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Abstract

In the last decade, the interfacial instability and mixing enhancement in micro�uidic �ow

systems have attracted much attention . The control of interfacial instability is very crucial in

multi-phase �ow systems, such as the droplet production systems. In micro�uidic systems,

rapid mixing has been a long-standing challenge for the small Reynolds number in which tur-

bulence will not occur. Previous studies have demonstrated that rapid mixing can be achieved

using an electric or magnetic �eld. In all of these systems, it is rather important to know the

instability threshold. This thesis devotes to the discussion of the e� ects of electric �eld on the

interfacial instability and electro-mixing in an annulus channel.

Based on the evidence that the wave length is often much longer than the mean thickness of a

�uid layer, Chapter3 investigated the linear and nonlinear dynamics of a perfectly conducting

liquid �lm coating on a metal �ber modulated by the gravity e� ect in the framework of long-

wave theory. A radial electric �eld was imposed between the inner �ber and a outer electrode

and the dynamics of the gas phase was neglected. It was found that the electric �eld can either

reinforce or suppress the interfacial instability by manipulating the distance between the outer

electrode and the inner �ber. In Chapter4, the interfacial instability of two co�owing annular

liquids in a radial electric �eld has been discussed when taking into account the dynamics

of the outer layer. Unlike the assumption made in Chapter3 that the liquids were perfectly

conducting, the two immiscible liquids in Chapter4 were leaky-dielectrics. Moreover, in

Chapter4, interfacial instability of two immiscible leaky dielectric �uids was examined in the

full range of wave numbers. It was found that in such a system, the interfacial instability can

be either caused by the so-called Rayleigh-Plateau mechanism or the viscosity strati�cation

between the two layers. A detailed study of the e� ects of normal and tangential Maxwell

stresses on the two kinds of interfacial instabilities demonstrated that both of them can either

stabilize or destabilize the interface, depending on the electrical properties of the two liquids.
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However, the two studies in Chapters3-4 provided evidences that the interfacial instability

caused by the Rayleigh-Plateau mechanism can be modulated by the external electric �eld

and thereby control the formation of droplets.

Electro-convection was investigated in Chapters5-6. Chapter5 discussed the electrohydro-

dynamic instability of an annular liquid layer with a radial electrical conductivity gradient

which was developed from the imposed radial electric �eld. Chapter6 studied the instability

in two miscible liquids with an electrical conductivity strati�cation wherein a uniform axial

electric �eld was imposed. Studies in the two chapters demonstrated that the instability is

triggered by the dielectrophorectic e� ect. Study in Chapter5 showed that the critical unstable

mode in the annular liquid layer could be either stationary or oscillatory, dependenting on the

conductivity gradient. However, in the two-miscible two �ows, the critical unstable mode is

always oscillatory. Furthermore, results in Chapter5 indicated that the �ow is least stable for a

moderate conductivity gradient whereas Chapter6 demonstrated that the �ow is always more

unstable for a larger contrast in conductivity. It should also be pointed out that, in Chapter5,

the critical instability could be reinforced by a weak shear �ow; while the critical instability

is always impeded by the shear �ow in Chapter6.

A summary of the four Chapters3-6 was made, and perspectives of future works built upon

these works have been proposed in Chapter7.
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Chapter 1

Introduction

1.1 Research Background

Flow instability in micro�uidic systems has attracted much attention in the last decade, such

as in ink-jetting, drug-delivery, droplet production and rapid mixing inMEMS. In these indus-

trial applications, the interfacial instability phenomenon is widely encountered and the under-

standing of one such instability is of great importance for precise control the droplet size in

ink-jetting and drug-delivery systems. Another long-standing problem in micro-device is that

rapid mixing for the �ow is always laminar and turbulent mixing does not occur. Previous

investigations indicate that applying an external electric or magnetic �eld is a potential ap-

proach to facilitate mixing in conducting liquids. In view of the importance of �ow instability

in micro-�uidic devices, this thesis is devoted to two basic problems: interfacial instability

and electro-convection.

Many pioneering works on the �rst problem have been devoted to multi-�uid systems, typi-

cally, two-�uid �ows in a square duct. It has been demonstrated that the interface could be

unstable and �nite-amplitude traveling waves could be observed. The two-�uid �ow is wide-

ly encountered in electroosmotic pump systems where an active liquid layer drives the other

passive layer. The principle behind the electroosmotic pump system is the electroosmosis

phenomenon in conducting liquid layers. Naturally, it would be interesting to ask: "is the

interface stable?", "if not, will it rupture and the formation of droplet would be expected to

be seen?", "is there any way to suppress the instability in case of the unstable phenomenon
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occurs?". Monodisperse droplet formation in jetting systems is also of academic interest. For

the production of very �ne droplets of sizes down to 20� m, the traditional approach using

the Rayleigh-Plateau mechanism is not very successful. The traditional approach of adjusting

droplet size is to control the �ow rate of the jet. In addition, there is an extra problem in

very viscous �uids that the breakup of a jet is delayed. Moreover, it seems that for some vis-

coelastic �uids, the jet may not break up into droplets after a long time. Applying an electric

�eld is successful in accelerating the breakup of a Newtonian jet. The droplet size could also

be narrowed down. Indeed, electri�ed jet is still an active research �eld. To the best of my

knowledge, very limited works have been devoted to non-Newtonian electri�ed jets despite

the fact that in many practical cases the �uids are non-Newtonian, such as in3D-Bio-Printing

systems.

For mixing enhancement in micro�uidic devices, researchers traditionally use long pipes or

designed patterned channels to increase the di� usion time. Inducing thermal disturbances

is usually not applicable due to the small scale involved. Natural convection will not occur

as a result. For conducting liquids, e.g aqueous ionic solutions, an alternative approach is

to impose an external magnetic or electric �eld, which may trigger a circulation �ow in the

system. It should be noted that the mechanism of magneto- or electro-convection is quite

similar to that of the thermal convection, i.e the convection is initiated by a body force. For

the successful implementation of an external electric �eld to enhance mixing in microscale,

it is necessary to create a spatial change in the electric properties, such as an abrupt change

in electric conductivity or permittivity. To achieve this, one can pump liquids with di� erent

ionic concentrations into a channel. There is another approach to trigger electro-convection

by ejecting electric charges into the liquid layer from one electrode and collecting them at the

other electrode.

A careful look into previous literature indicate that the interfacial instability in multi-layer

�ows or electroconvection in an electric �eld was carried out in a planar system, i.e �ow
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between to parallel electrodes, although there have been a relatively large number of works

on electri�ed jets. Speci�cally, studies on electro-convection in ionic solutions or aqueous

electrolytes in cylindrical channels are very limited. In this thesis, the author is interested in

these �ows in cylindrical systems for there is a wide application of circular pipe in micro-

devices. In addition, circular pipes can avoid the leakage problem in square channels that is

widely encountered in experiments. This thesis will investigate the interfacial instability in

multi-�uid �ows modulated by an electric �eld and convection initiated by an external electric

�eld in the following four chapters.

1.2 Objective and scope

Many previous studies have concentrated on the square channel �ows. The objective of this

thesis is to extend the study of electrohydrodynamical instability to other canonical channel

�ows, annulus channel �ows and pipe �ow. First, the Rayleigh-Plateau instability distinguish-

es the annular �ow from the planar �ow. In this aspect, the thesis will deliver the �rst study

on the in�uences of electric �eld on the Plateau-Rayleigh instability in annular �ows. Sec-

ond, this thesis will `generalize' the dielectrophoretic instability which currently exists in the

plane-channel �ows, e.g plane-Poiseuille �ow, to the other canonical �ow systems.

The scope of this thesis covers the following two problems:

(1) Interfacial instability of multi-phase �ows in a radial electric �eld,

(2) Electro-convection caused by spatial change in electric conductivity.

1.3 Outline of this thesis

The rest of the thesis is organized as follows.
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Chapter 2 reviews the state-of-the-art thin �lms dynamics and some classical models of elec-

trohydrodynamics. Three mathematical models of thin �lm �ow are reviewed and the ad-

vantages and shortcomings of these models are commented. For the electrohydrodynamic

instability, four typical models are reviewed: perfect conducting liquids, non-conducting liq-

uids, leaky-dielectric liquids and electrolyte solutions. The mathematical description of these

four models are laid out along with the four models.

Chapter 3 reports the investigation of a thin liquid �lm �owing down a vertical �ber in a radial

electric �eld. The linear and nonlinear dynamics of the problem is studied in the framework

of the long-wave theory.

Chapter 4 analyses the linear stability of two co-axial leaky dielectric liquids in a radial elec-

tric �eld. This Chapter focuses on the in�uence of an electric �eld on the interfacial instability

caused by Plateau-Rayleigh mechanism or viscosity strati�cation.

Chapter 5 presents the study of linear stability of an annular liquid layer with a conductivity

gradient in a radial electric �eld. The e� ects of geometry, conductivity gradient, shear �ow

and ionic di� usion on the stationary and oscillatory unstable mode are discussed.

Chapter 6 discusses electro-convection in a conductivity strati�ed system which is caused by

an axial electric �eld and the instability mechanism is interpreted by an energy analysis.

Chapter 7 summarizes the contents in chapters 3-6 and proposes some prospectives for future

works.
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Chapter 2

Literature Review

2.1 A Short Introduction to Flow instability

Flow instability is widely encountered in our daily lives through occurrences, such as thermal

convection and water waves. Many factors can trigger the occurrence of instability in a �ow

system, such as inertia, surface tension, gravity, centrifugal force and buoyancy [1].

Flow instability is of great interest in �uid mechanics and applied mathematics providing in-

sights in physical mechanisms behind the transitional phenomena. The methodology of �ow

instability analysis is to investigate how the system responses if it is perturbed by small dis-

turbances. The disturbances can have various forms, for instance, acoustic noise, �uctuation

in �ow rate and pressure. If the disturbances can absorb energy from the basic �ow and grow

with time and the system never returns to its original state, then the system is unstable. Other-

wise, the system is stable. Perhaps, the most fascinating phenomenon is the transition in a cir-

cular pipe which was reported by Reynolds as early as in the nineteenth century. Even though

more than one and a half century has past, the transition phenomenon in pipe �ow is still an

intriguing problem and remains open. Indeed, it was remarked by Richard Feynman that the

mechanism of transition was the most di� cult problem in classical physics. Many theories

have been proposed and have advanced our understanding for this phenomenon. However,

none of these theories is complete and successfully addresses this cumbersome problem. For

instance, the normal mode analysis of linear stability theory predicts that the �ow is always

linearly stable even if the Reynolds number is considerably large. The nonmodal analysis sug-
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gests that small disturbances can be ampli�ed signi�cantly due to the strong non-normality

of the system and it is conjectured that transition will be triggered by the following nonlinear

mechanism [2, 3]. However, it predicts that the perturbation energy decays in long time be-

havior. A group of scientists utilized the dynamical system theory and suggested that other

nontrivial solutions of the Navier-Stokes equations exist beyond the classical parabolic pro�le

[4, 5]. Hence, it was conjectured that these solutions were inherently linked to the transition

and turbulence at low Reynolds numbers. However, this is still not very successful since it

was found that such solutions can exist at a much smaller Reynolds number where no transi-

tion has been observed. Therefore, the relevance between these solutions and the transition is

questionable. In this thesis, the dynamical system theory approach to the Navier-Stokes equa-

tion is not in our scope despite its great importance. Following, advances in linear stability

theory will be reviewed in two aspects: (1) local stability; (2) global stability.

2.1.1 Local stability theory

In the past decades, research on �ow stability has been focused on parallel laminar �ows be-

cause of its simplicity, such as plane-Couette �ow, plane-Poiseuille �ow and Hagen-Poiseuille

�ow. In these systems, the channel or pipe is assumed to be in�nitely long and the velocity

pro�le does not change in its streamwise direction. Indeed, such in�nitely long channels or

pipes are `mathematical' models which cannot exist in the daily life. However, for a �nite

but very long channels (length is much larger than the other scales), and the �ow is fully de-

veloped in the long downstream direction. The �ow is laminar if the �ow rate is small and

turbulence is not triggered. In such a situation, we are interested in the stability of the fully

developed velocity pro�le and such an analysis of stability is the so-called local stability. The

standard approach of linear stability analysis is introduced here. Consider a nonlinear system:

@F
@t

= L (F) + N (F); (2.1)
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whereL is a linear operator andN is a nonlinear operator. The system (2.1) admits trivial

solutions or equilibrium points in phase space (from the viewpoint of dynamical theory)F̄.

The stability analysis is achieved by introducing small disturbances into the systemF = F̄+F0

(jF0j � j F̄j). Hence, the linearized system around the equilibrium point reads:

@F0

@t
= L (F0) +

@N
@F

jF=F̄F0: (2.2)

Consider the channel �ow (e.g. Couette �ow, Poiseuille �ow) as an example and in a standard

way, the disturbance is written as

F0 = F̂(y) exp [i(kxx + kzz) + ! t]; (2.3)

whereF̂ the amplitude of Fourier mode, (kx; kz) wave number, (x; y; z) respectively represents

streamwise, wall-normal and spanwise direction.! = ! r + i! i is the temporal growth rate.

When the temporal stability is considered, the wave numberk (kx or kz) is given and real, while

the temporal growth rate! is often complex and unknown. For the spatial stability, the time

frequency! is given and real, while the spatial wave number is often complex and unknown.

The unknown parameters (e.g.! or k) serve as the eigenvalue of the problem. When the

spatial-temporal instability is considered, i.e. the absolute and convective instability, both!

and the wavenumber are complex. In this thesis, the spatial-temporal theory is out of the

scope. If the real part of! is positive, then the disturbances grow with time and the system is

unstable. Otherwise, the system is stable! r < 0 or neutral! r = 0.

Although the local theory has achieved a great success in predicting the stability threshold of

Rayleigh-Bénard convection and Taylor-Couette �ow, it failed to predict the critical point of

Hagen-Poiseuill �ow and plane-Couette �ow. In addition, the local theory predicts a critical

Reynolds number for the plane-Poiseuille �ow:Re = 5772 which does not agree well with

experimental observations. Transition in plane-Poiseuille �ow may take place at a Reynolds
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number as low asRe� 1000. This stimulates scientists to apply other theories to interpret the

physical mechanism of transition, such as the non-modal theory and nonlinear theory which

leads to the doubt of the validation of normal mode analysis.

However, some scientists argued that the normal mode analysis still can be applied to explore

the transition mechanism. The inviscid �ow theory, such as the Rayleigh in�ection point

theory, indicates that the �ow is unstable if there is an in�ection point in the basic �ow pro�le.

Motivated by the inviscid theory, Bottaro et al. proposed that, the basic velocity pro�le is not

exactly linear (for plane-Couette �ow) since there is always an experimental error [6]. Hence,

they conjectured that the distorted velocity pro�le (the linear pro�le perturbed by a �nite small

disturbance) is not linearly stable (see Fig.2.1). Such an idea [7] has been extended to circular

! i

! r

Figure 2.1:Spectra of plane-Couette �ow atRe= 500,k = 1:5 adapted from Ref.[6].

pipe �ows.

2.1.2 Global stability theory

In contrast to the local stability theory, the global stability theory is more applicable for real

cases in which there is an upstream inlet and a downstream outlet. The base state should
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be solved numerically and is much more complex than the base state of a parallel �ow (e.g.

plane Couette or Poiseuille �ow) due to the non-homogeneity of the �ow �eld. The large-scale

computation of eigenvalues is the major di� culty in the global theory. Taking the example of

a three dimensional problem with spatial gridsNx � Ny � Nz = 50� 50� 50, the grid number

is on the order 105, and there are four unknowns (i.e.u, v, w, p) at each grid point. If the

eigenvalue problem is formulated as

A q = ! B q (2.4)

whereq = (u; v;w; p)T. The size of the matricesA andB is about 105 � 105. Therefore, the

huge number of eigenvalues is about 105. Since only those eigenvalues close to! = 0 are

concerned, most of these eigenvalues are useless. Moreover, since the data is huge, a numer-

ical strategy for storing data is essential. Thanks to the development of advanced hardware,

practical methods have been proposed to deal with this problem in the past few years [8],

such as the iterative method. It should be indicated that the global stability of many complex

�ow systems still remains unexplored. However, although the `Global Stability Theory' is

formidable for numerical implementation, it has the same standard steps for stability analysis

as the local stability theory.

2.2 Low dimensional modeling

In a micro�uidic system, the �ow is slow and the Reynolds number is very small, typically

Re < 1, such that the inertial e� ect can be ignored. The Navier-Stokes equations can be

reduced to the Stokes equations. In many micro�uidic systems, the channel width or length

is much larger than the channel height. Hence, we can introduce a small parameter into the

system� = h=L whereh is the channel height (wall normal direction) andL is a typical length
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in the direction perpendicular to the wall-normal direction. In many practical cases, such

as multi-phase �ow, or droplet production system, the length scaleL can be connected to a

typical wave length, such as the droplet spacing. Therefore, the system can be asymptotically

reduced in power series of the small parameter� . This approach in analyzing the �ow systems

is called low dimensional modeling.

During the last several decades, such a methodology has been successfully applied for the

study of thin liquid �lms �owing down an inclined plane. There are numerous examples of

thin liquid �lm �ow in our daily lives, e.g. rain �owing on glasses and liquid droplets on

lotus leaves. In biophysics, an example of liquid �lm �ow is the lung lobe of human beings

coated by an ultra thin liquid layer. An even more common phenomenon of thin liquid �lm

�ow is tears in human eyes. In industry, the applications of liquid �lm in coating, cooling

systems are widely encountered. In `Perspective in Fluid Dynamics' [9], G.K. Batcheloret

al: indicated eleven important problems, which were urgent to be solved in �uid mechanics.

Among these problems, the dynamics of thin liquid �lm �ow attracted their attention. It

should be emphasized here that the thin �lm �ow o� ers an ideal model for the study of

transition to turbulence.

The experimental observation of unstable surface waves in a falling liquid �lm down an in-

cline was pioneered by the father-son team of Kapitza family [10, 11]. Nonlinear unsta-

ble waves were observed in the �lm �ow. Dynamics of the thin �lm �ow can be gener-

ally described as follows: a �at �lm develops at the inlet; as the �at �lm is not stable, a

two-dimensional harmonic wave develops. The two dimensional harmonic wave grows vi-

a the nonlinear mechanism which is unstable to the spanwise disturbances. The unstable

two dimensional wave develops into three dimensional structures, which exhibits the charac-

teristics of weak turbulence (see Fig.2.2). Theoretical investigation of thin liquid �lm �ow

down a plate with inclined angle� was pioneered by Benney [13]. Benney applied the low-

dimensional method based on the evidence that the wave length of a typical waveL is much
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Figure 2.2:Shadow image of waves atRe= 33[12]. One such �ow can be often observed in
Singapore on raining days from a running liquid �lm down a slope.

longer than the �lm mean thicknessh0 wherein the small parameter� = h0=L is de�ned as the

�lm parameter [13]. At the �rst order approximation, the Benney equation reads:

ht + h2hx + � [
h3

6
(� cot� hx + � 2Wehxxx) +

2Re
5

h6hx]x = 0: (2.5)

whereh denotes the thickness of the liquid �lm. However, in Benney's paper [13], he mis-

matched the order of surface tension
 that the dimensionless Weber numberWe= 

� gh2

0
was

assumed to be of orderO(1) whence the surface tension term appears in the third order term
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which is not appropriate. Hence, It leads to blow-up of solutions in �nite time [13]. In the

later studies, the Weber number was assumed to have orderO(� � 2). Thanks to the work of

Benney, when a model equation has a similar form as Eq.(2.5), it is referred to as the Benney-

type equation. Benney's work has been extended to other systems. For instance, Joo et al.

investigated a heated �lm wherein the evaporating e� ect was taken into account [14]; Scheid

et al. considered the e� ect of non-uniform heating on the linear and nonlinear dynamics of a

falling �lm by deriving a Benney-type equation [15]; Thiele et al. considered a thin liquid �lm

falling down a porous heated substrate [16]. For a more detailed discussion and application of

the Benney-type equation, the readers can refer to the review paper by Oron et al. [17]. The

Benney-type equation, generally, is valid whenReis very small, typicallyRe= O(1). How-

ever, whenReis moderate, the Benney-type model usually blows up and gives non-physical

solution as indicated by Pumir et al. [18]. This failure is related to the strict slaving of the

velocity �eld to the �lm thicknessh. Although the blow-up phenomenon of Benney equa-

tion can be removed by the Padé approximation [19]. However, the regularized equation is

in poor agreement with experiments and the data by direct numerical simulation of the full

Navier-Stokes equations even though the singularity phenomenon is removed [19].

Shkadov proposed an integral boundary layer (IBL) model which introduced one more degree

of freedom [20]. In the integral boundary layer model, the Navier-Stokes equations are re-

duced asymptotically wherein all the second order termsO(� 2) and higher are neglected (the

surface tension term cannot be neglected since the Weber number is assumed to have an order

of O(� � 2)). The streamwise inertia term is of orderO(� Re). The Reynolds number can be

assumed to have an order ofO(� 0) � O(� � 1), and typically� � 10� 2. Therefore, the Reynolds

number can be up toRe � 102. If Re � O(� � 2), the full Navier-Stokes equations should be

considered because, in the normal momentum equation, the inertia term is of orderO(� 2Re)

which cannot be neglected in this situation. In addition, ifRe � O(� � 2), thenRe � 104 pro-

vided that� = 10� 2. In such a case, the �ow is unstable due to the strong viscous shear and
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the `hard mode' dominates the instability, i.e. shear mode [21]. In the framework of thin �lm

dynamics, the modeling methodology is valid for the instability of `soft mode', i.e. interfacial

mode. The integral boundary layer model solves two coupled equations governing the �lm

thicknessh and the local �ow rateq:

ht = � qx; (2.6)

� qt = h � 3
q
h2

� �
12qqx

5h
+ (�

6q2

5h2
� � h)hx + hhxxx: (2.7)

Here,� = 3� Reand� = � cot� (� is the inclined angle) and� 3We = 1. Asymptotical ex-

pansion of the �ow rate equation (2.7) q = q0 + � q1 + : : : does not agree with the Benney

equation which implies that if� , �=2, i.e. the plate is moderately inclined, the integral

boundary layer model predicts wrong linear stability threshold. The inaccuracy of the inte-

gral boundary layer model is due to the assumption of the parabolic velocity pro�le which

causes the error in the prediction of the shear stress at the plate. However, solutions of the

integral boundary layer model agree qualitatively with both experimental data and DNS [22].

This method was extended by Kalliadasis to investigate the dynamics of a heated falling �lm

wherein the Marangoni e� ect on the interfacial instability was discussed [23]. The integral

boundary layer model has been extended to study the problem of thin liquid �lms �owing

down vertical cylinders [24, 25].

Motivated by the inconsistency between the integral boundary layer model and Benney equa-

tion, Ruyer-Quil and Manneville developed a weighted residual model (R-M model) which

addresses the problem successfully [26, 27]. Here, the weighted-residual model is called as

theR-M model. The weighted residual model reads:

ht = � qx; (2.8)

� qt = � � (
17qqx

7h
�

9q2hx

7h2
) +

5
6

h(1 � � hx + hxxx) �
5q
2h2

: (2.9)
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Note that the coe� cients in Eq.(2.9) are di� erent from those in Eq.(2.7). To clarify the reason

for the di� erence, reminiscent of the scaled streamwise momentum equation, it writes:

3� Re(ut + uux + vuy) = � � px + 1 + uyy + O(� 2): (2.10)

The residual of the streamwise equation is written as:R = 3� Re(u0;t + uu0;x + v0u0;y) � 1 +

� px � uyy. The local �ow rate equation (2.7) is obtained by directly integrating the streamwise

equation under the assumption ofu � (1 � y2). Equation (2.9) is obtained from the Galerkin's

method
Rh

0
RWdy= 0 to minimize the error of the residualR whereW is the weight function.

The weight function for theR-M model Eq.(2.9) is proportional to the velocity pro�le, where-

as the weight function for the integral boundary layer model can be considered as a constant

number 1. Asymptotical expansion of Eq.(2.9) recovers Benney's equation Eq.(2.5), which

demonstrates the accuracy of theR-M model.

Ruyer-Quil et al. further extended the weighted residual model and revisit the problem of a

thin liquid �lm down a vertical cylinder [28]. The linear stability analysis shows that there

is no qualitatively di� erence between the integral boundary layer model and the weighted-

residual model when applied to thin liquid �lms �owing down vertical cylinders. This is due

to the fact that the instability is caused by the Rayleigh-Plateau mechanism rather than the

�uid inertia. Scheid et al. extended theR-M model to a falling liquid �lm down a heated

inclined plane, wherein the heat convection was neglected by assuming small Prandtl num-

bers [29]. The comparison between the Benney equation and the weighted residual model as

well as the validity of the Benney equation were discussed [29]. Di� erent from the work by

Scheid et al. [29], Ruyer-Quil et al. took into account the e� ect of heat convection and de-

rived three coupled equations governing the �lm thicknessh, the �ow rateq and the interface

temperature [30]. However, one such study predicts the wrong temperature distribution in the

�lm [ 30]. Trevelyan et al. further examined the in�uence of a thicker substrate which was
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cooled by the ambient gases on the dynamical behavior of thin liquid �lms [31]. Trevelyan

et al. [31] tried to amend the temperature equation to remove the non-physical results of the

temperature equation by using a di� erent weight function. However, their approach was still

not very successful [31]. Very recently, Ding and Wong examined the dynamics of a uni-

formly heated �lm �owing down a slippery substrate by a weighted-residual model [32]. For

more information of the modeling work of thin liquid �lm �ows, the readers can refer to the

monograph by Kalliadasis et al. [33].

2.3 Electrohydrodynamical instability

Electrohydrodynamics (EHD) is the study of the relation between the electrodynamics and

�uid motion. EHD is also known as EFD (electro-�uid-dynamics) or electrokinetics. EHD

covers the following transport mechanisms: electrophoresis, electrokinesis, dielectrophoresis,

electroosmosis, and electrorotation. EHD is widely encountered in industrial applications,

such as in ink jetting [34] and drug delivery [35]. The study of electrohydrodynamics has

a long history. As early as 1882, Lord Rayleigh investigated the equilibrium of conducting

liquids in an electric �eld [36]. In contrast, although “magnetohydrodynamics” (MHD) has a

relatively shorter history, it is more commonly known than EHD. The magnetohydrodynamics

is of great importance in electricity engineering and theoretical physics, such as in plasma.

The original work of MHD was launched by Hannes Alfvén in 1942, for which he received

the Nobel Prize in Physics in 1970.

2.3.1 Some Basics of Electrostatics

In this thesis, only electrostatics is considered. The electric �eld does not change with time or

the changing rate of electric �eldE is very small that the induced magnetic �eld is negligible.
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In the absence of an external magnetic �eld, the Lorentz forceF = qsv � B (qs is the electric

charges carried by the �uid parcel) caused by the induced magnetic �eld is negligible provided

that the electric currentJ = � ev (� e is charge density) is not large. The induced magnetic �eld

could not be neglected if the moving speedjvj of particles approaches the speed of light (see

problem 5.16 in the textbook “Introduction to Electrodynamics” by Gri� ths [37]). However,

such a case does not fall into the scope of this thesis.

In the presence of an electric �eld, the Maxwell stress is imposed on the liquid particles. For

a steady �ow, the Maxwell stress is balanced by the viscous stress and pressure which writes

in the case:

� r p + r � Tv + r � TM = 0: (2.11)

In which,Tv = � (r u + r uT) is the viscous stress tensor, andTM the Maxwell stress tensor. In

the framework of electrostatics, the Maxwell stress tensor is:

TM = " (EE �
1
2

kEk2I): (2.12)

Here, " denotes the electric permittivity of the material,I the identity tensor. Substituting

the expression of the Maxwell stress into the stress balance equation (2.11) and taking the

operation of divergence, the termr � TM = Er � (" E) � 1
2kEk2r " . Recall the Gauss's law:

� f = r � " E; (2.13)

where� f is the free charge density. Therefore the gradient of Maxwell stress is rewritten

as � f E � 1
2kEk2r " . Note that the term� f E is the so-called electric body force. The term

1
2kEk2r " is important if the electric permittivity is not uniform in the medium which may be

caused by a non-uniform thermal �eld or the material itself. Here, the dielectrics is assumed

to be linear.

16



The Gauss's law always holds in the form of:

� T = r � " 0E; (2.14)

where� T is the total charge density and" 0 is the vacuum dielectric constant. When an external

electric �eld is imposed on the material, the material is polarized. The polarization of material

is related to the strength of the electric �eld. For many substances, providedE is not too

strong, the polarization is linearly dependent ofE. The dipole moment of manmade materials

may depend nonlinearly onE, especially in modern optical applications. In this thesis, only

the linear dielectrics will be considered. For linear dielectrics, the polarization is proportional

to the external electric �eld:

p = � e" 0E: (2.15)

Here,p is the dipole moment, and� e is the electric susceptibility.

The electric charge due to the polarization of substances is related to the dipole moment by

� b = � r � p: (2.16)

� b is de�ned as the bound charge [37].

The total charge� T is the sum of free charge� f and bound charge� b. The free charges can be

assumed to be imbedded in the liquids which can move freely or be carried by �uid parcels.

In what follows, we will show the assumption that free charges are carried by �uid parcel

is important, which simpli�es the discussion of the dynamics of �ow systems. The bound

charges appear in the form of twined electric charges: one positive electric charge with one

negative electric charge which are bounded in an electric dipole. Therefore, the Gauss's law

can be rewritten as:

r � " 0E = � f + � b = � f � r � p: (2.17)
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Furthermore, Eq.(2.13) is modi�ed as:

r � " r" 0E = � f : (2.18)

where" r = 1 + � e is the relative permittivity." r" 0 is nothing but the electric permittivity of

material, i.e." . Naturally, the electric displacementD is de�ned as:

D = " E: (2.19)

Therefore, for linear dielectrics, the Gauss's law has the form of Eq.(2.13).

For electrostatics, the electric �eldE is irrotationalr � E = 0. Usually, it is extremely

complex to �nd the solutions of the Gauss equation and the irrotational equation despite their

simple expressions. For electrostatics, it is convenient to introduce the electric potential�

to solve the problem by simplifying the coupled equations to a one-unknown equation. The

electric �eld is related to the electric potential by:

E = � r �: (2.20)

In the previous studies of electrohydrodynamics, the liquids are assumed to be perfect con-

ductors, such as mercury; perfect dielectrics, such as oil; leaky dielectrics, such as water.

The three models have received many investigations during the last decades. However, these

models could not be used to study the dynamics of electrolyte solutions. In the following

discussions, review of the three models as well as the electrolyte solution dynamics will be

presented.
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2.3.2 Perfect Conductors

When a liquid is assumed to be a perfect conductor, the conductivity of the liquid,� , is in-

�nitely large. Thus, there is no electric charge within the bulk �uid. All the electric charges

accumulate at the boundaries of the liquid. Therefore, there is no electric �eld within the bulk

liquid. The electrostatic force should only appear at the boundaries of the liquid. In the previ-

ous studies, most of the systems, in which the liquid was assumed to be perfectly conducting,

were multi-phase systems, i.e., the liquid contacted with another kind of substance which is

not perfectly conducting, for instance air or oil. Especially, the tangential Maxwell stress at

the interface should be absent under the assumption of perfectly conducting in the framework

of electrostatics because the interface is equipotential and the electric �eld is perpendicular to

the interface. Therefore, the boundary condition of perfect conductors is

� = constant: (2.21)

Usually, the value of� is given. This condition is of course correct for perfect conductors.

Some of the previous works used other conditions for the electric potential at the free surface

which seems not consistent with Eq.(2.21) which may confuse the beginners of electrohydro-

dynamics. It will be shown that these conditions are consistent.

The trend of miniature electric devices stimulate an incredible growth of the study of elec-

trohydrodynamics. One of the most important application is the coating and wetting of solid

surfaces. Coating a liquid �lm has many industrial applications, such as interface protection,

heat transfer, micro-lens, growth of insulating �lm on electric devices, etc.. Some devices

may use a liquid droplet as a microlens which is �exible to change its shape compared to the

traditional lens. Many approaches have been proposed to control the shape of the liquid drop,

for instance: the use of thermocapillary e� ect [38], or topographical structuring of surfaces

[39, 40]. Among all these approaches, the electric �eld is of particular advantage for the �ex-
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ibility (electrowetting). A detailed review of electrowetting and its application was provided

by Mugele and Baret [41]. It is convenient to simplify the liquid droplet as a perfect con-

ductor, therefore, an electrostatic pressure is imposed on the surface of droplet. The strength

of the electrostatic pressure can be controlled by an external electric �eld. The droplet was

considered to be perfectly conducting that the potential at the interface was set to be constant

in many of the previous studies [42, 43, 44, 45].

The formation of liquid droplet and surface waves in a perfectly conducting liquid jet or layer

in the presence of an electric �eld have also received much attention. It is interesting to see

how the electric �eld a� ects the droplet size, surface wave amplitude and surface wave speed.

According to the geometry, these previous studies on perfectly conducting liquids can be

summarized into two categories. One is the planar �ow system and the other is the cylindrical

system. For the planar system, it will be interesting to investigate the e� ect of electric �elds

on the dynamics of �ow system, such as linear stability and transition to turbulence.

The linear stability of a perfectly conducting viscous �lm falling down an inclined plane

was reported by González and Castellanos[46, 47] in a uniform normal electric �eld. In

Ref.[46, 47], a Benney-type equation was derived and the results indicated that the electric

�eld was destabilizing. Their studies demonstrated that the electric �eld promoted the linear

stability as well as the wave speed and amplitude of nonlinear waves [47]. Mukhopadhyay

and Dandapat [48] further extended the study [46] to include the e� ect of �uid inertia. They

used anIBL model and examined the in�uence of electric �eld on the stability [48]. Tseluiko

and Papageorgiou [49] performed a direct simulation and revisited the nonlinear dynamics of

the system by González and Castellanos [46]. The bifurcation theory approach was employed

by Uma and Usha [50] to revisit one such problem via an energy integral model. It should be

indicated that the energy integral model is identical to theR-M model but the two methods

are di� erent in their mathematical methodologies. The authors further extended the study and

considered a liquid �lm �owing down a porous substrate in a normal uniform electric �eld
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[51]. Successively, Uma and Usha investigated the in�uences of charged surfactants on the

dynamical behavior of a contaminated liquid �lm [52]. The liquid �lm resting on a horizontal

plate under the action of a normal electric �eld was examined by Tseluiko and Papageorgiou.

The linear, the subcritical and supercritical stabilities as well as the nonlinear evolution were

documented[53]. It should be noted here that, in Refs.[46, 47, 50, 51, 52], the dimensionless

boundary condition for the electric potential at the liquid interface is expressed as:

� = h � 1: (2.22)

It appears that Eq.(2.17) does not agree with the boundary condition Eq.(2.21) as � varies

with h. We can decompose the electric �eld into two parts: the base state�̄ and the perturbed

state� 0. The electric potential should be constant at the surface:

� = �̄ + � 0 = constant: (2.23)

Taking the basic electric �eld from Refs.[50, 51] for example,�̄ = E0(h0 � z) whereE0 is

the electric �eld strength of the imposed �eld andh0 is the mean thickness of the liquid �lm.

When the surface is perturbed,�̄ can be written asE0(h0� h). To ful�ll Eq.( 2.21), the condition

for � 0:

� 0 = constant� E0(h0 � h): (2.24)

The constant value is usually chosen to be zero, and� 0 = E0(h� h0). Taking the mean thickness

of liquid �lm as the length scale andE0h0 as the potential scale, the condition Eq.(2.22) is

obtained as described in Refs.[50, 51].

There are two typical cylindrical �ows: liquid jet and liquid �lms �owing down a vertical

cylinder. Liquid �lm �ow on a cylinder without an electric �eld has been investigated exten-

sively in the past decades. Signi�cant advances have been made in the theory of the breakup
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of a liquid jet into droplets after the seminal work of Lord Rayleigh [54]. It is of great inter-

ests to manipulate the droplet size and breakup time of jets. The in�uence of an electric �eld

on the breakup of liquid jets was investigated and pioneered by Basset [55]. Basset's analysis

showed that electrostatic stresses were stabilizing in the long wave regime while it is desta-

bilizing in the short wave regime. However, Basset's result did not agree with experimental

observation. Taylor corrected the error in the analysis of Basset [56]. Saville examined the

stability of perfectly conducting Newtonian jets in a radial electric �eld subjected to in�nites-

imal axisymmetric and non-axisymmetric disturbances [57]. Results by Saville demonstrated

that non-axisymmetric unstable mode can be supported by an external electric �eld [57]. In

the absence of an electric �eld, the jet is always unstable axisymmetrically. Cloupeau and

Prunet-Foch [58] studied droplet formation in a cone-jet �ow. The in�uence of the electric

�eld was found to modify the diameter of the jet as well as the size of droplet. The experi-

mental study of Cloupeau and Prunet-Foch demonstrated that the sinuous mode became the

most unstable when the viscosity was high [58] which was called kink instability. Son and

Ohba [59] studied the instability of electrohydrodynamic spraying theoretically and experi-

mentally. They found that the axisymmetric mode was dominant when the electric �eld was

not strong; while the most unstable mode shifted to the nonaxisymmetric mode as the electric

�eld increased [59]. Son and Ohba's study showed that the theoretical results compared well

with the experimental observation for axisymmetric breakup of the liquid jet; while the value

of breakup wavelength from experiment was longer than that from the theoretical analysis for

nonaxisymmetric mode [59]. Breakup of perfectly conducting electri�ed jets was revisited by

Collins et al. [60] who analyzed the nonlinear dynamics of jet and numerically simulated the

formation of droplet by a one-dimensional model. The one dimensional model was derived

using theWKBmethod and one can refer to the work of Eggers [61]. Wang and Papageorgiou

[62] considered the a perfectly conducting liquid thread surrounded by an insulating liquid

layer in aDC electric �eld, and investigated the in�uence of the dynamics of the surrounding
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layer. Conroy et al. [63] investigated the dynamics of a perfectly conducting liquid thread in

an AC electric �eld but considered an electrostatic problem. The authors have veri�ed that

the approximation of electrostatics is valid provided the frequency is not too high [63]. Very

recently, Ding et al. investigated a perfectly conducting liquid �lm falling down a vertical

�ber in a radial electric �eld [64]. The detailed results will be presented in Chapter3.

2.3.3 Perfect Dielectrics

In perfect dielectrics, there is no free charge and all the charges are bounded in the form of

electric dipoles. Perfect dielectric liquid is non-conducting, i.e. insulating. Since there is

no free charge in the liquids, the tangential Maxwell force vanishes at the liquid interface.

However, the normal Maxwell force at the interface can be nonzero due to the mismatch of

electric permittivities of di� erent liquids. Here, we show the Maxwell stress at an interface

separating two immiscible liquids (see Fig.2.3):

n � (TM
2 � TM

1 ) � n; (2.25)

wheren is the surface normal andTM
i (i = 1;2) represents the Maxwell stress tensor in liq-

uid “1” and liquid “2” respectively. This term is usually called as electrostatic pressure and

nonzero when" 1 , " 2.

For the perfect dielectrics model, the continuities of electric potential and electric displace-

ment at the interface give:

� 1 = � 2; "1E1 � n = " 2E2 � n: (2.26)

The boundary condition (2.26) indicates the tangential electric �eld is continuous while the

normal electric �eld may be discontinuous across the interface. Clearly, the tangential elec-

tric force can be expressed asF t = qsEt whereqs is the charge density at the interface,Et
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Figure 2.3:A sketch of two immiscible liquids separated by an interface.

is the tangential electric �eld andt is the tangential vector. Hence, a common physical phe-

nomenon that the perfect conductor model and perfect dielectrics model share is that there is

no tangential Maxwell stress at the interface. The di� erence is obvious. For the perfect con-

ductor model, free charge exists on the interface, while no free charge exists at the interface

for perfect dielectrics model.

The studies of perfect dielectric liquids can be divided into two groups: the planar and cylin-

drical systems. Since there is no free charge within the bulk �uid regions, these previous

studies were all devoted to the interfacial instability in multi-�uid systems. It should be not-

ed that the normal Maxwell stress is balanced by the surface tension. In planar systems,

the surface tension is stabilizing the interface. In cylindrical systems, due to the azimuthal

curvature, the surface tension is destabilizing the interface. Therefore, in a planar system,

if the electrostatic pressure enhances the e� ect of surface tension, then the electric �eld sta-
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bilizes; otherwise, it destabilizes the interface. However, in a cylindrical system, the e� ect

of electric �eld on the interfacial instability is opposite. Melcher and Schwarz investigated

the e� ect of a tangential electric �eld on the linear stability of a sharp interface separating

two perfectly dielectric �uids [65]. The authors formulated the problem in the framework of

electrodynamics, but an electrostatic �eld was assumed to facilitate their analysis [65]. The

two liquids were assumed to be non-bounded, i.e. there is no solid bounds in their system

[65]. This research[65] is of great importance because it established the benchmark model

of EHD for the multi-�uid systems. A perfectly non-conducting liquid jet in a radial electric

�eld was investigated by Setiamwan and Heister [66]. The electric �eld was established by

the charged cylindrical surface [66].The in�uences of the Maxwell stress on the droplet size

through linear stability analysis and numerical simulation were reported previously [66]. The

in�uence of the electric �eld on the breakup of a planar inviscid liquid sheet was examined

by El-Sayed wherein the dynamics of surrounding gases was included [67]. Tilley et al. [68]

revisited the problem [67] by the lubrication theory and derived a model equation to study

the nonlinear behavior of the liquid sheet, when it was perturbed by small disturbances. The

results demonstrated that the electric �eld can delay the rupture of the liquid sheet [68]. The

study [68] was extended by Savettaseranee et al. [69] and the in�uence of electric �eld on

the rupture of liquid sheet caused by van der Waals forces was examined. Papageorgiou and

Vanden-Broeck [70] further examined the nonlinear waves of arbitrary amplitudes and wave-

lengths in the system [67]. Results showed that the electric �eld can have a pronounced e� ect

on the shapes and speeds of interfacial waves [70]. It is worthy to note that the results of direct

numerical simulation are in excellent agreement with that obtained from the low-dimensional

model, when the wavelength is long [70].

Pattern formation in perfectly non-conducting liquid �lms induced by an electric �eld was

reported by Schä� er et al. [71]. Morariu et al. investigated the hierarchical structure forma-

tion and pattern replication in three layered thin non-conducting liquid �lms. Further works
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were carried out by Verma et al. [73] and Wu et al. [74]. Verma et al. numerically and

experimentally investigated the pattern formation in the thin �lm by a lubrication model and

considered the in�uence of homogeneous and heterogeneous electric �elds [73]. Wu et al.

considered the in�uences of van der Waals attractions and investigated the pattern formation

phenomenon in the system [74]. Tseluiko and Blyth examined the inertial e� ect on the sta-

bility of non-conducting liquid �lm �ow on a wavy substrate by stability analysis of the fully

linearized system and a Benney-type equation [75]. Electrowetting by a non-conducting liq-

uid droplet was investigated by Yeo and Chang wherein a lubrication model was proposed to

study the dynamics of contact lines which demonstrated that the electric �eld promoted the

spreading speed [76].

2.3.4 Leaky Dielectrics

The leaky dielectric model was �rst proposed by Taylor in the 1960s based on the evidence

that even a small conductivity in the liquid could allow electric charges to accumulate at the

interface [77]. Detailed review of the mathematical model of the leaky dielectrics is provided

by Saville [78]. The term “leaky” dielectric �uids refer to poorly conducting liquids. Under

the assumption of leaky dielectrics [77], free charges only accumulate at the liquid interface;

while there is no free electric charge within the bulk region. Therefore, the main distinction

between the leaky dielectrics and the perfect dielectrics relies on the presence/absence of the

free interfacial charges.

In the framework of electrostatics, the conservation of electric current reads:

d
dt

(
Z

v
� edv+

Z

s
qsds) +

Z

@v
� E � dS = 0; (2.27)

where the liquid is Ohmic (see the electric current �ux� E) and charge di� usion is neglected.

The symbolqs stands for surface charge density,s the interface, and@v the boundary of the
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small control volumev (See Fig.2.3), � the electric conductivity.

Applying the divergence theorem, the charge conservative equation is rewritten as:

d
dt

Z

v
� edv+

Z

v
r � � Edv+

d
dt

Z

s
qsds�

Z

s
(� 2E2 � � 1E1) � ds = 0; (2.28)

whereds = nds.

Therefore, in the bulk region, the charge conservation equation for impressible �uids has the

di� erential form
D� e

Dt
+ r � � E = 0; (2.29)

where D
Dt = @

@t + u � r is the material derivative.

When it is applied to the interface, the conservation of surface charge writes [78]:

@qs

@t
+ r s � qsus + qs(r � n)(u � n) = (� 2E2 � � 1E1) � n; (2.30)

wherer s = r � n(n � r ) is the surface gradient operator, andus = u � (u � n)n is the surface

velocity. The interface is assumed to be a material surface.

In many previous studies, the surface charge conservation law Eq.(2.30) is usually expressed

as:
@qs

@t
+ r s � qsu = (� 2E2 � � 1E1) � n: (2.31)

Here, it is necessary to comment on the conservative equation of the surface charges Eq.(2.31).

First, the temporal derivativeddtds= r � uds� n(n � r ) � uds. Denotingr n = n(n � r ), it gives

d
dtds = r s � uds. The problem now is how to evaluate the derivativedqs

dt . If qs = qs(x; y; t)

that the surface is single-valued with respect to the (x; y) plane, thendqs

dt = @qs

@t + u@qs

@x + v@qs

@y =

@qs

@t + u � r qs whereu or v respectively represents the velocity inx or y direction. From this

point of view, the conservative condition Eq.(2.31) may be not exact or correct. However, in
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many cases, the interfacial wave is long, the di� erence does not come into play in linear or

nonlinear up toO(� 2) analysis [79].

Since the leaky dielectric �uids is considered, there is no net charge density in the bulk region

and the electric potential follows the solution of Laplace's equation:

r 2� = 0: (2.32)

At the boundary, continuity of electric potential and the Gauss's law give

� 1 = � 2; "1E1 � n � " 2E2 � n = qs: (2.33)

It is clear that the tangential electric �eld is continuous across the interface.

The leaky dielectric model has received numerous investigations after the pioneering work of

Taylor [77]. In the following context, studies of EHD of leaky dielectric �uids in a planar

�ow system and a cylindrical �ow system are reviewed. The interfacial instabilities of leaky

dielectric �uids subjected to tangential and normal electric �elds were respectively studied

by Melcher and Schwarz [65] and Melcher and Smith [80] (Melcher and Schwarz's model is

valid to study the electrodynamics of leaky dielectric liquids.). Experimental study by Ozen

et al. [81] demonstrated that the size of a droplet in a two-immiscible-liquid system can be

controlled by altering the strength of the electric �eld. Abdella and Rasmussen [82] investi-

gated the instability of two unbounded superposed �uids in a normal electric �eld. Results of

the linear stability analysis showed that the instability is signi�cantly a� ected by the electric

�eld which can be characterized by the conductivity ratio between the two liquids. Long-

wave stability of two initially stationary superposed immiscible leaky dielectric liquids was

investigated by Shankar and Sharma by a lubrication model [83]. This model [83] was then

extended to a pressure-driven �ow system [84]. It was found that the electric �eld either sta-

28



bilized or destabilized the system which was dependent on the electric properties of the two

liquids [83, 84]. Li et al.[85] extended the problem to the regime of a large �ow rate. Di� erent

from the work of Ozen et al. [84], the charge relaxation time was assumed to be far smaller

than the viscous relaxation time [85]. The stability criterion proposed by Ozen et al. [84]

was invalid in the presence of tangential Maxwell stress [85]. A detailed study on the linear

stability was conducted to demonstrate that the tangential Maxwell stress signi�cantly a� ects

the unstable mode caused by viscosity strati�cation [85]. Instead of the normal electric �eld,

Uguz and Aubry [86] considered a tangential electric �eld and revisited the electrohydrody-

namic instability in two immiscible dielectric liquids. Detailed comparisons on the tangential

and normal electric �eld's in�uence on the interfacial instability were reported [86].

Artana et al. [87] analyzed the dynamics and stability of a leaky dielectric liquid jet surround-

ed by a non-conducting gas. The in�uences of injection velocity and surface tension on the

linear stability were discussed [87]. Burcham and Saville [88] investigated the instability of

leaky dielectric liquid bridge surrounded by dielectric gas in an axial electric �eld. Li et al.

[89] investigated the temporal instability of a two-coaxial liquid jet surrounded by perfect

dielectric gases under the in�uence of a radial electric �eld. Fluids in the core liquid cylinder

was assumed to be perfect dielectrics, and �uids in the annulus cylinder were assumed to be

leaky dielectrics. The instability of the liquid jets was discussed theoretically and numeri-

cally. The results were found that the liquid viscosity had a negligible e� ect on the cuto�

wave number [89]. However, the electric �eld signi�cantly a� ects the cut-o� wave number.

López-Herrera et al. [90] investigated the instability of two co-axial �uids in a cylindrical

duct. The interface was assumed to be uniformly charged initially [90]. This model [90]

was extended by Wang to a leaky dielectric thread surrounded by insulating annular �uids in

which the long-wave dynamics was examined [91].

Recently, Wray et al. [92, 93] studied a leaky-dielectric liquid �lm falling down a verti-

cal cylinder driven by gravity. The liquid �lm was surrounded by leaky-dielectric gases.

29



However, the dynamics of the gas phase was neglected and a one-sided asymptotic model

was proposed. The in�uence of a radial electric �eld on the interfacial stability was studied

by a Benney-type model. Wray et al. [94] further extended their study and examined the

interfacial dynamics subjected to non-axisymmetric disturbances. It was reported that the

non-axisymmetric mode could be supported by the electric �eld [94]. It is noteworthy that

all these studies of perfectly conducting �lms [64] or poorly conducting �lms [92, 93, 94]

were all restricted in the small �ow rate regime. No investigation has been devoted to the

moderate �ow rate or high �ow rate regimes. It is noted that, in these studies [64, 92, 93, 94],

the Laplace equation was reduced asymptotically. This may be inappropriate when the gap

between the liquid interface and the outer electrode is large.

In the pressure driven two-�uid core-annular �ow system, the interface may be unstable due

to the azimuthal curvature and viscosity strati�cation. The former is well-known as Plateau-

Rayleigh instability (capillary instability); while the latter is interface wave instability caused

by a jump in viscosity across the interface. The core annular �ow system is of potential ap-

plications, such as in pumping crude oil through pipelines by using a less viscous liquid for

lubrication where a stable liquid-liquid interface is required. The instability of two immiscible

core-annular liquid layers in a pipe was pioneered by Joseph and his coworkers [95, 96] who

found that, the strati�cation of viscosity either destabilizes or stabilizes the system. Selvam et

al. extended the study to consider the instability of miscible core-annular �ows with viscosity

strati�cation [97]. In these studies [95, 96, 97], the inner liquid layer acts as the core while

Dijkstra investigated two annular liquid layers surrounding a thin wire core in a pipe [98].

The instabilities due to capillary, viscosity strati�cation and viscous shearing were investi-

gated [98]. Dijkstra found that the inserted core played an important role in determining the

unstable mode due to the changes in the velocity pro�le. In addition, the mathematical singu-

lar point at the centerliner = 0 is removed by the inserted core. The �ow system is unstable

which can either be in capillary mode (Plateau-Rayleigh instablity) or interface wave mode
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(caused by viscosity strati�cation) from small to moderate Reynolds number [98]. The capil-

lary mode could be impeded by the mean shear �ow, i.e. as the Reynolds number increases,

the capillary mode can be completely stable. When the Reynolds number is very large, the

system may be unstable due to viscous shear [98]. Here, it is worth mentioning that even for

a single layer �ow in such an annulus channel, the �ow could be linearly unstable due to the

viscous shear which is signi�cantly di� erent from the canonical pipe �ow. In Refs.[90, 91],

the inner liquid layer was injected into the pipe with a uniformly charged surface. Such a

method introduces an electric �eld in the outer liquid layer while there is no electric �eld

within the inner layer. In the core-annular �ow system [98], a radial electric �eld can be im-

posed between the inserted thin metal wire and the outer electrode which is more convenient.

Recently, Ding et al. extended the study [98] to consider the e� ect of a radial electric �eld

[99]. The results demonstrated that the capillary mode and the interface wave mode could be

completely stabilized by the electric �eld [99]. Detailed results will be presented in Chapter

4.

2.3.5 Electrolyte solutions

In industrial applications, mixing of di� erent liquids in a micro�uidic system is very impor-

tant. The Reynolds numberReis small in micro�uidics, typicallyRe� 1. The �ow is laminar

and mixing due to turbulence will not occur. The use of an electric �eld has been a successful

approach for enhanced mixing [100]. In micro�uidics, the application of electrohydrodynam-

ic mixing is based on gradients of electric conductivity since the mechanical techniques are

not suited to obtaining mixing for the requirement of prohibitive amounts of power. Electric

conductivity can be developed due to a superimposed electric �eld. The local ionic concentra-

tion, pH value, and conductivity gradients develop along the axis of the imposed electric �eld

and the local conductivity could vary by more than an order of magnitude over a length of 1

mm [101]. Obviously, the electric conductivity� of electrolyte liquids is a function of the
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concentration of local ions which is the major distinction of electrolyte liquids. It is di� erent

from the previous models introduced in this thesis: for perfect conducting liquids, electric

conductivity� ! 1 ; for non-conducting liquids,� = 0; for poorly-conducting liquids,� is

small but constant. The pioneering work on the dynamics of electrolyte solutions was formu-

lated by Hoburg and Melcher [102] and Hoburg [103]. For more information, the readers can

refer to the monograph by Melcher (Ref.[104]) in which detailed mathematics and physics on

electro-hydrodynamics were documented. In Refs.[102, 103], the conductivity pro�le is gov-

erned by convection equation, in which, the di� usion of conductivity is neglected provided

that the time scale for di� usion of ions is much longer compared to the viscous response time.

Baygents and Baldessari [101] dropped the assumption of long time di� usion of ions [102,

103], and adopted the di� usion of ions. It was indicated by them that the di� usion term is

critical in determining a correct stability threshold. Baygents and Baldessari proposed that

the occurrence of instability was triggered by the dielectrophoretic e� ect [101]. They found

that the lower conductivity boundary had a strong stabilizing e� ect when the conductivity

gradient was large [101]. It should be noted that the assumption of exchange of stability

made by Baygents and Baldessari [101] was incorrect because the critical unstable mode may

be oscillatory. The unstable mode may be oscillatory which was indicated by Chang et al.

[105]. In their analysis [105], Chang et al. considered the in�uence of a parabolic base �ow.

While the instability mechanism can be analogue to the classical Rayleigh-Bénard instability

in a heated �uid layer, the physical mechanism is much more complex. For instance, in

a single heated �uid layer where one imposes a shear �ow, the critical unstable mode is

always dominated by the longitudinal mode, which is independent of the shear �ow[107, 108],

while the critical unstable mode in the liquid layer with an electric conductivity gradient

depends on the shear �ow heavily. Chang et al. found that when the Reynolds number was

slightly increased from zero, the instability was enhanced since the shear �ow enhanced the

dielectrophoretic e� ect and the transverse mode (zero spanwise wave number) became critical
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rather than the longitudinal model (zero streamwise wave number) [105]. However, as the

Reynolds number increased further, the longitudinal mode became critical, and the critical

mode was independent of the shear �ow. Chang et al. reported in their paper that the critical

unstable mode was oscillatory when the conductivity gradient was small, but it switched to the

stationary mode as the conductivity gradient increased [105]. Ruo et al. extended the model

[101] to a rotating system and found that the rotation stabilized the �ow, while the electric

�eld destabilized the �ow [106]. Recently, Ding and Wong investigated the instability of an

annular liquid layer with electric conductivity gradients. Their results showed that the critical

unstable mode depended on the geometry of the duct and the critical unstable mode may be

either stationary or oscillatory [109]. Detailed results and discussion will be presented in

Chapter5.

Unlike the studies of Baygents and Baldessari [101], Chang et al. [105], Ruo et al. [106] and

Ding and Wong [109], in which the electro-convection was triggered due to a spatial gradient

in the electric conductivity, Lin et al. [100] considered two miscible �ows with an electric

conductivity strati�cation. To achieve such a conductivity strati�cation �ow in experiments,

Lin et al. [100] used two electrolytes with di� erent ionic concentrations (see Fig.2.4). The

liquids were pumped into the channel using a syringe pump. A Couette �ow arose from a

tangential electric �eld due to the electro-osmosis phenomenon after removing the pressure

gradient. The electro-osmosis phenomenon was treated as a slippery boundary condition and

the slip velocity was related to the zeta potential in the electric double layer. However, the

electro-osmosis �ow was rather weak. They investigated the linear stability by assuming a

quasi-steady base �ow and veri�ed their results via a direct numerical simulation. A depth-

averaged model was proposed by Storey et al. [111] to investigate the electrohydrodynamical

instability in a square pipe. Although the depth-averaged model simpli�ed the problem to

a two-dimensional �ow, it showed good agreement with the three-dimensional results [111].

The convective and absolute electrokinetic instability with a conductivity strati�cation was

33



extended by Chen et al. [110]. Chen et al. used aqueous electrolytes of 10:1 conductivity ratio

and applied a streamwise electric �eld [110]. The two-dimensional instability was studied

via a thin-layer assumption that the channel width was much larger than the channel depth.

Santos and Storey extended the studies to a �ow with streamwise conductivity gradients and

investigated the linear instability as well as the nonlinear evolution [112]. Notably, in these

studies (Baygents and Baldessari[101]; Chang et al. [105]; Ruo et al. [106]) adopted non-

slippery conditions, while in other studies (Lin et al. [100]; Chen et al. [110]; Storey et al.

[111]; Santos and Storey [112]) considered a slippery boundary condition. The latter focused

on the stability of electro-osmosis �ow.

Figure 2.4:Experimental setup of two miscible liquids in electrokinetic �ow [100].

The electro-osmotic �ow is conceptually explained by Figure2.5. The electric �eld induced

by free ions is very weak and the ions follows the Boltzmann distribution. In a narrow bound-

ary layer, the charge density is non-zero, while in the main bulk region the liquid is electrically

neutral. This boundary layer is the so-called electro-double layer (EDL). In the presence of

a tangential electric �eld, the bulk liquids would slip on the boundary, and therefore a plug

�ow is formed (see Figure2.5). The electroosmosis has a potential application in micro�uidic

systems, such as electro-pump. Many studies of the stability of electro-osmotic �ows have

been carried out.

The �rst study of the in�uence of EDL on the stability of thin inviscid planar electrolyte
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Figure 2.5: Electroosmotic �ow arises from an external tangential electric �eld. From
http://www.kirbyresearch.com/index.cfm/wrap/textbook/micro�uidicsnano�uidicsch6.html.

�lms was carried out by Felderhof [113]. Two di� erent unstable modes were discussed by

Felderhof [113]: the stretching mode and squeezing mode. The EDL was found to destabilize

the stretching mode, but stabilize the squeezing mode [113]. Extension work was investigated

with considering the viscous e� ect [114]. Georgiou et al. [115] investigated the stability of

an annular electrolyte �lm and discussed two cases: double layer repulsion and attraction.

Double layer repulsion was stabilizing while attraction was destabilizing [115]. Conroy et al.

[116] investigated the stability of two co-axial electrolyte liquids in a pipe. They formulated

the problem in a more general way. The Nernst-Planck equation was used to describe the

motion of ions[116]. The model was then extended by Conroy et al. [116] to study the

dynamics of a fouled interface by charged surfactants [117]. It is worth mentioning that, these

studies (Felderhof [113],Georgiou et al. [115], Conroy et al. [116, 117]) were all concentrated

on the interfacial instability. In the previous studies, the investigation of the stability of multi-

layered electrolyte �ow has remained very limited although it has received much attention

now (see the review paper by Lin[118]). Recently, Ding and Wong [119] investigated the

instability of two miscible �uids in a circular pipe with an electric conductivity strati�cation

subjected to an axial electric �eld. This study will be presented in Chapter6.

There are other approaches to induce convection in liquid layers beyond the above reviewed

35



approaches. For instance, using a thermal �eld coupled with an electric �eld which is useful

in a micro-gravity environment [120, 121, 122]. Another approach could be injecting charges

into the �uid layers such that the electric body force can initiate a circulation �ow [123].

This method is very useful in the study of dynamics of a nematic layer in an electric �eld

[123]. However, these studies has remained very limited to this date, especially for multi-

�uid systems.
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Chapter 3

Dynamics of liquid �lms on vertical �bers
in a radial electric �eld

3.1 Mathematical formulation

A perfectly conducting Newtonian liquid �lm �owing down a vertical �ber is shown in Figure

3.1. The annular �ow system is enclosed in a co-axial cylindrical electrode. A high voltage

is applied at the outer electrode, while the metal �ber is grounded. Liquids that �ow down

the �ber under gravity are surrounded by a dielectric gas. The radii of �ber and electrode are

r = a andr = b, respectively.

In this Chapter, the axisymmetric problem is considered. The cylindrical coordinates (r; z)

are chosen. The motion of liquids is governed by the continuity equation and the momentum

equation as below,

r � u = 0; (3.1)

�
Du
Dt

= � r p + � r 2u + � g; (3.2)

whereu = uer + wez is the velocity. D
Dt = @

@t + u @
@r + w @

@z is the material derivative operator.

� is the density of the liquid and� is the dynamic viscosity.g denotes the gravitational

acceleration. The surrounding dielectric gas is assumed to be inviscid whose dynamics is

neglected.

Since the electrostatics is considered, the electric potential� in the dielectric gas follows the
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Figure 3.1:Geometry of the system.

solution of Laplace's equation:

r 2� = 0: (3.3)

On the surface of the �berr = a, there are no-slip and no-penetration conditions,

u = w = 0: (3.4)

Since the electric potential at the interfacer = a+ h(z; t) is equipotential under the assumption

of perfectly conducting liquids, therefore

� = 0: (3.5)

A high electric potential is imposed at the outer electrode,

� = � 0: (3.6)
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At the liquid ring's interfacer = a + h(z; t), the stress balance condition is expressed as:

(Tl � Tg) � n = � 
 (r � n)n; (3.7)

whereTl or Tg is the stress tensor in the liquid phase and gas phase respectively, andTi =

� piI + Tv
i + TM

i (i = l; g). pi (i = l; g) represents the pressure in the liquid or gas phase.

Tv = � [r u + (r u)T ] is the Newtonian stress tensor which is zero in the gas phase. In the

liquid phase, the Maxwell stress is absent under the assumption of a perfectly conducting

liquid �lm. In the gas phase, because the electrostatics is considered, the Maxwell stress

TM = " [EE � 1
2(E � E)I]. I is the identity tensor and" is the electric permittivity of the gas.


represents the surface tension.n denotes the surface normal.

Finally, the system is closed by the kinematic condition of interface,

ht + whz = u: (3.8)

3.2 Scaling and the asymptotic model

The aim of this Chapter is to solve the above equations (3.1)-(3.8) in the long-wavelength

limit. It assumes that the radius of the �uid ringR = a + h0 (h0 is the initial thickness of

the liquid) is much smaller than its characteristic lengthL in the axial direction. Craster and

Matar took the length scaleL to be related to the capillary length:L = 
=� gR , so that

the dimensionless equations would not rely on the �uid thickness being small relative to the

�ber radius, but small relative to a dynamic length scale [124]. The equations (3.1)-(3.8) are

non-dimensionalized by adopting the following scales:r = R r0, z = L z0, p � pg = � gL p0,

� = � 0, w = Ww0, u = � Wu0, t = L =Wt0 whereW = � R 2g=� is the velocity scale and

� = R =L .
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After dropping the primes of the dimensionless variables, the dimensionless forms of the

governing equations (3.1)-(3.3) become

r � 1(ru)r + wz = 0; (3.9)

� 4Re
Du
Dt

= � pr + � 2(urr + � 2uzz +
1
r

ur �
u
r2

); (3.10)

� 2Re
Dw
Dt

= 1 � pz + (wrr + � 2wzz +
1
r
wr); (3.11)

� rr +
1
r

� r + � 2� zz = 0; (3.12)

whereRe= � WL
� is the Reynolds number. Here, the gap between the liquid interface and the

outer electrode is assumed to be much smaller than the characteristic lengthL [62].

The dimensionless boundary conditions atr = � are,

u = w = 0: (3.13)

The dimensionless radius is� = a
R < 1. When� is small, the liquid layer is relatively thicker

than the �ber. Whena ! 1, the liquid �lm is thin compared to the �ber radius.

At the interfacer = � + h(z; t), the dimensionless stress balance conditions are

(� 2uz + wr)(1 � � 2h2
z) + 2� 2hz(ur � wz) = 0; (3.14)

� p�
2� 2[(wr + � 2uz)hz � ur � � 2wzh2

z]
1 + � 2h2

z
�

� E[ 1
2(� 2

r � � 2� 2
z)(1 � � 2h2

z) � 2� 2� r � zhz]

1 + � 2h2
z

= � (2HS );

(3.15)

where 2H = � 1
(h+� )(1+� 2h2

z)1=2 + � 2hzz

(1+� 2h2
z)3=2 is the curvature.E = " (� 0)2

� gR 3 is the electric Weber

number.S = 

� gR 2 is the dimensionless surface tension.E is assumed to have an order of

O(� � 1). The dimensionless surface tension numberS can be connected to a Bond number
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Bo = 1=S = � gR 2


 . The Bond numberBo = R =L = � naturally measures the ratio of

length scales. In experiments,Bo is typically small (� 0:3 or so) [124]. We follow the

work of Craster and Matar [124] and �x the dimensionless surface tension atS = � � 1 in the

following discussions.

For the electric �eld, boundary conditions are,

� jr=� +h(z;t) = 0; � jr=� = 1: (3.16)

The dimensionless radius of the outer electrode� = b=R > 1. When� � 1, the outer

electrode is moved far way from the liquid �lm.

The dimensionless kinematic condition of the free interface is written in the conservative

form,

ht +
1

� + h
(
Z � +h

�
rwdr)z = 0: (3.17)

For the leading order problem of� , the velocity pro�le is described by

1 � pz + wrr +
1
r

wr = 0; (3.18)

wjr=� = 0; wr jr=� +h(z;t) = 0: (3.19)

Therefore, the velocity pro�le yields,

w =
pz � 1

4
[(r2 � � 2) � 2(� + h)2 ln(r=� )]: (3.20)

Moreover, the normal stress balance condition is reduced as:

p = �
Eb

2
� 2

r +
1

� + h
� � 2hzz; (3.21)

41



where� is absorbed intoEb, i.e., Eb = � E. Now, the modi�ed dimensionless electric Weber

numberEb is assumed to beO(1). The simpli�cation of the curvature in Eq.(3.21) is suggest-

ed by Craster and Matar [124]. Inclusion of the termhzz is re�ected by the linear stability

analysis, which is vital to ensure the correct high-wavenumber cuto� occurs [124, 125].

The leading order governing equation of the electric potential� writes

� rr +
1
r

� r = 0: (3.22)

The solution of the leading order approximation of the electric potential obtained is:

� = 1 �
ln(r=� )

ln[(� + h)=� ]
: (3.23)

Therefore, in Eq.(3.21), the electrostatic force is given byF = � 2
r = (� + h)� 2[ln((� + h)=� )] � 2.

This electrostatic forceF describes the attraction between the liquid interface and the outer

electrode.

Substituting the velocityw into the kinematic equation Eq.(3.17), the evolution equation of

the interfacial shapeh(z; t) is,

ht + (� + h)� 1qz = 0; (3.24)

with

q = �
pz � 1

4
[(� + h)4 ln(

� + h
�

) �
h(2� + h)(2� 2 + 6� h + 3h2)

4
]:

The pressure gradientpz can be calculated by di� erentiating Eq.(3.21) with respect toz. Turn-

ing o� the electric �eld, the evolution equation (3.24) recovers the form in Ref.[124].
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3.3 Linear stability analysis

The initial unperturbed state of the system (3.24) is:

h̄ = 1 � �; q̄ =
1
4

[� ln(� ) �
(1 � � 2)(3 � � 2)

4
]: (3.25)

The linear stability analysis is implemented by perturbing the base state Eq.(3.25) with an

in�nitesimal harmonic disturbance

h = 1 � � + ĥeikz+� t; (3.26)

whereĥ is the amplitude of the disturbance,k the wavenumber,� = � r + i� i the complex

temporal growth rate. Here� is used as the eigenvalue of the re-scaled system. It can be

connected to the eigenvalue! by ! = �� where! serves as the eigenvalue of the fully

linearized system.

After linearizing, the dispersive relation obtained is

� r =
k2

16
[
Eb(1 � ln � )

(ln � )3
+ (1 � � 2k2)][ � 4 ln � � (1 � � 2)(3 � � 2)]; (3.27)

� i =
k
2

(2 ln � + 1 � � 2): (3.28)

The dispersive relation is identical to that obtained by Craster and Matar [124] when the

electric �eld is turned o� , i.e. Eb = 0. The imaginary part of the eigenvalue,� i is independent

of the electric �eld. Therefore, the electric �eld has no in�uence on the linear wave speed, but

it is questionable as to whether the electric �eld a� ects the nonlinear wave speed. Detailed

discussion will be presented in Section3.5. As aforementioned, the eigenvalue� can be

connected to! by ! = �� , and the wavenumberk can be connected to� by � = � k [124].

Here,! and� are the eigenvalue and wavenumber of the fully linearized system in Section
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Figure 3.2:The physical mechanism of interfacial instability. “Plus/Minus” symbols stand
for positive/negative disturbance charges. (a)� < e; (b) � > e.

3.6. Recall thatE = Eb=�, S = 1=�. The small parameter� can be eliminated from Eq.(3.27)

and the dispersive relation is restated as:

! r =
� 2

16
[
E(1 � ln � )

(ln � )3
+ S (1 � � 2)][ � 4 ln � � (1 � � 2)(3 � � 2)]; (3.29)

! i =
�
2

(2 ln � + 1 � � 2): (3.30)

It is interesting to see that the in�uence of electric �eld on the linear stability is dependent of

the dimensionless radius� . When� is very small, i.e. in the long-wave range, if� < e, the

electric �eld is destabilizing. When� > e, the electric �eld is stabilizing. Additionally, when

� = e, the electric �eld has no in�uence on the long-wave stability. The same conclusion

can be obtained from Eq.(3.55) in Section3.6. In order to explain the physical mechanism

clearly, let us refer to Figure3.2. The perturbed electric forcēEqs
0 is responsible for the

interfacial instability. qs
0 = � " (1� ln(� ))

ln(� )2 H + O(H2) is the perturbed surface charge density,

whereH measures the deformation of the interface. The linear stability analysis assumes that

H is small such that the terms of orderO(H2) and higher can be neglected.Ē is the electric

strength at the basic state. Note that the base electric �eld's always acts in the opposite

direction ofr. When� < e, in the elevated region of the interfaceqs
0 < 0; while qs

0 > 0 in

the depressed region of the interface. Hence, the electric force will enhance the deformation

of the interface. For� > e, in the elevated region of the interfaceqs
0 > 0; while qs

0 < 0 in the

depressed region of the interface. Hence, the electric force will impede the deformation of
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Figure 3.3:The real growth rate! r versus the wavenumber� . Solid lines are obtained by
the asymptotic model. Dashed lines are obtained by the fully linearized problem. (a-c) The
dependent parameters are� = 0:25, � = 0:2, � = 2;e;5. (d-f) The dependent parameters are
� = 0:75, � = 0:2, � = 2;e;5 .

the interface. For� = e, however, the perturbed charge densityqs
0 = 0. Thereby, the electric

�eld has a negligible in�uence on the linear stability of the interface.

The numerical results of the fully linearized problem and the dispersive relation Eq.(3.29)

are shown in Figure3.3. In the calculation of the fully linearized problem, the Reynolds

number is set to be very small so as to study the instability of the Stokes �ow [127]. Two

di� erent values of the �ber radius� and three typical values of the outer electrode radius�

are investigated. The in�uence of� is clear when one compares Figure3.3(a-c) with3.3(d-f)

that a smaller� is describing a larger real growth rate! r . This phenomenon is caused by

the surface tension e� ect as explained in the work of Ding et al. [25, 126] who reported the

stability of a liquid �lm falling down a porous cylinder and indicated that the smaller radius

of the cylinder was the more unstable system. Results in Figure3.3show that the asymptotic
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model does not compare well with the fully linearized problem when� is small. However,

in the long-wave range, inspection of the plot reveals that the prediction of asymptotic model

agrees well with the fully linearized problem. Craster and Matar [124] reported that the linear

stability result of their asymptotic model compared well with the result of the Stokes �ow

when� � 0:4; while the agreement deteriorated when� was small. Here, it was observed

that, when� > 0:4, results of the asymptotic model agree well with that of the fully linearized

problem whenEb = 0. The agreement, however, deteriorates for largeEb values as shown

in Figure3.3(c,f). This is due to the asymptotic deduction of the Laplace's equation (3.12).

In addition, when� = e, the results by the fully linearized problem show that the electric

�eld has a negligible in�uence on the long-wave mode, but destabilizes the short wave mode.

When� = 5 > e, the electric �eld tends to stabilize the long-wave mode, while it destabilizes

the short-wave mode as shown in Figure3.3(c,f). Therefore, it can be concluded here that the

asymptotic model is valid in the long wave range.

Equation (3.29) shows that if

S (1 � � 2) + [E(1 � ln � )]=[(ln � )]3 � 0; (3.31)

the long-wave instability can be completely impeded by the electric �eld. A su� cient condi-

tion that the system is stable in the long wave range can be de�ned as

S + [E(1 � ln � )]=[(ln � )]3 � 0: (3.32)

The maximum real growth rate! m of the real growth rate! r in Eq.(3.29) can be de�ned as

! m =
[S + E(1 � ln � )=(ln � )3]2

64S
[� 4 ln � � (1 � � 2)(3 � � 2)]; (3.33)

which occurs at� m =
p

1+[E(1� ln � )]=[S (ln � )3]
p

2
and� m is de�ned as the wavenumber of the most
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Figure 3.4:(a) 
 = �! m versus the radius� predicted by the asymptotic model. (b) The elec-
tric Weber numberEb versus the dimensionless radius� predicted by the asymptotic model.

unstable mode [124].

The cut-o� wavenumber� c corresponding to zero real growth rate is obtained as:

� c =
p

1 + [E(1 � ln � )]=[S (ln � )3]: (3.34)

It is obvious that the cut-o� wave number varies with the strength of electric �eld. Both the

wavenumbers,� m and� c are short waves and strictly lie outside the range of validity of the

long-wave model. Note that, the wavenumber� m and� c should be positive and real, which

requiresS + [E(1� ln � )]=[(ln � )]3 > 0. WhenS + [E(1� ln � )]=[(ln � )]3 � 0, the maximum

real growth rate! m = 0 occurs at� = 0 and there is no cut-o� wavenumber.

When the outer electrode is very close to the liquid interface, i.e.� ! 1, the maximum real

growth rate becomes very large as shown in Figure3.4(a). It indicates that, when� ! 1, no

matter how small the electric potential di� erence is, the interfacial instability is enhanced due

to the strong attraction between the outer cylinder and the liquid interface. When� ! 1 ,

the electric �eld E = � r � vanishes, therefore, the electric �eld has no in�uence when� is

su� ciently large. This conclusion is useful to explain that a larger� is a more stable system.
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The analysis agrees with that of a perfectly conducting liquid jet [62], which implies that

the solid �ber does not change the in�uence of the electric �eld on the linear stability of the

interface.

From Eq.(3.32), a critical electric Weber numberEb;cr = (ln � )3

ln � � 1 can be found as shown in Figure

3.4(b). Above the value of the critical electric Weber number, the long-wave instability can be

completely impeded. In addition, the smallest value of of the critical electric Weber number

min (Eb;cr) = 27
4 occurring at� = e3=2 is found, which is the most economic when we are using

an external electric �eld to impede the long-wave interfacial instability.

3.4 Nonlinear evolution

This section presents the study of the interface subject to a �nite-amplitude harmonic distur-

bance so as to examine the electric �eld's e� ect on the nonlinear behavior of the liquid �lm.

The evolution equation Eq.(3.24) is rewritten in the conservative form as

st + (2q)z = 0; (3.35)

with

q = �
pz � 1

4
[s2(

1
2

ln s � ln � ) �
� 4 � 4� 2s+ 3s2

4
];

wheres = (� + h)2 is proportional to the area of a cross section. The pressurep is modi�ed as

p = �
Eb

2
s� 1[

1
2

ln s � ln � ] � 2 +
1
p

s
� � 2(

p
s)zz:

The following initial condition is considered that a single harmonic wave is imposed on the

interface,

s(z; 0) = (1 + 0:01 cos(
2� z
L

))2: (3.36)

48



z

­2 0 2

0

1

2

3

4

(a)

Eb=0

­2 0 2

0

1

2

3

4

(b)

Eb=1

r
­2 0 2

0

1

2

3

4

(c) Eb=1.5

­2 0 2

0

1

2

3

4

(d)

Eb=1.8

­2 0 2

0

1

2

3

4

(e)

Eb=2

Figure 3.5:(a-d) The periodically extended interfacial shape at instant timet = 100. (e) The
periodic extended interfacial shape at instant timet = 9:10. The other dependent parameters
are� = 0:28, � = e0:9, � = 0:23,L = 1:64.

Periodical boundary conditions are considered to simulate the nonlinear evolution of the in-

terface. The computational domain isz = [0; L] whereL is the non-dimensional length of the

domain. The wavenumberk = 2�
L . Section3.3 indicated that the asymptotic model is valid

in the long-wave range, therefore� = � k should be small, i.e.L=� should be large. Craster

and Matar [124] proposed that, in spite of the poor agreement in the linear stability analysis

between the asymptotic model and the Stokes �ow when� is small, the asymptotic model can

still be used to study long-wave dynamics of the �lm. Their numerical study was in excel-

lent agreement with experimental observations [124]. This Section follows the previous work

by Craster and Matar [124], and investigates three typical values of� = 0:26;0:28;0:32 and

� = 0:29;0:23; 0:178 which are close to the experimental values of� and� by Kliakhandler

et al. [127].

Before performing the numerical study, the value of
p

s should be bounded in (�; � ). When

the interface touches the �ber's surface or the outer electrode, the computation is terminated.
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The solution is approximated by the Fourier series:

s(z; t) =
N=2X

� N=2

ŝn(t) exp(2in�= Lz); (3.37)

where ŝn is the time-dependent coe� cient andN is the number of Fourier modes. In the

present study, 128 to 512 Fourier modes are enough to provide su� cient accuracy. An implicit

Gear's method in time is implemented and the relative error is set less than 10� 6.

Figure3.5displays the interfacial shape of the liquid �lm at instant time for� = e0:9. Accord-

ing to the linear stability analysis, the electric �eld is destabilizing in this case. The values

of � and� are �xed at � = 0:23 and� = 0:28. The computational length is chosen to be

at L = 1:64, and thus the wavenumber� � 0:88. The wavenumber strictly lies outside the

range of validity of the long-wave model. However, the �ow pattern in Figure3.5(a) is sim-

ilar to the �ow regime “b” in the experimental observation [127]. Craster and Matar [124]

used the asymptotic model to investigate the dynamics of such close-spacing droplets and

found that this was not in agreement with the experimental observation. However, they still

used the asymptotic model to examine the dynamics of such a �ow pattern in order to give a

complete study of the asymptotic model [124]. Similarly, it is informative to show, how the

electric �eld a� ects the solution of close-spacing droplets. The results here are also given for

completeness, because it is interesting to investigate the electric �eld's in�uence on the three

typical �ow regimes. It is observed that, the liquid droplet becomes steeper asEb increases.

When electric Weber is increased toEb = 2, the liquid interface becomes singular and touches

the outer electrode att � 9:10 as shown in Figure3.5(e). The maximum value of the liquid

�lm's radius, rmax is plotted against the evolution timet in Figure3.6(a). It is observed that

the system can evolve to a steady state after a long time whenEb is less than a certain value.

Moreover, the height of the liquid �lm is promoted by the electric �eld as shown in Figure

3.6(a). In addition, the growth rate ofrmax is larger for a largerEb which demonstrates that
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Figure 3.6: (a) The maximum radiusrmax versus the evolution timet. (b) The maximum
radiusrmax versus the electric Weber number. The other dependent parameters are� = 0:28,
� = e0:9. � = 0:23,L = 1:64.

the instability is enhanced by the electric �eld. In order to search for the critical value ofEb

whereas the liquid �lm �nally touches the outer electrode rather than evolves to a steady state,

the numerical simulation is utilized.rmax is plotted againstEb in Figure3.6(b), in which the

critical value ofEb is indicated byEcr � 1:81. Figure3.6(b) also shows that the height of

the liquid �lm increases asEb increases, indicating the electric �eld is destabilizing. Results

in Figure3.5and Figure3.6demonstrate that the nonlinear study agrees well with the linear

stability analysis that the electric �eld enhances the instability when� < e.

The nonlinear behavior of the liquid �lm for� = e is of particular interest since the linear

stability analysis indicates that the electric �eld has no in�uence on the long-wave instability.

In fact, the liquid �lm is unstable due to the Plateau-Rayleigh mechanism even when the

electric �eld is switched o� . When the liquid �lm evolves to a new saturated state due to

the capillary instability, the gap between the �lm's crest and the electrode should be smaller

thane. Therefore, in the presence of an electric �eld, the nonlinear behavior of the interface

should be a� ected signi�cantly. To study the problem, the conditions� = 0:26, � = 0:29

and L = 5:8 are chosen. It should be noted that the numerical simulation result relies on

the initial condition and we cannot obtain a similar result as that in Ref.[127] observed in
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the �ow regime “b”. However, the study in this Section can provide insights to explain the

e� ect of electric �eld on the nonlinear dynamics of the liquid �lm. Figure3.7(a) illustrates

the interfacial shape forEb = 0. The in�uence of the electric �eld on the interfacial shape is

shown in Figure3.7(b-e). An interesting phenomenon observed is that the amplitude of the

liquid �lm starts to oscillate when the electric �eld is increased to a certain value, for instance

Eb = 2. Figure3.7(f) shows the evolution ofrmax with time t. It demonstrates that the wave

amplitude can be either time-independent or time-dependent, when the liquid �lm evolves to

a saturated state. The oscillation in the wave amplitude indicates that the state of the �lm is

not steady. To illustrate this phenomenon, the interface shape at di� erent times is plotted in

Figure3.7(g). The comparison of interfacial wave shape shows that the distance between the

wave crestsl1, l2 as well as the heights of the wave crests are di� erent at the two di� erent

times A further increase in the strength of the electric �eld will cause the liquid �lm to touch

the outer electrode, for instanceEb = 2:5;4.

WhenEb = 2:5, the liquid �lm touches the outer electrode att � 64:717. The simulation of

this process is presented in Figure3.8(a-c). To ensure the numerical accuracy, 512 Fourier

modes have been utilized and the time accuracy for the Gear's method is set less than 10� 8. It

is observed that the interface becomes singular in a quite short time as seen in Figure3.8(a-c).

The electrostatic force is shown in Figure3.8(d). The attraction between the electrode and

the liquid interface becomes very large at the crest of the lower droplet, which squeezes the

droplet into the singular shape. This phenomenon could also be observed in an electri�ed

jet or thread [62, 91]. Results in Figure3.7 and Figure3.8 indicate that, the electric �eld

is destabilizing in the nonlinear regime, but it does not contradict with the linear theory. In

Figure3.7(f), the electric �eld almost does not a� ect the evolution ofrmax in a short time,

which implies that the growth rate of the harmonic wave is almost the same. It indicates that,

when the deformation of the interface is small, the prediction of linear stability analysis is

correct.
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shapes forEb = 3:72 at di� erent instant time. The other dependent parameters are� = 0:26,
� = e1:1, � = 0:29,L = 5:8, � � 0:31.
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When the radius� is increased toe1:1, and other parameters used in Figure3.7 are �xed, the

electric �eld's in�uence on the nonlinear behavior of the interface becomes more complex.

The linear stability analysis indicates that the electric �eld plays a stabilizing role when� >

e. When the nonlinear mechanism becomes important, the electric �eld can enhance the

instability. Clearly, Figure3.9(a-e) shows the �ow pattern can be changed by the electric

�eld. Figure 3.9(f) shows that, whenEb is slightly increased,rmax decreases and the liquid

�lm evolves to a steady state.rmax starts to oscillate whenEb is further increased, for instance

Eb = 1;2;3:7. The transient simulation shows that whenEb < 3:719, rmax becomes smaller

with increasing the value ofEb. However, the oscillation in the amplitude is promoted by the

electric �eld. As the liquid �lm is not steady, the coalescence event may happen whenEb is

further increased. The maximum height of the �lm will increase due to the coalescence of

the droplets. As a result, the gap between the wave crest and the outer electrode becomes

smaller. Thereby, the outer electrode may attract and attach the interface to its surface. This

mechanism can be understood by referring to Figure3.9(g), in which, the coalescence of

droplets is shown. Numerical simulation has found out that, when 3:719 < Eb < 11:125, the

electric �eld can attract the liquid �lm to the outer electrode due to the droplet coalescence.

WhenEb > 11:125, no rupture phenomenon is observed by numerical study and the wave

becomes steady after quite a long time(t > 104). This is due to the electrostatic force which

suppresses the deformation of the interface. The wave amplitude is so small that the electric

�eld could not attract the interface to the outer electrode. The liquid �lm becomes completely

stable whenEb > (ln � )3(1� � 2)
ln � � 1 � 12, which agrees with the linear stability analysis. Aside from

that, Figure3.9(f) shows that the growth rate ofrmax is smaller for a largerEb for short time

behavior, which agrees with the linear stability analysis.

Now, it is of interest to study the case:� = e3=2. For the chosen value of� , the electric

�eld is stabilizing according to the linear stability analysis. In this case, the values� = 0:32,

� = 0:178 andL = 5 are chosen. Study from Ref.[124] suggests that a similar �ow pattern as
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Figure 3.10: (a-e) The interfacial shape att = 500. The other dependent parameters are
� = 0:32, � = e3=2, � = 0:178,L = 5, � � 0:226. (f) The maximum radius of the liquid ring
rmax versus the evolution timet. (g) The comparison of the interfacial shapes forEb = 5;5:5.
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�ow regime “c” in the literature [127] may be found by transient simulation for a very small

� . Meanwhile, the initial condition of the transient simulation was chosen by a traveling wave

solution perturbed by pseudo-random noise [124]. Moreover, 1024 Fourier modes were used

for the numerical simulation [124] which was time-consuming. This Section focuses on the

in�uence of electric �eld on the stability of the annular liquid �lm. For convenience,L = 5

is chosen and the initial condition Eq.(3.36) is used to explain the in�uence of electric �eld.

The interfacial shape without the external electric �eld is shown in Figure3.10(a). When

the electric �eld is turned on, the interfacial wave pattern changes asEb increases as seen

in Figure3.10(b-e). Figure3.10(g) shows the comparison of the shape of steady wave for

Eb = 5,and 5:5. A clearer �gure is shown in Figure3.10(f) that rmax becomes smaller asEb

increases. This phenomenon indicates that the electric �eld is stabilizing. When the electric

�eld is turned on, the permanent wave can also be time-dependent (for instanceEb = 4) or

time-independent (for instanceEb = 5). In this study:� = e3=2, the singular phenomenon for

any electric Weber numberEb > 0 is not observed, which indicates that moving the electrode

further from the liquid ring can avoid the singular event that may occur in the system.

Finally, the transient simulation with a largeL = 20 is performed so as to understand the

complex dynamics of the �lm. This study is carried out to investigate the response of the

liquid �lm subject to the �nite-amplitude wave in a long computational domain. 512 Fourier

modes have been utilized to resolve the problem. The radius of the electrode is �xed at

� = e3=2. The �lm has evolved to a steady state forEb = 1 as shown in Figure3.11(a) while it

does not become steady forEb = 2:5 as shown in Figure3.11(b) (Note that, here the spatial

axis isz=� rather thanz.). In fact, for Eb = 2:5, no steady state was observed for quite a

long time,t = 5000. The �lm is oscillating due to the competition between coalescence of

droplet and transition to smaller scales [124]. To illustrate the phenomenon, the space-time

diagram of the liquid �lm is shown in Figure3.11(b) where the crossing of lines indicates the

coalescence of droplets.
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Figure 3.11:Space-time diagram illustrating the dynamics of liquid �lm, in which the light
and dark shading indicate elevated and depressed regions, respectively. (a)Eb = 1, (b) Eb =
2:5. The dependent parameters are� = 0:6, � = 0:2, � = e1:5, L = 20, � � 0:0628.

3.5 Coherent solutions: Traveling waves

In Section3.4, the direct simulation of the asymptotic model has been implemented to study

the electric �eld's in�uence on the nonlinear behavior of the liquid �lm. However, the study

could not answer the question: how does the electric �eld in�uence the traveling speed of the

steady waves? In this section, coherent solutions in form of traveling waves, i.e., stationary

solutions of Eq.(3.35) in a frame of reference moving downstream at a constant speedc are

sought by introducing the following transformation:

� = z � ct: (3.38)

Eq.(3.35) is then transformed to:

� cs� + (2q)� = 0; (3.39)

The unknown variable is set tos = s(� ). For a givenL (the computational length as de�ned in
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Section3.4), this is a nonlinear eigenvalue problem wheres andc are to be determined. The

computational lengthL also corresponds to the droplet-droplet spacing for a single droplet

solution.

Here, the �ow ratem in the moving frame is de�ned as

m = �
Z � +h(� )

�
r[w(� ) � c]dr: (3.40)

The solution ofs can be approximated by the Fourier series,

s(� ) =
N=2X

� N=2

ŝe2in�= L� (3.41)

Since the wave speedc as well ass are unknown, one more condition is needed to �xc.

Following Craster and Matar's work, the constraint on the �uid mass is imposed [124]

1
L

Z L

0
sd� = 1: (3.42)

For the convergence of Newton iteration, a reasonable guess for the wave speed and pro�le

should be provided. This can be provided by numerical simulation of the evolution equation of

a short computational domain (edge-tracking method). The initial guess can also be given by

the information at the supercritical bifurcation point of the evolution equation. A continuation

method is used to track the solution branch as parameter changes.

It should be indicated that the traveling wave transformation Eq.(3.38) is only valid when a

traveling wave solution exists. The numerical simulation has indicated that the liquid �lm

may become singular in the presence of an electric �eld. Therefore, in this situation, there is

no steady traveling wave and the solution can not be found.

First, the case:� = 0:3262, � = 0:178, L = 8:185 in the work [124] is revisited. The
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Figure 3.12:(a) The wave speedc versus the lengthL. (b) The interfacial shape for a single
droplet. c = 1:37, L = 8:185. (c) The interfacial shape for two droplets.c = 1:04, L =
8:185,� = 0:3262,� = 0:178. “single/double” means there is(are) one/two droplet(s) in the
computational domain.

solution is tracked by the lengthL. Clearly, a largerL describes a larger wave speed. Figure

3.12demonstrates that the asymptotic equation (3.39) exhibits non-uniqueness of solutions.

For a given spatial interval, there could be one or two droplets as seen in Figure3.12(b,c).

Our numerical study gives the wave speedc = 1:37 atL = 8:185 for a single bead which

compares well with the result of Craster and Matar (c = 1:36 atL = 8:185 for a single bead

[124]). This agreement con�rms the validity of our numerical method. Here, `our numerical

method' refers to the numerical method developed by the author of this thesis.

Second, the in�uence of electric �eld on these kinds of solutions in Figure3.12(b,c) is exam-

ined. The electric Weber number is �xed atEb = 0:1 while the radius of the electrode� is

varied. Results are shown in Figure3.13. When� < e, for instance� = e0:9; e0:95, the traveling

wave solution is not found whenL exceeds a critical value. When� > e, the solution does

exist. It is noted that, when� < e, the electric �eld promotes the wave speed. When� > e,

the wave speed becomes smaller as� increases.

The in�uence of the electric �eld on the traveling waves for� = 0:28, � = 0:23, L = 1:64

is examined by the asymptotic model. The result of numerical simulation in Figure3.5(a)
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Figure 3.13:(a) The wave speedc vs. the lengthL for a single droplet case. (b) The wave
speedc vs. the lengthL for two droplets case. The dependent parameters areEb = 0:1,
� = 0:3262,� = 0:178.

without periodical extension (a single droplet in the computational domain) is chosen as the

initial guess of the wave pro�le. The results are shown in Figure3.14. The solution agrees

with the numerical simulation as seen in Figure3.14(b). The critical electric Weber number

Ecr, above which there is no steady traveling waves,Ecr � 1:81 is re-obtained by the traveling

wave study. It is interesting to note that although the height of the wave always increases asEb

increases, the wave speedc starts to decrease atEb � 1:78 as observed in Figure3.14(a). The

physical mechanism underlying this phenomenon should be the electric �eld's enhancement

on the circulation �ow in the wave crest (see Figure3.14(d-f)). The �ow ratem increases as

Eb increases tillEb � 1:78, indicating that the electric �eld enhances the �ow, therefore, a

largerc. However, the circulation in the wave crest may retard the �ow asEb > 1:78, therefore

causing the �ow ratemto become smaller. Thereby, the wave speed may become smaller due

to the decrease of �ow rate.

The electric �eld's in�uence on the traveling waves for� = 0:2551,� = 0:2915 andL = 5:81

(� , � andL are the experimental values of �ow regime “a” [127]) is investigated here. For

non-zeroEb, the solution is tracked by parameterEb. The wave speed forEb = 0 is c = 1:21,
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Figure 3.14:(a) The wave speedc vs. Eb. (b) The maximum heightrmax vs. Eb, in which
“TW” stands for Traveling Wave. (c) The �ow ratem in the moving frame vs.Eb. (d-f)
Streamlines in the moving frame with constant speedc, in which Eb = 0;1:78;1:81 respec-
tively. The dependent parameters are� = 0:28, � = e0:9, � = 0:23,L = 1:64.
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Figure 3.15:(a) The wave pro�le forEb = 0. (b) The wave speedc vs. the electric Weber
numberEb. (c) The maximum heightrmax vs. the electric Weber numberEb. (d) The �ow
ratem vs. Eb. The marked lines “1” ln(� ) = 0:9; “2” ln( � ) = 1; “3” ln( � ) = 1:1; “4” ln( � ) =
1:15; “5” ln(� ) = 1:25; “6” ln(� ) = 1:5. The other dependent parameters are� = 0:2551,
� = 0:2915,L = 5:81.

which agrees well with Craster and Matar's study (Ref.[124] gavec = 1:195). In�uences

of the electric �eld on the wave speedc and the maximum heightrmax as well as the �ow

rate m are shown in Figure3.15(b-d). Numerical results indicate that (c; rmax;m) increase

with Eb when ln� < 1:1. When ln� = 1:15, an interesting phenomenon observed is that,

althoughrmax decreases withEb, c andm reach to their maximum values after that they start

to decrease. This phenomenon implies that the electric �eld enhances the �ow and promotes

the wave speed. When ln� > 1:2, c andrmax are observed to decrease asEb increases. It

is found that for ln� = 1:15;1:25;1:5, rmax ! 1, c ! 0:8986,m ! 0:25 asEb increases

to Eb � 9:1; 7;6 respectively. The constant valuec = 0:8986 is nothing but the linear wave

speedcl = � ! i
� = � 1

2(2 ln � + 1 � � 2). The �ow rate m = 0:25 is the basic �ow rate in the

moving frame with the constant speedcl: m = cl(1 � � 2) � q̄. The critical electric Weber

numberEb = (ln � )3(1� � 2)
ln � � 1 predicted by the linear stability theory givesEb � 9:13;7:03;6:07 for

the three cases: ln� = 1:15;1:25;1:5, which agrees with the study of the traveling waves.

64



3.6 The fully linearized problem

Here, the fully linearized system is carried out so as to verify the validity of the asymptotic

model Eq.(3.24). The system is non-dimensionalized by using the length scaleR = a + h0,

and pressure scale� gR , velocity scale� R 2g=� , time scale�=� R g and electric potential scale

� = � � = � 0.

The velocity �eldu, pressurep, the electric potential� as well as the interfaceh are perturbed

by in�nitesimal harmonic disturbances as:

[u;w; p; �; h] = [ū; w̄; p̄; �̄; h̄] + [û; ŵ; p̂; �̂; ĥ] exp(i� z+ ! t); (3.43)

whereū, w̄, p̄, �̄ , h̄ refer to the base state and ˆu, ŵ, p̂, �̂ , ĥ are the Fourier amplitudes of the

disturbances.� is the disturbance wavenumber, and! is the complex temporal growth rate.

The governing equations of the perturbed system are:

Dû +
û
r

+ i� ŵ = 0; (3.44)

! Rû = � Dp̂ + (D2 +
D
r

� � 2)û �
û
r2

� i� Rw̄û; (3.45)

! Rŵ = � i� p̂ + (D2 +
D
r

� � 2)ŵ � R (i� w̄ŵ + w̄r û); (3.46)

(D2 +
D
r

� � 2)�̂ = 0; (3.47)

in which D= d
dr . R = � 2gR 3

� 2 can be connected to the Reynolds number byR = � Re.

The linearized boundary conditions atr = � are

û = ŵ = 0: (3.48)
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At the liquid interface, the boundary conditions are projected tor = 1 by Taylor's expansion,

i� û + Dŵ + D2w̄ĥ = 0; (3.49)

p̂ + 2(i� Dw̄ĥ � Dû) + ED�̄ (D2�̄ ĥ + D�̂ ) = S (� 2 � 1)ĥ; (3.50)

�̂ + D�̄ ĥ = 0; (3.51)

! ĥ + i� w̄ĥ = û: (3.52)

Here, the electric Weber numberE and dimensionless surface tensionS can be connected to

the modi�ed dimensionless parameters byE = Eb=�, S = 1=�.

At the outer electroder = � , the boundary condition for the perturbed electric potential is

�̂ = 0: (3.53)

The perturbed electric potential is obtained as follows

�̂ =
ĥ

ln �
I0(� r)K0(k� ) � I0(�� )K0(� r)
I0(�� )K0(� ) � I0(� )K0(�� )

; (3.54)

whereI0 andK0 are the zero order modi�ed Bessel functions.

In the linearized normal stress balance condition (3.50), the electric force term reads

E
(ln � )2

[� 1 + �
I1(� )K0(�� ) + I0(�� )K1(� )
I0(�� )K0(� ) � I0(� )K0(�� )

]ĥ; (3.55)

whereI1 andK1 are the �rst order modi�ed Bessel functions. In the long-wave range,� ! 0,

the asymptotic electric force term writes

E(1 � ln � )
(ln � )3

ĥ + O(� 2): (3.56)
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The above fully linearized problem is solved by a Chebyshev collocation method.
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Chapter 4

Interfacial instability of a core-annular
system in the presence of a radial electric
�eld

Chapter3 discussed the interfacial stability of core-annular �ows in a radial electric �eld.

The model derived Eq.(3.24) is valid only in the long-wave regime. Speci�cally, Eq.(3.24)

is not able to capture the dynamics of the short waves when an electric �eld is applied (see

Figure3.3(c,f)). In addition, the dynamics of the outer �uid layer is neglected. This Chapter

considers a two-layer �ow system as shown in Figure4.1and examines the in�uences of the

dynamics of the outer layer. Di� erent from the assumption of perfect conducting liquids of

the inner layer and non-conducting gases of the outer layer in Chapter3, the two immiscible

liquids are considered to be leaky dielectrics in this Chapter. Furthermore, it is assumed that

the two-�uid system is bound by two concentric cylindrical electrodes. A constant pressure

gradient is imposed in the axial direction. The outer electrode with the inner radiusr = b is

grounded, while the inner electrode with the radiusr = a is imposed with a high electric po-

tential. Both liquids are Newtonian with a constant density� i, dynamic viscosity� i, dielectric

permittivity " 0" i(" 0 the vacuum electric permittivity), electric conductivity� i, wherei = 1;2

represents the outer layer and the inner layer respectively. In this chapter, the subscripti = 1;2

represents the outer layer and the inner layer for simplicity, respectively.

The two-dimensional hydrodynamic problem is considered, and the gravity is neglected. Flu-
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Figure 4.1:Geometry of the two-�uid system. (a) Side-view. (b) Cross-section-view.

ids in each layer are governed by the continuity equation and the momentum equations,

1
r

@(rui)
@r

+
@vi

@z
= 0; (4.1)

� i
Dui

Dt
= �

@pi

@r
+ � i(r 2ui �

ui

r2
); (4.2)

� i
Dvi

Dt
= �

@pi

@z
+ � ir 2vi; (4.3)

where (u; v)i the velocity in radial and axial direction respectively,D
Dt = @

@t + ui
@
@r + vi

@
@z, and

r 2 = @2

@r2 + 1
r

@
@r + @2

@z2 .

Since the leaky dielectrics is considered, the electric potential in each layer follows the solu-

tion of Laplace's equation,

r 2� i = 0: (4.4)

Boundary conditions on the inner surfacer = a are,

u2 = v2 = 0; � 2 = � 0: (4.5)
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At r = b, boundary conditions are expressed as,

u1 = v1 = 0; � 1 = 0: (4.6)

At the liquid-liquid interface,r = a + h(z; t), continuity of the velocity gives,

u2 = u1; v2 = v1: (4.7)

The stress is balanced between the two liquid layer by surface tension,

(T2 � T1) � n = � 
 (r s � n)n; (4.8)

whereTi = Tv
i + TM

i is the stress tensor.Tv
i stands for the viscous stress tensor andTM

i =

" 0" i[Ei Ei � 1
2(Ei � Ei)I] stands for the Maxwell stress tensor andEi = � r � i. I is the identity

tensor.
 is the surface tension which is constant because the Marangoni e� ect is neglected in

this paper.n = er

(1+h2
z)

1
2

� hzez

(1+h2
z)

1
2

is the surface normal.

Continuity of electric potential at the interface gives

� 2 = � 1: (4.9)

For leaky dielectrics, when the ratio of the �uid to electric time scalestF
tE

= h=VI
" 0=� (VI is the ve-

locity scale and� stands for the electric conductivity scale) is very large [85], the conservative

equation of interfacial charge (2.31) reduces to,

n � (� 2r � 2 � � 1r � 1) = 0: (4.10)
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Finally, the system is closed by using the kinematic equation of the liquid-liquid interface,

ht + v2hz � u2 = 0: (4.11)

4.1 Non-dimensionalization and base state

To non-dimensionalize the governing system (4.1)-(4.11), the properties of the inner layer,

i.e. � 2, � 2, � 2 are taken as the property scales; the electric permittivity scale is referred to

vacuum permittivity" 0; the length scale refers to the mean depth of the inner layerh0; the

velocity scale refers to the moving velocity of interfaceVI at the steady state; the time scale is

given byh0=VI ; the voltage di� erence between the two cylinders� � = � 0 � � g(� g is denoted

as the potential of ground,� g = 0.) is chosen as the electric potential scale. The relationship

between dimensional variables and dimensionless variables (primed) is presented as follows,

8
>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

(r; z; h) = (r0; z0; h0)h0;

(u; v)i = (u0; v0)iVI ;

(p1; p2) = (p0
1; p0

2)
� 2VI

h0
; t = t0

h0

VI
;

(� 1 � � g) = � 0
1� �; (� 2 � � g) = � 0

2� �;

(E1; E2) = (E0
1; E0

2)
� �
h0

:

(4.12)

By using these scales, after dropping the primes, the inner layer is governed by the following

dimensionless equations,
1
r

@(ru2)
@r

+
@v2

@z
= 0; (4.13)

Re
Du2

Dt
= �

@p2

@r
+ (r 2u2 �

u2

r2
); (4.14)

Re
Dv2

Dt
= �

@p2

@z
+ r 2v2; (4.15)
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r 2� 2 = 0; (4.16)

whereRe= � VI h0

� is the Reynolds number.

For the outer layer, the dimensionless governing equations are,

1
r

@(ru1)
@r

+
@v1

@z
= 0; (4.17)

� Re
Du1

Dt
= �

@p1

@r
+ � (r 2u1 �

u1

r2
); (4.18)

� Re
Dv1

Dt
= �

@p1

@z
+ � r 2v1; (4.19)

r 2� 1 = 0; (4.20)

where� = � 1

� 2
denotes the density ratio, and� = � 1

� 2
denotes the dynamical viscosity ratio.

The dimensionless boundary conditions atr = a are,

u2 = v2 = 0; � 2 = 1: (4.21)

At r = b, the dimensionless boundary conditions are,

u1 = v1 = 0; � 1 = 0: (4.22)

On the interfacer = a + h(z; t), after dropping the higher term proportional to (hz)2, the

tangential and normal stress balance conditions are,

[2urhz + uz + vr � 2vzhz]2 � � [2urhz + uz + vr � 2vzhz]1

+ We[" 2(E2
r hz + Er Ez � E2

zhz)2 � " 1(E2
r hz + Er Ez � E2

zhz)1] = 0; (4.23)
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� p2 + 2[ur � (uz + vr)hz]2 + p1 � 2� [ur � (uz + vr)hz]1

+ We[" 2(
1
2

E2
r �

1
2

E2
z � 2Er Ezhz)2 � " 1(

1
2

E2
r �

1
2

E2
z � 2Er Ezhz)1] =

�
Ca

; (4.24)

whereWe= " 0� � 2

� 2VI h0
denotes the electric Weber number,� = hzz� 1

a+h is the curvature.Ca = � 2VI




is the capillary number.

The dimensionless continuity of the velocity and voltage potential conditions at the interface

hold the same form as Eqs.(4.7) and (4.9),

u2 = u1; v2 = v1; � 2 = � 1; (4.25)

and the dimensionless conservative law of the surface charge is,

n � (r � 2 � � r � 1) = 0; (4.26)

where� = � 1
� 2

denotes the electric conductivity ratio.

The dimensionless kinematic condition of Eq.(4.11) holds the same form.

4.1.1 Base state of the system

The �ow �eld and electric �eld are decoupled at the base state. The base velocity in radial

direction vanishes and �ow is parallel to the axis, i.e.,

ū2 = ū1 = 0: (4.27)
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Since the base state of the �ow �eld is assumed to be uniform inz direction and driven by a

constant pressure gradient along the axis, then

v̄2 =
C
4

r2 + c1 ln(r) + c2; (4.28)

v̄1 =
C
4�

r2 + d1 ln(r) + d2; (4.29)

in which,

c1 =
C[(a + 1)2 � � (2a + 1) � b2]

4(� ln a+1
a + ln b

a+1)
; (4.30)

c2 = �
C[� a2 ln a+1

a + a2 ln b
a+1 + ((a + 1)2 � � (2a + 1) � b2) ln a]

4(� ln a+1
a + ln b

a+1)
; (4.31)

d1 =
C[(a + 1)2 � � (2a + 1) � b2]

4� [� ln a+1
a + ln b

a+1]
; (4.32)

d2 = �
C[((a + 1)2 � � (2a + 1)) lnb + b2(� ln a+1

a � ln(a + 1))]

4� [� ln a+1
a + ln b

a+1]
: (4.33)

The coe� cient C = p̄z. Since the velocity scale refers to the velocity at the interface, the

dimensionless interfacial velocityVI = 1. The pressure gradient is identi�ed as,

@̄p
@z

=
4[� ln a

a+1 + ln a+1
b ]

ln a
b + a2 ln a

a+1 + aln a2

b2 + b2 ln a+1
a

: (4.34)

The solution of the voltage potential in the inner and outer layers respectively reads,

�̄ 2 =
� ln r

a+1 + ln a+1
b

� ln a
a+1 + ln a+1

b

; (4.35)

�̄ 1 =
ln r

b

� ln a
a+1 + ln a+1

b

: (4.36)

When the inner radius is in�nitely large, i.e.,a ! 1 , the base state reduces the the problem

74



studied by Ozen et al.[84] as follows,

v̄2 = �
H + �

H(1 + H)
y2 +

H2 + 2H + �
H(1 + H)

y; (4.37)

v̄1 = �
H + �

� H(1 + H)
y2 +

H2 + 2H + �
� H(1 + H)

y �
1 � �

�
; (4.38)

�̄ 2 =
� (1 � y) + H

� + H
; (4.39)

�̄ 1 =
� y + H
� + H

: (4.40)

whereH = b � a � 1 represents the thickness of the outer layer, andy = r � a represents

the wall-normal direction. Shifting the origin to the interface, the same velocity and electric

potential expressions as Ozen et al.'s [84] can be obtained.

4.2 Linearized perturbed system

This section studies the linear stability of the core-annular �ow so as to provide insights

on the linear dynamics of the system. In�nitesimal disturbances are introduced to perturb

the system. In a standard way, the normal mode analysis is considered. The normal mode

analysis is achieved by decomposingF into F = F̄(r) + F̂(r) exp(ikz + ! t), whereF̄ refers

to the base state, and̂F the in�nitesimal amplitude of a harmonic disturbance with the wave

numberk and temporal growth rate! . The complex temporal growth rate! = ! r + i! i, where

the real part! r is de�ned as the e� ective growth rate.

For the inner layer, the perturbed system is governed by,

Dû2 +
û2

r
+ ikv̂2 = 0; (4.41)

Re! û2 = � ikRēv2û2 � Dp̂2 + (L û2 �
û2

r2
); (4.42)
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Re! v̂2 = � ReD̄v2û2 � ikRēv2v̂2 � ikp̂2 + L v̂2; (4.43)

L �̂ 2 = 0; (4.44)

whereD= d
dr , L = D2 + 1

r D� k2.

For the outer layer, the perturbed governing system is,

Dû1 +
û1

r
+ ikv̂1 = 0; (4.45)

� Re! û1 = � ik� Rēv1û1 � Dp̂1 + � (L û1 �
û1

r2
); (4.46)

� Re! v̂1 = � � ReD̄v1û1 � ik� Rēv1v̂1 � ikp̂1 + � L v̂1; (4.47)

L �̂ 1 = 0: (4.48)

Boundary conditions atr = a for the perturbed system are,

û2 = v̂2 = �̂ 2 = 0: (4.49)

At r = b, the boundary conditions of the perturbed system are,

û1 = v̂1 = �̂ 1 = 0: (4.50)

The boundary conditions at the liquid-liquid interfacer = a + h are projected tor = a +

1 by using the Taylor's expansion. The interface is perturbed toh = 1 + �̂ exp (ikz+ ! t),

where ˆ� measures the deformation of the interface. After dropping the higher order terms, the

conditions of perturbed velocities read,

û2 = û1; v̂2 + D̄v2�̂ = v̂1 + D̄v1�̂: (4.51)
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The voltage potential conditions of the perturbed system at the interface are,

�̂ 2 + D�̄ 2�̂ = �̂ 1 + D�̄ 1�̂; D�̂ 2 + D2�̄ 2�̂ = � (D�̂ 1 + D2�̄ 1�̂ ); (4.52)

and note thatD�̄ 2 = � D�̄ 1, andD2�̄ 2 = � D2�̄ 1.

The perturbed stress balance condition in the tangential and normal direction, respectively,

reads,

[ikû + D̂v + D2v̄�̂ ]2 � � [ikû + D̂v + D2v̄�̂ ]1

+ We[" 2D�̄ 2(ikD�̄ 2�̂ + ik�̂ 2) � " 1D�̄ 1(ikD�̄ 1�̂ + ik�̂ 1)] = 0; (4.53)

� p̂2 + 2[Dû � ikD̄v�̂ ]2 + p̂1 � 2� [Dû � ikD̄v�̂ ]1

+ We[" 2D�̄ 2(D2�̄ 2�̂ + D�̂ 2) � " 1D�̄ 1(D2�̄ 1�̂ + D�̂ 1)] =
1

Ca
[

�̂
(a + 1)2

� k2�̂ ]: (4.54)

The perturbed kinematic condition is,

! �̂ + ikv̄2�̂ � û2 = 0: (4.55)

4.3 Results and discussion

4.3.1 E� ects of the electric �eld

This Section discusses the in�uences of electric �eld on instability of the interface theoretical-

ly. The governing equation of the perturbed electric �eld can be solved by Bessel's function,

�̂ 1 = e1I0(kr) + e2J0(kr); �̂ 2 = e3I0(kr) + e4J0(kr); (4.56)
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in which I0, J0 are modi�ed Bessel's functions of order zero, andI0
0 = kI1, J0

0 = � kJ1

whereI1, J1 are modi�ed Bessel's functions of order one. Using the boundary conditions, the

coe� cients are determined as follows,

e1 =
1
P

1 � �

(a + 1)[� ln a
a+1 + ln a+1

b ]
�̂; (4.57)

e2 = � I0(kb)=J0(kb)e1; (4.58)

e3 = Qe1; (4.59)

e4 = � I0(ka)=J0(ka)Qe1; (4.60)

with

P = Q
I0(ka+ k)J0(ka) � J0(ka+ k)I0(ka)

J0(ka)
�

I0(ka+ k)J0(kb) � J0(ka+ k)I0(kb)
J0(kb)

; (4.61)

Q = �
J0(ka)
J0(kb)

I1(ka+ k)J0(kb) + J1(ka+ a)I0(kb)
I1(ka+ k)J0(ka) + J1(ka+ a)I0(ka)

: (4.62)

In the normal stress balance condition Eq.(4.54), the term [" 2D�̄ 2D2�̄ 2 � " 1D�̄ 1D2�̄ 1]�̂ is equal

to � " 2� 2� " 1

(a+1)3[� ln a
a+1+ln a+1

b ]2 �̂ , and the other term [" 2D�̄ 2D�̂ 2 � " 1D�̄ 1D�̂ 1] = " 2� 2� " 1

(a+1)[� ln a
a+1+ln a+1

b ]
D�̂ 1.

According to the solution of the electric �eld,D�̂ 1 = k[I1(ka+ k) + I0(kb)J1(ka+ k)=J0(kb)]e1

which is modi�ed as,

D�̂ 1 =
k[I1(ka+ k) + I0(kb)J1(ka+ k)=J0(kb)]

P
1 � �

(a + 1)[� ln a
a+1 + ln a+1

b ]
�̂; (4.63)

then, the e� ect of electric �eld on the interfacial stability is proportional to,

[S
(" 2� 2 � " 1)(1 � � )

(a + 1)2[� ln a
a+1 + ln a+1

b ]2
�

" 2� 2 � " 1

(a + 1)3[� ln a
a+1 + ln a+1

b ]2
]�̂:

The parameterS = k[I1(ka+k)+I0(kb)J1(ka+k)=J0(kb)]
P . The value ofS is found to be always positive.
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For small to moderate Reynolds numbers, the system is susceptible to the Plateau-Rayleigh

instability and interface wave instability[98]. The former is caused by surface tension due

to the azimuthal curvature; and the latter is due to viscosity strati�cation. The capillary and

interface wave instabilities are associated with interface deformation. It is noted that, when

� 2 = " 1="2, the normal Maxwell stress becomes zero at the liquid-liquid interface.

Figure 4.2:(Color online) E� ective Growth rate versus disturbance wave number. (a)" 1 = 2,

" 2 = 10, � = 0:5. (b) " 1 = 5, " 2 = 10, � = 0:5. (c) " 1 = 10, " 2 = 1, � = 1. (d) " 1 = 5,

" 2 = 10, � = 1. The other parametersRe= Ca = a = H = � = � = 1.
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For this two-�uid core-annular system, when

� 2 > " 1="2 and � < 1 �
1

S(a + 1)
; (4.64)

or,

� 2 < " 1="2 and � > 1 �
1

S(a + 1)
; (4.65)

the electric �eld impedes the deformation of interface. Otherwise, it enhances the deformation

of interface. This two core-annular �ow system can be reduced to a bilayer system co�owing

between two parallel in�nite plates when the inner radiusa is in�nitely large, i.e., a ! 1 .

Eqs.(4.64) and (4.65) agree with the results by Ozen et al.[84] whena ! 1 and the charge

relation time is fast. Ozen et al.[84] proposed that, for the two-�uid layer �owing between two

parallel plates in a normal electric �eld, when� 2 > " 1="2 and� < 1, or� 2 < " 1="2 and� > 1,

the electric �eld can stabilize the system. Otherwise, the electric �eld destabilizes the system.

However, the criterion set by Ozen et al.[84] is only valid to explain the normal Maxwell

stress's e� ect which cannot be used to explain the e� ect of the tangential Maxwell stress[85].

The surface charge induces a tangential Maxwell stress which has an important e� ect on the

stability of the system. Nevertheless, for the core-annular �ow system, when the instability

is dominated by the capillary force, the theoretical results in Eqs.(4.64) and (4.65) can be

referred as a criterion of capillary instability. When the electric properties satisfy Eqs.(4.64)

or (4.65), the electric �eld can impede the capillary instability. Otherwise, the electric �eld

enhances the capillary instability. Furthermore, when the electric properties do not satisfy

Eqs.(4.64) or (4.65), the electric �eld always enhances the deformation of interface.

Since this chapter considers the leaky dielectrics, free charges accumulate at the liquid-liquid

interface which induces a tangential Maxwell stressqEt(q is the surface charge density andEt

is the tangential component ofE at the liquid-liquid interface). Viscous stress at the liquid-

liquid interface is balanced by the tangential Maxwell stress. In Eq.(4.53), the linearized
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Figure 4.3:(Color online) The tangential Maxwell stress e� ect on the growth rate. (a)" 1 =
2:5, " 2 = 10, � = 0:5, � = 1; (b) " 1 = 10, " 2 = 2:5, � = 2, � = 1; (c) " 1 = 2:5,
" 2 = 10, � = 0:5, � = 2; (d) " 1 = 10, " 2 = 2:5, � = 2, � = 2. The other parameters
Re= Ca = a = H = � = 1.
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Figure 4.4:(Color online) Perturbed �ow �eld plotted by the streamfunction 0. (a) " 1 = 10,
" 2 = 5, � = 2; (b) " 1 = 10, " 2 = 2:5, � = 2. The other dependent parametersRe= � = Ca =
a = H = � = 1, We= 10,k = 0:1.

tangential Maxwell stress is,

ik
(" 2� � " 1)

(a + 1)2[� ln a
a+1 + ln a+1

b ]2
(1 + R(1 � � ))�̂;

in which, R = I0(ka+k)� I0(kb)J0(ka+k)=J0(kb)
P < 0. The tangential Maxwell stress is zero when

� = " 1="2. In this situation, the two liquids could be viewed as perfectly non-conducting.

The in�uence of the tangential Maxwell stress on the interfacial instabilities(the capillary and

interface wave instabilities) is very complex because it is coupled with the viscous stress. Par-

ticularly, when� = " 1="2 = 1, the electric �eld has no in�uences on the system because both

the normal and tangential Maxwell stress are zero in the stress balance condition. Numerical

examination of in�uences of the electric �eld on the interfacial instabilities will be presented

in the next section.
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Figure 4.5:(Color online) (a) Electric permittivity on the e� ective growth rate. The dependent
parametersRe= � = Ca = We= a = 1, H = 0:5, � = � = 0:1. (b) Electric conductivity ratio
on the e� ective growth rate. The dependent parametersRe= � = Ca = We= a = 1, H = 0:5,
� = 0:1, " 1 = 1, " 2 = 2.

4.3.2 Numerical results

This section presents the numerical results of the linear stability analysis. The eigenvalue

problem was resolved by the Chebyshev collocation method. The computation domain of

each layer was transformed to the Chebyshev domain [� 1; 1].

The transformation for the inner layer is,

y2 = 2(r � a) � 1: (4.66)

The transformation for the outer layer is,

y1 = 2
r � (a + 1)
b � (a + 1)

� 1: (4.67)

The solution of the perturbed system is achieved by Chebyshev polynomials,

[û; v̂; �̂ ] i =
NX

j=0

[U j;Vj; � j] iT j; (4.68)
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Figure 4.6: (Color online) (a) Inner radius of the duct on the e� ective growth rate. The
dependent parameters are" 1 = 1, " 2 = 10, � = 0:5, Ca = 0:1, We = a = H = Re =
� = � = 1. (b) Capillary numberCa on the e� ective growth rate. The depending parameter
Re= a = H = � = � = 1, We= 0.

whereT j = cos(j cos� 1 y) with y 2 [� 1; 1] is the Chebyshev polynomial.

As shown in Figure4.2(a), when� 2 > " 1="2 and� < 1 � 1
S(a+1), the electric �eld impedes the

capillary instability. Figure4.2(b) shows that when the electric �eld strength increases, i.e.,

increasing the value ofWe, the e� ective growth rate! r increases indicating that the electric

�eld is destabilizing when� 2 < " 1="2 and� < 1 � 1
S(a+1). In Figure4.2(a,b), we reproduced

the results by Ozen et al. [84] at the limiting casea = 1 . Figure4.2(a,b) show that, when

a is large, the results agree with the results of a planar system[84] . In Figure4.2(c), when

� 2 < " 1="2 and � > 1 � 1
S(a+1), the electric �eld stabilizes the system. In Figure4.2(d),

� 2 > " 1="2 and� > 1 � 1
S(a+1), the electric �eld is destabilizing.

To examine the tangential Maxwell stress on the interfacial instability, two typical values of

electric conductivity ratio is chosen,� = 0:5;2 and the permittivity ratio" = " 1="2 = � 2 so

that the normal Maxwell stress vanishes in Eq.(4.54). Results in Figure4.3 illustrate that the

e� ect of tangential Maxwell stress on the instability is strongly in�uenced by the viscosity

ratio. As seen in Figure4.3(a), for � 2 = " 1="2 = 0:25, � = 1, the electric �eld is stabilizing;

when� 2 = " 1="2 = 4, � = 1, the electric �eld is destabilizing as shown in Figure4.3(b).
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Figure 4.7:(Color online) Thickness ratio on the e� ective growth rate. The dependent pa-
rametersRe= � = � = Ca = We= a = 1, " 1 = 5, " 2 = 10, � = 0:1.

Figure 4.8:(Color online) Viscosity ratio on the e� ective growth rate. (a)" 1 = 5, " 2 = 10,
� = 1. (b) " 1 = 5, " 2 = 10, � = 0:1. The other parametersRe= � = Ca = We= 1, a = 1,
b = a + 2.
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Figure 4.9:(Color online) (a) Marginal stability curveWe� k. (b) The critical electric Weber
number versus the conductivity ratio. The depending parameters are" 1 = 10, " 2 = 1, Re =
� = Ca = a = H = 1, � = 5.

When the viscosity ratio is increased to� = 2, the electric �eld's in�uence on the stability

is changed. In Figure4.3(c), although the input electric properties are the same as those in

Figure4.3(a), the electric �eld is destabilizing. Furthermore, same input values of electric

properties are selected in Figure4.3(d) as in Figure4.3(b). The electric �eld stabilizes the

long-wave mode but destabilizes the short wave mode as is seen in Figure4.3(d).

Both the normal and tangential Maxwell stresses are found to either stabilize or destabilize

the interface. To show the e� ects of normal and tangential Maxwell stress on the perturbed

�ow �eld are di � erent, a streamfunction of the perturbed �ow �eld 0 is de�ned as follows,

u0
i =

1
r

@ 0i
@z

; v0
i = �

1
r

@ 0i
@r

; (4.69)

where (u0; v0)i is the velocity of the perturbed �ow system.

Figure4.4illustrates the electric �eld's in�uence on �ow �eld in the long-wave range. In Fig-

ure4.4(a), tangential Maxwell stress vanishes for the input electric properties while the nor-

mal stress destabilizes the interface. In Figure4.4(b), the selected values of electric properties

are the same as those in Figure4.3(b) that the tangential Maxwell destabilizes the interface
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Figure 4.10: (Color online) (a) Marginal stability curveWe� k. (b) The critical electric
Weber number versus the permittivity ratio" = " 1="2. The depending parameters are" 2 = 10,
Re= � = � = Ca = a = H = 1, � = 5.

and the normal Maxwell stress is zero. It can be observed that, the convection cells in Figure

4.4(a) are di� erent from that in Figure4.4(b). Since in the long-wave range, the instability

is dominated by capillary forces. In Figure4.4(a), convection is due to the deformation of

interface caused by the capillary instability and the �ow pattern will not change no matter

how large the electric �eld is imposed; while in Figure4.4(b), the tangential Maxwell stress

can induce a circulation �ow in each layer and the �ow pattern may change with the imposed

electric �eld because its magnitude changes with the imposed strength of electric �eld. The

instability caused by the tangential Maxwell stress is very much like that of Marangoni e� ect

[128].

The e� ect of the dielectric permittivity on the growth rate is shown in Figure4.5(a). The

permittivity " 1 = 1 is held �xed. The value of" 2 is varied to study the in�uence of permittiv-

ity on the dispersive relation. In Figure4.5(a), the selected parameters give� 2 < " 1="2 and

� < 1 � 1
S(a+1). Thus, the electric �eld is destabilizing. The e� ect of the electric �eld on the

interfacial deformation is proportional to� 2 � " 1="2 < 0. The value ofj� 2 � " 1="2j(the desta-

bilizing e� ect of the electric �eld) decreases as" 2 increases. Therefore, when" 2 increases,

the e� ective growth rate decreases. Figure4.5(b) presents the in�uence of the electric con-
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ductivity ratio� = � 1=� 2 on the e� ective growth rate and indicates the growth rate decreases

with increasing the conductivity ratio. For the selected parameters, the value ofj� 2 � " 1="2j

decreases as� increases. As a result, the enhancement of the electric �eld on the deformation

of interface decreases as� increases. Therefore, the growth rate decreases as� increases.

Here, (! m; km) is de�ned as the e� ective growth rate and wave number of the most unstable

perturbation as shown in Figure4.5(b). The most unstable perturbation is the major cause

of interfacial instabilities, and its wave length characterizes the size of liquid droplets that is

formed due to the interface's rupture [81].

In�uence of the radius of the inner cylinder on the growth rate is shown in Figure4.6(a). It

should be noted that whenk < 1
a+1, the destabilizing e� ect of surface tension dominates its

stabilizing e� ect. Whenk < 1
a+1, reducing the inner radiusa would increase the destabilizing

e� ect [54]. Thus, the system would be more unstable whena becomes smaller. Similar

results are shown in Figure4.6(b), in which, the electric Weber number is �xed at zero so as

to investigate the in�uences of surface tension. Obviously, the capillary force is destabilizing

the system in the long wave range due to the azimuthal curvature.

Figure4.7 shows the in�uence of thickness of the outer layerH. The growth rate decreases

with increasing the thickness of the outer layer. First, the total �uid mass increases when

the thickness of the outer liquid layer increases. Second, the electric strength reduces as the

radiusb increases [90]. Therefore, the e� ective growth rate decreases with increasing the the

thickness of the outer layer.

The in�uences of the viscosity ratio� is further investigated. Results are shown in Figure

4.8. Figure4.8(a) shows that the e� ective growth rate! r increases with increasing� , while

in Figure4.8(b), the e� ective growth rate! r decreases with increasing� . Results in Figure

4.8 show the viscosity either destabilizes or stabilizes the system. The destabilizing e� ect is

due to viscosity strati�cation [98]. However, the viscous dissipation of the system increases

for a larger� . As a result, the system becomes more stable as shown in Figure4.8(b).
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Figure 4.11:(Color online) (a) The Reynolds numberReon the e� ective growth rate. The
dependent parameters� = � = Ca = We= a = H = 1, " 1 = 5, " 2 = 10, � = 0:1. (b) The
contour plot of growth rate inRe� k plane. The dependent parameters are the same as �gure
4.11(a). (c) The marginal stability curves for interface wave mode. The dependent parameters
� = 1, a = 0:1, H = 0:1, � = 0:5, J = 0, " 1 = 10, " 2 = 2:5, � = 2. (d) The marginal stability
curves for interface wave mode. The dependent parameters� = 1, a = 0:1, H = 0:1, � = 0:5,
J = 0, " 1 = 10," 2 = 5, � = 2.
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It is of interests to investigate how large the electric �eld should be imposed, such that it

can impede the capillary instability. To study the problem, the marginal curve inWe� k

plane is plotted in Figure4.9(a), where the electric properties are chosen that the electric

�eld can impede the capillary instability. The viscosity ratio is� = 5 and the Reynolds

number is �xed atRe = 1. The marginal stability curves in Figure4.9(a) shows that the

unstable region enlarges and the critical Weber numberWec increases as the conductivity

ratio increases which indicates that a larger electric �eld should be imposed to stabilize the

interface for a larger conductivity ratio. It is obvious that the capillary instability can be

stabilized by an external electric �eld since a stable region exists whenWeexceeds its critical

value. However, when� = 4, it is observed that these is no such critical Weber number since

the electric �eld enhances the instability for the input values of electric properties� , " 1 and

" 2. As is seen in Figure4.9(b), the critical electric Weber number increases with� and no

critical electric Weber number is found by us when� � 3:9. It is found that there is a critical

electric Weber number when� = 3:7(� 2 > " 1="2) and the electric �eld has a stabilizing e� ect

that can impede the capillary instability, although the normal Maxwell stress enhances the

capillary instability(� 2 > " 1="2). Therefore, it can be concluded that, the stabilizing e� ect of

the electric �eld is due to the tangential Maxwell stress.

To examine the in�uence of electric �led on the marginal curves, the value of conductivity

ratio is �xed, but the permittivity ratio" 1="2 is varied. Here, to simplify the discussion, the

conductivity ratio is �xed at� = 1 and the permittivity" 2 = 10. The value of" 1 is varied

from " 1 = 1 to " 1 = 20. Figure4.10(a) shows that, when" 1 � 10, there is no critical electric

Weber number. The marginal curve does not depend onWewhen" 1 = 10 due to the absence

of Maxwell stress. The electric �eld can stabilize the interface with increasing the value of" 1.

For instance," 1 = 10:5, whenWeis larger thanWec, the capillary instability is completely

impeded. As the value of" 1 increases, the suppression of the electric �eld on the capillary

instability becomes more signi�cant as seen in Figure4.10(a). This phenomenon agrees with
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Figure 4.12:(Color online) (a) The conductivity ratio� versus the maximum value of 1� 1
S(a+1)

in wavenumber range [0;16]. (b) The marginal stability curves for interface wave mode. The
dependent parameters� = 1, a = 0:1, H = 0:1, � = 0:5, J = 10," 1 = 9, " 2 = 10, � = 0:9.

the analysis in the Section (4.3.1) that the electric �eld impedes the capillary instability when

� 2 < " 1="2 and� > 1 � 1
S(a+1). In Figure4.10(b), the critical electric Weber numberWec is

plotted against the permittivity ratio" 1="2. The critical electric Weber number is observed to

decrease with increasing" .

The in�uence of Re on the capillary mode is examined and results are shown in Figure

4.11(a,b). It is found that the largerRethe smaller is the growth rate in Figure4.11(a). The

value ofRecan be increased through increasingVI (the velocity at the interface). The interfa-

cial shear e� ect will be enhanced asReincreases. Dijkstra indicated that the interfacial shear

can stabilize the capillary breakup phenomenon [98]. In this system, the e� ective growth

rate decreases with increasingRe, which also indicates that the interfacial shear impedes the

capillary instability. To exemplify the in�uences ofReon the capillary instability, the contour

lines of growth rate is plotted in theRe� k plane as shown in �gure4.11(b). First, the wave

numberk is �xed, for instance,k = 2:5. Then, the growth rate decreases asReincreases. The

marginal curve corresponding to the zero growth rate in Figure4.11(b) bends leftward which

indicates that the capillary instability is stabilized by interfacial shear.
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Figure 4.13: (Color online) The electric Weber number on the maximum growth rate and
wave number. The dependent parametersRe = � = Ca = 4h = 1, � = � = 0:1, " 1 = 5,
" 2 = 10.

The interface may be unstable due to viscosity strati�cation (interface wave mode) whenRe

is moderate [98]. Furthermore, the marginal curves are plotted in theRe� k plane to examine

the in�uence of electric �eld on the interface wave mode due to viscosity strati�cation across

the interface. Results are shown in Figure4.11(c,d). In order to discuss the in�uences of

electric �eld on the interface wave mode, the capillary numberCa is replaced byRe=J where

J = 
 h0� 2=� 2
2. The surface tension numberJ is �xed at zero so that the capillary instability

due to the azimuthal curvature vanishes. The input values in Figure4.11(c) are chosen with

the reference from Dijkstra [98], but the values of radiia, b are slightly di� erent. In our case,

a = 0:1. While in the work of Dijkstra [98], a � 0:11. WhenWe = 0, a similar marginal

curve as that by Dijkstra [98] can be reproduced. WhenWe> 0, for the selected input values

of electric properties in Figure4.11(c), the normal Maxwell stress is zero. The marginal curve

moves leftward asWeincreases, which indicates that the tangential Maxwell stress enhances

the interface wave instability since the stable region in theRe� k plane becomes smaller. In

�gure 4.11(d), the electric properties are �xed at" 1 = 10," 2 = 5, � = 2, so that the tangential

component of Maxwell stress is zero in Eq.(4.53). In Figure4.11(d), it can be observed that

the electric �eld enhances the interface wave mode since the stable region in theRe� k plane

92



shrinks asWeincreases. Results in Figure4.11(d) indicate that the electric �eld enhances the

deformation of the interface(� 2 > " 1="2 and� > 1 � 1
S(a+1)), thus destabilizes the system.

It would be interesting to ask “can the electric �eld impede the interface wave instability in

Figure4.11(c,d) as well as the capillary instability?” The condition� = " 1="2 is considered

so that no tangential Maxwell stress is present on the interface. According to Eq.(4.65), the

condition that the electric �eld can stabilize the interface requires:

1 �
1

S(a + 1)
< � <

p
" 1="2; (4.70)

and� = " 1="2 implies that� < 1. Whena ! 1 , these is no such condition in Eq.(4.70) that

the electric �eld can impede the interface wave mode when� = " . The expression ofS varies

with the wavenumberk, the radiia; b, and the conductivity ratio� . Here, the radii are �xed at

a = 0:1, b = 1:2. In the range of wavenumberk 2 [0;16], A su� cient condition for� that the

electric �eld can impede the interfacial instabilities(capillary and interface wave instabilities)

is obtained by modifying Eq.(4.70) as,

maxf1 �
1

S(a + 1)
g< � < 1: (4.71)

Such a range of� in Eq.(4.71) does exist as shown in Figure4.12(a) as indicated by “stabiliz-

ing region”. In this region, the electric �eld can stabilize the interfacial instabilities because

it impedes the deformation of interface.

Numerical veri�cation of Eq.(4.71) is shown in Figure4.12(b). The surface tension number

in Figure4.12(b) is �xed at J = 10 which changes the topology of the marginal curve of

the interface wave branch. The conductivity ratio and permittivity ratio are� = " = 0:9.

The interface wave branch moves upward while the capillary branch moves downward asWe

increases, demonstrating that the electric �eld can impede the capillary the interface wave

instabilities. Apart from that, Figure4.12(b) also shows that the interfacial shear can sup-
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Figure 4.14:(Color online) The electric conductivity ratio on the maximum growth rate and
wave number. The dependent parametersRe= � = Ca = H = We= a = 1, � = 0:1.

press the capillary instability. The destabilizing e� ect of the electric �eld on the interface is

investigated because liquid mixing in micro-scale channels is of particular importance. The

Renumber is usually very small in micro-scale �ow systems, typicallyRe= O(1). Therefore,

in the following discussion,Reis �xed at Re= 1.

The electric Weber numberWeis plotted against! m andkm in Figure4.13. It is observed

that, a largerWeis describing a larger! m andkm. It indicates that, when the input parameters

� 2 < " 1="2 and� < 1 � 1
S(a+1), the electric �eld enhances the deformation of the interface,

thus destabilizing the system.

Figure4.14shows the conductivity ratio's in�uence on! m andkm. The magnitude of elec-

tric �eld's e � ect on the deformation of interface is proportional toj� 2 � " 1="2j. When� <

1 � 1
S(a+1), and� 2 < " 1="2, the interfacial deformation is enhanced by the electric �eld and

the electric �eld plays a destabilizing role in the system. The value ofj� 2 � " 1="2j decreases

with increasing� . As a result, the enhancement of electric �eld on the interfacial deforma-

tion reduces. Therefore, both the maximum growth rate! m and maximum wave numberkm

decrease. With the increase in� , the electric �eld may stabilize the system, i.e.! m � 0.

This can be seen from the stable region for" 1 = 5 and" 2 = 10. When� 2 > " 1="2 and
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Figure 4.15:(Color online) The viscosity ratio on the maximum growth rate and wave number.
The dependent parametersRe= � = Ca = We= a = 1, � = 0:1, " 1 = 5, " 2 = 10.

� > 1� 1
S(a+1), the electric �eld destabilizes the system, and the value ofj� 2 � " 1="2j becomes

larger as� increases. As a result, the system becomes more unstable when� increases.

When� is small and� 2 < " 1="2, ! m andkm increases as the value of" = " 1="2 increases. This

is because the value ofj� 2 � " j increases with increasing" when� 2 < " , and the destabilizing

e� ect of the electric �eld is enhanced. When� 2 > " and� > 1 � 1
S(a+1), the value of� 2 � "

reduces with increasing" . Thus the maximum growth rate decreases. However, because

the selected input values of (" 1; "2) are chosen that� 2 � " , " does not have signi�cant

in�uences on the growth rate and wave number when� 2 > " and� > 1 � 1
S(a+1), although

it is found that the maximum growth rate is slightly decreased as shown in Figure4.14. The

in�uence of viscosity ratio� on ! m andkm are plotted in Figure4.15. For the selected input

parameters, the maximum growth rate! m decreases with increasing the viscosity ratio� due

to the viscous dissipation. In�uence of viscosity ratio� on the maximum wave numberkm is

not signi�cant when� is large. It is observed that when� is very small,km decreases initially,

then increases. This phenomenon implies that the unstable mode changes. Figure4.16shows

that the perturbed �ow �eld is stronger in the outer layer when� = 0:1, while it is stronger in

the inner layer when� = 4.
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Results in Figure4.16 indicate that for small� , instability is dominated by the outer layer,

while for large� , instability is dominated by the inner layer. Physically, the viscous dissipa-

tion e� ect is associated with the �uid viscosity. The viscous dissipation e� ect is stronger in

the inner layer for small viscosity ratio, while it is stronger in the outer layer for large viscos-

ity ratio. As a result, increasing� shifts the domination of instability from the outer layer to

the inner layer. Apart from that, results in Figure4.15show that the larger thickness ratio the

smaller are! m andkm.

Figure 4.16:(Color online) Perturbed �ow �eld plotted by the streamfunction 0. The depen-

dent parametersRe= � = Ca = We = a = H = 1, � = 0:1, " 1 = 5, " 2 = 10. (a)� = 0:1,

k = 2:13; (b)� = 4, k = 2:13.
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Chapter 5

Electrohydrodynamic instability in an
annular liquid layer with radial
conductivity gradients

5.1 Mathematical Formulation

In Chapter3 and Chapter4, the interfacial instability of annular liquid layers in a radial

electric �eld has been discussed in which in�uence of the Maxwell stress at the liquid-liquid

or liquid-gas interface on the interfacial dynamics has been examined. This Chapter devotes

to electro-convection of an annular liquid layer with an electric conductivity gradient in the

radial direction as shown in Figure5.1. The liquids are eletrolyte solutions and considered

to be Newtonian with constant density� , kinematical viscosity� , and dynamical viscosity

� = �� . An electric �eld is imposed in the radial direction and a constant pressure gradient is

imposed along the axis.

Figure 5.1:Geometry of the system. (a) Side-view. (b) Cross-view.
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In this chapter, the three-dimensional hydrodynamical problem is considered. The cylindrical

coordinates (r; �; z) are chosen. Gravity is neglected. Fluids are governed by the continuity

equation and the momentum equation,

r � v = 0; (5.1)

�
Dv
Dt

= � r p + � r 2v + f ; (5.2)

wherev = uer + ve� + wez is the velocity. D
Dt is the material derivative operator.f is the electric

force which can be related to the Maxwell stress tensorTM by,

f = r � TM: (5.3)

Usually, analysis of Eq.(5.2) is di� cult because the electric �eld is coupled to the free charge

density� e according to Maxwell's equations. Moreover, the free charge density is coupled to

the �ow �eld. This Chapter assumes that the electric current densityJe as well as the induced

current density@"E
@t are modest so that the induced magnetic �eld is negligible. Therefore, the

electrostatic problem is considered,

r � E = 0: (5.4)

Hence, the Maxwell stressTM = " EE� 1
2"kEk2I. The parameter" is the dielectric permittivity

and E is the electric �eld. ThekEk2 = E � E andI is the identity tensor. Since the charge

density is given by the Gauss's law,

� e = r � (" E); (5.5)

the momentum equation (5.2), now is re-written as,

�
Dv
Dt

= � r p + � r 2v + � eE �
1
2

kEk2r ": (5.6)
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The term1
2kEk2r " is ignored and the electric permittivity" is assumed to be constant.

The electrostatics is considered in this Chapter and the electric �eldE can be related to the

gradient of electric potential by

E = � r �: (5.7)

Conservation of electric charge gives,

@�e
@t

+ r � Je = 0: (5.8)

In this Chapter, the liquid is an Ohmic conductor which neglects the di� usion of the charge.

Then the current densityJe is given by,

Je = � E + � ev; (5.9)

where� is the electric conductivity. Substituting Eq.(5.9) into the current conservative law

gives,
D� e

Dt
+ r � (� E) = 0: (5.10)

Since the liquid layer is an ionic conductor, the conductivity of which is dependent on the local

ionic concentration. The conductivity can be described by the following di� usion equation as

proposed by Melcher [104],
D�
Dt

= Ke f fr 2�; (5.11)

whereKe f f is an e� ective di� usivity due to the Brownian motion of the ions [101, 105]. Lin

et al. derived a similar equation describing the di� usion of electric conductivity from the

species conservation law [100] and the electric conductivity was linearly dependent on the

ionic concentration. The e� ective di� usivity Ke f f can be related to the di� usive coe� cients

of species in the work of Lin et al. through a linear combination [100]. Equation (5.11) is valid
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if the local electric time is much faster than the �uid time and the time for ion electromigration

[101, 105],
�

� 0
�

d2

�
�

d
$ E0

and
d2

$kBT
; (5.12)

in which, kBT is the Boltzmann temperature,$ is a characteristic mobility of the charge-

carrying solutes andd is the thickness of the liquid. The di� usive termKe f fr 2� is suggested

by Baygents and Baldessari [101] who indicated that the di� usion term had a stabilizing e� ect

and was responsible for the existence of a threshold electric �eld below which the �ow was

stable. This has also been pointed out in Ref.[100]. In the study of Chang et al. [105],

it is implied that when the di� usion term is neglected, the transverse mode is always stable.

Hence, the di� usion term is retained and its e� ect on the stability of the �ow will be discussed.

At the inner boundaryr = a, there are non-slip and non-penetration boundary conditions,

u = v = w = 0: (5.13)

The electric conductivity atr = a is given,

� = � 0: (5.14)

At the outer boundary,r = b, the non-slip and non-penetration conditions are considered,

u = v = w = 0: (5.15)

The electric conductivity atr = b is given as well,

� = � 1: (5.16)
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5.2 Non-dimensionalization and base state

5.2.1 Dimensional base state

The velocity in the radial and azimuthal directions vanishes at the base state, i.e. ¯u = v̄ = 0.

The �ow is parallel to the axis which is driven by a constant pressure gradient@̄p
@z = C. The

electric �eld is parallel to the radial direction at the base state. Therefore, the �ow �eld and

the electric �eld are decoupled. The velocity pro�le at the base state is:

w̄ =
C
4�

(r2 �
b2 ln(r=a) � a2 ln(r=b)

ln(b=a)
): (5.17)

The pressure ¯p at the base state is written as ¯p = f (r) + Cz. The variables with the over bars

represent the respective variables at the base state.

Assuming that the shear �ow does not disturb the steady conductivity pro�le, then the con-

ductivity pro�le at the base state is described by,

�̄ =
� 1 ln(r=a) � � 0 ln(r=b)

ln(b=a)
: (5.18)

The electric �eld is obtained from the charge conservation equation (5.10),

Ēr =
aE0� 0 ln(b=a)

r[� 1 ln(r=a) � � 0 ln(r=b)]
; (5.19)

whereE0 is the electric strength atr = r0. Note that, the per unit length currenti across the

�uid layer (the length is along the axial direction) can be de�ned asi = er

R2�

0
�̄ Ērrd� . At the

base state,i = a� 0E0er is constant indicating that a constant electric current is applied across

the �uid layer. The electric strength atr = b is Er = a� 0
b� 1

E0.
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The electric potential at the base state is de�ned as,

�̄ = � 0 � aE0� 0 ln(b=a)
ln[� 1 ln(r=a) � � 0 ln(r=b)]

� 1 � � 0
; (5.20)

where� 0 is the reference electric potential.

The charge density ¯� e is obtained from the Gauss's law,

�̄ e = � (
1
r

@rEr

@r
) = �

� (� 1 � � 0)aE0� 0 ln(b=a)
r2[� 1 ln(r=a) � � 0 ln(r=b)]2

: (5.21)

5.2.2 Nondimensional system

The nondimensional scales are introduced here: the length scaled = b � a, the velocity scale

W = � Cd2

8� , the time scaled=W, the pressure scale� W2, the electric strength scaleE0, the

conductivity scale� � = � 1 � � 0, the charge density scale" E0� �
d� 0

. The current densityJe is

scaled by referring toE0� 0 and the non-dimensionalJ0
e is expressed as,

J0
e =

� �
� 0

� 0E0 + E0 +
� �
� 0

"=� 0

d=W
� 0

ev
0: (5.22)

Naturally, the dimensionless governing equations emerge,

r � v = 0; (5.23)

Dv
Dt

= � r p +
1
Re

r 2v + Qr 2� r �; (5.24)

D(r 2� )
Dt

+ Rt[(1 + �� )r 2� + � r � � r � ] = 0; (5.25)

D�
Dt

=
1

ReS ce
r 2�; (5.26)

where the electric charge� e in the momentum equation is eliminated by using the dimension-
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less Poisson's equation,

� e = �
1
�

r 2�: (5.27)

Re = Wd
� is the Reynolds number;Q =

� E2
0

� W2 which measures the ratio of electric force to

inertia force;� = � �
� 0

which characterizes the conductivity gradient for a given channel gap

d; Rt = d=W
"=� 0

which measures the ratio of viscous relaxation time to electric relaxation time;

S ce = �
Ke f f

is the Schmidt number. The parameterRt = 1
Re

d2� 0
�" is usually a large number

and has the magnitude of 107 provided thatRe = O(1), d = 10� 3m, � 0 = 10� 2S=m, " =

10� 9C=(m� V), � = 10� 6m2=s. Hence, the termD(r 2� )
Dt can be neglected[105].

The dimensionless boundary conditions atr = a are

u = v = w = 0; (5.28)

� = 0: (5.29)

At r = b, the dimensionless boundary conditions write

u = v = w = 0; (5.30)

� = 1: (5.31)

The dimensionless base state is de�ned as follows,

w̄ = � 2[r2 �
(b2 � a2) ln(r=a) + a2 ln(b=a)

ln(b=a)
]; (5.32)

�̄ =
ln(r=a)
ln(b=a)

; (5.33)

Ēr =
aln(b=a)

r[� ln(r=a) + ln(b=a)]
; (5.34)
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�̄ = �
a ln(b=a)

�
ln[� ln(r=a) + ln(b=a)]; (5.35)

�̄ e = �
a ln(b=a)

r2[� ln(r=a) + ln(b=a)]2
: (5.36)

Note that the charge density ¯� e is negative, while the base state of the electric �eld is positive.

Therefore, the electric body force� eE acts in the opposite direction to the radial direction.

When the radiusa ! 1 , the base state reduces to the problem studied by Chang et al. [105]:

w̄(x) = 4(x � x2); (5.37)

�̄ = x; (5.38)

Ēr =
1

� x + 1
; (5.39)

�̄ = �
1
�

ln(� x + 1); (5.40)

�̄ e = �
1

(� x + 1)2
; (5.41)

wherex = r � a represents the wall-normal direction.

The base state (5.32)-(5.36) of this system depends on the inner radiusa and� . The charge

density ¯� e and the electric �eld strength̄Er are plotted in Figure5.2. Figure5.2(b) and Fig-

ure 5.2(d) show that the electric-�eld strength decreases more rapidly for a smallera. For

instance, whena = 0:1, � = 10, Er decreases from 1 to 0:1 nearr = 0:3. However, when

a = 10, � = 10, the electric-�eld strengthEr decreases from 1 to 0:1 nearr = 10:8. The

charge density also decreases more rapidly for a smallera by comparing Figure5.2(a) with

5.2(c). Furthermore, in Figure5.2, it implies that for a large conductivity gradient, the portion

of the �uid layer where the electric force ¯� eĒr is appreciable is proximal to the inner surface.
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Figure 5.2:(a),(c): the charge density of the base state. (b),(d): the strength of the electric
�eld at the base state. (a),(b) are plotted at the dimensionless radiusa = 0:1; (c),(d) are plotted
at the dimensionless radiusa = 10.
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5.3 Linear stability analysis

Although the analytical base state has been obtained in Sec.5.2, it is not necessary to be stable.

To investigate the stability of the �ow, the linear stability theory by introducing in�nitesimal

disturbances into the system is applied,

v = v̄ + v0; p = p̄ + p0; � = �̄ + � 0; � = �̄ + � 0: (5.42)

The variablesv0 = u0er + v0e� + w0ez, p0, � 0 and� 0 are the in�nitesimal disturbances. On

substituting the perturbed variables (v; p; �; � ) into the dimensionless governing equations,

and after linearizing, the governing equations of the in�nitesimal disturbances obtained are:

@u0

@r
+

u0

r
+

1
r

@v0

@�
+

@w0

@z
= 0; (5.43)

@u0

@t
+ w̄

@u0

@z
= �

@p0

@r
+

1
Re

(r 2u0 �
u0

r2
�

2
r2

@v0

@�
) + Q(r 2�̄

@�0

@r
+

@̄�
@r

r 2� 0); (5.44)

@v0

@t
+ w̄

@v0

@z
= �

1
r

@p0

@�
+

1
Re

(r 2v0 �
v0

r2
+

2
r2

@u0

@�
) +

Qr 2�̄
r

@�0

@�
; (5.45)

@w0

@t
+ w̄

@w0

@z
= �

dw̄
dr

u0 �
@p0

@z
+

1
Re

r 2w0 + Qr 2�̄
@�0

@z
; (5.46)

@(r 2� 0)
@t

+ w̄
@(r 2� 0)

@z
= �

d(r 2�̄ )
dr

u0� Rt[(1+ � �̄ )r 2� 0+ � (r 2�̄� 0+
d�̄
dr

@�0

@r
+

d�̄
dr

@�0

@r
)]; (5.47)

@�0

@t
+ w̄

@�0

@z
= �

d�̄
dr

u0 +
1

ReS ce
r 2� 0; (5.48)

wherer 2 = @2

@r2 + 1
r

@
@r + 1

r2
@2

@�2 + @2

@z2 and noting thatr 2�̄ = � � �̄ e,
@̄�
@r = � Ēr .
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In a standard way, the normal mode analysis is considered,

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

v0

p0

� 0

� 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

v̂(r)

p̂(r)

�̂ (r)

�̂ (r)

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

exp[i(n� + kz) + ! t]; (5.49)

wherek is the streamwise wavenumber,n is the azimuthal wavenumber,! = ! r + i! i is the

complex temporal growth rate whose real part! r describes the exponent growth rate of the

amplitudes of disturbances, and the hats denote the Fourier amplitudes of disturbances. The

normal mode analysis results in the eigenvalue problem of! .

The velocity and electric conductivity atr = a;b are �xed, thus boundary conditions of the

perturbed system atr = a;b are expressed as follows,

û = v̂ = ŵ = �̂ = 0: (5.50)

The radial component of the electric �eldEr at the boundary is assumed to be �xed, then the

perturbed conditions of electric potential at the inner and outer surface are,

d�̂
dr

= 0: (5.51)

A Chebyshev collocation method is implemented to resolve the eigenvalue problem, and the

physical domain is transformed to the Chebyshev domain,

� = 2
r � a
b � a

� 1: (5.52)
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The variables ˆu, v̂, ŵ, p̂, �̂ , �̂ are expanded as

û =
NX

0

amTm(� ); v̂ =
NX

0

bmTm(� ); ŵ =
NX

0

cmTm(� );

p̂ =
NX

0

dmTm(� ); �̂ =
NX

0

emTm(� ); �̂ =
NX

0

fmTm(� );

(5.53)

whereTm(� ) denotes themth Chebyshev polynomial.

When the azimuthal wavenumbern = 0 anda ! 1 , the eigenvalue problem reduces to,

Dû + ikŵ = 0; (5.54)

! û + ikw̄û = � Dp̂ +
1
Re

L û + Q[D2�̄ D�̂ + D�̄ L �̂ ]; (5.55)

! ŵ + ikw̄ŵ = � Dw̄û � ikp̂ +
1
Re

L ŵ + ikQD2�̄ �̂; (5.56)

! L �̂ + ikw̄L �̂ = � D3�̄ û � Rt[(1 + � �̄ )L �̂ + � (D2�̄ �̂ + D�̄ D�̂ + D�̄ D�̂ )]; (5.57)

� �̂ + ikw̄�̂ = � D�̄ û +
1

ReS ce
L �̂; (5.58)

whereL = D2 � k2, D= d
dx.

The equations (5.54)-(5.58) are solved with the boundary conditions atx = 0;1,

û = ŵ = �̂ = D�̂ = 0: (5.59)

The above system is identical to the two-dimensional problem studied by Chang et al. [105].
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5.4 Results and Discussion

This section is organized into two parts. In the �rst part, the limiting case of an in�nitely

large inner radius,i:e: a ! 1 , is considered. The two dimensional axisymmetric system is

investigated by comparing the results with the previous study of Chang et al. [105] to examine

the validity of “our numerical method”. The second part deals with the three dimensional

instability of the annular �ow under the consideration of a �nite inner radiusa. The parametric

studies on the stability characteristics are investigated.

5.4.1 Limiting case ofa ! 1

This section presents the results of the eigenvalue analysis which starts with the case of a

su� ciently large radius. Hence, a small parameter can be de�ned as

� =
b � a

a
: (5.60)

When� ! 0, the problem can be reduced to the problem studied by Chang et al. [105].

The dimensionless parameterQ is related to the Reynolds numberReand electric Schmidt

numberS ce as

Q =
Q0

Re2S ce
; (5.61)

whereQ0 =
� E2

0
� Ke f f=d2 represents the scaled electric energy density.

Figure5.3(a) illustrates the marginal stability curves in theQ0 � k plane which reproduces

the results by Chang et al. [105]. The critical point (Q0
c; kc) is compared with their results

[105] in Table5.1. It is found that some of the results in Ref.[105] are inaccurate. When the

parameter� exceeds some certain value, the marginal curve presents a bimodal structure[105],

for instance� = 50. However, this bimodal structure can be multi-valued as shown in Figure
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Figure 5.3:Marginal stability curves.(a)S ce = 1000,� = 10. (b)Re= 1, S ce = 1000. The
parameterRt ! 1 .

Table 5.1:The leading eigenvalues of the critical stability pointsA andB in Figure5.3(a).

Re � kc Q0
c !

Chang et al.[105] 0.05 10 3.50 3:359� 104 0 � 4:937i
Present work 0.05 10 3.50 3:3589� 104 0:0000� 4:9378i
Chang et al.[105] 1 10 2.95 4:295� 104 0 � 2:850i
Present work 1 10 2.95 4:2953� 104 0:0000� 2:8503i

5.3(b) which was overlooked by Chang et al.[105].

5.4.2 Finite inner radiusa

This section presents the stability analysis of the annular �ow system of a �nite radiusa. The

normal mode analysis is implemented. The in�uences ofa, Re, � andS ce on the stability of

the system are discussed in this section. The parameterRt is assumed to be in�nitely large.
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Figure 5.4:(a) Growth rate of the most unstable disturbances! r versus wavenumberk, (b)
linear wave speedc versus wavenumberk. The depending parameters areRe= 1,S ce = 1000,
Q0 = 105, � = 10,n = 0.

In�uence of inner radius

First, the in�uences of the inner radiusa on the stability of the transverse unstable mode (the

azimuthal wavenumbern = 0) are examined by �xing the parameterQ0 = 4:2953� 104,

� = 10,n = 0, k = 2:95,Re= 1, S ce = 1000.

Figure5.4(a) shows the real part of the eigenvalue,! r versus the disturbance wavenumber

k, and indicates that the system becomes more unstable for a larger inner radiusa. The

leading eigenvalue is listed in Table5.2 which demonstrates that the real part of the growth

rate becomes larger as the inner radiusa increases. Whena is su� ciently large, it reproduces

the result showed in Section5.4.1. The results indicate that, when the system is perturbed

by streamwise disturbances, the system can be stabilized by reducing the inner radiusa. The

physical mechanism is explained here. As explained by Chang et al. [105], the �ow instability

of this system was mainly dominated by the dielectrophoretic e� ect, the viscosity and the

ionic di� usion. When a �uid parcel with lower electric conductivity moves outwards (in the

r direction), it enters in the region of higher electric conductivity. If the di� usion e� ect is

not strong enough, the electric force will drive the �uid parcel continuously. Otherwise, the
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Table 5.2:The �rst leading eigenvalues forQ0 = 4:2953� 104, n = 0, k = 2:95, Re = 1,
S ce = 1000,� = 10.

Inner Radius a = 0:1 a = 1 a = 10
! � 0:0828� 3:2580i � 0:0479� 2:8960i � 0:0078� 2:8509i

ionic di� usion will remove the conductivity di� erence between the �owing �uid parcel and

its surroundings, hence, impeding the electrohydrodynamic instability. The dielectrophoretic

e� ect can be characterized by ¯� eĒr [101, 105]. As the charge density and electric �eld strength

are shown in Figure5.2, it is clear that the dielectrophoretic e� ect becomes stronger in the

region near the outer surface when the inner radius becomes larger. Therefore, the system

becomes more unstable with increasing the inner radiusa.

Here, a linear wave speedc in the streamwise direction is de�ned asc = � ! i
k . It is observed

that the linear wave speedc decreases with increasinga as shown in Figure5.4(b). Addition-

ally, c initially increases when wavenumberk is small, but it does not change whenk is large.

Apart from that, whena � 1, the in�uence of the inner radiusa on the linear wave speed is

not signi�cant.

Because a Squire's transformation of this system is not possible, the in�uences of spanwise

disturbances (disturbances in the azimuthal direction) should be studied which may cause the

system to be more unstable. Figure5.5 presents the marginal curves for three typical cases:

a = 0:1;1;10. It is observed that the most unstable azimuthal wavenumber respectively isn =

1;5;35. The non-zero value ofn indicates that the spanwise disturbances make the system to

be more unstable. Here, the lowest marginal stability curve in Figure5.5(a-c) is de�ned as the

global marginal stability curve. Above the global marginal curve, the system is unstable. The

comparison of the global marginal stability curves is shown in Figure5.5(d) which indicates

that the system becomes more unstable for a larger inner radiusa. Whena = 1;10, the global

marginal stability curve presents a bimodal structure. The bimodal structure indicates that
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Figure 5.5: (a-c)Marginal stability curves in theQ0 � k plane fora = 0:1;1;10 respectively.
(d) Solid lines for the global marginal stability curves and dashed lines for the corresponding
frequency� ! i. The depending parameters areRe= 1, S ce = 1000,� = 10.
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Figure 5.6:Convection cell patterns.(a)Q0 = 9:1090� 104, k = 2:81; (b)Q0 = 36:3981� 104,
k = 8:21; The other depending parameters area = 1, Re= 1, S ce = 1000,� = 10,n = 0.

there are two di� erent unstable modes. Here, according to the di� erence in wavenumber, the

unstable mode corresponding to a smaller wave number is de�ned as the long-wave unstable

mode, while the mode corresponding to a larger wave number is de�ned as the short-wave

mode. For instance, whena = 1 andn = 0 (the marginal curve presents a bimodal structure

in Figure5.5(b) for a = 1, n = 0), for the long-wave unstable mode, the convection cell

occupies almost the whole thickness of the �uid layer; while the short-wave unstable mode,

the convection cell is almost constrained within the inner half of the channel as shown in

Figure5.6. However, the critical instability is determined by the lower branch of the bimodal

structured marginal curve indicating that the long-wave unstable mode dominates the short-

wave unstable mode. Figure5.5(d) shows that the frequency� ! i jumps down whena = 1;10

showing that the unstable mode switches from the long-wave mode to the short wave mode

as the wavenumberk increases.

Whena = 0:1, n = 1, the critical value of (Q0
c; kc) is (6:0898� 104; 0), and the corresponding

eigenvalue is� = 0 indicating that the unstable mode is stationary. However, fora = 1;10,

the critical value of (Q0
c; kc), respectively reads (2:2556� 104; 0:47), (1:5620� 104; 0:49),

and the corresponding eigenvalue is! = 0 � 0:4567i, ! = 0 � 0:4748i, respectively. The

non-zero imaginary parts of eigenvalues for the two casesa = 1;10 indicate that the most

unstable modes are given by oblique waves. In addition, the critical streamwise disturbance
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Figure 5.7: The cross sectionr � � view of the �ow �eld. (a,c,e)The velocity components of
u0 andv0.(b,d,f) The contour plot of velocity componentw0. (e,f) � 2 [ 5�

12; 7�
12]. The depending

parameters: (a,b) (Q0
c; kc) = (6:0898� 104; 0), a = 0:1, n = 1; (c,d) (Q0

c; kc) = (2:2556�
104; 0:47), a = 1, n = 5; (e,f) (Q0

c; kc) = (1:5620� 104; 0:49), a = 10, n = 35. The other
parameters areRe= 1, S ce = 1000,� = 10.
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wavenumberk is much smaller than the critical azimuthal wave numbern. As shown from

the above discussion, the instability is triggered by the dielectrophoretic e� ect. According to

the perturbed system, this e� ect is characterized by the linearized body force� eE, i.e., the

radial component forcefr = �̄ eE0
r + � 0

eĒr , the streamwise component forcefz = �̄ eE0
z =

ik�̄ e�̂ and the azimuthal component forcef� = �̄ eE0
� = in

r �̄ e�̂ . The magnitudes offz and

f� are proportional tok andn=r, respectively. Ifk is much larger thann=r, the streamwise

disturbances dominate the instability. Otherwise, the spanwise disturbances dominate the

instability. To illustrate this, the perturbed velocity �eld is plotted in Figure5.7. Figure5.7(a)

shows the velocity �eld (u0; v0) and Figure5.7(b) presents the contour lines of the velocity

componentw0 in ther � � plane. The velocity �eld (u0; v0) as well as the contour lines ofw0

are not distorted as seen in Figure5.7(a,b). The result demonstrates that the unstable mode

is stationary. In Figure5.7(b), the magnitude ofw0 is much smaller than the magnitudes of

u0 andv0 which indicates that the instability is dominated by spanwise disturbances. Figure

5.7(c-f) shows the perturbed �ow �elds ofa = 1;10 in which the velocity �elds (u0; v0) and

the contour lines ofw0 are distorted. One such phenomenon implies that the unstable mode is

oscillatory. In addition, in Figure5.7(d,f), the magnitude ofw0 is not as small as that in Figure

5.7(b) indicating the most unstable mode is given by three-dimensional oblique wave.

Figure5.8illustrates the variations of critical electric �eld numberQ0
c, critical frequency� ! ic

and critical wavenumbersnc, kc with the radiusa. Obviously, the critical electric �eld number

Q0
c decreases with increasinga. Whena � 0:4, the frequency� ! ic of the most unstable

mode as well as the critical wave numberkc are zero, indicating that the most unstable mode

is stationary. It is discovered that the critical wave numbernc increases with increasinga,

although for some cases,a = 0:2;0:3;0:4, the critical wavenumber is the same:nc = 4.

This is because the wavenumbern is characterized by the pairs of convection cells in the

spanwise direction which is an integer. Whena ! 1 , the critical wavenumberk � 0:5, and

Q0
c � 1:5 � 104.
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Figure 5.8: (a) The critical electric �eld numberQ0
c and the corresponding frequency� ! i

versus the radiusa. (b) The critical wavenumbersnc andkc versus the radiusa. The other
depending parameters areRe= 1, S ce = 1000,� = 10.

In�uence of electric conductivity gradient

In this section, the in�uence of the electric conductivity gradient on the stability is investigat-

ed. The other dimensionless parameters are held �xed. Figure5.9(a) illustrates the marginal

stability curves for several typical input values of� = 0:1;1;10;100. For the selected input

values of� , when the electric conductivity gradient is small, e.g.� = 0:1;1, increasing the

value of� enhances the �ow instability since the marginal curve dips lower. However, as the

value of � further increases, the marginal curve rises gradually, e.g. the marginal stability

curves for� = 10;100 as shown in Figure5.9(a). The frequency� ! i versus the disturbance

wavenumber is shown in Figure5.9(b). It shows that� ! i decreases as the electric conductiv-

ity gradient increases. Particularly, it is observed that, for� = 0:1;1;10, the frequency� ! i of

the critical unstable mode is not zero, which indicates the most unstable mode is oscillatory;

while the critical frequency! i = 0 for � = 100, which indicates that the most unstable mode

is stationary.

To elucidate the two di� erent unstable modes, the perturbed �ow �eld is plotted in Figure

5.10. Figure5.10(a,b) shows that the �ow �eld in ther � � plane as well as the contour lines
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Figure 5.9:(a)Global marginal stability curves and (b) the corresponding frequency� ! i. The
other depending parameters area = 1, Re= 1, S ce = 1000.

of w0 are strongly distorted. The �ow �eld in ther � � plane is not distorted in Figure5.10(c).

Moreover, the magnitude ofw0 in Figure5.10(d) in is much smaller than the magnitudes of

(u0; v0) in Figure5.10(c). Figure5.10indicates that increasing the value of� shifts the unstable

mode from the oscillatory mode to the stationary mode.

In order to have a full understanding of the in�uence of electric conductivity gradient on the

stability, the critical electric �eld numberQ0
c, critical wavenumberskc, nc and the critical

frequency� ! i versus the electric conductivity� are investigated. Results are shown in Figure

5.11.

Figure5.11shows that the frequency� ! i, critical wavenumbersnc andkc jump at� � 17:5,

indicating that the critical unstable mode switches to the stationary mode from the oscillatory

mode. The results in Figure5.11show that the critical wavenumberkc decreases gradually

as the conductivity gradient increases when� < 17:5, while the wavenumbernc jumps from

n = 5 to n = 4 at � � 17:5. The decrease inkc indicates that the spanwise disturbances be-

come important in destabilizing the system. When the critical unstable mode switches to the

stationary mode, the wavenumberkc = 0 which indicates that the spanwise disturbances are

the major causes that initiate the electro-convection in this system. Figure5.11(a) shows that
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Figure 5.10:The cross sectionr � � view of the �ow �eld. (a,c)The velocity components of
u0 andv0.(b,d) The contour plot of velocity componentw0. The depending parameters: (a,b)
(Q0

c; kc) = (26:9395� 104; 1:66), nc = 5, � = 0:1; (c,d) (Q0
c; kc) = (7:1410� 104; 0), nc = 4,

� = 100. The other parameters area = 1, Re= 1, S ce = 1000.
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Figure 5.11: (a) The critical electric �eld numberQ0
c and the corresponding frequency� ! i

versus� . (b) The critical wavenumbersnc andkc versus� . The other depending parameters
area = 1, Re= 1, S ce = 1000.

the critical electric �eld numberQ0
c decreases gradually till� � 4 which implies that the in-

stability of the oscillatory mode is enhanced. However, as the conductivity gradient increases,

Q0
c increases gradually and reaches to a maximum, which re�ects that the oscillatory mode

is impeded. When the critical unstable mode switches to the stationary mode, the critical

electric �eld numberQ0
c decreases to a minimum till� � 20, then it increases gradually as�

increases. Such a phenomenon indicates that, the stationary mode can either be enhanced or

impeded via increasing the conductivity gradient.

In order to understand the physical mechanism, a limiting case:� ! 0 is taken into account.

The electric body force term in Eq.(5.24) can be re-written as

f = Qr 2� r � = � �� eQr �: (5.62)

When� ! 0, the body forcef ! 0. Hence, no matter how large the electric �eld strength

is, the system is always stable because the dielectrophoretic e� ect is absent. Actually, the

mechanism can be analogous to the Rayleigh-Bénard convection. If there is no temperature

gradient, the heated liquid layer should be always stable. A electric Rayleigh number can be
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de�ned asRae = Q0� which approaches zero as� ! 0. As a result, the system becomes stable

when� ! 0.

Furthermore, if a �uid parcel moves outwards under the action of electric �eld, it enters in

the region of higher electric conductivity. When the conductivity gradient is small (the os-

cillatory mode dominates the instability), the ionic di� usion e� ect is insigni�cant. As the

electric conductivity gradient is increased, the dielectrophoretic e� ect will be enhanced since

the conductivity di� erence between the �uid parcel and its surroundings is increased. Con-

sequently, the instability is enhanced. As the conductivity gradient increases, the di� usion

e� ect becomes signi�cant such that the conductivity di� erence between the �uid parcel and

its surroundings will be removed due to di� usion e� ect. Hence, when the conductivity gra-

dient is large, a stronger electric �eld is necessary to trigger the occurrence of instability.

Moreover, Baygents and Baldessari [101] explained the physics of electrohydrodynamic in-

stability mechanism in a planar system by the base state pro�le of electric body force. They

pointed out that the portion of �uid where the electric body force was signi�cant was close

to the lower-conductivity boundary and became increasingly narrow as the conductivity gra-

dient increased [101]. They suggested that the lower boundary produced a strong stabilizing

e� ect when the conductivity gradient was large [101]. Figure5.2 suggests that the portion

where electric body force ¯� eĒr is signi�cant is very narrow for a large conductivity gradient.

It seems that the inner cylinder attracts the electric charge into the thin boundary layer, beyond

which there is very few electric charges. As we have discussed in the above section that the

convection is initiated by the body force (fr ; f� ; fz) = (�̄ eE0
r + � 0

eĒr ; �̄ eE0
� ; �̄ eE0

z). Outside

of the boundary layer, the charge density ¯� e � 0 andĒr � 0 when the conductivity gradient

is large. Hence, the body force outside the boundary layer is too small to initiate convection

in the system. Note that the electric force is multiplied by the dimensionless parameterQ0.

Thus, a higher value ofQ0 is necessary to trigger the instability of this system.

When the instability is dominated by the stationary mode, the physical mechanism is similar
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Figure 5.12:(a) Marginal stability curves of the transverse unstable mode,n = 0. (b)The
global marginal stability curve. The other depending parameters area = 1, S ce = 1000,
� = 10.

to that of the oscillatory mode. This is very di� erent from the classical Rayleigh-Bénard

convection, in which, the larger temperature gradient is the more unstable system.

In�uence of Reynolds number

In this section, the in�uence of the Reynolds number on the stability of this system is dis-

cussed by �xing the other dimensionless parameters. First, in Figure5.12(a), the in�uence

of Reon the stability of transverse unstable mode, i.e.,n = 0, is shown. WhenReis small,

the marginal stability curve dips lower gradually till aboutRe � 0:15, then it rises rapid-

ly. Results in Figure5.12(a) indicate that, whenReis small, the instability is enhanced by

the shear �ow; while whenReis large, the shear �ow impedes the instability. The physical

mechanism is explained here. When the Reynolds number is small, with increasingRe, the

electrohydrodynamic motion will be enhanced. Therefore, the system will be more unstable

when the Reynolds number increases. However, as the Reynolds number is increased fur-

ther, the viscous shear e� ect and the di� usive e� ect become signi�cant. Due to the advection

of electric conductivity, a conspicuous enhancement of di� usive e� ect would be caused by
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increasing the Reynolds number. Furthermore, the viscous stress is a factor that dissipates

energy of the system, which plays a stabilizing role in this system and will also be enhanced

asReincreases. However, it should be emphasized that, the inertia would also increase as

Re increases which is the major destabilizing e� ect in high-Reynolds-number shear �ows.

Because in this system, the Reynolds number is not largeRe2 [0;10] and instability due to

“Reynolds stress” will not occur. Once the di� usive e� ect and viscous dissipation e� ect are

strong, the marginal stability curve will rise when the Reynolds number is increased further.

An interesting phenomenon observed is that there may exist a stable looped region lying in

the above of the marginal stability curve whenReis increased, for instance,Re = 10. This

phenomenon is caused by the interactions between the dielectrophoretic e� ect, viscous e� ect

and ionic di� usive e� ect. The stable looped region will vanish whenReincreases further.

Figure 5.13: Convection cell patterns.(a)Re = 0:05, Q0 = 3:8855� 104, k = 2:81; (b)

Re= 0:1, Q0 = 2:6883� 104, k = 3:41; (c)Re= 1, Q0 = 9:1090� 104, k = 2:81; (d)Re= 10,

Q0 = 77:2105� 104, k = 2:21. The other depending parameters area = 1, S ce = 1000,

� = 10.
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To illustrate the above discussion, we plot the convection cell patterns of four typical cases at

their corresponding critical state withRe = 0:05; 0:1;1;10 in �gure 5.13. As seen in �gure

5.13(a), the transverse mode appears to be inclined traveling wave in the streamwise direction.

WhenReis increased to 0:1, convection near the outer electrode becomes weaker because the

di� usive e� ect near the outer electrode is enhanced by the shear �ow. The inclined angle is

also reduced if compared with the caseRe= 0:05. AsReincreases further, the inclined angle

reduces continuously. WhenRe = 10, the convection cell appears to be distorted which is

caused by the imposed shear �ow. However, the transverse mode may not be critical because

the spanwise disturbances may make the system to be more unstable.

Figure5.12(b) presents the global marginal stability curve. Comparing �gure5.12(a) and

5.12(b), we observe that the system is more unstable when it is perturbed by three-dimensional

disturbances. Moreover, it is observed that the critical point (Q0
c; kc) moves leftward as the

Reynolds number increases. In order to explain the in�uences of Reynolds number on the

stability of the three dimensional problem, the critical electric �eld numberQ0
c, the critical

frequency� ! ic, the critical wavenumbernc andkc are investigated. The results are shown in

�gure 5.14.
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Figure 5.14: (a) The critical electric �eld numberQ0
c and the corresponding frequency� ! i

versusRe. (b) The critical wavenumbersnc andkc versusRe. The other depending parameters

area = 1, S ce = 1000,� = 10.

Figure5.14(a) demonstrates that the critical electric �eld numberQ0
c decreases withRegrad-

ually till aboutRe � 0:3, then it increases tillRe � 0:4. After that,Q0
c decreases gradually,

and whenRe � 1, the in�uence of Reynolds number onQ0
c is not signi�cant. The critical

frequency decreases asReincreases and! i � 0 atRe= 10. In �gure 5.14(b), whenRe< 0:3,

the critical wavenumberkc decreases, whilenc increases. The instability is triggered by the

dielectrophoretic forcef. Whenkc > nc=r, fz dominatesf� , i.e., convection inr � z plane is

stronger than that inr � � plane. As aforementioned, a slightly increasing in the Reynolds

number from zero will enhance the dielectrophoretic e� ect. Thus,Q0
c decreases with increas-

ing the Reynolds number until it reaches a minimum. As the Reynolds number is increased

further, the convection in ther � zplane will be impeded due to the enhancement of di� usive

e� ect, henceQ0
c increases. AfterQ0

c reaches a maximum,Q0
c gradually decreases as the

Reynolds number increases further till aboutRe� 1, because the dielectrophoretic e� ect in�

direction is enhanced. WhenRe> 1, Q0
c is almost independent of the shear �ow. It is evident

in �gure 5.14(b) thatnc=r (r 2 [1;2]) is much larger thankc whenRe > 1 which indicates
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the streamwise wavelength of the disturbance is much longer than its spanwise component,

and the convection inr � � plane is much stronger than that inr � z plane. WhenRe > 1,

although the spanwise disturbance becomes the major cause that destabilizes the system, the

long-wave streamwise disturbance would make the system to be more unstable.

In�uence of electric Schmidt number

The in�uence of the electric Schmidt numberS ce is investigated in this section. Its in�u-

ence on the marginal stability curve of transverse mode is illustrated in Figure5.15(a). The

marginal stability curve dips lower asS ce increases tillS ce � 150. It then rises rapidly asS ce

increases.

Figure 5.15:(a) Marginal stability curves of the transverse unstable mode,n = 0. (b)The

global marginal stability curve. The other depending parameters area = 1, Re= 1, � = 10.

Recall the de�nition of this parameter:S ce = �
Ke f f

. The value ofS ce can be increased by

reducingKe f f. Hence, the ionic di� usive e� ect becomes smaller asS ce increases. Therefore,

the dielectrophorectic e� ect is enhanced asS ce increases (Ke f f decreases) and the system

becomes more unstable. However, on the other hand, for a largeS ce, the de�nition of S ce

tells that the viscous e� ect dominates the di� usion e� ect, and the viscous e� ect becomes
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signi�cant with increasingS ce. Since the viscous e� ect plays a stabilizing role in the system,

the �uid layer will be stabilized asS ce increases further.

The global marginal stability curve for the three dimensional problem is shown in Figure

5.15(b). Clearly, with increasing the value ofS ce, the critical wavenumberkc decreases,

which indicates that the streamwise component of the wavelength becomes longer. In order

to illustrate the in�uence of electric Schmidt number on the three-dimensional stability, the

critical electric �eld numberQ0
c and the critical frequency� ! ic are plotted in Figure5.16(a).

Note that the critical wavenumbernc , 0 and critical frequency! ic , 0 which indicates

that the critical unstable mode was given by three dimensional oblique waves. The critical

frequency� ! ic approaches zero whenS ce is very large. Additionally,Q0
c decreases with

increasing the value ofS ce till S ce � 300, then it increases with increasingS ce till S ce � 500.

As S ce increases further,Q0
c decreases slightly, thenQ0

c seems to be independent ofS ce. It

was reported by Chang et al. [105] that the in�uence ofS ce on the longitudinal unstable mode

in a planar system was insigni�cant whenS ce � 103. Similarly, in this core-annular system,

theQ0
c seems to be independent ofS ce whenS ce > 103 because the the spanwise disturbance

is the major cause of the �ow instability.
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Figure 5.16: (a) The critical electric �eld numberQ0
c and the corresponding frequency

� � i versusS ce. (b) The critical wavenumbersnc andkc versusS ce. The other depending

parameters area = 1, Re= 1, � = 10.
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Chapter 6

Electrohydrodynamic instability of
miscible core-annular �ows with electric
conductivity strati�cation

6.1 Mathematical Formulation

In Chapter5, the instability of an annular liquid layer with a conductivity gradient has been

discussed. The conductivity gradient is developed due to the applied radial electric �eld [101].

In many micro�uidic systems, rapid mixing in a circular pipe is of particular interest. To

enhance the mixing, this Chapter proposes to impose an axial electric �eld as shown in �gure

6.1. The two liquids are miscible dilute aqueous electrolytes. The liquids are Newtonian and

the density� , kinematic viscosity� , and dynamic viscosity� = �� of the two liquids are

assumed to be the same [100]. There is a sharp change in the ionic concentration where the

two liquids meet atr = a. Therefore, a sharp change in the electric conductivity occurs at

r = a. The purpose of this chapter is to investigate how the electric �eld enhances the mixing

in such an electric conductivity strati�cation system. The two liquids are pumped into the

pipe by a constant axial pressure gradient.

The three-dimensional hydrodynamical problem is considered and the cylindrical coordinates

(r; �; z) are chosen. Gravity is neglected. Motion of the liquids is governed by the continuity
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Figure 6.1: Geometry of the system.

equation and the momentum equation,

r � v = 0; (6.1)

�
Dv
Dt

= � r p + � r 2v + f ; (6.2)

wherev = uer + ve� + wez is the velocity. D
Dt = @

@t + u @
@r + v

r
@
@� + w @

@z is the material derivative

operator.f is the electric force which can be related to the Maxwell stress tensorTM by,

f = r � TM: (6.3)

Usually, analysis of Eq.(6.2) is di� cult because the electric �eld is coupled to the free charge

density� e according to Maxwell's equations. Moreover, the free charge density is coupled

to the �ow �eld. As aforementioned in Chapter5, in this Chapter, it is also assumed that the

electric current densityJe as well as the induced current density@"E
@t are modest, such that the

induced magnetic �eld is negligible and the electrostatic problem can be considered,

r � E = 0: (6.4)
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The Maxwell stressTM = � EE � 1
2"kEk2I. The parameter" is the dielectric permittivity and

E is the electric �eld. Here,kEk2 = E � E andI is the identity tensor. The charge density is

given by the Gauss's law,

� e = r � (" E): (6.5)

Hence, the momentum equation (6.2), now is written as,

�
Dv
Dt

= � r p + � r 2v + � eE �
1
2

kEk2r ": (6.6)

In isothermal and the dilute electrolyte solution conditions, the electric permittivity" is ap-

proximately that of the solvent [100]. In some non-isothermal conditions, this term1
2kEk2r "

is very crucial since there is a gradient of permittivity due to the non-isothermal condition

which causes a circulation �ow in the system [122]. In this chapter, an isothermal condition

and constant electric permittivity are assumed for the dilute electrolyte solutions. Therefore,

the term1
2kEk2r " is ignored. In previous studies in Refs.[109, 105], this term 1

2kEk2r " was

also neglected under the assumptions of dilute electrolyte solution and an isothermal environ-

ment.

Because the electrostatics is considered, the electric �eldE can be related to the electric

potential by

E = � r �: (6.7)

Hence, the Gauss's law (6.5) is expressed by the following Poisson's equation:

r 2� = �
� e

"
: (6.8)

Conservation of electric charge gives,

@�e
@t

+ r � Je = 0: (6.9)
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In this Chapter, the electrolyte solution considered is assumed as an Ohmic conductor which

neglects the di� usion of the charge. Then the current densityJe is given by,

Je = � E + � ev; (6.10)

where� is the electric conductivity. Substituting Eq.(6.10) into the current conservative law,

we obtain,
D� e

Dt
+ r � (� E) = 0: (6.11)

Because the electrolyte solution is considered to be an ionic conductor, the conductivity de-

pends on the local ion concentration. Accordingly, the conductivity can be described by the

following di� usion equation [101, 104, 105],

D�
Dt

= Ke f fr 2�; (6.12)

whereKe f f is an e� ective di� usivity due to the Brownian motion of the ions. Eq.(6.12) is valid

if the local electric time is much faster than the �uid time and the time for ion electromigration,

"
�

�
b2

�
�

b
$ E

and
b2

$kBT
; (6.13)

in which, kBT is the Boltzmann temperature,$ is a characteristic mobility of the charge-

carrying solutes. The conditions imply that the ions are carried by �uid parcel. Typical values

of these parameters can be found in Melcher's book [104] and Lin et al.'s work [100]: � �

10� 10C=V;$ � 10� 8m2=V � s, kinematic viscosity� � 10� 6m2=s, conductivity� � 10� 4S=m

and strength of a typical electric �eldE = O(103)V=m and the pipe's radiusb = 10� 3m. A

similar form as Eq.(6.12) was also derived by [100] from the species conservation law if the

electromigration was neglected. It was indicated in Chapter5 that Ke f fr 2� was responsible

for the existence of a threshold electric �eld and cannot be neglected.
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At the initial time, the electric conductivity in each layer is� = � 1jr<a, � 2ja<r<b (� 1 , � 2). The

subscripti = 1;2 denotes the inner layer and outer layer, respectively. This can be achieved

by using two aqueous electrolytes with di� erent ionic concentrations [100, 110].

In this chapter, the non-slip and non-penetration boundary conditions atr = b are applied:

u = v = w = 0: (6.14)

Here, the basic �ow is driven by pressure, and the maximum speed occurring at the center line

is around 10� 4 � 10� 2m=s. Usually, the electroosmosis �ow is very weak and the �ow velocity

can be estimated by Helmholtz-Smoluchowski formulaUE = � " E�=� where� is the zeta

potential which is responsible for the electroosmosis �ow. This velocity usually has an order

of O(10� 6)m=s provided� = � 10� 2V, " = 10� 10C=V � m and� = 10� 3kg=m� s, E = 103V=m.

Clearly, the electro-osmotic velocity is much weaker than the pressure driven �ow. Hence,

in what follows, the non-slip and non-penetration boundary conditions in (6.14) are applied

that the electro-osmosis phenomenon is neglected. If the electric �eld is developed due to the

electroosmosis and the pressure gradient is removed after the two liquids are pumped into the

pipe, the assumption in Eq.(6.14) is not applicable.

There is no �ux of the ions atr = b, therefore,

@�
@r

= 0: (6.15)

The circular pipe is non-conducting,
@�
@r

= 0: (6.16)
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6.2 Base state and scalings

At the base state, the �ow �eld and the electric �eld are decoupled because the electrolyte

solution is initially neutral, i.e. the net charge density is zero. The �ow is driven by a constant

pressure gradient@zp̄. Therefore, the base velocity pro�le is

w̄ =
@zp̄
4�

(r2 � b2): (6.17)

This Chapter adopts the assumption that the interface between the two liquids has grown

di� usively to a �nite thickness� . Moreover, we assume that the di� usion is su� ciently slow

to allow us to employ a quasi-steady base state for the linear stability analysis. Provided

� � 1, the pro�le of the conductivity can be approximated by the error function:

�̄ =
� 1 + � 2

2
+

� 2 � � 1

2
erf (

r � a
�

): (6.18)

Equation (6.18) was used by Selvam et al. [97] in their study to describe the pro�le of viscos-

ity of a viscosity strati�ed �ow in a circular pipe.

The base electric conductivity pro�le can also be obtained via solving [100]:

@�
@t

= Ke f f(
@2�
@r2

+
1
r

@�
@r

): (6.19)

In experiments,Ke f f ranges from 10� 9 � 10� 12m2=s.

The charge density� e is zero, and the electric �eld exists only in the axial direction. This

gives the base state of the electric potential:

�̄ = � 0 � Ez; (6.20)
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whereE is the imposed electric �eld's strength,� 0 is the reference electric potential.

Taking the velocity scaleW = � @zp̄b2

4� , the length scaleb, the time scaleb=W, the pressure scale

� W2, the electric potential scaleEb, the conductivity scale� 2 � � 1, we non-dimensionalize

the system (6.1)-(6.16):

r � v = 0; (6.21)

Dv
Dt

= � r p +
1
Re

r 2v +
Q

Re2S c
r 2� r �; (6.22)

1
Rt

D(r 2� )
Dt

+ r � f[(� � 1)� + 1]r � g= 0; (6.23)

D�
Dt

=
1

ReS c
r 2�; (6.24)

whereRe= � Wb
� is the Reynolds number;Q = " E2b2

� Ke f f
is the scaled electric energy and is de�ned

as the electric number;� = � 2
� 1

denotes the conductivity ratio; andS c = �
Ke f f

is the electric

Schmidt number. Baygents and Baldessari[101] proposed thatS c2 [103; 106]. In the study

by Chang et al.[105], S cwas assumed to vary in [102; 105]. The parameterRt = d=W
�=� 1

measures

the ratio of �uid time to electric time. It is assumed thatRt is very large that the electric time

is quite smaller than the �uid time in this thesis. Therefore, Eq.(6.23) can be simpli�ed to:

[(� � 1)� + 1]r 2� + (� � 1)r � � r � = 0: (6.25)

Dimensionless boundary condition atr = 1 are

u = v = w =
@�
@r

=
@�
@r

= 0: (6.26)

The dimensionless base state is de�ned as follows:

w̄ = 1 � r2; (6.27)
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Figure 6.2: The base electric conductivity pro�le. The lines are obtained by numerical
experiments of the dimensionless form of equation (6.19) and the circles and diamonds are
obtained from the error function Eq.(6.28). The depending parameters area = 0:5, ReS c=
1000.

�̄ =
1
2

+
1
2

erf (
r � a

�
); (6.28)

�̄ = � z; (6.29)

in whicha is scaled on the length scaleb which falls in the range of (0;1). Note thatr 2�̄ = 0

and @̄�
@r = 1

�
p

� exp(� (r� a)2

� 2 ). In this Chapter, the range of� is �xed, � 2 [0:05;0:15]. To

verify Eq.(6.28), we assume that the the concentration has a Heaviside pro�le initially, and

the conductivity pro�le at instant timet is solved numerically by the dimensionless form of

Eq.(6.19) and a regular condition is imposed at the centerlined�
dr = 0.

The base conductivity pro�le is shown in Figure6.2. It is obvious that the electric conductivity

pro�le can be approximated by the error function in Eq.(6.28) via adjusting the value of�

at an instantt. In the following study, Eq.(6.28) will be used as the pro�le of the electric

conductivity at the base state for the convenience in the study of linear stability.
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6.3 Linear stability analysis

The linear stability analysis of the �ow system is implemented by perturbing the base state

with in�nitesimal disturbances:

[u; v;w; p; �; � ] = [0; 0; w̄; p̄; �̄; �̄ ] + [u0; v0;w0; p0; � 0; � 0]; (6.30)

where the primed variables are the in�nitesimal disturbances. In a standard way, the normal

mode analysis is considered:

[u0; v0;w0; p0; � 0; � 0] = [û; v̂; ŵ; p̂; �̂; �̂ ] exp(i(n� + kz) + ! t); (6.31)

in which [û; v̂; ŵ; p̂; �̂; �̂ ] is the Fourier amplitude,n is the azimuthal wave number,k is the

streamwise wave number,! is the complex temporal growth rate.

Substituting Eq.(6.30) with the normal mode analysis into Eqs. (6.21), (6.22), (6.24), (6.25)

and after linearizing, the governing equations of the eigenvalue problem obtained are

Dû +
û + inv̂

r
+ ikŵ = 0; (6.32)

! û = � Dp̂ � ikw̄û +
1
Re

(L û �
û + 2inv̂

r2
) (6.33)

! v̂ = �
inp̂
r

� ikw̄v̂ +
1
Re

(L v̂ �
v̂ � 2inû

r2
) (6.34)

! ŵ = � ikp̂ � i� w̄ŵ � Dw̄û +
1
Re

L ŵ �
Q

PeRe
L �̂; (6.35)

Pe! �̂ = � PeD�̄ û � iPekw̄�̂ + L �̂; (6.36)

[(� � 1) ¯� + 1]L �̂ + (� � 1)D�̄ D�̂ � ik(� � 1) ˆ� = 0; (6.37)

whereL = D2 + 1
r D� n2

r2 � k2, D= d
dr . The Péclet numberPe= ReS c. Note that, the value of
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Pecannot be small because di� usion of conductivity is slow.

Boundary conditions atr = 1 are

û = v̂ = ŵ = D�̂ = D�̂ = 0: (6.38)

At the centerliner = 0, the singular nature of the cylindrical coordinate system requires spe-

cial treatment. To deal with the singular point of the system (6.32)-(6.37), we use the fact that

velocity vector as well as the other scalar variables have a vanishing azimuthal dependence as

they approach the centerline, i.e.

lim
r=0

@v0

@�
= lim

r=0

@p0

@�
= lim

r=0

@�0

@�
= lim

r=0

@�0

@�
= 0; (6.39)

wherev0 = u0er + v0e� + w0ez is the velocity disturbance.

In the form of Fourier modes, the regular boundary conditions are

inû � v̂ = û + inv̂ = nŵ = np̂ = n�̂ = n�̂ = 0: (6.40)

If n = 0, the boundary conditions are

û = v̂ = Dŵ = Dp̂ = D�̂ = D�̂ = 0: (6.41)

If n = 1, the boundary conditions are

Dû = D̂v = ŵ = p̂ = �̂ = �̂ = 0: (6.42)

The velocity conditions ofn = 1 agree with the boundary conditions given by Khorrami [129]

for a single �uid �ow in a circular pipe.
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Whenn � 2, the boundary conditions are

û = v̂ = ŵ = p̂ = �̂ = �̂ = 0: (6.43)

A Chebyshev collocation method is implemented to solve the eigenvalue problem, and the

physical domain is transformed into the Chebyshev domain,

� = 2r � 1: (6.44)

The variables ˆu, v̂, ŵ, p̂, �̂ , �̂ are expanded as

û =
P N

0 amTm(� ); v̂ =
P N

0 bmTm(� ); ŵ =
P N

0 cmTm(� );

p̂ =
P N

0 dmTm(� ); �̂ =
P N

0 fmTm(� ); �̂ =
P N

0 emTm(� ); (6.45)

whereTm(� ) denotes the mth Chebyshev polynomial.

In order to modify the computation near the interfacer = a, the Chebyshev collocation points

are clustered in the mixing region atr = a using the following stretching function [130]:

� =
a

sinh(fbr0)
[sinh[(r � r0)] + sinh(fba)]; (6.46)

wherer0 = 1
2fb

ln[ 1+(exp(fb� 1)a)
1+(exp(� fb)� 1)a]. The coe� cient fb determines the degree of clustering and

fb = 6. The parametera represents the location of interface around which clustering is

desired.

After clustering the Chebyshev collocation points into the di� usion region, it needs to calcu-

late the eigenvalue problem via the clustered grid. Therefore, a transformation on the deriva-
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tives between the clustered grid and the Chebyshev grid should be made,

d f
d�

=
d f
dr

dr
d�

=
1

G0(r)
d f
dr

; (6.47)

whereG(r) = � and f stands for the variables ˆu, v̂, ŵ, p̂, �̂ or �̂ . Note that the derivative

d f
dr = 2d f

d� .

For the second derivative off , using the chain-rule, the transformation writes

d2 f
d� 2

=
1

(G0)2

d2 f
dr2

�
G00

(G0)3

d f
dr

: (6.48)

The derivatived2 f
dr2 = 4d2 f

d� 2 . Numerical validation of our method will be made in the following

discussion.

6.4 Energy analysis

In order to understand the physical mechanism, the energy analysis is applied [131]. Mul-

tiplying the conjugates of the variables ˆu� , v̂� ŵ� on the both sides of Eqs.(6.33)-(6.35) and

summing these equations after integrating over the cross-sectional area, gives the energy bal-

ance equation:

�Ek = I + V + Ee: (6.49)

Here, the kinetic energy growth rate is:

�Ek = ! r

Z 1

0
r(jûj2 + jv̂j2 + jŵj2)dr; (6.50)
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the work done by the Reynolds stress:

I = �
Z 1

0
rRe(Dw̄ŵ� û)dr; (6.51)

and the viscous dissipation:

V = �
1
Re

Z 1

0
rf(jDûj2 + jD̂vj2 + jDŵj2) + (

n2

r2
+ k2)(jûj2 + jv̂j2 + jŵj2)

+
jûj2 + jv̂j2

r2
� 4n

Im(û� v̂)
r2

gdr: (6.52)

The work done by the electric force:

Ee =
Q

PeRe

Z 1

0
rRe(Dŵ� D�̂ +

n2ŵ� �
r2

+ k2ŵ� � )dr: (6.53)

Since the magnitude of the eigenfunction is arbitrary, we normalize the eigenfunction by its

maximum absolute value. The terms in the energy analysis are re-scaled with respect to the

total kinetic energy
R1

0
r(jûj2 + jv̂j2 + jŵj2)dr. For an unstable �ow, �E should be positive.

The energy analysis will be applied to interpret the instability mechanism in the following

discussions.

6.5 Results and discussion

6.5.1 Validation of numerical methods

First, the validation of “our numerical method” is examined via settingQ = Pe = 0, there-

fore, the electric �eld is turned o� and the ionic advection is absent. Since the parameter

Q = 0 and Eq.(6.37) does not produce any eigenvalues, the conductivity pro�le has no in-
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c(n = 0; k = 1) c(n = 1; k = 0:5) ! 0(n = 1; k = 0)
SH 0:93675536� 0:06374551i 0:84646970� 0:07176332i � 0:00734099
Present work 0:93675536� 0:06374551i 0:846469697� 0:07176332i � 0:007340985

Table 6.1: The �rst leading eigenvalues of the system forRe = 2000, Pe = Q = 0. We
have utilized 51 points for the eigenvalue problem and related the eigenvalue to that ofSH by
! 0 = i! andc = ! 0=k.

Figure 6.3: Eigenspectra forRe = 2000, n = 0, k = 1. (a) The eigenspectrum for the
Hagen-Poiseuille �ow which is identical to that bySH. (b) The comparison of the conductivity
strati�ed pipe �ow (triangle points) and the Hagen-Poiseuille �ow (circles). The conductivity
ratio � = 2 and the parametersQ = 0, a = 0:5, � = 0:05. It is obvious that whenPe > 0,
there are some extra eigenvalues as compared to the Hagen-Poiseuille �ow. The parameter
c = i!= k.

�uence on the spectrum of the problem and the eigenvalue problem should be identical to a

single �uid �owing in a circular pipe. The numerical results are compared with Schmid and

Henningson[3] (herein referred asSH) for Re = 2000. The leading eigenvalue is listed in

Table6.1. Excellent agreement between our numerical results and that ofSH demonstrates

the validity of “our numerical method”.

WhenRe ! 0, i.e. the inertia of the �uid is negligible, the growth rate is determined by

the ionic di� usion equation (6.36). In a viscosity strati�ed plane-Poiseuille �ow[132], the

eigenspectrum of the di� usion equation presents a similar structure `Y-shape' as the Orr-
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Sommerfeld problem. Hence, the di� usion equation will produce more eigenvalues in the

strati�ed �ow than a single �uid �ow [ 132]. Similarly, in the pipe �ow with conductivity

strati�cation, the eigenspectrum structure is di� erent from the result ofSH as demonstrated in

�gure 6.3. In the following discussion, the base �ow in the pipe is considered to be weak and

discussion will be concentrated on the instability caused by the electric force in micro�uidic

channels.

6.5.2 Parametric study

E� ect of the conductivity ratio

The in�uence of the conductivity ratio on the linear stability analysis is of particular interest

and will be investigated in this section. Before presenting the numerical study, let us consider

the case of two liquids with the same electric conductivity, i.e.� = 1. The linearized electric

current conservation equation (6.37) reduces to,

L �̂ = 0: (6.54)

Hence, in the linearized momentum equation (6.35), the electric force that can trigger the

instability is absent. Therefore, the system will be linearly stable. Numerical study also

indicates that the eigenvalue! is not in�uenced by the electric numberQ for � = 1 and

! r < 0. A useful conclusion can be inferred here: the system becomes more stable as�

increases when� < 1, while the system becomes more unstable as� increases when� > 1.

To study the in�uence of the conductivity ratio on the linear stability, the other parameters are

�xed: Re= 1, S c= 1000,a = 0:5 and� = 0:1. To study the linear stability, 51 collocation

points are su� cient to provide satisfying accuracy.

Firstly, consider two typical cases:� = 0:5, � = 2. The electric numberQ is �xed so as
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Figure 6.4: The real temporal growth rate! r versus the wave numberk. (a) Q = 5 � 104,
� = 0:5. (b)Q = 104, � = 2.

to study the growth rate of the disturbance. Results in Figure6.4(a) demonstrate that the

azimuthal disturbances make the system more unstable. It also implies that the azimuthal

wave numbern of the critical mode isn = 1. Results are di� erent in Figure6.4(b). It shows

that the azimuthal wave number of the most unstable mode isn = 0 for � = 2. These results

imply that, the critical unstable mode of the system varies with the conductivity ratio� . To

elucidate the critical unstable mode in the system, the marginal curves in theQ � k plane are

investigated. Figure6.5demonstrates that the wave numbern of the critical unstable mode for

� = 0:5;2 isn = 1;0 respectively. The azimuthal wave number of the critical unstable mode is

de�ned as the critical azimuthal wave numbernc. Here,Qc is the critical electric number, and

kc is the critical streamwise wave number. The imaginary part of eigenvalue! for the critical

unstable modes in Figure6.5 is nonzero. It indicates that the critical unstable modes are

oscillatory. The perturbed �elds of the charge density and the conductivity in ther � � plane

are shown in Figure6.6 to illustrate the two di� erent unstable modes. In Figure6.6(a,b), the

unstable mode is de�ned as the corkscrew mode; while the unstable mode in Figure6.6(c,d)

is de�ned as the axisymmetric mode. Numerical evaluation of the energy contribution ofEe

demonstrates that it is always positive. It demonstrates that the electric force is the main factor
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Figure 6.5: The marginal stability curves. (a)� = 0:5. (b) � = 2.

that destabilizes the system. The instability is referred to as the dielectrophoretic instability

[101, 105] as have been discussed in Chapter5.

In order to reveal the in�uence of the conductivity ratio on the critical unstable mode, i.e.

in which range of� , the critical unstable mode is the corkscrew mode or the axisymmetric

mode, the behavior of (Qc; nc; c) versus the value of� is investigated. The wave speedc of the

critical mode is de�ned as

c = � ! i=� c: (6.55)

Results in Figure6.7(a) indicate that the system becomes more unstable for a larger contrast

in the electric conductivity between the two layers. Similar phenomenon has been observed

by Lin et al. [100] of a liquid layer with conductivity strati�cation in a square channel. Exper-

imental observation and stability analysis suggested that the �ow became more unstable for a

larger conductivity contrast [100]. However, they focused on the two-dimensional instability

and how the conductivity ratio in�uenced the three-dimensional stability was not investigat-

ed [100]. Here, investigation of the three-dimensional instability in Figure6.7(c) shows that

the critical wavenumbernc jumps from 1 to 0 as the conductivity ratio increases to� = 1.

It indicates that, for the selected input values of other dimensionless parameters, the critical
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Figure 6.6: (a,b) The perturbed �eld of the electric charge� e and the perturbed �eld of
the conductivity� for � = 0:5, Qc = 4505:8, nc = 1, kc = 1:75 in ther � � plane. (c,d) The
perturbed �eld of the electric charge� e and the perturbed �eld of the conductivity� for � = 2,
Qc = 6197:0, nc = 0, kc = 2:75 in ther � � plane.
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Figure 6.7: (a) The critical electric strength numberQc vs. � . (b) The critical frequencyj� i j
vs. � . (c) The critical wavenumbernc vs. � . (d) The wave speed of the critical modec vs. � .
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unstable mode is dominated by the corkscrew mode when the inner conductivity is larger;

while the axisymmetric mode dominates the instability when the outer conductivity is larger.

Moreover, in a square-duct �ow system, Lin et al. gave the physical properties of the �ow

system for a conductivity ratio� = 10 which are applied to estimate the critical strength of

the applied electric �eld in the current system here [100]. The present results show that, for

� = 10, the critical value electric numberQc � 103. It gives the critical electric strength

E � 2 � 103V=m provided that the electric permittivity� = 6:9 � 10� 10C=V � m, the dynamic

viscosity� = 10� 3kg=m� s, the e� ective di� usivity Ke f f = 2 � 10� 9m2=s and the pipe radius

b = 10� 3m. Hence, it is possible to achieve the electromixing in a circular pipe at small

Reynolds �ow by an electric �eld in experiments. Figure6.7(b) shows that! i , 0 which

demonstrates that the unstable mode is oscillatory. Figure6.7(d) shows that the critical wave

speedc increases with increasing� . Figure6.7(d) also shows that, when� < 1, the wave

speed is smaller for a larger conductivity contrast; when� > 1, the wave speed is larger for a

larger conductivity contrast. Additionally, the wave speedc > 0 indicates that the linear wave

propagates to the downstream.

E� ect of interface location

This section discusses the in�uence of the interface location on the linear stability of the

system. The other parameters are �xed atRe= 1, S c= 1000,� = 0:05 so as to investigate

the dielectrophoretic instability.� = 0:05 is chosen under the consideration of a sharper

interface. Two conductivity ratios� = 0:5;2 will be considered in the following discussion.

The convergence of “our numerical method” has been examined thatN = 60 is enough to

provide adequate resolution at reasonable computational cost.

Selvam et al. found that the interface location had a signi�cant in�uence on the critical insta-

bility of a viscosity strati�ed pipe �ow and the least unstable mode occurred at approximately

0:6 times the pipe radius [97]. In the present problem of a liquid with conductivity strati�-
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Figure 6.8: (a) The critical electric strength numberQc vs. a. (b) The critical wavenumber
nc vs. a.

cation, similar phenomenon is observed. However, the instability of the present problem is

triggered by the electric �eld; while in the problem by Selvam et al. [97], the instability is

due to the Reynolds stress. If the interfacial location is very near the centerline or the pipe

wall, the di� usion of ions will remove soon the conductivity di� erence. Furthermore, con-

sider a very sharp interface, whena ! 0 or a ! 1, no matter how large the electric �eld is

imposed, the system should be stable due to the homogenous conductivity pro�le. Hence, it

can be concluded that, as the interface is slightly moved away from the centerline, the system

becomes more unstable. As the interface approaches the outer boundary, i.e. the pipe wall,

the system should become more stable. Therefore, there should be an optimal location of the

interface that the �ow is least stable. Two typical cases of� = 0:5; 2 have been investigated

numerically and the range of the interface locationa is considered to be in [0:1;0:9]. The

variation of critical wavenumbernc and the critical electric numberQc with the locationa

is shown in Figure6.8. Figure6.8(a) demonstrates that, for� = 0:5; 2, the system becomes

more unstable asa increases from 0:1 till a � 0:3, a � 0:2 respectively, while it becomes

more stable asa increases further. Additionally, for� = 0:5, it is observed that the critical

unstable mode shifts from the corkscrew modenc = 1 to the axisymmetric modenc = 0 asa
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Figure 6.9: The maximum growth rate! m vs. a. (a) Q = 5 � 104, � = 0:5. (b) Q = 5 � 104,
� = 2.

increases to a critical valuea � 0:83. For� = 2, the axisymmetric mode always dominates

the instability.

It is interesting to investigate the maximum growth rate of the system since the rapid mixing

is of particular interests[100]. To investigate the maximum growth rate, the electric number

was �xed. The behavior of the maximum growth rate! m = max (Re(! )) versus the interface

locationa was then scrutinized. The! m describes the growth rate of the most unstable mode.

The corkscrew mode as well as the axisymmetric mode were investigated as shown in Figure

6.9. Figure6.9(a) shows that the maximum growth rate occurs ata � 0:6. The maximum

growth rate! m versusa were examined by reducing the value ofQ and it was found that the

peak point in the! m� aplane moved leftwards as shown in Figure6.10(a). It implies that, for a

strong electric �eld, the most unstable mode prefers an intermediatea for � = 0:5 although the

critical unstable mode prefersa � 0:3. The mechanism is very complex because the electric

force destabilizes the �ow while the viscous dissipation as well as the ionic di� usion tend

to stabilize the system. In order to explain the results, the energy analysis was applied. As

the interface locationa increases, the viscous dissipation e� ect becomes weaker tilla � 0:6,

after which it becomes stronger asa increases further as shown in Figure6.10(b). This is the
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Figure 6.10: (a) The maximum growth rate! m of the corkscrew moden = 1 vs. a for
di� erent values of input electric numberQ. (b) The log ratio between the energyEe andV,
in which, the electric numberQ = 5 � 104 and the wavenumberk corresponds to the most
unstable mode.

reason why for an unstable �ow,Q = 5 � 104, the maximum growth rate occurs ata � 0:6.

In addition, it is observed that, for� = 0:5, the maximum growth rate of the axisymmetric

mode dominates the corkscrew mode whena ' 0:83 for Q = 5 � 104. It indicates that the

axisymmetric mode becomes critical when the interface approaches the pipe wall. Figure

6.9(b) demonstrates that the maximum growth rate occurs ata � 0:2 which indicates that the

most unstable mode and the critical unstable mode prefera � 0:2. Additionally, for � = 2,

the axisymmetric mode always dominates the corkscrew mode.

E� ect of interface thickness

This section investigates of the in�uence of the interface thickness on the critical instability.

The other parameters are �xed:Re= 1, S c= 1000,a = 0:5. In the above discussions, two

values of� have been selected for discussion. It has been observed that, the system becomes

more stable for a larger value of� . The marginal stable curves for three typical values of� are

shown in Figure6.11. For a liquid with viscosity strati�cation, Selvam et al. reported that,

for a thicker interface, the �ow becomes more stable [97]. They explained that the stabilizing
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Figure 6.11: The marginal stability curves. (a)� = 0:5. (b) � = 2.

e� ect is due to the di� usion e� ect and becomes more signi�cant for a thicker interface which

dissipates the kinetic energy and inhibits the instability [97]. The study by Chang et al. [105]

and discussion in Chapter5 showed that, the system becomes more stable with reducing the

conductivity gradient when the conductivity gradient is small, while the �ow becomes more

stable as the conductivity gradient increases when the conductivity gradient is large. In the

present study, if the conductivity ratio is �xed, the conductivity gradient within the interface

becomes smaller as the interface becomes thicker. Current study shows that, the �ow becomes

more stable as the conductivity gradient decreases which is di� erent from the previous study

[105] and Section5.4of this thesis. In fact, in the current study, a thicker interface implies that

the system undergoes a longer di� usion time. Assuming that the conductivity is uniform in

the system due to di� usion for quite a long time, a completely stable �ow would be expected.

Therefore, the system may become more stable as the interface becomes thicker. Numerical

studies demonstrate that, with increasing the interface thickness� , the marginal curve rises

up in theQ � k plane which indicates that the �ow becomes more stable as the interface

becomes thicker which supports the above analysis. The result is similar to the phenomenon

in a viscosity strati�ed �ow [97], but di� erent from the studies by Chang et al. [105]. The

di� erence is due to the �ows studied by Chang et al. [105] and that in Chapter5 are bounded
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Figure 6.12: The critical electric strength numberQc vs. � . (a) � = 0:5, (b) � = 2.

by two solid walls. However, in this problem, the �ow is only bounded by the outer pipe

wall. It was observed that, for the axisymmetric mode,� = 2, the critical wavenumberkc

becomes smaller as� increases as seen in Figure6.11(b). It indicates that, the wavelength

of the disturbance becomes longer as� increases. In order to show the e� ect of � on the

critical stability, the critical electric numberQc was plotted against� in Figure6.12. Figure

6.12also demonstrates that the system becomes more stable as� increases. Additionally, the

corkscrew mode dominates the instability for� = 0:5, and the axisymmetric mode dominates

the instability for� = 2.

E� ect of shear �ow

This section aims to reveal the in�uence of the shear �ow on the dielectrophoretic instability.

The other parameters are �xed ata = 0:5, � = 0:1. Priori to present the numerical study, the

electric force term in the linearized axial momentum equation (6.35) is re-considered:

�
Q

RePe
L �̂ =

Q
Re2S c

�̂ e: (6.56)
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Figure 6.13: The critical electric strength numberQc vs. Re. (a) � = 0:5, (b) � = 2.

The value ofS cis �xed at S c= 1000. Equating Q
Re2S c at two di� erent values ofRe, gives:

Q2 =
Re2

2

Re2
1

Q1: (6.57)

This relation re�ects the fact that, when the value ofQRe2S c is �xed, a smallerRedescribes a

smallerQ. It implies that, when the Reynolds number is small, the system may be more unsta-

ble. This Chapter considers a weak shear �ow under the consideration of �ow in micro�uidic

channel and proposes thatRehas a range of [0:1;10] provided that the pipe radius is 10� 3m

and kinematic viscosity� = 10� 6m2=s. The maximum velocity occurring at the center line

r = 0 can be varied from 10� 4m=s to 10� 2m=s.

For � = 0:5, the corkscrew mode dominates the instability; and for� = 2, the axisymmetric

mode dominates the instability. Figure6.13 illustrates that the critical electric numberQc

increases asRe increases, indicating that the shear �ow impedes the electro-convection in

the system. Interestingly, the corkscrew mode for� = 2 can be enhanced by the shear �ow

as seen in Figure6.13(b) although it never becomes critical for the selected input values of

Re, � andS c. It is di� erent from the previous study by Chang et al. [105] and section5.4

of this thesis which show that, the critical instability can either be enhanced or impeded by
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Figure 6.14: (a) Electric energyEe vs. Re. (b) The log ratio between the electric energy and
the viscous dissipation vs.Re. (c) The work of Reynolds stress vs.Re. The electric number
Q = 104.

the shear �ow. In the present study, the shear �ow always impedes the critical instability.

In order to understand the physical mechanism, the value ofQ and the wavenumberk were

�xed to investigate the energy contributions of the electric force, Reynolds stress and viscous

stress. For someRe, the �ow is stable, e.g.Re > 2:5 for � = 0:5 andRe > 2 for � = 2.

The electric energy becomes smaller as demonstrated in Figure6.14(a). �Ek becomes smaller

asReincreases and is negative asReexceeds some critical value which indicates the system

becomes stable asReincreases. However, the underlying factor that stabilizes the system is

not the reduction in the electric energy. Figure6.14(b) shows that, as the Reynolds number

increases, ln(jEe
V j) decreases for� = 0:5; while ln(jEe

V j) increases for� = 2. It indicates that,

the stabilizing mechanisms of the two cases� = 0:5;2 are di� erent. The case ofRe = 10

were examined and result showed that, for� = 0:5, ln(jEe
V j) < 0; for � = 2, ln(jEe

V j) > 0.

It indicates that, for� = 0:5, the increase of the viscous dissipation is the major factor that

stabilizes the �ow although the Reynolds stress also plays a stabilizing role as shown in Figure

6.14(c). For� = 2, because the electric energy always dominates the viscous dissipation, i.e.

Ee > jVj, the stabilizing factor in the system is due to the Reynolds stress which dissipates

the kinetic energy of the perturbation. The results indicate that, the imposed shear �ow can

impede the dielectrophoretic instability via the dissipation mechanisms of the viscous stress

and the Reynolds stress.
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Figure 6.15: The wave speed of the critical unstable mode versus the Reynolds number.

Furthermore, the in�uence ofReon the wave speedc was investigated as shown in Figure

6.15. It was observed that, for� = 0:5, the critical wave speedc increases slightly asRe

increases initially, then it has a negligible in�uence on the wave speed. However, the wave

speed decreases slightly asReincreases fromRe = 1 for � = 2, and then the wave speed

seems to be independent onRe. The results by Chang et al. [105] indicated that, the criti-

cal frequency of the critical transverse unstable mode� ! i was independent of the Reynolds

number whenRe> 1. This implies that the critical wave speed is independent ofRe. In this

system, it can be observed that the wave speedc is independent ofRefor both the two critical

unstable modes: corkscrew mode and axisymetric mode whenRe> 2.

E� ect of ionic di� usion

This section presents a study of the ionic di� usion's in�uence on the dielectrophoretic insta-

bility. The other parameters are �xed:Re= 1, a = 0:5, � = 0:1. In the governing equations

(6.32)-(6.37), replacingReby Pe does not change the governing equations which indicates

that the e� ect of ionic di� ussion on the �ow instability should be similar to that ofRe. How-

ever, the results should not be the same as shown in the above section, in which,Reis varied
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Figure 6.16: The critical electric strength numberQc vs. S c. (a) � = 0:5, (b) � = 2.

while S cis �xed. Therefore, it is necessary to investigate the in�uence ofS con the stability

by �xing the value ofRe.

The critical electric numberQc versus the Schimdt number is shown in Figure6.16. The

corkscrew mode dominates the instability for� = 0:5 and the axisymmetric mode dominates

the instability for� = 2 as shown in Figure6.16. The system becomes more stable asS c

increases. Results in �gure6.16are quite similar to those in Figure6.13which demonstrates

that the in�uence ofS con the �ow stability is similar to that ofRe.

The instability mechanism is then interpreted by the energy analysis. The critical instability

of the system is considered here. The viscous dissipation termV is always negative and plays

a stabilizing role. The electric force workEe > 0 which triggers the electro-convection in

the system. ln(jEe
V j) was calculated and found to increase withS cinitially, then it decreased

asS cincreased further as shown in Figure6.17(a). It indicates that the viscous dissipation

e� ect becomes weaker asS cincreases fromS c= 100 while it becomes stronger whenS cis

very large. WhenS cis not too large,S c = O(102), the Reynolds stress plays a key role in

stabilizing the system since its dissipation e� ect becomes stronger asS cincreases as shown

in Figure6.17(b). As S cincreases further, for� = 0:5, the dissipation e� ect by Reynolds
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Figure 6.17: (a) The log ratio between the electric energy and the viscous dissipation vs.S c.
(c) The work of Reynolds stress vs.S c.

stress becomes weaker; while for� = 2, the Reynolds stress's work reaches a plateau as seen

in Figure6.17(b). Such a phenomenon indicates that, although the Reynolds stress dissipates

the kinetic energy, it is not the major factor that causes the system to be more stable when

S cis increased. As shown in Figure6.17(a), ln(jEe
V j) starts to decrease whenS cexceeds a

certain value. It indicates that the viscous dissipation increases withS c and becomes the

major stabilizing factor. Moreover, recall the de�nition ofS c = �
Ke f f

. It indicates that the

viscous e� ect becomes stronger as the parameterS c increases. Since viscous dissipation

plays a stabilizing role, the system becomes more stable asS cincreases. The e� ect ofS con

the critical stability in this system is di� erent from the previous study by Chang et al. [105]

and what has been discussed in section5.4of this thesis. In these studies ([105] and Chapter

5), S cwas found to have a dual e� ect: with increasingS ccan either enhance or inhibit the

critical instability. Present study shows that, for� = 2, the corkscrew mode can either be

enhanced or impeded asS cincreases as seen in Figure6.16(b). However, the critical unstable

mode always becomes stable. For an unstable �ow, we observed that,S ccan play a dual role

in the system that the growth rate of disturbances can become either larger or smaller asS c

increases which is not shown here since we are only interested in the critical stability of this
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system.
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Chapter 7

Conclusions and future work

7.1 Conclusions

7.1.1 Interfacial instability

Chapter3 and Chapter4 discussed the interfacial instability of core-annular �ows in a radial

electric �eld. The interface is unstable even without the external electric �eld which is due to

the renowned Plateau-Rayleigh mechanism.

In Chapter3, an asymptotic model was proposed to study the linear and nonlinear dynamics

of a thin liquid �lm �owing down a vertical �ber whereas the dynamics of its surrounding

gas was neglected. The liquid �lm was assumed to be perfectly conducting. Linear stability

analysis of the asymptotic model indicated that, when the ratio between radius of the outer

electrode and the initial radius of the liquid �lm� < e, the linear instability was enhanced by

the electric �eld; when� = e, the electric �eld had a negligible in�uence on the linear insta-

bility; when� > e, the electric �eld impeded the linear instability. Nonlinear simulation of the

asymptotic model was also studied. When� < e, the electric �eld promoted the wave height,

which can cause the �lm to be singular. When� = e, the nonlinear simulation showed that the

electric �eld enhanced the deformation of the interface. When� � e, the study showed that

the permanent wave may be time-dependent or time-independent, depending on the strength

of the electric �eld. For instance, when� = e1:1, the electric �eld can lead to the droplet coa-

lescence and cause the liquid �lm to be singular. In the study of the case� = e3=2, the singular
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phenomenon was not observed for all electrical Weber number, and the maximum height of

the wave decreased as the electrical Weber number increased. Investigation on steady travel-

ing waves was further conducted to discuss the in�uence of electric �eld on the wave speed.

It was found that the wave speed and the wave amplitude can be promoted or decreased by

the electric �eld. Particularly in some situations, the wave speed may increase/decrease while

its amplitude decreased/increased as the strength of the external electric �eld increased.

In Chapter4, the dynamics of the outer layer was taken into account and the base �ow arose

due to a constant axial pressure gradient. The two liquids were considered to be leaky di-

electrics. Results of the linear stability analysis showed that, depending on the ratios of elec-

trical properties (the electrical permittivity ratio and electrical conductivity ratio between the

outer layer and inner layer), the electric �eld can either stabilize or destabilize the system.

Both theoretical analysis and numerical studies were carried out. It was found that an ex-

ternal electric �eld can completely impede the capillary instability. Linear stability analysis

showed that the system can be stabilized by increasing the inner radius of the duct or the

thickness of the outer layer. It was found that viscosity had dual e� ects on the stability of the

system. Viscosity strati�cation may cause instability in the system, while viscous dissipation

e� ect had a stabilizing e� ect. The Reynolds number on the stability was investigated and it

was found that the capillary instability could be suppressed by the interfacial shear. Also, the

electric �eld can either stabilize or destabilize the interface wave instability due to viscosity

strati�cation, which was dependent of the electrical properties. Furthermore, a range of elec-

trical properties was identi�ed that the electric �eld can suppress the capillary instability as

well as the interface wave instability. Further investigations of the input parameters on the

e� ective growth rate and the wave number of the most unstable perturbation were conducted.

It was found that the e� ective growth rate and wave number depended on the strength of the

electric �eld and the electrical permittivities and conductivities. The viscosity ratio's e� ect

on the growth rate and wave number of the most unstable disturbance was investigated. It was
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found that, for some selected input parameters, the instability of the system was dominated

by the outer layer when the viscosity ratio was small; for large viscosity ratio, instability was

dominated by the inner layer.

7.1.2 Electrohydrodynamic mixing

Chapter5 and Chapter6 discussed electro-mixing in micro-channels in which the dielec-

trophoretic instability was investigated in the framework of electrostatics. The three dimen-

sional hydrodynamical problem has been considered for the both problems.

In Chapter5, an annular liquid layer with radial electrical conductivity gradient in a radi-

al electric �eld was investigated. A constant pressure gradient was imposed along the axial

direction causing a weak shear �ow. The critical unstable mode was found to be either oscil-

latory or stationary depending on the following dimensionless parameters: the dimensionless

inner radiusa, the electrical conductivity gradient, the Reynolds numberReand the electrical

Schmidt numberS ce.

To illustrate the in�uence of the radiusa on the instability, the other dimensionless parame-

ters were �xed: � = 10, Re = 1 andS ce = 103. It was found that, when the dimensionless

radiusa < 0:4, the major cause of instability was the spanwise disturbance and the criti-

cal unstable mode was stationary. Whena > 0:4, the critical unstable mode was given by

three-dimensional oblique waves. Furthermore, it was observed that the system became more

unstable as the radiusa increased.

The in�uence of the conductivity gradient on the instability was examined. The other dimen-

sionless parameters were �xed ata = 1, Re = 1 andS ce = 103. When the conductivity

gradient was small, the critical unstable mode was found to be three-dimensional oblique

waves. As the conductivity gradient increased, the system became more unstable because

the dielectrophoretic e� ect was enhanced. However, when the conductivity gradient was in-
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creased further, the stability of the system was enhanced due to the enhancement of the ionic

di� usion e� ect. Apart from that, the stationary mode became critical when� � 20.

In order to understand the in�uence of the imposed shear �ow, the Reynolds number was

varied while the other parameters were �xed:a = 1, � = 10, S ce = 103. It was found that,

whenRe< 0:3, increasingRewould cause the system to be more unstable. The most unstable

mode was the three dimensional oblique wave. WhenRe> 1, the critical electric �eld seemed

to be independent ofRebecause the spanwise disturbances dominated the instability.

The e� ect of electrical Schmidt numberS ce on �ow instability was investigated by �xing the

other parameters ata = 1, � = 10, Re= 1. It was found that, the three dimensional system

may either be more unstable or more stable asS ce increased. WhenS ce > 103, it was found

that the critical electric �eld seemed not to be in�uenced byS ce.

Chapter6 investigated the electrohydodynamic instability of two miscible �ows in a micro-

pipe with electrical conductivity strati�cation. An axial electric �eld was imposed, which

can instigate the electro-convection in the system. A weak shear �ow arose from an axial

pressure gradient. The in�uences of conductivity ratio, interface location, interface thickness,

shear �ow and ionic di� usion on the critical stability of the �ow were discussed in detail. An

energy analysis was carried out to interpret the instability mechanism.

It was found that, the system was more unstable for a larger electrical conductivity contrast.

When the electrical conductivity was larger within the inner layer, the critical unstable mode

may either be the corkscrew mode or the axisymmetric mode, depending on the interface

location. A detailed study showed that the critical unstable mode shifted from the corkscrew

mode to the axisymmetric mode as the interface approached the pipe wall. When the electrical

conductivity was larger in the outer layer, the critical unstable mode was dominated by the

axisymmetric mode. The interface location had a signi�cant in�uence on the critical unstable

mode. The system was more stable when the interface was close to the centerline or the
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pipe wall. The �ow became more stable as the interface became thicker. The shear �ow and

ionic di� usion were found to have a stabilizing e� ect via the dissipation mechanisms of the

Reynolds stress and viscous stress.

7.2 Perspectives of future research

7.2.1 Thin �lm dynamics

In Chapter3, the dynamics of a thin liquid �lm in a radial electric �eld has been investigated

by an asymptotic model which is valid for small Reynolds number �ow. Indeed, when the

thin �lm is thick, the Reynolds number can be moderate and this asymptotic model cannot

be used. To deal with this problem, the author will apply the weighted-residual method and

derive a two-equation model to relieve this di� culty. Moreover, the streamwise di� usion may

be included as indicated by Ruyer-Quil et al.[28]. Additionally, the asymptotic reduction of

the Laplace equation of the electrical potential is not appropriate when the gap between the

liquid �lm and outer electrode is large. Hence, the full Laplace equation should be retained.

Furthermore, how the electric �eld in�uences the absolute/convective instability is still in

question: such as a thin �lm �owing down an inclined plate or on a vertical cylinder.

Another interesting problem is to investigate the dynamics of liquid �lms coating on porous

cylinders or �bers. For many biological materials, e.g. hair, vessel, textile threads (cotton

threads), in microscope, they are not solid and many of them are penetrable. Preliminary

studies of such �ow systems have been carried by the author and his coworkers. It should be

pointed out here: (i) our study applied the Darcy equation to describe the motion of liquids

in the porous cylinder and a Beavers-Joseph condition was adapted to the cylindrical system;

(ii) the problem has been reduced to a thin �lm �owing down a vertical �ber with a slippery

surface and �ow within the porous cylinder was neglected. However, recent experimental
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studies by us in the Fluid Mechanics Lab in Nanyang Technological University showed that,

the droplet on a porous �ber (a cotton textile thread) is much slender, i.e. smaller height and

slower than that �owing down a solid �ber. Such an observation strongly demonstrates that

the mathematical formulation in our previous studies[25, 126] is not applicable for the current

model in experiments. We will perform further investigation into this problem so as to unveil

the underlying mechanism behind such a phenomenon from both theoretical modeling and

more accurate experimental design.

There are still many open problems in the research �eld of thin �lm dynamics, such as thin

�lm �ows at moderate Reynolds numbers on patterned topological surfaces, weak turbulence

coupled with multi-�elds, e.g thermal �eld, electro- or magneto- �elds, chemical reactions and

biological �ow systems. More importantly, the application of the weighted-residual model is

very limited to a few systems: such as thin �lm �ows with Marangoni e� ects. One of the

author's future research is to extend the methodology of weighted-residual model to these

open problems in liquid �lm �ows.

7.2.2 Electro-Hydrodynamic instability to Chaotic �ows

In this thesis, most e� orts have been spent on the linear dynamics of �ow systems in an exter-

nal electric �eld. Linear stability analysis has been a versatile method to study the incipient

stage of system perturbed by disturbances. However, for liquid mixing in channels, it is of

interest to see the mixing e� ciency or formation of organized patterns after a long time, and

the nonlinear full system should be investigated.

It should be acknowledged that direct numerical simulation of turbulence of multi-phase �ow

is a daunting task. Usually, the prevailing methods, such as �nite volume method, level-set

method, phase-�eld method etc., are used to simulate two-layer �ow with an interface. Again,

simulation of turbulent �ows in the two-layer �ow system at high-Reynolds number starting
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from the Navier-Stokes equations is formidable. A possible way to bypass these di� culties

is to utilize the large eddy simulation by modeling the small scale motions in conjunction

with level set method or phase-�eld method. One of my future research is to carry out large

eddy simulation in these systems. For the two problems in chapter5 and chapter6, direct

numerical simulation of three-dimensional fully developed turbulent �ows will be carried out

in future. When the �ow becomes unstable, we would expect to see: periodic �owsV quasi-

periodic �owsV chaotic �owsV fully developed turbulence as the strength of electric �eld

increases. Since the �ow is very much like the canonical Rayleigh-Bénard convection, it

is of great interest to perform a comparison between the two systems, speci�cally at very

large Rayleigh number. To perform the direct numerical simulation, the Chebyshev-Fourier

spectral method would be utilized. The numerical code has been developed and tested for

two-dimensional/three-dimensional Rayleigh-Bénard convection. To illustrate the numeri-

cal simulation method, computation of the two-dimensional Rayleigh-Bénard convection has

been documented in the AppendixC.

7.2.3 Non-Newtonian �ows

In this thesis, all the liquids considered have been assumed to be Newtonian. In many prac-

tical cases, the liquids are non-Newtonian, such as shear-thinning �uids, or viscoelastic �u-

ids. In these �uids, the non-Newtonian e� ect would be signi�cantly important. For non-

Newtonian �uids, there have been some preliminary studies on the linear stability of canon-

ical �ows: such as plane Couette �ow, Poiseuille �ow, Hagen-Poiseuille �ow and Taylor-

Couette �ow in which the normal mode analysis as well as the non-modal theory have been

implemented[134, 135]. Nevertheless, it should be indicated that these studies did not pro-

vide su� cient numerical simulations to give direct evidences that the transition `does' oc-

cur in plane-Couette �ow and Hagen-Poiseuille �ow which are linearly stable. It should be

emphasized here that the non-modal theory predicts that the energy of perturbation can be
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signi�cantly ampli�ed but will eventually decay! Hence, direct numerical simulation should

be carried out to demonstrate that the transition can be triggered by optimal disturbances and

can be sustained by the nonlinear mechanism. However, due to the complicated governing

equations of non-Newtonian �ows, there is now a lack of study of direct numerical simu-

lations of non-Newtonian �ows in these systems. To perform the numerical simulation, it

would be convenient to construct a solenoidal basis from the Petrov-Garlerkin method which

provides high numerical accuracy[136]. In a di� erent way, I have developed a solenoidal

basis from the eigenmodes of the linearized Navier-Stokes equations and derive an ordinary

di� erential-integral system.

Beyond direct numerical simulation, in multi-�eld systems, such as electrohydrodynamic sys-

tems, the study of linear stability of non-Newtonian �ows in an electric �eld is very limited.

In particular, the control of instability in a micro channel with complex geometries is of great

interest and the global stability analysis should be carried out. For such complex problems,

the �nite element method or spectral element method will be used. Finite element method is

very easy to be implemented in open source softwareFreefem++ and I have been working on

the software for nearly a half year.
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AppendixA

Chebyshev collocation method

In this thesis, the eigenvalue problem is resolved by the Chebyshev collocation method. For

a function f in a domainy 2 [� 1; 1], it can be approximated by the Chebyshev polynomials:

f =
NX

0

amTm(y); (A.1)

whereTm is the Chebyshev polynomial

Tm(y) = cos(mcos� 1(y)): (A.2)

The �rst order derivative off , now can be expressed as

d f
dy

=
NX

0

am
dTm

dy
; (A.3)

wheredTm
dy = msin(mcos� 1(y))

sin(cos� 1(y)) .

The N-dimensional subspace expanded by the Chebyshev functions, i.efT0; T1; : : : ;TNg, is

complete, therefore, the derivative off can also be approximated by

d f
dy

=
NX

0

bmTm: (A.4)

Obviously, there is
NX

0

bmTm =
NX

0

am
dTm

dy
: (A.5)

168



Now, collocation off at y = y j gives

NX

0

bmTm(yj) =
NX

0

am
dTm

dy
jy=y j : (A.6)

Discretization of the problem on these collocation points gives

F = T a; (A.7)

wherea = [a0; a1; : : : ;aN]T, F = [ f (y0); f (y1); : : : ; f (yN)]T andT is a matrixT i j = Ti(yj).

Now, we can obtain:

b = (T 0)� 1T a: (A.8)

Now, the functionf is unknown, thereby the coe� cientsam serve as the unknowns in the

discretized problem. Furthermore, settingD = (T 0)� 1T which is the discrete di� erentiation

matrix. Hence, for the �rst order derivative off and in discrete form, there isF0 = T Da.

Moreover, for the n-th derivative off and in the discrete form, there isF(n) = T Dna. In the

eigenvalue problem,! A x = B x, the unknown coe� cients serve as the eigenvectorx.

In the computation of the eigenvalue problem, if we setf (yj), i.e the grid points, as the un-

knownsx, it is necessary to construct the discrete di� erentiation matrix. Using the Lagrange

interpolation, the functionf can be expressed as:

f =
NX

0

pm(y) f (ym); (A.9)

wherepm(y) is the interpolation polynomials,

pm =
NY

j=0; j, m

y � yj

ym � y j
: (A.10)

Here,yj = cos(� ) and� = j�
N is the Chebyshev collocation points.
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For the �rst order derivative off , now, can be expressed as

f 0 =
NX

0

dpm(y)
dy

f (ym): (A.11)

The discrete from ofdpm

dy represents the discrete di� erentiation matrixD.

For instance, if there is only two points in the domain [� 1; 1], the discrete di� erentiation

matrixDis

D=

2
6666666664

1
2 � 1

2

1
2 � 1

2

3
7777777775
: (A.12)

If there is three points in the domain, i.eyj = 1;0; � 1, the discrete di� erentiation matrix reads

D=

2
6666666666666666664

3
2 � 2 1

2

1
2 0 � 1

2

� 1
2 2 � 3

2

3
7777777777777777775

: (A.13)

Generally, when there isN+ 1 points in the domainy 2 [� 1; 1], the components in the discrete

di� erentiation matrix are

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

D11 =
2N2 + 1

6
; DN+1;N+1 = �

2N2 + 1
6

;

Dj j = �
yj

2(1� y2
j )

; j = 2; : : : ;N;

Di j =
ci

c j

(� 1)i+ j

yi � yj
; i , j; i; j = 1; : : : ;N + 1;

(A.14)

in which cj = 2 if i = 1; N + 1. Otherwise,cj = 1.
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AppendixB

Direct numerical simulation: thin �lms

We brie�y present here the key points of the algorithm for the simulation of the spatio-

temporal evolution of thin �lms based on the reduced models. Here, the Benny type equation

is taken as an example:

ht + h2hx + � [
h3

6
(� cot� hx + � 2Wehxxx) +

2Re
5

h6hx]x = 0: (B.1)

Making the transformation:t ! � t andx ! � x, the Benney equation is restated as:

ht + h2hx + [
h3

6
(� cot� hx + Wehxxx) +

2Re
5

h6hx]x = 0: (B.2)

An initial condition of the problem ish(x;0) = h0.

B.1 Periodic domain

When the problem is solved with periodic boundary conditions:

h(0; t) = h(L; t); hx(0; t) = hx(L; t); hxx(0; t) = hxx(L; t); hxxx(0; t) = hxxx(L; t); (B.3)
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whereL is the length of the computational domain, it is convenient to calculate the derivatives

of h, hx, hxx, hxxx in the Fourier domain. Now, we write:

h(x; t) =
N=2X

� N=2

exp(i j
2�
L

x)ĥ j (B.4)

whereĥ� j = ĥ�
j is the Fourier amplitude. Now, we would like to set the grid points atx = xj,

h(xj) as the unknowns and we are going to construct the discrete di� erentiation matrix. In

discrete matrix form

h = Aĥ; (B.5)

whereh = [h(x0); h(x2); : : : ;h(xN)]T, ĥ = [ĥ� N=2; : : : ;ĥN=2]T andAmn = exp(in2�
L xm). The

derivative ofh can be expressed ash0 =
P N=2

� N=2 i j 2�
L exp(i j 2�

L x)ĥj. Hence, in discrete form:

h0 = ACĥ whereC is a diagonal matrix andC = diag (i 2�
L k) with k = [� N=2; � N=2 +

1; : : : ;0; : : : ;N=2 � 1; N=2]T. Using the Fourier transform̂hj =
P N

0 exp(� i j 2�
L xk)h(xk), and

�nally, the derivativeh0, in the discrete form,h0 is related to the grid functionh by

h0 = ACBh; (B.6)

whereBmn = exp(� im2�
L xn) and therefore the discrete di� erentiation matrixD= ACB.

Hence, the discretized Benney equation can be expressed as:

ht + D
h3

3
+ D[

h3

6
(� cot� Dh + WeD3h +

2Re
5

h6Dh] = 0: (B.7)

Then, the time-evolution problem can be solved by an implicit Gear's method.

Indeed, the problem can be solved by the fast Fourier method. First, we compute the Fourier

amplitudes by the Fourier transform. Second, the derivatives ofh are calculated in the Fourier

space. Third, the derivatives ofh in the physical space are computed by the inverse Fourier
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transform.

B.2 non-Periodic domain

When the non-periodic problem is considered, the Fourier method is not applicable. The

Crank-Nicolson method is used here:

hn+1 � hn

� t
+

1
2

N (hn) +
1
2

N (hn+1) = 0; (B.8)

whereN (h) = h2hx + h3

6 (� cot� hxx+ Wehxxxx)+ 2Re
5 h6hxx+ h2hx

2 (� cot� hx + Wehxxx)+ 12Re
5 h5h2

x.

Boundary conditions of the non-periodic problem, usually can beh(0; t) = 1, hx(0; t) = 0 and

the �lm is free atx = L: hx = hxxx = 0. However, previous studies on the boundary conditions

are not inconsistency and some researchers proposed that the �ow rateq is given at the inlet.

Here, we apply the �nite di� erence method to approximate the derivatives:

@xhj =
hj+1 � hj� 1

2� x
+ O(� x2); (B.9)

@xxhj =
hj+1 � 2h j + hj� 1

� x2
+ O(� x2); (B.10)

@xxxhj =
h j+2 � 2hj+1 + 2hj� 1 � h j� 2

2� x3
+ O(� x2); (B.11)

@xxxxhj =
h j+2 � 4hj+1 + 6hj � 4hj� 1 + h j� 2

� x4
+ O(� x2): (B.12)

For j = 1; N + 1 (left �rst node and right end node), the central di� erence schemes for the

�rst order and second order derivatives are not applicable. For higher order termshxxx, hxxxx,

the central di� erence schemes are also not applicable atj = 2; N. Hence, we use a forward or
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backward di� erential scheme of second order accuracy at these points:

@xhjx=x1 =
� 3h1 + 4h2 � 3h3

2� x
+ O(� x2); (B.13)

@xhjx=xN+1 =
3hN+1 � 4hN + hN� 1

2� x
+ O(� x2); (B.14)

@xxhjx=x1 =
2h1 � 5h2 + 4h3 � h4

� x2
+ O(� x2); (B.15)

@xxhjx=xN+1 =
2hN+1 � 5hN + 4hN� 1 � hN� 2

� x2
+ O(� x2); (B.16)

@xxxhjx=x1 =
� 5h1 + 18h2 � 24h3 + 14h4 � 3h5

2� x3
+ O(� x2); (B.17)

@xxxhjx=x2 =
� 5h2 + 18h3 � 24h4 + 14h5 � 3h6

2� x3
+ O(� x2); (B.18)

@xxxhjx=xN =
5hN � 18hN� 1 + 24hN� 2 � 14hN� 3 + 3hN� 4

2� x3
+ O(� x2); (B.19)

@xxxhjx=xN+1 =
5hN+1 � 18hN + 24hN� 1 � 14hN� 2 + 3hN� 3

2� x3
+ O(� x2); (B.20)

@xxxxhjx=x1 =
3h1 � 14h2 + 26h3 � 24h4 + 11h5 � 2h6

� x4
+ O(� x2); (B.21)

@xxxxhjx=x2 =
3h2 � 14h3 + 26h4 � 24h5 + 11h6 � 2h7

� x4
+ O(� x2); (B.22)

@xxxxhjx=xN =
3hN � 14hN� 1 + 26hN� 2 � 24hN� 3 + 11hN� 4 � 2hN� 5

� x4
+ O(� x2); (B.23)

@xxxxhjx=xN+1 =
3hN+1 � 14hN + 26hN� 1 � 24hN� 2 + 11hN� 3 � 2hN� 4

� x4
+ O(� x2): (B.24)

The nonlinear equation (B.8) is then solved by the Newton iteration method.
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AppendixC

Direct numerical simulation:
two-dimensional Rayleigh-Bénard
convection

Here, the direct numerical simulation of two-dimensional Rayleigh-Bénard convection is

brie�y presented. Below are the governing equations of the problem:

ux + vy = 0; (C.1)

1
Pr

(ut + uux + vuy) = � px + uxx + uyy; (C.2)

1
Pr

(vt + uvx + vvy) = � py + vxx + vyy + Ra�; (C.3)

� t + J = � xx + � yy; (C.4)

whereRa is the Rayleigh number andPr is the Prandtl number. The convective termJ =

u� x + v� y. There is no slip aty = 0;1 and the temperature is speci�ed as

� (x; 0; t) = 1; � (x; 1; t) = 0: (C.5)

Periodic boundary conditions are applied inx direction.

Below, we are going to formulate the problem from the pressure Poisson equation. Using the
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continuity equation, we obtain the pressure Poisson equation,

pxx + pyy = Ra� y �
1
Pr

(Gx + Hy); (C.6)

whereG = uux + vuy andH = uvx + vvy andN = Gx + Hy = u2
x + v2

y + 2uyvx. For simulation of

shear �ows, special attention should be paid to the nonlinear terms when the Reynolds number

is high. In such a case, it is suggested using the skew-symmetric formu�r u = 1
2u�r u+ 1

2r� (uu)

to address the numerical instability.

Since the pressure Poisson equation is second order, proper boundary conditions should be

imposed. From the derivation of the Poisson equation, it implies:

1
Pr

@f
@t

= r 2 f ; (C.7)

where f = r � u. For the sake of mass conservation, it is to impose:f � 0 for all the time.

For, f � 0, there should be

f (x; y; 0) = 0; f j@V = 0; (C.8)

where@V is the boundaries of the computational domain. It implies that, an initially solenoidal

velocity �eld should be provided and the continuity equation should be imposed at all the

boundaries of the computational domain:

vy = 0; at y = 0;1: (C.9)

Furthermore, ifp is a solution of the pressure Poisson equation thenp + c is also a solution

wherec is a constant number. Hence, to remove the singularity of the Poisson equation, we

need to �x the phase of pressure. Numerical simulation by our numerical method shows that

kr � uk2 is around 10� 13 for small Rayleigh number, e.gRa = 2000, while it exponentially

increases withRa, e.gkr � uk2 � O(10� 8) for Ra = 104 during the simulation with 64� 31
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grids. For even larger Rayleigh numbers, the solenoidal condition of velocity may not exactly

satis�ed, but our numerical simulation shows thatkr � uk2 < 10� 4 for Ra= 107 with 128� 61

grids. It is also found that the �ner grids is the smallerkr � uk2. It should be pointed out

that summation ofr � u at the grid points (x; y) should be zero. Else, the numerical method

is not correct since there is dilation which contradicts with the assumption of incompressible

liquids.

To study the spatio-time evolution problem, implicit scheme for all the linear terms and ex-

plicit scheme for the nonlinear terms are applied. Now, we make a Fourier transform of

equations (C.2)-(C.4) and the pressure Poisson equation with respect tox:

1
Pr

(
ûn+1

k � ûn
k

� t
+ Ĝn

k) = � ikpn+1
k + (D2 � k2)ûn+1

k ; (C.10)

1
Pr

(
v̂n+1

k � v̂n
k

� t
+ Ĥn

k) = � Dpn+1
k + (D2 � k2)v̂n+1

k + Ra�̂ n+1
k ; (C.11)

� n+1
k � � n

k

� t
+ Ĵn

k = (D2 � k2)�̂ n+1
k ; (C.12)

(D2 � k2)p̂n+1
k = RaD�̂ n+1

y �
1
Pr

N̂n
k ; (C.13)

whereD = d
dy. Here, theD is the Chebyshev di� erentiation matrix after transforming the

physical domain [0;1] into the Chebyshev domain [� 1; 1]. Hence, the numerical method has

the spectral accuracy in space. Note that, the dealiasing by the 2=3 rule should be imple-

mented which is very important for numerical stability. After solving the Fourier amplitudes

[û; v̂; p̂; �̂ ]n+1
k , we apply the inverse Fourier transform to obtain [u; v; p; � ]n+1 in the physical

space. A case study ofRa = 104, Pr = 1 is shown in FigureC.1. Here, we have veri�ed our

code by comparing with that by Clever and Busse[133] as seen in TableC.1.
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Pr = 0:71,Ra= 2500 Pr = 0:71,Ra= 5000 Pr = 0:71,Ra= 104

Clever and Busse[133] Nu = 1:475 Nu = 2:116 Nu = 2:661
Present work Nu = 1:472 Nu = 2:110 Nu = 2:655

Table C.1:Comparison of Nusselt number.

Figure C.1: The velocity �eld and temperature �led of a two-dimensional Rayleigh-Bénard

convection forRa= 104 andPr = 1 att = 10.

A case of large Rayleigh numberRa = 107 has also been tested. Note that, the governing

equations should be rescaled to reduce the numerical sti� ness . Results are shown in Figure

C.2.

Figure C.2: The velocity �eld and temperature �led of a two-dimensional Rayleigh-Bénard

convection forRa= 107 andPr = 1. (a)t = 20; (b)t = 25.
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Here, we show the steps of the 2=3 dealiasing rule by taking the nonlinear term (ux)2 as an

example. The steps are summarized as follows:

(i) suppose we have ˆuk in the Fourier space;

(ii) calculateux in the Fourier space:ikûk;

(iii) dealiasing: for alljkj > 2
3

N
2 , setûk = 0;

(iv) use inverse fast Fourier transform to calculateux in the physical space and calculate (ux)2;

(v) calculateû2
x in the Fourier space.
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