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Summary 

Rechargeable battery systems are experiencing rapid advancement due to their 

pivotal roles in the renewables penetration, smart grid formation and transport 

electrification. Among various rechargeable battery systems, the all-vanadium redox 

flow battery (VRB) has received extensive attention especially in the field of large-

scale energy storage. To enhance the reliability, efficiency, and longevity, the battery 

management system (BMS) has to be well-designed to supervise the operation of 

VRB. In this thesis, focuses are given to the investigation of online battery model 

identification and the associated estimation methods to keep track of the essential 

battery states including the peak power, the state of charge (SOC), and the 

instantaneous capacity. 

Reliable state estimation depends directly on an accurate battery model. However, 

the parameters of battery model are time varying with the operating condition 

variation and battery aging thus the common methods where model parameters are 

prescribed offline are not adequate. To address this issue, the first part of this thesis 

proposes to use an online adaptive battery model to reproduce the battery dynamics 

accurately. Two algorithms including the recursive least squares (RLS) and the 

extended Kalman filter (EKF) are compared on the ability of online model 

parameters identification and the RLS proves to be superior considering the 

modeling accuracy, convergence, and computational complexity. The peak power is 

an essential state defined as the maximum power that is possible to be accepted or 

delivered by the battery at a specific operating point without violating the Safe 

Operating Area (SOA). Based on the online identified battery model, an adaptive 

peak power estimator which incorporates the constraints of voltage limit, SOC limit 

and design current limit is proposed to fully exploit the potential of VRB. The 

proposed peak power estimator is verified with a “two-step verification” method. 

The influence of prediction time horizon on the peak power is also analyzed. 

The abovementioned model identification method relies on an open-circuit cell to 

accurately measure the open circuit voltage (OCV). Using such an additional cell, 

however, will increase the configuration complexity of the VRB system. To tackle 
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this problem, a new online model identification method without requiring the open-

circuit cell is proposed and based on which an online SOC estimation method is 

investigated in the second part of the thesis. Two main contributions have been 

drawn. Firstly, the estimations of model parameters and OCV are fully decoupled to 

rule out the possibility of cross interference between them. Secondly, multiple 

timescales are adopted for different estimators by analyzing the model sensitivity, 

stability, and accuracy. Based on the proposed multi-timescale estimator, the SOC is 

inferred directly from the SOC-OCV look-up table. Experimental results show that 

the proposed method is highly accurate and also robust to the initialization 

uncertainty and operating condition variation. The robustness to battery aging is 

also satisfactory within an aging degree of 14.78%. 

As another crucial index, the instantaneous capacity is a figure of merit describing 

the state of health (SOH) of the battery. The accurate update of capacity also 

contributes to improving the accuracy of the SOC estimate. Driven by this, the third 

part of the thesis focuses on the adaptive joint estimation of SOC and instantaneous 

capacity based on an online identified battery model. The model parameters are 

online adapted with the RLS method, based on which an EKF-based novel joint 

estimator is formulated to estimate the SOC and capacity concurrently. The 

proposed joint estimator compresses the filter order effectively which leads to a 

substantial improvement in the computational efficiency and numerical stability. 

Lab scale experiments are carried to show the fidelity of the proposed method. The 

comparison with other existing methods also suggests its superiority in terms of 

accuracy, convergence speed, and computational cost. 

The existence of noises is unavoidable in real applications and may decline the 

accuracy of both the model identification and state estimation. In the last part of this 

thesis, therefore, the effect of measurement noises is investigated. It is shown that 

the common methods for model identification are intrinsically biased if both the 

current and voltage sensors are corrupted with noises. The uncertainties in the 

battery model further degrade the accuracy of the SOC estimate. To address this 

problem, a novel technique which integrates the Frisch scheme based bias 

compensating recursive least squares (FBCRLS) with a SOC observer is proposed 
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to enhance the model identification and SOC estimate. The proposed method 

estimates the noise statistics and compensates the noise effect so that the model 

parameters can be extracted without bias. The SOC is further estimated in real time 

with the online updated and unbiased battery model. Both simulation and 

experimental studies are carried out to show the validity of the proposed method. 

The thesis provides a set of data-driven based algorithms for the reliable and high-

fidelity online estimation of key battery states. As only the onboard measured 

current and voltage signals are required, the proposed algorithms are also promising 

to be generalized to a broad range of other battery chemistries. 
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MRE mean relative error 

RMSE root mean square error 
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CHAPTER 1 Introduction 

1.1 Background 

1.1.1 Renewable Energy and Electrical Energy Storage 

Energy is the lifeblood of modern society. The emerging concerns over the fossil-

fuel supplies depletion, global warming and environmental pollution have led to 

increasing interests in the utility of renewable energies. It is a common sense that 

the oil reserves will be exhausted in a few decades and 2057 has been estimated to 

be the year when oil depletion happens [1]. Twenty-nine states in the United States 

have issued the renewable portfolio standards that mandate 15–30% renewable 

electricity sales by 2025 [2]. 

Due to the high demand of green energy utilizing, the solar and winding power 

generations as the primary sources of renewable electricity production for the grid 

have been brought to the forefront. These renewable energy sources, unfortunately, 

are highly intermittent and difficult to control, thus reliable electrical energy storage 

(EES) systems are highly required for stable and consistent power delivery in the 

integration of renewable energy into the grid. Currently the power capacity for EES 

within the grid is about 125 GW which is only about 3% of global power capacity 

and the majority of EES is in the form of pumped hydroelectric storage (PHS). 

Considering this, additional EES systems are expected to be integrated within the 

grid and this will allow more plants to run closer to full capacity. EES has been 

playing a key role in diversifying the energy sources and adding more renewable 

energy sources into the existing energy market. Take the large stationary EES of 

power grid for example, the benefits of EES include peak power shaving, load 

levelling, and standby reserve [3]. On the other hand, the penetration of battery-

powered EVs into the market is quite urgent to reduce the CO2 emission and to 

alleviate the heavy dependence on fossil fuels, considering the growing number of 

transportation vehicles and the associated negative consequences. EES has thus 

emerged as a top concern for the future smart grid and EVs. 
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EES technologies have been developed to face the aforementioned challenges for 

years. To date, the state-of-the-art EES technologies include PHS, thermal energy 

storage (TES), superconducting magnetic energy storage system (SMES), 

compressed air energy storage system (CAES), recharging battery, flywheel, and 

super-capacitor. Among multiple types of EES systems, rechargeable batteries are 

the most promising to meet the future needs because of their high energy efficiency 

[4]. Battery storage has been viewed as the essential technique for the renewables 

penetration, transportation electrification, and smart grid establishment. Driven by 

the urgent demand, battery technology has been growing rapidly towards high 

performance and low cost. 

1.1.2 Research Interests on Vanadium Redox Flow Battery 

Among different flavors of battery chemistries, the VRB proposed by Skyllas-

Kazacos [5, 6] and co-workers has shown great potential due to the unique merits 

including elimination of cross contamination, independent capacity and output 

power design, tolerance to deep discharge, high energy efficiency and long life 

cycle [7, 8]. Therefore, the VRB technique is viewed as a promising solution to the 

energy storage market. 

Although the concept has been proposed many years ago, the VRB is still in its 

infancy stage with respect to the commercialization and developmental maturity, 

with almost all the related techniques under development from the perspective of 

real applications. To date, most of the efforts have been given to the field of design, 

manufacturing, and use of various separator/membrane materials, as all these are 

critical and have large impacts on the power performance and lifetime of VRB. 

Electrolyte mixtures containing various additives with different concentrations have 

been shown to facilitate improving the energy density, increasing the range of 

working temperature, and reducing the cost of production. A majority of efforts 

from the researchers have been made to explore the high-quality membrane 

materials with high ionic conductivity and good resistance to the battery 

degradation. The researches on electrode material, design, and manufacturing have 

been focused on reducing the reaction inefficiencies through increasing the 
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conductivity and surface area of the electrodes [9]. 

While there have been intensive investigations on the cell design, testing, and 

performance enhancement, the issues in real applications have not been addressed 

adequately. Even the fundamental operational methods such as SOC estimation, 

SOH monitoring, power prediction, flow rate control, and charge discharge 

characteristics are still under development. Although lots of models have been 

investigated, they are mostly the complicated electro-chemical model, electro-

thermal model, and multi-physics model which are computationally expensive and 

are aimed majorly for design optimization. The VRB models with low complexity 

that enables the electronics interfacing and supports the system-level supplication 

are still under development. 

1.1.3 Battery Management System 

While the battery technologies are advancing very quickly on developing cells with 

higher power and energy densities, it is equally important to improve the 

performance of the BMS to enhance the safety, reliability, and cost efficiency of the 

battery system. The BMS should be equipped with accurate algorithms to monitor 

and estimate the functional status of the battery and meanwhile the state-of-the-art 

mechanisms to protect the battery from the low operating efficiencies and even the 

potential hazardous. The basic responsibilities of the BMS are summarized as:  

(1) Battery parameters detection 

This includes the basic current detection, voltage detection, temperature detection, 

insulation detection, impedance detection and so on. 

(2) Safe operations 

This includes thermal management, operating between safe current and voltage 

limits, shutdown on detection of fault, etc. The thermal management system is 

critical important for the VRB operation. It has been shown that the electrolytes of 

VRB should be strictly controlled within a specific temperature range for the battery 

to work efficiently [10]. For typical VRB electrolytes with 1.8 - 2 M vanadium 
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sulphate in 2.5 - 3 M sulfuric acid, the thermal precipitation of V5+ will happen 

when the temperature is higher than 40oC over extended periods, while the 

precipitation of V2+/V3+ will occur when the electrolyte temperature drops below 

5oC [11]. The overall efficiency of VRB will drop significantly if the VRB system 

works outside the recommended temperature range. A more severe consequence of 

lacking thermal management is that the precipitation can block the electrolyte 

channels and leads to safety hazards. Although the precipitation can be minimized 

by reducing the vanadium ion concentration below 1.8 M, this inevitably leads to a 

reduced energy density which is undesirable in the real applications. For this 

purpose, a reliable thermal management system is the prerequisite of the high-

efficiency operation of the VRB. 

(3) Online state estimation 

This includes the SOC or depth of discharge (DOD), SOH, peak power, and 

remaining useful life (RUL), etc. The SOC or DOD of batteries is estimated by 

measuring working current, temperature, and voltage. For the closed-cell systems, 

the SOC determination will be quite challenging as it cannot be measured by any 

available sensors. The VRB allows using an open-circuit cell to measure the OCV 

and then inferring the SOC, but the additional sensors and the installation of open-

circuit cells can add complexity to the already complicated system. SOH is 

estimated according to the extent of abuse and performance degradation of batteries. 

Peak power is essential for the power management by judging the maximum input 

or output potential of battery for the next operating time horizon. 

(4) On-board diagnosis 

The typical faults include sensor fault, network fault, battery fault, over-charge, 

over-discharge, overcurrent, abnormal temperature, loose connection, insulation 

fault, and so on [12]. 

(5) Charge control 

On the basis of the battery limitation and the power limitation of charger, BMS 

should decide the optimal charging strategy to make trade-off between charging 
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speed, charging efficiency, temperature rise and battery degradation. 

(6) Cell balancing 

For lithium-ion batteries and other closed-cell systems, the BMS should also be able 

to handle an additional function of cell balancing. Cell-to-cell variations are one of 

the reasons for the degradation of the battery pack. In order to avoid premature cell 

degradation and minimize the safety hazards, the upper limit and lower limit 

voltage of a single cell block must not be exceeded. Therefore, the actual capacity 

of the pack is constrained by the cell block that firstly reaches the voltage limits. In 

this regard, the remaining capacity of the other cell blocks will be wasted. 

Fortunately, the VRB system can avoid the above mentioned imbalance. This is 

because the electrolytes from the same external reservoirs are circulated through all 

the battery stacks. In this way, all the system components share the active species 

with the same properties thus the imbalance can be minimized. Considering that the 

balancing system especially for the non-dissipative balancing systems are usually 

very complex, including both power electronics and control networks, it is a very 

expensive component in BMS. In this regard, the feature of VRB actually helps to 

save lots of costs by omitting the balancing system. 

Other issues related to the BMS may include the electrolyte flow rate control in 

accordance with the power demand; which is only applicable for flow battery, and 

other miscellaneous functions. 

1.1.4 Online Estimation of Key Battery States 

The SOC is the most important state in BMS and any other management issues 

require the accurate estimation of SOC as prerequisite. The SOC, which is used to 

describe its remaining capacity, reflects the battery status to determine how long the 

cell will last and is the indicator on when to stop charging and discharging. 

Therefore, the accurate estimation of SOC can not only protect battery from the 

rapid aging or damage caused by the unsuitable over-charge and over-discharge, 

and improve the battery life, but also allow the application to make rational control 

strategies to save energy. 
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Although the VRB systems have low possibility of ignition and explosion, the 

unsuitable over-charge and over-discharge can still degrade the battery significantly. 

While no morphological changes limit the depth of discharge, the over-discharge 

can lead to the cell reversal, which is definitely undesired. Gassing side reactions 

will occur at both half-cells and cause fading of capacity [13]. The hydrogen 

evolution at the negative half-cell is significant above 90% SOC. Severe over-

charge conditions can also deteriorate the electrode materials. Therefore, the 

accurate estimation of SOC is critical to improve cell performance and to extend the 

service life. In real applications, the BMS regulates the battery to work within a 

specific SOC range. In this regard, the accurate estimation of SOC contributes to 

fully exploiting the remaining energy in the battery. Assume the theoretical SOC 

range is from 10% to 90%, the possible operating range of battery is only 20%  

80% if a 10% error on SOC estimation exists. This means a waste of 20% on the 

battery capacity. In order to fulfill the capacity requirement for specific 

applications, an additional design capacity of 20% actually represents a great 

increase of cost. To this end, the accurate estimation of SOC is also of great 

importance from the cost perspective. In summary, the online SOC estimation 

methods with high accuracy and robustness is essential regardless the field of use. 

It is known that the battery system will degrade during cycling even under normal 

operation. This degradation can be accelerated by extreme load patterns, abnormal 

temperature, over-charging, or over-discharging. The degradation will result in the 

increase of internal resistance and more importantly the fade of battery capacity. It 

is a basic function of BMS to know the health state of the battery in use and the 

remaining service life of battery. SOH is the indicator to reflect the battery’s life and 

health status by indicating the ability of the battery to perform well both in charge 

and discharge. Through the accurate estimation of SOH, it may be possible to know 

the aging or degradation of the battery and whether the battery should be replaced 

or not. The parameters to evaluate the SOH include the internal resistance and the 

actual capacity, while capacity is more straightforward and can be viewed as the 

primary indicator. Generally, if the battery capacity fades by 20% of the initial 

value, indicating the SOH drops to 80%, the BMS would warn the user to change 

the batteries [14]. Knowing SOC and SOH further provides the estimate of state-of-
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function (SOF). 

The peak power is an essential state defined as the maximum power that is possible 

to be accepted or delivered by the battery for the future prediction time horizon 

without violating the safety requirements. The reliable estimate of peak power 

enables the system to fully exploit the potential of battery within the safe operation 

window. Taking the VRB/photovoltaic-based microgrid system demonstrated in ref. 

[15] as an example, if the VRB cannot deliver enough discharging power at night 

when the power from the PV array drops to zero, the user-end requirement cannot 

be fulfilled. Alternatively, if the remained PV power is beyond the acceptable range 

of VRB, the converted energy from the PV array would be wasted. Therefore, 

accurate monitoring of instantaneous peak power provides a basis for the power 

management strategy of the VRB storage system to achieve optimal utilization. 

1.2 Objectives and Contributions 

Although the VRB is a promising candidate for the energy storage, the related 

techniques are still not adequate to support its real commercialization, especially 

from the perspective of real applications. The accurate and robust monitoring of the 

key battery states is critical for the VRB to work safely and efficiently with an 

extensive calendar life. The major objectives of this study are summarized as 

follows: 

(1) A reliable battery model is the prerequisite of online battery state estimation 

and other electronic interfacing. The parameters of the battery model are 

commonly time varying with operating condition variation and battery aging 

thus online adaption is required. This study aims to propose an online adaptive 

battery model with high accuracy and low complexity which can be used for 

state estimate and any other control-orientated applications. 

(2) The peak power is an essential battery state reflecting the maximum power that 

can be drawn from or stored into the battery for the coming time intervals. This 

study aims to propose an equivalent circuit model (ECM)-based peak power 

estimation method to fully exploit the potential of VRB without violating the 
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safe operation limitations of battery. 

(3) The reliable SOC monitoring is essential to assess the battery condition and to 

avoid over-charge and/or over-discharge. This study aims to propose a data-

driven based online SOC estimator which has high accuracy, high robustness, 

and low computational burden. 

(4) The capacity fade occurs as a consequence of different diffusion of vanadium 

ions across the membrane. The reliable monitoring of instantaneous capacity is 

essential for the diagnostic of the battery health condition. This study aims to 

propose a capacity estimator which can be implemented in real time without 

any constraint. 

(5) The measurement of current and voltage signals can be contaminated with non-

ignorable noises in real applications, which may cause errors to the model 

identification and further the state estimate. This thesis also aims to investigate 

the effects of additive noises on model identification and state estimate. The 

thesis further seeks to explore an integrated framework to eliminate the noise 

effect and to realize the accurate model identification and SOC estimation. 

With all the aforementioned objectives, systematic investigations are carried out to 

explore high-fidelity algorithms for the purpose of reliable and robust online state 

estimation. The major contributions of the thesis are summarized as follows: 

(1) This study adopts a common used ECM structure and explores online 

parameterization methods to make it adaptive and robust to the change of 

operating conditions and battery aging. The online identified battery model will 

be the basis for the model-based state estimate. 

(2) This study proposes an ECM based online peak power estimator. The estimator 

is formulated by considering multiple constraints, including voltage limit, SOC 

limit, and design current limit. A “two-step verification” method is designed to 

verify the proposed peak power estimator. The effect of prediction time horizon 

on peak power estimation is also investigated. 

(3) This study proposed a multi-timescale framework for model parameters and 

online SOC co-estimate. The model parameters and OCV are decoupled and 

estimated independently, effectively avoiding the possibility of cross 



CHAPTER 1 Introduction 

9 

interference between them. Different timescales are adopted to enhance each 

estimator independently based on the analysis of model sensitivity, stability, 

and model accuracy. 

(4) This study proposes an online SOC and capacity joint estimation method. 

Except for the decoupling of model identification and state estimate, a novel 

EKF based joint estimator is formulated to estimate the SOC and capacity 

concurrently. The proposed joint estimator effectively compresses the filter 

order which leads to substantial improvement in the computational efficiency 

and numerical stability. 

(5) This study shows that the common model identification methods are 

intrinsically biased if the current and voltage sensors are corrupted with noises. 

To address this problem, a novel technique which integrates the Frisch scheme 

based bias compensating recursive least squares (FBCRLS) with a SOC 

observer is proposed to enhance the model identification and SOC estimate. 

The proposed method online estimates the noise statistics and compensates the 

noise effect so that the model parameters can be extracted without bias. The 

SOC is further estimated with improved accuracy based on the online updated 

battery model. 

1.3 Organization of the Thesis 

The thesis consists of seven chapters and three appendices, which have been 

organized as follows: 

Chapter 1 briefly introduces the background of the study, including renewable 

energy and energy storage system, current research interests on VRB, battery 

management system, and online estimation of key states of VRB. The objectives 

and major contributions are also clarified. 

Chapter 2 presents a detailed and in-depth literature review related to the research 

topics of this thesis. The chapter begins with the fundamental of the flow battery 

and further introduces the concept, features, comparison with other batteries, and 

current applications of VRB. Following that, special focus is given to several 
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essential aspects of BMS, including battery modeling, SOC estimation, capacity 

estimation, and peak power estimation. Existing methods concerning the 

aforementioned topics are introduced and compared in detail. 

Chapter 3 introduces an online adaptive battery model for VRB and based on which 

an online peak power estimator is proposed. The first-order RC model is applied to 

simulate the battery dynamics and two identification methods, RLS and EKF, are 

used to online adapt the time-varying model parameters. Following that, an online 

peak power estimation method is proposed by accounting for multiple constraints, 

including voltage limitation, SOC limitation, and design current limitation. A “two-

step verification” method is designed to verify the estimation accuracy. A hybrid 

pulse experiment is illustrated and the major constraints for different stages are 

discussed. The effect of the adopted prediction time horizon is also investigated. 

Chapter 4 focuses on the online model parameters and SOC co-estimation for VRB 

with a novel multi-timescale estimator. The OCV and model parameters are fully 

decoupled and estimated with independent estimators to rule out the possibility of 

cross interference. Theoretical analysis on sensitivity, stability and precision are 

carried out to assess the performance of each estimator, based on which different 

timescales are used to enhance the co-estimation. Experiments on a lab-scale VRB 

system are conducted to verify the proposed method. 

Chapter 5 presents the adaptive joint estimation of SOC and instantaneous capacity 

for VRB based on the online identified battery model. The computational efficient 

RLS is adopted to adapt the model parameters in real time. A simple OCV estimator 

which can be used for battery models with different orders is explored. The 

estimated OCV is treated as the noisy system measurement of an EKF based joint 

estimator for concurrent estimation of SOC and capacity. Experiments are carried 

out to show the fidelity and robustness of the proposed method. A comparison with 

another state-of-the-art method has also been done to highlight the superiority of the 

proposed method in terms of convergence speed, estimation accuracy, and 

computational cost. 

Chapter 6 focuses on investigating the effect of noises on model identification and 
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SOC estimation. The existence of noises is shown to cause bias on model 

identification thus is detrimental for the model-based state observers. In order to 

attenuate the noise effect, a novel FBCRLS based observer is proposed to enhance 

the online model identification and SOC estimation. The noise statistics are online 

estimated to allow compensating the noise effect, in which the model parameters are 

extracted without bias. The SOC is further estimated with the online updated and 

unbiased battery model. Simulation and experimental results show that the proposed 

method is highly authentic. The comparison with existing methods highlights its 

superiority in terms of accuracy and convergence speed. 

Chapter 7 summarizes the key conclusions of this thesis. Meanwhile, some potential 

research topics related to this thesis are recommended for the future work. 
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CHAPTER 2 Literature Review 

2.1 Introduction 

Secondary or rechargeable batteries as a group of chemical energy storage devices 

are among the leading EES technologies today. To date, they have already been 

widely used in many applications such as starting, lighting, and ignition (SLI) 

automotive applications, industrial truck materials handling equipment, emergency 

and standby power, and portable devices. Most recently, rechargeable batteries have 

received renewed interest as power sources for electric vehicles (EVs), hybrid 

electric vehicles (HEVs) and large-scale energy storage in a load leveling mode. 

VRBs are promising candidates for the future energy storage systems (ESSs). They 

can be easily scaled up to formulate much larger storage capacities and show great 

potentials for the long lifetimes and lower per-cycle costs than the conventional 

batteries. In order to operate the VRB safely and efficiently with an extensive 

calendar life, a well-designed BMS is highly desired. In this chapter, a thorough 

literature review is carried out on the knowledge of VRB and the design of BMS 

including the battery modeling and the online estimation of the essential battery 

states. 

The rest of this chapter is organized as follows. Section 2.2 briefly introduces the 

concept of redox flow battery (RFB) and its features compared with other secondary 

batteries. Section 2.3 reviews the knowledge of VRB in details, including the 

fundamental, features, comparison with other battery chemistries, and its 

applications to date. Section 2.4 provides in-depth review of the existing researches 

on the online state estimation techniques. The basic duty of BMS is briefed, 

following which the online estimation of SOC, instantaneous capacity, and peak 

power as the major topics of the thesis are comprehensively reviewed. The existing 

methods that are available in the open literatures and their associated advantages 

and disadvantages are discussed. Section 2.5 summarizes the current literatures and 

points out the existing challenges which will be extensively discussed and 
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addressed in the following chapters of the thesis. 

2.2 Redox Flow Battery 

Redox flow batteries (RFBs) are also viewed as electrochemically regenerative fuel 

cells because they involve the supply of an externally stored fuel and oxidant in the 

form of soluble redox couples that produce the electrical energy when undergoing 

the oxidation and reduction reactions [16]. Energy is stored chemically in the two 

electrolytes containing different redox couples. The electrolytes are pumped from 

each tank into the flow cells across a proton exchange membrane where one form of 

the electrolyte is electrochemically oxidized while the other is electrochemically 

oxidized. 

Compared with other secondary batteries, the undesirable electrode processes like 

the structural changes are eliminated by using the fully soluble redox couples and 

inert electrodes. The battery capacity is determined by the volume of external 

reservoirs and the concentrations of the reactants, while the battery power is 

determined by the number of individual cells within a battery stack and their 

electrode areas. As such, the capacity and power can be designed and optimized 

independently with high flexibility when facing a specific application. The capacity 

can be enlarged by simply using more electrolytes or higher reactant concentration, 

so that the cost of scale-up is much lower than that of other batteries. Another 

important advantage is the flexibility during charge/discharge cycles, i.e. the RFB 

can be completely discharged without damaging the cells permanently [17]. The 

main disadvantage of RFB is that the electrolytes are made of different substances 

and separated by a membrane that is permeated inevitably. The two electrolytes can 

mix with each other and further render the battery useless, which is called the cross 

contamination. 
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2.3 Vanadium Redox Flow Battery 

2.3.1 Fundamental 

The research on the VRB began in 1984 at the University of New South Wales. The 

VRB was pioneered by Skylllas-Kazacos [7] and co-workers to overcome the 

inherent problem of RFB, i.e. the cross contamination by diffusion of different 

redox ions across the membrane. As a significant advancement, the VRB employs 

the same element in both half-cells to eliminate any cross contamination 

phenomenon, so that allows the electrolyte life to be extended indefinitely [18]. 

The VRB employs four different vanadium valences species in both sides. The V2+/ 

V3+ and V4+/ V5+ redox couples in sulphuric acid are employed respectively for 

negative and positive half-cells with the following charge-discharge reactions: 

Positive electrode reaction: 

 

charge2+ + +

2 2discharge

0

VO +H O VO +2H +e

+1.00 V versus SHEE





  (2.1) 

Negative electrode reaction: 

 

charge3+ - 2+

discharge

0

V +e V

0.26 V versus SHEE  

  (2.2) 

where SHE stands for the standard hydrogen electrode. The OCV of the above 

mentioned redox couples is about 1.6 V when the positive and negative half-cell 

electrolytes comprising 2 mol/L V5+ and 2 mol/L V2+ respectively. The system can 

be operated over a temperature range of 10 - 40℃ without safety issues. 

The schematic diagram shown in Figure 2.1 describes how the VRB is functioned 

and operated. As shown, the charge and discharge reactions happen on the surface 

of the solid electrodes and accordingly generate the electrical potential. An ion 

exchange membrane separates the two half electrolytes which allows only protons 

to transfer between cells so that the active reactants cannot mix. Different from 
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other secondary batteries, the electrolytes are stored externally in two independent 

tanks, and are circulated through the cells with two pumps. The maximum amount 

of energy that can be stored in VRB is determined by the concentration of the 

vanadium species in each electrolyte and the volume of the electrolytes. 

 

Figure 2.1 Schematic diagram of a redox flow battery with electron transport in the 

circuit, ion transport in the electrolyte and across the membrane, active species 

crossover, and mass transport in the electrolyte 

 

Figure 2.2 VRB structure: (a) prototype of a 10W VRB cell; (b) schematic of stack 

structure of VRB 

By compressing numbers of single-cells together, a stack as the most essential 

component of VRB can be formulated. The formulation decides the output power of 
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VRB. The stack is composed of serial connected single-cells with two solid 

electrodes in contact with the liquid electrolytes and the current collectors. A scale-

up system can be achieved by increasing the area of the electrodes, adding more 

electrolytes in the tanks or by connecting the stacks in either series or parallel 

configurations. The prototype of a lab scale 10W VRB is shown in Figure 2.2 (a). 

Figure 2.2 shows the schematic of a stack structure in the VRB. 

2.3.2 Features 

The VRB has been the most studied redox flow cell and also commercialized for 

some applications for its unique advantages compared with other electrochemical 

energy storage technologies. The advantages of VRB are summarized as follows: 

(1) Capacity/power independence 

The VRB stores the chemical energy in the form of two vanadium electrolytes 

contained in two independent reservoirs. Therefore, the battery capacity can 

be easily enlarged by simply adding more electrolytes, which is quite cost 

efficient compared with the scale up of other battery systems. Otherwise, the 

output power of VRB is determined totally by the electrode area and the 

number of single cells connected in series or parallel, indicating that the 

design of the power and capacity of VRB are separated and highly flexible 

according to the practical requirements. 

(2) Cross-contamination elimination 

The VRB applies vanadium solutions in both half-cells. The use of a single-

metal system makes it free from the problem of cross-contamination caused 

by the transfer of ions across the membrane as well as any problems 

associated with the use of pre-mixed solutions. 

(3) Fast charging 

The “empty” battery can be immediately fully charged by simply replacing 

the spent electrolytes. Such advantage will be of particular interest for the 

applications in electric cars as it allows the rapid refueling by electrolyte 

exchange at the special refueling stations. As such, the slow charging time 

associated with conventional battery technologies can be avoided while the 
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spent electrolytes can be recharged during the periods of low demand [19]. 

Progresses with the hybrid redox fuel cells lead to significant improvements 

in the energy density which will further facilitate the applications in electric 

vehicles. 

(4) High tolerance to over-charge and over-discharge 

The VRB is highly tolerant to the over-charge and over-discharge within the 

limits of the capacity and current density. It can also be cycled from any state 

of charge without permanent damage to the cells or electrolytes [20]. 

However, it has to be pointed out that the high tolerance to over-charge and 

over-discharge is relative to the other battery chemistries. In real applications, 

the VRB is not recommended for over-discharge and especially over-charge. 

No morphological changes that limit the depth of discharge are observed to 

date, and the only consequence of over-discharge is the cell reversal. In 

contrast, the effect of over-charge is more complicated. Gassing side reactions 

will occur at both half-cells and cause fading of capacity especially during the 

charging process [13]. Specifically, the hydrogen evolution at the negative 

half-cell is significant above 90% SOC. Severe over-charge conditions can 

also deteriorate the electrode materials. For example, the over-charge will lead 

to the oxidation of the carbon black materials used in the bipolar electrode 

substrate which further causes the increase of resistance. The oxidation of 

graphite felt materials will form the carbon/oxygen functional groups which 

are removable under reducing conditions. However, the oxidation of the more 

reactive carbon black filler material can lead to CO2 formation resulting in 

delamination and destruction of the composite matrix. As a result, although 

the tolerance of VRB to over-charge and over-discharge is high, they are 

better to be avoided in real applications. 

(5) Easy thermal management 

The electrolytes are circulated with the external loops, so that the thermal 

management system can be easily designed with either the natural cooling or 

the forced cooling techniques. 

Other major advantages include the low capital cost, the long life cycle, the high 

energy efficiency, and the low toxicity, etc. 
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2.3.3 Comparison with Other Battery Chemistries 

It is of great importance to compare the battery characteristics and the cost aspects 

of different battery techniques, as they are critical to the introduction of large scale 

ESSs when evaluating the suitability of batteries for grid operation. Apart from the 

VRB, other typical battery techniques include the lead-acid battery, the lithium-ion 

battery, the sodium-sulfur, and the nickel-based batteries. Nowadays, the use of 

nickel-based batteries is diminishing as a consequence of the high cost. The various 

characteristics, costs, and maturities have been summarized in Table 2.1 for 

comparison. It is observed that the VRB has superiority in the cycling life, self-

discharge rate, system level cost, and total life time. 

The lithium-ion battery is a promising technique that shows many merits and has 

been widely applied in many fields like portable electronics, transportation 

electrification, and gird construction. Relatively speaking, as shown in Table 2.1, 

the lithium-ion battery has the characteristics of high cycle life, high energy density, 

high power density, high efficiency, and low self-discharge rate. However, the 

complex control circuitry is required to avoid the over-charge which results in 

overheating and failure immediately. The high efficiency enables large charge and 

discharge currents, but this increase the risks associated with overcharging. 

Moreover, the battery pack should incorporate numbers of cells in series and 

parallel. The balance between each cell requires reliable control algorithm and 

circuitry which are quite challenging and somewhat expensive, pushing the cost of 

an already expensive battery even higher. 

By comparison, the VRB has very long cycling time and negligible self-discharge 

which are all favorable for real applications. One outstanding feature of VRB is that 

the capacity can be increased by simply adding more electrolytes, so the theoretical 

capacity can be infinite. The incremental cost of each additional energy storage 

capacity unit is much lower than other types of battery. For this reason, the cost per 

kWh of the system decreases substantially with increasing storage capacity, making 

the VRB particularly attractive for the large-scale applications. Moreover, all the 

battery stacks in series or parallel can be feed with electrolytes from the same 

external reservoir, thus the balancing problem associated with the lithium-ion 
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battery can be well eliminated. Some other unique advantages of VRB over the 

lithium-ion battery, such as the independence of capacity and power design, fast 

charging, high tolerance to over-charge and over-discharge, and easy thermal 

management are not repeated here. The only concern about VRB is the low power 

and energy density. The VRB system should be very large in size in order to fulfil 

the requirement on rated power and energy, which limits its usage in the field of 

electrical mobility such as EVs and HEVs. However, this is not an issue for the 

stationary energy storage application where the space is not the main concern. 

2.3.4 Applications 

To date, the VRB has shown the greatest potential for the applications of large-scale 

energy storage with high energy efficiencies over 80% and meanwhile long cycling 

life. This battery technique has been applied in the MW- and kW-scale projects with 

practical demonstrations covering a range of stationary and mobile applications in 

Japan, China, Europe, Australia and the USA. Except for the merit of cross 

contamination elimination, the VRB also shares a considerably low cost for large-

scale storage. As discussed, the cost per kWh substantially drops when the capacity 

is enlarged. The projected costs for eight or more hours of storage are typically as 

low as US$150/kWh. The representative applications of VRB are summarized in 

the following texts. 

In 1993, Mitsubishi Chemicals and Kashima-Kita Power Corporation of Japan 

licensed the VRB technology for stationary usage. The technology was scaled up 

for the purposes of load-leveling and solar energy storage applications [21]. After 

that, a 3 m3/day electrolyte production plant was commissioned in early 1996. 

In 1997, the 200 kW/800kWh grid connected VRB was commissioned at the 

Kashima-Kita Electric Power station in Japan. The long-term testing which 

consisted of 150 charge-discharge cycles showed a high energy efficiencies of close 

to 80% [21]. 
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Table 2.1 Characteristics of different battery technologies 

Battery type Lithium-ion Lead–acid Sodium–sulfur VRB 

Power cell Energy cell Power cell Energy cell 

Cycle life 3000 3000+ 50 to 200 200 to 1800 210 to 4500 5000 to 14000 

Energy density (Wh/kg) 75 to 200 75 to 200 30 to 50 30 to 50 150 to 250 10 to 30 

Power density (W/kg) 2400 75 to 300 300 75 150 to 230 possible, 

commercial up to 30 

N/A 

E/P ratio (kWh/kW) 0.025 to 0.075 0.27 to 0.6 0.13 0.5 6 1.5 to 6+ 

Self-discharge per day 0.1% to 0.3% 0.1% to 0.3% <0.5% <0.5% 20% Negligible 

Cycle efficiency 80 to 98% 80 to 98% 63 to 90% 63 to 90% 75 to 90% 75 to 85% 

Format Cylindrical  Prismatic Cylindrical Prismatic Tall cylindrical Separate tanks 

Active material phase Solid Solid Solid Solid Liquid Liquid 

System level cost (US$/kWh) 600 to 1200 600 to 1200 200 to 600 200 to 600 300 to 950 150 

Life time (years) 5 to 10 5 to 10 5 to 10 5 to 10 5 to 10 10 

Maturity level Commercial Commercial Mature Mature Commercializing Developed 

Modular Sealed, modular Sealed, modular Modular Modular High temperature Liquids 

Safety issues Potential fires and explosions Potential for hydrogen 

explosions 

High temperature 

operation 

Chemical  

leakage 
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Since 1999, more than 20 VRB demonstration systems were carried out by 

Sumitomo Electric Industries. The applications included load leveling, wind energy 

storage, and emergency back-up power. The energy efficiencies were maintained at 

80% and up to 270,000 charge-discharge cycles had been committed [22]. 

From 2001 to 2005, several more applications were undergone. A 250 kW/520 kWh 

VRB based energy storage system (ESS) was established in South Africa. A 250 

kW/1 MWh VRB system was installed for Hydro Tasmania in Australia for wind 

energy storage and diesel fuel replacement. A 250 kW/2 MWh VRB was installed in 

the USA by VRB Power for voltage support and rural feeder augmentation. 

Sumitomo Electric Industries installed a 4 MW/6 MWh VRB system at Subaru 

Wind Farm for the aim of wind energy storage and wind turbine output smoothing. 

A VRB powered electric golf cart was field tested at UNSW to show its potential 

for mobility applications. The testing result suggests that the energy density of VRB 

approaches that of lead-acid, with the unique advantage of rapid recharging by the 

electrolyte replacement. Subsequent tests with a 3 M vanadium electrolyte showed 

that a driving range of 54 km could be achieved if the tanks were filled. 

The research on VRB was initiated in China by Zhang and co-workers at the Dalian 

Institute of Chemical Sciences. A 1 kW stack was designed in 2006 and further 

several stack modules were integrated into a 10 kW VRB system with 4 modules in 

series and 2 in parallel [23]. The overall energy efficiency was tested to be more 

than 80%. 

In 2009, Zhangbei storage building as China’s first comprehensive demonstration 

project was launched by Chinese National Grid. A total of 75 MW of projects were 

demonstrated in the energy storage including the VRB, the lithium-ion battery, and 

the sodium-sulphur batteries. Among them, the VRB was found desirable for the 

wind energy storage [24]. 

In 2010, the US Department of Energy funded the application of a 1 MW/8 MWh 

VRB system to facilitate the load leveling at the Painesville Municipal Power 

Station in Ohio. This project also intended to include the development of 10 - 20 
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kW systems for the batch production. 

In 2012, the demonstration power plant of the Woniushi wind farm was launched by 

the Chinese National Grid. The VRB was applied for the wind storage. The whole 

system was configured by five 1 MW VRB modules each with a rated output power 

of 22 kW. In 2013, the demonstration power plant was successfully connected to the 

grid for transmission. 

2.4 Online State Estimation Techniques 

The VRB is a promising candidate for the future energy storage market. However, 

the related techniques are still not adequate to support its real commercialization. 

Lots of key issues linking the chemistries to real applications are to be addressed. In 

this regard, a well-designed BMS with high reliability is pivotal to operate the VRB 

safely and efficiently with an extensive calendar life. 

The BMS is an embedded system that incorporates the purpose-built electronics and 

processing to guarantee the safe and efficient operation with a long calendar life. A 

BMS requires both hardware (electronics) and software (algorithm) components. 

The hardware part adopts electronic circuits to measure the current, voltage, and 

temperature and to ensure the safe operation. The software parts rely on the 

advanced computing algorithms to monitor and coordinate the activities of battery. 

In this thesis, we only focus on the software part of BMS. The major aim is to 

implement mathematical methods by using the onboard measured signals to 

estimate and summarize the present operating status and to forecast the near-future 

performance limits. 

As a key component in the battery systems, the BMS should be able to execute the 

performance managements including estimating the SOC, computing the battery 

available energy and the peak power. Additionally, the BMS should also be able to 

make diagnostics to estimate the SOH. In this section, an overview of these 

requirements is presented. 
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2.4.1 What to Be Estimated 

To make short-term and long-term plans for energy management, two fundamental 

battery states should be known: How much remaining energy is available in the 

battery and how much power can be outputted from or inputted into the battery in 

the future. This calls for the reliable monitoring of SOC, capacity, and peak power. 

Ideally, it is expected to measure and feedback these values directly; however, no 

sensors can measure these kinds of internal states. For this reason, it is demanded to 

estimate these values based on the basically measured signals like current, voltage 

and temperature. 

The present SOC and total capacity are indispensable to calculate the remaining 

energy in the battery. It should be noted that SOC itself is a critical index to avoid 

over-charge and over-discharge. Too high SOC will cause gassing side reactions 

which will lead to imbalance of active species in the two half-cells, and finally 

results in significant capacity fade and battery aging. Moreover, too high SOC can 

also lead to the oxidation of the electrode materials and cause increased internal 

resistance. In contrast, over-discharge can lead to cell reversal which deteriorates 

the cell performance. The estimate of peak power depends on a battery model with 

accurate model parameters. The incorrect estimation of peak power may cause the 

current or voltage to break the design limits and further may lead to severe safety 

issues. The logic of online state estimation is shown schematically in Figure 2.3. 

The poor estimation algorithms may lead to less accurate results and the impact of 

which will be rather expensive. 

 

Figure 2.3 Schematic diagram of online state estimation 
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2.4.2 Battery Modeling 

As the variables like SOC, SOH, and peak power are not directly measurable by any 

sensors, they need to be estimated, commonly from the model-based estimation 

algorithms. Within this context, an accurate battery model which precisely 

reproduces the battery dynamics is the prerequisite of the model-based state 

estimators. However, the electrochemical reactions inside the battery are rather 

complicated with nonlinear behaviors. Apart from the main electrochemical 

reactions, there also exist some unexpected side reactions, such as corrosion and 

self-discharge. The battery is thereafter a highly nonlinear system. The dynamical 

behavior depends on different variables and difficult to grasp. For this reason, the 

investigation of reliable battery models should be carefully addressed. In addition to 

providing accurate estimations, it is paramount to strike a balance between accuracy 

and model complexity to allow the models embedded in microprocessors. In other 

words, the model is desired to be accurate enough while not unnecessarily 

complicated. Generally, the battery models can be categorized into three groups, i.e. 

electrochemical model, computational intelligence based black-box model, and the 

equivalent circuit model (ECM). 

A. Electrochemical model 

To date, most of the existing models for VRB are the so-called electrochemical 

models [25-31] which typically deploy coupled partial differential equations (PDEs) 

with a large amount of unknown parameters. Such models describe the ion transport 

phenomena and the dynamic process of distributed electrochemistry reactions 

occurring in the electrodes and electrolyte. 

Walsh et al. at the University of Southampton established the first electrochemical 

model of VRB [25]. The proposed two-dimensional model comprehensively 

describes the mass, charge, momentum transport and conservation, and the global 

kinetic model for electrode reactions. This model can be used to study the effects of 

a broad range of design parameters including ion concentration, electrolyte flow 

rate, and electrode porosity on the performance of the battery. Following that, an 

extension study on the non-isothermal model was established to explore the effect 
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of operating temperature on battery performance [26]. The results show that both 

the charge-discharge characteristics and the temperature distribution are notably 

influenced by the operating flow rate and current density. Further, the oxygen 

evolution at the positive electrode and hydrogen evolution at the negative electrode 

were taken into account and incorporated into the model [27, 28]. The modeling 

was performed to study how the operating temperature, flow rate, current density, 

and bubble diameter affect the extent of oxygen and hydrogen evolution. Zhang et 

al. at Dalian Institute of Chemical Physics comprehensively studied the effects of 

current density, local mass transfer coefficient, and electrode porosity on the 

performance of the battery [29]. A three-dimensional model for the negative half-

cell was built based on which the effects of electrolyte flow rate are investigated 

[30]. A two-dimensional time-dependent single-phase isothermal model was 

established for a single cell, suggesting that the fluid mechanics decouples from the 

electrochemistry [31]. 

The advantages of the electrochemical models are summarized as follows: 

(1) The models can achieve high accuracy for the detailed characterization of 

inner physiochemical process. 

(2) The models have the merit of ensuring each model parameter to retain a 

specific physical meaning. 

(3) The models clearly show the dependence of battery performance on a list of 

environmental and design conditions. 

Due to the advantages, the electrochemical models are suitable for understanding 

the distributed electrochemistry reactions in the electrodes and electrolytes. They 

are also of great significance for predicting cell performance, improving the 

membranes and flow field design, and optimizing the key operating variables such 

as current density and temperature. However, when considering their applications in 

online computing or control of interfacing electronics, the electrochemical models 

are not adequate. The major drawbacks of them are listed as follows: 

(1) The high computational complexity leads to a significant requirement for the 

memory and computation, thus prohibits them from being used on the low-
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cost microcontrollers. Model simplification or reduction should be conducted 

for control and estimation purposes. 

(2) The robustness of the model is questionable in real applications as it is 

impossible to adapt all the model parameters, most of which are empirical, to 

the change of operating conditions. 

(3) Extensive investigations are demanded as they require detailed understanding 

of the battery, such as the kinetic reactions that take place as well as the 

material properties. 

(4) The large amount of model parameters may cause significant over-fitting 

issues [32]. The model parameters are often unavailable. The tuning of model 

parameters also depends highly on the researchers’ experience in 

electrochemical reactions and detailed knowledge of the system. 

Consequently, as suggested by Sharkh et al. [33] and Dees et al. [34], the 

electrochemical models are more proper to be used for battery physical design and 

optimization of electrodes and electrolytes. Modern advanced management and 

control relay on a battery model that should be dynamic, adaptive, and robust. 

B. Computational Intelligence based Model 

The computational intelligence based methods view the battery as a black box and 

adopt the machine learning techniques like the artificial neural network (ANN) and 

support vector machine (SVM) to approximate the highly nonlinear battery 

dynamics. As an instance, the ANN can build up a neural architecture which is 

usually composed of the input layer, the hidden layers and the output layer to 

approximate the dynamic properties of the battery. Such models were extensively 

attempted on the lithium-ion battery, lead-acid battery, and sodium-sulfur battery 

but have not been reported to be applied on the VRB yet. The computational 

intelligence based models demand no exact knowledge of the battery structure or 

dynamics, thus bring significant convenience to the engineers without much 

knowledge on electrochemistry. 

Charkhgard et al. [35] used a radial basis function neural network (RBFNN) battery 

model based on which an adaptive filter was applied to infer the SOC. Xu et al. [36] 
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adopts the stochastic fuzzy neural network (SFNN) to build the battery model in 

order to attenuate the effect on noisy input. For the past few years, ANN that can 

approximate any nonlinear function in arbitrary precision has been proved. 

However, the generalization performance of ANN is unsatisfactory, which is 

supposed to be the reason of local minimum especially in small sample conditions. 

By comparison, the SVM is a kind of supervised learning method based on the 

structure risk minimization and has been shown to have good generalization ability. 

Wang et al. [37] proposed a SVM-based battery model by using the load current, 

temperature and SOC as the model inputs and the terminal voltage as the model 

output. The aforementioned models use the offline trained model without adaption 

during the battery working cycle. The robustness of them is doubtable if the 

operating conditions change or battery degrades. As an improvement, Meng et al. 

established a battery model based on the least square support vector machine 

(LSSVM). The developed LSSVM model is continuously updated online with the 

recently obtained sampling data during the battery operation, in seeking to adapt to 

the changes of battery internal characteristics and also operating condition after a 

period of operation. 

The main disadvantages of the computational intelligence based models are: 

(1) The training process of the model is too complex. Lots of factors have to be 

considered, like the type of transfer functions, the number of hidden neurons, 

the number of hidden layers, the weight and threshold. The model training 

demands a large amount of data and also requires a long processing time, thus 

its suitability for real embedded system is still questionable. 

(2) The robustness of the model is not verified. The models are commonly trained 

by offline data set and can work accurately for the present period. With the 

continuous operation of the battery, however, the model may lose accuracy as 

both the battery state and the operating conditions change. 

(3) An appropriate activated function which correctly reflects the correlation 

between the activated states and the output of neurons have to be prescribed 

empirically based on a large training data set, which can lead to significant 

over fitting [38]. 
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C. Equivalent Circuit Model 

The ECMs use a combination of the SOC-dependent voltage source, resistors, 

capacitors, and possibly the nonlinear elements such as the Warburg impedance to 

form a circuit network to approximate the battery dynamics. Typically, an ideal 

voltage source is selected to describe the OCV, while the remainder of the circuit 

simulates the battery’s internal resistance and the polarization effects. As a physical 

analogy exists between the ECM components and the actual battery, this category of 

models are often called the gray box models. The circuit representation of ECMs is 

computational easier and meanwhile provides reasonable accuracy. The excellent 

adaptability and easy realization of ECMs will be of interests to the design and 

control of interfacing electronics. In this section, we will review the commonly used 

ECMs for a broad range of battery chemistries, rather than only constrained within 

the range of VRB. 

The ECMs are commonly lumped models with a fewer number of model parameters 

compared with the electrochemical models. Plett [39] proposed several lumped 

models, including the combined model, the simple model, the zero-state hysteresis 

model, the one-state hysteresis model, and the enhanced self-correcting (ESC) 

model. The battery models and the corresponding characterization equations are 

summarized in Table 2.2. Comparison results show that although the combined 

model perform well, the model parameters over-fit the measured data; consequently 

the model does not resemble OCV to any degree of fidelity. In contrast, the simple 

model yields a lower accuracy but it generalizes better than the combined model. A 

performance jump is observed by taking the hysteresis into account, and adding the 

dynamics of states into the hysteresis model further improves performance. Further 

performance enhancement can be expected by increasing the number of filtering 

states but at the cost of improving computational complexity. 

The resistance-capacitance (RC) network based ECMs, such as the Rint model, the 

Thevenin model (first-order RC model), the dual polarization (DP) model (second-

order RC model) and their revisions were also widely studied [32]. Four 

representative RC networks based ECMs are shown schematically in Figure 2.4, 

and their corresponding descriptions are summarized in Table 2.3. 
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Table 2.2 Details of the existing equivalent circuit models: part 1 [39] 

Model Characterization equations and description 

The combined model 
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where IL,k, Vt,k, and sk are the load current, terminal voltage, and SOC; η is the coulombic efficiency; ts is the 

sampling time interval; Q is the capacity; K0, K1, K2, K3 and K4 are the model coefficients for the correlation 
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where Voc(sk) represents the OCV which is obtained using the SOC-OCV look-up table. 
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where M is the hysteresis level which is a constant coefficient, and ξ is an adequately small and positive 

threshold. 
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The one-state 

hysteresis model 
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where hk is the hysteresis voltage; κ is the rate of decay; and M is the maximum polarization due to hysteresis as 

a function of SOC and the change rate of SOC. Specifically, ( , )M s s  is positive for charging ( 0s  ) and negative 

for discharging ( 0s  ). 
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where f is the state vector of a low-pass filter of the current; α is the state-transition matrix of the filter; g is the 

output matrix of the filter and a zero-dc gain constraint is applied to it. 
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Figure 2.4 Schematic diagram of RC network based ECMs: (a) The Rint model; (b) 

The Thevenin model; (c) The first-order RC model with one-state hysteresis; (d) 

The DP model 

The Rint model [40] is very simple in the model structure with only one nonlinear 

voltage source in series with the internal ohmic resistance. However, the transient 

dynamics and hysteresis are ignored thus the model is not adequate in the dynamic 

current excitation conditions. 

Based on the Rint model, the Thevenin model adds one parallel RC network to 

simulate the transient effect. The Thevenin model has been one of the most popular 

models that are widely applied in open literatures for its simple structure and the 

reasonably high accuracy [41-51]. Hu et al. [52] compared twelve typical ECMs 

and concluded that the Thevenin model was the best trade-off between the model 

complexity and accuracy and was a good candidate for online applications. 

Dedicated elements depicting the battery hysteresis behavior were added to the RC 

based ECMs, such as the first-order RC model with hysteresis [53-55]. Such models 

improve the accuracy to some extents but at the cost of higher computational 

complexity.  
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Table 2.3 Details of the existing equivalent circuit models: part 2 

Model Characterization equations and description 

The Rint model 
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where Vp,k is the polarization voltage across the RC network; 

and Rp and Cp are the polarization resistance and 

capacitance, respectively. 

The first-order RC 

model with one-state 

hysteresis 
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where Voc(sk) represents the OCV as a function of SOC. 

The DP model 

(second-order RC 
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The DP model adopts two RC networks to refine the Thevenin model [56-58]. The 

two RC networks are used to simulate the transient processes with different time 

constants, which are commonly seen in most battery chemistries. Mohamed et al 

[59] built a DP model for the VRB using the EKF for parameterization. The two RC 

networks were used to simulate the activation polarization with a small time 

constant and the concentration polarization with a relatively large time constant. 
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Theoretically speaking, the DP model is more accurate than the Thevenin model as 

the separation of transients with different timescales will make better sense to refine 

the modeling of dynamics. The drawback is that the model complexity will lead to a 

high computational cost and a high numerical instability for model identification. 

D. Equivalent Circuit Model for VRB 

Till now, only a few publications can be found concerning ECMs applied to the 

VRB. Chahwan et al. [60] proposed a simple ECM to obtain the energy content and 

terminal voltage profile of VRB, aiming to study its application in power systems. 

The proposed simple ECM was used for the stand-alone wind energy system 

simulation and grid-connected wind farm power control [61-63]. Qiu et al. [15] 

further simplified the model and utilized it for the controller design of a microgrid 

with photovoltaic. Later, the simple model was extended to incorporate the 

environmental controls by the heating, ventilation, and air conditioning system to 

provide a more realistic efficiency profile [64]. The simple ECM and its variants 

introduce the system losses such as pump loss and parasitic loss which are quite 

insightful for the VRB study; however, they are aimed for system simulation where 

the requirement on modeling accuracy is not high. The losses are also estimated 

empirically without detailed explanations. Moreover, the models have not been 

verified with the real experimental data. 

In recent years, multiple ECMs for VRB with new structures have been reported. 

Ontiveros et al. [65] used a simplified circuit model with only the equilibrium 

potential and the ohmic resistance for power system dynamic studies. Wei et al. [66-

68] integrated the thermal model into the ECM to ensure the model fidelity over a 

wide range of operating conditions. Zhang et al. discussed a comprehensive ECM 

by taking the transient process, shunt current and vanadium iron diffusion into 

account [69]. One common drawback of these models is that the model parameters 

which are crucial for modeling accuracy are determined empirically without a 

detailed method for identification. In order to tackle this problem, Mohamed et al. 

[59] proposed to use the second-order RC model for VRB and adopted the EKF to 

identify the model parameters. The dynamics of VRB including the activation 

polarization and the concentration polarization are modeled separately. Seven state 
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variables are included in the transition and the result shows a satisfactory modeling 

accuracy. The seventh-order EKF, however, will cause the extensive calculation of 

the high-dimension matrices which is quite computational heavy and not easy to be 

implementable for online applications. The high order filter may also be subject to 

instability issues. Despite the drawbacks, such an online adaptive model will open-

up feasibility studies for the VRB applications such as EV and HEV. 

2.4.3 SOC Estimation 

There is no uniformly accepted definition of SOC. Throughout this thesis, the SOC 

is defined as the remaining capacity as a percentage of the total capacity when the 

battery is fully charged under the same standard condition. The determination of 

SOC is quite important in BMS. The incorrect information on SOC may cause over-

charge or over-discharge and lead to irreversible reduction in the battery lifetime. 

To date, several methods have been reported in the open literatures to monitor the 

battery SOC. In this section, some methods for a broad range of battery chemistries 

and specifically intended for VRB will be systematically reviewed. 

A. Coulomb Counting 

The coulomb counting (CC) method is viewed as the most simple and standard 

method to obtain the battery SOC if the initial state is well known and the sensors 

are of high precision. The CC technique can be expressed as: 
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1 t

L
t

s t s t I dt
Q

     (2.3) 

where t0 denotes the initial time when the SOC is known. 

The CC method has quite satisfactory precision within a certain period of time of 

the initial SOC is known or can be estimated properly. It is suitable for online 

applications for the following reasons: 

(1) The method demands only the low-cost sensors for current measurement. 

(2) The computational burden is very low thus is implemental in low-cost 
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processers. 

(3) It is easy to be combined with other techniques. 

The main disadvantages are: 

(1) The initial SOC cannot be known in real applications, causing the method to 

lose effectiveness. 

(2) The method is intrinsically an open-loop method. When performed over a 

long period of time, errors caused by current noise or drifting will accumulate 

and the method lacks a close-loop feedback mechanism for correction. 

Therefore, the SOC estimation results of applying only the CC method cannot meet 

the requirement on precision. Otherwise, it is used commonly in combination with 

other supporting techniques, for example with an OCV-based SOC estimator. 

B. OCV Based Method 

There is a correlation between SOC and OCV, and this correlation changes very 

little along with the battery aging process. Accordingly, it is an effective method to 

estimate the SOC by measuring the OCV of battery. For the power batteries, it 

should be mentioned that the temperature effect on the SOC-OCV correlation 

should be considered as the batteries work within a large temperature range. 

Therefore, the OCV should be considered as a binary function of both SOC and 

temperature and a three-dimensional look-up table is used to estimate the SOC from 

the measured OCV and temperature. In contrast, the working temperature of VRB is 

constrained between 10℃ and 40℃ in order to prevent the thermal precipitation of 

the vanadium species. Within the narrow temperature range, the SOC-OCV 

variation caused by temperature is very limited and thus can be ignored. Therefore, 

the SOC determination of VRB is easier by inferring directly from the measured 

OCV. 

The greatest advantage of the OCV method is the high accuracy and the feasibility 

with only voltage sensor. Additionally, the SOC-OCV relationship changes only 

slightly over the battery lifetime thus no frequent recalibrations are needed. The 

remarkable disadvantage when applied to most secondary batteries like the lithium-
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ion is that the battery is required to have long time resting in order to reach the 

actual Electromotive Force (EMF) value. Sometimes the battery has to be used very 

frequently and there might be only short periods of time to allow measuring the 

battery OCV. Under this condition, the measured OCV might be “disturbed” by the 

significant overvoltage which declines slowly after current interruption. 

The flow batteries allow the use of open circuit cells to measure the OCV directly 

and immediately without the need to relax the battery for a sufficiently long time. 

This is a unique advantage of VRB by comparison with other batteries regarding the 

online SOC determination. The only drawback of this method is that additional 

open circuit cells and sensors have to be installed and thus increase the complexity 

of battery configuration. 

C. Electrochemical Based Methods 

The alternating current (AC) impedance method [70-72] and the direct current (DC) 

internal resistance method [73] have also been used for SOC determination. The AC 

impedance method loads a series of small amplitude sinusoidal alternating currents 

with different frequencies to the battery. The frequency responses under different 

frequencies are measured and further the SOC can be obtained through the analysis 

of AC impedance. The DC internal resistance method calculates the internal 

resistance of battery with a fixed time interval. Since the DC internal resistance has 

certain correspondence to the SOC, based on which the SOC can be inferred. These 

methods are limited for online applications considering the following reasons: 

(1) An additional signal generator is required to apply the AC impedance method, 

which leads to an increase in cost and prohibits it from online applications. 

(2) The relationship between the SOC and AC impedance or DC resistance is 

complicated and easily affected by many factors. 

(3) Under the condition that the impedance changes little for a wide SOC range, 

the SOC estimation, if possible, will incorporate large errors. 

To date, there have been some methods published in regard with the SOC 

monitoring specifically for the VRB. The measurement of electrolyte conductivity 
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and spectrophotometric properties were proposed by Kazacos and Skyllas-Kazacos 

to determine the battery SOC under the lab testing conditions [74]. The hydrogen 

ion concentration will gradually increase as the SOC increases; as a consequence an 

increase in the conductivity in both the half-cells is expected to be observed. In 

addition, different vanadium oxidation states show different colors as: V2+ (violet), 

V3+ (green) and V4+ (blue), V5+ (yellow). The color of electrolytes changes 

explicitly with the SOC variation and thus the spectrophotometric can be used to 

detect the change. Following that, the two half-cell solution potentials were further 

calibrated for SOC monitoring by Corcuera and Skyllas-Kazacos [75]. These 

methods monitor the SOC of each half-cell and aim at detecting any imbalance 

between the two individual half-cell electrolytes that would lead to capacity loss. 

D. Model Based Estimation 

The idea of model based SOC estimators is to connect the onboard measureable 

signals such as current and voltage to the immeasurable SOC with a battery model 

which is mostly in the form of state-space model. By continuously monitoring the 

model input (current) and output (voltage), the SOC as a system state can be 

estimated with a well-designed state observer. The common used battery models 

have already been reviewed in Section 2.4.2. Considering the unique advantages, 

only the ECM based SOC estimators will be discussed in this section. 

A number of adaptive filters known from control theory have been employed to 

estimate the SOC in real time. Such filters detect any deviation between the 

modeled and measured terminal voltages and use it to correct the system SOC in a 

close-loop feedback way. The Kalman filter (KF) as the most widely used adaptive 

filtering technique was used on the battery since 1986. The KF is only adoptable 

with linear models, while the modern extensions of KF permit the use of nonlinear 

battery models which better reproduce the battery behaviors. The EKF has been 

widely used for battery SOC estimation [43, 68]. The EKF is based on the 

linearization of the nonlinear battery model, which will incorporate large 

approximation errors. To improve the linearization accuracy, the sigma-point KF 

(SPKF) [76-78], unscented KF (UKF) [79-81], and central difference KF (CDKF) 

[82] can be employed. 
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The KF and all its variants require knowing the covariance of the process noise and 

measurement noise. Incorrectness of this information may cause either poor 

convergence or excessively slow adaption. The adaptive EKF (AEKF) [56, 58, 83] 

and the adaptive UKF (AUKF) [84-86] are able to online estimate the noise 

covariance thus perform better than the EKF, but the computational complexity is 

improved quite a lot. The H-infinity filter was also employed for the merit of 

requiring no assumptions on the process and measurement uncertainties [51, 87]. 

The EKF also assumes the process and measurement noises to be Gaussian. This 

assumption, however, deviates from the truce in real applications. To address this 

problem, the particle filter (PF) [45-47] and the unscented particle filter (UPF) [88, 

89] were introduced and reported to improve the accuracy of the SOC estimate. The 

drawback is that such methods have quite high requirements on the computational 

sources (by factor 50 compared to the UKF) and memory consumptions [90]. 

There exist lots of other types of adaptive filters for SOC estimation, for example 

the sliding mode observer (SMO) [91], the nonlinear predictive filter (NPF) [49], PI 

observer [92], and some other extensions [48, 50, 51]. The ECM based estimators 

have proved to be accurate and robust for battery SOC estimation. Nevertheless, it 

should be noted that the precondition is a well-parameterized battery model. It is 

proved that the ECM based SOC estimators decline significantly in accuracy if the 

model parameters are not appropriately defined [93]. To date, the model parameters 

are mostly prescribed offline with the fitting methods and left unchanged during the 

entire SOC estimate. In the limited literatures where the model parameters are 

updated online, the dual EKF (DEKF) [94, 95] or joint EKF (JEKF) [96] are usually 

used. As an important contribution of this thesis, the detailed literature review of 

online model parameters identification will not be drawn here; instead, this issue 

will be extensively reviewed in the introductions of the following chapters. 

The least squares (LS) based filters are another category of SOC estimators. In refs. 

[57, 97, 98], the RLS method was employed to couple the model parameters and 

OCV into one vector for joint estimation, following which the SOC is referred with 

the SOC-OCV table. Different from the KF based filters, the RLS treats the input 

signals as deterministic thus the stochastic calculations are not included. The RLS 
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method is free from the complex matrix operations such as matrix inversion thus is 

easier to be used with low demand on computational resources. It also permits the 

update of model parameters to adapt to the change of operating condition and 

battery degradation. As discussed in ref. [83], however, the mapping from OCV to 

SOC is an open-loop way thus the accuracy is limited, especially if the battery 

chemistry exhibits a flat SOC-OCV curve. In addition, this method tends to suffer 

from divergence especially when the battery model is not accurate enough [90]. The 

moving window LS filter can effectively enhance the stability but requires a higher 

demand on computing power and memory consumption. 

E. Computational Intelligence Based Method 

In Section 2.4.2 B, we have shown that the computational intelligence based 

methods can be used in the battery model to predict the battery terminal voltage. 

Actually, such methods can work in the similar way but directly estimate battery 

SOC instead. The ANN was employed to model the relationship between SOC and 

the onboard measured battery signals including load current, terminal voltage and 

operating temperature [99-103]. Such methods demand no exact knowledge of the 

chemical reactions and dynamics. The obvious drawback is that the model training 

needs an extensive amount of data. In addition, the ANN model trained with a 

specific batch of data will gradually lose effectiveness as the battery characteristics 

change with battery aging. Similar with the ANN based direct SOC estimation, the 

SVM technique was also implemented in the same manner [104-107]. The SVM 

based direct estimation methods bear the same advantages and disadvantages as the 

ANN. 

The close-loop SOC estimators with the ANN were reported in refs. [35, 36, 108]. 

An ANN based extreme learning machine (ELM) was applied in combination with 

the EKF in ref. [109]. The current, temperature and estimated SOC are used as the 

model inputs of ANN and the terminal voltage is treated as the model output. Any 

deviation between the model output and measured output is used to correct the SOC 

in a close-loop framework. Such methods is superior to the direct estimation as the 

online training of the model is theoretically permitted, although quite computational 

heavy. Compared with the ECM based estimators, such estimators are more 
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appropriate to be used in the condition that the battery dynamics cannot be 

reproduced with the simple electrical model. 

2.4.4 Capacity Estimation 

The capacity is a figure of merit describing the total charge (rated in ampere-hours) 

stored in the battery that can be used by the users when the battery is fully charged. 

It is also an important indicator for the SOH of the battery. For all the battery 

chemistries, the capacity can be viewed as an indicator of the SOH which is 

essential to judge the aging state of the battery. 

The aging of VRB is reflected by the substantial capacity decay that occurs during 

cycling, which is critically important to the long-term operations. The capacity 

fading is basically caused by two electrochemical processes.  

The imbalance of vanadium active species will occur as the cycling proceeds and 

results in the decay of VRB capacity. In real charge-discharge cycling, the transfer 

rates of V2+ and V3+ are large than those of VO2+ and VO2
+, and this will cause the 

net transfer of vanadium species from the negative to the positive half-cell [110]. It 

has also been reported that the transfer behavior of water across the exchange 

membrane and that of vanadium species are similar [111]. For this reason, the 

volume and total vanadium species concentration increase on the positive side and 

decrease on the negative side in cycling process. The imbalance causes the negative 

side to be the “limiting electrolyte” as the decreased volume and active species in 

negative side are not enough to consume the vanadium species in the positive side. 

This will give rise to the decreased utilization ratio of the vanadium species in the 

positive half-cell during cycling. 

Apart from diffusion effects, gassing side reactions occur at both half-cells and 

cause fading of capacity especially during the charging process [13]. One of the side 

reactions that lead to capacity decay is the air oxidation of bivalent vanadium ion in 

the negative half-cell. This side effect will also cause the imbalance of active 

species in the two half-cells. Another side reaction leading to the high loss of 

capacity is the hydrogen evolution during charging .This effect lowers the 
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conversion of vanadium ions at negative electrode surface particularly at high 

states-of-charge and with large currents. Generally speaking, the oxygen evolution 

at the positive electrode has been shown to be negligible up to relatively high SOC. 

However, the hydrogen evolution at the negative half-cell is much more significant 

above 90% SOC. As a result, the VRB is usually operated between 10% and 90% 

SOC to prevent the aforementioned gassing side reactions and to elongate the 

battery calendar life. 

All the above mentioned two factors exist in the VRB systems and cause imbalance 

among the vanadium species of different states of oxidation, thereby leading to a 

deteriorative capacity performance, and equivalently battery aging, during long 

term use. 

It should be noted that the timely capacity adaption further facilitates the SOC 

estimation as the capacity is involved in the state equation of most ECM-based SOC 

observers. Despite the importance, the instantaneous capacity, analogous to the 

SOC, is an inner state that cannot be measured by any available sensors. 

Consequently, a reliable capacity estimator is highly urgent to be investigated and 

integrated to the BMS. The existing capacity estimation methods boil down to four 

groups according to the work of Waag et al. [90] 

A. Voltage Measurement 

In these methods [112-114], the battery OCV is measured before and after charging 

or discharging. The SOC can be inferred with the SOC-OCV function and further 

the capacity is easily estimated based on the change of SOC. The real application of 

such methods, however, lacks flexibility considering two obvious constraints. 

Firstly, the capacity update should be achieved by measuring two very different 

SOC levels. Secondly, a long relaxation time is required to release the overvoltage 

and obtain the real OCV. 

The methods from ref. [115] estimated the OCV change by measuring the terminal 

voltage under load. The capacity can be updated when the battery is sufficiently 

charged or discharged. However, a reliable estimator that can accurately estimate 
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the OCV from the onboard measured terminal voltage is still under investigation. 

B. ECM Based Estimator 

The capacity can be online estimated with a well-designed ECM based estimator. 

The battery capacity is included into the battery model as a model parameter which 

is estimated by allowing the modeled terminal voltage to approach the real 

measured value to the largest extent. These online estimators are commonly 

achieved by two different approaches. The first approach lumps the model 

parameters and the states of interests into one vector for joint estimation. The 

filtering technologies including the EKF [116, 117], the UKF [118], and the RLS 

[119] was employed in the open literatures. These methods are easily implemented 

with only onboard measured current and voltage as inputs and outputs. However, 

the calculation is quite computational heavy with high dimension matrix operations 

including inversions. The high filtering order can also lead to poor numerical 

stability. 

Another approach besides the joint estimation is the so-call dual estimation. The 

two approaches are fundamentally similar, i.e. applying the battery model to 

reproduce the battery behaviors and adaptive filters to online estimate the model 

parameters and essential states. However, the dual estimation methods employ two 

filters in parallel: one for state estimate and another for the estimation of model 

parameters including the capacity. Lee et al. [120] estimated the SOC and capacity 

dually with the DEKF. A simplified DEKF was proposed in ref. [39]. The capacity 

is no longer treated as a model parameter; instead, a simple ampere-hour based 

model which uses SOC as input is adopted. Hua et al. [121] introduced a dual 

nonlinear predictive filter (DNPF) for co-estimation. In refs [94, 95], the capacity 

was treated as a model parameter, then the full set of model parameters and SOC 

were estimated concurrently with the DEKF. The adaption of all relevant model 

parameters enhances the robustness of these methods to the operating condition 

variation and battery degradation. The dual SPKF (DSPEK) was employed in ref. 

[76] as a variant of DEKF. In ref. [122], The dual-mode sliding observer in ref. 

[122] and the PF in ref. [123] were employed to estimate both the SOC and the 

instantaneous capacity. The dual estimation demands a lower computing power than 
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the joint estimation. While two filters are needed, each of them has a much lower 

dimension thus the computational complexity brought by matrix operation is 

released to some extent. It has to be admitted, however, the dual estimation method 

is still high in computing burden which prohibits the implementation in low-cost 

micro-controllers. 

2.4.5 Peak Power Estimation 

Before the peak power is discussed, we first define the concept of Safe Operating 

Area (SOA). The SOA of battery is defined as the operating conditions over which 

the battery can be expected to operate without self-damage. The typical situations 

for deviating from the SOA include over-current, over-voltage, under-voltage, over-

temperature, and under-temperature. 

The peak power is another essential state defined as the maximum power that is 

possible to be accepted or delivered by the battery for the future prediction time 

horizon without violating the SOA. The reliable estimate of peak power enables the 

system to fully exploit the potential of the battery within the safe operation window. 

In real operation, the peak power is constrained by the design limits of current and 

voltage, SOC, and the temperature limit. Consequently, it changes quite a lot during 

routine operation and also the process of battery aging. 

The dynamic battery model based online peak power estimation is a quite promising 

approach that can give high fidelity and robustness. A widely used method for peak 

power determination is the hybrid pulse power characterization (HPPC) method by 

the Partnership for New Generation Vehicles (PNGV) [124], which is simplified as 

HPPC method here. The HPPC method describes the battery dynamics with the 

following characterization equation: 

  , ,t k oc k L k sV V s I R    (2.4) 

where the load current IL is defined as positive for discharge and negative for 

charge. The design limit for terminal voltage should be enhanced with 

 , min maxt kV V V . Accordingly, the maximum discharge current as constrained by 
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voltage limitation can be derived as: 
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The maximum charge current can be determined in the same manner. Since the 

charge current is negative, the maximum magnitude is actually a minimum in the 

signed sense, which can be expressed as: 
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The peak power for a single battery can then be defined as: 
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The HPPC method uses very simple battery model thus its implementation is quite 

easy. Zhang et al. [125] utilized the HPPC method to study the temperature 

dependency of power capability and an operating map of power capability. 

However, only the voltage constraint is considered in the HPPC method, while the 

other constraints on maximum current, maximum power and SOC are overlooked. 

In addition, the battery model is so primitive that it may cause overly optimistic or 

pessimistic estimations which are quite dangerous for the battery utilization. Lastly, 

this method estimates the instantaneous peak power. If considering the peak power 

for a certain time period in the future, this method will lose its effectiveness. 

Plett proposed an improved peak power estimator based on the HPPC method. The 

limit of SOC is added to the formulation of power calculation. The SOC change 

under current excitation is expressed as: 

    + LI t
s t t s t

Q

 
     (2.8) 

The limit for SOC should be enhanced with    min maxs t s s . Accordingly, the 
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maximum discharge current as constrained by SOC limitation can be derived as: 
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Further, the calculation explicitly includes a specific time horizon which is more 

useful in real applications. The OCV evolvement for the next time horizon is 

derived to allow accurate calculation of the maximum current. The major 

shortcoming associated with this method is that the model is still too simplistic 

without polarization effects taken into account. In addition, a reliable SOC estimator 

which is required for this method is not addressed. 

He et al. improved Plett’s method by using the electrochemical-polarization (EP) 

model [126] and the first-order RC model [127] to consider the polarization effects. 

The model parameters are determined offline and the SOC is assumed to be 

available. Xiong et al. [128] made further improvements by integrating the AEKF 

based SOC estimator into the peak power calculation. As another advantage, this 

method can efficiently estimate the peak power capability for the next multiple 

sampling intervals instead of just for the next sampling interval. The online 

adaption of model parameters, however, is still not considered. Following their 

work in ref. [128], Xiong et al. [129, 130] further incorporated the RLS based 

online model parameters identification into the algorithm to make it better adapt to 

the change of operating condition and battery degradation. Pei et al. [131] used 

DEKF to estimate the model parameters and the SOC concurrently, based on which 

the peak power was estimated. The estimation results were compared with the 

reference values acquired from a set of well-designed experiments. Wang et al. 

[132] applied the direct differential algorithm to online update the model parameters 

of an electrical circuit model and further estimated the peak power by considering 

the limitation on terminal voltage. Wang et al. [133] linearized the RC network 

based ECMs based on the original Dynamic Matrix Control algorithm. It is shown 

the terminal voltage can be accurately predicted thus the method can be used for 
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online peak power estimation. 

Efforts have also been made to improve the traditional ECMs in seeking to obtain 

more accurate estimate of peak power. Wang et al. [134] incorporated a nonlinear 

diffusion resistance, whose value is proportional to the square root of time, to 

overcome the potential uncertainty of the RC network based ECMs concerning long 

timescale prediction. Waag et al [135] proposed an improved first-order RC model 

that includes current dependency of the polarization resistance. Based on the battery 

model, the peak power was online predicted considering the voltage limitation. 

Feng et al. [136] proposed a state of power (SOP) estimator based on a novel ECM 

by adding a moving average noise to the first-order RC model. The model 

parameters were online updated with the recursive extended least squares (RELS) 

algorithm. 

2.5 Summary 

In this chapter, the fundamentals of the flow battery and VRB are systematically 

reviewed. The emphasis is placed on the related topics of the battery modeling and 

the model-based online estimation of key battery states, including the SOC, 

capacity, and peak power. Existing works have provided valuable insights into these 

topics. However, more works can be done to make further improvements, especially 

for incorporating the online model adaption, improving the estimation accuracy and 

robustness, and lowering down the computational complexity. Moreover, the effect 

of noise contamination on the accuracy of modeling and state estimation has not 

been adequately investigated. Driven by the high demand on battery management 

and control, this thesis aims to estimate the key battery states in real time with 

reliable algorithms which have high accuracy, high adaptivity, quick convergence, 

low computational burden, and high robustness to noise interference. 
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CHAPTER 3 An Adaptive Battery Model for Vanadium 

Redox Flow Battery and Its Application for Online Peak 

Power Estimation 

3.1 Introduction 

The peak power is an essential state defined as the maximum power that is possible 

to be accepted or delivered by the battery for the future prediction time horizon 

without violating the SOA. As discussed in Section 2.4.5, the reliable estimate of 

peak power enables the system to fully exploit the potential of VRB within the safe 

operation window. Despite the importance, the study on the reliable peak power 

estimation method for VRB is quite limited. The model based online peak power 

estimation is a promising approach that can give high fidelity and robustness. Yu et 

al. [137] developed a physics-based model to calculate the steady-state peak power. 

The method is essential for predicting the power range of VRB to facilitate the 

design optimization process. However, the simulation based theoretical analysis 

lacks verification for both the modeling accuracy and power estimation accuracy. 

The HPPC method by the PNGV [124] is more practical in real applications thus 

has been widely used for the lithium-ion battery. Considering the similarity in 

voltage response among different battery chemistries, this method can be easily 

extended to be used on VRB. The HPPC method uses a very simple battery model 

thus its implementation is quite easy. Zhang et al. [125] utilized the HPPC method 

to study the temperature dependency of peak power and further proposed an 

operating map to determine the peak power. However, the HPPC method only 

considers the constraint of voltage, while the other constraints on SOC and design 

current limit are overlooked. The battery model is also primitive so that may cause 

overly optimistic or pessimistic estimations which are quite dangerous for the VRB 

utilization. Moreover, the HPPC method estimates the instantaneous peak power, 

i.e. the allowable power for the present moment. If considering the peak power that 

can be maintained for a certain period in the future, which is quite important for the 

power management of the battery system, this method will lose effectiveness. In 
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recent years, some revised methods were studied to improve the HPPC method 

[125-136] as reviewed in 2.4.5. All these methods depend critically on an accurate 

battery model which has to be extensively investigated for VRB. 

As reviewed in Section 2.4.2 A, most of the existing models for VRB are 

electrochemical models [25-31] which are based on complicated PDEs and thus are 

not realistic for real-time applications. Tang et al. [13, 138, 139] investigated 

several mathematical models to take the ion diffusion, side reactions, shunt current, 

and pressure losses into account. These mathematical models simplified the 

electrochemical models by using assumptions and considering only the important 

physical and chemical processes. The simplification remarkably reduces the 

computational complexity and allows online implementation. One possible 

drawback is that some model parameters that significantly affect the modeling 

results are mostly empirical and depend largely on the knowledge of inner dynamic 

processes. Amongst others, the ECM shows the merits of excellent adaptability, 

easy realization, and reasonable accuracy, thus is a favorable template for online 

applications. 

Till now, only a few publications can be found concerning ECMs applied to the 

VRB. Chahwan et al. [60] proposed a simple ECM to obtain the energy content and 

terminal voltage profile of VRB, aiming to study the applications in power systems. 

The proposed simple ECM was used for the stand-alone wind energy system 

simulation and grid-connected wind farm power control [61-63]. Qiu et al. [15] 

further simplified the model and utilized it for controller design of a microgrid with 

photovoltaic. Later, the simple model was extended to incorporate the 

environmental controls by the heating, ventilation, and air conditioning system to 

provide a more realistic efficiency profile [64]. The simple ECM and its variants 

introduce the system loses such as pump loss and parasitic loss which are quite 

insightful for the VRB study; however, they are aimed for system simulation where 

the requirement on modeling accuracy is not high. The losses are also estimated 

empirically without detailed explanations. Moreover, the models have not been 

verified with real experimental data. In recent years, multiple ECMs for VRB with 

new structures have been reported. Wei et al. [66-68] integrated the thermal model 
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into the ECM to ensure the model fidelity over a wide range of operating 

conditions. Zhang et al. discussed a comprehensive ECM by taking the transient 

process, shunt current and vanadium iron diffusion into account [69]. One common 

drawback of these models is that the model parameters which are crucial for 

modeling accuracy are determined empirically without detailed method for 

identification. In order to tackle this problem, Mohamed et al. [59] proposed to use 

the second-order RC model for VRB and adopted the EKF to identify the model 

parameters. The seventh-order EKF, however, will cause extensive calculation of 

high-dimension matrices which is quite computational heavy. The high order filter 

may also be subject to instability issues. 

In this chapter, the first-order RC model [140-142] is applied to simulate the 

dynamics of VRB. Two model identification methods, RLS and EKF, are adopted to 

compare their performance on tracking the time varying model parameters with a 

simulation study. Based on the online identified model, an online adaptive peak 

power estimator is proposed by considering multiple constraints including the 

voltage limit, SOC limit, and design current limit. Experiments are conducted on a 

lab-scale VRB system to verify the proposed method for model identification and a 

“two-step verification” method is used to evaluate the accuracy of the proposed 

peak power estimator. After that, the peak power estimation for a hybrid pulse 

experiment is illustrated and the influence of prediction time horizon on estimation 

result is analyzed. 

The rest of the chapter is organized as follows. Section 3.2 introduces the applied 

battery model and compares two online identification methods, RLS and EKF, on 

their identification accuracy, convergence property and computational complexity 

with a simulation study. Section 3.3 discusses the proposed model-based peak 

power estimator based on the online identified battery model. Section 3.4 describes 

the experimental setup and procedures for performance evaluation. Section 3.5 

presents the algorithm verification and discussion, while Section 3.6 draws the key 

conclusions. 
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3.2 Battery Model 

3.2.1 Battery Modeling 

The behavior of VRB is highly nonlinear thus a reliable battery model is paramount. 

The ECM which has high adaptability, low complexity, and reasonable accuracy is 

of interest throughout this thesis. The choice of ECM is always a trade-off between 

modeling accuracy and computational complexity. Hu et al. [52] studied the major 

ECMs and concluded the first-order RC model as the best choice to manage the 

trade-off between complexity and accuracy. In this regard, the first-order RC model 

is used in this chapter. It has to be mentioned, however, that the method proposed 

here is applicable to a broad range of higher-order battery models. 

 

Figure 3.1. Schematic diagram of the first-order RC model 

The structure of the applied first-order RC model is shown in Figure 3.1. The 

voltage source represents the OCV which is measured with the open-circuit cell in 

real time. Rs, Rp, and Cp are the model parameters to be identified. Specifically, Rs is 

the ohmic resistance including component resistance and contact resistance between 

components, and is a dependent on temperature, SOC, and aging level. The RC 

network is used to simulate any transient dynamics involved in VRB. The constant 

phase element (CPE) and Warburg impedance term which provide more detailed 

description of the dynamic process is omitted in this study aiming at reducing 

model complexity and enhancing numerical stability. Despite the simplification, we 

will verify in the following sections that the used model is still high highly accurate 

if the model parameters are appropriately adapted. 
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The electrical behavior of the first-order RC model can be expressed by the 

following state equations: 
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where IL denotes the load current which is defined as positive for discharge and 

negative for charge throughout this thesis; Voc denotes the OCV; Vp denotes the 

polarization voltage across the RC network; while Vt is the terminal voltage. Eq. 

(3.1) can be rewritten in the discrete-time form as: 
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where ts is the onboard sampling time interval of current and voltage signals. 

3.2.2 Online Model Identification 

The model parameters are commonly prescribed offline with the training dataset. 

However, they are time varying with lots of factors, such as working temperature, 

operating flow rate, SOC, current direction and magnitude. In addition, the model 

parameters are also subject to variations as the battery ages after long time cycling. 

Considering this, online model identification is indispensable to handle the 

aforementioned model uncertainties and to guarantee the modelling accuracy. For 

this purpose, the RLS-based and EKF-based online model identification methods 

are introduced in this section. 

A. Recursive Lest Squares 

By substituting Eq. (3.2) into Eq. (3.3), the following expression can be drawn: 

 1 2 3( ) ( ) ( ) ( )e e s L L sV t V t t I t I t t         (3.4) 

where 
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  (3.5) 

The OCV is continuously measured with an open-circuit cell in this chapter; 

therefore, the value of Ve can be easily obtained at each time point. Within this 

context, Eq. (3.4) can be expressed in a regression form as: 

 ( ) ( ) ( )T

eV t t u t   (3.6) 

where 
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  (3.7) 

The RLS method is a computational efficient method to solve the regression model 

represented by Eq. (3.6). A user-defined forgetting factor λ is employed in order to 

emphasize the significance of the most recently obtained data and give less weight 

to the old data. The algorithmic procedures of RLS with forgetting (exponential 

weighting) are not elaborated here but can be referred to existing literatures [143]. 

In this chapter, a forgetting factor of 0.985 is used. After the regression model is 

solved, the model parameters can be reversely deducted as: 
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  (3.8) 

With the online extracted model parameters, the terminal voltage at the next 

sampling time can be easily modeled. 

B. Extended Kalman Filter 

The KF is a set of mathematical equations that provide an efficient recursive means 

for the state estimation problems. The estimation achieved by minimizing mean of 

the squared error is optimum for a linear system. The EKF as a nonlinear version of 
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the KF uses linearization at each time step to approximate the nonlinear system with 

a linear time varying (LTV) system. Then the same procedures of KF are applied on 

the LTV system. The state-space model of VRB in discrete-time domain can be 

written as follows: 
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k k k k
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  (3.9) 

where wk and vk are the process noise and measurement noise, which are 

independent, zero-mean, and Gaussian processes with covariance matrices w  and 

v . The theoretical details of EKF can be found in Ref [144], while the five-step 

procedures of EKF are summarized in Table 3.1. 

Table 3.1 Algorithmic Procedure of EKF 

Initialize 0x̂
, w  and v ; For k = 1, 2, … 

Update of priori state:   1 1
ˆ ,ˆ

k kk F x ux 

 


  

Update of priori error covariance:  
, 1 , 1 1

ˆ ˆT

x k k x k k wA A 

       

Update of Kalman gain:  1

, ,
ˆ ˆ ˆT T

k x k k k x k k vL C C C


     
   

Update of posteriori state:   ˆ ˆ ˆ ,k k k k k kx x L y G x u     
   

Update of Posteriori error covariance:     , ,
ˆ ˆ

x k k k x k k k k v kI L C I L C L L       
T

T  

The follows go further to generalize the characterization equations of VRB into the 

form of Eq. (3.9) so that the procedures listed in Table 3.1 can be implemented. For 

this purpose, the system state (x), system input (u), and system output (y) are firstly 

defined as: 
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  (3.10) 



CHAPTER 3 An Adaptive Battery Model for Vanadium Redox Flow Battery and Its 

Application for Online Peak Power Estimation 

54 

It is assumed the model parameters vary in a low rate, so that it can be confirmed 

that , 1 ,1 1p k p kR R  , , 1 ,1 1p k p kC C  , and , 1 ,s k s kR R  . Transforming Eq. (3.3) into 

the form of Eq. (3.9) yields: 
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T

  (3.11) 

where Fi (i = 1, 2, 3, 4) can be expressed as: 
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where xi is the i-th element of x. 

Specifically, ˆ
kA  is the Jacobian matrix of partial derivatives of  F  with respect to 

x, and can be expressed by: 

 

31 2 4

ˆ ˆ ˆˆ

ˆ

ˆ 0 1 0 0

0 0 1 0

0 0 0 1

k k k k k kk k

k k

x x x x x xx x

k

x x

FF F F

x x x x
F

A
x

  



  



   
 
   

 
  

  
 
 
 

  (3.13) 

where the partial derivative terms are solved as: 
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  (3.14) 
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Meanwhile, ˆ
kC  as the partial derivative of  G  with respect to x is given by: 

  
1 2 3 4 ˆ

ˆ 1 0 0

k k

k k

x x

G G G G
C u

x x x x


    
   

    
  (3.15) 

With aforementioned definitions and derivations, the EKF can be applied according 

to Table 3.1 to identify the model parameters in real time. 

C. Performance Comparison 

In this section, a simulation study is carried out to compare the two identification 

methods on the current case. The ECM shown in Figure 3.1 is built in Matlab 

Simulink environment. The model parameters (Rs, Rp, Cp) are user defined so that 

the identification result by the two methods can be evaluated. The applied load 

current is shown in Figure 3.2, while the simulated terminal voltage, SOC, and 

OCV are shown in Figure 3.3. The system is sampled at an interval of 1 s. 

 

Figure 3.2 Profile of load current for the simulation study 

As no prior knowledge of the model parameters and system states are available 

before the simulation, they are randomly initialized as: Rs = 0 mΩ, Rp = 1 mΩ, Cp = 

2 kF, Vp = 0 V. The convergence of EKF depends largely on the selection of 

covariance matrices, i.e. initial state covariance ( ,0x ), process noise covariance 

( w ) and measurement noise covariance ( v ). For the current case, they are tuned 
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as: 
14 14 14 5 8 5 1 5

,0 = 10 10 10 10 , 1 10 10 10 , 10x w vdiag diag              . 

 

Figure 3.3 Profile of terminal voltage, SOC, and OCV for the simulation study 

The identification results by the two methods are plotted in Figure 3.4, Figure 3.5, 

and Figure 3.6 for Rs, Rp, and Cp, respectively. As can be observed, the two 

algorithms both correct the erroneous initialization and converge to the true values 

quickly. After that, the online identified results demonstrate good agreement with 

the pre-defined values. It should be noted that the model parameters from the 

simulation study are defined based on the physical and electrochemical processes in 

VRB. The concentration overpotential appears when the supply of reactants at the 

electrode or the removal of the reaction products is rate-determining when current 

flows. The concentration overpotential has been reported to be high at low SOC 

regions. Therefore, a continuously increased polarization resistance is used and the 

significant overpotential can be easily observed in the voltage response shown in 

Figure 3.3. In contrast, the polarization capacitor is used to represent the charge 

double layer on or near the electrode/electrolyte interface. The capacitance value 

depends majorly on the electrical permittivity, actual surface area of the electrode, 

and the separation of the plates [145], so it is assumed to be constant during the 

cycling. 
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Figure 3.4 Online identification result of Rs for the simulation study 

 

Figure 3.5 Online identification result of Rp for the simulation study 



CHAPTER 3 An Adaptive Battery Model for Vanadium Redox Flow Battery and Its 

Application for Online Peak Power Estimation 

58 

 

Figure 3.6 Online identification result of Cp for the simulation study 

In order to better evaluate the convergence property, the convergence time defined 

as the time after which the identification enters the 5% error bound is applied. The 

computational cost is an indispensable consideration for real applications, so that 

the CPU time for each iteration is also used as a performance measure. The 

comparison of the two methods on convergence time, mean absolute error (MAE), 

root mean square error after convergence (RMSE), and CPU time are summarized 

in Table 3.2. As suggested, the EKF generates a slightly higher accuracy, if 

observable, than the RLS after convergence. It should be noted, however, that the 

RLS can completely fulfill the requirement of online identification considering the 

sufficiently small errors. The EKF needs a significantly longer time to converge 

compared with the RLS. This is within our expectation as it has been reported that 

the high order EKF may suffer from instability conditions [42]. Even though the 

covariance matrices have been extensively tuned to improve the stability, the 

algorithm still spends more effort to converge especially at the start-up stage. The 

CPU time of EKF is also much higher than RLS, which is caused by two reasons. 

Firstly, the recursive calculation of EKF has higher computational complexity than 

RLS from the algorithmic perspective. Secondly, the order of EKF is higher than 

that of RLS and the higher-dimension matrix operation unavoidably occupies more 
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computing resources. Taking all the measures into consideration, we conclude that 

the RLS is more appropriate for VRB model identification especially when the 

computational resources are limited. 

Table 3.2 Performance comparison of RLS and EKF on model identification for the 

simulation study 

 
RLS EKF 

Rs Rp Cp Rs Rp Cp 

Convergence time 60 s 179 s 183 s 72 s 301 s 306 s 

MAE 0.20% 0.78% 0.68% 0.11% 0.75% 0.71% 

RMSE 0.25mΩ 4.51mΩ 4.49kF 0.78mΩ 2.99mΩ 6.75kF 

CPU time 46.7 μs 73.4 μs 

3.3 Adaptive Peak Power Estimation 

Based on the online adapted battery model presented in Section 3.2, this section 

aims to develop an adaptive peak power estimator for VRB by considering multiple 

constraints. 

3.3.1 Peak Current Constrained by Voltage 

The first constraint should be considered is the upper and lower cut-off voltage for 

VRB operation. For instance, when the terminal voltage is low, the peak discharge 

power should be carefully controlled to avoid exceeding the lower cut-off value. 

The following attempts to derive the detailed calculation method of the peak current 

under the constraint of voltage. 

The load current is assumed to be constant between the k-th sampling time tk and 

the (k + L) -th sampling time tk+L, where L represents the prediction time horizon. 

Under the excitation of the peak discharge current, the terminal voltage drops to the 

lower cut-off voltage (Vt,min) from time tk to tk+L, so that the following equation can 

be drawn: 



CHAPTER 3 An Adaptive Battery Model for Vanadium Redox Flow Battery and Its 

Application for Online Peak Power Estimation 

60 

 
,

,min ,max( ) ( ) dis volt

t oc p L sV V k L V k L I R       (3.16) 

where 
,

,max

dis volt

LI  is the peak discharge current constrained by voltage. The polarization 
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In order to derive Voc(k + L), the SOC recurrent relationship is firstly introduced as: 
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Then the Taylor series approximation of Voc around s(k) is written as: 
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  (3.19) 

where  r  is the remainder term of Taylor approximation which is quite small thus 

can be ignored. 

By integrating Eq. (3.16), (3.17), and (3.19), the final expression of the voltage-

constrained peak discharge current is: 
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  (3.20) 

As all the model parameters (Rs, Rp, Cp) have been updated in real time, and OCV 

and SOC are measured with the open-circuit cell, it is explicit that Eq. (3.20) can be 

solved. 



CHAPTER 3 An Adaptive Battery Model for Vanadium Redox Flow Battery and Its 

Application for Online Peak Power Estimation 

61 

The voltage-constrained peak charge current can be determined in the same manner. 

Since the charge current is negative, the maximum magnitude is actually a 

minimum in the signed sense, so we define the peak charge current as 
,

,min

chg volt

LI , 

which can be expressed as: 
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  (3.21) 

where Vt,max is the upper cut-off voltage of VRB. 

3.3.2 Peak Current Constraint by SOC 

The SOC has to be maintained within a certain range to improve the efficiency and 

elongate the life calendar. For instance, too large discharge current for a certain time 

horizon will cause over-discharge when the SOC is close to the lower design 

constraint. To this end, the allowed peak discharge current should be controlled to 

protect the battery. 

While the VRB is reported to have relatively high tolerance to over-charge and 

over-discharge, they should still be avoided in real applications. The severe over-

discharge will cause cell reversal which is detrimental for battery performance. The 

effect of over-charge is much more complicated. Firstly, gassing side reactions will 

occur at both half-cells and cause fading of capacity especially during the charging 

process [13]. Although the oxygen evolution at the positive electrode has been 

shown to be negligible up to relatively high SOC, the hydrogen evolution at the 

negative half-cell is much more significant above 90% SOC. Gas evolution can also 

interrupt the electrolyte flow and lead to the changes of pH. Moreover, severe over-

charge conditions can lead to the oxidation of the carbon black materials used in the 

bipolar electrode substrate which further causes the increase of resistance. The 

oxidation of graphite felt materials will form the carbon/oxygen functional groups 

which are removable under reducing conditions. However, the oxidation of the 
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more reactive carbon black filler material can lead to CO2 formation resulting in 

delamination and destruction of the composite matrix. As a result, the VRB is 

recommended to be operated within a certain SOC region to prevent the 

aforementioned issues and to elongate the battery calendar life. 

In this section, it is assumed the limit for SOC should be enhanced with 

 min maxs s s . Accordingly, the peak discharge and charge current constrained by 

SOC limit can be derived from Eq. (3.18) as: 
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3.3.3 Peak Power Calculation 

Once the peak currents constrained by the voltage and SOC are obtained, the peak 

current under all constraints can be calculated as: 
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  (3.23) 

where IL,max and IL,min are the design limits of discharge and charge current, 

respectively. After the peak current is determined, the discharge voltage and charge 

voltage during the prediction time horizon can be derived as Eq. (3.24) and Eq. 

(3.25), respectively. 
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Based on the above derivations, the power sequence under the peak current for the 

whole prediction time horizon can be expressed as: 
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  (3.26) 

By choosing the power values closest to zero, i.e. the minimum discharge power 

and the maximum charge power, the final expression of peak power by considering 

all the constraints can be drawn as: 
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  (3.27) 

3.4 Experiment Design 

3.4.1 Experimental Setup 

The schematic of the experimental setup is shown in Figure 3.7. A 100 cm2 (10 

cm×10 cm) single VRB cell was utilized in the experiment. 80 mL of vanadium 

electrolyte (comprising 1.6 M vanadium in 4.5 M total sulfate) was placed in each 

electrolyte reservoir. The anion type membrane (FAP450) was use to separate the 

half cells, while the graphite felt (GFD 4.6EA from SGL Carbon) was used as the 

electrode material. A battery cycler NEWARE BTS-3000 was used to load the 

current or profiles on the battery under test. The range of current and voltage of the 

battery cycler are 10 A and 5 V, while the measurement error limits of sensors 

inside are within 0.1%. The host computer was used for current profiles editing and 

measurement data storage. Meanwhile, another cell (the open-circuit cell) with area 
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20 cm2 was physically connected to the electrolyte feed pipes at the inlet of the test 

cell to record the battery OCV in real time. This cell was connected to another 

channel of the battery cycler but no current was applied, allowing the battery OCV 

to be continuously measured. Once the OCV was measured, the SOC could be 

inferred from the SOC-OCV look-up table which will be discussed in Section 3.4.2. 

The ambient temperature was monitored to be stable at 22±1oC throughout the tests. 

The flow rate was controlled with two peristaltic pumps. The flow rate was 

controlled at 120 mL min-1 with two peristaltic pumps. 

 

Figure 3.7 Schematic of experimental setup 

3.4.2 SOC-OCV Look-up Table 

Traditionally, the Nernst equation is applied but discrepancy exists between 

modeling and true experimental data [146]. As discussed by Corcuera and Skyllas-

Kazacos [75], this discrepancy is associated with variations in hydrogen ion 

concentration and errors in estimation of the activity coefficients of the ions in the 

highly concentrated electrolyte. Throughout this thesis, therefore, the SOC-OCV 

curve was determined experimentally under present temperature conditions and 

electrolyte composition. The detailed testing procedures are described as follows. 

The cell is firstly charged with constant current- constant voltage (CCCV) mode. 

Specifically, the cell is charged with 4 A up to the upper voltage limit of 1.65 V and 

then charged under constant 1.65 V to the lower cut-off current of 1 A. The OCV is 
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then measured for the initial state with the open-circuit cell. Then the fully charged 

cell is discharged by 18 segments of current pulses to the lower cut-off voltage of 

0.9 V. The cell SOC is recorded with the CC method with the compensation of 

coulombic efficiency. At the end of each discharging segment, the OCV is measured 

for each SOC point to characterize the SOC-OCV relationship for discharging 

process. Similarly, the fully discharged cell is then charged with current pulses to 

acquire the SOC-OCV correlation for charging process. The final SOC-OCV curve 

is averaged from the data of charge and discharge process. In this way, the look-up 

table from SOC to OCV can be experimentally determined. 

3.4.3 Hybrid Pulse Experiment for Model Verification 

The hybrid pulse experiment is carried out to verify the proposed ECM in modeling 

battery dynamics, and the feasibility of the model identification method. The 

current shown in Figure 3.8 is loaded on the VRB under test as input, and the 

terminal voltage responses are continuously recorded. The recorded terminal 

voltage will be used to compare with the modeled result to evaluate the model 

accuracy. 

 

Figure 3.8 Current profile of the hybrid pulse experiment 

The accuracy of model parameters identification is crucial to the peak power 

estimation. Therefore, the reference values of model parameters should be extracted 

to verify the result of online model identification. To achieve this, a few discretized 
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time points are selected during the hybrid pulse experiment at a certain time 

interval, and at each time point the reference model parameters are extracted offline. 

Specifically, a batch of current and voltage data are sampled to form a data set 

around each time point. At each time point, the ohmic resistance (Rs) is extracted by 

calculating the instantaneous voltage jump following a step change of current, i.e. 

Rs = ΔVt / ΔIL. The polarization resistance and capacitance (Rp, Cp) are obtained by 

the least squares-based curve fitting to match the modelled transient voltage 

response to the measurements. 

3.4.4 Experiment for Peak Power Verification 

In this section, an experiment is designed to verify the proposed peak power 

estimator. The proposed peak power estimator is based on the calculation of peak 

current by Eq. (3.23), and the prediction of power sequence within the prediction 

horizon by Eq. (3.26); therefore, both the two equations have to be verified. In Eq. 

(3.23), the calculation of 
,

,max

dis soc

LI  and 
,

,min

chg soc

LI  with Eq. (3.22) is based on the definition 

of SOC, thus can be viewed as a standard method and needs no further verification. 

Meanwhile, IL,max and IL,min are the design limits of discharge and charge current 

which depend on the specific battery chemistries and no verification is need. In this 

regard, the verification of Eq. (3.23) is equivalent to verifying the voltage-

constrained peak current as calculated in Eq. (3.20) and Eq. (3.21). According to the 

aforementioned analysis, the verification of the proposed peak power estimator 

boils down to verify the calculation of Eq. (3.20), Eq. (3.21), and Eq. (3.26). By 

selecting the prediction time horizon as 20 s, the verification experiment is 

described as follows. 

Step 1: The VRB is firstly charged sufficiently, after which the current as shown in 

Figure 3.8 is loaded on the test VRB. 

Step 2: The regular hybrid pulse experiment is interrupted at 1000 s, following 

which a large discharge current pulse of 8 A is injected to the VRB to test the 

voltage response. The terminal voltages during the first 20 s of the large pulse are 

defined as 20

dis

sV . The recorded current and voltage data during the 8 A pulse will be 



CHAPTER 3 An Adaptive Battery Model for Vanadium Redox Flow Battery and Its 

Application for Online Peak Power Estimation 

67 

used to verify the estimate of the peak discharge power. The same process is 

repeated but interrupted at 5000 s and 9000 s for further verification. 

Step 3: The regular hybrid pulse experiment is interrupted at 3000 s, following 

which a large charge current pulse of 8 A is injected to the VRB to test the voltage 

response. The terminal voltages during the first 20 s of the large pulse are recorded 

and defined as 
20

chg

sV . This process is repeated but interrupted at 7000 s to verify the 

estimate of the peak charge power. 

According to the aforementioned steps, there will be five experiments to be carried 

out, three for the verification of peak discharge power estimation and two for the 

verification of peak charge power estimation. For each experiment, the following 

“two-step verification” should be conducted (taking the peak discharge power as 

example): 

Firstly, the peak discharge current calculated by Eq. (3.20) should be verified. The 

last value of 20

dis

sV  is assumed to be the lower cut-off voltage in this case. Under this 

assumption, a situation is formulated that the VRB reaches the lower cut-off voltage 

within 20 s under the 8 A discharge current, and it is evident that the true voltage-

constrained peak current is equal to 8 A. Therefore, the peak current calculation is 

verified if the output of Eq. (3.20) is also 8 A. 

Secondly, the power sequence within the prediction time horizon under the assumed 

peak current (8A) should be verified. As the voltage response under the 8 A pulse 

has been measured in the designed experiment, the reference power sequences for 

the prediction horizon can be easily obtained experimentally. Then the real-time 

power estimation can be verified if the estimated values by Eq. (3.26) are 

benchmarked with the reference values. 

The proposed peak power estimator is verified if the “two-step verification” is 

achieved. The verification of the peak charge power estimation can be conducted in 

the same manner. 
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3.5 Verification and Discussion 

3.5.1 Model Verification 

The accuracy of the model parameters is crucial for the peak power prediction. In 

this section, the RLS based real-time model identification method is applied to the 

current and voltage data from the hybrid pulse experiment described in Section 

3.4.3 for verification purpose. As no prior knowledge is available about the model 

parameters, they are randomly initialized as Rs = 0 mΩ, Rp = 1 mΩ, Cp = 2 kF. 

 

Figure 3.9 Result of online model identification for the hybrid pulse experiment 



CHAPTER 3 An Adaptive Battery Model for Vanadium Redox Flow Battery and Its 

Application for Online Peak Power Estimation 

69 

The online identified model parameters along with the reference values of them are 

plotted in Figure 3.9. It is obvious that the model parameters are time variant thus 

using offline-extracted and constant values is not preferable. By adopting the 

proposed method, it is observed that the model parameter identification converges 

quickly from the erroneous initialization and the identified results are very close to 

the reference values. Due to the mechanism of online adaption, the frequent 

calibration of battery model can be avoided. 

 

Figure 3.10 Modeling result of terminal voltage and modeling error for the hybrid 

pulse experiment 

To further verify the accuracy of the adaptive ECM, the modeled terminal voltage 

with the online identified model parameters is compared with the measured data, as 

shown in Figure 3.10. The result suggests that the modeled voltage tracks the 

experimental profile with high accuracy. The modeling error is constrained within 2 

mV error bound for most of the time excluding several error spikes. The high 

modeling accuracy reconfirms the fidelity of the applied ECM and the associated 

model identification method, which is the prerequisite of accurate peak power 
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estimate. The proposed method also proves to be robust to the initialization 

uncertainties. 

3.5.2 Verification of Peak Power Estimation 

After determining the real-time model parameters and the adaptive battery model, 

the proposed peak power estimator will be verified in this section. As discussed in 

Section 3.4.4, the verification consists of two steps, i.e. verifying the calculation of 

peak current and verifying the power sequence within the prediction time horizon 

under the assumed peak current, which will be discussed respectively as follows. 

A. Verification of Voltage-constrained Peak Current Calculation 

This part corresponds to the first step of the “two-step verification” discussed in 

Section 3.4.4. The peak current estimation result for the selected five time points is 

plotted in Figure 3.11. It is observed that the estimated peak currents demonstrate 

good agreement with the true values for all the five selected time points. The MRE 

of estimation is 2.36%. The best estimation occurs at 9000 s and the relative error of 

estimation is only 0.21%. In contrast, the worst result occurs at 7000s and the 

relative error of estimation is 4.62%. To give insights into the different estimation 

errors, the details of current in regular cycling as well as the current pulse 

interruption at different time points are shown in Table 3.3. It is observed that the 

estimation error is generally in positive correlation with the extent of current change 

in both direction and magnitude. At 7000 s, the regular cycling is undergoing a 

discharge current of 2A, which is interrupted by a large charge current of 8 A. The 

sudden and drastic change of current in both direction and magnitude causes a non-

ignorable variation of the model parameters. However, as a prediction issue in real 

applications, the proposed method has to use the model parameters identified at 

7000 s for the future 20 s without update. Therefore, the relatively large estimation 

error is within expectation. It has to be noted, however, that the relative error of 

4.62% is quite acceptable for online estimation, especially when it represents the 

worst situation. 
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Figure 3.11 Peak current estimation result and estimation error 

Table 3.3 Details of current in regular cycling and current pulse interruption 

 1000 s 3000 s 5000 s 7000 s 9000 s 

Regular current 2 A 0.8 A 0 A 2 A 2.4 A 

Interruption current 8 A 8 A 8 A 8 A 8 A 

 

B. Verification of Power Sequence Estimation under Peak Current 

This part corresponds to the second step of the “two-step verification” discussed in 

Section 3.4.4. The estimated terminal voltage and power compared with their 

measured values during the whole prediction time horizon is shown in Figure 3.12. 

The result suggests that the proposed method can accurately project the trajectory of 

both terminal voltage and power with high accuracy during the prediction time 

horizon. The estimation error is caused by the model uncertainty, including the 

identification errors of model parameters, and the non-update of them for the whole 

prediction time horizon. For example, at the instant of 5000 s, one cannot know the 

current and voltage information of the next prediction time horizon; hence the 

model parameters cannot be updated for the future moments. Instead, we have to 

use the model parameters updated at 5000 s to predict the peak power for the next 
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prediction time horizon, i.e. 5000 s to 5020 s when a time horizon of 20 s is used. 

The MAE of estimation is summarized in Table 3.4. Consistent with the result of 

peak current estimation, the best estimation happens at 9000 s while the worst 

happens at 7000 s. The MAE values show sufficiently high estimation accuracy for 

both terminal voltage and power within the prediction time horizon, thus the 

verification is confirmed. 

 

Figure 3.12 Estimation results of terminal voltage and power under defined peak 

current within the prediction time horizon 
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Table 3.4 MAE of estimation for terminal voltage and power sequence 

 1000s 3000s 5000s 7000s 9000s 

Terminal voltage (mV) 3.25 4.31 5.61 8.22 1.87 

Real-time power (mW) 25.99 34.37 44.92 65.73 14.87 

 

3.5.3 Voltage- and SOC-constrained Peak Power 

This section goes further to demonstrate the result of online peak power estimation 

under the hybrid pulse experiment. The upper and lower cut-off thresholds for SOC, 

terminal voltage, and design current limit is summarized in Table 3.5. 

Table 3.5 Upper and lower cut-off thresholds for SOC, terminal voltage, and design 

current limit 

 Maximum Minimum 

SOC 96% 10% 

Vt 1.65 1.20 

IL 8 A 8 A 

To ease the analysis, we firstly ignore the design current limit and only consider the 

constraints of terminal voltage and SOC. We also investigate how the prediction 

time horizon, which is usually user-defined based on the specific application, can 

influence the estimate of peak power. 

The estimation result of peak discharge current and peak discharge power by using 

1 s, 20 s, and 60 s as prediction time horizon is shown in Figure 3.13. As shown, the 

peak discharge current and power are high at the beginning and drops gradually. 

This is because the SOC and terminal voltage is high at the initial stage, and a very 

large discharge current is allowed to bring the terminal voltage or SOC to the lower 

cut-off value. As the hybrid pulse experiment proceeds, both SOC and the terminal 

voltage drops significantly, thus a smaller discharge current will be adequate for the 

battery to reach the lower cut-off thresholds. We also observe that the peak 

discharge current and peak discharge power decrease remarkably when increasing 

the prediction time horizon. This feature can be explained by the voltage response 
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under current excitation within the selected prediction time horizon, as shown in 

Figure 3.14. As shown, two charging current pulses with different magnitudes are 

imposed on the battery at time t0, and the corresponding voltage responses are V1 

and V2, respectively. It is observed that V1 and V2 arrive the voltage upper limit after 

60 s and 1 s, respectively. In this regard, the peak current will be I1 if we select the 

time horizon as 60 s. Instead, the time horizon of 1 s will allow I2 as the peak 

current, which is observed to be much larger than I1. 

 

Figure 3.13 Estimation results of peak discharge current and peak discharge power 

by using different prediction time horizons (ignoring the design current limit) 



CHAPTER 3 An Adaptive Battery Model for Vanadium Redox Flow Battery and Its 

Application for Online Peak Power Estimation 

75 

 

Figure 3.14 Interpretation of the peak current when different time horizons are 

selected 

 

Figure 3.15 Estimation results of peak charge current and peak charge power by 

using different prediction time horizons (ignoring the design current limit) 

The estimation result of peak charge current and peak charge power by using 1 s, 20 

s, and 60 s as prediction time horizon is shown in Figure 3.15. It is found that the 

peak charge current and peak charge power both increases in magnitude as the 
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hybrid pulse experiment proceeds, which can be explained by the fact that a large 

charge current in magnitude is permitted for the terminal voltage and SOC to reach 

the upper cut-off value at a low SOC. The influence of prediction time horizon on 

the peak charge current/power is the same as that on the discharge case, and the 

similar explanations apply to this phenomenon. 

3.5.4 Peak Power Estimation by Multi-constraints 

The design current limit serves as another constraint for the peak power. The mass-

transfer controlled limiting current is commonly used as the constraint in the 

literatures [137, 139]. However, it is not recommended to apply a large current that 

approaches the limiting current in practical applications. There are majorly two 

reasons for this. Firstly, as the current increases, the concentration overpotential 

enhances significantly and leads to large declines of both output power and 

efficiency. Secondly, the use of small current contributes to elongating the battery 

life calendar. Experiments have been done to study the effect of load current on 

energy efficiency and capacity decay. The results show that a load current larger 

than 8 A for the 100 cm2 VRB cell (equivalent to 80 mA cm-2) is unfavorable to the 

VRB performance in long-term operation. Therefore, we adopt a constant value of 8 

A as the design current limit in this chapter. 

In this section, the design current limit is accounted for to perform the peak power 

estimation by multi-constraints. Taking the discharge case as instance, if the design 

limit of the discharge current is higher than the peak discharge current shown in 

Figure 3.13, it will not take effect and the estimation result will be identical with 

that discussed in Section 3.5.3. Otherwise, the design current limit will be in effect 

and the estimation result will be different. 

By considering the design current limit in Table 3.5, the estimated peak discharge 

current and peak discharge power are shown in Figure 3.16. It is clear that the peak 

discharge current follows different constraints at different stages. During t1, the 

design current limit is the lowest among the three constraints and acts as the major 

constraint. Therefore, the estimated peak discharge power during this stage reduces 

significantly compared with that shown in Figure 3.13. The estimated peak 
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discharge power is also much more stable than that in Figure 3.13 as the peak 

discharge current is constant at 8 A in this case. After that, the voltage-constrained 

peak discharge current drops below the design limit and begins to take effect during 

t2. During t3 when the SOC approaches the lower bound, the SOC-constrained peak 

discharge current which is quite high before starts to drop sharply to become the 

lowest one, thus behaves as the major constraint. During t2 and t3, the design current 

limit is not in effect so that the estimated peak discharge power in Figure 3.16 (c) is 

identical with that in Figure 3.13. It is shown that the proposed method can 

effectively synthesize and coordinate different constraints thus make the optimized 

estimation which will be more reliable in practical applications. 

The estimated peak charge current considering multiple constraints is shown in 

Figure 3.17 (a, b). Analogously, the three constraints dominate at different stages. At 

the very beginning (t1), the SOC is close to the upper bound so that the battery can 

only tolerate quite small charge current (in magnitude) to avoid over-charge. For 

this reason, the SOC-constrained peak charge current is the major concern at this 

stage. After this, the SOC-constrained peak charge current increases drastically (in 

magnitude) and the terminal voltage becomes the major constraint. As the voltage-

constrained peak charge current exceeds the design current limit, the latter one starts 

to be the major constraint. The corresponding multi-constrained peak charge power 

by using different prediction time horizons is plotted in Figure 3.17 (c). The 

estimated peak charge power during t1 and t2 is consistent with that shown in Figure 

3.15, as the design current limit has not taken effect at this time. After that, the 

charge power decreases mildly and stably in magnitude during t3. This is because 

the peak charge current is fixed at 8 A at this stage and the corresponding terminal 

voltage decreases slowly as the hybrid pulse experiment proceeds. 

It should be clarified that the proposed method estimates the peak power of VRB 

stack. The VRB systems in real applications may also be self-feeding, i.e. using the 

stack power output to run the pumps. In this case, the pumping power loss which is 

strongly dependent on operating flow rate should be deducted from (for peak 

discharge power estimation) or added to (for peak charge power estimation) the 

estimated peak power based on the proposed method. 
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Figure 3.16 Estimation results of peak discharge current and peak discharge power: 

(a) peak discharge current by single constraints and multiple constraints; (b) zoom 

figure of (a) with a small range of y axis; (c) peak discharge power by using 

different prediction time horizons 
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Figure 3.17 Estimation results of peak charge current and peak charge power: (a) 

peak charge current by single constraints and multiple constraints; (b) zoom figure 

of (a) with a small range of y axis; (c) peak charge power by using different 

prediction time horizons 
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3.5.5 Discussion on the influence of flow rate and temperature 

The temperature and flow rate are key operating parameters to influence the 

performance of VRB. The peak power estimation can be affected by these factors in 

two different ways. 

Firstly, the physical and chemical processes of VRB are affected by both 

temperature and flow rate so that the model parameters which are involved in the 

peak power calculation are also subject to changes. Therefore, the model-based 

peak power estimation is surely relevant to these factors. However, this effect can 

be well addressed by the proposed method. It is known that the changes of 

operating variables and thus model parameters can be reflected in the current-

voltage response. As a data-driven method, the proposed method can dig into the 

current-voltage characterization and update the model parameters continuously in 

real time. For this advantage, the proposed estimator can fully adapt to the change 

of these factors. 

Secondly, the mass-transfer limitations between the bulk electrolyte solution and the 

electrode surface are highly dependent on the volumetric flow rate. The limiting 

current is governed by the bulk concentration and the rate of mass transfer of 

vanadium ions from the bulk solution to the electrode surface, and can be expressed 

by [139]: 

 lmt m m bI nFA k C   (3.28) 

where n is the electrons involved in the redox reaction, F is the Faraday’s constant, 

Am is the cross-sectional area of the porous flow-through electrode, Cb is the bulk 

concentration of vanadium ions in solution, km is the local mass transfer coefficient 

which can be approximated by: 

 
4 0.41.6 10m ek v    (3.29) 

where ve is the electrolyte flow velocity through the rectangular channel. 

Under specific cell design and electrolyte concentration, it is clear that the limiting 
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current is dependent on the volumetric flow rate and SOC. In other words, it is 

actually time variant with the change of working condition. In this chapter, in 

seeking to improve the efficiency and to extend the battery life, we apply a constant 

current limit of 8 A for the 100 cm2 VRB cell which actually simplifies the peak 

power estimation. In our future work, the limiting current expressed by Eq. 

(3.28)will be applied in the viewpoint of fully exploiting the VRB power. To 

achieve this, mathematical models considering the mass transfer and concentration 

overpotential effect will be built and integrated into the proposed estimator. 

3.6 Conclusions 

This chapter proposes an online peak power estimator based on an adaptive battery 

model for VRB. The OCV is measured with an open-circuit cell and the other 

model parameters are online identified with both RLS and EKF for comparison. 

Based on the online identified battery model, an adaptive estimator is proposed 

which incorporates the constraints of voltage, SOC, and current to estimate the real-

time peak power for the given prediction time horizon. 

The key findings are summarized as follows: (1) the RLS proves to outperform the 

EKF for online model identification by assessing the identification accuracy, 

convergence speed, and computational cost; (2) the RLS-based online identified 

battery model is experimentally verified to model the VRB dynamics with high 

accuracy; (3) the peak current calculation and the power sequence estimation under 

the peak current are verified with the “two-step verification” method, in which way 

the proposed peak power estimator is verified; (4) the experimental result suggests 

that different constraints dominate the determination of peak power at different 

stages, and the proposed estimator can well coordinate them and realize the multi-

constrained estimation which is more reliable; (5) the estimated peak power 

depends largely on the selection of the prediction time horizon. 
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CHAPTER 4 Online Model Identification and State of 

Charge Estimation for Vanadium Redox Flow Battery with 

a Multi-timescale Estimator 

4.1 Introduction 

Extensive studies aimed at the improvement of cell performance, mainly in the field 

of electrode modification, membrane enhancement, and electrolyte solution update 

[147-149] have been conducted. Some important issues of the VRB technology in 

real applications have yet to be adequately addressed however. The SOC, as one 

important state to be monitored in BMS, is essential to assess the battery condition 

and to avoid over-charge and/or over-discharge.  

The electrochemical methods by Skyllas-Kazacos et al. [74, 75], which have been 

reviewed in Section 2.4.3 C monitor the SOC of each half-cell and aim at detecting 

any imbalance between the two individual half-cell electrolytes that would lead to 

capacity loss. In real applications, the overall SOC of the cell is also vital 

considering its implication on the short- and long-term energy management. 

Regarding online SOC determination, OCV measurement as adopted in Chapter 3 is 

straightforward and has been widely used in commercial products [146]. However, 

additional open-circuit cells and sensors need to be installed thus adding more 

complexity to the battery configuration. Furthermore, the open-circuit cell approach 

can only be used for flow batteries where the electrolytes are stored in external 

reservoirs and pumped through a cell stack where the charge-discharge reactions 

take place. Other methods like the CC technique have also reviewed in Section 

2.4.3 with the drawbacks clarified. 

In recent works [41-51], SOC was estimated in real time for lithium-ion batteries by 

the ECM based observers, which are also promising to be applied on VRB. This 

category of methods is fundamentally achieved with two steps. First, an accurate 

model is established to reproduce the transient behavior of battery. The existing 
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ECMs for battery research and those intended specifically for VRB have been 

reviewed in Section 2.4.2, thus they will not be further introduced here. In the 

second step, the adaptive filters, such as EKF [41-43], UKF [43, 44], PF [45-47], 

and some other extensions [48-51], are applied to observe the SOC. Such ECM-

based observers effectively overcome the shortcomings of the SOC-OCV mapping 

and CC technique. One common feature of the methods is that the model 

parameters are prescribed offline and left without adaption during operation. 

However, as the model parameters are actually changing with both working 

conditions and self-aging, the non-adaption of them will degrade the accuracy and 

cause the estimator to lose robustness. For this reason, the online identification of 

model parameters has been focused recently, albeit limited, to improve the precision 

of SOC estimation. In the existing studies, the model parameters and SOC/OCV are 

integrated together for joint estimation [59, 136, 150] or dual estimation [95, 151-

153] . However, the integration can cause cross interference between the model 

parameters and SOC/OCV and thus substantially compromise the regression 

stability. The joint estimation can also cause large-scale matrices calculation and 

accordingly brings more parameterization effort and even leads to instability issues. 

In this chapter, a novel multi-timescale estimator is proposed to online adapt the 

model parameters and estimate the battery SOC simultaneously. The proposed 

method is data-driven type and is free from the constraint of using additional open-

circuit cells for OCV determination, which is a key improvement of the model used 

in Chapter 3. Unlike other traditional methods, the OCV and model parameters are 

identified with three independent estimators to avoid the cross interference, while 

SOC is estimated with the look-up table of SOC versus OCV. As another merit, the 

SOC estimator is implementable without exact information of the cell capacity, 

which is indispensable in most of existing ECM-based observers. Theoretical 

analysis on sensitivity, stability and precision is executed to explore the 

performances of each independent estimator. Based on this, different timescales are 

applied to enhance each estimator and to release computational burden. 

The rest of the chapter is organized as follows. Section 4.2 presents the OCV 

estimator and associated sensitivity analysis. Section 4.3 discusses the identification 
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of model parameters and proposes the multi-timescale estimator based on the 

analysis of model precision and stability. Section 4.4 describes the experimental 

setup and details. The algorithm verification is presented in Section 4.5 and the key 

conclusions of this chapter are drawn in Section 4.6. 

4.2 Independent OCV Estimator 

4.2.1 Battery Modeling 

To simplify the battery model configuration to the greatest extent while keeping 

sufficient precision, the first-order RC model which has been widely used for 

lithium-ion and NiMH battery is adopted in this thesis. It has to be mentioned 

however, that the method proposed here is applicable to a broad range of higher-

order battery models. The model structure can be found in Figure 3.1. It has to be 

noted that the SOC- and temperature-dependent OCV is no longer measured with 

the open-circuit cell as in Chapter 3; otherwise, it is online estimated with an OCV 

estimator in this chapter. 

4.2.2 OCV Estimation 

Instead of using the open-circuit cell as in Chapter 3, in this section, an independent 

OCV estimator using only onboard measured current and voltage is introduced. The 

electrical behavior of the first-order RC model is expressed as Eq. (3.1) and Eq. 

(3.2), from which the following discrete-time form can be written: 
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       (4.1) 

where ts is the sampling time of onboard data, and n denotes the user-defined 

sampling interval used to update the OCV. Thus, the timescale of the OCV 

estimator (∆t1) can be calculated as ∆t1 = nts. At any time step, the below 

relationship holds according to Eq. (3.2): 
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Substituting Eq. (4.2) into Eq. (4.1) yields: 
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Eq. (4.3) can be alternatively expressed in a linear form as: 

 1( ) ( ) ( ) ( )Ty t t u t t     (4.4) 

where 
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  (4.5) 

Voc(t) is treated as the time varying parameter to be identified. The model input u(t) 

is only related to the model parameters waiting for further identification. The model 

output y(t) depends on both the model parameters and onboard measured 

current/voltage. Based on the regression model with Eq. (4.4), the OCV can be 

estimated online with the RLS method. Details about the RLS algorithm are not 

elaborated here but can be referred to existing literatures [143]. Once OCV is 

obtained, the battery SOC can be easily determined with the look-up table between 

OCV and SOC. 
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4.2.3 Precision and Stability 

The model precision depends on whether the error term ε1(t) is ignorable with 

respective to y(t). It is known that the battery OCV variation is considerably small 

within a short time interval. Specifically, the OCV drops from around 1.53 V to 

1.29 V when VRB is discharged from 90% (SOC) to 10% (SOC). Within a 

sufficiently small ∆t1, it is reasonable to confirm Voc(t)≈Voc(tnts) thus ε1(t) 

approximates zero. To this end, a small ∆t1 is plausible. The stability can be easily 

confirmed as the model is zero order. 

4.2.4 Sensitivity Studies 

The precision of OCV estimator will degrade when the model parameters are 

subject to identification errors. Within this context, the sensitivity of the OCV 

estimator to the error on each model parameter is worth investigating. With 

identification errors on the model parameters, Eq. (4.4) becomes: 

 1̂
ˆ ˆ( ) ( ) ( ) ( )Ty t t u t t     (4.6) 

where ˆ( )y t  is the observation of y(t) when identification errors exist and vice versa 

for ˆ( )u t  and 1̂( )t . As ε1(t) itself is negligible compared with the other terms, it is 

reasonable to assume that the identification errors have negligible impacts on it and 

thus 1 1
ˆ ( ) ( )t t  . By transposition, the below expression can be drawn: 

 1 1( ) ( ) ( ) ( ) ( )Ty t t u t t t       (4.7) 

where Λε1(t) corresponds to the additional error term caused by the identification 

errors on model parameters and can be expressed as: 

 1
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )T Tt y t y t t u t t u t         (4.8) 

where ˆ( )u t  and ˆ( )y t  can be expressed as: 
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where ΛRs, ΛRp and ΛCp are the identification errors on model parameters. A new 

term defined as 1( ) ( ) ( )ocV t t u t    is used here to quantitatively evaluate the 

variation of OCV estimation caused by the additional error. The definition is 

fundamentally derived from Eq. (4.7). It should be noted however that ΛVoc(t) is not 

strictly equal to the real OCV variation in real recursive estimation where the RLS 

filter is used to smooth the regression. However, the defined ΛVoc(t) can still give 

deep insight into how the identification errors on model parameters degrade the 

OCV estimator. 

To give a perspective, the following two conditions are used to simulate the 

influence of identification errors on the additional error term (Λε1) and OCV 

variation (ΛVoc): 

Condition 1: ∆t1 = 1 s, Rs = 19 mΩ, Rp = 2.5 mΩ, Cp = 8 kF, OCV = 1.4242 V, IL(t) 

= IL(t  ∆t1) = 2.4 A, V(t) ≈ V(t  ∆t1) = 1.3783 V; 

Condition 2: ∆t1 = 1 s, Rs = 19 mΩ, Rp = 2.5 mΩ, Cp = 8 kF, OCV = 1.4242 V, IL(t 

 ∆t1) = 0.8 A, IL(t) = 2.4 A, V(t  ∆t1) = 1.4434 V, V(t) = 1.3814 V; 

The two conditions are both from real experimental data at SOC around 53%. 

Condition 1 represents a stationary load current condition, while condition 2 

describes a current jump at the present time step. The assumed model parameters 

are selected according to the hybrid pulse test which will be presented in Section 

4.4. Simulations are performed and the results are shown in Figure 4.1. It can be 

summarized that: (1) The OCV estimator is most sensitive to the identification error 

on Rs; (2) The impact of identification errors is not negligible. The OCV variation 
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can reach up to 45 mV with 10% identification error on Rs. (3) Compared with 

stationary current condition, the OCV estimator is much more sensitive to 

identification errors under a dynamic current condition which is more common in 

real applications. The sensitivity studies allow a deeper understanding about the 

OCV estimator and serve as an important guide for the design of model parameter 

estimator. 

 

Figure 4.1 Sensitivity of the OCV estimator to the identification errors on model 

parameters: (a, c) stationary current condition; (b, d) varying current condition 
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4.3 Online Adapted Model and Multi-timescale Estimator 

4.3.1 Online Model Parameters Identification 

As indicated in the sensitivity analysis, the precision and stability of Rs 

identification is vital to the OCV estimator, as a result of which the identification of 

Rs should be given more emphasis. Again, to prohibit the cross interference between 

different model parameters, Rs is identified independently rather than integrated 

with Rp and Cp in the same vector. From Eq. (3.2), the below relationship is 

established: 

 
2

2

( ) ( ) ( )

where  ( ) ( ) ( )

t s L

oc p

V t R I t t

t V t V t





    

  
  (4.10) 

where ∆Vt(t) is defined as the differential voltage, expressed by Vt(t)  Vt(t  ∆t2), 

and ∆t2 denotes the timescale used to calculate and update Rs. The analogous 

definition applies to the other terms. Through this way, Rs can also be updated with 

the RLS method. 

The stability is easily confirmed considering the one-dimensional parameter vector 

and regressor are involved. The error term ε2(t) is determined by both ∆Voc(t) and 

∆Vp(t). Generally, ε2(t) decreases by shortening the timescale ∆t2 as the variation of 

OCV tends to be subtle. Regardless of ∆t2 however, ε2(t)  can be in the same order 

with model output ∆Vt(t) if the current variation ∆IL(t) is too small. The feasibility 

of this method thereafter depends on two prerequisites: (1) ∆t2 is sufficiently small; 

(2) Rs is only updated under the situation that ( )LI t    with ξ as a user-defined 

threshold to trigger the update of Rs. 

By using different time resolution, Eq. (4.1) can be expressed in a new form as: 
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where ∆t3 is the timescale of the Rp and Cp estimation. Meanwhile, from Eq. (3.2) 
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we also have: 

 ( ) ( ) ( ) ( )p oc t L sV t V t V t I t R     (4.12) 

Substituting Eq. (4.12) into Eq. (4.11) yields: 

 1 3 1 3 2 3( )+ ( ) ( ) ( ) ( ) ( )t L s oc oc t LV t I t R V t V t t V t t I t t           (4.13) 

where 
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Shifting Eq. (4.13) to the previous time step yields: 
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By subtracting Eq. (4.15) from Eq. (4.13), the following equation can be drawn: 
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  (4.16) 

where ∆[Vt(t) + IL(t)Rs] is defined as the differential polynomial expressed by [Vt(t) 

+ IL(t)Rs  (Vt(t  ∆t3) + IL(t  ∆t3)Rs)], and the analogous definition applies to the 

other terms. Alternatively, Eq. (4.16) can be expressed in a regression form as: 

 3 3 3 3( ) ( ) ( )+ ( )Ty t t u t t    (4.17) 

where 
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Again, the regression model can be solved with RLS. Then Rp and Cp are reversely 

solved as: 
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  (4.19) 

With the online extracted model parameters, the terminal voltage at the next 

onboard sampling time can be modeled as: 
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  (4.20) 

4.3.2 Precision and Stability 

The precision and stability of the regression model (4.10) and (4.17) are largely 

determined by the selection of timescale ∆t2 and ∆t3. It is clear that the error terms 

ε2(t) and ε3(t) both approximate zero when the corresponding timescale approaches 

zero. Therefore, it is plausible to set ∆t2 and ∆t3 to the minimum value allowable to 

constrain the modeling error terms. 

Eq. (4.10) represents a zero-order system with its stability easily guaranteed 

regardless of ∆t2. In contrast, the stability of the model (4.17) is a bit more 

complicated. Eq. (4.16) can be alternatively expressed as the form of: 

 1 2( ) ( 1) ( 1)+ ( )t t LV k V k I k k           (4.21) 

where k is the index of the present time step. ∆Vt(k) and ∆IL(k) are respectively 

treated as the system output and input. ( )k  is the disturbance calculated as 

3( ) ( ) ( )L sk k I k R    . The transfer function of system represented by Eq. (4.21) 

can be expressed as: 
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where z is the discretization operator. Stability requires all poles to be placed inside 

the unit circle of z plane. For the present case, the pole is solved as α1 which 

depends closely on ∆t3. In order to evaluate the influence of ∆t3 on system stability, 

a simulation study was carried out. The following two parameter sets representing 

different operating conditions are illustrated: 

Condition 1: Rs = 19 mΩ, Rp = 2.5 mΩ, Cp = 8 kF (typical data for flow rate of 120 

mL min-1 and middle SOC region); 

Condition 2: Rs = 25 mΩ, Rp = 14 mΩ, Cp = 3 kF (typical data for flow rate of 120 

mL min-1 and low SOC region); 

The model parameters are selected with based on the hybrid pulse test. The pole 

coordinates with different selections of ∆t3 are summarized in Table 4.1. The result 

shows that the pole moves towards zero inside the unit circle as ∆t3 increases, which 

suggests an enhanced stability. Especially, the stability is substantially attenuated at 

the low SOC region, reflected by the large poles under condition 2. Summarily, the 

model is more vulnerable to the perturbations and model uncertainties with a small 

time scale especially within low SOC region. Within this context, a large ∆t3 is 

desirable to stabilize the model under a wide range of conditions. 

Table 4.1 Pole coordinates with different selections of ∆t3 

 ∆t3 

0.5 1 2 3 4 5 6 

Pole (Condition 1) 0.975 0.951 0.905 0.861 0.819 0.779 0.741 

Pole (Condition 2) 0.988 0.977 0.954 0.931 0.909 0.888 0.967 

4.3.3 Multi-timescale Model Parameter Identification 

In this chapter, the OCV estimator and model parameter estimator are fully 

decoupled. As an outstanding merit, the decoupling treatment allows selecting 

different timescales to enhance each estimator independently. According to the 

analysis on model precision and stability, ∆t1 and ∆t2 are both set as 1 s which is 
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equal to the onboard sampling time to maximize the model precision, while a larger 

timescale ∆t3 = 4 s is selected for Rp and Cp estimation regarding the trade-off 

between precision and stability. The detailed algorithm of the multi-timescale 

estimator is summarized in Table 4.2. 

4.4 Experimental Details 

4.4.1 Experimental Setup 

The schematic of the experimental setup is the same as Figure 3.7. The only 

difference is that the measured OCV is only for verification purpose and will not be 

used by the proposed multi-timescale estimator. The ambient temperature was 

monitored to be stable at 22±1℃ throughout the tests. Experiments under different 

operating flow rates are realized by adjusting the two peristaltic pumps. 

4.4.2 Battery Tests 

A. SOC-OCV Test and Sensitivity Analysis 

The SOC-OCV test is performed with the procedures described in Section 3.4.2. To 

assess the OCV curve variation with respect to battery aging, several OCV tests 

were conducted at different aging states and the results are shown in Figure 4.2. It 

should be mentioned that the battery is cycled with very deep charge and discharge 

or even over-charge and over-discharge, which is actually not recommended in real 

applications, in order to accelerate the aging as soon as possible. During this period, 

the capacity dropped from 3293.6 mAh to 3078.1 mAh. The capacity fade of 6.54% 

represents a substantial aging in real applications. It is observed that the SOC-OCV 

curve of VRB is not sensitive to the battery aging. For the SOC range from 10% to 

95% which corresponds to the typical operating range of VRB, the OCV variation is 

only 1.562 mV. Therefore, the SOC-OCV look-up table can be used without 

frequent recalibrations. However, it should be mentioned that this conclusion is 

applicable to the aging degree presented in this section. Recalibration may be 

needed if the aging is too severe.  
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Table 4.2 Algorithm details of the multi-timescale estimator 

Initialization: 1 1 3 3
ˆ ˆˆ(0), (0); (0) (0); (0), (0);s RP R P P  ,  

For k = 1, 2, 3, … 

Step 1: Priori parameter and covariance matrix update for θ, 

3 3 3 3
ˆ ˆ( ) ( 1),    ( ) ( 1)k k P k P k            (4.23) 

For m = 1, 2, 3, …, ∆t1 (∆t2) 

Step 2: Priori parameter and covariance matrix update for Rs, 

ˆ ˆ( , ) ( , 1)     ( , ) ( , 1)s s R RR k m R k m P k m P k m      ,   (4.24) 

Step 3: Gain, posterior parameter and covariance matrix update for Rs: 

if |∆IL(k)|>ξ 
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else 

ˆ ˆ( , ) ( , ),    ( , ) ( , )s s R RR k m R k m P k m P k m       (4.26) 

Step 4: Priori parameter and covariance matrix update for  , 

1 1 1 1
ˆ ˆ( , ) ( , 1)     ( , ) ( , 1)k m k m P k m P k m        ,   (4.27) 

Step 5: Gain, posterior parameter and covariance matrix update for  , 
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Step 6: Timescale transition, 

if m = ∆t1(∆t2) 

2 1 1 1
ˆ ˆˆ ˆ( 1,0) ( , ); ( 1,0) ( , )s sR k R k t k k t            (4.29) 

else return to Step 2 

End for the inner cycle 

Step 7: Gain, posterior parameter and covariance matrix update for θ: 
1

3 3 3 3 3 3 3

3 3 3 3 3 3
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  (4.30) 

End for the outer cycle 
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Figure 4.2 Polynomial fitting of OCV versus SOC under different aging states 

 

Figure 4.3 Load current, terminal voltage and recorded SOC obtained from the 

pulse discharging experiment 
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B. Hybrid Pulse Experiment 

To verify the feasibility and robustness of the proposed multi-timescale estimator, a 

pulse discharge experiment was performed with the current, terminal voltage and 

SOC data plotted in Figure 4.3. 

C. Offline Model Parameters Identification 

In order to verify the accuracy of online model parameters identification, the 

reference values of model parameters should be determined. The HPPC method is 

typically used for the offline model parameter calibration of lithium-ion batteries. In 

this chapter, as the hybrid pulse experiment contains lots of current pulses which are 

similar to those from the HPPC method, we extract the reference model parameters 

directly from the hybrid pulse experiment profile. 

During the hybrid pulse experiment, several batches of current and voltage data are 

sampled around specific time points. Then the reference model parameters are 

extracted offline by fitting the modeled terminal voltages to the measured data. The 

extraction can be achieved with a wide range of optimization methods such as 

evolutionary algorithms [154]. In this chapter, however, the batch LS method was 

adopted. 

4.5 Verification and Discussion 

4.5.1 Model Parameters Identification 

The model parameters are estimated online at the respective time step. To show the 

robustness of the algorithm against unknown initializations, erroneous initial values 

are intentionally set as follows: Rs = 0 mΩ, Rp = 1 mΩ, and Cp = 2 kF. The 

forgetting factor of the Rs estimator is 0.98, while the Rp and Cp estimator uses a 

much larger forgetting factor of 0.999. 
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Figure 4.4 Results of the model parameters identification 

The estimated model parameters versus SOC are plotted in Figure 4.4 in 

comparison with their reference values determined offline. As shown, the identified 

results quickly converge to their true values after limited steps for erroneous 

initialization correction and keep tracking them continuously. Specifically, Rs is 

parameterized with a higher stability and precision, mostly because the internal 

resistance is only related to the instantaneous voltage change under a current 

variation. By comparison, the identification of the other two parameters especially 

for Cp is more fluctuated. This can be explained by the fact that the polarization 

resistance and capacitance are more dependent on the complicated physiochemical 

process of VRB under current excitation， which is quite difficult to be simulated. 

It is also observed that the identification lags the real parameter variation to some 
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extent at low SOC regions (<10%), mainly because non-zero forgetting factors are 

used for the purpose of algorithm stabilization. However, VRB is seldom operated 

under such situations in real applications to prevent over-discharge and cell 

reversal. In summary, the proposed multi-timescale estimator is reliable in 

adaptively tracking the variations of the model parameters with sufficient 

robustness against the initialization uncertainties. 

With the online extracted model parameters, the modeled terminal voltage along 

with the real measured data are shown in Figure 4.5. As can be seen, even though 

the CPE and Warburg impedance term are omitted for simplification, the model 

outputs still match the measured terminal voltage quite closely with subtle errors. 

The modeling error is constrained within 2 mV for most of the time. The maximum 

error occurs at the extremely low SOC region is around 7 mV, which can be 

explained by the sharp OCV drop. Obviously, the fast dropping OCV violates the 

assumption ∆[Voc(t)  α1Voc(t-∆t3)] ≈ 0, thus the large modelling errors at this region 

are within expectation. The high modeling accuracy reconfirms the credibility of the 

online parameterization method and further verifies the reliability of the battery 

model in online applications. 

 

Figure 4.5 Modelled terminal voltage versus measured data and the modelling error 
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4.5.2 Online OCV and SOC Estimation 

As no prior knowledge of initial OCV was available at the start of experiment, the 

OCV was erroneously initialized as 1.4 V. The OCV estimator uses a forgetting 

factor of 0.995. The OCV estimation results are shown in Figure 4.6. As shown, the 

estimated OCV quickly approximates the reference trajectory after several sampling 

intervals for correcting the erroneous initialization. The quick convergence is 

achieved by timely adjusting the RLS feedback according to the error between the 

measured and estimated terminal voltage. The erroneously estimated OCV leads to 

a large error in the terminal voltage, which in turn causes a large feedback to 

compensate the OCV estimation in an efficient closed loop approach. It is observed 

that the estimation errors in the middle SOC region are always within 3 mV, which 

is quite accurate in terms of online estimation. 

 

Figure 4.6 Results of online OCV estimation and the estimation error 

It is observed that a larger error occurs at the extremely low SOC region and this 

can be explained from two aspects. Firstly, there is a lagging effect of the recursive 
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algorithm with non-zero forgetting factor, thus the proposed method converges a bit 

slowly to the drastically changing OCV at the extremely low SOC region. Secondly, 

as discussed in Section 4.2.3, the error term ε1(t) is ignorable with respective to y(t) 

in most of the time and this ensures a high estimation accuracy. However, this 

condition is violated at the end of discharge when the OCV drops largely, so that the 

relatively large error is within the expectation in this region. In real applications, 

however, the VRB is seldom operated under such situations in order to avoid over-

discharge and prevent cell reversal. As a whole, the overall MAE and MRE are 

2.899 mV and 0.207%, respectively, indicating a quite high estimation accuracy. It 

is thus validated that the proposed multi-timescale estimator is capable of outputting 

OCV accurately without additional open-circuit cells conventionally applied. The 

proposed OCV estimator is also robust to incorrect initializations. 

 

Figure 4.7 Results of online SOC estimation and the estimation error 

With the updated OCV, battery SOC is determined coincidently with the look-up 

table method and the results are shown in Figure 4.7. Similar with OCV estimation, 
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the estimated SOC converges to the target value quickly even with incorrect guess 

on the initial SOC. After that, the algorithm keeps on tracing the reference trajectory 

with small errors which are mostly confined to the 2% error band. The mean and 

maximum estimation errors are 0.48% and 2.32%, respectively. It is concluded that 

the proposed method can project the trajectory of SOC accurately with quick 

convergence, which is highly desirable for BMS. Moreover, the SOC estimation is 

implemental without any knowledge of the cell capacity, which is demanded in 

most of the ECM-based SOC observers. 

4.5.3 Robustness Analysis against Aging and Flow Rate Variation 

This section aims at verifying whether the proposed method is robust against 

different battery aging states and electrolyte flow rates. To achieve this, the battery 

is cycled very deeply for several days after the experiments presented in Section 

4.5.1 and 4.5.2. During this period, the battery capacity dropped from 3076.8 mAh 

to 2622.0 mAh as a consequence of different diffusion of vanadium ions across the 

membrane [110]. The capacity drop of 14.78% has represented a significant aging 

in real applications. Meanwhile, the electrolyte flow rate was adjusted from the 

previous 120 mL min-1 to 80 mL min-1. The proposed multi-timescale estimator was 

executed for the new case for robust performance assessment. 

As shown in Figure 4.8 (a-c), the model parameter estimator locates and keeps 

tracing the true values in a wide SOC range, suggesting satisfactory robustness 

against aging and flow rate variation. It is also found that the estimated Rs and Rp 

both increase slightly compared with the previous case. This is within expectation 

as reducing flow rate increases the concentration overpotential and causes a larger 

voltage drop under discharging current excitation. Moreover, the more severe 

concentration overpotential at the end of charge/discharge serves as a strong support 

on the remarkably enlarged resistances at the extreme low and high SOC regions, as 

illustrated in Figure 4.8 (a-b). It is clear from Figure 4.8 (d-e) that the modeled 

terminal voltage is benchmarked with the measured data. The modeling error is 

confined within 2.5 mV for most of the time, while the larger prediction errors 

again occur at the end of the discharge. 
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Figure 4.8 Results of model parameters identification and terminal voltage 

prediction for the new case: (a-c) online identification results of Rs, Rp and Cp; (d) 

comparative profile of measured and predicted terminal voltage; (e) prediction error 

on terminal voltage; (f) zoom figure of (e) 

It is shown from Figure 4.9 that the OCV estimator corrects the initial OCV offset 

quickly and converges to the target stably with a mean error of 1.970 mV. Similarly, 

given an erroneous guess of the initial SOC, the estimated SOC can still track the 

reference trajectory with a sufficiently small mean error of 0.516%. The high 

estimation accuracy and fast convergence suggest that the proposed multi-timescale 

estimator has good robustness against the flow rate variation. The robustness to 

battery aging is also satisfactory within an aging degree of 14.78%. However, it 

lacks adequate evidences to support the robustness of the proposed method 

throughout the whole service life as the VRB is reported to have a very long service 

life of more than 10,000 cycles. 
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Figure 4.9 Online estimation results of OCV and SOC for the new case: (a) OCV 

estimation result; (b) OCV estimation error; (c) SOC estimation result; (d) SOC 

estimation error 

4.5.4 Robustness Analysis against Different Battery Chemistries 

As the proposed method only utilizes onboard current and voltage data without 

specific requirements on knowledge of the chemical process, it has potential to be 

applied for different types of batteries. In this section, the proposed method is also 

tested on a Samsung 18650 lithium-ion cell with nominal capacity of 2200 mAh to 

evaluate the robustness performance. The characteristic test of the lithium-ion cell 

was the same as described in Section 4.4.1 except that the open-circuit cell cannot 

be used in this case. 

It is shown from Figure 4.10 that the model parameters of lithium-ion cell are rather 

different from those of the VRB. However, the parameters are still accurately 

adapted with the proposed method. From Figure 4.11, it is found that the transient 

process of the used lithium cell is more significant than the VRB thus is more 

difficult to be modeled. Nevertheless, the terminal voltage is still precisely modeled 

with the online parameterized battery model. The estimation results of OCV and 

SOC are presented in Figure 4.12 and Figure 4.13, respectively, both of which show 

fast convergence and high accuracy similar to the case of VRB. The errors of the 
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terminal voltage modeling, OCV and SOC estimation are summarized in Table 4.3. 

The results verify that the proposed method can work efficiently with the lithium-

ion cell with high precision and fast convergence as well. The robustness against 

different battery chemistries thus makes it promising for a wide application with 

other batteries. 

Table 4.3 Estimation errors of terminal voltage, OCV and SOC for the lithium-ion 

cell 

 Terminal voltage (mV) OCV (mV) SOC (%) 

RMSE 0.861 6.593 0.819 

Maximum error 32.5 40.004 2.515 

 

 

Figure 4.10 Results of online model parameters identification for lithium-ion cell 
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Figure 4.11 Modelling results of terminal voltage and modelling error for the 

lithium-ion cell 

 

Figure 4.12 Online estimation results of OCV for the lithium-ion cell 
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Figure 4.13 Online estimation results of SOC for the lithium-ion cell 

4.6 Conclusions 

A multi-timescale estimator is proposed for the VRB to estimate the time varying 

model parameters and SOC concurrently in real time. The proposed method has the 

merits of decoupling different estimation variables thus eliminating the cross 

interference of estimation between OCV and the other model parameters. The 

analysis of model sensitivity, precision and stability are put forward to reveal the 

necessity of employing multiple timescales to improve the overall estimation 

performance. The dynamic load experiments are performed to verify the real time 

performance and robustness of the proposed method. The key achievements are 

summarized as follows: (1) the time varying model parameters are online adapted 

accurately, thus the frequent recalibration on them is avoided; (2) the modeled 

terminal voltage from the parameterized battery model is benchmarked with 

measurement data with subtle error; (3) the online estimation of OCV and SOC 

shows high convergence speed, high accuracy and good robustness to uncertain 

initialization; (4) the proposed multi-timescale estimator is robust against the flow 
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rate variation and its robustness to aging is also satisfactory within an aging degree 

of 14.78%; and (5) the proposed method is data-driven type using only the onboard 

measured voltage and current, and it is robust against different battery chemistries. 
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CHAPTER 5 Adaptive Joint Estimation of State of 

Charge and Capacity for Vanadium Redox Flow Battery 

with Online Identified Battery Model 

5.1 Introduction 

A core function of the BMS is to provide reliable information on SOC and 

instantaneous capacity. Despite their importance, SOC and capacity determination 

remains as a challenging task as they are both immeasurable internal states. 

The ECM based SOC observers prove to be accurate and implementable. As 

discussed in Section 4.1, the real-time model adaption has to be executed along with 

the state estimate to improve accuracy and robustness. The existing methods 

concerning model parameter and state co-estimation fall into two broad categories. 

The methods from the first category couple the model parameters and OCV into one 

vector for joint estimation with either RLS [57, 97, 98] or EKF and its variants [59, 

83, 150, 155, 156], following which the SOC is referred with the SOC-OCV table. 

These methods permit simultaneous estimation in one recursive framework. As 

discussed in ref. [83], however, the mapping from OCV to SOC is an open-loop 

way thus the accuracy is limited, especially if the battery chemistry exhibits a flat 

SOC-OCV curve. Additionally, the algorithm may suffer from instability or even 

divergence when the battery model is not accurate enough [90]. As for the second 

category, the model identification and SOC estimation are carried out dually with 

different filters. Typically, the dual estimation method uses two cooperating filters 

where one estimates the battery state and the other estimates the model parameters. 

These two filters are separate and work concurrently in parallel with the information 

exchange. The authors in refs. [126, 129, 151, 157] used RLS to update the model 

parameters and EKF and its variants to estimate the battery state. These methods are 

theoretically more accurate than the first category as the SOC is observed in a 

completely close-loop way. It has to be noted that two common drawbacks exist 

concerning either of the two categories of methods. Firstly, the cross interference 
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between model identification and state estimate may compromise the numerical 

stability and accuracy of algorithm substantially, i.e. the uncertainty on SOC 

estimate disturbs the model identification and vice versa [158]. Secondly, the 

battery capacity as another crucial parameter to influence the SOC estimation has 

not been identified. 

The capacity is a figure of merit describing the SOH of battery. Timely capacity 

adaption further facilitates SOC estimation as the capacity is involved in the state 

equation of most ECM based SOC observers. The model-based close-loop methods 

augment the ECM to include the battery capacity in the form of either a model 

parameter or a system state [90]. The existing methods for capacity estimate have 

been reviewed detailed in Section 2.4.4. Lee et al. [120] estimated the SOC and 

capacity dually with the DEKF. However, the non-adaption of model parameters 

may lower down the accuracy when the working condition changes or the battery 

degrades. Hua et al. [121] applied the DNPF for lithium-ion batteries. However, 

only the ohmic resistance was updated and the other model parameters were left 

without adaption. In refs [94, 95], the capacity was treated as a model parameter, 

then the full set of model parameters and SOC were estimated concurrently with the 

DEKF. The adaption of all relevant model parameters enhances the robustness of 

these methods to the operating condition variation and battery degradation. 

However, the high-order EKF for parameters identification may be subject to 

instability issues [42], especially when it is running in parallel with the state 

estimator with both information exchange and cross interference. The high-

dimension matrix operations such as matrix inversion also occupy heavy 

computational resources thus complicate its implementation on the low-cost 

microcontrollers. Zou et al. [42] proposed a fourth-order EKF for SOC and capacity 

joint estimation. The model parameters including the ohmic resistance and battery 

capacity were updated periodically in a macro timescale. Again, the computational 

complexity and numerical stability remains as a problem and the algorithm has to 

be operated offline to guarantee the stability. 

In this chapter, the SOC and capacity are estimated jointly based on an online 

identified battery model. Unlike the existing approaches, the OCV dynamics is 
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separated from the rest of dynamics for the model characterization. The RLS based 

model identification is designed to be fully decoupled from the EKF based state 

estimation. Owing to the decoupling, the cross interference which risks degrading 

estimation accuracy and numerical stability is effectively prohibited. The joint 

estimator comprises a simple OCV estimator and a state EKF with reduced order. 

Compared with the commonly used state estimators where the polarization voltages 

have to be included in the state vector, the proposed joint estimator effectively 

reduces the filter order, which is beneficial for the enhancement of stability and 

computational efficiency. It should be mentioned that the proposed method works in 

a close-loop way which is an improvement of the method proposed in Chapter 4. 

Experiments are carried out to show the fidelity and robustness of the proposed 

method. Comparison with other popular methods further demonstrates the 

superiority of the proposed method in terms of convergence speed, estimation 

accuracy, and computational cost. 

The rest of the chapter is organized as follows. Section 5.2 details the battery model 

and the associated online model identification method. Section 5.3 introduces the 

SOC and capacity joint estimator and the overall framework of the proposed 

method. Section 5.4 presents the experimental details. The algorithm verification, 

comparison, and robustness analysis are conducted in Section 5.5. The conclusions 

are drawn in Section 5.6. 

5.2 Battery Model and Identification 

5.2.1 Battery Modeling 

Generally, the battery state estimate tends to be more accurate with models that 

better reproduce the battery dynamics, but at the expense of higher complexity and 

numerical instability. In this chapter, the first-order RC model as shown in Figure 

3.1 is adopted. 
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5.2.2 Online Model Identification 

The electrical behavior of the first-order RC model has already been derived as Eq. 

(3.1) and Eq. (3.2). In Chapter 4, the ohmic resistance (Rs) and polarization 

impedances (Rp and Cp) are identified with different estimators. In this chapter, 

instead, we try to lump them into one parameter vector for joint estimate. The 

evolvement of polarization voltage is expressed by: 
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where ∆tc is the time interval used to identify the model parameters. By substituting 

Eq. (3.2) into Eq. (5.1), the terminal voltage is expressed as: 
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By shifting Eq. (5.2) to the previous time step, the following expression can be 

drawn: 
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Subtracting Eq. (5.4) from Eq. (5.2) yields: 
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where ∆Vt(t) is defined as the differential voltage Vt(t)  Vt(t  ∆tc), and the 

analogous definition applies to the other terms. Within this context, Eq. (5.5) can be 

expressed in the regression form as: 
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Considering the slow varying OCV of the VRB, it can be validated that the error 

term e1(t) is subtle and even negligible within a sufficiently small ∆tc. The 

regression model represented by Eq. (5.6) is solved with RLS which is widely 

implemented in real applications for the low computational cost. A user-defined 

forgetting factor λ is employed in order to emphasize the significance of the most 

recently obtained data and give less weight to the old data .The algorithmic 

procedures of RLS is not detailed here but can be referred to ref. [143]. After the 

regression model is solved, the model parameters can be reversely deducted as: 
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5.3 Joint Estimation of SOC and Capacity 

5.3.1 A Simple OCV Estimator 

The conventional state estimator [42, 159, 160] integrates the polarization voltage 

(Vp), SOC, and any other states of interest into one vector as the system state and 

applies the terminal voltage as system measurement. It is known that the high-order 

filter is computational heavy as a consequence of high dimension of matrix 

operation. Moreover, the high-order filter suffers from instability issues more easily 

[42]. To address this problem, this section goes further to derive a joint estimator 

with reduced order. To achieve this, a very simple OCV estimator introduced in 

Section 4.2 is used also for this chapter. However, the derivation in Section 4.2 is 
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only applicable to the simplest first-order RC model. In this section, we derive a 

more general framework of such OCV estimator which can be easily generalized to 

higher-order RC models. 

The OCV is observed with the aid of battery model characterization. Converting Eq. 

(5.1) to the frequency domain yields: 
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By defining =exp( / / )s p pt R C  , Vp can be solved in the z-domain as: 
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According to the relationship of Eq. (3.2), the following expression can be drawn: 
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Eq. (5.11) can be reversed to the discrete-time domain as: 
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where k is the time index. By applying transposition to Eq. (5.12), the OCV can be 

solved as: 
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The error term, represented by e2(k), becomes sufficiently small and ignorable by 

assuming a slowly varying OCV within a short time interval, which is aligned with 

the nature of the VRB and most other battery chemistries. Therefore, ˆ ( )ocV k  can be 

treated as the estimate of OCV. It has to be noted that the OCV estimator described 

by Eqs. (5.9) - (5.14) is a generic framework and is easily extended to the version of 

the N-th order RC model. Specifically, the derivation of the simple OCV estimator 

on the second-order RC model which is also widely implemented in open literatures 

is illustrated in Appendix A. 

5.3.2 EKF-based Joint Estimation 

The SOC can be directly inversed from ˆ ( )ocV t  with the SOC-OCV look-up table, as 

adopted by the method discussed in Chapter 4 [140]. This approach, however, is 

expected to be further improved especially for the battery chemistries exhibiting a 

very flat SOC-OCV correlation which is not easily invertible. For the VRB of 

interest, the OCV drops at a rate of 1.65 mV per unit of SOC when the battery is 

operated between 30% and 70% SOC, indicating that a small estimation error on 

OCV can lead to a sufficient SOC error. This will be further verified from the 

experimental result in Section 5.5.1. To address this problem, an EKF based state 

estimator applying ˆ ( )ocV t  as the noisy system measurement is formulated here to 

estimate the SOC and capacity jointly. 

The SOC recurrent relationship is expressed as: 

 1

( )L s
k k

k

I k t
s s

Q


     (5.15) 

As the polarization voltage (Vp) has no correlation with OCV, it has no need to be 

included in the state vector. In this way, the filter order can be compressed 

compared with the conventional state estimator. In this chapter, the state vector is 

defined as x = [s 1/Q]T and ˆ
ocV  is treated as the noisy measurement. Under such 

definition, the state space function is expressed as: 
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where wk is the process noise, vk is the estimation error of the simple OCV estimator 

which is treated as the measurement noise here.  kG x  is the relation of state 

vector and battery OCV. The expression of  kG x  is determined with the SOC-

OCV test. The detailed description of EKF can be found in ref [144], while the 

algorithmic procedures are summarized in Figure 5.1. 

 

Figure 5.1 Algorithmic Procedure of EKF for the joint estimation 
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The relevant matrices ˆ
kA  and ˆ

kC  are updated at each iteration as: 
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The second entry of ˆ
kC , i.e.  1/ocdV d Q , is approximately zero because the SOC-

OCV correlation of VRB is not sensitive to the capacity decay, as discussed in 

Chapter 4. The proposed joint estimator reduces the filter order thus shows the 

merits of lower computational cost and higher numerical stability. It should be 

noted that the order reduction brought by the proposed joint estimator will be much 

more significant if higher-order RC models are used. Specifically, the order can be 

reduced by N if an Nth-order RC model is applied as all the polarization voltages 

can be omitted from the state vector. 

5.3.3 Algorithm Framework 

In this chapter, the model identification and the SOC/capacity joint estimation are 

executed in a fully decoupled way. The computational efficient RLS is adopted to 

online adapt the model parameters, which are further injected into the joint 

estimator for enhanced SOC and capacity estimation. The SOC and capacity joint 

estimator consists of two parts. The first part is a very simple OCV estimator based 

on Eq. (5.14). The estimated OCV is treated as the noisy system measurement of the 

state estimator represented by Eq. (5.16), which constitutes the second part of the 

joint estimator. Except for outputting SOC and instantaneous capacity, an auxiliary 

function of the proposed method is to predict the battery terminal voltage for the 

next onboard sampling time, which is essential for many energy management issues 

such as peak power determination [136]. The implementation flowchart of the 

proposed method is shown in Figure 5.2. 
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Figure 5.2 Implementation flowchart of the proposed method 

5.4 Experimental Details 

5.4.1 Experimental Setup 

The details of the experimental setup have been introduced in Section 3.4.1 with the 

schematic shown in Figure 3.7. The experimental data are collected by the data 

acquisition system with a sampling time interval of 1 s and stored in the host 

computer. The ambient temperature is monitored to be stable at 22±1℃ throughout 

the experiments. The operating flow rate is controlled with two peristaltic pumps. 

5.4.2 SOC-OCV Test 

The SOC-OCV test is carried out to calibrate the nonlinear correlation between 

SOC and OCV. The tests are carried out following the procedures described in 

Section 3.4.2. It should be noted the look-up table is not enough for the method in 

this section as the expression of OCV required to calculate Eq. (5.18). Considering 

the intrinsic nonlinearity, the OCV as a function of SOC was curve fitted with the 

polynomial as follows: 
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where ci is the coefficient; and np is the order of polynomial fitting and is equal to 5 

in this chapter. The polynomial coefficients are extracted with the LS method. The 

calibrated SOC-OCV curve is shown in Figure 5.3 (a). It should be noted that the 

SOC-OCV correlation is theoretically affected by the working temperature of VRB. 

However, the VRB should be operated within the temperature range of 10℃ to 

40℃ in order to prevent the thermal precipitation of the vanadium species. Within 

the narrow temperature range, the SOC-OCV variation caused by temperature is 

very limited especially for the SOC range of 10% to 90% which is the typical 

operation range of VRB. The temperature effect has been evaluated and the results 

suggest that the OCV deviation from the case of 22℃ is up to about 10 mV for the 

above mentioned temperature range. The average deviation is only about 5 mV 

which is equal to the measurement error limits of sensors in the battery cycler. 

Therefore, the temperature effect is ignored and the OCV is not treated as the 

function of temperature to ease the calculation. It should be noted the temperature 

effect cannot be ignored for the power batteries like lithium-ion as the working 

temperature range of them are quite wide. Usually the OCV should be considered as 

a binary function of both temperature and SOC. 

5.4.3 Hybrid Pulse Experiments 

Two hybrid pulse experiments, named as HPE1and HPE2, are performed to judge 

the effectiveness and robustness of the proposed method. A user-defined hybrid 

pulse current profile is loaded to excite the battery. The measured load current, 

terminal voltage and the recorded SOC reference of HPE1 are shown in Figure 5.3 

(b). For the purpose of algorithm verification, the proposed method is applied on the 

measured current and voltage data with random initialization on model parameters, 

SOC, and capacity. The estimated SOC and capacity are then compared with their 

reference values for evaluation. 
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Figure 5.3 Battery tests: (a) SOC-OCV curve; (b) profile of current, terminal 

voltage, and reference SOC for HPE1 

The HPE2 is conducted in the same manner but under different conditions. The 

battery is fully charged and discharged for several days after HPE1, during which 

period the capacity fading occurs and a new aging state is reached. Following that, 

HPE2 is carried out under a different operating flow rate to evaluate the robustness 

of the proposed method against battery degradation and operating conditions 

variation. The detailed information about the two experiments is summarized in 

Table 5.1. 
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Table 5.1 Details of the two hybrid pulse experiments 

 Capacity Flow rate Temperature Current 

HPE1 2994.5 mAh 120 mL min-1 22±1℃ Figure 5.3 (b) 

HPE2 2585.1 mAh 80 mL min-1 22±1℃ Figure 5.3 (b) 

5.5 Verification and Discussion 

In this section, the proposed method is applied on the experimental data of HPE1 

and HPE2 to evaluate its fidelity. To test the robustness of the proposed method 

against uncertain initialization, the algorithm is erroneously initialized as follows 

throughout this chapter if not otherwise stated: 

Rs = Rp = 10 mΩ, Cp = 1 kF, SOC0 = 50%, Q0 = 4 Ah. 

5.5.1 OCV Estimation 

The experimental data from HPE1 are used and the OCV estimate results are shown 

in the top plot of Figure 5.4. As shown, the simple OCV estimator approaches the 

reference trajectory rapidly and tracks the change of OCV with an acceptable mean 

error of 3.6 mV. As a straightforward way, the SOC can be inferred directly 

according to the SOC-OCV look-up table, as shown in the middle and bottom plot 

of Figure 5.4. Unfortunately, the estimated SOC is seen to fluctuate heavily within 

the ±5% error bound for most of the time. Additionally, couples of large error spikes 

up to 18.1% are observed, which is obviously undesirable as the sudden jump or 

drop of SOC will confuse the users’ judgment on the remaining energy. The large 

SOC error is mostly due to the small slope of the SOC-OCV curve as the estimation 

error on OCV, albeit small, may lead to sufficiently large errors on SOC under this 

condition. From the results, we conclude that although the simple OCV estimator 

can provide approximate estimate on OCV, the direct mapping to SOC is not 

adequate. In this chapter, the EKF based state estimator is added with the 

expectation to achieve more reliable SOC estimate. 
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Figure 5.4 Estimation result of OCV and SOC with the simple OCV estimator 

5.5.2 Necessity of Updating Model Parameters 

To verify the necessity of online model adaption, the proposed algorithm and the 

non-updating EKF with fixed model parameters are both executed on the 

experimental data from HPE1 to evaluate the performance. The comparison results 

are shown in Figure 5.5. By the proposed method, it is observed that both the 

estimated SOC and capacity converge to the reference value stably and accurately 

even with large initialization errors. A transitory overshoot occurs for the SOC at 

the start-up stage when the algorithm tries to correct the large initialization error. 

However, the overshoot dies out quickly and the estimated SOC matches the 

reference trajectory with quite high precision as time evolves. With respect to the 

convergence of SOC, the estimated capacity converges much slower. However, the 
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slow convergence is acceptable as the capacity varies quite slowly with a very large 

timescale. In summary, the proposed method proves to be highly authentic for 

online applications considering the high accuracy and good robustness to uncertain 

initialization. 

 

Figure 5.5 SOC and capacity estimation result with the proposed method and the 

non-updating EKF 

By comparison, the non-updating EKF demonstrates a decline of accuracy as a 

consequence of lacking model adaption. Although the estimated SOC converges to 

the reference value easily, the estimation error is much larger. The estimated 

capacity also shows a slow damping near the reference due to the poorly estimated 

SOC. From the comparison, it is evident the proposed method remarkably improves 

the accuracy without compromising the convergence speed. Moreover, although the 
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SOC error by non-updating EKF is acceptable (within 3% error bound) for the 

present case, the estimation will be quite deteriorated when the battery ages 

gradually or the operating conditions change, as the non-adaption mechanism 

cannot compensate for the model uncertainty caused by these factors. The capacity 

estimation will also degrade as a consequence of the deteriorated SOC estimate. 

5.5.3 SOC and Capacity Joint Estimation 

To assess the performance of the proposed method, the RLS-EKF [129, 151, 157] as 

one of the state-of-the-art techniques in model parameter and state co-estimation is 

also executed to compare the results. The RLS-EKF is chosen here as it is more 

accurate than the non-updating EKF due to the online model adaption, while it is 

more stable and occupies much less computational resources than the DEKF. Unlike 

the proposed method, the RLS-EKF has to include the polarization voltages into the 

state vector. To realize simultaneous estimation, the state vector of RLS-EKF is 

formulated as [Vp s 1/Q]T, while the system measurement is the onboard measured 

Vt. The result of model identification by both of the two methods is shown in Figure 

5.6. It should be noted that the forgetting factor of the RLS-based model 

identification is 0.995 in this chapter. The reference values of model parameters 

should be calibrated to evaluate the proposed method for model identification. To 

achieve this, a few discretized time points are selected during the hybrid pulse 

experiment at a certain time interval. A batch of current and voltage data are 

sampled to form a data set around each time point and the model parameters are 

extracted offline by the following procedures: 

(1) The reference Voc is obtained with Eq. (5.19). 

(2) The ohmic resistance (Rs) is determined by the instantaneous voltage variation 

following a step change of current, i.e. Rs = ΔVt / ΔIL. 

(3) After Voc and Rs are extracted, Vp is obtained with Eq. (3.2). Then Rp and Cp are 

extracted by solving the below regression model: 

 ( ) ( 1)   ( 1) ( )p p LV k V k I k k       (5.20) 
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where ( )k , expressed by 
( ) ( )

[    (1 ) ]s p p s p pt R C t R C

pe e R
 

 T
, is the parameter vector to 

be identified. A batch of data is sampled and ( )k  is determined with the LS 

method. 

 

Figure 5.6 Comparison results with the proposed method and the RLS-EKF for 

online model identification under HPE1 

It is observed from Figure 5.6 that all the three model parameters exhibit time-

varying and SOC-dependent properties, which serves as another strong proof for the 

need of online model identification. In terms of online identification results, the 

erroneously initialized model parameters converge to their reference values 

gradually and keep on tracking them over the entire experiment with both the two 

methods. As a result, the time-consuming and error-prone calibration of battery 

model can be avoided. The proposed method converges much faster with a smaller 
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steady state error than the RLS-EKF. The improvement is supposed to be brought 

by the cross interference elimination as a result of decoupling the model 

identification and state estimate. By comparison, the RLS-EKF updates the SOC 

and model parameters in a coupled method with information exchange at each 

iteration. The existence of cross interference is seen to deteriorate the stability and 

accuracy to some extent. 

The results of SOC and capacity joint estimate are shown in Figure 5.7. As 

observed, the proposed method projects the trajectory of SOC accurately with fast 

convergence from the initial offset. By comparison, the RLS-EKF generates larger 

errors at the start-up stage, which is supposed to be caused by two reasons: (1) The 

cross interference between model identification and state estimation may decline the 

stability and accuracy of them both especially at the initial stage. This can also be 

supported by the slower convergence of model parameters by using RLS-EKF as 

shown in Figure 5.6. (2) The stability of higher-order EKF is theoretically lower 

than the proposed EKF with reduced order. The estimated capacity also converges 

gradually to the calibrated trajectory with either of the two algorithms. By 

comparison, the proposed method converges faster with less deviation at the initial 

stage, mostly due to the better SOC estimation result. 

The convergence time and the estimation error after convergence are used as a 

performance measure to evaluate the two algorithms quantitatively. The 

convergence time is defined as the time when the estimated SOC/capacity starts to 

be stable within the 5%/10% error bound. The MAE, RMSE, and convergence time 

are summarized in Table 5.2. The results suggest that the proposed method 

outperforms the RLS-EKF in terms of both convergence speed and estimation 

accuracy. 
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Figure 5.7 Comparison result with the proposed method and the RLS-EKF for SOC 

and capacity joint estimation under HPE1 

Table 5.2 Performance comparison of the proposed method and RLS-EKF for HPE1 

 
SOC estimation Capacity estimation 

RLS-EKF Proposed method RLS-EKF Proposed method 

MAE 1.08% 0.56% 3.12% 2.47% 

RMSE 1.28% 0.69% 3.56% 3.06% 

Convergence time 57 s 64 s 3487 s 2244 s 

5.5.4 Robustness Analysis against Aging and Operating Condition Variation 

Both the two methods are applied on the experimental data of HPE2 to test their 
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robustness to battery aging and operating conditions variation. The estimation 

results are plotted in Figure 5.8. In accordance with the results of HPE1, the 

proposed method generates smaller error compared with the RLS-EKF especially at 

the start-up stage. The MAE, RMSE, and convergence time are listed in Table 5.3. 

The proposed method shows faster convergence and smaller estimation error, which 

clearly indicates its superiority to the RLS-EKF. The high accuracy and fast 

convergence also verify the robustness of the proposed method against battery aging 

and operating condition variation. 

 

Figure 5.8 Comparison of the SOC and capacity joint estimation based on the 

proposed method and the RLS-EKF for HPE2 

It should be noted that the proposed methods in this chapter and throughout the 

thesis do not incorporate the aging model which is based on the complicated PDEs. 
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However, a capacity fade from 2994.5 mAh (HPE 1) to 2585.1 mAh (HPE 2) has 

represented a substantial aging of 13.67% and we have shown that the robustness is 

satisfactory for such a degree of aging. However, whether the proposed method can 

perform well when the battery has reached the end of life is still doubtable based on 

the results presented in this thesis. In order to fully address this problem, it is 

recommended that the SOC-OCV correlation should be recalibrated every time 

when the VRB drops 10% in the total capacity. This is applicable because a capacity 

fade of 10% is a significant aging in commercial VRB systems and will costs a long 

time to arrive. This is also implementable from the technical perspective as the 

online capacity estimation method has already been investigated and verified in this 

chapter. 

Table 5.3 Performance comparison of the proposed method and RLS-EKF for HPE2 

 
SOC estimation Capacity estimation 

RLS-EKF Proposed method RLS-EKF Proposed method 

MAE 1.27% 0.59% 1.95% 1.57% 

RMSE 1.32% 0.67% 2.70% 2.31% 

Convergence time 55 s 63 s 2466 s 424 s 

5.5.5 Computational Cost 

As computational burden is an indispensable concern in real applications, it is 

worthwhile to investigate the time consumption of the proposed method in 

comparison with other mature methods. For comparison purposes, the non-updating 

EKF and the RLS-EKF are also discussed in this section. The algorithms are 

executed repeatedly on the data of HPE1 for 10 times to calculate the average CPU 

time for each iteration in order to quantify the computational cost. The comparative 

result is shown in Table 5.4. The proposed method is seen to improve the 

computational speed by 25.6% while enhances the estimation performance at the 

same time compared with the RLS-EKF. The reduction of CPU time comes from 

the fact that the proposed joint estimator lowers down the filter order thus reduces 

the dimension of matrix operation. Compared with the non-updating EKF which 
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represents the simplest close-loop state estimation framework, the proposed method 

adds the function of online model parameters adaption but consumes only slightly 

more CPU time at about 5.3%. It has to be noted that the computational cost 

reduction discussed here represents the most modest situation, as the filter order 

only reduces by 1 when the simplest first-order RC model is applied. However, if 

higher-order RC models are adopted, the computational efficiency will be improved 

much more as all the polarization voltages will be removed from the state vector. 

The comparison of both estimation performance and computational cost explicitly 

shows the superiority of the proposed method. 

Table 5.4 CPU time of the three algorithms 

 Non-updating EKF RLS-EKF Proposed method 

CPU time 75.823 μs 107.326 μs 79.857 μs 

5.6 Conclusions 

The model parameters and battery states are mostly estimated in an integrated way 

in the existing studies. These integrated methods may suffer from cross interference 

resulting in reduction of numerical stability and accuracy. In this chapter, we 

propose a fully decoupled approach, where the RLS based model adaption and the 

EKF based state estimation are operated independently to eliminate the cross 

interference. A novel SOC and capacity joint estimator is proposed to effectively 

lower down the filter order so that both stability and computational efficiency are 

improved. Experimental results suggest that the model is accurately updated with 

the proposed method so that the time-consuming calibration is avoidable. The SOC 

and capacity are estimated in real time with fast convergence and high accuracy. 

The comparison with other popular methods further highlights the superiority of the 

proposed method in terms of accuracy, convergence speed, and computational cost. 

Additionally, the proposed method also proves to be robust against the operating 

condition variation and its robustness to aging is satisfactory within an aging degree 

of 13.67%. 
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CHAPTER 6 Enhanced Online Model Identification and 

Stage of Charge Estimation with a FBCRLS Based 

Observer for Noise Attenuation 

6.1 Introduction 

Online model identification is of great importance to not only SOC estimate but 

also some other battery management issues like system diagnosis and efficiency 

enhancement. The existing methods for model parameters and SOC co-estimate as 

well as their advantages and disadvantages have been reviewed in Section 5.1. The 

existing methods provide satisfactory results when only the system output noises 

and state noises are present. However, the battery systems are also subjected to 

unexpected input noise, which will cause identification bias and degrade the 

precision of identification inevitably. Even with high resolution sensors for 

measurement, the noise may still be present due to data acquisition process or 

analog-to-digital conversion. The bias compensating recursive least squares 

(BCRLS) method is a candidate to solve this kind of error-in-variables (EIV) 

problem, but with requirement of the prior knowledge of noise statistics which are 

quite hard to obtain in real applications. Sitterly et al. [161] corrected the 

identification bias on battery model parameters in a simulation study by assuming 

the noise characteristics were known. Liu et al. [162] applied signal averaging to 

attenuate the noise effect. The signals have to be sampled at a much faster rate than 

the SOC estimate. The intermediate storage of the large amount of measured data 

also causes high memory consumption. 

In this chapter, concurrent model identification and SOC estimation is explored. 

The existence of noises is firstly shown to cause bias on model identification. To 

eliminate the noise effect, a Frisch scheme based bias compensating recursive least 

squares (FBCRLS) method is constructed to estimate the noise variances and the 

unbiased model parameters in real time. The FBCRLS is further designed to be 

integrated with an SOC observer in a close loop feedback mechanism to form a 
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complete framework, namely FBCRLS based observer. Simulation and 

experimental results show that the proposed method is highly authentic in both 

online model adaption and SOC estimate. The comparison with existing methods 

highlights its superiority in terms of accuracy and convergence speed when additive 

noises are present. To the best of the authors’ knowledge, it has not been 

investigated elsewhere regarding online noise statistical estimation for enhanced 

model identification and SOC estimate. 

The rest of this chapter is organized as follows. In Section 6.2, the battery modeling, 

BCRLS based model parameterization, and the SOC observer design are detailed. 

In Section 6.3, the online noise variance estimation based on the Frisch scheme is 

introduced, after which the whole framework of the FBCRLS based SOC observer 

is put forward. Simulation studies are conducted in Section 6.4. In Section 6.5, 

experiments are carried out on a lab-scale VRB to verify the proposed algorithm. 

The algorithm is further tested on a lithium-ion battery to verify its robustness 

against multiple battery chemistries. Section 6.6 concludes this chapter. 

6.2 Battery Model Identification and SOC Estimate 

In this section, the battery model and the associated model identification method is 

detailed. Based on the online adapted battery model, an adaptive SOC observer is 

designed. The model identification and SOC estimate are integrated together in the 

form of co-estimation. 

6.2.1 Battery Modeling 

Concerning the trade-off between accuracy and complexity, the first-order RC 

model as a mature battery model is applied. The structure of first-order RC model is 

shown in Figure 6.1 (a). The electrical behavior of the used battery model can be 

expressed by Eq. (3.1) and Eq. (3.2). It is widely known that the relationship 

between SOC and OCV is intrinsically nonlinear, and the mathematical fitting of it, 

if possible, will increase the complexity of SOC observer substantially. To address 

this problem, the SOC-OCV map is decomposed into nine linear segments here, as 
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shown in Figure 6.1 (b). Each segment is approximated with the below linear 

equation: 

 0 1( )ocV f s c c s     (6.1) 

where c0 and c1 are the polynomial coefficients of each linear segment. 

 

Figure 6.1 First-order RC model: (a) schematic diagram of battery model; (b) SOC-

OCV correlation of VRB 

6.2.2 Regression Structure of Battery Model 

By defining q t ocV V V  , the transfer function of the battery system behavior can be 

expressed as: 

 
( )

( ) 1

q s p s p p

L p p
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  (6.2) 

where   represents the complex number frequency parameter defined under 

Laplace transform. Throughout this chapter, IL is treated as system input while Vq is 
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treated as system output. By applying the bilinear transform    2 1 1sz t z     

to Eq. (6.2), we can obtain: 
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The related coefficients are calculated by: 
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The frequency-domain system represented by Eq. (6.3) can be reversed to the 

discrete-time domain as: 
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  (6.6) 

It is evident that the system becomes identifiable with the regression model of Eq. 

(6.5). The RLS method is commonly used to solve the regression model in the 

existing works. 

6.2.3 BCRLS Based Model Identification 

In this section, a simulation study is firstly carried out to show that the standard 

RLS is asymptotically biased, i.e. identification will converge to values away from 

the true values, when both Vt,k and IL,k are corrupted with noises. The battery model 

shown in Figure 6.1 (a) is built in Matlab Simulink and the model parameters are 

defined as: Rs = 60 mΩ, Rp = 20 mΩ, and Cp = 1.5 kF. The Voc is assumed to be 
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stable at 1.4 V over the entire simulation. A dynamic current profile is applied and 

the corresponding terminal voltages are calculated from the battery model. White 

noises with variances σi and σv are imposed on the noise-free current and voltage 

data to evaluate their effects. After that, the standard RLS is executed on the 

simulated battery data and the identification result is shown in Figure 6.2. As 

indicated, the identification bias is remarkable in the presence of noise corruption, 

especially for the identification of Rp and Cp. The results also demonstrate an 

enlargement of the identification bias as a consequence of increasing noise variance. 

 

Figure 6.2 Standard RLS based model identification with noise corruption 
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The bias compensating least squares (BCLS) method is a favorable candidate to 

remove the identification bias caused by additive noises. The BCLS method treats 

regression system of Eq. (6.5) as a typical EIV system as depicted in Figure 6.3. 

 

Figure 6.3 Schematic diagram of the typical EIV system 

The noisy input and output of the linear system are expressed as: 
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where LI  and tV  are the measurement noises on IL and Vt, respectively, and the 

analogous definition applies throughout this chapter if not otherwise stated. In this 

chapter, the noises LI  and tV  are assumed to be zero-mean white noises with 

variance σi and σv, respectively. It is also assumed LI  and tV  are both uncorrelated 

with their true values and mutually uncorrelated. 

In order to describe the BCLS and further the Frisch scheme in a clear way, we first 

define the auto covariance matrix of arbitrary vector p and the cross covariance 

matrix of two arbitrary vectors p and q as follows: 
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  (6.8) 

where  E  represents the expected value operator. Similarly, the cross covariance 

matrix between arbitrary vector p and a stochastic process r is defined as: 

  pr E pr    (6.9) 
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According to assumptions on noises, the covariance matrix of the noise-free data 

vector φk is expressed as: 

 
0, , ,k k k        (6.10) 

where ,k  is the noise covariance matrix expressed by  , , ,k v i idiag     . 

Then the BCLS based identification is expressed as: 

  
0 0 0
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     (6.11) 

As the matrix inversion is computational heavy and not easily implementable, it is 

plausible to find a recursive way to solve this problem. We apply regular matrix 

splitting to Eq. (6.11) and the following equation can be drawn: 
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     (6.12) 

where 
RLS

k is the result of the standard RLS. Eq. (6.12) constitutes the update law of 

BCRLS which is easier to implement in real applications. The matrix inversion term 

0

1

,k

  can be replaced by the error covariance matrix, which is recursively updated 

with the standard RLS, to ease the computation. 

6.2.4 Design of SOC Observer 

Based on the identified model parameters, a SOC observer is designed to estimate 

SOC as a system state in this section. SOC is defined as the percentage of remaining 

capacity with respect to the maximum available capacity. The evolvement of SOC 

with time is expressed by: 
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       (6.13) 

By defining the state vector as [ ]T

px V s  and the system output as Vt, the state-

space model is formulated as: 
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where 
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The observability of system described by (6.14) has already been verified in 

literatures and will not be further discussed here. Then the closed-loop state 

observer can be written as: 
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where L is the feedback gain, which is designed by the pole placement. Assuming 

the poles of observer are desired to be po1 and po2 both of which are negative, the 

characteristic polynomial can be written as pn = (g + po1) (g + po2) = g2 + d1g + d2. 

Various formulas can be used to tune the feedback gain for pole placement. The 

Ackermann’s Formula is adopted here as below: 
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  (6.17) 

6.3 Frisch Scheme based Noise Statistics Estimation 

The BCLS can rule out the identification bias provided that the statistical properties 

of noises are known. In this section, the noise variances are estimated in real time 
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by integrating the Frisch scheme into the co-estimation method developed in 

Section 6.2. 

6.3.1 Fundamental of Frisch Scheme 

It is validated that Eq. (6.5) can be reformulated as: 

 0T T

k k     (6.18) 

where k and k  are the extended counterpart of φk and θk, and can be expressed 

as: 
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The noise-free auto covariance matrix   is singular and positive semi definite with 

rank nθ. Due to the existence of noise, however, the rank of 
0

  becomes nθ + 1. In 

order to extract the true and noise-free part from the noisy signal, the Frisch scheme 

tries to solve the below problem. 

Problem 1: Given a symmetric auto covariance matrix 
0

  with signals corrupted 

by noise, find the diagonal noise covariance matrix 
0

  such that 0   with the 

rank of nθ. 

The solution of Problem 1 defines a set of points (σi, σv) that satisfy the following 

relationship [163]: 

  , min
ˆ

v k kF    (6.20) 
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In order to yield a unique solution, the Yule-Walker (YW) criterion is adopted in 

this chapter to form another constraint. An instrument vector is firstly defined as: 

 
0, 0, 2 0, 1,..., 

n

k L k L k nI I 


   

   

T

  (6.22) 

where 
0

1n n   . Then the following equation proves to hold: 
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qV k k k        (6.23) 

The proof of the equation can be found in Appendix B. Inspired from Eq. (6.23), a 

cost function is defined here as: 
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Then the YW based constraint is formulated by finding the best estimate of ˆ
i  to 

minimize the cost function, as follows: 

  ,
ˆ arg min

i
i k k iCf


    (6.25) 

The Frisch scheme can hence be summarized as solving Eq. (6.20) and Eq. (6.25). 

6.3.2 Noise Variances Update 

The determination of voltage (output) noise variance σv boils down to finding the 

smallest eigenvalue of Fk as indicated in Eq. (6.20). The eigenvalue decomposition 

(EVD) is straightforward and accurate but with high computational complexity. 

Alternatively, the problem can be addressed by minimizing the below Rayleigh 

quotient (RQ) as a function of matrix Fk and a vector argument denoted by  : 
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    (6.26) 

It is known that the RQ comes to its minimum which is equal to the smallest 
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eigenvalue of Fk, when   is taken as the eigenvector corresponding to the smallest 

eigenvalue. In this chapter, the conjugate gradient method is applied to find the 

smallest RQ. The details are not illustrated here but can be referred to the literatures 

[164]. 

The current (input) noise variance σi is estimated by solving the minimization 

problem defined in Eq. (6.25). General methods involve the line search, conjugate-

gradient search, Newton’s method, gradient-descent search and evolutionary 

algorithms. To allow real-time implementation, the gradient-descent method is 

adopted as follows: 
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where μ denotes the step-size parameter. The derivative term can be calculated as: 
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where T

v i      
T

. In order to obtain the derivative terms in Eq. (6.28), the 

first-order Taylor series approximation of Eq. (6.11) and Eq. (6.20) around the latest 

estimate 1
ˆ

k   is written as: 
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Based on the linearized form of Eq. (6.29), the following equations can be derived: 
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  (6.30) 

Analogously, the terms with matrix inversion can be solved recursively with the 

regular matrix splitting. 

6.3.3 Algorithm Summary 

This chapter proposes a FBCRLS based observer for integrated model identification 

and SOC estimate. The FBCRLS is used to online adapt the model parameters, 

which are further injected into the state observer for enhanced SOC estimate. A 

general diagram of the proposed method is shown as Fig. 3. The auto and cross 

covariance matrices, used frequently by the FBCRLS, are recursively updated at 

each iteration by adding the presently obtained data to that from the previous 

iteration. A user-defined forgetting factor (λ) is applied to emphasize the 

significance of the most recently obtained data compared with the old data. The 

principle of covariance matrix propagation is expressed as: 
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where    
1

1 1
k

k i k

k

i

   



    . The derivation of Eq. (6.31) can be found in 

Appendix C as supportive information. 
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Figure 6.4 General diagram of the proposed FBCRLS based observer 

6.4 Simulation Study 

A simulation is carried out in Section 6.2.3 to prove the existence of identification 

bias under noise contamination from the theoretical perspective. It should be noted 

that the OCV is assumed to be known for that case. In practical applications, 

however, the OCV has to be online estimated from the observed SOC thus will 

increase the uncertainty of both model identification and state estimation. To better 

evaluate the feasibility of the proposed FBCRLS based observer, accordingly, a new 

simulation study is conducted in this section. The OCV is treated as an unknown 

variable in this case which better meets the real situation. 

6.4.1 Data Acquisition 

The battery model shown in Figure 6.1 (a) was built in Matlab Simulink 

environment. The system is sampled at an interval of 1 s. It is assumed the ohmic 

and polarization resistances are time-varying while the polarization capacitance is 

constant over the entire simulation. The noise-free load current and the 

corresponding terminal voltage obtained from the battery model are shown in 

Figure 6.5. In order to simulate the actual measured signals with non-ideal sensors, 
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white noises with variance σi = 1 mA2 and σv = 1 mV2 are imposed on the noise-free 

current and voltage profiles. 

 

Figure 6.5 Noise-free current profile for the simulation study 

6.4.2 Simulation Result and Discussion 

By applying the proposed method to the simulated battery data, the model 

parameters and SOC can be estimated concurrently. To better assess the 

performance, the FBCRLS based observer is compared with the RLS-EKF [129, 

140, 165, 166], which is one of the state-of-the-art methods regarding model 

parameters and SOC co-estimation. The RLS-EKF method consists of a RLS based 

model parameter estimator in parallel with an EKF based SOC estimator with 

necessary information exchange between them. As no prior knowledge on model 

parameters and SOC is available before the experiment, the two algorithms are 

erroneously initialized as follows throughout this chapter if not otherwise stated: Rs 

= Rp = 10 mΩ, Cp = 0.5 kF, and SOC0 = 60%. The forgetting factor is 0.985 for both 
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the simulation study and the experimental study in this chapter. 

The comparison results are shown in Figure 6.6. In terms of the RLS-EKF, although 

the identification of Rs is accurate, the algorithm yields persistent bias on Rp and Cp, 

which is caused by the noise contamination on both current and voltage signals. In 

order words, the robustness of RLS-EKF to noise is weak. By comparison, the 

FBCRLS based observer has the merit of online noise variances estimate thus the 

bias can be compensated effectively. As shown in Figure 6.7, the estimated 

variances quickly converge to the true values from the incorrect initialization and 

keep on tracking them over the entire simulation. The estimated variances, albeit 

oscillate around their steady-state values, are constrained within a reasonable error 

bound. Owing to the mechanism of online variances estimate and bias 

compensation, the proposed algorithm is able to follow the changes in model 

parameters more accurately after a short transition time for initialization error 

correction. To quantitatively evaluate the identification enhancement brought by 

noise compensation, the normalized error vector is defined here as: 
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where ,
ˆ

s kR , ,
ˆ

p kR , and ,
ˆ

p kC  are the estimates of the respective model parameters at 

the k-th time step. Each term in the vector is normalized as a percentage concerning 

the different scales of data. The mean square deviation (MSD) for estimate at each 

time step, i.e. 
2

kE e 
  , is applied here as the performance measure. As shown in 

Figure 6.6 (d), the MSDs from the FBCRLS based observer distribute entirely under 

those from the RLS-EKF. For the present simulation, the proposed method yields an 

average reduction of 43.8 dB on MSD over the RLS-EKF, indicating a quite 

improved robustness against noise corruption. 
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Figure 6.6 Identification results of model parameters for the simulation study: (a) 

Rs; (b) Rp; (c) Cp; (4) MSD 

 

Figure 6.7 Results of noise variance estimation for the simulation study 

Based on the updated battery model, the SOC is concurrently estimated and the 

results are plotted in Figure 6.8. The proposed method, within our expectation, 
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demonstrates an enhancement of SOC estimate as a consequence of the unbiased 

model parameters identification. Accordingly, the proposed method is verified to 

show better robustness to noise corruption and outperform the RLS-EKF in terms of 

both model identification and SOC estimation. 

 

Figure 6.8 SOC estimation result and SOC error for the simulation study 

6.5 Experimental Study 

The simulation study verifies the proposed method from the theoretical prospective 

with an ideal battery model. In real applications, however, there exist some model 

uncertainties like the erroneous fitting of SOC-OCV function and the unmodeled 

battery dynamics. Therefore, it is worthwhile to execute the proposed algorithm on 

the experimental data to assess its fidelity in real applications. 

6.5.1 Experimental Setup 

Experiments are carried out on a lab-scale VRB cell. Details of the experimental 
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setup have been introduced in Section 3.4.1. The experimental data are collected by 

the data acquisition system with a sampling time interval of 1 s and stored in the 

host computer. The current and voltage profiles are shown in Figure 6.9. White 

noises with variance σi = 4 mA2 and σv = 4 mV2 are manually added to the 

measured signals to represent the situation of noise corruption. 

 

Figure 6.9 Measured current and voltage profiles for the experimental study on 

VRB 

6.5.2 Experimental Results and Discussion 

Both the proposed FBCRLS based observer and the RLS-EKF are implemented on 

the experimental data to compare their performances. In order to verify the 

algorithms for online model identification, the reference values of model parameters 

are firstly prescribed by offline fitting. Specifically, a batch of current and voltage 

data without noises added are sampled around each time point, then the reference 

model parameters are extracted by the offline LS fitting. The results of model 
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identification are shown in Figure 6.10. As shown, all the model parameters exhibit 

time-varying and SOC-dependent properties, attesting the need of online model 

adaption. In this respect, the widely applied non-updating SOC observers with fixed 

model parameters are theoretically less accurate as they cannot adapt to the change 

of operating condition and battery aging. 

 

Figure 6.10 Identification results of model parameters for the experimental study on 

VRB 

The result shown in Figure 6.10 indicates that the proposed method quickly 
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converges and accurately tracks the variation of model parameters despite the large 

initialization error. As a result, the time-consuming and error-prone calibration is 

avoided. The high accuracy of model identification also verifies the robustness of 

proposed method against the noise corruption. In contrast, the RLS-EKF converges 

to values substantially away from the references, especially for Rp and Cp. This is 

due to the unexpected sensing of noises in both current and voltage brings non-

ignorable identification bias to the identified model parameters. Moreover, the 

identification bias is intrinsic and will not be eliminated by involving a large 

amount of sample points. 

According to the biased model identification, we expect that the RLS-EKF could 

not provide SOC estimates as accurate as the proposed FBCRLS based observer. To 

illustrate this, the SOC estimation results and the reference trajectory are plotted 

comparatively in Figure 6.11. It is observed that the proposed method projects the 

trajectory of reference SOC accurately and stably after a short time for erroneous 

initialization correction. The SOC error is constrained within 2% error bound during 

the entire experiment. By comparison, the RLS-EKF demonstrates a decline of 

accuracy as a consequence of poor noise tolerance. Although the convergence is 

also easy, the estimation error is obviously much larger. 

To evaluate the estimation performance quantitatively, the MAE and the RMSE are 

used to further compare the accuracy. Moreover, the convergence time, defined as 

the time when the estimate starts to stabilize within the 5% error bound, is used to 

assess the convergence property. The aforementioned performance measures are 

summarized in Table 6.1 for the two applied algorithms. Evidently, the proposed 

method generates remarkably smaller estimation error than the RLS-EKF. This is 

within our expectation as the identification bias caused by noises is well 

compensated and model parameters are timely adapted with a higher precision. The 

convergence of the proposed method is slightly faster than the RLS-EKF. However, 

the difference in convergence speed is not significant considering the long running 

time. Taking all the measures into account, the comparison explicitly suggests the 

superiority of the proposed method over the RLS-EKF. Considering the high 

fidelity of both model identification and SOC estimate, the proposed FBCRLS 
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based SOC observer proves to be highly reliable for online applications. 

 

Figure 6.11 SOC estimation results and SOC error for the experimental study on 

VRB 

Table 6.1 Performance comparison of the proposed method and RLS-EKF for the 

experimental study on VRB 

 FBCRLS based observer RLS-EKF 

MAE 0.54% 1.37% 

RMSE 1.04% 3.24% 

Convergence time 67 s 122 s 
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6.5.3 Robustness Analysis with Lithium-ion Battery 

The proposed method is data driven based without details of chemical process as 

prerequisite. This section aims at testing the robustness of the proposed method 

against different battery chemistries. Experiments are thus conducted on a Samsung 

18650 lithium-ion battery with the nominal capacity of 2200 mAh. The load current 

and terminal voltage profiles are shown in Figure 6.12. Analogous with the case of 

VRB, the SOC-OCV map of lithium-ion battery is also decomposed into nine linear 

segments here, as shown in Figure 6.13. Each segment is approximated with the 

linear equation shown in Eq. (6.1). The polynomial coefficients of the segments are 

listed in Table 6.2. 

 

Figure 6.12 Measured load current and terminal voltage profiles for the 

experimental study on lithium-ion battery 
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Figure 6.13 SOC-OCV correlation and the piecewise treatment of the lithium-ion 

battery 

Table 6.2 Polynomial coefficients of the SOC-OCV function of lithium-ion battery 

for different piecewise segments 

Segment s1 s2 s3 s4 s5 

c0 3.2767 3.3926 3.3791 3.4407 3.4863 

c1 3.3262 0.7035 0.8461 0.5306 0.3448 

Segment s6 s7 s8 s9  

c0 3.4196 3.1517 3.1008 3.0158  

c1 0.4941 0.9836 1.0516 1.1518  

 

The results of model identification are shown in Figure 6.14. As shown, the lithium-

ion battery in use is quite different to the VRB regarding the model parameters. The 

variation of model parameters and their dependence on SOC are more significant. 

However, the model parameters are still accurately adapted by the proposed 

FBCRLS based observer to follow their change during the entire experiment. By 

comparison, the RLS-EKF converges with obvious bias especially for Rp and Cp. 
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Figure 6.14 Identification result of model parameters for the experimental study on 

lithium-ion battery 

Based on the online identified battery model, the SOC estimation results are plotted 

in Figure 6.15. Similar with the case of VRB, the estimated SOC with the proposed 

method tracks the reference trajectory with fast convergence, high accuracy, and 

good robustness to the uncertain initialization, while the accuracy of the RLS-EKF 

method is limited for the biased identification of model parameters. It should be 

mentioned that both the two algorithms generate relatively large errors between 2.8 

and 3.6 h, corresponding to the SOC range between 25% and 45%. This is because 
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the slope of SOC-OCV correlation is very small at this region, as show in Figure 

6.13 and Table 6.2, and the small slope will cause a weak observability condition 

for the state-space model represented by Eq. (6.14). Therefore, the relatively large 

errors are within expectation. The existence of such quasi-unobservable region has 

also been verified and discussed in ref. [42], and a dual-circuit state observer is 

explored to solve it. It will be interesting to integrate the proposed method with that 

from ref. [42] to further improve the estimation accuracy. Despite the existence of 

this specific region, it is explicit that the overall accuracy is quite high by using the 

proposed method. 

 

Figure 6.15 SOC estimation results and SOC error for the experimental study on 

lithium-ion battery 
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The performance measures of MAE, RMSE, and convergence time are summarized 

in Table 6.3 for the two applied algorithms. The results reveal that the proposed 

method works with the lithium-ion battery accurately and stably even with large 

initialization errors. The improvement brought by the proposed method with regard 

to the existing RLS-EKF method is also significant. The proposed method is thus 

seen to be promising to be generalized for applications to other battery chemistries. 

Table 6.3 Performance comparison of the proposed method and RLS-EKF for the 

experimental study on lithium-ion battery 

 FBCRLS based observer RLS-EKF 

MAE 0.81% 1.65% 

RMSE 1.62% 2.67% 

Convergence time 167 s 268 s 

6.6 Conclusions 

The existing co-estimation methods are shown to yield identification bias thus lose 

robustness when the measurements are subject to noises. To tackle this difficulty, 

this chapter proposes an integrated technique for online unbiased model 

identification and SOC estimation by applying real-time noise statistics estimate 

and noise effect compensation. Simulation and experimental studies suggest that the 

proposed method accurately estimates the noise variances and tracks the changes of 

model parameters without bias. Due to the enhanced battery model identification, 

the SOC estimate is shown to be highly authentic whilst the convergence speed is 

not compromised. The proposed method also proves to outperform the RLS-EKF as 

a typical co-estimation method in terms of estimation accuracy and convergence 

speed. As a data-driven based approach, the proposed method requires only the 

onboard measured current and voltage signals so its application to a wide range of 

other battery chemistries is promising. 
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CHAPTER 7 Conclusions and Recommendations 

7.1 Conclusions 

The development of high-fidelity algorithms for the online estimation of the key 

battery states of VRB has been focused in this thesis, aiming at improving the 

reliability, efficiency, and longevity of the VRB system. The adaptive battery 

modeling and the online estimation of essential battery states have been investigated 

as the major work. 

A model-based peak power estimator is proposed. The first-order RC model is 

applied for VRB modeling. The OCV as an important variable in the battery model 

is measured with an open-circuit cell. Considering the uncertainties of model 

parameters, they are online identified with both the RLS and EKF. A simulation 

study has been carried out to compare the two algorithms on some key performance 

measures including the convergence time, MAE, RMSE, and CPU time. Results 

suggest that the RLS is more appropriate for the online identification of the used 

model. Based on the online identified battery model, an online adaptive peak power 

estimator is proposed by incorporating multiple constraints on current, voltage, and 

battery SOC. Experimental results on a lab-scale VRB system suggest that the 

proposed method can accurately adapt the time varying model parameters and thus 

provide a high modeling accuracy. Both the peak current and the corresponding 

peak power have been verified to be highly authentic with a specifically designed 

“two-step verification” method. The selection of prediction time horizon is also 

found to affect the allowable peak power largely. 

As an enhancement, a new model identification method is proposed without the 

open-circuit cell as a requirement, which contributes to simplifying the system 

configuration of VRB. The OCV is online estimated with the online adapted battery 

model and the SOC is further determined with the SOC-OCV look-up table. In this 

way, the estimation of model parameters and OCV are fully decoupled so that the 

cross interference is avoided. A comprehensive analysis on the model sensitivity, 
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stability, and accuracy is performed, suggesting the use of multiple timescales for 

different estimators. Experimental results suggest that the multi-timescale estimator 

is accurate in both model parameterization and SOC estimate with a high robustness 

against the initialization uncertainty and the operating condition variation. The 

robustness of the multi-timescale estimator to the battery aging is also satisfactory 

within an aging degree of 14.78%. 

Following that, the joint estimation of SOC and instantaneous capacity is 

investigated for the VRB based on an online identified battery model. Unlike the 

existing model-based observers, a novel joint estimator is proposed which consists 

of two parts, i.e. a simple OCV estimator and an EKF based state estimator. A 

general framework of the OCV estimator that can be applied to multi-order RC 

models is derived. Further, the SOC and capacity are jointly estimated with a state 

observer which uses the online estimated OCV as system measurement. The 

proposed joint estimator proves to compress the filter order effectively thus has the 

potential to improve the computational efficiency and numerical stability. The 

proposed method has been compared with the RLS-EKF as one of the state-of-the-

art methods and the results demonstrate that the proposed method is superior in the 

estimation accuracy, convergence speed, and computational cost. The proposed 

method is also verified to be robust against the change of operating conditions. 

Meanwhile, its robustness to battery aging has proved to be satisfactory within an 

aging degree of 13.67%. 

Lastly, the effect of measurement noises on the model identification and state 

estimate is studied. The existence of the sensing noises proves to cause biased 

identification of the model parameters. A novel FBCRLS based observer is 

proposed to address the noise corruption and further to estimate the time varying 

model parameters and battery SOC in real time. The noise statistics are online 

estimated to allow compensating the noise effects. A simulation study has been 

carried out to compare the proposed method with the RLS-EKF as one of the most 

advanced methods. Simulation results show that the proposed method identifies the 

model parameters more accurately and thus achieves a higher precision on SOC 

estimate. Extra model uncertainties exist in real applications so that a lab-scale 
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experiment is conducted to evaluate the feasibility of the proposed method. Similar 

conclusions are drawn from the experimental study, i.e. the proposed method 

contributes to compensating the noise effects and improving the accuracy of both 

the model identification and the SOC estimate. As a data-driven based method 

needing only the onboard measured current and voltage, the proposed method has 

also been verified to be implementable on the lithium-ion battery. 

7.2 Recommendations for Future Works 

Notwithstanding the progress made so far in this thesis, several other topics in the 

field of BMS especially for thermal modeling, more accurate battery modeling, new 

categories of estimation methods, and some other relevant issues are worthy of 

pursuing for the future work. 

7.2.1 Temperature Effect and Thermal Modeling 

In this thesis, the temperature effect has been ignored to ease the calculation. The 

temperature affects both the SOC-OCV correlation and the model parameters from 

the theoretical perspective. However, as has been discussed in Section 5.4.2, the 

effect of temperature on SOC-OCV correlation is subtle enough to be ignored for 

the case of VRB. The model parameters, i.e. Rs, Rp, and Cp, are also affected by the 

working temperature. However, the proposed methods use online model adaption so 

the changes of model parameters can be well tracked. Therefore, even though the 

thermal model is not included in the proposed methods, the results are still accurate 

in the scope of the topics in this thesis. However, this is not true for the case of 

lithium-ion batteries. It is well known that lithium-ion batteries work within a very 

wide temperature range in real applications considering their high power density. 

While the proposed online model adaption can automatically track the changes of 

model parameters caused by temperature variation, the temperature effect on SOC-

OCV correlation cannot be ignored. To this end, it is recommended to explore a 

three-dimensional map for OCV, i.e. expressing the OCV as a function of both SOC 

and temperature, to allow accurate model-based estimations. By incorporating the 

temperature effect, the state estimation methods throughout this thesis can be 
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extended to be adoptable within a broad temperature range without losing accuracy. 

This is especially important for the power batteries like lithium-ion batteries. 

Although the temperature effect on the online state estimation is ignorable for the 

VRB, it has important impacts to some other system-level issues, for example the 

design of cooling systems. The thermal investigation can be achieved by using 

temperature sensors but at the cost of increasing configuration complexity, and 

sometimes it may be difficult to acquire the actual temperature inside the battery. In 

this regard, a reliable thermal model can be considered to be integrated into the 

established frameworks in this thesis. The thermal modeling is also important for 

battery system design and cooling strategies determination. Actually, we have done 

some work on VRB thermal modeling, as can be referred to refs. [66, 67]. The 

reversible entropic heat, and the irreversible heat caused by ohmic loss, ionic loss, 

overpotential loss, and fluid viscosity are comprehensively modeled by a set of 

mathematical equations. The heat dissipation process and the final temperature 

response are modeled with empirical formulas for the natural cooling scenario and 

with the Foster network for the forced cooling scenario. Such thermal models are 

computational easy thus are quite promising to be used to monitor the electrolyte 

temperature in real time. Therefore, an important topic for the future work is to 

incorporate these thermal models to the proposed algorithms to enhance the 

feasibility over a wide temperature range. 

7.2.2 New Type of Battery Models 

Throughout this thesis, the VRB dynamics are simulated with the first-order RC 

model. Alternatively, the computational intelligence based models such as ANN and 

SVM can be further investigated to model the highly nonlinear dynamics of VRB. 

Such black-box models demand no exact knowledge of the battery structure or 

chemistries, thus bring significant convenience to the practical applications. The 

operating temperature, SOC, historical load current, and historical voltage are the 

common model inputs in the open literatures. It should be noted that the operating 

flow rate is a unique variable of the flow battery that impacts the voltage response, 

thus it will be interesting to include the flow rate as another model input to improve 
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the model accuracy. The black-box models are commonly trained by the offline 

dataset and can work accurately for the present period. With the change of the 

operating conditions and battery degradation, the model trained by the original 

dataset may lose its accuracy gradually. In this regard, the online training of the 

black-box models will be an interesting topic that is worth investigating. 

7.2.3 New Type of State Estimation Methods 

The thesis emphasizes on improving the accuracy of the state estimation by 

incorporating the online model identification. The computational easy methods like 

the pole placement-based state observer and EKF are used to make the algorithms 

realistic for online applications on the low-cost microcontrollers. The utilization of 

other more advanced adaptive filters has not been fully addressed. 

In the future work, different kinds of other state estimation methods, such as SMO, 

AEKF, UKF, AUKF, PF, UPF, and NPF, can be also tried to compare the advantages 

and shortcomings. Additionally, when integrating these estimators with the online 

model identification methods, the stability and computational feasibility remains 

uncertain and deserves further investigation. In summary, the improved algorithms 

with higher accuracy, adequate stability, and low computational complexity are of 

great importance to the field of battery modeling and state monitoring. 

7.2.4 Other Issues Related to Battery Management 

The state of energy (SOE) is defined as the energy left in a battery compared with 

its maximum value. As a key parameter in BMS, it provides the critical basis of 

load balancing, energy deployment, and electricity security for the complex energy 

systems thus can be carefully addressed for the future work. The online estimation 

of SOE can be achieved by the model-based observers, which is similar with the 

SOC determination. Alternatively, the nonlinear modeling techniques such as ANN 

can be also tried to infer the SOE from the onboard measurable variables. 

In Chapter 6, the unbiased model identification is achieved with a novel FBCRLS 

based observer. The proposed method is fundamentally based on the online noise 
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statistics estimation and compensation. However, the noise is assumed to be white 

thus the proposed method cannot fulfill all the real situations. In our future work, 

the noise attenuation and the bias compensation under the colored noise corruption 

will be investigated based on the developed method. 
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Appendix A Derivation of OCV Estimator for Second-

order RC Model 

The characterization equations of the second-order RC model are: 
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Converting Eq. (A.1) to the frequency domain yields: 
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By defining 1 1 1=exp( / / )s p pt R C   and 2 2 2=exp( / / )s p pt R C  , Vp can be solved 

in the z-domain as: 
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According to the relationship of Eq. (A.2), the following expression can be drawn: 
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Eq. (A.5) can be alternatively written as: 
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where 
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Eq. (A.6) can be reversed to the discrete-time domain as: 
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By applying transposition to Eq. (A.8), the OCV can be solved as: 
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The error term represented by e2(k) becomes sufficiently small according the slowly 

varying OCV of VRB. The derivation procedures are totally applicable to higher-

order RC models but with much more complicated equations. It should be 

mentioned that models with more than two RC networks are not recommendable in 

real applications as the high order will incorporate high computational complexity 

and low numerical stability. 
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Appendix B Derivation of Cost Function under YW 

Based Constraint 

It is validated the below equation can be written: 
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Alternatively, the term  0, 0,

T

k kE     can be expressed in a different form as: 

 
    

       

0, 0,

                    

T T T

k k k k k k k

T T T T

k k k k k k k k k k k k

E E

E E E E

       

           

   
 

   
  (B.2) 

The first term on the right hand becomes 0 considering Eq. (6.18), and the 

remaining terms on the right-hand side is also equal to 0 according to the 

assumptions on noise sequence. Hence, it is proved that: 
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Therefore, the cost function under the YW based constraint can be defined as 
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Appendix C Derivation of Recursive Update for 

Covariance Matrices  

C.1 Equally Weighted Data 

In the beginning, the situation that the data are equally weighted is considered first. 

The covariance matrix of two vectors (p and q) is defined as: 
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The recursive version can be written as: 
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C.2 Exponentially Weighted Data 

In order to give more emphasis to the most recently obtained data and discard the 

old data gradually, the exponential form of data weighting should be used. This can 

be achieved by assigning a forgetting factor (λ) to the data vector. The weighting 

leads to the following recursive relation 
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As different weightings are assigned to the term 
T

i ip q , the corresponding weighted 
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covariance matrix estimate can no longer use the simple scaling 1/k as in Eq. (C.1). 

Instead, a weighted arithmetic mean is used as expressed by: 
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It is obvious that Eq. (C.4) can be simplified to Eq. (C.1) if the forgetting factor is 

equal to 1. By defining    
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    , the recursive update of pq  is 

derived by incorporating Eq. (C.3) and (C.4) as: 
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Considering that 1 1k k    , Eq. (C.5) can be alternatively written as: 
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Clearly, the similar expressions hold for ,p k  and ,pr k . 
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