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Abstract

In the last decade, the interfacial instability and mixing enhancement in microfluidic flow

systems have attracted much attention . The control of interfacial instability is very crucial in

multi-phase flow systems, such as the droplet production systems. In microfluidic systems,

rapid mixing has been a long-standing challenge for the small Reynolds number in which tur-

bulence will not occur. Previous studies have demonstrated that rapid mixing can be achieved

using an electric or magnetic field. In all of these systems, it is rather important to know the

instability threshold. This thesis devotes to the discussion of the effects of electric field on the

interfacial instability and electro-mixing in an annulus channel.

Based on the evidence that the wave length is often much longer than the mean thickness of a

fluid layer, Chapter 3 investigated the linear and nonlinear dynamics of a perfectly conducting

liquid film coating on a metal fiber modulated by the gravity effect in the framework of long-

wave theory. A radial electric field was imposed between the inner fiber and a outer electrode

and the dynamics of the gas phase was neglected. It was found that the electric field can either

reinforce or suppress the interfacial instability by manipulating the distance between the outer

electrode and the inner fiber. In Chapter 4, the interfacial instability of two coflowing annular

liquids in a radial electric field has been discussed when taking into account the dynamics

of the outer layer. Unlike the assumption made in Chapter 3 that the liquids were perfectly

conducting, the two immiscible liquids in Chapter 4 were leaky-dielectrics. Moreover, in

Chapter 4, interfacial instability of two immiscible leaky dielectric fluids was examined in the

full range of wave numbers. It was found that in such a system, the interfacial instability can

be either caused by the so-called Rayleigh-Plateau mechanism or the viscosity stratification

between the two layers. A detailed study of the effects of normal and tangential Maxwell

stresses on the two kinds of interfacial instabilities demonstrated that both of them can either

stabilize or destabilize the interface, depending on the electrical properties of the two liquids.
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However, the two studies in Chapters 3-4 provided evidences that the interfacial instability

caused by the Rayleigh-Plateau mechanism can be modulated by the external electric field

and thereby control the formation of droplets.

Electro-convection was investigated in Chapters 5-6. Chapter 5 discussed the electrohydro-

dynamic instability of an annular liquid layer with a radial electrical conductivity gradient

which was developed from the imposed radial electric field. Chapter 6 studied the instability

in two miscible liquids with an electrical conductivity stratification wherein a uniform axial

electric field was imposed. Studies in the two chapters demonstrated that the instability is

triggered by the dielectrophorectic effect. Study in Chapter 5 showed that the critical unstable

mode in the annular liquid layer could be either stationary or oscillatory, dependenting on the

conductivity gradient. However, in the two-miscible two flows, the critical unstable mode is

always oscillatory. Furthermore, results in Chapter 5 indicated that the flow is least stable for a

moderate conductivity gradient whereas Chapter 6 demonstrated that the flow is always more

unstable for a larger contrast in conductivity. It should also be pointed out that, in Chapter 5,

the critical instability could be reinforced by a weak shear flow; while the critical instability

is always impeded by the shear flow in Chapter 6.

A summary of the four Chapters 3-6 was made, and perspectives of future works built upon

these works have been proposed in Chapter 7.
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Chapter 1

Introduction

1.1 Research Background

Flow instability in microfluidic systems has attracted much attention in the last decade, such

as in ink-jetting, drug-delivery, droplet production and rapid mixing in MEMS. In these indus-

trial applications, the interfacial instability phenomenon is widely encountered and the under-

standing of one such instability is of great importance for precise control the droplet size in

ink-jetting and drug-delivery systems. Another long-standing problem in micro-device is that

rapid mixing for the flow is always laminar and turbulent mixing does not occur. Previous

investigations indicate that applying an external electric or magnetic field is a potential ap-

proach to facilitate mixing in conducting liquids. In view of the importance of flow instability

in micro-fluidic devices, this thesis is devoted to two basic problems: interfacial instability

and electro-convection.

Many pioneering works on the first problem have been devoted to multi-fluid systems, typi-

cally, two-fluid flows in a square duct. It has been demonstrated that the interface could be

unstable and finite-amplitude traveling waves could be observed. The two-fluid flow is wide-

ly encountered in electroosmotic pump systems where an active liquid layer drives the other

passive layer. The principle behind the electroosmotic pump system is the electroosmosis

phenomenon in conducting liquid layers. Naturally, it would be interesting to ask: "is the

interface stable?", "if not, will it rupture and the formation of droplet would be expected to

be seen?", "is there any way to suppress the instability in case of the unstable phenomenon
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occurs?". Monodisperse droplet formation in jetting systems is also of academic interest. For

the production of very fine droplets of sizes down to 20 µm, the traditional approach using

the Rayleigh-Plateau mechanism is not very successful. The traditional approach of adjusting

droplet size is to control the flow rate of the jet. In addition, there is an extra problem in

very viscous fluids that the breakup of a jet is delayed. Moreover, it seems that for some vis-

coelastic fluids, the jet may not break up into droplets after a long time. Applying an electric

field is successful in accelerating the breakup of a Newtonian jet. The droplet size could also

be narrowed down. Indeed, electrified jet is still an active research field. To the best of my

knowledge, very limited works have been devoted to non-Newtonian electrified jets despite

the fact that in many practical cases the fluids are non-Newtonian, such as in 3D-Bio-Printing

systems.

For mixing enhancement in microfluidic devices, researchers traditionally use long pipes or

designed patterned channels to increase the diffusion time. Inducing thermal disturbances

is usually not applicable due to the small scale involved. Natural convection will not occur

as a result. For conducting liquids, e.g aqueous ionic solutions, an alternative approach is

to impose an external magnetic or electric field, which may trigger a circulation flow in the

system. It should be noted that the mechanism of magneto- or electro-convection is quite

similar to that of the thermal convection, i.e the convection is initiated by a body force. For

the successful implementation of an external electric field to enhance mixing in microscale,

it is necessary to create a spatial change in the electric properties, such as an abrupt change

in electric conductivity or permittivity. To achieve this, one can pump liquids with different

ionic concentrations into a channel. There is another approach to trigger electro-convection

by ejecting electric charges into the liquid layer from one electrode and collecting them at the

other electrode.

A careful look into previous literature indicate that the interfacial instability in multi-layer

flows or electroconvection in an electric field was carried out in a planar system, i.e flow
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between to parallel electrodes, although there have been a relatively large number of works

on electrified jets. Specifically, studies on electro-convection in ionic solutions or aqueous

electrolytes in cylindrical channels are very limited. In this thesis, the author is interested in

these flows in cylindrical systems for there is a wide application of circular pipe in micro-

devices. In addition, circular pipes can avoid the leakage problem in square channels that is

widely encountered in experiments. This thesis will investigate the interfacial instability in

multi-fluid flows modulated by an electric field and convection initiated by an external electric

field in the following four chapters.

1.2 Objective and scope

Many previous studies have concentrated on the square channel flows. The objective of this

thesis is to extend the study of electrohydrodynamical instability to other canonical channel

flows, annulus channel flows and pipe flow. First, the Rayleigh-Plateau instability distinguish-

es the annular flow from the planar flow. In this aspect, the thesis will deliver the first study

on the influences of electric field on the Plateau-Rayleigh instability in annular flows. Sec-

ond, this thesis will ‘generalize’ the dielectrophoretic instability which currently exists in the

plane-channel flows, e.g plane-Poiseuille flow, to the other canonical flow systems.

The scope of this thesis covers the following two problems:

(1) Interfacial instability of multi-phase flows in a radial electric field,

(2) Electro-convection caused by spatial change in electric conductivity.

1.3 Outline of this thesis

The rest of the thesis is organized as follows.
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Chapter 2 reviews the state-of-the-art thin films dynamics and some classical models of elec-

trohydrodynamics. Three mathematical models of thin film flow are reviewed and the ad-

vantages and shortcomings of these models are commented. For the electrohydrodynamic

instability, four typical models are reviewed: perfect conducting liquids, non-conducting liq-

uids, leaky-dielectric liquids and electrolyte solutions. The mathematical description of these

four models are laid out along with the four models.

Chapter 3 reports the investigation of a thin liquid film flowing down a vertical fiber in a radial

electric field. The linear and nonlinear dynamics of the problem is studied in the framework

of the long-wave theory.

Chapter 4 analyses the linear stability of two co-axial leaky dielectric liquids in a radial elec-

tric field. This Chapter focuses on the influence of an electric field on the interfacial instability

caused by Plateau-Rayleigh mechanism or viscosity stratification.

Chapter 5 presents the study of linear stability of an annular liquid layer with a conductivity

gradient in a radial electric field. The effects of geometry, conductivity gradient, shear flow

and ionic diffusion on the stationary and oscillatory unstable mode are discussed.

Chapter 6 discusses electro-convection in a conductivity stratified system which is caused by

an axial electric field and the instability mechanism is interpreted by an energy analysis.

Chapter 7 summarizes the contents in chapters 3-6 and proposes some prospectives for future

works.
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Chapter 2

Literature Review

2.1 A Short Introduction to Flow instability

Flow instability is widely encountered in our daily lives through occurrences, such as thermal

convection and water waves. Many factors can trigger the occurrence of instability in a flow

system, such as inertia, surface tension, gravity, centrifugal force and buoyancy [1].

Flow instability is of great interest in fluid mechanics and applied mathematics providing in-

sights in physical mechanisms behind the transitional phenomena. The methodology of flow

instability analysis is to investigate how the system responses if it is perturbed by small dis-

turbances. The disturbances can have various forms, for instance, acoustic noise, fluctuation

in flow rate and pressure. If the disturbances can absorb energy from the basic flow and grow

with time and the system never returns to its original state, then the system is unstable. Other-

wise, the system is stable. Perhaps, the most fascinating phenomenon is the transition in a cir-

cular pipe which was reported by Reynolds as early as in the nineteenth century. Even though

more than one and a half century has past, the transition phenomenon in pipe flow is still an

intriguing problem and remains open. Indeed, it was remarked by Richard Feynman that the

mechanism of transition was the most difficult problem in classical physics. Many theories

have been proposed and have advanced our understanding for this phenomenon. However,

none of these theories is complete and successfully addresses this cumbersome problem. For

instance, the normal mode analysis of linear stability theory predicts that the flow is always

linearly stable even if the Reynolds number is considerably large. The nonmodal analysis sug-
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gests that small disturbances can be amplified significantly due to the strong non-normality

of the system and it is conjectured that transition will be triggered by the following nonlinear

mechanism [2, 3]. However, it predicts that the perturbation energy decays in long time be-

havior. A group of scientists utilized the dynamical system theory and suggested that other

nontrivial solutions of the Navier-Stokes equations exist beyond the classical parabolic profile

[4, 5]. Hence, it was conjectured that these solutions were inherently linked to the transition

and turbulence at low Reynolds numbers. However, this is still not very successful since it

was found that such solutions can exist at a much smaller Reynolds number where no transi-

tion has been observed. Therefore, the relevance between these solutions and the transition is

questionable. In this thesis, the dynamical system theory approach to the Navier-Stokes equa-

tion is not in our scope despite its great importance. Following, advances in linear stability

theory will be reviewed in two aspects: (1) local stability; (2) global stability.

2.1.1 Local stability theory

In the past decades, research on flow stability has been focused on parallel laminar flows be-

cause of its simplicity, such as plane-Couette flow, plane-Poiseuille flow and Hagen-Poiseuille

flow. In these systems, the channel or pipe is assumed to be infinitely long and the velocity

profile does not change in its streamwise direction. Indeed, such infinitely long channels or

pipes are ‘mathematical’ models which cannot exist in the daily life. However, for a finite

but very long channels (length is much larger than the other scales), and the flow is fully de-

veloped in the long downstream direction. The flow is laminar if the flow rate is small and

turbulence is not triggered. In such a situation, we are interested in the stability of the fully

developed velocity profile and such an analysis of stability is the so-called local stability. The

standard approach of linear stability analysis is introduced here. Consider a nonlinear system:

∂F
∂t
= L (F) +N (F), (2.1)
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where L is a linear operator and N is a nonlinear operator. The system (2.1) admits trivial

solutions or equilibrium points in phase space (from the viewpoint of dynamical theory) F̄.

The stability analysis is achieved by introducing small disturbances into the system F = F̄+F′

(|F′| ≪ |F̄|). Hence, the linearized system around the equilibrium point reads:

∂F′

∂t
= L (F′) +

∂N

∂F
|F=F̄ F′. (2.2)

Consider the channel flow (e.g. Couette flow, Poiseuille flow) as an example and in a standard

way, the disturbance is written as

F′ = F̂(y) exp [i(kxx + kzz) + ωt], (2.3)

where F̂ the amplitude of Fourier mode, (kx, kz) wave number, (x, y, z) respectively represents

streamwise, wall-normal and spanwise direction. ω = ωr + iωi is the temporal growth rate.

When the temporal stability is considered, the wave number k (kx or kz) is given and real, while

the temporal growth rate ω is often complex and unknown. For the spatial stability, the time

frequency ω is given and real, while the spatial wave number is often complex and unknown.

The unknown parameters (e.g. ω or k) serve as the eigenvalue of the problem. When the

spatial-temporal instability is considered, i.e. the absolute and convective instability, both ω

and the wavenumber are complex. In this thesis, the spatial-temporal theory is out of the

scope. If the real part of ω is positive, then the disturbances grow with time and the system is

unstable. Otherwise, the system is stable ωr < 0 or neutral ωr = 0.

Although the local theory has achieved a great success in predicting the stability threshold of

Rayleigh-Bénard convection and Taylor-Couette flow, it failed to predict the critical point of

Hagen-Poiseuill flow and plane-Couette flow. In addition, the local theory predicts a critical

Reynolds number for the plane-Poiseuille flow: Re = 5772 which does not agree well with

experimental observations. Transition in plane-Poiseuille flow may take place at a Reynolds
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number as low as Re ≈ 1000. This stimulates scientists to apply other theories to interpret the

physical mechanism of transition, such as the non-modal theory and nonlinear theory which

leads to the doubt of the validation of normal mode analysis.

However, some scientists argued that the normal mode analysis still can be applied to explore

the transition mechanism. The inviscid flow theory, such as the Rayleigh inflection point

theory, indicates that the flow is unstable if there is an inflection point in the basic flow profile.

Motivated by the inviscid theory, Bottaro et al. proposed that, the basic velocity profile is not

exactly linear (for plane-Couette flow) since there is always an experimental error [6]. Hence,

they conjectured that the distorted velocity profile (the linear profile perturbed by a finite small

disturbance) is not linearly stable (see Fig.2.1). Such an idea [7] has been extended to circular

ω
i

ω
r

Figure 2.1: Spectra of plane-Couette flow at Re = 500, k = 1.5 adapted from Ref.[6].

pipe flows.

2.1.2 Global stability theory

In contrast to the local stability theory, the global stability theory is more applicable for real

cases in which there is an upstream inlet and a downstream outlet. The base state should
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be solved numerically and is much more complex than the base state of a parallel flow (e.g.

plane Couette or Poiseuille flow) due to the non-homogeneity of the flow field. The large-scale

computation of eigenvalues is the major difficulty in the global theory. Taking the example of

a three dimensional problem with spatial grids Nx × Ny × Nz = 50 × 50 × 50, the grid number

is on the order 105, and there are four unknowns (i.e. u, v, w, p) at each grid point. If the

eigenvalue problem is formulated as

A q = ωBq (2.4)

where q = (u, v,w, p)T. The size of the matrices A and B is about 105 × 105. Therefore, the

huge number of eigenvalues is about 105. Since only those eigenvalues close to ω = 0 are

concerned, most of these eigenvalues are useless. Moreover, since the data is huge, a numer-

ical strategy for storing data is essential. Thanks to the development of advanced hardware,

practical methods have been proposed to deal with this problem in the past few years [8],

such as the iterative method. It should be indicated that the global stability of many complex

flow systems still remains unexplored. However, although the ‘Global Stability Theory’ is

formidable for numerical implementation, it has the same standard steps for stability analysis

as the local stability theory.

2.2 Low dimensional modeling

In a microfluidic system, the flow is slow and the Reynolds number is very small, typically

Re < 1, such that the inertial effect can be ignored. The Navier-Stokes equations can be

reduced to the Stokes equations. In many microfluidic systems, the channel width or length

is much larger than the channel height. Hence, we can introduce a small parameter into the

system ϵ = h/L where h is the channel height (wall normal direction) and L is a typical length

9



in the direction perpendicular to the wall-normal direction. In many practical cases, such

as multi-phase flow, or droplet production system, the length scale L can be connected to a

typical wave length, such as the droplet spacing. Therefore, the system can be asymptotically

reduced in power series of the small parameter ϵ. This approach in analyzing the flow systems

is called low dimensional modeling.

During the last several decades, such a methodology has been successfully applied for the

study of thin liquid films flowing down an inclined plane. There are numerous examples of

thin liquid film flow in our daily lives, e.g. rain flowing on glasses and liquid droplets on

lotus leaves. In biophysics, an example of liquid film flow is the lung lobe of human beings

coated by an ultra thin liquid layer. An even more common phenomenon of thin liquid film

flow is tears in human eyes. In industry, the applications of liquid film in coating, cooling

systems are widely encountered. In ‘Perspective in Fluid Dynamics’ [9], G.K. Batchelor et

al. indicated eleven important problems, which were urgent to be solved in fluid mechanics.

Among these problems, the dynamics of thin liquid film flow attracted their attention. It

should be emphasized here that the thin film flow offers an ideal model for the study of

transition to turbulence.

The experimental observation of unstable surface waves in a falling liquid film down an in-

cline was pioneered by the father-son team of Kapitza family [10, 11]. Nonlinear unsta-

ble waves were observed in the film flow. Dynamics of the thin film flow can be gener-

ally described as follows: a flat film develops at the inlet; as the flat film is not stable, a

two-dimensional harmonic wave develops. The two dimensional harmonic wave grows vi-

a the nonlinear mechanism which is unstable to the spanwise disturbances. The unstable

two dimensional wave develops into three dimensional structures, which exhibits the charac-

teristics of weak turbulence (see Fig.2.2). Theoretical investigation of thin liquid film flow

down a plate with inclined angle α was pioneered by Benney [13]. Benney applied the low-

dimensional method based on the evidence that the wave length of a typical wave L is much
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Figure 2.2: Shadow image of waves at Re = 33[12]. One such flow can be often observed in
Singapore on raining days from a running liquid film down a slope.

longer than the film mean thickness h0 wherein the small parameter ϵ = h0/L is defined as the

film parameter [13]. At the first order approximation, the Benney equation reads:

ht + h2hx + ϵ[
h3

6
(− cotαhx + ϵ

2Wehxxx) +
2Re

5
h6hx]x = 0. (2.5)

where h denotes the thickness of the liquid film. However, in Benney’s paper [13], he mis-

matched the order of surface tension γ that the dimensionless Weber number We = γ

ρgh2
0

was

assumed to be of order O(1) whence the surface tension term appears in the third order term
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which is not appropriate. Hence, It leads to blow-up of solutions in finite time [13]. In the

later studies, the Weber number was assumed to have order O(ϵ−2). Thanks to the work of

Benney, when a model equation has a similar form as Eq.(2.5), it is referred to as the Benney-

type equation. Benney’s work has been extended to other systems. For instance, Joo et al.

investigated a heated film wherein the evaporating effect was taken into account [14]; Scheid

et al. considered the effect of non-uniform heating on the linear and nonlinear dynamics of a

falling film by deriving a Benney-type equation [15]; Thiele et al. considered a thin liquid film

falling down a porous heated substrate [16]. For a more detailed discussion and application of

the Benney-type equation, the readers can refer to the review paper by Oron et al. [17]. The

Benney-type equation, generally, is valid when Re is very small, typically Re = O(1). How-

ever, when Re is moderate, the Benney-type model usually blows up and gives non-physical

solution as indicated by Pumir et al. [18]. This failure is related to the strict slaving of the

velocity field to the film thickness h. Although the blow-up phenomenon of Benney equa-

tion can be removed by the Padé approximation [19]. However, the regularized equation is

in poor agreement with experiments and the data by direct numerical simulation of the full

Navier-Stokes equations even though the singularity phenomenon is removed [19].

Shkadov proposed an integral boundary layer (IBL) model which introduced one more degree

of freedom [20]. In the integral boundary layer model, the Navier-Stokes equations are re-

duced asymptotically wherein all the second order terms O(ϵ2) and higher are neglected (the

surface tension term cannot be neglected since the Weber number is assumed to have an order

of O(ϵ−2)). The streamwise inertia term is of order O(ϵRe). The Reynolds number can be

assumed to have an order of O(ϵ0) − O(ϵ−1), and typically ϵ ∼ 10−2. Therefore, the Reynolds

number can be up to Re ∼ 102. If Re ∼ O(ϵ−2), the full Navier-Stokes equations should be

considered because, in the normal momentum equation, the inertia term is of order O(ϵ2Re)

which cannot be neglected in this situation. In addition, if Re ∼ O(ϵ−2), then Re ∼ 104 pro-

vided that ϵ = 10−2. In such a case, the flow is unstable due to the strong viscous shear and
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the ‘hard mode’ dominates the instability, i.e. shear mode [21]. In the framework of thin film

dynamics, the modeling methodology is valid for the instability of ‘soft mode’, i.e. interfacial

mode. The integral boundary layer model solves two coupled equations governing the film

thickness h and the local flow rate q:

ht = −qx, (2.6)

δqt = h − 3
q
h2 − δ

12qqx

5h
+ (δ

6q2

5h2 − ζh)hx + hhxxx. (2.7)

Here, δ = 3ϵRe and ζ = ϵ cotα (α is the inclined angle) and ϵ3We = 1. Asymptotical ex-

pansion of the flow rate equation (2.7) q = q0 + ϵq1 + . . . does not agree with the Benney

equation which implies that if α , π/2, i.e. the plate is moderately inclined, the integral

boundary layer model predicts wrong linear stability threshold. The inaccuracy of the inte-

gral boundary layer model is due to the assumption of the parabolic velocity profile which

causes the error in the prediction of the shear stress at the plate. However, solutions of the

integral boundary layer model agree qualitatively with both experimental data and DNS [22].

This method was extended by Kalliadasis to investigate the dynamics of a heated falling film

wherein the Marangoni effect on the interfacial instability was discussed [23]. The integral

boundary layer model has been extended to study the problem of thin liquid films flowing

down vertical cylinders [24, 25].

Motivated by the inconsistency between the integral boundary layer model and Benney equa-

tion, Ruyer-Quil and Manneville developed a weighted residual model (R-M model) which

addresses the problem successfully [26, 27]. Here, the weighted-residual model is called as

the R-M model. The weighted residual model reads:

ht = −qx, (2.8)

δqt = −δ(
17qqx

7h
− 9q2hx

7h2 ) +
5
6

h(1 − ζhx + hxxx) −
5q
2h2 . (2.9)
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Note that the coefficients in Eq.(2.9) are different from those in Eq.(2.7). To clarify the reason

for the difference, reminiscent of the scaled streamwise momentum equation, it writes:

3ϵRe(ut + uux + vuy) = −ϵpx + 1 + uyy + O(ϵ2). (2.10)

The residual of the streamwise equation is written as: R = 3ϵRe(u0,t + uu0,x + v0u0,y) − 1 +

ϵpx − uyy. The local flow rate equation (2.7) is obtained by directly integrating the streamwise

equation under the assumption of u ∼ (1− y2). Equation (2.9) is obtained from the Galerkin’s

method
∫ h

0
RWdy = 0 to minimize the error of the residual R where W is the weight function.

The weight function for the R-M model Eq.(2.9) is proportional to the velocity profile, where-

as the weight function for the integral boundary layer model can be considered as a constant

number 1. Asymptotical expansion of Eq.(2.9) recovers Benney’s equation Eq.(2.5), which

demonstrates the accuracy of the R-M model.

Ruyer-Quil et al. further extended the weighted residual model and revisit the problem of a

thin liquid film down a vertical cylinder [28]. The linear stability analysis shows that there

is no qualitatively difference between the integral boundary layer model and the weighted-

residual model when applied to thin liquid films flowing down vertical cylinders. This is due

to the fact that the instability is caused by the Rayleigh-Plateau mechanism rather than the

fluid inertia. Scheid et al. extended the R-M model to a falling liquid film down a heated

inclined plane, wherein the heat convection was neglected by assuming small Prandtl num-

bers [29]. The comparison between the Benney equation and the weighted residual model as

well as the validity of the Benney equation were discussed [29]. Different from the work by

Scheid et al. [29], Ruyer-Quil et al. took into account the effect of heat convection and de-

rived three coupled equations governing the film thickness h, the flow rate q and the interface

temperature [30]. However, one such study predicts the wrong temperature distribution in the

film [30]. Trevelyan et al. further examined the influence of a thicker substrate which was
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cooled by the ambient gases on the dynamical behavior of thin liquid films [31]. Trevelyan

et al. [31] tried to amend the temperature equation to remove the non-physical results of the

temperature equation by using a different weight function. However, their approach was still

not very successful [31]. Very recently, Ding and Wong examined the dynamics of a uni-

formly heated film flowing down a slippery substrate by a weighted-residual model [32]. For

more information of the modeling work of thin liquid film flows, the readers can refer to the

monograph by Kalliadasis et al. [33].

2.3 Electrohydrodynamical instability

Electrohydrodynamics (EHD) is the study of the relation between the electrodynamics and

fluid motion. EHD is also known as EFD (electro-fluid-dynamics) or electrokinetics. EHD

covers the following transport mechanisms: electrophoresis, electrokinesis, dielectrophoresis,

electroosmosis, and electrorotation. EHD is widely encountered in industrial applications,

such as in ink jetting [34] and drug delivery [35]. The study of electrohydrodynamics has

a long history. As early as 1882, Lord Rayleigh investigated the equilibrium of conducting

liquids in an electric field [36]. In contrast, although “magnetohydrodynamics” (MHD) has a

relatively shorter history, it is more commonly known than EHD. The magnetohydrodynamics

is of great importance in electricity engineering and theoretical physics, such as in plasma.

The original work of MHD was launched by Hannes Alfvén in 1942, for which he received

the Nobel Prize in Physics in 1970.

2.3.1 Some Basics of Electrostatics

In this thesis, only electrostatics is considered. The electric field does not change with time or

the changing rate of electric field E is very small that the induced magnetic field is negligible.
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In the absence of an external magnetic field, the Lorentz force F = qsv × B (qs is the electric

charges carried by the fluid parcel) caused by the induced magnetic field is negligible provided

that the electric current J = ρev (ρe is charge density) is not large. The induced magnetic field

could not be neglected if the moving speed |v| of particles approaches the speed of light (see

problem 5.16 in the textbook “Introduction to Electrodynamics” by Griffiths [37]). However,

such a case does not fall into the scope of this thesis.

In the presence of an electric field, the Maxwell stress is imposed on the liquid particles. For

a steady flow, the Maxwell stress is balanced by the viscous stress and pressure which writes

in the case:

− ∇p + ∇ · Tv + ∇ · TM = 0. (2.11)

In which, Tv = µ(∇u+∇uT) is the viscous stress tensor, and TM the Maxwell stress tensor. In

the framework of electrostatics, the Maxwell stress tensor is:

TM = ε(EE − 1
2
∥E∥2I). (2.12)

Here, ε denotes the electric permittivity of the material, I the identity tensor. Substituting

the expression of the Maxwell stress into the stress balance equation (2.11) and taking the

operation of divergence, the term ∇ · TM = E∇ · (εE) − 1
2∥E∥

2∇ε. Recall the Gauss’s law:

ρ f = ∇ · εE, (2.13)

where ρ f is the free charge density. Therefore the gradient of Maxwell stress is rewritten

as ρ f E − 1
2∥E∥

2∇ε. Note that the term ρ f E is the so-called electric body force. The term

1
2∥E∥

2∇ε is important if the electric permittivity is not uniform in the medium which may be

caused by a non-uniform thermal field or the material itself. Here, the dielectrics is assumed

to be linear.
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The Gauss’s law always holds in the form of:

ρT = ∇ · ε0E, (2.14)

where ρT is the total charge density and ε0 is the vacuum dielectric constant. When an external

electric field is imposed on the material, the material is polarized. The polarization of material

is related to the strength of the electric field. For many substances, provided E is not too

strong, the polarization is linearly dependent of E. The dipole moment of manmade materials

may depend nonlinearly on E, especially in modern optical applications. In this thesis, only

the linear dielectrics will be considered. For linear dielectrics, the polarization is proportional

to the external electric field:

p = χeε0E. (2.15)

Here, p is the dipole moment, and χe is the electric susceptibility.

The electric charge due to the polarization of substances is related to the dipole moment by

ρb = −∇ · p. (2.16)

ρb is defined as the bound charge [37].

The total charge ρT is the sum of free charge ρ f and bound charge ρb. The free charges can be

assumed to be imbedded in the liquids which can move freely or be carried by fluid parcels.

In what follows, we will show the assumption that free charges are carried by fluid parcel

is important, which simplifies the discussion of the dynamics of flow systems. The bound

charges appear in the form of twined electric charges: one positive electric charge with one

negative electric charge which are bounded in an electric dipole. Therefore, the Gauss’s law

can be rewritten as:

∇ · ε0E = ρ f + ρb = ρ f − ∇ · p. (2.17)
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Furthermore, Eq.(2.13) is modified as:

∇ · εrε0E = ρ f . (2.18)

where εr = 1 + χe is the relative permittivity. εrε0 is nothing but the electric permittivity of

material, i.e. ε. Naturally, the electric displacement D is defined as:

D = εE. (2.19)

Therefore, for linear dielectrics, the Gauss’s law has the form of Eq.(2.13).

For electrostatics, the electric field E is irrotational ∇ × E = 0. Usually, it is extremely

complex to find the solutions of the Gauss equation and the irrotational equation despite their

simple expressions. For electrostatics, it is convenient to introduce the electric potential ϕ

to solve the problem by simplifying the coupled equations to a one-unknown equation. The

electric field is related to the electric potential by:

E = −∇ϕ. (2.20)

In the previous studies of electrohydrodynamics, the liquids are assumed to be perfect con-

ductors, such as mercury; perfect dielectrics, such as oil; leaky dielectrics, such as water.

The three models have received many investigations during the last decades. However, these

models could not be used to study the dynamics of electrolyte solutions. In the following

discussions, review of the three models as well as the electrolyte solution dynamics will be

presented.
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2.3.2 Perfect Conductors

When a liquid is assumed to be a perfect conductor, the conductivity of the liquid, σ, is in-

finitely large. Thus, there is no electric charge within the bulk fluid. All the electric charges

accumulate at the boundaries of the liquid. Therefore, there is no electric field within the bulk

liquid. The electrostatic force should only appear at the boundaries of the liquid. In the previ-

ous studies, most of the systems, in which the liquid was assumed to be perfectly conducting,

were multi-phase systems, i.e., the liquid contacted with another kind of substance which is

not perfectly conducting, for instance air or oil. Especially, the tangential Maxwell stress at

the interface should be absent under the assumption of perfectly conducting in the framework

of electrostatics because the interface is equipotential and the electric field is perpendicular to

the interface. Therefore, the boundary condition of perfect conductors is

ϕ = constant. (2.21)

Usually, the value of ϕ is given. This condition is of course correct for perfect conductors.

Some of the previous works used other conditions for the electric potential at the free surface

which seems not consistent with Eq.(2.21) which may confuse the beginners of electrohydro-

dynamics. It will be shown that these conditions are consistent.

The trend of miniature electric devices stimulate an incredible growth of the study of elec-

trohydrodynamics. One of the most important application is the coating and wetting of solid

surfaces. Coating a liquid film has many industrial applications, such as interface protection,

heat transfer, micro-lens, growth of insulating film on electric devices, etc.. Some devices

may use a liquid droplet as a microlens which is flexible to change its shape compared to the

traditional lens. Many approaches have been proposed to control the shape of the liquid drop,

for instance: the use of thermocapillary effect [38], or topographical structuring of surfaces

[39, 40]. Among all these approaches, the electric field is of particular advantage for the flex-
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ibility (electrowetting). A detailed review of electrowetting and its application was provided

by Mugele and Baret [41]. It is convenient to simplify the liquid droplet as a perfect con-

ductor, therefore, an electrostatic pressure is imposed on the surface of droplet. The strength

of the electrostatic pressure can be controlled by an external electric field. The droplet was

considered to be perfectly conducting that the potential at the interface was set to be constant

in many of the previous studies [42, 43, 44, 45].

The formation of liquid droplet and surface waves in a perfectly conducting liquid jet or layer

in the presence of an electric field have also received much attention. It is interesting to see

how the electric field affects the droplet size, surface wave amplitude and surface wave speed.

According to the geometry, these previous studies on perfectly conducting liquids can be

summarized into two categories. One is the planar flow system and the other is the cylindrical

system. For the planar system, it will be interesting to investigate the effect of electric fields

on the dynamics of flow system, such as linear stability and transition to turbulence.

The linear stability of a perfectly conducting viscous film falling down an inclined plane

was reported by González and Castellanos[46, 47] in a uniform normal electric field. In

Ref.[46, 47], a Benney-type equation was derived and the results indicated that the electric

field was destabilizing. Their studies demonstrated that the electric field promoted the linear

stability as well as the wave speed and amplitude of nonlinear waves [47]. Mukhopadhyay

and Dandapat [48] further extended the study [46] to include the effect of fluid inertia. They

used an IBL model and examined the influence of electric field on the stability [48]. Tseluiko

and Papageorgiou [49] performed a direct simulation and revisited the nonlinear dynamics of

the system by González and Castellanos [46]. The bifurcation theory approach was employed

by Uma and Usha [50] to revisit one such problem via an energy integral model. It should be

indicated that the energy integral model is identical to the R-M model but the two methods

are different in their mathematical methodologies. The authors further extended the study and

considered a liquid film flowing down a porous substrate in a normal uniform electric field
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[51]. Successively, Uma and Usha investigated the influences of charged surfactants on the

dynamical behavior of a contaminated liquid film [52]. The liquid film resting on a horizontal

plate under the action of a normal electric field was examined by Tseluiko and Papageorgiou.

The linear, the subcritical and supercritical stabilities as well as the nonlinear evolution were

documented[53]. It should be noted here that, in Refs.[46, 47, 50, 51, 52], the dimensionless

boundary condition for the electric potential at the liquid interface is expressed as:

ϕ = h − 1. (2.22)

It appears that Eq.(2.17) does not agree with the boundary condition Eq.(2.21) as ϕ varies

with h. We can decompose the electric field into two parts: the base state ϕ̄ and the perturbed

state ϕ′. The electric potential should be constant at the surface:

ϕ = ϕ̄ + ϕ′ = constant. (2.23)

Taking the basic electric field from Refs.[50, 51] for example, ϕ̄ = E0(h0 − z) where E0 is

the electric field strength of the imposed field and h0 is the mean thickness of the liquid film.

When the surface is perturbed, ϕ̄ can be written as E0(h0−h). To fulfill Eq.(2.21), the condition

for ϕ′:

ϕ′ = constant − E0(h0 − h). (2.24)

The constant value is usually chosen to be zero, and ϕ′ = E0(h−h0). Taking the mean thickness

of liquid film as the length scale and E0h0 as the potential scale, the condition Eq.(2.22) is

obtained as described in Refs.[50, 51].

There are two typical cylindrical flows: liquid jet and liquid films flowing down a vertical

cylinder. Liquid film flow on a cylinder without an electric field has been investigated exten-

sively in the past decades. Significant advances have been made in the theory of the breakup

21



of a liquid jet into droplets after the seminal work of Lord Rayleigh [54]. It is of great inter-

ests to manipulate the droplet size and breakup time of jets. The influence of an electric field

on the breakup of liquid jets was investigated and pioneered by Basset [55]. Basset’s analysis

showed that electrostatic stresses were stabilizing in the long wave regime while it is desta-

bilizing in the short wave regime. However, Basset’s result did not agree with experimental

observation. Taylor corrected the error in the analysis of Basset [56]. Saville examined the

stability of perfectly conducting Newtonian jets in a radial electric field subjected to infinites-

imal axisymmetric and non-axisymmetric disturbances [57]. Results by Saville demonstrated

that non-axisymmetric unstable mode can be supported by an external electric field [57]. In

the absence of an electric field, the jet is always unstable axisymmetrically. Cloupeau and

Prunet-Foch [58] studied droplet formation in a cone-jet flow. The influence of the electric

field was found to modify the diameter of the jet as well as the size of droplet. The experi-

mental study of Cloupeau and Prunet-Foch demonstrated that the sinuous mode became the

most unstable when the viscosity was high [58] which was called kink instability. Son and

Ohba [59] studied the instability of electrohydrodynamic spraying theoretically and experi-

mentally. They found that the axisymmetric mode was dominant when the electric field was

not strong; while the most unstable mode shifted to the nonaxisymmetric mode as the electric

field increased [59]. Son and Ohba’s study showed that the theoretical results compared well

with the experimental observation for axisymmetric breakup of the liquid jet; while the value

of breakup wavelength from experiment was longer than that from the theoretical analysis for

nonaxisymmetric mode [59]. Breakup of perfectly conducting electrified jets was revisited by

Collins et al. [60] who analyzed the nonlinear dynamics of jet and numerically simulated the

formation of droplet by a one-dimensional model. The one dimensional model was derived

using the WKB method and one can refer to the work of Eggers [61]. Wang and Papageorgiou

[62] considered the a perfectly conducting liquid thread surrounded by an insulating liquid

layer in a DC electric field, and investigated the influence of the dynamics of the surrounding
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layer. Conroy et al. [63] investigated the dynamics of a perfectly conducting liquid thread in

an AC electric field but considered an electrostatic problem. The authors have verified that

the approximation of electrostatics is valid provided the frequency is not too high [63]. Very

recently, Ding et al. investigated a perfectly conducting liquid film falling down a vertical

fiber in a radial electric field [64]. The detailed results will be presented in Chapter 3.

2.3.3 Perfect Dielectrics

In perfect dielectrics, there is no free charge and all the charges are bounded in the form of

electric dipoles. Perfect dielectric liquid is non-conducting, i.e. insulating. Since there is

no free charge in the liquids, the tangential Maxwell force vanishes at the liquid interface.

However, the normal Maxwell force at the interface can be nonzero due to the mismatch of

electric permittivities of different liquids. Here, we show the Maxwell stress at an interface

separating two immiscible liquids (see Fig.2.3):

n · (TM
2 − TM

1 ) · n, (2.25)

where n is the surface normal and TM
i (i = 1, 2) represents the Maxwell stress tensor in liq-

uid “1” and liquid “2” respectively. This term is usually called as electrostatic pressure and

nonzero when ε1 , ε2.

For the perfect dielectrics model, the continuities of electric potential and electric displace-

ment at the interface give:

ϕ1 = ϕ2, ε1E1 · n = ε2E2 · n. (2.26)

The boundary condition (2.26) indicates the tangential electric field is continuous while the

normal electric field may be discontinuous across the interface. Clearly, the tangential elec-

tric force can be expressed as Ft = qsEt where qs is the charge density at the interface, Et
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Figure 2.3: A sketch of two immiscible liquids separated by an interface.

is the tangential electric field and t is the tangential vector. Hence, a common physical phe-

nomenon that the perfect conductor model and perfect dielectrics model share is that there is

no tangential Maxwell stress at the interface. The difference is obvious. For the perfect con-

ductor model, free charge exists on the interface, while no free charge exists at the interface

for perfect dielectrics model.

The studies of perfect dielectric liquids can be divided into two groups: the planar and cylin-

drical systems. Since there is no free charge within the bulk fluid regions, these previous

studies were all devoted to the interfacial instability in multi-fluid systems. It should be not-

ed that the normal Maxwell stress is balanced by the surface tension. In planar systems,

the surface tension is stabilizing the interface. In cylindrical systems, due to the azimuthal

curvature, the surface tension is destabilizing the interface. Therefore, in a planar system,

if the electrostatic pressure enhances the effect of surface tension, then the electric field sta-
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bilizes; otherwise, it destabilizes the interface. However, in a cylindrical system, the effect

of electric field on the interfacial instability is opposite. Melcher and Schwarz investigated

the effect of a tangential electric field on the linear stability of a sharp interface separating

two perfectly dielectric fluids [65]. The authors formulated the problem in the framework of

electrodynamics, but an electrostatic field was assumed to facilitate their analysis [65]. The

two liquids were assumed to be non-bounded, i.e. there is no solid bounds in their system

[65]. This research[65] is of great importance because it established the benchmark model

of EHD for the multi-fluid systems. A perfectly non-conducting liquid jet in a radial electric

field was investigated by Setiamwan and Heister [66]. The electric field was established by

the charged cylindrical surface [66].The influences of the Maxwell stress on the droplet size

through linear stability analysis and numerical simulation were reported previously [66]. The

influence of the electric field on the breakup of a planar inviscid liquid sheet was examined

by El-Sayed wherein the dynamics of surrounding gases was included [67]. Tilley et al. [68]

revisited the problem [67] by the lubrication theory and derived a model equation to study

the nonlinear behavior of the liquid sheet, when it was perturbed by small disturbances. The

results demonstrated that the electric field can delay the rupture of the liquid sheet [68]. The

study [68] was extended by Savettaseranee et al. [69] and the influence of electric field on

the rupture of liquid sheet caused by van der Waals forces was examined. Papageorgiou and

Vanden-Broeck [70] further examined the nonlinear waves of arbitrary amplitudes and wave-

lengths in the system [67]. Results showed that the electric field can have a pronounced effect

on the shapes and speeds of interfacial waves [70]. It is worthy to note that the results of direct

numerical simulation are in excellent agreement with that obtained from the low-dimensional

model, when the wavelength is long [70].

Pattern formation in perfectly non-conducting liquid films induced by an electric field was

reported by Schäffer et al. [71]. Morariu et al. investigated the hierarchical structure forma-

tion and pattern replication in three layered thin non-conducting liquid films. Further works
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were carried out by Verma et al. [73] and Wu et al. [74]. Verma et al. numerically and

experimentally investigated the pattern formation in the thin film by a lubrication model and

considered the influence of homogeneous and heterogeneous electric fields [73]. Wu et al.

considered the influences of van der Waals attractions and investigated the pattern formation

phenomenon in the system [74]. Tseluiko and Blyth examined the inertial effect on the sta-

bility of non-conducting liquid film flow on a wavy substrate by stability analysis of the fully

linearized system and a Benney-type equation [75]. Electrowetting by a non-conducting liq-

uid droplet was investigated by Yeo and Chang wherein a lubrication model was proposed to

study the dynamics of contact lines which demonstrated that the electric field promoted the

spreading speed [76].

2.3.4 Leaky Dielectrics

The leaky dielectric model was first proposed by Taylor in the 1960s based on the evidence

that even a small conductivity in the liquid could allow electric charges to accumulate at the

interface [77]. Detailed review of the mathematical model of the leaky dielectrics is provided

by Saville [78]. The term “leaky” dielectric fluids refer to poorly conducting liquids. Under

the assumption of leaky dielectrics [77], free charges only accumulate at the liquid interface;

while there is no free electric charge within the bulk region. Therefore, the main distinction

between the leaky dielectrics and the perfect dielectrics relies on the presence/absence of the

free interfacial charges.

In the framework of electrostatics, the conservation of electric current reads:

d
dt

(
∫

v
ρedv +

∫
s
qsds) +

∫
∂v
σE · dS = 0, (2.27)

where the liquid is Ohmic (see the electric current flux σE) and charge diffusion is neglected.

The symbol qs stands for surface charge density, s the interface, and ∂v the boundary of the
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small control volume v (See Fig.2.3), σ the electric conductivity.

Applying the divergence theorem, the charge conservative equation is rewritten as:

d
dt

∫
v
ρedv +

∫
v
∇ · σEdv +

d
dt

∫
s
qsds −

∫
s
(σ2E2 − σ1E1) · ds = 0, (2.28)

where ds = nds.

Therefore, in the bulk region, the charge conservation equation for impressible fluids has the

differential form
Dρe

Dt
+ ∇ · σE = 0, (2.29)

where D
Dt =

∂
∂t + u · ∇ is the material derivative.

When it is applied to the interface, the conservation of surface charge writes [78]:

∂qs

∂t
+ ∇s · qsus + qs(∇ · n)(u · n) = (σ2E2 − σ1E1) · n, (2.30)

where ∇s = ∇ − n(n · ∇) is the surface gradient operator, and us = u − (u · n)n is the surface

velocity. The interface is assumed to be a material surface.

In many previous studies, the surface charge conservation law Eq.(2.30) is usually expressed

as:
∂qs

∂t
+ ∇s · qsu = (σ2E2 − σ1E1) · n. (2.31)

Here, it is necessary to comment on the conservative equation of the surface charges Eq.(2.31).

First, the temporal derivative d
dt ds = ∇ · uds − n(n ·∇) · uds. Denoting ∇n = n(n · ∇), it gives

d
dt ds = ∇s · uds. The problem now is how to evaluate the derivative dqs

dt . If qs = qs(x, y, t)

that the surface is single-valued with respect to the (x, y) plane, then dqs
dt =

∂qs
∂t + u∂qs

∂x + v∂qs
∂y =

∂qs
∂t + u · ∇qs where u or v respectively represents the velocity in x or y direction. From this

point of view, the conservative condition Eq.(2.31) may be not exact or correct. However, in
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many cases, the interfacial wave is long, the difference does not come into play in linear or

nonlinear up to O(ϵ2) analysis [79].

Since the leaky dielectric fluids is considered, there is no net charge density in the bulk region

and the electric potential follows the solution of Laplace’s equation:

∇2ϕ = 0. (2.32)

At the boundary, continuity of electric potential and the Gauss’s law give

ϕ1 = ϕ2, ε1E1 · n− ε2E2 · n = qs. (2.33)

It is clear that the tangential electric field is continuous across the interface.

The leaky dielectric model has received numerous investigations after the pioneering work of

Taylor [77]. In the following context, studies of EHD of leaky dielectric fluids in a planar

flow system and a cylindrical flow system are reviewed. The interfacial instabilities of leaky

dielectric fluids subjected to tangential and normal electric fields were respectively studied

by Melcher and Schwarz [65] and Melcher and Smith [80] (Melcher and Schwarz’s model is

valid to study the electrodynamics of leaky dielectric liquids.). Experimental study by Ozen

et al. [81] demonstrated that the size of a droplet in a two-immiscible-liquid system can be

controlled by altering the strength of the electric field. Abdella and Rasmussen [82] investi-

gated the instability of two unbounded superposed fluids in a normal electric field. Results of

the linear stability analysis showed that the instability is significantly affected by the electric

field which can be characterized by the conductivity ratio between the two liquids. Long-

wave stability of two initially stationary superposed immiscible leaky dielectric liquids was

investigated by Shankar and Sharma by a lubrication model [83]. This model [83] was then

extended to a pressure-driven flow system [84]. It was found that the electric field either sta-
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bilized or destabilized the system which was dependent on the electric properties of the two

liquids [83, 84]. Li et al.[85] extended the problem to the regime of a large flow rate. Different

from the work of Ozen et al. [84], the charge relaxation time was assumed to be far smaller

than the viscous relaxation time [85]. The stability criterion proposed by Ozen et al. [84]

was invalid in the presence of tangential Maxwell stress [85]. A detailed study on the linear

stability was conducted to demonstrate that the tangential Maxwell stress significantly affects

the unstable mode caused by viscosity stratification [85]. Instead of the normal electric field,

Uguz and Aubry [86] considered a tangential electric field and revisited the electrohydrody-

namic instability in two immiscible dielectric liquids. Detailed comparisons on the tangential

and normal electric field’s influence on the interfacial instability were reported [86].

Artana et al. [87] analyzed the dynamics and stability of a leaky dielectric liquid jet surround-

ed by a non-conducting gas. The influences of injection velocity and surface tension on the

linear stability were discussed [87]. Burcham and Saville [88] investigated the instability of

leaky dielectric liquid bridge surrounded by dielectric gas in an axial electric field. Li et al.

[89] investigated the temporal instability of a two-coaxial liquid jet surrounded by perfect

dielectric gases under the influence of a radial electric field. Fluids in the core liquid cylinder

was assumed to be perfect dielectrics, and fluids in the annulus cylinder were assumed to be

leaky dielectrics. The instability of the liquid jets was discussed theoretically and numeri-

cally. The results were found that the liquid viscosity had a negligible effect on the cutoff

wave number [89]. However, the electric field significantly affects the cut-off wave number.

López-Herrera et al. [90] investigated the instability of two co-axial fluids in a cylindrical

duct. The interface was assumed to be uniformly charged initially [90]. This model [90]

was extended by Wang to a leaky dielectric thread surrounded by insulating annular fluids in

which the long-wave dynamics was examined [91].

Recently, Wray et al. [92, 93] studied a leaky-dielectric liquid film falling down a verti-

cal cylinder driven by gravity. The liquid film was surrounded by leaky-dielectric gases.
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However, the dynamics of the gas phase was neglected and a one-sided asymptotic model

was proposed. The influence of a radial electric field on the interfacial stability was studied

by a Benney-type model. Wray et al. [94] further extended their study and examined the

interfacial dynamics subjected to non-axisymmetric disturbances. It was reported that the

non-axisymmetric mode could be supported by the electric field [94]. It is noteworthy that

all these studies of perfectly conducting films [64] or poorly conducting films [92, 93, 94]

were all restricted in the small flow rate regime. No investigation has been devoted to the

moderate flow rate or high flow rate regimes. It is noted that, in these studies [64, 92, 93, 94],

the Laplace equation was reduced asymptotically. This may be inappropriate when the gap

between the liquid interface and the outer electrode is large.

In the pressure driven two-fluid core-annular flow system, the interface may be unstable due

to the azimuthal curvature and viscosity stratification. The former is well-known as Plateau-

Rayleigh instability (capillary instability); while the latter is interface wave instability caused

by a jump in viscosity across the interface. The core annular flow system is of potential ap-

plications, such as in pumping crude oil through pipelines by using a less viscous liquid for

lubrication where a stable liquid-liquid interface is required. The instability of two immiscible

core-annular liquid layers in a pipe was pioneered by Joseph and his coworkers [95, 96] who

found that, the stratification of viscosity either destabilizes or stabilizes the system. Selvam et

al. extended the study to consider the instability of miscible core-annular flows with viscosity

stratification [97]. In these studies [95, 96, 97], the inner liquid layer acts as the core while

Dijkstra investigated two annular liquid layers surrounding a thin wire core in a pipe [98].

The instabilities due to capillary, viscosity stratification and viscous shearing were investi-

gated [98]. Dijkstra found that the inserted core played an important role in determining the

unstable mode due to the changes in the velocity profile. In addition, the mathematical singu-

lar point at the centerline r = 0 is removed by the inserted core. The flow system is unstable

which can either be in capillary mode (Plateau-Rayleigh instablity) or interface wave mode
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(caused by viscosity stratification) from small to moderate Reynolds number [98]. The capil-

lary mode could be impeded by the mean shear flow, i.e. as the Reynolds number increases,

the capillary mode can be completely stable. When the Reynolds number is very large, the

system may be unstable due to viscous shear [98]. Here, it is worth mentioning that even for

a single layer flow in such an annulus channel, the flow could be linearly unstable due to the

viscous shear which is significantly different from the canonical pipe flow. In Refs.[90, 91],

the inner liquid layer was injected into the pipe with a uniformly charged surface. Such a

method introduces an electric field in the outer liquid layer while there is no electric field

within the inner layer. In the core-annular flow system [98], a radial electric field can be im-

posed between the inserted thin metal wire and the outer electrode which is more convenient.

Recently, Ding et al. extended the study [98] to consider the effect of a radial electric field

[99]. The results demonstrated that the capillary mode and the interface wave mode could be

completely stabilized by the electric field [99]. Detailed results will be presented in Chapter

4.

2.3.5 Electrolyte solutions

In industrial applications, mixing of different liquids in a microfluidic system is very impor-

tant. The Reynolds number Re is small in microfluidics, typically Re ≪ 1. The flow is laminar

and mixing due to turbulence will not occur. The use of an electric field has been a successful

approach for enhanced mixing [100]. In microfluidics, the application of electrohydrodynam-

ic mixing is based on gradients of electric conductivity since the mechanical techniques are

not suited to obtaining mixing for the requirement of prohibitive amounts of power. Electric

conductivity can be developed due to a superimposed electric field. The local ionic concentra-

tion, pH value, and conductivity gradients develop along the axis of the imposed electric field

and the local conductivity could vary by more than an order of magnitude over a length of 1

mm [101]. Obviously, the electric conductivity σ of electrolyte liquids is a function of the
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concentration of local ions which is the major distinction of electrolyte liquids. It is different

from the previous models introduced in this thesis: for perfect conducting liquids, electric

conductivity σ → ∞; for non-conducting liquids, σ = 0; for poorly-conducting liquids, σ is

small but constant. The pioneering work on the dynamics of electrolyte solutions was formu-

lated by Hoburg and Melcher [102] and Hoburg [103]. For more information, the readers can

refer to the monograph by Melcher (Ref.[104]) in which detailed mathematics and physics on

electro-hydrodynamics were documented. In Refs.[102, 103], the conductivity profile is gov-

erned by convection equation, in which, the diffusion of conductivity is neglected provided

that the time scale for diffusion of ions is much longer compared to the viscous response time.

Baygents and Baldessari [101] dropped the assumption of long time diffusion of ions [102,

103], and adopted the diffusion of ions. It was indicated by them that the diffusion term is

critical in determining a correct stability threshold. Baygents and Baldessari proposed that

the occurrence of instability was triggered by the dielectrophoretic effect [101]. They found

that the lower conductivity boundary had a strong stabilizing effect when the conductivity

gradient was large [101]. It should be noted that the assumption of exchange of stability

made by Baygents and Baldessari [101] was incorrect because the critical unstable mode may

be oscillatory. The unstable mode may be oscillatory which was indicated by Chang et al.

[105]. In their analysis [105], Chang et al. considered the influence of a parabolic base flow.

While the instability mechanism can be analogue to the classical Rayleigh-Bénard instability

in a heated fluid layer, the physical mechanism is much more complex. For instance, in

a single heated fluid layer where one imposes a shear flow, the critical unstable mode is

always dominated by the longitudinal mode, which is independent of the shear flow[107, 108],

while the critical unstable mode in the liquid layer with an electric conductivity gradient

depends on the shear flow heavily. Chang et al. found that when the Reynolds number was

slightly increased from zero, the instability was enhanced since the shear flow enhanced the

dielectrophoretic effect and the transverse mode (zero spanwise wave number) became critical
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rather than the longitudinal model (zero streamwise wave number) [105]. However, as the

Reynolds number increased further, the longitudinal mode became critical, and the critical

mode was independent of the shear flow. Chang et al. reported in their paper that the critical

unstable mode was oscillatory when the conductivity gradient was small, but it switched to the

stationary mode as the conductivity gradient increased [105]. Ruo et al. extended the model

[101] to a rotating system and found that the rotation stabilized the flow, while the electric

field destabilized the flow [106]. Recently, Ding and Wong investigated the instability of an

annular liquid layer with electric conductivity gradients. Their results showed that the critical

unstable mode depended on the geometry of the duct and the critical unstable mode may be

either stationary or oscillatory [109]. Detailed results and discussion will be presented in

Chapter 5.

Unlike the studies of Baygents and Baldessari [101], Chang et al. [105], Ruo et al. [106] and

Ding and Wong [109], in which the electro-convection was triggered due to a spatial gradient

in the electric conductivity, Lin et al. [100] considered two miscible flows with an electric

conductivity stratification. To achieve such a conductivity stratification flow in experiments,

Lin et al. [100] used two electrolytes with different ionic concentrations (see Fig.2.4). The

liquids were pumped into the channel using a syringe pump. A Couette flow arose from a

tangential electric field due to the electro-osmosis phenomenon after removing the pressure

gradient. The electro-osmosis phenomenon was treated as a slippery boundary condition and

the slip velocity was related to the zeta potential in the electric double layer. However, the

electro-osmosis flow was rather weak. They investigated the linear stability by assuming a

quasi-steady base flow and verified their results via a direct numerical simulation. A depth-

averaged model was proposed by Storey et al. [111] to investigate the electrohydrodynamical

instability in a square pipe. Although the depth-averaged model simplified the problem to

a two-dimensional flow, it showed good agreement with the three-dimensional results [111].

The convective and absolute electrokinetic instability with a conductivity stratification was
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extended by Chen et al. [110]. Chen et al. used aqueous electrolytes of 10:1 conductivity ratio

and applied a streamwise electric field [110]. The two-dimensional instability was studied

via a thin-layer assumption that the channel width was much larger than the channel depth.

Santos and Storey extended the studies to a flow with streamwise conductivity gradients and

investigated the linear instability as well as the nonlinear evolution [112]. Notably, in these

studies (Baygents and Baldessari[101]; Chang et al. [105]; Ruo et al. [106]) adopted non-

slippery conditions, while in other studies (Lin et al. [100]; Chen et al. [110]; Storey et al.

[111]; Santos and Storey [112]) considered a slippery boundary condition. The latter focused

on the stability of electro-osmosis flow.

Figure 2.4: Experimental setup of two miscible liquids in electrokinetic flow [100].

The electro-osmotic flow is conceptually explained by Figure 2.5. The electric field induced

by free ions is very weak and the ions follows the Boltzmann distribution. In a narrow bound-

ary layer, the charge density is non-zero, while in the main bulk region the liquid is electrically

neutral. This boundary layer is the so-called electro-double layer (EDL). In the presence of

a tangential electric field, the bulk liquids would slip on the boundary, and therefore a plug

flow is formed (see Figure 2.5). The electroosmosis has a potential application in microfluidic

systems, such as electro-pump. Many studies of the stability of electro-osmotic flows have

been carried out.

The first study of the influence of EDL on the stability of thin inviscid planar electrolyte
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Figure 2.5: Electroosmotic flow arises from an external tangential electric field. From
http://www.kirbyresearch.com/index.cfm/wrap/textbook/microfluidicsnanofluidicsch6.html.

films was carried out by Felderhof [113]. Two different unstable modes were discussed by

Felderhof [113]: the stretching mode and squeezing mode. The EDL was found to destabilize

the stretching mode, but stabilize the squeezing mode [113]. Extension work was investigated

with considering the viscous effect [114]. Georgiou et al. [115] investigated the stability of

an annular electrolyte film and discussed two cases: double layer repulsion and attraction.

Double layer repulsion was stabilizing while attraction was destabilizing [115]. Conroy et al.

[116] investigated the stability of two co-axial electrolyte liquids in a pipe. They formulated

the problem in a more general way. The Nernst-Planck equation was used to describe the

motion of ions[116]. The model was then extended by Conroy et al. [116] to study the

dynamics of a fouled interface by charged surfactants [117]. It is worth mentioning that, these

studies (Felderhof [113],Georgiou et al. [115], Conroy et al. [116, 117]) were all concentrated

on the interfacial instability. In the previous studies, the investigation of the stability of multi-

layered electrolyte flow has remained very limited although it has received much attention

now (see the review paper by Lin[118]). Recently, Ding and Wong [119] investigated the

instability of two miscible fluids in a circular pipe with an electric conductivity stratification

subjected to an axial electric field. This study will be presented in Chapter 6.

There are other approaches to induce convection in liquid layers beyond the above reviewed
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approaches. For instance, using a thermal field coupled with an electric field which is useful

in a micro-gravity environment [120, 121, 122]. Another approach could be injecting charges

into the fluid layers such that the electric body force can initiate a circulation flow [123].

This method is very useful in the study of dynamics of a nematic layer in an electric field

[123]. However, these studies has remained very limited to this date, especially for multi-

fluid systems.
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Chapter 3

Dynamics of liquid films on vertical fibers
in a radial electric field

3.1 Mathematical formulation

A perfectly conducting Newtonian liquid film flowing down a vertical fiber is shown in Figure

3.1. The annular flow system is enclosed in a co-axial cylindrical electrode. A high voltage

is applied at the outer electrode, while the metal fiber is grounded. Liquids that flow down

the fiber under gravity are surrounded by a dielectric gas. The radii of fiber and electrode are

r = a and r = b, respectively.

In this Chapter, the axisymmetric problem is considered. The cylindrical coordinates (r, z)

are chosen. The motion of liquids is governed by the continuity equation and the momentum

equation as below,

∇ · u = 0, (3.1)

ρ
Du
Dt
= −∇p + µ∇2u + ρg, (3.2)

where u = uer + wez is the velocity. D
Dt =

∂
∂t + u ∂

∂r + w ∂
∂z is the material derivative operator.

ρ is the density of the liquid and µ is the dynamic viscosity. g denotes the gravitational

acceleration. The surrounding dielectric gas is assumed to be inviscid whose dynamics is

neglected.

Since the electrostatics is considered, the electric potential ϕ in the dielectric gas follows the
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Figure 3.1: Geometry of the system.

solution of Laplace’s equation:

∇2ϕ = 0. (3.3)

On the surface of the fiber r = a, there are no-slip and no-penetration conditions,

u = w = 0. (3.4)

Since the electric potential at the interface r = a+h(z, t) is equipotential under the assumption

of perfectly conducting liquids, therefore

ϕ = 0. (3.5)

A high electric potential is imposed at the outer electrode,

ϕ = ϕ0. (3.6)
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At the liquid ring’s interface r = a + h(z, t), the stress balance condition is expressed as:

(Tl − Tg) · n = −γ(∇ · n)n, (3.7)

where Tl or Tg is the stress tensor in the liquid phase and gas phase respectively, and Ti =

−piI + T
v
i + T

M
i (i = l, g). pi (i = l, g) represents the pressure in the liquid or gas phase.

Tv = µ[∇u + (∇u)T ] is the Newtonian stress tensor which is zero in the gas phase. In the

liquid phase, the Maxwell stress is absent under the assumption of a perfectly conducting

liquid film. In the gas phase, because the electrostatics is considered, the Maxwell stress

TM = ε[EE − 1
2 (E · E)I]. I is the identity tensor and ε is the electric permittivity of the gas. γ

represents the surface tension. n denotes the surface normal.

Finally, the system is closed by the kinematic condition of interface,

ht + whz = u. (3.8)

3.2 Scaling and the asymptotic model

The aim of this Chapter is to solve the above equations (3.1)-(3.8) in the long-wavelength

limit. It assumes that the radius of the fluid ring R = a + h0 (h0 is the initial thickness of

the liquid) is much smaller than its characteristic length L in the axial direction. Craster and

Matar took the length scale L to be related to the capillary length: L = γ/ρgR, so that

the dimensionless equations would not rely on the fluid thickness being small relative to the

fiber radius, but small relative to a dynamic length scale [124]. The equations (3.1)-(3.8) are

non-dimensionalized by adopting the following scales: r = Rr′, z = L z′, p − pg = ρgL p′,

ϕ = ϕ0, w = Ww′, u = ϵWu′, t = L /Wt′ where W = ρR2g/µ is the velocity scale and

ϵ = R/L .
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After dropping the primes of the dimensionless variables, the dimensionless forms of the

governing equations (3.1)-(3.3) become

r−1(ru)r + wz = 0, (3.9)

ϵ4Re
Du
Dt
= −pr + ϵ

2(urr + ϵ
2uzz +

1
r

ur −
u
r2 ), (3.10)

ϵ2Re
Dw
Dt
= 1 − pz + (wrr + ϵ

2wzz +
1
r

wr), (3.11)

ϕrr +
1
r
ϕr + ϵ

2ϕzz = 0, (3.12)

where Re = ρWL
µ

is the Reynolds number. Here, the gap between the liquid interface and the

outer electrode is assumed to be much smaller than the characteristic length L [62].

The dimensionless boundary conditions at r = α are,

u = w = 0. (3.13)

The dimensionless radius is α = a
R
< 1. When α is small, the liquid layer is relatively thicker

than the fiber. When a→ 1, the liquid film is thin compared to the fiber radius.

At the interface r = α + h(z, t), the dimensionless stress balance conditions are

(ϵ2uz + wr)(1 − ϵ2h2
z ) + 2ϵ2hz(ur − wz) = 0, (3.14)

− p−
2ϵ2[(wr + ϵ

2uz)hz − ur − ϵ2wzh2
z ]

1 + ϵ2h2
z

−
ϵE [ 1

2 (ϕ2
r − ϵ2ϕ2

z )(1 − ϵ2h2
z ) − 2ϵ2ϕrϕzhz]

1 + ϵ2h2
z

= ϵ(2HS ),

(3.15)

where 2H = − 1
(h+α)(1+ϵ2h2

z )1/2 +
ϵ2hzz

(1+ϵ2h2
z )3/2 is the curvature. E = ε(ϕ0)2

ρgR3 is the electric Weber

number. S =
γ

ρgR2 is the dimensionless surface tension. E is assumed to have an order of

O(ϵ−1). The dimensionless surface tension number S can be connected to a Bond number
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Bo = 1/S =
ρgR2

γ
. The Bond number Bo = R/L = ϵ naturally measures the ratio of

length scales. In experiments, Bo is typically small (∼ 0.3 or so) [124]. We follow the

work of Craster and Matar [124] and fix the dimensionless surface tension at S = ϵ−1 in the

following discussions.

For the electric field, boundary conditions are,

ϕ|r=α+h(z,t) = 0, ϕ|r=β = 1. (3.16)

The dimensionless radius of the outer electrode β = b/R > 1. When β ≫ 1, the outer

electrode is moved far way from the liquid film.

The dimensionless kinematic condition of the free interface is written in the conservative

form,

ht +
1

α + h
(
∫ α+h

α

rwdr)z = 0. (3.17)

For the leading order problem of ϵ, the velocity profile is described by

1 − pz + wrr +
1
r

wr = 0, (3.18)

w|r=α = 0, wr|r=α+h(z,t) = 0. (3.19)

Therefore, the velocity profile yields,

w =
pz − 1

4
[(r2 − α2) − 2(α + h)2 ln(r/α)]. (3.20)

Moreover, the normal stress balance condition is reduced as:

p = −Eb

2
ϕ2

r +
1

α + h
− ϵ2hzz, (3.21)
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where ϵ is absorbed into Eb, i.e., Eb = ϵE . Now, the modified dimensionless electric Weber

number Eb is assumed to be O(1). The simplification of the curvature in Eq.(3.21) is suggest-

ed by Craster and Matar [124]. Inclusion of the term hzz is reflected by the linear stability

analysis, which is vital to ensure the correct high-wavenumber cutoff occurs [124, 125].

The leading order governing equation of the electric potential ϕ writes

ϕrr +
1
r
ϕr = 0. (3.22)

The solution of the leading order approximation of the electric potential obtained is:

ϕ = 1 − ln(r/β)
ln[(α + h)/β]

. (3.23)

Therefore, in Eq.(3.21), the electrostatic force is given by F = ϕ2
r = (α+h)−2[ln((α+h)/β)]−2.

This electrostatic force F describes the attraction between the liquid interface and the outer

electrode.

Substituting the velocity w into the kinematic equation Eq.(3.17), the evolution equation of

the interfacial shape h(z, t) is,

ht + (α + h)−1qz = 0, (3.24)

with

q = − pz − 1
4

[(α + h)4 ln(
α + h
α

) − h(2α + h)(2α2 + 6αh + 3h2)
4

].

The pressure gradient pz can be calculated by differentiating Eq.(3.21) with respect to z. Turn-

ing off the electric field, the evolution equation (3.24) recovers the form in Ref.[124].
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3.3 Linear stability analysis

The initial unperturbed state of the system (3.24) is:

h̄ = 1 − α, q̄ =
1
4

[− ln(α) − (1 − α2)(3 − α2)
4

]. (3.25)

The linear stability analysis is implemented by perturbing the base state Eq.(3.25) with an

infinitesimal harmonic disturbance

h = 1 − α + ĥeikz+λt, (3.26)

where ĥ is the amplitude of the disturbance, k the wavenumber, λ = λr + iλi the complex

temporal growth rate. Here λ is used as the eigenvalue of the re-scaled system. It can be

connected to the eigenvalue ω by ω = ϵλ where ω serves as the eigenvalue of the fully

linearized system.

After linearizing, the dispersive relation obtained is

λr =
k2

16
[
Eb(1 − ln β)

(ln β)3 + (1 − ϵ2k2)][−4 lnα − (1 − α2)(3 − α2)], (3.27)

λi =
k
2

(2 lnα + 1 − α2). (3.28)

The dispersive relation is identical to that obtained by Craster and Matar [124] when the

electric field is turned off, i.e. Eb = 0. The imaginary part of the eigenvalue, λi is independent

of the electric field. Therefore, the electric field has no influence on the linear wave speed, but

it is questionable as to whether the electric field affects the nonlinear wave speed. Detailed

discussion will be presented in Section 3.5. As aforementioned, the eigenvalue λ can be

connected to ω by ω = ϵλ, and the wavenumber k can be connected to κ by κ = ϵk [124].

Here, ω and κ are the eigenvalue and wavenumber of the fully linearized system in Section
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Figure 3.2: The physical mechanism of interfacial instability. “Plus/Minus” symbols stand
for positive/negative disturbance charges. (a) β < e; (b) β > e.

3.6. Recall that E = Eb/ϵ, S = 1/ϵ. The small parameter ϵ can be eliminated from Eq.(3.27)

and the dispersive relation is restated as:

ωr =
κ2

16
[
E (1 − ln β)

(ln β)3 +S (1 − κ2)][−4 lnα − (1 − α2)(3 − α2)], (3.29)

ωi =
κ

2
(2 lnα + 1 − α2). (3.30)

It is interesting to see that the influence of electric field on the linear stability is dependent of

the dimensionless radius β. When κ is very small, i.e. in the long-wave range, if β < e, the

electric field is destabilizing. When β > e, the electric field is stabilizing. Additionally, when

β = e, the electric field has no influence on the long-wave stability. The same conclusion

can be obtained from Eq.(3.55) in Section 3.6. In order to explain the physical mechanism

clearly, let us refer to Figure 3.2. The perturbed electric force Ēqs
′ is responsible for the

interfacial instability. qs
′ = − ε(1−ln(β))

ln(β)2 H + O(H2) is the perturbed surface charge density,

where H measures the deformation of the interface. The linear stability analysis assumes that

H is small such that the terms of order O(H2) and higher can be neglected. Ē is the electric

strength at the basic state. Note that the base electric field’s always acts in the opposite

direction of r. When β < e, in the elevated region of the interface qs
′ < 0; while qs

′ > 0 in

the depressed region of the interface. Hence, the electric force will enhance the deformation

of the interface. For β > e, in the elevated region of the interface qs
′ > 0; while qs

′ < 0 in the

depressed region of the interface. Hence, the electric force will impede the deformation of
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Figure 3.3: The real growth rate ωr versus the wavenumber κ. Solid lines are obtained by
the asymptotic model. Dashed lines are obtained by the fully linearized problem. (a-c) The
dependent parameters are α = 0.25, ϵ = 0.2, β = 2, e, 5. (d-f) The dependent parameters are
α = 0.75, ϵ = 0.2, β = 2, e, 5 .

the interface. For β = e, however, the perturbed charge density qs
′ = 0. Thereby, the electric

field has a negligible influence on the linear stability of the interface.

The numerical results of the fully linearized problem and the dispersive relation Eq.(3.29)

are shown in Figure 3.3. In the calculation of the fully linearized problem, the Reynolds

number is set to be very small so as to study the instability of the Stokes flow [127]. Two

different values of the fiber radius α and three typical values of the outer electrode radius β

are investigated. The influence of α is clear when one compares Figure 3.3(a-c) with 3.3(d-f)

that a smaller α is describing a larger real growth rate ωr. This phenomenon is caused by

the surface tension effect as explained in the work of Ding et al. [25, 126] who reported the

stability of a liquid film falling down a porous cylinder and indicated that the smaller radius

of the cylinder was the more unstable system. Results in Figure 3.3 show that the asymptotic
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model does not compare well with the fully linearized problem when α is small. However,

in the long-wave range, inspection of the plot reveals that the prediction of asymptotic model

agrees well with the fully linearized problem. Craster and Matar [124] reported that the linear

stability result of their asymptotic model compared well with the result of the Stokes flow

when α ≥ 0.4; while the agreement deteriorated when α was small. Here, it was observed

that, when α > 0.4, results of the asymptotic model agree well with that of the fully linearized

problem when Eb = 0. The agreement, however, deteriorates for large Eb values as shown

in Figure 3.3(c,f). This is due to the asymptotic deduction of the Laplace’s equation (3.12).

In addition, when β = e, the results by the fully linearized problem show that the electric

field has a negligible influence on the long-wave mode, but destabilizes the short wave mode.

When β = 5 > e, the electric field tends to stabilize the long-wave mode, while it destabilizes

the short-wave mode as shown in Figure 3.3(c,f). Therefore, it can be concluded here that the

asymptotic model is valid in the long wave range.

Equation (3.29) shows that if

S (1 − κ2) + [E (1 − ln β)]/[(ln β)]3 ≤ 0, (3.31)

the long-wave instability can be completely impeded by the electric field. A sufficient condi-

tion that the system is stable in the long wave range can be defined as

S + [E (1 − ln β)]/[(ln β)]3 ≤ 0. (3.32)

The maximum real growth rate ωm of the real growth rate ωr in Eq.(3.29) can be defined as

ωm =
[S + E (1 − ln β)/(ln β)3]2

64S
[−4 lnα − (1 − α2)(3 − α2)], (3.33)

which occurs at κm =

√
1+[E (1−ln β)]/[S (ln β)3]

√
2

and κm is defined as the wavenumber of the most
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Figure 3.4: (a) Ω = ϵωm versus the radius β predicted by the asymptotic model. (b) The elec-
tric Weber number Eb versus the dimensionless radius β predicted by the asymptotic model.

unstable mode [124].

The cut-off wavenumber κc corresponding to zero real growth rate is obtained as:

κc =
√

1 + [E (1 − ln β)]/[S (ln β)3]. (3.34)

It is obvious that the cut-off wave number varies with the strength of electric field. Both the

wavenumbers, κm and κc are short waves and strictly lie outside the range of validity of the

long-wave model. Note that, the wavenumber κm and κc should be positive and real, which

requires S + [E (1− ln β)]/[(ln β)]3 > 0. When S + [E (1− ln β)]/[(ln β)]3 ≤ 0, the maximum

real growth rate ωm = 0 occurs at κ = 0 and there is no cut-off wavenumber.

When the outer electrode is very close to the liquid interface, i.e. β → 1, the maximum real

growth rate becomes very large as shown in Figure 3.4(a). It indicates that, when β → 1, no

matter how small the electric potential difference is, the interfacial instability is enhanced due

to the strong attraction between the outer cylinder and the liquid interface. When β → ∞,

the electric field E = −∇ϕ vanishes, therefore, the electric field has no influence when β is

sufficiently large. This conclusion is useful to explain that a larger β is a more stable system.
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The analysis agrees with that of a perfectly conducting liquid jet [62], which implies that

the solid fiber does not change the influence of the electric field on the linear stability of the

interface.

From Eq.(3.32), a critical electric Weber number Eb,cr =
(ln β)3

ln β−1 can be found as shown in Figure

3.4(b). Above the value of the critical electric Weber number, the long-wave instability can be

completely impeded. In addition, the smallest value of of the critical electric Weber number

min (Eb,cr) = 27
4 occurring at β = e3/2 is found, which is the most economic when we are using

an external electric field to impede the long-wave interfacial instability.

3.4 Nonlinear evolution

This section presents the study of the interface subject to a finite-amplitude harmonic distur-

bance so as to examine the electric field’s effect on the nonlinear behavior of the liquid film.

The evolution equation Eq.(3.24) is rewritten in the conservative form as

st + (2q)z = 0, (3.35)

with

q = − pz − 1
4

[s2(
1
2

ln s − lnα) − α
4 − 4α2s + 3s2

4
],

where s = (α+ h)2 is proportional to the area of a cross section. The pressure p is modified as

p = −Eb

2
s−1[

1
2

ln s − ln β]−2 +
1
√

s
− ϵ2(

√
s)zz.

The following initial condition is considered that a single harmonic wave is imposed on the

interface,

s(z, 0) = (1 + 0.01 cos(
2πz
L

))2. (3.36)
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Figure 3.5: (a-d) The periodically extended interfacial shape at instant time t = 100. (e) The
periodic extended interfacial shape at instant time t = 9.10. The other dependent parameters
are α = 0.28, β = e0.9, ϵ = 0.23, L = 1.64.

Periodical boundary conditions are considered to simulate the nonlinear evolution of the in-

terface. The computational domain is z = [0, L] where L is the non-dimensional length of the

domain. The wavenumber k = 2π
L . Section 3.3 indicated that the asymptotic model is valid

in the long-wave range, therefore κ = ϵk should be small, i.e. L/ϵ should be large. Craster

and Matar [124] proposed that, in spite of the poor agreement in the linear stability analysis

between the asymptotic model and the Stokes flow when α is small, the asymptotic model can

still be used to study long-wave dynamics of the film. Their numerical study was in excel-

lent agreement with experimental observations [124]. This Section follows the previous work

by Craster and Matar [124], and investigates three typical values of α = 0.26, 0.28, 0.32 and

ϵ = 0.29, 0.23, 0.178 which are close to the experimental values of α and ϵ by Kliakhandler

et al. [127].

Before performing the numerical study, the value of
√

s should be bounded in (α, β). When

the interface touches the fiber’s surface or the outer electrode, the computation is terminated.
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The solution is approximated by the Fourier series:

s(z, t) =
N/2∑
−N/2

ŝn(t) exp(2inπ/Lz), (3.37)

where ŝn is the time-dependent coefficient and N is the number of Fourier modes. In the

present study, 128 to 512 Fourier modes are enough to provide sufficient accuracy. An implicit

Gear’s method in time is implemented and the relative error is set less than 10−6.

Figure 3.5 displays the interfacial shape of the liquid film at instant time for β = e0.9. Accord-

ing to the linear stability analysis, the electric field is destabilizing in this case. The values

of ϵ and α are fixed at ϵ = 0.23 and α = 0.28. The computational length is chosen to be

at L = 1.64, and thus the wavenumber κ ≈ 0.88. The wavenumber strictly lies outside the

range of validity of the long-wave model. However, the flow pattern in Figure 3.5(a) is sim-

ilar to the flow regime “b” in the experimental observation [127]. Craster and Matar [124]

used the asymptotic model to investigate the dynamics of such close-spacing droplets and

found that this was not in agreement with the experimental observation. However, they still

used the asymptotic model to examine the dynamics of such a flow pattern in order to give a

complete study of the asymptotic model [124]. Similarly, it is informative to show, how the

electric field affects the solution of close-spacing droplets. The results here are also given for

completeness, because it is interesting to investigate the electric field’s influence on the three

typical flow regimes. It is observed that, the liquid droplet becomes steeper as Eb increases.

When electric Weber is increased to Eb = 2, the liquid interface becomes singular and touches

the outer electrode at t ≈ 9.10 as shown in Figure 3.5(e). The maximum value of the liquid

film’s radius, rmax is plotted against the evolution time t in Figure 3.6(a). It is observed that

the system can evolve to a steady state after a long time when Eb is less than a certain value.

Moreover, the height of the liquid film is promoted by the electric field as shown in Figure

3.6(a). In addition, the growth rate of rmax is larger for a larger Eb which demonstrates that
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Figure 3.6: (a) The maximum radius rmax versus the evolution time t. (b) The maximum
radius rmax versus the electric Weber number. The other dependent parameters are α = 0.28,
β = e0.9. ϵ = 0.23, L = 1.64.

the instability is enhanced by the electric field. In order to search for the critical value of Eb

whereas the liquid film finally touches the outer electrode rather than evolves to a steady state,

the numerical simulation is utilized. rmax is plotted against Eb in Figure 3.6(b), in which the

critical value of Eb is indicated by Ecr ≈ 1.81. Figure 3.6(b) also shows that the height of

the liquid film increases as Eb increases, indicating the electric field is destabilizing. Results

in Figure 3.5 and Figure 3.6 demonstrate that the nonlinear study agrees well with the linear

stability analysis that the electric field enhances the instability when β < e.

The nonlinear behavior of the liquid film for β = e is of particular interest since the linear

stability analysis indicates that the electric field has no influence on the long-wave instability.

In fact, the liquid film is unstable due to the Plateau-Rayleigh mechanism even when the

electric field is switched off. When the liquid film evolves to a new saturated state due to

the capillary instability, the gap between the film’s crest and the electrode should be smaller

than e. Therefore, in the presence of an electric field, the nonlinear behavior of the interface

should be affected significantly. To study the problem, the conditions α = 0.26, ϵ = 0.29

and L = 5.8 are chosen. It should be noted that the numerical simulation result relies on

the initial condition and we cannot obtain a similar result as that in Ref.[127] observed in
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the flow regime “b”. However, the study in this Section can provide insights to explain the

effect of electric field on the nonlinear dynamics of the liquid film. Figure 3.7(a) illustrates

the interfacial shape for Eb = 0. The influence of the electric field on the interfacial shape is

shown in Figure 3.7(b-e). An interesting phenomenon observed is that the amplitude of the

liquid film starts to oscillate when the electric field is increased to a certain value, for instance

Eb = 2. Figure 3.7(f) shows the evolution of rmax with time t. It demonstrates that the wave

amplitude can be either time-independent or time-dependent, when the liquid film evolves to

a saturated state. The oscillation in the wave amplitude indicates that the state of the film is

not steady. To illustrate this phenomenon, the interface shape at different times is plotted in

Figure 3.7(g). The comparison of interfacial wave shape shows that the distance between the

wave crests l1, l2 as well as the heights of the wave crests are different at the two different

times A further increase in the strength of the electric field will cause the liquid film to touch

the outer electrode, for instance Eb = 2.5, 4.

When Eb = 2.5, the liquid film touches the outer electrode at t ≈ 64.717. The simulation of

this process is presented in Figure 3.8(a-c). To ensure the numerical accuracy, 512 Fourier

modes have been utilized and the time accuracy for the Gear’s method is set less than 10−8. It

is observed that the interface becomes singular in a quite short time as seen in Figure 3.8(a-c).

The electrostatic force is shown in Figure 3.8(d). The attraction between the electrode and

the liquid interface becomes very large at the crest of the lower droplet, which squeezes the

droplet into the singular shape. This phenomenon could also be observed in an electrified

jet or thread [62, 91]. Results in Figure 3.7 and Figure 3.8 indicate that, the electric field

is destabilizing in the nonlinear regime, but it does not contradict with the linear theory. In

Figure 3.7(f), the electric field almost does not affect the evolution of rmax in a short time,

which implies that the growth rate of the harmonic wave is almost the same. It indicates that,

when the deformation of the interface is small, the prediction of linear stability analysis is

correct.
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When the radius β is increased to e1.1, and other parameters used in Figure 3.7 are fixed, the

electric field’s influence on the nonlinear behavior of the interface becomes more complex.

The linear stability analysis indicates that the electric field plays a stabilizing role when β >

e. When the nonlinear mechanism becomes important, the electric field can enhance the

instability. Clearly, Figure 3.9(a-e) shows the flow pattern can be changed by the electric

field. Figure 3.9(f) shows that, when Eb is slightly increased, rmax decreases and the liquid

film evolves to a steady state. rmax starts to oscillate when Eb is further increased, for instance

Eb = 1, 2, 3.7. The transient simulation shows that when Eb < 3.719, rmax becomes smaller

with increasing the value of Eb. However, the oscillation in the amplitude is promoted by the

electric field. As the liquid film is not steady, the coalescence event may happen when Eb is

further increased. The maximum height of the film will increase due to the coalescence of

the droplets. As a result, the gap between the wave crest and the outer electrode becomes

smaller. Thereby, the outer electrode may attract and attach the interface to its surface. This

mechanism can be understood by referring to Figure 3.9(g), in which, the coalescence of

droplets is shown. Numerical simulation has found out that, when 3.719 < Eb < 11.125, the

electric field can attract the liquid film to the outer electrode due to the droplet coalescence.

When Eb > 11.125, no rupture phenomenon is observed by numerical study and the wave

becomes steady after quite a long time(t > 104). This is due to the electrostatic force which

suppresses the deformation of the interface. The wave amplitude is so small that the electric

field could not attract the interface to the outer electrode. The liquid film becomes completely

stable when Eb >
(ln β)3(1−κ2)

ln β−1 ≈ 12, which agrees with the linear stability analysis. Aside from

that, Figure 3.9(f) shows that the growth rate of rmax is smaller for a larger Eb for short time

behavior, which agrees with the linear stability analysis.

Now, it is of interest to study the case: β = e3/2. For the chosen value of β, the electric

field is stabilizing according to the linear stability analysis. In this case, the values α = 0.32,

ϵ = 0.178 and L = 5 are chosen. Study from Ref.[124] suggests that a similar flow pattern as
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Figure 3.10: (a-e) The interfacial shape at t = 500. The other dependent parameters are
α = 0.32, β = e3/2, ϵ = 0.178, L = 5, κ ≈ 0.226. (f) The maximum radius of the liquid ring
rmax versus the evolution time t. (g) The comparison of the interfacial shapes for Eb = 5, 5.5.
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flow regime “c” in the literature [127] may be found by transient simulation for a very small

ϵ. Meanwhile, the initial condition of the transient simulation was chosen by a traveling wave

solution perturbed by pseudo-random noise [124]. Moreover, 1024 Fourier modes were used

for the numerical simulation [124] which was time-consuming. This Section focuses on the

influence of electric field on the stability of the annular liquid film. For convenience, L = 5

is chosen and the initial condition Eq.(3.36) is used to explain the influence of electric field.

The interfacial shape without the external electric field is shown in Figure 3.10(a). When

the electric field is turned on, the interfacial wave pattern changes as Eb increases as seen

in Figure 3.10(b-e). Figure 3.10(g) shows the comparison of the shape of steady wave for

Eb = 5,and 5.5. A clearer figure is shown in Figure 3.10(f) that rmax becomes smaller as Eb

increases. This phenomenon indicates that the electric field is stabilizing. When the electric

field is turned on, the permanent wave can also be time-dependent (for instance Eb = 4) or

time-independent (for instance Eb = 5). In this study: β = e3/2, the singular phenomenon for

any electric Weber number Eb > 0 is not observed, which indicates that moving the electrode

further from the liquid ring can avoid the singular event that may occur in the system.

Finally, the transient simulation with a large L = 20 is performed so as to understand the

complex dynamics of the film. This study is carried out to investigate the response of the

liquid film subject to the finite-amplitude wave in a long computational domain. 512 Fourier

modes have been utilized to resolve the problem. The radius of the electrode is fixed at

β = e3/2. The film has evolved to a steady state for Eb = 1 as shown in Figure 3.11(a) while it

does not become steady for Eb = 2.5 as shown in Figure 3.11(b) (Note that, here the spatial

axis is z/ϵ rather than z.). In fact, for Eb = 2.5, no steady state was observed for quite a

long time, t = 5000. The film is oscillating due to the competition between coalescence of

droplet and transition to smaller scales [124]. To illustrate the phenomenon, the space-time

diagram of the liquid film is shown in Figure 3.11(b) where the crossing of lines indicates the

coalescence of droplets.
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Figure 3.11: Space-time diagram illustrating the dynamics of liquid film, in which the light
and dark shading indicate elevated and depressed regions, respectively. (a) Eb = 1, (b) Eb =

2.5. The dependent parameters are α = 0.6, ϵ = 0.2, β = e1.5, L = 20, κ ≈ 0.0628.

3.5 Coherent solutions: Traveling waves

In Section 3.4, the direct simulation of the asymptotic model has been implemented to study

the electric field’s influence on the nonlinear behavior of the liquid film. However, the study

could not answer the question: how does the electric field influence the traveling speed of the

steady waves? In this section, coherent solutions in form of traveling waves, i.e., stationary

solutions of Eq.(3.35) in a frame of reference moving downstream at a constant speed c are

sought by introducing the following transformation:

ζ = z − ct. (3.38)

Eq.(3.35) is then transformed to:

− csζ + (2q)ζ = 0, (3.39)

The unknown variable is set to s = s(ζ). For a given L (the computational length as defined in
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Section 3.4), this is a nonlinear eigenvalue problem where s and c are to be determined. The

computational length L also corresponds to the droplet-droplet spacing for a single droplet

solution.

Here, the flow rate m in the moving frame is defined as

m = −
∫ α+h(ζ)

α

r[w(ζ) − c]dr. (3.40)

The solution of s can be approximated by the Fourier series,

s(ζ) =
N/2∑
−N/2

ŝe2inπ/Lζ (3.41)

Since the wave speed c as well as s are unknown, one more condition is needed to fix c.

Following Craster and Matar’s work, the constraint on the fluid mass is imposed [124]

1
L

∫ L

0
sdζ = 1. (3.42)

For the convergence of Newton iteration, a reasonable guess for the wave speed and profile

should be provided. This can be provided by numerical simulation of the evolution equation of

a short computational domain (edge-tracking method). The initial guess can also be given by

the information at the supercritical bifurcation point of the evolution equation. A continuation

method is used to track the solution branch as parameter changes.

It should be indicated that the traveling wave transformation Eq.(3.38) is only valid when a

traveling wave solution exists. The numerical simulation has indicated that the liquid film

may become singular in the presence of an electric field. Therefore, in this situation, there is

no steady traveling wave and the solution can not be found.

First, the case: α = 0.3262, ϵ = 0.178, L = 8.185 in the work [124] is revisited. The
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Figure 3.12: (a) The wave speed c versus the length L. (b) The interfacial shape for a single
droplet. c = 1.37, L = 8.185. (c) The interfacial shape for two droplets. c = 1.04, L =
8.185, α = 0.3262, ϵ = 0.178. “single/double” means there is(are) one/two droplet(s) in the
computational domain.

solution is tracked by the length L. Clearly, a larger L describes a larger wave speed. Figure

3.12 demonstrates that the asymptotic equation (3.39) exhibits non-uniqueness of solutions.

For a given spatial interval, there could be one or two droplets as seen in Figure 3.12(b,c).

Our numerical study gives the wave speed c = 1.37 at L = 8.185 for a single bead which

compares well with the result of Craster and Matar (c = 1.36 at L = 8.185 for a single bead

[124]). This agreement confirms the validity of our numerical method. Here, ‘our numerical

method’ refers to the numerical method developed by the author of this thesis.

Second, the influence of electric field on these kinds of solutions in Figure 3.12(b,c) is exam-

ined. The electric Weber number is fixed at Eb = 0.1 while the radius of the electrode β is

varied. Results are shown in Figure 3.13. When β < e, for instance β = e0.9, e0.95, the traveling

wave solution is not found when L exceeds a critical value. When β > e, the solution does

exist. It is noted that, when β < e, the electric field promotes the wave speed. When β > e,

the wave speed becomes smaller as β increases.

The influence of the electric field on the traveling waves for α = 0.28, ϵ = 0.23, L = 1.64

is examined by the asymptotic model. The result of numerical simulation in Figure 3.5(a)
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Figure 3.13: (a) The wave speed c vs. the length L for a single droplet case. (b) The wave
speed c vs. the length L for two droplets case. The dependent parameters are Eb = 0.1,
α = 0.3262, ϵ = 0.178.

without periodical extension (a single droplet in the computational domain) is chosen as the

initial guess of the wave profile. The results are shown in Figure 3.14. The solution agrees

with the numerical simulation as seen in Figure 3.14(b). The critical electric Weber number

Ecr, above which there is no steady traveling waves, Ecr ≈ 1.81 is re-obtained by the traveling

wave study. It is interesting to note that although the height of the wave always increases as Eb

increases, the wave speed c starts to decrease at Eb ≈ 1.78 as observed in Figure 3.14(a). The

physical mechanism underlying this phenomenon should be the electric field’s enhancement

on the circulation flow in the wave crest (see Figure 3.14(d-f)). The flow rate m increases as

Eb increases till Eb ≈ 1.78, indicating that the electric field enhances the flow, therefore, a

larger c. However, the circulation in the wave crest may retard the flow as Eb > 1.78, therefore

causing the flow rate m to become smaller. Thereby, the wave speed may become smaller due

to the decrease of flow rate.

The electric field’s influence on the traveling waves for α = 0.2551, ϵ = 0.2915 and L = 5.81

(α, ϵ and L are the experimental values of flow regime “a” [127]) is investigated here. For

non-zero Eb, the solution is tracked by parameter Eb. The wave speed for Eb = 0 is c = 1.21,
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Figure 3.14: (a) The wave speed c vs. Eb. (b) The maximum height rmax vs. Eb, in which
“TW” stands for Traveling Wave. (c) The flow rate m in the moving frame vs. Eb. (d-f)
Streamlines in the moving frame with constant speed c, in which Eb = 0, 1.78, 1.81 respec-
tively. The dependent parameters are α = 0.28, β = e0.9, ϵ = 0.23, L = 1.64.
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Figure 3.15: (a) The wave profile for Eb = 0. (b) The wave speed c vs. the electric Weber
number Eb. (c) The maximum height rmax vs. the electric Weber number Eb. (d) The flow
rate m vs. Eb. The marked lines “1” ln(β) = 0.9; “2” ln(β) = 1; “3” ln(β) = 1.1; “4” ln(β) =
1.15; “5” ln(β) = 1.25; “6” ln(β) = 1.5. The other dependent parameters are α = 0.2551,
ϵ = 0.2915, L = 5.81.

which agrees well with Craster and Matar’s study (Ref.[124] gave c = 1.195). Influences

of the electric field on the wave speed c and the maximum height rmax as well as the flow

rate m are shown in Figure 3.15(b-d). Numerical results indicate that (c, rmax,m) increase

with Eb when ln β < 1.1. When ln β = 1.15, an interesting phenomenon observed is that,

although rmax decreases with Eb, c and m reach to their maximum values after that they start

to decrease. This phenomenon implies that the electric field enhances the flow and promotes

the wave speed. When ln β > 1.2, c and rmax are observed to decrease as Eb increases. It

is found that for ln β = 1.15, 1.25, 1.5, rmax → 1, c → 0.8986, m → 0.25 as Eb increases

to Eb ≈ 9.1, 7, 6 respectively. The constant value c = 0.8986 is nothing but the linear wave

speed cl = −ωi
κ
= − 1

2 (2 lnα + 1 − α2). The flow rate m = 0.25 is the basic flow rate in the

moving frame with the constant speed cl: m = cl(1 − α2) − q̄. The critical electric Weber

number Eb =
(ln β)3(1−κ2)

ln β−1 predicted by the linear stability theory gives Eb ≈ 9.13, 7.03, 6.07 for

the three cases: ln β = 1.15, 1.25, 1.5, which agrees with the study of the traveling waves.
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3.6 The fully linearized problem

Here, the fully linearized system is carried out so as to verify the validity of the asymptotic

model Eq.(3.24). The system is non-dimensionalized by using the length scale R = a + h0,

and pressure scale ρgR, velocity scale ρR2g/µ, time scale µ/ρRg and electric potential scale

ϕ = ∆ϕ = ϕ0.

The velocity field u, pressure p, the electric potential ϕ as well as the interface h are perturbed

by infinitesimal harmonic disturbances as:

[u,w, p, ϕ, h] = [ū, w̄, p̄, ϕ̄, h̄] + [û, ŵ, p̂, ϕ̂, ĥ] exp(iκz + ωt), (3.43)

where ū, w̄, p̄, ϕ̄, h̄ refer to the base state and û, ŵ, p̂, ϕ̂, ĥ are the Fourier amplitudes of the

disturbances. κ is the disturbance wavenumber, and ω is the complex temporal growth rate.

The governing equations of the perturbed system are:

Dû +
û
r
+ iκŵ = 0, (3.44)

ωRû = −D p̂ + (D2 +
D

r
− κ2)û − û

r2 − iκRw̄û, (3.45)

ωRŵ = −iκ p̂ + (D2 +
D

r
− κ2)ŵ − R(iκw̄ŵ + w̄rû), (3.46)

(D2 +
D

r
− κ2)ϕ̂ = 0, (3.47)

in which D = d
dr . R = ρ2gR3

µ2 can be connected to the Reynolds number by R = ϵRe.

The linearized boundary conditions at r = α are

û = ŵ = 0. (3.48)

65



At the liquid interface, the boundary conditions are projected to r = 1 by Taylor’s expansion,

iκû + Dŵ + D2w̄ĥ = 0, (3.49)

p̂ + 2(iκDw̄ĥ − Dû) + E Dϕ̄(D2ϕ̄ĥ + Dϕ̂) = S (κ2 − 1)ĥ, (3.50)

ϕ̂ + Dϕ̄ĥ = 0, (3.51)

ωĥ + iκw̄ĥ = û. (3.52)

Here, the electric Weber number E and dimensionless surface tension S can be connected to

the modified dimensionless parameters by E = Eb/ϵ, S = 1/ϵ.

At the outer electrode r = β, the boundary condition for the perturbed electric potential is

ϕ̂ = 0. (3.53)

The perturbed electric potential is obtained as follows

ϕ̂ =
ĥ

ln β
I0(κr)K0(kβ) − I0(κβ)K0(κr)
I0(κβ)K0(κ) − I0(κ)K0(κβ)

, (3.54)

where I0 and K0 are the zero order modified Bessel functions.

In the linearized normal stress balance condition (3.50), the electric force term reads

E

(ln β)2 [−1 + κ
I1(κ)K0(κβ) + I0(κβ)K1(κ)
I0(κβ)K0(κ) − I0(κ)K0(κβ)

]ĥ, (3.55)

where I1 and K1 are the first order modified Bessel functions. In the long-wave range, κ → 0,

the asymptotic electric force term writes

E (1 − ln β)
(ln β)3 ĥ + O(κ2). (3.56)

66



The above fully linearized problem is solved by a Chebyshev collocation method.
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Chapter 4

Interfacial instability of a core-annular
system in the presence of a radial electric
field

Chapter 3 discussed the interfacial stability of core-annular flows in a radial electric field.

The model derived Eq.(3.24) is valid only in the long-wave regime. Specifically, Eq.(3.24)

is not able to capture the dynamics of the short waves when an electric field is applied (see

Figure 3.3(c,f)). In addition, the dynamics of the outer fluid layer is neglected. This Chapter

considers a two-layer flow system as shown in Figure 4.1 and examines the influences of the

dynamics of the outer layer. Different from the assumption of perfect conducting liquids of

the inner layer and non-conducting gases of the outer layer in Chapter 3, the two immiscible

liquids are considered to be leaky dielectrics in this Chapter. Furthermore, it is assumed that

the two-fluid system is bound by two concentric cylindrical electrodes. A constant pressure

gradient is imposed in the axial direction. The outer electrode with the inner radius r = b is

grounded, while the inner electrode with the radius r = a is imposed with a high electric po-

tential. Both liquids are Newtonian with a constant density ρi, dynamic viscosity µi, dielectric

permittivity ε0εi(ε0 the vacuum electric permittivity), electric conductivity σi, where i = 1, 2

represents the outer layer and the inner layer respectively. In this chapter, the subscript i = 1, 2

represents the outer layer and the inner layer for simplicity, respectively.

The two-dimensional hydrodynamic problem is considered, and the gravity is neglected. Flu-
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Figure 4.1: Geometry of the two-fluid system. (a) Side-view. (b) Cross-section-view.

ids in each layer are governed by the continuity equation and the momentum equations,

1
r
∂(rui)
∂r
+
∂vi

∂z
= 0, (4.1)

ρi
Dui

Dt
= −∂pi

∂r
+ µi(∇2ui −

ui

r2 ), (4.2)

ρi
Dvi

Dt
= −∂pi

∂z
+ µi∇2vi, (4.3)

where (u, v)i the velocity in radial and axial direction respectively, D
Dt =

∂
∂t + ui

∂
∂r + vi

∂
∂z , and

∇2 = ∂2

∂r2 +
1
r
∂
∂r +

∂2

∂z2 .

Since the leaky dielectrics is considered, the electric potential in each layer follows the solu-

tion of Laplace’s equation,

∇2ϕi = 0. (4.4)

Boundary conditions on the inner surface r = a are,

u2 = v2 = 0, ϕ2 = ϕ0. (4.5)
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At r = b, boundary conditions are expressed as,

u1 = v1 = 0, ϕ1 = 0. (4.6)

At the liquid-liquid interface, r = a + h(z, t), continuity of the velocity gives,

u2 = u1, v2 = v1. (4.7)

The stress is balanced between the two liquid layer by surface tension,

(T2 − T1) · n = −γ(∇s · n)n, (4.8)

where Ti = T
v
i + T

M
i is the stress tensor. Tv

i stands for the viscous stress tensor and TM
i =

ε0εi[EiEi − 1
2 (Ei · Ei)I] stands for the Maxwell stress tensor and Ei = −∇ϕi. I is the identity

tensor. γ is the surface tension which is constant because the Marangoni effect is neglected in

this paper. n = er

(1+h2
z )

1
2
− hzez

(1+h2
z )

1
2

is the surface normal.

Continuity of electric potential at the interface gives

ϕ2 = ϕ1. (4.9)

For leaky dielectrics, when the ratio of the fluid to electric time scales tF
tE
= h/VI

ε0/σ
(VI is the ve-

locity scale and σ stands for the electric conductivity scale) is very large [85], the conservative

equation of interfacial charge (2.31) reduces to,

n · (σ2∇ϕ2 − σ1∇ϕ1) = 0. (4.10)
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Finally, the system is closed by using the kinematic equation of the liquid-liquid interface,

ht + v2hz − u2 = 0. (4.11)

4.1 Non-dimensionalization and base state

To non-dimensionalize the governing system (4.1)-(4.11), the properties of the inner layer,

i.e. ρ2, µ2, σ2 are taken as the property scales; the electric permittivity scale is referred to

vacuum permittivity ε0; the length scale refers to the mean depth of the inner layer h0; the

velocity scale refers to the moving velocity of interface VI at the steady state; the time scale is

given by h0/VI; the voltage difference between the two cylinders ∆ϕ = ϕ0 − ϕg(ϕg is denoted

as the potential of ground, ϕg = 0.) is chosen as the electric potential scale. The relationship

between dimensional variables and dimensionless variables (primed) is presented as follows,



(r, z, h) = (r′, z′, h′)h0,

(u, v)i = (u′, v′)iVI ,

(p1, p2) = (p′1, p′2)
µ2VI

h0
, t = t′

h0

VI
,

(ϕ1 − ϕg) = ϕ′1∆ϕ, (ϕ2 − ϕg) = ϕ′2∆ϕ,

(E1, E2) = (E′1, E′2)
∆ϕ

h0
.

(4.12)

By using these scales, after dropping the primes, the inner layer is governed by the following

dimensionless equations,
1
r
∂(ru2)
∂r

+
∂v2

∂z
= 0, (4.13)

Re
Du2

Dt
= −∂p2

∂r
+ (∇2u2 −

u2

r2 ), (4.14)

Re
Dv2

Dt
= −∂p2

∂z
+ ∇2v2, (4.15)
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∇2ϕ2 = 0, (4.16)

where Re = ρVIh0
µ

is the Reynolds number.

For the outer layer, the dimensionless governing equations are,

1
r
∂(ru1)
∂r

+
∂v1

∂z
= 0, (4.17)

ρRe
Du1

Dt
= −∂p1

∂r
+ µ(∇2u1 −

u1

r2 ), (4.18)

ρRe
Dv1

Dt
= −∂p1

∂z
+ µ∇2v1, (4.19)

∇2ϕ1 = 0, (4.20)

where ρ = ρ1
ρ2

denotes the density ratio, and µ = µ1
µ2

denotes the dynamical viscosity ratio.

The dimensionless boundary conditions at r = a are,

u2 = v2 = 0, ϕ2 = 1. (4.21)

At r = b, the dimensionless boundary conditions are,

u1 = v1 = 0, ϕ1 = 0. (4.22)

On the interface r = a + h(z, t), after dropping the higher term proportional to (hz)2, the

tangential and normal stress balance conditions are,

[2urhz + uz + vr − 2vzhz]2 − µ[2urhz + uz + vr − 2vzhz]1

+We[ε2(E2
r hz + ErEz − E2

z hz)2 − ε1(E2
r hz + ErEz − E2

z hz)1] = 0, (4.23)
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− p2 + 2[ur − (uz + vr)hz]2 + p1 − 2µ[ur − (uz + vr)hz]1

+We[ε2(
1
2

E2
r −

1
2

E2
z − 2ErEzhz)2 − ε1(

1
2

E2
r −

1
2

E2
z − 2ErEzhz)1] =

κ

Ca
, (4.24)

where We = ε0∆ϕ
2

µ2VIh0
denotes the electric Weber number, κ = hzz− 1

a+h is the curvature. Ca = µ2VI
γ

is the capillary number.

The dimensionless continuity of the velocity and voltage potential conditions at the interface

hold the same form as Eqs.(4.7) and (4.9),

u2 = u1, v2 = v1, ϕ2 = ϕ1, (4.25)

and the dimensionless conservative law of the surface charge is,

n · (∇ϕ2 − σ∇ϕ1) = 0, (4.26)

where σ = σ1
σ2

denotes the electric conductivity ratio.

The dimensionless kinematic condition of Eq.(4.11) holds the same form.

4.1.1 Base state of the system

The flow field and electric field are decoupled at the base state. The base velocity in radial

direction vanishes and flow is parallel to the axis, i.e.,

ū2 = ū1 = 0. (4.27)
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Since the base state of the flow field is assumed to be uniform in z direction and driven by a

constant pressure gradient along the axis, then

v̄2 =
C
4

r2 + c1 ln(r) + c2, (4.28)

v̄1 =
C
4µ

r2 + d1 ln(r) + d2, (4.29)

in which,

c1 =
C[(a + 1)2 − µ(2a + 1) − b2]

4(µ ln a+1
a + ln b

a+1 )
, (4.30)

c2 = −
C[µa2 ln a+1

a + a2 ln b
a+1 + ((a + 1)2 − µ(2a + 1) − b2) ln a]

4(µ ln a+1
a + ln b

a+1 )
, (4.31)

d1 =
C[(a + 1)2 − µ(2a + 1) − b2]

4µ[µ ln a+1
a + ln b

a+1 ]
, (4.32)

d2 = −
C[((a + 1)2 − µ(2a + 1)) ln b + b2(µ ln a+1

a − ln(a + 1))]

4µ[µ ln a+1
a + ln b

a+1 ]
. (4.33)

The coefficient C = p̄z. Since the velocity scale refers to the velocity at the interface, the

dimensionless interfacial velocity VI = 1. The pressure gradient is identified as,

∂ p̄
∂z
=

4[µ ln a
a+1 + ln a+1

b ]

ln a
b + a2 ln a

a+1 + a ln a2

b2 + b2 ln a+1
a

. (4.34)

The solution of the voltage potential in the inner and outer layers respectively reads,

ϕ̄2 =
σ ln r

a+1 + ln a+1
b

σ ln a
a+1 + ln a+1

b

, (4.35)

ϕ̄1 =
ln r

b

σ ln a
a+1 + ln a+1

b

. (4.36)

When the inner radius is infinitely large, i.e., a → ∞, the base state reduces the the problem
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studied by Ozen et al.[84] as follows,

v̄2 = −
H + µ

H(1 + H)
y2 +

H2 + 2H + µ
H(1 + H)

y, (4.37)

v̄1 = −
H + µ

µH(1 + H)
y2 +

H2 + 2H + µ
µH(1 + H)

y − 1 − µ
µ

, (4.38)

ϕ̄2 =
σ(1 − y) + H

σ + H
, (4.39)

ϕ̄1 =
−y + H
σ + H

. (4.40)

where H = b − a − 1 represents the thickness of the outer layer, and y = r − a represents

the wall-normal direction. Shifting the origin to the interface, the same velocity and electric

potential expressions as Ozen et al.’s [84] can be obtained.

4.2 Linearized perturbed system

This section studies the linear stability of the core-annular flow so as to provide insights

on the linear dynamics of the system. Infinitesimal disturbances are introduced to perturb

the system. In a standard way, the normal mode analysis is considered. The normal mode

analysis is achieved by decomposing F into F = F̄(r) + F̂(r) exp(ikz + ωt), where F̄ refers

to the base state, and F̂ the infinitesimal amplitude of a harmonic disturbance with the wave

number k and temporal growth rate ω. The complex temporal growth rate ω = ωr+ iωi, where

the real part ωr is defined as the effective growth rate.

For the inner layer, the perturbed system is governed by,

Dû2 +
û2

r
+ ikv̂2 = 0, (4.41)

Reωû2 = −ikRev̄2û2 − Dp̂2 + (Lû2 −
û2

r2 ), (4.42)
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Reωv̂2 = −ReDv̄2û2 − ikRev̄2v̂2 − ik p̂2 +Lv̂2, (4.43)

Lϕ̂2 = 0, (4.44)

where D = d
dr , L = D2 + 1

rD − k2.

For the outer layer, the perturbed governing system is,

Dû1 +
û1

r
+ ikv̂1 = 0, (4.45)

ρReωû1 = −ikρRev̄1û1 − Dp̂1 + µ(Lû1 −
û1

r2 ), (4.46)

ρReωv̂1 = −ρReDv̄1û1 − ikρRev̄1v̂1 − ik p̂1 + µLv̂1, (4.47)

Lϕ̂1 = 0. (4.48)

Boundary conditions at r = a for the perturbed system are,

û2 = v̂2 = ϕ̂2 = 0. (4.49)

At r = b, the boundary conditions of the perturbed system are,

û1 = v̂1 = ϕ̂1 = 0. (4.50)

The boundary conditions at the liquid-liquid interface r = a + h are projected to r = a +

1 by using the Taylor’s expansion. The interface is perturbed to h = 1 + η̂ exp (ikz + ωt),

where η̂ measures the deformation of the interface. After dropping the higher order terms, the

conditions of perturbed velocities read,

û2 = û1, v̂2 + Dv̄2η̂ = v̂1 + Dv̄1η̂. (4.51)
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The voltage potential conditions of the perturbed system at the interface are,

ϕ̂2 + Dϕ̄2η̂ = ϕ̂1 + Dϕ̄1η̂, Dϕ̂2 + D
2ϕ̄2η̂ = σ(Dϕ̂1 + D

2ϕ̄1η̂), (4.52)

and note that Dϕ̄2 = σDϕ̄1, and D2ϕ̄2 = σD
2ϕ̄1.

The perturbed stress balance condition in the tangential and normal direction, respectively,

reads,

[ikû + Dv̂ + D2v̄η̂]2 − µ[ikû + Dv̂ + D2v̄η̂]1

+We[ε2Dϕ̄2(ikDϕ̄2η̂ + ikϕ̂2) − ε1Dϕ̄1(ikDϕ̄1η̂ + ikϕ̂1)] = 0, (4.53)

− p̂2 + 2[Dû − ikDv̄η̂]2 + p̂1 − 2µ[Dû − ikDv̄η̂]1

+We[ε2Dϕ̄2(D2ϕ̄2η̂ + Dϕ̂2) − ε1Dϕ̄1(D2ϕ̄1η̂ + Dϕ̂1)] =
1

Ca
[

η̂

(a + 1)2 − k2η̂]. (4.54)

The perturbed kinematic condition is,

ωη̂ + ikv̄2η̂ − û2 = 0. (4.55)

4.3 Results and discussion

4.3.1 Effects of the electric field

This Section discusses the influences of electric field on instability of the interface theoretical-

ly. The governing equation of the perturbed electric field can be solved by Bessel’s function,

ϕ̂1 = e1I0(kr) + e2J0(kr), ϕ̂2 = e3I0(kr) + e4J0(kr), (4.56)

77



in which I0, J0 are modified Bessel’s functions of order zero, and I′0 = kI1, J′0 = −kJ1

where I1, J1 are modified Bessel’s functions of order one. Using the boundary conditions, the

coefficients are determined as follows,

e1 =
1
P

1 − σ
(a + 1)[σ ln a

a+1 + ln a+1
b ]

η̂, (4.57)

e2 = −I0(kb)/J0(kb)e1, (4.58)

e3 = Qe1, (4.59)

e4 = −I0(ka)/J0(ka)Qe1, (4.60)

with

P = Q I0(ka + k)J0(ka) − J0(ka + k)I0(ka)
J0(ka)

− I0(ka + k)J0(kb) − J0(ka + k)I0(kb)
J0(kb)

, (4.61)

Q = σ J0(ka)
J0(kb)

I1(ka + k)J0(kb) + J1(ka + a)I0(kb)
I1(ka + k)J0(ka) + J1(ka + a)I0(ka)

. (4.62)

In the normal stress balance condition Eq.(4.54), the term [ε2Dϕ̄2D
2ϕ̄2 − ε1Dϕ̄1D

2ϕ̄1]η̂ is equal

to − ε2σ
2−ε1

(a+1)3[σ ln a
a+1+ln a+1

b ]2 η̂, and the other term [ε2Dϕ̄2Dϕ̂2 − ε1Dϕ̄1Dϕ̂1] = ε2σ
2−ε1

(a+1)[σ ln a
a+1+ln a+1

b ]
Dϕ̂1.

According to the solution of the electric field, Dϕ̂1 = k[I1(ka + k) + I0(kb)J1(ka + k)/J0(kb)]e1

which is modified as,

Dϕ̂1 =
k[I1(ka + k) + I0(kb)J1(ka + k)/J0(kb)]

P
1 − σ

(a + 1)[σ ln a
a+1 + ln a+1

b ]
η̂, (4.63)

then, the effect of electric field on the interfacial stability is proportional to,

[S
(ε2σ

2 − ε1)(1 − σ)
(a + 1)2[σ ln a

a+1 + ln a+1
b ]2
− ε2σ

2 − ε1

(a + 1)3[σ ln a
a+1 + ln a+1

b ]2
]η̂.

The parameter S = k[I1(ka+k)+I0(kb)J1(ka+k)/J0(kb)]
P . The value of S is found to be always positive.
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For small to moderate Reynolds numbers, the system is susceptible to the Plateau-Rayleigh

instability and interface wave instability[98]. The former is caused by surface tension due

to the azimuthal curvature; and the latter is due to viscosity stratification. The capillary and

interface wave instabilities are associated with interface deformation. It is noted that, when

σ2 = ε1/ε2, the normal Maxwell stress becomes zero at the liquid-liquid interface.
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Figure 4.2: (Color online) Effective Growth rate versus disturbance wave number. (a) ε1 = 2,

ε2 = 10, σ = 0.5. (b) ε1 = 5, ε2 = 10, σ = 0.5. (c) ε1 = 10, ε2 = 1, σ = 1. (d) ε1 = 5,

ε2 = 10, σ = 1. The other parameters Re = Ca = a = H = ρ = µ = 1.
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For this two-fluid core-annular system, when

σ2 > ε1/ε2 and σ < 1 − 1
S (a + 1)

, (4.64)

or,

σ2 < ε1/ε2 and σ > 1 − 1
S (a + 1)

, (4.65)

the electric field impedes the deformation of interface. Otherwise, it enhances the deformation

of interface. This two core-annular flow system can be reduced to a bilayer system coflowing

between two parallel infinite plates when the inner radius a is infinitely large, i.e., a → ∞.

Eqs.(4.64) and (4.65) agree with the results by Ozen et al.[84] when a → ∞ and the charge

relation time is fast. Ozen et al.[84] proposed that, for the two-fluid layer flowing between two

parallel plates in a normal electric field, when σ2 > ε1/ε2 andσ < 1, orσ2 < ε1/ε2 andσ > 1,

the electric field can stabilize the system. Otherwise, the electric field destabilizes the system.

However, the criterion set by Ozen et al.[84] is only valid to explain the normal Maxwell

stress’s effect which cannot be used to explain the effect of the tangential Maxwell stress[85].

The surface charge induces a tangential Maxwell stress which has an important effect on the

stability of the system. Nevertheless, for the core-annular flow system, when the instability

is dominated by the capillary force, the theoretical results in Eqs.(4.64) and (4.65) can be

referred as a criterion of capillary instability. When the electric properties satisfy Eqs.(4.64)

or (4.65), the electric field can impede the capillary instability. Otherwise, the electric field

enhances the capillary instability. Furthermore, when the electric properties do not satisfy

Eqs.(4.64) or (4.65), the electric field always enhances the deformation of interface.

Since this chapter considers the leaky dielectrics, free charges accumulate at the liquid-liquid

interface which induces a tangential Maxwell stress qEt(q is the surface charge density and Et

is the tangential component of E at the liquid-liquid interface). Viscous stress at the liquid-

liquid interface is balanced by the tangential Maxwell stress. In Eq.(4.53), the linearized
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Figure 4.3: (Color online) The tangential Maxwell stress effect on the growth rate. (a) ε1 =

2.5, ε2 = 10, σ = 0.5, µ = 1; (b) ε1 = 10, ε2 = 2.5, σ = 2, µ = 1; (c) ε1 = 2.5,
ε2 = 10, σ = 0.5, µ = 2; (d) ε1 = 10, ε2 = 2.5, σ = 2, µ = 2. The other parameters
Re = Ca = a = H = ρ = 1.
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Figure 4.4: (Color online) Perturbed flow field plotted by the streamfunction ψ′. (a) ε1 = 10,
ε2 = 5, σ = 2; (b) ε1 = 10, ε2 = 2.5, σ = 2. The other dependent parameters Re = ρ = Ca =
a = H = µ = 1, We = 10, k = 0.1.

tangential Maxwell stress is,

ik
(ε2σ − ε1)

(a + 1)2[σ ln a
a+1 + ln a+1

b ]2
(1 + R(1 − σ))η̂,

in which, R = I0(ka+k)−I0(kb)J0(ka+k)/J0(kb)
P < 0. The tangential Maxwell stress is zero when

σ = ε1/ε2. In this situation, the two liquids could be viewed as perfectly non-conducting.

The influence of the tangential Maxwell stress on the interfacial instabilities(the capillary and

interface wave instabilities) is very complex because it is coupled with the viscous stress. Par-

ticularly, when σ = ε1/ε2 = 1, the electric field has no influences on the system because both

the normal and tangential Maxwell stress are zero in the stress balance condition. Numerical

examination of influences of the electric field on the interfacial instabilities will be presented

in the next section.
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Figure 4.5: (Color online) (a) Electric permittivity on the effective growth rate. The dependent
parameters Re = ρ = Ca = We = a = 1, H = 0.5, σ = µ = 0.1. (b) Electric conductivity ratio
on the effective growth rate. The dependent parameters Re = ρ = Ca = We = a = 1, H = 0.5,
µ = 0.1, ε1 = 1, ε2 = 2.

4.3.2 Numerical results

This section presents the numerical results of the linear stability analysis. The eigenvalue

problem was resolved by the Chebyshev collocation method. The computation domain of

each layer was transformed to the Chebyshev domain [−1, 1].

The transformation for the inner layer is,

y2 = 2(r − a) − 1. (4.66)

The transformation for the outer layer is,

y1 = 2
r − (a + 1)
b − (a + 1)

− 1. (4.67)

The solution of the perturbed system is achieved by Chebyshev polynomials,

[û, v̂, ϕ̂]i =

N∑
j=0

[U j,V j,Φ j]iT j, (4.68)
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Figure 4.6: (Color online) (a) Inner radius of the duct on the effective growth rate. The
dependent parameters are ε1 = 1, ε2 = 10, σ = 0.5, Ca = 0.1, We = a = H = Re =
ρ = µ = 1. (b) Capillary number Ca on the effective growth rate. The depending parameter
Re = a = H = ρ = µ = 1, We = 0.

where T j = cos( j cos−1 y) with y ∈ [−1, 1] is the Chebyshev polynomial.

As shown in Figure 4.2(a), when σ2 > ε1/ε2 and σ < 1− 1
S(a+1) , the electric field impedes the

capillary instability. Figure 4.2(b) shows that when the electric field strength increases, i.e.,

increasing the value of We, the effective growth rate ωr increases indicating that the electric

field is destabilizing when σ2 < ε1/ε2 and σ < 1 − 1
S (a+1) . In Figure 4.2(a,b), we reproduced

the results by Ozen et al. [84] at the limiting case a = ∞. Figure 4.2(a,b) show that, when

a is large, the results agree with the results of a planar system[84] . In Figure 4.2(c), when

σ2 < ε1/ε2 and σ > 1 − 1
S (a+1) , the electric field stabilizes the system. In Figure 4.2(d),

σ2 > ε1/ε2 and σ > 1 − 1
S (a+1) , the electric field is destabilizing.

To examine the tangential Maxwell stress on the interfacial instability, two typical values of

electric conductivity ratio is chosen, σ = 0.5, 2 and the permittivity ratio ε = ε1/ε2 = σ
2 so

that the normal Maxwell stress vanishes in Eq.(4.54). Results in Figure 4.3 illustrate that the

effect of tangential Maxwell stress on the instability is strongly influenced by the viscosity

ratio. As seen in Figure 4.3(a), for σ2 = ε1/ε2 = 0.25, µ = 1, the electric field is stabilizing;

when σ2 = ε1/ε2 = 4, µ = 1, the electric field is destabilizing as shown in Figure 4.3(b).
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Figure 4.9: (Color online) (a) Marginal stability curve We − k. (b) The critical electric Weber
number versus the conductivity ratio. The depending parameters are ε1 = 10, ε2 = 1, Re =
ρ = Ca = a = H = 1, µ = 5.

When the viscosity ratio is increased to µ = 2, the electric field’s influence on the stability

is changed. In Figure 4.3(c), although the input electric properties are the same as those in

Figure 4.3(a), the electric field is destabilizing. Furthermore, same input values of electric

properties are selected in Figure 4.3(d) as in Figure 4.3(b). The electric field stabilizes the

long-wave mode but destabilizes the short wave mode as is seen in Figure 4.3(d).

Both the normal and tangential Maxwell stresses are found to either stabilize or destabilize

the interface. To show the effects of normal and tangential Maxwell stress on the perturbed

flow field are different, a streamfunction of the perturbed flow field ψ′ is defined as follows,

u′i =
1
r
∂ψ′i
∂z

, v′i = −
1
r
∂ψ′i
∂r

, (4.69)

where (u′, v′)i is the velocity of the perturbed flow system.

Figure 4.4 illustrates the electric field’s influence on flow field in the long-wave range. In Fig-

ure 4.4(a), tangential Maxwell stress vanishes for the input electric properties while the nor-

mal stress destabilizes the interface. In Figure 4.4(b), the selected values of electric properties

are the same as those in Figure 4.3(b) that the tangential Maxwell destabilizes the interface
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Figure 4.10: (Color online) (a) Marginal stability curve We − k. (b) The critical electric
Weber number versus the permittivity ratio ε = ε1/ε2. The depending parameters are ε2 = 10,
Re = σ = ρ = Ca = a = H = 1, µ = 5.

and the normal Maxwell stress is zero. It can be observed that, the convection cells in Figure

4.4(a) are different from that in Figure 4.4(b). Since in the long-wave range, the instability

is dominated by capillary forces. In Figure 4.4(a), convection is due to the deformation of

interface caused by the capillary instability and the flow pattern will not change no matter

how large the electric field is imposed; while in Figure 4.4(b), the tangential Maxwell stress

can induce a circulation flow in each layer and the flow pattern may change with the imposed

electric field because its magnitude changes with the imposed strength of electric field. The

instability caused by the tangential Maxwell stress is very much like that of Marangoni effect

[128].

The effect of the dielectric permittivity on the growth rate is shown in Figure 4.5(a). The

permittivity ε1 = 1 is held fixed. The value of ε2 is varied to study the influence of permittiv-

ity on the dispersive relation. In Figure 4.5(a), the selected parameters give σ2 < ε1/ε2 and

σ < 1 − 1
S (a+1) . Thus, the electric field is destabilizing. The effect of the electric field on the

interfacial deformation is proportional to σ2 − ε1/ε2 < 0. The value of |σ2 − ε1/ε2|(the desta-

bilizing effect of the electric field) decreases as ε2 increases. Therefore, when ε2 increases,

the effective growth rate decreases. Figure 4.5(b) presents the influence of the electric con-
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ductivity ratio σ = σ1/σ2 on the effective growth rate and indicates the growth rate decreases

with increasing the conductivity ratio. For the selected parameters, the value of |σ2 − ε1/ε2|

decreases as σ increases. As a result, the enhancement of the electric field on the deformation

of interface decreases as σ increases. Therefore, the growth rate decreases as σ increases.

Here, (ωm, km) is defined as the effective growth rate and wave number of the most unstable

perturbation as shown in Figure 4.5(b). The most unstable perturbation is the major cause

of interfacial instabilities, and its wave length characterizes the size of liquid droplets that is

formed due to the interface’s rupture [81].

Influence of the radius of the inner cylinder on the growth rate is shown in Figure 4.6(a). It

should be noted that when k < 1
a+1 , the destabilizing effect of surface tension dominates its

stabilizing effect. When k < 1
a+1 , reducing the inner radius a would increase the destabilizing

effect [54]. Thus, the system would be more unstable when a becomes smaller. Similar

results are shown in Figure 4.6(b), in which, the electric Weber number is fixed at zero so as

to investigate the influences of surface tension. Obviously, the capillary force is destabilizing

the system in the long wave range due to the azimuthal curvature.

Figure 4.7 shows the influence of thickness of the outer layer H. The growth rate decreases

with increasing the thickness of the outer layer. First, the total fluid mass increases when

the thickness of the outer liquid layer increases. Second, the electric strength reduces as the

radius b increases [90]. Therefore, the effective growth rate decreases with increasing the the

thickness of the outer layer.

The influences of the viscosity ratio µ is further investigated. Results are shown in Figure

4.8. Figure 4.8(a) shows that the effective growth rate ωr increases with increasing µ, while

in Figure 4.8(b), the effective growth rate ωr decreases with increasing µ. Results in Figure

4.8 show the viscosity either destabilizes or stabilizes the system. The destabilizing effect is

due to viscosity stratification [98]. However, the viscous dissipation of the system increases

for a larger µ. As a result, the system becomes more stable as shown in Figure 4.8(b).
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Figure 4.11: (Color online) (a) The Reynolds number Re on the effective growth rate. The
dependent parameters ρ = µ = Ca = We = a = H = 1, ε1 = 5, ε2 = 10, σ = 0.1. (b) The
contour plot of growth rate in Re − k plane. The dependent parameters are the same as figure
4.11(a). (c) The marginal stability curves for interface wave mode. The dependent parameters
ρ = 1, a = 0.1, H = 0.1, µ = 0.5, J = 0, ε1 = 10, ε2 = 2.5, σ = 2. (d) The marginal stability
curves for interface wave mode. The dependent parameters ρ = 1, a = 0.1, H = 0.1, µ = 0.5,
J = 0, ε1 = 10, ε2 = 5, σ = 2.
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It is of interests to investigate how large the electric field should be imposed, such that it

can impede the capillary instability. To study the problem, the marginal curve in We − k

plane is plotted in Figure 4.9(a), where the electric properties are chosen that the electric

field can impede the capillary instability. The viscosity ratio is µ = 5 and the Reynolds

number is fixed at Re = 1. The marginal stability curves in Figure 4.9(a) shows that the

unstable region enlarges and the critical Weber number Wec increases as the conductivity

ratio increases which indicates that a larger electric field should be imposed to stabilize the

interface for a larger conductivity ratio. It is obvious that the capillary instability can be

stabilized by an external electric field since a stable region exists when We exceeds its critical

value. However, when σ = 4, it is observed that these is no such critical Weber number since

the electric field enhances the instability for the input values of electric properties σ, ε1 and

ε2. As is seen in Figure 4.9(b), the critical electric Weber number increases with σ and no

critical electric Weber number is found by us when σ ≈ 3.9. It is found that there is a critical

electric Weber number when σ = 3.7(σ2 > ε1/ε2) and the electric field has a stabilizing effect

that can impede the capillary instability, although the normal Maxwell stress enhances the

capillary instability(σ2 > ε1/ε2). Therefore, it can be concluded that, the stabilizing effect of

the electric field is due to the tangential Maxwell stress.

To examine the influence of electric filed on the marginal curves, the value of conductivity

ratio is fixed, but the permittivity ratio ε1/ε2 is varied. Here, to simplify the discussion, the

conductivity ratio is fixed at σ = 1 and the permittivity ε2 = 10. The value of ε1 is varied

from ε1 = 1 to ε1 = 20. Figure 4.10(a) shows that, when ε1 ≤ 10, there is no critical electric

Weber number. The marginal curve does not depend on We when ε1 = 10 due to the absence

of Maxwell stress. The electric field can stabilize the interface with increasing the value of ε1.

For instance, ε1 = 10.5, when We is larger than Wec, the capillary instability is completely

impeded. As the value of ε1 increases, the suppression of the electric field on the capillary

instability becomes more significant as seen in Figure 4.10(a). This phenomenon agrees with
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the analysis in the Section (4.3.1) that the electric field impedes the capillary instability when

σ2 < ε1/ε2 and σ > 1 − 1
S (a+1) . In Figure 4.10(b), the critical electric Weber number Wec is

plotted against the permittivity ratio ε1/ε2. The critical electric Weber number is observed to

decrease with increasing ε.

The influence of Re on the capillary mode is examined and results are shown in Figure

4.11(a,b). It is found that the larger Re the smaller is the growth rate in Figure 4.11(a). The

value of Re can be increased through increasing VI (the velocity at the interface). The interfa-

cial shear effect will be enhanced as Re increases. Dijkstra indicated that the interfacial shear

can stabilize the capillary breakup phenomenon [98]. In this system, the effective growth

rate decreases with increasing Re, which also indicates that the interfacial shear impedes the

capillary instability. To exemplify the influences of Re on the capillary instability, the contour

lines of growth rate is plotted in the Re − k plane as shown in figure 4.11(b). First, the wave

number k is fixed, for instance, k = 2.5. Then, the growth rate decreases as Re increases. The

marginal curve corresponding to the zero growth rate in Figure 4.11(b) bends leftward which

indicates that the capillary instability is stabilized by interfacial shear.
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Figure 4.13: (Color online) The electric Weber number on the maximum growth rate and
wave number. The dependent parameters Re = ρ = Ca = △h = 1, µ = σ = 0.1, ε1 = 5,
ε2 = 10.

The interface may be unstable due to viscosity stratification (interface wave mode) when Re

is moderate [98]. Furthermore, the marginal curves are plotted in the Re− k plane to examine

the influence of electric field on the interface wave mode due to viscosity stratification across

the interface. Results are shown in Figure 4.11(c,d). In order to discuss the influences of

electric field on the interface wave mode, the capillary number Ca is replaced by Re/J where

J = γh0ρ2/µ2
2. The surface tension number J is fixed at zero so that the capillary instability

due to the azimuthal curvature vanishes. The input values in Figure 4.11(c) are chosen with

the reference from Dijkstra [98], but the values of radii a, b are slightly different. In our case,

a = 0.1. While in the work of Dijkstra [98], a ≈ 0.11. When We = 0, a similar marginal

curve as that by Dijkstra [98] can be reproduced. When We > 0, for the selected input values

of electric properties in Figure 4.11(c), the normal Maxwell stress is zero. The marginal curve

moves leftward as We increases, which indicates that the tangential Maxwell stress enhances

the interface wave instability since the stable region in the Re − k plane becomes smaller. In

figure 4.11(d), the electric properties are fixed at ε1 = 10, ε2 = 5, σ = 2, so that the tangential

component of Maxwell stress is zero in Eq.(4.53). In Figure 4.11(d), it can be observed that

the electric field enhances the interface wave mode since the stable region in the Re − k plane
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shrinks as We increases. Results in Figure 4.11(d) indicate that the electric field enhances the

deformation of the interface(σ2 > ε1/ε2 and σ > 1 − 1
S (a+1) ), thus destabilizes the system.

It would be interesting to ask “can the electric field impede the interface wave instability in

Figure 4.11(c,d) as well as the capillary instability?” The condition σ = ε1/ε2 is considered

so that no tangential Maxwell stress is present on the interface. According to Eq.(4.65), the

condition that the electric field can stabilize the interface requires:

1 − 1
S (a + 1)

< σ <
√
ε1/ε2, (4.70)

and σ = ε1/ε2 implies that σ < 1. When a→ ∞, these is no such condition in Eq.(4.70) that

the electric field can impede the interface wave mode when σ = ε. The expression of S varies

with the wavenumber k, the radii a, b, and the conductivity ratio σ. Here, the radii are fixed at

a = 0.1, b = 1.2. In the range of wavenumber k ∈ [0, 16], A sufficient condition for σ that the

electric field can impede the interfacial instabilities(capillary and interface wave instabilities)

is obtained by modifying Eq.(4.70) as,

max{1 − 1
S (a + 1)

} < σ < 1. (4.71)

Such a range of σ in Eq.(4.71) does exist as shown in Figure 4.12(a) as indicated by “stabiliz-

ing region”. In this region, the electric field can stabilize the interfacial instabilities because

it impedes the deformation of interface.

Numerical verification of Eq.(4.71) is shown in Figure 4.12(b). The surface tension number

in Figure 4.12(b) is fixed at J = 10 which changes the topology of the marginal curve of

the interface wave branch. The conductivity ratio and permittivity ratio are σ = ε = 0.9.

The interface wave branch moves upward while the capillary branch moves downward as We

increases, demonstrating that the electric field can impede the capillary the interface wave

instabilities. Apart from that, Figure 4.12(b) also shows that the interfacial shear can sup-
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Figure 4.14: (Color online) The electric conductivity ratio on the maximum growth rate and
wave number. The dependent parameters Re = ρ = Ca = H = We = a = 1, µ = 0.1.

press the capillary instability. The destabilizing effect of the electric field on the interface is

investigated because liquid mixing in micro-scale channels is of particular importance. The

Re number is usually very small in micro-scale flow systems, typically Re = O(1). Therefore,

in the following discussion, Re is fixed at Re = 1.

The electric Weber number We is plotted against ωm and km in Figure 4.13. It is observed

that, a larger We is describing a larger ωm and km. It indicates that, when the input parameters

σ2 < ε1/ε2 and σ < 1 − 1
S (a+1) , the electric field enhances the deformation of the interface,

thus destabilizing the system.

Figure 4.14 shows the conductivity ratio’s influence on ωm and km. The magnitude of elec-

tric field’s effect on the deformation of interface is proportional to |σ2 − ε1/ε2|. When σ <

1 − 1
S (a+1) , and σ2 < ε1/ε2, the interfacial deformation is enhanced by the electric field and

the electric field plays a destabilizing role in the system. The value of |σ2 − ε1/ε2| decreases

with increasing σ. As a result, the enhancement of electric field on the interfacial deforma-

tion reduces. Therefore, both the maximum growth rate ωm and maximum wave number km

decrease. With the increase in σ, the electric field may stabilize the system, i.e. ωm ≤ 0.

This can be seen from the stable region for ε1 = 5 and ε2 = 10. When σ2 > ε1/ε2 and

94



µ

ω
m

0 1 2 3 4 510-2

10-1

100

101

H=0.5
H=1
H=2

(a)

µ

k m

0 1 2 3 4 50

2

4

6

H=0.5
H=1
H=2

(b)

Figure 4.15: (Color online) The viscosity ratio on the maximum growth rate and wave number.
The dependent parameters Re = ρ = Ca = We = a = 1, σ = 0.1, ε1 = 5, ε2 = 10.

σ > 1− 1
S (a+1) , the electric field destabilizes the system, and the value of |σ2 − ε1/ε2| becomes

larger as σ increases. As a result, the system becomes more unstable when σ increases.

Whenσ is small andσ2 < ε1/ε2, ωm and km increases as the value of ε = ε1/ε2 increases. This

is because the value of |σ2 − ε| increases with increasing ε when σ2 < ε, and the destabilizing

effect of the electric field is enhanced. When σ2 > ε and σ > 1 − 1
S (a+1) , the value of σ2 − ε

reduces with increasing ε. Thus the maximum growth rate decreases. However, because

the selected input values of (ε1, ε2) are chosen that σ2 ≫ ε, ε does not have significant

influences on the growth rate and wave number when σ2 > ε and σ > 1 − 1
S (a+1) , although

it is found that the maximum growth rate is slightly decreased as shown in Figure 4.14. The

influence of viscosity ratio µ on ωm and km are plotted in Figure 4.15. For the selected input

parameters, the maximum growth rate ωm decreases with increasing the viscosity ratio µ due

to the viscous dissipation. Influence of viscosity ratio µ on the maximum wave number km is

not significant when µ is large. It is observed that when µ is very small, km decreases initially,

then increases. This phenomenon implies that the unstable mode changes. Figure 4.16 shows

that the perturbed flow field is stronger in the outer layer when µ = 0.1, while it is stronger in

the inner layer when µ = 4.
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Results in Figure 4.16 indicate that for small µ, instability is dominated by the outer layer,

while for large µ, instability is dominated by the inner layer. Physically, the viscous dissipa-

tion effect is associated with the fluid viscosity. The viscous dissipation effect is stronger in

the inner layer for small viscosity ratio, while it is stronger in the outer layer for large viscos-

ity ratio. As a result, increasing µ shifts the domination of instability from the outer layer to

the inner layer. Apart from that, results in Figure 4.15 show that the larger thickness ratio the

smaller are ωm and km.
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Figure 4.16: (Color online) Perturbed flow field plotted by the streamfunction ψ′. The depen-

dent parameters Re = ρ = Ca = We = a = H = 1, σ = 0.1, ε1 = 5, ε2 = 10. (a) µ = 0.1,

k = 2.13; (b) µ = 4, k = 2.13.
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Chapter 5

Electrohydrodynamic instability in an
annular liquid layer with radial
conductivity gradients

5.1 Mathematical Formulation

In Chapter 3 and Chapter 4, the interfacial instability of annular liquid layers in a radial

electric field has been discussed in which influence of the Maxwell stress at the liquid-liquid

or liquid-gas interface on the interfacial dynamics has been examined. This Chapter devotes

to electro-convection of an annular liquid layer with an electric conductivity gradient in the

radial direction as shown in Figure 5.1. The liquids are eletrolyte solutions and considered

to be Newtonian with constant density ρ, kinematical viscosity ν, and dynamical viscosity

µ = ρν. An electric field is imposed in the radial direction and a constant pressure gradient is

imposed along the axis.

Figure 5.1: Geometry of the system. (a) Side-view. (b) Cross-view.
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In this chapter, the three-dimensional hydrodynamical problem is considered. The cylindrical

coordinates (r, θ, z) are chosen. Gravity is neglected. Fluids are governed by the continuity

equation and the momentum equation,

∇ · v = 0, (5.1)

ρ
Dv
Dt
= −∇p + µ∇2v + f , (5.2)

where v = uer+veθ+wez is the velocity. D
Dt is the material derivative operator. f is the electric

force which can be related to the Maxwell stress tensor TM by,

f = ∇ · TM. (5.3)

Usually, analysis of Eq.(5.2) is difficult because the electric field is coupled to the free charge

density ρe according to Maxwell’s equations. Moreover, the free charge density is coupled to

the flow field. This Chapter assumes that the electric current density Je as well as the induced

current density ∂εE
∂t are modest so that the induced magnetic field is negligible. Therefore, the

electrostatic problem is considered,

∇ × E = 0. (5.4)

Hence, the Maxwell stress TM = εEE− 1
2ε∥E∥2I. The parameter ε is the dielectric permittivity

and E is the electric field. The ∥E∥2 = E · E and I is the identity tensor. Since the charge

density is given by the Gauss’s law,

ρe = ∇ · (εE), (5.5)

the momentum equation (5.2), now is re-written as,

ρ
Dv
Dt
= −∇p + µ∇2v + ρeE − 1

2
∥E∥2∇ε. (5.6)

98



The term 1
2∥E∥2∇ε is ignored and the electric permittivity ε is assumed to be constant.

The electrostatics is considered in this Chapter and the electric field E can be related to the

gradient of electric potential by

E = −∇ϕ. (5.7)

Conservation of electric charge gives,

∂ρe

∂t
+ ∇ · Je = 0. (5.8)

In this Chapter, the liquid is an Ohmic conductor which neglects the diffusion of the charge.

Then the current density Je is given by,

Je = σE + ρev, (5.9)

where σ is the electric conductivity. Substituting Eq.(5.9) into the current conservative law

gives,
Dρe

Dt
+ ∇ · (σE) = 0. (5.10)

Since the liquid layer is an ionic conductor, the conductivity of which is dependent on the local

ionic concentration. The conductivity can be described by the following diffusion equation as

proposed by Melcher [104],
Dσ
Dt
= Ke f f∇2σ, (5.11)

where Ke f f is an effective diffusivity due to the Brownian motion of the ions [101, 105]. Lin

et al. derived a similar equation describing the diffusion of electric conductivity from the

species conservation law [100] and the electric conductivity was linearly dependent on the

ionic concentration. The effective diffusivity Ke f f can be related to the diffusive coefficients

of species in the work of Lin et al. through a linear combination [100]. Equation (5.11) is valid
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if the local electric time is much faster than the fluid time and the time for ion electromigration

[101, 105],
ϵ

σ0
≪ d2

ν
≪ d
ϖE0

and
d2

ϖkBT
, (5.12)

in which, kBT is the Boltzmann temperature, ϖ is a characteristic mobility of the charge-

carrying solutes and d is the thickness of the liquid. The diffusive term Ke f f∇2σ is suggested

by Baygents and Baldessari [101] who indicated that the diffusion term had a stabilizing effect

and was responsible for the existence of a threshold electric field below which the flow was

stable. This has also been pointed out in Ref.[100]. In the study of Chang et al. [105],

it is implied that when the diffusion term is neglected, the transverse mode is always stable.

Hence, the diffusion term is retained and its effect on the stability of the flow will be discussed.

At the inner boundary r = a, there are non-slip and non-penetration boundary conditions,

u = v = w = 0. (5.13)

The electric conductivity at r = a is given,

σ = σ0. (5.14)

At the outer boundary, r = b, the non-slip and non-penetration conditions are considered,

u = v = w = 0. (5.15)

The electric conductivity at r = b is given as well,

σ = σ1. (5.16)
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5.2 Non-dimensionalization and base state

5.2.1 Dimensional base state

The velocity in the radial and azimuthal directions vanishes at the base state, i.e. ū = v̄ = 0.

The flow is parallel to the axis which is driven by a constant pressure gradient ∂ p̄
∂z = C. The

electric field is parallel to the radial direction at the base state. Therefore, the flow field and

the electric field are decoupled. The velocity profile at the base state is:

w̄ =
C
4µ

(r2 − b2 ln(r/a) − a2 ln(r/b)
ln(b/a)

). (5.17)

The pressure p̄ at the base state is written as p̄ = f (r) + Cz. The variables with the over bars

represent the respective variables at the base state.

Assuming that the shear flow does not disturb the steady conductivity profile, then the con-

ductivity profile at the base state is described by,

σ̄ =
σ1 ln(r/a) − σ0 ln(r/b)

ln(b/a)
. (5.18)

The electric field is obtained from the charge conservation equation (5.10),

Ēr =
aE0σ0 ln(b/a)

r[σ1 ln(r/a) − σ0 ln(r/b)]
, (5.19)

where E0 is the electric strength at r = r0. Note that, the per unit length current i across the

fluid layer (the length is along the axial direction) can be defined as i = er

∫ 2π

0
σ̄Ērrdθ. At the

base state, i = aσ0E0er is constant indicating that a constant electric current is applied across

the fluid layer. The electric strength at r = b is Er =
aσ0
bσ1

E0.
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The electric potential at the base state is defined as,

ϕ̄ = ϕ0 − aE0σ0 ln(b/a)
ln[σ1 ln(r/a) − σ0 ln(r/b)]

σ1 − σ0
, (5.20)

where ϕ0 is the reference electric potential.

The charge density ρ̄e is obtained from the Gauss’s law,

ρ̄e = ϵ(
1
r
∂rEr

∂r
) = − ϵ(σ1 − σ0)aE0σ0 ln(b/a)

r2[σ1 ln(r/a) − σ0 ln(r/b)]2 . (5.21)

5.2.2 Nondimensional system

The nondimensional scales are introduced here: the length scale d = b − a, the velocity scale

W = −Cd2

8µ , the time scale d/W, the pressure scale ρW2, the electric strength scale E0, the

conductivity scale ∆σ = σ1 − σ0, the charge density scale εE0∆σ
dσ0

. The current density Je is

scaled by referring to E0σ0 and the non-dimensional J ′e is expressed as,

J ′e =
∆σ

σ0
σ′E′ + E′ +

∆σ

σ0

ε/σ0

d/W
ρ′ev

′. (5.22)

Naturally, the dimensionless governing equations emerge,

∇ · v = 0, (5.23)

Dv
Dt
= −∇p +

1
Re
∇2v + Q∇2ϕ∇ϕ, (5.24)

D(∇2ϕ)
Dt

+ Rt[(1 + ησ)∇2ϕ + η∇ϕ · ∇σ] = 0, (5.25)

Dσ
Dt
=

1
ReS ce

∇2σ, (5.26)

where the electric charge ρe in the momentum equation is eliminated by using the dimension-
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less Poisson’s equation,

ρe = −
1
η
∇2ϕ. (5.27)

Re = Wd
ν

is the Reynolds number; Q = ϵE2
0

ρW2 which measures the ratio of electric force to

inertia force; η = ∆σ
σ0

which characterizes the conductivity gradient for a given channel gap

d; Rt =
d/W
ε/σ0

which measures the ratio of viscous relaxation time to electric relaxation time;

S ce =
ν

Ke f f
is the Schmidt number. The parameter Rt =

1
Re

d2σ0
νε

is usually a large number

and has the magnitude of 107 provided that Re = O(1), d = 10−3m, σ0 = 10−2S/m, ε =

10−9C/(m · V), ν = 10−6m2/s. Hence, the term D(∇2ϕ)
Dt can be neglected[105].

The dimensionless boundary conditions at r = a are

u = v = w = 0, (5.28)

σ = 0. (5.29)

At r = b, the dimensionless boundary conditions write

u = v = w = 0, (5.30)

σ = 1. (5.31)

The dimensionless base state is defined as follows,

w̄ = −2[r2 − (b2 − a2) ln(r/a) + a2 ln(b/a)
ln(b/a)

], (5.32)

σ̄ =
ln(r/a)
ln(b/a)

, (5.33)

Ēr =
a ln(b/a)

r[η ln(r/a) + ln(b/a)]
, (5.34)
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ϕ̄ = −a ln(b/a)
η

ln[η ln(r/a) + ln(b/a)], (5.35)

ρ̄e = −
a ln(b/a)

r2[η ln(r/a) + ln(b/a)]2 . (5.36)

Note that the charge density ρ̄e is negative, while the base state of the electric field is positive.

Therefore, the electric body force ρeE acts in the opposite direction to the radial direction.

When the radius a→ ∞, the base state reduces to the problem studied by Chang et al. [105]:

w̄(x) = 4(x − x2), (5.37)

σ̄ = x, (5.38)

Ēr =
1

ηx + 1
, (5.39)

ϕ̄ = −1
η

ln(ηx + 1), (5.40)

ρ̄e = −
1

(ηx + 1)2 , (5.41)

where x = r − a represents the wall-normal direction.

The base state (5.32)-(5.36) of this system depends on the inner radius a and η. The charge

density ρ̄e and the electric field strength Ēr are plotted in Figure 5.2. Figure 5.2(b) and Fig-

ure 5.2(d) show that the electric-field strength decreases more rapidly for a smaller a. For

instance, when a = 0.1, η = 10, Er decreases from 1 to 0.1 near r = 0.3. However, when

a = 10, η = 10, the electric-field strength Er decreases from 1 to 0.1 near r = 10.8. The

charge density also decreases more rapidly for a smaller a by comparing Figure 5.2(a) with

5.2(c). Furthermore, in Figure 5.2, it implies that for a large conductivity gradient, the portion

of the fluid layer where the electric force ρ̄eĒr is appreciable is proximal to the inner surface.
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Figure 5.2: (a),(c): the charge density of the base state. (b),(d): the strength of the electric
field at the base state. (a),(b) are plotted at the dimensionless radius a = 0.1; (c),(d) are plotted
at the dimensionless radius a = 10.
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5.3 Linear stability analysis

Although the analytical base state has been obtained in Sec.5.2, it is not necessary to be stable.

To investigate the stability of the flow, the linear stability theory by introducing infinitesimal

disturbances into the system is applied,

v = v̄ + v′, p = p̄ + p′, ϕ = ϕ̄ + ϕ′, σ = σ̄ + σ′. (5.42)

The variables v′ = u′er + v′eθ + w′ez, p′, ϕ′ and σ′ are the infinitesimal disturbances. On

substituting the perturbed variables (v, p, ϕ, σ) into the dimensionless governing equations,

and after linearizing, the governing equations of the infinitesimal disturbances obtained are:

∂u′

∂r
+

u′

r
+

1
r
∂v′

∂θ
+
∂w′

∂z
= 0, (5.43)

∂u′

∂t
+ w̄

∂u′

∂z
= −∂p′

∂r
+

1
Re

(∇2u′ − u′

r2 −
2
r2

∂v′

∂θ
) + Q(∇2ϕ̄

∂ϕ′

∂r
+
∂ϕ̄

∂r
∇2ϕ′), (5.44)

∂v′

∂t
+ w̄

∂v′

∂z
= −1

r
∂p′

∂θ
+

1
Re

(∇2v′ − v′

r2 +
2
r2

∂u′

∂θ
) +

Q∇2ϕ̄

r
∂ϕ′

∂θ
, (5.45)

∂w′

∂t
+ w̄

∂w′

∂z
= −dw̄

dr
u′ − ∂p′

∂z
+

1
Re
∇2w′ + Q∇2ϕ̄

∂ϕ′

∂z
, (5.46)

∂(∇2ϕ′)
∂t

+ w̄
∂(∇2ϕ′)
∂z

= −d(∇2ϕ̄)
dr

u′−Rt[(1+ησ̄)∇2ϕ′+η(∇2ϕ̄σ′+
dϕ̄
dr
∂σ′

∂r
+

dσ̄
dr

∂ϕ′

∂r
)], (5.47)

∂σ′

∂t
+ w̄

∂σ′

∂z
= −dσ̄

dr
u′ +

1
ReS ce

∇2σ′, (5.48)

where ∇2 = ∂2

∂r2 +
1
r
∂
∂r +

1
r2

∂2

∂θ2 +
∂2

∂z2 and noting that ∇2ϕ̄ = −ηρ̄e,
∂ϕ̄

∂r = −Ēr.
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In a standard way, the normal mode analysis is considered,



v′

p′

ϕ′

σ′


=



v̂(r)

p̂(r)

ϕ̂(r)

σ̂(r)


exp[i(nθ + kz) + ωt], (5.49)

where k is the streamwise wavenumber, n is the azimuthal wavenumber, ω = ωr + iωi is the

complex temporal growth rate whose real part ωr describes the exponent growth rate of the

amplitudes of disturbances, and the hats denote the Fourier amplitudes of disturbances. The

normal mode analysis results in the eigenvalue problem of ω.

The velocity and electric conductivity at r = a, b are fixed, thus boundary conditions of the

perturbed system at r = a, b are expressed as follows,

û = v̂ = ŵ = σ̂ = 0. (5.50)

The radial component of the electric field Er at the boundary is assumed to be fixed, then the

perturbed conditions of electric potential at the inner and outer surface are,

dϕ̂
dr
= 0. (5.51)

A Chebyshev collocation method is implemented to resolve the eigenvalue problem, and the

physical domain is transformed to the Chebyshev domain,

ζ = 2
r − a
b − a

− 1. (5.52)
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The variables û, v̂, ŵ, p̂, ϕ̂, σ̂ are expanded as

û =
N∑
0

amTm(ζ), v̂ =
N∑
0

bmTm(ζ), ŵ =
N∑
0

cmTm(ζ),

p̂ =
N∑
0

dmTm(ζ), ϕ̂ =

N∑
0

emTm(ζ), σ̂ =

N∑
0

fmTm(ζ),

(5.53)

where Tm(ζ) denotes the mth Chebyshev polynomial.

When the azimuthal wavenumber n = 0 and a→ ∞, the eigenvalue problem reduces to,

Dû + ikŵ = 0, (5.54)

ωû + ikw̄û = −D p̂ +
1

Re
Lû + Q[D2ϕ̄Dϕ̂ + Dϕ̄Lϕ̂], (5.55)

ωŵ + ikw̄ŵ = −Dw̄û − ik p̂ +
1

Re
Lŵ + ikQD2ϕ̄ϕ̂, (5.56)

ωLϕ̂ + ikw̄Lϕ̂ = −D3ϕ̄û − Rt[(1 + ησ̄)Lϕ̂ + η(D2ϕ̄σ̂ + Dϕ̄Dσ̂ + Dσ̄Dϕ̂)], (5.57)

λσ̂ + ikw̄σ̂ = −Dσ̄û +
1

ReS ce
Lσ̂, (5.58)

where L = D2 − k2, D = d
dx .

The equations (5.54)-(5.58) are solved with the boundary conditions at x = 0, 1,

û = ŵ = σ̂ = Dϕ̂ = 0. (5.59)

The above system is identical to the two-dimensional problem studied by Chang et al. [105].

108



5.4 Results and Discussion

This section is organized into two parts. In the first part, the limiting case of an infinitely

large inner radius, i.e. a → ∞, is considered. The two dimensional axisymmetric system is

investigated by comparing the results with the previous study of Chang et al. [105] to examine

the validity of “our numerical method”. The second part deals with the three dimensional

instability of the annular flow under the consideration of a finite inner radius a. The parametric

studies on the stability characteristics are investigated.

5.4.1 Limiting case of a→ ∞

This section presents the results of the eigenvalue analysis which starts with the case of a

sufficiently large radius. Hence, a small parameter can be defined as

δ =
b − a

a
. (5.60)

When δ→ 0, the problem can be reduced to the problem studied by Chang et al. [105].

The dimensionless parameter Q is related to the Reynolds number Re and electric Schmidt

number S ce as

Q =
Q′

Re2S ce
, (5.61)

where Q′ = ϵE2
0

µKe f f /d2 represents the scaled electric energy density.

Figure 5.3(a) illustrates the marginal stability curves in the Q′ − k plane which reproduces

the results by Chang et al. [105]. The critical point (Q′c, kc) is compared with their results

[105] in Table 5.1. It is found that some of the results in Ref.[105] are inaccurate. When the

parameter η exceeds some certain value, the marginal curve presents a bimodal structure[105],

for instance η = 50. However, this bimodal structure can be multi-valued as shown in Figure
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Figure 5.3: Marginal stability curves.(a) S ce = 1000, η = 10. (b) Re = 1, S ce = 1000. The
parameter Rt → ∞.

Table 5.1: The leading eigenvalues of the critical stability points A and B in Figure 5.3(a).

Re η kc Q′c ω

Chang et al.[105] 0.05 10 3.50 3.359 × 104 0 − 4.937i
Present work 0.05 10 3.50 3.3589 × 104 0.0000 − 4.9378i
Chang et al.[105] 1 10 2.95 4.295 × 104 0 − 2.850i
Present work 1 10 2.95 4.2953 × 104 0.0000 − 2.8503i

5.3(b) which was overlooked by Chang et al.[105].

5.4.2 Finite inner radius a

This section presents the stability analysis of the annular flow system of a finite radius a. The

normal mode analysis is implemented. The influences of a, Re, η and S ce on the stability of

the system are discussed in this section. The parameter Rt is assumed to be infinitely large.
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Figure 5.4: (a) Growth rate of the most unstable disturbances ωr versus wavenumber k, (b)
linear wave speed c versus wavenumber k. The depending parameters are Re = 1, S ce = 1000,
Q′ = 105, η = 10, n = 0.

Influence of inner radius

First, the influences of the inner radius a on the stability of the transverse unstable mode (the

azimuthal wavenumber n = 0) are examined by fixing the parameter Q′ = 4.2953 × 104,

η = 10, n = 0, k = 2.95, Re = 1, S ce = 1000.

Figure 5.4(a) shows the real part of the eigenvalue, ωr versus the disturbance wavenumber

k, and indicates that the system becomes more unstable for a larger inner radius a. The

leading eigenvalue is listed in Table 5.2 which demonstrates that the real part of the growth

rate becomes larger as the inner radius a increases. When a is sufficiently large, it reproduces

the result showed in Section 5.4.1. The results indicate that, when the system is perturbed

by streamwise disturbances, the system can be stabilized by reducing the inner radius a. The

physical mechanism is explained here. As explained by Chang et al. [105], the flow instability

of this system was mainly dominated by the dielectrophoretic effect, the viscosity and the

ionic diffusion. When a fluid parcel with lower electric conductivity moves outwards (in the

r direction), it enters in the region of higher electric conductivity. If the diffusion effect is

not strong enough, the electric force will drive the fluid parcel continuously. Otherwise, the
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Table 5.2: The first leading eigenvalues for Q′ = 4.2953 × 104, n = 0, k = 2.95, Re = 1,
S ce = 1000, η = 10.

Inner Radius a = 0.1 a = 1 a = 10
ω −0.0828 − 3.2580i −0.0479 − 2.8960i −0.0078 − 2.8509i

ionic diffusion will remove the conductivity difference between the flowing fluid parcel and

its surroundings, hence, impeding the electrohydrodynamic instability. The dielectrophoretic

effect can be characterized by ρ̄eĒr [101, 105]. As the charge density and electric field strength

are shown in Figure 5.2, it is clear that the dielectrophoretic effect becomes stronger in the

region near the outer surface when the inner radius becomes larger. Therefore, the system

becomes more unstable with increasing the inner radius a.

Here, a linear wave speed c in the streamwise direction is defined as c = −ωi
k . It is observed

that the linear wave speed c decreases with increasing a as shown in Figure 5.4(b). Addition-

ally, c initially increases when wavenumber k is small, but it does not change when k is large.

Apart from that, when a ≥ 1, the influence of the inner radius a on the linear wave speed is

not significant.

Because a Squire’s transformation of this system is not possible, the influences of spanwise

disturbances (disturbances in the azimuthal direction) should be studied which may cause the

system to be more unstable. Figure 5.5 presents the marginal curves for three typical cases:

a = 0.1, 1, 10. It is observed that the most unstable azimuthal wavenumber respectively is n =

1, 5, 35. The non-zero value of n indicates that the spanwise disturbances make the system to

be more unstable. Here, the lowest marginal stability curve in Figure 5.5(a-c) is defined as the

global marginal stability curve. Above the global marginal curve, the system is unstable. The

comparison of the global marginal stability curves is shown in Figure 5.5(d) which indicates

that the system becomes more unstable for a larger inner radius a. When a = 1, 10, the global

marginal stability curve presents a bimodal structure. The bimodal structure indicates that
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Figure 5.6: Convection cell patterns.(a) Q′ = 9.1090× 104, k = 2.81; (b) Q′ = 36.3981× 104,
k = 8.21; The other depending parameters are a = 1, Re = 1, S ce = 1000, η = 10, n = 0.

there are two different unstable modes. Here, according to the difference in wavenumber, the

unstable mode corresponding to a smaller wave number is defined as the long-wave unstable

mode, while the mode corresponding to a larger wave number is defined as the short-wave

mode. For instance, when a = 1 and n = 0 (the marginal curve presents a bimodal structure

in Figure 5.5(b) for a = 1, n = 0), for the long-wave unstable mode, the convection cell

occupies almost the whole thickness of the fluid layer; while the short-wave unstable mode,

the convection cell is almost constrained within the inner half of the channel as shown in

Figure 5.6. However, the critical instability is determined by the lower branch of the bimodal

structured marginal curve indicating that the long-wave unstable mode dominates the short-

wave unstable mode. Figure 5.5(d) shows that the frequency −ωi jumps down when a = 1, 10

showing that the unstable mode switches from the long-wave mode to the short wave mode

as the wavenumber k increases.

When a = 0.1, n = 1, the critical value of (Q′c, kc) is (6.0898× 104, 0), and the corresponding

eigenvalue is λ = 0 indicating that the unstable mode is stationary. However, for a = 1, 10,

the critical value of (Q′c, kc), respectively reads (2.2556 × 104, 0.47), (1.5620 × 104, 0.49),

and the corresponding eigenvalue is ω = 0 − 0.4567i, ω = 0 − 0.4748i, respectively. The

non-zero imaginary parts of eigenvalues for the two cases a = 1, 10 indicate that the most

unstable modes are given by oblique waves. In addition, the critical streamwise disturbance
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Figure 5.7: The cross section r − θ view of the flow field. (a,c,e)The velocity components of
u′ and v′.(b,d,f) The contour plot of velocity component w′. (e,f) θ ∈ [5π

12 ,
7π
12 ]. The depending

parameters: (a,b) (Q′c, kc) = (6.0898 × 104, 0), a = 0.1, n = 1; (c,d) (Q′c, kc) = (2.2556 ×
104, 0.47), a = 1, n = 5; (e,f) (Q′c, kc) = (1.5620 × 104, 0.49), a = 10, n = 35. The other
parameters are Re = 1, S ce = 1000, η = 10.
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wavenumber k is much smaller than the critical azimuthal wave number n. As shown from

the above discussion, the instability is triggered by the dielectrophoretic effect. According to

the perturbed system, this effect is characterized by the linearized body force ρeE, i.e., the

radial component force fr = ρ̄eE′r + ρ′eĒr, the streamwise component force fz = ρ̄eE′z =

ikρ̄eϕ̂ and the azimuthal component force fθ = ρ̄eE′θ = in
r ρ̄eϕ̂. The magnitudes of fz and

fθ are proportional to k and n/r, respectively. If k is much larger than n/r, the streamwise

disturbances dominate the instability. Otherwise, the spanwise disturbances dominate the

instability. To illustrate this, the perturbed velocity field is plotted in Figure 5.7. Figure 5.7(a)

shows the velocity field (u′, v′) and Figure 5.7(b) presents the contour lines of the velocity

component w′ in the r − θ plane. The velocity field (u′, v′) as well as the contour lines of w′

are not distorted as seen in Figure 5.7(a,b). The result demonstrates that the unstable mode

is stationary. In Figure 5.7(b), the magnitude of w′ is much smaller than the magnitudes of

u′ and v′ which indicates that the instability is dominated by spanwise disturbances. Figure

5.7(c-f) shows the perturbed flow fields of a = 1, 10 in which the velocity fields (u′, v′) and

the contour lines of w′ are distorted. One such phenomenon implies that the unstable mode is

oscillatory. In addition, in Figure 5.7(d,f), the magnitude of w′ is not as small as that in Figure

5.7(b) indicating the most unstable mode is given by three-dimensional oblique wave.

Figure 5.8 illustrates the variations of critical electric field number Q′c, critical frequency −ωic

and critical wavenumbers nc, kc with the radius a. Obviously, the critical electric field number

Q′c decreases with increasing a. When a ≤ 0.4, the frequency −ωic of the most unstable

mode as well as the critical wave number kc are zero, indicating that the most unstable mode

is stationary. It is discovered that the critical wave number nc increases with increasing a,

although for some cases, a = 0.2, 0.3, 0.4, the critical wavenumber is the same: nc = 4.

This is because the wavenumber n is characterized by the pairs of convection cells in the

spanwise direction which is an integer. When a → ∞, the critical wavenumber k ≈ 0.5, and

Q′c ≈ 1.5 × 104.
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Figure 5.8: (a) The critical electric field number Q′c and the corresponding frequency −ωi

versus the radius a. (b) The critical wavenumbers nc and kc versus the radius a. The other
depending parameters are Re = 1, S ce = 1000, η = 10.

Influence of electric conductivity gradient

In this section, the influence of the electric conductivity gradient on the stability is investigat-

ed. The other dimensionless parameters are held fixed. Figure 5.9(a) illustrates the marginal

stability curves for several typical input values of η = 0.1, 1, 10, 100. For the selected input

values of η, when the electric conductivity gradient is small, e.g. η = 0.1, 1, increasing the

value of η enhances the flow instability since the marginal curve dips lower. However, as the

value of η further increases, the marginal curve rises gradually, e.g. the marginal stability

curves for η = 10, 100 as shown in Figure 5.9(a). The frequency −ωi versus the disturbance

wavenumber is shown in Figure 5.9(b). It shows that −ωi decreases as the electric conductiv-

ity gradient increases. Particularly, it is observed that, for η = 0.1, 1, 10, the frequency −ωi of

the critical unstable mode is not zero, which indicates the most unstable mode is oscillatory;

while the critical frequency ωi = 0 for η = 100, which indicates that the most unstable mode

is stationary.

To elucidate the two different unstable modes, the perturbed flow field is plotted in Figure

5.10. Figure 5.10(a,b) shows that the flow field in the r − θ plane as well as the contour lines
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Figure 5.9: (a)Global marginal stability curves and (b) the corresponding frequency −ωi. The
other depending parameters are a = 1, Re = 1, S ce = 1000.

of w′ are strongly distorted. The flow field in the r − θ plane is not distorted in Figure 5.10(c).

Moreover, the magnitude of w′ in Figure 5.10(d) in is much smaller than the magnitudes of

(u′, v′) in Figure 5.10(c). Figure 5.10 indicates that increasing the value of η shifts the unstable

mode from the oscillatory mode to the stationary mode.

In order to have a full understanding of the influence of electric conductivity gradient on the

stability, the critical electric field number Q′c, critical wavenumbers kc, nc and the critical

frequency −ωi versus the electric conductivity η are investigated. Results are shown in Figure

5.11.

Figure 5.11 shows that the frequency −ωi, critical wavenumbers nc and kc jump at η ≈ 17.5,

indicating that the critical unstable mode switches to the stationary mode from the oscillatory

mode. The results in Figure 5.11 show that the critical wavenumber kc decreases gradually

as the conductivity gradient increases when η < 17.5, while the wavenumber nc jumps from

n = 5 to n = 4 at η ≈ 17.5. The decrease in kc indicates that the spanwise disturbances be-

come important in destabilizing the system. When the critical unstable mode switches to the

stationary mode, the wavenumber kc = 0 which indicates that the spanwise disturbances are

the major causes that initiate the electro-convection in this system. Figure 5.11(a) shows that
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Figure 5.10: The cross section r − θ view of the flow field. (a,c)The velocity components of
u′ and v′.(b,d) The contour plot of velocity component w′. The depending parameters: (a,b)
(Q′c, kc) = (26.9395 × 104, 1.66), nc = 5, η = 0.1; (c,d) (Q′c, kc) = (7.1410 × 104, 0), nc = 4,
η = 100. The other parameters are a = 1, Re = 1, S ce = 1000.
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Figure 5.11: (a) The critical electric field number Q′c and the corresponding frequency −ωi

versus η. (b) The critical wavenumbers nc and kc versus η. The other depending parameters
are a = 1, Re = 1, S ce = 1000.

the critical electric field number Q′c decreases gradually till η ≈ 4 which implies that the in-

stability of the oscillatory mode is enhanced. However, as the conductivity gradient increases,

Q′c increases gradually and reaches to a maximum, which reflects that the oscillatory mode

is impeded. When the critical unstable mode switches to the stationary mode, the critical

electric field number Q′c decreases to a minimum till η ≈ 20, then it increases gradually as η

increases. Such a phenomenon indicates that, the stationary mode can either be enhanced or

impeded via increasing the conductivity gradient.

In order to understand the physical mechanism, a limiting case: η → 0 is taken into account.

The electric body force term in Eq.(5.24) can be re-written as

f = Q∇2ϕ∇ϕ = −ηρeQ∇ϕ. (5.62)

When η → 0, the body force f → 0. Hence, no matter how large the electric field strength

is, the system is always stable because the dielectrophoretic effect is absent. Actually, the

mechanism can be analogous to the Rayleigh-Bénard convection. If there is no temperature

gradient, the heated liquid layer should be always stable. A electric Rayleigh number can be
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defined as Rae = Q′ηwhich approaches zero as η→ 0. As a result, the system becomes stable

when η→ 0.

Furthermore, if a fluid parcel moves outwards under the action of electric field, it enters in

the region of higher electric conductivity. When the conductivity gradient is small (the os-

cillatory mode dominates the instability), the ionic diffusion effect is insignificant. As the

electric conductivity gradient is increased, the dielectrophoretic effect will be enhanced since

the conductivity difference between the fluid parcel and its surroundings is increased. Con-

sequently, the instability is enhanced. As the conductivity gradient increases, the diffusion

effect becomes significant such that the conductivity difference between the fluid parcel and

its surroundings will be removed due to diffusion effect. Hence, when the conductivity gra-

dient is large, a stronger electric field is necessary to trigger the occurrence of instability.

Moreover, Baygents and Baldessari [101] explained the physics of electrohydrodynamic in-

stability mechanism in a planar system by the base state profile of electric body force. They

pointed out that the portion of fluid where the electric body force was significant was close

to the lower-conductivity boundary and became increasingly narrow as the conductivity gra-

dient increased [101]. They suggested that the lower boundary produced a strong stabilizing

effect when the conductivity gradient was large [101]. Figure 5.2 suggests that the portion

where electric body force ρ̄eĒr is significant is very narrow for a large conductivity gradient.

It seems that the inner cylinder attracts the electric charge into the thin boundary layer, beyond

which there is very few electric charges. As we have discussed in the above section that the

convection is initiated by the body force ( fr, fθ, fz) = (ρ̄eE′r + ρ′eĒr, ρ̄eE′θ, ρ̄eE′z). Outside

of the boundary layer, the charge density ρ̄e ≈ 0 and Ēr ≈ 0 when the conductivity gradient

is large. Hence, the body force outside the boundary layer is too small to initiate convection

in the system. Note that the electric force is multiplied by the dimensionless parameter Q′.

Thus, a higher value of Q′ is necessary to trigger the instability of this system.

When the instability is dominated by the stationary mode, the physical mechanism is similar
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Figure 5.12: (a) Marginal stability curves of the transverse unstable mode, n = 0. (b)The
global marginal stability curve. The other depending parameters are a = 1, S ce = 1000,
η = 10.

to that of the oscillatory mode. This is very different from the classical Rayleigh-Bénard

convection, in which, the larger temperature gradient is the more unstable system.

Influence of Reynolds number

In this section, the influence of the Reynolds number on the stability of this system is dis-

cussed by fixing the other dimensionless parameters. First, in Figure 5.12(a), the influence

of Re on the stability of transverse unstable mode, i.e., n = 0, is shown. When Re is small,

the marginal stability curve dips lower gradually till about Re ≈ 0.15, then it rises rapid-

ly. Results in Figure 5.12(a) indicate that, when Re is small, the instability is enhanced by

the shear flow; while when Re is large, the shear flow impedes the instability. The physical

mechanism is explained here. When the Reynolds number is small, with increasing Re, the

electrohydrodynamic motion will be enhanced. Therefore, the system will be more unstable

when the Reynolds number increases. However, as the Reynolds number is increased fur-

ther, the viscous shear effect and the diffusive effect become significant. Due to the advection

of electric conductivity, a conspicuous enhancement of diffusive effect would be caused by
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increasing the Reynolds number. Furthermore, the viscous stress is a factor that dissipates

energy of the system, which plays a stabilizing role in this system and will also be enhanced

as Re increases. However, it should be emphasized that, the inertia would also increase as

Re increases which is the major destabilizing effect in high-Reynolds-number shear flows.

Because in this system, the Reynolds number is not large Re ∈ [0, 10] and instability due to

“Reynolds stress” will not occur. Once the diffusive effect and viscous dissipation effect are

strong, the marginal stability curve will rise when the Reynolds number is increased further.

An interesting phenomenon observed is that there may exist a stable looped region lying in

the above of the marginal stability curve when Re is increased, for instance, Re = 10. This

phenomenon is caused by the interactions between the dielectrophoretic effect, viscous effect

and ionic diffusive effect. The stable looped region will vanish when Re increases further.
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Figure 5.13: Convection cell patterns.(a) Re = 0.05, Q′ = 3.8855 × 104, k = 2.81; (b)

Re = 0.1, Q′ = 2.6883 × 104, k = 3.41; (c) Re = 1, Q′ = 9.1090 × 104, k = 2.81; (d) Re = 10,

Q′ = 77.2105 × 104, k = 2.21. The other depending parameters are a = 1, S ce = 1000,

η = 10.
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To illustrate the above discussion, we plot the convection cell patterns of four typical cases at

their corresponding critical state with Re = 0.05, 0.1, 1, 10 in figure 5.13. As seen in figure

5.13(a), the transverse mode appears to be inclined traveling wave in the streamwise direction.

When Re is increased to 0.1, convection near the outer electrode becomes weaker because the

diffusive effect near the outer electrode is enhanced by the shear flow. The inclined angle is

also reduced if compared with the case Re = 0.05. As Re increases further, the inclined angle

reduces continuously. When Re = 10, the convection cell appears to be distorted which is

caused by the imposed shear flow. However, the transverse mode may not be critical because

the spanwise disturbances may make the system to be more unstable.

Figure 5.12(b) presents the global marginal stability curve. Comparing figure 5.12(a) and

5.12(b), we observe that the system is more unstable when it is perturbed by three-dimensional

disturbances. Moreover, it is observed that the critical point (Q′c, kc) moves leftward as the

Reynolds number increases. In order to explain the influences of Reynolds number on the

stability of the three dimensional problem, the critical electric field number Q′c, the critical

frequency −ωic, the critical wavenumber nc and kc are investigated. The results are shown in

figure 5.14.
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Figure 5.14: (a) The critical electric field number Q′c and the corresponding frequency −ωi

versus Re. (b) The critical wavenumbers nc and kc versus Re. The other depending parameters

are a = 1, S ce = 1000, η = 10.

Figure 5.14(a) demonstrates that the critical electric field number Q′c decreases with Re grad-

ually till about Re ≈ 0.3, then it increases till Re ≈ 0.4. After that, Q′c decreases gradually,

and when Re ≥ 1, the influence of Reynolds number on Q′c is not significant. The critical

frequency decreases as Re increases and ωi ≈ 0 at Re = 10. In figure 5.14(b), when Re < 0.3,

the critical wavenumber kc decreases, while nc increases. The instability is triggered by the

dielectrophoretic force f. When kc > nc/r, fz dominates fθ, i.e., convection in r − z plane is

stronger than that in r − θ plane. As aforementioned, a slightly increasing in the Reynolds

number from zero will enhance the dielectrophoretic effect. Thus, Q′c decreases with increas-

ing the Reynolds number until it reaches a minimum. As the Reynolds number is increased

further, the convection in the r − z plane will be impeded due to the enhancement of diffusive

effect, hence Q′c increases. After Q′c reaches a maximum, Q′c gradually decreases as the

Reynolds number increases further till about Re ≈ 1, because the dielectrophoretic effect in θ

direction is enhanced. When Re > 1, Q′c is almost independent of the shear flow. It is evident

in figure 5.14(b) that nc/r (r ∈ [1, 2]) is much larger than kc when Re > 1 which indicates
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the streamwise wavelength of the disturbance is much longer than its spanwise component,

and the convection in r − θ plane is much stronger than that in r − z plane. When Re > 1,

although the spanwise disturbance becomes the major cause that destabilizes the system, the

long-wave streamwise disturbance would make the system to be more unstable.

Influence of electric Schmidt number

The influence of the electric Schmidt number S ce is investigated in this section. Its influ-

ence on the marginal stability curve of transverse mode is illustrated in Figure 5.15(a). The

marginal stability curve dips lower as S ce increases till S ce ≈ 150. It then rises rapidly as S ce

increases.

k

Q
’

0 2 4 6 8 10104

105

106

107

Sce=50
Sce=100
Sce=500
Sce=1000
Sce=10000

(a)

k

Q
’

0 2 4 6 8 10103

104

105

106

Sce=100,n=2
Sce=150,n=3
Sce=300,n=4
Sce=5000,n=5
Sce=10000,n=5

(b)

Figure 5.15: (a) Marginal stability curves of the transverse unstable mode, n = 0. (b)The

global marginal stability curve. The other depending parameters are a = 1, Re = 1, η = 10.

Recall the definition of this parameter: S ce =
ν

Ke f f
. The value of S ce can be increased by

reducing Ke f f . Hence, the ionic diffusive effect becomes smaller as S ce increases. Therefore,

the dielectrophorectic effect is enhanced as S ce increases (Ke f f decreases) and the system

becomes more unstable. However, on the other hand, for a large S ce, the definition of S ce

tells that the viscous effect dominates the diffusion effect, and the viscous effect becomes
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significant with increasing S ce. Since the viscous effect plays a stabilizing role in the system,

the fluid layer will be stabilized as S ce increases further.

The global marginal stability curve for the three dimensional problem is shown in Figure

5.15(b). Clearly, with increasing the value of S ce, the critical wavenumber kc decreases,

which indicates that the streamwise component of the wavelength becomes longer. In order

to illustrate the influence of electric Schmidt number on the three-dimensional stability, the

critical electric field number Q′c and the critical frequency −ωic are plotted in Figure 5.16(a).

Note that the critical wavenumber nc , 0 and critical frequency ωic , 0 which indicates

that the critical unstable mode was given by three dimensional oblique waves. The critical

frequency −ωic approaches zero when S ce is very large. Additionally, Q′c decreases with

increasing the value of S ce till S ce ≈ 300, then it increases with increasing S ce till S ce ≈ 500.

As S ce increases further, Q′c decreases slightly, then Q′c seems to be independent of S ce. It

was reported by Chang et al. [105] that the influence of S ce on the longitudinal unstable mode

in a planar system was insignificant when S ce ≥ 103. Similarly, in this core-annular system,

the Q′c seems to be independent of S ce when S ce > 103 because the the spanwise disturbance

is the major cause of the flow instability.
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Figure 5.16: (a) The critical electric field number Q′c and the corresponding frequency

−λi versus S ce. (b) The critical wavenumbers nc and kc versus S ce. The other depending

parameters are a = 1, Re = 1, η = 10.
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Chapter 6

Electrohydrodynamic instability of
miscible core-annular flows with electric
conductivity stratification

6.1 Mathematical Formulation

In Chapter 5, the instability of an annular liquid layer with a conductivity gradient has been

discussed. The conductivity gradient is developed due to the applied radial electric field [101].

In many microfluidic systems, rapid mixing in a circular pipe is of particular interest. To

enhance the mixing, this Chapter proposes to impose an axial electric field as shown in figure

6.1. The two liquids are miscible dilute aqueous electrolytes. The liquids are Newtonian and

the density ρ, kinematic viscosity ν, and dynamic viscosity µ = ρν of the two liquids are

assumed to be the same [100]. There is a sharp change in the ionic concentration where the

two liquids meet at r = a. Therefore, a sharp change in the electric conductivity occurs at

r = a. The purpose of this chapter is to investigate how the electric field enhances the mixing

in such an electric conductivity stratification system. The two liquids are pumped into the

pipe by a constant axial pressure gradient.

The three-dimensional hydrodynamical problem is considered and the cylindrical coordinates

(r, θ, z) are chosen. Gravity is neglected. Motion of the liquids is governed by the continuity
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Figure 6.1: Geometry of the system.

equation and the momentum equation,

∇ · v = 0, (6.1)

ρ
Dv
Dt
= −∇p + µ∇2v + f , (6.2)

where v = uer + veθ + wez is the velocity. D
Dt =

∂
∂t + u ∂

∂r +
v
r
∂
∂θ
+ w ∂

∂z is the material derivative

operator. f is the electric force which can be related to the Maxwell stress tensor TM by,

f = ∇ · TM. (6.3)

Usually, analysis of Eq.(6.2) is difficult because the electric field is coupled to the free charge

density ρe according to Maxwell’s equations. Moreover, the free charge density is coupled

to the flow field. As aforementioned in Chapter 5, in this Chapter, it is also assumed that the

electric current density Je as well as the induced current density ∂εE
∂t are modest, such that the

induced magnetic field is negligible and the electrostatic problem can be considered,

∇ × E = 0. (6.4)
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The Maxwell stress TM = ϵEE − 1
2ε∥E∥2I. The parameter ε is the dielectric permittivity and

E is the electric field. Here, ∥E∥2 = E · E and I is the identity tensor. The charge density is

given by the Gauss’s law,

ρe = ∇ · (εE). (6.5)

Hence, the momentum equation (6.2), now is written as,

ρ
Dv
Dt
= −∇p + µ∇2v + ρeE − 1

2
∥E∥2∇ε. (6.6)

In isothermal and the dilute electrolyte solution conditions, the electric permittivity ε is ap-

proximately that of the solvent [100]. In some non-isothermal conditions, this term 1
2∥E∥2∇ε

is very crucial since there is a gradient of permittivity due to the non-isothermal condition

which causes a circulation flow in the system [122]. In this chapter, an isothermal condition

and constant electric permittivity are assumed for the dilute electrolyte solutions. Therefore,

the term 1
2∥E∥2∇ε is ignored. In previous studies in Refs.[109, 105], this term 1

2∥E∥2∇ε was

also neglected under the assumptions of dilute electrolyte solution and an isothermal environ-

ment.

Because the electrostatics is considered, the electric field E can be related to the electric

potential by

E = −∇ϕ. (6.7)

Hence, the Gauss’s law (6.5) is expressed by the following Poisson’s equation:

∇2ϕ = −ρe

ε
. (6.8)

Conservation of electric charge gives,

∂ρe

∂t
+ ∇ · Je = 0. (6.9)

131



In this Chapter, the electrolyte solution considered is assumed as an Ohmic conductor which

neglects the diffusion of the charge. Then the current density Je is given by,

Je = σE + ρev, (6.10)

where σ is the electric conductivity. Substituting Eq.(6.10) into the current conservative law,

we obtain,
Dρe

Dt
+ ∇ · (σE) = 0. (6.11)

Because the electrolyte solution is considered to be an ionic conductor, the conductivity de-

pends on the local ion concentration. Accordingly, the conductivity can be described by the

following diffusion equation [101, 104, 105],

Dσ
Dt
= Ke f f∇2σ, (6.12)

where Ke f f is an effective diffusivity due to the Brownian motion of the ions. Eq.(6.12) is valid

if the local electric time is much faster than the fluid time and the time for ion electromigration,

ε

σ
≪ b2

ν
≪ b
ϖE

and
b2

ϖkBT
, (6.13)

in which, kBT is the Boltzmann temperature, ϖ is a characteristic mobility of the charge-

carrying solutes. The conditions imply that the ions are carried by fluid parcel. Typical values

of these parameters can be found in Melcher’s book [104] and Lin et al.’s work [100]: ϵ ≈

10−10C/V,ϖ ≈ 10−8m2/V · s, kinematic viscosity ν ≈ 10−6m2/s, conductivity σ ≈ 10−4S/m

and strength of a typical electric field E = O(103)V/m and the pipe’s radius b = 10−3m. A

similar form as Eq.(6.12) was also derived by [100] from the species conservation law if the

electromigration was neglected. It was indicated in Chapter 5 that Ke f f∇2σ was responsible

for the existence of a threshold electric field and cannot be neglected.
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At the initial time, the electric conductivity in each layer isσ = σ1|r<a, σ2|a<r<b (σ1 , σ2). The

subscript i = 1, 2 denotes the inner layer and outer layer, respectively. This can be achieved

by using two aqueous electrolytes with different ionic concentrations [100, 110].

In this chapter, the non-slip and non-penetration boundary conditions at r = b are applied:

u = v = w = 0. (6.14)

Here, the basic flow is driven by pressure, and the maximum speed occurring at the center line

is around 10−4−10−2m/s. Usually, the electroosmosis flow is very weak and the flow velocity

can be estimated by Helmholtz-Smoluchowski formula UE = −εEζ/µ where ζ is the zeta

potential which is responsible for the electroosmosis flow. This velocity usually has an order

of O(10−6)m/s provided ζ = −10−2V , ε = 10−10C/V · m and µ = 10−3kg/m · s, E = 103V/m.

Clearly, the electro-osmotic velocity is much weaker than the pressure driven flow. Hence,

in what follows, the non-slip and non-penetration boundary conditions in (6.14) are applied

that the electro-osmosis phenomenon is neglected. If the electric field is developed due to the

electroosmosis and the pressure gradient is removed after the two liquids are pumped into the

pipe, the assumption in Eq.(6.14) is not applicable.

There is no flux of the ions at r = b, therefore,

∂σ

∂r
= 0. (6.15)

The circular pipe is non-conducting,
∂ϕ

∂r
= 0. (6.16)
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6.2 Base state and scalings

At the base state, the flow field and the electric field are decoupled because the electrolyte

solution is initially neutral, i.e. the net charge density is zero. The flow is driven by a constant

pressure gradient ∂z p̄. Therefore, the base velocity profile is

w̄ =
∂z p̄
4µ

(r2 − b2). (6.17)

This Chapter adopts the assumption that the interface between the two liquids has grown

diffusively to a finite thickness δ. Moreover, we assume that the diffusion is sufficiently slow

to allow us to employ a quasi-steady base state for the linear stability analysis. Provided

δ ≪ 1, the profile of the conductivity can be approximated by the error function:

σ̄ =
σ1 + σ2

2
+
σ2 − σ1

2
erf(

r − a
δ

). (6.18)

Equation (6.18) was used by Selvam et al. [97] in their study to describe the profile of viscos-

ity of a viscosity stratified flow in a circular pipe.

The base electric conductivity profile can also be obtained via solving [100]:

∂σ

∂t
= Ke f f (

∂2σ

∂r2 +
1
r
∂σ

∂r
). (6.19)

In experiments, Ke f f ranges from 10−9 − 10−12m2/s.

The charge density ρe is zero, and the electric field exists only in the axial direction. This

gives the base state of the electric potential:

ϕ̄ = ϕ0 − Ez, (6.20)
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where E is the imposed electric field’s strength, ϕ0 is the reference electric potential.

Taking the velocity scale W = −∂z p̄b2

4µ , the length scale b, the time scale b/W, the pressure scale

ρW2, the electric potential scale Eb, the conductivity scale σ2 − σ1, we non-dimensionalize

the system (6.1)-(6.16):

∇ · v = 0, (6.21)

Dv
Dt
= −∇p +

1
Re
∇2v +

Q
Re2S c

∇2ϕ∇ϕ, (6.22)

1
Rt

D(∇2ϕ)
Dt

+ ∇ · {[(η − 1)σ + 1]∇ϕ} = 0, (6.23)

Dσ
Dt
=

1
ReS c

∇2σ, (6.24)

where Re = ρWb
µ

is the Reynolds number; Q = εE2b2

µKe f f
is the scaled electric energy and is defined

as the electric number; η = σ2
σ1

denotes the conductivity ratio; and S c = ν
Ke f f

is the electric

Schmidt number. Baygents and Baldessari[101] proposed that S c ∈ [103, 106]. In the study

by Chang et al.[105], S c was assumed to vary in [102, 105]. The parameter Rt =
d/W
ϵ/σ1

measures

the ratio of fluid time to electric time. It is assumed that Rt is very large that the electric time

is quite smaller than the fluid time in this thesis. Therefore, Eq.(6.23) can be simplified to:

[(η − 1)σ + 1]∇2ϕ + (η − 1)∇σ · ∇ϕ = 0. (6.25)

Dimensionless boundary condition at r = 1 are

u = v = w =
∂σ

∂r
=
∂ϕ

∂r
= 0. (6.26)

The dimensionless base state is defined as follows:

w̄ = 1 − r2, (6.27)
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Figure 6.2: The base electric conductivity profile. The lines are obtained by numerical
experiments of the dimensionless form of equation (6.19) and the circles and diamonds are
obtained from the error function Eq.(6.28). The depending parameters are a = 0.5, ReS c =
1000.

σ̄ =
1
2
+

1
2
erf(

r − a
δ

), (6.28)

ϕ̄ = −z, (6.29)

in which a is scaled on the length scale b which falls in the range of (0, 1). Note that ∇2ϕ̄ = 0

and ∂σ̄
∂r =

1
δ
√
π

exp(− (r−a)2

δ2 ). In this Chapter, the range of δ is fixed, δ ∈ [0.05, 0.15]. To

verify Eq.(6.28), we assume that the the concentration has a Heaviside profile initially, and

the conductivity profile at instant time t is solved numerically by the dimensionless form of

Eq.(6.19) and a regular condition is imposed at the centerline dσ
dr = 0.

The base conductivity profile is shown in Figure 6.2. It is obvious that the electric conductivity

profile can be approximated by the error function in Eq.(6.28) via adjusting the value of δ

at an instant t. In the following study, Eq.(6.28) will be used as the profile of the electric

conductivity at the base state for the convenience in the study of linear stability.
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6.3 Linear stability analysis

The linear stability analysis of the flow system is implemented by perturbing the base state

with infinitesimal disturbances:

[u, v,w, p, σ, ϕ] = [0, 0, w̄, p̄, σ̄, ϕ̄] + [u′, v′,w′, p′, σ′, ϕ′], (6.30)

where the primed variables are the infinitesimal disturbances. In a standard way, the normal

mode analysis is considered:

[u′, v′,w′, p′, σ′, ϕ′] = [û, v̂, ŵ, p̂, σ̂, ϕ̂] exp(i(nθ + kz) + ωt), (6.31)

in which [û, v̂, ŵ, p̂, σ̂, ϕ̂] is the Fourier amplitude, n is the azimuthal wave number, k is the

streamwise wave number, ω is the complex temporal growth rate.

Substituting Eq.(6.30) with the normal mode analysis into Eqs. (6.21), (6.22), (6.24), (6.25)

and after linearizing, the governing equations of the eigenvalue problem obtained are

Dû +
û + inv̂

r
+ ikŵ = 0, (6.32)

ωû = −D p̂ − ikw̄û +
1

Re
(Lû − û + 2inv̂

r2 ) (6.33)

ωv̂ = − inp̂
r
− ikw̄v̂ +

1
Re

(Lv̂ − v̂ − 2inû
r2 ) (6.34)

ωŵ = −ik p̂ − iαw̄ŵ − Dw̄û +
1

Re
Lŵ − Q

PeRe
Lϕ̂, (6.35)

Peωσ̂ = −PeDσ̄û − iPekw̄σ̂ +Lσ̂, (6.36)

[(η − 1)σ̄ + 1]Lϕ̂ + (η − 1)Dσ̄Dϕ̂ − ik(η − 1)σ̂ = 0, (6.37)

where L = D2 + 1
rD −

n2

r2 − k2, D = d
dr . The Péclet number Pe = ReS c. Note that, the value of
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Pe cannot be small because diffusion of conductivity is slow.

Boundary conditions at r = 1 are

û = v̂ = ŵ = Dσ̂ = Dϕ̂ = 0. (6.38)

At the centerline r = 0, the singular nature of the cylindrical coordinate system requires spe-

cial treatment. To deal with the singular point of the system (6.32)-(6.37), we use the fact that

velocity vector as well as the other scalar variables have a vanishing azimuthal dependence as

they approach the centerline, i.e.

lim
r=0

∂v′

∂θ
= lim

r=0

∂p′

∂θ
= lim

r=0

∂σ′

∂θ
= lim

r=0

∂ϕ′

∂θ
= 0, (6.39)

where v′ = u′er + v′eθ + w′ez is the velocity disturbance.

In the form of Fourier modes, the regular boundary conditions are

inû − v̂ = û + inv̂ = nŵ = np̂ = nσ̂ = nϕ̂ = 0. (6.40)

If n = 0, the boundary conditions are

û = v̂ = Dŵ = D p̂ = Dσ̂ = Dϕ̂ = 0. (6.41)

If n = 1, the boundary conditions are

Dû = Dv̂ = ŵ = p̂ = σ̂ = ϕ̂ = 0. (6.42)

The velocity conditions of n = 1 agree with the boundary conditions given by Khorrami [129]

for a single fluid flow in a circular pipe.
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When n ≥ 2, the boundary conditions are

û = v̂ = ŵ = p̂ = σ̂ = ϕ̂ = 0. (6.43)

A Chebyshev collocation method is implemented to solve the eigenvalue problem, and the

physical domain is transformed into the Chebyshev domain,

ζ = 2r − 1. (6.44)

The variables û, v̂, ŵ, p̂, σ̂, ϕ̂ are expanded as

û =
∑N

0 amTm(ζ), v̂ =
∑N

0 bmTm(ζ), ŵ =
∑N

0 cmTm(ζ),

p̂ =
∑N

0 dmTm(ζ), σ̂ =
∑N

0 fmTm(ζ), ϕ̂ =
∑N

0 emTm(ζ), (6.45)

where Tm(ζ) denotes the mth Chebyshev polynomial.

In order to modify the computation near the interface r = a, the Chebyshev collocation points

are clustered in the mixing region at r = a using the following stretching function [130]:

ξ =
a

sinh( fbr0)
[sinh[(r − r0)] + sinh( fba)], (6.46)

where r0 =
1

2 fb
ln[ 1+(exp( fb−1)a)

1+(exp(− fb)−1)a ]. The coefficient fb determines the degree of clustering and

fb = 6. The parameter a represents the location of interface around which clustering is

desired.

After clustering the Chebyshev collocation points into the diffusion region, it needs to calcu-

late the eigenvalue problem via the clustered grid. Therefore, a transformation on the deriva-
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tives between the clustered grid and the Chebyshev grid should be made,

d f
dξ
=

d f
dr

dr
dξ
=

1
G′(r)

d f
dr
, (6.47)

where G(r) = ξ and f stands for the variables û, v̂, ŵ, p̂, σ̂ or ϕ̂. Note that the derivative

d f
dr = 2d f

dζ .

For the second derivative of f , using the chain-rule, the transformation writes

d2 f
dξ2 =

1
(G′)2

d2 f
dr2 −

G′′

(G′)3

d f
dr
. (6.48)

The derivative d2 f
dr2 = 4 d2 f

dζ2 . Numerical validation of our method will be made in the following

discussion.

6.4 Energy analysis

In order to understand the physical mechanism, the energy analysis is applied [131]. Mul-

tiplying the conjugates of the variables û∗, v̂∗ ŵ∗ on the both sides of Eqs.(6.33)-(6.35) and

summing these equations after integrating over the cross-sectional area, gives the energy bal-

ance equation:

Ėk = I + V + Ee. (6.49)

Here, the kinetic energy growth rate is:

Ėk = ωr

∫ 1

0
r(|û|2 + |v̂|2 + |ŵ|2)dr, (6.50)
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the work done by the Reynolds stress:

I = −
∫ 1

0
rRe(Dw̄ŵ∗û)dr, (6.51)

and the viscous dissipation:

V = − 1
Re

∫ 1

0
r{(|Dû|2 + |Dv̂|2 + |Dŵ|2) + (

n2

r2 + k2)(|û|2 + |v̂|2 + |ŵ|2)

+
|û|2 + |v̂|2

r2 − 4n
Im(û∗v̂)

r2 }dr. (6.52)

The work done by the electric force:

Ee =
Q

PeRe

∫ 1

0
rRe(Dŵ∗Dϕ̂ +

n2ŵ∗ϕ
r2 + k2ŵ∗ϕ)dr. (6.53)

Since the magnitude of the eigenfunction is arbitrary, we normalize the eigenfunction by its

maximum absolute value. The terms in the energy analysis are re-scaled with respect to the

total kinetic energy
∫ 1

0
r(|û|2 + |v̂|2 + |ŵ|2)dr. For an unstable flow, Ė should be positive.

The energy analysis will be applied to interpret the instability mechanism in the following

discussions.

6.5 Results and discussion

6.5.1 Validation of numerical methods

First, the validation of “our numerical method” is examined via setting Q = Pe = 0, there-

fore, the electric field is turned off and the ionic advection is absent. Since the parameter

Q = 0 and Eq.(6.37) does not produce any eigenvalues, the conductivity profile has no in-
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c(n = 0, k = 1) c(n = 1, k = 0.5) ω′(n = 1, k = 0)
SH 0.93675536 − 0.06374551i 0.84646970 − 0.07176332i −0.00734099
Present work 0.93675536 − 0.06374551i 0.846469697 − 0.07176332i −0.007340985

Table 6.1: The first leading eigenvalues of the system for Re = 2000, Pe = Q = 0. We
have utilized 51 points for the eigenvalue problem and related the eigenvalue to that of SH by
ω′ = iω and c = ω′/k.
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Figure 6.3: Eigenspectra for Re = 2000, n = 0, k = 1. (a) The eigenspectrum for the
Hagen-Poiseuille flow which is identical to that by SH. (b) The comparison of the conductivity
stratified pipe flow (triangle points) and the Hagen-Poiseuille flow (circles). The conductivity
ratio η = 2 and the parameters Q = 0, a = 0.5, δ = 0.05. It is obvious that when Pe > 0,
there are some extra eigenvalues as compared to the Hagen-Poiseuille flow. The parameter
c = iω/k.

fluence on the spectrum of the problem and the eigenvalue problem should be identical to a

single fluid flowing in a circular pipe. The numerical results are compared with Schmid and

Henningson[3] (herein referred as SH) for Re = 2000. The leading eigenvalue is listed in

Table 6.1. Excellent agreement between our numerical results and that of SH demonstrates

the validity of “our numerical method”.

When Re → 0, i.e. the inertia of the fluid is negligible, the growth rate is determined by

the ionic diffusion equation (6.36). In a viscosity stratified plane-Poiseuille flow[132], the

eigenspectrum of the diffusion equation presents a similar structure ‘Y-shape’ as the Orr-
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Sommerfeld problem. Hence, the diffusion equation will produce more eigenvalues in the

stratified flow than a single fluid flow [132]. Similarly, in the pipe flow with conductivity

stratification, the eigenspectrum structure is different from the result of SH as demonstrated in

figure 6.3. In the following discussion, the base flow in the pipe is considered to be weak and

discussion will be concentrated on the instability caused by the electric force in microfluidic

channels.

6.5.2 Parametric study

Effect of the conductivity ratio

The influence of the conductivity ratio on the linear stability analysis is of particular interest

and will be investigated in this section. Before presenting the numerical study, let us consider

the case of two liquids with the same electric conductivity, i.e. η = 1. The linearized electric

current conservation equation (6.37) reduces to,

Lϕ̂ = 0. (6.54)

Hence, in the linearized momentum equation (6.35), the electric force that can trigger the

instability is absent. Therefore, the system will be linearly stable. Numerical study also

indicates that the eigenvalue ω is not influenced by the electric number Q for η = 1 and

ωr < 0. A useful conclusion can be inferred here: the system becomes more stable as η

increases when η < 1, while the system becomes more unstable as η increases when η > 1.

To study the influence of the conductivity ratio on the linear stability, the other parameters are

fixed: Re = 1, S c = 1000, a = 0.5 and δ = 0.1. To study the linear stability, 51 collocation

points are sufficient to provide satisfying accuracy.

Firstly, consider two typical cases: η = 0.5, η = 2. The electric number Q is fixed so as
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Figure 6.4: The real temporal growth rate ωr versus the wave number k. (a) Q = 5 × 104,
η = 0.5. (b) Q = 104, η = 2.

to study the growth rate of the disturbance. Results in Figure 6.4(a) demonstrate that the

azimuthal disturbances make the system more unstable. It also implies that the azimuthal

wave number n of the critical mode is n = 1. Results are different in Figure 6.4(b). It shows

that the azimuthal wave number of the most unstable mode is n = 0 for η = 2. These results

imply that, the critical unstable mode of the system varies with the conductivity ratio η. To

elucidate the critical unstable mode in the system, the marginal curves in the Q − k plane are

investigated. Figure 6.5 demonstrates that the wave number n of the critical unstable mode for

η = 0.5, 2 is n = 1, 0 respectively. The azimuthal wave number of the critical unstable mode is

defined as the critical azimuthal wave number nc. Here, Qc is the critical electric number, and

kc is the critical streamwise wave number. The imaginary part of eigenvalue ω for the critical

unstable modes in Figure 6.5 is nonzero. It indicates that the critical unstable modes are

oscillatory. The perturbed fields of the charge density and the conductivity in the r − θ plane

are shown in Figure 6.6 to illustrate the two different unstable modes. In Figure 6.6(a,b), the

unstable mode is defined as the corkscrew mode; while the unstable mode in Figure 6.6(c,d)

is defined as the axisymmetric mode. Numerical evaluation of the energy contribution of Ee

demonstrates that it is always positive. It demonstrates that the electric force is the main factor
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Figure 6.5: The marginal stability curves. (a) η = 0.5. (b) η = 2.

that destabilizes the system. The instability is referred to as the dielectrophoretic instability

[101, 105] as have been discussed in Chapter 5.

In order to reveal the influence of the conductivity ratio on the critical unstable mode, i.e.

in which range of η, the critical unstable mode is the corkscrew mode or the axisymmetric

mode, the behavior of (Qc, nc, c) versus the value of η is investigated. The wave speed c of the

critical mode is defined as

c = −ωi/αc. (6.55)

Results in Figure 6.7(a) indicate that the system becomes more unstable for a larger contrast

in the electric conductivity between the two layers. Similar phenomenon has been observed

by Lin et al. [100] of a liquid layer with conductivity stratification in a square channel. Exper-

imental observation and stability analysis suggested that the flow became more unstable for a

larger conductivity contrast [100]. However, they focused on the two-dimensional instability

and how the conductivity ratio influenced the three-dimensional stability was not investigat-

ed [100]. Here, investigation of the three-dimensional instability in Figure 6.7(c) shows that

the critical wavenumber nc jumps from 1 to 0 as the conductivity ratio increases to η = 1.

It indicates that, for the selected input values of other dimensionless parameters, the critical
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Figure 6.6: (a,b) The perturbed field of the electric charge ρe and the perturbed field of
the conductivity σ for η = 0.5, Qc = 4505.8, nc = 1, kc = 1.75 in the r − θ plane. (c,d) The
perturbed field of the electric charge ρe and the perturbed field of the conductivity σ for η = 2,
Qc = 6197.0, nc = 0, kc = 2.75 in the r − θ plane.
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Figure 6.7: (a) The critical electric strength number Qc vs. η. (b) The critical frequency |λi|
vs. η. (c) The critical wavenumber nc vs. η. (d) The wave speed of the critical mode c vs. η.
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unstable mode is dominated by the corkscrew mode when the inner conductivity is larger;

while the axisymmetric mode dominates the instability when the outer conductivity is larger.

Moreover, in a square-duct flow system, Lin et al. gave the physical properties of the flow

system for a conductivity ratio η = 10 which are applied to estimate the critical strength of

the applied electric field in the current system here [100]. The present results show that, for

η = 10, the critical value electric number Qc ≈ 103. It gives the critical electric strength

E ≈ 2 × 103V/m provided that the electric permittivity ϵ = 6.9 × 10−10C/V · m, the dynamic

viscosity µ = 10−3kg/m · s, the effective diffusivity Ke f f = 2 × 10−9m2/s and the pipe radius

b = 10−3m. Hence, it is possible to achieve the electromixing in a circular pipe at small

Reynolds flow by an electric field in experiments. Figure 6.7(b) shows that ωi , 0 which

demonstrates that the unstable mode is oscillatory. Figure 6.7(d) shows that the critical wave

speed c increases with increasing η. Figure 6.7(d) also shows that, when η < 1, the wave

speed is smaller for a larger conductivity contrast; when η > 1, the wave speed is larger for a

larger conductivity contrast. Additionally, the wave speed c > 0 indicates that the linear wave

propagates to the downstream.

Effect of interface location

This section discusses the influence of the interface location on the linear stability of the

system. The other parameters are fixed at Re = 1, S c = 1000, δ = 0.05 so as to investigate

the dielectrophoretic instability. δ = 0.05 is chosen under the consideration of a sharper

interface. Two conductivity ratios η = 0.5, 2 will be considered in the following discussion.

The convergence of “our numerical method” has been examined that N = 60 is enough to

provide adequate resolution at reasonable computational cost.

Selvam et al. found that the interface location had a significant influence on the critical insta-

bility of a viscosity stratified pipe flow and the least unstable mode occurred at approximately

0.6 times the pipe radius [97]. In the present problem of a liquid with conductivity stratifi-
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Figure 6.8: (a) The critical electric strength number Qc vs. a. (b) The critical wavenumber
nc vs. a.

cation, similar phenomenon is observed. However, the instability of the present problem is

triggered by the electric field; while in the problem by Selvam et al. [97], the instability is

due to the Reynolds stress. If the interfacial location is very near the centerline or the pipe

wall, the diffusion of ions will remove soon the conductivity difference. Furthermore, con-

sider a very sharp interface, when a → 0 or a → 1, no matter how large the electric field is

imposed, the system should be stable due to the homogenous conductivity profile. Hence, it

can be concluded that, as the interface is slightly moved away from the centerline, the system

becomes more unstable. As the interface approaches the outer boundary, i.e. the pipe wall,

the system should become more stable. Therefore, there should be an optimal location of the

interface that the flow is least stable. Two typical cases of η = 0.5, 2 have been investigated

numerically and the range of the interface location a is considered to be in [0.1, 0.9]. The

variation of critical wavenumber nc and the critical electric number Qc with the location a

is shown in Figure 6.8. Figure 6.8(a) demonstrates that, for η = 0.5, 2, the system becomes

more unstable as a increases from 0.1 till a ≈ 0.3, a ≈ 0.2 respectively, while it becomes

more stable as a increases further. Additionally, for η = 0.5, it is observed that the critical

unstable mode shifts from the corkscrew mode nc = 1 to the axisymmetric mode nc = 0 as a
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Figure 6.9: The maximum growth rate ωm vs. a. (a) Q = 5 × 104, η = 0.5. (b) Q = 5 × 104,
η = 2.

increases to a critical value a ≈ 0.83. For η = 2, the axisymmetric mode always dominates

the instability.

It is interesting to investigate the maximum growth rate of the system since the rapid mixing

is of particular interests[100]. To investigate the maximum growth rate, the electric number

was fixed. The behavior of the maximum growth rate ωm = max (Re(ω)) versus the interface

location a was then scrutinized. The ωm describes the growth rate of the most unstable mode.

The corkscrew mode as well as the axisymmetric mode were investigated as shown in Figure

6.9. Figure 6.9(a) shows that the maximum growth rate occurs at a ≈ 0.6. The maximum

growth rate ωm versus a were examined by reducing the value of Q and it was found that the

peak point in theωm−a plane moved leftwards as shown in Figure 6.10(a). It implies that, for a

strong electric field, the most unstable mode prefers an intermediate a for η = 0.5 although the

critical unstable mode prefers a ≈ 0.3. The mechanism is very complex because the electric

force destabilizes the flow while the viscous dissipation as well as the ionic diffusion tend

to stabilize the system. In order to explain the results, the energy analysis was applied. As

the interface location a increases, the viscous dissipation effect becomes weaker till a ≈ 0.6,

after which it becomes stronger as a increases further as shown in Figure 6.10(b). This is the
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Figure 6.10: (a) The maximum growth rate ωm of the corkscrew mode n = 1 vs. a for
different values of input electric number Q. (b) The log ratio between the energy Ee and V ,
in which, the electric number Q = 5 × 104 and the wavenumber k corresponds to the most
unstable mode.

reason why for an unstable flow, Q = 5 × 104, the maximum growth rate occurs at a ≈ 0.6.

In addition, it is observed that, for η = 0.5, the maximum growth rate of the axisymmetric

mode dominates the corkscrew mode when a ' 0.83 for Q = 5 × 104. It indicates that the

axisymmetric mode becomes critical when the interface approaches the pipe wall. Figure

6.9(b) demonstrates that the maximum growth rate occurs at a ≈ 0.2 which indicates that the

most unstable mode and the critical unstable mode prefer a ≈ 0.2. Additionally, for η = 2,

the axisymmetric mode always dominates the corkscrew mode.

Effect of interface thickness

This section investigates of the influence of the interface thickness on the critical instability.

The other parameters are fixed: Re = 1, S c = 1000, a = 0.5. In the above discussions, two

values of δ have been selected for discussion. It has been observed that, the system becomes

more stable for a larger value of δ. The marginal stable curves for three typical values of δ are

shown in Figure 6.11. For a liquid with viscosity stratification, Selvam et al. reported that,

for a thicker interface, the flow becomes more stable [97]. They explained that the stabilizing
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Figure 6.11: The marginal stability curves. (a) η = 0.5. (b) η = 2.

effect is due to the diffusion effect and becomes more significant for a thicker interface which

dissipates the kinetic energy and inhibits the instability [97]. The study by Chang et al. [105]

and discussion in Chapter 5 showed that, the system becomes more stable with reducing the

conductivity gradient when the conductivity gradient is small, while the flow becomes more

stable as the conductivity gradient increases when the conductivity gradient is large. In the

present study, if the conductivity ratio is fixed, the conductivity gradient within the interface

becomes smaller as the interface becomes thicker. Current study shows that, the flow becomes

more stable as the conductivity gradient decreases which is different from the previous study

[105] and Section 5.4 of this thesis. In fact, in the current study, a thicker interface implies that

the system undergoes a longer diffusion time. Assuming that the conductivity is uniform in

the system due to diffusion for quite a long time, a completely stable flow would be expected.

Therefore, the system may become more stable as the interface becomes thicker. Numerical

studies demonstrate that, with increasing the interface thickness δ, the marginal curve rises

up in the Q − k plane which indicates that the flow becomes more stable as the interface

becomes thicker which supports the above analysis. The result is similar to the phenomenon

in a viscosity stratified flow [97], but different from the studies by Chang et al. [105]. The

difference is due to the flows studied by Chang et al. [105] and that in Chapter 5 are bounded
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Figure 6.12: The critical electric strength number Qc vs. δ. (a) η = 0.5, (b) η = 2.

by two solid walls. However, in this problem, the flow is only bounded by the outer pipe

wall. It was observed that, for the axisymmetric mode, η = 2, the critical wavenumber kc

becomes smaller as δ increases as seen in Figure 6.11(b). It indicates that, the wavelength

of the disturbance becomes longer as δ increases. In order to show the effect of δ on the

critical stability, the critical electric number Qc was plotted against δ in Figure 6.12. Figure

6.12 also demonstrates that the system becomes more stable as δ increases. Additionally, the

corkscrew mode dominates the instability for η = 0.5, and the axisymmetric mode dominates

the instability for η = 2.

Effect of shear flow

This section aims to reveal the influence of the shear flow on the dielectrophoretic instability.

The other parameters are fixed at a = 0.5, δ = 0.1. Priori to present the numerical study, the

electric force term in the linearized axial momentum equation (6.35) is re-considered:

− Q
RePe

Lϕ̂ = Q
Re2S c

ρ̂e. (6.56)
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Figure 6.13: The critical electric strength number Qc vs. Re. (a) η = 0.5, (b) η = 2.

The value of S c is fixed at S c = 1000. Equating Q
Re2S c at two different values of Re, gives:

Q2 =
Re2

2

Re2
1

Q1. (6.57)

This relation reflects the fact that, when the value of Q
Re2S c is fixed, a smaller Re describes a

smaller Q. It implies that, when the Reynolds number is small, the system may be more unsta-

ble. This Chapter considers a weak shear flow under the consideration of flow in microfluidic

channel and proposes that Re has a range of [0.1, 10] provided that the pipe radius is 10−3m

and kinematic viscosity ν = 10−6m2/s. The maximum velocity occurring at the center line

r = 0 can be varied from 10−4m/s to 10−2m/s.

For η = 0.5, the corkscrew mode dominates the instability; and for η = 2, the axisymmetric

mode dominates the instability. Figure 6.13 illustrates that the critical electric number Qc

increases as Re increases, indicating that the shear flow impedes the electro-convection in

the system. Interestingly, the corkscrew mode for η = 2 can be enhanced by the shear flow

as seen in Figure 6.13(b) although it never becomes critical for the selected input values of

Re, η and S c. It is different from the previous study by Chang et al. [105] and section 5.4

of this thesis which show that, the critical instability can either be enhanced or impeded by
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Figure 6.14: (a) Electric energy Ee vs. Re. (b) The log ratio between the electric energy and
the viscous dissipation vs. Re. (c) The work of Reynolds stress vs. Re. The electric number
Q = 104.

the shear flow. In the present study, the shear flow always impedes the critical instability.

In order to understand the physical mechanism, the value of Q and the wavenumber k were

fixed to investigate the energy contributions of the electric force, Reynolds stress and viscous

stress. For some Re, the flow is stable, e.g. Re > 2.5 for η = 0.5 and Re > 2 for η = 2.

The electric energy becomes smaller as demonstrated in Figure 6.14(a). Ėk becomes smaller

as Re increases and is negative as Re exceeds some critical value which indicates the system

becomes stable as Re increases. However, the underlying factor that stabilizes the system is

not the reduction in the electric energy. Figure 6.14(b) shows that, as the Reynolds number

increases, ln(|Ee
V |) decreases for η = 0.5; while ln(|Ee

V |) increases for η = 2. It indicates that,

the stabilizing mechanisms of the two cases η = 0.5, 2 are different. The case of Re = 10

were examined and result showed that, for η = 0.5, ln(|Ee
V |) < 0; for η = 2, ln(|Ee

V |) > 0.

It indicates that, for η = 0.5, the increase of the viscous dissipation is the major factor that

stabilizes the flow although the Reynolds stress also plays a stabilizing role as shown in Figure

6.14(c). For η = 2, because the electric energy always dominates the viscous dissipation, i.e.

Ee > |V |, the stabilizing factor in the system is due to the Reynolds stress which dissipates

the kinetic energy of the perturbation. The results indicate that, the imposed shear flow can

impede the dielectrophoretic instability via the dissipation mechanisms of the viscous stress

and the Reynolds stress.
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Furthermore, the influence of Re on the wave speed c was investigated as shown in Figure

6.15. It was observed that, for η = 0.5, the critical wave speed c increases slightly as Re

increases initially, then it has a negligible influence on the wave speed. However, the wave

speed decreases slightly as Re increases from Re = 1 for η = 2, and then the wave speed

seems to be independent on Re. The results by Chang et al. [105] indicated that, the criti-

cal frequency of the critical transverse unstable mode −ωi was independent of the Reynolds

number when Re > 1. This implies that the critical wave speed is independent of Re. In this

system, it can be observed that the wave speed c is independent of Re for both the two critical

unstable modes: corkscrew mode and axisymetric mode when Re > 2.

Effect of ionic diffusion

This section presents a study of the ionic diffusion’s influence on the dielectrophoretic insta-

bility. The other parameters are fixed: Re = 1, a = 0.5, δ = 0.1. In the governing equations

(6.32)-(6.37), replacing Re by Pe does not change the governing equations which indicates

that the effect of ionic diffussion on the flow instability should be similar to that of Re. How-

ever, the results should not be the same as shown in the above section, in which, Re is varied
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Figure 6.16: The critical electric strength number Qc vs. S c. (a) η = 0.5, (b) η = 2.

while S c is fixed. Therefore, it is necessary to investigate the influence of S c on the stability

by fixing the value of Re.

The critical electric number Qc versus the Schimdt number is shown in Figure 6.16. The

corkscrew mode dominates the instability for η = 0.5 and the axisymmetric mode dominates

the instability for η = 2 as shown in Figure 6.16. The system becomes more stable as S c

increases. Results in figure 6.16 are quite similar to those in Figure 6.13 which demonstrates

that the influence of S c on the flow stability is similar to that of Re.

The instability mechanism is then interpreted by the energy analysis. The critical instability

of the system is considered here. The viscous dissipation term V is always negative and plays

a stabilizing role. The electric force work Ee > 0 which triggers the electro-convection in

the system. ln(|Ee
V |) was calculated and found to increase with S c initially, then it decreased

as S c increased further as shown in Figure 6.17(a). It indicates that the viscous dissipation

effect becomes weaker as S c increases from S c = 100 while it becomes stronger when S c is

very large. When S c is not too large, S c = O(102), the Reynolds stress plays a key role in

stabilizing the system since its dissipation effect becomes stronger as S c increases as shown

in Figure 6.17(b). As S c increases further, for η = 0.5, the dissipation effect by Reynolds
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Figure 6.17: (a) The log ratio between the electric energy and the viscous dissipation vs. S c.
(c) The work of Reynolds stress vs. S c.

stress becomes weaker; while for η = 2, the Reynolds stress’s work reaches a plateau as seen

in Figure 6.17(b). Such a phenomenon indicates that, although the Reynolds stress dissipates

the kinetic energy, it is not the major factor that causes the system to be more stable when

S c is increased. As shown in Figure 6.17(a), ln(|Ee
V |) starts to decrease when S c exceeds a

certain value. It indicates that the viscous dissipation increases with S c and becomes the

major stabilizing factor. Moreover, recall the definition of S c = ν
Ke f f

. It indicates that the

viscous effect becomes stronger as the parameter S c increases. Since viscous dissipation

plays a stabilizing role, the system becomes more stable as S c increases. The effect of S c on

the critical stability in this system is different from the previous study by Chang et al. [105]

and what has been discussed in section 5.4 of this thesis. In these studies ([105] and Chapter

5), S c was found to have a dual effect: with increasing S c can either enhance or inhibit the

critical instability. Present study shows that, for η = 2, the corkscrew mode can either be

enhanced or impeded as S c increases as seen in Figure 6.16(b). However, the critical unstable

mode always becomes stable. For an unstable flow, we observed that, S c can play a dual role

in the system that the growth rate of disturbances can become either larger or smaller as S c

increases which is not shown here since we are only interested in the critical stability of this
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system.
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Chapter 7

Conclusions and future work

7.1 Conclusions

7.1.1 Interfacial instability

Chapter 3 and Chapter 4 discussed the interfacial instability of core-annular flows in a radial

electric field. The interface is unstable even without the external electric field which is due to

the renowned Plateau-Rayleigh mechanism.

In Chapter 3, an asymptotic model was proposed to study the linear and nonlinear dynamics

of a thin liquid film flowing down a vertical fiber whereas the dynamics of its surrounding

gas was neglected. The liquid film was assumed to be perfectly conducting. Linear stability

analysis of the asymptotic model indicated that, when the ratio between radius of the outer

electrode and the initial radius of the liquid film β < e, the linear instability was enhanced by

the electric field; when β = e, the electric field had a negligible influence on the linear insta-

bility; when β > e, the electric field impeded the linear instability. Nonlinear simulation of the

asymptotic model was also studied. When β < e, the electric field promoted the wave height,

which can cause the film to be singular. When β = e, the nonlinear simulation showed that the

electric field enhanced the deformation of the interface. When β ≥ e, the study showed that

the permanent wave may be time-dependent or time-independent, depending on the strength

of the electric field. For instance, when β = e1.1, the electric field can lead to the droplet coa-

lescence and cause the liquid film to be singular. In the study of the case β = e3/2, the singular
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phenomenon was not observed for all electrical Weber number, and the maximum height of

the wave decreased as the electrical Weber number increased. Investigation on steady travel-

ing waves was further conducted to discuss the influence of electric field on the wave speed.

It was found that the wave speed and the wave amplitude can be promoted or decreased by

the electric field. Particularly in some situations, the wave speed may increase/decrease while

its amplitude decreased/increased as the strength of the external electric field increased.

In Chapter 4, the dynamics of the outer layer was taken into account and the base flow arose

due to a constant axial pressure gradient. The two liquids were considered to be leaky di-

electrics. Results of the linear stability analysis showed that, depending on the ratios of elec-

trical properties (the electrical permittivity ratio and electrical conductivity ratio between the

outer layer and inner layer), the electric field can either stabilize or destabilize the system.

Both theoretical analysis and numerical studies were carried out. It was found that an ex-

ternal electric field can completely impede the capillary instability. Linear stability analysis

showed that the system can be stabilized by increasing the inner radius of the duct or the

thickness of the outer layer. It was found that viscosity had dual effects on the stability of the

system. Viscosity stratification may cause instability in the system, while viscous dissipation

effect had a stabilizing effect. The Reynolds number on the stability was investigated and it

was found that the capillary instability could be suppressed by the interfacial shear. Also, the

electric field can either stabilize or destabilize the interface wave instability due to viscosity

stratification, which was dependent of the electrical properties. Furthermore, a range of elec-

trical properties was identified that the electric field can suppress the capillary instability as

well as the interface wave instability. Further investigations of the input parameters on the

effective growth rate and the wave number of the most unstable perturbation were conducted.

It was found that the effective growth rate and wave number depended on the strength of the

electric field and the electrical permittivities and conductivities. The viscosity ratio’s effect

on the growth rate and wave number of the most unstable disturbance was investigated. It was
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found that, for some selected input parameters, the instability of the system was dominated

by the outer layer when the viscosity ratio was small; for large viscosity ratio, instability was

dominated by the inner layer.

7.1.2 Electrohydrodynamic mixing

Chapter 5 and Chapter 6 discussed electro-mixing in micro-channels in which the dielec-

trophoretic instability was investigated in the framework of electrostatics. The three dimen-

sional hydrodynamical problem has been considered for the both problems.

In Chapter 5, an annular liquid layer with radial electrical conductivity gradient in a radi-

al electric field was investigated. A constant pressure gradient was imposed along the axial

direction causing a weak shear flow. The critical unstable mode was found to be either oscil-

latory or stationary depending on the following dimensionless parameters: the dimensionless

inner radius a, the electrical conductivity gradient, the Reynolds number Re and the electrical

Schmidt number S ce.

To illustrate the influence of the radius a on the instability, the other dimensionless parame-

ters were fixed: η = 10, Re = 1 and S ce = 103. It was found that, when the dimensionless

radius a < 0.4, the major cause of instability was the spanwise disturbance and the criti-

cal unstable mode was stationary. When a > 0.4, the critical unstable mode was given by

three-dimensional oblique waves. Furthermore, it was observed that the system became more

unstable as the radius a increased.

The influence of the conductivity gradient on the instability was examined. The other dimen-

sionless parameters were fixed at a = 1, Re = 1 and S ce = 103. When the conductivity

gradient was small, the critical unstable mode was found to be three-dimensional oblique

waves. As the conductivity gradient increased, the system became more unstable because

the dielectrophoretic effect was enhanced. However, when the conductivity gradient was in-
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creased further, the stability of the system was enhanced due to the enhancement of the ionic

diffusion effect. Apart from that, the stationary mode became critical when η ≥ 20.

In order to understand the influence of the imposed shear flow, the Reynolds number was

varied while the other parameters were fixed: a = 1, η = 10, S ce = 103. It was found that,

when Re < 0.3, increasing Re would cause the system to be more unstable. The most unstable

mode was the three dimensional oblique wave. When Re > 1, the critical electric field seemed

to be independent of Re because the spanwise disturbances dominated the instability.

The effect of electrical Schmidt number S ce on flow instability was investigated by fixing the

other parameters at a = 1, η = 10, Re = 1. It was found that, the three dimensional system

may either be more unstable or more stable as S ce increased. When S ce > 103, it was found

that the critical electric field seemed not to be influenced by S ce.

Chapter 6 investigated the electrohydodynamic instability of two miscible flows in a micro-

pipe with electrical conductivity stratification. An axial electric field was imposed, which

can instigate the electro-convection in the system. A weak shear flow arose from an axial

pressure gradient. The influences of conductivity ratio, interface location, interface thickness,

shear flow and ionic diffusion on the critical stability of the flow were discussed in detail. An

energy analysis was carried out to interpret the instability mechanism.

It was found that, the system was more unstable for a larger electrical conductivity contrast.

When the electrical conductivity was larger within the inner layer, the critical unstable mode

may either be the corkscrew mode or the axisymmetric mode, depending on the interface

location. A detailed study showed that the critical unstable mode shifted from the corkscrew

mode to the axisymmetric mode as the interface approached the pipe wall. When the electrical

conductivity was larger in the outer layer, the critical unstable mode was dominated by the

axisymmetric mode. The interface location had a significant influence on the critical unstable

mode. The system was more stable when the interface was close to the centerline or the

163



pipe wall. The flow became more stable as the interface became thicker. The shear flow and

ionic diffusion were found to have a stabilizing effect via the dissipation mechanisms of the

Reynolds stress and viscous stress.

7.2 Perspectives of future research

7.2.1 Thin film dynamics

In Chapter 3, the dynamics of a thin liquid film in a radial electric field has been investigated

by an asymptotic model which is valid for small Reynolds number flow. Indeed, when the

thin film is thick, the Reynolds number can be moderate and this asymptotic model cannot

be used. To deal with this problem, the author will apply the weighted-residual method and

derive a two-equation model to relieve this difficulty. Moreover, the streamwise diffusion may

be included as indicated by Ruyer-Quil et al.[28]. Additionally, the asymptotic reduction of

the Laplace equation of the electrical potential is not appropriate when the gap between the

liquid film and outer electrode is large. Hence, the full Laplace equation should be retained.

Furthermore, how the electric field influences the absolute/convective instability is still in

question: such as a thin film flowing down an inclined plate or on a vertical cylinder.

Another interesting problem is to investigate the dynamics of liquid films coating on porous

cylinders or fibers. For many biological materials, e.g. hair, vessel, textile threads (cotton

threads), in microscope, they are not solid and many of them are penetrable. Preliminary

studies of such flow systems have been carried by the author and his coworkers. It should be

pointed out here: (i) our study applied the Darcy equation to describe the motion of liquids

in the porous cylinder and a Beavers-Joseph condition was adapted to the cylindrical system;

(ii) the problem has been reduced to a thin film flowing down a vertical fiber with a slippery

surface and flow within the porous cylinder was neglected. However, recent experimental
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studies by us in the Fluid Mechanics Lab in Nanyang Technological University showed that,

the droplet on a porous fiber (a cotton textile thread) is much slender, i.e. smaller height and

slower than that flowing down a solid fiber. Such an observation strongly demonstrates that

the mathematical formulation in our previous studies[25, 126] is not applicable for the current

model in experiments. We will perform further investigation into this problem so as to unveil

the underlying mechanism behind such a phenomenon from both theoretical modeling and

more accurate experimental design.

There are still many open problems in the research field of thin film dynamics, such as thin

film flows at moderate Reynolds numbers on patterned topological surfaces, weak turbulence

coupled with multi-fields, e.g thermal field, electro- or magneto- fields, chemical reactions and

biological flow systems. More importantly, the application of the weighted-residual model is

very limited to a few systems: such as thin film flows with Marangoni effects. One of the

author’s future research is to extend the methodology of weighted-residual model to these

open problems in liquid film flows.

7.2.2 Electro-Hydrodynamic instability to Chaotic flows

In this thesis, most efforts have been spent on the linear dynamics of flow systems in an exter-

nal electric field. Linear stability analysis has been a versatile method to study the incipient

stage of system perturbed by disturbances. However, for liquid mixing in channels, it is of

interest to see the mixing efficiency or formation of organized patterns after a long time, and

the nonlinear full system should be investigated.

It should be acknowledged that direct numerical simulation of turbulence of multi-phase flow

is a daunting task. Usually, the prevailing methods, such as finite volume method, level-set

method, phase-field method etc., are used to simulate two-layer flow with an interface. Again,

simulation of turbulent flows in the two-layer flow system at high-Reynolds number starting
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from the Navier-Stokes equations is formidable. A possible way to bypass these difficulties

is to utilize the large eddy simulation by modeling the small scale motions in conjunction

with level set method or phase-field method. One of my future research is to carry out large

eddy simulation in these systems. For the two problems in chapter 5 and chapter 6, direct

numerical simulation of three-dimensional fully developed turbulent flows will be carried out

in future. When the flow becomes unstable, we would expect to see: periodic flowsVquasi-

periodic flowsVchaotic flowsVfully developed turbulence as the strength of electric field

increases. Since the flow is very much like the canonical Rayleigh-Bénard convection, it

is of great interest to perform a comparison between the two systems, specifically at very

large Rayleigh number. To perform the direct numerical simulation, the Chebyshev-Fourier

spectral method would be utilized. The numerical code has been developed and tested for

two-dimensional/three-dimensional Rayleigh-Bénard convection. To illustrate the numeri-

cal simulation method, computation of the two-dimensional Rayleigh-Bénard convection has

been documented in the Appendix C.

7.2.3 Non-Newtonian flows

In this thesis, all the liquids considered have been assumed to be Newtonian. In many prac-

tical cases, the liquids are non-Newtonian, such as shear-thinning fluids, or viscoelastic flu-

ids. In these fluids, the non-Newtonian effect would be significantly important. For non-

Newtonian fluids, there have been some preliminary studies on the linear stability of canon-

ical flows: such as plane Couette flow, Poiseuille flow, Hagen-Poiseuille flow and Taylor-

Couette flow in which the normal mode analysis as well as the non-modal theory have been

implemented[134, 135]. Nevertheless, it should be indicated that these studies did not pro-

vide sufficient numerical simulations to give direct evidences that the transition ‘does’ oc-

cur in plane-Couette flow and Hagen-Poiseuille flow which are linearly stable. It should be

emphasized here that the non-modal theory predicts that the energy of perturbation can be
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significantly amplified but will eventually decay! Hence, direct numerical simulation should

be carried out to demonstrate that the transition can be triggered by optimal disturbances and

can be sustained by the nonlinear mechanism. However, due to the complicated governing

equations of non-Newtonian flows, there is now a lack of study of direct numerical simu-

lations of non-Newtonian flows in these systems. To perform the numerical simulation, it

would be convenient to construct a solenoidal basis from the Petrov-Garlerkin method which

provides high numerical accuracy[136]. In a different way, I have developed a solenoidal

basis from the eigenmodes of the linearized Navier-Stokes equations and derive an ordinary

differential-integral system.

Beyond direct numerical simulation, in multi-field systems, such as electrohydrodynamic sys-

tems, the study of linear stability of non-Newtonian flows in an electric field is very limited.

In particular, the control of instability in a micro channel with complex geometries is of great

interest and the global stability analysis should be carried out. For such complex problems,

the finite element method or spectral element method will be used. Finite element method is

very easy to be implemented in open source software Freefem++ and I have been working on

the software for nearly a half year.
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Appendix A

Chebyshev collocation method

In this thesis, the eigenvalue problem is resolved by the Chebyshev collocation method. For

a function f in a domain y ∈ [−1, 1], it can be approximated by the Chebyshev polynomials:

f =
N∑
0

amTm(y), (A.1)

where Tm is the Chebyshev polynomial

Tm(y) = cos(m cos−1(y)). (A.2)

The first order derivative of f , now can be expressed as

d f
dy
=

N∑
0

am
dTm

dy
, (A.3)

where dTm
dy = m sin(m cos−1(y))

sin(cos−1(y)) .

The N-dimensional subspace expanded by the Chebyshev functions, i.e {T0,T1, . . . , TN}, is

complete, therefore, the derivative of f can also be approximated by

d f
dy
=

N∑
0

bmTm. (A.4)

Obviously, there is
N∑
0

bmTm =

N∑
0

am
dTm

dy
. (A.5)
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Now, collocation of f at y = y j gives

N∑
0

bmTm(y j) =
N∑
0

am
dTm

dy
|y=y j . (A.6)

Discretization of the problem on these collocation points gives

F = T a, (A.7)

where a = [a0, a1, . . . , aN]T, F = [ f (y0), f (y1), . . . , f (yN)]T and T is a matrix Ti j = Ti(y j).

Now, we can obtain:

b = (T ′)−1T a. (A.8)

Now, the function f is unknown, thereby the coefficients am serve as the unknowns in the

discretized problem. Furthermore, setting D = (T ′)−1T which is the discrete differentiation

matrix. Hence, for the first order derivative of f and in discrete form, there is F′ = TDa.

Moreover, for the n-th derivative of f and in the discrete form, there is F(n) = TDna. In the

eigenvalue problem, ωA x = Bx, the unknown coefficients serve as the eigenvector x.

In the computation of the eigenvalue problem, if we set f (y j), i.e the grid points, as the un-

knowns x, it is necessary to construct the discrete differentiation matrix. Using the Lagrange

interpolation, the function f can be expressed as:

f =
N∑
0

pm(y) f (ym), (A.9)

where pm(y) is the interpolation polynomials,

pm =

N∏
j=0, j,m

y − y j

ym − y j
. (A.10)

Here, y j = cos(θ) and θ = jπ
N is the Chebyshev collocation points.
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For the first order derivative of f , now, can be expressed as

f ′ =
N∑
0

dpm(y)
dy

f (ym). (A.11)

The discrete from of dpm
dy represents the discrete differentiation matrix D.

For instance, if there is only two points in the domain [−1, 1], the discrete differentiation

matrix D is

D =


1
2 −

1
2

1
2 −

1
2

 . (A.12)

If there is three points in the domain, i.e y j = 1, 0,−1, the discrete differentiation matrix reads

D =


3
2 −2 1

2

1
2 0 − 1

2

−1
2 2 − 3

2

 . (A.13)

Generally, when there is N+1 points in the domain y ∈ [−1, 1], the components in the discrete

differentiation matrix are



D11 =
2N2 + 1

6
, DN+1,N+1 = −

2N2 + 1
6

,

D j j = −
y j

2(1 − y2
j)
, j = 2, . . . ,N,

Di j =
ci

c j

(−1)i+ j

yi − y j
, i , j, i, j = 1, . . . ,N + 1,

(A.14)

in which c j = 2 if i = 1,N + 1. Otherwise, c j = 1.
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Appendix B

Direct numerical simulation: thin films

We briefly present here the key points of the algorithm for the simulation of the spatio-

temporal evolution of thin films based on the reduced models. Here, the Benny type equation

is taken as an example:

ht + h2hx + ϵ[
h3

6
(− cotαhx + ϵ

2Wehxxx) +
2Re

5
h6hx]x = 0. (B.1)

Making the transformation: t → ϵt and x→ ϵx, the Benney equation is restated as:

ht + h2hx + [
h3

6
(− cotαhx +Wehxxx) +

2Re
5

h6hx]x = 0. (B.2)

An initial condition of the problem is h(x, 0) = h0.

B.1 Periodic domain

When the problem is solved with periodic boundary conditions:

h(0, t) = h(L, t), hx(0, t) = hx(L, t), hxx(0, t) = hxx(L, t), hxxx(0, t) = hxxx(L, t), (B.3)
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where L is the length of the computational domain, it is convenient to calculate the derivatives

of h, hx, hxx, hxxx in the Fourier domain. Now, we write:

h(x, t) =
N/2∑
−N/2

exp(i j
2π
L

x)ĥ j (B.4)

where ĥ− j = ĥ∗j is the Fourier amplitude. Now, we would like to set the grid points at x = x j,

h(x j) as the unknowns and we are going to construct the discrete differentiation matrix. In

discrete matrix form

h = Aĥ, (B.5)

where h = [h(x0), h(x2), . . . , h(xN)]T, ĥ = [ĥ−N/2, . . . , ĥN/2]T and Amn = exp(in 2π
L xm). The

derivative of h can be expressed as h′ =
∑N/2
−N/2 i j 2π

L exp(i j 2π
L x)ĥ j. Hence, in discrete form:

h′ = ACĥ where C is a diagonal matrix and C = diag(i 2π
L k) with k = [−N/2,−N/2 +

1, . . . , 0, . . . ,N/2 − 1,N/2]T. Using the Fourier transform ĥ j =
∑N

0 exp(−i j 2π
L xk)h(xk), and

finally, the derivative h′, in the discrete form, h′ is related to the grid function h by

h′ = ACBh, (B.6)

where Bmn = exp(−im2π
L xn) and therefore the discrete differentiation matrix D = ACB.

Hence, the discretized Benney equation can be expressed as:

ht + D
h3

3
+ D[

h3

6
(− cotαDh +WeD3h +

2Re
5

h6Dh] = 0. (B.7)

Then, the time-evolution problem can be solved by an implicit Gear’s method.

Indeed, the problem can be solved by the fast Fourier method. First, we compute the Fourier

amplitudes by the Fourier transform. Second, the derivatives of h are calculated in the Fourier

space. Third, the derivatives of h in the physical space are computed by the inverse Fourier
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transform.

B.2 non-Periodic domain

When the non-periodic problem is considered, the Fourier method is not applicable. The

Crank-Nicolson method is used here:

hn+1 − hn

∆t
+

1
2
N(hn) +

1
2
N(hn+1) = 0, (B.8)

whereN(h) = h2hx+
h3

6 (− cotαhxx+Wehxxxx)+ 2Re
5 h6hxx+

h2hx
2 (− cotαhx+Wehxxx)+ 12Re

5 h5h2
x.

Boundary conditions of the non-periodic problem, usually can be h(0, t) = 1, hx(0, t) = 0 and

the film is free at x = L: hx = hxxx = 0. However, previous studies on the boundary conditions

are not inconsistency and some researchers proposed that the flow rate q is given at the inlet.

Here, we apply the finite difference method to approximate the derivatives:

∂xh j =
h j+1 − h j−1

2∆x
+ O(∆x2), (B.9)

∂xxh j =
h j+1 − 2h j + h j−1

∆x2 + O(∆x2), (B.10)

∂xxxh j =
h j+2 − 2h j+1 + 2h j−1 − h j−2

2∆x3 + O(∆x2), (B.11)

∂xxxxh j =
h j+2 − 4h j+1 + 6h j − 4h j−1 + h j−2

∆x4 + O(∆x2). (B.12)

For j = 1,N + 1 (left first node and right end node), the central difference schemes for the

first order and second order derivatives are not applicable. For higher order terms hxxx, hxxxx,

the central difference schemes are also not applicable at j = 2,N. Hence, we use a forward or
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backward differential scheme of second order accuracy at these points:

∂xh|x=x1 =
−3h1 + 4h2 − 3h3

2∆x
+ O(∆x2), (B.13)

∂xh|x=xN+1 =
3hN+1 − 4hN + hN−1

2∆x
+ O(∆x2), (B.14)

∂xxh|x=x1 =
2h1 − 5h2 + 4h3 − h4

∆x2 + O(∆x2), (B.15)

∂xxh|x=xN+1 =
2hN+1 − 5hN + 4hN−1 − hN−2

∆x2 + O(∆x2), (B.16)

∂xxxh|x=x1 =
−5h1 + 18h2 − 24h3 + 14h4 − 3h5

2∆x3 + O(∆x2), (B.17)

∂xxxh|x=x2 =
−5h2 + 18h3 − 24h4 + 14h5 − 3h6

2∆x3 + O(∆x2), (B.18)

∂xxxh|x=xN =
5hN − 18hN−1 + 24hN−2 − 14hN−3 + 3hN−4

2∆x3 + O(∆x2), (B.19)

∂xxxh|x=xN+1 =
5hN+1 − 18hN + 24hN−1 − 14hN−2 + 3hN−3

2∆x3 + O(∆x2), (B.20)

∂xxxxh|x=x1 =
3h1 − 14h2 + 26h3 − 24h4 + 11h5 − 2h6

∆x4 + O(∆x2), (B.21)

∂xxxxh|x=x2 =
3h2 − 14h3 + 26h4 − 24h5 + 11h6 − 2h7

∆x4 + O(∆x2), (B.22)

∂xxxxh|x=xN =
3hN − 14hN−1 + 26hN−2 − 24hN−3 + 11hN−4 − 2hN−5

∆x4 + O(∆x2), (B.23)

∂xxxxh|x=xN+1 =
3hN+1 − 14hN + 26hN−1 − 24hN−2 + 11hN−3 − 2hN−4

∆x4 + O(∆x2). (B.24)

The nonlinear equation (B.8) is then solved by the Newton iteration method.
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Appendix C

Direct numerical simulation:
two-dimensional Rayleigh-Bénard
convection

Here, the direct numerical simulation of two-dimensional Rayleigh-Bénard convection is

briefly presented. Below are the governing equations of the problem:

ux + vy = 0, (C.1)

1
Pr

(ut + uux + vuy) = −px + uxx + uyy, (C.2)

1
Pr

(vt + uvx + vvy) = −py + vxx + vyy + Raθ, (C.3)

θt + J = θxx + θyy, (C.4)

where Ra is the Rayleigh number and Pr is the Prandtl number. The convective term J =

uθx + vθy. There is no slip at y = 0, 1 and the temperature is specified as

θ(x, 0, t) = 1, θ(x, 1, t) = 0. (C.5)

Periodic boundary conditions are applied in x direction.

Below, we are going to formulate the problem from the pressure Poisson equation. Using the
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continuity equation, we obtain the pressure Poisson equation,

pxx + pyy = Raθy −
1
Pr

(Gx + Hy), (C.6)

where G = uux + vuy and H = uvx + vvy and N = Gx +Hy = u2
x + v2

y + 2uyvx. For simulation of

shear flows, special attention should be paid to the nonlinear terms when the Reynolds number

is high. In such a case, it is suggested using the skew-symmetric form u·∇u = 1
2u·∇u+ 1

2∇·(uu)

to address the numerical instability.

Since the pressure Poisson equation is second order, proper boundary conditions should be

imposed. From the derivation of the Poisson equation, it implies:

1
Pr
∂ f
∂t
= ∇2 f , (C.7)

where f = ∇ · u. For the sake of mass conservation, it is to impose: f ≡ 0 for all the time.

For, f ≡ 0, there should be

f (x, y, 0) = 0, f |∂V = 0, (C.8)

where ∂V is the boundaries of the computational domain. It implies that, an initially solenoidal

velocity field should be provided and the continuity equation should be imposed at all the

boundaries of the computational domain:

vy = 0, at y = 0, 1. (C.9)

Furthermore, if p is a solution of the pressure Poisson equation then p + c is also a solution

where c is a constant number. Hence, to remove the singularity of the Poisson equation, we

need to fix the phase of pressure. Numerical simulation by our numerical method shows that

∥∇ · u∥2 is around 10−13 for small Rayleigh number, e.g Ra = 2000, while it exponentially

increases with Ra, e.g ∥∇ · u∥2 ≈ O(10−8) for Ra = 104 during the simulation with 64 × 31
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grids. For even larger Rayleigh numbers, the solenoidal condition of velocity may not exactly

satisfied, but our numerical simulation shows that ∥∇ · u∥2 < 10−4 for Ra = 107 with 128 × 61

grids. It is also found that the finer grids is the smaller ∥∇ · u∥2. It should be pointed out

that summation of ∇ · u at the grid points (x, y) should be zero. Else, the numerical method

is not correct since there is dilation which contradicts with the assumption of incompressible

liquids.

To study the spatio-time evolution problem, implicit scheme for all the linear terms and ex-

plicit scheme for the nonlinear terms are applied. Now, we make a Fourier transform of

equations (C.2)-(C.4) and the pressure Poisson equation with respect to x:

1
Pr

(
ûn+1

k − ûn
k

∆t
+ Ĝn

k) = −ikpn+1
k + (D2 − k2)ûn+1

k , (C.10)

1
Pr

(
v̂n+1

k − v̂n
k

∆t
+ Ĥn

k ) = −Dpn+1
k + (D2 − k2)v̂n+1

k + Raθ̂n+1
k , (C.11)

θn+1
k − θn

k

∆t
+ Ĵn

k = (D2 − k2)θ̂n+1
k , (C.12)

(D2 − k2) p̂n+1
k = RaDθ̂n+1

y − 1
Pr

N̂n
k , (C.13)

where D = d
dy . Here, the D is the Chebyshev differentiation matrix after transforming the

physical domain [0, 1] into the Chebyshev domain [−1, 1]. Hence, the numerical method has

the spectral accuracy in space. Note that, the dealiasing by the 2/3 rule should be imple-

mented which is very important for numerical stability. After solving the Fourier amplitudes

[û, v̂, p̂, θ̂]n+1
k , we apply the inverse Fourier transform to obtain [u, v, p, θ]n+1 in the physical

space. A case study of Ra = 104, Pr = 1 is shown in Figure C.1. Here, we have verified our

code by comparing with that by Clever and Busse[133] as seen in Table C.1.
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Pr = 0.71, Ra = 2500 Pr = 0.71, Ra = 5000 Pr = 0.71, Ra = 104

Clever and Busse[133] Nu = 1.475 Nu = 2.116 Nu = 2.661
Present work Nu = 1.472 Nu = 2.110 Nu = 2.655

Table C.1: Comparison of Nusselt number.
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Figure C.1: The velocity field and temperature filed of a two-dimensional Rayleigh-Bénard

convection for Ra = 104 and Pr = 1 at t = 10.

A case of large Rayleigh number Ra = 107 has also been tested. Note that, the governing

equations should be rescaled to reduce the numerical stiffness . Results are shown in Figure

C.2.
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Figure C.2: The velocity field and temperature filed of a two-dimensional Rayleigh-Bénard

convection for Ra = 107 and Pr = 1. (a) t = 20; (b) t = 25.
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Here, we show the steps of the 2/3 dealiasing rule by taking the nonlinear term (ux)2 as an

example. The steps are summarized as follows:

(i) suppose we have ûk in the Fourier space;

(ii) calculate ux in the Fourier space: ikûk;

(iii) dealiasing: for all |k| > 2
3

N
2 , set ûk = 0;

(iv) use inverse fast Fourier transform to calculate ux in the physical space and calculate (ux)2;

(v) calculate û2
x in the Fourier space.

179



Publications

Papers arising from this thesis

[1] Ding Z, Xie J, Wong TN and Liu R, “Dynamics of liquid films on vertical fibres in a radial

electric field”, J. Fluid Mech. 752, 66, 2014.

[2] Ding Z, Wong TN and Li H, “Stability of two immiscible leaky-dielectric liquids subjected

to a radial electric field in an annulus duct,” Phys. Fluids, 25, 124103, 2013.

[3] Ding Z and Wong TN, “Electrohydrodynamic instability in an annular liquid layer with

radial conductivity gradients”, Phys. Rev. E 89, 033010, 2014.

[4] Ding Z and and Wong TN, “Electrohydrodynamic instability of miscible core-annular

flows with electrical conductivity stratification, J. Fluid Mech. 764, 488, 2015.

[5] Ding Z and Wong TN, “Electric field enhances mixing in micro circular pipes”, Procedia

Engineering 126, 39, 2015.

Other related works published during the PhD program

[6] Ding Z, Wong TN, Liu R and Liu Q, “Viscous liquid films on a porous vertical cylinder:

Dynamics and stability,” Phys. Fluids, 25, 064101, 2013.

[7] Ding Z and Wong TN, “Stability of a localized heated falling film with insoluble surfac-

tants,” Int. J. Heat Mass Trans., 67, 627, 2013.

[8] Ding Z and Wong TN, “Falling liquid films on a slippery substrate with Marangoni effect-

s”, Int. J. Heat Mass Trans. 90, 689, 2015.

180



References

[1] Drazin P. and Reid W., Hydrodynamic Stability, Cambridge University Press, ISBN

0-521-52541-1, 2004.

[2] Trefethen N., Hydrodynamic Stability Without Eigenvalues, Science, 261, 578, 1993.

[3] Schmid P. and Henningson D. Stability and Transition in Shear Flows, Springer, New

York, ISBN 0-387-98985-4, 2001.

[4] Nagata M. Three-dimensional finite-amplitude solutions in plane Couette

flow:bifurcation from infinity, J. Fluid Mech. 217, 519, 1990.

[5] Waleffe F., Exact coherent structures in channel flow, J.Fluid Mech. 435, 93-, 2001.

[6] Bottaro A., Corbett P. and Luchini P. The effect of base flow variation on flow stability,

J. Fluid Mech., 476, 293, 2003.

[7] Guy Ben-Dov, Optimal Disturbances and Secondary Instabilities in Shear Flows,

Doctor thesis in Israel Institute of Technology, HaiFa, 2006.

[8] Theofilis V. Global linear instability, Annu Rev Fluid Mech., 43, 319, 2011.

[9] Batchelor G.K., Moffatt H. K. and Worster M. G., Perspectives in Fluid Dynamics:

A Collective Introduction to Current Research, Cambridge University Press, ISBN:9-

780-52153-1696, 2002.

[10] Kapitza P., Wave flow of thin viscous fluid layers, Zh. Eksp. Teor. Fiz. 18, 3, 1948.

181



[11] Kapitza P. and Kapiza S., Wave flow of thin viscous fluid layers of liquid, Zh. Eksp.

Teor. Fiz. 19, 105, 1965.

[12] Park C. and Nosoko T. Three-dimensional wave dynamics on a falling film and associ-

ated mass transfer, AIChE J. 49, 2715, 2003.

[13] Benney D., Long Waves On Liquid Films, J. Math. Phys. 45, 150, 1966.

[14] Joo S., Davis S. and Bankoff S. Long-wave instabilities of heated falling films two-

dimensional theory of uniform layers, J. Fluid Mech. 230, 117, 1991.

[15] Scheid B., Oron A., Colinet P., Thiele U. and Legros J., Nonlinear evolution of nonuni-

formly heated falling liquid films, Phys. Fluids 14, 4130, 2002.

[16] Thiele U., Goyeau B. and Velarde M., Stability analysis of thin film flow along a heated

porous wall, Phys. Fluids 21, 014103, 2009.

[17] Oron A., Davis S. and Bankhoff S. Long-scale evolution of thin liquid films, Rev. Mod.

Phys. 69, 931, 1997.

[18] Pumir A., Manneville P. and Pomeau Y., On solitary waves running down an inclined

plane J. Fluid Mech. 135, 27, 1983.

[19] Ooshida T. Surface equation of falling film flows with moderate Reynolds number and

large but finite Weber number,Phys. Fluids 11, 3247, 1999.

[20] Shkadov V., Wave flow regimes of a thin layer of viscous fluid subject to gravity, Izv.

AN SSSR. Mekhanika Zhidkosti i Gaza. 2, 43, 1967.

[21] Floryan J., Davis S. and Kelly R. Instability of a liquid film flowing down a slightly

inclined plane, Phys. Fluids 30, 983, 1987.

[22] Chang H.-C., Demekhin E.A., Kopelevitch D.I. Nonlinear evolution of waves on a

vertically falling film, J. Fluid Mech. 250, 433, 1993.

182



[23] Kalliadasis S., Demekhin E., Ruyer-Quil C. and Velarde M., Thermocapillary insta-

bility and wave formation on a film flowing down a uniformly heated plane, J. Fluid

Mech. 492, 303, 2003.

[24] V. Shkadov, A. N. Beloglazkin, and S. V. Gerasimov, Solitary waves in a viscous liquid

film flowing down a thin vertical cylinder, Mosc. Univ. Mech. Bull. 63, 122, 2008.

[25] Ding Z., Wong T., Liu R. and Liu Q., Viscous liquid films on a porous vertical cylinder:

Dynamics and stability, Phys. Fluids 25, 064101, 2013.

[26] Ruyer-Quil C. and Manneville P., Improved modeling of flows down inclined planes,

Eur. Phys. J. B 15, 357, 2000.

[27] Ruyer-Quil C. and Manneville P.,Further accuracy and convergence results on the

modeling of flows down inclined planes by weighted-residual approximations, Phys.

Fluids 14, 170, 2002.

[28] Ruyer-Quil C., Trevelyan P., Giorgiutti-Dauphiné F., Duprat C. and Kalliadasis S.,

Modelling film flows down a fibre, J. Fluid Mech. 603, 431, 2008.

[29] Scheid B., Ruyer-Quil C., Thiele U., Kabov O., Legros J. and Colinet P., Validity do-

main of the Benney equation including the Marangoni effect for closed and open flows,

J. Fluid Mech. 527, 303, 2005.

[30] Ruyer-Quil C., Scheid B., Kalliadasis S., Velarde M. and Zeytounian R., Thermocap-

illary long waves in a liquid film flow. Part 1. Low dimensional formulation, J. Fluid

Mech. 538, 199, 2005.

[31] Trevelyan P., Scheid B., Ruyer-Quil C. and Kalliadasis S., Heated falling films, J. Fluid

Mech. 592, 295, 2007.

183



[32] Ding Z. and Wong T.N. Falling liquid films on a slippery substrate with Marangoni

effects, Int. J. Heat Mass Trans. 90, 689, 2015.

[33] Kalliadasis S., Ruyer-Quil C., Scheid B. and Velarde M., Falling Liquid Films, Springer

London (2012).

[34] Magarvey R.H. and Outhouse L.E., Note on the break-up of a charged liquid jet, J.

Fluid Mech. 13, 151, 1962.

[35] Niamlang S. and Sirivat A., Electric field assisted transdermal drug delivery from

salicylic acid-loaded polyacrylamide hydrogels, Drug Delivery 16, 378, 2010.

[36] Rayleigh L., On the equilibrium of liquid conducting masses charged with electricity,

Phil. Mag. 14, 184, 1882.

[37] Griffiths D, Introduction to electrodynamics, Third Edition, Prentice Hall, 1999.

[38] Darhuber A. and Troian S., Principles of microfluidic actuation by modulation of

surface stresses, Annu. Rev. Fluid Mech. 37, 425, 2005.

[39] Brinkmann M. and Lipowsky R., Wetting morphologies on substrates with striped

surface domains, J. Appl. Phys. 92, 4296, 2002.

[40] Klingner A. and Mugele F., Electrowetting-induced morphological transitions of fluid

microstructures, J. Appl. Phys. 95, 2918-2920, 2004.

[41] Mugele F. and Baret Jean-Christophe, Electrowetting: from basics to application, J.

Phys.: Condens. Matter 17, 705-774, 2005.

[42] Torza S., Cox R. and Mason S., Electrohydrodynamic Deformation and Burst of Liquid

Drops, Proc. R. Soc. Lond. A 269, 295-319, 1971.

[43] Harris M. and Basaran O., Capillary electrohydrostatics of conducting drops hanging

from a nozzle in an electric field, J. Colloid and Interface Sci. 161, 389, 1993.

184



[44] Notz P. and Basaran O. Dynamics of Drop Formation in an Electric Field, J. Colloid

and Interface Sci. 161, 218, 1999.

[45] Reznik S., Yarin A., THERON A. and Zussman E., Transient and steady shapes of

droplets attached to a surface in a strong electric field, J. Fluid Mech. 516, 349, 2004.

[46] González A. and Castellanos A., Nonlinear electrohydrodynamic waves on films falling

down an inclined plane, Phys. Rev. E 53, 3573, 1996.

[47] González A. and Castellanos A., Nonlinear dynamics of a falling vertical film subjected

to a normal electric field, IEEE Annual Report of 1997 Conference on Electrical Insu-

lation and Dielectric Phenomena, Minneapolis, MN, IEEE Dielectrics and Insulation

Society, 2, 714, 1997.

[48] Mukhopadhyay A. and Dandapat B., Nonlinear stability of conducting viscous film

flowing down an inclined plane at moderate Reynolds number in the presence of a

uniform normal electric field, J. Phys. D: Appl. Phys. 38 138, 2005.

[49] Tseluiko D. and Papageorgiou D.T., Wave evolution on electrified falling films, J. Fluid

Mech. 556 361, 2006.

[50] Uma B. and Usha R., A thin conducting viscous film on an inclined plane in the

presence of a uniform normal electric field: Bifurcation scenarios, Phys. Fluids 20

032102, 2008.

[51] Uma B. and Usha R., Electrified film on a porous inclined plane: Dynamics and

stability, Phys. Rev. E 82, 016305, 2010.

[52] Uma B. and Usha R., Contaminated electrified thin film over a substrate:dynamics and

stability, Int J. Adv. Eng. Sci. Appl. Math. 4, 241-249, 2012.

185



[53] Tseluiko D. and Papageorgiou D.T., Nonlinear dynamics of electrified thin liquid films,

SIAM J. Appl. Math. 67, 130-1329, 2007.

[54] Rayleigh L., On the Capillary Phenomenon of Jets, Proc. R. Soc. Lond. 29, 71, 1879.

[55] Basset A., Waves and jets in a viscous liquid, Am. J. Maths 16, 93, 1894.

[56] Taylor G. I., Electrically driven jets, Proc. R. Soc. Lond. A 313, 453, 1969.

[57] Saville D.A., Stability of electrically charged viscous cylinders, Phys. Fluids 14, 1095,

1971.

[58] Cloupeau M. and Prunet-Foch B., Electrostatic spraying of liquids in cone-jet mode,

J. Electrostatics 22, 135, 1989.

[59] Son P.H. and Ohba K., Instability of a perfectly conducting liquid jet in Electrohydro-

dynamic spraying:perturbation analysis and experimental verification, J. Phys. Soc.

Japan 67, 825, 1998.

[60] Collins R. Harris M. and Basaran O., Breakup of electrified jets, J. Fluid Mech. 588,

75, 2007.

[61] Eggers J., Nonlinear dynamics and breakup of free-surface flows, Rev. Mod. Phys. 69,

865, 1997.

[62] Wang Q. and Papageorgiou D.T., Dynamics of a viscous thread surrounded by another

viscous fluid in a cylindrical tube under the action of a radial electric field: breakup

and touchdown singularities, J. Fluid Mech. 683, 27, 2011.

[63] Conroy D., Matar O., Craster R. and Papageorgiou D.T., Breakup of an electrified,

perfectly conducting, viscous thread in an AC field, Phys. Rev. E 83, 066314, 2011.

[64] Ding Z., Xie J., Wong T.N. and Liu R., Dynamics of liquid films on vertical fibres in a

radial electric field, J. Fluid Mech. 752, 66, 2014.

186



[65] Melcher J.R. and Schwarz, W.J., Interfacial relaxation overstability in a tangential

electric field, Phys. Fluids 11, 2604, 1968.

[66] Setiawan E.R. and Heister S.D., Nonlinear modeling of an infinite electrified jet, J.

Electrostatics 42, 243, 1997.

[67] El-Sayed M.F., Electro-aerodynamic instability of a thin dielectric liquid sheet sprayed

with an air stream, Phys. Rev. E 60, 7588, 1999.

[68] Tilley B.S., Petropoulos P.G. and Papageorgiou D.T., Dynamics and rupture of planar

electrified liquid sheets, Phys. Fluids 13, 3547, 2001.

[69] Savettaseranee K., Papageorgiou D., Petropoulos P. and Tilley B., The effect of electric

fields on the rupture of thin viscous films by van der Waals forces, Langmuir 21, 12290,

2005.

[70] Papageorgiou D.T. and Vanden-Broeck J., Large-amplitude capillary waves in electri-

fied fluid sheets, J. Fluid Mech. 508, 71, 2004.

[71] Schäffer E., Thurn-Albrecht T., Russell T. and Steiner U., Electrically induced struc-

ture formation and pattern transfer, Nature 403, 874, 2000.

[72] Morariu M., Voicu N., Schäffer E. Lin Z. Russell T. and Steiner U., Hierarchical

structure formation and pattern replication induced by an electric field, Nat. Mater. 2,

48-52, 2003.

[73] Verma R., Sharma A., Kargupta K. and Bhaumik J., Electric Field Induced Instability

and Pattern Formation in Thin Liquid Films, Langmuir 21, 3710, 2005.

[74] Wu N., Pease III L. and Russel W., Electric-Field-Induced Patterns In Thin Polymer

Films:Weakly Nonlinear and Fully Nonlinear Evolution, Langmuir 21, 12290, 2005.

187



[75] Tseluiko D. and Blyth M., Effect of inertia on electrified film flow over a wavy wall, J.

Eng. Math. 65, 229, 2009.

[76] Yeo L. and Chang H.C., Electrowetting films on parallel line electrodes, Phys. Rev. E

73, 011605, 2006.

[77] Taylor G., Studies in electrohydrodynamics. I. The circulation produced in a drop by

an electric field, Proc. R. Soc. Lond. A 291, 159, 1966.

[78] Saville D., Electrohydrodynamics: The Taylor-Melcher Leaky Dielectric Model, Annu.

Rev. Fluids 29, 27, 1997.

[79] Pereira A. and Kalliadasis S., On the transport equation for an interfacial quantity,

Eur. Phys. J. Appl. Phys. 44, 211, 2008.

[80] Melcher J. and Smith C., Electrohydrodynamic charge relaxation and interfacial

perpendicular-field instability, Phys. Fluids 12, 778, 1969.

[81] Ozen O., Aubry N., Papageorgiou D.T. and Petropoulos P.G., Monodisperse Drop

Formation in Square Microchannels, Phys. Rev. Lett. 96, 144501, 2006.

[82] Abdella K. and Rasmussen H., Electrohydrodynamic instability of two superposed

fluids in normal electric fields, J. Comp. and Appl. Math. 78, 33, 1997.

[83] Shankar V. and Sharma A., Instability of the interface between thin fluid films subjected

to electric fields, J. Colloid and Interface Sci. 274, 294, 2004.

[84] Ozen O., Aubry N., Papageorgiou D.T. and Petropoulos P.G., Electrohydrodynamic

linear stability of two immiscible fluids in channel flow, Electrochimica Acta 51, 5316,

2006.

188



[85] Li F., Ozen O., Aubry N., Papageorgiou D.T., and Petropoulosv P.G., Linear stability

of a two-fluid interface for electrohydrodynamic mixing in a channel, J. Fluid Mech.

583, 347, 2007.

[86] Uguz A., Aubry N., Quantifying the linear stability of a flowing electrified two-fluid

layer in a channel for fast electric times for normal and parallel electric fields, Phys.

Fluids 20, 092103, 2008.

[87] Artana G., Romat H. and Touchard G., Theoretical analysis of linear stability of elec-

trified jets flowing at high velocity inside a coaxial electrode, J. Electrostatics 43, 83,

1998.

[88] Burcham C. and Saville D., Electrohydrodynamic stability: Taylor-Melcher theory for

a liquid bridge suspended in a dielectric gas, J. Fluid Mech. 452, 163, 2002.

[89] Li F., Yin X. and Yin X., Instability of a viscous coflowing jet in a radial electric field,

J. Fluid Mech. 596, 285, 2008.

[90] López-Herrera J., Riesco-Chueca P. and Gañón-Calvo A., Linear stability analysis

of axisymmetric perturbations in imperfectly conducting liquid jets, Phys. Fluids 17,

034106, 2005.

[91] Wang Q., Breakup of a poorly conducting liquid thread subject to a radial electric field

at zero Reynolds number, Phys. Fluids 24, 102102, 2012.

[92] Wray A., Matar O. and Papageorgiou D.T., Non-linear waves in electrified viscous film

flow down a vertical cylinder, J. Appl. Math. 77, 430, 2012.

[93] Wray A., Papageorgiou D.T. and Matar O., Electrified coating flows on vertical fibres:

enhancement or suppression of interfacial dynamics, J. Fluid Mech. 735, 427, 2013.

189



[94] Wray A., Papageorgiou D.T. and Matar O., Electrostatically controlled large-

amplitude, non-axisymmetric waves in thin film flows down a cylinder, J. Fluid Mech.

736, R2, 2013.

[95] Preziosi L., Chen K.P. and Joseph D.D., Lubricated pipelining: Stability of core-

annular flow, J. Fluid Mech. 201, 323, 1989.

[96] Joseph D.D., Bai R., Chen K.P. and Renardy Y.Y., Core-Annular Flows, Annu. Rev.

Fluid Mech. 29, 65, 1997.

[97] Selvam B., Merk S., Govindarajan R. and Meiburg E., Stability of miscible

core¨Cannular flows with viscosity stratification, J. Fluid Mech. 592, 23, 2007.

[98] Dijkstra H.A., The coupling of interfacial instabilities and the stabilization of two-layer

annular flows, Phys. Fluids A 4, 1915, 1992.

[99] Ding Z., Wong T. and Li H., Stability of two immiscible leaky-dielectric liquids sub-

jected to a radial electric field in an annulus duct, Phys. Fluids 25, 124103, 2013.

[100] Lin H., Storey B.D., Oddy M.H., Chen C.H. and Santiago J.G., Instability of electroki-

netic microchannel flows with conductivity gradients, Phys. Fluids 16, 1922, 2004.

[101] Baygents J. and Baldessari F., Electrohydrodynamic instability in a thin fluid layer with

an electrical conductivity gradient, Phys. Fluids 10, 301, 1998.

[102] Hoburg J., Melcher J., Electrohydrodynamic mixing and instability induced by colinear

fields and conductivity gradients, Phys. Fluids 20, 903-911, 1977.

[103] Hoburg J., Internal electrohydrodynamic instability of liquids with colinear fields and

conductivity gradients, J. Fluid Mech. 84, 291-303, 1978.

[104] Melcher J., Contimuum Electromechanics, MIT, Cambridge, MA, 1981.

190



[105] Chang M., Ruo A. and Chen F., Electrohydrodynamic instability in a horizontal fluid

layer with electrical conducivity gradient subject to a weak shear flow, J. Fluid Mech.

634, 191, 2009.

[106] Ruo A., Chang M., and Chen F., Effect of rotation on the electrohydrodynamic instabil-

ity of a fluid layer with an electrical conductivity gradient, Physics Fluis 22, 024102,

2010.

[107] Carriere P. and Monkewitz P., Convective versus absolute instability in mixed Reyleigh-

Bénard-Poiseuille convection, J. Fluid Mech. 384, 243, 1999.

[108] Clever R., and Busse F., Three-dimensional convection in a horizontal fluid layer

subjected to a constant shear, J. Fluid Mech. 234, 511, 1999.

[109] Ding Z., and Wong T.N., Electrohydrodynamic instability in an annular liquid layer

with radial conductivity gradients, Phys. Rev. E 89, 033010, 2014.

[110] Chen C., Lin H., Lele S. and Santiago J., onvective and absolute electrokinetic insta-

bility with conductivity gradients, J. Fluid Mech. 524, 263, 2005.

[111] Storey B., Lin H. and Santiago J.G. Electrokinetic instabilities in thin microchannels,

Phys. Fluids 17, 018103, 2005.

[112] Santos J. and Storey B., Lele S. and Santiago J., Instability of electro-osmotic channel

flow with streamwise conductivity gradients., Phys. Rev. E 78, 046316, 2008.

[113] Felderhof B., Dynamics of free liquid films, J. Chem. Phys. 49, 44, 1968.

[114] Gallez D. and Coakly G., Interfacial instability at cell membranes, Prog. Biophys.

Molec. Biol. 48 155, 1986.

191



[115] Georgiou E., Papageorgiou D., Maldarelli C. and Rumschitzki D., The double layer-

capillary stability of an annular electrolyte film surrounding a dielectric-fluid core, J.

Fluid Mech. 226, 149, 1991.

[116] Conroy D., Craster R., Matar O. and Papageorgiou D., Dynamics and stability of an

annular electrolyte film, J. Fluid Mech. 656, 481-506, 2010.

[117] Conroy D., Matar O., Craster R. and Papageorgiou D., Dynamics and stability of an

annular electrolyte film, Phys. Fluids 23, 022103, 2011.

[118] Lin H.,Electrokinetic instability in microchannel flows: A review, Mechanics Research

Communications 36, 33, 2009.

[119] Ding Z., and Wong T.N., Electrohydrodynamic instability of miscible core-annular

flows with electrical conductivity stratification, J. Fluid Mech. 764, 488, 2015.

[120] Takashima M. Electrohydrodynamic instability in a dielectric fluid between two coaxial

cylinders, Q. J. Mech. Appl. Math. 33, 93, 1980.

[121] Shivakumaraa I., Leeb J., Vajraveluc K. and Akkanagammaa M. Electrothermal con-

vection in a rotating dielectric fluid layer: Effect of velocity and temperature boundary

conditions, Int. J. Heat Mass Trans. 55, 2984, 2012.

[122] Yoshikawa H. N., Tadie Fogaing M., Crumeyrolle O. and Mutabazi I. Dielectrophoretic

Rayleigh-B¨¦nard convection under microgravity conditions, Phys. Rev. E 87, 043003,

2013.

[123] Tsai P.-C. The Route to Chaos and Turbulence in Annular Electroconvection, Ph.D

thesis, 2007.

[124] Craster R. and Matar O. On viscous beads flowing down a vertical fibre, J. Fluid Mech.

553, 85, 2007.

192



[125] Lister J.R., Rallison J.M., King A.A., Cummings L.J. and Jensen O.E., Capillary

drainage of an annular film: the dynamics of collars and lobes, J. Fluid Mech. 552,

311-343, 2006.

[126] Ding Z. and Liu Q. Stability of liquid films on a porous vertical cylinder, Phys. Rev. E

84, 046307, 2011.

[127] Kliakhandler I., Davis S. and Bankhoff S., Viscous beads on vertical fibre, J. Fluid

Mech. 429, 381, 2001.

[128] Birikh R., Briskman V., Velarde V. and Legros J.C. Liquid interfacial systems: Oscil-

lations and Instability, CRC Press, New York, 2003.

[129] Khorrami, M. A Chebyshev spectral collocation method using a staggered grid for the

stability of cylindrical flows, Int. J. Numer. Meth. Fluids 12, 825, 1991.

[130] Govindarajan, R. Effect of miscibility on the linear instability of two-fluid channel flow,

Int. J. Multiphase Flow 30, 1177, 2004.

[131] Govindarajan R., L’vov V. and Procaccia I. Retardation of the onset of turbulence by

minor viscosity contrasts, Phys. Rev. Lett. 87, 174501, 2001.

[132] Talon L. and Meiburg E. Plane Poiseuille flow of miscible layers with different viscosi-

ties: instabilities in the Stokes flow regime, J. Fluid Mech. 686, 484, 2011.

[133] Clever R. and Busse F., Transition to time-dependent convection, J. Fluid Mech. 65,

625, 1974.

[134] Liu R. and Liu Q. Non-modal instability in plane Couette flow of a power-law fluid, J.

Fluid Mech. 676, 145, 2011.

[135] Liu R. and Liu Q. Nonmodal stability in Hagen-Poiseuille flow of a shear thinning

fluid, Phys. Rev. E 85, 066318, 2012.

193



[136] López Carranza S., Jenny M. and Nouar C. Instability of streaks in pipe flow of shear-

thinning fluids, Phys. Rev. E 88, 023005, 2013.

194


