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Abstract

Automatic speech recognition (ASR) decodes speech signals into text. While ASR can

produce accurate word recognition in clean environment, its accuracy degrades consider-

ably under noisy conditions. I.e., robustness of ASR systems for real-world applications

remains a challenge. In this thesis, speech feature enhancement and model adaptation for

robust speech recognition is studied, and three novel methods to improve performance

are introduced.

The �rst work proposes a modi�cation of the spectral subtraction method to reduce

the non-stationary characteristics of additive noise in the speech. The main idea is to �rst

normalise the noise’s characteristics towards a Gaussian noise model, and then tackle the

remaining noise by a model compensation method. The strategy is to reduce the noise

handling problem to the back-end process. In this work, the back-end compensation

process is applied using the vector Taylor series (VTS) model compensation approach,

and we call this method the noise normalization VTS (NN-VTS).

The second work proposes an extension of particle �lter compensation (PFC) for the

large vocabulary continuous speech recognition (LVCSR) task. PFC is a clean speech

features tracking method using side information from hidden Markov models (HMM)

for the particle �lter framework. However, under noisy conditions for sub-word based

LVCSR, the task to obtain an accurately aligned state sequence of HMM that describe

the underlying clean speech features is challenging. This is because the total number

of triphone models involved can be very large. To improve the identi�cation of correct

phone sequence, this work proposes to use a noisy model HMM trained from noisy data

to estimate the state sequence and a parallel clean model HMM trained from clean data

to generate the clean speech features. These two HMMs are trained jointly, and the

alignment of states between the clean and noisy models HMM is obtained by single pass
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retraining (SPR) technique. With this approach, the accuracy of state sequence estimate

is improved by the noisy model HMM, and the accurately aligned state is obtained by

SPR technique. When the missing side information for PFC is available, a word error

reduction of 28.46% from multi-condition training is observed for the Aurora-4 task.

The third work proposes a novel spectro-temporal transform framework to improve

word error rate for the noisy and reverberant environments. Motivated by the �ndings

that human speech comprehension relies on both the spectral content and temporal

envelope of speech signal, a spectro-temporal (ST) transform framework is proposed.

This framework adapts the features to minimize the mismatch between the input features

and training data using the Kullback Leibler divergence based cost function. In our work,

we examined two implementations to overcome the limited adaptation data issue. The

�rst implementation is a cross transform which is a sparse spectro-temporal transforms.

The second implementation is a cascaded transform of temporal transform and spectral

transform. Experiments are conducted on the REVERB Challenge 2014 task, where

clean and multi-condition trained acoustic models are tested with real reverberant and

noisy speech. Experimental results con�rmed that temporal information is important

for reverberant speech recognition and the simultaneous use of spectral and temporal

information for feature adaptation is e�ective.
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Chapter 1

Introduction

Automatic speech recognition (ASR) decodes speech signals into text [1]. The perfor-

mance of ASR systems has improved greatly in recent years due to more training data,

increased computational power, and deep learning algorithm for acoustic modelling [2].

While ASR is expected to produce accurate word recognition in clean environment, its

accuracy degrades considerably in noisy and reverberant acoustic environments. Ro-

bustness of ASR systems in adverse environments for real-world applications remains a

challenge. In this thesis, speech feature enhancement and model adaptation in robust

speech recognition is investigated and three novel techniques are proposed to improve

word error rate of speech recognition system in noisy and reverberant environments.

Research in robust speech recognition has a rich history and many techniques have

been proposed in the last three decades. They can be broadly categorized into two

major approaches: model-based and feature-based approaches. Model-based techniques

aim to update the acoustic model to better represent speech features under new test

conditions. Examples include maximum a-posteriori (MAP) adaptation [3], maximum

likelihood linear regression (MLLR) [4, 5] and their variants [6{9], and vector Taylor se-

ries (VTS) based adaptation [10{12]. Feature-based techniques, on the other hand, aim

to bring speech signals/features closer to the ones used during training. Examples in-

clude: speech enhancement methods such as spectral subtraction [13], Wiener �lter [14],

minimum mean square error (MMSE) short time spectral amplitude estimator [15, 16];

dereverberation [17{22]; feature compensation methods such as SPLICE [23]; feature

normalization methods such as cepstral mean normalization (CMN) [24], mean and vari-

ance normalization (MVN) [25], histogram equalization (HEQ) [26]; temporal �lters such
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Chapter 1. Introduction

as Relative spectral processing (RASTA) [27, 28]; and linear feature transform such as

feature-space MLLR (fMLLR) [4, 29]. For a comprehensive review of the existing tech-

niques, readers are referred to [30{32].

Feature and model-based approaches have their own advantages and limitations. Gen-

erally speaking, feature-based approach may be less powerful than model based approach

as it does not have access to the acoustic model. However, feature-based approach is more

computationally e�cient than model-based approach, and is easier to integrate it into

ASR systems as it does not require modi�cations to the decoder.

In this thesis, three novel feature and model based techniques are proposed to improve

word error rate of speech recognition system in mismatch conditions. The general research

challenge is how to train acoustic model on one domain and test on other domain. The

three proposed techniques are extensions, combinations and improvements of existing

techniques, which are detailed in the following text.

Noise Normalization - VTS (NN-VTS) [33] Chapter 3 discusses this work. The

aim of the �rst work attempts to reduce the non-stationary characteristics of the

additive noise in the speech. The motivation is to utilize the feature-based approach

to facilitate the back-end compensation. Particularly, in the front-end, a modi�ca-

tion of spectral subtraction method [13] is proposed to �rst normalise noise charac-

teristics towards a Gaussian noise model, and then, in the back-end, vector Taylor

series (VTS) model compensation [11] is applied to compensate for the residual

noise. With the proposed noise normalization process, the back-end compensation

does not need to be updated or have increased in complexity when noise changes.

This method is called noise normalization VTS (NN-VTS) and experimental study

on the Aurora-2 task shows that signi�cant performance improvement is possible

over conventional VTS model compensation.

Particle Filter Compensation (PFC) for LVCSR system [34] Chapter 4 discusses

the second work in which a particle �lter compensation (PFC) method [35] is ex-

tended to estimate clean speech features for the large vocabulary continuous speech

recognition (LVCSR) task. PFC utilizes side information from hidden Markov mod-

els (HMM) for the particle �lter framework to track the clean speech features. The

2



Chapter 1. Introduction

side information from HMM here is the aligned state sequence of HMM that de-

scribe the underlying clean speech features. However under noisy conditions for

sub-word based LVCSR, the task to obtain accurate side information is challenging

as a large number of triphone models are involved in LVCSR system. To improve

the identi�cation of correct state sequence, a noisy model HMM trained from noisy

data is used to estimate the state sequence and a parallel clean model HMM trained

from clean data is used to generate the clean speech samples. These two HMMs

are trained jointly using single pass retraining (SPR) technique to obtain the align-

ment of states between the clean and noisy models HMMs. With this approach,

the accuracy of state sequence is improved by the noisy acoustic model and the

accurately aligned states are obtained by the SPR technique. Experimental study

is conducted on the Aurora-4 task and the results show a word error reduction of

28.46% from multi-condition training when the missing side information for PFC

is available.

Spectro-Temporal (ST) transform [36,37] The third work discussed in Chapter 5

proposes a novel linear feature transformation to compensate for background noise

and reverberation. Motivated by the �ndings that both the spectral content and

temporal envelope of speech signal a�ect human speech comprehension, a spectro-

temporal (ST) transform framework is proposed. The ST transform modi�es the

input features to minimize its mismatch to the training data using the Kullback

Leibler divergence cost function. To cope with the limited adaptation data issue,

two implementations of the ST transform are examined. The �rst implementa-

tion is a sparse ST transform where estimated parameters are manually selected

to utilize most of the temporal and spectral information for the speech feature

processing. This transform uses data covering a cross in the speech features, and

thus we call it the cross transform. The second implementation decomposes the

ST transform into temporal �lter and spectral transform. In other words, the new

ST transform is a combination of temporal �lter and spectral transform in tandem.

Experiments are conducted on the REVERB Challenge 2014 task, and the acoustic

model is trained on clean speech data, and tested with real reverberant and noisy

3



Chapter 1. Introduction

speech. Both implementations of ST transform were showed to be e�ective and ex-

perimental results suggest that temporal information is important for reverberant

speech recognition, and the simultaneous use of spectral and temporal information

for feature adaptation is complementary.

This thesis is structured as follows. Chapter 2 will review further in details robust

speech recognition. Chapter 3, 4 and 5 will present the �rst work (noise normalization

VTS), the second work (extension of PFC) and the third work (ST transform), respec-

tively. Chapter 6 will conclude the contributions in this thesis and discuss some future

extension works.

4



Chapter 2

Robust Techniques in Automatic
Speech Recognition

In this chapter, a review of noise robust speech recognition techniques is presented. As

statistical hidden Markov model (HMM)-based speech recognition system is used as a

baseline ASR framework, a brief description of the HMM-based ASR system is �rst

provided. A detailed review of ASR techniques can be found in [1]. Secondly, robust

techniques are presented to cope with distortions of speech signal under noisy conditions.

Generally speaking, noise robust techniques can be grouped into two classes, i.e. the

feature space techniques that process speech features to reduce noise e�ects, and the

model space techniques that modify the acoustic model to �t the noisy features. As

three proposed works in this thesis are feature-based techniques, this class of techniques

are emphasized, and to be complete, model-based techniques are also brie
y reviewed.

2.1 Automatic Speech Recognition

The objective of automatic speech recognition (ASR) is to correctly convert a speech

signal to the sequence of words conveyed by the signal. As the speech signal itself is not

a good representation for ASR, it is usually converted into a sequence of feature vectors,

X = fx1;x2; � � � ;xTg, where xt is a feature vector extracted at time t. This process

is called feature extraction as shown in Fig. 2.1. The feature vector sequence is then

processed by a decoder for recognition. The recognition problem is typically formulated

5



Chapter 2. Robust Techniques in Automatic Speech Recognition

as follows

ŵ = arg max
w

P (wjX) (2.1)

where w = fw1; w2; � � � ; wLg represents a word sequence, P (wjX) is the posterior prob-

ability of w given X, and ŵ is the most likely word sequence.

Rather than modelling the posterior P (wjX) directly, Bayes’ rule is commonly used

to transform the original problem in (2.1) into an equivalent problem as follows [1]

ŵ = arg max
w

P (Xjw)P (w)

P (X)

= arg max
w

P (Xjw)P (w) (2.2)

where P (Xjw) represents the probability of the feature vector sequence X generated by

the word sequence w and P (Xjw) is commonly known as the acoustic likelihood score.

The prior P (w) is the probability of the word sequence w and is called the language

model score. In practice, the evaluation of P (Xjw) is by an acoustic model, e.g. Gaus-

sian mixture model hidden Markov model (GMM-HMM), and P (w) is by a language

model (LM), e.g. n-gram model [1]. The acoustic model captures the conditional distri-

bution of the feature vectors given a speech class, such as phoneme, while the language

model captures the joint probability of a sequence of words. Another model, called pro-

nunciation model (PM), also commonly known as lexicon, is used to link the acoustic

model and language model. The pronunciation model is usually in the form of a pronun-

ciation dictionary, which de�nes a phoneme sequence for each word in the vocabulary of

the system. The AM, LM, and PM are all used by the decoder to build a search space

that represents all possible word/phoneme sequences allowed in the ASR system. The

decoder then �nd the most likely word sequences in the search space.

In the following sections, two ASR modules that are relevant to the topic of this thesis

will be described in more details, i.e. the feature extraction and the acoustic model.

Feature Extraction

The feature extraction process aims to transform the speech signal to a compact form

of speech features that contains discriminative information. Suitable features for ASR
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speech signal

Feature
Extraction

Decoder

feature vector
sequence Y output

text
...

Acoustic 
Models

Lexicon Language
Models

Figure 2.1: The architecture of a statistical ASR system.

should be able to di�erentiate di�erent phonemes of speech and also have low variation

within a speci�c phoneme. In the following text, the popular Mel-frequency cepstral

coe�cients [38], will be described in details as an illustration of feature extraction. Other

popular features, such as perceptual linear predictive (PLP), are similar to MFCC and

will not be covered. A detailed review of features commonly used in speech recognition

systems can be found in [1].

Speech signal is processed frame by frame for feature extraction. For speech recogni-

tion, each frame is about 25ms long with about 15ms overlap between adjacent frames,

i.e. the shift is 10ms. For each frame, a single feature vector is extracted.

The MFCC feature extraction process is succinctly described in the following steps:

s
DC o�set removal����������!
Pre�emphasis

~s
windowing������! ŝ

FFT���! S(f) Melfilterbank��������!
Analysis

S(M) log()��! S(l) DCT���! x(s) (2.3)

In the above transformations, s is a vector that represents the speech samples of a frame

in the time domain. The �rst processing is called DC o�set removal and pre-emphasis

�ltering that conditions the speech signal. Then Hamming or Hanning windows are usu-

ally applied on the signal and Fourier transform is applied to obtain the spectrum S(f).

The use of Hamming or Hanning windows is to focus on the middle of the frame and re-

duce boundary e�ects. Motivated by �ndings that humans perceive sound in a nonlinear

frequency scale [1], Mel �lterbank analysis is applied to generate the Mel �lterbank coef-

�cients S(M). There are usually around 20 Mel �lterbank coe�cients used which is much

less than the number of S(f), hence a dimension reduction is also achieved. To compress

the dynamic range of the data, natural logarithm is applied to generate log Mel �lterbank

7



Chapter 2. Robust Techniques in Automatic Speech Recognition

coe�cients S(l). The use of logarithm is also motivated by psychoacoustic �ndings that

humans perceive loudness roughly in proportion to the logarithm of energy [39], though

measured loudness scales more precise than the logarithm exist [40]. Finally, discrete

cosine transform (DCT) is applied on S(l) and the �rst half of the DCT coe�cients x(s)

that contain discriminative information are used for speech recognition. Another advan-

tage of using DCT is that it signi�cantly decorrelates S(l) such that diagonal instead of

full covariance matrix could be used in the acoustic model which signi�cantly reduces

the number of parameters in the model.

The obtained features x(s) is usually called static features as they only contain the

spectral information of speech signal within a frame and do not contain temporal in-

formation across frames. As speech signals are slowly varying, there is high correlation

between neighboring frames that could be exploited for speech recognition. To capture

the temporal information across frames, dynamic features [41] are extracted and concate-

nated with the static features to improve the discriminative capability and robustness of

the features. Usually, the �rst-order (delta) and the second-order (delta-delta) dynamic

features are used and computed as follows [42]:

xt =
h
x

(s)
t

T
�xt

T �2xt
T
iT

(2.4)

�xt =

Pn
i=1wi(x

(s)
t+i � x

(s)
t�i)

2
Pn

i=1w
2
i

(2.5)

�2xt =

Pn
i=1wi(�xt+i ��xt�i)

2
Pn

i=1w
2
i

(2.6)

where T is the transpose operator, t is the frame index, n is the window width (the

number of frames) to calculate dynamic features and wi the regression coe�cients. �xt

and �2xt are the delta and the delta-delta feature vectors respectively. The complete

feature vector xt is usually called the observation at frame t.

Acoustic Model

To e�ectively model the slowly varying characteristics of speech signals, the left-to-right

HMM is used as the fundamental unit in the acoustic model. In ASR, an HMM usually

represents a subword unit such as a phoneme and has 3 states as shown in Fig. 2.2.

8
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s2 s3 s4

State 1 2 3 4 5

Non emitting state

Emitting state

Allowed transition

Figure 2.2: The left-to-right HMM with three emitting hidden states

Each state represents a quasi-stationary segment of the phoneme and is associated with

a GMM that is used to model the probability distribution of speech feature vectors that

belong to the state. There are links between states that denote allowed transitions.

For example, a self transition means that the next frame of the speech signal stays at

the current state. A right transition indicates that the speech signal of the next frame

progressed to the next state of the phoneme. As each phoneme has a speci�c pattern of

evolution of feature distributions, only left-to-right and self transitions are allowed, hence

the left-to-right HMM is used. The allowed transitions and the probability of jumping

from one state to another are completely de�ned by a matrix called the transition matrix.

During model training, the transition matrices of all HMMs will be estimated from the

training data. Besides the real states that are associated with a GMM, called emitting

states, there are also non-emitting states that denote the start and end of an HMM, as

denoted in Fig. 2.2.

There are two major assumptions about the dependency of variables in the left-to-

right HMM:

� An observation at time t is independent from all other observations given a state

st at time t,

� A state st+1 depends only on the previous state st. This is referred to as the �rst

order Markov assumption.

The dependency can be expressed better by a Dynamic Bayes Network (DBN) [43]

illustrated in Fig. 2.3. The square nodes represent the hidden states which are discrete

9
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Figure 2.3: The left-to-right HMM represented as a DBN

variables and the circle nodes represent the observed continuous variables. In Fig. 2.3, the

�rst assumption is expressed by the arc indicating the emission probability bi(xt) which

is the probability of observing xt generated by state i at time t. The second assumption

is shown by the arc indicating the transition probability aij which is the probability

of the state j at time t + 1 given the state i at time t. Therefore, the parameter set

� = [faijg; fbi()g] represents the HMM-based acoustic model.

The acoustic model parameters can be estimated from training data by using the

well-known Baum-Welch algorithm [1]. This algorithm is a realisation of the expectation-

maximization (EM) algorithm [44]. In the E-step, forward and backward probabilities of

each state at each time are recursively calculated to compute the posterior probability

of each state. The posterior probability is then used in M-step as weights in the acoustic

model parameter estimation. The Baum-Welch algorithm is very e�cient and it guar-

antees a convergence to a local maximal. Thus the model estimate is dependent on an

initial model. In practice, global mean and global variance of speech features are used

to initialize each state’s mean and variance. More details about the implementation of

HMM in speech recognition can be found in [1].

Recently, the emission probability can be modelled by a deep neural network (DNN)

[2]. DNN has been shown to dramatically improve ASR performance for matched con-

dition, especially in multi-condition training scenario. In [45], another type of neural

network, convolutional neural network (CNN), has been used and shown better perfor-

mance than DNNs. Very deep DNN has also been studied in [46].

In this work, feature enhancement and adaptation will be focused and hence, to

simplify the back-end, the GMM-HMM baseline system is applied as the acoustic model.

10
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2.2 Robust Speech Recognition

The statistical HMM-based ASR system described in the previous section is able to

achieve very high recognition accuracy in clean recording environments. However, the

performance signi�cantly degrades when the training and testing environments are dif-

ferent. For example, if the training data is recorded in clean environment and the test

data is recorded in noisy environment, the recognition performance will be seriously af-

fected. There are three common source of distortions, i) the recording microphone and

the transmission channel that will result in a linear �ltering of the speech signal. This

linear �ltering can be treated as convolutional noise; ii) the additive background noise

such as car noise and music noise which is usually independent from the speech signal; iii)

reverberations of the speech that appears when recordings are performed in large rooms

and halls.

The robust speech recognition problem is typically formulated as follows [32]

ŵ = arg max
w

P�x(wjY )

= arg max
w

P�x(Y jw)P (w) (2.7)

where Y represents observed features, w denotes word sequence and �x denotes the

trained acoustic model. The subscript x in �x represents the acoustic model trained

from a recording condition di�erent from the one of the observation Y . For example, �x

is trained from closed-talking speech data X whereas the test data Y is recorded from

noisy and reverberant environments. P�x(Y jw) in (2.7) represents the likelihood of the

observations Y given the word sequence w and the trained model �x. If the observation

is signi�cantly distorted, the likelihood score will be incorrect and hence will produce

recognition error.

In the scope of this thesis, robust techniques, which attempt to improve the likelihood

score P�x(Y jw), will be reviewed. The aim of these techniques is to reduce e�ects of

the mismatch between the trained acoustic model �x and the observed features Y as

illustrated in Fig. 2.4. Typically, there are two major approaches to reduce the mismatch:

feature-based approach and model-based approach. The feature-based approach usually

compensates or normalizes speech features Y towards the acoustic model �x before being

11
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Figure 2.4: An illustration of mismatch between trained acoustic model and test features
[47].

processed by the decoder as shown in Fig. 2.5. The model-based approach on the other

hand adapts the acoustic model’s parameters �x to better represent the distribution of

the noisy features Y , as shown in Fig. 2.6. Generally speaking, feature-based approach is

more e�cient than model-based approach, and easier to be integrated into ASR systems

as it does not require modi�cations to the decoder. However, a feature-based approach

may be less powerful than a model based approach as it does not have access to the

acoustic model. Hence, feature and model-based approaches have their own advantages

and limitations and are often used together to achieve better performance [48]. In the

following sections, a review of these two groups of techniques will be presented.

2.2.1 Feature-based Robust Techniques

The objective of feature-based techniques is to reduce the di�erences between features

generated from clean and noisy speech, while preserving the discriminative power of the

features. Existing techniques can be divided into two groups. The �rst group, called

feature normalization techniques, attempts to normalize the statistics of noisy features

towards that of clean features. Such techniques include cepstral mean normalization

(CMN) [24], cepstral variance normalization (CVN) [25], histogram equalization (HEQ)
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Figure 2.5: Feature-based noise robust speech recognition system
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Figure 2.6: Model-based noise robust speech recognition system
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[49], relative spectra (RASTA) [27], auto-regressive moving average (ARMA) [50] and

temporal spectral normalization (TSN) [47]. The second group of techniques are called

feature compensation methods and they aim to estimate the underlying clean features

from the observed noisy features, e.g. the spectral subtraction (SS) [13] and MMSE

estimation of short time Fourier amplitude of clean speech [15, 16]. These methods are

brie
y introduced in the following subsections.

2.2.1.1 Feature Normalization

Feature normalization is a group of techniques that normalise the various aspects of fea-

ture statistics to a common reference, usually the clean features’ statistics. The simplest

feature normalization techniques is the cepstral mean normalization (CMN) [24], which

simply subtracts the features’ mean values in the cepstral domain. The CMN method

can be used to handle convolutional distortion such as microphone mismatch or linear

transmission channel distortion. Since convolutional noise becomes multiplicative in fre-

quency domain and additive in log-Mel and cepstral domain, subtracting the mean from

the features is able to remove convolutional distortions. The advantages of the CMN

method are its simplicity, low computational cost, ease of implementation and the ability

to handle convolutional noise. However, only normalizing the mean of features to zero

is often insu�cient to improve the robustness of ASR in more di�cult cases, such as

additive noise cases. Hence, CMN is usually combined with other methods to achieve

better performance.

A natural extension of CMN is the cepstral variance normalization (CVN) [25]. While

CMN normalizes features’ means, CVN normalizes the features’ variances to unity to

address additive noise’s e�ects on ASR. It is well known that the variance of speech

features is scaled di�erently in cepstral domain caused by the additive noise due to the

logarithm operator in feature extraction process [51]. Hence, normalizing the variances

of both clean and noisy features to unity reduces the distortions caused by the additive

noise. The CMN and CVN are usually used in cascade and referred to as mean and

variance normalization (MVN) method to handle both additive and convolutional noises.

The MVN method modi�es the values of the feature coe�cients to the same average level

and scale. An example of the e�ects of the MVN method is illustrated in Fig. 2.7. It

14



Chapter 2. Robust Techniques in Automatic Speech Recognition
Fe

at
ur

es

a) Clean features

 

 

100 200 300 400 500 600 700

2

4

6

8

10

12
-10

-5

0

5

b) Noisy features

 

 

100 200 300 400 500 600 700

2

4

6

8

10

12

-6

-4

-2

0

2

Frames

Fe
at

ur
es

c) Clean features with mean and variance normalization

 

 

100 200 300 400 500 600 700

2

4

6

8

10

12
-3

-2

-1

0

1

2

3

Frames

d) Noisy features with mean and variance normalization

 

 

100 200 300 400 500 600 700

2

4

6

8

10

12 -4

-3

-2

-1

0

1

2

3

Figure 2.7: An illustration of e�ects of mean and variance normalization on speech
features.

is observed that after MVN processing, the clean and noisy features are closer to each

other in Fig. 2.7 (c,d) than the original clean and noisy features as shown in Fig. 2.7

(a,b). MVN has been shown to improve the robustness of ASR signi�cantly, e.g. in [47].

Another more general type of feature normalization technique is the histogram equal-

ization (HEQ) [26, 49]. While CMN and CVN normalize the �rst and second central

moments of feature vectors, HEQ normalizes the histograms of the clean and noisy fea-

tures to a common reference, e.g. the Gaussian distribution. By doing so, all the moments

of the feature’s distribution are normalized. For example, the skewness of the feature dis-

tribution is not changed by MVN, but changed by HEQ. This is because MVN is a linear

transformation of the features, while HEQ represents a nonlinear transformation of the

features. In practice, HEQ could produce better results than MVN if the feature’s dis-

tribution is signi�cantly di�erent to the Gaussian distribution. However, a disadvantage

of HEQ is that it requires more test data to reliably estimate the mapping function than

MVN. Recently, a parametric implementation of HEQ is proposed with fewer parameters

which requires less training data and can be estimated using the MMSE criterion [52]. A

further improvement of HEQ was proposed in [53], where the parameters are estimated to

both normalize the histograms of features and maximize the likelihood of the normalized

features evaluated on the acoustic model.
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While CMN, CVN, and HEQ all normalise the probability distribution of features, an-

other group of feature normalization methods instead attempts to normalise the temporal

information of the speech features, i.e. the correlation between feature frames. For exam-

ple, Relative Spectra (RASTA) [27] and Auto-Regressive Moving Average (ARMA) [50]

are two temporal �lters that operate on the feature trajectories to improve the tempo-

ral characteristics of features. RASTA is a bandpass �lter that removes the very low

frequencies (< 1Hz) of feature trajectory called modulation frequency. RASTA also at-

tenuates modulation frequencies above 16Hz as it is found that the high frequencies are

mostly due to noises. Hence, RASTA removes modulation frequencies less relevant to

speech recognition to improve features’ robustness. ARMA �lter is similar to RASTA,

except that it only smoothes the features without removing the very low frequencies.

Both ARMA and RASTA are designed o�ine and kept �xed during feature normaliza-

tion. Although ARMA and RASTA improve the temporal characteristics of features,

they do not explicitly normalize the temporal structure of features. A recent temporal

�lter, called temporal structure normalization (TSN) �lter [54], was proposed to normal-

ize the temporal structure of noisy feature trajectories, represented by the power spectral

density (PSD) function of the trajectories, to that of clean feature trajectories through

linear �ltering. The TSN �lter is designed on a per-utterance basis, hence adapts to the

speech signal noisy condition automatically. For example, it is shown that the TSN �lter

tends to smooth features more heavily when the SNR level is lower and less if the signal

is cleaner.

The distribution-normalizing methods, such as MVN and HEQ, are usually combined

with temporal �lters, such as RASTA, ARMA, and TSN, in an ad-hoc way. It is com-

mon that MVN or HEQ is applied �rst, followed by temporal �lters. Recently, a method

called joint spectral and temporal normalization (JSTN) [55] was proposed to integrate

a generalized version of MVN and TSN in a single framework. It is found that JSTN

performs better than simple cascade of MVN and TSN in both noisy and reverberant

speech recognition. One key contribution of JSTN is to introduce maximum likelihood

(ML) criterion and a reference Gaussian mixture model (GMM) trained from clean fea-

tures to guide the �lter design. This idea is further extended in maximum normalised

likelihood linear �ltering (MNLLF) [56] where a novel Kullback Leibler (KL) divergence
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based criteria is used to replace the ML criterion. In [56], MNLLF is shown to outperform

JSTN and TSN in noisy and reverberant speech recognition task Aurora-5.

Recently, in [57], a combination of spectral subtraction and temporal structure nor-

malization was studied in Aurora 2 database. The combination performs better than

both SS or TSN alone. In [58], a �lter-based histogram equalization (FHEQ) was pro-

posed to integrate a temporal average (TA) �lter with HEQ. FHEQ utilizes the TA �lter

to smooth the statistic probability sequence before mapping. In [59], the TA �lter is

replaced by a Median �lter to reduce the sensitive to high local noise intensities.

2.2.1.2 Feature-based Maximum Likelihood Linear Regression

fMLLR is a vector-based linear feature transformation and de�ned as follows [4, 29]

y
(d)
t =

DX
i=1

a
(d)
i x

(i)
t + b(d) (2.8)

or in vector form

yt = Axt + b (2.9)

where xt = [x
(1)
t ; :::; x

(D)
t ]T and yt = [y

(1)
t ; :::; y

(D)
t ]T are the observed and processed feature

vectors at frame t, respectively. D is the dimensionality of the feature vectors. a
(d)
i for

i = 1; :::; D is the dth row vector of the transformation matrix A. b(d) is the dth element

of the o�set vector b. Each y
(d)
t is a linear weighted sum of the observed features x

(d)
t in

all dimensions of current frame. Hence, fMLLR utilizes the correlation information (or

regularity) between feature dimensions within a frame.

It is well known that applying fMLLR transform in feature space is equivalent to

applying a global CMLLR in model space (i.e. a single transformation is used in model

adaptation) [4,29]. This property leads to the use of the log-likelihood of observations as

the objective function to estimate fMLLR transform. EM algorithm is used to �nd the

optimal transform. Particularly, the parameters of fMLLR are estimated by maximising

the following auxiliary function

Q(A; �A) = Const:+ T log jAj�
TX
t=1

MX
m=1


t(m)

2
(Axt + b� �j)T��1

j (Axt + b� �j) (2.10)
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where 
t(m) represents the posterior probability of the mth component f�m;�mg, M is

the number of Gaussian components and T is the number of frames. In [29], a closed-

form solution has been derived for the diagonal transformation case. In [4], a row by row

iterative method has been proposed to obtain a solution for the full transformation case.

fMLLR transform has been widely used in speech recognition systems to deal with

nuisance variations of speech features, such as speaker variation, channel and noise vari-

ations. A common characteristics of these variations is that their e�ect on the features is

usually within one analysis frame, hence fMLLR is able to reduce the variations by using

just 1 frame speech features as input. Given enough adaptation data, e.g. several utter-

ances, fMLLR is e�ective in reducing the contribution of these variations in the feature

representation. However, for distortions that lasts for longer time, e.g. reverberation

e�ect may last up to 1s, fMLLR is inherently ine�ective due to its use of a single frame

that contains at most 0.1s of speech information when considering the dynamic features.

2.2.1.3 Clean Speech Feature Estimation

Noise Suppression

A popular clean speech signal estimator is spectral subtraction (SS) method [13] which

was originally proposed for speech enhancement rather than robust speech recognition.

The SS method tries to remove noise from noisy signal by subtracting the noise magni-

tude from the noisy magnitude in the frequency domain. The noise magnitude can be

estimated from speech-free frames. A general form for SS is [60]

jX̂fi;tj
 = max (jYfi;tj
 � E(jNfi;tj)
; �) (2.11)

where Yfi;t, X̂fi;t and Nfi;t are the noisy, estimated clean and noise Fourier coe�cients of

a frequency bin fi at a particular frame t, respectively. E(jNfi;tj) is the expected value of

the noise spectrum, � is the noise 
oor to avoid negative estimate of jX̂fi;tj
, and 
 is a

tunable parameter to select the domain in which the subtraction takes place. Magnitude

SS is realised when 
 = 1 and the phases of the Fourier coe�cients of the speech and

noise are assumed to be identical [13, 60]. Power SS is realised when 
 = 2 and the

speech and noise are assumed to be uncorrelated [60]. In literature, several variations
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of the spectral subtraction method have been proposed. They include non-linear spec-

tral subtraction [61], selective spectral subtraction [62], MMSE spectral subtraction [63]

and multi-band spectral subtraction [64]. A detailed review of the spectral subtraction

algorithm and its variations can be found in [65]. Although SS is e�cient in removing

noise, its performance heavily relies on an accurate estimation of noise, which is itself a

challenging task especially in nonstationary noisy environments. In addition, SS does not

remove convolutional noise explicitly. Finally, the above SS operates in the frequency

domain and not on the desired �nal cepstral domain. It is believed that the domain

of clean speech feature estimator should be as close to the �nal features as possible to

achieve better robustness [16,66].

Besides SS, a group of MMSE estimators have been proposed to operate in various

stages of feature extraction. Let x denote the clean speech feature we want to estimate in

a certain domain, e.g. the log Mel �lterbank domain. The MMSE criterion to estimate

x is to minimizes the expected squared errors between the clean estimate ~x and x.

Mathematically, it is as follows

x̂ = arg min
~x
E
�
kxt � ~xtk2 j O;M

�
= E (xt j O;M)

=

Z
RD

xtp(xt j O;M)dxt (2.12)

where k�k2 denote Euclidean norm, O is the noisy observation, D is the dimension of fea-

ture vectors, andM is the set of free parameters used for enhancement. Various MMSE

estimators have been derived in [15, 16, 51, 66, 67]. In these studies, ASR performances

have been shown to improve. However these estimators require accurate noise estimation

which remains a challenge.

Since it is impossible to completely remove the noise from noisy signal, the uncertainty

of the clean feature estimate can be taken into account during decoding to improve the

robustness of ASR system. A solution is that instead of using a point estimate of the

features, the clean speech posterior, i.e. p(xjy) where x is clean features and y observed

features, is embedded into the form of the likelihood calculation [68]. The clean speech

feature estimate is usually dependent on the noise estimate. If the clean estimate is

modelled by a single Gaussian, then the variance of the clean estimate is a function of
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the noise variance. As a result, the acoustic model variance needs to be compensated

for the noise variance. Another solution is to utilize the joint clean and noisy feature

distribution which can be estimated using the VTS method [51,69]. The likelihood of the

observed features p(y) can then be derived from the joint p(x;y) to obtain the uncertainty

decoding forms such as in [69]. By including uncertainty handling during decoding has

been shown to signi�cantly improve the ASR performance in noisy environments [69].

These techniques need to update the acoustic model and we will present a brief discussions

on model compensation techniques in the next section.

Dereverberation

In distant-talking speech recognition, beside additive background noise, reverberation is

another major source which causes distortion in the received speech signal. Reverberation

occurs when the source speech is re
ected on surfaces in a room while travelling from the

speaker’s mouth to microphone. The collection of the re
ected speech creates a sequence

of decaying copies of the original speech and its e�ects can span across several consecutive

frames.

In feature space, reverberation usually causes a temporal smearing of features. Hence,

applying a �lter on feature trajectory to reduce the reverberation’s e�ects is a popular

approach. In literature, various linear �lters have been proposed to cope with reverber-

ation. Most methods are applied in low level speech features, e.g., in [17{19], the �lter

is applied on STFT coe�cients, in [20{22], the linear �lter is applied on power spectra

while ignoring the signal phases. The common idea of these methods is to design the

�lter based on the explicit distortion model according to the physical knowledge of re-

verberation. For higher level speech features, e.g. log Mel spectra coe�cients, the linear

�lter no longer can be derived from the explicit distortion model. Instead, the clean

features are tracked by an extended Kalman �lter [70]. Alternatively in [71], the late

reverberation is treated as non-stationary additive noise and the non-stationary additive

distortion is tracked and removed using particle �lters. A detailed review of robustness

against reverberation can be found in [31].

Recently, deep learning approach is also applied to handle noisy and reverberant

environments. In [72], deep neural networks (DNN) was used as a nonlinear mapping to
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transform noisy and reverberant speech features to clean features. Another type of neural

network, a denoising autoencoder (DAE), was used in [73,74]. In [75], an improvement of

DEA was proposed by applying a post-processing method based on temporal structure

normalization (TSN) �lter on the DEA transformed features to normalize the modulation

spectra of speech features. The combination of DEA and TSN showed a relative error

reduction rate of 9:33% in real reverberant environments.

2.2.1.4 Discussions

In the thesis, three novel feature-based robust techniques will be presented. The �rst

method [33] is a modi�cation of spectral subtraction [13] for non-stationary noise cases.

This method will be presented in Chapter 3. The second method [34] is a clean speech

feature estimation technique using particle �lter and will be presented in Chapter 4. The

third method [36,37] is a general linear feature transformation to map input features to

desired clean training features and will be presented in Chapter 5.

Although these proposed methods are in feature space, their relationships with model-

based approach are high. Particularly, the �rst method is motivated by a limitation of a

vector Taylor series (VTS) model compensation method. The VTS model compensation

works well for stationary noise condition but performance degrades for non-stationary

noise cases. Hence, the �rst method proposed to combine spectral subtraction with the

VTS model compensation to improve the ASR system under the non-stationary noisy

condition. The second method uses side information provided by an acoustic model to

estimate the clean speech features. Hence, model adaptation techniques can be applied

to improve the accuracy of the side information. Finally, in the third work, we found

that feature adaptation and model adaptation are complementary and applying them

jointly will signi�cantly improve performance. From these observations, we will review

model-based robust techniques to provide the background knowledge to understand the

relationships in the following sections.

2.2.2 Model-based Robust Techniques

In the mainstream HMM-based ASR systems, the acoustic model captures the condi-

tional distribution of training features given speech classes. When the speech signal is
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corrupted by channel and noise, the distribution of test features is di�erent from the

training features, i.e. there is mismatch between training and test conditions. As a re-

sult, the acoustic model no longer accurately represents the test features and hence causes

the recognition performance to degrade. To improve robustness, model-based methods

have been proposed to adapt the acoustic model to better represent the test feature’s

distribution. This strategy is di�erent from feature-based approach which transforms

the observed noisy feature towards the training feature while keeping the acoustic model

unchanged.

Model adaptation methods usually require adaptation data and its true transcription

to adapt the acoustic model [30]. It is required that the adaptation data are similar to

the target test data in terms of acoustic characteristics as otherwise, a mismatch again.

Generally speaking, the more adaptation data, the more e�ective the adaptation. In

cases when there is no adaptation data, multiple pass decoding strategy can be used [30].

In the �rst pass, the unadapted acoustic model is used to decode the test utterance to

obtain an initial hypothesis. This hypothesis is then treated as the true transcription and

the test data are reused to adapt the model. The adapted model is then used to decode

the test utterance. This strategy of adaptation is called self-adaptation or unsupervised

adaptation [30].

There are several ways to categorize the numerous model adaptation methods in the

literature. For example, one can classify them based on the use of distortion modelling,

e.g. explicit or implicit distortion modellings [32]. In the explicit distortion modelling,

researchers utilize the physical knowledge of how the speech is distorted to predict the

noisy acoustic model from the clean acoustic model. In the implicit distortion modelling

case, a model transformation which does not rely on the physical knowledge is applied.

In this section, the implicit distortion modelling approach is �rst reviewed, followed

by explicit distortion modelling. Besides describing the methods, their advantages and

disadvantages will be discussed.

2.2.2.1 Implicit Distortion Modelling Approach

Maximum a posteriori Adaptation

The classical model adaptation method is the maximum a posteriori [3] method that was

initially proposed for speaker adaptation but is also applicable to mismatch caused by
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noise and channel. In the conventional ML estimation, the parameters of the acoustic

model are assumed to be unknown constants. However with this formulation, it is not

easy to adapt the acoustic model as it requires a combination of the new information

in the adaptation data and the previous information in the acoustic model. Instead, in

MAP, the parameters are assumed to be random variables and the adaptation criterion

is to maximize the posterior distribution of the parameters, i.e.,

�̂ = arg max
�

p(�jY ) = arg max
�

p(Y j�)p(�) (2.13)

where � is the set of model parameters, Y is the adaptation data, p(�jY ) is the posterior

distribution of the parameters given the adaptation data, p(Y j�) is the likelihood of the

adaptation data, and p(�) is the prior distribution of the parameters. Equation (2.13)

provides an e�ective way to integrate the new information in the adaptation data through

p(Y j�), with the prior information of the acoustic model p(�). It was shown that if the

prior distribution is selected to be the conjugate distribution of the likelihood p(Y j�),

closed-form solution of (2.13) can be derived [3].

An advantage of MAP is that if p(�) is chosen as the conjugate prior for p(Y j�),

its estimate of the model parameters is a linear combination of the initial parameters

obtained during training and the new ML estimate from the adaptation data [3]. If the

amount of adaptation data is small, the MAP estimate will be close to the initial values.

On the other hand, if there is a large amount of adaptation data, the MAP estimate

will be close to the ML estimate from the adaptation data. It is also shown that given

unlimited amount of adaptation data, the MAP estimate asymptotically equals to the ML

estimate of the parameters from the adaptation data. Therefore, the performance of MAP

adaptation usually improves with the amount of adaptation data, and its performance

equals to a retrained model if the amount of adaptation data is very large [30].

The biggest limitation of MAP is that its performance is often poor if the amount of

adaptation data is very few, e.g. less than 1 minute. This is because the MAP only adapts

the Gaussians that are \observed" in the adaptation data. For unobserved Gaussians,

their parameters are unchanged. To alleviate this limitation, the correlation between seen

and unseen units is taken into account to share the adaptation parameters. For example,

correlation MAP [76] shares adaptation parameters via joint prior of mean vector of
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correlated units. Alternatively, the correlation among Gaussians can be organized as a

tree structure such as in structured MAP [77]. A transformation is assigned to each

node of the tree and estimated using MAP scheme. Hence, if little adaptation data is

available, the transformation parameters of the leaf nodes close to the prior and if more

adaptation data are available, the prior transformation parameters can be inherited from

higher levels in the tree.

Transform-based Adaptation

Linear transformation of model parameters is a popular approach to adapt the acoustic

model. Examples include the maximum likelihood linear regression (MLLR) [5, 78] and

constrained MLLR (CMLLR) [4] approaches. In MLLR, it is assumed that the mean

vector and covariance matrix of the adapted model are linear transformations of the

initial model as follows:

�̂m = A�m + b

�̂m = H�mH
T (2.14)

where �̂m and �̂m are the adapted mean and covariance matrix of the mth Gaussian

mixture in the acoustic model, A is a D�D transform matrix for mean vectors, b is a D

dimensional bias vector, H is a D�D transformation matrix for the covariance matrix,

and D is the feature vector dimension. A, H and b are estimated by maximizing the

likelihood of the adaptation data Y as follows:

fÂ; b̂; Ĥg = arg max
A;b;H

log p(Y j�;A; b;H) (2.15)

As there is no closed-form solution for the above maximization problem, the expectation

maximization (EM) method is usually used to �nd the solution iteratively [4, 5].

An advantage of MLLR adaptation compared to MAP is that it is less a�ected by the

unseen Gaussians discussed in the previous section. This is due to the fact that the mean

and covariance transforms are shared by all the Gaussians in the acoustic model, and

hence the mean and covariance of unseen Gaussians are also adapted through the shared

transforms. However, as the amount of adaptation data increases, the performance gain

of MLLR quickly saturates as the number of free parameters in the transforms is limited.
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To increase the e�ectiveness of the MLLR, multiple sets of transforms can be used instead

of a single set of global transforms. To achieve this, the Gaussians in the acoustic model

are usually clustered into several classes using regression-tree-based clustering [5], and

then the transformation parameters are estimated for each data class. The number of

classes is usually proportional to the amount of adaptation data to ensure that there is

enough data for each class. In addition, MLLR has been found to be complementary to

MAP and these two methods can be applied together [8, 79,80].

The MLLR adaptation method will modify all the acoustic model parameters in its

adaptation process. This will be computationally expensive if the model is large. The

constrained version of MLLR, i.e. the CMLLR adaptation, reduces the computation

signi�cantly by applying feature transformation to achieve the same e�ects instead. CM-

LLR di�ers from MLLR by the fact that the mean and the covariance transforms are

constrained to be the same; in other words, H = A. With this constraint, it is shown

in [4] that transforming the model parameters is equivalent to the transformation of

feature vectors. In the case of multiple classes of transforms, the feature vectors are simi-

larly transformed multiple times using class-dependent transforms. As feature transform

is much more e�cient than transforming the models, especially when model need to be

updated constantly, CMLLR provides an e�cient way to adapt the model towards the

test environment.

Although MLLR and CMLLR can achieve faster adaptation than MAP, they still

requires a su�cient amount of adaptation data to reliably estimate the transform pa-

rameters [81]. In the case when there are few adaptation data, MLLR and CMLLR often

fail. In such cases, there are several ways to improve MLLR and CMLLR. The simplest

way is to constrain the transform matrices to be diagonal or block diagonal to reduce the

amount of free parameters. However, this method often seriously limits the performance

gain of model transformation. Another approach is to use Bayesian estimate of trans-

forms rather than ML estimate as in MLLR and CMLLR. In such methods, the concept

of MAP and transform-based adaptation are combined and a prior distribution for the

transform parameters is introduced, again conjugate prior is chosen for simplicity [82]. A

similar approach to Bayesian estimate is to regularize the ML estimation of transform es-

timation. For example, L1 and L2 constraints are added into the ML estimation formula

to regularize the ML estimate [83,84].
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Model Combination Methods

An even faster way for model adaptation is to linearly combine multiple existing models

[85,86] or transforms [87]. In such methods, a group of acoustic models or transforms are

�rst trained for a speci�c speaker or environment. The trained models and transforms

are called basis models and transforms, respectively. During adaptation, it is assumed

that the adapted model or transform can be approximated by a linear combination of

these basis models or transforms. The advantage of this approach is that only the weights

of the individual models or transforms need to be estimated, which is usually much less

than the number of free parameters in the acoustic model or transform. Hence, very

little adaptation is required to estimate these weighting parameters.

Many of the model combination methods estimate the mean vectors of the adapted

model as a combination of the mean vectors of the speaker and environment dependent

basis models, e.g. cluster adaptive training (CAT) [85]. In these methods, the mean of

the adapted model is estimated as follows:

�̂m =
NX
i=1

wi�
i
m (2.16)

where �im is the mean vector of the mth Gaussian of the ith basis model, wi is the weight

of the ith basis model and shared by all the Gaussians, and N is the total number of basis

models. Similar to MLLR, the weights are estimated by maximizing the log likelihood of

the adaptation data, log p(Y j�; w1; :::; wN), and closed-form solution is available.

In another mean combination method, called eigenvoice [86], the mean vectors of a

basis model are concatenated to form a supervector for the basic model. The principal

component of supervectors for all the basis models are then found using FA. During

adaptation, the mean supervector of the adapted model is found by a linear combination

of the principal components of supervector. By this strategy, the correlation between the

mean vectors of di�erent basis models are captured and hence only very few number of

principal components are needed for the linear combination.

While CAT and eigenvoice combine basis models to form the adapted model, another

class of approach, the transform combination methods instead form a new transform

for speci�c adaptation data by linearly combining the basic transforms. Two examples
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are the mean MLLR transform combination [88] and eigenMLLR [87]. In the mean

MLLR transform combination, the mean basis transforms are directly used in the linear

combination, while in eigenMLLR, the principal components of the transforms are used.

The concept of eigenMLLR is very similar to eigenvoice, i.e. to �nd a few number of

principal components to reduce the number of basis needed for the linear combination. In

eigenMLLR, each basis transforms is �rst converted to a vector form, then the principal

components of the vectors of all basis transforms are found using PCA. Both mean

transform combination and eigenMLLR are found to adapt the models e�ciently with

just several seconds of adaptation data.

Though model combination methods improve ASR performance when given small

adaptation data, the word accuracy quickly saturates when given more adaptation data.

This is due to the fact that only a very small number of adaptation parameters are

available for optimization [89]. One solution to this issue is to apply this approach as

global adaptation and then use the global adapted models as a prior information for

MAP adaptation [89].

2.2.2.2 Explicit Distortion Modelling Approach

The previous section discussed model-based methods which do not directly utilize a

physical model of noise distortion. Such techniques are referred to as adaptive model-

based methods [90]. This section discusses another group of model-based methods which

make use of a physical model of noise distortion to predict the noisy acoustic model.

Such techniques are referred to as predictive model compensation [90].

Distortion Modelling

Speech signals are corrupted by additive noises and channel distortions according to

physical laws and the corruption process can be described mathematically. For example,

a simple equation to describe the relationship between speech, noise, and channel in the

time domain is as follows [91]:

y[m] = x[m] ? h[m] + n[m] (2.17)

where x[m] is the unobservable clean speech signal, h[m] is channel impulse response,

n[m] is the additive noise, and y[m] is the observed corrupted speech signal. m is the
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time domain sample index and ? is the convolution operator. Although there are other

possible equations to describe the noise corruption process, the equation (2.17) is found

to be adequate for speech recognition and popular in robust speech recognition literature

[51, 90{92]. From (2.17), it is possible to derive the relationship between the clean and

noisy features, usually called mismatch function. If the distribution of clean speech

features, noise features, and channel features are all known, it is theoretically possible

to predict the exact distribution of noisy features. This fact motivates all predictive

model-based methods, in which the task is to �nd an acoustic model that models the

distribution of the noisy test data well. Predictive model compensation methods [90]

usually �rst estimate the noise and channel statistics from the adaptation data, and then

estimate the noisy acoustic model from the clean trained acoustic model through the

mismatch function.

Due to its use of the distortion model, predictive methods have some advantages

over adaptive model-based methods discussed in the previous section. One important

advantage is that the predictive methods usually have only a small number of parameters

to estimate, and hence require less adaptation data. For example, the free parameters

to be estimated are the noise and channel statistics, which are usually represented by

Gaussian distributions. This is usually less than adaptive model-based methods in which

the free parameters are the acoustic model parameters itself (e.g. MAP) or transform

parameters (e.g. MLLR). Although the number of free parameters can also be reduced by

some tying, such parameter tying usually results in limiting transformation of the acoustic

model and reduces the potential gain from model adaptation [81]. On the other hand,

predictive model compensation is able to apply di�erent transformation to individual

Gaussians in the acoustic model [90], even though the noise and channel distributions

are shared among all the clean features Gaussians. This is due to the fact that the

knowledge of interactions among the clean speech, noise, and channel is explicitly used

in predictive methods through the mismatch function.

The Mismatch Function

From the distortion model (2.17) given in time domain, we need to obtain the mismatch

function in the feature domain. According to [11], the mismatch function in the MFCC
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domain is:

y = C log

�
exp(C�1(x+ h)) + exp(C�1(n)) + 2� � exp(

1

2
C�1(x+ h+ n))

�
= f(x;h;n) (2.18)

where y, x, n, and h are the noisy, clean, additive noise feature vectors, and convolutional

distortion in the MFCC domain, respectively. Note that we ignored the frame index for

simplicity. C and C�1 are the DCT matrix and its pseudo inverse. The logarithm log()

and exponential exp() functions in (2.18) are element-wise operations and the � operation

for two vectors denotes element-wise product. � is the \phase factor" proposed in [66]

and usually set to a constant for simplicity. f(x;h;n) is referred to the phase-sensitive

mismatch function. Magnitude phase-insensitive mismatch function results from � = 1

and power phase-insensitive mismatch function as � = 0 [92]. For the dynamic features,

the continuous time approximation is commonly used to derive the dynamic parameter

mismatch function (for details of derivation, see [11]).

It is observed that the static parameter mismatch function, i.e. equation (2.18), is

highly nonlinear. As a result, it is very di�cult to predict the distribution of the noisy

features given the distributions of clean features, noise, and channel in the feature domain.

Various approximation methods have been proposed and are reviewed as follows.

Approximations of the Noisy feature Distribution

The predictive model compensation approach is usually applied for the HMM with GMM

as acoustic model. For each HMM state of the acoustic model, a noisy GMM is predicted

from the original clean trained GMM. For simplicity, it is usually assumed that each

mixture of the noisy GMM is individually estimated from clean trained mixture GMM.

With this assumption, the noisy model prediction problem can be described as follows:

for each clean Gaussian in the acoustic model, a noisy Gaussian is generated by combining

the clean Gaussian with the noise and channel Gaussians. For example, the noisy feature

mean �
(s;m)
y of the mth Gaussian mixture of the sth state is de�ned as

�(s;m)
y = E(f(x;h;n)js;m) (2.19)
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where E is the expectation operator and f is the mismatch function. As the mismatch

function f(x;h;n) is highly non-linear, there is no closed-form solution for the integral.

Various methods have been proposed to evaluate (2.19) e�ciently.

In [93], numerical integration and Monte-Carlo sampling approaches have been used

to evaluate the integral. In the numerical integration approach, the Gauss-Hermite

quadrature [94] has been used to approximate the integrals in order to reduce the com-

putational cost. In the Monte-Carlo sampling approach, clean feature samples and noise

feature samples are generated following their distributions and noisy feature samples are

then computed through the mismatch function. The noisy feature distribution can then

be estimated from these noisy feature samples. By increasing the number of samples,

very accurate estimates of the noisy model parameters can be achieved. However, as the

total number of samples increases, the computational cost increases dramatically [90].

To obtain a closed-form solution of equation (2.19), another approach, called log-

normal approximation, was applied in the parallel model combination (PMC) framework

[93]. In PMC, noise and clean speech models are �rst converted from the cepstral feature

domain to the �lterbank domain (before logarithm and DCT). As the features and noises

are assumed to be Gaussian distributed, their counterparts in the �lterbank domain are

log-normal distributed. The advantage of generating noisy models in �lterbank domain is

that the mismatch function in the �lterbank domain can be approximated as ~y = ~x+ ~n,

i.e. the noisy �lterbank coe�cients is just the addition of the clean speech and noise

�lterbank coe�cients. However, the distribution of ~y is unknown due to log-normal

distributions of ~x and ~n. Therefore, the log-normal approximation is used for simplicity

which states that the sum of two log-normally distributed variables is approximately

log-normally distributed. By assuming that ~y also follows log-normal distribution, the

conversion back to cepstral domain of the noisy model parameters is straightforward as

the noisy features will be normally distributed in the cepstral domain.

The PMC is an e�ective framework utilizing the physical knowledge re
ecting the

impact of noise on speech to compensate the acoustic models. The key idea is that the

speech features are converted to a suitable feature domain to more easily estimate the

noisy distribution. Although the log-normal approximation can be applied e�ciently in

�lter-bank domain, it does not provide an easy way to obtain a closed-form solution of
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acoustic model compensation in cepstral domain and thus is hard to combine with other

optimization methods, e.g. ML noise parameters re-estimation.

Another way to predict the noisy feature distribution e�ciently is to use the vector

Taylor series (VTS) expansions to approximate the mismatch function (2.18). If the

zeroth-order VTS expansion is used and the channel and the phase factor are ignored,

the estimate of the noisy mean is obtained as

�y ’ C log(exp(C�1�x) + exp(C�1�n)) (2.20)

where �y and �x are feature means of noisy and clean Gaussian mixtures of speech

model; �n is the feature mean of noise model. This approximation is also referred to as

the log-add approximation in [93]. Although it provides a simple way to update the mean

vectors, the disadvantage of using zeroth-order VTS approximation is that the variance

of the Gaussians can not be updated.

If the �rst-order VTS expansion is used, the mismatch function (2.18) becomes a

linear function as follow [11]

y ’ f(�x;�h;�n) + Jx(x� �x) + Jh(h� �h) + Jn(n� �n) (2.21)

where f(�x;�h;�n) is the value of the mismatch function evaluated at the expansion

point (�x;�n;�h). The Jacobian matrix J(�) is de�ned as the partial di�erentiation

of the mismatch function w.r.t. each variable and evaluated at the expansion point

(�x;�n;�h), i.e.

J(�) =
@y

@(�)

����
�x;�n;�h

(2.22)

The �rst-order VTS expansion approximates the highly non-linear mismatch function

(2.18) by the Gaussian-dependent piecewise linear function (2.21). As there are a large

number of Gaussian in the acoustic model, the mismatch function is approximated by a

large number of linear function.

Since (2.21) is a linear function w.r.t. x, h and n, it signi�cantly simpli�es the esti-

mation of noisy distribution. Particularly, the noisy distribution’s mean and covariance

are computed as follows [11]

�y = f(�x;�h;�n) (2.23)

�y = Jx�xJ
t
x + Jn�nJ

t
n (2.24)
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From the above equations, it shows that the �rst-order VTS approximation allows the

update of the covariance matrix to re
ect the e�ects of noise. This is in contrast with

the zeroth-order VTS in which the covariance matrix cannot be updated.

The above discussed approximations have their own advantages and disadvantages.

The log-add approximation in equation (2.20) is the simplest but ignores variance com-

pensation. The log-normal approximation and �rst-order VTS can be used to compensate

the variances but are computationally expensive. In addition, the noisy covariance ma-

trix is usually full rank even though the clean model covariance matrix is diagonal. To

enable fast decoding, it is common to diagonalize the noisy covariance [92]. Currently,

the �rst-order VTS is popular due to its linearisation of mismatch function. This lineari-

sation simpli�es the noisy model parameter estimation and provides an e�ective way to

estimate the noise model parameters which is hard in the PMC approach.

The �rst-order VTS model compensation also motivated the �rst work in this the-

sis. In VTS, the noise features are usually assumed normally distributed, although this

assumption is not true in real-life condition. Hence, the �rst work proposes a feature

enhancement process to normalize the statistics of the noise features toward a Gaussian

distribution. It helps to improve the accuracy of the noise model estimation, and hence

improve the accuracy of word recognition.

Noise Model Parameter Estimation

To complete the review of predictive model compensation, the estimation of noise and

channel will be discussed. The additive noise is usually modelled by a single Gaussian

distribution with a mean vector and covariance matrix. The channel is however assumed

to be constant and hence only the mean vector is estimated. A simple method is to

compute the mean and covariance matrix of noise feature vectors from the speech-free

frames and the convolutional noise mean is set to zero. The noise and channel statistics

are optimized by using the maximum likelihood (ML) criterion, i.e. seeking for a set of

noise parameters that maximizes the likelihood of the noisy speech features evaluated on

the compensated noisy acoustic model [11,95].

An advantage of the ML noise estimation is that the decoder’s feedback is taken

into account to optimize the noise model parameters. Although the estimated noise and
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channel may not be the true additive noise and channel, they are expected to work well

for the ASR task as it is optimized for this purpose [92]. A disadvantage of the ML

noise estimation is its high computational cost due to the multiple decoding passes for

obtaining the decoder’s feedback.

2.3 Chapter Summary

In this chapter, the feature-based and model-based robust ASR techniques are reviewed.

These two approaches have their own advantages and disadvantages. For example, the

feature-based methods are easy to implement and computationally e�cient, while the

model-based methods are more powerful and 
exible but generally requires more com-

putational power. In practice, these two groups of techniques can be used together to

improve ASR robustness. For example, both feature normalization (e.g. MVN) and

model adaptation (e.g. MLLR/CMLLR) are used in many practical systems.

In Chapter 3, a novel combination of spectral subtraction method and VTS model

compensation will be proposed. The spectral subtraction method will be modi�ed to only

reduce the non-stationary characteristics of the noise while the VTS model compensation

will be used to handle the residual noise.

In Chapter 4, a novel approach using side information from HMM into particle �lter

framework to track the clean speech features will be presented. This is a novel approach

to integrate the distortion model of speech into the decoding process.

In Chapter 5, a generalized linear feature transformation to compensate for the back-

ground noise and reverberation will be presented. The transform is the generalization of

fMLLR transform and trajectory-based transform. It is motivated by the �nding that

human speech comprehension relies on the integrity of both the spectral content and

temporal envelope of speech signal.
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Chapter 3

Combination of Feature
Enhancement and VTS Model
Compensation for Non-stationary
Noisy Environments

One of the main causes of speech distortion is due to background noise. Normally,

the background noise is assumed to be stationary. However in real-life, the stationary

assumption is false as most noises such as babble noise exhibit some degree of non-

stationary characteristics. Nevertheless, by assuming stationarity, one greatly simpli�es

the complexity of robust methods such as in VTS model compensation [96]. Motivated

by the e�ciency of the stationary assumption, a novel feature enhancement is proposed

to normalise the background noise so that the assumption becomes more accurate.

The proposed method is a modi�cation of spectral subtraction (SS) method [13].

Instead of trying to completely remove the noise from noisy speech, the proposed method

only tries to make the noise feature statistics more stationary. By this strategy, it reduces

the di�culty of both the enhancement problem as well as the back-end process. If we

attempt to completely remove the noise in the front-end process, it may cause the loss of

speech information in the speech data. Consequently, it will make the back-end process

harder to correctly estimate the phone sequence. In our approach, we try to remove only

a portion of the noise where the noise level is high, and add some noise to the input signal

where the noise level is low. In this way, the residual noise can be made more stationary

and be e�ectively handled in the back-end process using VTS model compensation.
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Figure 3.1: The proposed framework of combination of feature enhancement and the
VTS model compensation.

In the front-end process of our proposed work, the input features are modi�ed to

make noise features statistics resemble a Gaussian noise model and the noise model

can be de�ned in advance. In the back-end process, given the target model’s mean

and variance of the noise, we can adapt the means and variances of HMM states to

represent speech features in the expected noisy condition. This can be done by VTS

model compensation technique [96]. Thus the VTS model compensation can be applied

in advance to reduce the time-lag issue. As the adaptation processes in the front-end and

back-end process tie together, we called the proposed method the noise normalization -

VTS model compensation, abbreviated NN-VTS. This work has been published in [33].
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3.1 Overview of the Proposed Framework

The proposed framework is illustrated in Figure 3.1. First, the noise information (n1:T ;�n;�n)

are estimated from the noisy speech input signal, where n1:T represents noise estimate

for frames 1 to T , and �n and �n are the mean and diagonal covariance matrix of

n1:T . With the estimated noise information, the noisy speech features are processed to

reduce the non-stationary characteristics of the noise. Note that this process does not

try to estimate the clean speech features but only to modify the features such that the

noise becomes more stationary and can be better represented by a single Gaussian noise

model. The residual noise will be handled in back-end process using the VTS model

compensation.

There are 3 problems in the framework. The �rst problem is how to enhance the

features such that the residual noise is more stationary. The second problem is how to

handle the residual noise using VTS model compensation. The third problem is how

to estimate the noise in each frame. In this work, enhancing the features to normalize

the noise statistics (the �rst problem) is emphasized. Handling the remaining noise (the

second problem) is based on VTS model compensation in [96]. In this study, we will �rst

use the ground truth noise magnitude (the third problem) to examine the feasibility and

performance of the proposed work under ideal noise estimate condition �rst.

A key question for this work is: if the ground truth noise magnitudes is available,

would applying the proposed noise normalization be better than applying noise subtrac-

tion technique? The answer is yes (more details are presented later). With only noise

magnitude information, we are still unable to estimate exactly the clean speech due to

the unknown phase information between speech and noise. Hence by attempting to com-

pletely remove noise, it may result in loss of speech information and thus make it harder

for the speech recognition step later. By proposing noise normalization method which

allows us to control noise levels and strive to retain all the speech information, the VTS

model compensation in the second stage would be less a�ected.

The actual motivation of this work is from the VTS model compensation. The VTS

method requires a noise model to estimate a noisy speech model from the clean speech

model. Since the VTS method usually works well with a Gaussian noise model, it is not

optimal if the noise is non-stationary. Therefore, the aim of this work is to reduce the
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non-stationary characteristics of the noise so that the VTS method can work better in

non-stationary noisy environments.

In our framework, both front-end and back-end phases are addressed to handle the

non-stationary noise. The noise normalization in the front-end phase is �rst presented.

Handling the residual noise by using the VTS model compensation in the back-end phase

is then derived.

3.2 Feature Enhancement

The objective of the feature processing stage is to process the features such that the

residual noise in the processed features is more stationary than the original noise. Specif-

ically, if the original noise has mean �n and variance �n, then the process attempts to

make the residual noise to have the same mean �n, but with a smaller variance.

Given that nt for t = 1; :::; T is the noise in a test utterance in the MFCC domain

and T is the number of frames, a Gaussian distribution N (�n;�n) can be estimated. To

reduce the noise of the features, we modify the approach of [13,60] such that the features

at time t are processed as follows

ŷt = C log
�
maxfexp(C�1yt)� exp(C�1nt) + exp(C�1�n); �g

�
(3.1)

where ŷt and yt denote the processed features and the original noisy features, respectively,

C and C�1 are the DCT and inverse DCT matrices, the log and exp functions are

element-wise operators and � is the noise 
oor. The operation exp(C�1yt) converts yt

from MFCC domain to Mel �lterbank domain. Similarly, exp(C�1nt) and exp(C�1�n)

convert the noise and noise mean to the Mel �lterbank domain. It is assumed that

the noisy �lterbank is the sum of the clean and noise �lterbanks, i.e. exp(C�1yt) =

exp(C�1xt)+exp(C�1nt). Hence, the nonstationary noise can be removed by subtracting

it from the noise �lterbank. This is the same as applying spectral subtraction in the

�lterbank domain. As spectral subtraction may result in negative �lterbank coe�cients,

a noise 
oor � is used to guarantee positive �lterbank coe�cients. However, the noise


oor introduces a nonlinear distortion to the features. Instead, we propose to add the

global noise �n back to the processed features. This is di�erent from existing works
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of [13,60] which do not have the use of including exp(C�1�n). As a result, the chance of

the processed noisy �lterbanks being negative is signi�cantly reduced. In addition, the

residual noise in the processed features becomes similar to the global noise �n and can

be handled in the VTS model compensation.

In equation (3.1), the instantaneous noise is completely removed in the processed fea-

tures. In practice, as the estimated noise may not be accurate and the phase information

between speech and noise is unknown, removing the estimated noise from the features

may introduce signi�cant distortions. Hence, a partial removal of the instantaneous noise

by the use of weighting � is used instead:

ŷt = C log
�
maxfexp(C�1yt)� � exp(C�1nt) + � exp(C�1n); �g

�
(3.2)

where n and nt are the estimated global noise and local noise feature vectors, respectively.

To generalize the global noise variable in (3.2), we use n to denote the global noise

estimate. The global noise represents the estimated noise in entire utterance whereas

local noise represents estimated noise at a particular time t. � is the tunable parameter

in range 0 to 1 to control the degree of removing the local noise.

3.3 Relationship Between Clean and Enhanced Fea-

tures

Di�erent from noise reduction approach [13] where the standard approach is to completely

remove the noise from noisy speech, our strategy is to have the enhanced features as in

(3.2) still noisy, but with its non-stationary characteristic reduced. By limiting the noise

reduction, this enhancement approach reduces the loss of speech information as well as

simplifying the modelling of noise in the back-end VTS module.

The relationship between clean features and enhanced features can be modelled by a

mismatch function. Using the phase-insensitive mismatch function [32] to represent the

relationship between noisy feature yt, clean feature xt and the local noise nt, i.e.

yt ’ C log
�
exp(C�1xt) + exp(C�1nt)

�
(3.3)
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Figure 3.2: An example of C0 coe�cient values of 0dB street noise features of FAK-
1ZA.08 �le in AURORA2. It is observed that the residual noise is closer to the global
noise estimate, compared to the local noise estimate.

the new mismatch function for the enhanced feature ŷt is obtained by substituting (3.3)

into (3.2) as follows.

ŷt ’ C log
�
maxfexp(C�1xt) + (1� �) exp(C�1nt) + (�) exp(C�1n); �g

�
’ C log

�
exp(C�1xt) + (1� �) exp(C�1nt) + (�) exp(C�1n)

�
= g(xt;nt;n) (3.4)

Note that the 
ooring operator by � in equation (3.4) can be ignored because the term

in the log operator is non-negative. The residual noise in the Mel-frequency domain in

equation (3.4), (1 � �) exp(C�1nt) + (�) exp(C�1n), can be seen as an interpolation

between the global and local noises. An example of the residual noise is illustrated in

�gure 3.2 with � = 0:5. It is observed that the residual noise is more stationary than

the original one. This is the expected outcome from the proposed enhancement process.

Hence, the tunable parameter � can be used to handle the remaining noise and thus it

a�ects the noisy acoustic model compensation.

3.4 Approximations of Noisy Acoustic Models

As illustrated in step 2 of Fig. 3.1, to handle the noise in the back-end module, the noise

model is applied to modify the clean acoustic model to generate the noisy acoustic model.

The proposed noise normalization in the front-end will modify the input features such

that the feature distribution of the noise tends to a Gaussian noise model. Hence, we can

39



Chapter 3. Combination of Feature Enhancement and VTS Model Compensation for
Non-stationary Noisy Environments

use this Gaussian model to adapt the clean acoustic model. Particularly, the means and

variances of all states of clean model HMM are updated according the distortion model

in (3.4). However, the distortion model is highly non-linear model. The conventional

solution is to linearise the non-linear model by using the �rst order vector Taylor series

approximation so that the closed-form can be derived as in [96]. Hence, the means and

variances of the enhanced feature vectors for a particular state are as follows:

�ŷ = E fŷg (3.5)

�ŷ = E
�
ŷ(ŷ)t

	
� �ŷ(�ŷ)t (3.6)

For simplicity, the local noise distribution is assumed to be the same as the global

noise distribution and followingN (�n;�n). The approximation of the mismatch function

g in (3.4) using �rst-order VTS expansion at point (�x;�n;�n) is then

ŷt � g(�x;�n;�n) + Jx(xt � �x) + Jnt(nt � �n) + Jn(n� �n) (3.7)

where Jx = @ŷ
@xt

��
(�x;�n;�n)

, Jnt = @ŷ
@nt

��
(�x;�n;�n)

and Jn = @ŷ
@n

��
(�x;�n;�n)

are the Jacobian

matrices evaluated at point (�x;�n;�n) and

@ŷ

@xt
= C diag

�
exp(C�1xt)

(�) exp(C�1�n) + (1� �) exp(C�1nt) + exp(C�1xt)

�
C�1 (3.8)

@ŷ

@nt
= C diag

�
(1� �) exp(C�1nt)

(�) exp(C�1�n) + (1� �) exp(C�1nt) + exp(C�1xt)

�
C�1 (3.9)

@ŷ

@n
= C diag

�
(�) exp(C�1n)

(�) exp(C�1�n) + (1� �) exp(C�1nt) + exp(C�1xt)

�
C�1 (3.10)

Hence,

Jx = C diag

�
exp(C�1�x)

exp(C�1�n) + exp(C�1�x)

�
C�1 (3.11)

Jnt = C diag

�
(1� �) exp(C�1�n)

exp(C�1�n) + exp(C�1�x)

�
C�1 (3.12)

= (1� �)(I � Jx) (3.13)

Jn = (�)(I � Jx) (3.14)

The static mean and variance of each Gaussian in the noisy model’s GMM are ob-

tained as follows

�ŷ = E(ŷt) = g(�x;�n;�n) (3.15)

�ŷ = Jx�xJ
T
x + ((1� �)2 + �2)(I � Jx)�n(I � Jx)T (3.16)
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The dynamic features are compensated in the same way as in the conventional VTS

method. The continuous time approximation is used as follows

�yt ’
@y

@t

����
t

=
@y

@x

@x

@t

����
t

+
@y

@n(global)

@n(global)

@t

����
t

+
@y

@n(local)

@n(local)

@t

����
t

(3.17)

=
@y

@x
�xt +

@y

@n(global)
�n

(global)
t +

@y

@n(local)
�n

(local)
t (3.18)

Notes that �n
(global)
t and �n

(local)
t can be di�erent due to di�erent estimation criterion.

However, currently, it is assumed that �n
(global)
t = �n

(local)
t = �nt where �nt is

estimated from noise channel. It is also assumed that the clean, the global noise and

the local noise components are independent given a particular mixture m, the delta

parameters of the mixture m are obtained as

��ŷ = Jx��x + (I � Jx)��nt (3.19)

��ŷ = Jx��xJ
T
x + ((1� �)2 + �2)(I � Jx)��nt(I � Jx)T (3.20)

The delta-delta parameters of the mixture m are obtained similarly as follows

��2ŷ = Jx��2x + (I � Jx)��2nt
(3.21)

��2ŷ = Jx��2xJ
T
x + ((1� �)2 + �2)(I � Jx)��2nt

(I � Jx)T (3.22)

It is observed that the new noisy models have the same mean compensation formula as

the conventional VTS model compensation. This is reasonable because the expected noise

is added back into the clean estimate in Mel-frequency domain. Another observation is

that in the variances compensation formulae (3.16), (3.20) and (3.22), the noise variances

are multiplied by a scale ((1 � �)2 + �2). Hence, it can be seen that the residual noise

variance is ((1 � �)2 + �2)�n. The scale value attains the minimum value of 0.5 when

� is 0.5 and approaches to 1 when � approaches to 0 or 1. This observation is expected

because of e�ects from noise normalization process.

3.5 Discussions on Back-end Model Compensation

The previous section has presented an approach to adapt the clean acoustic model HMM

given a Gaussian noise model. When the noise is not stationary, a static Gaussian dis-

tribution will not be adequate to represent the noise states. Hence, to cope with this
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Figure 3.4: An example of the noise model GMM with 2 mixtures. If the clean speech
model has 2 mixtures, the resultant noisy speech model will have 4 mixtures

issue, an obvious approach is to update the noise model whenever the noise character-

istics changes. Although this approach is expected to produce good performance, it is

computationally very expensive because all the acoustic model HMMs need to be up-

dated whenever the noise model changes and especially more so if the noise is highly

non-stationary.

Another way to address the non-stationary characteristics of noise is to use Gaussian

mixture model (GMM) to model the noise distribution. In [90], the noise is modelled

by K Gaussian mixtures. Each mixture represents a possible state of noise. Hence, the

noisy acoustic model will increase the size by K times to capture all possible states of

noisy speech. This is illustrated in Fig. 3.4. However, this approach su�ers from several
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Figure 3.5: An illustration of the key idea of the proposed noise normalization method.
The non-stationary noisy signal is enhanced to reduce the non-stationary characteristic
of the noise. The residual noise is well handled by the VTS method. It simpli�es noise
model and thus improves accuracy of noise model. In addition, it avoids risk of losing
speech information compared to clean speech estimation.

limitations. One obvious limitation is that the complexity of the model is signi�cantly

increased. For example, even with 2 Gaussians mixtures for noise model, the acoustic

model’s size will be doubled and this will lead to signi�cant increase in recognition time

and memory requirement. In addition, not all the K noise mixtures may be required

or desired, e.g, if the noise characteristics are represented by just a subset of the noise

mixtures at a given time, it is not optimal to use all the noise mixtures at that time

as the irrelevant noise mixtures will introduce confusion between di�erent HMMs and

thus a�ect recognition performance. Lastly, the estimation of the noise GMM under

non-stationary noisy environments is not a trivial task.

The proposed framework in this chapter is di�erent from the two above approaches.

Instead of using a GMM or adapting the noise model to model non-stationary noise, the

features are �rst processed such that the distribution of the residual noise features after

the feature processing tends toward a prede�ned noise model. In this way, both issues

of the above approaches can be solved. Fig. 3.5 illustrates the key idea of the proposed

approach. In this way, the noise model is not changed and a single Gaussian mixture

may be enough to model the noise state.
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3.6 Experiments

In this section, the proposed noise normalization is investigated experimentally using the

AURORA2 database. The aim is to answer the question: \If the same noise estimation

technique is applied, would the proposed noise normalization method help to improve

the word recognition accuracy as compared to the conventional VTS model compensation

approach?"

3.6.1 Database

The AURORA 2 database is a continuous spoken digit string corpus [97] with American

adults speaking digit sequences. The number of digits in each utterance is from 1 to 7

digits. This corpus has been designed to evaluate the performance of noise robust speech

recognition algorithms. The corpus includes a clean training data, a multi-condition

training data and three test sets, namely A, B and C.

The clean training data consists of 8440 utterances recorded from 55 male speakers

and 55 female speakers. The multi-condition training data is generated by arti�cially

adding real noise to the clean training data. The 8440 utterances are split into 20

subsets to represent 4 di�erent noises including train, babble, car and exhibition hall at

5 di�erent SNRs including 20dB, 15dB, 10dB, 5dB and clean condition. The G.712 �lter

is applied to both clean speech and noise to simulate channel e�ects.

The test sets A and B are designed for additive noise distortion scenario. The set A

has four noise types: train, babble, car and exhibition hall and the set B has also four

noise types restaurant, street, airport and train station. The clean test set consists of

4004 utterances recorded from 52 male and 52 female speakers and split into 4 subsets

for 4 types of noise for each test set. Each noise is arti�cially added into a subset at 6

levels of SNRs (20dB, 15dB, 10dB, 5dB, 0dB, -5dB). The G.712 �lter is applied to both

clean speech and noise to simulate channel e�ects.

The test set C is designed for both additive and convolutional distortion scenario.

Two subsets of the clean test set are selected for two noises, train and street. The levels

of SNRs are designed to be the same as in the test sets A and B. One di�erence of test

set C from test sets A and B is that a MIRS �lter is applied to both clean speech and

noise to simulate channel mismatch.
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Figure 3.6: An example of the smoothed version of the ideal noise in log-Mel domain.
The fourth bin is plotted.

Test sets A and B are selected to evaluate the proposed method as we will �rst

examine only the additive noise problem. The ground truth noise can be obtained by

subtracting the clean signal from the noisy signal. To proceed in evaluating the proposed

work under a �xed noise estimation framework, we �rst employ a smoothed version of

the true noise features in the cepstral domain to examine the system’s performance. In

another words, we use the smoothed version of the true noise to simulate the estimation

of the noise. We will use actual estimate of the noise in future works. An example of

the smoothed version of the true noise features is illustrated in Fig. 3.6. The use of the

smooth noise is to limit the analysis so that error caused by the noise estimation can be

controlled.

3.6.2 System Con�gurations

The standard ASR system as in [97] is used for the baseline system. In the front-end

con�gurations, the standard 39-MFCC features are used which consist of the �rst 13

cepstral coe�cients, 13 delta features and 13 delta-delta features. The HMM acoustic

model as in [97] is used. Particularly, each digit HMM consists of 16 emitting states and
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Table 3.1: The settings for baseline system

Database Aurora-2
Nature of the task English connected digits

Vocabulary size 11 words: \zero" to \nine" + \oh"
Sampling freq. 8000Hz

Avg. utterance length � 1.8 seconds
Selected training data 8440 clean utterances

55 male speakers + 55 female speakers
Selected testing data 2 test sets (A,B)

Set A 4 noises: subway, babble, car, exhibition
Set B 4 noises: restaurant, street, airport, station
7 levels of SNRs (Clean, 20dB, 15dB, 10dB, 5dB, 0dB, -5dB)
In a total of 56056 utterances (2� 7� 4004)

Speech features The �rst 13 MFCCs, 13 delta and 13 delta-delta features
Acoustic model 16 states word model

3 Gaussian mixtures per state
Language Model No language model

3 mixtures per state. The silence HMM has 3 emitting states with 6 mixtures per state.

The short pause HMM has a tie-state which is linked to the middle state of the silence

HMM. The clean training data is used to estimate these acoustic model parameters for

all demonstrated systems in this section. A summary of the settings for the baseline

system is illustrated in Table 3.1.

The proposed method is compared to two VTS systems: a) the conventional VTS

method with 1 mixture for noise model, called VTS, and b) with 2 mixtures for noise

model, called GMM-VTS. The VTS system has the same front-end, back-end con�gu-

rations and the same number of mixtures in the noisy acoustic models as the baseline

system described in [97]. As for the GMM-VTS system, the total number of mixtures is

double that of the VTS. The proposed system, called noise normalization (NN)-VTS, is

similar to the VTS system but operates on the enhanced features and the modi�ed noisy

model compensation described in subsections 3.4.

Experimental Results

Word accuracy of the VTS, GMM-VTS and NN-VTS are shown in Fig. 3.7. When � = 0,

the NN-VTS is equivalent to the VTS where noise model is a single Gaussian. When
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Figure 3.7: E�ects of the noise normalization with various values of the tunable parameter
� on the word accuracy evaluated on test sets A and B of AURORA2 database

� = 0:5, as discussed in section 3.4, the variance of residual noise features is minimal and

thus the NN-VTS yields the best word error rate (WER) performance of 7:96%. This

represents a 14:4% relative reduction of WER over the VTS baseline. This shows that

the proposed feature processing of reducing the non-stationarity of noise works well with

the VTS model compensation and has the potential to signi�cantly reduce the WER if

the noise can be estimated accurately.

The NN-VTS at � = 0:5 also outperforms the GMM-VTS system where the noise is

modeled by 2 Gaussian mixtures. This result shows that the NN-VTS has the potential

to produce better results than simply using more complicated noise model. In addition,

the NN-VTS is more e�cient than GMM-VTS as it does not increase the number of

Gaussians in the acoustic model.

3.7 Summary

In this chapter, an extension of the VTS method working on non-stationary noisy envi-

ronments is proposed. The modi�ed spectral subtraction method is applied to reduce the
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non-stationary characteristic of the noise. Hence, the residual noise is more stationary

than the original noise and better modeled in the VTS model compensation. A smoothed

version of the true noise is used to investigate the potential of the proposed method. The

simulation results on Aurora-2 task show that signi�cant performance improvement is

possible over the conventional VTS model compensation.

A limitation of the proposed method is that its performance will be dependent on how

accurately can the non-stationary noise be estimated. Estimating non-stationary noise

remains a hard task due to the unknown and unpredictable nature of non-stationary

noise. It is even harder than estimating directly clean speech features because clean

speech is predictable. Therefore, instead of trying to estimate non-stationary noise, in

the next proposed method, clean speech feature estimation is considered and presented

in next chapter.
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Chapter 4

A Particle Filter Compensation
Approach to Robust LVCSR

Recently, Mushtaq et. al. [35] proposed a novel enhancement approach for ASR by

estimating clean speech features in noisy environment. The approach generates clean

speech features by utilizing estimated state sequence of hidden Markov models (HMMs)

of clean speech in the particle �lter framework. However, under noisy conditions, the

task to estimate an accurate HMM state sequence that describes the underlying clean

speech features is challenging as the speech is distorted in noisy environments. This work

proposes to extend on [35] by applying two acoustic models, clean and noisy models, for

its operations. Speci�cally, given the observed noisy features, the noisy model is used by

the decoder to estimate the speech’s phone state sequence, and from this estimated state

sequence, the corresponding clean state sequence is predicted. This clean state sequence

and the clean model are then exploited by the particle �lter to perform enhancement. The

performance of this approach depends signi�cantly on the ability to obtain an accurately

aligned state and mixture sequence of hidden Markov models (HMMs) that describe

the underlying clean speech features under noisy environment. This chapter presents a

solution for the alignment issue and has been reported in [34].

4.1 Introduction

One common estimation problem is to determine the true value of a system given only

some noisy observations of that system. Examples include the tracking location of an
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aircraft from radar, estimating communications signals from noisy measurements. One

method used to solve this problem is by particle �lter [98]. Particle �lter belongs to

the class of Monte Carlo method and is versatile. It can handle a broad category of

dynamical systems not constrained by linearity and Gaussianity requirements of Kalman

Filter [99] and extended Kalman Filter [100].

In the speech enhancement domain, particle �lters were initially used to track noise

information in noisy signals to obtain compensated clean features [101{103]. Here, noise

is treated as a state variable while speech is considered as the signal corrupting the obser-

vation noise. In another approach, particle �lter compensation (PFC) [35,104] algorithms

compensated noisy speech features by directly tracking the clean speech features in the

spectral domain, i.e., the speech feature in spectral domain is treated as a state variable

while noise is considered as the signal corrupting the speech feature.

To apply particle �lters, a state transition model that adequately captures the dy-

namic properties of the speech signal is required. Due to the nature of speech, it is

di�cult to �nd such a model. The PFC approach has somewhat overcome the prob-

lem by introducing information from HMMs trained with clean speech to propagate the

particles. Nevertheless, under noisy condition, the speech is distorted and it remains

challenging to accurately select the proper state of clean feature for the PFC algorithm.

The di�culty is increased for large vocabulary systems because the number of triphone

HMMs used can be very large, e.g. exceeding 10; 000 states.

To overcome this problem, we extended the PFC approach by using two HMM models

such that one noisy model is used to estimate the state sequence and one clean model

is used to generate clean speech features. To closely link the states of these two models,

they are jointly trained using single pass retraining (SPR) technique [105] from parallel

data (i.e. one clean channel and one noisy channel). In addition, to reduce the e�ects of

choosing wrong states, we group similar states into one cluster, called physical state, by

using the furthest neighbour hierarchical cluster algorithm [105]. Hence, in our proposed

PFC system, the noisy model helps to improve the accuracy of the state estimation, and

clustering reduces the erroneous choice of HMM states.

The proposed PFC system is tested on the Aurora-4 large vocabulary continuous

speech recognition task. Our results in [34] shows that a large error reduction of 28:46%
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is achieved with 120 clusters (physical states), if the side information (i.e. the state se-

quence) is accurately known. Similarly good performance is maintained (error reduction

of 20:66% and 19:97% respectively) even when fewer number of states such as 10 phys-

ical states and 5 physical states are used. However, in actual scenarios, the best error

reduction achieved is only 5:3% and that is with 3 physical states. Details of the works

are presented in the following sections.

4.2 Tracking Sequence of Clean Speech Features us-

ing PFC

4.2.1 Using HMM States to Generate Samples

HMMs di�er in nature from the standard particle �lter (PF) tracking algorithms, and

by themselves have limited capability to track a continuously varying signal. Although

both HMMs and PF have states, these states are di�erent in nature. The state of a

PF is a real quantity, while the states of an HMM should only be used as a modeling

strategy. The observation distribution of an HMM, however, is a real quantity, and can

be a valid source for sample generation. Consequently, there is a possibility to utilize

the observation distribution to generate samples in the PF framework and from them,

estimate the clean features. This idea is illustrated in the lower part of Fig. 4.1.

In Fig. 4.1, the solid line in the upper part represents the sequence of the observed

speech feature vectors and the dash line in the lower part represents the estimated se-

quence of the clean speech features. The circle symbols S1, S2 and S3 are the HMM

states whose observation distribution is used to generate the samples of the state. In-

stead of obtaining the samples from the state space model as is done in a conventional PF

algorithm, the samples are generated from the observation model of the corresponding

state of a clean HMM model. In this work, the clean state is deduced from noisy state

of speech feature. In the �gure, the diameter of the sample indicates its weight which

approximates the posterior density (i.e. the higher the density, the greater the weight).

The weights can be estimated by using a distortion model of noisy speech. In this work,

we use a simple distortion model which is presented in next subsection.
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Figure 4.1: HMM for sample generation. Firstly, given the noisy speech features, a noisy
HMM acoustic model is used to estimate a state sequence. Secondly, the state sequence
is then used on a corresponding clean HMM acoustic model to generate samples of the
clean speech features. Weights of samples are then computed based on distortion model
of clean and noisy speech features. The set of samples and their weights are used to
approximate the distribution of clean speech features.

4.2.2 Distortion Model

In this work, a simple distortion model for additive noise only scenario is used and derived

for speech feature in log Mel spectral domain as follow [51]:

y = x+ log(1 + en�x); (4.1)

where x, n and y represent the clean speech, the additive noise, the noise corrupted

speech features, respectively. The distortion model will be used to evaluate the weights
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of clean feature samples in PFC algorithm.

4.2.3 A Brief Discussion of using PFC

In the recognition phase, there are 3 steps. In step 1, we decode the input features to

generate a state sequence of speech features. In step 2, the state sequence is used to

enhance the speech features by using the PFC method. Finally, in step 3, we decode the

enhanced features to generate an output hypothesis. The speech enhancement in step 2

is summarised in this section.

In step 2, given a state sequence of speech features, the task is to estimate clean speech

features. We �rst estimate the noise model from non-speech frames which belong to the

given non-speech states. For simplicity, we assume the noise is a Gaussian N (�n; �n).

Then at each time t, speech tracking using PFC as used in our work is summarized as

follows [34,35,104]:

(i) The posterior density of the clean speech features at time t is represented by a �nite

number of support points,

p(xtjy0: t) =
NsX
i=1

wit�(xt � xit) (4.2)

where xit for i = 1; :::; Ns are the support points of the PF and �() denotes the Dirac

delta function.

(ii) The weights of the support points, wit, are computed based on the concept of

importance sampling 1 as follow [106]:

wit = wit�1

p(ytjxit)p(xitjxit�1)

q(xitjxit�1; yt)
(4.3)

where q(xitjxit�1; yt) is the importance sampling density. The set of supported points

with the weights will approximate the posterior density of speech features.

1Importance sampling is a trick that samples from the available distribution q and re-weight samples
to �x it into the required distribution p. In this work, we use the simplest form where p = q. It is known
as the sampling importance resampling (SIR) �lter.
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(iii) Using the distortion model of speech features in log Mel spectral domain with no

channel e�ects (4.1), p(ytjxit) can be approximated as

p(ytjxit) = F 0(uit) = p(uit)
eyt�xi

t

eyt�xi
t � 1

(4.4)

where F (:) is the Gaussian cumulative function with mean �n and variance �2
n.

Note that p(u) = N (�n; �n) is the noise model and

uit = log(eyt�xi
t � 1) + xit (4.5)

(iv) The density q(xitjxit�1; yt) is used to generate speech samples. The distribution is

obtained by choosing a state (or a cluster) from HMMs which is given in step 2.

(v) Finally, the compensated features are estimated as [35]:

xt =
NsX
i=1

witx
i
t (4.6)

4.3 PFC for LVCSR

In LVCSR systems, subword acoustic models on MFCC features are a popular choice

and triphone representation achieves the best recognition performance. There are two

problems when applying PFC for LVCSR. The �rst problem is the mismatch of speech

features used by the decoder and PFC. While the decoder chooses the MFCC features

to achieve the best performance, PFC needs to work on FBANK features due to the

current distortion model of noisy speech. The second problem is to estimate a state of

clean speech features for a particular frame so that the samples can be generated from its

distribution that precisely represents the clean speech features for that frame. In noisy

condition, using clean acoustic models for decoding perform poorly on noisy features.

To solve the above two problems, we propose to build a link from a state of noisy

speech feature to a distribution of clean speech features which can be used to generate

samples of clean speech features as follows. A noisy triphone HMM acoustic model is

�rstly used by the decoder to generate a noisy triphone state sequence. The noisy triphone

state sequence is then used to deduce a clean triphone state sequence. Ignoring the
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Figure 4.2: A block diagram illustrates training process using the single-pass retraining
(SPR).

context dependence of triphone model, we will obtain a clean monophone state sequence.

Finally, using cluster information, a logical monophone state is used to deduce a physical

monophone state which is then used to generate clean speech feature samples. To build

the link, four acoustic models are required as illustrated in Set 1, 2 and 3 in Fig. 4.2 and

their roles are explained in the following text.

The most important aspect of PFC, aside from the observation model, is the place-

ment of the samples. Clean monophone FBANK HMM set (hereafter known as Set 1 in

Fig. 4.2) is used to generate the samples. Set 1 is estimated from clean FBANK features

and hence clean FBANK features can be generated from the model. In set 1, monophone

model is used to provide a convenient solution to the state selection problem. In addition,

by further clustering the states of the monophone model into 10 or even merging into 1

cluster, the state selection process will be simpli�ed. In this work, we use the furthest

neighbour hierarchical cluster algorithm [105] for the clustering task. More analysis will

be presented in experimental section.

Since monophone models can not compete with the triphone models in the recognition

task, a second set of HMMs (Set 2 in Fig. 4.2) is deployed to obtain speech information

from the noisy signal. This set is derived with the aim of getting optimum recognition
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performance. Hence, the HMMs in set 2 are triphone models built using multi-condition

MFCC features.

As the HMMs in Set 2 are used to select the appropriate state from HMMs in Set

1, a good alignment between the two sets is essential to obtain good performance with

PFC algorithm. The two sets, however, use di�erent features, structures (one is made

up of monophone while the other of triphone models) and data (one uses clean FBANK

features and the other uses noisy MFCC features). Consequently, the two sets can be

severely misaligned. To overcome this problem, the clean MFCC HMMs (Set 3) are

used as the source and both Set 1 and Set 2 are derived from it. The technique for this

alignment procedure is explained in Fig. 4.2.

We train Set 1 HMMs in 2 steps. Step 1 computes forward and backward probabil-

ities using clean MFCC monophone HMMs on clean MFCC features. Step 2 estimates

parameters of FBANK monophone HMMs using the statistics information from Step 1,

together with clean FBANK features. This is known as single-pass retraining [93].

In this way, the state/phone alignment (i.e., the posterior component probabilities)

used to estimate parameters of monophone FBANK HMMs is the same as one generated

by using the monophone MFCC HMMs. Therefore, same component label of two states

in two di�erent feature domain will model the same sound but in two di�erent feature

domain.

Training HMMs in Set 2 is similar. Step 1 compute forward and backward probabili-

ties using triphone HMMs on clean MFCC features. Step 2 estimates HMM parameters

using the statistics from Step 1 along with noisy MFCC features.

Since all HMM parameters in Sets 1 and 2 are estimated based on state alignment

computed from clean MFCC HMMs, a state mapping between the two sets can be ob-

tained by just using the same component labels.

In the recognition phase, as the �nal recognition of the compensated data can be

isolated from the compensation process, we train another HMM acoustic model as illus-

trated in Set 4 from multi-condition training data that has been compensated like we

would process the test data in actual scenario. Since there are no constrains on these

models, their complexity can be increased to the optimum level needed to obtain the best

possible recognition performance.
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4.4 Aurora-4 Experiments

In the following, PFC experiments are conducted on the Aurora-4 task. An oracle ex-

periment with high accuracy of state sequence estimation is �rstly conducted to focus on

optimizing particle sampling and evaluate the upper bound of the method. An actual

experiment is then conducted to evaluate the performance of the system.

4.4.1 General Con�gurations

The hidden Markov model toolkit (HTK) [105] was used to extract speech features and

train acoustic models. Log mel �lter bank (FBANK) coe�cients (23 coe�cients) were

extracted from 16KHz sampled speech signals and enhanced by PFC method. Mel-

frequency cepstral coe�cients (13 coe�cients) and their �rst and second di�erential fea-

tures are then extracted from compensated FBANK and used as speech features for

speech recognizer. Ceptral mean normalization was also applied to reduce the channel

mismatch. A bigram language model was used with language model scale factor set to

15.

The four acoustic models were trained as described earlier. In this study, HMMs in

Set 1 have 120 states with 3 Gaussian mixtures per state. The triphone HMMs in Set 2,

3 and 4 were the same and have 1594 tied-states with 16 Gaussian mixtures per state.

In the testing phase, we are interested in additive background noises. Six noisy test

sets (car, babble, restaurant, street, airport and train noises) without channel mismatch

were used to evaluate the PFC performance. The noise statistics are estimated from

silence frames of each utterance.

As PFC works in the FBANK domain, the compensated FBANK features are then

transformed to MFCC domain by DCT transformation. For dynamic features (delta and

delta-delta features), we have two options: re-compute the dynamic features from the

compensated MFCC features or just use the original noisy dynamic features. We will

discuss about the two options in more details in the next sections.

4.4.2 Experiments with Oracle Cluster ID

To estimate the potential of PFC, we �rst build an oracle experiment with high accuracy

of cluster selection. In this experiment, we utilize the stereo data in Aurora-4 to generate
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Figure 4.3: A block diagram illustrates oracle experiment vs. actual experiment.

oracle state sequence which is clean state sequence and used as noisy state sequence and

thus the cluster selection is exact (see Fig. 4.3). In this way, we can focus on optimizing

particle sampling and evaluate the upper bound of the PFC method.

Oracle experiments of clustering PFC is then investigated. Un-clustered FBANK

monophone HMMs has 120 states and denoted by \set 1-120". We group 120 states into

10 (or 5, 3, 2, 1) clusters and denote as \Set 1-10" (or 1-5, 1-3, 1-2, 1-1 respectively).

The word accuracies of these versions of Set 1 are shown in Table 4.1. The number

of clusters can be increased to 1594, which is the number of triphone states. It will most

likely improve the performance beyond the best �gure of 85:6% because the statistical

information is more precise. However, it hasn’t been explored due to the fact that

obtaining good side information in case of such a large number of clusters will be nearly

impossible in real scenarios. Hence, in the study, 120 is the largest cluster count used.

On the other side, 1-cluster is the smallest cluster count that can be used. Apart from

the fact that the performance for this case improves over the baseline multi-condition

training, the setup has it’s own advantages. First, the estimation of side information is

not required, making the compensation process very e�cient. Secondly, with 1-cluster,

no errors can be made in the estimation of side information and therefore, the actual

performance and the oracle performances are the same.
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Table 4.1: Word accuracy (%) obtained by PFC using oracle cluster ID information.
Dynamic features are recomputed from PFC compensated features. 6 types of noisy
environments are shown (2-car, 3-babble, 4-restaurant, 5-street, 6-airport, 7-train).

No. of clusters
Noisy Test Cases

2 3 4 5 6 7 Avg.
- 87.4 81.5 75.6 78.4 80.9 75.4 79.9
1 86.6 82.6 76.2 79.3 80.7 76.2 80.3
2 87.2 83.9 78.2 80.4 82.1 77.1 81.5
3 87.3 84.5 78.9 81.3 82.3 79.0 82.2
5 88.1 84.9 81.2 83.0 84.0 82.1 83.9
10 88.2 85.8 81.3 83.5 83.7 81.7 84.0
120 88.8 86.3 83.4 84.4 87.1 83.8 85.6

4.4.3 Experiments with Estimated Cluster ID

Now we examine the performance of PFC using estimated side information, i.e. the

cluster IDs. The overall performance is shown in Fig. 4.4. From the �gure, we have two

major observations. First, when oracle cluster IDs are used, the performance of PFC

improves monotonically with the number of clusters. However, when estimated cluster

IDs are used, the performance of PFC peaks at 3 clusters, and then degrades when more

and more clusters are used. This observation shows that only when accurate cluster

information are available (e.g. in the case of oracle cluster ID), PFC will bene�t from

the more detailed side information provided by more clusters. In practice, the gain of

more detained side information is o�set by the wrong estimated cluster ID and hence the

performance of PFC will decrease.

The second observation from Fig. 4.4 is that whether to re-compute the dynamic

features from PFC compensated static features plays an important role in the overall

performance of the PFC framework, especially when estimated cluster IDs are used. If

dynamic features are not re-computed and when estimated cluster IDs are used, the

performance of PFC is quite stable when more than 3 clusters are used. However, if

dynamic features are re-computed, the PFC performance degrades quickly as more than

3 clusters are used. The observation is di�erent when oracle cluster IDs are used. This

suggests that the dynamic features are very sensitive to the errors in cluster ID estimation.

A possible explanation is that when wrong cluster is used, the temporal structure of the

59



Chapter 4. A Particle Filter Compensation Approach to Robust LVCSR

2 3 5 10 15

78

79

80

81

82

83

84

Number of Clusters

%
 A

ve
ra

ge
 W

or
d 

A
cc

ur
ac

y

 

 

Oracle ID + Recomputed dynamic features
Oracle ID without Recomputed dynamic features
Estimated ID + Recomputed dynamic features
Estimated ID without Recomputed dynamic features

Figure 4.4: Performance of PFC with di�erent numbers of clusters. Both PFC with
oracle cluster ID and PFC with estimated cluster ID are shown.

Table 4.2: Word accuracy (%) obtained by PFC using estimated cluster IDs and WITH
re-computed the dynamic features.

No. of clusters
Noisy Test Cases

2 3 4 5 6 7 Avg.
- 87.4 81.5 75.6 78.4 80.9 75.4 79.9
1 86.6 82.6 76.2 79.3 80.7 76.2 80.3
2 87.2 82.3 76.3 79.4 79.5 76.4 80.2
3 87.3 82.8 76.6 79.3 79.5 77.7 80.5
5 86.1 78.5 72.6 78.0 75.5 76.8 77.9
10 86.0 76.9 71.5 78.0 74.6 75.6 77.1

PFC compensated static features are seriously distorted, hence the re-computed dynamic

features will be also wrong. This suggests a possible way to improve the PFC framework

is to enforce the correlation between adjacent frames in a more explicit way.

The detailed recognition word accuracies of PFC with estimated cluster ID are shown

in Table 4.2 and Table 4.3. The best result of 80:9% is obtained with 3 clusters and do

not re-compute dynamic features. This represents a 5:3% relative error rate reduction

over the multi-condition baseline system (79.9%).
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Table 4.3: Word accuracy (%) obtained by PFC using estimated cluster IDs and WITH-
OUT re-computing the dynamic features.

No. of clusters
Noisy Test Cases

2 3 4 5 6 7 Avg.
2 88.1 82.9 76.0 79.1 81.1 76.6 80.6
3 88.4 82.4 76.7 79.5 81.4 77.2 80.9
5 88.7 81.8 76.2 79.5 81.8 76.9 80.8
10 88.5 82.1 76.7 79.4 82.0 76.6 80.8
15 88.8 81.9 76.5 79.0 81.9 76.4 80.8

4.5 Summary and Future Work

An extension of the PFC framework to LVCSR has been introduced and tested on the

Aurora-4 task. An incorrect state selection issue caused by a large triphone set in LVCSR

can be lessened with the clustering approach. In addition to improve the accuracy of the

state estimation from noisy condition, a noisy speech model can be used. The state

alignment between the noisy model used in decoder and clean model used in PF can be

obtained by using single pass retraining technique.

During experiments, we found that the temporal structure of the PFC compensated

static features are seriously distorted, hence the re-computed dynamic features will be

also wrong. A suggestion to improve the PFC framework is to enforce the correlation

between adjacent frames in a more explicit way.

In this work, we used the simple form of speech distortion model where the noise

is added to clean speech in log Mel spectral domain. The distortion model is used

to weigh the samples of speech features. A potential improvement is to use a better

distortion model. In [1], several distortion models have been reviewed, especially the

distortion model based on MMSE criterion and learned from paired noisy and clean

training databases.

Recently, direct mapping from noisy features to clean state identity using deep neural

network has been shown to achieve very good results [72]. It can be further examined or

incorporated in our framework.
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Chapter 5

Feature Adaptation Using
Spectro-Temporal Information

In the two previous proposed methods, the feature enhancement approach is based on a

physical distortion model of speech signal in noisy environments. However the physical

distortion is usually very complicated and it is hard to model it well. Particularly, the

two previous proposed methods had only assumed that the distortion is additive noise.

In this chapter, we disregard the physical distortion model and examine a general linear

transform approach to directly transform run-time speech features to expected clean

features.

Motivated by the �nding that human speech comprehension relies on the integrity

of both the spectral content and temporal envelope of speech signal, a spectro-temporal

transform, which is a generalized linear feature transform, is proposed. The objective

of the transform is to modify the run-time speech features such that it minimizes the

mismatch between run-time and training data. In the scope of this work, spectral content

represents short term speech information within a frame of a few tens of milliseconds,

while temporal envelop captures the evolution of speech statistics over several consecutive

frames. A Kullback Leibler divergence based cost function is applied to estimate the

transform parameters. Experiments are conducted on the REVERB Challenge 2014 task,

where clean and multi-condition trained acoustic models are tested with real reverberant

and noisy speech. We found that temporal information is important for reverberant

speech recognition and the simultaneous use of spectral and temporal information for

feature adaptation is e�ective. All experiments consistently report signi�cant word error

rate reductions and the work was published in [36].
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Figure 5.1: An illustration of a feature adaptation system. In the Feature Adaptation
block, we can apply fMLLR, MNLLF or the proposed transform.

5.1 Introduction

A block diagram showing the feature adaptation in the ASR framework is illustrated in

Fig. 5.1. During testing phase, input features will be adapted to better match the trained

acoustic models. In other words, the feature adaptation process employs a function to

transform the input features such that the resultant features are more similar to those

that were used to train the given acoustic model.

Feature adaptation methods can be categorized into three types by the form of their

inputs, as illustrated in Fig. 5.2: A) scalar form input, B) vector form input and C)

trajectory form input.

By scalar form, the processing of each time-frequency point in the feature represen-

tation is independent once the transform parameters are determined. For example, a

linear transform, y
(d)
t = b(d) + a(d)x

(d)
t , consists of only a scale factor a(d) and bias b(d).

The superscript (d) indicates the element of the feature vector, and the subscript t is the

frame index. Examples are cepstral mean normalization (CMN) [24] where a(d) = 1 and

b(d) = ��(d)
x , where �

(d)
x is the test feature’s mean. Cepstral mean and variance normal-

ization (MVN) [25] extends CMN by also using a(d) = 1=�(d) where �(d) is the standard

deviation of the test features.

In the vector form (Fig. 5.2B), a whole feature vector at each time t is used as

the input. The linear transform of a feature vector fMLLR [4,29,107] and feature space
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Figure 5.2: Illustrations of 5 types of linear transform-based feature adaptation. A)

scalar form transform (e.g. MVN [25]) where the transformed feature y
(d)
t at frame t and

element d is a scaled and shifted version of the observation x
(d)
t . B) vector form transform

(e.g. fMLLR [4,29]) where y
(d)
t is a weighted sum of all observed features in current frame

t plus a bias. C) trajectory form transform (e.g. MNLLF [56]) where y
(d)
t is a weighted

sum of local feature trajectory of element d. D) the proposed cross transform which is
a combination of B) and C). E) the proposed Spectro-Temporal (ST) transform which
uses the spectro-temporal information.
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stochastic matching [108] are examples, in which we have yt = Axt+b, where A 2 RD�D

and b 2 RD are the transform parameters for feature vectors of D dimensions. The

parameters are usually estimated to �t the processed features to a reference acoustic

model [4,29]. If we reduce the A matrix into scalar form as shown in Fig. 5.2B, it is clear

that the output feature y
(d)
t is a weighted sum of all feature elements at current frame t,

i.e. [x
(1)
t ,...,x

(D)
t ]T .

In the trajectory form (Fig. 5.2C), the feature processing operates on the feature

trajectories along the time axis. This form is usually referred to as temporal �ltering

of feature trajectories, such as RASTA [28], ARMA [50] and TSN [54]. The temporal

�lters can also be interpreted as linear transform of feature trajectory. Unlike the vector

form transform that takes feature vectors as the inputs, the temporal �lter takes feature

trajectories as the inputs.

Many studies have shown that the spectral and temporal information of speech sig-

nals are both important to human perception of speech and sound, and the human

speech comprehension depends on the integrity of both information [109]. It has been re-

ported that human auditory neurons are tuned to detect local spectro-temporal patterns

of speech [110, 111], which motivates the use of Gabor �lters to extract local spectro-

temporal patterns from speech spectrograms for speech recognition [112]. Recently, a

two dimensional modulation �ltering scheme was proposed to improve the robustness

of speaker and language recognition by using a temporal autoregressive (AR) model

and spectral AR model [113]. Extending these studies, we investigate the integration

of spectral and temporal information of speech in feature adaptation for robust speech

recognition. Our approach is illustrated in Fig. 5.2E where it is shown that a sequence

of input feature vectors are processed by a linear transform to produce a single feature

vector. The proposed transform is called spectro-temporal (ST) transform. In addition,

a sparse form of ST transform (see Fig. 5.2D) is proposed to deal with a limitation issue

of adaptation data in practice.
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Figure 5.3: An illustration of the Spectro-Temporal feature transform, or ST transform,
in Eq 5.1.

5.2 Generalized Linear Transform for Feature Adap-

tation

ASR performance degrades in face of mismatch between the training and test features.

Mismatch may occur due to various reasons, such as speaker variation, background noise,

reverberation, and transmission channel. One way to reduce mismatch is to adapt the

statistics of test features towards those of training features. Examples of this approach

include CMN, MVN, HEQ, and fMLLR. We now study a generalized linear feature trans-

form for feature adaptation. The transform is illustrated in Fig. 5.3 and called ST trans-

form. Mathematically, ST transform is de�ned as follows:

yt =
LX

�=�L

A�xt+� + b = W~xt (5.1)

where xt and yt are the input and output feature vectors at frame t, respectively. A�

(with � = �L; : : : ; L) is a sequence of transform matrices over 2L+ 1 frames. b is a bias

vector. ST transform can therefore be viewed as a linear transform over a supervector of

2L + 1 stacked feature vectors ~xt = [xTt�L; :::;x
T
t+L; 1]T with a transform matrix (or the

general transform matrix) W = [A�L; :::;AL;b] as shown in Fig 5.3.

Note that ST transform in (5.1) is the most general form of linear processing of

features. Both fMLLR and temporal �lters are special cases of (5.1). Speci�cally, when
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Figure 5.4: Illustrations of 5 special cases of ST transform W. Yellow cells denote free
parameters to be estimated and empty cells represent parameters whose values are set to
0. A) scalar-based transform, B) vector-based transform, C) trajectory-based transform,
D) cross transform and E) full ST transform.

L = 0, ST transform is reduced to the fMLLR transform (see Fig. 5.4B), and when A� is

diagonal for all � and the bias b is ignored, ST transform reduces to temporal �lter (see

Fig. 5.4C). When L = 0 and A0 is diagonal, ST transform reduces to the scalar form

MVN (see Fig. 5.4A). In this thesis, we will introduce a novel cross form (see Fig. 5.4D)

in section 5.5. Now we focus on the full form of ST transform (see Fig. 5.4E) and derive

its parameter estimation algorithm.
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5.3 Review of Maximum Likelihood Based Feature

Adaptation

Maximum likelihood (ML) criterion is widely used to estimate the transformation matrix

of a feature vector (we will later call this the square transform in view of the shape of

the transform matrix). In this section, we review the ML criterion and point out the

di�culty of directly applying it to estimate a general transformation matrix of several

consecutive feature vectors (we will call this corresponding transform the rectangular

transform).

Without loss of generality, we take the feature transform for speech denoising as an

example to illustrate the ML criterion. Let’s assume that the noise corruption process can

be approximated by an invertible linear transform, and the observed noisy feature vector

can be represented as y = Ax and x is the unobserved clean feature vector. If we know

the probability density function (PDF) of the clean features f(x), e.g. from an acoustic

model, we can obtain the PDF of the corrupted features g(y) directly by applying the

change of variables formula [114], i.e. g(y) = f(x)j det(dx=dy)j = f(x)j det(A�1)j, where

x = A�1y. In practice, the inverse transform A�1 is estimated such that the likelihood of

the observed noisy features is maximum when evaluted on g(y). Then we can apply the

estimated transform Â�1 to reverse the corruption process and adapt the noisy feautres

towards the clean model by using x̂ = Â�1y. For square transform such as stochastic

matching [108] and fMLLR [4], it is straightforward to apply the ML criterion to estimate

the transform, as the determinant of a square matrix can be computed.

If the transform is not square, there will be di�culty in directly using the ML frame-

work as the determinant of the Jacobian matrix does not exist and the transform is not

invertible. This is the case when we project a sequence of feature vectors to a single fea-

ture vector and the transform is a D �M matrix where D < M . In the studies of [115]

and DCMLLR [10], instead of estimating a rectangular transform, a square transform

of size M �M is estimated by using the ML criterion but the last M � D rows of the

transform are discarded. The discarded dimensions are modeled by a single Gaussian

for all phone classes, hence all discriminative information are pushed into the the �rst D

dimensions of the projected space. The tying of all phone classes to a single Gaussian for
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discarded dimensions is conceptually the same as the tying used in HLDA [116], hence

this kind of transform can be seen as the speaker dependent HLDA transform [115].

However, a potential drawback of this appraoch is that the computational cost of trans-

form estimation may be high for large M , and most of the rows of the transform will be

discarded.

To avoid estimating a full square transform, one can use a technique called Jacobian

compensation which replaces the Jacobian term of the ML objective function with the

determinant of the sample covariance matrix of the transformed features. This method

has been used in transforms where no theorectial Jacobian can be computed. For exam-

ple, it is used in vocal tract length normalization (VTLN) [117] to correct the systematic

error in choosing the warping factor.

In the following section, we propose a new objective function for feature adapta-

tion based on minimizing the Kullback-Leibler (KL) divergence between two distribution

functions, i.e. the transformed features’ sample distribution and the acoustic model. We

will show that under certain assumptions, the KL divergence objective function will lead

to the objective function of ML criterion with Jacobian compensation. We will also pro-

vide an expectation-maximization (EM) based method for iteratively estimating the ST

transform parameters.

5.4 Minimum Kullback-Leibler (KL) Divergence Cri-

terion

5.4.1 Objective function

The ST transform W is estimated to minimize a KL divergence [118, 119] between the

distribution of the transformed features, py, and the reference distribution of the training

features, parameterized as p�. The reference distribution can be of any form, such as

a GMM, to represent the distribution of the training data. We have the following KL

divergence [119],

DKL (pyjjp�) =

Z
y

py(y) log
py(y)

p�(y)
dy = �H(py) +H(py; p�) (5.2)
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where

H(py) = �
Z

y

py(y) log(py(y))dy (5.3)

is the entropy of distribution py, and

H(py; p�) = �
Z

y

py(y) log p�(y)dy (5.4)

is the cross entropy of py and p�. As y is determined by W through (5.1), the trans-

form matrix W can be estimated by minimizing DKL (pyjjp�) such that the transformed

features will have distribution closer to that of the reference.

To evaluate (5.2), we need some run-time adaptation data from the test environment.

If such data are limited, it is a challenge to reliably characterize the test environment.

Under such condition, we choose to approximate py(y) as a single Gaussian distribution

with full covariance matrix. In this way, H(py) can be shown to depend only on the

determinant of the covariance matrix �y as follows

H(py) � K +
1

2
log j�yj (5.5)

where K is a constant. In practice, the covariance matrix is estimated from the available

run-time adaptation data.

The second term H(py; p�) in (5.2) speci�es the cross entropy between py and p�.

One way to evaluate this term is to use a Gaussian approximation of py. However, this

doesn’t provide an easy solution to the optimization of KL divergence function. Instead,

we use Monte Carlo approximation, i.e. we use the available adaptation feature vectors

as random samples drawn from the distribution py and evaluate the cross-entropy by

H(py; p�) � �
TX
t=1

1

T
log(p�(yt)) (5.6)

where the integration over y in (5.2) is replaced with summation over adaptation feature

vectors yt and T is the number of available adaptation feature vectors. The equation

(5.6) is the negative average log likelihood of the transformed features evaluated in the

reference feature distribution function.
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With the approximation of H(py) in (5.5) and H(py; p�) in (5.6), the KL divergence

can be rewritten as

DKL (pyjjp�) � �K � 1

2
log j�yj �

1

T

TX
t=1

log(p�(yt)) (5.7)

In this way, we are actually maximizing both the log likelihood of the transformed features

on reference feature distribution as well as the log determinant of the transformed features

covariance matrix.

The reference distribution p� can be any distribution function of training speech

features. Here, we use a GMM with diagonal covariance matrices for simplicity. A GMM

of M Gaussians is de�ned by a set of parameters fcm;�m;�mg, i.e.

p�(yt) =
MX
m=1

cmN (yt;�m;�m) (5.8)

where �m and �m are the mean and diagonal covariance matrix of the mth Gaussian

component. The parameters of GMM can be estimated from training data. With this

de�nition of p�(yt), the KL divergence in (5.7) can be rewritten as

DKL(pyjjp�) � �K � 1

2
log j�yj

� 1

T

TX
t=1

log

 
MX
m=1

cmN (yt;�m;�m)

!
(5.9)

Applying (5.9), we propose to estimate ST transform by

Ŵ = arg min
W

f(W) (5.10)

where the cost function is de�ned as:

f(W) =
�

2T
jjW�W0jj2F �

�

2
log j�yj

� 1

T

TX
t=1

log

 
MX
m=1

cmN (yt;�m;�m)

!
(5.11)

The above cost function includes the KL divergence as well as a Frobenius matrix norm

term (also called L2 norm term) jjW �W0jj2F to regulate the transform. W0 is the

initial parameters of the transform, in which b and A� in (5.1) contain all zero’s for
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Table 5.1: Estimation of W to minimize the cost function in (5.11)

Step 1: Set �W = W0.
Step 2: Compute statistics in (5.15) �rst, then (5.13) and (5.14).
Step 3: Estimate W to minimize Q(W; �W) in (5.12).

using L-BFGS algorithm [120] with gradient de�ned in (5.16).
Step 4: If convergence is met or maximum number of iterations

is reached, exit.
Otherwise set �W = W and go to Step 2.

� 6= 0 and A0 is the identity matrix. With this design, W0~xt = xt. With the L2 term,

the transformed features are ensured to be not too far from the initial features if W

is near to W0 in the parameter space. The parameters � and � are tunable and used

to control the contributions of the Frobenius norm and data distribution py in the cost

function, respectively. Note that if � = 1, the term 1
2

log j�yj is the same as the Jacobian

compensation used in VTLN [117].

The objective function in (5.11) contains two terms that pull the transform estimation

in opposite directions. On one hand, the log likelihood term �ts the transformed features

to the means of Gaussians that are originally close to the observed features. Hence it will

tend to shrink the variances of the transformed features and make py cover only a fraction

of the acoustic space of p�. On the other hand, the log determinant term is trying to

spread py so it can cover a larger part of the acoustic space. The optimal solution of the

transform is a tradeo� between these two factors.

5.4.2 EM Algorithm for Parameter Estimation

There is no closed form solution for the minimization problem in (5.11) due to the hidden

variables of the Gaussian occupancy in the GMM. We use an EM algorithm [44] to search

for a locally optimal solution iteratively. The EM algorithm is an e�ective method for

estimation problems with incomplete data such as (5.11). The auxiliary function of the
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EM algorithm for the cost function (5.11) can be written as follows:

Q(W; �W) =
�

2T
jjW�W0jj2 �

�

2
log j�yj

+
1

T

TX
t=1

MX
m=1


t(m)

2
(yt � �m)T��1

m (yt � �m)

=
�

2T
jjW�W0jj2 �

�

2
log jW�~xWT j

+
1

2

DX
d=1

w(d)G(d)(w(d))T �
DX
d=1

w(d)p(d) (5.12)

where �W is the current estimate of transform parameters and W is the new transform

parameters to be estimated. �~x is the covariance matrix of the stacked features ~x. w(d)

is the dth row of W. Note that the derivation of (5.12) requires diagonal covariance

matrices of �m = diag([�
(1)
m

2
; : : : ; �

(D)
m

2
]). Other statistics are de�ned as follows:

G(d) =
1

T

TX
t=1

MX
m=1


t(m)

�
(d)
m

2
~xt~x

T
t (5.13)

p(d) =
1

T

TX
t=1

MX
m=1


t(m)

�
(d)
m

2 �
(d)
m ~xt (5.14)


t(m) =
cmN ( �W~xt;�m;�m)PM
i=1 ciN ( �W~xt;�i;�i)

(5.15)

where 
t(m) is the occupation (posterior) probability of the mth Gaussian at frame t and

estimated in the E-step of the EM algorithm.

The gradient of the auxiliary function w.r.t. the dth row of W is

@Q(W; �W)

@w(d)
= ��c(d) + w(d)G(d) � p(d)T +

�

T
(w(d) �w

(d)
0 )

C = (W�~xWT )�1W�T
~x (5.16)

where c(d) is the dth row of C. From the gradient, it is still di�cult to obtain a closed

form solution for the transform. Hence, we use gradient based optimization method to

obtain the solution for the M-step of the EM algorithm as summarized in Table 5.1. In

the M step of each EM iteration, we use L-BFGS [120] to minimize the auxiliary function.
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Table 5.2: Eight special cases of the ST transform in (5.1) and the minimum KL di-
vergence objective function in (5.11). Type \A" to \E" in second column refer to the
transform con�gurations as shown in Fig. 5.4. M is the number of Gaussians in the
reference distribution GMM.

Method Type Parameter Estimation and Constraints

CMN [24] A A0 = I, � = 1; � = 0, M = 1

MVN [25] A A0 is diag., � = 1; � = 0, M = 1

Diag fMLLR A A0 is diag., � = 1; � = 0, M > 1

fMLLR [4,29] B A0 is full, � = 1; � = 0, M > 1

MNLLF [56] C A� is diag., �y is diagonal, M > 1

Temporal transform C A� is diag., �y is full, M > 1

Vector transform D A� = 0 for � 6= 0, �y is full, M > 1

Cross transform D A� is diag. for � 6= 0, �y is full, M > 1

Full ST transform E no constraint in (5.1) and (5.11)

5.5 A Uni�ed Perspective on Feature Processing

We now discuss a uni�ed perspective on feature processing methods under the framework

of ST transform. Table 5.2 summarizes a complete list of feature adaptation methods

with reference to the proposed ST transform.

First, the proposed minimum KL divergence criterion for parameter estimation can

be seen as a generalization of the ML criterion in fMLLR. For example, if we set the

context size L = 0, the equation (5.1) becomes

yt = A0xt + b = Wxt (5.17)

where W = [A0;b] is identical to the fMLLR transform. In addition, the KL divergence

approximation of equation (5.9) can be written as

DKL (pyjjp�)

� �K � 1

2
log jA0�xAT

0 j �
1

T

TX
t=1

log(p�(yt)) (5.18)

= �K 0 � log jA0j �
1

T

TX
t=1

log(p�(yt)) (5.19)
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where we have used the property that �y = A0�xAT
0 when L = 0. The divergence func-

tion in (5.19) is actually the negative of the log likelihood objective function of fMLLR.

Hence, fMLLR is a special case of ST transform without using the contextual frames.

With reference to the original fMLLR algorithm, the EM algorithm described in Sec-

tion 5.4.2 has several di�erent properties, i.e. tunable contribution from log determinant

of linear transform matrix and the use of L2 norm. The use of L2 norm has similar

e�ect as imposing a Gaussian prior distribution on the transform parameters and is ex-

pected to perform similarly with feature space maximum a posteriori linear regression

(fMAPLR) [121].

Second, ST transform can also be seen as a generalization of temporal �lters, such

as MNLLF [56]. In MNLLF �lters, the feature trajectories are �ltered separately. In ST

transform, all the feature trajectories are �ltered simultaneously.

5.6 Implementation Issues

In this section, we will discuss several practical issues in implementing ST transform. In

particular, the estimation of parameters given limited adaptation data. We will discuss

3 approaches to address this issue: 1) sparse ST transform; 2) cascaded transforms; 3)

regularization and statistics smoothing.

5.6.1 Sparse Generalized Linear Transform

ST transform in its full capacity is characterized by a large set of parameters, that requires

a large number of training data. For example, If L = 10, i.e. we use a context of 21

feature vectors centred at the current frame, there will be 39 � 39 � 21 + 39 = 31; 980

parameters. It is very di�cult, if not impossible, to reliably estimate such a large amount

of parameters from a few seconds of speech. Hence, it is necessary to reduce the number

of parameters in ST transform.

One way to reduce the number of parameters is to force some parameters to be zero

and make the transform matrices A� sparse. From Eq. (5.1), each element of the adapted

feature vector is a linear weighted sum of all the feature elements in the neighboring

frames. It is reasonable to believe that not all elements of the spectro-temporal context
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are equally important for predicting a feature element. By setting the parameters of the

less important context zero, we reduce the number of free parameters and estimate the

e�ective parameters more reliably.

In this study, we consider 3 types of sparse transforms as illustrated in Fig. 5.4B,

5.4C and 5.4D. In the �rst simpli�cation, we set the parameters of feature elements in

neighboring frames to zero, i.e. A� = 0 except for � = 0 (see Fig. 5.4B) and Table 5.2.

In this way, only the spectral information of the current frame is used, and the number

of free parameters is reduced to D(D+ 1). This simpli�cation of the ST transform turns

out to be the popular fMLLR transform.

In the second simpli�cation, we set the parameters of the feature trajectories other

than the current one to zero, i.e. A� is set to diagonal for �L � � � L (see Fig. 5.4C)

and Table 5.2. In this case, only temporal information in the current feature trajectory is

used for feature adaptation, and the number of free parameters is reduced to D(2L+ 1).

This simpli�cation leads to temporal �ltering of features. We have studied this type

of sparse transform in [56] and found it useful for dealing with reverberation. We note

that the two simpli�cations above do not make use of spectral and temporal information

simultaneously.

From fMLLR, we know that single frame spectral information allows us to handle

short term feature variations such as speaker variation and additive noise distortions.

From temporal �lter, we learn that the temporal trajectory of a feature element along

the time axis removes long term variation such as reverberation. Hence, we propose

the third sparse transform that bene�ts from the best of both fMLLR transform and

temporal �lter. In particular, we restrict A� in (5.1) to be diagonal for � 6= 0 to capture

the temporal information, while keeping A0 as a full matrix to incorporate the spectral

information of current frame. With the new transform in Fig. 5.4D, the number of free

parameters is reduced signi�cantly, while both spectral and temporal information can be

partially modeled. Speci�cally, the ratio of free parameters of the new design over the

full ST transform is 2LD+D2+D
2LD2+D2+D

= 2L+D+1
2LD+D+1

. For example, with L = 10 and D = 39, the

ratio is 2�10+39+1
2�10�39+39+1

= 60
820
� 7%. Examining Fig. 5.2D and Fig. 5.4D, we �nd that such

a transform practically applies a cross-shape mask on the features, hence, we call it the

cross transform.
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Figure 5.5: Combinations of fMLLR and temporal �lter in tandem.

Compared to the full ST transform, the sparse transforms also require much less

computation and memory to be estimated. As there are only a few non-zero elements

in each row of the sparse transforms, the statistics in equation (5.13) and (5.14) is much

smaller than those of full transforms. For example, each of G(d) is a M�M matrix, where

M is the number of parameters used to predict feature element d. For full transform,

M = (2L + 1)D, so G(d) can be a large matrix for larger L. For cross transform,

M = 2L+D, hence it requires much less memory and computation for G(d).

5.6.2 Cascaded Transform

The cross transform represents a way of spectro-temporal processing of features without

a signi�cant increase in the number of free parameters. Another way to achieve the same

goal is to combine fMLLR and temporal �lter in tandem.

In the case where fMLLR is followed by a temporal �lter, an element in the fMLLR

output vector is the weighted sum of all elements in the input vector, an element of the

temporal �lter output vector is therefore the weighted sum of all elements across multiple

frames within the context window of the temporal �lter. This is also true if temporal

�lter is followed by fMLLR.
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If we consider the full ST transform as a 2-dimensional �ltering of the time-quefrency1

representation of the speech (e.g. cepstral features), then fMLLR and temporal �lter can

be seen as 1-dimensional �lters, one along the quefrency axis and the other along the

time axis. Applying the two 1-dimensional �lters in sequence will be e�ectively the same

as applying a 2-dimensional �ltering with its weight matrix having a rank of 1. The

advantage of such cascaded transform is that it has a much fewer number of parameters

and require much less memory and computation to estimate than the full ST transform.

It would be intereting to see how such cascaded transform perform against the full ST

transform and cross transform.

5.6.3 Interpolation of Statistics

With fewer number of parameters, cross transform and cascaded transform are expected

to work better than full ST transform given a limited amount of data. However, in many

applications, the adaptation data are the test sentence itself which is of several seconds

in length. In such cases, it is even di�cult to estimate the fMLLR or temporal �lters.

To address this issue, we apply L2 norm regularization on the parameters and smoothing

of the su�cient statistics in the EM algorithm. The L2 norm regularization was already

introduced in (5.11) as the Frobenius norm. Next we discuss how the statistics smoothing

works.

The EM algorithm for transform estimation relies on several su�cient statistics such

as the mean vector and covariance matrix of the input feature vectors, the G(d) and

p(d) for all dimensions as de�ned in (5.13) and (5.14). Generally speaking, if the test

environment is stable, more adaptation data will result in more reliable estimation of

these statistics, which will in turn lead to better adapted features. The idea of statistics

smoothing is to interpolate the statistics computed from the adaptation data with the

statistics computed from some prior data in the following way:

Ĝ
(d)

= �G(d;0) + (1� �)G(d) (5.20)

p̂(d) = �p(d;0) + (1� �)p(d) (5.21)

1Assuming we are applying the transforms on cepstral features, one dimension of the feature repre-
sentation is time and the other is quefrency.
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where G(d;0) and p(d;0) are prior statistics computed from prior data; and G(d) and p(d)

are statistics computed from adaptation/test data. The tunable parameter � is used

to control the level of smoothing; i.e. if � = 0, the smoothing will be ignored, while

� = 1 will ignore the contribution from the adaptation data. Similar statistics smooth-

ing approach have been proposed for fMLLR in [122{124]. In addition, the mean and

covariance matrix of extended features ~x can also be approximated as in [125]

�̂~x = ��
(0)
~x + (1� �)�~x (5.22)

�̂~x = E(~x~xT )� �̂~x�̂
T
~x (5.23)

E(~x~xT ) = �E
(0)
~x~x +

(1� �)

T

TX
t=1

~xt~x
T
t (5.24)

where �
(0)
~x and E

(0)
~x~x are the prior expected values of ~x and ~x~xT and computed from

the prior data. �~x is the expected value of ~x, computed from adaptation/test data. In

practice, the prior data can be the training data, or development data that are from

similar environment as the test data.

5.7 Experimental Study on Spectro-Temporal Trans-

form

5.7.1 Experimental Settings

5.7.1.1 Task Description

To further understand the ST transform, we conduct experiments on the REVERB Chal-

lenge 2014 benchmark task for noisy and reverberant speech recognition [126]. We focus

on using clean condition training scheme, in which we assume that only clean speech

data are available at system training stage whereas test data are noisy and reverber-

ant. This task has the most mismatch between training and testing data. Due to the

mismatch, performance of ASR system will be degraded dramatically if no adaptation

or compensation method is applied. This chapter will compare the improvement of the

ASR system by using feature adaptation with the ST transform, its variations and other

relative transforms such as fMLLR.
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In the clean condition training scheme, the training data consist of 7,861 clean ut-

terances (about 17.5 hours from 92 speakers) from the WSJCAM0 database [127]. The

clean data are recorded in a quiet room using a head-mounted close-talking microphone

(Sennheiser HMD414-6).

In this work, a baseline ASR system is based on a triphone-based HMM/GMM acous-

tic model. The context-dependent triphone models are clustered into 3,115 tied states and

10 Gaussians are used to model the feature distribution of each tied state. Mel-frequency

cepstral coe�cients (MFCC) are used as acoustic features with utterancewise MVN post-

processing if not otherwise speci�ed. Particularly, the �rst 13 (c0-c12) MFCCs and their

�rst and second derivatives are extracted from each 25ms frame with 10ms hopping time.

Hence, the frame rate is 100 frames per second. The features of every utterance are then

normalized to zero mean and unit variances. The word error rate (WER) on clean test

set is about 12:3%, which is the lower bound to achieve by adapting the features of noisy

and reverberant speech.

The development (dev) and evaluation (eval) data sets are taken from actual meeting

room recording of MC-WSJ-AV [128]. The dev and eval sets are similar to each other in

terms of noise and reverberation characteristics. For either dev and eval sets, the data

are divided into two subsets according to the distance between the microphone and the

speaker, i.e. near subset with a distance of 100cm and far subset with a distance of

250cm. The reverberation time T60 for the meeting room is about 0.7s. There are totally

179 utterances (about 0.3 hour and from 10 speakers) in the dev set and 372 utterances

(about 0.6 hour and from 20 speakers) in the eval set. For more details of the REVERB

Challenge 2014 task, the readers are referred to [126].

5.7.1.2 Feature Adaptation Schemes

We evaluate four types of linear transforms for feature adaptation against reverberation

and noise distortions in ASR experiments, including fMLLR, temporal �lter, cross trans-

form, and full ST transform. We also test the cascading of these transforms, for example,

\fMLLR � Temporal" represents fMLLR followed by temporal �lters. The � operator

is used to denote the fact that combination \fMLLR � Temporal" will generate a ST

transform whose transform matrix is of rank 1. These transforms are implemented under
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the same framework of the EM algorithm in Table 5.1 and estimated separately. The

number of EM-iterations is set to 10 except for multi-condition training whose settings

will be explained later. The Jacobian weight � is set to 1 in all the experiments. The

context size L is set to 10 for temporal, cross and full transforms unless otherwise stated.

The L2 norm weight � is tuned according to the development data.

We also carry out experiments with four di�erent adaptation schemes, including full

batch mode, speaker mode, utterance mode, and hybrid mode. In the full batch mode,

one feature transform (e.g. temporal �lter, fMLLR, cross or full ST transform) is esti-

mated for each setting of the microphone distances. In the real eval set, each microphone

distance contains about 180 utterances and the average utterance length is 7 seconds

including silence. With that, we suppose that we have su�cient adaptation data to

estimate most of the transforms under study.

In the speaker mode, one feature transform is estimated for each test speaker and dis-

tance combination. There are about 18 utterances for each speaker on average. Although

the speaker mode has less adaptation data per transform than the full batch mode, it

allows the adaptation of features to reduce speaker variations.

In the utterance mode, one feature transform is estimated for each test utterance.

As each utterance is only about 7s long on average, it is a challenge to estimate most of

the feature transforms. We don’t try the full ST transform here due to its large amount

of parameters. An advantage of utterance mode processing is that the features can be

adapted to address both speaker variation and small variations of reverberant distortions

across utterances.

In the hybrid mode, we estimate the utterance based transform and smooth the su�-

cient statistics between the utterance based statistics and the full batch mode statistics.

In this way, we expect more reliable estimation yet we are able to follow the reverberation

change from utterance to utterance.

5.7.1.3 Feature Adaptation Reference Model

A reference model p� in (5.7) is required to describe the distribution of the training

features for the estimation of feature transform parameters. In theory, the HMM/GMM

based acoustic model can be used as a reference model. However, it requires two-pass
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decoding: the �rst pass generates the hypotheses from which we obtain the Gaussian

occupancy probabilities 
t(m) for estimating feature transforms, and the second pass

generates the �nal recognition output using the transformed features. As decoding is time

consuming, we choose to use a simple GMM as the reference model for feature adaptation.

For GMM, the Gaussian occupancy probabilities can be readily computed e�ciently

once the feature vector is observed. This allows us to perform multiple iterations of EM

algorithm, in each iteration the Gaussian occupancy probabilities are updated using the

latest transformed features. A GMM reference model that contains 4,416 Gaussians is

obtained by pooling the Gaussians from a monophone-based HMM/GMM model. As

both the GMM and HMM/GMM are trained from the same clean training corpus, if the

distribution of the transformed features matches the GMM well, it is also expected to

match the HMM/GMM reasonably well.

5.7.2 E�ect of Window Length L

One of the most important considerations in ST transform is the context window size

which is equal to 2L+ 1. We report the e�ect of window size on the development data in

Fig. 5.6. All transforms are estimated in the full batch mode, i.e. one feature transform is

estimated for each setting of the microphone distances. From the �gure, we can see that

all transforms that explicitly use temporal information, including temporal �lter, cross

transform, and the full ST transform, produces lower WER as the windowsize increases.

At window length of 1 frame, the full transform, cross transform, and fMLLR have the

same performance as they are exactly the same. However, the temporal �lter and MVN

give di�erent results when window size is 1 although they have the same scalar form.

This is because MVN is equivalent to using a single Gaussian as a reference model, while

temporal �lter using a GMM of 4,416 Gaussians as reference model.

The performance saturates at around 21 frames or L = 10, across the board. The

window length of 21 frames corresponds to about 0.3s of temporal information with a

frame rate of 100Hz if we also include the temporal information in the dynamic features.

For comparison, the fMLLR only uses temporal information up to 0.1s through the

dynamic features. The results show that long term temporal information (>0.1s) is

useful for feature adaptation to improve robustness of ASR system against reverberation
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Figure 5.6: E�ects of the input window length of the ST transforms on WER on dev
set of REVERB Challenge 2014. All transforms are estimated in the full batch mode.
Longer window size allows more temporal information to be used in feature adaptation.
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Table 5.3: Performance of feature adaptation in WER (%) for the eval set of REVERB
Challenge 2014. The full ST transform is not estimated in utterance mode due to insuf-
�cient adaptation data. \Near" and \Far" denote for the near and far test sets.

Methods Full Batch Mode Speaker Mode Utterance Mode

Near Far Avg. Near Far Avg. Near Far Avg.

Utterancewise MVN 80.2 76.6 78.4 80.2 76.6 78.4 80.2 76.6 78.4

Spectral adaptation (fMLLR) 66.1 67.3 66.7 67.3 66.6 67.0 69.2 67.1 68.1

Temporal Filter 71.7 69.7 70.7 72.5 70.6 71.5 72.5 71.2 71.9

Spectro-
Temporal

Cross Transform 63.6 63.2 63.4 62.7 63.2 63.0 65.9 65.6 65.8

Full ST Transform 64.3 65.3 64.8 62.8 64.6 63.7 - - -

and noise distortions. Our results agree with that reported for DCMLLR [10] where upto

17 frames of contex is found to produce consistent gain. In the following experiments,

we will �x the window length to be 21 for temporal �lter, cross transform, and the full

ST transform.

5.7.3 Spectral, Temporal, and Spectro-Temporal Transforms

In the full batch mode adaptation, two instances of these transforms are estimated, one

for near and one for far distance microphone. Each distance has 186 utterances. The

estimated transforms mainly normalize the reverberation e�ect. The results are reported

in Table 5.3.

We have two major observations from the results in the full batch mode. First, cross

transform (63.4%) and the full ST transform (64.8%) perform signi�cantly better than

temporal �lter (70.7%) and fMLLR (66.7%) because of the use of spectro-temporal infor-

mation. Second, the full ST transform performs slightly worse than the cross transform

(64.8% vs 63.4%). This could be due to the fact that the full ST transform is not as

reliably estimated as the cross transform considering its large number of parameters.

In the speaker mode adaptation, one transform is estimated for each speaker. The

results in the speaker mode show similar pattern as the full batch mode results, i.e. cross

transform and the full ST transform produce better results than fMLLR and temporal

�lter. More interesting, the results of cross transform and the full ST transform in speaker

mode are better than the ones in full batch mode even though the adaptation data in
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Table 5.4: Performance of cascaded transforms in WER (%) for the eval set of REVERB
Challenge 2014.

Methods
Full Batch Mode Speaker Mode Utterance Mode

Near Far Avg. Near Far Avg. Near Far Avg.

Cross Transform 63.6 63.2 63.4 62.7 63.2 63.0 65.9 65.6 65.8

Temporal Filter � fMLLR 63.9 64.3 64.1 63.0 63.0 63.0 66.2 65.1 65.7

fMLLR � Temporal Filter 62.8 64.0 63.4 61.6 63.7 62.6 65.7 65.4 65.5

Cross Transform � fMLLR 62.8 63.8 63.3 60.4 61.4 60.9 64.6 64.8 64.7

fMLLR � Cross Transform 62.8 64.0 63.4 60.8 62.8 61.8 65.4 65.2 65.3

speaker mode are less than the ones in full batch mode. This observation suggests that

estimating one transform for each speaker may help to remove speaker variation at the

same time when removing reverberation distortion.

In the utterance mode adaptation, one transform is estimated for each utterance of

average 7s in length. Utterance mode adaptation could be e�ective in the cases where

acoustic environment changes from utterance to utterance. However, the estimation of

the transforms are more challenging due to the limited adaptation data. In this exper-

iment where the testing acoustic environment is relatively consistent across utterances,

the utterance mode adaptation doesn’t show an advantage over batch mode or speaker

mode.

5.7.4 Experiments for Cascaded Transforms

As discussed in the previous section, combining a temporal �lter and fMLLR in tandem

allows us to use spectro-temporal information. In general, we can cascade any transform

in di�erent combinations to take advantage of the spectral or temporal properties of the

transforms. However, we don’t cascade full ST transform with others because it already

cover spectro-temporal information in a best e�ort. In this subsection, we investigate the

performance of several cascaded transforms as shown in Table 5.4.

Overall, the cascaded transforms perform better than each individual transform alone

including fMLLR, temporal �lter and cross transform. This shows that cascading of

transforms is an e�ective way of using spectro-temporal information without signi�cant
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increase in the number of free parameters. The di�erent ways of combinations provide

similar performance. The best results for all three modes (i.e. the full batch mode, the

speaker mode and the utterance mode) are obtained by cascading cross transform and

fMLLR.

Note that each adaptation mode o�ers an unique way of data processing, cascading

two transforms in the same mode is not optimal. To leverage across di�erent modes, we

investigate a hybrid mode technique.

5.7.5 Hybrid Adaptation and Statistics Smoothing

In many practical applications, such as meeting transcription, the recordings are �rst

diarized into speaker clusters and segmented into sentence-like units. In such case, it is

useful to �rst apply a full batch mode feature adaptation to deal with session-wise rever-

beration and noise distortions, then use utterance mode adaptation to remove speaker

variations and other sentence-wise variations, e.g. due to speaker movement and back-

ground noise change. In this section, we adopt such a strategy. In addition, we use

statistics smoothing to improve the robustness of feature transform estimation in the

utterance mode. Speci�cally, the su�cient statistics computed from the current sentence

is interpolated with that from the batch mode.

We summarize the results of the batch+utterance mode adaptation in Table 5.5. The

pre�x \fb" and \utt" denote the batch mode and the utterance mode, respectively. The

pre�x \smooth" denotes that statistics interpolation described in Section 5.6.3 is applied

when estimating the corresponding transform. From Table 5.5, we observe that the

combination of batch and utterance mode transforms performs the best. For example, fb-

Cross � utt-fMLLR (60.3%) outperforms fb-Cross � fb-fMLLR (63.3%) by 3% absolute in

WER. In addition, the use of statistics smoothing provides further gain ranging from 1.4%

to 3.0%. The best performance is obtained by fb-Cross � smooth-utt-fMLLR (58.9%).

To further understand the hybrid mode, we plot the average log likelihood scores of

the transformed features in Fig 5.7. The x-axis represents the number of EM-iterations

and y-axis the log likelihood scores averaged over the eval set. The �rst 10 iterations

are used to estimate the full batch mode transforms, while the second 10 iterations are

for utterance mode fMLLR transforms. We observe that for the full batch model, cross
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Table 5.5: WER (%) of hybrib mode adaptation with statistics smoothing on the eval set
of REVERB Challenge 2014. Pre�x \fb" and \utt" denote transform estimated in full
batch mode and utterance mode, respectively. \smooth" denotes the statistics smoothing
method is applied.

Methods Near Far Avg.

Utterancewise MVN 80.2 76.6 78.4

smooth-utt-fMLLR 65.2 64.5 64.8

fb-Temporal � fb-fMLLR 63.9 64.3 64.1

fb-Temporal � utt-fMLLR 63.6 63.8 63.7

fb-Temporal � smooth-utt-fMLLR 61.3 60.0 60.7

fb-Cross � fb-fMLLR 62.8 63.8 63.3

fb-Cross � utt-fMLLR 60.0 60.5 60.3

fb-Cross � smooth-utt-fMLLR 59.7 58.2 58.9

fb-Full ST � fb-fMLLR 62.0 64.4 63.2

fb-Full ST � utt-fMLLR 61.1 61.6 61.4

fb-Full ST � smooth-utt-fMLLR 59.5 60.3 59.9
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Figure 5.7: Log likelihood per frame averaged over the eval set. The �rst 10 EM-iterations
are used for full batch mode transform estimation, while the last 10 iterations are for
fMLLR transforms estimated in either full batch mode or utterance mode with and
without statistics smoothing.

transform achieves the highest likelihood, followed by full ST transform, and temporal

�lter achieves the lowest likelihood as it does not use spectral information. Although the

full ST transform is supposed to be more detailed than the cross transform, it achieves

lower likelihood than the cross transform possibly due to the di�culty in optimizing the

objective function with a large amount of parameters. In the second stage (utterance

mode fMLLR), likelihood is improved signi�cantly whenever the statistics smoothing is

applied. This shows that statistics smoothing is very important for reliable estimation of

the fMLLR transform. It is also worth pointing out that the �nal likelihood achieved by

each combination is highly correlated with their speech recognition performance achieved.

This show that the proposed minimum KL divergence cost function is suitable for feature

adaptation.
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Table 5.6: WER (%) on the eval set by combining the best ST transform and a 256-class
CMLLR model adaptation.

Methods Near Far Avg.

Utterancewise MVN 80.2 76.6 78.4

CMLLR 66.3 65.9 66.1

fb-Cross � smooth-utt-fMLLR 59.7 58.2 58.9

fb-Cross � smooth-utt-fMLLR + CMLLR 55.5 56.3 55.9

5.7.6 Combination of Feature Adaptation and Model Adapta-
tion

In addition to feature adaptation, acoustic model adaptation is another important ap-

proach to reduce the mismatch between training and testing features. Model adaptation

can be more 
exible than feature adaptation. For example, di�erent phonetic classes can

be adapted using di�erent transforms as in multi-class CMLLR model adaptation. We

are interested in whether the proposed feature adaptation method is complementary to

the CMLLR model adaptation methods with 256 class-dependent linear transforms.

Table 5.6 summarizes the results of combining feature adaptation and model adapta-

tion. It can be observed that the CMLLR model adaptation alone reduces the WER to

66.1% from the MVN baseline of 78.4%. When the best feature adaptation con�guration

(58.9%) is also applied, a WER of 55.9% is obtained, showing that the ST transform

based feature adaptation complements model adaptation to some extent. Note that the

CMLLR with one class is equivalent to the full batch mode fMLLR. Hence, the comple-

mentary gain is from the fact that the CMLLR uses 256 linear transforms, one for each

phonetic class.

5.8 Chapter Summary

This chapter introduced the novel spectro-temporal (ST) transform framework for feature

adaptation to improve word error rate of speech recognition system under noisy and

reverberant environments. The proposed framework is inspired from the fact that human

speech comprehension relies on the integrity of both the spectral content and temporal
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envelope of speech signal. The ST transform utilizes spectro-temporal information to

adapt run-time speech features to minimize the mismatch between run-time and training

data. The Kullback Leibler divergence based cost function is proposed to estimate the

transform parameters.

In practice, two implementations of the framework are conducted to cope with a lim-

itation issue of adaptation data. The �rst form is a cross transform which is a sparse

spectro-temporal transforms. The second form is a cascaded transform of temporal trans-

form and spectral transform. Both forms are e�ective and e�cient to estimate ST trans-

form from limited adaptation data. In addition, the interpolation of statistics is also

applied to further improve the reliability of parameter estimates.

We conducted the experiments on REVERB Challenge 2014 benchmarking task where

the clean-condition trained acoustic models are tested on real reverberant and noisy

read speech recorded in meeting rooms. The experimental results con�rmed that the

spectro-temporal transform outperforms a spectral or temporal only adaptation, with

cross transform achieving the best results. We have also explored alternative approaches

to ST transform implementation, such as cascaded transform and interpolation of statis-

tics. All experiments positively validated the idea of ST transform.
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Conclusions

This thesis has focussed on the topic of feature enhancement and adaptation for robust

speech recognition. The aim is to modify speech features in order to reduce mismatch

between training and testing speech data. The mismatch is challenging when the testing

environment is unknown and di�erent from training environment. To overcome this,

three proposed feature-based methods were presented to improve the word accuracy of

speech recognition system. This chapter summarizes these methods and discusses some

possible future directions.

6.1 Contributions and Discussions

6.1.1 Noise Conditioning/Normalization Vector Taylor Series
Method

In chapter 3, the idea of noise conditioning/normalization to reduce non-stationary char-

acteristics of the additive noise in the speech is discussed. The proposed method can be

interpreted as a modi�cation of spectral subtraction method or as an extension of VTS

model adaptation method. Instead of trying to completely remove additive noise such

as in [13], the method �rst normalizes the additive noise distribution towards a single

Gaussian model and then handles the remaining noise in the back-end phase by VTS

model compensation [11]. Our approach modi�es the mismatch function and acoustic

model compensation of the VTS method to account for the remaining noise in the fea-

tures. The simulation results on Aurora-2 task showed 14:4% relative reduction of WER

over the VTS baseline.
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A drawback of the proposed method is that there is the lack of an integration of

non-stationary noise tracking into NN-VTS framework. The integration is very impor-

tant because the performance of NN-VTS is dependent on how accurately the noise is

estimated. Another limitation is that the quanti�cation of the e�ciency enhancement is

missing. Although the quali�cation is provided, it would be more complete if the quan-

ti�cation is also investigated to be able to support the decision on the actual deployment.

6.1.2 PFC framework for LVCSR

The chapter 4 discusses the second proposed method which is an extension of particle �lter

compensation (PFC) [35]. The proposed method aims to directly estimate clean speech

features. The idea of PFC is to utilize information from hidden Markov models (HMMs)

trained with clean speech to propagate the particles. Each particle represents a candidate

for a clean speech feature, and by weighting each candidate, the clean speech features

are predicted. The contribution of our work focused on how to obtain aligned state

sequence of HMMs that describe the underlying clean speech features being estimated

in noise. This task is challenging because the total number of triphone models involved

can be very large for sub-word based LVCSR . Our approach is to use separate sets of

HMMs for recognition and compensation. These two acoustic models are estimated from

a reference clean acoustic model using single pass retraining. Hence, the aligned state and

mixture sequence of noisy HMMs generated by a decoder can be used with clean HMMs

to propagate the particles which describe samples of clean speech features. In addition,

the models used for PFC can be simpli�ed to a great extent and thus it facilitates the

estimation of the side information o�ered in the state and mixture sequences. When the

missing side information for PFC is available, a large word error reduction of 28.46%

from multi-condition training is observed for Aurora-4 database.

In this work, we found that the temporal structure of the PFC compensated static

features are seriously distorted. Hence, the proposed method needs to be improved to be

able to handle distortions of dynamic features. A suggestion is to enforce the correlation

between adjacent frames in a more explicit way. Another limitation is that in the current

PFC framework, we consider only the additive noise in background and use the simple

distortion model of noisy speech. A suggestion is to investigate the PFC with other

92



Chapter 6. Conclusions

distortion models presented in [1] to further improve the PFC framework. In real-life

application, there are usually both additive and convolutional noises and thus, extending

the current PFC method to take into account both types of noises is another potential

development.

6.1.3 Spectro-Temporal Transform

The third and last work of the thesis in chapter 5 discusses a spectro-temporal transform

for feature adaptation as well as a minimum KL divergence based cost function for

estimating the transform parameters. The new feature adaptation technique uses both

spectral and temporal information simultaneously, and hence is suitable to deal with both

spectral variability (e.g. speaker variation and noise distortions) and temporal variability

(e.g. reverberation). In addition, the link and relationship to existing feature adaptation

techniques is also discussed. In practice, to overcome limited training data problem, a

sparse generalized transform, called cross transform, is used to reduce the number of

parameters required.

Experiments were conducted on REVERB Challenge 2014 benchmarking task where

the clean and multi-condition trained acoustic models are tested on reverberant and noisy

meeting recordings. The experimental results con�rmed that the spectro-temporal trans-

form outperforms a spectral or temporal only adaptation, with cross-transform achieving

the best results. Alternative approaches to ST transform implementation, such as cas-

caded transform and interpolation of statistics have also been explored. The experiments

positively validated the idea of ST transform.

There are still many aspects of feature adaptation worthy to be exploited in the future.

The cross transform is an empirically designed sparse transform. Another possibility is

to discover a sparse transform automatically by using sparse constraints such as L1 on

the parameters used in [84]. This could reveal which time-quefrency locations are most

useful for predicting the feature at the current location. To further improve reliability

of parameter estimation, subspace methods may be applied such as the one in [87] for

fMLLR. Another direction is to further increase the 
exibility of the transform without

signi�cantly increasing the number of free parameters. For example, we can introduce

nonlinear hidden nodes into the transform, similar to a multilayer perceptron. Nonlinear
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processing may be necessary as the distortion in cepstral domain are generally nonlinear.

Yet another direction is to model the training feature’s distribution better. GMM only

captures spectral and short term temporal information. Considering that the ST trans-

form uses both spectral and temporal information, it is more reasonable to use a reference

distribution that also captures these information of the training features. Finally, one

can also investigate the transform with existing state of the art DNN acoustic model to

study how a more powerful acoustic model than GMM a�ects on the proposed works.

6.2 Future Directions

Besides the development directions for each method have been discussed in previous

subsections, here are common future directions. In this work, three feature enhancement

methods for robust speech recognition have been proposed. However, it lacks comparisons

of these methods on a single corpus and using a single GMM/HMM reference system.

Conducting the comparative experiments will help us better to understand the proposed

methods. Another development approach is to integrate the proposed methods with the

state-of-the-art DNN-based recognition systems to further investigate the potential of

the proposed frameworks.
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