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Abstract

In the last decade, the interfacial instability and mixing enhancement in micro uidic ow
systems have attracted much attention . The control of interfacial instability is very crucial in
multi-phase ow systems, such as the droplet production systems. In micro uidic systems,
rapid mixing has been a long-standing challenge for the small Reynolds number in which tur-
bulence will not occur. Previous studies have demonstrated that rapid mixing can be achieved
using an electric or magnetic eld. In all of these systems, it is rather important to know the
instability threshold. This thesis devotes to the discussion of tkets of electric eld on the

interfacial instability and electro-mixing in an annulus channel.

Based on the evidence that the wave length is often much longer than the mean thickness of a
uid layer, Chaptefd investigated the linear and nonlinear dynamics of a perfectly conducting
liquid Im coating on a metal ber modulated by the gravity ect in the framework of long-

wave theory. A radial electric eld was imposed between the inner ber and a outer electrode
and the dynamics of the gas phase was neglected. It was found that the electric eld can either
reinforce or suppress the interfacial instability by manipulating the distance between the outer
electrode and the inner ber. In Chap®&rthe interfacial instability of two co owing annular
liquids in a radial electric eld has been discussed when taking into account the dynamics
of the outer layer. Unlike the assumption made in Chaptérat the liquids were perfectly
conducting, the two immiscible liquids in Chap®@mwere leaky-dielectrics. Moreover, in
Chaptea, interfacial instability of two immiscible leaky dielectric uids was examined in the

full range of wave numbers. It was found that in such a system, the interfacial instability can
be either caused by the so-called Rayleigh-Plateau mechanism or the viscosity strati cation
between the two layers. A detailed study of thesets of normal and tangential Maxwell
stresses on the two kinds of interfacial instabilities demonstrated that both of them can either

stabilize or destabilize the interface, depending on the electrical properties of the two liquids.

Vi



However, the two studies in Chaptdd€ provided evidences that the interfacial instability
caused by the Rayleigh-Plateau mechanism can be modulated by the external electric eld

and thereby control the formation of droplets.

Electro-convection was investigated in Chap®@& Chapte8 discussed the electrohydro-
dynamic instability of an annular liquid layer with a radial electrical conductivity gradient
which was developed from the imposed radial electric eld. Chap®&udied the instability

in two miscible liquids with an electrical conductivity strati cation wherein a uniform axial
electric eld was imposed. Studies in the two chapters demonstrated that the instability is
triggered by the dielectrophorecticect. Study in Chaptdd showed that the critical unstable
mode in the annular liquid layer could be either stationary or oscillatory, dependenting on the
conductivity gradient. However, in the two-miscible two ows, the critical unstable mode is
always oscillatory. Furthermore, results in Chaftgrdicated that the ow is least stable for a
moderate conductivity gradient whereas Chaptéemonstrated that the ow is always more
unstable for a larger contrast in conductivity. It should also be pointed out that, in CBapter
the critical instability could be reinforced by a weak shear ow; while the critical instability

is always impeded by the shear ow in Chapier

A summary of the four ChapteB®B was made, and perspectives of future works built upon

these works have been proposed in Chapter

vii
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Chapter 1

Introduction

1.1 Research Background

Flow instability in micro uidic systems has attracted much attention in the last decade, such
as in ink-jetting, drug-delivery, droplet production and rapid mixin§iiBMS In these indus-

trial applications, the interfacial instability phenomenon is widely encountered and the under-
standing of one such instability is of great importance for precise control the droplet size in
ink-jetting and drug-delivery systems. Another long-standing problem in micro-device is that
rapid mixing for the ow is always laminar and turbulent mixing does not occur. Previous
investigations indicate that applying an external electric or magnetic eld is a potential ap-
proach to facilitate mixing in conducting liquids. In view of the importance of ow instability

in micro- uidic devices, this thesis is devoted to two basic problems: interfacial instability

and electro-convection.

Many pioneering works on the rst problem have been devoted to multi- uid systems, typi-
cally, two- uid ows in a square duct. It has been demonstrated that the interface could be
unstable and nite-amplitude traveling waves could be observed. The two- uid ow is wide-

ly encountered in electroosmotic pump systems where an active liquid layer drives the other
passive layer. The principle behind the electroosmotic pump system is the electroosmosis
phenomenon in conducting liquid layers. Naturally, it would be interesting to ask: "is the
interface stable?", "if not, will it rupture and the formation of droplet would be expected to

be seen?", "is there any way to suppress the instability in case of the unstable phenomenon



occurs?". Monodisperse droplet formation in jetting systems is also of academic interest. For
the production of very ne droplets of sizes down to 20, the traditional approach using

the Rayleigh-Plateau mechanism is not very successful. The traditional approach of adjusting
droplet size is to control the ow rate of the jet. In addition, there is an extra problem in
very viscous uids that the breakup of a jet is delayed. Moreover, it seems that for some vis-
coelastic uids, the jet may not break up into droplets after a long time. Applying an electric
eld is successful in accelerating the breakup of a Newtonian jet. The droplet size could also
be narrowed down. Indeed, electri ed jet is still an active research eld. To the best of my
knowledge, very limited works have been devoted to non-Newtonian electri ed jets despite
the fact that in many practical cases the uids are non-Newtonian, such3&s Bio-Printing

systems.

For mixing enhancement in micro uidic devices, researchers traditionally use long pipes or
designed patterned channels to increase thegion time. Inducing thermal disturbances

is usually not applicable due to the small scale involved. Natural convection will not occur
as a result. For conducting liquids, e.g agueous ionic solutions, an alternative approach is
to impose an external magnetic or electric eld, which may trigger a circulation ow in the
system. It should be noted that the mechanism of magneto- or electro-convection is quite
similar to that of the thermal convection, i.e the convection is initiated by a body force. For
the successful implementation of an external electric eld to enhance mixing in microscale,
it is necessary to create a spatial change in the electric properties, such as an abrupt change
in electric conductivity or permittivity. To achieve this, one can pump liquids withedent

ionic concentrations into a channel. There is another approach to trigger electro-convection
by ejecting electric charges into the liquid layer from one electrode and collecting them at the

other electrode.

A careful look into previous literature indicate that the interfacial instability in multi-layer

ows or electroconvection in an electric eld was carried out in a planar system, i.e ow



between to parallel electrodes, although there have been a relatively large number of works
on electri ed jets. Speci cally, studies on electro-convection in ionic solutions or agueous
electrolytes in cylindrical channels are very limited. In this thesis, the author is interested in
these ows in cylindrical systems for there is a wide application of circular pipe in micro-
devices. In addition, circular pipes can avoid the leakage problem in square channels that is
widely encountered in experiments. This thesis will investigate the interfacial instability in
multi- uid ows modulated by an electric eld and convection initiated by an external electric

eld in the following four chapters.

1.2 Objective and scope

Many previous studies have concentrated on the square channel ows. The objective of this
thesis is to extend the study of electrohydrodynamical instability to other canonical channel
ows, annulus channel ows and pipe ow. First, the Rayleigh-Plateau instability distinguish-
es the annular ow from the planar ow. In this aspect, the thesis will deliver the rst study
on the in uences of electric eld on the Plateau-Rayleigh instability in annular ows. Sec-
ond, this thesis will "generalize' the dielectrophoretic instability which currently exists in the

plane-channel ows, e.g plane-Poiseuille ow, to the other canonical ow systems.
The scope of this thesis covers the following two problems:
(1) Interfacial instability of multi-phase ows in a radial electric eld,

(2) Electro-convection caused by spatial change in electric conductivity.

1.3 Outline of this thesis

The rest of the thesis is organized as follows.



Chapter 2 reviews the state-of-the-art thin Ims dynamics and some classical models of elec-
trohydrodynamics. Three mathematical models of thin Im ow are reviewed and the ad-
vantages and shortcomings of these models are commented. For the electrohydrodynamic
instability, four typical models are reviewed: perfect conducting liquids, non-conducting lig-
uids, leaky-dielectric liquids and electrolyte solutions. The mathematical description of these

four models are laid out along with the four models.

Chapter 3 reports the investigation of a thin liquid Im owing down a vertical berin aradial
electric eld. The linear and nonlinear dynamics of the problem is studied in the framework

of the long-wave theory.

Chapter 4 analyses the linear stability of two co-axial leaky dielectric liquids in a radial elec-
tric eld. This Chapter focuses on the in uence of an electric eld on the interfacial instability

caused by Plateau-Rayleigh mechanism or viscosity strati cation.

Chapter 5 presents the study of linear stability of an annular liquid layer with a conductivity
gradient in a radial electric eld. The ects of geometry, conductivity gradient, shear ow

and ionic di usion on the stationary and oscillatory unstable mode are discussed.

Chapter 6 discusses electro-convection in a conductivity strati ed system which is caused by

an axial electric eld and the instability mechanism is interpreted by an energy analysis.

Chapter 7 summarizes the contents in chapters 3-6 and proposes some prospectives for future

works.



Chapter 2

Literature Review

2.1 A Short Introduction to Flow instability

Flow instability is widely encountered in our daily lives through occurrences, such as thermal
convection and water waves. Many factors can trigger the occurrence of instability in a ow

system, such as inertia, surface tension, gravity, centrifugal force and buoflhncy [

Flow instability is of great interest in uid mechanics and applied mathematics providing in-
sights in physical mechanisms behind the transitional phenomena. The methodology of ow
instability analysis is to investigate how the system responses if it is perturbed by small dis-
turbances. The disturbances can have various forms, for instance, acoustic noise, uctuation
in ow rate and pressure. If the disturbances can absorb energy from the basic ow and grow
with time and the system never returns to its original state, then the system is unstable. Other-
wise, the system is stable. Perhaps, the most fascinating phenomenon is the transition in a cir-
cular pipe which was reported by Reynolds as early as in the nineteenth century. Even though
more than one and a half century has past, the transition phenomenon in pipe ow is still an
intriguing problem and remains open. Indeed, it was remarked by Richard Feynman that the
mechanism of transition was the most @ult problem in classical physics. Many theories
have been proposed and have advanced our understanding for this phenomenon. However,
none of these theories is complete and successfully addresses this cumbersome problem. For
instance, the normal mode analysis of linear stability theory predicts that the ow is always

linearly stable even if the Reynolds number is considerably large. The nonmodal analysis sug-

5



gests that small disturbances can be ampli ed signi cantly due to the strong non-normality
of the system and it is conjectured that transition will be triggered by the following nonlinear
mechanismi, B]. However, it predicts that the perturbation energy decays in long time be-
havior. A group of scientists utilized the dynamical system theory and suggested that other
nontrivial solutions of the Navier-Stokes equations exist beyond the classical parabolic pro le
[@, B]. Hence, it was conjectured that these solutions were inherently linked to the transition
and turbulence at low Reynolds numbers. However, this is still not very successful since it
was found that such solutions can exist at a much smaller Reynolds number where no transi-
tion has been observed. Therefore, the relevance between these solutions and the transition is
guestionable. In this thesis, the dynamical system theory approach to the Navier-Stokes equa-
tion is not in our scope despite its great importance. Following, advances in linear stability

theory will be reviewed in two aspects: (1) local stability; (2) global stability.

2.1.1 Local stability theory

In the past decades, research on ow stability has been focused on parallel laminar ows be-
cause of its simplicity, such as plane-Couette ow, plane-Poiseuille ow and Hagen-Poiseuille
ow. In these systems, the channel or pipe is assumed to be in nitely long and the velocity
pro le does not change in its streamwise direction. Indeed, such in nitely long channels or
pipes are ‘mathematical' models which cannot exist in the daily life. However, for a nite
but very long channels (length is much larger than the other scales), and the ow is fully de-
veloped in the long downstream direction. The ow is laminar if the ow rate is small and
turbulence is not triggered. In such a situation, we are interested in the stability of the fully
developed velocity pro le and such an analysis of stability is the so-called local stability. The

standard approach of linear stability analysis is introduced here. Consider a nonlinear system:

% =L (F)+N (F); (2.1)



whereL is a linear operator and is a nonlinear operator. The systelr¥) admits trivial

solutions or equilibrium points in phase space (from the viewpoint of dynamical thE_ory)

The stability analysis is achieved by introducing small disturbances into the sl}stel?& Fo
(F9 j Fj). Hence, the linearized system around the equilibrium point reads:
0 @

@ - L (F)+ @jnglﬂ’: (2.2)

Consider the channel ow (e.g. Couette ow, Poiseuille ow) as an example and in a standard

way, the disturbance is written as

FO= F(y) explikex + k) + ! 1]; (2.3)

whereF the amplitude of Fourier modek, k,) wave number,X; y; 7) respectively represents
streamwise, wall-normal and spanwise directibn= ! , + i! ; is the temporal growth rate.
When the temporal stability is considered, the wave nurkieror k;) is given and real, while

the temporal growth ratke is often complex and unknown. For the spatial stability, the time
frequency! is given and real, while the spatial wave number is often complex and unknown.
The unknown parameters (e.¢. or k) serve as the eigenvalue of the problem. When the
spatial-temporal instability is considered, i.e. the absolute and convective instability, both
and the wavenumber are complex. In this thesis, the spatial-temporal theory is out of the
scope. If the real part df is positive, then the disturbances grow with time and the system is

unstable. Otherwise, the system is stdble< O or neutral , = 0.

Although the local theory has achieved a great success in predicting the stability threshold of
Rayleigh-Bénard convection and Taylor-Couette ow, it failed to predict the critical point of
Hagen-Poiseuill ow and plane-Couette ow. In addition, the local theory predicts a critical
Reynolds number for the plane-Poiseuille ole = 5772 which does not agree well with

experimental observations. Transition in plane-Poiseuille ow may take place at a Reynolds

7



number as low aRe 1000. This stimulates scientists to apply other theories to interpret the
physical mechanism of transition, such as the non-modal theory and nonlinear theory which

leads to the doubt of the validation of normal mode analysis.

However, some scientists argued that the normal mode analysis still can be applied to explore
the transition mechanism. The inviscid ow theory, such as the Rayleigh in ection point
theory, indicates that the ow is unstable if there is an in ection point in the basic ow pro le.
Motivated by the inviscid theory, Bottaro et al. proposed that, the basic velocity pro le is not
exactly linear (for plane-Couette ow) since there is always an experimental &jrdi¢nce,

they conjectured that the distorted velocity pro le (the linear pro le perturbed by a nite small

disturbance) is not linearly stable (see Eid). Such an idedd] has been extended to circular

Figure 2.1:Spectra of plane-Couette ow &e= 500,k = 1.5 adapted from ReH.

pipe ows.

2.1.2 Global stability theory

In contrast to the local stability theory, the global stability theory is more applicable for real

cases in which there is an upstream inlet and a downstream outlet. The base state should



be solved numerically and is much more complex than the base state of a parallel ow (e.g.
plane Couette or Poiseuille ow) due to the non-homogeneity of the ow eld. The large-scale
computation of eigenvalues is the major dulty in the global theory. Taking the example of

a three dimensional problem with spatial grids N, N, =50 50 50, the grid number

is on the order 19 and there are four unknowns (i.@, v, w, p) at each grid point. If the

eigenvalue problem is formulated as
Aq=!Bq (2.4)

whereq = (u;v;w; p)". The size of the matrice& andB is about 18 10°. Therefore, the

huge number of eigenvalues is abouf.1&ince only those eigenvalues close to= 0 are
concerned, most of these eigenvalues are useless. Moreover, since the data is huge, a numer-
ical strategy for storing data is essential. Thanks to the development of advanced hardware,
practical methods have been proposed to deal with this problem in the past fewBjears |
such as the iterative method. It should be indicated that the global stability of many complex
ow systems still remains unexplored. However, although the "Global Stability Theory' is
formidable for numerical implementation, it has the same standard steps for stability analysis

as the local stability theory.

2.2 Low dimensional modeling

In a micro uidic system, the ow is slow and the Reynolds number is very small, typically

Re < 1, such that the inertial eect can be ignored. The Navier-Stokes equations can be
reduced to the Stokes equations. In many micro uidic systems, the channel width or length
is much larger than the channel height. Hence, we can introduce a small parameter into the

system = h=L wherehis the channel height (wall normal direction) angs a typical length



in the direction perpendicular to the wall-normal direction. In many practical cases, such
as multi-phase ow, or droplet production system, the length statan be connected to a
typical wave length, such as the droplet spacing. Therefore, the system can be asymptotically
reduced in power series of the small parametdrhis approach in analyzing the ow systems

is called low dimensional modeling.

During the last several decades, such a methodology has been successfully applied for the
study of thin liquid Ims owing down an inclined plane. There are numerous examples of
thin liquid Im ow in our daily lives, e.g. rain owing on glasses and liquid droplets on

lotus leaves. In biophysics, an example of liquid Im ow is the lung lobe of human beings
coated by an ultra thin liquid layer. An even more common phenomenon of thin liquid Im

ow is tears in human eyes. In industry, the applications of liquid Im in coating, cooling
systems are widely encountered. In "Perspective in Fluid Dynanif;sG.K. Batcheloret

al: indicated eleven important problems, which were urgent to be solved in uid mechanics.
Among these problems, the dynamics of thin liquid Im ow attracted their attention. It
should be emphasized here that the thin Im ow ers an ideal model for the study of

transition to turbulence.

The experimental observation of unstable surface waves in a falling liquid Im down an in-
cline was pioneered by the father-son team of Kapitza faniity [I]. Nonlinear unsta-

ble waves were observed in the Im ow. Dynamics of the thin Im ow can be gener-

ally described as follows: a at Im develops at the inlet; as the at Im is not stable, a
two-dimensional harmonic wave develops. The two dimensional harmonic wave grows vi-
a the nonlinear mechanism which is unstable to the spanwise disturbances. The unstable
two dimensional wave develops into three dimensional structures, which exhibits the charac-
teristics of weak turbulence (see EI@®). Theoretical investigation of thin liquid Im ow

down a plate with inclined angle was pioneered by Bennel}]. Benney applied the low-

dimensional method based on the evidence that the wave length of a typical. wsakaich

10



Figure 2.2:Shadow image of waves Rie= 33[3]. One such ow can be often observed in
Singapore on raining days from a running liquid Im down a slope.

longer than the Im mean thicknesg wherein the small parameter hy=L is de ned as the

Im parameter [[3]. At the rst order approximation, the Benney equation reads:

3
he + h2h, + [%( cot he+ 2Wehy) + ?hﬁhx]x = 0: (2.5)

whereh denotes the thickness of the liquid Im. However, in Benney's pafigf,[he mis-
matched the order of surface tensiothat the dimensionless Weber numbée = R was

assumed to be of ord€¥(1) whence the surface tension term appears in the third order term

11



which is not appropriate. Hence, It leads to blow-up of solutions in nite tifid.[ In the

later studies, the Weber number was assumed to have 0fdet). Thanks to the work of
Benney, when a model equation has a similar form a€2(5), (it is referred to as the Benney-
type equation. Benney's work has been extended to other systems. For instance, Joo et al.
investigated a heated Im wherein the evaporatinget was taken into accouri4]; Scheid

et al. considered the ect of non-uniform heating on the linear and nonlinear dynamics of a
falling Im by deriving a Benney-type equatiofifl]; Thiele et al. considered a thin liquid Im
falling down a porous heated substrdI8]|[ For a more detailed discussion and application of
the Benney-type equation, the readers can refer to the review paper by Ororlg}.al.He
Benney-type equation, generally, is valid wHeeis very small, typicallyRe= O(1). How-

ever, wherReis moderate, the Benney-type model usually blows up and gives non-physical
solution as indicated by Pumir et alld]. This failure is related to the strict slaving of the
velocity eld to the Im thicknessh. Although the blow-up phenomenon of Benney equa-
tion can be removed by the Padé approximatid®.[ However, the regularized equation is

in poor agreement with experiments and the data by direct numerical simulation of the full

Navier-Stokes equations even though the singularity phenomenon is renfidyed [

Shkadov proposed an integral boundary layBt] model which introduced one more degree

of freedom E0]. In the integral boundary layer model, the Navier-Stokes equations are re-
duced asymptotically wherein all the second order te@fig) and higher are neglected (the
surface tension term cannot be neglected since the Weber number is assumed to have an order
of O( ?)). The streamwise inertia term is of ord® Re. The Reynolds number can be
assumed to have an order®@f °) O( 1), and typically 10 2. Therefore, the Reynolds
number can be up tRe 1% If Re O( 2), the full Navier-Stokes equations should be
considered because, in the normal momentum equation, the inertia term is oO¢réiee)

which cannot be neglected in this situation. In additiorRé O( ?2), thenRe 10* pro-

vided that = 10 2. In such a case, the ow is unstable due to the strong viscous shear and
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the "hard mode' dominates the instability, i.e. shear m&dg [n the framework of thin Im
dynamics, the modeling methodology is valid for the instability of "soft mode', i.e. interfacial
mode. The integral boundary layer model solves two coupled equations governing the Im

thicknessh and the local ow rateq:

h = Qg (2.6)
_ q 12¢  , 69 .
G = h 3@ = + e h)hy + hhyyy: (2.7)
Here, = 3 Reand = cot ( isthe inclined angle) and®We = 1. Asymptotical ex-

pansion of the ow rate equatio®d) g = qo + . + ::: does not agree with the Benney
equation which implies that if , =2, i.e. the plate is moderately inclined, the integral
boundary layer model predicts wrong linear stability threshold. The inaccuracy of the inte-
gral boundary layer model is due to the assumption of the parabolic velocity pro le which
causes the error in the prediction of the shear stress at the plate. However, solutions of the
integral boundary layer model agree qualitatively with both experimental data andZaNS [

This method was extended by Kalliadasis to investigate the dynamics of a heated falling Im
wherein the Marangoni eect on the interfacial instability was discuss&d][ The integral
boundary layer model has been extended to study the problem of thin liquid Ims owing

down vertical cylinders4, 9].

Motivated by the inconsistency between the integral boundary layer model and Benney equa-
tion, Ruyer-Quil and Manneville developed a weighted residual mdglé¥l(model) which
addresses the problem successfull, Z4]. Here, the weighted-residual model is called as

theR-M model. The weighted residual model reads:

h = ox (2.8)

~ 1790  9Ph., 5 q
@ = (= 7h2)+6h(1 het hood 53¢

(2.9)
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Note that the coecients in EqE9) are di erent from those in EqZ(d). To clarify the reason

for the di erence, reminiscent of the scaled streamwise momentum equation, it writes:
3 ReU + Ul +Vvu) = py+ 1+ Uy, + O( 2 (2.10)

The residual of the streamwise equation is writtenfss 3 RgUg; + Ulgx + Volgy) 1+

px Uy. Thelocal ow rate equatioridd) is obtained by directly integrating the streamwise
equation under the assumptionwf (1 y?). Equation £29) is obtained from the Galerkin's
methodl:\;h RWdy= 0 to minimize the error of the residuBlwhereW is the weight function.
The weight function for th&®-M model Eq.E29) is proportional to the velocity pro le, where-
as the weight function for the integral boundary layer model can be considered as a constant
number 1. Asymptotical expansion of BfY) recovers Benney's equation B#H), which

demonstrates the accuracy of ReVl model.

Ruyer-Quil et al. further extended the weighted residual model and revisit the problem of a
thin liquid Im down a vertical cylinder E8]. The linear stability analysis shows that there

is no qualitatively di erence between the integral boundary layer model and the weighted-
residual model when applied to thin liquid Ims owing down vertical cylinders. This is due

to the fact that the instability is caused by the Rayleigh-Plateau mechanism rather than the
uid inertia. Scheid et al. extended tHe-M model to a falling liquid Im down a heated
inclined plane, wherein the heat convection was neglected by assuming small Prandtl num-
bers P9]. The comparison between the Benney equation and the weighted residual model as
well as the validity of the Benney equation were discus&#l [Di erent from the work by
Scheid et al. 9], Ruyer-Quil et al. took into account the ect of heat convection and de-
rived three coupled equations governing the Im thicknkesthe ow rateqand the interface
temperature0]. However, one such study predicts the wrong temperature distribution in the

Im [ B0]. Trevelyan et al. further examined the in uence of a thicker substrate which was
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cooled by the ambient gases on the dynamical behavior of thin liquid Bk [Trevelyan

et al. [Z1] tried to amend the temperature equation to remove the non-physical results of the
temperature equation by using a drent weight function. However, their approach was still
not very successfuldl]. Very recently, Ding and Wong examined the dynamics of a uni-
formly heated Im owing down a slippery substrate by a weighted-residual mdgigl [For

more information of the modeling work of thin liquid Im ows, the readers can refer to the

monograph by Kalliadasis et aEj).

2.3 Electrohydrodynamical instability

Electrohydrodynamics (EHD) is the study of the relation between the electrodynamics and
uid motion. EHD is also known as EFD (electro- uid-dynamics) or electrokinetics. EHD
covers the following transport mechanisms: electrophoresis, electrokinesis, dielectrophoresis,
electroosmosis, and electrorotation. EHD is widely encountered in industrial applications,
such as in ink jettingd4] and drug delivery§3]. The study of electrohydrodynamics has

a long history. As early as 1882, Lord Rayleigh investigated the equilibrium of conducting
liquids in an electric eld B8]. In contrast, although “magnetohydrodynamics” (MHD) has a
relatively shorter history, itis more commonly known than EHD. The magnetohydrodynamics
is of great importance in electricity engineering and theoretical physics, such as in plasma.
The original work of MHD was launched by Hannes Alfvén in 1942, for which he received

the Nobel Prize in Physics in 1970.

2.3.1 Some Basics of Electrostatics

In this thesis, only electrostatics is considered. The electric eld does not change with time or

the changing rate of electric el& is very small that the induced magnetic eld is negligible.
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In the absence of an external magnetic eld, the Lorentz fétceqsv B (s is the electric
charges carried by the uid parcel) caused by the induced magnetic eld is negligible provided
that the electric current = v ( .is charge density) is not large. The induced magnetic eld
could not be neglected if the moving spgedf particles approaches the speed of light (see
problem 5.16 in the textbook “Introduction to Electrodynamics” by Ghis [&4]). However,

such a case does not fall into the scope of this thesis.

In the presence of an electric eld, the Maxwell stress is imposed on the liquid particles. For
a steady ow, the Maxwell stress is balanced by the viscous stress and pressure which writes
in the case:

rp+r TV+r TV =0 (2.11)

In which, TV = (r u+r u") is the viscous stress tensor, arnd the Maxwell stress tensor. In

the framework of electrostatics, the Maxwell stress tensor is:
M ] ) 1 .
™ ="(EE EkE|<2|). (2.12)

Here," denotes the electric permittivity of the materialthe identity tensor. Substituting
the expression of the Maxwell stress into the stress balance equZildi) §nd taking the

operation of divergence, thetetm TM = Er ("E) %kEer ". Recall the Gauss's law:
f=r "E; (2.13)

where ¢ is the free charge density. Therefore the gradient of Maxwell stress is rewritten
as E %kEer ". Note that the term {E is the so-called electric body force. The term
%kEkzr " is important if the electric permittivity is not uniform in the medium which may be
caused by a non-uniform thermal eld or the material itself. Here, the dielectrics is assumed

to be linear.
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The Gauss's law always holds in the form of:

= (2.14)

where 1 is the total charge density afiglis the vacuum dielectric constant. When an external
electric eld is imposed on the material, the material is polarized. The polarization of material
is related to the strength of the electric eld. For many substances, pro&dedot too
strong, the polarization is linearly dependen&ofThe dipole moment of manmade materials
may depend nonlinearly o, especially in modern optical applications. In this thesis, only
the linear dielectrics will be considered. For linear dielectrics, the polarization is proportional
to the external electric eld:

p= ¢"oE: (2.15)

Here, pis the dipole moment, and. is the electric susceptibility.

The electric charge due to the polarization of substances is related to the dipole moment by

b= I P (2.16)

b IS de ned as the bound charggd).

The total charger is the sum of free chargg and bound charge,. The free charges can be
assumed to be imbedded in the liquids which can move freely or be carried by uid parcels.
In what follows, we will show the assumption that free charges are carried by uid parcel
is important, which simpli es the discussion of the dynamics of ow systems. The bound
charges appear in the form of twined electric charges: one positive electric charge with one
negative electric charge which are bounded in an electric dipole. Therefore, the Gauss's law
can be rewritten as:

r- "oE= ¢+ p= ¢ r p (2.17)
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Furthermore, EqL3) is modi ed as:

r "oE= (2.18)

where", = 1+ . is the relative permittivity."," o is nothing but the electric permittivity of

material, i.e.". Naturally, the electric displacemebtis de ned as:

D="E: (2.19)

Therefore, for linear dielectrics, the Gauss's law has the form ofZEmB).

For electrostatics, the electric el& is irrotationalr E = 0. Usually, it is extremely
complex to nd the solutions of the Gauss equation and the irrotational equation despite their
simple expressions. For electrostatics, it is convenient to introduce the electric potential
to solve the problem by simplifying the coupled equations to a one-unknown equation. The

electric eld is related to the electric potential by:

E= r: (2.20)

In the previous studies of electrohydrodynamics, the liquids are assumed to be perfect con-
ductors, such as mercury; perfect dielectrics, such as oil; leaky dielectrics, such as water.
The three models have received many investigations during the last decades. However, these
models could not be used to study the dynamics of electrolyte solutions. In the following
discussions, review of the three models as well as the electrolyte solution dynamics will be

presented.
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2.3.2 Perfect Conductors

When a liquid is assumed to be a perfect conductor, the conductivity of the liquid,in-

nitely large. Thus, there is no electric charge within the bulk uid. All the electric charges
accumulate at the boundaries of the liquid. Therefore, there is no electric eld within the bulk
liquid. The electrostatic force should only appear at the boundaries of the liquid. In the previ-
ous studies, most of the systems, in which the liquid was assumed to be perfectly conducting,
were multi-phase systems, i.e., the liquid contacted with another kind of substance which is
not perfectly conducting, for instance air or oil. Especially, the tangential Maxwell stress at
the interface should be absent under the assumption of perfectly conducting in the framework
of electrostatics because the interface is equipotential and the electric eld is perpendicular to

the interface. Therefore, the boundary condition of perfect conductors is

= constant (2.21)

Usually, the value of is given. This condition is of course correct for perfect conductors.
Some of the previous works used other conditions for the electric potential at the free surface
which seems not consistent with BZ1) which may confuse the beginners of electrohydro-

dynamics. It will be shown that these conditions are consistent.

The trend of miniature electric devices stimulate an incredible growth of the study of elec-
trohydrodynamics. One of the most important application is the coating and wetting of solid
surfaces. Coating a liquid Im has many industrial applications, such as interface protection,
heat transfer, micro-lens, growth of insulating Im on electric devices, etc.. Some devices
may use a liquid droplet as a microlens which is exible to change its shape compared to the
traditional lens. Many approaches have been proposed to control the shape of the liquid drop,
for instance: the use of thermocapillaryezt [38], or topographical structuring of surfaces

[B9, Z0]. Among all these approaches, the electric eld is of particular advantage for the ex-
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ibility (electrowetting). A detailed review of electrowetting and its application was provided

by Mugele and Baretd[T]. It is convenient to simplify the liquid droplet as a perfect con-
ductor, therefore, an electrostatic pressure is imposed on the surface of droplet. The strength
of the electrostatic pressure can be controlled by an external electric eld. The droplet was
considered to be perfectly conducting that the potential at the interface was set to be constant

in many of the previous studie&?, 43, &4, A35).

The formation of liquid droplet and surface waves in a perfectly conducting liquid jet or layer
in the presence of an electric eld have also received much attention. It is interesting to see
how the electric eld a ects the droplet size, surface wave amplitude and surface wave speed.
According to the geometry, these previous studies on perfectly conducting liquids can be
summarized into two categories. One is the planar ow system and the other is the cylindrical
system. For the planar system, it will be interesting to investigate teetef electric elds

on the dynamics of ow system, such as linear stability and transition to turbulence.

The linear stability of a perfectly conducting viscous Im falling down an inclined plane
was reported by Gonzalez and CastellaBBsfd] in a uniform normal electric eld. In
Ref.[d@8, &1], a Benney-type equation was derived and the results indicated that the electric
eld was destabilizing. Their studies demonstrated that the electric eld promoted the linear
stability as well as the wave speed and amplitude of nonlinear wa#s jiukhopadhyay

and Dandapa#] further extended the stud#fj] to include the eect of uid inertia. They

used arBL model and examined the in uence of electric eld on the stabildg|[ Tseluiko

and Papageorgiod)] performed a direct simulation and revisited the nonlinear dynamics of
the system by Gonzéalez and Castellar.[ The bifurcation theory approach was employed

by Uma and Ush&0] to revisit one such problem via an energy integral model. It should be
indicated that the energy integral model is identical toRM model but the two methods

are di erent in their mathematical methodologies. The authors further extended the study and

considered a liquid Im owing down a porous substrate in a normal uniform electric eld
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[B1]. Successively, Uma and Usha investigated the in uences of charged surfactants on the
dynamical behavior of a contaminated liquid IBJ]. The liquid Im resting on a horizontal
plate under the action of a normal electric eld was examined by Tseluiko and Papageorgiou.
The linear, the subcritical and supercritical stabilities as well as the nonlinear evolution were
documentedfd]. It should be noted here that, in ReBH[ &1, b0, &1, B2, the dimensionless

boundary condition for the electric potential at the liquid interface is expressed as:

=h L (2.22)

It appears that EQQTT) does not agree with the boundary condition BE@1) as varies
with h. We can decompose the electric eld into two parts: the base statel the perturbed

state % The electric potential should be constant at the surface:

= + 0%=constant (2.23)

Taking the basic electric eld from Ref&D, B1] for example, = Eo(hy 2) whereE, is
the electric eld strength of the imposed eld aig is the mean thickness of the liquid Im.
When the surface is perturbedgan be written a&q(ho  h). To ful Il Eq.(2=21), the condition
for ©

9= constant Eg(hg h): (2.24)

The constant value is usually chosen to be zero, 8rdEq(h hp). Taking the mean thickness
of liquid Im as the length scale anéyh, as the potential scale, the condition EGZ2) is

obtained as described in ReE)| &1].

There are two typical cylindrical ows: liquid jet and liquid Ims owing down a vertical
cylinder. Liquid Im ow on a cylinder without an electric eld has been investigated exten-

sively in the past decades. Signi cant advances have been made in the theory of the breakup
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of a liquid jet into droplets after the seminal work of Lord Raylei§d][ It is of great inter-

ests to manipulate the droplet size and breakup time of jets. The in uence of an electric eld
on the breakup of liquid jets was investigated and pioneered by B&&}eBpsset's analysis
showed that electrostatic stresses were stabilizing in the long wave regime while it is desta-
bilizing in the short wave regime. However, Basset's result did not agree with experimental
observation. Taylor corrected the error in the analysis of BaB&gt Haville examined the
stability of perfectly conducting Newtonian jets in a radial electric eld subjected to in nites-
imal axisymmetric and non-axisymmetric disturban&eg.[Results by Saville demonstrated

that non-axisymmetric unstable mode can be supported by an external electribdgldq

the absence of an electric eld, the jet is always unstable axisymmetrically. Cloupeau and
Prunet-FochB8] studied droplet formation in a cone-jet ow. The in uence of the electric

eld was found to modify the diameter of the jet as well as the size of droplet. The experi-
mental study of Cloupeau and Prunet-Foch demonstrated that the sinuous mode became the
most unstable when the viscosity was hi§i8][which was called kink instability. Son and
Ohba RY] studied the instability of electrohydrodynamic spraying theoretically and experi-
mentally. They found that the axisymmetric mode was dominant when the electric eld was
not strong; while the most unstable mode shifted to the nonaxisymmetric mode as the electric
eld increased B9]. Son and Ohba's study showed that the theoretical results compared well
with the experimental observation for axisymmetric breakup of the liquid jet; while the value
of breakup wavelength from experiment was longer than that from the theoretical analysis for
nonaxisymmetric moddéaf]. Breakup of perfectly conducting electri ed jets was revisited by
Collins et al. E0] who analyzed the nonlinear dynamics of jet and numerically simulated the
formation of droplet by a one-dimensional model. The one dimensional model was derived
using theWKBmethod and one can refer to the work of EQg&r.[Wang and Papageorgiou

[EZ] considered the a perfectly conducting liquid thread surrounded by an insulating liquid

layer in aDC electric eld, and investigated the in uence of the dynamics of the surrounding
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layer. Conroy et al.g3] investigated the dynamics of a perfectly conducting liquid thread in
an AC electric eld but considered an electrostatic problem. The authors have veri ed that
the approximation of electrostatics is valid provided the frequency is not too BRjh\ery
recently, Ding et al. investigated a perfectly conducting liquid Im falling down a vertical

ber in a radial electric eld B4]. The detailed results will be presented in Chafer

2.3.3 Perfect Dielectrics

In perfect dielectrics, there is no free charge and all the charges are bounded in the form of
electric dipoles. Perfect dielectric liquid is non-conducting, i.e. insulating. Since there is
no free charge in the liquids, the tangential Maxwell force vanishes at the liquid interface.
However, the normal Maxwell force at the interface can be nonzero due to the mismatch of
electric permittivities of dierent liquids. Here, we show the Maxwell stress at an interface

separating two immiscible liquids (see EJ):

n (T T n (2.25)

wheren is the surface normal antM(i = 1;2) represents the Maxwell stress tensor in lig-
uid “1” and liquid “2” respectively. This term is usually called as electrostatic pressure and

nonzero wheri,, ",.

For the perfect dielectrics model, the continuities of electric potential and electric displace-
ment at the interface give:

1= 2, "1E1 n="3E n (2.26)

The boundary conditioriZ(Z8) indicates the tangential electric eld is continuous while the
normal electric eld may be discontinuous across the interface. Clearly, the tangential elec-

tric force can be expressed ks = gsE; whereqs is the charge density at the interfads,
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Figure 2.3:A sketch of two immiscible liquids separated by an interface.

is the tangential electric eld antlis the tangential vector. Hence, a common physical phe-
nomenon that the perfect conductor model and perfect dielectrics model share is that there is
no tangential Maxwell stress at the interface. Theetence is obvious. For the perfect con-
ductor model, free charge exists on the interface, while no free charge exists at the interface

for perfect dielectrics model.

The studies of perfect dielectric liquids can be divided into two groups: the planar and cylin-
drical systems. Since there is no free charge within the bulk uid regions, these previous
studies were all devoted to the interfacial instability in multi- uid systems. It should be not-
ed that the normal Maxwell stress is balanced by the surface tension. In planar systems,
the surface tension is stabilizing the interface. In cylindrical systems, due to the azimuthal
curvature, the surface tension is destabilizing the interface. Therefore, in a planar system,

if the electrostatic pressure enhances theat of surface tension, then the electric eld sta-
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bilizes; otherwise, it destabilizes the interface. However, in a cylindrical system, tw e

of electric eld on the interfacial instability is opposite. Melcher and Schwarz investigated
the e ect of a tangential electric eld on the linear stability of a sharp interface separating
two perfectly dielectric uids B5]. The authors formulated the problem in the framework of
electrodynamics, but an electrostatic eld was assumed to facilitate their andisThe

two liquids were assumed to be non-bounded, i.e. there is no solid bounds in their system
[E5]. This researchifd] is of great importance because it established the benchmark model
of EHD for the multi- uid systems. A perfectly non-conducting liquid jet in a radial electric
eld was investigated by Setiamwan and Heist&8][ The electric eld was established by

the charged cylindrical surfacéf].The in uences of the Maxwell stress on the droplet size
through linear stability analysis and numerical simulation were reported previd@lylhe

in uence of the electric eld on the breakup of a planar inviscid liquid sheet was examined
by El-Sayed wherein the dynamics of surrounding gases was incladgdrjlley et al. [&3]
revisited the problemB4] by the lubrication theory and derived a model equation to study
the nonlinear behavior of the liquid sheet, when it was perturbed by small disturbances. The
results demonstrated that the electric eld can delay the rupture of the liquid &#eThe

study B8] was extended by Savettaseranee et & nd the in uence of electric eld on

the rupture of liquid sheet caused by van der Waals forces was examined. Papageorgiou and
Vanden-Broecki0] further examined the nonlinear waves of arbitrary amplitudes and wave-
lengths in the systeniiff]. Results showed that the electric eld can have a pronouncedte

on the shapes and speeds of interfacial wa¥@s [t is worthy to note that the results of direct
numerical simulation are in excellent agreement with that obtained from the low-dimensional

model, when the wavelength is long].

Pattern formation in perfectly non-conducting liquid Ims induced by an electric eld was
reported by Schéer et al. [1]. Morariu et al. investigated the hierarchical structure forma-

tion and pattern replication in three layered thin non-conducting liquid Ims. Further works
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were carried out by Verma et allZ§] and Wu et al. [[4]. Verma et al. numerically and
experimentally investigated the pattern formation in the thin Im by a lubrication model and
considered the in uence of homogeneous and heterogeneous electric Eds\WWu et al.
considered the in uences of van der Waals attractions and investigated the pattern formation
phenomenon in the systeridd]. Tseluiko and Blyth examined the inertial ect on the sta-

bility of non-conducting liquid Im ow on a wavy substrate by stability analysis of the fully
linearized system and a Benney-type equatid).[Electrowetting by a non-conducting lig-

uid droplet was investigated by Yeo and Chang wherein a lubrication model was proposed to

study the dynamics of contact lines which demonstrated that the electric eld promoted the

spreading speed®|.

2.3.4 Leaky Dielectrics

The leaky dielectric model was rst proposed by Taylor in the 1960s based on the evidence
that even a small conductivity in the liquid could allow electric charges to accumulate at the
interface [[4]. Detailed review of the mathematical model of the leaky dielectrics is provided
by Saville [Z8]. The term “leaky” dielectric uids refer to poorly conducting liquids. Under
the assumption of leaky dielectrid&], free charges only accumulate at the liquid interface;
while there is no free electric charge within the bulk region. Therefore, the main distinction
between the leaky dielectrics and the perfect dielectrics relies on the pridwesarece of the

free interfacial charges.

In the framework of electrostatics, the conservation of electric current reads:
Z Z Z

E dv+ g9+ E dS=0; (2.27)
dt* s @

where the liquid is Ohmic (see the electric current uf) and charge diusion is neglected.

The symbolgs stands for surface charge dens#yhe interface, an@ the boundary of the
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small control volumer (See FigZ33), the electric conductivity.

Applying the divergence theorem, the charge conservative equation is rewritten as:

V4 Z V4 Z

gt Av+  r EdV+dEt gsds ( 2E2 1E1) ds=0; (2.28)
\ \% S S

whereds = nds

Therefore, in the bulk region, the charge conservation equation for impressible uids has the

di erential form
D .
Dt

+r E=0; (2.29)

Whereg = @@+ u r isthe material derivative.

When it is applied to the interface, the conservation of surface charge viddes |

%Hs GUs* Gt MU M= ( 2Bz 1Ep) N (2.30)

wherer ¢=r n(n r)is the surface gradient operator, and= u (u n)nis the surface

velocity. The interface is assumed to be a material surface.

In many previous studies, the surface charge conservation la@B@).{s usually expressed
as:
@s

@ +rs gu=( 2B 1Ep) n (2.31)

Here, itis necessary to comment on the conservative equation of the surface chaiZl)Eq.(
First, the temporal derivativgds: r uds n(n r) uds Denotingr , = n(n r), it gives
dﬂtds =r s uds The problem now is how to evaluate the derivat%}té If gs = gs(X;y;t)
that the surface is single-valued with respect to thg)(plane, therfge = % + uZe + v =

% + U r gs whereu or v respectively represents the velocityxror y direction. From this

point of view, the conservative condition B-E1) may be not exact or correct. However, in
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many cases, the interfacial wave is long, theadtence does not come into play in linear or

nonlinear up ta( 2) analysis [9].

Since the leaky dielectric uids is considered, there is no net charge density in the bulk region

and the electric potential follows the solution of Laplace's equation:

rz =0 (2.32)

At the boundary, continuity of electric potential and the Gauss's law give

1= 2 "1E1 n "2E2 n= (s (233)

It is clear that the tangential electric eld is continuous across the interface.

The leaky dielectric model has received numerous investigations after the pioneering work of
Taylor [Z4]. In the following context, studies of EHD of leaky dielectric uids in a planar
ow system and a cylindrical ow system are reviewed. The interfacial instabilities of leaky
dielectric uids subjected to tangential and normal electric elds were respectively studied
by Melcher and Schwar&f] and Melcher and SmitHg0)] (Melcher and Schwarz's model is
valid to study the electrodynamics of leaky dielectric liquids.). Experimental study by Ozen
et al. 1] demonstrated that the size of a droplet in a two-immiscible-liquid system can be
controlled by altering the strength of the electric eld. Abdella and Rasmu&&#nnjvesti-
gated the instability of two unbounded superposed uids in a normal electric eld. Results of
the linear stability analysis showed that the instability is signi cantlgeted by the electric

eld which can be characterized by the conductivity ratio between the two liquids. Long-
wave stability of two initially stationary superposed immiscible leaky dielectric liquids was
investigated by Shankar and Sharma by a lubrication md&#l [This model B3] was then

extended to a pressure-driven ow systeld][ It was found that the electric eld either sta-
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bilized or destabilized the system which was dependent on the electric properties of the two
liquids [B3,B4). Li et al.[BF] extended the problem to the regime of a large ow rate. &ent

from the work of Ozen et al.B84], the charge relaxation time was assumed to be far smaller
than the viscous relaxation timgH4]. The stability criterion proposed by Ozen et a&4]

was invalid in the presence of tangential Maxwell stré&g.[A detailed study on the linear
stability was conducted to demonstrate that the tangential Maxwell stress signi caetiysa

the unstable mode caused by viscosity strati cati@h| [ Instead of the normal electric eld,
Uguz and Aubry 8] considered a tangential electric eld and revisited the electrohydrody-
namic instability in two immiscible dielectric liquids. Detailed comparisons on the tangential

and normal electric eld's in uence on the interfacial instability were report&s]

Artana et al. 4] analyzed the dynamics and stability of a leaky dielectric liquid jet surround-
ed by a non-conducting gas. The in uences of injection velocity and surface tension on the
linear stability were discusseB{]. Burcham and Savilled8] investigated the instability of
leaky dielectric liquid bridge surrounded by dielectric gas in an axial electric eld. Li et al.
[BY] investigated the temporal instability of a two-coaxial liquid jet surrounded by perfect
dielectric gases under the in uence of a radial electric eld. Fluids in the core liquid cylinder
was assumed to be perfect dielectrics, and uids in the annulus cylinder were assumed to be
leaky dielectrics. The instability of the liquid jets was discussed theoretically and numeri-
cally. The results were found that the liquid viscosity had a negligibleceon the cuto

wave numberB9]. However, the electric eld signi cantly aects the cut-o wave number.
Lépez-Herrera et al. g0] investigated the instability of two co-axial uids in a cylindrical
duct. The interface was assumed to be uniformly charged initiglly. [ This model B0

was extended by Wang to a leaky dielectric thread surrounded by insulating annular uids in

which the long-wave dynamics was examinEdi] [

Recently, Wray et al. B2, B3] studied a leaky-dielectric liquid Im falling down a verti-

cal cylinder driven by gravity. The liquid Im was surrounded by leaky-dielectric gases.
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However, the dynamics of the gas phase was neglected and a one-sided asymptotic model
was proposed. The in uence of a radial electric eld on the interfacial stability was studied

by a Benney-type model. Wray et algq] further extended their study and examined the
interfacial dynamics subjected to non-axisymmetric disturbances. It was reported that the
non-axisymmetric mode could be supported by the electric BH].[ It is noteworthy that

all these studies of perfectly conducting ImBEZ] or poorly conducting Ims P2, B3, &4]

were all restricted in the small ow rate regime. No investigation has been devoted to the
moderate ow rate or high ow rate regimes. Itis noted that, in these stu@ig&®pR, B3, 94|,

the Laplace equation was reduced asymptotically. This may be inappropriate when the gap

between the liquid interface and the outer electrode is large.

In the pressure driven two- uid core-annular ow system, the interface may be unstable due
to the azimuthal curvature and viscosity strati cation. The former is well-known as Plateau-
Rayleigh instability (capillary instability); while the latter is interface wave instability caused
by a jump in viscosity across the interface. The core annular ow system is of potential ap-
plications, such as in pumping crude oil through pipelines by using a less viscous liquid for
lubrication where a stable liquid-liquid interface is required. The instability of two immiscible
core-annular liquid layers in a pipe was pioneered by Joseph and his cowd&EeI8|[who

found that, the strati cation of viscosity either destabilizes or stabilizes the system. Selvam et
al. extended the study to consider the instability of miscible core-annular ows with viscosity
strati cation [E4]. In these studiedB, B8, E1], the inner liquid layer acts as the core while
Dijkstra investigated two annular liquid layers surrounding a thin wire core in a @iile [

The instabilities due to capillary, viscosity strati cation and viscous shearing were investi-
gated E8]. Dijkstra found that the inserted core played an important role in determining the
unstable mode due to the changes in the velocity pro le. In addition, the mathematical singu-
lar point at the centerline = 0 is removed by the inserted core. The ow system is unstable

which can either be in capillary mode (Plateau-Rayleigh instablity) or interface wave mode
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(caused by viscosity strati cation) from small to moderate Reynolds nun&@r The capil-

lary mode could be impeded by the mean shear ow, i.e. as the Reynolds number increases,
the capillary mode can be completely stable. When the Reynolds number is very large, the
system may be unstable due to viscous shé@Bjr Here, it is worth mentioning that even for

a single layer ow in such an annulus channel, the ow could be linearly unstable due to the
viscous shear which is signi cantly derent from the canonical pipe ow. In RefSl), &1],

the inner liquid layer was injected into the pipe with a uniformly charged surface. Such a
method introduces an electric eld in the outer liquid layer while there is no electric eld
within the inner layer. In the core-annular ow systeBH], a radial electric eld can be im-
posed between the inserted thin metal wire and the outer electrode which is more convenient.
Recently, Ding et al. extended the stu@g] to consider the eect of a radial electric eld

[E9]. The results demonstrated that the capillary mode and the interface wave mode could be
completely stabilized by the electric eld®f)]. Detailed results will be presented in Chapter

2.3.5 Electrolyte solutions

In industrial applications, mixing of dierent liquids in a micro uidic system is very impor-

tant. The Reynolds numb&eis small in micro uidics, typicallyRe 1. The ow is laminar

and mixing due to turbulence will not occur. The use of an electric eld has been a successful
approach for enhanced mixin@d). In micro uidics, the application of electrohydrodynam-

ic mixing is based on gradients of electric conductivity since the mechanical techniques are
not suited to obtaining mixing for the requirement of prohibitive amounts of power. Electric
conductivity can be developed due to a superimposed electric eld. The local ionic concentra-
tion, pH value, and conductivity gradients develop along the axis of the imposed electric eld
and the local conductivity could vary by more than an order of magnitude over a length of 1

mm [@1]. Obviously, the electric conductivity of electrolyte liquids is a function of the

31



concentration of local ions which is the major distinction of electrolyte liquids. It igdint

from the previous models introduced in this thesis: for perfect conducting liquids, electric
conductivity !'1 ; for non-conducting liquids, = 0; for poorly-conducting liquids, is

small but constant. The pioneering work on the dynamics of electrolyte solutions was formu-
lated by Hoburg and MelcheldIZ] and Hoburg [03. For more information, the readers can
refer to the monograph by Melcher (R&]) in which detailed mathematics and physics on
electro-hydrodynamics were documented. In RER[[I03, the conductivity pro le is gov-
erned by convection equation, in which, the aision of conductivity is neglected provided

that the time scale for dusion of ions is much longer compared to the viscous response time.

Baygents and Baldessalfi{1] dropped the assumption of long time dision of ions [02,

I3, and adopted the dusion of ions. It was indicated by them that the asion term is
critical in determining a correct stability threshold. Baygents and Baldessari proposed that
the occurrence of instability was triggered by the dielectrophoretce[ll]. They found

that the lower conductivity boundary had a strong stabilizinga when the conductivity
gradient was largellI]. It should be noted that the assumption of exchange of stability
made by Baygents and Baldess&£I]] was incorrect because the critical unstable mode may
be oscillatory. The unstable mode may be oscillatory which was indicated by Chang et al.
[[O5F). In their analysis[O3, Chang et al. considered the in uence of a parabolic base ow.
While the instability mechanism can be analogue to the classical Rayleigh-Bénard instability
in a heated uid layer, the physical mechanism is much more complex. For instance, in
a single heated uid layer where one imposes a shear ow, the critical unstable mode is
always dominated by the longitudinal mode, which is independent of the shedf0Gyi[08],

while the critical unstable mode in the liquid layer with an electric conductivity gradient
depends on the shear ow heavily. Chang et al. found that when the Reynolds number was
slightly increased from zero, the instability was enhanced since the shear ow enhanced the

dielectrophoretic eect and the transverse mode (zero spanwise wave number) became critical
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rather than the longitudinal model (zero streamwise wave numiiBH).[ However, as the
Reynolds number increased further, the longitudinal mode became critical, and the critical
mode was independent of the shear ow. Chang et al. reported in their paper that the critical
unstable mode was oscillatory when the conductivity gradient was small, but it switched to the
stationary mode as the conductivity gradient increaB&8][ Ruo et al. extended the model

[ to a rotating system and found that the rotation stabilized the ow, while the electric
eld destabilized the ow [[08]. Recently, Ding and Wong investigated the instability of an
annular liquid layer with electric conductivity gradients. Their results showed that the critical
unstable mode depended on the geometry of the duct and the critical unstable mode may be
either stationary or oscillatoryI{l9]. Detailed results and discussion will be presented in

ChapteB.

Unlike the studies of Baygents and Baldesdail], Chang et al. 1013, Ruo et al. [[08] and

Ding and Wong 9}, in which the electro-convection was triggered due to a spatial gradient
in the electric conductivity, Lin et al. considered two miscible ows with an electric
conductivity strati cation. To achieve such a conductivity strati cation ow in experiments,

Lin et al. M0 used two electrolytes with derent ionic concentrations (see Eigl). The

liquids were pumped into the channel using a syringe pump. A Couette ow arose from a
tangential electric eld due to the electro-osmosis phenomenon after removing the pressure
gradient. The electro-osmosis phenomenon was treated as a slippery boundary condition and
the slip velocity was related to the zeta potential in the electric double layer. However, the
electro-osmosis ow was rather weak. They investigated the linear stability by assuming a
guasi-steady base ow and veri ed their results via a direct numerical simulation. A depth-
averaged model was proposed by Storey efld][to investigate the electrohydrodynamical
instability in a square pipe. Although the depth-averaged model simpli ed the problem to
a two-dimensional ow, it showed good agreement with the three-dimensional reEiillis [

The convective and absolute electrokinetic instability with a conductivity strati cation was
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extended by Chen et all'T0]. Chen et al. used aqueous electrolytes of 10:1 conductivity ratio
and applied a streamwise electric elf0]. The two-dimensional instability was studied

via a thin-layer assumption that the channel width was much larger than the channel depth.
Santos and Storey extended the studies to a ow with streamwise conductivity gradients and
investigated the linear instability as well as the nonlinear evolutid@|[ Notably, in these
studies (Baygents and Baldesdad]]; Chang et al. [09]; Ruo et al. [[08]) adopted non-
slippery conditions, while in other studies (Lin et all]; Chen et al. [[1T}; Storey et al.

[CT]; Santos and StoreyA) considered a slippery boundary condition. The latter focused

on the stability of electro-osmosis ow.

I

Figure 2.4:Experimental setup of two miscible liquids in electrokinetic o).

The electro-osmotic ow is conceptually explained by FigliB. The electric eld induced

by free ions is very weak and the ions follows the Boltzmann distribution. In a narrow bound-
ary layer, the charge density is non-zero, while in the main bulk region the liquid is electrically
neutral. This boundary layer is the so-called electro-double layer (EDL). In the presence of
a tangential electric eld, the bulk liquids would slip on the boundary, and therefore a plug
ow is formed (see Figur&®). The electroosmosis has a potential application in micro uidic
systems, such as electro-pump. Many studies of the stability of electro-osmotic ows have

been carried out.
The rst study of the in uence of EDL on the stability of thin inviscid planar electrolyte

34



ccecececececeecececeee
666 P6 66 —~0 0606 6

y “_5— u(y)

fe— AG =0

X

.f(nu]umh = pI.E o
N \p=Ad,

cee—r0 06000 0

cecccCceCccCcCcoCccCccCccCcececeecl

Figure 2.5: Electroosmotic ow arises from an external tangential electric eld. From
http//www.kirbyresearch.cofimdex.cfmwraptextbookmicro uidicsnano uidicsch6.html

Ims was carried out by Felderhoff]l3]. Two di erent unstable modes were discussed by
Felderhof [CC3: the stretching mode and squeezing mode. The EDL was found to destabilize
the stretching mode, but stabilize the squeezing mia| [ Extension work was investigated
with considering the viscous ect [IT4]. Georgiou et al. [TH| investigated the stability of
an annular electrolyte Im and discussed two cases: double layer repulsion and attraction.
Double layer repulsion was stabilizing while attraction was destabiliZifig][ Conroy et al.

[CIH investigated the stability of two co-axial electrolyte liquids in a pipe. They formulated
the problem in a more general way. The Nernst-Planck equation was used to describe the
motion of ions[CIH. The model was then extended by Conroy et dlTH to study the
dynamics of a fouled interface by charged surfactdfig][ It is worth mentioning that, these
studies (Felderhofl[T3,Georgiou et al. [ T3], Conroy et al. ['IH, TT1]) were all concentrated
on the interfacial instability. In the previous studies, the investigation of the stability of multi-
layered electrolyte ow has remained very limited although it has received much attention
now (see the review paper by LIA[E]). Recently, Ding and WondI[lY investigated the
instability of two miscible uids in a circular pipe with an electric conductivity strati cation

subjected to an axial electric eld. This study will be presented in Chdpter

There are other approaches to induce convection in liquid layers beyond the above reviewed
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approaches. For instance, using a thermal eld coupled with an electric eld which is useful
in a micro-gravity environmenflZ0, 21, 2. Another approach could be injecting charges
into the uid layers such that the electric body force can initiate a circulation G2d3.

This method is very useful in the study of dynamics of a nematic layer in an electric eld
[Z3]. However, these studies has remained very limited to this date, especially for multi-

uid systems.
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Chapter 3

Dynamics of liquid Ims on vertical bers
In a radial electric eld

3.1 Mathematical formulation

A perfectly conducting Newtonian liquid Im owing down a vertical ber is shown in Figure
Bl The annular ow system is enclosed in a co-axial cylindrical electrode. A high voltage
is applied at the outer electrode, while the metal ber is grounded. Liquids that ow down
the ber under gravity are surrounded by a dielectric gas. The radii of ber and electrode are

r = aandr = b, respectively.

In this Chapter, the axisymmetric problem is considered. The cylindrical coordimages (
are chosen. The motion of liquids is governed by the continuity equation and the momentum
eqguation as below,

r u=0; (3.1)

Du 2

— = rp+ ru+ gq; 3.2

Dt p g (3.2)

whereu = ue, + we, is the velocity% = g+ ug+ Wg is the material derivative operator.
is the density of the liquid and is the dynamic viscosity.g denotes the gravitational

acceleration. The surrounding dielectric gas is assumed to be inviscid whose dynamics is

neglected.

Since the electrostatics is considered, the electric potentrathe dielectric gas follows the
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Interface r

Figure 3.1:Geometry of the system.

solution of Laplace's equation:

rz2 =0 (3.3)

On the surface of the ber = a, there are no-slip and no-penetration conditions,

u=w=20: (3.4)

Since the electric potential at the interface a+ h(z t) is equipotential under the assumption

of perfectly conducting liquids, therefore

=0 (3.5)

A high electric potential is imposed at the outer electrode,

= o (36)
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At the liquid ring's interfaca = a+ h(z t), the stress balance condition is expressed as:
(M Ty n= (r nn; 3.7)

whereT, or Ty is the stress tensor in the liquid phase and gas phase respectivell;, and

pil + TV + TM (i = 1;9). pi (i = I;g) represents the pressure in the liquid or gas phase.
TV = [ru+ (r u)T]is the Newtonian stress tensor which is zero in the gas phase. In the
liquid phase, the Maxwell stress is absent under the assumption of a perfectly conducting
liquid Im. In the gas phase, because the electrostatics is considered, the Maxwell stress
™ ="[EE %(E E)I]. | is the identity tensor antlis the electric permittivity of the gas.

represents the surface tensiordenotes the surface normal.

Finally, the system is closed by the kinematic condition of interface,

h, + wh, = u: (3.8)

3.2 Scaling and the asymptotic model

The aim of this Chapter is to solve the above equati@®{33) in the long-wavelength

limit. 1t assumes that the radius of the uid riflg = a+ hy (hg is the initial thickness of

the liquid) is much smaller than its characteristic lengthn the axial direction. Craster and

Matar took the length scale to be related to the capillary lengtlh: = = gR, so that

the dimensionless equations would not rely on the uid thickness being small relative to the

ber radius, but small relative to a dynamic length scdl@4]. The equationsE1)-(E3) are

non-dimensionalized by adopting the following scales: Rr% z=L 2 p p;= gL p°
oW=Ww, u= WWLt=L=WPwhereW = R?g= is the velocity scale and

=R4 .
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After dropping the primes of the dimensionless variables, the dimensionless forms of the

governing equation®(1)-(833) become

r Y(ru), + w, = O; (3.9)
Du 1 u
4ReD_t = Pt 2(urr + U+ Fur r_z)! (3.10)
Dw 1
ZRGE = 1 pz + (Wrr + 2WZZ+ FWr), (3.11)
1 2
rt F rt 2= 0; (3.12)

whereRe= = is the Reynolds number. Here, the gap between the liquid interface and the

outer electrode is assumed to be much smaller than the characteristicllerjG&.

The dimensionless boundary conditions at are,

u=w=0: (3.13)

The dimensionless radius is= § < 1. When is small, the liquid layer is relatively thicker

than the ber. Whera! 1, the liquid Im is thin compared to the ber radius.

At the interfacer = + h(z t), the dimensionless stress balance conditions are

(Puz+w)(@ 2h2)+ 2 %h(u wy) =0; (3.14)
2 7w+ 2u)h, u  wh? E[3(Z 2HA *h) 22, ,h] (2HS ):
1+ 2h2 1+ 2h2 ’
(3.15)
where H = w—rlomes + 5 222221)312 is the curvature.E = "(gF‘;); is the electric Weber
number.S = 2 is the dimensionless surface tensidh.is assumed to have an order of

O( 1). The dimensionless surface tension numBercan be connected to a Bond number

40



Bo= 1=S = ®° The Bond numbeBo = R=L = naturally measures the ratio of
length scales. In experimentBp is typically small ( 0:3 or so) [24]. We follow the
work of Craster and MataflP4] and x the dimensionless surface tensiorSat= ! in the

following discussions.

For the electric eld, boundary conditions are,
jr: +h(zt) = O, jr: = 1 (316)

The dimensionless radius of the outer electrode b=R > 1. When 1, the outer

electrode is moved far way from the liquid Im.

The dimensionless kinematic condition of the free interface is written in the conservative

form, z ..

rwdr), = 0O: (3.17)

1
e+ —
For the leading order problem of the velocity pro le is described by

1
1 potwyt oW = 0; (3.18)

ijr: = O; err: +h(Z;t) = O' (3.19)

Therefore, the velocity pro le yields,

w:'OZTl[(r2 2 2( +h2In(r=)[: (3.20)

Moreover, the normal stress balance condition is reduced as:

’h,;, (3.21)

p= 3
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where is absorbed intd,, i.e.,E, = E. Now, the modi ed dimensionless electric Weber
numberEy is assumed to b@(1). The simpli cation of the curvature in E@LZ]) is suggest-
ed by Craster and Matalif4]. Inclusion of the termh,, is re ected by the linear stability

analysis, which is vital to ensure the correct high-wavenumber codours [[23, T75|.

The leading order governing equation of the electric potentiatites
r =0 (3.22)

The solution of the leading order approximation of the electric potential obtained is:

In(r=")

e+ F=T (3.23)

Therefore, in EQEZZY), the electrostatic force is given By= 2= ( +h) ?[In(( +h)=)] 2.
This electrostatic forc& describes the attraction between the liquid interface and the outer

electrode.

Substituting the velocityv into the kinematic equation EG{), the evolution equation of
the interfacial shapk(zt) is,

he+( +h) g =0; (3.24)

with

+h, h(2 +h)(2 2+6 h+3)

P20+ i) .

4

1:

The pressure gradiept can be calculated by derentiating EqZ21) with respect t@. Turn-

ing o the electric eld, the evolution equatio{Z4) recovers the form in Refl{Z4].
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3.3 Linear stability analysis

The initial unperturbed state of the systdiid) is:

1 3 3
4

1: (3.25)

The linear stability analysis is implemented by perturbing the base statg&Z®.ith an

in nitesimal harmonic disturbance
h=1 +hd*t (3.26)

whereh is the amplitude of the disturbandethe wavenumber, = | + i ; the complex
temporal growth rate. Here is used as the eigenvalue of the re-scaled system. It can be
connected to the eigenvalieby ! = where! serves as the eigenvalue of the fully

linearized system.

After linearizing, the dispersive relation obtained is

_ K E( In) .
= 16 W +@1 A 4In 1 »HE I (3.27)

i:gem +1 2 (3.28)

The dispersive relation is identical to that obtained by Craster and M&# \vhen the
electric eldisturned o, i.e. E, = 0. The imaginary part of the eigenvalugjs independent

of the electric eld. Therefore, the electric eld has no in uence on the linear wave speed, but
it is questionable as to whether the electric eldegts the nonlinear wave speed. Detailed
discussion will be presented in SectiBm. As aforementioned, the eigenvaluecan be
connected td by! = | and the wavenumbdrcan be connected toby = k[T24].

Here,! and are the eigenvalue and wavenumber of the fully linearized system in Section
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Figure 3.2: The physical mechanism of interfacial instability. “PMénus” symbols stand
for positiveénegative disturbance charges. (&) €; (b) > e

BB. Recall thakE = E,=,S = 1=. The small parametercan be eliminated from E@®{Z)
and the dispersive relation is restated as:

2 EL In)

el m e S@ A 4m (@ 3B (3.29)

!i=§Qm +1 2 (3.30)

It is interesting to see that the in uence of electric eld on the linear stability is dependent of
the dimensionless radius When is very small, i.e. in the long-wave range, ik e, the
electric eld is destabilizing. When> e, the electric eld is stabilizing. Additionally, when

= g, the electric eld has no in uence on the long-wave stability. The same conclusion
can be obtained from E@{R5) in Sectiond®B. In order to explain the physical mechanism

clearly, let us refer to FigurB2 The perturbed electric forcE_qs0 is responsible for the

interfacial instability. g = "(Iln('”)(z DH + O(H?) is the perturbed surface charge density,
whereH measures the deformation of the interface. The linear stability analysis assumes that
H is small such that the terms of ord®tH2) and higher can be neglectef.is the electric
strength at the basic state. Note that the base electric eld's always acts in the opposite
direction ofr. When < g, in the elevated region of the interfage® < 0; while g° > 0 in
the depressed region of the interface. Hence, the electric force will enhance the deformation

of the interface. For> e, in the elevated region of the interfagg > 0; while g < 0 in the

depressed region of the interface. Hence, the electric force will impede the deformation of
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dependent parameters are= 0:25, = 0:2, = 2;¢e;5. (d-f) The dependent parameters are
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the interface. For = e, however, the perturbed charge densify= 0. Thereby, the electric

eld has a negligible in uence on the linear stability of the interface.

The numerical results of the fully linearized problem and the dispersive relatioBF9).(
are shown in Figur&3. In the calculation of the fully linearized problem, the Reynolds
number is set to be very small so as to study the instability of the StokesI&ud].[ Two

di erent values of the ber radius and three typical values of the outer electrode radius
are investigated. The in uence ofis clear when one compares FiglE&(a-c) withB=3(d-f)

that a smaller is describing a larger real growth ratg. This phenomenon is caused by
the surface tension ect as explained in the work of Ding et alH, 28] who reported the
stability of a liquid Im falling down a porous cylinder and indicated that the smaller radius

of the cylinder was the more unstable system. Results in F§@rehow that the asymptotic
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model does not compare well with the fully linearized problem whes small. However,

in the long-wave range, inspection of the plot reveals that the prediction of asymptotic model
agrees well with the fully linearized problem. Craster and MdEad] reported that the linear
stability result of their asymptotic model compared well with the result of the Stokes ow
when 0:4; while the agreement deteriorated whemvas small. Here, it was observed
that, when > 0:4, results of the asymptotic model agree well with that of the fully linearized
problem wherg, = 0. The agreement, however, deteriorates for |&g®&alues as shown

in FigureB33(c,f). This is due to the asymptotic deduction of the Laplace's equaBdm®)(

In addition, when = e, the results by the fully linearized problem show that the electric
eld has a negligible in uence on the long-wave mode, but destabilizes the short wave mode.
When = 5> g, the electric eld tends to stabilize the long-wave mode, while it destabilizes
the short-wave mode as shown in FigBB(c,f). Therefore, it can be concluded here that the

asymptotic model is valid in the long wave range.

Equation B2Z9 shows that if
S ?»+[E@ In)H@In )] o (3.31)

the long-wave instability can be completely impeded by the electric eld. Agant condi-

tion that the system is stable in the long wave range can be de ned as

S +[E(L In)H(n ) O (3.32)

The maximum real growth rate,, of the real growth raté , in Eq.@229 can be de ned as

_[S +E@ I )Hin )’

|
- m 64S

[ 4n (1 @ ) (3.33)

1+[E(L In IS (In )3

> and p, is de ned as the wavenumber of the most

which occurs at, =
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unstable moddi[Z4].

The cut-o wavenumber . corresponding to zero real growth rate is obtained as:

= I01+[E(1 In )9S (n )3: (3.34)

It is obvious that the cut-owave number varies with the strength of electric eld. Both the
wavenumbers,, and . are short waves and strictly lie outside the range of validity of the
long-wave model. Note that, the wavenumbgrand . should be positive and real, which
requiresS +[E(1 In )]H(In )]*> 0. WhenS +[E(L In )]H(In )]® 0, the maximum

real growth raté ,, = 0 occurs at = 0 and there is no cut-owavenumber.

When the outer electrode is very close to the liquid interface, ife. 1, the maximum real
growth rate becomes very large as shown in Figgi%a). It indicates that, when! 1, no
matter how small the electric potential @&rence is, the interfacial instability is enhanced due
to the strong attraction between the outer cylinder and the liquid interface. When

the electric eldE = r vanishes, therefore, the electric eld has no in uence whes

su ciently large. This conclusion is useful to explain that a largexra more stable system.
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The analysis agrees with that of a perfectly conducting liquidg&}, [which implies that
the solid ber does not change the in uence of the electric eld on the linear stability of the

interface.

From Eq.B=32), a critical electric Weber numbé&,, = % can be found as shown in Figure
B4(b). Above the value of the critical electric Weber number, the long-wave instability can be
completely impeded. In addition, the smallest value of of the critical electric Weber number
min (Ener) = &7 occurring at = €*2 is found, which is the most economic when we are using

an external electric eld to impede the long-wave interfacial instability.

3.4 Nonlinear evolution

This section presents the study of the interface subject to a nite-amplitude harmonic distur-
bance so as to examine the electric eld'seet on the nonlinear behavior of the liquid Im.

The evolution equation E@(Z3) is rewritten in the conservative form as
s+ (29),=0; (3.35)

with
4 4 25+ 3¢
4

_p: 1,1
q= = [sz(élns In )

I;

wheres= ( + h)?is proportional to the area of a cross section. The pregsigenodi ed as

Ep
2

1 1 p_
sZIns In 1%2+p=  2( 9,
[2 ] P (9

The following initial condition is considered that a single harmonic wave is imposed on the

interface,

5(z,0) = (1+ 0:01 cos%z))z: (3.36)
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Periodical boundary conditions are considered to simulate the nonlinear evolution of the in-
terface. The computational domairzis [0; L] whereL is the non-dimensional length of the
domain. The wavenumbdr= ZT Section@3 indicated that the asymptotic model is valid
in the long-wave range, therefore= k should be small, i.eL= should be large. Craster
and Matar [24] proposed that, in spite of the poor agreement in the linear stability analysis
between the asymptotic model and the Stokes ow wheésnismall, the asymptotic model can
still be used to study long-wave dynamics of the Im. Their numerical study was in excel-
lent agreement with experimental observatidB&]. This Section follows the previous work
by Craster and MataffZ4], and investigates three typical values of 0:26;0:28;0:32 and

= 0:29;0:23,0:178 which are close to the experimental values @ind by Kliakhandler

et al. [CZd].

Before performing the numerical study, the valuep(ﬁ should be bounded in;( ). When

the interface touches the ber's surface or the outer electrode, the computation is terminated.
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The solution is approximated by the Fourier series:

X=2
S(zt) = S.\(t) exp(dn =L2); (3.37)
N=2
where s, is the time-dependent coeient andN is the number of Fourier modes. In the

present study, 128 to 512 Fourier modes are enough to provideeut accuracy. An implicit

Gear's method in time is implemented and the relative error is set less th&n 10

FigureB3 displays the interfacial shape of the liquid Im at instant time for €”°. Accord-

ing to the linear stability analysis, the electric eld is destabilizing in this case. The values
of and are xedat = 0:23 and = 0:28. The computational length is chosen to be
atL = 1.64, and thus the wavenumber 0:88. The wavenumber strictly lies outside the
range of validity of the long-wave model. However, the ow pattern in FigBiE&a) is sim-

ilar to the ow regime “b” in the experimental observatiolii]. Craster and MatarlZ4]

used the asymptotic model to investigate the dynamics of such close-spacing droplets and
found that this was not in agreement with the experimental observation. However, they still
used the asymptotic model to examine the dynamics of such a ow pattern in order to give a
complete study of the asymptotic modEPH]. Similarly, it is informative to show, how the
electric eld a ects the solution of close-spacing droplets. The results here are also given for
completeness, because it is interesting to investigate the electric eld's in uence on the three
typical ow regimes. It is observed that, the liquid droplet becomes steepEy asreases.
When electric Weber is increasedlg = 2, the liquid interface becomes singular and touches
the outer electrode &t 9:10 as shown in FigurBE3(e). The maximum value of the liquid

Im's radius, rmaxis plotted against the evolution tinten FigureB®(a). It is observed that

the system can evolve to a steady state after a long time ®whenless than a certain value.
Moreover, the height of the liquid Im is promoted by the electric eld as shown in Figure

BB(a). In addition, the growth rate of,.x is larger for a largeE, which demonstrates that
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Figure 3.6: (a) The maximum radiusyax Versus the evolution timé (b) The maximum
radiusrmax Versus the electric Weber number. The other dependent parameters &528,

=e”, =0:23,L=164.
the instability is enhanced by the electric eld. In order to search for the critical vallg of
whereas the liquid Im nally touches the outer electrode rather than evolves to a steady state,
the numerical simulation is utilizedax is plotted againsk, in FigureB®(b), in which the
critical value ofEy, is indicated byE,,  1:81. FigureB®(b) also shows that the height of
the liquid Im increases a&y, increases, indicating the electric eld is destabilizing. Results
in FigureB3 and FigureZ® demonstrate that the nonlinear study agrees well with the linear

stability analysis that the electric eld enhances the instability whene.

The nonlinear behavior of the liquid Im for = eis of particular interest since the linear
stability analysis indicates that the electric eld has no in uence on the long-wave instability.
In fact, the liquid Im is unstable due to the Plateau-Rayleigh mechanism even when the
electric eld is switched o. When the liquid Im evolves to a new saturated state due to
the capillary instability, the gap between the Im's crest and the electrode should be smaller
thane. Therefore, in the presence of an electric eld, the nonlinear behavior of the interface
should be aected signi cantly. To study the problem, the conditions= 0:26, = 0:29

andL = 5:8 are chosen. It should be noted that the numerical simulation result relies on

the initial condition and we cannot obtain a similar result as that in IR&f}[observed in
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Figure 3.7:(a-e) The interfacial shape. (a-d) are plottetat500; (e) is plotted att = 64:60.
The other dependent parameters are 0:26, =e, = 0:29,L = 58, 0:31. (f) The
maximum radius of the liquid ringyax vVersus the evolution time (g) The comparison of the
interfacial shapes fdE, = 2 at di erent instant time.
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the ow regime “b”. However, the study in this Section can provide insights to explain the
e ect of electric eld on the nonlinear dynamics of the liquid Im. FiguBei(a) illustrates

the interfacial shape fdg, = 0. The in uence of the electric eld on the interfacial shape is
shown in Figurd3(b-e). An interesting phenomenon observed is that the amplitude of the
liquid Im starts to oscillate when the electric eld is increased to a certain value, for instance
Ey, = 2. FigureBI(f) shows the evolution of .4 With timet. It demonstrates that the wave
amplitude can be either time-independent or time-dependent, when the liquid Im evolves to
a saturated state. The oscillation in the wave amplitude indicates that the state of the Im is
not steady. To illustrate this phenomenon, the interface shape extethit times is plotted in
FigureB(g). The comparison of interfacial wave shape shows that the distance between the
wave crestdy, |, as well as the heights of the wave crests areetént at the two dierent

times A further increase in the strength of the electric eld will cause the liquid Im to touch

the outer electrode, for instanég = 2:5; 4.

WhenE, = 2:5, the liquid Im touches the outer electrodetat 64:717. The simulation of

this process is presented in Figga(a-c). To ensure the numerical accuracy, 512 Fourier
modes have been utilized and the time accuracy for the Gear's method is set less thdtn 10

is observed that the interface becomes singular in a quite short time as seen iIrBEBa#®.

The electrostatic force is shown in Figuged(d). The attraction between the electrode and
the liquid interface becomes very large at the crest of the lower droplet, which squeezes the
droplet into the singular shape. This phenomenon could also be observed in an electri ed
jet or thread 2, ). Results in Figuré®1 and Figured3 indicate that, the electric eld

is destabilizing in the nonlinear regime, but it does not contradict with the linear theory. In
FigureB1(f), the electric eld almost does not &ct the evolution of ,,,« in a short time,
which implies that the growth rate of the harmonic wave is almost the same. It indicates that,
when the deformation of the interface is small, the prediction of linear stability analysis is

correct.
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Figure 3.8:(a-c) The interfacial shape at dirent instant time foE, = 2:5. (d) The distribu-

tion of electrostatic forc& at the liquid interface. The other dependent parameters are from
gure B1.
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Figure 3.9: (a-e) The interfacial shape. (&, = 0:5,t = 500; (b)E, = 2,t = 500; (c)

E, = 3:72,t = 61:83; (d)E, = 11,t = 42328; (e)E, = 11:5,t = 500. (f) The maximum

radius of the liquid ringnax versus the evolution time (g) The comparison of the interfacia

shapes foE, = 3:72 at di erent instant time. The other dependent parameters aré:26,
=el, =029,L=58, 031.
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When the radius is increased t@'!, and other parameters used in FigBiZare xed, the
electric eld's in uence on the nonlinear behavior of the interface becomes more complex.
The linear stability analysis indicates that the electric eld plays a stabilizing role when

e. When the nonlinear mechanism becomes important, the electric eld can enhance the
instability. Clearly, FiguréZ39(a-e) shows the ow pattern can be changed by the electric
eld. Figure BX(f) shows that, wherk, is slightly increasedi .« decreases and the liquid

Im evolves to a steady state,,, Starts to oscillate whehy, is further increased, for instance

E, = 1;2;3:7. The transient simulation shows that when< 3:719, r.,ax becomes smaller

with increasing the value d&,. However, the oscillation in the amplitude is promoted by the
electric eld. As the liquid Im is not steady, the coalescence event may happen &hen
further increased. The maximum height of the Im will increase due to the coalescence of
the droplets. As a result, the gap between the wave crest and the outer electrode becomes
smaller. Thereby, the outer electrode may attract and attach the interface to its surface. This
mechanism can be understood by referring to Fidgi®ég), in which, the coalescence of
droplets is shown. Numerical simulation has found out that, whéb%3< E, < 11:125, the
electric eld can attract the liquid Im to the outer electrode due to the droplet coalescence.
WhenE, > 11:125, no rupture phenomenon is observed by numerical study and the wave
becomes steady after quite a long tine(10%). This is due to the electrostatic force which
suppresses the deformation of the interface. The wave amplitude is so small that the electric
eld could not attract the interface to the outer electrode. The liquid Im becomes completely
stable wherk,, > w 12, which agrees with the linear stability analysis. Aside from
that, FigureéZX(f) shows that the growth rate of,.x is smaller for a largeE, for short time

behavior, which agrees with the linear stability analysis.

Now, it is of interest to study the case: = €*2. For the chosen value of, the electric
eld is stabilizing according to the linear stability analysis. In this case, the value$:32,

= 0:178 andL = 5 are chosen. Study from Rdi{4] suggests that a similar ow pattern as
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Figure 3.10: (a-e) The interfacial shape at= 500. The other dependent parameters are
=032, =¢e*2, =0178,L=5,  0:226. (f) The maximum radius of the liquid ring
I'max VErsus the evolution time (g) The comparison of the interfacial shapeskgr= 5; 5:5.
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ow regime “c” in the literature [Z1] may be found by transient simulation for a very small

. Meanwhile, the initial condition of the transient simulation was chosen by a traveling wave
solution perturbed by pseudo-random nolE24. Moreover, 1024 Fourier modes were used
for the numerical simulatioriZ4] which was time-consuming. This Section focuses on the
in uence of electric eld on the stability of the annular liquid Im. For convenientez= 5
is chosen and the initial condition EBBH) is used to explain the in uence of electric eld.
The interfacial shape without the external electric eld is shown in Fidiii@a). When
the electric eld is turned on, the interfacial wave pattern changeS,aacreases as seen
in FigureBT(b-e). FigureBT(g) shows the comparison of the shape of steady wave for
E, = 5,and 55. A clearer gure is shown in FigurEZT(f) that r,,.x becomes smaller &5,
increases. This phenomenon indicates that the electric eld is stabilizing. When the electric
eld is turned on, the permanent wave can also be time-dependent (for indEgreet) or
time-independent (for instandg, = 5). In this study: = €*2, the singular phenomenon for
any electric Weber numbéi, > 0 is not observed, which indicates that moving the electrode

further from the liquid ring can avoid the singular event that may occur in the system.

Finally, the transient simulation with a larde= 20 is performed so as to understand the
complex dynamics of the Im. This study is carried out to investigate the response of the
liquid Im subject to the nite-amplitude wave in a long computational domain. 512 Fourier
modes have been utilized to resolve the problem. The radius of the electrode is xed at
= e*2. The Im has evolved to a steady state 6 = 1 as shown in FigurB_T1(a) while it
does not become steady fg = 2.5 as shown in FigurBT1(b) (Note that, here the spatial
axis isz= rather tharz). In fact, forE, = 2:5, no steady state was observed for quite a
long time,t = 5000. The Im is oscillating due to the competition between coalescence of
droplet and transition to smaller scal@&f). To illustrate the phenomenon, the space-time
diagram of the liquid Im is shown in FigurB_Tl(b) where the crossing of lines indicates the

coalescence of droplets.
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Figure 3.11:Space-time diagram illustrating the dynamics of liquid Im, in which the light
and dark shading indicate elevated and depressed regions, respectively=(4) (b) E, =
2:5. The dependent parameters are 0:6, =02, =e'® L=20, 0:0628.

3.5 Coherent solutions: Traveling waves

In Section334, the direct simulation of the asymptotic model has been implemented to study
the electric eld's in uence on the nonlinear behavior of the liquid Im. However, the study
could not answer the question: how does the electric eld in uence the traveling speed of the
steady waves? In this section, coherent solutions in form of traveling waves, i.e., stationary
solutions of EqQE=39) in a frame of reference moving downstream at a constant spaesl

sought by introducing the following transformation:

=z ct (3.38)
Eq.B=39) is then transformed to:
cs +(29) =0; (3.39)
The unknown variable is set 8= s( ). For a giverL (the computational length as de ned in

59



Section33), this is a nonlinear eigenvalue problem wher@ndc are to be determined. The
computational length. also corresponds to the droplet-droplet spacing for a single droplet

solution.
Here, the ow ratemin the moving frame is de ned as

VARV
m= riw( ) cl]dr: (3.40)

The solution ofs can be approximated by the Fourier series,

) S
()= &t (3.41)
N=2
Since the wave speadas well ass are unknown, one more condition is needed toc.x
Following Craster and Matar's work, the constraint on the uid mass is impdE24 |

z L
(3.42)

e
")
o

I
|_\

0

For the convergence of Newton iteration, a reasonable guess for the wave speed and pro le
should be provided. This can be provided by numerical simulation of the evolution equation of
a short computational domain (edge-tracking method). The initial guess can also be given by
the information at the supercritical bifurcation point of the evolution equation. A continuation

method is used to track the solution branch as parameter changes.

It should be indicated that the traveling wave transformation@=8g is only valid when a
traveling wave solution exists. The numerical simulation has indicated that the liquid Im
may become singular in the presence of an electric eld. Therefore, in this situation, there is

no steady traveling wave and the solution can not be found.

First, the case: = 0:3262, = 0:178,L = 8:185 in the work [CZ4] is revisited. The
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Figure 3.12:(a) The wave speedversus the length. (b) The interfacial shape for a single
droplet. c = 1:37,L = 8:185. (c) The interfacial shape for two droplets.= 1:04, L =
8:185, = 0:3262, = 0:178. “singlédouble” means there is(are) dtveo droplet(s) in the
computational domain.

solution is tracked by the length Clearly, a larget describes a larger wave speed. Figure
BT2demonstrates that the asymptotic equat@iE¥) exhibits non-uniqueness of solutions.
For a given spatial interval, there could be one or two droplets as seen in Biguib,c).
Our numerical study gives the wave speed 1:37 atL = 8:185 for a single bead which
compares well with the result of Craster and Matar=(1:36 atL = 8:185 for a single bead

[Z4]). This agreement con rms the validity of our numerical method. Here, "our numerical

method' refers to the numerical method developed by the author of this thesis.

Second, the in uence of electric eld on these kinds of solutions in Figii&(b,c) is exam-
ined. The electric Weber number is xed Bt = 0:1 while the radius of the electrodeis
varied. Results are shown in FiglBe3 When < e, for instance = €”%; "%, the traveling
wave solution is not found whel exceeds a critical value. Wher> e, the solution does
exist. It is noted that, when< e, the electric eld promotes the wave speed. When e,

the wave speed becomes smaller ascreases.

The in uence of the electric eld on the traveling waves for= 0:28, = 0:23,L = 1:64

is examined by the asymptotic model. The result of numerical simulation in Fifjh{a)
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Figure 3.13:(a) The wave speedyvs. the lengthL for a single droplet case. (b) The wave
speedc vs. the lengthL for two droplets case. The dependent parameter&Egre 0:1,

= 0:3262, =0:178.
without periodical extension (a single droplet in the computational domain) is chosen as the
initial guess of the wave pro le. The results are shown in FigBirBl The solution agrees
with the numerical simulation as seen in Fig@&4(b). The critical electric Weber number
E.r, above which there is no steady traveling wasgg, 1:81 is re-obtained by the traveling
wave study. Itis interesting to note that although the height of the wave always incre&ses as
increases, the wave speestarts to decrease Bt 1:78 as observed in FiguET4a). The
physical mechanism underlying this phenomenon should be the electric eld's enhancement
on the circulation ow in the wave crest (see FiglFE4(d-f)). The ow ratemincreases as
Ep increases tillE,  1:78, indicating that the electric eld enhances the ow, therefore, a
largerc. However, the circulation in the wave crest may retard the okgas 1:78, therefore
causing the ow ratento become smaller. Thereby, the wave speed may become smaller due

to the decrease of ow rate.

The electric eld's in uence on the traveling waves for= 0:2551, = 0:2915 and. = 5:81
( , andL are the experimental values of ow regime “dfZ1]) is investigated here. For

non-zeroky, the solution is tracked by parametgy. The wave speed fdg, = 0 isc = 1:21,
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Figure 3.14:(a) The wave speedvs. E,. (b) The maximum heightyax vS. Ep, in which
“TW” stands for Traveling Wave. (c) The ow raten in the moving frame vs.E,. (d-f)
Streamlines in the moving frame with constant spegid which E, = 0;1:78; 1.81 respec-
tively. The dependent parameters are 0:28, =¢e"°, = 0:23,L = 1:64.
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Figure 3.15:(a) The wave pro le forE, = 0. (b) The wave speedvs. the electric Weber
numberE,. (c) The maximum heightax vS. the electric Weber numbéi,. (d) The ow
ratemvs. E,. The marked lines “1” In() = 0:9; “2” In( ) = 1;“3"In( ) = 1:1;“4"In( ) =
1:15; “5” In( ) = 1:25; “6” In( ) = 1.5. The other dependent parameters are 0:2551,

= 0:2915,L = 5:81.
which agrees well with Craster and Matar's study (REf4 gavec = 1:195). In uences
of the electric eld on the wave speadand the maximum height,.x as well as the ow
ratem are shown in Figur&THb-d). Numerical results indicate that; (max M) increase
with E, when In < 1:1. When In = 1:15, an interesting phenomenon observed is that,
althoughr,,x decreases witk,, c andmreach to their maximum values after that they start
to decrease. This phenomenon implies that the electric eld enhances the ow and promotes
the wave speed. When Ir» 1.2, c andr,x are observed to decrease Bsincreases. It
is found that for In = 1:15;1:25;1:5, rmax ! 1,c ! 0:8986,m ! 0:25 asE, increases
toE, 9:1;7;6 respectively. The constant value= 0:8986 is nothing but the linear wave
speedc, = H = %(ZIn +1 2. The owratem = 0:25 is the basic ow rate in the
moving frame with the constant speed m = ¢(1  2) q. The critical electric Weber
numberg, = W predicted by the linear stability theory giveg 9:13;7:03;6:07 for

the three cases: In= 1:15; 1:25; 1:5, which agrees with the study of the traveling waves.
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3.6 The fully linearized problem

Here, the fully linearized system is carried out so as to verify the validity of the asymptotic
model Eq.BZ4). The system is non-dimensionalized by using the length $&€afea + hy,
and pressure scal@R , velocity scale R ?g= , time scale= R g and electric potential scale

= = 0.

The velocity eldu, pressure, the electric potential as well as the interfadeare perturbed

by in nitesimal harmonic disturbances as:
[uw;p; ; hl = [GW p; ; h]+[0;W; ;5 Alexp( z+! b); (3.43)

whereu, W, p, , hrefer to the base state andW, p, ~, h are the Fourier amplitudes of the

disturbances. is the disturbance wavenumber, dnds the complex temporal growth rate.

The governing equations of the perturbed system are:

Di+lr3+iW:0; (3.44)
A~ A D 2 A 0 . —A
| RO= Dp+ (D’ + = ) = RwQ; (3.45)
| RW = iﬂu§+? AW R (i Ww+ w;Q); (3.46)
(§+? " =0 (3.47)

in whichD= % R= 2953 can be connected to the Reynolds numbeRby Re

The linearized boundary conditionsrat are

=Ww=0: (3.48)
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At the liquid interface, the boundary conditions are projected+dl by Taylor's expansion,

i 0+ D+ D'wh = 0; (3.49)

p+2( Dvh Di)+ED (D h+D)=S (2 1) (3.50)
"+Dh=0; (3.51)

lh+i wh=0 (3.52)

Here, the electric Weber numbErand dimensionless surface tens®ncan be connected to

the modi ed dimensionless parametersby E,=,S =1=.

At the outer electrode = , the boundary condition for the perturbed electric potential is

=0: (3.53)

The perturbed electric potential is obtained as follows

- i|o( NKo(k ) lo( )Ko( 1),

=T 1ol JKo() To()Kal ) (3:54)

wherely andKg are the zero order modi ed Bessel functions.

In the linearized normal stress balance conditl@&af), the electric force term reads

E LL()Ko( )+ lo( IKa( )yz
n 2t 1 T Ke) ToOKel (3.55)

wherel; andK; are the rst order modi ed Bessel functions. In the long-wave range, 0,

the asymptotic electric force term writes

EQL In)

TBE h+O( ?): (3.56)
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The above fully linearized problem is solved by a Chebyshev collocation method.
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Chapter4

Interfacial instability of a core-annular
system in the presence of a radial electric
eld

Chapter3 discussed the interfacial stability of core-annular ows in a radial electric eld.
The model derived EdR(Z9) is valid only in the long-wave regime. Speci cally, E§Z2)

is not able to capture the dynamics of the short waves when an electric eld is applied (see
FigureBz3(c,f)). In addition, the dynamics of the outer uid layer is neglected. This Chapter
considers a two-layer ow system as shown in Figlr@and examines the in uences of the
dynamics of the outer layer. Derent from the assumption of perfect conducting liquids of
the inner layer and non-conducting gases of the outer layer in Ctipter two immiscible
liquids are considered to be leaky dielectrics in this Chapter. Furthermore, it is assumed that
the two- uid system is bound by two concentric cylindrical electrodes. A constant pressure
gradient is imposed in the axial direction. The outer electrode with the inner nadiusis
grounded, while the inner electrode with the radius a is imposed with a high electric po-
tential. Both liquids are Newtonian with a constant densitglynamic viscosity ;, dielectric
permittivity "o"i(" o the vacuum electric permittivity), electric conductivity, wherei = 1;2
represents the outer layer and the inner layer respectively. In this chapter, the sulbsaript

represents the outer layer and the inner layer for simplicity, respectively.

The two-dimensional hydrodynamic problem is considered, and the gravity is neglected. Flu-
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Figure 4.1:Geometry of the two- uid system. (a) Side-view. (b) Cross-section-view.

ids in each layer are governed by the continuity equation and the momentum equations,

1@rui) @; - N
6 + @ 0; (4.1)
Du ] Ui
Dt - % + (2 ) (4-2)
i%\:‘: %+ ir 2w (4.3)

where (;; v); the velocity in radial and axial direction respectivel,= &+ u; g+ v &, and
Since the leaky dielectrics is considered, the electric potential in each layer follows the solu-
tion of Laplace's equation,

rz;=o: (4.4)

U =V, =0; 2= o (4.5)
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At r = b, boundary conditions are expressed as,

u=vs=0; 1=0: (4.6)

At the liquid-liquid interfacer = a+ h(zt), continuity of the velocity gives,

Uy = Uy, Vo = Vq: 4.7)

The stress is balanced between the two liquid layer by surface tension,

(T2 T1)) n= (rs nn (4.8)

whereT; = TY + TM is the stress tensofT’ stands for the viscous stress tensor affd=
"o"i[EE; %(Ei Ei)l] stands for the Maxwell stress tensor dd= r ;. | is the identity

tensor. is the surface tension which is constant because the Marangedi is neglected in

this papern = —2— N _ s the surface normal.
(+h3)2  (1+hd)2

Continuity of electric potential at the interface gives
2= 1 (4.9)

For leaky dielectrics, when the ratio of the uid to electric time sce&es .'.‘o‘%(w is the ve-
locity scale and stands for the electric conductivity scale) is very laig#],[the conservative

equation of interfacial charg&{31) reduces to,

n(a2r 2 1r 1)=0: (4.10)
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Finally, the system is closed by using the kinematic equation of the liquid-liquid interface,

h + wh, u,=0: (4.11)

4.1 Non-dimensionalization and base state

To non-dimensionalize the governing systel)-(ET1), the properties of the inner layer,

i.e. 2, 5, » aretaken as the property scales; the electric permittivity scale is referred to
vacuum permittivity"o; the length scale refers to the mean depth of the inner layethe
velocity scale refers to the moving velocity of interfageat the steady state; the time scale is
given byho=V,; the voltage dierence between the two cylinders = o  4( 4is denoted

as the potential of groundgy = 0.) is chosen as the electric potential scale. The relationship

between dimensional variables and dimensionless variables (primed) is presented as follows,

(r;zh) = (r% 2% h9ho;

(U V)i = WV,

o) = (0 )2 = ol
(plapZ)_(plapz)h_01 VA (4.12)
(1 g) = 01; (2 ¢= 02;

VOO0NOA00N0NK/ AXXKNKNNK/ OO

® (Eqy; Ep) = (E%; Eoz)h—:
0
By using these scales, after dropping the primes, the inner layer is governed by the following

dimensionless equations,

1@uw) @

=0; 4.1
e @ " @19
Du @ Up,
ReD_t2 = é + (r 2U2 r-;), (414)
D
Re% - % 12y (4.15)
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r2,=0; (4.16)

Vihg

whereRe= is the Reynolds number.

For the outer layer, the dimensionless governing equations are,

1@uy) , @

= 0; 4.17
@ @ @17
Du; @ 2 Up
R =+ =); 4.1
eﬁ @ (r “up =) (4.18)
Dv
Reﬁf: %%+ r2v; (4.19)
r2.=0; (4.20)

where = —; denotes the density ratio, and= —; denotes the dynamical viscosity ratio.

The dimensionless boundary conditions at a are,

U, =V, =0; >,=1: (4.21)

u=v;=0; 1=0: (4.22)

On the interfaca = a + h(zt), after dropping the higher term proportional tw,)¢, the

tangential and normal stress balance conditions are,

[2uh, + u,+ v, 2v,h,], [2uh, + u,+ v, 2v,h,],

+Wq",(E*h, + E.E; EZ2h), "i(E*h,+E[E, E2h),]=0; (4.23)
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P2+ 2[Ur (Uz + Vr)hZ]Z * P1 2 [Ur (Uz + Vr)hz]l

1 1 1 1
+We["2(§Er2 éEg 2E.E;h,), "1(§Er2 EEg 2ErEzhz)1]=a‘; (4.24)

" 2

whereWe= §V|ho denotes the electric Weber numbes h,, aTlh is the curvatureCa= 24

is the capillary number.

The dimensionless continuity of the velocity and voltage potential conditions at the interface

hold the same form as Eg&{) and @),

p=U;; Vo=Vi, 2= g (4.25)

and the dimensionless conservative law of the surface charge is,

nE o r )=0 (4.26)

where = - denotes the electric conductivity ratio.

The dimensionless kinematic condition of EAYI(1) holds the same form.

4.1.1 Base state of the system

The ow eld and electric eld are decoupled at the base state. The base velocity in radial

direction vanishes and ow is parallel to the axis, i.e.,

Sl
N
I
<l
=
I
o

(4.27)
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Since the base state of the ow eld is assumed to be uniformdirection and driven by a

constant pressure gradient along the axis, then
_ _C,
Vo = Zr + ¢ In(r) + cy; (4.28)

Vi = 4£r2 +dyIn(r) + d; (4.29)
in which,

2 2
o = Cl(a+1) l(2a+1) b]; (4.30)
4( In&=+1n 2%
C a2Ina+1+a2In—+ a+ 1)? 2a+1) bd)Ina
6 = [ 3 (( ) ( ) b ]; 4.31)
4( In2L +In 2

atl
Cl[(a+1)? (2a+1) b?

dl = 4 [ |n%+ In aTbl] ; (432)
2 arl
0 - Cl((a+1? (2a+1)Inb+b? In%l In(a+ 1))]: (4.33)

a+1
4 [ InZg&= InaT1

The coe cientC = p,. Since the velocity scale refers to the velocity at the interface, the

dimensionless interfacial velociy = 1. The pressure gradient is identi ed as,

atl
@ A g%l ' (4.34)

@ Ing +a2In‘,lel+aIn""+b2Ina+1

The solution of the voltage potential in the inner and outer layers respectively reads,

_ In = +In2d
)= l a+1 w a+l. (435)
n aTl n==
- In§ _
1= I E el a+1 (4.36)

a+1

When the inner radius is in nitely large, i.ea,! 1 , the base state reduces the the problem
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studied by Ozen et aBf] as follows,

_ H + H2+2H +
= garn’ * ThRaem Y (4.37)
_ H+ H2+ 2H + 1
It THae H)y2+ HL+H) ! (4.38)
-_ (1 y+H,
== Al (4.39)
- _ y+H,
e ATE (4.40)

whereH = b a 1 represents the thickness of the outer layer,yasdr a represents
the wall-normal direction. Shifting the origin to the interface, the same velocity and electric

potential expressions as Ozen et aBd][can be obtained.

4.2 Linearized perturbed system

This section studies the linear stability of the core-annular ow so as to provide insights
on the linear dynamics of the system. In nitesimal disturbances are introduced to perturb
the system. In a standard way, the normal mode analysis is considered. The normal mode
analysis is achieved by decomposifignto F = F(r) + F(r) exp(kz + ! t), whereF refers

to the base state, arkthe in nitesimal amplitude of a harmonic disturbance with the wave
numberk and temporal growth rate. The complex temporal growth rate=! , +i! ;, where

the real part | is de ned as the eective growth rate.

For the inner layer, the perturbed system is governed by,

A

Do, + % +ik¥, = O; (4.41)

A .0
Re (= ikRenl, DP,+ (LG r—j); (4.42)
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Re 0, = ReDv(, ikRent, ikp,+ L (4.43)
L ,=0; (4.44)
whereD= & L =+ 1D I

For the outer layer, the perturbed governing system is,

A

Do, + % +ikéy = 0] (4.45)
R 0, = ik Réjt, Dpy+ (L0 %); (4.46)
L™ =0 (4.48)
Boundary conditions at= a for the perturbed system are,
lhb=U=",=0 (4.49)

01 = 01 = 1=0: (450)

The boundary conditions at the liquid-liquid interface= a + h are projected to¢ = a +
1 by using the Taylor's expansion. The interface is perturbed to 1 + ~exp (kz+! t),
where "measures the deformation of the interface. After dropping the higher order terms, the

conditions of perturbed velocities read,

02 = 01, \72 + D72A = 01 + D71A (451)
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The voltage potential conditions of the perturbed system at the interface are,

AZ + D_ZA = Al + D_]_A; DA2 + [f_z'\ = (DA]_ + DZ_]_A); (452)

andnotethab ,= D, andD? ,= ¥ .

The perturbed stress balance condition in the tangential and normal direction, respectively,

reads,

[ikO+DV+DV'], [ika+Dv+ V'],

+W¢",D (kD 2" +ik ™) "D (kD 1" +ik 1)] = 0; (4.53)

P2+ 2[00 kD ]2+ P 2 [DO KDV']y

— R - = A 1 "
+Wg",D (0 ;" +D ) "D (D "+D )=

cilarie k*"]: (4.54)

The perturbed kinematic condition is,

| "+ ik 0y = 0 (4.55)

4.3 Results and discussion

4.3.1 E ects of the electric eld

This Section discusses the in uences of electric eld on instability of the interface theoretical-

ly. The governing equation of the perturbed electric eld can be solved by Bessel's function,

"1 = elo(kr) + eJo(kr); "5 = eslo(kr) + esJo(kr): (4.56)
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in which 1o, Jo are modi ed Bessel's functions of order zero, afy = kI, 3% = kJ
wherel,, J; are modi ed Bessel's functions of order one. Using the boundary conditions, the

coe cients are determined as follows,

1 1 :
T Pa+y &+l (4.57)
= lo(kb)=Jo(kb)ey; (4.58)
= Qey; (4.59)
es =  lo(ka)=Jo(ka)Qey; (4.60)

with
__lo(ka+ KJo(ka) Jo(ka+ Klo(ka) loka+ K)o(kb) Jo(ka+ Klo(kb).
P=Q 30(<3) Jo(k) - oD
oo D0k li(kat (D) + y(ka+ (k). 62)

Jo(kb) 11(ka+ K)Jo(ka) + Ji(ka+ a)lo(ka)’

In the normal stress balance condition BEdpf), the term [,D ,[¥ , "D ;¥ 4]" is equal

to "2 * *, and the other term'jD ,D', ";D ;D] = Y

(a+13[ In2;+ingt12 (ar1)[ In2;+In 3t

According to the solution of the electric eld) ; = K[I1(ka+ K) + 1o(kb)J(ka+ K)=Jo(kb)] ey

which is modi ed as,

~ K[11(ka+ K) + lo(kb)Ji(ka+ K)=Jo(kb)] 1 -

D )
! P (a+ 1) In2 +In2d

(4.63)

then, the eect of electric eld on the interfacial stability is proportional to,

n 2 n " 2 "
stz ) 2
(@+12[ In2 +In&2 @+ 1P InZ +In&l)2

The parameteg = €10t ol@hla0=HD] The value ofS is found to be always positive.
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For small to moderate Reynolds numbers, the system is susceptible to the Plateau-Rayleigh
instability and interface wave instabili§]. The former is caused by surface tension due

to the azimuthal curvature; and the latter is due to viscosity strati cation. The capillary and
interface wave instabilities are associated with interface deformation. It is noted that, when

2=",=",, the normal Maxwell stress becomes zero at the liquid-liquid interface.

Figure 4.2:(Color online) E ective Growth rate versus disturbance wave numbef.;(a)2,

10, =05. (b)";=5,",=10, =05. (¢)"1,=10,",=1, =1 (d)"1=25,

2

10, = 1. The other parameteRe= Ca=a=H= = =1.

2
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For this two- uid core-annular system, when

Z>"=", and < 1 ﬁ; (4.64)
or,
1
2<"1:"2 and > 1 m, (465)

the electric eld impedes the deformation of interface. Otherwise, it enhances the deformation
of interface. This two core-annular ow system can be reduced to a bilayer system co owing
between two parallel in nite plates when the inner radauis in nitely large, i.e.,a! 1
Eqs.B@64) and @85 agree with the results by Ozen etB8 whena! 1  and the charge
relation time is fast. Ozen et &4 proposed that, for the two- uid layer owing between two
parallel plates in a normal electric eld, wherf >" =", and < 1,or 2<";="5and > 1,

the electric eld can stabilize the system. Otherwise, the electric eld destabilizes the system.
However, the criterion set by Ozen et 8] is only valid to explain the normal Maxwell
stress's eect which cannot be used to explain theeset of the tangential Maxwell stre&&].

The surface charge induces a tangential Maxwell stress which has an imporahba the
stability of the system. Nevertheless, for the core-annular ow system, when the instability
is dominated by the capillary force, the theoretical results in Eq&l) and @63 can be
referred as a criterion of capillary instability. When the electric properties satisfyZEag. (

or (ABY), the electric eld can impede the capillary instability. Otherwise, the electric eld
enhances the capillary instability. Furthermore, when the electric properties do not satisfy

Eqgs.@64) or (EBY), the electric eld always enhances the deformation of interface.

Since this chapter considers the leaky dielectrics, free charges accumulate at the liquid-liquid
interface which induces a tangential Maxwell streggq is the surface charge density aBd
is the tangential component & at the liquid-liquid interface). Viscous stress at the liquid-

liquid interface is balanced by the tangential Maxwell stress. InZEs@, the linearized
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Figure 4.3:(Color online) The tangential Maxwell stressext on the growth rate. (&), =
25,", =10, =05 =1;(Mb)";, =10,", =25 =2, =1;()", = 25,
"2 =10, =05, =2;(d)",=10,", =25, =2, = 2. The other parameters
Re=Ca=a=H= =1
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Figure 4.4:(Color online) Perturbed ow eld plotted by the streamfunctiofl (a)"; = 10,
"2=5 =2;(b)"y=10,",=25, = 2. The other dependent parametees= = Ca=
a=H= =1,We=10,k=0:1.

tangential Maxwell stress is,

"o M)

ik + 12 In=& +1 a+12(1
@+ 1 In;;+In&=]

+RA )5

in which, R = ol@ ol@kl@9=uld < o The tangential Maxwell stress is zero when

= 1:

». In this situation, the two liquids could be viewed as perfectly non-conducting.
The in uence of the tangential Maxwell stress on the interfacial instabilities(the capillary and
interface wave instabilities) is very complex because it is coupled with the viscous stress. Par-
ticularly, when =";=", =1, the electric eld has no in uences on the system because both
the normal and tangential Maxwell stress are zero in the stress balance condition. Numerical
examination of in uences of the electric eld on the interfacial instabilities will be presented

in the next section.
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Figure 4.5:(Color online) (a) Electric permittivity on the ective growth rate. The dependent

parameterRe= =Ca=We=a=1,H=05, = =0:.1.(b)Electric conductivity ratio

on the e ective growth rate. The dependent parameiess = Ca= We=a=1,H = 05,
=01,"1=1,",=2.

4.3.2 Numerical results

This section presents the numerical results of the linear stability analysis. The eigenvalue

problem was resolved by the Chebyshev collocation method. The computation domain of

each layer was transformed to the Chebyshev domdini]].

The transformation for the inner layer is,

V=20 a 1 (4.66)

The transformation for the outer layer is,

_,r (@+1)
n=% @+ (4.67)
The solution of the perturbed system is achieved by Chebyshev polynomials,
R M\l
(v Ti= [UpVy Ty (4.68)



Figure 4.6: (Color online) (a) Inner radius of the duct on theeetive growth rate. The
dependent parameters dre= 1,", = 10, = 05,Ca=01,We=a=H = Re=

= = 1. (b) Capillary numbe€Ca on the e ective growth rate. The depending parameter
Re=a=H= = =1,We=0.

whereT; = cos(jcos ty) withy 2 [ 1;1] is the Chebyshev polynomial.

As shown in Figur@&2(a), when 2>";="and < 1 the electric eld impedes the

S(a+1)'
capillary instability. FigureZ2(b) shows that when the electric eld strength increases, i.e.,
increasing the value dVe the e ective growth raté , increases indicating that the electric

eld is destabilizing when ? <";=",and < 1 In FigureZ2(a,b), we reproduced

S(a+1)
the results by Ozen et alB4] at the limiting casea = 1 . FigureZ2(a,b) show that, when
ais large, the results agree with the results of a planar syB#Em|[In FigureE2(c), when

2<"=%and > 1 the electric eld stabilizes the system. In Figu#gx(d),

St
2>";=and > 1 S(a+1), the electric eld is destabilizing.
To examine the tangential Maxwell stress on the interfacial instability, two typical values of
electric conductivity ratio is chosen, = 0:5;2 and the permittivity ratid = ";=", = 2 so0
that the normal Maxwell stress vanishes in Ech)). Results in Figur@3illustrate that the
e ect of tangential Maxwell stress on the instability is strongly in uenced by the viscosity

ratio. As seen in Figurg3(a), for 2 =",=", = 0:25, = 1, the electric eld is stabilizing;

when 2=",=",=4, =1,the electric eld is destabilizing as shown in FigEeXb).
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Figure 4.7:(Color online) Thickness ratio on the ective growth rate. The dependent pa-
rameterkRe= = =Ca=We=a=1,"1=5,",=10, =0:1.

Figure 4.8:(Color online) Viscosity ratio on the ective growth rate. (&), = 5,", = 10,
=1. (b)";=5,",=10, = 0:1. The other parameteRe= = Ca=We=1,a=1,
b=a+ 2.

85



Figure 4.9:(Color online) (a) Marginal stability curv&/e k. (b) The critical electric Weber

number versus the conductivity ratio. The depending parameters a€l0,", = 1, Re=
=Ca=a=H=1, =5.

When the viscosity ratio is increased to= 2, the electric eld's in uence on the stability

is changed. In Figurd=3(c), although the input electric properties are the same as those in

FigureE=3(a), the electric eld is destabilizing. Furthermore, same input values of electric

properties are selected in FiguEg3(d) as in Figuré-3}(b). The electric eld stabilizes the

long-wave mode but destabilizes the short wave mode as is seen in Eif{ade

Both the normal and tangential Maxwell stresses are found to either stabilize or destabilize
the interface. To show the ects of normal and tangential Maxwell stress on the perturbed

ow eld are di erent, a streamfunction of the perturbed ow eldis de ned as follows,

uw =

0
%%; L= 1@ (4.69)

where (1%\9); is the velocity of the perturbed ow system.

FigureZillustrates the electric eld'sin uence on ow eld in the long-wave range. In Fig-
ureE4(a), tangential Maxwell stress vanishes for the input electric properties while the nor-
mal stress destabilizes the interface. In Figiizb), the selected values of electric properties

are the same as those in Figdid(b) that the tangential Maxwell destabilizes the interface
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Figure 4.10: (Color online) (a) Marginal stability curv&Ve k. (b) The critical electric

Re= = =Ca=a=H-=1, =5.

and the normal Maxwell stress is zero. It can be observed that, the convection cells in Figure
Z4(a) are di erent from that in Figur&@32(b). Since in the long-wave range, the instability

is dominated by capillary forces. In FiguBe4(a), convection is due to the deformation of
interface caused by the capillary instability and the ow pattern will not change no matter
how large the electric eld is imposed; while in Figufiegd(b), the tangential Maxwell stress

can induce a circulation ow in each layer and the ow pattern may change with the imposed
electric eld because its magnitude changes with the imposed strength of electric eld. The

instability caused by the tangential Maxwell stress is very much like that of Marangeaoti e

[TZ8.

The e ect of the dielectric permittivity on the growth rate is shown in Figlif&a). The
permittivity "1 = 1 is held xed. The value of ; is varied to study the in uence of permittiv-
ity on the dispersive relation. In FiguEES(a), the selected parameters give< " =", and
1 @ Thus, the electric eld is destabilizing. The ect of the electric eld on the
interfacial deformation is proportional te> ";=", < 0. The value of > ";=",j(the desta-
bilizing e ect of the electric eld) decreases &sincreases. Therefore, whép increases,

the e ective growth rate decreases. Figdr8(b) presents the in uence of the electric con-
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ductivity ratio = ;= , onthe e ective growth rate and indicates the growth rate decreases
with increasing the conductivity ratio. For the selected parameters, the vajué of' ;=",j
decreases asincreases. As a result, the enhancement of the electric eld on the deformation
of interface decreases asincreases. Therefore, the growth rate decreasesiasreases.
Here, ( ; k) is de ned as the eective growth rate and wave number of the most unstable
perturbation as shown in FiguEe3(b). The most unstable perturbation is the major cause
of interfacial instabilities, and its wave length characterizes the size of liquid droplets that is

formed due to the interface's ruptur&l].

In uence of the radius of the inner cylinder on the growth rate is shown in FigiB@). It
should be noted that whdn< aTll the destabilizing eect of surface tension dominates its
stabilizing e ect. Wherk < a+1 reducing the inner radiwswould increase the destabilizing

e ect [B4]. Thus, the system would be more unstable whepecomes smaller. Similar
results are shown in Figuge®(b), in which, the electric Weber number is xed at zero so as
to investigate the in uences of surface tension. Obviously, the capillary force is destabilizing

the system in the long wave range due to the azimuthal curvature.

FigureE7 shows the in uence of thickness of the outer lay&r The growth rate decreases

with increasing the thickness of the outer layer. First, the total uid mass increases when
the thickness of the outer liquid layer increases. Second, the electric strength reduces as the
radiusb increases0]. Therefore, the eective growth rate decreases with increasing the the

thickness of the outer layer.

The in uences of the viscosity ratio is further investigated. Results are shown in Figure
8. FiguredB(a) shows that the eective growth raté , increases with increasing while

in FigureE3(b), the e ective growth rateé . decreases with increasing Results in Figure
8 show the viscosity either destabilizes or stabilizes the system. The destabilizogie
due to viscosity strati cationg8]. However, the viscous dissipation of the system increases

for a larger . As a result, the system becomes more stable as shown in FEigkioe.
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Figure 4.11:(Color online) (a) The Reynolds numbReon the e ective growth rate. The
dependent parameterss = Ca=We=a=H=1,",=5,",=10, =0:1. (b) The
contour plot of growth rate iRe k plane. The dependent parameters are the same as gure
ET(a). (c) The marginal stability curves for interface wave mode. The dependent parameters

=1,a=01,H=01, =05,J=0,",=10,",=25, = 2.(d) The marginal stability
curves for interface wave mode. The dependent parameters,a= 0:1,H = 0:1, = 0.5,
J=0,"1=10,",=5, =2
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It is of interests to investigate how large the electric eld should be imposed, such that it
can impede the capillary instability. To study the problem, the marginal curW&en k

plane is plotted in Figur&(a), where the electric properties are chosen that the electric
eld can impede the capillary instability. The viscosity ratio is= 5 and the Reynolds
number is xed atRe = 1. The marginal stability curves in FiguEEYa) shows that the
unstable region enlarges and the critical Weber nunvidey increases as the conductivity
ratio increases which indicates that a larger electric eld should be imposed to stabilize the
interface for a larger conductivity ratio. It is obvious that the capillary instability can be
stabilized by an external electric eld since a stable region exists Wiieaxceeds its critical
value. However, when = 4, it is observed that these is no such critical Weber number since
the electric eld enhances the instability for the input values of electric propertiés and

"5. As is seen in Figur&3(b), the critical electric Weber number increases witland no
critical electric Weber number is found by us when 3:9. Itis found that there is a critical
electric Weber number when= 3:7( 2> ",=",) and the electric eld has a stabilizing ect

that can impede the capillary instability, although the normal Maxwell stress enhances the
capillary instability( 2 > " 1=",). Therefore, it can be concluded that, the stabilizingat of

the electric eld is due to the tangential Maxwell stress.

To examine the in uence of electric led on the marginal curves, the value of conductivity
ratio is xed, but the permittivity ratid';="; is varied. Here, to simplify the discussion, the
conductivity ratio is xed at = 1 and the permittivity', = 10. The value of ; is varied
from",; = 1to"; = 20. FigureZTi(a) shows that, whety, 10, there is no critical electric
Weber number. The marginal curve does not depen@/ewhen”; = 10 due to the absence
of Maxwell stress. The electric eld can stabilize the interface with increasing the value of
For instance} ; = 10:5, whenWeis larger thanV e, the capillary instability is completely

impeded. As the value df; increases, the suppression of the electric eld on the capillary

instability becomes more signi cant as seen in FiglirE)a). This phenomenon agrees with
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Figure 4.12(Color online) (a) The conductivity ratio versus the maximum value of %ﬁ

in wavenumber range {@6]. (b) The marginal stability curves for interface wave mode. The

dependent parameterss 1,a=0:1,H=0:1, =05,J=10,",=9,",=10, =0:09.

the analysis in the SectioB{37]) that the electric eld impedes the capillary instability when
2<™i="and > 1 ﬁ In FigureE_T(b), the critical electric Weber numbgve, is

plotted against the permittivity ratit =",. The critical electric Weber number is observed to

decrease with increasirig

The inuence of Re on the capillary mode is examined and results are shown in Figure
ET(a,b). Itis found that the largdRethe smaller is the growth rate in Figu#ell(a). The
value ofRecan be increased through increasifidthe velocity at the interface). The interfa-
cial shear eect will be enhanced deincreases. Dijkstra indicated that the interfacial shear
can stabilize the capillary breakup phenomen@d|.[ In this system, the eective growth

rate decreases with increasiRg which also indicates that the interfacial shear impedes the
capillary instability. To exemplify the in uences @&eon the capillary instability, the contour
lines of growth rate is plotted in tHeRe k plane as shown in gur&Tl(b). First, the wave
numberk is xed, for instancek = 2:5. Then, the growth rate decreasefasncreases. The
marginal curve corresponding to the zero growth rate in FigLI&b) bends leftward which

indicates that the capillary instability is stabilized by interfacial shear.
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Figure 4.13:(Color online) The electric Weber number on the maximum growth rate and
wave number. The dependent parameRess = Ca=4h=1, = =01,"; =5,

", =10.

The interface may be unstable due to viscosity strati cation (interface wave mode)Réen
is moderatedd]. Furthermore, the marginal curves are plotted inRee k plane to examine

the in uence of electric eld on the interface wave mode due to viscosity strati cation across
the interface. Results are shown in Figd&l(c,d). In order to discuss the in uences of
electric eld on the interface wave mode, the capillary numBaiis replaced byRe=J where

J = hy »= ,2. The surface tension numbgiis xed at zero so that the capillary instability
due to the azimuthal curvature vanishes. The input values in Flifiéc) are chosen with

the reference from Dijkstr&], but the values of rad®, b are slightly di erent. In our case,

a = 0:1. While in the work of Dijkstra8], a 0:11. WhenWe = 0, a similar marginal
curve as that by Dijkstradg8] can be reproduced. Whéie> 0, for the selected input values

of electric properties in Figu&Tl(c), the normal Maxwell stress is zero. The marginal curve
moves leftward a8Veincreases, which indicates that the tangential Maxwell stress enhances
the interface wave instability since the stable region inRlee k plane becomes smaller. In
gure ET1(d), the electric properties are xed'at = 10,", =5, = 2, so that the tangential
component of Maxwell stress is zero in EFE3. In FigureET1(d), it can be observed that

the electric eld enhances the interface wave mode since the stable regiorRe thieplane
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shrinks adVeincreases. Results in FiguZell(d) indicate that the electric eld enhances the

1

deformation of the interface@ > " =", and > 1 S

), thus destabilizes the system.

It would be interesting to ask “can the electric eld impede the interface wave instability in
FigureET1(c,d) as well as the capillary instability?” The condition= "1=", is considered
so that no tangential Maxwell stress is present on the interface. According @@y.the

condition that the electric eld can stabilize the interface requires:

1 P—r
S@+ 1) < < 1= 2, (4.70)

and =";=",impliesthat < 1. Whena!1l |, these is no such condition in EF{0) that

the electric eld can impede the interface wave mode when". The expression db varies

with the wavenumbek, the radiia; b, and the conductivity ratio. Here, the radii are xed at

a= 0:1,b= 1:2. In the range of wavenumbkr [0; 16], A su cient condition for that the
electric eld can impede the interfacial instabilities(capillary and interface wave instabilities)

is obtained by modifying EGZCZ0) as,

max1 g< < 1L (4.71)

1
S(a+1)

Such arange of in Eq.@Z1) does exist as shown in FiguieTAa) as indicated by “stabiliz-
ing region”. In this region, the electric eld can stabilize the interfacial instabilities because

it impedes the deformation of interface.

Numerical veri cation of EQHZ1) is shown in Figuré&TXb). The surface tension number

in FigureETADb) is xed at J = 10 which changes the topology of the marginal curve of
the interface wave branch. The conductivity ratio and permittivity ratio are " = 0:9.

The interface wave branch moves upward while the capillary branch moves downwaliel as
increases, demonstrating that the electric eld can impede the capillary the interface wave

instabilities. Apart from that, FigurB_TXb) also shows that the interfacial shear can sup-
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Figure 4.14:(Color online) The electric conductivity ratio on the maximum growth rate and
wave number. The dependent paramelgs = Ca=H=We=a=1, =0.1.

press the capillary instability. The destabilizingeet of the electric eld on the interface is
investigated because liquid mixing in micro-scale channels is of particular importance. The
Renumber is usually very small in micro-scale ow systems, typic&= O(1). Therefore,

in the following discussionReis xed at Re= 1.

The electric Weber numbét eis plotted against ,, andk,, in FigureEIR It is observed

that, a largeWeis describing a largdr ,, andk,. It indicates that, when the input parameters
2<" ;=" and < 1 S(a+1)’ the electric eld enhances the deformation of the interface,

thus destabilizing the system.

FigureET4 shows the conductivity ratio's in uence an,, andk,. The magnitude of elec-

tric eld's e ect on the deformation of interface is proportionajté ";=",. When <

1 S(a+1)’ and 2 < ";=",, the interfacial deformation is enhanced by the electric eld and

the electric eld plays a destabilizing role in the system. The value 6f ";=",j decreases

with increasing . As a result, the enhancement of electric eld on the interfacial deforma-

tion reduces. Therefore, both the maximum growth tafeand maximum wave numbéy,

decrease. With the increase in the electric eld may stabilize the system, i.é,, 0.

This can be seen from the stable region‘fer= 5 and", = 10. When 2 > ";=", and
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Figure 4.15(Color online) The viscosity ratio on the maximum growth rate and wave number.
The dependent parameté&de= =Ca=We=a=1, =01,";=5,",=10.

> 1 @ the electric eld destabilizes the system, and the value ®f ",=",j becomes

larger as increases. As a result, the system becomes more unstable whereases.
When issmalland 2 <";=",,! ,andk,increases as the value'of " ;=" increases. This
is because the value pf?2 "jincreases with increasifigwhen 2 <", and the destabilizing

e ect of the electric eld is enhanced. Wheid >" and > 1 @ the value of ?
reduces with increasing. Thus the maximum growth rate decreases. However, because
the selected input values of(",) are chosen that 2 ", " does not have signi cant

in uences on the growth rate and wave number whén>" and > 1 ﬁ although

it is found that the maximum growth rate is slightly decreased as shown in Hgl#eThe

in uence of viscosity ratio on! ., andk,, are plotted in Figur&Th For the selected input
parameters, the maximum growth ratg decreases with increasing the viscosity ratidue

to the viscous dissipation. In uence of viscosity rati@mn the maximum wave numbeg&y, is

not signi cant when is large. It is observed that wheris very small k,, decreases initially,
then increases. This phenomenon implies that the unstable mode changesZHifish®ws

that the perturbed ow eld is stronger in the outer layer wher 0:1, while it is stronger in

the inner layer when = 4.
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Results in Figur&THindicate that for small , instability is dominated by the outer layer,
while for large , instability is dominated by the inner layer. Physically, the viscous dissipa-
tion e ect is associated with the uid viscosity. The viscous dissipatioact is stronger in

the inner layer for small viscosity ratio, while it is stronger in the outer layer for large viscos-
ity ratio. As a result, increasing shifts the domination of instability from the outer layer to
the inner layer. Apart from that, results in Figi@lEEHshow that the larger thickness ratio the

smaller ard ., andky,.

Figure 4.16:(Color online) Perturbed ow eld plotted by the streamfunctioR The depen-
dent parameterRe= =Ca=We=a=H=1, =01",=5",=10. (a) = 01,
k=213;(b) =4,k=213.
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Chapter5

Electrohydrodynamic instability in an
annular liquid layer with radial
conductivity gradients

5.1 Mathematical Formulation

In Chapter3 and Chapted, the interfacial instability of annular liquid layers in a radial
electric eld has been discussed in which in uence of the Maxwell stress at the liquid-liquid
or liquid-gas interface on the interfacial dynamics has been examined. This Chapter devotes
to electro-convection of an annular liquid layer with an electric conductivity gradient in the
radial direction as shown in FiguEel The liquids are eletrolyte solutions and considered
to be Newtonian with constant density kinematical viscosity , and dynamical viscosity

= . Anelectric eldisimposed in the radial direction and a constant pressure gradient is

imposed along the axis.

Figure 5.1:Geometry of the system. (a) Side-view. (b) Cross-view.
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In this chapter, the three-dimensional hydrodynamical problem is considered. The cylindrical
coordinatesr( ; z) are chosen. Gravity is neglected. Fluids are governed by the continuity

eguation and the momentum equation,

r v=0; (5.1)

Dv 2
— = rp+ rov+f; 5.2

5= TP (5.2)
wherev = ue +ve +we, is the veIocity.D% is the material derivative operatdr.is the electric

force which can be related to the Maxwell stress tefi$bby,
f=r T™ (5.3)

Usually, analysis of EQH2) is di cult because the electric eld is coupled to the free charge
density  according to Maxwell's equations. Moreover, the free charge density is coupled to
the ow eld. This Chapter assumes that the electric current denkitgs well as the induced
current densit;% are modest so that the induced magnetic eld is negligible. Therefore, the
electrostatic problem is considered,

r E=0: (5.4)

Hence, the Maxwell stres8" = "EE $"KEK’l. The parametet is the dielectric permittivity
andE is the electric eld. ThekEk> = E E andl is the identity tensor. Since the charge

density is given by the Gauss's law,
e=r1 ("EB); (5.5)

the momentum equatioff), now is re-written as,

DV_ 2 1 "
Dr- fPr orive E ékEkzr . (5.6)
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The term%kEer " isignored and the electric permittivityis assumed to be constant.

The electrostatics is considered in this Chapter and the electricEatdn be related to the
gradient of electric potential by

E= r: (5.7)
Conservation of electric charge gives,

@
z§+r Je=0: (5.8)
In this Chapter, the liquid is an Ohmic conductor which neglects thagion of the charge.

Then the current density is given by,
Je= E+ v (5.9)

where is the electric conductivity. Substituting EB®) into the current conservative law

gives,
D .
Dt

+r ( E)=0: (5.10)

Since the liquid layer is an ionic conductor, the conductivity of which is dependent on the local
ionic concentration. The conductivity can be described by the followingsion equation as
proposed by Melchefl[d4],

D

v o_ 2.
o Kessl 2; (5.11)

whereKes¢ IS an e ective di usivity due to the Brownian motion of the ion&]1, 0. Lin

et al. derived a similar equation describing thewdion of electric conductivity from the
species conservation lal and the electric conductivity was linearly dependent on the
ionic concentration. The eective di usivity Ke¢¢ can be related to the diisive coe cients

of species in the work of Lin et al. through a linear combinati@i]. Equation &) is valid
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if the local electric time is much faster than the uid time and the time for ion electromigration

[, O,
d? d d?
— — —— and

; SE, SkaT’ (®.12)

in which, kgT is the Boltzmann temperatur8, is a characteristic mobility of the charge-
carrying solutes and is the thickness of the liquid. The disive termKq¢¢r 2 is suggested

by Baygents and Baldessdfil1] who indicated that the diusion term had a stabilizing ect

and was responsible for the existence of a threshold electric eld below which the ow was
stable. This has also been pointed out in R&]. In the study of Chang et al. {15,

it is implied that when the diusion term is neglected, the transverse mode is always stable.

Hence, the diusion term is retained and its ect on the stability of the ow will be discussed.

At the inner boundary = a, there are non-slip and non-penetration boundary conditions,
u=v=w=0: (5.13)
The electric conductivity at = ais given,
= o (5.14)
At the outer boundary, = b, the non-slip and non-penetration conditions are considered,
u=v=w=0: (5.15)
The electric conductivity at = b is given as well,

= 5 (5.16)
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5.2 Non-dimensionalization and base state

5.2.1 Dimensional base state

The velocity in the radial and azimuthal directions vanishes at the base staterie= 0.
The ow is parallel to the axis which is driven by a constant pressure gra%entc. The
electric eld is parallel to the radial direction at the base state. Therefore, the ow eld and

the electric eld are decoupled. The velocity pro le at the base state is:

b?In(r=a) a?In(r=b)

(r* In(b=)

W= ): (5.17)

C
4
The pressur® at the base state is written ps= f(r) + Cz The variables with the over bars

represent the respective variables at the base state.

Assuming that the shear ow does not disturb the steady conductivity pro le, then the con-

ductivity pro le at the base state is described by,

—_ 1 Inr=a) oIn(r=b)_

5.18
In(b=a) ( )

The electric eld is obtained from the charge conservation equakdH),
E = aEy oIn(b=a) (5.19)

T .= oIn(r=)]’

wherekEy is the electric strength at= ro. Note that, the per unit length currenacross the
R, _
uid layer (the length is along the axial direction) can be de ned ase 02 " E;rd . Atthe
base statd,= a ¢Ege is constant indicating that a constant electric current is applied across

the uid layer. The electric strength at= bis E, = g—on.
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The electric potential at the base state is de ned as,

In[ 1In(r=a) oIn(r=b)]

0

= o aEy oIn(b=a)

where  is the reference electric potential.

The charge density, is obtained from the Gauss's law,

— 1 @E,

= ( (1 0)aE oln(b=a)
e r @

rff (In(r=a) oIn(r=h)]2’

):

5.2.2 Nondimensional system

(5.20)

(5.21)

The nondimensional scales are introduced here: the lengthdeake a, the velocity scale

W = Cg—dz the time scalal=W, the pressure scaléN?, the electric strength scalg, the

conductivity scale = ;1 o, the charge density scdl@é’—o. The current densitye is

scaled by referring t&, o and the non-dimensiondf, is expressed as,

0 _ 00 0 "= 0 0.0
= OE04+E04+ — — 00,0
Ve 0 o d=w ¢

Naturally, the dimensionless governing equations emerge,

r v=_0;

Dv 1, 2
— = + — + :
Dt rp Rer v+ Qr-r
D(r? ) 2
+ 1+ + =0
S tRIL+ x?+r o ]=0
D 1 c2.
Dt ReSg '

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

where the electric charge in the momentum equation is eliminated by using the dimension-
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less Poisson's equation,

(5.27)

2
Re = Y4 s the Reynolds numbeQ = % which measures the ratio of electric force to
inertia force; = — which characterizes the conductivity gradient for a given channel gap
dR = d:‘—*"; which measures the ratio of viscous relaxation time to electric relaxation time;

SG = is the Schmidt number. The parameRr= Rie@ is usually a large number

and has the magnitude of AProvided thatRe = O(1),d = 103m, , = 102S=m, " =
10 °CH{m V), =10 ®n¥=s. Hence, the ternl?('Tz) can be neglectefi[IF.

The dimensionless boundary conditions at a are
u=v=w=0; (5.28)

- 0 (5.29)

At r = b, the dimensionless boundary conditions write
u=v=w=0; (5.30)
=1 (5.31)

The dimensionless base state is de ned as follows,

(b*> a?)In(r=a) + a2In(b=a)

w= 2[r? in(b=a) I; (5.32)
—_In(r=a)

" In(b=a)’ (5.33)

= = aln(b=a) (5.34)

r[ In(r=a) + In(b=a)]’
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- aln(b=)

In[ In(r=a) + In(b=a)]; (5.35)

- aln(b=a) _
7 2] In(r=a) + In(b=)]?’ (5.36)

Note that the charge densityis negative, while the base state of the electric eld is positive.

Therefore, the electric body forcgE acts in the opposite direction to the radial direction.

When the radiua ! 1 , the base state reduces to the problem studied by Chang B0 |

w(x) = 4(x  X3); (5.37)
=X (5.38)
- 1
E = 1 (5.39)
- 1
= =In( x+1) (5.40)
- 1 )
e — m, (541)

wherex=r arepresents the wall-normal direction.

The base statda(32)-(B36) of this system depends on the inner racausnd . The charge
density 5 and the electric eld strengtk, are plotted in Figur&2 FigureE(b) and Fig-
ureB2(d) show that the electric- eld strength decreases more rapidly for a snzall€or
instance, whema = 0:1, = 10, E, decreases from 1 to.Dnearr = 0:3. However, when
a = 10, = 10, the electric- eld strengtlE, decreases from 1 to:Dnearr = 10:8. The
charge density also decreases more rapidly for a smalgrcomparing Figur&2(a) with
B2(c). Furthermore, in Figu2, it implies that for a large conductivity gradient, the portion

of the uid layer where the electric force.E; is appreciable is proximal to the inner surface.
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Figure 5.2:(a),(c): the charge density of the base state. (b),(d): the strength of the electric
eld at the base state. (a),(b) are plotted at the dimensionless radiwks1; (c),(d) are plotted
at the dimensionless radias= 10.
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5.3 Linear stability analysis

Although the analytical base state has been obtained iB2gitis not necessary to be stable.
To investigate the stability of the ow, the linear stability theory by introducing in nitesimal

disturbances into the system is applied,
v=v+V% p=p+p% = + % ="+ 0 (5.42)

The variables/® = u% + V% + wl%,, p°, %and ©°are the in nitesimal disturbances. On
substituting the perturbed variables p; ; ) into the dimensionless governing equations,

and after linearizing, the governing equations of the in nitesimal disturbances obtained are:

@® ° 1@° @ _
@' 7re @™ (549
@,-@8_ @ 1 ,, W 2@
r2 rz@

@ G@ . 1@ L VY, 200 @°

@ @ r@ Re 2t ra@ r @'

_ dw 1, —@°
A T WP+ Qr @ (5.46)

CAPSTE: % g 20 (5.44)

(5.45)

@29, _@*9_ dr?), 20 2~ 0,4 @° d”@°.
@ +Ww a T R[@+ Jr“ "+ (r +a@+56)]’ (5.47)
@O _@O_ d_O 2 0.
@ ""@ @ Res¢ (5.48)
wherer 2= € + 1.9+ 1.8 + @ and noting that 2 = },%: =

106



In a standard way, the normal mode analysis is considered,

(r) §
p(r) | |
_ Bexpli(n +kg +! 1] (5.49)
(r) E

0k

wherek is the streamwise wavenumbaris the azimuthal wavenumbeér,="! , +i! ; is the
complex temporal growth rate whose real gartdescribes the exponent growth rate of the
amplitudes of disturbances, and the hats denote the Fourier amplitudes of disturbances. The

normal mode analysis results in the eigenvalue problem of

The velocity and electric conductivity at= a;b are xed, thus boundary conditions of the

perturbed system at= a; b are expressed as follows,

G=0=W="=0 (5.50)

The radial component of the electric eld at the boundary is assumed to be xed, then the

perturbed conditions of electric potential at the inner and outer surface are,

— =0 (5.51)

A Chebyshev collocation method is implemented to resolve the eigenvalue problem, and the

physical domain is transformed to the Chebyshev domain,

=2— > 1 (5.52)
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The variablesi 0, W, p, ~, " are expanded as

XN \ X
a= amTm( ); V= BnTm( ); W= CnTm( );

0 0 0
oW X\l R (5.53)
p= duTm( ) = enlTm(); = fnTm();

0 0 0

whereT,( ) denotes thenth Chebyshev polynomial.

When the azimuthal wavenumber O anda! 1 , the eigenvalue problem reduces to,

D0 + ik = 0; (5.54)

| 0+ikwi= Dp+ RieLrH QI D +DLJ; (5.55)

| W+ ikww= Dan0 ikp+ RieLv”v+ ikQD (5.56)

'L +ikaL = D0 R[1+ )L+ (O "+DD +D D) (5.57)
kW= DO+ oo GL“; (5.58)

whereL =D k2, D= 4.

The equationdg524)- (558 are solved with the boundary conditionsxat 0; 1,

G=Ww="=D =0 (5.59)

The above system is identical to the two-dimensional problem studied by ChangI&l. |
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5.4 Results and Discussion

This section is organized into two parts. In the rst part, the limiting case of an in nitely
large inner radiusi;e: a! 1 , is considered. The two dimensional axisymmetric system is
investigated by comparing the results with the previous study of Chang ED&] .t examine

the validity of “our numerical method”. The second part deals with the three dimensional
instability of the annular ow under the consideration of a nite inner racdiu3 he parametric

studies on the stability characteristics are investigated.

5.4.1 Limiting caseofa!l

This section presents the results of the eigenvalue analysis which starts with the case of a

su ciently large radius. Hence, a small parameter can be de ned as

— a.
=22 (5.60)

When ! 0, the problem can be reduced to the problem studied by Chang ETH]. [

The dimensionless parame@ris related to the Reynolds numbiee and electric Schmidt

numberS ¢ as
QO
ReSe’

Q= (5.61)

E2 . .
whereQP = Tf:dz represents the scaled electric energy density.

FigureB3(a) illustrates the marginal stability curves in t@8 k plane which reproduces
the results by Chang et all@3. The critical point Q%;k.) is compared with their results
[[OF] in TablebB™l It is found that some of the results in REJF are inaccurate. When the
parameter exceeds some certain value, the marginal curve presents a bimodal stiiEjre[

for instance = 50. However, this bimodal structure can be multi-valued as shown in Figure
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Figure 5.3:Marginal stability curves.(8p ¢ = 1000, = 10. (b)Re=1,S¢ = 1000. The
parameteR; ! 1

Table 5.1:The leading eigenvalues of the critical stability poiAtandB in Figureb33(a).

Re ke Q% |
Changetalfd3 0.05 10 3.50 359 10 0 4937
Present work 0.05 10 3.50 :3589 10* 0:0000 4:937d
Changetalf@ 1 10 295 4295 10¢ 0 2:850
Present work 1 10 2.95 4953 10* 0:0000 2:8503

B3(b) which was overlooked by Chang et BlH.

5.4.2 Finite inner radius a

This section presents the stability analysis of the annular ow system of a nite radilise
normal mode analysis is implemented. The in uenceg,dke andS ¢ on the stability of

the system are discussed in this section. The pararReigassumed to be in nitely large.
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Figure 5.4:(a) Growth rate of the most unstable disturbancesersus wavenumbey; (b)
linear wave speedversus wavenumbdr The depending parameters &e= 1,S ¢ = 1000,
Q°=1¢°, =10,n=0.

In uence of inner radius

First, the in uences of the inner radiason the stability of the transverse unstable mode (the
azimuthal wavenumben = 0) are examined by xing the paramet@° = 4:2953 10%,

=10,n=0,k=2:95,Re=1,S¢ = 1000.

FigurebB34(a) shows the real part of the eigenvallg,versus the disturbance wavenumber
k, and indicates that the system becomes more unstable for a larger inner aadliee
leading eigenvalue is listed in Tal#&2 which demonstrates that the real part of the growth
rate becomes larger as the inner radiuiscreases. Wheais su ciently large, it reproduces
the result showed in SectidaZ_L The results indicate that, when the system is perturbed
by streamwise disturbances, the system can be stabilized by reducing the innearddias
physical mechanism is explained here. As explained by Chang &1Hl, fhe ow instability

of this system was mainly dominated by the dielectrophoretiecg the viscosity and the
ionic di usion. When a uid parcel with lower electric conductivity moves outwards (in the
r direction), it enters in the region of higher electric conductivity. If theusiion e ect is

not strong enough, the electric force will drive the uid parcel continuously. Otherwise, the
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Table 5.2:The rst leading eigenvalues fo@° = 4:2953 10*, n = 0,k = 2:95,Re = 1,
S¢=1000, =10.

Inner Radius a=01 a=1 a=10
I 0:0828 3:258d0 0:0479 2:8960 0:0078 2:8509

ionic di usion will remove the conductivity derence between the owing uid parcel and

its surroundings, hence, impeding the electrohydrodynamic instability. The dielectrophoretic
e ectcan be characterized byE; [T, [H. As the charge density and electric eld strength

are shown in Figur&2, it is clear that the dielectrophoretic ect becomes stronger in the
region near the outer surface when the inner radius becomes larger. Therefore, the system

becomes more unstable with increasing the inner raalius

Here, a linear wave spe@dn the streamwise direction is de ned as= '?' It is observed
that the linear wave speediecreases with increasiagas shown in Figur&4(b). Addition-
ally, cinitially increases when wavenumbers small, but it does not change whiers large.
Apart from that, whera 1, the in uence of the inner radiug on the linear wave speed is

not signi cant.

Because a Squire's transformation of this system is not possible, the in uences of spanwise
disturbances (disturbances in the azimuthal direction) should be studied which may cause the
system to be more unstable. Figlii® presents the marginal curves for three typical cases:
a=0:1;1;10. Itis observed that the most unstable azimuthal wavenumber respectinely is

1,5; 35. The non-zero value ofindicates that the spanwise disturbances make the system to
be more unstable. Here, the lowest marginal stability curve in Figti(a-c) is de ned as the

global marginal stability curve. Above the global marginal curve, the system is unstable. The
comparison of the global marginal stability curves is shown in Figiél) which indicates

that the system becomes more unstable for a larger inner radWbena = 1;10, the global

marginal stability curve presents a bimodal structure. The bimodal structure indicates that
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Figure 5.5: (a-c)Marginal stability curves in th@° k plane fora = 0:1; 1; 10 respectively.
(d) Solid lines for the global marginal stability curves and dashed lines for the corresponding
frequency ! ;. The depending parameters &e= 1,S¢ = 1000, = 10.
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Figure 5.6:Convection cell patterns.(§°= 9:1090 10% k = 2:81; (b)Q°= 36:3981 10%,

k = 8:21; The other depending parametersarel, Re= 1,S¢ = 1000, =10,n=0.

there are two dierent unstable modes. Here, according to theince in wavenumber, the
unstable mode corresponding to a smaller wave number is de ned as the long-wave unstable
mode, while the mode corresponding to a larger wave number is de ned as the short-wave
mode. For instance, when= 1 andn = 0 (the marginal curve presents a bimodal structure

in FigurebX(b) fora = 1, n = 0), for the long-wave unstable mode, the convection cell
occupies almost the whole thickness of the uid layer; while the short-wave unstable mode,
the convection cell is almost constrained within the inner half of the channel as shown in
FigureB®. However, the critical instability is determined by the lower branch of the bimodal
structured marginal curve indicating that the long-wave unstable mode dominates the short-
wave unstable mode. Figuted(d) shows that the frequency ; jumps down whema = 1;10
showing that the unstable mode switches from the long-wave mode to the short wave mode

as the wavenumbdrincreases.

Whena = 0:1, n = 1, the critical value of Q°%; k;) is (6:0898 10*;0), and the corresponding
eigenvalue is = 0 indicating that the unstable mode is stationary. Howeveraferl; 10,
the critical value of Q%;k.), respectively reads (2556 10% 0:47), (15620 10% 0:49),
and the corresponding eigenvalud iss 0 0:45674,! = 0 0:4748, respectively. The
non-zero imaginary parts of eigenvalues for the two cases1; 10 indicate that the most

unstable modes are given by oblique waves. In addition, the critical streamwise disturbance
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Figure 5.7: The cross section  view of the ow eld. (a,c,e)The velocity components of
u’and\®.(b,d,f) The contour plot of velocity component. (e,f) 2 [2; L]. The depending
parameters: (a,b)q%; k) = (6:0898 10%0),a = 0:1,n = 1, (c,d) Q% ko) = (2:2556
104 0:47),a= 1,n = 5; (e,f) Q% k.) = (1:5620 10%;0:49),a = 10,n = 35. The other
parameters arRe= 1, S¢ = 1000, = 10.
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wavenumbek is much smaller than the critical azimuthal wave numieAs shown from

the above discussion, the instability is triggered by the dielectrophoreticteAccording to

the perturbed system, this ect is characterized by the linearized body forgk, i.e., the
radial component forcd, = LES + OF,, the streamwise component forfe= E?, =

ik e and the azimuthal component forée = ~.E® = ‘T”_eA. The magnitudes of, and

f are proportional tk andn=r, respectively. Ifk is much larger tham=r, the streamwise
disturbances dominate the instability. Otherwise, the spanwise disturbances dominate the
instability. To illustrate this, the perturbed velocity eld is plotted in Fighid Figurebd(a)
shows the velocity eld ¢%V°) and Figureb_i(b) presents the contour lines of the velocity
component’inther  plane. The velocity eld ¢%\°) as well as the contour lines af

are not distorted as seen in Figlid(a,b). The result demonstrates that the unstable mode
is stationary. In Figur&l(b), the magnitude ofi® is much smaller than the magnitudes of

u® and\® which indicates that the instability is dominated by spanwise disturbances. Figure
B(c-f) shows the perturbed ow elds o = 1;10 in which the velocity elds ¢% V") and

the contour lines of° are distorted. One such phenomenon implies that the unstable mode is
oscillatory. In addition, in FigurB—1(d,f), the magnitude ofi’ is not as small as that in Figure

B1(b) indicating the most unstable mode is given by three-dimensional oblique wave.

FigureBBillustrates the variations of critical electric eld numb@¥,, critical frequency ! i

and critical wavenumbers, k. with the radiusa. Obviously, the critical electric eld number
Q°% decreases with increasirg Whena  0:4, the frequency ! i of the most unstable
mode as well as the critical wave numlbgiare zero, indicating that the most unstable mode
is stationary. It is discovered that the critical wave numieincreases with increasing
although for some casesg, = 0:2;0:3;0:4, the critical wavenumber is the same; = 4.
This is because the wavenumbreis characterized by the pairs of convection cells in the
spanwise direction which is an integer. Wheh1 |, the critical wavenumbet  0:5, and

Q% 15 10-
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Figure 5.8: (a) The critical electric eld numbe@® and the corresponding frequency ;
versus the radiua. (b) The critical wavenumbens, andk. versus the radiua. The other
depending parameters &Re=1,S ¢ = 1000, = 10.

In uence of electric conductivity gradient

In this section, the in uence of the electric conductivity gradient on the stability is investigat-
ed. The other dimensionless parameters are held xed. Flgie) illustrates the marginal
stability curves for several typical input values of 0:1;1;10; 100. For the selected input
values of , when the electric conductivity gradient is small, e.g= 0:1;1, increasing the
value of enhances the ow instability since the marginal curve dips lower. However, as the
value of further increases, the marginal curve rises gradually, e.g. the marginal stability
curves for = 10;100 as shown in Figule®(a). The frequency ! ; versus the disturbance
wavenumber is shown in FiQUEEX(b). It shows that ! ; decreases as the electric conductiv-
ity gradient increases. Particularly, it is observed that, fer0:1; 1; 10, the frequency! ; of

the critical unstable mode is not zero, which indicates the most unstable mode is oscillatory;
while the critical frequency ; = 0 for = 100, which indicates that the most unstable mode

is stationary.

To elucidate the two dierent unstable modes, the perturbed ow eld is plotted in Figure

B0 FigureBT(a,b) shows that the ow eld in the plane as well as the contour lines
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Figure 5.9:(a)Global marginal stability curves and (b) the corresponding frequehgyThe
other depending parameters are 1,Re= 1, S ¢ = 1000.

of wP are strongly distorted. The ow eldinthe plane is not distorted in Figu&TT(c).
Moreover, the magnitude & in FigureBE-T(d) in is much smaller than the magnitudes of
(u% W) in FigureBTI(c). FigurebIDindicates that increasing the value aghifts the unstable

mode from the oscillatory mode to the stationary mode.

In order to have a full understanding of the in uence of electric conductivity gradient on the
stability, the critical electric eld numbe?®,, critical wavenumbers., n. and the critical
frequency ! ; versus the electric conductivityare investigated. Results are shown in Figure

BTl

FigurebT1 shows that the frequency ;, critical wavenumbers. andk. jump at 175,
indicating that the critical unstable mode switches to the stationary mode from the oscillatory
mode. The results in FigugT1 show that the critical wavenumbkyg decreases gradually

as the conductivity gradient increases when 17:5, while the wavenumbaer. jumps from
n=5ton=4at 17:5. The decrease ik, indicates that the spanwise disturbances be-
come important in destabilizing the system. When the critical unstable mode switches to the
stationary mode, the wavenumber= 0 which indicates that the spanwise disturbances are

the major causes that initiate the electro-convection in this system. MHgli@) shows that
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Figure 5.10:The cross section  view of the ow eld. (a,c)The velocity components of
u® and\°.(b,d) The contour plot of velocity componemt. The depending parameters: (a,b)
(Q% k) = (26:9395 10%1:66),n. =5, =01, (c,d) Q% ko) = (7:1410 10%0),n. = 4,

= 100. The other parameters &re 1,Re=1,S ¢ = 1000.
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Figure 5.11: (a) The critical electric eld numbe@®, and the corresponding frequency ;

versus . (b) The critical wavenumbeng, andk. versus . The other depending parameters
area=1,Re=1,S¢ = 1000.

the critical electric eld numbeQ®, decreases gradually till 4 which implies that the in-

stability of the oscillatory mode is enhanced. However, as the conductivity gradient increases,
Q% increases gradually and reaches to a maximum, which re ects that the oscillatory mode

is impeded. When the critical unstable mode switches to the stationary mode, the critical
electric eld numberQ®, decreases to a minimum till 20, then it increases gradually as
increases. Such a phenomenon indicates that, the stationary mode can either be enhanced or

impeded via increasing the conductivity gradient.

In order to understand the physical mechanism, a limiting case:0 is taken into account.

The electric body force term in E§&{4) can be re-written as

f=Qr?2r = Qr: (5.62)

When ! 0, the body forcef ! 0. Hence, no matter how large the electric eld strength
is, the system is always stable because the dielectrophoredit & absent. Actually, the
mechanism can be analogous to the Rayleigh-Bénard convection. If there is no temperature

gradient, the heated liquid layer should be always stable. A electric Rayleigh number can be

120



de ned asRa, = Q° which approaches zeroasg 0. As aresult, the system becomes stable

when ! O.

Furthermore, if a uid parcel moves outwards under the action of electric eld, it enters in
the region of higher electric conductivity. When the conductivity gradient is small (the os-
cillatory mode dominates the instability), the ionic dsion e ect is insigni cant. As the
electric conductivity gradient is increased, the dielectrophoretscewill be enhanced since

the conductivity di erence between the uid parcel and its surroundings is increased. Con-
sequently, the instability is enhanced. As the conductivity gradient increases, tsoth

e ect becomes signi cant such that the conductivity elience between the uid parcel and

its surroundings will be removed due to dision e ect. Hence, when the conductivity gra-
dient is large, a stronger electric eld is necessary to trigger the occurrence of instability.
Moreover, Baygents and Baldessdiilll] explained the physics of electrohydrodynamic in-
stability mechanism in a planar system by the base state pro le of electric body force. They
pointed out that the portion of uid where the electric body force was signi cant was close
to the lower-conductivity boundary and became increasingly narrow as the conductivity gra-
dient increasedI[]]. They suggested that the lower boundary produced a strong stabilizing
e ect when the conductivity gradient was lar@éll]. FigurebB2 suggests that the portion
where electric body forcecE, is signi cant is very narrow for a large conductivity gradient.

It seems that the inner cylinder attracts the electric charge into the thin boundary layer, beyond
which there is very few electric charges. As we have discussed in the above section that the
convection is initiated by the body forcé {f ; f,) = (ES + OF,; E°; LE%). Outside

of the boundary layer, the charge density "0 andE, 0 when the conductivity gradient

is large. Hence, the body force outside the boundary layer is too small to initiate convection
in the system. Note that the electric force is multiplied by the dimensionless para@ieter

Thus, a higher value df°is necessary to trigger the instability of this system.

When the instability is dominated by the stationary mode, the physical mechanism is similar
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Figure 5.12:(a) Marginal stability curves of the transverse unstable made, 0. (b)The
global marginal stability curve. The other depending parametera arel, S¢ = 1000,
= 10.

to that of the oscillatory mode. This is very dirent from the classical Rayleigh-Bénard

convection, in which, the larger temperature gradient is the more unstable system.

In uence of Reynolds number

In this section, the in uence of the Reynolds number on the stability of this system is dis-
cussed by xing the other dimensionless parameters. First, in FigIi&a), the in uence

of Reon the stability of transverse unstable mode, nes, 0, is shown. WherReis small,

the marginal stability curve dips lower gradually till abdré 0:15, then it rises rapid-

ly. Results in FigurdaTXa) indicate that, wheReis small, the instability is enhanced by

the shear ow; while wherReis large, the shear ow impedes the instability. The physical
mechanism is explained here. When the Reynolds number is small, with incré&esitirge
electrohydrodynamic motion will be enhanced. Therefore, the system will be more unstable
when the Reynolds number increases. However, as the Reynolds number is increased fur-
ther, the viscous shear ect and the diusive e ect become signi cant. Due to the advection

of electric conductivity, a conspicuous enhancement otigive e ect would be caused by
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increasing the Reynolds number. Furthermore, the viscous stress is a factor that dissipates
energy of the system, which plays a stabilizing role in this system and will also be enhanced
asReincreases. However, it should be emphasized that, the inertia would also increase as
Reincreases which is the major destabilizingeet in high-Reynolds-number shear ows.
Because in this system, the Reynolds number is not [Reg2 [0; 10] and instability due to
“Reynolds stress” will not occur. Once the disive e ect and viscous dissipation ect are

strong, the marginal stability curve will rise when the Reynolds number is increased further.
An interesting phenomenon observed is that there may exist a stable looped region lying in
the above of the marginal stability curve whReis increased, for instanc®e = 10. This
phenomenon is caused by the interactions between the dielectrophosestic\dascous eect

and ionic di usive e ect. The stable looped region will vanish whigaincreases further.

Figure 5.13: Convection cell patterns.(&3e = 0:05, Q° = 3:8855 10% k = 2:81; (b)

Re=0:1,Q%= 2:6883 10% k= 3:41; (c)Re=1,Q°= 9:1090 10% k= 2:81; (d)Re= 10,
0= 772105 10% k = 2:21. The other depending parametersare 1, S¢ = 1000,
= 10.
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To illustrate the above discussion, we plot the convection cell patterns of four typical cases at
their corresponding critical state witRe = 0:05;0:1;1;10 in gure BT3 As seen in gure
BT3a), the transverse mode appears to be inclined traveling wave in the streamwise direction.
WhenReis increased to:Q, convection near the outer electrode becomes weaker because the
di usive e ect near the outer electrode is enhanced by the shear ow. The inclined angle is
also reduced if compared with the cd®e= 0:05. AsReincreases further, the inclined angle
reduces continuously. WheRe = 10, the convection cell appears to be distorted which is
caused by the imposed shear ow. However, the transverse mode may not be critical because

the spanwise disturbances may make the system to be more unstable.

Figure BT b) presents the global marginal stability curve. Comparing ¢ghrEXa) and
BTADb), we observe that the system is more unstable when it is perturbed by three-dimensional
disturbances. Moreover, it is observed that the critical paSt; k.) moves leftward as the
Reynolds number increases. In order to explain the in uences of Reynolds number on the
stability of the three dimensional problem, the critical electric eld num@s, the critical
frequency ! i, the critical wavenumbaert, andk; are investigated. The results are shown in

gure ET14
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Figure 5.14: (a) The critical electric eld numbe®®. and the corresponding frequency ;
versusRe (b) The critical wavenumberg andk. versusRe The other depending parameters

area=1,5¢= 1000, =10.

FigureBT4(a) demonstrates that the critical electric eld num¥r decreases witRegrad-
ually till aboutRe  0:3, then it increases tilRe  0:4. After that,Q% decreases gradually,
and whenRe 1, the in uence of Reynolds number a@’, is not signi cant. The critical
frequency decreases Beincreases antl; 0 atRe= 10. In gure ET4(b), whenRe< 0:3,

the critical wavenumbek. decreases, whilg; increases. The instability is triggered by the
dielectrophoretic forcé. Whenk. > n.=r, f, dominatesf , i.e., convection im  zplane is
stronger than that in plane. As aforementioned, a slightly increasing in the Reynolds
number from zero will enhance the dielectrophoretie@. ThusQ° decreases with increas-
ing the Reynolds number until it reaches a minimum. As the Reynolds number is increased
further, the convection in the zplane will be impeded due to the enhancement otidive

e ect, henceQ®, increases. AfteQ’ reaches a maximunQ® gradually decreases as the
Reynolds number increases further till ab&®& 1, because the dielectrophoreticeet in
direction is enhanced. Whdéte> 1, Q% is almost independent of the shear ow. It is evident

in gure BT4b) thatn.=r (r 2 [1;2]) is much larger thak, whenRe > 1 which indicates
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the streamwise wavelength of the disturbance is much longer than its spanwise component,
and the convection in plane is much stronger than thatrin z plane. WherRe > 1,
although the spanwise disturbance becomes the major cause that destabilizes the system, the

long-wave streamwise disturbance would make the system to be more unstable.

In uence of electric Schmidt number

The in uence of the electric Schmidt numb8rg is investigated in this section. Its in u-
ence on the marginal stability curve of transverse mode is illustrated in FigIE&). The
marginal stability curve dips lower &¢ increases tilS¢ 150. It then rises rapidly é8¢

increases.

Figure 5.15:(a) Marginal stability curves of the transverse unstable made, 0. (b)The

global marginal stability curve. The other depending parametersarg, Re= 1, = 10.

Recall the de nition of this parameteiS¢ = ot The value ofS ¢ can be increased by
reducingKes¢s. Hence, the ionic diusive e ect becomes smaller & increases. Therefore,
the dielectrophorectic ect is enhanced &S ¢ increasesK.s; decreases) and the system
becomes more unstable. However, on the other hand, for a $agge¢he de nition of S¢

tells that the viscous eect dominates the dusion e ect, and the viscous ect becomes
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signi cant with increasingS . Since the viscous ect plays a stabilizing role in the system,

the uid layer will be stabilized a$ ¢ increases further.

The global marginal stability curve for the three dimensional problem is shown in Figure
BETH(b). Clearly, with increasing the value &g, the critical wavenumbek. decreases,
which indicates that the streamwise component of the wavelength becomes longer. In order
to illustrate the in uence of electric Schmidt number on the three-dimensional stability, the
critical electric eld numberQ®, and the critical frequency! ;. are plotted in Figur&_T&a).

Note that the critical wavenumbex. , 0 and critical frequency i , 0 which indicates

that the critical unstable mode was given by three dimensional oblique waves. The critical
frequency ! ;. approaches zero wheig is very large. Additionally,Q% decreases with
increasing the value @ ¢ till S¢ 300, then it increases with increasigg. till S  500.

As S increases furtheiQ? decreases slightly, theR’, seems to be independent®f;. It

was reported by Chang et allldd| that the in uence ofS ¢ on the longitudinal unstable mode

in a planar system was insigni cant whé&, ~ 10°. Similarly, in this core-annular system,

the Q% seems to be independent®& whenS ¢ > 10° because the the spanwise disturbance

is the major cause of the ow instability.
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Figure 5.16: (a) The critical electric eld numbeQ® and the corresponding frequency
i versusS ¢. (b) The critical wavenumbens. andk; versusS ¢. The other depending

parameters are= 1,Re=1, = 10.
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Chapter 6

Electrohydrodynamic instability of
miscible core-annular ows with electric
conductivity strati cation

6.1 Mathematical Formulation

In Chaptem8, the instability of an annular liquid layer with a conductivity gradient has been
discussed. The conductivity gradient is developed due to the applied radial electri0d]d [

In many micro uidic systems, rapid mixing in a circular pipe is of particular interest. To
enhance the mixing, this Chapter proposes to impose an axial electric eld as shown in gure
Bl The two liquids are miscible dilute aqueous electrolytes. The liquids are Newtonian and
the density , kinematic viscosity , and dynamic viscosity = of the two liquids are
assumed to be the saniE])]. There is a sharp change in the ionic concentration where the
two liquids meet at = a. Therefore, a sharp change in the electric conductivity occurs at
r = a. The purpose of this chapter is to investigate how the electric eld enhances the mixing
in such an electric conductivity strati cation system. The two liquids are pumped into the

pipe by a constant axial pressure gradient.

The three-dimensional hydrodynamical problem is considered and the cylindrical coordinates

(r; ; 2 are chosen. Gravity is neglected. Motion of the liquids is governed by the continuity
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Figure 6.1: Geometry of the system.

equation and the momentum equation,

r v=0 (6.1)

Dv 9
— = + + f: 6.2
LA AR (6.2)

wherev = ue + Ve + we; is the velocity. & = &+ ug+ Y@+ w2is the material derivative

operator.f is the electric force which can be related to the Maxwell stress téi$dy,
f=r T (6.3)

Usually, analysis of EQH2) is di cult because the electric eld is coupled to the free charge
density . according to Maxwell's equations. Moreover, the free charge density is coupled
to the ow eld. As aforementioned in Chaptd, in this Chapter, it is also assumed that the
electric current density as well as the induced current dens@é are modest, such that the

induced magnetic eld is negligible and the electrostatic problem can be considered,

r E=0 (6.4)
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The Maxwell stres§™ = EE  1"kEI?l. The parametet is the dielectric permittivity and
E is the electric eld. HerekEk? = E E andl is the identity tensor. The charge density is
given by the Gauss's law,

e=r1 ("E): (6.5)
Hence, the momentum equatidii®), now is written as,

DV_ 2 1 "
Dr= P orive E 2kEkzr ; (6.6)

In isothermal and the dilute electrolyte solution conditions, the electric permittivigyap-
proximately that of the solvenIllJ. In some non-isothermal conditions, this tegrkEer "

is very crucial since there is a gradient of permittivity due to the non-isothermal condition
which causes a circulation ow in the systeffi?d. In this chapter, an isothermal condition

and constant electric permittivity are assumed for the dilute electrolyte solutions. Therefore,
the term%kEer "isignored. In previous studies in Refd)N, [0, this term%kEkzr " was

also neglected under the assumptions of dilute electrolyte solution and an isothermal environ-

ment.

Because the electrostatics is considered, the electric Eelchn be related to the electric
potential by
E=r: (6.7)

Hence, the Gauss's la([) is expressed by the following Poisson's equation:

(2 = e (6.8)

Conservation of electric charge gives,

%+r Je=0: (6.9)
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In this Chapter, the electrolyte solution considered is assumed as an Ohmic conductor which

neglects the diusion of the charge. Then the current denditys given by,

Je= E+ v (6.10)

where is the electric conductivity. Substituting B0 into the current conservative law,

we obtain,
D .
Dt

+r ( E) =0: (611)

Because the electrolyte solution is considered to be an ionic conductor, the conductivity de-
pends on the local ion concentration. Accordingly, the conductivity can be described by the

following di usion equationd1, 04, IO,

D
Bt = Ketfl 2; (6.12)

whereKgi ¢ is an e ective di usivity due to the Brownian motion of the ions. B& 2 is valid

if the local electric time is much faster than the uid time and the time for ion electromigration,

n b2

(6.13)

b .
$E $keT’

in which, kgT is the Boltzmann temperatur8, is a characteristic mobility of the charge-
carrying solutes. The conditions imply that the ions are carried by uid parcel. Typical values
of these parameters can be found in Melcher's bdi@d] and Lin et al.'s work [[O0):

10 1%C=2:$ 10 8=V s, kinematic viscosity 10 ®n?=s, conductivity 10 4S=m

and strength of a typical electric el& = O(10%)V=m and the pipe's radiub = 10 *m. A
similar form as EQRT2) was also derived byI00] from the species conservation law if the
electromigration was neglected. It was indicated in ChapthatKq:;r 2 was responsible

for the existence of a threshold electric eld and cannot be neglected.
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Atthe initial time, the electric conductivity in each layeriss  iji<a, 2Ja<r<b( 1, 2). The
subscripti = 1; 2 denotes the inner layer and outer layer, respectively. This can be achieved

by using two aqueous electrolytes with drent ionic concentration&1{0, [CTT).

In this chapter, the non-slip and non-penetration boundary conditiarrs atare applied:

u=v=w=0: (6.14)

Here, the basic ow is driven by pressure, and the maximum speed occurring at the center line
is around 10* 10 ?m=s. Usually, the electroosmosis ow is very weak and the ow velocity

can be estimated by Helmholtz-Smoluchowski formula = "E = where is the zeta
potential which is responsible for the electroosmosis ow. This velocity usually has an order
of O(10 ®m=sprovided = 102V," =10C=/ mand = 10°3kg=m s, E = 10°v=m.

Clearly, the electro-osmotic velocity is much weaker than the pressure driven ow. Hence,
in what follows, the non-slip and non-penetration boundary conditionE1ndY are applied

that the electro-osmosis phenomenon is neglected. If the electric eld is developed due to the
electroosmosis and the pressure gradient is removed after the two liquids are pumped into the

pipe, the assumption in EGLE) is not applicable.

There is no ux of the ions at = b, therefore,

Q|®

-0 (6.15)

The circular pipe is non-conducting,

Q®
"

(6.16)
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6.2 Base state and scalings

At the base state, the ow eld and the electric eld are decoupled because the electrolyte
solution is initially neutral, i.e. the net charge density is zero. The ow is driven by a constant

pressure gradier@®p. Therefore, the base velocity pro le is

(r*> b?: (6.17)

This Chapter adopts the assumption that the interface between the two liquids has grown
di usively to a nite thickness. Moreover, we assume that the dsion is su ciently slow
to allow us to employ a quasi-steady base state for the linear stability analysis. Provided

1, the pro le of the conductivity can be approximated by the error function:

1t 2 2 1 r a
= + : .
5 5 erf ( ) (6.18)

Equation B8 was used by Selvam et al]] in their study to describe the pro le of viscos-

ity of a viscosity strati ed ow in a circular pipe.

The base electric conductivity pro le can also be obtained via sol\Img)f

@ @ 1@
@ Keff(@ + F@): (6.19)

In experimentsKes; ranges from 1¢ 10 ?nv=s.

The charge density, is zero, and the electric eld exists only in the axial direction. This

gives the base state of the electric potential:

= o Ez (6.20)
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wherekE is the imposed electric eld's strengthg is the reference electric potential.

Taking the velocity scalé/ = %ﬁ, the length scalb, the time scal®=W, the pressure scale

W2, the electric potential scaleb, the conductivity scale , 1, we non-dimensionalize

the systemg)-(E1H):

r v=_0; (6.21)

g_\t/: rp+Rier2v+%SCr2 ro (6.22)
%D(E): )iy fl( 1) +1r g=0; (6.23)
% _ %Cr 2. (6.24)

whereRe= Y? s the Reynolds numbe@ = “E2 is the scaled electric energy and is de ned

Kett

as the electric number; = - denotes the conductivity ratio; argic = o is the electric
Schmidt number. Baygents and Baldes&a&H] proposed thaG c2 [10% 10°]. In the study

by Chang et allf09|, S cwas assumed to vary in [10.0°]. The parameteR; = di"i measures

the ratio of uid time to electric time. It is assumed tHatis very large that the electric time

is quite smaller than the uid time in this thesis. Therefore, BEGZ) can be simpli ed to:
[( 1) +1r2 +( 1r r =0 (6.25)
Dimensionless boundary conditionrat 1 are
u=v=w=—=—=0 (6.26)
The dimensionless base state is de ned as follows:
w=1 r? (6.27)
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Figure 6.2: The base electric conductivity prole. The lines are obtained by numerical
experiments of the dimensionless form of equati@d¥ and the circles and diamonds are
obtained from the error function EGEZ8. The depending parameters are 0.5, ReSc=
1000.

=2 Sert () (6.28)
= z (6.29)

in whicha is scaled on the length scadevhich falls in the range of (@0). Note thar 2 = 0
and% = —=exp( @). In this Chapter, the range ofis xed, 2 [0:05;0:15]. To
verify Eq.628), we assume that the the concentration has a Heaviside pro le initially, and
the conductivity pro le at instant timéis solved numerically by the dimensionless form of

Eq.@T9 and a regular condition is imposed at the centerﬁper 0.

The base conductivity pro le is shown in FiguBg2 Itis obvious that the electric conductivity
pro le can be approximated by the error function in B8 via adjusting the value of
at an instant. In the following study, EQREZ8 will be used as the pro le of the electric

conductivity at the base state for the convenience in the study of linear stability.
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6.3 Linear stability analysis

The linear stability analysis of the ow system is implemented by perturbing the base state

with in nitesimal disturbances:
[uviw,p; s 1= [0;0w;p; 7 ]+ [Wvawsip % 9, (6.30)

where the primed variables are the in nitesimal disturbances. In a standard way, the normal

mode analysis is considered:

A A A A A

A A A A A

streamwise wave numbeér,is the complex temporal growth rate.

Substituting EqR30) with the normal mode analysis into Eq&Z1), (622), (624), (6229

and after linearizing, the governing equations of the eigenvalue problem obtained are

_ 0+inv
+

+ ikw = 0; (6.32)
_ 1 0+ 2inv
I )= 0 i U — (
Ia Dp ikwl+ Re(Lu = ) (6.33)
- np . _. 1 _ ¥V 2n0
lyv= — kwv+ —(L 34
v - ikwv Re( v = ) (6.34)
W= kP | WW DI+ —LW —2p° (6.35)
' Re PeRe '’ '
Ped "= PeD (0 iPekw” +L7 (6.36)
[( 1) +1L +( 1)DD ik( 1) =0 (6.37)

whereL = D + %D ’r‘—z k2, D= % The Péclet numbdPe = ReS c Note that, the value of
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Pecannot be small because dision of conductivity is slow.

Boundary conditions at= 1 are

0=0=Ww=D"=D =0 (6.38)

At the centerling = 0, the singular nature of the cylindrical coordinate system requires spe-
cial treatment. To deal with the singular point of the systBi)-(6-31), we use the fact that
velocity vector as well as the other scalar variables have a vanishing azimuthal dependence as

they approach the centerline, i.e.

=0; (6.39)

whereV’ = u%, + V% + w%, is the velocity disturbance.

In the form of Fourier modes, the regular boundary conditions are

inO V=0+inV=nw=np=n"=n =0 (6.40)

If n= 0, the boundary conditions are
0=0=Dv=Dp=D" =D =0 (6.41)

If n= 1, the boundary conditions are
DM=DN=w=p="="=0 (6.42)

The velocity conditions of = 1 agree with the boundary conditions given by Khorraiizd

for a single uid ow in a circular pipe.
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Whenn 2, the boundary conditions are

G=0=Ww=p="="=0 (6.43)

A Chebyshev collocation method is implemented to solve the eigenvalue problem, and the

physical domain is transformed into the Chebyshev domain,

=2 I (6.44)

A

The variablesi, ¥, W, p, ~, ~ are expanded as

P P P
NanTm( ); 9= NbuTm(); W= NenTm();

o
1

P P .~ P
5 OmTm( ); = 0fnTm( ) = bemTm(); (6.45)

o
I

whereT,( ) denotes the mth Chebyshev polynomial.

In order to modify the computation near the interface a, the Chebyshev collocation points
are clustered in the mixing regionmat a using the following stretching functioig0):

_ a . . _
= sinh—(fbro)[smh[(r ro)] + sinh(f,a)]; (6.46)

whererg = 5 In[ s3], The coe cient f, determines the degree of clustering and

f, = 6. The parametea represents the location of interface around which clustering is

desired.

After clustering the Chebyshev collocation points into theudion region, it needs to calcu-

late the eigenvalue problem via the clustered grid. Therefore, a transformation on the deriva-
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tives between the clustered grid and the Chebyshev grid should be made,

df _dfdr 1 df

d “drd _&mar (6.47)
whereG(r) = and f stands for the variables, ¥, W, p, ~ or . Note that the derivative
df _ odf
For the second derivative df using the chain-rule, the transformation writes

2f 1 2f 00 f

d d G_df. (6.48)

dz_ (©%d? (G%dr

The derivative‘;% = 4‘;2—2. Numerical validation of our method will be made in the following

discussion.

6.4 Energy analysis

In order to understand the physical mechanism, the energy analysis is afiiid Nul-

tiplying the conjugates of the variables, V W on the both sides of EqERE3-(E-3%) and
summing these equations after integrating over the cross-sectional area, gives the energy bal-
ance equation:

Ex=1+V+Ee (6.49)

Here, the kinetic energy growth rate is:

Z 1
Ec="!+  r(0+ o+ Mi*)dr; (6.50)
0
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the work done by the Reynolds stress:
YA 1
| = rRe@mv 0)dr; (6.51)

0

and the viscous dissipation:

V= Riezol rf(iD0} + DU + jDA}?) + (?—j + K20 + U + W)
+ jojz:zj‘?jz 4n'm$l 9 gir (6.52)
The work done by the electric force:
E, = PeiRezoerem D+ ”2:7‘2’ +1AW )dr: (6.53)

Since the magnitude of the eigenfunction is arbitrary, we normalize the eigenfunction by its
maximum absolute value. The terms in the energy analysis are re-scaled with respect to the
total kinetic energyRolr(jt“Jj2 + jUj> + jWj>)dr. For an unstable ow,E should be positive.

The energy analysis will be applied to interpret the instability mechanism in the following

discussions.

6.5 Results and discussion

6.5.1 Validation of numerical methods

First, the validation of “our numerical method” is examined via settthhg Pe = 0, there-
fore, the electric eld is turned o and the ionic advection is absent. Since the parameter

Q = 0 and EqK=37) does not produce any eigenvalues, the conductivity pro le has no in-

141



c(n=0k=1) c(n=1;k=0:5) 9%n=1k=0)
SH 0:93675536 0:06374551 0:84646970 0:07176332 0:00734099
Present work ®3675536 0:06374551 0:846469697 0:.07176332 0:007340985

Table 6.1: The rst leading eigenvalues of the system RRe = 2000,Pe = Q = 0. We
have utilized 51 points for the eigenvalue problem and related the eigenvalue to 8tabgf
10=jl andc=" %k

Figure 6.3: Eigenspectra foRe = 2000,n = 0, k = 1. (a) The eigenspectrum for the
Hagen-Poiseuille ow which is identical to that ISH. (b) The comparison of the conductivity

strati ed pipe ow (triangle points) and the Hagen-Poiseuille ow (circles). The conductivity
ratio = 2 and the paramete@ = 0,a = 0:5, = 0:05. It is obvious that whee > 0,

there are some extra eigenvalues as compared to the Hagen-Poiseuille ow. The parameter
c=il=k

uence on the spectrum of the problem and the eigenvalue problem should be identical to a
single uid owing in a circular pipe. The numerical results are compared with Schmid and
Henningsorf] (herein referred asH) for Re = 2000. The leading eigenvalue is listed in
TableBEZl Excellent agreement between our numerical results and tHaHafemonstrates

the validity of “our numerical method”.

WhenRe! 0, i.e. the inertia of the uid is negligible, the growth rate is determined by
the ionic di usion equationB3®). In a viscosity strati ed plane-Poiseuille ovll3], the

eigenspectrum of the dusion equation presents a similar structure “Y-shape' as the Orr-
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Sommerfeld problem. Hence, the dision equation will produce more eigenvalues in the
stratied ow than a single uid ow [[C3Z]. Similarly, in the pipe ow with conductivity
strati cation, the eigenspectrum structure is éient from the result c5H as demonstrated in
gure B33. In the following discussion, the base ow in the pipe is considered to be weak and
discussion will be concentrated on the instability caused by the electric force in micro uidic

channels.

6.5.2 Parametric study
E ect of the conductivity ratio

The in uence of the conductivity ratio on the linear stability analysis is of particular interest
and will be investigated in this section. Before presenting the numerical study, let us consider
the case of two liquids with the same electric conductivity, i.e. 1. The linearized electric

current conservation equatidf®I) reduces to,

L™ =0 (6.54)

Hence, in the linearized momentum equati@i3®), the electric force that can trigger the
instability is absent. Therefore, the system will be linearly stable. Numerical study also
indicates that the eigenvalue is not in uenced by the electric numbép for = 1 and

I, < 0. A useful conclusion can be inferred here: the system becomes more stable as
increases when< 1, while the system becomes more unstable asreases when> 1.

To study the in uence of the conductivity ratio on the linear stability, the other parameters are
xed: Re=1,Sc= 1000,a= 0:5and = 0:1. To study the linear stability, 51 collocation

points are su cient to provide satisfying accuracy.

Firstly, consider two typical cases: = 0:5, = 2. The electric numbe® is xed so as
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Figure 6.4: The real temporal growth rate, versus the wave numbér (a)Q = 5 104,

= 05. (b)Q =104 =2.
to study the growth rate of the disturbance. Results in Fifi#) demonstrate that the
azimuthal disturbances make the system more unstable. It also implies that the azimuthal
wave numben of the critical mode i$1 = 1. Results are dierent in Figurde4(b). It shows
that the azimuthal wave number of the most unstable mode=i® for = 2. These results
imply that, the critical unstable mode of the system varies with the conductivity rafl®
elucidate the critical unstable mode in the system, the marginal curves @ tHeplane are
investigated. FigurBEZB demonstrates that the wave numbeirf the critical unstable mode for

= 0:5;2isn = 1;0 respectively. The azimuthal wave number of the critical unstable mode is
de ned as the critical azimuthal wave numbgr Here,Q. is the critical electric number, and
k. is the critical streamwise wave number. The imaginary part of eigenvafoethe critical
unstable modes in Figu&5 is nonzero. It indicates that the critical unstable modes are
oscillatory. The perturbed elds of the charge density and the conductivity in the plane
are shown in Figur&®B to illustrate the two dierent unstable modes. In Figuge(a,b), the
unstable mode is de ned as the corkscrew mode; while the unstable mode in Eifi{are)
is de ned as the axisymmetric mode. Numerical evaluation of the energy contributin of

demonstrates that it is always positive. It demonstrates that the electric force is the main factor
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Figure 6.5: The marginal stability curves. (a)= 0:5. (b) = 2.

that destabilizes the system. The instability is referred to as the dielectrophoretic instability

[0, 09 as have been discussed in Chajfter

In order to reveal the in uence of the conductivity ratio on the critical unstable mode, i.e.
in which range of , the critical unstable mode is the corkscrew mode or the axisymmetric
mode, the behavior ofy; n.; ) versus the value of is investigated. The wave speedf the
critical mode is de ned as

c= =4 (6.55)

Results in Figur&(a) indicate that the system becomes more unstable for a larger contrast
in the electric conductivity between the two layers. Similar phenomenon has been observed
by Lin et al. O] of a liquid layer with conductivity strati cation in a square channel. Exper-
imental observation and stability analysis suggested that the ow became more unstable for a
larger conductivity contrasiiii]. However, they focused on the two-dimensional instability
and how the conductivity ratio in uenced the three-dimensional stability was not investigat-
ed [O0. Here, investigation of the three-dimensional instability in Fighr#c) shows that

the critical wavenumben; jumps from 1 to O as the conductivity ratio increases te 1.

It indicates that, for the selected input values of other dimensionless parameters, the critical
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Figure 6.6: (a,b) The perturbed eld of the electric charge and the perturbed eld of
the conductivity for = 0:5, Q. = 45058, n. = 1, k. = 1:75 in ther plane. (c,d) The
perturbed eld of the electric charge and the perturbed eld of the conductivityfor = 2,
Q. =61970,n. = 0, k. = 2:75 in ther plane.
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Figure 6.7: (a) The critical electric strength numb& vs. . (b) The critical frequency ij
vs. . (c) The critical wavenumber, vs. . (d) The wave speed of the critical modss. .
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unstable mode is dominated by the corkscrew mode when the inner conductivity is larger;
while the axisymmetric mode dominates the instability when the outer conductivity is larger.
Moreover, in a square-duct ow system, Lin et al. gave the physical properties of the ow
system for a conductivity ratio = 10 which are applied to estimate the critical strength of
the applied electric eld in the current system hell@f]. The present results show that, for

= 10, the critical value electric numb€).  10°. It gives the critical electric strength
E 2 10°v=mprovided that the electric permittivity= 6:9 10 °C=V m, the dynamic
viscosity = 10 3kgem s, the e ective di usivity Kers = 2 10 °mP=s and the pipe radius
b = 10 >m. Hence, it is possible to achieve the electromixing in a circular pipe at small
Reynolds ow by an electric eld in experiments. FiguEi(b) shows that ; , 0 which
demonstrates that the unstable mode is oscillatory. Figii(d) shows that the critical wave
speedc increases with increasing FigureE(d) also shows that, when< 1, the wave
speed is smaller for a larger conductivity contrast; whenl, the wave speed is larger for a
larger conductivity contrast. Additionally, the wave speed 0 indicates that the linear wave

propagates to the downstream.

E ect of interface location

This section discusses the in uence of the interface location on the linear stability of the
system. The other parameters are xedR&t= 1, Sc= 1000, = 0:05 so as to investigate
the dielectrophoretic instability. = 0:05 is chosen under the consideration of a sharper
interface. Two conductivity ratios = 0:5; 2 will be considered in the following discussion.
The convergence of “our numerical method” has been examined\that60 is enough to

provide adequate resolution at reasonable computational cost.

Selvam et al. found that the interface location had a signi cant in uence on the critical insta-
bility of a viscosity strati ed pipe ow and the least unstable mode occurred at approximately

0:6 times the pipe radiu®]. In the present problem of a liquid with conductivity strati -
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Figure 6.8: (a) The critical electric strength numbéx vs. a. (b) The critical wavenumber

Ne VS. a.

cation, similar phenomenon is observed. However, the instability of the present problem is
triggered by the electric eld; while in the problem by Selvam et &1][ the instability is

due to the Reynolds stress. If the interfacial location is very near the centerline or the pipe
wall, the di usion of ions will remove soon the conductivity @érence. Furthermore, con-

sider a very sharp interface, whal 0O ora! 1, no matter how large the electric eld is
imposed, the system should be stable due to the homogenous conductivity pro le. Hence, it
can be concluded that, as the interface is slightly moved away from the centerline, the system
becomes more unstable. As the interface approaches the outer boundary, i.e. the pipe wall,
the system should become more stable. Therefore, there should be an optimal location of the
interface that the ow is least stable. Two typical cases of 0:5;2 have been investigated
numerically and the range of the interface locat#is considered to be in [0;0:9]. The
variation of critical wavenumbem, and the critical electric numbep. with the locationa

is shown in FigurdaB. FigureB8(a) demonstrates that, for= 0:5; 2, the system becomes
more unstable aa increases from:Q till a 0:3,a 0:2 respectively, while it becomes

more stable aa increases further. Additionally, for = 0:5, it is observed that the critical

unstable mode shifts from the corkscrew mode= 1 to the axisymmetric mode. = 0 asa
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Figure 6.9: The maximum growth rate,vs.a. (2)Q=5 10, =05. (b)Q=5 10
= 2.
increases to a critical vallee 0:83. For = 2, the axisymmetric mode always dominates

the instability.

It is interesting to investigate the maximum growth rate of the system since the rapid mixing
is of particular interest&[d0]. To investigate the maximum growth rate, the electric number
was xed. The behavior of the maximum growth ratg = max (Re( )) versus the interface
locationa was then scrutinized. THe,, describes the growth rate of the most unstable mode.
The corkscrew mode as well as the axisymmetric mode were investigated as shown in Figure
B9, FigureEXa) shows that the maximum growth rate occura at 0:6. The maximum
growth rate! ,, versusa were examined by reducing the value@fand it was found that the

peak pointinthé , aplane moved leftwards as shown in FigB&E(a). Itimplies that, for a
strong electric eld, the most unstable mode prefers an intermediate = 0:5 although the
critical unstable mode prefees 0:3. The mechanism is very complex because the electric
force destabilizes the ow while the viscous dissipation as well as the ioniasilbn tend

to stabilize the system. In order to explain the results, the energy analysis was applied. As
the interface locatioa increases, the viscous dissipatioreet becomes weaker tél 0.6,

after which it becomes stronger asmcreases further as shown in FiglEaQ(b). This is the
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Figure 6.10: (a) The maximum growth rate, of the corkscrew mode = 1 vs. a for
di erent values of input electric numb&: (b) The log ratio between the energy andV,

in which, the electric numbe® = 5 10* and the wavenumbey corresponds to the most
unstable mode.

reason why for an unstable ov@ = 5 10% the maximum growth rate occursat 0:6.

In addition, it is observed that, for = 0:5, the maximum growth rate of the axisymmetric
mode dominates the corkscrew mode wlaen 0:83 forQ = 5 10% It indicates that the
axisymmetric mode becomes critical when the interface approaches the pipe wall. Figure
BE9(b) demonstrates that the maximum growth rate occuas a0:2 which indicates that the
most unstable mode and the critical unstable mode peefel0:2. Additionally, for = 2,

the axisymmetric mode always dominates the corkscrew mode.

E ect of interface thickness

This section investigates of the in uence of the interface thickness on the critical instability.
The other parameters are xe®e= 1, Sc= 1000,a = 0:5. In the above discussions, two
values of have been selected for discussion. It has been observed that, the system becomes
more stable for a larger value of The marginal stable curves for three typical values afe

shown in FigurdeTL For a liquid with viscosity strati cation, Selvam et al. reported that,

for a thicker interface, the ow becomes more staliid][ They explained that the stabilizing
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Figure 6.11: The marginal stability curves. (a)= 0:5. (b) = 2.

e ectis due to the diusion e ect and becomes more signi cant for a thicker interface which
dissipates the kinetic energy and inhibits the instabii§][ The study by Chang et all{I5]

and discussion in ChaptBrshowed that, the system becomes more stable with reducing the
conductivity gradient when the conductivity gradient is small, while the ow becomes more
stable as the conductivity gradient increases when the conductivity gradient is large. In the
present study, if the conductivity ratio is xed, the conductivity gradient within the interface
becomes smaller as the interface becomes thicker. Current study shows that, the ow becomes
more stable as the conductivity gradient decreases which et from the previous study

[[0OF] and Sectiol2 of this thesis. In fact, in the current study, a thicker interface implies that
the system undergoes a longer asion time. Assuming that the conductivity is uniform in

the system due to dusion for quite a long time, a completely stable ow would be expected.
Therefore, the system may become more stable as the interface becomes thicker. Numerical
studies demonstrate that, with increasing the interface thicknase marginal curve rises

up in theQ k plane which indicates that the ow becomes more stable as the interface
becomes thicker which supports the above analysis. The result is similar to the phenomenon
in a viscosity stratied ow [&4], but di erent from the studies by Chang et dl0f. The

di erence is due to the ows studied by Chang et @14 and that in Chaptei are bounded
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Figure 6.12: The critical electric strength numbéx, vs. . (a) =05, (b) = 2.

by two solid walls. However, in this problem, the ow is only bounded by the outer pipe
wall. It was observed that, for the axisymmetric modes 2, the critical wavenumbei,
becomes smaller asincreases as seen in FigugeLl(b). It indicates that, the wavelength
of the disturbance becomes longer ascreases. In order to show theext of on the
critical stability, the critical electric numbep. was plotted againstin FigureBEI2 Figure
BET2also demonstrates that the system becomes more stable@sases. Additionally, the
corkscrew mode dominates the instability for 0:5, and the axisymmetric mode dominates

the instability for = 2.

E ectof shear ow

This section aims to reveal the in uence of the shear ow on the dielectrophoretic instability.
The other parameters are xedat 0.5, = 0:1. Priori to present the numerical study, the
electric force term in the linearized axial momentum equatinBdj is re-considered:

Q ~_ Q .,
RePeL " ReSc © (6.56)
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Figure 6.13: The critical electric strength numb€x, vs.Re (a) =05, (b) = 2.

The value ofScis xed at S c= 1000. Equatin% at two di erent values oReg gives:

Q2= — Q1! (6.57)

This relation re ects the fact that, when the valuea§s—C is xed, a smallerRedescribes a
smallerQ. Itimplies that, when the Reynolds number is small, the system may be more unsta-
ble. This Chapter considers a weak shear ow under the consideration of ow in micro uidic
channel and proposes thaehas a range of [Q; 10] provided that the pipe radius is £tn

and kinematic viscosity = 10 ®mP=s. The maximum velocity occurring at the center line

r = 0 can be varied from 168m=sto 10 2m=s.

For = 0.5, the corkscrew mode dominates the instability; and fer 2, the axisymmetric
mode dominates the instability. FiguEeL3 illustrates that the critical electric numbex,
increases aReincreases, indicating that the shear ow impedes the electro-convection in
the system. Interestingly, the corkscrew mode for 2 can be enhanced by the shear ow
as seen in FigurBEZTYb) although it never becomes critical for the selected input values of
Re andSc Itis di erent from the previous study by Chang et dll0f| and sectiorbd

of this thesis which show that, the critical instability can either be enhanced or impeded by
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Figure 6.14: (a) Electric energ¥, vs. Re (b) The log ratio between the electric energy and
the viscous dissipation v&ke (c) The work of Reynolds stress vRe The electric number
Q=104

the shear ow. In the present study, the shear ow always impedes the critical instability.
In order to understand the physical mechanism, the valu@ afd the wavenumbésrwere

xed to investigate the energy contributions of the electric force, Reynolds stress and viscous
stress. For somRe the ow is stable, e.g.Re> 2,5 for = 05 andRe> 2 for = 2.

The electric energy becomes smaller as demonstrated in FaglA@). E, becomes smaller
asReincreases and is negative Reexceeds some critical value which indicates the system
becomes stable &eincreases. However, the underlying factor that stabilizes the system is
not the reduction in the electric energy. Figli&4(b) shows that, as the Reynolds number
increases, Ilj%j) decreases for = 0:5; while In@%j) increases for = 2. It indicates that,

the stabilizing mechanisms of the two cases 0:5;2 are di erent. The case dke= 10

were examined and result showed that, for 0:5, In(Sj) < 0; for = 2, Inf<)) > 0.

It indicates that, for = 0.5, the increase of the viscous dissipation is the major factor that
stabilizes the ow although the Reynolds stress also plays a stabilizing role as shown in Figure
BET4(c). For = 2, because the electric energy always dominates the viscous dissipation, i.e.
Ee > jVj, the stabilizing factor in the system is due to the Reynolds stress which dissipates
the kinetic energy of the perturbation. The results indicate that, the imposed shear ow can
impede the dielectrophoretic instability via the dissipation mechanisms of the viscous stress

and the Reynolds stress.
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Figure 6.15: The wave speed of the critical unstable mode versus the Reynolds number.

Furthermore, the in uence dReon the wave speedwas investigated as shown in Figure
BEI5 It was observed that, for = 0:5, the critical wave speed increases slightly aRe
increases initially, then it has a negligible in uence on the wave speed. However, the wave
speed decreases slightly Beincreases fronRe= 1 for = 2, and then the wave speed
seems to be independent Be The results by Chang et alll@d indicated that, the criti-

cal frequency of the critical transverse unstable mobewas independent of the Reynolds
number wherRe> 1. This implies that the critical wave speed is independeefin this
system, it can be observed that the wave sasdhdependent oRefor both the two critical

unstable modes: corkscrew mode and axisymetric mode Ween?2.

E ectofionic di usion

This section presents a study of the ionicuiion's in uence on the dielectrophoretic insta-
bility. The other parameters are xedRe= 1,a = 0.5, = 0:1. In the governing equations
(6232-(B30), replacingReby Pe does not change the governing equations which indicates
that the e ect of ionic di ussion on the ow instability should be similar to thatlRé How-

ever, the results should not be the same as shown in the above section, inRdigkaried
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Figure 6.16: The critical electric strength numbé; vs.Sc (a) =05, (b) = 2.

while Scis xed. Therefore, it is necessary to investigate the in uenc&abon the stability

by xing the value ofRe

The critical electric numbe@, versus the Schimdt number is shown in FigE®El The
corkscrew mode dominates the instability for 0:5 and the axisymmetric mode dominates
the instability for = 2 as shown in Figur&I® The system becomes more stableSas
increases. Results in guiE&THare quite similar to those in FiguEEL3which demonstrates

that the in uence ofS con the ow stability is similar to that oRe

The instability mechanism is then interpreted by the energy analysis. The critical instability
of the system is considered here. The viscous dissipation\faealways negative and plays

a stabilizing role. The electric force woilk, > 0 which triggers the electro-convection in
the system. Irj%j) was calculated and found to increase withinitially, then it decreased
asScincreased further as shown in FiglEEI(a). It indicates that the viscous dissipation

e ect becomes weaker &cincreases frond c= 100 while it becomes stronger wh&rtis

very large. Whers cis not too largeS c= O(1(?), the Reynolds stress plays a key role in
stabilizing the system since its dissipatioreet becomes stronger 8xincreases as shown

in FigureBTH(b). As Scincreases further, for = 0:5, the dissipation eect by Reynolds
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Figure 6.17: (a) The log ratio between the electric energy and the viscous dissipati&tvs.

(c) The work of Reynolds stress VS.c

stress becomes weaker; while for 2, the Reynolds stress's work reaches a plateau as seen
in FigureBETI(b). Such a phenomenon indicates that, although the Reynolds stress dissipates
the kinetic energy, it is not the major factor that causes the system to be more stable when
Scis increased. As shown in FiguEeTH(a), Inq%j) starts to decrease whé&xcexceeds a
certain value. It indicates that the viscous dissipation increasesSxitlind becomes the
major stabilizing factor. Moreover, recall the de nition &fc = —. It indicates that the
viscous e ect becomes stronger as the param&eitincreases. Since viscous dissipation
plays a stabilizing role, the system becomes more stalffecaxcreases. The ect of S con

the critical stability in this system is derent from the previous study by Chang et 8I0%

and what has been discussed in sedii@of this thesis. In these studief{[d and Chapter

B), S cwas found to have a dual ect: with increasings ccan either enhance or inhibit the
critical instability. Present study shows that, for= 2, the corkscrew mode can either be
enhanced or impeded &scincreases as seen in FiglFa®b). However, the critical unstable
mode always becomes stable. For an unstable ow, we observedtbean play a dual role

in the system that the growth rate of disturbances can become either larger or smalter as

increases which is not shown here since we are only interested in the critical stability of this
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system.
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Chapter 7

Conclusions and future work

7.1 Conclusions

7.1.1 Interfacial instability

Chapted and ChapteB discussed the interfacial instability of core-annular ows in a radial
electric eld. The interface is unstable even without the external electric eld which is due to

the renowned Plateau-Rayleigh mechanism.

In Chapte3, an asymptotic model was proposed to study the linear and nonlinear dynamics
of a thin liquid Im owing down a vertical ber whereas the dynamics of its surrounding
gas was neglected. The liquid Im was assumed to be perfectly conducting. Linear stability
analysis of the asymptotic model indicated that, when the ratio between radius of the outer
electrode and the initial radius of the liquid Im< e, the linear instability was enhanced by

the electric eld; when = g, the electric eld had a negligible in uence on the linear insta-
bility; when > e, the electric eld impeded the linear instability. Nonlinear simulation of the
asymptotic model was also studied. When e, the electric eld promoted the wave height,
which can cause the Im to be singular. Wherr g, the nonlinear simulation showed that the
electric eld enhanced the deformation of the interface. When e, the study showed that

the permanent wave may be time-dependent or time-independent, depending on the strength
of the electric eld. For instance, when= €', the electric eld can lead to the droplet coa-

lescence and cause the liquid Im to be singular. In the study of the case®?, the singular

160



phenomenon was not observed for all electrical Weber number, and the maximum height of
the wave decreased as the electrical Weber number increased. Investigation on steady travel-
ing waves was further conducted to discuss the in uence of electric eld on the wave speed.

It was found that the wave speed and the wave amplitude can be promoted or decreased by
the electric eld. Particularly in some situations, the wave speed may inddEgsease while

its amplitude decreasBdcreased as the strength of the external electric eld increased.

In Chapted, the dynamics of the outer layer was taken into account and the base ow arose
due to a constant axial pressure gradient. The two liquids were considered to be leaky di-
electrics. Results of the linear stability analysis showed that, depending on the ratios of elec-
trical properties (the electrical permittivity ratio and electrical conductivity ratio between the
outer layer and inner layer), the electric eld can either stabilize or destabilize the system.
Both theoretical analysis and numerical studies were carried out. It was found that an ex-
ternal electric eld can completely impede the capillary instability. Linear stability analysis
showed that the system can be stabilized by increasing the inner radius of the duct or the
thickness of the outer layer. It was found that viscosity had duatts on the stability of the
system. Viscosity strati cation may cause instability in the system, while viscous dissipation
e ect had a stabilizing eect. The Reynolds number on the stability was investigated and it
was found that the capillary instability could be suppressed by the interfacial shear. Also, the
electric eld can either stabilize or destabilize the interface wave instability due to viscosity
strati cation, which was dependent of the electrical properties. Furthermore, a range of elec-
trical properties was identi ed that the electric eld can suppress the capillary instability as
well as the interface wave instability. Further investigations of the input parameters on the
e ective growth rate and the wave number of the most unstable perturbation were conducted.
It was found that the eective growth rate and wave number depended on the strength of the
electric eld and the electrical permittivities and conductivities. The viscosity ratio&sce

on the growth rate and wave number of the most unstable disturbance was investigated. It was
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found that, for some selected input parameters, the instability of the system was dominated
by the outer layer when the viscosity ratio was small; for large viscosity ratio, instability was

dominated by the inner layer.

7.1.2 Electrohydrodynamic mixing

Chapter8 and ChapteB discussed electro-mixing in micro-channels in which the dielec-
trophoretic instability was investigated in the framework of electrostatics. The three dimen-

sional hydrodynamical problem has been considered for the both problems.

In Chapter, an annular liquid layer with radial electrical conductivity gradient in a radi-

al electric eld was investigated. A constant pressure gradient was imposed along the axial
direction causing a weak shear ow. The critical unstable mode was found to be either oscil-

latory or stationary depending on the following dimensionless parameters: the dimensionless
inner radiusa, the electrical conductivity gradient, the Reynolds nunf®eand the electrical

Schmidt numbesb .

To illustrate the in uence of the radiuson the instability, the other dimensionless parame-

ters were xed: = 10,Re= 1 andS¢ = 10°. It was found that, when the dimensionless
radiusa < 0:4, the major cause of instability was the spanwise disturbance and the criti-
cal unstable mode was stationary. Wher 0:4, the critical unstable mode was given by
three-dimensional oblique waves. Furthermore, it was observed that the system became more

unstable as the radiasincreased.

The in uence of the conductivity gradient on the instability was examined. The other dimen-
sionless parameters were xed at= 1, Re= 1 andS¢ = 10°. When the conductivity
gradient was small, the critical unstable mode was found to be three-dimensional oblique
waves. As the conductivity gradient increased, the system became more unstable because

the dielectrophoretic eect was enhanced. However, when the conductivity gradient was in-
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creased further, the stability of the system was enhanced due to the enhancement of the ionic

di usion e ect. Apart from that, the stationary mode became critical wherR0.

In order to understand the in uence of the imposed shear ow, the Reynolds number was
varied while the other parameters were xeal= 1, = 10,S¢ = 10°. It was found that,
whenRe< 0:3, increasindRewould cause the system to be more unstable. The most unstable
mode was the three dimensional oblique wave. WReR 1, the critical electric eld seemed

to be independent diebecause the spanwise disturbances dominated the instability.

The e ect of electrical Schmidt numb&c¢ on ow instability was investigated by xing the
other parameters at= 1, = 10,Re= 1. It was found that, the three dimensional system
may either be more unstable or more stabl&asincreased. Whes ¢ > 13, it was found

that the critical electric eld seemed not to be in uenced $y..

Chaptem® investigated the electrohydodynamic instability of two miscible ows in a micro-
pipe with electrical conductivity strati cation. An axial electric eld was imposed, which
can instigate the electro-convection in the system. A weak shear ow arose from an axial
pressure gradient. The in uences of conductivity ratio, interface location, interface thickness,
shear ow and ionic di usion on the critical stability of the ow were discussed in detail. An

energy analysis was carried out to interpret the instability mechanism.

It was found that, the system was more unstable for a larger electrical conductivity contrast.
When the electrical conductivity was larger within the inner layer, the critical unstable mode
may either be the corkscrew mode or the axisymmetric mode, depending on the interface
location. A detailed study showed that the critical unstable mode shifted from the corkscrew
mode to the axisymmetric mode as the interface approached the pipe wall. When the electrical
conductivity was larger in the outer layer, the critical unstable mode was dominated by the
axisymmetric mode. The interface location had a signi cant in uence on the critical unstable

mode. The system was more stable when the interface was close to the centerline or the
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pipe wall. The ow became more stable as the interface became thicker. The shear ow and
ionic di usion were found to have a stabilizingext via the dissipation mechanisms of the

Reynolds stress and viscous stress.

7.2 Perspectives of future research

7.2.1 Thin Im dynamics

In Chaptei, the dynamics of a thin liquid Im in a radial electric eld has been investigated

by an asymptotic model which is valid for small Reynolds number ow. Indeed, when the
thin Im is thick, the Reynolds number can be moderate and this asymptotic model cannot
be used. To deal with this problem, the author will apply the weighted-residual method and
derive a two-equation model to relieve this aiulty. Moreover, the streamwise dision may

be included as indicated by Ruyer-Quil et @8]. Additionally, the asymptotic reduction of

the Laplace equation of the electrical potential is not appropriate when the gap between the
liquid Im and outer electrode is large. Hence, the full Laplace equation should be retained.
Furthermore, how the electric eld in uences the absolatavective instability is still in

question: such as a thin Im owing down an inclined plate or on a vertical cylinder.

Another interesting problem is to investigate the dynamics of liquid Ims coating on porous
cylinders or bers. For many biological materials, e.g. hair, vessel, textile threads (cotton
threads), in microscope, they are not solid and many of them are penetrable. Preliminary
studies of such ow systems have been carried by the author and his coworkers. It should be
pointed out here: (i) our study applied the Darcy equation to describe the motion of liquids
in the porous cylinder and a Beavers-Joseph condition was adapted to the cylindrical system,;
(if) the problem has been reduced to a thin Im owing down a vertical ber with a slippery

surface and ow within the porous cylinder was neglected. However, recent experimental
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studies by us in the Fluid Mechanics Lab in Nanyang Technological University showed that,
the droplet on a porous ber (a cotton textile thread) is much slender, i.e. smaller height and
slower than that owing down a solid ber. Such an observation strongly demonstrates that
the mathematical formulation in our previous studfs[Z6| is not applicable for the current
model in experiments. We will perform further investigation into this problem so as to unveil
the underlying mechanism behind such a phenomenon from both theoretical modeling and

more accurate experimental design.

There are still many open problems in the research eld of thin Im dynamics, such as thin
Im ows at moderate Reynolds numbers on patterned topological surfaces, weak turbulence
coupled with multi- elds, e.g thermal eld, electro- or magneto- elds, chemical reactions and
biological ow systems. More importantly, the application of the weighted-residual model is
very limited to a few systems: such as thin Im ows with Marangoniexts. One of the
author's future research is to extend the methodology of weighted-residual model to these

open problems in liquid Im ows.

7.2.2 Electro-Hydrodynamic instability to Chaotic ows

In this thesis, most eorts have been spent on the linear dynamics of ow systems in an exter-
nal electric eld. Linear stability analysis has been a versatile method to study the incipient
stage of system perturbed by disturbances. However, for liquid mixing in channels, it is of
interest to see the mixing eciency or formation of organized patterns after a long time, and

the nonlinear full system should be investigated.

It should be acknowledged that direct numerical simulation of turbulence of multi-phase ow
is a daunting task. Usually, the prevailing methods, such as nite volume method, level-set
method, phase- eld method etc., are used to simulate two-layer ow with an interface. Again,

simulation of turbulent ows in the two-layer ow system at high-Reynolds number starting
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from the Navier-Stokes equations is formidable. A possible way to bypass thesaliies

is to utilize the large eddy simulation by modeling the small scale motions in conjunction
with level set method or phase- eld method. One of my future research is to carry out large
eddy simulation in these systems. For the two problems in chBpaed chapteB, direct
numerical simulation of three-dimensional fully developed turbulent ows will be carried out
in future. When the ow becomes unstable, we would expect to see: periodicVaysmsi-
periodic owsV chaotic owsV fully developed turbulence as the strength of electric eld
increases. Since the ow is very much like the canonical Rayleigh-Bénard convection, it
is of great interest to perform a comparison between the two systems, speci cally at very
large Rayleigh number. To perform the direct numerical simulation, the Chebyshev-Fourier
spectral method would be utilized. The numerical code has been developed and tested for
two-dimensiondthree-dimensional Rayleigh-Bénard convection. To illustrate the numeri-
cal simulation method, computation of the two-dimensional Rayleigh-Bénard convection has

been documented in the Appendix

7.2.3 Non-Newtonian ows

In this thesis, all the liquids considered have been assumed to be Newtonian. In many prac-
tical cases, the liquids are non-Newtonian, such as shear-thinning uids, or viscoelastic u-
ids. In these uids, the non-Newtonian ect would be signi cantly important. For non-
Newtonian uids, there have been some preliminary studies on the linear stability of canon-
ical ows: such as plane Couette ow, Poiseuille ow, Hagen-Poiseuille ow and Taylor-
Couette ow in which the normal mode analysis as well as the non-modal theory have been
implemented[33, T39]. Nevertheless, it should be indicated that these studies did not pro-
vide su cient numerical simulations to give direct evidences that the transition "does' oc-
cur in plane-Couette ow and Hagen-Poiseuille ow which are linearly stable. It should be

emphasized here that the non-modal theory predicts that the energy of perturbation can be
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signi cantly ampli ed but will eventually decay! Hence, direct numerical simulation should

be carried out to demonstrate that the transition can be triggered by optimal disturbances and
can be sustained by the nonlinear mechanism. However, due to the complicated governing
equations of non-Newtonian ows, there is now a lack of study of direct numerical simu-
lations of non-Newtonian ows in these systems. To perform the numerical simulation, it
would be convenient to construct a solenoidal basis from the Petrov-Garlerkin method which
provides high numerical accuragsl. In a di erent way, | have developed a solenoidal
basis from the eigenmodes of the linearized Navier-Stokes equations and derive an ordinary

di erential-integral system.

Beyond direct numerical simulation, in multi- eld systems, such as electrohydrodynamic sys-
tems, the study of linear stability of non-Newtonian ows in an electric eld is very limited.

In particular, the control of instability in a micro channel with complex geometries is of great
interest and the global stability analysis should be carried out. For such complex problems,
the nite element method or spectral element method will be used. Finite element method is
very easy to be implemented in open source softwaeefent++ and | have been working on

the software for nearly a half year.
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AppendiA

Chebyshev collocation method

In this thesis, the eigenvalue problem is resolved by the Chebyshev collocation method. For

a functionf in a domainy 2 [ 1; 1], it can be approximated by the Chebyshev polynomials:

X
f= amTm(y); (A.1)
0
whereT,, is the Chebyshev polynomial
Tm(y) = cosfmcos 1(y)): (A.2)

The rst order derivative off, now can be expressed as

df X dT,

Am——, A.3
dy~ . " dy (A.3)

dTm — sinmcos 1(y))
Whered—y = mm

df X
— = byTm (A.4)
dy 0
Obviously, there is
A A dT
brnTm=  am—— (A.5)
0 0 dy



Now, collocation off aty = y; gives

A A dTy,

mem(yj) = am

ey (A.6)
0 0 dy J

Discretization of the problem on these collocation points gives

F=Ta (A.7)

Now, we can obtain:

b=(TY Ta (A.8)

Now, the functionf is unknown, thereby the coeientsa,, serve as the unknowns in the
discretized problem. Furthermore, settidg- (T 9 T which is the discrete dierentiation
matrix. Hence, for the rst order derivative df and in discrete form, there E° = T Da.
Moreover, for the n-th derivative of and in the discrete form, there” = T D'a. In the

eigenvalue problem, A x = B x, the unknown coe cients serve as the eigenveckor

In the computation of the eigenvalue problem, if we §@t), i.e the grid points, as the un-
knownsy, it is necessary to construct the discreteatentiation matrix. Using the Lagrange

interpolation, the functiorf can be expressed as:

\l
=" pmy)flym): (A.9)

0

wherepm(y) is the interpolation polynomials,

Wy Yi .
j=0;j, mYm Vi

Pm = (A.10)

Here,y; = cos() and = ’W is the Chebyshev collocation points.
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For the rst order derivative of, now, can be expressed as

2 dp(y)

0—
7= dy

f(Ym): (A.11)
0

The discrete from ofa%“ represents the discrete drentiation matriD.

For instance, if there is only two points in the domairljl], the discrete dierentiation

2: (A.12)

If there is three points in the domain, ¥e= 1,0; 1, the discrete dierentiation matrix reads

matrix Dis é

NI NI

1
2

(A.13)

NIL NIw

2
0
2

NIw NI

1
2

Generally, when there i+ 1 points in the domaig 2 [ 1; 1], the components in the discrete

di erentiation matrix are

8
2N? + 1 2N? + 1
§D11: 6 ;o Dhepner = 6 ;
Qj = —yj > ; j=2;ZZZ;N; (A.14)
§ 21y}
. i+]
_Dj=5( U i, ; LKi=L:5 N+

Ci Vi Yj’

in whichc; = 2ifi = 1;N + 1. Otherwiseg; = 1.
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AppendiB

Direct numerical simulation: thin Ims

We brie y present here the key points of the algorithm for the simulation of the spatio-
temporal evolution of thin Ims based on the reduced models. Here, the Benny type equation

is taken as an example:
h3 2Re
h; + hh, + [E( cot hy+ 2Wehy) + ?hehx]x =0: (B.1)
Making the transformatiort:! tandx! x, the Benney equation is restated as:

h3 2R
e+ hPh+ [2( cot h+ Wehy) + ?eh6hx]x =0 (B.2)

An initial condition of the problem i&(x; 0) = hy.

B.1 Periodic domain
When the problem is solved with periodic boundary conditions:

h(0;t) = h(L;t);  hy(0;t) = hy(L;t);  hy(0;t) = (L 1), heod 05 1) = hyo(L; 1), (B.3)
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whereL is the length of the computational domain, it is convenient to calculate the derivatives
of h, hy, hyy, hyxx in the Fourier domain. Now, we write:

2 o2

h(xt)=" expj-3h (B.4)

N=2
whereh | = ﬁj is the Fourier amplitude. Now, we would like to set the grid points atx;,
h(x;) as the unknowns and we are going to construct the discretgeattiation matrix. In
discrete matrix form

h = Ah; (B.5)

P R
derivative ofh can be expressed & = = “Z,ij2 exp(jZx)h;. Hence, in discrete form:
h® = ACh whereC is a diagonal matrix an€ = diag (i%k) with k = [ N=2; N=2+
~ P
1;:::;0;:::;N=2 1;N=2]". Using the Fourier transforrh; = o exp( ij%xk)h(xk), and

nally, the derivativeh?, in the discrete formh°is related to the grid functioh by
h®= ACBh; (B.6)

whereB, = exp( imzfxn) and therefore the discrete direntiation matrixD= ACB.

Hence, the discretized Benney equation can be expressed as:

h3 h3 2Re

ht + D§ + qg( cot Dh+ deih + ?hsm] =0: (B?)

Then, the time-evolution problem can be solved by an implicit Gear's method.

Indeed, the problem can be solved by the fast Fourier method. First, we compute the Fourier
amplitudes by the Fourier transform. Second, the derivativesaoé calculated in the Fourier

space. Third, the derivatives bfin the physical space are computed by the inverse Fourier
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transform.

B.2 non-Periodic domain

When the non-periodic problem is considered, the Fourier method is not applicable.

Crank-Nicolson method is used here:

hn+1 hn
t

1 n 1 n+ —_ .
+ EN (h" + EN (™ =o; (B.8)

whereN (h) = h?h+ (- cot hyy+ Wehu) + 2Behbh,,+ T ( cot h,+Wehy,) + 2Zehsh2.

Boundary conditions of the non-periodic problem, usually cah(Bgt) = 1, h,(0;t) = 0 and

The

the Imisfree atx = L: hy = hyxx = 0. However, previous studies on the boundary conditions

are not inconsistency and some researchers proposed that the ogvisai@en at the inlet.

Here, we apply the nite dierence method to approximate the derivatives:

h'+1 h; 1
@hj = ——— "+ O( ¥); (B.9)
hist  2h +h;
@y = ——————=+0( X); (B.10)
hjso  2hji1+2hj 1 hj,
@oh;j = = ’2 3 ’ L2+ 0( ¥); (B.11)
@ = 2 Ak Xil = 124 O( X2)Z (B.12)

Forj = 1;N + 1 (left rst node and right end node), the central drence schemes for the

rst order and second order derivatives are not applicable. For higher order gy xxx

the central dierence schemes are also not applicable=a®; N. Hence, we use a forward or
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backward di erential scheme of second order accuracy at these points:

3hy +4h, 3hg

@hix-x, = > +0O( X);
@niny, = 1 24h)': LAUEICICY
@i, = 2 M2 Ty ),
@iy, = 2L SWI TN I 24 o 0y,
@i, = St 180 224)23+ Lhe 305 o sy
@i, = e+ 180 224)g4+ Lhs 3N , o sy,
@uhier, = 5hy  18hy 1+ 24:NX§ 14hy 3+ 3hy 4 +0( ):
@i, = e 18w 242th; L 2+ 3m s, o o
Gy, = 14+ 260, X424h4+ s 2N, o s,
@i, = 3 14+ 260, x424h5+ e 2, o e,
Gy, = I 14w 1+ 260 - x244hN st lme s, o o
G, = s LA+ 260 x244hN 2 lns M, o o

The nonlinear equatiom&8) is then solved by the Newton iteration method.

174

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)



AppendiC

Direct numerical simulation:
two-dimensional Rayleigh-Bénard
convection

Here, the direct numerical simulation of two-dimensional Rayleigh-Bénard convection is

brie y presented. Below are the governing equations of the problem:

U+ vy =0; (C.1)
1
Py (U F Ul VW) = Pt Ut Uy, (C.2)
1
ﬁ(vt+ UVy + VW) = Py + Vi + Vyy + Ra; (C.3)
t+J: xx+ yy; (C4)

whereRais the Rayleigh number anfr is the Prandtl number. The convective tedm=

u x+Vy. Thereis noslip ay = 0; 1 and the temperature is speci ed as

x0n=1 (xLt=0: (C.5)

Periodic boundary conditions are appliedkidirection.

Below, we are going to formulate the problem from the pressure Poisson equation. Using the
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continuity equation, we obtain the pressure Poisson equation,
1

whereG = uu, + vu, andH = uv + vy, andN = G+ Hy = uz+ vf, + 2u,Vy. For simulation of
shear ows, special attention should be paid to the nonlinear terms when the Reynolds number
is high. In such a case, itis suggested using the skew-symmetriaforn= %u r u+%r (uu)

to address the numerical instability.

Since the pressure Poisson equation is second order, proper boundary conditions should be

imposed. From the derivation of the Poisson equation, it implies:
— = =r2f; (C.7)

wheref = r u. For the sake of mass conservation, it is to impole: 0 for all the time.
For,f 0, there should be
f(xy;0)=0;, fj@=0; (C.8)

where@ is the boundaries of the computational domain. It implies that, an initially solenoidal
velocity eld should be provided and the continuity equation should be imposed at all the

boundaries of the computational domain:
vw=0, at y=0;1 (C.9

Furthermore, ifp is a solution of the pressure Poisson equation herc is also a solution
wherec is a constant number. Hence, to remove the singularity of the Poisson equation, we
need to x the phase of pressure. Numerical simulation by our numerical method shows that
kr uk, is around 10% for small Rayleigh number, e Ba = 2000, while it exponentially

increases witlRa, e.gkr uk, O(10 8) for Ra= 10* during the simulation with 64 31
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grids. For even larger Rayleigh numbers, the solenoidal condition of velocity may not exactly
satis ed, but our numerical simulation shows tlkat uk, < 10 “ for Ra= 10’ with 128 61

grids. It is also found that the ner grids is the smallar uk,. It should be pointed out

that summation of u at the grid pointsX;y) should be zero. Else, the numerical method

is not correct since there is dilation which contradicts with the assumption of incompressible

liquids.

To study the spatio-time evolution problem, implicit scheme for all the linear terms and ex-
plicit scheme for the nonlinear terms are applied. Now, we make a Fourier transform of

equationsiC2)-(C34) and the pressure Poisson equation with respext to

1 UE+1 Un

e L SRS (€.10)
SRV .
%( : t “+H)= D+ (D KR+ Rah (C.11)
n+1 n . R
=0 KT (C.12)
- PR A
(O K)pyt=RaD ] ﬁNQ; (C.13)

whereD = diy Here, theDis the Chebyshev derentiation matrix after transforming the

physical domain [01] into the Chebyshev domain {; 1]. Hence, the numerical method has
the spectral accuracy in space. Note that, the dealiasing by=Bheu should be imple-
mented which is very important for numerical stability. After solving the Fourier amplitudes
[0;V; B; A]Q’fl, we apply the inverse Fourier transform to obtainvf p; ]™* in the physical
space. A case study &a= 10%, Pr = 1 is shown in Figurd&_L Here, we have veri ed our

code by comparing with that by Clever and BufSE] as seen in TablE”L
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Pr=0:71,Ra= 2500 Pr=0:71,Ra=5000 Pr=0:71,Ra= 10
Clever and BussERJ Nu= 1:475 Nu= 2116 Nu= 2:661
Present work Nu= 1:472 Nu= 2110 Nu= 2:655

Table C.1:Comparison of Nusselt number.

Figure C.1: The velocity eld and temperature led of a two-dimensional Rayleigh-Bénard

convection forRa= 10* andPr = 1 att = 10.

A case of large Rayleigh numb&a = 10’ has also been tested. Note that, the governing

equations should be rescaled to reduce the numericaleds . Results are shown in Figure

c2

Figure C.2: The velocity eld and temperature led of a two-dimensional Rayleigh-Bénard

convection foRa= 10" andPr = 1. (a)t = 20; (b)t = 25.
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Here, we show the steps of the®dealiasing rule by taking the nonlinear term)¢ as an
example. The steps are summarized as follows:

(i) suppose we hawve in the Fourier space;

(ii) calculateuy in the Fourier spaceakdy;

(ii) dealiasing: for alljkj > %% setuk = 0;

(iv) use inverse fast Fourier transform to calculatén the physical space and calculatg)¢;

(v) calculateu? in the Fourier space.

179



Publications

Papers arising from this thesis

[1] Ding Z, Xie J, Wong TN and Liu R, “Dynamics of liquid Ims on vertical bresin aradial

electric eld”, J. Fluid Mech.752, 66, 2014.

[2] Ding Z, Wong TN and Li H, “Stability of two immiscible leaky-dielectric liquids subjected
to a radial electric eld in an annulus ducfhys. Fluids25, 124103, 2013.

[3] Ding Z and Wong TN, “Electrohydrodynamic instability in an annular liquid layer with
radial conductivity gradientsRhys. Rev. B9, 033010, 2014.

[4] Ding Z and and Wong TN, “Electrohydrodynamic instability of miscible core-annular

ows with electrical conductivity strati cation,). Fluid Mech.764, 488, 2015.

[5] Ding Z and Wong TN, “Electric eld enhances mixing in micro circular pipeBtpcedia

Engineeringl26, 39, 2015.
Other related works published during the PhD program

[6] Ding Z, Wong TN, Liu R and Liu Q, “Viscous liquid Ims on a porous vertical cylinder:

Dynamics and stability,Phys. Fluids25, 064101, 2013.

[7] Ding Z and Wong TN, “Stability of a localized heated falling Im with insoluble surfac-
tants,”Int. J. Heat Mass Trans67, 627, 2013.

[8] Ding Z and Wong TN, “Falling liquid Ims on a slippery substrate with Marangoneet-
s”, Int. J. Heat Mass Tran990, 689, 2015.

180



References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Drazin P. and Reid W. Hydrodynamic StabilityCambridge University Press, ISBN
0-521-52541-1, 2004.

Trefethen N.,Hydrodynamic Stability Without Eigenvaly&cience261, 578, 1993.

Schmid P. and Henningson [3tability and Transition in Shear FlowSpringer, New
York, ISBN 0-387-98985-4, 2001.

Nagata M.  Three-dimensional nite-amplitude solutions in plane Couette

ow:bifurcation from in nity, J. Fluid Mech.217, 519, 1990.
Wale e F., Exact coherent structures in channel owFluid Mech.435 93-, 2001.

Bottaro A., Corbett P. and Luchini Fhe e ect of base ow variation on ow stability

J. Fluid Mech, 476, 293, 2003.

Guy Ben-Dov, Optimal Disturbances and Secondary Instabilities in Shear Flows

Doctor thesis in Israel Institute of Technology, HaiFa, 2006.
Theo lis V. Global linear instability Annu Rev Fluid Mech43, 319, 2011.

Batchelor G.K., Mo att H. K. and Worster M. G.,Perspectives in Fluid Dynamics:
A Collective Introduction to Current Researdbambridge University Press, ISBN:9-

780-52153-1696, 2002.

Kapitza P.,Wave ow of thin viscous uid layerszh. Eksp. Teor. FiZl8, 3, 1948.

181



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Kapitza P. and Kapiza S.Wave ow of thin viscous uid layers of liquidzh. Eksp.

Teor. Fiz.19, 105, 1965.

Park C. and Nosoko T hree-dimensional wave dynamics on a falling Im and associ-

ated mass transfe AIChE J.49, 2715, 2003.
Benney D.,Long Waves On Liquid Filmg. Math. Phys45, 150, 1966.

Joo S., Davis S. and BankdS. Long-wave instabilities of heated falling Ims two-

dimensional theory of uniform layer$. Fluid Mech.230, 117, 1991.

Scheid B., Oron A., Colinet P., Thiele U. and Legrof\bnlinear evolution of nonuni-

formly heated falling liquid ImsPhys. Fluidsl4, 4130, 2002.

Thiele U., Goyeau B. and Velarde Mstability analysis of thin Im ow along a heated

porous wal] Phys. Fluids21, 014103, 2009.

Oron A., Davis S. and BankhoS. Long-scale evolution of thin liquid ImdRev. Mod.
Phys.69, 931, 1997.

Pumir A., Manneville P. and Pomeau Y., On solitary waves running down an inclined

planed. Fluid Mech.135 27, 1983.

Ooshida T.Surface equation of falling Im ows with moderate Reynolds number and

large but nite Weber numbePhys. Fluidsll, 3247, 1999.

Shkadov V.,Wave ow regimes of a thin layer of viscous uid subject to grayvigy.

AN SSSR. Mekhanika Zhidkosti i Ga2a43, 1967.

Floryan J., Davis S. and Kelly Rlnstability of a liquid Im owing down a slightly
inclined plane Phys. Fluids30, 983, 1987.

Chang H.-C., Demekhin E.A., Kopelevitch DNonlinear evolution of waves on a

vertically falling Im, J. Fluid Mech.250, 433, 1993.

182



[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Kalliadasis S., Demekhin E., Ruyer-Quil C. and Velarde Whermocapillary insta-
bility and wave formation on a Im owing down a uniformly heated plade Fluid

Mech.492, 303, 2003.

V. Shkadov, A. N. Beloglazkin, and S. G&erasimov, Solitary waves in a viscous liquid

Im owing down a thin vertical cylinder Mosc. Univ. Mech. Bull63, 122, 2008.

Ding Z., Wong T., Liu R. and Liu Q.Yiscous liquid Ims on a porous vertical cylinder:

Dynamics and stabilityPhys. Fluids25, 064101, 2013.

Ruyer-Quil C. and Manneville Plimproved modeling of ows down inclined planes

Eur. Phys. J. BL5, 357, 2000.

Ruyer-Quil C. and Manneville FEurther accuracy and convergence results on the
modeling of ows down inclined planes by weighted-residual approximatiBhgs.

Fluids 14, 170, 2002.

Ruyer-Quil C., Trevelyan P., Giorgiutti-Dauphiné F., Duprat C. and Kalliadasis S.,
Modelling Im ows down a bre, J. Fluid Mech.603 431, 2008.

Scheid B., Ruyer-Quil C., Thiele U., Kabov O., Legros J. and Coline¢d?dity do-
main of the Benney equation including the Marangorea for closed and open ows

J. Fluid Mech.527, 303, 2005.

Ruyer-Quil C., Scheid B., Kalliadasis S., Velarde M. and Zeytouniam Reymocap-
illary long waves in a liquid Im ow. Part 1. Low dimensional formulatiod. Fluid

Mech.538 199, 2005.

Trevelyan P., Scheid B., Ruyer-Quil C. and KalliadasidHeated falling Ims J. Fluid
Mech.592 295, 2007.

183



[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Ding Z. and Wong T.N.Falling liquid Ims on a slippery substrate with Marangoni
e ects Int. J. Heat Mass Tran€0, 689, 2015.

Kalliadasis S., Ruyer-Quil C., Scheid B. and Velarde K&l]ing Liquid Films Springer
London (2012).

Magarvey R.H. and Outhouse L.ENote on the break-up of a charged liquid,jdt
Fluid Mech.13, 151, 1962.

Niamlang S. and Sirivat A.,Electric eld assisted transdermal drug delivery from

salicylic acid-loaded polyacrylamide hydrogeBrug Delivery16, 378, 2010.

Rayleigh L., On the equilibrium of liquid conducting masses charged with electricity

Phil. Mag.14, 184, 1882.
Gri ths D, Introduction to electrodynami¢3 hird Edition Prentice Hall 1999.

Darhuber A. and Troian S.,Principles of micro uidic actuation by modulation of

surface stresseg&\nnu. Rev. Fluid Mecl87, 425, 2005.

Brinkmann M. and Lipowsky R.,Wetting morphologies on substrates with striped

surface domainsl. Appl. Phys92, 4296, 2002.

Klingner A. and Mugele F.Electrowetting-induced morphological transitions of uid

microstructuresJ. Appl. Phys95, 2918-2920, 2004.

Mugele F. and Baret Jean-ChristopHglectrowetting: from basics to applicatiod.

Phys.: Condens. Mattet7, 705-774, 2005.

Torza S., Cox R. and Mason Electrohydrodynamic Deformation and Burst of Liquid

Drops Proc. R. Soc. Lond. 269 295-319, 1971.

Harris M. and Basaran OCapillary electrohydrostatics of conducting drops hanging

from a nozzle in an electric eldl. Colloid and Interface Scil61, 389, 1993.

184



[44] Notz P. and Basaran ynamics of Drop Formation in an Electric Field. Colloid
and Interface Scil61, 218, 1999.

[45] Reznik S., Yarin A., THERON A. and Zussman Elransient and steady shapes of
droplets attached to a surface in a strong electric gldFluid Mech.516, 349, 2004.

[46] Gonzélez A. and Castellanos Alpnlinear electrohydrodynamic waves on Ims falling

down an inclined plangPhys. Rev. (53, 3573, 1996.

[47] Gonzélez A. and Castellanos Alpnlinear dynamics of a falling vertical Im subjected
to a normal electric eld IEEE Annual Report of 1997 Conference on Electrical Insu-
lation and Dielectric Phenomena, Minneapolis, MEEE Dielectrics and Insulation

Society,2, 714, 1997.

[48] Mukhopadhyay A. and Dandapat BNonlinear stability of conducting viscous Im
owing down an inclined plane at moderate Reynolds number in the presence of a

uniform normal electric eldJ. Phys. D: Appl. Phys38 138, 2005.

[49] Tseluiko D. and Papageorgiou D.Wave evolution on electri ed falling Ims). Fluid
Mech.556361, 2006.

[50] Uma B. and Usha R.,A thin conducting viscous Im on an inclined plane in the
presence of a uniform normal electric eld: Bifurcation scenari®hys. Fluids20

032102, 2008.

[51] Uma B. and Usha R.,Electried Im on a porous inclined plane: Dynamics and

stability, Phys. Rev. B2, 016305, 2010.

[52] Uma B. and Usha RContaminated electri ed thin Im over a substrate:dynamics and

stability, Int J. Adv. Eng. Sci. Appl. MatH, 241-249, 2012.

185



[53]

[54]
[55]
[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Tseluiko D. and Papageorgiou D.Npnlinear dynamics of electri ed thin liquid Ims

SIAM J. Appl. Math67, 130-1329, 2007.

Rayleigh L.,On the Capillary Phenomenon of Jelgoc. R. Soc. Lond9, 71, 1879.
Basset A.,Waves and jets in a viscous liquiim. J. Mathsl6, 93, 1894.

Taylor G. I., Electrically driven jetsProc. R. Soc. Lond. 13 453, 19609.

Saville D.A., Stability of electrically charged viscous cylindePhys. Fluidsl4, 1095,
1971.

Cloupeau M. and Prunet-Foch BElectrostatic spraying of liquids in cone-jet mqde

J. Electrostatic®22, 135, 1989.

Son P.H. and Ohba Klnstability of a perfectly conducting liquid jet in Electrohydro-
dynamic spraying:perturbation analysis and experimental veri catidnPhys. Soc.

Japan67, 825, 1998.

Collins R. Harris M. and Basaran OBreakup of electri ed jetsJ. Fluid Mech.588,
75, 2007.

Eggers J.Nonlinear dynamics and breakup of free-surface ¢o®Rsv. Mod. Phy$9,
865, 1997.

Wang Q. and Papageorgiou D.Dynamics of a viscous thread surrounded by another
viscous uid in a cylindrical tube under the action of a radial electric eld: breakup

and touchdown singularitied. Fluid Mech.683 27, 2011.

Conroy D., Matar O., Craster R. and Papageorgiou DBrgakup of an electri ed,

perfectly conducting, viscous thread in an AC glRhys. Rev. B3, 066314, 2011.

Ding Z., Xie J., Wong T.N. and Liu RDynamics of liquid Ims on vertical bresin a

radial electric eld, J. Fluid Mech.752, 66, 2014.

186



[65] Melcher J.R. and Schwarz, W.JInterfacial relaxation overstability in a tangential

electric eld, Phys. Fluidsll, 2604, 1968.

[66] Setiawan E.R. and Heister S.DNonlinear modeling of an in nite electri ed jetJ.

Electrostatics42, 243, 1997.

[67] EI-Sayed M.F.Electro-aerodynamic instability of a thin dielectric liquid sheet sprayed
with an air streamPhys. Rev. B0, 7588, 1999.

[68] Tilley B.S., Petropoulos P.G. and Papageorgiou DDinamics and rupture of planar
electri ed liquid sheetsPhys. Fluidsl3, 3547, 2001.

[69] Savettaseranee K., Papageorgiou D., Petropoulos P. and Tilléh&g ect of electric
elds on the rupture of thin viscous Ims by van der Waals fordesngmuir21, 12290,

2005.

[70] Papageorgiou D.T. and Vanden-BroeckLhrge-amplitude capillary waves in electri-

ed uid sheets J. Fluid Mech 508, 71, 2004.

[71] Schéa er E., Thurn-Albrecht T., Russell T. and Steiner Blectrically induced struc-

ture formation and pattern transfeNature403 874, 2000.

[72] Morariu M., Voicu N., Schéaer E. Lin Z. Russell T. and Steiner U.Hierarchical
structure formation and pattern replication induced by an electric ,&idt. Mater.2,

48-52, 2003.

[73] Verma R., Sharma A., Kargupta K. and BhaumikBlectric Field Induced Instability
and Pattern Formation in Thin Liquid Film&angmuir21, 3710, 2005.

[74] Wu N., Pease Il L. and Russel WElectric-Field-Induced Patterns In Thin Polymer
Films:Weakly Nonlinear and Fully Nonlinear Evolutidnangmuir21, 12290, 2005.

187



[75] Tseluiko D. and Blyth M. E ect of inertia on electried Im ow over a wavy wajlJ.

Eng. Math.65, 229, 2009.

[76] Yeo L. and Chang H.C.Electrowetting Ims on parallel line electrode®Phys. Rev. E
73,011605, 2006.

[77] Taylor G., Studies in electrohydrodynamics. I. The circulation produced in a drop by

an electric eld Proc. R. Soc. Lond. 291, 159, 1966.

[78] Saville D.,Electrohydrodynamics: The Taylor-Melcher Leaky Dielectric Mpdehu.
Rev. Fluids29, 27, 1997.

[79] Pereira A. and Kalliadasis SOn the transport equation for an interfacial quantity

Eur. Phys. J. Appl. Phygl4, 211, 2008.

[80] Melcher J. and Smith C., Electrohydrodynamic charge relaxation and interfacial

perpendicular- eld instability Phys. Fluidsl2, 778, 1969.

[81] Ozen O., Aubry N., Papageorgiou D.T. and Petropoulos PM&onodisperse Drop
Formation in Square MicrochannelBhys. Rev. Let6, 144501, 2006.

[82] Abdella K. and Rasmussen H.Electrohydrodynamic instability of two superposed

uids in normal electric elds J. Comp. and Appl. Matlv8, 33, 1997.

[83] Shankar V. and Sharma Anstability of the interface between thin uid Ims subjected
to electric elds J. Colloid and Interface ScR74, 294, 2004.

[84] Ozen O., Aubry N., Papageorgiou D.T. and Petropoulos PEkectrohydrodynamic
linear stability of two immiscible uids in channel oyElectrochimica Actébl, 5316,

2006.

188



[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

Li F., Ozen O., Aubry N., Papageorgiou D.T., and Petropoulosv R.i@ear stability
of a two- uid interface for electrohydrodynamic mixing in a channklFluid Mech.

583 347, 2007.

Uguz A., Aubry N., Quantifying the linear stability of a owing electri ed two- uid
layer in a channel for fast electric times for normal and parallel electric elBfys.

Fluids 20, 092103, 2008.

Artana G., Romat H. and Touchard @heoretical analysis of linear stability of elec-
tri ed jets owing at high velocity inside a coaxial electrod@. Electrostatics13, 83,

1998.

Burcham C. and Saville DElectrohydrodynamic stability: Taylor-Melcher theory for
a liquid bridge suspended in a dielectric gds Fluid Mech.452 163, 2002.

Li F., Yin X. and Yin X., Instability of a viscous co owing jet in a radial electric eld

J. Fluid Mech.596, 285, 2008.

Lopez-Herrera J., Riesco-Chueca P. and Gafién-Calvoldngear stability analysis
of axisymmetric perturbations in imperfectly conducting liquid,j@sys. Fluidsl?,

034106, 2005.

Wang Q.,Breakup of a poorly conducting liquid thread subject to a radial electric eld

at zero Reynolds numhdehys. Fluids24, 102102, 2012.

Wray A., Matar O. and Papageorgiou D.Non-linear waves in electri ed viscous Im

ow down a vertical cylindeyJ. Appl. Math.77, 430, 2012.

Wray A., Papageorgiou D.T. and Matar @lectri ed coating ows on vertical bres:

enhancement or suppression of interfacial dynamlcEluid Mech.735 427, 2013.

189



[94]

[95]

[96]

[97]

[98]

[99]

Wray A., Papageorgiou D.T. and Matar O.Electrostatically controlled large-
amplitude, non-axisymmetric waves in thin Im ows down a cylinder~luid Mech.

736, R2, 2013.

Preziosi L., Chen K.P. and Joseph D.DLubricated pipelining: Stability of core-
annular ow, J. Fluid Mech.201, 323, 1989.

Joseph D.D., Bai R., Chen K.P. and Renardy Y.Egre-Annular FlowsAnnu. Rev.
Fluid Mech.29, 65, 1997.

Selvam B., Merk S., Govindarajan R. and Meiburg E.Stability of miscible

core"Cannular ows with viscosity strati cation). Fluid Mech.592, 23, 2007.

Dijkstra H.A., The coupling of interfacial instabilities and the stabilization of two-layer

annular ows, Phys. Fluids A, 1915, 1992.

Ding Z., Wong T. and Li H.,Stability of two immiscible leaky-dielectric liquids sub-
jected to a radial electric eld in an annulus dyd®hys. Fluids25, 124103, 2013.

[100] Lin H., Storey B.D., Oddy M.H., Chen C.H. and Santiago JlGstability of electroki-

netic microchannel ows with conductivity gradienghys. Fluidsl6, 1922, 2004.

[101] Baygents J. and Baldessari Electrohydrodynamic instability in a thin uid layer with

an electrical conductivity gradienPhys. Fluidsl0, 301, 1998.

[102] Hoburg J., Melcher JElectrohydrodynamic mixing and instability induced by colinear

elds and conductivity gradient$hys. Fluids20, 903-911, 1977.

[103] Hoburg J.,Internal electrohydrodynamic instability of liquids with colinear elds and

conductivity gradients]. Fluid Mech.84, 291-303, 1978.

[104] Melcher J.,Contimuum ElectromechanidglIT, Cambridge, MA1981.

190



[105] Chang M., Ruo A. and Chen Fglectrohydrodynamic instability in a horizontal uid
layer with electrical conducivity gradient subject to a weak shear, dwFluid Mech.

634, 191, 2009.

[106] Ruo A., Chang M., and Chen F, ect of rotation on the electrohydrodynamic instabil-
ity of a uid layer with an electrical conductivity gradienPhysics Fluis22, 024102,
2010.

[107] Carriere P. and Monkewitz RGonvective versus absolute instability in mixed Reyleigh-

Bénard-Poiseuille convectiod. Fluid Mech.384, 243, 1999.

[108] Clever R., and Busse F.;Three-dimensional convection in a horizontal uid layer

subjected to a constant shedr Fluid Mech.234, 511, 1999.

[109] Ding Z., and Wong T.N.,Electrohydrodynamic instability in an annular liquid layer
with radial conductivity gradientPhys. Rev. B9, 033010, 2014.

[110] Chen C., Lin H., Lele S. and Santiago dnvective and absolute electrokinetic insta-

bility with conductivity gradients). Fluid Mech.524, 263, 2005.

[111] Storey B., Lin H. and Santiago J.&lectrokinetic instabilities in thin microchannels

Phys. Fluidsl7, 018103, 2005.

[112] Santos J. and Storey B., Lele S. and Santiagm3tability of electro-osmotic channel

ow with streamwise conductivity gradient®hys. Rev. &8, 046316, 2008.
[113] Felderhof B.,Dynamics of free liquid ImsJ. Chem. Phys19, 44, 1968.

[114] Gallez D. and Coakly G.,Interfacial instability at cell membrane$rog. Biophys.
Molec. Biol.48 155, 1986.

191



[115] Georgiou E., Papageorgiou D., Maldarelli C. and RumschitzkiThe double layer-
capillary stability of an annular electrolyte Im surrounding a dielectric- uid cqré

Fluid Mech.226, 149, 1991.

[116] Conroy D., Craster R., Matar O. and Papageorgiou Dynamics and stability of an
annular electrolyte Im J. Fluid Mech.656, 481-506, 2010.

[117] Conroy D., Matar O., Craster R. and Papageorgioudynamics and stability of an
annular electrolyte Im Phys. Fluids23, 022103, 2011.

[118] Lin H.,Electrokinetic instability in microchannel ows: A revieMechanics Research

Communication86, 33, 2009.

[119] Ding Z., and Wong T.N., Electrohydrodynamic instability of miscible core-annular

ows with electrical conductivity strati cationJ. Fluid Mech.764, 488, 2015.

[120] Takashima MElectrohydrodynamic instability in a dielectric uid between two coaxial

cylinders Q. J. Mech. Appl. Math33, 93, 1980.

[121] Shivakumaraa I., Leeb J., Vajraveluc K. and AkkanagammadMctrothermal con-
vection in a rotating dielectric uid layer: Eect of velocity and temperature boundary

conditions Int. J. Heat Mass Tran®b, 2984, 2012.

[122] Yoshikawa H. N., Tadie Fogaing M., Crumeyrolle O. and MutabaRi¢lectrophoretic
Rayleigh-Bjnard convection under microgravity conditigridhys. Rev. B7, 043003,
2013.

[123] Tsai P.-C. The Route to Chaos and Turbulence in Annular ElectroconveciRborD
thesis, 2007.

[124] Craster R. and Matar GDn viscous beads owing down a vertical hré. Fluid Mech.

553 85, 2007.

192



[125] Lister J.R., Rallison J.M., King A.A., Cummings L.J. and Jensen O.E., Capillary
drainage of an annular Im: the dynamics of collars and lohks:luid Mech.552,

311-343, 2006.

[126] Ding Z. and Liu Q.Stability of liquid Ims on a porous vertical cylindePhys. Rev. E
84, 046307, 2011.

[127] Kliakhandler I., Davis S. and BankhoS., Viscous beads on vertical brel. Fluid
Mech.429, 381, 2001.

[128] Birikh R., Briskman V., Velarde V. and Legros J.Ciquid interfacial systems: Oscil-
lations and Instability CRC PressNew York, 2003.

[129] Khorrami, M. A Chebyshev spectral collocation method using a staggered grid for the

stability of cylindrical ows Int. J. Numer. Meth. Fluid42, 825, 1991.

[130] Govindarajan, RE ect of miscibility on the linear instability of two- uid channel gqw

Int. J. Multiphase Flows0, 1177, 2004.

[131] Govindarajan R., Lvov V. and Procaccia Retardation of the onset of turbulence by

minor viscosity contrasi$hys. Rev. Let87, 174501, 2001.

[132] Talon L. and Meiburg EPlane Poiseuille ow of miscible layers with dérent viscosi-

ties: instabilities in the Stokes ow regimé& Fluid Mech.686, 484, 2011.

[133] Clever R. and Busse FJransition to time-dependent convectidn Fluid Mech.65,

625, 1974.

[134] Liu R. and Liu Q.Non-modal instability in plane Couette ow of a power-law uyidl

Fluid Mech.676, 145, 2011.

[135] Liu R. and Liu Q. Nonmodal stability in Hagen-Poiseuille ow of a shear thinning

uid , Phys. Rev. B5, 066318, 2012.

193



[136] Lopez Carranza S., Jenny M. and Nouar&stability of streaks in pipe ow of shear-

thinning uids, Phys. Rev. B8, 023005, 2013.

194



