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Abstract

Automatic foreground segmentation and localization in images or videos are very important

and basic problems in computer vision. Due to lacking of sufficient information about the fore-

ground object in a single image or a video, these tasks usually become very difficult. However,

if a set of similar images (where foreground objects are of the same category) are provided

for joint processing, the job becomes little easier because we can exploit the available com-

monness clue. Thus, by jointly processing similar images together we provide a kind of weak

supervision to the system. Such a task of segmenting out the common foreground visual objects

through joint processing of similar images is known as co-segmentation. Similarly, the task of

localizing (proving bounding box to) the common foreground visual objects is known as co-

localization. Co-segmentation and co-localization tasks have applications in image retrieval,

image synthesis, datasets generation, object recognition, video surveillance, action recognition,

etc. However, such joint processing brings in new challenges to handle: (i) variation in terms

of poses, sub-categories, viewpoints, etc; (ii) complexity in design;(iii) difficulty in parame-

ter setting due to increased number of variables; (iv) the speed; and (v) their futility in some

cases compared to single processing. Many existing joint processing methods usually extend

the single processing methods and succumb to complicatedly co-labelling the pixels or bound-

ing box proposals. However, co-saliency idea to effectively carry out these tasks have not been

well-explored, especially co-saliency generated by fusing raw saliency maps. Co-saliency basi-

cally means jointly processed saliency. In this thesis, we present four co-saliency based works:

saliency fusion, saliency co-fusion, video co-localization, and object co-skeletonization.

In our saliency fusion idea, we propose to fuse the saliency maps of different images using

dense correspondence technique. More importantly, this co-saliency estimation is guided by

our proposed quality measurement which helps decide whether the saliency fusion improves
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the quality of saliency map or not. This helps us to decide which is better for a particular case:

joint or single processing. Idea is that high-quality saliency map should have well-separated

foreground and background, also a concentrated foreground.

In our saliency co-fusion idea, to make the system more robust and to avoid heavy de-

pendence on only a single saliency extraction method, we propose to apply multiple existing

saliency extraction methods on each image to obtain diverse saliency maps and fuse them by

exploiting the inter-image information, which we call saliency co-fusion. Note that while we

fused saliency maps of different images in the above saliency fusion idea, we here fuse diverse

saliency maps of the same image. It results in much cleaner co-saliency maps.

In our video co-localization idea, in contrast to previous joint frameworks that use bound-

ing box proposals at every frame to attack the problem, we propose to leverage co-saliency

activated tracklets to address the challenges of speed and variations. We develop co-saliency

maps for few key frames (which we call as activators) only through inter-video commonness,

intra-video commonness, and motion saliency. Again, the saliency fusion approach is em-

ployed. Object proposals of high objectness and co-saliency scores are then tracked across the

short video intervals, between key frames, to build tracklets. The best tube for a video is ob-

tained through tracklet selection from each of these intervals depending upon confidence and

smoothness between adjacent tracklets.

Different from object co-segmentation and co-localization, we also explore a new joint

processing idea called object co-skeletonization, which is defined as joint skeleton extraction

of common objects in a set of semantically similar images. Noting that skeleton can provide

good scribbles for segmentation, and skeletonization, in turn, needs good segmentation, we

propose to couple co-skeletonization and co-segmentation tasks so that they are well informed

of each other, and benefit each other synergistically. This coupled framework also greatly

benefits from our co-saliency and fusion ideas.
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Chapter 1

Introduction

1.1 Background

In any image or a video (for e.g. see Figure 1.1), there is always some background or other that

gets captured along with foreground which is usually unnecessary. In fact, many of the com-

puter vision and multimedia applications (like recognition, skeletonization, action recognition,

etc) require that the foreground is either segmented out or cropped out already. However, when

we just have a single image or video, it’s difficult to automatically accomplish this due to the

lack of sufficient information about the foreground visual object. In recent years, the joint pro-

cessing tasks like co-segmentation and co-localization have drawn significant interest among

researchers, because commonness clue that exists in a set of similar images can compensate for

such lack of information. The task of segmenting out the common foreground visual objects

through joint processing of similar images is known as co-segmentation. Similarly, the task

of localizing (providing bounding boxes) the common foreground visual objects is known as

co-localization. With the extra information of commonness, joint processing certainly edges

over individual processing.

However, the joint processing brings in new challenges. Even in the similar images, viz.

having same semantic category objects, there is always a room for the existence of some vari-

ation or other in the terms of species, models, or viewpoints, etc, as shown in the Fig. 1.2. In

such a scenario, the approach of joint-labeling of pixels or bounding box proposals becomes

quite complicated, and also more numbers of variables/parameters get introduced. With the
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Image Object Background 

Figure 1.1: Whenever an object (car) is captured in an image, it is unavoidably captured along
with its environment, i.e background.

Figure 1.2: Even in the images of same semantic objects, there exists variation.

increased number of parameters, setting them appropriately adds another challenge, especially

when facing large and diverse datasets. Also, joint processing of images need not perform

better than individual processing always. This certainly raises up the challenge of appropriate

selection between joint processing and individual processing on the case basis.

The concept of co-segmentation was first introduced in [77], which used histogram match-

ing to simultaneously segment out the common object from a pair of images. Since then, many

co-segmentation algorithms have been proposed in the literature, ranging from early image pair

co-segmentation [30][70], multiple image co-segmentation [39][43][48][65], interactive image

co-segmentation [7][19][8] to the recent multiple objects co-segmentation [69][56][59][42],

multiple group co-segmentation [66], noisy image set co-segmentation [78], large-scale co-

segmentation [28][34] and shape alignment targeted co-segmentation [20]. Variety of models

have been proposed and improved upon like MRF models [70][13], discriminative clustering
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models [39][40], diffusion models [43][42], proposal-based models [97][11], etc, trying to

solve the problem the problem of co-segmentation. Trying to relax the problem of co-labeling

the pixels (in co-segmentation) to co-labelling the bounding box proposals, the problem of

co-localization was first introduced by [90], which used saliency prior, similarity and discrim-

inability for bounding boxes to develop a constrained quadratic program based formulation and

solved it. Later on, these joint processing tasks have been extended to video domain as well,

e.g., [41][45]. Similar to these ideas, idea of co-saliency in terms of jointly developing saliency

maps have also been proposed. While some methods develop co-saliency from the scratch like

in [25], some methods modify the raw saliency map with the help of repeatedness constraint

like in [13].

1.2 Motivation and Contributions

Although effective, existing methods usually become complicated due to co-labeling approach

and require parameter tuning, and thus either denying their application for large scale datasets,

or some kind of supervised learning is undertaken to learn these parameters. Also, none of

these methods accounts for the issue over automatic selection between joint-processing and

single processing.

Contrary to the existing methods, we take much simpler approach: develop co-saliency

maps by fusing raw saliency maps and carry out single processing. Although the idea of using

co-saliency is not new in the context of joint processing, they have not been so well explored

for solving co-segmentation and co-localization, especially by fusing raw saliency maps. Let’s

have a look at car images in Fig. 1.3, note how common object (car) pixels are salient in some

and non-salient in others, backgrounds are non-salient in some and salient in others. Taking a

specific example, pixels of car’s side-door are salient in all but not in the last row. However,

we can comfortably assume that (i) common object pixels are generally salient if not in every

given image, and (ii) background pixels are generally non-salient if not in every given image.

Such an assumption encourages us to link the saliency values of corresponding pixels and

develop general saliency values. In fact, these general saliency values can be used to correct

the original saliency maps. These co-saliency maps (or general saliency maps) can be readily

used to segment or localize the objects because joint processing has already taken place. And
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Figure 1.3: Generally, common object parts, say side door, are salient. We can exploit this
generality to enhance the saliency of objects in the images where it is not salient such as
images in the bottom row.

to perform the joint processing involved here, we do not need to process too many images

together, just a few neighboring images are sufficient. This pretty much takes care of variation

issues. Moreover, fusion process can be kept quite simple, which reduces the extra burden of

parameters.

This thesis presents four types of saliency fusion based joint processing techniques. Ini-

tially, a basic idea, fusion of saliency maps across different images was developed. Although

good enough for segmentation and localization of common objects, the resultant jointly pro-

cessed co-saliency maps depends upon a particular saliency extraction process only, i.e. all the

aspects of saliency may not be covered. Also, these maps are not so clean and require some

regularization causing the loss of details. Therefore, we develop another idea of saliency fusion

called saliency co-fusion, where multiple saliency maps (covering multiple fronts) of the same

image are fused while reciprocating with other similar images. Although, it does cover several

fronts of saliency and provide much cleaner co-saliency maps, it is at the cost of requiring to
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generate multiple saliency maps, and thus require more pre-computation and memory space.

Then, there are also motion saliency maps in addition to the visual saliency maps which can act

as object priors, therefore, we extend the idea of our saliency fusion-based joint processing to

videos, where we perform joint processing only for few key frames, and then leverage tracklets

to extend the localization to other frames. In this manner, we perform video co-localization in

an efficient manner. We also introduce a new joint processing task called co-skeletonization,

which we couple with co-segmentation in our fusion-based joint processing framework for

their mutual benefits. The detailed contributions made by each of these ideas are as discussed

below:

• Saliency Fusion: First, a saliency fusion based co-saliency approach is proposed where

the warped saliency maps of other images are fused with the image’s original saliency

map. Second, because joint processing need not be helpful always, some quality met-

rics are designed to compare the co-saliency maps with the saliency maps to monitor if

quality improves by such joint processing. Idea is that if it does, co-saliency map can be

used, otherwise, the saliency map itself is used. The third contribution is integrating the

two ideas and carrying out the joint processing.

• Saliency Co-fusion: First, a saliency co-fusion based co-saliency approach is proposed

where fusion takes place between multiple saliency maps of the same image but with

the joint processing goals (highlighting the common object regions and suppressing the

backgrounds), which is called as saliency co-fusion. Second, an optimization framework

is proposed to carry out such saliency co-fusion. Third, smoother and pleasing resultant

maps are obtained compared to the ones obtained by saliency fusion across the images.

• Video Co-localization: First, three different types of co-saliency maps (inter-video,

intra-video and motion) are proposed; these are developed only for few key frames at

regular intervals. Second, we propose to leverage tracklets, which are reliable for short

durations, to avoid unnecessary joint processing of so many frames. The third con-

tribution is the way co-saliency is used to activate and select the optimal tracklets for

performing video co-localization eventually.
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Figure 1.4: Our four works are related by the central theme of Co-saliency and how the
source complexity (for co-saliency generation) and the task integration (for co-saliency en-
hancement/better performance) are varied.

• Co-skeletonization: First, the joint processing task of co-skeletonization is introduced

where skeleton masks (derived from saliency maps initially) are fused to develop joint

skeleton priors. Second, the way we couple it with the co-segmentation task. This is done

not only because skeleton requires shape information but also because they can help each

other synergistically. While good skeletons can give good seeds for segmentation, good

segmentation can yield good skeleton in return. Third, the skeleton pruning process is

improved. A skeleton needs to be simple in spite of not-so-clean segmentations, which

we are likely to get due to the joint processing of several images. Fourth, a new dataset

named CO-SKEL dataset is developed for co-skeletonization benchmarking.

In summary, the central theme of proposed methods is co-saliency. Our four works are

based on how the source complexity (for co-saliency generation) and the task integration is
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varied (for co-saliency enhancement/better performance) as shown in Fig. 1.4. In the saliency

fusion work, co-saliency source is basically the raw saliency and it is integrated with other

joint processing tasks such as co-segmentation and co-localization. The saliency co-fusion

idea benefits from multiple sources while undertaking the task of fusing saliency information

from multiple sources. The video co-localization idea takes the advantage of available motion

saliency and tracking technique. Object co-skeletonization idea is similar to the saliency fusion

idea, but it is integrated with an extra task of skeletonization.

1.3 Thesis Structure

This thesis contains seven chapters and the rest of the thesis is organized as follows. The struc-

ture of this thesis is shown in Figure 1.5 along with the details of our main chapters. In Chap-

ter 2, we investigate previous works related to co-saliency, co-segmentation, co-localization

and co-skeletonization. In Chapter 3, the idea of quality-guided saliency fusion is proposed. In

Chapter 4, the idea of saliency co-fusion is presented. In Chapter 5, our extension of saliency

fusion idea to videos is presented where co-saliency priors are generated at regular intervals

and are used to activate and select tracklets for eventual video co-localization. In Chapter 6,

a new joint processing task called co-skeletonization is proposed, and it is discussed how it is

coupled with the co-segmentation task for their mutual benefits. In Chapter 7, this thesis is

concluded and some pointers to future works are given.
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Chapter 2

Literature Review

In this chapter, we conduct the literature survey of four topics related to our proposed meth-

ods, namely co-saliency (jointly estimating saliency in a given set of images), co-segmentation

(jointly segmenting the common objects in a given set of images), co-localization (jointly lo-

calizing the common objects in a given set of images), co-skeletonization (jointly skeletonizing

the common objects in a given set of images).

2.1 Co-saliency

Co-saliency typically refers to the common saliency existing in a set of images containing

similar objects. The term co-saliency was first coined in [32] in the sense of what is unique in a

set of similar images and the concept was later linked to extracting common saliency, which is

very useful for many practical applications [14][50]. The visual saliency phenomenon basically

relates to something that is distinct and attracts human eyes. Similar to visual saliency, the idea

behind visual co-saliency is that when we see similar objects across images repeatedly, they

naturally attract our eyes. This phenomenon is called repeatedness, and when this phenomenon

is incorporated into usual saliency definition, it becomes co-saliency. In fact, the co-saliency

object priors developed in [13] is defined as the following:

Co-saliency = Saliency× Repeatedness (2.1)
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where repeatedness was calculated using SIFT distances and sigmoid function, and the resul-

tant co-saliency priors were then used for efficient co-segmentation by [13]. The approach is

transforming the existing saliency maps into co-saliency maps. Then, there are other methods

like [25], where co-saliency is generated from the scratch by jointly considering multiple im-

ages. It develops three cluster-based cues: contrast cue (visual feature uniqueness), spatial cue

(central-bias) and corresponding cue (repeatedness) using the color and texture features, and

multiply them eventually. Although the method is simple, general, efficient and effective, its

application is limited to the images of the same object or very similar objects captured at differ-

ent viewpoints or instances, because of its reliance on color and texture features, which could

be misleading in handling image-sets with huge intra-class variation. Then, there are deep

learning approaches such as [107], which introduces deep intra-group semantic information

and wide cross-group heterogeneousness information for co-saliency detection. In this way,

it can capture the concept-level properties of the co-salient objects and suppress the common

backgrounds in the image group. A systematic review of all the main co-saliency methods de-

veloped so far is available in [106]. The main difference between existing co-saliency models

and ours is the idea of fusion. While existing method either try to modify the existing saliency

maps or create new ones from scratch, we try to fuse the existing saliency maps.

2.2 Co-segmentation

The co-saliency topic discussed above outputs only a prior, meaning a continuous map, but

co-segmentation is supposed to give binary or multi-label masks. Many co-segmentation al-

gorithms have been proposed in the literature. Early approaches [77][30][70] focused on seg-

menting just a pair of images containing one common object. It was later extended to deal with

multiple images containing one common object with more effective or more efficient models

enforcing inter-image consistency [96][39][43][79][71][105]. However, there are also some al-

gorithms that have been designed for segmenting multiple common foregrounds from a given

image set [69][56][59][42], where the best performers make use of supervised information.

Then, there are some interactive co-segmentation approaches [7][19][8] as well. However,

the existing works can be roughly classified into the following based on the frameworks they

employ:
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2.2.1 MRF Models

Markov Random Field (MRF) model is the most widely used model in image co-segmentation

where the foreground similarity constraint is added to traditional MRF segmentation model for

a single image. Usually, a new global term is added to the energy function which accounts for

foreground similarity. Therefore, the total energy Em becomes

Em = Eu + Ep + Eg

where Eu and Ep are unary and pairwise terms for single image MRF Segmentation model

and the new global term Eg accounts for foreground similarity. The co-segmentation perfor-

mance depends a lot upon this new global term, therefore it has been designed in several ways

to increase the accuracy and simplify energy minimization. For instance, [77] initially matched

the appearance histograms by using L1-norm for foreground similarity and Trust Region Graph

Cuts (TRGC) for energy minimization, then [70] used L2-norm for foreground similarity and

pseudo-boolean optimization for energy minimization, later [30] proposed reward based global

term resulting in simple minimization through max flow algorithm, and then [13] proposed an-

other histogram based global term to overcome difficulty in energy minimization. These mod-

els generally become complicated and would need the same objects to be present in the images

due to the foreground similarity constraint, and therefore, will not be able to handle well when

intra-class variations or pose variations are present. However, by accounting for saliency and

matching in [78] and [13], this problem was tackled, but parameter tuning becomes essential

for effective results using such methods.

2.2.2 Discriminative Clustering Models

“Discriminative clustering was first introduced by [101] and relies explicitly on supervised

classification techniques such as the support vector machine (SVM) to perform unsupervised

clustering: it aims at assigning labels to the data so that if an SVM were run with these la-

bels, the resulting classifier would separate the data with high margin."[39]. In [39], this

discriminative clustering was employed for maximizing the separability between foreground

and background, and normalized laplacian was used for spatial consistency to tackle the co-

segmentation problem. The optimization problem is solved using efficient low-rank opti-

mization after convex relaxation. In [40], this model was extended to perform multi-class
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co-segmentation, i.e. same multiple objects frequently appear in a set of images, and an image

may contain more than one such objects. These models take all the images together for joint

processing and get troubled by the existing intra-class variations of objects, as it gets revealed

in [78] when applied on challenging MSRC and iCoseg datasets.

2.2.3 Heat Diffusion Models

In [43], an anisotropic heat diffusion model was used for co-segmentation where heat diffusion

represents similarity constraint, and the framework could segment images into multiple regions

and handle large scale image group. The algorithm can be summarized as “Given a system un-

der heat diffusion and finite K heat sources, where should one place all the sources in order

to maximize the temperature of the system?"[43]. In the segmentation context, it translates to

finding the K segment centers that can maximize the segmentation confidence of every pixel

in the image. This model was extended by alternating foreground estimation and region as-

signments to be able to segment multiple foregrounds in [42]. These models also have similar

problems as the previous ones.

2.2.4 Proposal based Models

Most of the above methods were mostly seen in the perspective of matching between images.

Although they handle object perspective inherently, what is matching may not be the object at

all when seen from the perspective of the single image. As mentioned earlier, there may be lots

of background stuff like the sky, grass, etc, which might also be matching. So, [97] proposed to

introduce the term “objectness" explicitly that exploits the object-like segmentations proposals

from [11] and used more features that are important for single image segmentation. They learn

to measure similarity across images to choose the correct object like segmentation proposal by

employing random forest regressor helped by few groundtruth examples. A similar approach

of selection of segmentation proposals was addressed in [68] and was solved using shortest

path algorithm. This thesis derives some inspiration from these models, i.e. in terms of using

the idea of selecting the object-like proposals and weed out unnecessary ones.

12



CHAPTER 2. LITERATURE REVIEW

2.2.5 Segmentation transfer or Interactive Models

In contrast to unsupervised co-segmentation models described above, there are some super-

vised co-segmentation models as well where some of the images might be already having

ground truth masks or human interaction is integrated into the process. Specifically, for large

scale foreground extraction, where we can’t keep adjusting the parameters as the above meth-

ods would require, [44] showed how they could segment half-million images using the transfer

of human annotated segmentation masks. So far, this method is state-of-the-art in applying co-

segmentation on Imagenet [21] dataset. Previously as well, there has been such attempts like

in [43] but the evaluation was very limited as they used bounding boxes for evaluation whereas

[44] uses proper segmentation masks for subsets of images. [12] is another co-segmentation

method that is highly scalable to perform foreground extraction in large-scale datasets where

they improve upon the results obtained by GrabCut [76] by finding the optimal hyperplane

that can separate foregrounds and backgrounds in the feature space. A few interactive co-

segmentation approaches [7][19][8] have also been proposed, where users can give scribbles

for one or a small number of the images. Thus, the extracted prior information is then used

to influence the segmentation of the entire image set. [7] proposes an automatic recommen-

dation system as well which recommends where the user should scribble next. Recently, [23]

proposed an active segmentation propagation approach where they could actively determine

which are the images that need human annotation at any stage, and then propagate the fore-

ground estimates to unlabelled images. They prioritize those images which are uncertain and

influential while selected ones being mutually diverse. The difference with other interactive

methods is in prioritizing the images for human annotations compared to choosing any random

one.

2.3 Co-localization

Image co-localization is also similar to co-segmentation in terms of the idea, i.e. using multiple

images with output as a bounding box around the object instead of object segment. This has

been introduced by [90] along with the way to handle noisy datasets, where it is able to avoid

assigning the bounding box if the image does not contain the common object. The performance

13



CHAPTER 2. LITERATURE REVIEW

of this method has been further improved in [41]. However, it’s a joint framework and opti-

mizes over all the images, whereas we explore inter-image information via co-saliency first and

then perform co-saliency based localization on individual images. Another work [17] proposes

a generic co-localization where objects across the images need not be common. Slightly dif-

ferent from the co-localization, there are some bounding-box propagation algorithms [27][95]

where some images already have bounding boxes and they are utilized to localize objects in

unannotated images, it is like a supervised scenario.

Video Co-localization is a task of jointly localizing the shared object in a set of videos.

The recent work of [41] and [75] proposed a joint framework to locate common objects across

videos. In [41], it used quadratic programming framework to co-select bounding box proposals

in all the frames in all the videos together. While in [75], it formed candidate tubes and co-

selected tubes across the videos to locate the shared object. Handling inter-video, intra-video

variations and temporal consistency simultaneously often become a difficult task for such joint

frameworks. This is especially so when extremes such as bounding box in a frame or candidate

tube for entire video is chosen as processing unit. Recently, [45] proposed an approach of

developing foreground confidence for bounding boxes and selecting bounding boxes while

maintaining the temporal consistency. The presence of noisy bounding box proposals mandates

taking an iterative approach in [45]. All these methods [41][45][75] assumed the object is

present in all the frames in all the videos, but [98] overcame such an assumption through

providing few labels of relevant frames and irrelevant frames to effectively guide the object

discovery.

2.4 Co-skeletonization

To the best of our knowledge, there has been hardly any prior work on co-skeletonization, but

there are some works on shape clustering [85] where skeletons have been jointly processed

to group different shapes, which might be useful for good neighborhood retrieval in our con-

text. Also, there has been a good amount of research on skeletonization, which is for a single

image. The research on skeletonization can be divided into three parts. First, there are some

algorithms [18, 80, 82] which can perform skeletonization if the segmentation of an object is

provided. Generally, these algorithms are quite sensitive to the distortions of the given shape.
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However, it has been improved greatly in the recent methods such as [84]. Second, there are

also some traditional image processing methods [54, 104, 108] which can generate skeletons

by exploiting gradient intensity maps. They generate skeletons even for background stuff like

sky, sea, etc. Thus, they usually need some kind of prior to suppress such skeletons. Third,

there are also some supervised learning based methods which require some groundtruth skele-

tons for learning. It includes both traditional machine learning based methods [83, 91] and

the recent deep learning based methods [86, 100]. The performance of the traditional machine

learning based methods has not been satisfactory due to its limited feature learning capabil-

ity. On the other hand, the recent deep learning based methods have made great progress in

the skeletonization process as reported in [86], but at the cost of requiring complex training

process.
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Chapter 3

Quilty-guided Fusion-based Co-saliency

Estimation for Image Co-segmentation

and Co-localization

Foreground segmentation or localization is a very useful and important step for many vision

and multimedia applications such as recognition and streaming, since it separates the object

of interest from the background and thus facilitates more efficient subsequent processing or

understanding. When dealing with only a single image, visual saliency has been a common

cue used for highlighting the foreground. However, single-image saliency has obtained limited

success when facing images with cluttered backgrounds, or images where the foreground has

similar attributes as the background, which cause object of interest to be less salient. Recog-

nizing the limitations of individual processing, in recent years various joint processing works

such as co-saliency [14][50][13][25][48], co-segmentation [97][78][35][65], co-localization

[90][37], knowledge transfer [28][27][95] have been proposed, and have been demonstrated

quite effective in extracting foregrounds in a batch mode. The basic idea of all these works

is to exploit the commonness across a set of images that contain some common object, which

gives inter-image prior information about the common object, a clear advantage that certainly

lacks in the individual processing.

Despite such an advantage, the existing joint processing algorithms also bring in new chal-

lenges. 1) As shown in [97][78], joint processing of images might not perform better than
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individual processing. The recently proposed video co-localization work [41] also cannot per-

form better than the individually processing [74]. This certainly raises up the question: Given

a set of images for foreground segmentation or localization, should we process them jointly

or individually? 2) Due to the way of co-labeling pixels [78] or co-selection of bounding

boxes [90] in a set of images, most of the existing high-performance joint processing algo-

rithms are usually complicated with large numbers of variables, which unavoidably have the

scalability issue. 3) For effective co-segmentation or co-localization, the existing joint pro-

cessing algorithms usually require tuning quite a few parameters, which further increases the

complexity, especially when facing large and diverse datasets.

To address the above challenges, in this chapter we propose a co-saliency framework, where

we explore inter-image information via co-saliency and then perform co-saliency based seg-

mentation or localization on individual images. In this way, we avoid the scalability issue of

directly performing co-labelling or co-localization on multiple images simultaneously. At the

heart of proposed co-saliency framework are two key components: saliency quality measure-

ment and fusion based co-saliency.

Quality measurement: In the first component, we propose a metric to measure and com-

pare the quality of each individual saliency map with that of its corresponding co-saliency

map, so as to answer the first challenge, i.e. joint processing or not. Our quality metric is

developed based on two empirical observations: 1) a better saliency map should have a better

separation between the foreground and the background; 2) a better saliency map should have

a better foreground concentration, i.e. preferring the foreground to be a concentrated saliency

region. Figure 3.1 gives two examples, where the top example (cartoon) highlights the object

region better in the individually processed saliency map [16] compared to the jointly processed

co-saliency map [49], while in the bottom example (human), the co-saliency map looks better

than the individually processed saliency map. For both examples in Figure 3.1, our proposed

metric generates the appropriate quality scores at the bottom-right of each saliency map. Note

that there has been a work [60] comparing different saliency maps of an image using differ-

ent saliency detection methods in a supervised manner, while here we compare an individual

saliency map with its co-saliency map and we do it in a completely unsupervised way.

Fusion based co-saliency: The second component of our framework is to deal with the

issue that for each image, how to fuse its own saliency map with the saliency information
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Image Saliency Map Co-saliency Map 

0.613 0.265 

0.358 0.750 

Figure 3.1: The desired saliency map that highlights the object could either be the original
saliency map itself (e.g. in the case of cartoon with clear background) or the jointly processed
co-saliency map (in the case of human with complicated background). Our quality measure-
ment gives appropriate scores (shown at the bottom-right of each saliency map) to be able to
select the right one (red-bordered).

Source 
Images 

Saliency 
Maps 

Warped 
Saliency 

Maps 

Warping 

Fusion 

Figure 3.2: An example to show that through the joint processing of co-saliency via warping
and fusion, the images on the right which have salient common objects (car) could render help
to the first image where the common object (car) has only weak saliency.
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from other images so as to boost up the common object saliency while suppressing the back-

ground saliency. Our basic idea is to make use of the existing techniques on dense corre-

spondences [55] to align individual object pixels for saliency fusion. Figure 3.2 illustrates the

proposed joint process for generating co-saliency map. In particular, for one image, the indi-

vidual saliency maps of its neighbors are warped to align with its own saliency map and then

all the aligned saliency maps are fused together. The underlying assumption here is that the

common object or its parts are salient in general, if not in every image.

In the proposed co-saliency framework, images iteratively interact with one another to gen-

erate fused saliency maps, which can update the respective saliency maps only if they are of

higher quality.

This chapter makes the following major contributions: 1) designing a metric for saliency

quality measurement to compare the individually processed priors with those obtained by joint

processing; 2) developing a simple saliency fusion based co-saliency estimation method for

overcoming the complexity and the parameter setting challenges; 3) achieving good results

comparable to state-of-the-arts in the applications of foreground segmentation and localiza-

tion on several benchmark datasets including the large-scale dataset, ImageNet. Also, this

framework can be easily modified to cope with other scenarios such as when there are some

groudtruth segmentation / localization maps available or reducing the complexity when dealing

with large scale datasets.

3.1 Proposed Method

In this section, we first discuss our objective and the proposed solution, second the quality

measurement system, third how images interact, fourth more efficient way of interacting, and

finally applications.

3.1.1 Objective and Proposed Solution

Let I = {I1, I2, · · · , Im} be an image-set containing m similar images. Denote set of their cor-

responding saliency maps as S = {S1, S2, · · · , Sm}. Functions φ(·) and ψ(·) denote quality

functions for the separation measure (between foreground and background) and the concentra-

tion measure (of foreground), respectively. Perceiving the output scores of these functions like
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probabilities, we define the total quality of any saliency map Si as the product of these two

measures, i.e. φ(Si)ψ(Si), following the multiplication rule of probability to account for both

the measures simultaneously. Addition gives more a sense of ’either of them is fine’, therefore

multiplication is preferred. In the pursuit of common object discovery through interaction, we

assume that higher quality saliency maps are better. Therefore, we define our objective as

S∗ = arg max
S

m∑
i=1

φ(Si)ψ(Si) (3.1)

s.t. Si ∈ {Sk
i |k = 1, · · · , K},

where we want to achieve saliency map set S∗ such that the total quality of comprising saliency

maps is maximum, and Si can be any saliency map of an image ranging from the original

saliency map to the saliency map obtained after K interactions, where K is set as 5 by default.

So, if S∗i is the highest quality saliency map in set {Sk
i |k = 1, · · · , K}, S∗ = {S∗1 , · · · , S∗m},

i.e. corresponding set of highest quality saliency maps of image-set I. During the interaction

process, saliency maps from other similar images fuse together with the saliency map of each

image to develop its fused saliency map. Denote F = {F1, F2, · · · , Fm} as the set of such

fused saliency maps resulted by such interaction of similar images.

We propose the following approach to achieve our objective. After the interaction, if the

quality of saliency map improves by the fusion process, then only corresponding fused saliency

maps can update the current saliency map. Otherwise, current saliency map is considered as the

final one. In this manner, total saliency quality of set increases progressively. Different images

may obtain their final saliency maps at different iterations. In order to track each image and

avoid further fusion for them after obtaining their final saliency maps, we define corresponding

break variable ρi (set as 0 initially), which gets triggered to 1 at such an occurrence for image

Ii. Once ρi gets triggered to 1, it cannot be changed. Figure 3.3 depicts the flowchart for this.

However, in the supervised scenario, saliency maps of images having annotations are replaced

with the annotations, and their ρi is triggered right in the beginning.

Therefore, saliency map Sk
i , fused saliency map F k

i at kth iteration, and ρi help in deter-
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Ƿi=0
Initialied

Ƿi=1
Triggered

Ƿi=1?

Figure 3.3: Flowchart of the proposed method (for an image Ii): Saliency map Si is iteratively
updated by the fused saliency map Fi as long as the fused saliency map Fi is of higher quality.
Drop in the quality (Q) triggers the break variable ρi to stop any further updates for the image.

mining Sk+1
i (saliency map at next iteration) in the following manner:

Sk+1
i =


Sk
i , if ρi = 1;

F k
i , if ρi = 0 andφ(F k

i )ψ(F k
i ) > φ(Sk

i )ψ(Sk
i );

Sk
i , if ρi = 0 andφ(F k

i )ψ(F k
i ) < φ(Sk

i )ψ(Sk
i ),

(3.2)

where the first case denotes that an image has already achieved its final saliency map and

there is no need for update. The second case denotes that image has not yet achieved its final

saliency map, and since the quality has improved by fusion, fused saliency map updates the

current saliency map. The third case denotes that although image has not yet achieved its high

quality saliency map, but since quality has decreased by fusion, there is no need for update and

current saliency map is taken as final one. And it is the third case that triggers ρi.

Since we ensure that no way a lower quality fused saliency map can update the current

saliency map, total saliency quality of the set S therefore can only get higher after any given

iteration, and algorithm eventually stops when either ∀ρi = 1 or k = K. At this point, we have

our S∗.
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Figure 3.4: Separation measure (φ) of quality of saliency map is measured using overlap of
estimated likelihood distributions of the two classes: Foreground and Background

3.1.2 Quality Measurement System

In this section, we propose two measures for determining the quality of any given saliency map

S: (i) separation measure, which measures separation between foreground and background;

and (ii) concentration measure, which measures how concentrated foreground pixels are. In

order to assign likelihoods (foreground or background), we apply Otsu’s threshold on S.

3.1.2.1 Separation Measure (φ)

A high quality saliency map should have well-separated foreground and background likeli-

hoods. Assuming distributions of these likelihoods to be of Gaussian in nature, we attempt to

measure separation between the two. Let µf (S), µb(S), σf (S), and σb(S) denote foreground

mean, background mean, foreground standard deviation, and background standard deviation,

respectively, computed based on the two likelihood distributions. Lets denote Df (z;S) and

Db(z;S) as foreground and background Gaussian distributions, respectively, where z takes
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saliency value ranging between 0 and 1. Specifically,

Df (z;S) =
e
−(

z−µf (S)
σf (S)

)2

σf (S)
√

2π
and Db(z;S) =

e
−( z−µb(S)

σb(S)
)2

σb(S)
√

2π
, (3.3)

as plotted in the Figure 3.4 for an example. It is clear that the less the two distributions over-

lap with each other, the better the saliency map is, i.e., the foreground and background are

more likely to be separable. In order to calculate such overlap, it is needed to figure out the

intersecting point z∗ (see Figure 3.4). It can be obtained by equating the two functions, i.e.

Df (z;S) = Db(z;S), which finally leads to

z2
( 1

σ2
b

− 1

σ2
f

)
− 2z

(µb

σ2
b

− µf

σ2
f

)
+
µ2
b

σ2
b

−
µ2
f

σ2
f

+ 2 log
(σb
σf

)
= 0. (3.4)

Note that we have omitted expressing “(S)” along with the means and variances for clarity.

When we solve the above quadratic equation, we get

z∗ =
µbσ

2
f − µfσ

2
b

σ2
f − σ2

b

± σfσb
σ2
f − σ2

b

×
((
µf − µb

)2 −
2
(
σ2
f − σ2

b

)(
log
(
σb
)
− log

(
σf
))) 1

2

. (3.5)

Having obtained z∗, overlap L(S) can now be computed as

L(S) =

∫ z=z∗

z=0

Df (z;S) dz +

∫ z=1

z=z∗
Db(z;S) dz . (3.6)

And finally, separation measure φ for saliency map S is calculated as

φ(S) =
1

1 + log10

(
1 + γ L(S)

) . (3.7)

where γ is set as number of bins used for representing the two distributions. In Figure 3.5, we

show a set of images with their saliency maps and separation measures. It can be seen that
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0.999           0.774              0.623          0.541 

0.504            0.421             0.416          0.365 

Figure 3.5: Sample Images with their saliency maps and separation measures (φ) of quality.
Saliency maps with low scores fail to highlight the starfish effectively.

saliency maps become unfit to highlight starfish as separation measure decreases from top-left

to the bottom-right.

3.1.2.2 Concentration measure (ψ)

A high-quality saliency map should also have concentrated foreground pixels. Often they get

distributed into multiple object components spatially. Ideally, there should be one largest

object component and other components (if any) will disperse from that component. Big-

ger the contribution of this largest component to the foreground, higher will be the con-

centration of foreground. At the same time, lesser the dispersion of foreground into sev-

eral object components, higher will be the foreground concentration again. Let O(S) =

{O1(S), O2(S), · · · , O|O(S)|(S)} denote set of these object components. Contribution Cu(S)

of Ou(S) towards the total foreground is measured as

Cu(S) =

[
Ou(S)

]
|O(S)|∑
u=1

[
Ou(S)

] , (3.8)

where
[
·
]

denotes area of Ou(S) and | · | denotes cardinality. Essentially, it is the fraction of

the total foreground area covered by the object component. Now, if u∗ = arg max
u

Cu(S), then
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Table 3.1: Illustration of our concentration measure ψ by varying the O(S). Note: Numeric
values here mean areas of the comprising object components and total foreground area is 100.
It can be seen that it decreases as largest component’s contribution decreases and number of
object components increase.

O(S) ψ(S)
{100} 1
{90, 10} 0.95
{90, 4, 3, 2, 1} 0.92
{80, 10, 10} 0.867
{50, 50} 0.75
{50, 30, 20} 0.667
{25, 25, 25, 25} 0.438

concentration measure ψ for saliency map S is calculated by

ψ(S) = Cu∗(S) +
(
1− Cu∗(S)

) 1

|O(S)|
, (3.9)

where first term measures contribution made by the largest component and second term mea-

sures lowness of dispersion in the foreground by calculating the reciprocal of the total number

of components. These two terms are adaptively balanced by the sum of remaining contribu-

tions, i.e. 1 − Cu∗(S). This ensures that concentration measure always lies between Cu∗(S)

and 1. In Table 3.1, we illustrate how a saliency map S having 100 pixels with foreground

likelihood measures while varying its object components set O(S). It can be observed how

concentration measure ψ decreases from top to bottom as the largest component’s contribution

decreases. And it also decreases with the increasing dispersion of the foreground. For instance,

the third set shows lower concentration value than the second one because of higher dispersion,

although both have same largest object component’s contribution.

3.1.3 Interaction

Images interact with each other hoping for saliency quality improvement. Our interaction pro-

cess consists of 3 steps: grouping, saliency warping, and saliency fusion as shown in Figure 3.6.
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3.1.3.1 Grouping

Considering intra-class variation that can exist in terms of the viewpoint, size, color, location

etc, of the common objects, we divide images into a number of image groups so that images

within the same group have somewhat similar appearances. Specifically, weighted GIST de-

scriptor [72] (weighted by saliency map following [78]) is used to represent each image. We

use k-means clustering for this grouping. Let there be N clusters. Denote Zn as set of images

in the nth cluster, where n ∈ {1, · · · , N}. In general, 10 images per group are good enough

for our approach, and we set N accordingly. This grouping can also assist in feature selection

for the matching purpose. Shape features such as SIFT may be reliable for feature matching

in general, but it is not the same with color feature due to the possible intra-class variation in

terms of color. But when it is the same object instance across images, color plays a very vital

role, such as in the iCoseg dataset. Therefore, in order to adaptively detect such a case, for any

sub-group, we calculate a metric δ that measures the color histogram variance (across images

in group) averaged over histogram bins using

δ(Zn) =
1

Nb

Nb∑
j=1

√
1

|Zn − 1|
∑
Ii∈Zn

(
HSi

Ii
(j)− Ĥn(j)

)2
, (3.10)

where HSi
Ii

denotes normalized color histogram (with Nb = 512 bins indexed by j) of only the

salient pixels in Ii. Ĥn denotes average of such histograms in Zn. Higher the δ, more the color

feature becomes unreliable for interaction. We consider only salient pixels because we assume

that common objects pixels are generally salient, and this gives some information about the

common object. So, we concatenate color feature to the dense SIFT feature of images in the

sub-group Zn, only if δ(Zn) < ε (See Section 3.3 for discussion on setting ε).

3.1.3.2 Saliency Warping

Warping [55] basically is a process of aligning one image w.r.t. another image by establishing

dense correspondence. The idea behind saliency warping is that by alignment of corresponding

pixels in other images to the pixels of an image, saliency information across corresponding

pixels can be shared to estimate a suitable saliency value for the pixel. Following [78], masked

Dense correspondence [55] (masked by Otsu thresholded saliency map) is used to find the
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Figure 3.6: Interaction process includes three steps: grouping, saliency warping, and saliency
fusion.

corresponding pixels. The difference is that feature used in our approach may also include the

color feature in addition to the SIFT feature, depending upon the δ(Zn) value.

Particularly, if wij denotes flow field, warped saliency map Wij of Ij for Ii is formed by

Wij(p) = Sj(p+wij(p)). In this manner, warped saliency maps of other images in the group are

formed for every image in the group. These warped saliency maps are considered as candidate

saliency maps comprising of candidate saliency values for each pixel in an image. Let Wk
i

be set of all the candidate saliency maps for image Ii ∈ Zn at kth iteration including its own

saliency map, and thus it is defined as

Wk
i =

{
{Sk

i ,W
k
ij|Ij ∈ Zn\Ii}, if ρi = 0;

{Sk
i }, else,

(3.11)

where the set consists of warped saliency maps in addition to the saliency map if break variable

is not yet triggered. Hence, break variables become crucial in avoiding the costly warping

processes when they are not required.

3.1.3.3 Saliency Fusion

Now that we have collected candidate saliency maps for Ii in the set Wk
i , we can fuse them in

any number of ways, such as average, geometric mean or median etc. Also, we can make use

of the quality scores as weights to improve the chances of fused saliency map to have better

quality. Let Qk
n = {φ(Sk

j )ψ(Sk
j )|Ij ∈ Zn} be set of quality scores of saliency maps of group

Zn at kth iteration. Let the fusion function be denoted as F and we define the fused saliency
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Figure 3.7: Scores obtained using original saliency maps and using our fused saliency maps
through various fusion functions on various datasets. It can be seen that fusion improves the
performance, and geometric mean and median fusion functions are best.
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map of Ii ∈ Zn at kth iteration as

F k
i = F(Wk

i ,Q
k
n) (3.12)

where the fusion function takes two inputs, i.e. a set of candidate saliency maps of the image

and set of quality scores of its group.

In order to show the importance of fusing warped saliency maps of other similar images,

and to choose an appropriate fusion function, we compare Otsu thresholded saliency maps with

groundtruth masks on various co-segmentation datasets. We report overall precision, recall and

f-measure results in the Figure 3.7. It can be seen that fusing saliency maps greatly improves

the performance over using original saliency maps on all the datasets. There are very little

differences among performances between fusion strategies used here. However, though this

empirical experiment, we notice that mean, geometric mean and median functions perform the

best. We choose weighted median in our experiments for fusion finally, because it is robust to

outliers. The way median filtering is used for removing the salt and pepper noise in images

inspires us to adopt median filter for application on the corresponding pixels across images

(quite different from neighboring pixels in an image).

We use regularization to make saliency scores consistent within a superpixel region. Specif-

ically, [94] is adopted to generate superpixels, and each pixel’s saliency score is replaced with

average saliency score of its superpixel.

3.1.4 Improving Efficiency

We have seen that above approach of interaction involves aligning each image w.r.t. each and

every image in a group, but so many of computationally expensive alignments while consider-

ing large datasets is certainly undesirable. In order to overcome this, we modify our approach

slightly. Assume that dense correspondence is precise, which means that same sets of corre-

sponding pixels will get together every time we try to collect them for different images in the

group. In that case, collecting candidate saliency values at each pixel for each image becomes

repetitive. Instead, an efficient way would be to collect candidate saliency values for one time

only and propagate the fused result. Therefore, for every group, we choose a key image, say

In in Zn, for which alone we obtain corresponding pixels and calculate the fused saliency map
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Figure 3.8: We improve efficiency of our interaction process by collecting candidate saliency
maps only for the key image and then aligning back the fused saliency map to other member
images.

first. Then this fused saliency map is aligned back to different group members to form candi-

date saliency maps for the group members (as shown in Figure 3.8). Let Wk
in denote warped

fused saliency map of In to image Ii at kth iteration. Wk
i can now be redefined in the following

way:

Wk
i =


{Sk

i ,W
k
ij|Ij ∈ Zn\Ii}, if Ii = In and ρi = 0;

{Sk
i ,Wk

in}, if Ii 6= In and ρi = 0;

{Sk
i }, if ρi = 1,

(3.13)

where the first case is for key image, second case is for member images, and third case is when

break variable is already triggered. And as far as fusion is concerned, it is performed in the

following way:

F k
i =


F
(

Wk
i ,Q

k
n

)
, if Ii = In;

F
(

Wk
i , {φ(Sk

i )ψ(Sk
i ),

∑
Ij∈Zn

φ(Sk
j )ψ(Sk

j )}
)
, else,

(3.14)

where fusion for the key image remains the same as earlier. But for member images, since it is

a fusion between a saliency map and a warped fused saliency map of key image, we give high

weight as much as the sum of all the quality scores in the group to the warped fused saliency

map, because it is highly reliable for having been fused over several saliency maps.

30



CHAPTER 3. QUILTY-GUIDED FUSION-BASED CO-SALIENCY ESTIMATION FOR IMAGE CO-SEGMENTATION
AND CO-LOCALIZATION

We make an analysis how this modification affects the time-complexity. In the original

method, in a group consisting of x images, every time we calculate fused saliency map for

an image, saliency maps of all other (x − 1) images need to warp to this image, which re-

quires computing the costly dense correspondences for (x − 1) times. Thus, the interaction

of all x images will need computing dense correspondences for x(x − 1) times. This sug-

gests O(x2) complexity, which is time-consuming and it is undesirable while dealing with

large-scale datasets. But after the modification, we need to compute dense correspondence for

(x − 1) times for the key image alone to generate its fused saliency map first, and then warp

it back to member images, requiring computing dense correspondences for another (x − 1)

times. Thus, in total it turns out to be only 2(x − 1), suggesting O(x) complexity. Thus, this

modification resulted in reducing the time-complexity of proposed method from quadratic to

linear.

3.1.5 Applications

The obtained final high-quality saliency maps have applications in object-level segmentation

and localization.

Segmentation: Based on the final saliency map S∗i , we obtain the final object mask using

GrabCut algorithm [76], in which foreground (FGi) and background (BGi) seed locations are

determined by

p ∈

{
FGi, if S∗i (p) > τ ;

BGi, if S∗i (p) < υi,
(3.15)

where pixel p will be considered as background seed location if its final saliency value is less

than υi (Otsu’s threshold [73] value of S∗i ). Similarly, pixel p will be considered as foreground

seed location if its saliency value is greater than τ , which we call foreground threshold param-

eter. By default, we set τ as 0.75.

Localization: For localization, we first threshold final saliency map S∗i with some thresh-

old, say τ (same as in segmentation application above), and identify sparsely located spatial

group
(
same as the object components such asOu(S∗i )

)
of white pixels (having saliency values

greater than τ ) as the candidate objects. Out of them, we only choose dominant objects that
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make at least half the contribution made by the largest object, i.e. Cu(S∗i ) > 0.5 × Cu∗(S∗i ).

Such a criterion allows localization of multiple dominant objects if they are of somewhat simi-

lar size. By this, we also ensure that insignificant objects in the image that are present (may be

due to complex backgrounds) are not considered for localization. Also, since these dominant

objects may not be having similar edges as ones in the image, we identify nearest edge loca-

tions to the pixels in the concerned dominant object and adjust the bounding box to extreme

edge locations in the four directions.

3.2 Experiments

We conduct extensive experiments to evaluate our method in terms of the applications dis-

cussed in the previous section. In this section, we first provide details of different datasets and

evaluation metrics used, then we proceed with the evaluation.

3.2.1 Datasets

Several public co-segmentation and co-localization datasets are already available on which we

can evaluate our final saliency maps.

In literature, most popularly used datasets for the co-segmentation evaluation are MSRC [88]

and iCoseg [7] datasets. We also evaluate on recently developed Coseg-Rep [20] and Internet

images [78] datasets. MSRC dataset contains only 14 categories with 419 images in total.

iCoseg dataset contains 38 categories with 643 images in total. For the fair comparison with

the existing methods [78][24], like them, we also use subset of the dataset which includes 30

categories and a total of 530 images. Coseg-Rep dataset contains 23 categories and 572 im-

ages in total. Also, Internet images dataset released by [78] contains 3 categories: Airplane,

Car, and Horse, with 4347, 6381 and 4542 images, respectively. All these datasets are not so

big and suitable for our original interaction approach. For evaluating our efficient interaction

approach for eventual segmentation in the large-scale scenario, ImageNet [22] setup of 0.5

million images in [28] is used.

Recently, for co-localization evaluation, [90] used tight bounding boxes across the groundtruth

segmentation masks of Internet images dataset as the ground truth bounding boxes. Following
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them, we also evaluate our method on the same setting. For the large-scale localization eval-

uation, we use ImageNet again in both unsupervised and supervised setups as suggested by

previous methods, [90] and [95], respectively. Since our method can work in both supervised

and unsupervised scenarios, for distinguishing between the unsupervised results and super-

vised results, suffixes (U) and (S) are used, respectively. As per the setup in [90], there are 1

million images for which bounding boxes are available in ImageNet, and they are spread over

3627 classes. In the supervised setup, [95] divides images with available ground truth bound-

ing boxes into source sets (or training set) and target sets (or test set). For images that belong

to source set, we replace saliency maps with ground-truth bounding boxes, and the task now is

to obtain bounding boxes for remaining images in the group.

3.2.2 Evaluation Metrics

Following the literature [78][24], we use Jaccard Similarity (Jacc.) and Accuracy (Acc.) for

segmentation evaluation. Jaccard Similarity is defined as the intersection divided by union of

ground-truth and the segmentation result. Accuracy is defined as the percentage of correctly

labeled pixels. Similarly, CorLoc score has been used for evaluation of localization which is

defined as percentage of images that satisfy the condition: area(Bgt∩Bco)
area(Bgt∪Bco) > 0.5, where Bgt and

Bco are ground-truth and computed bounding boxes, respectively.

3.2.3 Segmentation Evaluation

In Tables 3.2-3.4, we compare our results of both original and efficient methods with state-

of-the-art co-segmentation methods on different datasets. It can be seen that our methods

obtain competitive performance compared to the existing methods. Note that our method is

much faster than state-of-the-art [24]. Specifically, running on the same PC with Intel Core

i5-3470@3.20 GHz CPU and 32 GB RAM, [24] (using their own source codes in Matlab)

takes 29.2 hours to complete the entire segmentation process on MSRC dataset. However,

our method (also in Matlab codes) takes only 4.9 hours. Also, we show some examples in

Figure 3.9 where our method performs better than other methods including [24]. Another thing

to note here is that performance difference is quite narrow between our original and efficient

methods, which suggests that our assumption of warping process being precise is a viable
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Table 3.2: Comparison on Coseg-Rep dataset using overall values of Jaccard Similarity (Jacc.)
and Accuracy (Acc.)

Jacc. Acc.
Co-segmentation&Co-sketch [20] 0.67 90.2
Ours (original) 0.73 91.9
Ours (efficient) 0.72 91.3
Ours (tuned/group) 0.76 92.8

Table 3.3: Comparison on Internet image dataset using overall values of Jaccard Similarity
(Jacc.) and Accuracy (Acc.)

Car Horse Airplane
Jacc. Acc. Jacc. Acc. Jacc. Acc.

[39] (reported in [78]) 0.37 58.7 0.30 63.8 0.15 49.2
[40] (reported in [78]) 0.35 59.2 0.29 64.2 0.12 47.5
[78] 0.63 83.4 0.54 83.7 0.56 86.1
Ours (original) 0.71 87.0 0.57 84.7 0.55 85.7
Ours (efficient) 0.71 86.4 0.56 84.2 0.54 85.2
Ours (tuned/group) 0.73 88.4 0.61 88.1 0.59 88.4

Table 3.4: Comparison on MSRC and iCoseg datasets using overall values of Jaccard Similarity
(Jacc.) and Accuracy (Acc.)

MSRC iCoseg
Jacc. Acc. Jacc. Acc.

Discriminative [39] 0.45 70.8 0.39 61.0
Multi-Class [40] 0.51 73.6 0.43 70.2
Object Discovery [78] 0.68 87.7 0.69 89.8
Composition [24] 0.73 89.2 0.73 92.8
Ours (original) 0.72 88.9 0.67 89.3
Ours (efficient) 0.71 88.1 0.66 88.9
Ours (tuned/group) 0.74 89.7 0.72 91.8

Table 3.5: Comparison on large scale dataset ImageNet using overall values of Jaccard Simi-
larity (Jacc.) and Accuracy (Acc.)

Methods Jacc. Acc.

[44] - 77.3
[28] 0.57 84.3
Ours(efficient) 0.56 84.1
Ours(tuned/group) 0.59 86.4
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Results

Figure 3.9: Sample segmentation results where our method performs better than other methods
of co-segmentation

Figure 3.10: Sample segmentation results from ImageNet dataset
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MSRC iCoseg 

Coseg-Rep Internet Images 

Figure 3.11: Sample segmentation results from MSRC, iCoseg, Coseg-Rep, and Internet Im-
ages datasets.

assumption. Given this, we compare segmentation results of our efficient method with existing

state-of-the-art results on ImageNet (large-scale dataset) in Table 3.5. We achieve comparable

performance here as well. Note that results reported in other methods are obtained either by

tuning parameters or by undertaking some parameter learning. For the fair comparison, we

also tune our parameter τ per group and show the resultant performance. See Figure 3.10-3.11

for sample segmentation results that we obtain on different datasets. It can be seen in these

figures that proposed method is able to accurately segment both simple and complex images

because we are able to effectively guide the co-saliency estimation using our saliency quality

measurement.

3.2.4 Localization evaluation

In this section, we discuss how we evaluate the proposed method for localization application

on both unsupervised and supervised setups.

Unsupervised Setup: In the unsupervised setup, we compare our results with existing

methods in Table 3.6 on both ImageNet and Internet images datasets. We achieve 21.8% and

10.3% improvements over [90] on ImageNet and Internet images datasets, respectively. Since
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Table 3.6: CorLoc comparison on ImageNet and Internet images datasets in unsupervised setup

ImageNet Internet
[78](U) - 75.2
[90](U) 53.2 76.6
[17] - 84.2
Ours (efficient)(U) 64.6 84.5 (tuned/group)

Table 3.7: CorLoc comparison on ImageNet dataset in supervised setup
CorLoc

[27](S) 58.5
[95](S) 66.5
[95]∗(S) 68.3
Ours (efficient)(S) 71.1
Ours (efficient)(U) 68.7

other methods tune their parameters on Internet images dataset, we also tune our threshold

parameter (τ ) per group and report the results for this particular dataset. [17] also evaluates

on Internet images dataset, and proposed method could marginally outperform [17] as well.

However, the vital difference between [17] and proposed method is in terms of speed. Our

method is much simpler and faster, and therefore it has large scale application as demonstrated

on the ImageNet.

Supervised Setup: In the supervised setup, the problem that we try to address here is

similar to the “Self" case in [95], where only images within the same class are used as source

sets. In Table 3.7, we compare our results on the target sets with two previous attempts in

[27] and [95] to populate ImageNet with bounding boxes in a supervised manner. We achieve

21.4% and 6.9% improvement over [27] and [95], respectively. [95] also reports results using

state-of-the-art features and object proposals, which we denote as [95]∗. We achieve 4.1%

improvement over state-of-the-art [95]∗ as well. Considering that proposed method does not

essentially need bounding boxes, unlike [95], we report our unsupervised results (Proposed

Method(U)) as well, where we do not use any ground-truth bounding boxes of even images

belonging to source sets. Interestingly, we still obtain comparable results to [95]∗(S).

Figure 3.12 shows sample localization results obtained on ImageNet dataset. In addition,

we show our results (red) along with the ground-truth (green) for visual comparison in Fig-
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Figure 3.12: Sample localization results from ImageNet dataset
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Figure 3.13: Sample visual comparison between groundtruth (green) and our results (red)
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Table 3.8: Average δ and total time taken on various datasets for original and efficient interac-
tion strategy (for one iteration).

δ δg.t. Time (mins.) Time (mins.)
(Original) (Efficient)

MSRC 0.0026 0.0023 85 18
iCoseg 0.0017 0.0014 116 28
Coseg-Rep 0.0029 0.0029 186 39
Weizmann Horses 0.0039 0.0027 80 17
Internet Images 0.0028 0.0027 4306 901

ure 3.13. Thanks to our quality-guided approach to the joint processing, proposed method is

able to accurately provide bounding boxes for both simple and complex images here also.

3.3 Discussion

ε-setting and δ-effectiveness: In a group Zn, usage of color feature depends upon δ(Zn) < ε

criterion. In order to set the ε value properly, we show average δ values obtained for 5 datasets

in Table 3.8, and only iCoseg dataset out of them requires color feature. As expected, a notable

difference can be observed between iCoseg dataset and rest of the datasets in terms of their δ

values. Noting this, we comfortably set ε = 0.0020. We also show δg.t values where we make

use of groundtruth maps in the place of saliency maps. A high correlation of 0.796 between δ

and δg.t suggests that our δ measurement is a good indicator.

Efficiency Comparison: It can also be observed in Table 3.8 how the efficient strategy

greatly reduces the time taken for interaction to 20%− 25% compared to the original strategy.

Therefore, proposed modifications have certainly made large-scale application feasible while

keeping the performance somewhat competitive (as we see in Tables 4.4-4.6).

Limitations: Proposed method fails when our assumption (common object or its parts

are salient in general, if not in every image) fails. Therefore, it pretty much depends on the

association of the image for our method to succeed. For example, only the beak portion of

goose gets segmented or localized in Figure 3.14(i), because other body parts are salient neither

in the considered image nor in the association. The second limitation is caused by poor warping

process, i.e. when it struggles to align objects of very different sizes (a case that can easily
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 (i)                       Association                  Results                       (ii)                            Warping by                Results 

(iii) 

Figure 3.14: Our method fails in three scenarios: (i) Wrong association, (ii) Difficult warping,
and (iii) Multiple common objects.

arise due the poor choice of clustering parameter during group formation, especially if hardly

10 images are there). For example, high size variation in Figure 3.14(ii) produces poor results.

The third limitation is that our method may end up segmenting multiple object classes in some

images, while groundtruth masks may consist of only one object class. This can happen due

to two reasons, one is that all images in a particular group (cluster) contain multiple object

classes, and another one is that saliency quality couldn’t be improved by fusion against the

(already) high quality original saliency map. In such cases, our result may not match well with

groundtruth masks. Note how in Figure 3.14(iii) our method captures multiple object classes.

On the contrary, groundtruth masks capture only one object class: plane, horse, windmill, or

pyramid in their corresponding images.

3.4 Summary

In this chapter, we have proposed a novel quality-guided fusion-based co-saliency estimation

method, where saliency maps of different images are simply fused using dense correspondence
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technique. More importantly, this joint processing is guided by our proposed saliency quality

measurement system, which helps us decide whether to choose the original or fused saliency

map as the final one. Idea is to choose the saliency map with well-separated foreground and

background, as well as a concentrated foreground. In this way, we attempt to address the indi-

vidual versus joint processing issue. Our evaluation of final saliency maps w.r.t. segmentation

and localization applications on several benchmark datasets including the large-scale dataset,

Imagenet, show that proposed framework is able to achieve very competitive results.
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Chapter 4

Image Co-segmentation via Saliency

Co-fusion

Image co-segmentation refers to the task of extracting common objects from a set of images,

which is very useful for many vision and multimedia applications such as object-based im-

age retrieval, image classification, and object recognition. It can be considered as one type of

weakly supervised segmentation methods, which makes use of the weak prior that there exist

common objects across different images in the set. This is quite different from single image

segmentation. The existing single image object-level segmentation methods can only exploit

either the prior from human supervision, which requires human interactions such as GrabCut,

or the prior from single image-based visual saliency, which might fail at complex images with

cluttered background or non-salient foreground. In contrast, image co-segmentation goes be-

yond single image segmentation in the sense that it can exploit not only the intra-image priors,

but also the inter-image priors. Furthermore, it also brings in the new challenges of how to find

the right inter-image priors and how to make use of them.

The concept of co-segmentation was first introduced in [77]. Later, many co-segmentation

algorithms have been proposed in the literature, ranging from early image pair co-segmentation

[30][70], multiple image co-segmentation [39][43][48][65] to the recent multiple objects co-

segmentation [69][56][59][42], noisy image set co-segmentation [78] and large-scale co-segmentation

[28][34].
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Figure 4.1: Fusion of multiple saliency maps of an image generated by different saliency ex-
traction methods to enhance the common foreground object while suppressing background
saliency. The fusion process is essentially weighted summation of different saliency maps at
superpixel level.

Despite the great progress made by the existing co-segmentation algorithms, they still have

some major limitations. First, most of the state-of-the-art co-segmentation algorithms require

fine-tuning of quite a few parameters and the co-labelling of multiple images simultaneously,

which are very complex and time-consuming, especially for large diverse datasets. Second,

as seen in the existing works [78][97], co-segmenting images might not perform better than

single image segmentation for some datasets. This might be due to the additional energy term

commonly used to enforce inter-image consistency, which often results into unsmooth segmen-

tations in individual images.

In this chapter, we focus on binary image co-segmentation, i.e. extracting a common fore-

ground from a given image set. Instead of following the conventional way of co-labelling

multiple images, we aim to exploit inter-image information through co-saliency, and then per-

form single-image segmentation on each individual image. Thus, no additional energy terms

get added while performing the segmentation. Differently from the co-saliency idea presented

in the previous chapter, in order to make the system robust and avoid heavy dependence on

one single saliency extraction method for generating co-saliency, we here propose to apply
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Figure 4.2: Flowchart of the proposed saliency co-fusion based image co-segmentation where
multiple images are used to generate weight maps for fusing different saliency maps of images
to extract common foreground. Element, the basic processing unit of our process, is defined as
a saliency map region of a superpixel.

multiple saliency extraction methods on each image. Eventually, an enhanced saliency map is

generated for each image by fusing its various saliency maps via weighted summation at super-

pixel level, where the weights are optimized by exploiting inter-image information, as shown

in Figure 4.1. We call the proposed method saliency co-fusion, whose objectives include:

(1) boosting the saliency of common foreground regions; and (2) suppressing the saliency of

background regions.

Figure 4.2 illustrates the process flow of the proposed saliency co-fusion based image co-

segmentation. The key component lies in the developed saliency co-fusion process, which

is performed at the superpixel level. Particularly, we define each saliency map region (pro-

duced by one saliency detection method) of one superpixel as an element (see Figure 4.2

top), and give a weight for each element. We formulate the weight selection as an energy

minimization problem, where we incorporate saliency recommendations from similar ele-

ments, foreground/background priors through similar element voting, and neighbor smooth-

ness constraints. Finally, the fused saliency for a superpixel is just a weighted summation

of the corresponding elements. Experimental results show that our saliency co-fusion based

co-segmentation achieves competitive performance even without fine-tuning the parameters,

i.e., at default setting, compared with the state-of-the-art co-segmentation algorithms. In addi-
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tion, our co-fused saliency maps are much cleaner compared to the co-saliency maps generated

in previous chapter. Here, saliency details do not get lost through regularization, which was

required in the previous chapter.

4.1 Proposed Method

In this section, we first formulate our saliency co-fusion problem. Then we give a detailed

description of individual terms as well as implementation details.

4.1.1 Problem Formulation

Considering a set of N images I = {I1, I2, ..., IN}, denote Sn = {Sn
1 , S

n
2 , ..., S

n
M} the set of

M saliency maps (normalized to range 0-1) for image In obtained using M different existing

saliency extraction methods. Also, denote Pn = {P n
1 , P

n
2 , ..., P

n
|Pn|} the set of superpixels in

image In obtained using [1]. Defining a saliency map region of superpixel as an element e,

which is the basic processing unit in our method, we have total Ne =
∑N

n=1M |Pn| elements.

Let z(n, k,m) denote the associated weight for element e(n, k,m) that belongs to image n,

superpixel k, and saliency map m. The weight maps depicted in Figure 4.1 and Figure 4.2 are

basically constructed using these associated weights.

We stack all the weights into a vector z = [z1, z2, . . . , zNe ]
t for simplicity and use u or v

as the element indices for referencing purposes. We mix the usage of the element vector index

with its corresponding matrix index (n, k,m) since one can be converted to the other easily.

Our goal is to find the optimal weight for each of the elements in order to jointly fuse various

saliency maps of similar images at superpixel level such that common foreground saliency gets

boosted up and background saliency is suppressed in final fused saliency maps. In particular,

we treat saliency co-fusion as a weight selection problem. On one hand, we want to give

higher weights to elements with higher confidence. On the other hand, we want to have certain

consistency in the weight selection among neighboring elements. Considering the constraint

that the resultant fused saliency map values should occur in the range [0,1], we formulate our

task as a quadratic programming problem:
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Figure 4.3: Feature Description: Each element is divided into foreground and background
regions after global thresholding and two sets of features are extracted from these two regions
separately, one for foreground and the other for background.

min
z

Y tz + λztGz

s.t. 0 ≤ zu ≤ 1, ∀u ∈ [1, Ne],

M∑
m=1

z(n, k,m) = 1, ∀In ∈ I, P n
k ∈ Pn

(4.1)

where there are two terms traded off by a balancing parameter λ. The first term (Y tz) is a

prior term to enforce global commonness and co-saliency, where the prior term coefficient

vector Y ∈ RNe×1. The second term (ztGz) is a pairwise smoothness term to encourage

neighborhood elements to take similar weights, where the smoothness term coefficient matrix

G ∈ RNe×Ne . The constraints in Eq. (4.1) are there to ensure that individual weights range

between 0 and 1, and the summation of all the weights for one superpixel is equal to one. Once

z is determined by minimizing Eq. (4.1), the fused saliency map F n for a pixel p ∈ P n
k can be

simply computed as

F n(p) =
M∑

m=1

z(n, k,m)× Sn
m(p), (4.2)

where Bn
m is the m-th saliency map for an image In.
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Poor Contrast High Contrast
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Figure 4.4: There is no uniformity among saliency maps obtained by different methods. Some
saliency maps are of high contrast, while some are of poor contrast. Some are bright, while
some are dark.

4.1.2 Feature Description and Similarity

Unlike other methods [78][25][36] where features for matching are extracted from images

independent of saliency maps, we develop a saliency map based feature descriptor because our

processing units are elements (defined as a saliency map region of a superpixel), instead of

pixels or superpixels. We consider the fact that there is no uniformity among saliency maps

obtained by different methods. For instance, some saliency maps are of high contrast, while

others are of poor contrast. Some are bright, while others are dark. It can be noticed in Fig. 4.4.

This can cause serious problems in the process if saliency values are directly taken as features.

We tackle it by distinguishing potential foreground pixels from potential background pixels in

an element using the classical Otsu’s method as shown in Figure 4.3. For each group (both the

potential foreground group and the potential background group in the element), we construct

a feature descriptor which consists of the average dense SIFT descriptor, and also the average

color values in RGB, HSV, and Lab spaces. However, for each element, we have two feature

descriptors with each having dimensions d = 128 + 3 + 3 + 3 = 137. We concatenate them as

the feature descriptor for one element. In this way, different elements of the same superpixel
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obtain different feature descriptors, depending upon the foreground/background distributions

in each element.

Xf , Xb ∈ RNe×d and X ∈ RNe×2d denote the data matrices that stack the foreground de-

scriptors, the background descriptors and the foreground background concatenated descriptors

of all the elements as its rows, respectively. We construct similarity matrices κf , κb and κ, all

ofNe×Ne dimensions that record the potential foreground similarity, the potential background

similarity, and the total similarity respectively between all the element pairs:

κf (u, v) = exp
(
− γ

d∑
q=1

(
Xf (u, q)−Xf (v, q)

)2
Xf (u, q) +Xf (v, q)

)
(4.3)

κb(u, v) = exp
(
− γ

d∑
q=1

(
Xb(u, q)−Xb(v, q)

)2
Xb(u, q) +Xb(v, q)

)
(4.4)

κ(u, v) = exp
(
− γ

2d∑
q=1

(
X(u, q)−X(v, q)

)2
X(u, q) +X(v, q)

)
(4.5)

where γ is a parameter set to 1
300

.

Note that the potential foreground similarity is set to zero if all the pixels in the element

belong to the background group and vice versa. If elements u and v belong to the same image,

κf (u, v), κb(u, v), and κ(u, v) are all set to zero since we aim at exploiting similar elements

from other images.

Based on the total similarity matrix S, similar elements for each element are identified if

the corresponding similarity values are large than a similarity threshold θ (θ is set to 0.75).

For one element, its similar elements provide recommendations via different cues, based on

which we then derive the appropriate weight for the considered element so as to encourage or

discourage its role in the final fused saliency map. Details are elaborated below.

4.1.3 Prior Term

We define our prior term coefficient vector Y in Eq. (4.1) as

Y = Ys + Yf + Yc (4.6)
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Figure 4.5: Illustration of how similar elements from other images help in determining better
elements via Ys (saliency cue) and Yf (foreground/background cue) calculations in the first
image. NOTE: The numerical value that an element is pointing to is the average saliency value
of the element. Ys signifies how close the saliency value of an element is to the recommended
saliency value by its similar elements, whereas Yf signifies the average punishment of an ele-
ment for deviating from the foreground/background recommendations from each of its similar
elements. The lesser the Ys and Yf are for an element, the higher weight the element will get.
For example, the element covering the chin area in the first saliency map is considered as a
better one than that in the second saliency map because of having lower values for both of the
cues.

which includes three cues: saliency cue (Ys) from similar elements, foreground/background

prior cue (Yf ) from similar elements and centerness cue (Yc) based on the spatial location of

the element.

Saliency Cue: Following the idea of co-saliency or common saliency, we compare the

average saliency of similar elements with the average saliency value of the considered element

to decide whether the element should be emphasized or not (give high weight or not). Let

T = [T1, T2, ..., TNe ]
t denote the vector where each entry is the average saliency value of an

element. On the other hand for an element u, we compute the average saliency recommended

by its similar elements as

Eu =

∑Ne
v=1 Tvδ

(
κ(u, v) > θ

)∑Ne
v=1 δ

(
κ(u, v) > θ

) (4.7)
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where δ
(
·
)

is the indication function, equal to one if the condition
(
·
)

is true (otherwise 0),

which is used to determine whether element v is a similar one or not. LetE = [E1, E2, ..., ENe ]
t

be the vector comprising of the recommended average saliencies of elements. We then simply

define the saliency cue as

Ys = |E − T |. (4.8)

Essentially, Eq. (4.8) suggests that if T (u) is very different from E(u), then the corresponding

weight zu is encouraged to be small by Eq. (4.1), which means such elements are not so

important in defining final co-fused saliency value, hence the punishment. Figure 4.5 illustrates

how similar elements from other images help to determine better elements.

Foreground/Background Cue: Another cue similar elements can provide is to recom-

mend the given element to be foreground or background. For an element u and one of its sim-

ilar elements v, if their foreground feature descriptors are more similar than the background

descriptors, v recommends foreground with a saliency punishment of (1 − T (u)) to u; other-

wise, it recommends background with a punishment of (T (u)− 0), i.e.

Ru(v) = 1− T (u), if κf (u, v) > κb(u, v)

Ru(v) = T (u)− 0, if κf (u, v) < κb(u, v)
(4.9)

where Ru(v) denotes the saliency punishment recommended by v to u. Considering all the

similar elements, we define foreground/background cue Yf for an element u as

Yf (u) =

∑Ne
v=1 δ

(
κ(u, v) > θ

)
Ru(v)∑Ne

v=1 δ
(
kappa(u, v) > θ

) (4.10)

where δ
(
·
)

is the indication function, equal to one if the condition
(
·
)

is true (otherwise 0),

so as to include only similar elements. Figure 4.5 also illustrates how similar elements from

other images provide the foreground/background cue.

Centerness Cue: In addition to the above mentioned saliency and foreground/background

cues, we also take advantage of the general observation that objects are often located at the

center, and such central bias is quite prevalent in several benchmark datasets as pointed out in

[52]. Therefore as an extra measure, saliency maps that emphasize center regions are encour-

aged to be given higher weights at central regions. To account for central bias, a spatial weight
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mask for each image is created using normalized Gaussian function which is centered at the

image center. Specifically, for a pixel p in In (of size widthn × heightn) with coordinates

(x, y) and with its origin at the image center, the central weight mask is defined as

ηn(p) = exp
(
− x2

0.2× width2n
− y2

0.2× height2n

)
. (4.11)

For an element u or e(n, k,m), its central bias is calculated by averaging the spatial weights of

all its pixels, i.e.

ωu =

∑
p∈Pnk

ηn(p)∑
p∈Pnk

1
. (4.12)

Let ω = [ω1, ω2, ...., ωNe ]
t denote the vector consisting of the central bias weights of all the

elements. Thus, we now define the centerness cue Yc for an element u as

Yc(u) = ω(u)× |ω(u)− T (u)|, (4.13)

which essentially measures how the saliency of an element deviates from its central bias weight.

Central bias weight is also multiplied so that influence of this deviation in minimizing Eq. (4.1)

depends upon the spatial location of the element.

Note that our centerness cue is different from other methods like [25], which deliberately

emphasize the center regardless of whether an object is present or not in the center. On the

contrary, our method emphasizes the center only if a salient object is present in the center. Our

centerness cue provides additional support when the saliency and foreground/background cues

fail to recommend something substantial because of lack of support from other images due to

too much intra-class variation or pose differences. In such case, if there is a salient object at

the center, it will be supported by the centerness cue.

4.1.4 Smoothness Term

Since in our prior term we have made discrete conditions using θ to select similar elements,

there is a certain possibility of inconsistencies in weight distribution. A smoothness term is

necessary to curb inconsistencies in weight distribution among neighbor elements. Here we

define neighbor elements as those which are similar in not only the feature space but also the
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saliency space. If a pair of elements have very similar saliency and are very close in the feature

space as well, they should be encouraged to have similar weights. Thus, the smoothness term

ztGz is introduced to ensure that these neighbor elements in both feature space and saliency

space take similar weights. However, we use the conventional normalized Laplacian matrix for

defining smoothness term coefficient G in Eq. (4.1), similar to [90], i.e.

G = A− π−
1
2V π

1
2 (4.14)

where A is the identity matrix, V is neighborhood matrix, and π is the diagonal matrix com-

posed of row sums of matrix V . In addition, different from the similarity matrix S defined in

Eq. (4.5), V takes into account similarity in both feature space and saliency space, i.e.

V (u, v) = exp
(
− γ

∑2d
q=1

(
X(u,q)−X(v,q)

)2
X(u,q)+X(v,q)

2d
− |T (u)− T (v)|

)
(4.15)

where γ is a normalization parameter set to 1
300

, which is the same as that in Eqs. (4.3), (4.4)

and (4.5).

4.1.5 Implementation Details

For optimization, since G is positive semi-definite and the constraints are linear, the objective

function defined in (4.1) is essentially a quadratic programming problem, which is solved by

the interior-point convex algorithm [5][93] provided in Matlab.

Once the fused saliency map is available, different single-image segmentation algorithms

can be applied for segmentation. In this research, we adopt two segmentation methods as two

variations. One is the classical Otsu’s method, which is an optimal threshold based method.

The other one is GrabCut algorithm [76] with some modification. Specifically, by noticing the

final fused saliency map containing certain boundary information, following [28], we modify

the GrabCut energy equation and add another localization potential to ensure that segmentation

is guided not only by color, but also by the location prescribed by the object prior contained

in the fused saliency map. The foreground (FG) and the background (BG) seed locations are

53



CHAPTER 4. IMAGE CO-SEGMENTATION via SALIENCY CO-FUSION

determined by

p ∈

{
FG, if F n(p) > τ

BG, if F n(p) < υn
(4.16)

where υn is a global threshold value automatically determined by the classical OtsuâĂŹs

method and τ is a parameter (by default τ = 0.75). It should be noted that other single-image

segmentation methods such as [15] can also be used for the final segmentation.

4.2 Experimental Results

We conducted extensive experiments on five existing benchmark co-segmentation datasets

(MSRC [88], iCoseg [7], Coseg-Rep [20], Internet image dataset [78], and FlickrMFC dataset [42]).

As mentioned in the introduction, the existing methods often require fine tuning of quite a few

parameters. In order to demonstrate the effectiveness of our method, we make two types of

settings in our experiments: (1) default parameter settings for all the categories in the datasets

and (2) tuning parameter τ over categories for a fair comparison with other methods. Same

as the ones defined in previous chapter for the segmentation evaluation, we again adopt two

evaluation metrics: (i) Jaccard Similarity (Jacc.) [31] and (ii) Accuracy (Acc.). Specifically, if

Af
p , Ab

p, Af
g and Ab

g are denoted as proposed foreground pixels set, proposed background pixels

set, groundtruth foreground pixels set and groundtruth background pixels set, respectively, the

Jaccard Similarity is computed as |A
f
p∩Afg |

|Afp∪Afg |
, and Accuracy is computed as |A

f
p∩Afg |+|Abp∩Abg |
|Afg∪Abg |

×100.

We use eight saliency extraction methods [102][103][51][87][61][3][16][38] to generate var-

ious saliency maps as the input to our method. In the following subsections, we first briefly

introduce the datasets used, followed by individual experiments, discussions and comparisons.

4.2.1 Datasets

MSRC, iCoseg, Coseg-Rep and Internet images datasets are the same ones discussed in the

previous chapter. One thing to note here is that Coseg-Rep dataset contains a special category

named “Repetitive" that has several instances of the same type of object within one image

(e.g., an image containing multiple horses), and we evaluate how well the proposed method
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Table 4.1: Evaluation on MSRC dataset using Jaccard-Similarity metric where individual
saliency maps and fused saliency maps are segmented using Otsu’s method

class [102] [103] [51] [87] [61] [3] [16] [38] AVG MAX Ours
Car 0.541 0.466 0.381 0.469 0.510 0.598 0.507 0.629 0.660 0.666 0.696
Sheep 0.745 0.699 0.736 0.612 0.776 0.615 0.697 0.744 0.793 0779 0.810
Cow 0.670 0.670 0.673 0.603 0.734 0.658 0.653 0.736 0.742 0.729 0.794
Flower 0.705 0.679 0.556 0.627 0.694 0.625 0.641 0.688 0.721 0.726 0.768
Cat 0.439 0.526 0.560 0.597 0.573 0.565 0.539 0.609 0.651 0.624 0.714
Sign 0.746 0.619 0.552 0.567 0.646 0.669 0.570 0.796 0.775 0.743 0.812
Tree 0.636 0.655 0.471 0.400 0.632 0.601 0.561 0.606 0.681 0.669 0.738
House 0.586 0.613 0.486 0.389 0.528 0.630 0.450 0.640 0.670 0.669 0.712
Dog 0.527 0.559 0.503 0.520 0.469 0.452 0.503 0.627 0.628 0.582 0.643
Bird 0.529 0.590 0.573 0.535 0.590 0.459 0.583 0.611 0.644 0.589 0.662
Bike 0.377 0.416 0.297 0.3827 0.436 0.453 0.463 0.420 0.488 0.473 0.548
Chair 0.546 0.588 0.566 0.474 0.595 0.530 0.496 0.563 0.638 0.588 0.638
Face 0.515 0.411 0.395 0.582 0.463 0.446 0.367 0.548 0.565 0.567 0.571
Plane 0.420 0.437 0.399 0.297 0.505 0.505 0.475 0.542 0.535 0.469 0.518
Avg 0.570 0.566 0.510 0.504 0.582 0.558 0.536 0.626 0.656 0.634 0.688

can handle such a repetitive scenario. MSRC, Coseg-Rep and Internet images datasets exhibit

intra-class variation. As a result, we do not use the color feature here for matching the elements

as it will be unreliable. Flickr MFC dataset (which we didn’t discuss earlier) contains multiple

common objects that might not appear in every image. It has 14 categories and 263 images

in total. For this one and iCoseg dataset, since the same objects appear frequently across the

images, we include the color features in our method.

Note that we first perform k-means clustering using GIST descriptor [16] and the proposed

saliency co-fusion is then applied to each cluster independently. This is to reduce the intra-

class variation. Otherwise, a wide diversity might cause unnecessary difficulties in the co-

fusion process. Empirically, we set the target cluster size to be 10, i.e. on average each cluster

contains 10 images.

4.2.2 Performance Improvement by Co-fusion

The key point of our proposed saliency co-fusion process is to generate a fused saliency map

that can better highlight the common object while suppressing the background saliency. To
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Other Saliency Maps 

Figure 4.6: Examples to illustrate the advantages of the fused saliency maps over the input
saliency maps.

compare the quality of the fused saliency map with other saliency maps, we apply the sim-

ple segmentation approach, Otsu’s method, on individual saliency maps of images in MSRC

dataset, and report segmentation results in Table 4.1. It can be seen that our method achieves

about 10% gain over that of the best saliency extraction method [38]. Table 4.1 also shows

the results of simple averaging or taking the maximum of those individual saliency maps at the

pixel level also outperform the best single saliency map, clearly suggesting the advantage of

using multiple saliency maps. Our method outperforms the simple average function and the

max function by about 6% and 8%, respectively. Note that the Avg Jaccard Similarity value of

0.688 on MSRC dataset by using simple Otsu’s method on the fused saliency map (without any

parameter tuning) is even better than the result of 0.68 (see Table 4.6) obtained by [78] which

used complex co-labelling, parameter tuning, and Grabcut.

Figure 4.6 shows the visual comparison of individual saliency maps used and our fused

saliency map. It can be seen that pixels pertaining to the woman (the common object) obtain

boosted saliency values, while the background regions get suppressed saliency values in the

final fused saliency maps which lead to clean segmentation results. Figure 4.7 provides more
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Figure 4.7: Sample examples of ground-truth images, fused saliency maps, our segmentation
results and the difference maps (our results minus the corresponding ground-truth images) on
MSRC and iCoseg datasets. Note that for the difference maps, green, red and blue correspond
to 0, 1, -1, respectively.

Table 4.2: Overall Jaccard-Similarity (Jacc.) and Accuracy (Acc.) results on different datasets
using our methods that respectively incorporate Otsu’s method and GrabCut method with the
default setting [τ = 0.75] for segmentation.

Otsu’s method GrabCut
Jacc. Acc. Jacc. Acc.

MSRC 0.69 86.7 0.70 87.9
iCoseg 0.65 87.0 0.70 89.7
Coseg-Rep 0.71 89.5 0.76 92.7
Car 0.70 85.3 0.69 86.0
Horse 0.49 78.5 0.55 83.9
Airplane 0.52 82.6 0.56 86.8
FlickrMFC 0.60 83.5 0.67 87.0
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Table 4.3: Performance results by varying region-size parameter of SLIC [1] on MSRC dataset

20 40 60 80 100
Jacc. 0.6878 0.6877 0.6870 0.6869 0.6865
Acc. 86.31 86.30 86.27 86.26 86.25

examples of fused saliency maps and the corresponding segmentation results on MSRC and

iCoseg datasets. Furthermore, it also shows the difference maps against the ground-truths.

4.2.3 Discussion on the Parameters

In Table 4.2, we report our results obtained by fixing the parameter τ in Eq. (4.16) to 0.75 on

all the datasets with GrabCut segmentation, and also the results obtained using simple Otsu’s

method. Due to the fact that categories of Internet images dataset are quite large, their results on

each category are separately shown. We can see that even the simple Otsu’s method is able to

produce decent results with our fused saliency maps. This can be attributed to the high-quality

saliency maps produced by our saliency co-fusion approach. By using GrabCut for segmenta-

tion, the performance of our method can be further improved. For parameter λ in Eq. (4.1), we

empirically set it to 9. Also, we empirically set parameter γ in Eqs. (4.3), (4.4), (4.5), and (4.15)

to 1/300, and parameter θ in Eqs. (4.7) and (4.10) to 0.75. Parameter υn in Eq. (4.16) is auto-

matically computed using Ostu’s method.

In order to examine the sensitivity of our method on different superpixel extraction methods

and different parameter settings, we further conducted experiments using irregular superpixels

generated by [94]. The results on MSRC dataset show that use of the superpixels of [94] with

the global thresholding achieves the average Jaccard similarity of 0.6876. However, this is

almost same as the result of 0.6875 obtained by using SLIC [1]. We also vary the region-size

parameter of SLIC [1]. By varying the region-size parameter of SLIC [1] from 20 to 100, the

results can be seen in Table 4.3. It can be seen that the performance decreases only slightly

with the increase of the region size. Therefore, these experiments indicate that the proposed

method is robust to different super-pixel methods/settings.
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Table 4.4: Comparison on Coseg-Rep dataset using overall values of Jaccard-Similarity (Jacc.)
and Accuracy (Acc.)

Jacc. Acc.
Cosegmentaton&Cosketch [20] 0.67 90.2
Geometric Mean Saliency [36] 0.73 92.2
Ours (tuned) 0.77 93.4

4.2.4 Experiments for Comparison

For different datasets, we compare our method with the methods that report the state-of-the-

art performance on the datasets. We denote “Ours (default)” as our method with the setting

τ = 0.75 using GrabCut while denoting “Ours (tuned)” as the one where we tune parameter τ

with a step size of 0.03 from 0.60 to 0.99 over each category and report the best results, which

is similar to other methods. Our method outperforms the state-of-the-art methods on two of the

single object co-segmentation datasets (Coseg-Rep and Internet Images) as shown in Tables 4.4

and 4.5. Also, some sample visual results of our method on Coseg-Rep dataset and Internet

images dataset are shown in Figure 4.8 and Figure 4.9, respectively.

Note that for the Internet image dataset, since each of its categories consists of large num-

ber of images, we tune parameter τ per cluster. It can be seen from Tables 4.4 and 4.5 that, in

terms of Jaccard Similarity metric, our method achieves about 5% on Coseg-Rep dataset, 13%,

11%, and 9% improvements on Car, Horse and Airplane categories of Internet image dataset,

respectively, when compared with the best results reported in [36] (our initial work from Chap-

ter 3) and [78] for CosegRep and Internet Images datasets, respectively. Table 4.6 compares

the results of our method with those of state-of-the-art methods on MSRC and iCoseg datasets.

It can be seen that our results are competitive to the best one by [24], while our method is

much faster than [24]. Specifically, running on the same PC with Intel Core i5-3470@3.20

GHz CPU and 32 GB RAM, [24] (using their own source codes in Matlab) takes 29.2 hours

to complete the entire segmentation process on MSRC dataset. However, our method (also in

Matlab codes) takes only 8.5 hours. These durations include the time taken for pre-processing

steps as well like generating proposals in [24] and generating saliency maps in our method.

It is interesting to see that our method can also well handle Flickr MFC dataset that contains

multiple common objects across the images and the repetitive category of Coseg-Rep dataset
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Figure 4.8: Sample segmentation results on Coseg-Rep dataset
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Figure 4.9: Sample segmentation results on Internet image dataset containing three cate-
gories:(i) Car, (ii) Horses and (iii) Airplane
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Table 4.5: Comparison with state-of-the-art methods on Internet image dataset using overall
values of Jaccard-Similarity (Jacc.) and Accuracy (Acc.)

Car Horse Airplane
Jacc. Acc. Jacc. Acc. Jacc. Acc.

[39] (reported in [78]) 0.37 58.7 0.30 63.8 0.15 49.2
[40] (reported in [78]) 0.35 59.2 0.29 64.2 0.12 47.5

[78] 0.63 83.4 0.54 83.7 0.56 86.1
Ours (default) 0.69 86.0 0.55 83.9 0.56 86.8
Ours (tuned) 0.71 88.0 0.60 88.3 0.61 90.5

Table 4.6: Comparison with state-of-the-art methods on MSRC and iCoseg datasets using
overall values of Jaccard-Similarity (Jacc.) and Accuracy (Acc.)

MSRC iCoseg
Jacc. Acc. Jacc. Acc.

Discriminative [39] 0.45 70.8 0.39 61.0
Multi-Class [40] 0.51 73.6 0.43 70.2
Object Discovery [78] 0.68 87.7 0.69 89.8
Geometric Mean Saliency [36] 0.70 88.4 0.72 91.6
Composition [24] 0.73 89.2 0.73 92.8
Ours (tuned) 0.71 88.7 0.72 91.9

Table 4.7: Comparison on FlickrMFC dataset using overall Jaccard Similarity (Jacc.) value.
(U) means unsupervised method and (S) means Supervised method

Methods Jacc.
Multiple Foreground Cosegementation (U) [42] 0.322
Multiple Foreground Cosegementation (S) [42] 0.482
Discriminative Clustering (U) [40] 0.414
Directed Graph Clustering (U) [69] 0.547
Graph Transduction (S) [59] 0.626
w/o NON RIGID Mapping (U) [56] 0.589
with NON RIGID Mapping (S) [56] 0.647
Ours (U) (default) 0.667
Ours (U) (tuned) 0.684
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apple+picking cheetah+safari dolphin+aquarium fishing+alaska gorilla+zoo 

Figure 4.10: Sample segmentation results on FlickrMFC dataset.
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Table 4.8: Class-wise Jaccard Similarity performance on MSRC dataset
car sheep cow flower cat sign tree house dog bird bike chair face plane

[78] 0.667 0.789 0.794 0.714 0.662 0.823 0.699 0.727 0.675 0.673 0.541 0.622 0.583 0.567
[36] 0.704 0.799 0.801 0.723 0.760 0.839 0.772 0.764 0.683 0.628 0.462 0.650 0.604 0.543
[24] 0.710 0.850 0.880 0.790 0.700 0.850 0.760 0.840 0.690 0.680 0.580 0.730 0.630 0.580
ours 0.713 0.811 0.812 0.770 0.734 0.831 0.769 0.752 0.699 0.665 0.544 0.671 0.608 0.552

Table 4.9: Class-wise Jaccard Similarity performance on Coseg-Rep dataset
repet blue camel cormo cranes deer desert dragon egret fire flea forget
-itive -flagris -rant -bill -rose -fly -pink -bane -menot

[20] 0.754 0.890 0.641 0.493 0.842 0.450 0.880 0.380 0.463 0.902 0.888 0.867
[36] 0.747 0.823 0.688 0.592 0.854 0.634 0.826 0.550 0.499 0.781 0.829 0.842
ours 0.776 0.903 0.702 0.613 0.863 0.636 0.841 0.542 0.601 0.884 0.851 0.849

frog geran ostrich pear piegon seagull seastar silen snow white wild
-ium blossom -clorata -owl campion beast

[20] 0.484 0.897 0.605 0.777 0.427 0.464 0.631 0.835 0.355 0.739 0.839
[36] 0.714 0.852 0.668 0.775 0.624 0.681 0.762 0.766 0.736 0.794 0.776
ours 0.741 0.912 0.747 0.791 0.675 0.719 0.821 0.828 0.748 0.901 0.877

Table 4.10: Class-wise Jaccard Similarity performance on iCoseg dataset
base bear2 brown cheetah Christ elephant ferrari goose gymna gymna gymna helico
ball bear -stic1 -stic2 -stic3 -pter

[78] 0.657 0.653 0.736 0.697 0.770 0.688 0.724 0.742 0.948 0.839 0.896 0.803
[36] 0.756 0.701 0.662 0.754 0.795 0.735 0.703 0.773 0.910 0.897 0.911 0.766
[24] 0.610 0.720 0.920 0.670 0.870 0.670 0.680 0.870 0.970 0.820 0.900 0.820
ours 0.703 0.675 0.725 0.780 0.757 0.799 0.708 0503 0.976 0.831 0.892 0.803

liver monk panda panda pyramid skate skate skate statue stone taj track&
pool 1 2 2 3 -henge mahal field

[78] 0.541 0.681 0.759 0.625 0.611 0.735 0.910 0.449 0.799 0.595 0.460 0.519
[36] 0.512 0.688 0.806 0.718 0.686 0.737 0.866 0.297 0.813 0.714 0.587 0.632
[24] 0.470 0.800 0.700 0.550 0.580 0.910 0.690 0.160 0.770 0.910 0.840 0.660
ours 0.470 0.683 0.722 0.614 0.595 0.769 0.900 0.491 0.863 0.781 0.516 0.595

hotba kendo kendo2 wind women women
-lloon mill soccer soccer2

[78] 0.657 0.778 0.826 0.492 0.661 0.530
[36] 0.763 0.862 0.893 0.316 0.657 0.538
[24] 0.880 0.890 0.960 0.570 0.660 0.460
ours 0.802 0.896 0.921 0.531 0.699 0.526
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Table 4.11: Class-wise Jaccard Similarity performance on FlickrMFC dataset
apple

picking
baseball

kids
butterfly
blossom

cheetah
safari

cow
pasture

dog
park

dolphin
aquarium

fishing
alaska

gorilla
zoo

liberty
statue

parrot
zoo

[59] 0.540 0.640 0.620 0.850 0.580 0.550 0.580 0.320 0.570 0.900 0.450
[56] 0.661 0.655 0.641 0.683 0.586 0.570 0.618 0.449 0.609 0.563 0.590
ours 0.720 0.783 0.729 0.800 0.694 0.700 0.717 0.663 0.631 0.614 0.640

stone
henge

swan
zoo

thinker
robin

[59] 0.960 0.360 0.840
[56] 0.476 0.504 0.642
ours 0.594 0.604 0.682

that contains repeated instances of objects, as shown in Tables 4.7 and 4.9, respectively. Our

method with tuning per category outperformed the best one [56] (with supervised information)

by 6% in terms of Jaccard similarity metric despite being an unsupervised method. In fact, our

method’s default setting itself outperforms the state-of-the-art method on Flickr MFC dataset.

It should be noted that the comparison here is in terms of foreground/background segregation,

and not multi-label segmentation. Figure 4.10 shows some sample segmentation results in such

multiple-foreground scenario. It can be seen that although different multiple objects are present

in one category of the dataset, our method successfully extracts the foreground. As far as the

repetitive scenario is concerned, our method obtained a Jaccard Similarity value of 0.776 in

comparison to 0.754 obtained by [20] on the repetitive category of the Coseg-Rep dataset (see

bottom three rows of Figure 4.8 for such sample visual results).

Tables 4.8-4.11 list out the detailed Jaccard similarity results of our method as well as

the state-of-the-art methods on individual categories of the four datasets. It was seen earlier

that our method performs worse than [24] on MSRC and iCoseg datasets as far as the overall

average performance is concerned. The main reason could be that our method relies on saliency

co-fusion. If the common object cannot be identified as salient by any of the saliency extraction

methods, our method would not be able to segment it out. Interestingly, these tables reveal that

despite such slightly inferior overall performance, our method outperforms [24] in 4 out of 14

and 15 out of 30 categories in MSRC and iCoseg datasets, respectively. Figure 4.11 gives some

visual examples of those categories, where our results look better than those of [24].
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Figure 4.11: Sample segmentation results where our method outperforms the state-of-the-
art[24].

Figure 4.12: Failure cases: Our method fails (i) (red-box) when a common object (black dog) is
not salient in any of the saliency maps; (ii) (green-box) when multiple foregrounds are present
and the goal is to extract a particular foreground and (iii) (yellow-box) when very similar
images are grouped for the co-segmentation process. (iv) (blue-box): Examples to show the
limitations of our method in some specific categories in MSRC where our methods tend to
segment convex shapes instead of thin rods in the bike class, miss segmenting the unsalient
shoulder in the face class, and include the airport in the airplane class. NOTE: Segmentations
with blue background are our results and those with green background are the ground-truth
results.
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4.2.5 Limitations and Discussions

Although our method performs well on the benchmark datasets in general, there are some

failure cases: (i) As shown in the red-box of Figure 4.12, our method only segments out one

dog and misses the other. This is because one of the dogs is extremely salient in all the saliency

maps, while the other dog is not very salient in any of the saliency maps. (ii) Another case is

when there are multiple common salient objects in the images, while the goal of benchmark

dataset is to segment out only one common object. For such case, our method will segment

out all the salient common objects as shown in the green-box of Figure 4.12. (iii) Similar to

almost all the co-segmentation methods, our method requires sufficient background variations

across the images in one cluster. If very similar images are being included in one cluster, our

method will fail to distinguish background from the foreground, as illustrated in the yellow-box

of Figure 4.12.

The blue box in Figure 4.12 gives some class-specific examples where our method does not

perform well. For example, (a) Bicycles in the bike category need segmentation of thin rods

and tyres whereas our method segments such bicycles into convex shapes such as triangles and

disks due to using GrabCut; (b) Our method misses segmenting out shoulders in most of the

images in the face category, because shoulders are not so salient; and (c) Many images in the

plane category also include airports along with the planes, thus making it difficult to segment

out the planes clearly.

4.3 Summary

In this chapter, we have proposed a novel saliency co-fusion approach for the purpose of image

co-segmentation which uses the association of similar images to fuse multiple saliency maps

of the same image in order to boost up common foreground saliency and suppress background

saliency. Experimental results on five benchmark datasets show that our method while co-

fusing eight different saliency maps, achieves very competitive performance, compared to the

state-of-the-art methods of image co-segmentation.
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Chapter 5

CATS: Co-saliency Activated Tracklet

Selection for Video Co-localization

Localizing the common object in a video is an important task in computer vision since it

facilitates many other vision tasks such as object recognition and action recognition. Re-

cent research interests have been shifted from single-video object localization to video co-

localization [41, 45], which aims at jointly localizing common objects across videos by ex-

ploiting shared attributes among videos as weak supervision.

Video co-localization is a challenging problem due to the following reasons. First, for a

large diverse video dataset, it is non-trivial to discover the related videos that contain semanti-

cally similar objects. Second, even for videos from the same semantic class, their common ob-

jects may exhibit large inter-video variations (see Figure 5.1(a)). Third, even within one video,

objects could also have large variations due to viewpoint/pose changes (see Figure 5.1(b)).

A few video co-localization works [41, 75] have been proposed in literature. In particular,

[41] proposed to co-select bounding box proposals, and [75] proposed to co-select tubes across

the videos. Both methods try to localize common objects in multiple videos simultaneously.

Surprisingly, such joint processing methods did not outperform the individual video processing

based framework [74]. One reason could be the inability of both methods to handle large vari-

ations of objects across the videos in the same class. Such an observation that co-processing

might not be better than individual processing has also been reported in some relevant stud-

ies [41, 78, 97]. This motivates us to propose a framework to divide video co-location into two
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Our video  co-localization results 
considering inter- video variation 
 

(a) 
Our video  co-localization results 
considering intra- video variation 
 

(b) 

Figure 5.1: Variations of cats (a) across the videos as well as (b) within the video make the
co-localization problem very challenging.

steps: exploiting inter-video relationship to find the common object prior and then locating the

common object separately in each individual video, in other words, we propose a guided single

video-based framework. Similar to this idea, recently [45] developed a two-step framework

for video co-localization, where they iteratively discover common objects across neighboring

videos and then incorporate the prior into individual video localization. However, [45] relies

on bounding box proposals independently extracted at every sampled frame, which itself could

be quite noisy.

Instead of relying on large number of bounding box proposals, in this chapter we propose

to leverage co-saliency activated tracklets for video co-localization. In particular, we first

explore inter-video commonness, intra-video commonness, and motion saliency to generate

the co-saliency maps and then fuse them to extract object prior masks for uniformly sampled

key frames. We then make use the object prior to select only a small set of proposals at each

key frame and use them to activate the tracklets to be generated across subsequent frames.

Finally, we separately generate the best tube for each video by selecting optimal tracklets

based on confidence and consistency between adjacent tracklets using dynamic programming.
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Experimental results on the benchmark YouTube Object dataset show that our proposed method

outperforms state-of-the-art methods.

We would like to point out that our work is also motivated by benefits of co-saliency and

tracklets. Co-saliency research [107][98][57] has recently demonstrated significant contri-

bution in object discovery problems. On the other hand, tracklets developed through track-

ers [58][62][4][63][64][6] are quite spatio-temporally consistent and reliable already for short

video intervals. In addition, tracklet processing is much more efficient than bounding box

based processing [41] [45].

The main contributions of this chapter are twofold: 1) exploring inter-video, intra-video and

motion information for tracklet activations; 2) leveraging tracklets for video co-localization.

5.1 Proposed Method

Our framework consists of three major steps: co-saliency based object prior generation, tracklet

activation and generation, and tube generation, as shown in Figure 5.2. First of all, each video

is uniformly cut into short-interval video trunks and in each video trunk, we generate some

tracklets, each of which is a sequence of bounding boxes across consecutive frames, hoping to

locate the common object with high recall. Since each tracklet needs an initial bounding box at

its starting frame (we call such starting frame an activator), the first step of our framework is to

generate a co-saliency map for each activator so as to provide some object prior information.

The second step is to make use of the object prior mask to generate good initial bounding boxes

and the corresponding tracklets, from which we generate a set of tracklets between every two

adjacent activators. Finally, the third step of our framework is to select one tracklet per set to

form a tube which localizes the object. We name our framework co-saliency activated tracklet

selection (CATS).

5.1.1 Co-saliency Based Object Prior Generation

To generate good object prior, our basic idea is to combine the following three type of co-

saliency. 1) Inter-video co-saliency: since one video of a common object often contains similar

background, it is needed to introduce other videos of similar objects that are likely to have
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Inter Video 
Co-saliency 

Map 

Intra Video 
Co-saliency 

Map

Motion     
Co-Saliency 

Map

ACTIVATORS

TUBE 
GENERATION

TRACKLETS 
GENERATION

CO-SALIENCY 
GENERATION

Tracklets Selection

Bounding 
Box Filtering
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iA
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iT
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j
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INPUT 
VIDEO

OUTPUT 
VIDEO

Tracklets Selection

Figure 5.2: Overview of the proposed co-saliency activated tracklet selection (CATS) for video
co-localization, which consists of three main components: co-saliency generation, tracklet
generation and tube generation. NOTE: 3 different co-saliency processes are represented in
3 different colors: (1) inter-video (orange), (2) intra-video (green), and (3) motion (violet).
Bounding boxes of same color across a video trunk denote a tracklet.

different backgrounds. Thus, we exploit the activators from different videos of similar objects

to obtain inter video co-saliency. 2) Intra video co-saliency: Sometimes the activators from the

same video could also contain diverse backgrounds, from which we could highlight intra-video

co-saliency. 3) Total motion saliency: Since motion clues are always critical for video analysis,

we want to use motion to identify co-saliency among consecutive frames. Once the three co-

saliency maps are obtained, we fuse them by averaging followed by segmentation to obtain a

co-saliency based object mask for each activator for the subsequent tracklet generation.

Inter video co-saliency: Let A = {A1, A2, ..., An} be a set of n activators (uniformly

sampled) in a video V such that A ⊆ V , where V is the set of all the frames in the video. Let

V be the set of similar videos (containing a similar semantic object) such that V ∈ V. For

each activator, say Ai, we search for its matched activators from other videos in V to create

a externally matched activators set N ext
i = {A|ζ(Ai,A) < ε,A ∈ V\V}, where A denotes

externally matched activator and ζ denotes distance function. Particularly, we extract the GIST
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descriptor [72] from each activator weighted by its initial saliency map [38]. The distance

ζ(Ai,A) between a pair of activators is measured as the l2 distance between their weighted

GIST features. Such distance computation is essentially to find the activators that contain

similar saliency regions. For an activator Ai, once its externally matched activators set N ext
i is

obtained, we compute the inter-video co-saliency M ext
i as

M ext
i =

S(Ai) +
A∈N exti∑

WAi
A
(
S(A)

)
|N ext

i |+ 1
(5.1)

where S(·) denotes the initial saliency map filter, WAi
A
(
·
)

denotes warping function from

A to Ai, and |.| denotes cardinality. We use the masked dense SIFT correspondence (SIFT

flow) [55, 78] to find pixel correspondences for the warping. Eq. (5.1) essentially computes

the joint saliency of the matched object points in different activators by such average of own

saliency and warped saliency maps. IfWAi
A (A(p)) = Ai(p+ ξ(p)),

ϕ(ξ;S(A),S(Ai)) =
∑

p∈domain(Ai)

S(A(p))(S(Ai(p+ ξ(p))))

||ΩA(p)− ΩAi(p+ ξ(p))||1}+ (1− S(Ai(p+ ξ(p)))L0

+
∑

q∈neighbor(p)

α||ξ(p)− ξ(q)||2) (5.2)

where warping has been weighted by the available saliency maps to match salient pixels well.

While Ω denotes SIFT feature vector, L0 is just a large number.

Intra video co-saliency: We obtain intra-video co-saliency in a similar way as that for

inter-video co-saliency. Particularly, we first group the activators in one video into different

clusters using k-means based on weighted GIST descriptor as discussed before. Then, for an

activator, other activators in its cluster are considered as its matches. Therefore, internally

matched activators set N int
i = {Aj|Aj ∈ Zk\Ai, Ai ∈ Zk} is basically all other activators

in cluster Zk to which Ai belongs after the clustering. The intra-video co-saliency M int
i for

activator Ai is also computed as the average of its own saliency and the warped saliency maps
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Figure 5.3: Motion co-saliency: Considering non-rigid object motion, max pooling motion
saliency of different parts at different frames help develop a proper object prior.

of its matches, i.e.

M int
i =

S(Ai) +
Aj∈N inti∑

WAi
Aj

(
S(Aj)

)
|N int

i |+ 1
(5.3)

where definitions of S andW remain same as defined previously. Here, for applying SIFT flow

to find pixel correspondences for warping, we use not only SIFT feature but also color features

(RGB, HSV, and Lab) since the common object in one video is likely to be of similar color.

Motion Co-saliency: For an activator, many subsequent frames are generally similar to

it, typically with some variations due to object movements. We adopt the ω − flow method

in [33] to extract the motion saliency map for each frame in a video trunk. Considering that

for deformable objects, parts of the object could move while other parts might remain still (see

Figure 5.3 for example), we propose to use max pooling to collect motion saliency from an

activator and its consecutive frames after warping, which we call motion co-saliency Mmot
i ,

defined as

Mmot
i = max

(
M
(
Ai

)
, max
Ij∈Nmoti

(
WAi

Ij

(
M(Ij)

)))
(5.4)

for activatorAi, whereM denotes the motion saliency filter, setNmot
i = {Ij|Ij ∈ V [Ai, Ai+1]}

denotes consecutive frames of activator Ai, i.e. between Ai and Ai+1, and max(·) denotes

pixel-level maximum function. Figure 5.4 shows why max pooling is preferred over average
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Max

Mean

Figure 5.4: Max pooling is preferred over average pooling. The important motion clues of
objects (such as legs) can be missed by average pooling because that clue may not be present
in every subsequent frame.

pooling. The important motion clues of objects (such as legs) can be missed by average pooling

because that clue may not be present in every subsequent frame.

Generating object prior: We simply fuse the three co-saliency maps, namely inter

video co-saliency map (M ext
i ), intra video co-saliency map (M int

i ) and motion co-saliency map

(Mmot
i ), through averaging so that possible saliency defects which may exist in the individual

maps can get subdued in the fused one. Once the final fused co-saliency map is available (see

Figure 5.5 for examples), we apply the GrabCut [76] to obtain a binary segmentation mask,

denoted as object prior Oi, for activator Ai.

5.1.2 Tracklet Activation and Generation

Bounding box filtering: We need an initial bounding box at the activator to activate a track-

let which then ends at next activator. Following state-of-the-art methods [45, 74], we also

use bottom-up object proposal techniques, particularly [2], to generate initial bounding boxes.

However, to ensure a high object detection rate, the existing general object proposal technique

typically requires to generate at least hundreds of proposals, which makes the subsequent track-

let generation and tube generation infeasible. Thus, we propose to make use of our generated

co-saliency based object prior to greatly trim down a large number of object proposals.
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Figure 5.5: Final fused co-saliency maps for some activator samples in YouTube-Object dataset

Particularly, we rank each object proposal by its objectness score [2] and its overlap with

the tight bounding box of the co-saliency based object prior. Let Bo
i denote the tight bounding

box of the largest component in the object prior Oi and Bj
i be an object proposal in activator

Ai. We calculate an object confidence score Ω for proposal Bj
i as

Ω(Bj
i ) = Ωo(B

j
i ) + J(Bj

i , B
o
i ) (5.5)

where Ωo(B
j
i ) is the objectness score (between 0 and 1) directly obtained from [2] and J(·) is

Jaccard similarity function (also called IoU, intersection over union). We then select the top-m

proposals with highest confidence scores.

Tracklet confidence scores: Once m candidate bounding box proposals are selected at

the activator, tracklets are obtained using the existing tracker [6] starting from these proposals

at the activator and ending at the next activator, which we call co-saliency activated tracklets.

Let T j
i denote a tracklet activated at Ai by Bj

i and ending at Ai+1 with bounding box B̃j
i . To

facilitate the subsequent tube generation via tracklet selections, for tracklet ∆j
i , we define two

confidence scores based on its IoU values with the object prior bounding boxes at Ai and Ai+1,
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respectively:

Ωf (∆j
i ) = J

(
Bj

i , B
o
i

)
, (5.6)

Ωl(∆
j
i ) = J

(
B̃j

i , B
o
i+1

)
(5.7)

where Ωf and Ωl are defined as first and the last confidence scores of a tracklet based on our

object priors at its two ends, respectively. Since we don’t have objectness score (Ωo) for the

last bounding box produced by tracking, we omit the use of objectness score here altogether,

even for first bounding box, although available.

5.1.3 Tube Generation

Given the n sets of tracklets from n activators in a video, we need to select one tracklet from

each set to create a spatio-temporal consistent tube which localizes the common object with

high confidence. Let · = {∆1,∆2, . . . , Tn} be a possible tube. Our goal is to find the best tube

for every video that minimizes the following criterion, i.e.

min
n−1∑
i=1

− log
(

Ωl(∆i)Ωf (∆i+1)
)
− λ log

(
J
(
B̃i, Bi+1

))
(5.8)

where tracklet ∆i starts withBi and ends with B̃i, and λ is a trade-off parameter. At any activa-

tor (Ai+1), both the selected adjacent tracklets (∆i,∆i+1) should have high confidence scores.

Therefore, the first term in Eq. (5.8) is to measure how confidently a pair of adjacent tracklets

∆i and ∆i+1 contain the object w.r.t. the object prior Bo
i+1. The selected adjacent tracklets

(∆i,∆i+1) should also overlap well with each other to form a consistent tube. Therefore, the

second term in Eq. (5.8) is to measure the smoothness between the adjacent tracklets via their

IoU value. While one term signifies the reliance on co-saliency, another term signifies the

reliance on temporal consistency between activated tracklets, to perform what we call as co-

saliency activated tracklet selection (CATS), resulting in video co-localization. This problem

of Eq. (5.8) can be well solved using dynamic programming.
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5.2 Experimental Results

We evaluate our method on the benchmark YouTube Object Dataset using the evaluation metric

of CorLoc (same as in Chapter 3), which is defined as the percentage of frames that satisfies

the IoU condition: area(Bgt∩Bco)
area(Bgt∪Bco) > 0.5, where Bgt and Bco are ground-truth and computed

bounding boxes, respectively. YouTube Object Dataset consists of videos downloaded from

YouTube and is divided into 10 object classes. Each object class consists of several video shots

of the objects belonging to the class. We treat each shot as a video sequence and group all the

shots in one class as a weakly supervised scenario for video co-localization.

5.2.1 Implementation Details

Activators are chosen at the interval of 50 frames. While calculating inter video co-saliency,

we wanted to ensure that at least 10 best matched activators should be available, therefore

we used K-NN instead of ε-NN algorithm. For intra-video co-saliency, we set the number

of clusters as {n/10} where n is the total number of activators in a video and {·} denotes

the rounding function. We use [38] to generate saliency maps for individual activators. We

choose m = 10 at bounding-box filtering step, and sample every 5th frame between activators

to generate total motion saliency map for preceding activator to avoid repetitiveness. The

parameter λ introduced in Eq. (5.8), i.e. weight for temporal consistency, is set to 2, same as

[45]. For the off shelf techniques we adopt including tracklets [6], motion saliency [33] and

GrabCut [76], we use their default settings.

5.2.2 Co-localization Performance

Results under weakly supervised scenarios: Table. 5.1 shows the CorLoc performance

on YouTube Object Dataset under weakly supervised scenarios using our full-fledged CATS

method (ext+int+mot), where ext, int and mot refer to using inter-video co-saliency, intra-video

co-saliency and motion co-saliency respectively for obtaining the final co-saliency map. We

compare with state-of-the-art methods on video co-localization. It can be seen that we almost

double the average performance of the frameworks [75] and [41] that simultaneously locate
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Table 5.1: CorLoc results of video co-localization on YouTube Object Dataset under weakly
supervised scenarios.

aeroplane bird boat car cat cow dog horse motorbike train avg
[75] 51.7 17.5 34.4 34.7 22.3 17.9 13.5 26.7 41.2 25.0 28.5
[41] 25.1 31.2 27.8 38.5 41.2 28.4 33.9 35.6 23.1 25.0 31.0
[45] 56.5 66.4 58.0 76.8 39.9 69.3 50.4 56.3 53.0 31.0 55.7
ext 62.4 43.3 63.8 50.9 51.9 63.8 61.7 43.4 30.0 45.7 51.7

int+mot 64.7 48.1 60.9 54.5 51.2 64.0 58.9 42.5 27.0 46.6 51.8
ext+int+mot 65.7 59.6 66.7 72.3 55.6 64.6 66.0 50.4 39.0 42.2 58.2

the common object in multiple videos. This suggests that single video localization with an in-

corporated object priors from other videos is better than directly performing co-localization on

multiple videos, since inter-video variations could be huge. Moreover, thanks to our proposed

co-saliency generation and the adoption of consistent tracklets, we achieve 4.5% improvement

for the average performance over the state-of-the-art [45], which uses bounding box proposals

at every frame and optimizes over them to obtain consistency. Compared to bounding box

proposals, using tracklets significantly reduces the computational complexity as the number of

nodes to deal with are drastically reduced. For example, for a video of 1000 frames, [45] would

need to deal with 100× 50 nodes (according to their settings of 100 selected proposals per key

frame and 1 sampled key frame per 20 frames), whereas we only need to deal with only 10×20

nodes (default 10 proposals/activator and 1 sampled activator per 50 frames). Considering that

more noisy nodes are eliminated, it results in more reliable results. In addition, [45] is an iter-

ative approach and needs 5 iterations to achieve as good as 55.7% score beginning with nearly

38% score at the first iteration, whereas our method achieves 58.2% score in just one shot.

In addition to our full-fledged method, in Table. 5.1 we also show the results of the variants

(ext, int+mot) that use different combinations of the co-saliency maps. The results of ext show

how much we can explore other videos to help the localization in the considered video. The

results of int+mot show how much we can benefit from the single video itself. We can see that

the combination of all the three co-saliency maps achieves the best performance.

In Figure 5.6, we show the localization results (red) on some of the frames in the dataset

along with their ground truths (green). It can be seen that our proposed method is able to

effectively localize the dominant objects with various poses and shapes across the videos. In
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  Airplane              Bird                   Boat                Car                      Cat                     Cow                  Dog                Horse            Motorbike          Train   

Figure 5.6: Sample localization results (red) along with groundtruths (green) on YouTube Ob-
jects dataset.
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Figure 5.7: Our video co-localization results on YouTube Object Dataset. It can be seen that
our method can handle variations in size (for airplane, cow and motorbike), position (for dog),
pose (for car, cat and horse), and mobility (negligible motion for bird).
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Table 5.2: CorLoc results on YouTube Object Dataset in an unsupervised scenario where we
do not use class labels.

aeroplane bird boat car cow cat dog horse motorbike train avg
[10] 53.9 19.6 38.2 37.8 32.2 21.8 27.0 34.7 45.4 37.5 34.8
[74] 65.4 67.3 38.9 65.2 46.3 40.2 65.3 48.4 39.0 25.0 50.1
[45] 55.2 58.7 53.6 72.3 33.1 58.3 52.5 50.8 45.0 19.8 49.9

ext+int+mot 66.7 48.1 62.3 51.8 49.6 60.6 58.9 41.9 28.0 47.4 51.5

Figure 5.7, we demonstrate our localization results on different videos. It can be seen that our

method is able to effectively handle various pose variations in the videos of the car, cat and

horse, the size variation in cow and motorbike, and the location variation in dog video. At the

same time, our method is also able to handle objects that do not move much such as in the video

of bird. These results clearly demonstrate the robustness of our method in different scenarios.

Results under unsupervised scenario: Table. 5.2 presents the CorLoc results obtained

when we do not make use of any weak supervision provided by class labels. We consider entire

YouTube Object Dataset as a whole and apply the proposed method on it. We basically rely

upon kNN method to find good matching activators from other videos. We compare with other

methods which reported such unsupervised results as well as other single video localization

methods. It can be seen that our full-fledged method also achieves the best performance in

such unsupervised scenario.

5.2.3 Evaluation on Bounding Box Filtering

In this subsection, we evaluate the effectiveness of the proposed bounding box filtering. We

generate 300 bounding box proposals using [2] and select Top-k proposals based on either

the objectness scores [2] or our confidence scores defined in Eq. (5.5). The recall rates are

shown in Table 5.3. It can be seen that by incorporating the co-saliency based object prior

for bounding box selection, our method greatly improves the recall rate. Even with only one

proposal generated by our method, it has 45.5% probability to be overlapped with the ground

truth bounding box with IoU large than 0.5, almost double of that in [2].
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Table 5.3: The recall performance on YouTube Object Dataset using either the existing object-
ness scores Ωo(B

j
i ) [2] or the proposed object confidence scores Ω(Bj

i ) in (5.5) for bounding
box selection.

Top-1 Top-3 Top-5 Top-10 Top-20
Ωo(B

j
i ) [2] 22.8 50.8 64.4 77.9 86.1

Ω(Bj
i ) (5.5) 45.5 65.8 74.0 80.9 87.1

Table 5.4: Comparison with the objectness baseline with different m values.

m = 1 m = 3 m = 5 m = 10 m = 20
Baseline 23.0 35.6 40.9 42.4 41.1
Proposed Method 45.5 55.3 57.7 58.2 55.2

5.2.4 Evaluation on Co-saliency Prior and Tracklet Selection

In order to show the improvement in performance by using the developed co-saliency prior, we

compare our method with an objectness based baseline, which is essentially our method but

with top objectness-ranked bounding boxes using [2] instead of using our co-saliency prior.

Table 5.4 shows the CorLoc results under different m ∈ {1, 3, 5, 10, 20} in Table 5.4. It can be

seen that our method achieves better overall CorLoc scores than the baseline for all m, which

suggests that our co-saliency prior plays the key role here. When m = 1, the result signifies

benefit of co-saliency alone, which can be compared with the result obtained by Hough match

alone in [45] (referring to the foreground saliency based on appearance only, i.e. F(A) at 1st

iteration. Kindly refer to [45] for more details). Ours is 45.5 compared to their 32. It can also

be observed that as m increases, i.e. considering multiple candidate tracklets, the performance

increases. This indicates that the co-saliency alone (m = 1 case) is not sufficient. Only when

we combine the co-saliency prior with the tracklet generation and selection, we achieve the

best performance. In the tracklet selction, we have the tradeoff parameter λ balancing the

confidence and smoothness terms. In Figure 5.8, we show that when λ is set in range 1 to 6,

performance varies between 55 and 58, which is somewhat stable. After λ = 6, performance

drops because smoothness overweighs the confidence.
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Figure 5.8: Performance variation as λ in the Eq. (5.8) varies.

Figure 5.9: Failure examples of videos where most of the activators failed to obtain good co-
saliency based object prior (Oi) resulting in poor highest scored bounding box proposals

5.2.5 Limitations and Discussions

Although we consider objectness measure alongside with our object mask for selection of

bounding boxes, incase co-saliency map based object prior is not good. In addition, we rely on

the consistency of adjacent tracklets to negate the effect of few bad object priors. But it is quite

possible that most of the activators fail in obtaining good co-saliency based object prior in a

particular video. In such cases, proposed method is quite likely to fail. In Figure 5.9, we show

such failure examples of videos where most of the activators failed to obtain good co-saliency

maps resulting in poor highest scored bounding box proposals.

Also, there are a few reasons for the relatively low performance of our method at some

categories, as can be observed in Table 5.1. First, our method heavily relies on the co-saliency

object prior. For some categories such as horse or motorbike, human beings often appear

on horse or motorbike on several videos, which also get highlighted in our co-saliency maps
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and included in our results, while they are excluded in the groundtruths of the two categories.

Second, our parameters are all set globally instead of calibrated for individual categories. Thus,

it is likely that for some other parameter setting, we might achieve better results. For example,

in the case of bird category, if we select 8 bounding boxes instead of the default 10, we can

improve the CorLoc result from 59.6% to 62.5%.

Execution Time: Our algorithm takes nearly 16 hours for co-localizing the entire YouTube

Object dataset on PC with Intel Core i5-3470 (3.20 GHz, 4 cores) CPU. Whereas [45] takes

60 hours (from [45]) on PC with Xeon CPU (2.6 GHz, 12 cores). Therefore, our method is

relatively faster.

5.3 Summary

In this chapter, we have proposed a new video co-localization method named co-saliency acti-

vated tracklet selection (CATS) where we activate several tracklets with the help of co-saliency

maps at regular intervals. We then select optimal tracklets from these sets for forming a tube

to localize the common object. In contrast to previous methods, we proposed a guided single

video-based framework which is non-iterative and computationally efficient. In the proposed

approach, co-saliency plays the key role in guiding the activation and selection of our process-

ing units called co-saliency activated tracklets, different from bounding box proposals or tube

proposals used previously for the video co-localization problem. We obtain state-of-the-art

localization results on YouTube Objects dataset in both weakly supervised and unsupervised

scenarios through the proposed approach.
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Chapter 6

Object Co-skeletonization with

Co-segmentation

Our main objective in this chapter is to exploit joint processing to extract objects’ skeletons

in images of the same category. We call it object co-skeletonization. By objects, we mean

something which interests the image viewer more compared to the stuff like sky, roads, moun-

tains, sea, etc, in its presence. Automatic skeletonization of such objects has many applications

such as image search, image synthesis, generating training data for object detectors, etc. Ex-

isting methods either need pre-segmentation [18, 84] of the object in the image or groundtruth

skeletons for the training images to learn [83, 91] to perform skeletonization on test images.

In this chapter, we attempt weak supervision to approach the problem, i.e., co-skeletonization.

However, it is difficult to solve this problem as a standalone task, because it requires object’s

shape information as well. Even the recent deep learning based method [86] requires not only

the skeleton location information but also the skeleton scale information as groundtruths to

account for shape information. The skeleton scale is basically the distance between a skele-

ton point and the nearest boundary point of the object. In our joint processing context, we

leverage the existing idea of object co-segmentation to help it out so that co-skeletonization

can be performed more effectively. In fact, it turns out that co-skeletonization can also help

co-segmentation in return by providing good scribbles. In this way both co-skeletonization and

co-segmentation benefit each other synergistically. We couple these two tasks to achieve what

we call “Object Co-skeletonization with Co-segmentation" as shown in Figure 6.1.
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Source images 

Skeletons Segmentations 

Joint Optimization 

Co-segmentation Co-skeletonization 

Figure 6.1: Object co-skeletonization with co-segmentation. Skeletons are in yellow.

There are several challenges involved in performing co-skeletonization and such a coupling.

First, existing skeletonization algorithms [18, 80, 82, 84] can yield a good skeleton if a good

and smooth shape is provided, but they are quite sensitive to the given shape, as shown for the

image in Figure 6.2(a) which has unsmooth segmentation. The skeleton produced by [84] in

Figure 6.2(a) has too many unnecessary branches, while more desirable skeleton to represent

the cheetah would be our skeleton in Figure 6.2(c). Thus, the quality of the provided shape

becomes crucial , considering that co-segmentation may not provide good and smooth shapes

due to its complicated way of co-labeling many images. Second, joint processing of skeletons

across multiple images is quite tricky. Because most of the skeleton points generally lie on

homogeneous regions as shown in Figure 6.2(d) and (e), they are not so easy to detect and

describe for the purpose of matching. Third, how to couple the two tasks so that they can

synergistically assist each other is another challenge.

Our key observation is that we can exploit the inherent interdependencies of two tasks
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(a) (b) (c) 

(d) (e) 

Figure 6.2: Example challenges of co-skeletonization. The quality of segmentation affects
the quality of skeletonization. (b) The result of [84] for (a). (c) Our result. Skeletons lie on
homogeneous regions, such as in (d) and (e), thus not easy to detect and describe.

to achieve better results jointly, as shown in Figure 6.3. Since most of the skeleton pixels

still remain on the horse in bad co-segmentation at the beginning, they gradually improve

the segmentation by providing good seeds for segmentation in the subsequent iterations of

joint processing, and in turn co-skeletonization is benefited and becomes better as the co-

segmentation improves.

Therefore, we propose a joint framework for co-skeletonization and co-segmentation where

we try to address the challenges. First of all, we not only rely on the shape but also the jointly

processed prior to perform skeletonization. We also build upon a skeleton pruning process [84]

to better handle the unsmooth shapes. Second, structure preserving quality of dense corre-

spondence is exploited for overcoming the skeleton matching challenge. We follow the same

strategy to generate a co-segment prior, and use an interactive segmentation framework [76] to

perform co-segmentation. The scribbles are generated with the help of the skeleton to make co-

segmentation well informed of the current skeleton location. And in turn the resultant segmen-
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Figure 6.3: Inherent interdependencies of co-skeletonization and co-segmentation can be ex-
ploited to achieve better results through a coupled iterative optimization process.

tation provides shape information to the skeleton pruning process. It is an iterative approach

and our framework is initialized with the help of visual saliency. It can also be initialized

with groundtruths for training images, and this allows us to make fair comparison with fully

supervised learning based methods [46, 47, 89, 91, 99, 108]

To the best of our knowledge, there is only one dataset where co-skeletonization could be

performed in a weakly supervised manner, i.e. WH-SYMMAX dataset [83], and it only con-

tains horse images. To extensively evaluate co-skeletonization, we construct a new benchmark

dataset called CO-SKEL dataset, which consists of images ranging from animals, birds, flow-

ers to humans classified into total 26 categories. Experiments show that our approach achieves

state-of-the-art co-skeletonization performance in weakly supervised setting.

6.1 Proposed Method

In this section, we discuss our joint framework of co-skeletonization and co-segmentation in

detail.
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6.1.1 Overview of Our Approach

Given a set ofm similar images belonging to the same category, denoted by I = {I1, I2, · · · , Im},
we aim to provide two output sets: K = {K1, K2, · · · , Km} andO = {O1, O2, · · · , Om}, com-

prising of skeleton masks and segmentation masks, respectively, where Ki(p), Oi(p) ∈ {0, 1}
indicating whether a pixel p is a skeleton pixel (Ki(p) = 1) and whether it is a foreground pixel

(Oi(p) = 1).

Our overall objective function for an image Ii is defined as

min
Ki,Oi

λΘpr(Ki, Oi|Ni) + Θin(Ki, Oi|Ii) + Θsm(Ki, Oi|Ii)

s.t. Ki ⊆ma(Oi)
(6.1)

where the first term Θpr accounts for the priors from the set of neighbor images denoted as

Ni, the second term Θin is to enforce the interdependence between the skeleton Ki and the

shape / segmentation Oi in image Ii, the third term Θsm is the smoothness term to enforces

the smoothness among neighboring pixels, and λ is a parameter to control the influence of the

inter-image prior term. The constraint in (6.1) means the skeleton must be a subset of medial

axis (ma) [18] of the shape.

We resort to the typical alternative optimization strategy (such as [76]) to solve (6.1), i.e.

dividing (6.1) into two sub-problems and solve them iteratively. In particular, one sub-problem

is: given the shape Oi, we solve co-skeletonization by

min
Ki

λΘk
pr(Ki|Ni) + Θk

in(Ki|Oi, Ii) + Θk
sm(Ki|Ii)

s.t. Ki ⊆ma(Oi)
(6.2)

The other sub-problem is: given the skeleton Ki, we solve co-segmentation by

min
Oi

λΘo
pr(Oi|Ni) + Θo

in(Oi|Ki, Ii) + Θo
sm(Oi|Ii). (6.3)

If we treat both the inter-image prior term Θk
pr and the shape prior term Θk

in as a combined

prior, Eq. (6.2) turns out to be a skeleton pruning problem and can be solved using the approach

similar to [84], where branches in the skeleton are iteratively removed as long as it reduces the

energy. Similarly, if we combine both the inter-image prior Θo
pr and the skeleton prior Θo

in as
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the data term, Eq. (6.3) become a standard MRF-based segmentation formulation, which can

be solved using GrabCut [76]. Thus, compared with the existing works, the key differences

of our formulation lie in the designed inter-image prior terms as well as the interdependence

terms, which link the co-skeletonization and co-segmentation together.

Iteratively solving (6.2) and (6.3) requires a good initialization. We propose to initialize

O by Otsu thresholded saliency maps and K by the medial axis mask [18]. Algorithm 1 sum-

marizes our approach, where (Θpr + Θin + Θsm)(t) denotes the objective function value of

Eq. (6.1) at the tth iteration and Θpr = Θk
pr + Θo

pr, Θin = Θk
in + Θo

in, Θsm = Θk
sm + Θo

sm.

Algorithm 1 Our approach for solving Eq. (6.1)
Data: An image set I containg images of the same category
Result: Sets O and K containing segmentations and skeletons of images in I
Initialization: ∀Ii ∈ I, O(0)

i = Otsu thresholded saliency map and K(0)
i = ma(O

(0)
i );

Process: ∀Ii ∈ I,
do

1) Obtain O(t+1)
i by solving Eq. (6.3) using [76] with O(t) and K(t)

i .
2) Obtain K

(t+1)
i by solving Eq. (6.2) using [84] with K(t) and O

(t+1)
i , s.t. K(t+1)

i ∈
ma(O

(t+1)
i ).

while (λΘpr + Θin + Θsm)(t+1) ≤ (λΘpr + Θin + Θsm)(t);
O ← O(t) and K ← K(t)

6.1.2 Object Co-skeletonization

As shown in Algorithm 1, the step of object co-skeletonization is to obtain K(t+1) by minimiz-

ing (6.2), given the shapeO(t+1) and the previous skeleton setKt. Considering the constraint of

K
(t+1)
i ∈ ma(O

(t+1)
i ), we only need to search skeleton pixels from the medial axis pixels. We

build up our solution based on [84], but with our carefully designed individual terms for (6.2)

as explained below.

Prior Term (Θk
pr): In the object co-skeletonization, a good skeleton pixel will be the one

which is repetitive across images. To account for this repetitiveness, we need to find corre-

sponding skeleton pixels in other images. However, skeleton pixels usually lie on homoge-

neous regions (see Figure 6.2(d)&(e)) and are thus difficult to match. Thus, instead of trying

to match sparse skeleton pixels, we make use of dense correspondences using SIFT Flow [55],

which preserve the skeleton and segmentation structures well, as shown in Figure 6.4.
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(a) (b) (c) 

Figure 6.4: Dense Correspondences preserve the skeleton and segmentation structures roughly.
Here (a) is warped to (b) to be used as prior for (c).
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Once dense correspondence is established, we utilize the warped skeleton pixels from

neighboring images to develop the prior term. Particularly, we align all the neighboring im-

ages’ tth iteration’s skeleton maps to the concerned image Ii, and generate a co-skeleton prior

at (t+ 1)th iteration as

K̃
(t+1)
i =

K
(t)
i +

∑
Ij∈Ni

Wi
j(K

(t)
j )

|Ni|+ 1
(6.4)

where we align other skeleton maps using warping function Wi
j [55] and then average them

with Ii’s own skeleton map. Note that the neighborhood Ni is developed simply based the

GIST distance [72]. For simplicity, we drop the superscriptions such as (t + 1) in all the

following derivations.

Considering that the corresponding skeleton pixels from other images may not exactly align

with the skeleton pixels of the considered image, we define our prior term as

Θk
pr(Ki|Ni) =

∑
p∈ma(Oi)

−Ki(p) log
(

1 +
∑

q∈N(p)

K̃i(q)
)
. (6.5)

Eq. (6.5) essentially measures the consistency between the image Ii’s own skeleton mask and

the recommended skeleton mask from its neighbor images. Note that we accumulate the co-

skeleton prior scores in a certain neighborhood N(p) for each pixel p to account for the rough

skeleton alignment across the images.

Interdependence Term (Θk
in): Our interdependence term serves the traditional data term

in skeleton pruning, enforcing that skeleton should provide good reconstruction of the given

shape, which medial axis already does. However, a medial axis often contains spurious branches,

while the noisy shapes obtained from imperfect co-segmentation only make this worse. To

avoid spurious branches, we prefer simplified skeleton, whose reconstructed shape is expected

to be smooth while still preserving the main structure of the given shape (see Figure 6.5 for

example). On the other hand, we do not want over-simplified skeleton, whose reconstructed

shape is likely to miss some important parts (see the 4th column of Figure 6.5).

Therefore, we expect the reconstructed shape from skeleton to match the given shape, but

not necessary to be exactly the same as the given shape. In this spirit, we define our interde-

pendence term Θk
in as

Θk
in(Ki|Oi) = −α log

|R(Ki, Oi) ∩Oi|
|R(Ki, Oi) ∪Oi|

(6.6)
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Source 
image 

Shape & 
medial axis 

Reconstructed 
shape & skeleton 

Missing parts 

Hump? 

Leg? 

Figure 6.5: Shape reconstruction from skeleton. Compared to the reconstructed shape from
medial axis (2nd column), the reconstructed shape (3rd column) from our simplified skeleton
is simpler and smoother while still preserving the main structure. Nevertheless, we do not
want over-simplified skeleton, which will result in missing important parts in the corresponding
shape reconstruction (4th column).

where we use IoU to measure the closeness between the reconstructed shape R(Ki, Oi) and the

given shape Oi, and α is the normalization factor as defined in [84]. The reconstructed shape

R(Ki, Oi) is basically the union of maximal disks at skeleton pixels [84], i.e.

R(Ki, Oi) =
⋃

p∈ma(Oi)

d(p,Oi) (6.7)

where d(p,Oi) denotes the maximal disk at skeleton pixel p for the given Oi, and the maximal

disk is the disk that exactly fits within Oi with skeleton pixel p as the center.

Smoothness Term (Θk
sm): To ensure a smoother and simpler skeleton, we aim for skeleton

whose: (i) branches are less in number and (ii) branches are long. Our criteria discourage

skeletons with spurious branches while at the same time encouraging skeletons with structure-

defining branches. This is different from the criteria in [84] which only aims for less number

of skeleton pixels. Specifically, we define the smoothness term Θk
sm as

Θk
sm(Ki) = |b(Ki)| ×

|b(Ki)|∑
u=1

1

length
(
bu(Ki)

) (6.8)

where b(Ki) = {b1(Ki), · · · , b|b(Ki)|(Ki)} denotes the set of branches of the skeleton Ki. In

this way, we punish skeletons with either large number of branches or short-length branches.
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6.1.3 Object Co-segmentation

The object co-segmentation problem here is: given the skeleton Ki, find the optimal Oi that

minimizes the objective function defined in (6.3). The individual terms in (6.3) are defined in

the following.

Prior Term (Θo
pr): We generate an inter-image co-segment prior, similar to that for co-

skeleton. In particular, we align segmentation masks of neighboring images and fuse them

with that of the concerned image, i.e.

Õi =

Oi +
∑

Ij∈Ni
Wi

j(Oj)

|Ni|+ 1
(6.9)

where Wi
j is the same warping function from image j to image i. Then, we use Õi as a

guidance, and define our inter-image prior term as

Θpr(Oi|Ni) =
∑
p∈Di

−

(
Oi(p) log

( 1

|N(p)|
∑

q∈N(p)|

Õi(q)
)

+
(

1−Oi(p)
)

log
(

1− 1

|N(p)|
∑

q∈N(p)|

Õi(q)
)) (6.10)

which encourages the shape to be consistent with the guidance Õi from neighboring images.

Here again we account for pixel correspondence errors by neighborhood N(p) averaging.

Interdependence Term (Θo
in): For co-segmentation process to benefit from co-skeletonization,

our basic idea is to build up foreground and background appearance models based on given

skeleton Ki. Particularly, we use GMM for appearance models. The foreground GMM model

is learned using Ki (i.e. treating skeleton pixels as foreground seeds), whereas the background

GMM is learned using the background part of the reconstructed shape R(Ki) of the skeleton.

In this manner entire appearance model is developed entirely using the skeleton. Note that at

the beginning it is not robust to build up the GMM appearance models in this manner since

the initial skeleton extracted based on saliency is not reliable at all. Thus, for initialization, we

develop the foreground and background appearance models based on the inter-image priors K̃i

and Õi, respectively.
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Denoting θ(Ki, Ii) as the developed appearance models, we define the interdependence

term Θo
in as

Θo
in(Oi|Ki, Ii) =

∑
p∈Di

− log

(
P
(
Oi(p) | θ(Ki, Ii), Ii(p)

))
(6.11)

where potential P
(
Oi(p) | θ(Ki, Ii), Ii(p)

)
denotes how likely a pixel of color I(p) will take

the label Oi(p) given the appearance model θ(Ki, Ii). Θo
in is similar to the data term in the

interactive segmentation method [76].

Smoothness Term (Θo
sm): For ensuring smooth foreground and background segments, we

simply adopt the smoothness term of GrabCut [76], i.e.

Θo
sm = γ

∑
(p,q)∈Ei

[Oi(p) 6= Oi(q)] exp(Θ||Ii(p)− Ii(q)||2) (6.12)

where Ei denotes the set of neighboring pixel pairs in the image Ii, and γ and Θ are segmenta-

tion smoothness related parameters as discussed in [76].

6.1.4 Implementation Details

We use saliency extraction method [16] for initialization of our framework in all our experi-

ments. We use the same default setting as that in [76] for the segmentation parameters γ and

Θ in (6.12) throughout our experiments. For the parameters of SIFT flow [55], we follow the

setting in [78] in order to handle the possible matching of different semantic objects. The pa-

rameter λ in both (6.2) and (6.3), which controls the influence of joint processing, is set to

0.1.

6.2 Experimental Results

6.2.1 Datasets and Evaluation Metrics

Datasets: There is only one publicly available dataset, i.e. WH-SYMMAX dataset [83], on

which weakly supervised co-skeletonization can be performed, but it contains only horse cat-

egory of images. In order to evaluate co-skeletonization task extensively, we develop a new
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Image                        [84]                  Ours                    Image                      [84]                    Ours                    Image                  [84]                    Ours                   

Figure 6.6: Given the shape, we improve skeletonization method [84] using our improved
terms in their objective function. It can be seen that our skeletons are much smoother and
better in representing the shape. We use these improved results as groundtruths in our CO-
SKEL dataset.

benchmark dataset called CO-SKEL dataset. It consists of 26 categories with total 353 im-

ages of animals, birds, flowers and humans. These images are collected from MSRC dataset,

CosegRep, Weizmann Horses and iCoseg datasets along with their groundtruth segmentation

masks. Then, we apply [84] (with our improved terms) on these groundtruth masks, in the same

manner as the WH-SYMMAX dataset has been generated from Weizmann Horses dataset [9].

Figure 6.6 shows some example images, and their skeletons using [84] and our improvement

of [84]1. It can be seen that our skeletons are much smoother and better in representing the

shape.

Since our method searches k-nearest neighbors first and then performs joint processing,

our method can work in an unsupervised way as well as long as there are sufficient number

of images of same category objects or visually similar objects. Thus, our method can also be

applied to datasets like SK506 dataset [86], which consists of many uncategorized images.

Metrics: For evaluation of skeletonization and segmentation, we calculate F-measure (in-

cluding precision and recall) and Jaccard Similarity, respectively. Considering it is very diffi-

cult to get a resultant skeleton mask exactly aligned with the groundtruth, if a resultant skeleton

pixel is nearby a groundtruth skeleton pixel, it should be considered as a hit. Therefore, we con-

sider a resultant skeleton as correct if it is at a distance of d ∈ {0, 1, 2, 3} from a groundtruth

1We will make our dataset with groundtruths and code publicly available.
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Method F 0 F 1 F 2 F 3 J

Ours(0) 0.095 0.229 0.282 0.319 0.412
Ours (w/o Θin) 0.168 0.337 0.391 0.434 0.649
Ours 0.189 0.405 0.464 0.506 0.721

Table 6.1: Comparisons of the co-skeletonization and co-segmentation results of our method
and its two baselines on WH-SYMMAX dataset. Ours(0): our initialization baseline using Otsu
thresholded saliency maps [16] for segmentation and [84] for skeleton. Ours (w/o Θin): our
method without the interdependence terms, i.e. running co-segmentation followed by skele-
tonization.

F 0 F 1 F 2 F 3 J

Ours(0) 0.129 0.306 0.371 0.416 0.600
Ours (w/o Θin) 0.236 0.426 0.484 0.522 0.725
Ours 0.237 0.435 0.495 0.535 0.741

Table 6.2: Comparisons of the co-skeletonization and co-segmentation results of our method
and its two baselines on our CO-SKEL dataset.

skeleton pixel, for which we denote F d as the corresponding F-measure. Jaccard Similarity

(denoted as J) is basically the IoU of groundtruth and our segmentation result.

6.2.2 Co-skeletonization Results

We report our overall co-skeletonization and co-segmentation results on WH-SYMMMAX

and our CO-SKEL datasets in Table 6.1 and 6.2, respectively. Note that since we do not

perform any kind of training, we combine both training and test images of WH-SYMMMAX

dataset, and then obtain the results. It can be seen that our method greatly improves over

our initialization baseline. To demonstrate the importance of considering the interdependence

between co-segmentation and co-skeletonization, we also compare with another baseline, Ours

(w/o Θin), where we remove the interdependence, i.e. running co-segmentation first and then

doing skeletonization from the resultant foreground segments.

It can be seen that our method outperforms this baseline on both of the datasets. Marginal

improvement on CO-SKEL dataset may be due to already good initialization. Specifically, it

can be seen that J for initialization is already 0.600 in CO-SKEL dataset compared to 0.412 in

WH-SYMMAX dataset, suggesting that there is less room for improvement.
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m F 0 F 1 F 2 F 3 J

bear 4 0.075 0.1714 0.213 0.246 0.846
iris 10 0.363 0.600 0.658 0.698 0.837
camel 10 0.224 0.353 0.395 0.432 0.674
cat 8 0.118 0.360 0.469 0.523 0.733
cheetah 10 0.078 0.221 0.287 0.335 0.735
cormorant 8 0.351 0.545 0.606 0.642 0.768
cow 28 0.142 0.437 0.580 0.669 0.789
cranesbill 7 0.315 0.619 0.670 0.696 0.935
deer 6 0.214 0.366 0.407 0.449 0.644
desertrose 15 0.360 0.662 0.721 0.759 0.934
dog 11 0.122 0.356 0.457 0.522 0.746
egret 14 0.470 0.642 0.669 0.693 0.760
firepink 6 0.416 0.685 0.756 0.805 0.918
frog 7 0.163 0.358 0.418 0.471 0.734
geranium 17 0.299 0.633 0.716 0.764 0.940
horse 31 0.217 0.435 0.490 0.529 0.726
man 20 0.144 0.246 0.274 0.295 0.385
ostrich 11 0.298 0.530 0.592 0.634 0.752
panda 15 0.037 0.102 0.140 0.174 0.696
pigeon 16 0.181 0.326 0.361 0.382 0.590
seagull 13 0.257 0.461 0.520 0.562 0.662
seastar 9 0.440 0.649 0.681 0.702 0.750
sheep 10 0.078 0.249 0.342 0.401 0.769
snowowl 10 0.089 0.222 0.268 0.306 0.543
statue 29 0.306 0.506 0.542 0.564 0.681
woman 23 0.305 0.463 0.503 0.533 0.674
variance 0.015 0.028 0.029 0.030 0.016

Table 6.3: Categorywise number of images and our Co-skeletonization results on the Co-skel
dataset
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Figure 6.7: Some examples of steadily improving skeletonization and segmentation after each
iteration. Top-right example shows that our model continues to reproduce similar results once
the optimal shape and skeleton are obtained.
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Figure 6.8: Performance v/s Iteration plot. It can be seen that the performance improves swiftly
at first and then becomes steady.
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Image                  Groundtruth            Ours                    Image               Groundtruth             Ours                   Image            Groundtruth             Ours                     Image            Groundtruth             Ours 
 
 

Figure 6.9: Sample co-skeletonization results along with the our final shape masks. It can be
seen that both are quite close to the groundtruths.

We also evaluate how our method performs at different iterations in Figure 6.8 on WH-

SYMMAX dataset. It can be seen that our method first improves the performance swiftly and

then it becomes somewhat steady. This suggests that 2-3 iterations are good enough for our

method. Please refer to Figure 6.7 for examples where the results improve steadily with each

iteration. Figure 6.9 shows some sample results of our method along with groundtruths from

WH-SYMMMAX and CO-SKEL datasets.

We also show our results on individual categories and the variance in performance across

the categories of our CO-SKEL dataset in the Table. 6.3. Low variance for both F d and J

metrics suggests that our method is quite reliable.

6.2.3 Supervised Co-skeletonization Results

In order to fairly compare with existing supervised skeletonization methods, we follow the

original process but with a change in the initialization. We replace the saliency initialization

with ground truth initialization for training images. This will help develop better joint pro-

cessing priors for remaining images which are the test images. We do the comparisons on test

images of WH-SYMMAX and SK506 datsets in Table. 6.4. Note that to make the distinction

between our supervised method (groundtruth initialization) and our weakly supervised method
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Methods WH-SYMMAX SK506
[47] 0.174 0.218
[46] 0.223 0.252
[99] 0.334 0.226
[89] 0.103 -
[91] 0.365 0.392
[108] 0.402 -
Ours(0) 0.322 0.261
Ours 0.530 0.483
Ours (S) 0.594 0.523

Table 6.4: Comparisons of the results of F d of our methods with supervised methods. Ours(0):
our initialization baseline. Ours (S): our method with groundtruth initialization on training
images. Note that here d = 0.0075×

√
width2 + height2 following [86].

(with saliency initialization), we denote the results of our supervised approach as “Ours(S)".

It can be seen that not only our supervised method comfortably outperforms all the traditional

supervised methods, but also our weakly supervised (unsupervised for SK506) approach is

able to do so. Note that performance values reported here are directly taken from [86]. We

would like to point out that the recently developed deep learning based supervised method [86]

reports much better performance. We did not compare with it since our method essentially is a

weakly supervised approach.

6.2.4 Limitations

Our method has some limitations. First, for initialization, our method requires common object

parts to be salient in general across the neighboring images if not in all. Therefore, it depends

on the quality of the neighboring images. The second limitation lies in the difficulty in the

warping process. For example, when the neighboring images contain objects at different sizes

or at different viewpoints, the warping processing will have difficulty to align the images. Such

situation will not be crucial when there is a large number of images to select. Another problem

is that smoothing the skeleton may cause missing out some important short branches.
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6.3 Summary

The major contributions of this chapter lie in the newly defined co-skeletonization problem and

the proposed joint co-skeletonization and co-segmentation framework, which nicely exploits

inherent interdependencies between the two so as to assist each other synerergistically. Exten-

sive experiments demonstrate that proposed method achieves very competitive results on a few

benchmark datasets.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we have proposed several co-saliency based visual object co-segmentation and

co-localization methods. In the process, we try to address several crucial challenges of joint

processing such as complexity, parameter tuning, joint v/s single processing issue, etc.

Firstly, we propose to develop co-saliency maps by simple fusion of warped saliency maps

while keeping an eye on the quality of saliency maps involved trying to resolve the joint

v/s single processing issue. For measuring the quality, foreground-background separability

and foreground concentratedness have been used. Also, it has been shown how we can seg-

ment and localize the objects using these co-saliency maps to perform co-segmentation and

co-localization, respectively. The proposed method is simple and could be easily extended

for large scale application. Moreover, it can be utilized in both supervised and unsupervised

scenarios. Extensive experiments conducted on different co-segmentation and co-localization

datasets, including ImageNet, demonstrated promising results.

Secondly, we propose another kind of saliency fusion technique for co-saliency genera-

tion called saliency co-fusion (to perform image co-segmentation eventually), where we fuse

multiple saliency maps of the same image (to benefit from various saliency fronts instead of

relying on just one) while exploiting its association. Unlike others algorithms, our processing

units here are elements, which are basically the super-pixel projection on saliency maps. We

develop optimization problem of assigning optimal weights to these elements such that good

102



CHAPTER 7. CONCLUSIONS AND FUTURE WORK

elements are encouraged and bad elements are suppressed during the fusion process based on

similar elements’ recommendations and elements’ positions. The resultant co-saliency maps

were much cleaner and supported co-segmentation of even multiple and repetitive objects. Ex-

periments on five benchmark datasets with eight saliency extraction methods show that our

saliency co-fusion based approach achieves competitive performance even without any param-

eter fine-tuning when compared with the state-of-the-art methods.

Thirdly, we extend our saliency fusion idea to perform video co-localization. Noting that

developing co-saliency for each frame could prove to be a costly affair, and tracklets are some-

what reliable for short intervals, we activate sets of tracklets using co-saliency maps generated

at regular intervals. For generating the final co-saliency maps, we first generate three types

of co-saliency maps: inter-video co-saliency, intra-video co-saliency and motion co-saliency

maps, and then fuse them by simple averaging. These tracklets are activated from only those

bounding box proposals which overlap well with the co-saliency priors and have good object-

ness scores. After that, an optimized tube is generated where one tracklet from each set are

selected such that their confidence scores are high and they are spatially consistent at the joints.

The proposed method is not only faster than state-of-the-art video co-localization method but

it also produces better results.

Fourth, we propose a new joint processing problem called co-skeletonization, where we

generate joint skeleton priors by fusing the skeleton prior maps of different images, and we

also integrate it with co-segmentation task so that the two tasks can help each other. The

skeleton can provide good scribbles for segmentation, and skeletonization, in turn, needs good

segmentation. We exploit this interdependence and develop a coupled framework for these two

tasks. We employ an alternative optimization strategy to solve the optimization problem. Since

it is a new problem, we also construct a benchmark dataset for co-skeletonization task, named

CO-SKEL dataset. Extensive experiments demonstrate that proposed method achieves very

competitive results, even against the completely supervised skeletonization methods.

Our methods are primarily based on saliency fusion idea and highly scalable as shown by

experiment on 1 million images of ImageNet, thanks to our modification for making the model

efficient. We report the time taken for our saliency fusion idea using both the original fusion

and the efficient fusion in Table 7.1. Empirically, it can be seen that the time taken is almost

linear to the number of images, and efficient method is at least 4-5 times faster. However,
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Table 7.1: Time-taken by our saliency fusion approach is almost linear to the number of images

Dataset Number of images Time Taken (mins)
Weizmann Horses 328 117

Coseg-Rep 572 216
Internet Images 2470 806

Table 7.2: Co-segmentation performance comparison among our methods on Weizmann
Horses dataset

Methods Saliency Fusion Saliency Co-fusion Object Co-skeletonization
IoU 0.684 0.733 0.721

it should be noted that our method can be easily parallelized after the neighborhood retrieval

step, which is performed using either kNN or clustering. This can reduce the shown time-

taken drastically. As far as memory constraints are concerned, saliency co-fusion will need

more memory space compared to the others for storing the saliency information from multiple

sources. Comparatively, memory requirement order will be following:

Saliency Fusion<Object Co-skeletonization<Video Co-localization<Saliency Co-fusion.

It is good to compare how our methods perform w.r.t to each other. Therefore, we evaluate

saliency fusion, saliency co-fusion and object co-skeletonization methods on Weizmann Horses

dataset for co-segmentation task. Table 7.2 shows IoU results of these methods. It can be

seen that saliency co-fusion method outperforms saliency fusion and object co-skeletonization

method. This is because the method benefits from multiple fronts of saliency whereas others

benefit from initialization of one kind of saliency map only. However, it is significant that

integrating co-skeletonization with co-segmentation has benefited the co-segmentation in im-

proving the performance from 0.684 to 0.721. This suggests that saliency co-fusion is our best

method but at the cost of memory as discussed earlier. And if memory is a constraint, object

co-skeletonization is the better option.

7.2 Future Work

This thesis has primarily focused on fusing the saliency priors while respecting correspon-

dences and the generality. There are still some untouched joint processing problems in the line
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of ideas developed here, and then there are some new directions this work can take.

The untouched problems are as follows. First, in videos, we have explored co-localization

problem only. Thanks to tracklets (or series of bounding boxes), we didn’t require to develop

fused priors for every frame for this problem. But how to accomplish this in the case of co-

segmentation or co-skeletonization, may be through propagation as done for the large scale

application, or can we do it in a better way? Second, joint processing in the case of multiple

objects is a challenging problem. Although, saliency co-fusion tries to tackle this but it tries

to give same foreground labels to all the objects, instead of giving different labels to different

objects or instances. Exploiting image level labels of the objects in images may help to solve

this. Third, the depth feature in RGBD images and videos gives good information about the

objects. There are already some works on RGBD co-segmentation such as [26]. It would

be interesting to see how depth cue can be exploited in our fusion-based approaches of joint

processing. Fourth, joint processing can help only up to certain extent, so can we automatically

detect which are the images that need human interaction and which can be taken care off by

computers itself (either through individual processing or joint processing). This is something

in lines with the idea proposed in [29].

Many times image level labels contain not only the information about the semantic class

of the objects in the image but also its attributes, for e.g. “black dog", “metallic chair" etc.

While existing joint processing algorithms mainly exploit semantic commonness across the

images, the extra information about the object in the form of attributes hasn’t been exploited.

Using these attributes can give us clue about what features to use for matching in a given set

of images. [67] does recognize the necessity of using different features for different cases but

uses weak prior of saliency to facilitate this.

In the past few years, deep learning based methods such as fully convolution networks

(FCN) have achieved state-of-the-art performance on semantic image segmentation. Recently,

[53] proposed a joint framework to combine interactive segmentation with FCN based semantic

segmentation [81] so as to help each other. We can try to reduce the human interaction required

using the joint processing techniques.

Semantic part segmentation[92] using joint processing is another interesting research di-

rection that can be pursued. It may require some human interaction in few examples to indicate

different parts that are desired to be labeled, and some new features will be needed as color
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and texture can hardly separate different parts of the body. Another idea could be using skele-

tonization to take help in separating the parts.

Despite making our fusion idea efficient, it’s still not real-time. In order to overcome this,

group saliency maps as proposed in our saliency fusion idea can be stored in the memory. These

maps are quite good and can be just warped and fused to any new relevant and neighboring

image in a weighted fashion; the time taken is as good as just one SIFT flow. However, all this

is at the cost of memory. So, efficient use of the memory is challenge here.
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