =
xe
2

+

√
3

2
ye + rsin(θz) ≈

xe
2

+

√
3

2
ye + rθz (4.3)

Using similar analyses for sub-chains 2 and 3, the relationship between the

end-effector’s output motion, x, y, and θz, and the displacement of the active

prismatic joints, p1, p2, and p3, can be summarized as:
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
p1

p2

p3

 =


1
2

√
3
2

r

−1 0 r

1
2
−
√
3
2

r



x

y

θz

. (4.4)

4.2 Synthesizing compliant PR and P joints

Based on the selected 3PPR FPM configuration, there are two types of compliant

joints - the PR and P joints. Thus, in this section, we will show that they can be

synthesized via the mechanism-based approach.

4.2.1 Synthesis of a PR compliant joint

An ideal PR compliant joint can provide a large x-axis translation and also a large

z-axis rotation when its loading point is subjected to a Fx force and a Mz torque,

respectively. Mathematically, this implies that its actuating compliances, C11 and

C66, should be maximized while other off-axis components in the CPR,6×6 must be

minimized to achieve optimal stiffness properties. As the PR joint has 2 degrees-

of-freedom (2 actuating compliances), we have selected a five-bar linkage as the

seed for the mechanism-based approach. The coupler point of the seed, which is

also its loading point, is constrained to move along the top row elements while

two fixed points were located at the base (Fig. 4.3(a)).

The synthesis of the PR compliant joint was broken down into two stages to

reduce the computational time. The first stage was performed through a coarse

mesh while the second stage will further refine the design with a fine mesh. In

both stages, the design domain of the PR joint is constrained within a 50 mm ×

20 mm× 10 mm volume, which is discretized into a mesh of 3-D 8-node bilinear

finite elements. The utilized material is assumed to be aluminum, and its Young’s
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Modulus and Poisson ratio are estimated to be 71 GPa and 0.33, respectively.

Thus, the stiffness matrices in FEA format for one finite element, KFE,i, and the

overall structure of the PR joint, KPR,n×n, are given as:

KFE,i =

∫∫∫
BTDB dV, KPR,n×n =

all elements∑
i=1

siKFE,i, (4.5)

where si represents the state of the ith finite element in the design domain;

si = 1 represents a solid element and si = 10−6 represents a void element. To

optimize the stiffness characteristics, we use the following fitness function for

both stages:

minimize Fpr(xPR) =
Π6
δ=2Π

δ
η=1Cδη

[C11]
19 [C66]

19 ,

subject to: KPR,n×nuPR,n×1 = fPR,n×1.

(4.6)

The numerator in the fitness function aims to minimize the off-axis compli-

ance components while the denominator will maximize the actuating compli-

ances. As there are 19 off-axis stiffness, the C11and C66 components are raised

to the exponential of 19. It is necessary to raise the exponent to 19 because this

allows the optimization process to minimize all the non-actuating compliance

components while still allowing the actuating compliance to be maximized. The

vector xPR represents the variables for the mechanism-based approach and the

equality constraint represents the FEA governing equation.

By evolving 500 chromosomes via 100 generations, the initial five-bar linkage

gradually evolves into a three-bar topology during the first stage of optimization

Fig. 4.3(b). During the optimization process, each chromosome includes the fol-

lowing design variables - the position of the links’ tip and the curve parameters
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shown in Section 3.1. While our method can simplify the seed’s topology, we

cannot increase its complexity. As a result, we cannot effectively evolve sim-

ple structures to mechanisms that have more complex topologies. By refining

the design domain in the second stage of optimization, the optimized PR com-

pliant joint is obtained after evolving 200 chromosomes via 50 generations (Fig.

4.3c). The optimal PR joint resembles a non-uniform beam supported by an arch.

To further reduce the magnitude of the non-diagonal off-axis compliances, we

adopted a symmetrical design for the final compliant PR joint (Fig. 4.3(d)). Both

optimization processes have shown to converge as the mean fitness values in the

convergence plots managed to converge with the best fitness values (Fig. 4.4).

Note that the optimization process will stop after it cannot further evolve the best

solution for another 20 generations or it had completed 100 generations of evolu-

tions.

The obtained stiffness matrix of the compliant PR joint (inverse of CPR, 6×6)

is given as:

KPR,6×6 =



1544

0 1.16× 107 SYM

0 0 4.89× 105

0 2.63× 104 0 232

0 0 0 0 1.32

0 0 0 0 0 1.10


. (4.7)

4.2.2 Synthesis of P joint

Similar to the synthesis of the PR joint, the active P compliant joint is synthesized

via two optimization stages. In both stages, the Young’s Modulus, Poisson ratio
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Figure 4.3: The synthesis process for the PR compliant joint. (a) A five-bar link-
age seed is used for the mechanism-based approach. (b) The topology of the PR
joint has evolved from the five-bar linkage into a three-bar structure after the first
stage of optimization. Two link lengths has been reduced to zero, changing the
topology of the seed. (c) The design has been further refined via the second stage
optimization. The solution resembles a non-uniform beam, which is supported
by an arch. (d) The final design of the PR joint. The joint is made symmetrical to
further reduce the non-diagonal off-axis compliances.
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Figure 4.4: The convergence plot for the two stages of optimization processes
for the compliant PR joint. (a) and (b) represent the convergence plots for the
first and second stages of optimization, respectively. The optimization processes
were shown to converge as both plots show that their mean and best fitness values
managed to converge.
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and utilized finite elements are similar to those of the PR compliant joint. The

width of the design domain, however, is changed to 25 mm. As the active P com-

pliant joint needs to deliver a large x−axis translation motion when its loading

point is subjected to a Fx force, its actuating compliance, C11, must be high while

the rest of the components in the CP ,6×6 must be low. Thus, we use the following

fitness function to optimize the compliant P joint’s stiffness characteristics:

minimize Fp(xp) =
Π6
δ=2Π

δ
η=1Cδη

[C11]
20

subject to: KP,n×nuP,n×1 = fP,n×1.

(4.8)

The actuating compliance, C11, has an exponent of 20 because there are 20

off-axis stiffness components. It is necessary to raise the exponent to 20 because

this allows the optimization process to minimize all the non-actuating compli-

ance components while still allowing the actuating compliance to be maximized.

The vector xP represents the variables while the equality constraint represents the

FEA governing equation. As the compliant P has only 1-degree-of-freedom, we

will use a four-bar linkage as the seed for the mechanism-based approach (Fig.

4.5(a)). The coupler point of the seed, which is also its loading point, is located

at the top row’s central element. The seed is fixed by two points that are located

at the bottom row. The first stage of optimization was carried out by evolving a

population of 400 chromosomes via 100 generations. From Fig. 4.5(b), the solu-

tion still has a 4-bar topology but the limbs had become parallel with one another.

Subsequently, the second stage of optimization further refines the solution with

a finer mesh. Consequently, the optimal P compliant joint is obtained after the

G.A. solver has evolved a population of 200 chromosomes via 50 generations.

As shown in Fig. 4.5(c),the optimal P compliant joint resembles a tapered-shape

71



Loading 

point

(b) Parallel 4-bar 

(c) Optimal P joint

(a) 4-bar linkage seed 

x

y

First stage 

Optimization

Second stage 

optimization

Fx

Fx

Figure 4.5: The synthesis process for the compliant P joint. (a) A 4-bar linkage
seed is used for the mechanism-based approach. (b) The solution obtained after
the first stage of optimization. (c) The optimized design after the second stage
optimization.

rigid-link supported by two thin beams. The optimization processes have con-

verged and their convergence plots are plotted in Fig. 4.6.

The obtained stiffness matrix of the compliant P joint (inverse of CP, 6×6) is

given as:

KP,6×6 =



1338

0 9.72× 106 SYM

0 5.94× 105 3.92× 105

0 2.84× 104 −6205 350

0 0 0 0 53.6

0 0 0 0 0 90.3


. (4.9)
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Figure 4.6: The convergence plot for the two stages of optimization processes for
the active compliant P joint. (a) and (b) represent the convergence plots for the
first and second stages of optimization, respectively. The optimization processes
were shown to converge as both plots show that their mean and best fitness values
managed to converge.
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4.3 The 3PPR FPM

The design of the optimal compliant joints obtained from the previous section

will be used to construct a 3PPR FPM as shown in Fig. 4.7. For practical issues,

we have smoothened out the sharp edges of the joints to prevent stress concen-

tration. In order to achieve millimeters stroke range, we have selected electro-

magnetic voice-coil (VC) as the linear actuators. It is estimated that each VC

actuator needs to generate a continuous force of at least 30 N, and the required

dimensions of such a VC actuator is estimated to be at least � 60 mm × 60 mm.

Thus, the dimensions of each sub-chain has been assigned to a design domain of

90 mm× 90 mm so that it can encase a VC actuator. The proposed FPM will be

monolithically cut from a SUS316 stainless steel workpiece (19 mm thickness),

and the Young’s Modulus and Poisson ratio of the material are estimated to be

200 GPa and 0.33, respectively.

To optimize the stiffness characteristics for the end-effector, a size optimiza-

tion is used to determine the optimal space distribution between the compliant

joints. This is because by increasing L3, it will increase the off-axis stiffness of

the PR joints but will also decrease the actuating compliance of the active compli-

ant P joint (refer to Fig. 4.7). In order to retain the actuating compliance of these

joints, this optimization does not alter the thickness of the beams. Based on the

configuration shown in 4.1, the stiffness matrix of each compliant joint obtained

via the proposed topology optimization technique are expressed in terms of their

local sub-chain frame. These sub-chain frames are illustrated in Fig. 4.1 where

{1}, {2}, and {3} have a z-axis rotation angle of [φ1 φ2 φ3] = [π/3 π π/3]

with respect to the global frame {g}, respectively. Based on the classical mecha-

nism stiffness modeling approach [14,22], the compliance matrix of sub-chain j,

CSC,j,6×6, at the PR joint loading point can be determined by:
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90 - L3
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Figure 4.7: The schematic drawing for the 3PPR FPM. The values L3 and rj are
shown.

CSC,j,6×6 = CPR,j,6×6 + Jj [CP,j,6×6] JT
j ,

where Jj =

I3×3 r̂j

03×3 I3×3

 . (4.10)

The matrix Jj refers to the Jacobian matrix, and the matrices I3×3, 03×3 and

r̂j represent the identity, zero and the skew-symmetry matrices of the position

vector, rj , respectively. Note that rj represents the displacement vector from the

loading point of sub-chain j to its compliant P joint’s loading point (Fig. 4.7).

After the chains’ stiffness matrices are identified, the stiffness matrix of the end-

effector, Kee,6×6, can be computed:

Kee,6×6 =
3∑
j=1

Ad−T
T,j [CSC,j,6×6]

−1 Ad−1T,j, (4.11)
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where AdT,j =

Rz(φ(j)) b̂jRz(φ(j))

03×3 Rz(φ(j))

 . (4.12)

The matrix AdT,j refers to the adjoint matrix, which consists of a rotational

matrix Rz and a skew-symmetry matrix b̂j that represents the displacement vector

from the end-effector to the loading point of the j th sub-chain (Fig. 4.7). As

the main objective is to optimize the stiffness ratio of the proposed FPM, i.e.

maximizing off-axis diagonal stiffness while minimizing the actuating stiffness

in Kee,6×6, the fitness function becomes

minimize Fee(L3) =
KxxKyyKθz θz

KzzKθx θxKθy θy

(4.13)

After using G.A to evolve a population of 10 chromosomes via 10 genera-

tions, the optimal solution of L3 was found to be 20 mm. The final stiffness

matrix of the optimized FPM, Kopt, ee, is given as:

Kopt,ee,6×6 =



2.82× 104

0 2.82× 104 SYM

0 0 8.93× 105

0 −250 0 2.46× 103

250 0 0 0 2.46× 103

0 0 0 0 0 41.4


. (4.14)

4.3.1 Discussion

In comparison with the stiffness ratios that range between 0.5 to 50 in the litera-

ture [7, 8, 9, 46, 50, 51, 52, 53], the optimized FPM’s translational and rotational

stiffness ratio are considered high as they are computed to be Kzz
Kxx

= Kzz
Kyy

=

8.93×105
2.82×104 = 32 and Kθxθx

Kθzθz
=

Kθyθy
Kθzθz

= 2.46×103
41.4

= 60, respectively. However, as

we specifically like to compare the effectiveness of the synthesized compliant
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(a) 3PPR FPM with 

optimal joints

(b) 3PPR FPM with       

conventional joints

Figure 4.8: 3PPR FPMs articulated by compliant joints with (a) optimized topolo-
gies versus and (b) conventional topologies.

joints compared to traditional compliant joints, we have created a similar 3PPR

FPM that is composed by compliant joints with traditional topologies (Fig. 4.8a).

Termed as the conventional FPM (Fig. 4.8b), its compliant PR joint is a cantilever

beam that has both ends fixed to a conventional compliant P joint. The design of

this stage uses the same optimal space distribution for the compliant P and PR

joints. Instead of making a physical prototype for the conventional FPM, it is

more economical to conduct the comparison via FEA. To have a fair comparison,

we have designed both FPMs to have one identical actuating compliance, and

thus we have selected the compliance about the z-axis to be identical. For the

conventional FPM, the flexure thickness of the traditional PR joints is selected as

0.6 mm to match the compliance about the z-axis of the optimized FPM.

By inverting the matrix in Eq. (4.14), the compliance matrix of the optimized
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FPM is:

Copt,ee,6×6 =



3.55× 10−5

0 3.55× 10−5 SYM

0 0 1.12× 10−6

0 −3.61× 10−6 0 4.06× 10−4

3.61× 10−6 0 0 0 4.06× 10−4

0 0 0 0 0 2.42× 10−2


.

Using a similar FEA solver, the compliance matrix of the conventional FPM,

Ccon, ee, is given as:

Ccon,ee,6×6 =



1.86× 10−5

0 1.86× 10−5 SYM

0 0 1.96× 10−6

0 −7.1× 10−6 0 5.41× 10−4

7.1× 10−6 0 0 0 5.41× 10−4

0 0 0 0 0 2.42× 10−2


.

(4.15)

Subsequently, the ratio between Eqs. (4.15) and (4.15) is

Rcomp = Copt,ee � Ccon,ee = diag
[
1.91 1.91 0.57 0.75 0.75 1

]
, (4.16)

where � represents the element-wise divisor operation. The ratio between

Copt, ee and Ccon,ee in Eq. (4.16) have only considered the diagonal components as

they are more critical. Here, the values of Rcomp,11 and Rcomp,22 are 1.91 (around

2) and this suggests that the actuating compliance of the optimized FPM is almost

2 times better than its conventional counterpart. Physically, this comparison sug-

gests that the translational actuating compliance along the x- and y-axes of the
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optimized FPM are almost two times greater than the conventional FPM. Note

that Rcomp,66 is 1 because both FPMs have the same actuating compliance about

the z-axis. On the other hand, Rcomp,33, Rcomp,44 and Rcomp,55 are all less than 1.

This comparison suggests that the off-axis stiffness along the translational z-axis

of the optimized FPM is almost twice of the conventional FPM. It also suggests

that the off-axis stiffness about the x- and y-axes of the optimized FPM are higher

than the conventional FPM. In summary, this comparison shows that the stiffness

characteristic of the optimized FPM is superior than a similar conventional FPM.

4.4 Experimental results

4.4.1 Compliant Joints

As the effectiveness of the optimization processes depends heavily on the accu-

racy of the FEA, we would experimentally evaluate the actuating stiffness charac-

teristics of the compliant joints here. In particular, the translational compliances

for both the compliant P and PR joints would be characterized. Likewise, the ac-

tuating rotational compliance of the PR joint would also be evaluated. Note that

as these experiments were only used to evaluate the accuracy of the FEA, we did

not smoothen the sharp edges of the joints yet.

Evaluation for translational compliance of compliant joints

In these experiments, we would evaluate the translational compliance of the

joints. The fixed points of the compliant joints were constrained by a fixed plate

and their loading points were mounted by a linear actuator. By varying the in-

put current to the actuator, different magnitudes of force could be applied to the

joints. Upon loading, the applied force and linear deflections of the joints would
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Linear 

Probe

Actuator

Force 

Sensor

PR joint

Figure 4.9: The experimental setup to evaluate the translational compliance of
the joints. The setup for the compliant PR joint was used as an example. The
joint would produce a translational deflection when the actuator supplied an input
force. The deflection and magnitude of the input force would be measured by the
linear probe and the force sensor, respectively.

be measured by a force sensor and a linear probe, respectively (see Fig. 4.9 for

the experimental setup). Note that the force sensor was located between the joints

and the actuator.

For both experiments, three sets of data were collected; each set consisted

of 10 data points. The compiled data for the PR and P joints’ experiments were

shown via the scatter plots that had a corresponding best fit line in Fig. 4.10(a)

and (b), respectively. Based on the gradient of the best fit lines, the PR and P

joints had a compliance of 6.00× 10−4 m/N and 7.04× 10−4 m/N, respectively.

These experimental results agreed with the FEA simulation where the predicted

compliance for the PR and P joints were 6.68× 10−4 m/N and 7.47× 10−4 m/N

(based on Eq. (4.7) and Eq. (4.9)), respectively. The deviation between the FEA

predictions and experimental results for the PR and P joints were 10% and 6%
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Figure 4.10: The experimental data for evaluating the translational compliance
of the joints. (a) Experimental results for PR joint’s linear deflection where the
input force was plotted against the deflection. The slope of the best fit line was
1.66 N/mm. (b) Experimental results for P joint’s linear deflection where the
input force was plotted against the deflection. The slope of the best fit line is 1.42
N/mm.
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respectively and they may be caused by manufacturing errors. However, these

deviations were negligible and this suggested that the FEA predictions had high

credibility for the translational compliance.

Evaluation for angular compliance of PR joint

The actuating angular compliance of the PR joint was investigated with these

experiments. Similar to the previous experiments, the fixed points of the PR

joint were constrained by a fixed plate. In order to apply an external torque to

the loading point, we used a stepper motor to replace the linear actuator (Fig.

4.11). Different magnitudes of torques could be applied to the joint by varying

the current supplied to the actuator. During the experiments, the linear deflections

of a specific point (defined as point A) and the applied torque would be measured

by using a linear probe and a torque sensor, respectively. By dividing point A’s

linear deflection with a prior known moment arm (20 mm), the angular deflection

could be obtained.

In these experiments, three sets of 10 data points had been collected. The

compiled data was represented by the scatter plot, and a best fit line had been

plotted (Fig. 4.12). Based on the gradient of the best fit line, the angular compli-

ance of the PR joint was evaluated to be 0.834 rad/(Nm) and this agreed with the

FEA prediction of 0.909 rad/(Nm) (based on Eq. (4.7)). The deviation between

the experiments and FEA simulation was only 9%, and could simply be due to

manufacturing errors. However, since the deviation was small, this suggested that

the FEA accuracy had relatively high credibility.
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Figure 4.11: The experimental setup to evaluate the rotational compliance of the
PR joint. The joint would produce a rotational deflection when the actuator sup-
plied an input torque. The linear deflection and magnitude of the input torque
would be measured by the linear probe and the force sensor, respectively. By
dividing the linear deflection with a prior known moment arm, the angular de-
flection could be determined.
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Figure 4.12: Experimental results for PR joint’s angular deflection where the
input torque was plotted against the angular deflection. The slope of the best fit
line was 1.19 N m/rad.
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4.4.2 3PPR

A monolithic prototype of the optimized FPM was also developed as shown in

Fig. 4.13a. To validate the accuracy of the predicted compliance matrix in Eq.

(4.15), we would evaluate the actual stiffness characteristic of the prototype ex-

perimentally. In these experiments, the deflections of the FPM would be recorded

by a high resolution 3-Dimensional (3D) scanner (GOM, model: ATOS Triple

scan) as shown in Fig. 4.13b. The deflections of the FPM would be induced

by the picomotors (a type of linear actuators) and these loadings were simulta-

neously recorded by a 6-axes Force/Torque (F/T) sensor (ATI, model: MINI40;

resolution: 0.01N or Nm). The F/T sensor was mounted to the end-effector and

covered by a precise cut square cover. The square cover served as a reference da-

tum for the picomotors’ loading points and scanning landmark for the 3D scanner.

Note that the recorded deflections were images of the corresponding motions of

the square cover induced by the external loadings.

The FPM’s end-effector had three actuating compliances, i.e. Cxx - the trans-

lation displacement along the x-axis due to Fx loading, Cyy - the translation dis-

placement along the y-axis due to Fy loading, and Cθzθz - the angular displace-

ment about the z-axis due to Mz loading. Figure 4.14(a) plots the experimental

Cxx. From the collected data points,the gradient of the best fit line in Fig. 4.14(a)

showed that this compliance was 3.8 × 105 m/N. As compared to the Cxx of

Copt, ee, the deviation is only 8.6%. The experimental results for Cyy were also

plotted in Fig. 4.14(b). Using the gradient of the best fit line, this compliance

was estimated to be 3.48×105m/N. When compared to the Cyy of Copt, ee, the de-

viation is only 2%. Lastly, from Fig. 4.14(c), the Cθzθz compliance was identified

as 2.63 × 102 rad/Nm. By comparing with Cθzθz of Copt,ee, the deviation is also

small (8.7%).
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(a)

(b)

Figure 4.13: (a) A prototype of the optimized 3PPR FPM and (b) the experimental
setup to evaluate the stiffness of the FPM. The 3D GOM camera was used to
record the end-effector’s deflections. The external loads were induced by the
picomotor and the loads were recorded by the 6-axes F/T sensor.
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Figure 4.14: (a) Experimental results of the FPM’s compliance along the x-axis
due to Fx loading. (b) Experimental results of the FPM’s compliance along the
y-axis due to Fy loading. (c) Experimental results of the FPM’s compliance about
the z-axis due to Mz loading. (d) Experimental results of the FPM’s compliance
along the z-axis due to Fz loading.

The off-axis stiffness of the FPM were also investigated experimentally. Un-

fortunately, the rotational displacement about the x- and y-axes were too small to

be recorded by the 3D scanner. Hence, we would only present the experimental

data for the compliance along the z-axis - Czz. These experimental results were

plotted in Fig. 4.14(d) and the experimental Czz was estimated to be 1.20 × 106

m/N. As compared to the Czz of Copt,ee, the deviation was 7.1%. Although Cθxθx

and Cθyθy could not be validated via this investigation, the collected experimen-

tal results and various comparisons with theoretical predictions were sufficient to

suggest that the predicted stiffness characteristic agreed with the actual stiffness

characteristic of the developed prototype.
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4.5 Summary

This chapter further investigates the effectiveness and feasibility of the proposed

topological optimization algorithm - the mechanism-based approach. This is car-

ried out by first using the algorithm to create a P and a PR compliant joint. The

obtained joints have feasible designs as there are neither disconnected solid ele-

ments nor ambiguous ’grey’ elements within them. Furthermore, the convergence

plots also indicate that the optimization processes are able to converge. The joints

are then assembled into a 3PPR FPM that can deliver a X-Y-θ motion. The ef-

fectiveness of the joints are evaluated by comparing it with a similar 3PPR FPM

that is assembled by traditional compliant joints. By comparing the stiffness ra-

tios of these two FPMs via FEA, it has been shown that the FPM with optimized

joints exhibits superior stiffness ratios. Our experimental results suggested that

this FEA comparison was credible because the deviations between the actual and

predicted stiffness for the optimized FPM were less than 9%.
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Chapter 5

Design Methodology for Structural

Optimal FPMs

This chapter introduces the methodology that can synthesize multi-degrees-of-

freedom FPMs with optimal stiffness and dynamic properties. The proposed

methodology will be demonstrated on another X − Y − θz centimeter-scale

FPM. However, instead of pre-specifying the sub-chains’ topology, we will use

the proposed methodology to determine the optimal topology, shape and size for

the sub-chains. The proposed methodology is discussed in Section 5.1 while a

generic dynamic model will be derived in Section 5.2. By using the methodology

and model, Section 5.3 will use the mechanism-based approach to synthesize a

X − Y − θz FPM. The properties of this FPM will be evaluated experimentally

in Section 5.4 and a summary will be provided in Section 5.5.

5.1 Design Methdology

A universal design methodology for integrating the kinematic and structural opti-

mization approaches to synthesize multi-degrees-of-freedom FPMs with optimal
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dynamic and stiffness properties will be shown here. We hypothesized that this

can be achieved if the mechanism-based approach can be utilized to optimize the

topology, shape and size for the sub-chains of a FPM.

The required steps to construct such an FPM can be divided into three steps

as shown in Fig. 5.1. The FPM’s design requirements, such as its required

degrees-of-freedom and size constraints, are listed in Step 1. Based on the de-

sired degrees-of-freedom, Step 2 uses the rigid-body-replacement method to syn-

thesize the FPM’s overall topology. This can be achieved by using the design

guidelines for parallel robots to determine the required number and type of sub-

chains [82, 83]. Step 2 is essential as it simplifies the formulations to implement

structural optimization techniques on a compliant mechanism with multi-degrees-

of-freedom.

Subsequently, based on the FPM’s size constraints, Step 3 designs the sub-

chains by identifying their optimal topology, shape and size sequentially. This is

achieved by using the mechanism-based approach to automatically synthesize the

sub-chains as a whole. The sub-chains’ topology and shape are first identified by

undergoing two optimizations that maximize the FPM’s stiffness ratios, as shown

in Steps 3(a) and (b). Note that these two steps do not include inertia effects as

their objective is to select an optimal configuration for the FPM to achieve its

desired kinematics.

Based on the obtained topology and shape, Step 3(c) will determine the sub-

chains’ size by optimizing the FPM’s dynamic properties. As the stiffness ra-

tios of the FPM may be compromised in Step 3(c), suitable stiffness constraints

should be applied. For example, by considering the desired workspace and actu-

ation capabilities, the maximum allowable actuating stiffness for the FPM can be

determined. This computation can be achieved by using similar kinetostatic anal-
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 Step 1. Design Specification 
(Desired degrees-of-freedom and size constraints) 

Step 2. Overall Topology Synthesis 
(Determine number and type of sub-chains) 

(b) Shape Optimization 

(Maximize FPM’s Stiffness Ratios) 

(a) Topological Optimization  

(Maximize FPM’s Stiffness Ratios) 

(c) Size Optimization 

(Optimize FPM’s Dynamic Properties) 

Step 3. Sub-chain Synthesis 

Figure 5.1: The synthesis steps: Based on the desired kinematic requirements, the
overall topology of FPM will be identified. This is followed by identifying the
optimal topology, shape and size of the sub-chains sequentially. The topological
and shape optimizations will maximize the FPM’s stiffness ratios while the size
optimization will optimize the dynamic properties of the FPM.
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yses to those performed in [9, 84]. Likewise, by using the maximum allowable

actuating stiffness and minimum required stiffness ratios, the minimum allowable

off-axis stiffness can be computed.

Although the synthesis process resembles the building block approach [78],

there is one distinct difference. Similar to the kinematic approach, the building

block method aims to identify feasible topologies for the compliant mechanism.

Thus, there may be multiple feasible topologies, and the selected topology may

not have optimal performance. The proposed methodology, however, aims to

identify an optimal topology, shape and size for the FPMs’ sub-chains such that

the FPM’s dynamic and stiffness properties can be optimized.

5.2 A Generic Dynamic Model for FPMs

In order to execute the dynamic optimization process shown in Step 3(c) in Fig.

5.1, a generic model that can accurately predict an arbitrary FPM’s dynamic prop-

erties have to be derived. An analytical closed-form model, however, would be

too difficult to derive if the geometries of the sub-chains are too complex. Alter-

natively, if a full FEA is implemented, the entire optimization process would be

too computationally expensive. In view of this, a new semi-analytical dynamic

model is developed to facilitate the dynamic optimization process for FPMs. We

will use FEA to obtain key parameters for our closed form model. The procedure

to derive the dynamic model for the FPMs’ end-effector can be divided into two

stages:

• Stage 1: Obtain the lump mass and stiffness matrices that describe the rigid-

body motion of the sub-chains’ loading point via simplifying the full FEA

model. Note that the loading point of the sub-chains is also their connecting

point to the end-effector.
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• Stage 2: Use the lump mass and stiffness matrices of the sub-chains to ob-

tain the equations of motion for the FPM’s end-effector via the Lagrangian

method.

Stage 1 can be carried out by first discretizing each sub-chain into a mesh of

finite elements. The FEA structural stiffness matrix for the j th sub-chain can be

expressed as KSC,n×n,j =
∑all elements

i=1 KFE,i. Likewise, its structural FEA mass

matrix, MSC,n×n,j can be obtained by assembling each finite element’s mass ma-

trices, MFE,i. By extracting essential qualities from MSC,n×n,j , the lump mass

matrix MSC,6×6,j can be determined. The extracting process is commonly known

as dynamic condensation in FEA. There are several known dynamic condensa-

tion techniques such as the Guyan reduction [85], IRS [86] and the SEREP [87]

methods but they generally conserve the motion in their FEA nodes instead of

the rigid-body motion of the structure. Thus, a modified dynamic condensation

method that has similar characteristics as the Guyan reduction is presented in the

subsequent sub-section.

Once MSC,6×6,j is identified, stage 2 determines the FPM’s effective lumped

6×6 mass matrix, Mee,6×6, by using the Lagrangian equation. The matrix Mee,6×6

would account for the amalgamated inertia properties of the central platform,

Mplatform,6×6, and the sub-chains. The lump stiffness of the end-effector, Kee,6×6,

can be obtained by using Eq.s (5.17) and (5.18) respectively. Subsequently, based

on the obtained Mee,6×6 and Kee,6×6, the six lowest natural frequencies of the FPM

can be determined.

5.2.1 Stage 1 of semi-analytical dynamic model

The presented model is general for any FPM that has l non-identical parallel

sub-chains as shown in Fig. 5.2. The j th sub-chain will be discretized into a
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mesh of finite elements. The mass matrix of the ith finite element, MFE,i, and the

assembled mass matrix, MSC,n×n,j , can be expressed as:

MFE,i =

∫∫∫
ρ NTNdV, MSC,n×n,j =

all elements∑
i=1

MFE,i. (5.1)

KSC,6×6,1 

MSC,6×6, 1 
Equivalent 

wSC,6×6, 1 

Sub-chain 1 

jth Sub-chain 

Center 

Platform 

wee, 6×6 

lth Sub-chain 

Figure 5.2: A generic FPM that has l arbitrary, parallel sub-chains attached to
the central platform (represented by the circle). In the general configuration, the
end-effector of the FPM is subjected to an arbitrary external wrench wee,6×6. The
wrench exerted on the j th sub-chain by the rigid platform is represented by the
variable wSC,6×6,j . Each sub-chain can be represented by a corresponding 6 × 6
mass and stiffness matrix.

The matrix N represents the shape function matrix in FEA while the vari-

able, ρ, represents the density of the finite element. The wrench, wSC,6×1,j ,

exerted on the loading point of the j th sub-chain can be described in the FEA

format,wSC,n×1,j , by the span of the basis [fx, fy, fz,mx,my,mz]:

wSC,n×1,j = q1fx + q2fy + q3fz + q4mx + q5my + q6mz. (5.2)
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The corresponding nodal deformation, uSC,n×1,j , can be described as:

uSC,n×1,j = K−1SC,n×n,jwSC,n×1,j = USC,n×6q, where

USC,n×6,j = K−1SC,n×n,j[fx fy fz mx my mz],

(5.3)

and the vector q = [q1 q2 q3 q4 q5 q6]
T. Since USC,n×6,j is independent of

time, the rate of change of the nodal deformation with respect to time, u̇SC,n×1,j ,

can be expressed by:

u̇SC,n×1,j = USC,n×6,jq̇. (5.4)

Thus, the kinetic energy of the j th sub-chain, Tj , is Tj =

1
2
u̇T

SC,n×1,jMSC,n×n,ju̇SC,n×1,j . In order to obtain an equivalent lump mass

matrix of the j th sub-chain, MSC,6×6,j , the kinetic energy of the lump mass model

has to be equal to the kinetic energy of the j th sub-chain in the FEA format:

Tj =
1

2
u̇T

SC,n×1,jMSC,n×n,ju̇SC,n×1,j

=
1

2
u̇T

SC,6×1,jMSC,6×6,ju̇SC,6×1,j.

(5.5)

The vectors uSC,6×1,j and u̇SC,6×1,j represent the rigid-body deflection of the

j th sub-chain’s loading point and its rate of change with time, respectively. Based

on the compliance matrix, uSC,6×1,j and u̇SC,6×1,j can be expressed as:

uSC,6×1,j = CSC,6×6,jq, u̇SC,6×1,j = CSC,6×6,jq̇. (5.6)

By substituting Eq. (5.4) and Eq. (5.6) into Eq. (5.5), and comparing the lump

mass matrix with the FEA mass matrix, the lump mass matrix of the j th sub-chain
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is expressed as:

MSC,6×6,j = C−T
SC,6×6,jU

T
SC,n×6,jMSC,jUSC,n×6C−1SC,6×6,j. (5.7)

The six lowest natural frequencies of the sub-chain can be obtained by using

the lump mass and compliance matrices. In order to validate the effectiveness of

the derived lump mass matrix, the six lowest natural frequencies of 20 arbitrary

structures are evaluated with these lump matrices. Subsequently, these results are

compared with the ones obtained from a full FEA analysis. It is found that al-

though the lump matrices model is not able to conserve all six lowest frequencies

of the structure, the first three to four lowest natural frequencies can be conserved

reasonably well. This is especially true for the fundamental natural frequency

where the deviation between the lumped model and a full FEA is always less than

3%. Table 5.1 shows two examples of such comparisons. It should be noted that

the presented dynamic condensation method has similar characteristics compared

to the Guyan reduction method. For example, this method can also accurately

preserve several lowest natural frequencies that correspond to translational mode

shapes. Due to its resemblance to the Guyan reduction method, this method may

not be able to preserve natural frequencies that correspond with rotational mode

shapes. This limitation could be caused by our assumption listed in Eq. (5.6),

where the rate of change of the twist is assumed to be directly proportionate to

q̇. While this assumption may be true for the fundamental natural frequency, Eq.

(5.6) may not be able to capture essential information for the higher vibrational

mode shapes. As a result, this may cause a large deviation for the higher modes

of vibration. However, this dynamic condensation method is sufficient for this

thesis as we can optimize a fundamental natural frequency that corresponds to a

translational mode shape. Note that if each sub-chain’s fundamental natural fre-
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quency can be conserved, the fundamental natural frequency of the FPM can be

predicted accurately.

Table 5.1: The six lowest natural frequencies of two random structures that are
predicted by the lumped matrices model are shown in the center column. The
right column shows the six lowest frequencies obtained via a full FEA respec-
tively. Although the lumped matrices model cannot preserve the natural frequen-
cies of all six modes, the first few modes of the natural frequencies of the structure
had been fairly well approximated. This is especially true for the fundamental
natural frequencies that are encased in the rectangular boxes.

Examples Model (Hz) Full FEA (Hz) 

1,301

1,743

3,183

16,571

25,168

59,323
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5.2.2 Stage 2 of semi-analytical dynamic model

The equations of motions for the FPM can be determined via the Lagrangian

method. This can be achieved by deriving the total kinetic energy, strain energy,

and work done on the FPM. The total kinetic energy of the FPM, Ttotal, can be

described as:

Ttotal =
1

2
{ṙT

ee,6×1Mplatform,6×6ṙee,6×1 +
l∑

j=1

u̇T
SC,6×1,jMSC,6×6,ju̇SC,6×1,j}. (5.8)
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The variables, ṙee,6×1 and Mplatform,6×6, refers to the platform’s twist and in-

ertia, respectively. The relationship of ṙee,6×1 and the twist of each sub-chain’s

loading point can be described as:

ṙee,6×1 = Jju̇SC,6×1,j. (5.9)

By substituting Eq. (5.9) into Eq. (5.8), the total kinetic energy can be ex-

pressed as:

Ttotal =
1

2
ṙT

ee,6×1{Mplatform,6×6 +
l∑

j=1

J-T
j MSC,6×6,jJ-1

j }ṙee,6×1. (5.10)

The total strain energy, Stotal, can be expressed as:

Stotal =
1

2

l∑
j=1

uT
SC,6×1,jKSC,6×6,juSC,6×1,j

=
1

2
rT

ee,6×1{
l∑

j=1

J−T
j KSC,6×6,jJ−1j }ree,6×1.

(5.11)

The work done, W , induced by the external wrench, wee,6×1 can be expressed

as:

W = wT
ee,6×1ree,6×1. (5.12)

Thus, by applying the Lagrangian equation with respect to the spatial coor-

dinates of ree,6×1, the closed-formed equations of motion for the FPM can be

described as:
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Mee,6×6r̈ee,6×1 + Kee,6×6ree,6×1 = wee,6×1,

where Kee,6×6 =
l∑

j=1

J−T
j KSC,6×6,j J−1j ,

Mee,6×6 = Mplatform,6×6 +
l∑

j=1

J−T
j MSC,6×6,j J−1j , and

MSC,6×6,j = C−T
SC,6×6,jU

T
SC,n×6,jMSC,jUSC,n×6C−1SC,6×6,j.

(5.13)

The six lowest natural frequencies of the FPM can be determined by solving the

eigenvalues, ωn, of the following equation:

| − ω2
nMee,6×6 + Kee,6×6| = 0. (5.14)

5.3 Synthesis of a X−Y −θz FPM

Using the mechanism-based approach and the generic dynamic model, the pro-

posed design methodology will be illustrated via the synthesis of an X− Y − θz

FPM. Aluminum is used for the FPM and its Young’s modulus and Poisson ratio

are assumed to be 71 GPa and 0.33, respectively. The design requirements for

this FPM are:

• A desired workspace of 1.2 mm×1.2 mm×6◦.

• Optimize the stiffness ratios of the FPM (at least > 80).

• Maximize the FPM’s bandwidth (at least fundamental natural frequency

> 60 Hz).

The minimum allowable stiffness ratios and bandwidth were selected to en-

sure that there is at least a 30% improvement over similar compliant mechanisms

[7, 8, 46, 52]. This X − Y − θz FPM has the potential to be applied across var-
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ious high precision applications pertaining to micro/nano-alignment, biomedical

science, SEM, x-ray lithography and many other similar technologies [9, 50, 51].

5.3.1 Overall topology synthesis

The overall topology of the FPM is determined by using the rigid-body-

replacement method. As mentioned in Chapter 4, there are three possible

parallel robot configurations that can realize the required X − Y − θz pla-

nar motion. They are the 3-legged-Prismatic-Prismatic-Revolute, 3-legged-

Prismatic-Revolute-Revolute and 3-legged-Revolute-Revolute-Revolute configu-

rations. Despite having different combination of joints, all the three configura-

tions have three 3-degrees-of-freedom sub-chains. Thus, the selected configu-

ration for this FPM also has three identical, 3-degrees-of-freedom sub-chains to

articulate a rigid end-effector. The sub-chains were arranged in a rotary sym-

metrical manner so that the payload can be divided equally. This configuration

is shown in the left portion of Fig. 5.3 where the sub-chains are represented by

springs with stiffness properties in all 6-axes. In contrast with Chapter 4, how-

ever, we do not specify the topology of the sub-chains. Instead we will use the

mechanism-based approach to obtain the optimal topology for the sub-chains.

The design domain of a sub-chain is constrained within a 50 mm× 50 mm

area with a plate thickness of 20 mm. Note that the plate thickness is selected

to be 20 mm because it gets increasingly difficult to fabricate flexures with more

than 20 mm plate thickness. The loading point of the sub-chain is indicated by

the location where it is subjected to an arbitrary wrench, wSC,6×1, by the rigid

platform as shown in Fig. 5.3. The bottom portion of the design domain is fixed

to the ground.

The design of the sub-chains is determined by undergoing three optimization
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m =3 

Superimposed 

Seed 
Sub-chain 

FPM’s  

End-effector 

pj 

Design domain of the sub-chain 

is discretized into a mesh of 

25×25 finite elements 
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wSC,6×1 

6-bar Seed 

8-bar Seed 

10-bar Seed 

wSC,6×1 

wSC,6×1 

wSC,6×1 

KSC,6×6 

Figure 5.3: The conceptual design of the X−Y −θz FPM and the procedure to
implement the mechanism-based approach. The FPM’s rigid platform is repre-
sented by the triangle shown at the extreme left and the end-effector is located
at the center of the platform. The end-effector is articulated by three identical
sub-chains and the design domain of each sub-chain is discretized into a mesh
of 25 × 25 identical finite elements. Based on the discrete variable m, a seed
will be selected to generate a sub-chain. A sub-chain is created by converting the
finite elements, which are in contact with the selected seed, into solid elements.
The loading point of the sub-chain is indicated by the location where it is sub-
jected to an arbitrary wrench, wSC,6×1, by the platform. The bottom portion of the
sub-chain is fixed to the ground.
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processes in the following subsections. The static and dynamic analyses of the

FPM, are performed with FEA. The selected mesh density always satisfies two

conditions. Firstly, it enables each optimization process to complete within 4-

6 hours. Secondly, the mesh density can predict the behavior of the sub-chain

accurately. This is validated by using the mesh to pre-evaluate the mechanical

behavior of several non-uniform beams before the optimization processes.

5.3.2 Topological optimization for sub-chains

The optimal topology for the sub-chains that can maximize the FPM’s stiffness

ratios is determined by using the mechanism-based approach. Thus, the design

domain of each sub-chain is discretized into a mesh of finite elements, 25×25

identical 20-node quadratic elements, as shown in Fig. 5.3. Each element can

only exist as either solid or void, and initially they are all void.

Subsequently, as each sub-chain has 3 degrees-of-freedom, we select three

classical 3-degrees-of-freedom mechanisms with the simplest closed-loop con-

figurations: the 6-, 8- and 10-bar linkages as the seeds. Closed-loop mechanisms

are chosen as they have more complicated configurations than their open-loop

counterparts, and if required they can evolve into serially-connected structures.

As there is more than one available seed, a discrete design variable, m, is

used to select a seed that will be superimposed onto the void design domain. The

superimposed seed will create a sub-chain by converting the finite elements that

are in contact with it into solid elements (refer to Chapter 3 for the first way

of mapping to represent the links), as shown on the right portion of Fig. 5.3.

In order to minimize the FPM’s off-axis parasitic motions, the seeds are always

constrained to be symmetrical. The position and orientation of the seed’s links

are determined by the design variables - the position of the links’ tip. Thus, in
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this optimization, m and the position of the links’ tip are encoded as the genetic

material (design variables) in the genetic algorithm. Note that the topology of the

seed can be changed if any link length of the seed approaches to zero during the

optimization process.

Once a sub-chain has been created, its stiffness properties are determined via

FEA. The stiffness matrices for the ith finite element, KFE,i, and the j th sub-chain,

KSC,n×n,j , are given as:

KFE,i =

∫∫∫
BTDB dV, KSC,n×n,j =

all elements∑
i=1

siKFE,i. (5.15)

For convenience, the matrices B and D are restated to be the deformation ma-

trix in FEA and compliance matrix in solid mechanics, respectively. Likewise,

the variables s and V represent the state and volume of each finite element, re-

spectively. If element i is void, a small number (10−6) is assigned to si, instead

of 0, to prevent numerical instability. If the element is solid, si = 1. The vari-

able, n� 6, represents the dimension of KSC,n×n,j . The resultant FEA governing

equation is:

KSC,n×n,juSC,n×1,j = fSC,n×1,j. (5.16)

The vectors uSC,n×1,j and fSC,n×1,j represent the nodal deformations and nodal

force loadings of the j th sub-chain, respectively. The stiffness properties of the j th

sub-chain can be determined by evaluating the loading point’s rigid-body deflec-

tion when it is subjected to six orthogonal unit loads. These loads are expressed

in the FEA format: fx, fy, fz, mx, my and mz. The loadings fx, fy and fz represent

unit force loadings in the x, y and z directions, respectively. Likewise, the load-

ings mx,my and mz represent unit torque loadings in the x, y and z directions,
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respectively. The 6× 6 compliance matrix for the j th sub-chain, CSC,6×6,j , can be

expressed as:

CSC,6×6,j = AUSC,n×6,j,

where USC,n×6,j = K−1SC,n×n,j[fx fy fz mx my mz].

(5.17)

The six columns of the matrix USC,n×6,j represent the nodal deflections induced

by corresponding loadings. The matrix, A, extracts relevant nodal deflections to

determine the rigid-body deflection of the loading point. The first three rows of

CSC,6×6,j represent the translational deflection while the last three rows represent

the rotary deflection. The 6×6 stiffness matrix of the j th sub-chain, KSC,6×6,j , can

be obtained by inverting CSC,6×6,j . This FEA is found to be accurate although the

void elements are represented with si = 10−6 instead of 0. This was checked by

first creating multiple random sub-chains and evaluate their stiffness properties by

using si = 10−6 for the void elements. Subsequently, the stiffness properties of

these sub-chains were re-evaluated by reducing si = 10−9 for the void elements.

The deviation between these two types of analyses is found to be less than 2% for

all these random sub-chains.

Once the sub-chains’ stiffness properties are identified, the end-effector’s 6×6

stiffness matrix, Kee,6×6, can be expressed as:

Kee,6×6 =
3∑
j=1

{J−T
j KSC,6×6,jJ−1j }, Jj =

I3×3 p̂j

03×3 I3×3

 . (5.18)

The matrix, Jj , represents the Jacobian matrix for the j th sub-chain. The 3×3

skew-symmetric matrix, p̂j , represents the position vector from the end-effector

to the j th sub-chain as illustrated in Fig. 5.3. Note that before Eq. (5.18) is

executed, the coordinate frame of all the KSC,6×6,j are expressed in the global
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coordinate frame that is shown in Fig 5.3.

The stiffness ratios of Kee,6×6 are maximized by evolving the sub-chains’

topology via this optimization problem:

minimize f =
KxxKyyKθzθz

KzzKθxθxKθyθy

subject to: KSC,n×n,juSC,n×1,j = fSC,n×1,j.

(5.19)

The equality constraint represents the FEA governing equation. After using

genetic algorithm to evolve a population of 100 chromosomes via 40 generations,

the optimal topology for the sub-chains is identified and shown in Fig. 5.4(h).

The evolutionary process is illustrated in Fig. 5.4 and this optimization process is

shown to converge as the best and mean fitness plots in Fig. 5.5 converge to the

same value. Note that Fig. 5.4a-b are sample candidate solutions from the first

generation. The total computational time is about four hours and the obtained

topology is simple.

A simple topology, however, does not suggest that complicated topologies

should be excluded during the synthesis process. Note that the solution is not

known a priori, and it would be beneficial to increase the optimization search

space by including these complicated topologies. It should also be noted that

although the search space can be increased by having more seeds, this will also

require more computational cost and time. Thus, by considering the computa-

tional cost, we only select three seeds.

5.3.3 Shape optimization for sub-chains

The stiffness ratio of the FPM can be further enhanced by letting the optimal

topology of the sub-chain to undergo a shape optimization. This sub-section
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(a) 1st Gen (b) 1st Gen (c) 4th Gen (d) 7th Gen 

(e) 9th Gen (f) 11th Gen (g) 13th Gen (h) 18th Gen 

wSC,6×1 wSC,6×1 wSC,6×1 wSC,6×1 

wSC,6×1 wSC,6×1 wSC,6×1 wSC,6×1 

Figure 5.4: The evolutionary process to obtain the sub-chains’ optimal topology.
(a) and (b) are sample chromosomes in the first generation while (c) - (h) shows
the solutions obtained in various generations. The final solution, (h), is obtained
in the 18th generation.
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Figure 5.5: The convergence plots for the topological optimization. The opti-
mization process had converged as the best fitness and the mean fitness plots
eventually converge to the same value.
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shows how the curvature of each link in Fig. 5.4(h) is optimized.

Similar to the previous optimization process, the design domain of the sub-

chains is first discretized into a mesh of 50 × 50 identical 8-node bi-linear finite

elements as shown in Fig. 5.6(a). All the elements can either be solid or void and

they are initially all selected as void here. The optimal topology obtained in Fig.

5.4(h) is then used as a seed to superimpose onto the void mesh of elements as

shown in Fig. 5.6(b). The seed’s link lengths in this optimization, however, would

remain constant. Furthermore, instead of using straight lines, each link of the seed

is represented by an area bounded by a straight line and a cubic curve as shown

in Fig. 5.6(c)-(d) (refer to Chapter 3 for second way of mapping for the links).

Note that we have excluded the harmonic curves to reduce computational time.

As the sub-chains are geometrically symmetrical, this shape mapping would only

be required to carry out on the left-half plane of the seed. Elements that are in

contact with the seed are selected as solid elements. The features on the right-half

plane are obtained by making a reflection about the symmetrical axis as shown

in Fig. 5.6(e). This essentially creates a sub-chain as shown in Fig. 5.6(f). The

stiffness properties of the FPM’s end-effector are then evaluated via equations

(5.15) to (5.18).

The profile of the curve is specified with three parameters, L, α and β as

shown in Fig. 5.6(c). The parameter L represents the link length and it is prede-

termined by the previous optimization process. The parameters αc and βc are the

design variables that specify the location and height of the stationary point of the

curve, respectively. By varying these design variables, the seed’s links can gener-

ate different curvatures. Thus, in this optimization, each chromosome in the G.A.

encodes the curve parameters, αc and βc, as their genetic materials. Although the

design variables are different, the fitness function and constraints for the shape
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L

cL

cL

wSC,6×1

(a) Design domain 

of a sub-chain

(b) Seeding the 

optimal topology

(c) Generating cubic 

curves for each link

(d) Selecting solid 

elements

(e) Reflection about 

symmetrical axis

(f) Sub-chain

Figure 5.6: The procedure to implement shape optimization. (a) The design do-
main is discretized into a mesh of 50 × 50 identical finite elements which can
be either solid or void. All of the elements are initially selected as void. (b) The
optimal topology in Fig. 5.4(h) is superimposed onto the mesh. (c) Each link of
the seed that is located on the left feature of the seed will produce an additional
cubic curve. The location and height of the curve’s stationary point are specified
by the design variables αc and βc, respectively. (d) All the finite elements which
are in contact with the area bounded by the cubic curve and the link are selected
as solid elements. (e) A structure is formed by reflecting the left features about
the symmetrical axis. (f) The generated sub-chain.
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optimization are also formulated by Eq. (5.19).

The optimal shape is shown in Fig. 5.7(c) after G.A. evolves the curve pa-

rameters with 70 chromosomes via 50 generations. The evolutionary process is

illustrated in Fig. 5.7. The optimization process is shown to converge as the best

and mean fitness plots in Fig. 5.8 converge to the same value. The computational

time is about 6 hours.

(b) 5th Gen 

wSC,6×1 

(a) 1st Gen 

wSC,6×1 

(c) 10th Gen 

wSC,6×1 

Figure 5.7: The evolutionary process to obtain the sub-chains’ optimal shape
based on its optimal topology. (a), (b) and (c) show the solutions obtained in the
1st, 5th and 10th generations, respectively. The final solution is obtained in the 10th

generation.

It is found that the values of βc for all the optimized cubic curves are small.

Thus, the resultant shape for each link resembles a rectangle. However, despite

having simple shapes, it does not suggest that the cubic curves are unnecessary.

This is because the solution is not known a priori and if the cubic curves are

removed, the search space for the shape optimization is inadvertently reduced.
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Figure 5.8: The convergence plots for the shape optimization. The optimization
process is shown to converge as the best fitness and the mean fitness plots even-
tually converge to the same value.

5.3.4 Size optimization for sub-chains

The dynamic properties of the FPM will be optimized by using the obtained sub-

chains to undergo a final size optimization. Specifically, this sub-section will

optimize the flexural length and thickness of the sub-chains. Unlike previous

optimizations, this optimization includes the inertia effects of the FPM as shown

in Fig. 5.9. The inertias of the platform and the j th sub-chain are represented

by the matrices Mplatform,6×6 and MSC,6×6,j , respectively. Each MSC,6×6,j can be

determined by the model provided in section 5.2.

The design variables, listed as ti, are shown in Fig. 5.10(a). Thus, in this

optimization, the chromosomes in genetic algorithm would encode the values of

these design variables as their genetic material.

Each sub-chain is discretized into a mesh of 340 20-node quadratic finite

elements. The FEA mass matrices of the ith finite element, MFE,i, and j th sub-

chain, MSC,n×n,j , are given as:

MFE,i =

∫∫∫
ρ NTN dV, MSC,n×n,j =

all elements∑
i=1

MFE,i. (5.20)

The matrix, N, represents the shape function of the finite element while the
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Platform Inertia  
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y 

Figure 5.9: A schematic representative of the FPM’s dynamic model. The plat-
form inertia is represented by the mass matrix, Mplatform,6×6 while the inertia and
stiffness matrices of each sub-chain can be represented as MSC,6×6,j and KSC,6×6,j ,
respectively.

variable, ρ, represents the density of the element. The mass matrices, MSC,6×6,j ,

is given as:

MSC,6×6,j = C−T
SC,6×6,jU

T
SC,n×6,jMSC,n×n,jUSC,n×6C−1SC,6×6,j. (5.21)

Using Eq. (5.21) and the Lagrangian method, the end-effector’s equivalent

inertia matrix, Mee,6×6, is:

Mee,6×6 = Mplatform,6×6 +
3∑
j=1

J−T
j MSC,6×6,j J−1j . (5.22)

Although the FPM has many natural frequencies, we will only maximize its

fundamental natural frequency (bandwidth) as a proof-of-concept. It should,

however, be noted that it is also possible to optimize the natural frequency of

higher vibrational modes. The bandwidth, ωn,1, can be maximized via this opti-
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mization:

minimizef1 =
1

ωn,1

subjected to:
∣∣−ω2

nMee,6×6 + Kee,6×6
∣∣ = 0

Kxx ≤ 2.0× 104 N/m, Kyy ≤ 2.0× 104 N/m,

Kzz ≥ 1.6× 106 N/m, Kθxθx ≥ 1.2× 103 Nm/rad,

Kθyθy ≥ 1.2× 103 Nm/rad, Kθzθz ≤ 15 Nm/rad.

(5.23)

The six lowest natural frequencies of the FPM can be determined by solv-

ing the eigenvalues, ωn, in the equality constraint shown in Eq. (5.23). In order

to achieve the required workspace with three actuators that can supply a max-

imum of 8 N, the maximum allowable actuating stiffness Kxx, Kyy and Kθzθz

can be determined. This computation can be achieved by using similar kine-

tostatic analyses that were demonstrated in [9, 84]. Furthermore, based on the

required stiffness ratios (> 80), the minimum allowable off-axis stiffness, Kzz,

Kθxθx and Kθyθy, can be computed. Note that the stiffness ratios are feasible as

they are within the ‘upper bound’ limits of the FPM. These ‘upper bound’ limits

are determined by undergoing a size optimization with the fitness function and

constraints listed in Eq. (5.19) instead of Eq. (5.23).

The optimal FPM is obtained, as shown in Fig. 5.10(b), after genetic algo-

rithm evolves a population of 100 chromosomes via 100 generations. The jagged

edges of the design have been smoothened to prevent stress concentration. The

optimization process is shown to converge as the best and mean fitness plots in

Fig. 5.11 converge to the same value. The total computational time is about 5

hours and the simulated stiffness properties of the FPM are:
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Figure 5.10: The procedure to implement size optimization on the FPM. By un-
dergoing another size optimization on the sub-chain shown in (a), the optimal
FPM is obtained in (b).

113



Generations B
es

t 
F

it
n
es

s 
V

al
u
e 

8.59 

100 

×10-3 

8.68 

8.66 

8.64 

8.62 

8.60 

8.58 
20 40 60 100 0 80 

×10-3 

Generations 

8.59 

100 

×10-3 

M
ea

n
 F

it
n
es

s 
V

al
u
e 

×102 

8 

4 

20 40 60 80 0 100 

6 

2 

10 

Figure 5.11: The convergence plots for the size optimization. The optimization
process converges as the best fitness and the mean fitness plots eventually con-
verge to the same value.

Kee,6×6 =



2.0× 104

0 2.0× 104 SYM

0 0 2.6× 106

0 −545 0 1.3× 103

545 0 0 0 1.3× 103

0 0 0 0 0 12


. (5.24)

The obtainedKxx,Kyy,Kzz,Kθxθx,Kθyθy,Kθzθz are 2.0×104 N/m, 2.0×104

N/m, 2.6 × 106 N/m, 1.3 × 103 Nm/rad, 1.3 × 103 Nm/rad and 12 Nm/rad,

respectively. The translational and rotational stiffness ratios are Kzz/Kxx =

Kzz/Kyy = 130 and Kθxθx/Kθzθz = Kθyθy/Kθzθz = 108, respectively. The

simulated bandwidth for the FPM is 117 Hz and it corresponds to the x-axis

translational mode shape. Due to the FPM’s rotary symmetrical configuration,

the second lowest natural frequency is also equal to 117 Hz and it corresponds to

the y-axis translational mode shape.

Stress analyses are conducted via Comsol simulations after the size optimiza-

tion is completed and the jagged edges smoothened. These analyses are con-

ducted by first computing the required wrench on the FPM’s end-effector, wee,6×6,
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such that the FPM can achieve its desired workspace. This is computed by pre-

multiplying the stiffness matrix in Eq. (5.24) to the maximum travel range of

the desired workspace. Subsequently, the FPM’s Von Mises stress induced by

wee,6×6 is determined. Simulation results indicate that the maximum induced Von

Mises stress is 126 MPa and it is lower than the yield stress and fatigue stress of

the FPM. This implies that the FPM has approximately 108 lifecycles [88]. Note

that we assume that the FPM can be constructed with aluminium 7075-T6, and

its yield stress and fatigue stress are approximated to be 450 MPa and 159 MPa,

respectively.

While it is possible to include fatigue and yield stress constraints in Eq. (5.23)

during the optimization process, we have excluded such stress analyses to reduce

computational costs.

5.3.5 Discussion

The obtained FPM had achieved stiffness ratios that were greater than 100, and

a high bandwidth of 117 Hz. These properties have satisfied the required design

criteria that are listed in the beginning of Section 5.3. The targeted workspace

of the FPM can also be theoretically achieved as the actuating stiffness had been

constrained based on the actuators’ capabilities (as shown in Eq. (5.23)). Further-

more, as the maximum induced Von Mises stress is lower than the FPM’s fatigue

stress, this implies that the FPM can repeat approximately 108 cycles.

The obtained stiffness ratios had shown significant improvement over ex-

isting centimeter-scale compliant mechanisms with 3 degrees-of-freedom. The

stiffness ratios of these compliant mechanisms are typically between 0.5− 50

[7, 8, 9, 46, 50, 51, 52, 53]. The stiffness ratios are also much more superior than

the 3PPR FPM in Chapter 4 because the topology and shape of the sub-chains
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have been optimized. Furthermore, the obtained bandwidth also has significant

improvement over existing compliant mechanisms, which have translational and

rotational deflections greater than 0.5 mm and 0.5◦, respectively. The bandwidth

of these compliant mechanisms typically does not exceed 45 Hz [7, 8, 46, 52].

The configuration of the obtained FPM resembles the classical 3-legged-

Prismatic-Prismatic-Revolute architecture. The two parallel vertical beams re-

semble a prismatic joint that slides horizontally, as shown in Fig. 5.12(a). The

combination of the horizontal beam and the top vertical beam resemble the sec-

ond prismatic joint and a revolute joint that provide vertical and rotational mo-

tions. These deformation characteristics are illustrated in Fig. 5.12(b) and Fig.

5.12(c), respectively. Once we have identified the active joints, it will be possible

to use laser interferometry sensors to implement position control at the joint space

level. By controlling the position of the active joints, we can use the kinematic

formulations shown in Eq. (4.3) to control the orientation and position of the

end-effector. However, as the focus of this thesis is on the design of the FPMs,

the control aspects can only be explored as a future work.

Despite having a simple topology and shape for the FPM’s sub-chains, it

should be noted that this design is unique from other X − Y − θz FPMs in the

literature. There may, however, exist more optimal solutions if more seeds, and

higher order polynomial curves are used in the topological and shape optimiza-

tions, respectively. However, this would in turn require more computational time

and cost.

Lastly, different topologies and shapes may be obtained if the fitness function

in Eq. (5.19) is changed. This can be achieved by altering the stiffness compo-

nents’ indices where the optimization processes would place higher emphasis for

components with higher indices.
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Figure 5.12: The obtained FPM resembles a 3-legged-Prismatic-Prismatic-
Revolute configuration. The compliant joint motions of the sub-chains are shown
on the right.
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5.4 Experiments

As a proof-of-concept, a cheaper material, aluminum 6061, is used to construct

our prototype. Its Young’s modulus is 69 GPa and it is slightly lower than the

simulated Young’s modulus (71 GPa). Furthermore, due to manufacturing er-

rors, the dimensions of the prototype are slightly different from the conceptual

design shown in Fig. 5.10. By accounting for such changes, the FPM’s updated

simulated stiffness and dynamic properties are shown in Tables 5.2 and 5.3, re-

spectively.

Two types of experiments, the stiffness and dynamic experiments were con-

ducted on the prototype. The stiffness tests evaluated the stiffness properties and

workspace of the FPM while the dynamic test evaluated its bandwidth. All these

experiments were conducted on an anti-vibration table.

5.4.1 Stiffness experiments

Actuating Stiffness Evaluation

The FPM was connected to a linear positioner via a rigid rod. When the linear po-

sitioner applied a pushing force to the FPM, the deflection and pushing force on

the FPM were measured by a micrometer and a load cell, respectively. Note that

the stiffness of the rigid rod was at least 1000 times greater than the FPM’s ac-

tuating stiffness. Thus, when the rigid rod was placed serially with the FPM, the

deflections caused by the rigid rod were negligible. As the FPM had 3 degrees-of-

freedom, three actuating stiffness - the x-axis force loading, y-axis force loading

and z-axis moment loadings were evaluated. This experimental setup was shown

in Fig. 5.13 by using the y-axis force loading as an illustration. The linear posi-

tioner was placed collinearly with the end-effector’s y-axis. Similarly, the x-axis
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Figure 5.13: The experimental setup for evaluating the actuating stiffness of the
FPM. A linear positioner is used to apply a pushing force to the FPM via a rigid
rod. The linear deflection and applied force are measured by a micrometer and a
load cell, respectively.

force loading was carried out by rotating the positioner 90◦ so that the positioner

was aligned with the end-effector’s x-axis. In the z-axis moment loadings, the

positioner had an offset distance along the y-axis from the x-axis force loading

configuration. This allowed the positioner to apply z-axis torques to the FPM.

For each experiment, three sets of five data points were collected. To prevent

the backlash of the linear positioner, we do not allow it to move bi-directionally

and have constrained its motion to become uni-directional for each set of experi-

ment. The compiled data were represented by the plots shown in Fig. 5.15(a), (b)

and (c). Based on the slope of the best fit lines, the experimentally obtained stiff-

ness for the x-axis force loading, y-axis force loading and z-axis torque loading
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were 1.89×104 N/m, 1.84×104 N/m and 10.8 Nm/rad, respectively. These results

agree with the simulation results, where the corresponding stiffness are predicted

to be 1.86 × 104 N/m, 1.86 × 104 N/m and 11.4 Nm/rad, respectively. The dif-

ferences between the simulation results and experimental results were within 5%

deviation.

Note that the pushing force would also induce an off-axis torque because the

loading point of this force had a 5 mm z-axis length offset above its end-effector.

However, the deflection induced by this off-axis torque was negligible. As an

example, when a 1 N x-axis force was applied on the FPM, this force would

also generate a 0.005 Nm torque in the y-axis. Based on the FPM’s simulated

stiffness properties, the translational deflection along the x-axis that was induced

by the y-axis torque and x-axis force were 0.08 µm and 50 µm, respectively. In

comparison, the deflection induced by the y-axis torque was 625 times less than

the deflection induced by the x-axis force and thus could be neglected.

Off-axis Stiffness Evaluation

The rotational off-axis stiffness, Kθxθx and Kθyθy, cannot be determined exper-

imentally as their deflections were too small to be detected with our available

equipments. Thus, the z-axis force loading, Kzz, was the only evaluated off-

axis stiffness. Dead weights were placed on the FPM’s platform to apply z-axis

forces. The corresponding deflection was measured by a linear probe that had a

resolution of 2 µm. Five sets of three data points were collected and the complied

data was represented in Fig. 5.15(d). Based on the slope of the best fit line, the

experimental stiffness value was 2.41 × 106 N/m. This result agreed with the

simulation results, where the Kzz stiffness was predicted to be 2.5 × 106 N/m.

The deviation between the experimental results and simulation results was within
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4%.

Workspace Evaluation

The achievable workspace for the FPM was evaluated by using three 1-degree-

of-freedom, bi-directional, linear actuators. As a proof-of-concept, the actuators

were connected to the FPM’s end-effector via simple beams as indicated in Fig.

5.14. Each beam was designed to have low bending stiffness along the directions

indicated in Fig. 5.12(b) and (c), and high stiffness in other directions. When the

actuators were connected to the beams, the beams’ low stiffness directions func-

tioned like the sub-chains’ passive compliant joints. Based on Comsol’s FEA

simulations, the contribution of these stiffness had less than 5% effects on the

stiffness properties indicated in Table 5.2. The beams’ stiffness along the di-

rection indicated in Fig. 5.12(a) was high so that the beams was able to move

with the actuators as a rigid body. This direction served as the active compliant

joint for each sub-chain. Furthermore, when the actuators were connected to the

beams, the reduction in the FPM’s open-loop bandwidth was less than 6% even

when the moving mass of the actuators were considered. This analysis was also

performed via Comsol’s FEA simulations. The reduction in the open-loop band-

width was low because the actuators had constrained one end of the beams such

that they were only allowed to move along the active joint direction. This bound-

ary condition helped to preserve the open-loop bandwidth of the FPM. Lastly,

the dimensions of the thin beams were calculated to prevent buckling and other

failure modes.

By driving the FPM with the actuators that could supply a maximum force of

8 N, it was found experimentally that the FPM was able to achieve its targeted

workspace of 1.2 mm×1.2 mm× 6◦. The actuated deflection of the FPM was
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Figure 5.14: The end-effector of the FPM is directly driven by three 1-degree-of-
freedom, linear actuators that are connected via simple beams. As an example, the
motion of one of these actuators is indicated by the dash-dot arrow. As the end-
effector has more than 1-degree-of-freedom, the motions that are unachievable
by the actuators, are compensated by the compliance of the thin beams. An open-
loop actuation of the prototype is shown in the supplementary video.
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measured by a linear probe and a supplementary video illustrated simple open-

loop actuation on the FPM.

5.4.2 Dynamic experiments

Based on the FEA in Section 5.3.4, the bandwidth of the FPM (without actuators)

can be determined by evaluating the natural frequency that corresponded to either

the x-axis translational or y-axis translational mode shapes. Thus, the FPM’s end-

effector was subjected to a knock along the y-axis to simulate an input impulse.

The y-axis acceleration of the FPM was measured by an accelerometer. The

frequency response of the FPM was obtained using a Fourier transform on the

acceleration-time response. To obtain the standard displacement-time frequency

response for the FPM, we superimpose a 1
s2

transfer function to the previous

acceleration-time frequency response. The experiment was repeated six times to

filter the induced noise obtained in each experiment and the average frequency

response of the FPM was shown in Fig. 5.15(e). The bandwidth of the FPM was

approximated by its resonance frequency, which was 102 Hz.

Similarly, the natural frequency that corresponded to the x-axis translational

mode shape was determined by simulating an impulse along the x-axis. This

process was repeated 6 times and the average frequency response was shown

in Fig. 5.15(f). The resonance frequency for this mode shape was found to be

102.5 Hz. Lastly, the frequency response for the z-axis rotational mode shape

was determined by first simulating an impulse that was parallel to the x-axis

but with an offset distance, L1, along the y-axis. This would create a torque

impulse along the z-axis. As the accelerometer was placed parallel to the y-axis

but with an offset distance, L2, along the x-axis, it could determine the angular

acceleration by dividing the measured acceleration with L2. The experimental

123



F
o

rc
e 

(N
) 

Deflection (mm) 

(a) Fx loading 

F
o

rc
e 

(N
) 

Deflection (mm) 
(b) Fy loading 

Deflection (rad) 

T
o

rq
u
e 

(N
m

) 

(c) Mz loading 

D
ef

le
ct

io
n
(

m
) 

Force (N) 

(d) Fz loading 

5 

10 

15 

20 

2
0
 l

g
(A

m
p

li
tu

d
e)

 

Frequency (Hz) 

Occurs at 

102 Hz 

100 500 10 

-60 

-40 

-80 

(e) y-Translational 

2
0
 l

g
(A

m
p

li
tu

d
e)

 

Frequency (Hz) 

Occurs at 

102.5 Hz 

100 500 10 

-60 

-40 

-80 

(f) x-Translational 

2
0
 l

g
(A

m
p

li
tu

d
e)

 

Frequency (Hz) 

Occurs at 

104.7 Hz 

100 500 10 

-60 

-40 

-80 

(g) z-Rotational 

2
0
 l

g
(A

m
p
li

tu
d
e)

Frequency (Hz)

Occurs at 

97 Hz

100 50010

-50

-30

-70

(h) y-translational (actuators)

Figure 5.15: (a), (b), (c) and (d) are the experimental results for the Fx, Fy, Mz

and Fz loading, respectively. The actuating stiffness experiments that are shown
in (a), (b) and (c) have three sets of five data points. The off-axis stiffness exper-
iment data that is shown in (d) have five sets of three data points. Based on the
slope of the plots, the experimentalKxx,Kyy,Kθzθz andKzz stiffness of the FPM
are 1.89×104 N/m, 1.84×104 N/m, 10.8 Nm/rad and 2.41×106 N/m, respectively.
(e), (f) and (g) are the Bode plots that correspond to the FPM’s translational y-
and x-axes, and rotational z-axis mode shapes, respectively. Their correspond-
ing resonance frequencies are 102 Hz, 102.5 Hz and 104.7 Hz, respectively. (h)
The experimental frequency response of the FPM when it was connected to the
actuators. The resonance frequency occurred at 97 Hz.
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Figure 5.16: The experimental setup for evaluating the frequency response that
corresponds to the z-axis rotational mode shape. A torque impulse is applied
to the FPM by using the hammer to generate an impulse that is parallel to the
x-axis but with an offset length of L1 along the y-axis. As the accelerometer is
placed parallel to the y-axis but with an offset length of L2 along the x-axis, it
measures the angular acceleration of the FPM by dividing the measured tangential
acceleration with L2.

setup that evaluated the z-axis rotational mode shape was shown in Fig. 5.16.

Note that the accelerometer would only measure the tangential acceleration as

its orientation was perpendicular to the attached point’s centripetal acceleration.

This experiment was repeated 6 times and the average frequency response for the

rotary z-axis mode shape was shown in Fig. 5.15(g). The resonance frequency

was found to be 104.7 Hz.

These experimental results agreed with Comsol simulations as the predicted

natural frequencies in the translational x- and y-axes, and rotational z-axis were
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Table 5.2: An overview of the FPM’s stiffness properties where the simulation
results are compared with the experimental data. The second and third rows
represent the translational stiffness ratios while the fourth and fifth rows represent
the rotational stiffness ratios of the FPM.

Stiffness Properties Simulation Experimental Data
Kzz/Kxx 134 128
Kzz/Kyy 134 131

Kθxθx/Kθzθz 111 —–
Kθyθy/Kθzθz 111 —–
Kxx (N/m) 1.86× 104 1.89× 104

Kyy (N/m) 1.86× 104 1.84× 104

Kzz (N/m) 2.5× 106 2.41× 106

Kθxθx (Nm/rad) 1.26× 103 —–
Kθyθy (Nm/rad) 1.26× 103 —–
Kθzθz (Nm/rad) 11.4 10.8

111 Hz, 111 Hz and 115 Hz, respectively. The deviation between the experi-

mental data and simulation predictions was within 9%. Note that there was a

discrepancy in comparing the measured resonance frequencies (= ωn
√

1− 2ζ2)

with the predicted natural frequencies, ωn, as damping effects were ignored in

the latter situation. Although this friction was small, a small deviation between

the resonance and natural frequencies should still be expected. The variable ζ

referred to the damping ratio resultant by air friction.

Similar experiments were also performed on the FPM when it was attached to

the actuators. The obtained bandwidth was 97 Hz, and the frequency response

was shown in Fig. 5.15(h). This agreed with the Comsol FEA simulation,

where the additional moving mass of the actuators had less than 6% effects on

the FPM’s open-loop bandwidth. The frequency responses of higher order mode

shapes were not evaluated experimentally as their natural frequencies exceeded

the working range of our available sensors.
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Table 5.3: An overview of the FPM’s dynamic properties where the simulation
results are compared with the experimental data. The first column indicates the
corresponding mode shape while the second and last column represent the simu-
lation predictions and experimental data, respectively.

Mode Shape Simulation Experimental Data
y-Translational (Hz) 111 102
x-Translational (Hz) 111 102.5
z-Rotational (Hz) 115 104.7
z-Translational (Hz) 890 —–
x-Rotational (Hz) 910 —–
y-Rotational (Hz) 910 —–

5.4.3 Discussion

Tables 5.2 and 5.3 compare the FPM’s experimental stiffness and dynamic prop-

erties with its simulation results, respectively. The stiffness and dynamic experi-

mental data agreed with the simulation results as their deviations were within 5%

and 9%, respectively. These deviations could be caused by other manufacturing

errors that were difficult to account for. The dynamic experimental errors were

larger because there was a discrepancy in comparing the resonance frequency

with the natural frequency. Note that due to damping effects, the resonance fre-

quency was always slightly lower than the natural frequency.

5.5 Summary

In this chapter, we have introduced the generic design methodology that can in-

tegrate both the kinematic and structural optimization approaches. In order to

implement this methodology, we have also proposed a generic dynamic model

that can accurately predict the fundamental natural frequency of a FPM with ar-

bitrary geometries. The universality of the proposed model will allow scientists

and engineers to evaluate the dynamic characteristics of FPMs that have either 2D
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or 3D motions. Using the dynamic model and the mechanism-based approach,

the proposed design methodology uses a structural optimization approach to opti-

mize the topology, shape and size of a FPM’s sub-chains. This is in contrast with

existing kinematic approaches where the sub-chains are only subjected to size

optimizations. It is found that by including topological and shape optimizations,

the FPM’s dynamic and stiffness properties can be improved significantly.

A FPM that has optimal sub-chains can be synthesized by first using the kine-

matic approach to determine its overall topology. Subsequently, a structural op-

timization method is applied to synthesize the sub-chains of the FPM by deter-

mining their optimal topology, shape and size sequentially. The topological and

shape optimizations aim to select an optimal configuration for the FPM to realize

its desired kinematics. This is achieved by formulating optimization problems

that can maximize the stiffness ratios of the FPM. Based on the optimal topol-

ogy and shape, a size optimization is then used to optimize the FPM’s dynamic

properties.

The proposed synthesis approach is illustrated via designing a planarX−Y−θz

FPM. This FPM is evaluated experimentally to have a large workspace of 1.2 mm

× 1.2 mm × 6◦, bandwidth of 102 Hz, and stiffness ratios above 120. The im-

provement in stiffness ratio is significant compared to existing centimeter-scale

compliant mechanisms with 3-degrees-of-freedom. The stiffness ratios of these

compliant mechanisms are typically between 0.5−50 [7, 8, 9, 46, 50, 51, 52, 53].

Furthermore, the bandwidth of existing large workspace compliant mechanisms,

which have translational and rotational deflections greater than 0.5 mm and 0.5◦

respectively, do not exceed 45 Hz [7, 8, 46, 52]. From the synthesized FPM, we

have demonstrated the benefits of performing topological and shape optimiza-

tions on the sub-chains. It should be noted that there is no loss of generality in
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applying the proposed approach to optimize the natural frequency of higher vi-

brational modes. We envision that the proposed design methodology can be used

universally to create multi-degrees-of-freedom FPMs that have optimal dynamic

and stiffness properties.
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Chapter 6

Conclusion and Future Works

6.1 Conclusion

In this research, a new design methodology that can synthesize multi-degrees-

of-freedom FPMs with optimal stiffness and dynamic properties has been estab-

lished. This methodology is specifically created to address the limitations of ex-

isting synthesis approaches, which are unable to optimize these properties when

the compliant mechanisms have multi-degrees-of-freedom. In order to implement

this methodology, we have developed a new topological optimization algorithm

termed the mechanism-based approach, and also a generic semi-analytical dy-

namic model that can accurately predict the fundamental natural frequencies of

FPMs with arbitrary geometries. The effectiveness of the proposed methodology

has been illustrated via the synthesis of an optimal X − Y − θz FPM. The main

contributions of this work are summarized as follows:

• The Development of Mechanism-based Approach for Synthesis

As many existing topological optimization algorithms may produce

infeasible solutions, a new topological optimization algorithm termed

131



the mechanism-based approach has been developed specifically for the

proposed design methodology. Based on the required degrees-of-freedom

of the compliant mechanism, the mechanism-based approach will first

identify various traditional mechanisms that can satisfy this requirement.

These mechanisms are termed as seeds and their geometrical charac-

teristics will be used to create the topology of a compliant mechanism.

By gradually evolving the seeds’ geometrical properties with genetic

algorithm, an optimal compliant mechanism will eventually emerge.

A notable advantage of the mechanism-based approach is that it will

never produce disconnected solid elements because the links of the seed

are always physically connected. Furthermore, as the selection of the

solid elements is done in a discrete manner, the possibility of having

ambiguous “grey” elements is eliminated. Lastly, this algorithm does

not overconstrain the topology of the compliant mechanism because it

has been shown that even the “topology” of the seeds can be changed.

The effectiveness of this algorithm has been evaluated via several case

studies, including the development of a µ-gripper, a compliant P joint,

and a compliant PR joint that have optimal stiffness characteristics. For

all these case studies, it has been shown that these devices are able to

exhibit superior stiffness characteristics compared to the ones obtained via

intuitive designs. Furthermore, the convergence plots for all of the case

studies suggest that the mechanism-based approach has good convergence

properties. While the mechanism-based approach shows promise, it has

two main limitations. First, it can only simplify a complex topology but

cannot change a simple topology into a more complicated one. Second,

it requires more computational time compared to algorithms such as the
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SIMP and homogeneous methods. A feasible solution to moderate the first

limitation will be to include more complex seeds during the optimization

process, allowing our proposed algorithm to have a larger search space. On

the other hand, we can reduce the computational time by converting our

programming platform from Matlab to C++ to speed up the computational

process. Both of these proposed solutions will be explored as future work.

• A Generic Dynamic Model for FPMs

In order to have a generic design methodology that can produce FPMs

with optimal dynamic properties, the derivation of a universe model that

can accurately predict the fundamental natural frequency of a FPM with

arbitrary geometries will be required. An analytical model, however,

maybe too difficult when the geometries of the sub-chains are too complex.

Alternatively, if a full FEA is implemented, the entire optimization process

would be too computationally expensive. In view of this, we had proposed

a semi-analytical dynamic model where the derivation of the model is

divided into two stages. The first stage will use a FEA dynamic conden-

sation to obtain the lump mass and stiffness matrices for the sub-chains.

This will be followed by the second stage where the Lagrangian method

will use all these lump matrices and the inertia of the end-effector to

obtain the equations of motion for the FPM. The accuracy of the model

has been evaluated by at least 20 structures with arbitrary geometries. The

fundamental natural frequency of these structures obtained by the proposed

model has less than 3% deviation compared to a full FEA dynamic model

- suggesting high credibility for the model.
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• Design Methodology for Multi-degrees-of-freedom FPMs with Opti-

mal Stiffness and Dynamic Properties

The proposed design methodology is realized by integrating the benefits

of two existing synthesis approaches - the kinematic and the structural op-

timization approaches. First, the rigid-body-replacement method is used

to determine suitable parallel-kinematics configurations for the compliant

mechanism. This reduced the complexity of using a structural optimiza-

tion approach to synthesize a compliant mechanism with multi-degrees-of-

freedom - overcoming the previous challenges of existing structural opti-

mization methods. Subsequently, the mechanism-based approach and the

generic dynamic model are utilized to synthesize the sub-chains of the FPM

by determining their optimal structural topology, shape and size sequen-

tially. By automating this process, the proposed integrated design method-

ology has the potential to surpass traditional FPMs that are synthesized

via the kinematic approach. The effectiveness of the proposed approach is

demonstrated via synthesizing a X−Y−θz FPM that has a large workspace

of 1.2 mm×1.2 mm×6◦. This FPM (shown in Fig. 6.1) has signifi-

cantly better stiffness and dynamic properties over existing 3-degrees-of-

freedom, centimeter-scale compliant mechanisms. For example, this FPM

can achieve a large translational and rotational stiffness ratio of 130 and

108 respectively while existing ones can only achieve 0.5-50. Likewise,

the synthesized FPM has a large bandwidth of 117 Hz while other exist-

ing large workspace FPMs, which can deflect more than 0.5 mm and 0.5◦,

can only achieve bandwidths that are lower than 45 Hz. The stiffness and

dynamic properties of the FPM have been evaluated experimentally via a
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Figure 6.1: The optimal X − Y − θz FPM.

prototype. The experimental stiffness properties and bandwidth agree with

the simulation results as their deviations are within 5% and 9%, respec-

tively. Although there is no loss in generality to implement the proposed

method to synthesize FPMs with non-planar motions, currently such syn-

thesis would require too much computational time. Therefore, we will try

to reduce the computational time by switching the programming platform

from Matlab to C++.

In conclusion, the presented scope in this thesis can guide engineers to design

multi-degrees-of-freedom FPMs that have optimal stiffness and dynamic prop-

erties. We envision that this study will inspire the design and development of a

variety of new high precision machines that have large workspaces, strong capa-

bilities to reject disturbances, and fast transient responses.
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6.2 Future Works

Although a universal design methodology has been developed, there remains sev-

eral aspects in this area that have yet to be explored.

• Development of other FPMs

Currently, the proposed design methodology has only been used to

develop a X − Y − θz FPM. It will be interesting, however, to use

this methodology to develop other types of planar FPMs like a X − Y

precision stage, or other spatial-motioned FPMs like a X−Y −Z or

a θx−θy−Z stage. As the spatial FPMs would require more compu-

tational resources, the mechanism-based approach would have to be

modified to optimize its computational efficiency for such FPMs. Finally,

as compliant mechanisms can be scaled down easily, this methodology

can be explored to create novel, functional MEMS devices or micro-robots.

• Design Methodology for Soft Robots

In recent years, the design and development of soft robots have become

increasingly popular within the robotics community. Despite the popular-

ity in this subject, the design of current soft robots may not be optimal as

they rely heavily upon human intuition. As it is necessary to account for

both the geometrical design and actuation modes concurrently, it may be

difficult to depend solely on human intuition to design these robots. Thus,

we believe it might be beneficial to modify the current design methodology

such that it can become suitable to synthesize soft robots that have optimal

performance. This modification, however, will be non-trivial as the soft

robots have much larger deflections compared to flexure mechanisms -

the strains of these robots are usually greater than one. Thus, it will be
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necessary to modify the FEA such that it can accurately predict large

deflections, and also the optimization formulations have to be adapted to

suit these applications.

• Integrated Mechatronics Approach

Lastly, a concept termed the integrated mechatronics approach has been

recently proposed. For this concept, they will consider the performance of

the entire system during the synthesis phase by accounting for the control

aspect of the system. By implementing such concepts for the high precision

machines, it might be possible to further enhance the performance of such

systems. However, before this design approach can be implemented, new

fitness functions and design parameters have to be explored in the future.
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Appendix A

CAD Drawings for Synthesized

Flexural Mechanisms

This section presents the detailed 2-D CAD drawing for the synthesized compli-

ant P and PR joints, the 3PPR FPM and the optimal X − Y − θz FPM. Except

for the 3PPR FPM, which is constructed by stainless steel, the rest of the flexure

mechanisms are made by aluminum. The thickness of the compliant joints are 10

mm while the FPMs’ thickness are 20 mm. All of these flexure mechanisms are

fabricated by wire-EDM techniques.
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Figure A.1: The 2D CAD drawing for the synthesized compliant P joint. The
units for all the dimensions are in millimeters and the thickness of the joint is 10
mm.
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Figure A.2: The 2D CAD drawing for the synthesized compliant PR joint. The
units for all the dimensions are in millimeters and the thickness of the joint is 10
mm.

Figure A.3: The 2D CAD drawing for the synthesized 3PPR FPM. The units for
all the dimensions are in millimeters and the thickness of the joint is 20 mm.
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Figure A.4: The 2D CAD drawing for the synthesized optimal X −Y − θz FPM.
The units for all the dimensions are in millimeters and the thickness of the joint
is 20 mm.
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