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Abstract

Recent advances in technology have given rise to the popularity and success of many data-

related services. This new paradigm allows the client to reduce the cost of operations by

providing cost-efficient architectures that support the storage and intensive computation

of data, and hence increases the throughput of businesses. However, these promising data

services incur multiple and challenging design issues, considerably due to the leakage of

confidential data. Losing control over the hardware typically means giving the rights of

data access to a third party; as a result, the client faces new threats coming from the

server-side.

Typical data-management service providers should not be fully trusted, thus storing

encrypted data needs to be considered for high-level security assurance. Another potential

threat is employees who do not follow the company’s privacy policies and may, intention-

ally or unintentionally, reveal sensitive client information. Even when the provider claims

to enforce strict policies pertaining to privacy, there is still a chance that the database

systems are vulnerable to malicious external attacks.

This thesis aims at investigating privacy–preserving solutions for various important

data query classes in different ubiquitous scenarios. The security issues of existing secure

data processing protocols are also discussed. We focus on the provision of a rigorous se-
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curity guarantee when processing data and answering queries. Cryptographic techniques

from multi-party secure computation are leveraged to enhance security. Specifically, our

proposed research objectives are as follows:

• The security problem will be analyzed under the semi-honest secure multi-party

computation model. The semi-honest model assumes all the participating parties

correctly follow the protocol specifications but actively collect information from the

data storage and data processing protocols to discover confidential data.

• Security requirements for various secure data processing models are proposed to

ensure strong confidentiality protection. In this thesis, by considering access pattern

and query privacy requirements, we aim to address the security limitations of the

existing solutions.

• Security requirements for various secure data processing models are proposed to

ensure strong confidentiality protection. In this thesis, by considering access pattern

and query privacy requirements, we aim to address the security limitations of the

existing solutions.

• We investigate various secure query processing algorithms in different ubiquitous

scenarios:

(i) Secure Conjunctive Matching - A solution supports conjunctive queries over

an encrypted numerical dataset. An extension to support range queries is also

proposed.

(ii) Boolean Keyword Search - A scheme allows the client to securely evaluate a

boolean expression on a keyword set for an encrypted outsourced corpus of

documents.

iv



(iii) Multi-dimensional Range Query - a set of protocols support multi-dimensional

range queries over a set of points of high dimensional space. The high dimen-

sional space represents the multidimensional datasets of numerical domains.

(iv) Secure Confidential Information verification. - a framework for verifying per-

sonal or confidential information against a set of criteria. The proposed frame-

work addresses a number of shortcomings of the current state of the process

of physical document verification

These protocols are proposed, analyzed, and evaluated under the semi-honest model

and with the proposed security requirements.
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1
Introduction

1.1 Motivation

The security of data processing is a vital problem concerning nearly all aspects of

Internet–connected systems. Outsourced data storage and personal information veri-

fication are two examples of ubiquitous situations where data confidentiality is one of the

most basic requirements.

For outsourced data storage, clients outsource the storage of private data from their

own infrastructure to a remote cloud server. This paradigm offers the user an oppor-
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Chapter 1. Introduction

tunity to drastically reduce the costs of storing and processing data. Outsourcing data

storage, as well as data management to the clouds, is useful for many services including

law enforcement, finance, healthcare, etc. However, data outsourcing deprives the data

owners of direct control of their data, and that brings new crucial security risks. Since

there are many possibilities for data leakage to occur at the server side, the user should

not fully trust the cloud for data privacy. One possibility of data leakage is corrupt

employees who do not follow privacy policies. They may intentionally or unintentionally

reveal sensitive information such as personal health records, financial transactions, or

personal contacts, etc. Even when the cloud service provider claims to enforce sufficient

policies to prevent such privacy violations, there is still a chance that cloud computing

systems may be vulnerable to external malicious attacks. Once intrusions take place,

sensitive data may be publicly exposed. Finally, due to the privacy regulations of certain

countries, cloud data may be required to be shared with certain third parties. Therefore,

storing plaintext data in the cloud creates the danger of full exposure of your data.

While outsourced storage settings address the issue of data privacy of the enterprise,

personal information verification requires individual confidentiality. Physical document

verification is a necessary task for the process of reviewing applications in many services,

such as loans, insurances, and mortgages. This process consumes a large amount of

time, money, and human resources. Consider a loan or an insurance application as an

example. The applicants are usually required to provide numerous documents to certify

their relevant personal information, such as a birth certificate, statement of monthly

income, marriage certificate, medical records, and so on. All these documents are stored

in the provider’s database. If the client applies for multiple schemes or subscriptions,

multiple copies of his or her personal data are stored in different places. Since data can

be leaked from the server, storing personal information in multiple third-party databases

is not recommended.

2



Chapter 1. Introduction

1.2 Research Challenges

Data encryption has been introduced to address the issue of data confidentiality. How-

ever, at the same time, it also creates a new challenge for data management.

In the context of outsourced data storage, a natural starting point is to encrypt the

data stored on the server that only the client holds the secret key. When data passes to or

from the server, it is encrypted/decrypted at the client side. This approach is promising

because an attacker at the server can access only encrypted data and thus does not see the

data content. However, it also creates a new challenge– the data usability of the remotely

encrypted data. Since the data owner should have the ability to query and obtain useful

data when needed, the simple encryption method is insufficient in fulfilling this basic

requirement. The trivial solution is to retrieve back the whole encrypted dataset, and

decrypt and filter it according to the query. However, this requires an excessive amount

of bandwidth and processing, especially for large databases, and defeats the purpose of

data outsourcing.

For the task of personal information verification, standard data encryption may be

applied to personal documents; then the client outsources encrypted personal data to a

data storage server for maintenance. When the client wishes to share the information

with a certain third party (e.g., loan or insurance providers), he/she first instructs the

storage server to send the encrypted documents and then provides the decryption key to

the third party for verification. While this approach eliminates the cost of maintaining

all physical documents on the client side, it still exposes the privacy of the client to the

service provider. At the same time, service providers are still required to provide an

excessive amount of human resources to verify all of the documents.

The second challenge to the problem of secure data processing in different contexts

is access pattern. When processing the outsourced data, the program control flow and

memory-access behavior may reveal sensitive information clients wish to hide. S.Islam et

3



Chapter 1. Introduction

al. [59] showed that data access pattern leakage could lead to the disclosure of a significant

amount of sensitive information. This leakage and its consequences apply to a variety of

realistic contexts. For example:

(i) A hospital outsources its patients’ medical records to a remote server. Later when a

disease is spreading, the hospital may want to check whether certain patients have

had the disease synonyms before. If an observer learns which records the hospital

is looking for, the observer can infer details about the client’s medical records.

(ii) A client outsources their documents to a remote data storage and wishes to provide

them to a third party for personal verification. The third party may be a loan

provider or an insurance company that provides a financial product to the client.

If an observer learns which the data records are accessed by the service provider,

the observer is able to know the service that the client wishes to apply for and can

even infer the financial condition of the client.

The third challenge when considering the task of secure data processing is query

privacy. Query privacy is orthogonal to access-pattern privacy. While access-pattern

privacy addresses the confidentiality of the query results, query privacy aims to protect

the content of the query itself. More specifically, access-pattern privacy preserves the

privacy of the data records when processing, while query privacy considers the privacy of

the query initiator’s interest. A secure data processing framework should take this aspect

into consideration. It also applies to a number of realistic scenarios. Consider the case

of a criminal investigation; once the observers are able to determine that several queries

are the same, with certain side-knowledge they will be able to infer the main interest of

the investigation.
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1.3 Contribution

This thesis attempts to protect data confidentiality for data processing tasks. We assume

the attacker has the power of observing all the data movement and memory access during

query-answering processing. That assumption is much stronger than in the state-of-art

systems. Most existing works on data privacy only consider passive attackers who only

can view the database at rest. While the proposals of existing works only investigate how

to withstand weak outsider attacks, our proposal takes insider threats into consideration.

We leverage the computation model of secure multi-party computation that was in-

troduced by C. Yao [86] and homomorphic encryption techniques to propose solutions to

the problem of privacy preserving data processing. We adopt a use-inspired approach to

design our solutions. Different protocols have been proposed to address different practical

use-cases. For each proposed secure protocol, we analyze its correctness, security, and

complexity. We also investigate their practicality based on experimental results. Our

meta-strategy for building a secure data processing system is as follows:

(i) We identify and understand a few probable use cases.

(ii) We identify the basic operations (called primitives) that enable a wide class of

applications and translate the requirements for these primitives into research prob-

lems.

(iii) We design and build a practical system that uses these primitives as building blocks.

More concretely, we have investigated and proposed various secure query processing

algorithms in different ubiquitous sceanarios:

• Secure Conjunctive Matching - A solution supports conjunctive queries over an en-

crypted numerical dataset. An extension to support range queries is also proposed.

5
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• Boolean Keyword Search - A scheme allows the client to securely evaluate a boolean

expression on a keyword set for an encrypted outsourced corpus of documents.

• Multi-dimensional Range Query - a set of protocols support multi-dimensional

range queries over a set of points of high dimensional space. The high dimensional

space represents the multidimensional datasets of numerical domains.

• Secure Confidential Information verification. - a framework for verifying personal or

confidential information against a set of criteria. The proposed framework addresses

a number of shortcomings of the current state of the process of physical document

verification.

Furthermore, our work on the problem of secure personal information not only ad-

dresses the aforementioned challenges in the problem of secure data processing but also

suggests an opportunity for new digital services. The details of the work are described

in Chapter 6.

1.4 Thesis Roadmap

This thesis is organized as follows:

Chapter 2 considers the evolution and current state of the field of encrypted data

storage and processing, and the related areas of secure multiparty computation.

Chapter 3 presents a simple but secure protocol that supports exact matching on

encrypted data. We also discuss how to extend it to support range queries.

In Chapter 4, we present a systematic approach that supports complex Boolean key-

word search. The protocol leverages bloom-filter data structure and homomorphic en-

cryption techniques.

6



Chapter 1. Introduction

Chapter 5 discusses a solution for secure multidimensional range queries. We make

use of the bucketization method to support multidimensional range query, while crypto-

graphic techniques are utilized to protect the bucket content.

Chapter 6 describes our proposed systematic solution for the problem of secure per-

sonal information verification. Our approach not only provides a cost-efficient and secure

solution for the process of document verification but also creates an opportunity for a

new service.

Chapter 7 presents the conclusion of this thesis and proposes some potential research

directions.

7



2
Background

2.1 Introduction

This chapter gives an overview of most relevant and influential works related to secure

searching and processing data in remote databases and data storages. The chapter is

organized as follows. Section 2.2 contains definitions and basic concepts that are widely

used in secure data processing research. The existing solutions to the problems of query

processing on encrypted data, including exact matching, range queries, and complex

queries are discussed in Sections 2.3, 2.4 and 2.5. Section 2.6 presents the two most

8



Chapter 2. Background

important techniques for designing secure query processing protocols, homomorphic en-

cryption and Oblivious RAM. Finally, Section 2.7 provides a brief review of the basic

concepts of the Secure Multiparty Computation (SMC) model. In this thesis, we leverage

the SMC model for both designing and analyzing solutions.

2.2 Definitions

This thesis contains problem statements, definitions, and discussions that rely on basic

concepts widely used by researchers of secure data processing. Before we proceed, these

basic concepts sh ould be properly defined for both structured and unstructured data.

Definition 2.1 Domain. The domain of a certain variable v is the set of the possible

values of the variable v.

Definition 2.2 Attribute. An attribute is the pair of 〈Identifier,Domain〉. When we

refer to an attribute of a particular data record, we mean this is a pair of 〈Identifier, V alue〉

where the V alue belongs to the Domain of the attribute.

Definition 2.3 Keyword. A keyword is an index entry that identifies a specific data

record or document. A data record or document may contain multiple keywords.

Definition 2.4 Data Record. In this thesis, we use the word data record in the context

of structured data. A record is a tuple of pairs 〈Identifier;V alue〉, such that there are no

two pairs with the same Identifier and V alue belonging to the Domain of the attribute

of the same Identifier.

Definition 2.5 Document. In this thesis, we use the word document in the context

of unstructured data. A document is electronic matter that contains information. A

document is usually identified by a set of keywords.

9
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Definition 2.6 Dataset. A dataset is a set of data records or documents. We use this

term in a general context for both structured and unstructured data.

2.3 Secure Single Equality Test

An equality test allows a client to perform an exact match for a single keyword search

query. Research on exact keyword searches on encrypted data began a decade ago with

two seminal works by Song et al. [79] and Boneh et al. [13]. Since then, the field of study

has gained significant attention from academia.

Based on the nature of search operations, the works on this topic can be divided

into two broad categories: full-domain and index-based search. The former requires

sequential scanning through every data item in order to test criteria. The full-domain

search takes linear complexity to cover the whole dataset and is flexible since the query

can be anything and can be defined on the fly. On the other hand, index-based search,

as shown in Figure 2.1, first characterizes every document in the dataset by a list of

keywords. The query is later evaluated based on the indices built upon the keyword set.

There are two basic ways to construct the indices, namely forward indexing and inverted

indexing.

Figure 2.1: General Model of a Secure Index-based Search

10
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Based on the types of encrypted systems, secure keyword search systems can be di-

vided into: symmetric settings and asymmetric settings. This classification is orthogonal

to the previous method.

Symmetric Setting. This direction of research leverages symmetric encryptions to

allow the data owner, i.e. the secret key holder, to create a searchable ciphertext and

trapdoors for encrypted search.

• Song et al. [79] presented the first practical scheme for a private search that supports

full-domain search. The intuition of the method is to encrypt each word separately

and embeds a special hash function into the ciphertext. Later, to search for a

certain word, the data owner generates a hash corresponding to the search query

and sends it the server. The server can extract the hash embedded in the ciphertext

to perform an exact equality test with the query. The idea is depicted in Figure 2.2.

The protocol firstly applies a pseudorandom permutation on each word wi, the

result is divided into two parts Li and Ri. They are latter XORed with a random

seed Si, and a key-hashed value of it to produce a ciphertext Ci. To search for a

keyword w, the client has to provide E(w) to the server. The server can compute

E(w)⊕Ci for each word i. If the result can be separated into two parts s and Fk(s),

that means the ciphertext match the keyword search with a high probability.

Brinkman et al. [21] utilized this approach to support a secure search in XML data.

It was also applied by Popa et al. [70] in designing a practical system that supports

complex queries.

While the protocol is IND-CPA secure, it does not cover the new security re-

quirements for secure query processing on outsourced data. The scheme leaks the

potential positions of the matched keywords in a document. Hence after several

rounds, an observer is able to learn the words inside the document by statistical

analysis.

11
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Figure 2.2: Song et al. [79] for Private Keyword Search

• Goh et al. [45] addressed some of the limitations of the previous method by exam-

ining ways to build a secure index to search through encrypted data in a symmetric

setting. The idea of their method is to add a secure forward index for each doc-

ument. More specifically, a Bloom-filter is used as a per-document index. Goh

et al. encoded each keyword in a document into the Bloom filter by applying a

pseudo-random function twice on the keyword. The unique document identifiers

ensures that all the Bloom Filters look different, even for two documents with the

same keyword set. This approach was later used by Chang and Mitzenmacher [27]

to support users with limited storage space and bandwidth.

While the index structure helped Goh to overcome the shortcomings of Song et

al. [79] that reveals the positions of the matched keyword, it still poses certain

limitations. Firstly, the curious observer can easily learn if the same keyword is

queried multiple times just by observing the content of the queries. Secondly, the

access pattern leakage is still not completely eliminated. The curious observer still

is able to know which subset of the documents satisfies the query. As discussed in

the previous chapter, this leakage might end up with the disclosure of a significant

amount of sensitive information.

• Curtmola et al. [34] proposed two efficient schemes using an inverted index struc-
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ture. The index structure consists of a linked list L per distinct keyword and a

look-up table to access the first node of the linked lists. The pointer and the iden-

tifier of the document are randomized and encrypted. To search for a particular

keyword, the client and the server perform multiple interactive rounds. At each

round, the client obtains one document identifier and the pointer to the next one

in the inverted list. The inverted index structure allows efficient lookups for a par-

ticular keyword. However, it still is not able to satisfy the requirements of query

and access pattern privacy. Moreover, it is difficult to leverage the same approach

to support complex queries such as conjunctive keyword searches.

Asymmetric Setting. The asymmetric encryption approach allows every entity to

produce a searchable ciphertext without any explicit user authorization, but only the

user can issue meaningful search queries and decrypt the data.

• Boneh et al. [13] proposed the first searchable encryption scheme using a public key

system called the Public-key Encryption with Keyword Search (PEKS). The idea

for their scheme is to use identity-based encryption (IBE) in which the keyword

acts as the identity. The scheme allows multiple entities to write and encrypt data

(with the public key) while only one client is able to search the encrypted data (with

the private key). Figure 2.3 describes the algorithms presented by Boneh et al. for

PEKS. This seminal paper made use of Boneh and Franklin’s work on IBE [14] for

the construction. Different IBE public-key techniques have been explored so far to

achieve this setting, including Anonymous IBE and Hierarchical IBE [1].

Since the trapdoor for a keyword is never refreshed, it violates the query privacy

requirements. Byun et al. [23] and Yau et al. [87] discussed this issue and proposed

an attack against this vulnerability called the offline keyword guessing attack. The

attack is straightforward. The attacker firstly creates the trapdoors for the chosen

keywords, and then analyzes the results of the queries.
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Figure 2.3: The method of Boneh et al. [13] for Private Keyword Search

• Baek et al. [5] argued that the need for a secure channel for trapdoor transmission

as in Boneh et al. [13] is not realistic in many application scenarios. They addressed

this limitation by introducing a server public/private keypair to the PEKS scheme,

where the encryption of the keywords is done under both public keys of the client

and a specific server through an aggregation technique [16]. However, the scheme

is still vulnerable to offline keyword recovery attacks.

• Baek et al. [4] raised the natural question of whether the same public key can be

used for the encryption of both keyword and the messages. They gave a concrete

construction for this integration by combining the variation of ElGamal cryptosys-

tem [41] and PEKS.

• Bellare et al. [8] presented the concept of efficient full-domain searchable determin-

istic encryption using an asymmetric cryptosystem. However, in this approach, the

ciphertext is deterministic so that a curious server can test any guessed plaintext

by an encryption operation.

• Fuhr and Paillier [39] introduced a full-domain searchable encryption protocol that
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is secure under the random oracle model. Hofhinz and Weinreb [56] revisited this

concept and propose a solution using the standard model. However, both papers

only considered the information leakage from the ciphertext and do not address the

privacy of the trapdoors or query privacy.

Categorization. The intended search functionality–full-domain search or index-based

search–and the choice between symmetric and asymmetric cryptosystems have strong a

impact on each other. Table 2.1 summarizes the classification of secure single equality

tests on encrypted data. We emphasize that this summary table only contains the rep-

resentative schemes mentioned above, and it is not inteneded to be a full list of existing

solutions.

Table 2.1: Summary of Single Equality Test categorizations

Symmetric-Setting Asymmetric-Setting

Full-Domain [21,46,79] [8, 39,56,85]

Index-based [27,34,45] [1, 4, 5, 13]

2.4 Secure Multidimensional Range Query

A multidimensional range query allows inequality evaluations of the value of data records.

More formally, if we consider each data record is a point in a high-dimensional space,

the multidimensional range query should return all the points within a certain hyper-

rectangle corresponding to the query’s criteria.

There are essentially three general approaches for tackling multi-dimensional range

queries on encrypted data: special data structure for range query evaluation, bucketization-

based scheme, and order-preserving encryption-based techniques.
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Special data structure for range query evaluation. Boneh et al. [18][4] pro-

posed a general public-key approach to support comparison, subset, and range queries on

encrypted data by using hidden vector encryption, whose search complexity is O(mT ),

where m and T are the number of attributes and number of discrete values for each

attribute, respectively. Moreover, the ciphertext size is relatively large owing to the

usage of composite-order bilinear map groups [17], which makes it infeasible in many

applications.

Shi et al. [77] proposed a scheme that supports a conjunction of range queries over

multiple attributes (i.e., multi-dimensional range queries). The idea is to encrypt each

data record as a point in multi-dimensional space. The query processing is equivalent to

testing whether a point falls inside a hyper-rectangle for each data record. The authors

used a segment tree data structure to represent the ranges for each dimension. Anony-

mous identity-based encryption is applied at each node of the tree with a different key.

For a certain query, the client needs to reveal the keys corresponding to each range on

each dimension. Hence, all the attributes on the range will be revealed after successful

decryption at the server.

Figure 2.4: Tree-based Representation by Shi et al. [77] for Multidemsional Search
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Subsequently, different tree-based approaches have been proposed to tackle the prob-

lem of secure multi-dimensional range queries. Lu [64] proposed a range search scheme

on encrypted data by leveraging predicate encryption and B+ tree. He extended the

original scheme to support multi-dimensional range queries by replacing B+ trees with

kd-trees in the implementation. Wang et al. [82] presented a scheme for evaluating multi-

dimensional range queries by using asymmetric scalar-product preserving encryption and

R-trees. However, these two methods lead to single-dimensional privacy leakage.

Bucketization-based scheme. Bucketization-based data representation for query

processing in an untrusted environment was originally leveraged by Hacigumus et al. [54].

Their bucketization simply involves a data partitioning step based on equi-depth or equi-

width partitioning to support single-dimensional range queries. The queries are mapped

to a set of buckets that contain any value satisfying the range of the query. The original

queries are translated into bucket-level queries, which request the encrypted buckets

containing the desired values. Several studies have attempted to reduce bucket costs

(i.e., false positives) while preserving the anonymity of the data set [3, 58]. However,

only until the work of Hore [57], the bucketization-based method was extended to support

secure multidimensional range queries. Their method tries to cluster d-dimensional space

into various hyper-rectangles, and bucket indexing is performed on the clustered hyper-

rectangles.

Order-preserving encryption based techniques. An order-preserving encryp-

tion scheme is a deterministic cryptosystem whose encryption algorithm produces ci-

phertexts that preserve the numerical ordering of the plaintexts. Roughly speaking,

for any two ciphertexts c1 and c2 corresponding to plaintexts p1 and p2, respectively, if

p1 ≤ p2 then it is guaranteed that c1 ≤ c2. Order-preserving encryption was first pro-

posed by Agrawal et al. [2] to support range queries on encrypted data. When the dataset

is encrypted by an order-preserving encryption scheme, the result of a single-dimensional
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range query is simply determined by the encryptions of the two end-points. The con-

cept of order-preserving encryption was efficiently revised with formal security analysis

by Boldyreva et al. [11, 12] and Mavroforakis et al. [65]. Although these techniques are

highly efficient, they provide a low level of privacy. As such, traditional efficient indexes

can be built directly on encrypted data and queried in the same manner as plaintexts.

Nevertheless, order-preserving encryption is deterministic and hence suffers from inherent

distribution leakage. In addition, it inevitably leaks the ordering of the data.

2.5 Secure Complex Query Processing

It is worth noting that the abovementioned techniques are only suitable for processing

specific queries (e.g., exact matching, range query) and are not directly applicable for

evaluating complex queries such as combinations of multiple sub-queries. The first at-

tempt toward the solution for secure complex query processing was conjunctive search.

A conjunctive keyword search system allows a client to find documents containing sev-

eral keywords with a single query. The naive approach is to perform multiple individual

keyword searches with the server. The server returns the intersection of all results. This

approach leaks the individual results for each keyword search, that is, which documents

contain each particular keyword, and may allow the observer to run statistical analysis.

Along the symmetric settings, Golle et al. [50] gave the first construction of con-

junctive keyword searches. Their idea is to assume that there are special keyword fields

associated with each document. The keyword only appears in these certain fields. The

construction leaks the number of encrypted keywords. To address the different short-

comings of Golle et al. [50], various protocols have been proposed. Ballard et al. [7]

proposed a construction for secure conjunctive keywords searches, which are secured us-

ing the standard model. The Byun et al. [22] protocol reduces the communication and
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storage cost, while Ryu and Takagi [75] enhanced the trapdoor size. Recently, Cash et

al. [26] proposed the first sublinear construction supporting conjunctive queries. Their

construction leverages the idea of inverted index approach of Curtmola et al. [34].

With asymmetric settings, Park et al. [68] studied the problem of public key encryp-

tion with a conjunctive keyword search. The idea of the solution is to use bilinear maps

to aggregate the tags for the encrypted index and the conjunctive query and compared

the aggregated results. The protocols leak the position of the keyword in the query,

hence, two queries are distinguishable.

Boneh and Waters [18] proposed a new primitive, called hidden vector encryption, to

support a number types of queries including conjunctive, subset, and range queries. How-

ever, their technique is costly and complex to implement [77]. Katz et al. [60] extended

the list with disjunctions, polynomial equations, and inner products, but the complexity

of the approach is not improved.

Popa et al. [71] proposed CryptDB, a system that supports a wide range of queries.

Figure 2.5 illustrates the architecture of CryptDB. Their idea is to encrypt each data

record with an onion of encryption schemes with the outermost layer providing maximum

security, whereas the innermost layer provides more functionality but with weak security.

In order to support multiple types of queries, the client needs to provide the cloud the

corresponding secret keys to decrypts the outer layers so that the necessary operation can

be performed with the inner layers. CryptDB has some major drawbacks. Firstly, the

Figure 2.5: CryptDB architecture

system reveals different types of information at different layers, once a layer is decrypted
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there is no way for the system to recover to the maximum security level. Morever,

multiple onions may have to generated for each data item which makes the approach

very expensive.

Recently, Samanthula et al. [76] presented a systematic approach to support complex

query evaluation over secure encrypted data. The authors leverage the secure multiparty

computation to design the solutions. Our solutions presented in this thesis share the

similar approach with their works. However, Samanthula et al. [76]’s solution requires

the client to share the private key with a third party, which is undesirable in many

applications.

2.6 Computing on Encrypted Data

In this section, we briefly review two general cryptographic techniques that we utilize to

design and implement our solutions for secure data processing. The first one is homo-

morphic encryption. Homomorphic encryption techniques hold the promise of attaining

truly secure ways to gather, share, and process data. The second is oblivious RAM,

which is a cryptographic primitive that obfuscates a client’s access pattern (address,

data, read/write) in an untrusted memory source.

2.6.1 Homomorphic Encryption

Homomorphic encryption (HE) is a form of encryption that allows arithmetic operations

to be carried out on ciphertexts and generates an encrypted result that, when decrypted,

matches the result of the operations performed on the plaintexts. Based on the specific

types of computation they support in the ciphertext space, the homomorphic encryption

schemes are generally categorized into two classes additive homomorphic encryption and

multiplicative homomorphic encryption.
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Additive Homomorphic Encryption. For any two plaintexts m1 and m2, consider

two operators × and + on the ciphertext and plaintext domain, respectively, an additive

HE scheme Enc satisfies

Enc(m1, r1)× Enc(m2, r2) = Enc(m1 +m2, r12),

where Enc(m, r) is the encrypted value of plaintext m with another random input r.

This random input r is required to ensure the semantic secure1 of the cryptosystem.

Based on the additive homomorphism, we have the pseudo homomorphic multiplica-

tion property of the cryptosystem as follows:

Enc(k ×m1, r1) = Enc(m1, r2)
k.

Various additive HE cryptosystems have been proposed, such as the Pallier cryp-

tosystem [67], GoldwasserMicali Encryption scheme [49], Damgard and Jurik cryptosys-

tems [35], and the Okamoto-Uchiyama [66] cryptosystem. For simplicity, this thesis

makes use of the Pallier cryptosystem as the additive HE encryption method. We will

present details of this protocol in the subsequent subsection.

Multiplicative Homomorphic Encryption. A cryptosystem is said to have the

multiplicative homomorphic property if for any two plaintexts m1 and m2, considering

the two operators × and + on the ciphertext and plaintext domain, respectively,the

following property holds:

Enc(m1, r1)× Enc(m2, r2) = Enc(m1 ×m2, r12),

where Enc(m, r) is the encrypted value of plaintext m with a other random input r.

RSA [74] and ElGamal [40] are two examples of cryptosystems that have this property.

1Informally, a semantically secure encryption scheme is a probabilistic, polynomial-time algorithm

such that given the ciphertext, an adversary cannot deduce any additional information about the plain-

texts.
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Fully Homomorphic Encryption. The two aforementioned classes of homomor-

phic encryption are homomorphic with respect to a single operation. The natural question

was whether there exists an encryption scheme that is fully homomorphic, namely, ho-

momorphic with respect to both addition and multiplication. In 2009, the first fully HE

was discovered by Gentry [42]. Principally, a fully HE allows for arbitrary computations

on encrypted data. Computing on encrypted data means that if a user has a function f

and want to obtain f(m1, ...,mn) for some inputs {m1, ...,mn}, it is instead possible to

compute the encryptions of these inputs, {c1, ..., cn}, obtaining a result which decrypts

to f(m1, ...,mn). However, despite significant advances [19, 29, 43], fully homomorphic

encryption remains largely impractical [55].

Addressing the performance limitation of fully homomorphic encryption, somewhat

homomorphic schemes have been proposed. A somewhat homomorphic scheme is an

HE scheme that is capable of evaluating a limited number of homomorphic operations.

This thesis utilizes the Boneh-Goh-Nissim Encryption Scheme [17] for the purpose of

implementing a somewhat HE scheme.

2.6.1.1 The Paillier Cryptosystem

The Paillier cryptosystem, named after and invented by Pascal Paillier [67], is a prob-

abilistic public-key encryption scheme. The cryptosystem relies on the computational

hardness assumption of a novel mathematical problem called composite residuosity. The

decision version of this problem class assumes that no polynomial-time algorithm can

distinguish the n-th residues modulo N2 with a non-negligible probability.

The Paillier cryptosystem is composed of three algorithms: key generation, encryption

and decryption.

Key Generation. The Paillier key generation algorithm inputs the security param-

eter ` and outputs a public and private key: (pk, sk).
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(i) Generate two large prime p and q of `/2 bits.

(ii) Compute n = pq and λ = lcm(p − 1, q − 1) where lcm is least common multiple

function.

(iii) Select random integer g where g ∈ Z∗n2 .

(iv) Compute the following modular multiplicative inverse

µ = (L(gλ mod n2))−1 mod n

, where

L(u) =
u− 1

n

(v) Output key-pair pk = (n, g), and sk = (λ, µ).

Encryption. The Paillier encryption algorithm inputs a message m and a public key

pk = (n, g) and outputs a ciphertext c ∈ Z∗n2 .

• Choose a random r ∈ Z∗n2

• Output ciphertext c = gm · rn mod n2

Decryption. The Paillier decryption algorithm inputs a ciphertext c and a keypair

(pk, sk) and outputs a decrypted message m.

m = L(cλ mod n2) · µ mod n

.

Homomorphism. Assume that we have two messages m1 and m2, which are encrypted

using a Paillier public key pk. The Paillier cryptosystem satisfies the additive homomor-

phic encryption property:

Encpk(m1, r1)×Encpk(m2, r2) = (gm1·rn1 )(gm2·rn2 ) = gm1+m2(r1r2)
n = Encpk(m1+m2, r1r2)
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We implemented Pailler using Java with BigInteger library. The performance of the

implemementation is presented in Section 3.5 of Chapter 3.5. It is also used as the

building blocks for developing the solutions for almost solutions presented in this thesis.

2.6.1.2 The ElGamal Crypttosystem

The ElGamal cryptosystem is a public-key encryption scheme invented by Taher Elga-

mal [40] based on the Differ-Hellman key exchange. The cryptosystem is defined over a

cyclic group G. Its security depends upon the difficulty of computing discrete logarithms

in group G. The ElGamal cryptosystem is composed of three algorithms as follows:

Key Generation. The ElGamal key generation algorithm outputs public and private

key: (pk, sk).

(i) Choose a multiplicative cyclic group G of order p with generator g, where p is big

prime number.

(ii) Choose a random x ∈ {0, . . . , p− 1}.

(iii) Compute y = gx modp.

(iv) Output key pair pk = (G, p, g, y), and sk = x.

Encryption. The ElGamal encryption algorithm inputs a message m and a public

key pk = (G, p, g, y) and outputs a ciphertext c.

(i) Choose a random r ∈ {0, . . . , p− 1}

(ii) Output ciphertext c = (a, b). where

a = gr mod p.

a = m · yr mod p.
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Decryption. The ElGamal decryption algorithm inputs a ciphertext c = (a, b) and

a keypair (pk, sk) and outputs a decrypted message m.

m = b · a−x mod p.

Homomorphism. Assume that we have two messages m1 and m2, which are encrypted

by an ElGamal cryptosystem. This ElGamal cryptosystem satisfies the multiplicative

homomorphic encryption property:

Encpk(m1, r1)× Encpk(m2, r2) = (gr1 ,m1 · yr1)(gr2 ,m2 · yr2s)

= (gr1+r2 , (m1 ·m2) · yr1+r2 = Encpk(m1 ·m2, r1 + r2)

2.6.1.3 BonehGohNissim Encryption Scheme

The Boneh-Goh-Nissim [17] cryptosystem, or BGN for brevity is a somewhat homomor-

phic public key encryption scheme. It allows both additions and multiplications on the

ciphertext space. The multiplication is constructed based on a bilinear map over the

elliptic curve groups.

Let G1, G2 be additive groups and GT be a multiplicative group. All groups are

of prime order p. Let g1, g2 be generators of G1, G2 respectively. A bilinear map e :

G1 ×G2 → GT has the following properties:

• Bilinear: for all u ∈ G1, v ∈ G2 and a, b ∈ Z, then e(ua, vb) = e(u, v)ab.

• Non-degenerate: e(g1, g2) 6= 1.

For practical purposes, e has to be efficiently computable. In cases when G1 = G2 = G,

the bilinear map is called symmetric. Furthermore, if G is cyclic, the map e will be

commutative.

The BGN cryptosystem is described as the follows:

Key Generation. BGN key generation outputs a keypair as the following steps:
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(i) Generate a tuple (q1, q2, G,G1, e), where q1 and q2 are two large primes, G is a

cyclic group of order q1q2.

(ii) Let e be a bilinear map e : G×G→ G1.

(iii) Set N = q1q2.

(iv) Pick two generators g, u ∈ G, compute h = guq2 . Hence, h is the generator of G

with order q1

(v) Output pk = {N,G,G1, e, g, h}, and sk = q1.

Encryption. BGN key generation inputs a message m ∈ 1, · · · , T , T < q2 and

outputs a ciphertext c ∈ G.

• Choose a random r ∈ {0, . . . , N}

• Output ciphertext c = gmhr ∈ G.

Decryption. BGN decryption inputs a ciphertext c ∈ G with the private key sk and

outputs a message m. We have:

cq1 = (gmhr)q1 = (gq1)m.

To recover the message m, we compute the discrete logarithm of cq1 to the base gq1 .

Since 0 < m < T , this takes expected time O(
√
N) using Pollard’s method [69].

Homomorphism. Consider c1 and c2 as the ciphertexts of two messages m1,m2 ∈

{0, 1, · · · , T} respectively. We have

c1 = gm1hr1 ∈ G, c2 = gm2hr2 ∈ G

then,

C = c1 × c2 = gm1hr1gm2hr2 = gm1+m2hr1+r2 ∈ G
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is an encryption of m1 +m2.

In addition, we also can compute the product of two encrypted messages using the

bilinear map e : G×G→ G. More specifically, if C = e(c1, c2) then,

C = e(gm1hr1 , gm2hr2)

= e(gm1+αq2r1 , gm2+αq2r2)

= e(g, g)m1m2hm1r2+m2r1+αq2r1r2 .

and is a uniformly distributed encryption of m1m2 in G1. Moreover, C still has

additive homomorphism in G1.

2.6.2 Oblivious RAM

Oblivious RAM (ORAM) is a cryptographic primitive that conceals memory access pat-

terns. The idea of ORAM is to continuously reshuffle the memory and translate the

address of each memory access to a set of randomized memory locations. It can be

proved that these randomized memory locations are independent of, and thus leak no

information about, the logical addresses that are actually requested.

Square root ORAM The study of ORAM was initiated with the “square-root”

solution by Goldreich [46]. The author addressed the problem of software protection,

i.e., the prevention of unauthorized copying. The idea for the solution is to design a

remote secure processor that allows hiding a program’s control flow determined by the

access pattern to the main memory. A trivial solution is to scan all the memory locations

of each access, which is infeasible for a complex program.

The Goldreich solution partitions the server memory into two regions: a main region

of O(N) blocks and a shelter of size (O
√
N) blocks. Initially, the main memory is filled

with O(N) real data blocks and (O
√
N) dummy blocks. All blocks are encrypted by

a semantically secure encryption scheme and randomly shuffled. To perform an access,
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the client first scans the shelter region. If the block is found there, the client performs a

random access to the unread dummy block in the main memory. Otherwise, the client

computes the location by a pre-defined hash function of the requested block and accesses

it. After that, the client re-encrypts the accessed block in the main region and appends

it to the shelter.

After O(
√
N) accesses, the main region runs out of dummy blocks and needs to be

reshuffled. We denote B as the size of the block since the scheme requires O(BNlogN)

(due to the oblivious sorting approach) data cells to be transferred for every (O
√
N),

and thus the solution requires a O(B
√
NlogN) amortized bandwidth.

Hierarchical ORAM Goldreich and Ostrosvky [48] presented the famous ‘hierar-

chical’ solution to achieve polylogarithmic memory bandwidth overhead. The key idea

of the solution is to, instead of using one main and shelter memory region, organize the

server memory into a hierarchy of buffers whose sizes grow at a geometric rate as in

Figure 2.6. Each permuted buffer at a particular level acts as the main region in the

square root approach and thus is parameterized by a hash function.

To access a block, each level in the data structure is accessed as if it were in the main

region. Each buffer slot acts like a bucket of size O(logN) blocks. The hash function

now maps blocks into random buckets. Each block accessed is appended to the top level

of the data structure. When a certain level fills, it is merged with the lower level.

The bucket of size O(logN) is downloaded atomically by the client for each data

access. There areO(logN) levels in the hierarchy, and together with the merge operations,

the solution requires a O(log3N) amortized bandwidth.

Goldreich and Ostrosvky’s hierarchical construction inspired many subsequent works.

Williams and Sion [83] reduced the bandwidth overhead to O(log2N) using oblivious

sorting, with O(
√
N) of client storage. Goodrich et al. [51, 52] used cuckoo hashing to

further reduce the bandwidth overhead to O(log N) with O(N ε) (ε > 0) client storage.
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Figure 2.6: The hierarchical ORAM of Goldreich and Ostrosvky [48]

Tree-based ORAM A recent breakthrough is the development of tree-based ORAM

by Stefanov et al. [80]. In this construction, each data block is mapped on to a random

path of a binary tree. This concept is different from the idea of hierarchical ORAM where

each block stored in a level has complete freedom on where they will be reshuffled into

the next level. The tree path containing a particular block associates with a certain leaf

node and that address of the leaf node is stored in a position map at the client side.

To access a block, the client first looks up the position map and reads all the buckets

on that path. For the binary tree construction, the path contains O(logN) data buckets.

After the access operation, the data block will be re-assigned a new path or a new leaf

node. It is re-encrypted and put at the root of the tree. Hence, some eviction procedures

are needed to percolate the blocks towards the leaves of the tree and prevent the root
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from overflowing.

Each data access requires O(log2N) bandwidth overhead because it requires fetching

of the O(logN) nodes where each node is a bucket of O(logN) data blocks. Moreover, the

original solution requires O(N) client side storage for the position map. Shi et al. [78]

proposed ORAM recursion to reduce the client storage to O(1). The key idea is to

store the position map at the server side as a second ORAM. This may be performed

recursively until the client storage is O(1). Clearly, the access operation now includes

looking up all the position map ORAMs in addition to the main data ORAM, which

increases the bandwidth overhead to O(log3N).

Stefanov et al. [81] propose Path-ORAM, an extremely simple and efficient ORAM

protocol. It only contains 16 lines of pseudocode, shown in Figure 2.7 below. Path

ORAM for the first time achieved an O(logN) memory bandwidth overhead under small

client storage.

Figure 2.7: Path-ORAM description [81]

The notation for the Path-ORAM description is defined in Figure 2.8 below.
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Figure 2.8: Path-ORAM notation [81]

This thesis makes use of Path-ORAM for the implementation of ORAM due to its

simplicity and efficiency.

2.7 Secure Multiparty Computation

In this thesis, we leverage the techniques as well as the security model from secure

multiparty computation to provide solutions to the problem of secure query processing.

This section reviews the concepts of secure multiparty computation (SMC). In the mid-

1980s, C. Yao [86] introduced the idea of securely computing any two-party functionality

in the presence of dishonest adversaries. Since then, various privacy-preserving protocols

have been proposed to address different classes of computation problems in the context

of private data. This section does not intend to describe the details of the mathematical

model of SMC, but aims to provide an intuitive interpretation of the basic concepts.

Interested readers can find more details in many books and papers such as “Foundations

of Cryptography” by Goldreich [47] and “Composition of Secure Multi-Party Protocols”

by Lindell [63].
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2.7.1 What is Secure Multiparty Computation

We consider the scenario of n parties who want to compute the output of a function f ,

a scenario such as a comparison evaluation. Each party i owns a private input xi. After

a procedure, they obtain the result f(x1, . . . , xn). The result may belong to one certain

party or be shared between the participating parties as (y1, . . . , yn) depending on the

purpose of the protocol. This procedure is called multiparty computation (MPC). Let

us assume that they compute the output of function f in a secure way such that the ith

party knows yi, but gets nothing more than that. In this case, the procedure is called

secure multiparty computation (SMC).

To illustrate the intuition of SMC, we consider a classic example of Yao’s millionaire’s

problem [86]. Two millionaires want to know who is richer without disclosing their

fortunes. Yao proposed a secure comparison method such that each millionaire knows

the result (who is richer) but nothing else. The protocol acts as a black box such that

there is a trusted party who is able to receive two numbers from the two parties and

reveal the comparison result and nothing else. While the presence of a trusted party is

unrealistic in many applications, SMC has become a very prominent solution for these

scenarios and has attracted a significant attention from both the industry and academia.

2.7.2 Semi-Honest Adversary

There are several notions of security with various degrees of strength. In this work, we

focus on the special case of private computation, which assumes that the adversary is

passive (also called semi-honest or honest-but-curious) and cannot modify the behavior

of corrupted parties. In the semi-honest model, each party strictly follows and executes

the specified protocol and provides the correct input data when executing the protocol.

However, the attacker is subsequently free to compute additional information based on
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his or her private input, output and messages received during the execution of the secure

protocol. Loosely speaking, the semi-honest model is only concerned with the information

learned by the adversary, and not with the effect of misbehaviors may have on the

protocol’s correctness.

The stronger notion of the adversary is a fully-malicious one who can modify the

corrupted parties’ behavior arbitrarily. However, in this thesis, we do not consider this

notion of the adversary. Although the assumptions of the semi-honest adversarial model

are weaker than those of the malicious model, we insist that this assumption is realistic

under the problem settings. Firstly, participating parties do not want to deviate from

the protocol specifications since it is also against their interest. Moreover, it is often

non-trivial for one party to maliciously deviate from a particular protocol that may be

hidden in a complex process.

The semi-honest party model has been widely accepted and applied in many secure

data processing protocols such as [9,33] as generally, each party does not wish to collab-

orate with any malicious parties for risks of compromising data privacy.

2.7.3 Security Requirements

In an SMC protocol, the result of the computed function is inevitable. For example, in

Yao’s millionaire problem, if a millionaire knows he is richer, he can then conclude that

the other’s fortune is smaller than his. Any additional information leakage beside this is

undesirable. Hence, the security of an SMC protocol should be properly defined.

A naive approach to define the security of an SMC protocol is to exhaustively enu-

merate all the security requirements for each participating party and the independence

of inputs. However, since there is no universal standard for these requirements, it is hard

to know whether the list is complete. Hence, defining the security of an SMC protocol is

not easy. In this thesis, we will take a different approach.
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We make use of the simulation-based approach as suggested by Goldreich [47]. In-

tuitively, a protocol is secure if whatever can be computed by a party participating in

the protocol can be computed based on its input and output only. More concretely, for

each participating party, its view in the protocol execution should be simulatable by a

simulator with only access to its input and output.

2.7.4 The Composition Theorem

Composition theorems state that if a protocol π is secure and it makes direct call to

an ideal functionality g during execution, and σ is a secure protocol that computes g,

then π is secure if it replaces g by σ in its definition. It essentially means we are able

to construct a secure protocol by sequentially composing secure functions. A detailed

presentation on the theorems and their proof can be found in Canetti [25].
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3
Private Query Processing via

Proxy-Assisted Computation

3.1 Introduction

In this chapter, we present a simple but secure scheme that supports conjunctive query

evaluation over the numerical domain. More concretely, we consider the scenario where

the client outsources a multidimensional dataset of numerical values, and later he/she
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is able to query to obtain the useful subset of the dataset. The scheme allows exact

matching and range query in the numerical domain.

3.1.1 Motivating Scenario

In this chapter, we consider the process of alert correlation in network security as the

motivating scenario. In a network system, suspicious events are recorded by a variety

of sensors (e.g., IDS, system logs, antiviruses, etc.). When an intrusion takes place,

security analysts are required to examine past related events. These events and the

current attacks typically share the same characteristics such as source and destination

ports, source subnet, and destination IP addresses. This chapter presents a solution that

allows organizations to outsource their network encrypted event logs, and later are able

to issue queries to retrieve partial but useful records from the database.

We leverage an additive homomorphic encryption (i.e., Paillier cryptosystem) to

present a solution that supports exact matching in a numerical domain such as query-

ing a destination IP or a communication port. To support range queries, we propose a

prefix–encoding extension to transform them to exact matching queries. Our solution

allows the dynamically updating of the outsourced dataset.

3.1.2 Organization

The rest of this chapter is organized as follows. The main content of the chapter starts

with the formulation of the problem in Section 3.2. The section also discusses the re-

quirements for the problem. Section 3.3 presents the solution for the abovementioned

problem. We begin with the description of the exact matching query and then describe

the extension to support range query. We analyze the security as well as the complexity

of the proposed approach in Section 3.4. Section 3.5 presents experimental evaluations of
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the proposed solution. The final section concludes the chapter. Throughout this chapter,

we make use of the alert correlation process to illustrate our proposed approach.

3.2 Problem Formulation

3.2.1 Problem Statement

We consider the scenario where a client poses a multidimensional datasetD = {d1, · · · , dn}

of n-records. Each data record consists of m numerical attributes {t1, t2, · · · , tm}. We

denote tji as the value of jth attributed of data record di.

The client outsources his/her database (i.e., a set of data records) to the cloud server

in order to save the local storage costs. In our example of network security, the client

outsources the network event logs that are generated by different sensors (e.g. IDS,

system logs, antiviruses, etc.). The dataset may contain sensitive information of business

operations. Hence, a client-side encryption is required to ensure data confidentiality.

Let D′ denote the encrypted database stored in the server. The client wants to

securely retrieve a subset of the data from D′ in the cloud using his/her private query

Q. In this chapter, we assume the query is represented in a conjunctive normal form as

follows:

Q = s1 ∧ s2 · · · ∧ sk → {0, 1}

The input to query Q is an encrypted data record d′i. Here, si is a simple equality

predicate whether attribute ji of the data record has value xi : tji
?
= xi. The output of

the query evaluation on the record d′i is 1 if it satisfies all the equality predicates at the

same time and 0 otherwise.

The goal of the solution presented in this chapter is to facilitate clients efficient re-

trieval of data records from D′ (stored at the server) that satisfy Q in a privacy-preserving
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manner. More formally, we define a privacy preserving query processing (PPQP) protocol

as follows:

PPQP (D′, Q)→ S,

where S is a set of indices that denotes the output set of records that satisfy Q. That is,

∀t′ ∈ S,Q(t′) = 1 always holds.

3.2.2 Privacy Requirements

When designing the solution for a secure conjunctive query processing system, we consider

the following security requirements:

(i) Query Confidentiality. No information about the dataset should be revealed to a

passive observer at the server.

(ii) Query Privacy. Given two queries, one query is created by a client, and the other

one is randomly simulated, an observer should not be able to distinguish (with

probability non-negligibly exceeding 1/2) them.

(iii) Server Unlinkability. A client should not be able to detect any changes in the

server’s database, except for the information implied (by the client) from the results

of the queries.

(iv) Access Pattern. The identification of the matching or requested records should not

be revealed to the server.

Cristofaro et al. [32] pointed out that query privacy and server unlinkability requirements

are necessary in many practical scenarios. In general, these requirements prevent one

party (client or server) from noticing whether the other party’s inputs have been changed.

Hence, the risks of privacy leaks is minimized. Without the third requirement, the client
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always can determine if the server has updated its database in the duration between two

queries. In the alert correlation example, the necessary records may be shared or queried

by different parties or different departments. The unlinkability requirement prevents

unnecessary information to be exposed. Besides that, unless query privacy is guaranteed,

the server can learn that the client sends two of the same queries in two interactions; in

that case, if one query’s content is exposed, the other would be immediately leaked.

3.3 Private Conjunctive Query Processing

3.3.1 Solution Overview

We propose a system architecture consisting of three general parties.

• The client is the data owner who outsources the database D to the server.

• The server provides data storage and computing services. The server may be

an untrusted entity, and it may try to collect information about clients from the

dataset.

• The proxy is a computing server. The proxy will communicate with the server,

receive some immediate results to evaluate, filter the encrypted results and return

them to the client.

The workflow of our proposed approach consists of three main stages:

• Setup. In this stage, the client generates two public keypairs so that they can be

used for encryption, decryption, and communication during the later stages.

• Encryption. The client encrypts the dataset at the client-side before outsourcing

the data to the server. The semantic security property of the cryptosystem provides

client data confidentiality.
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• Query Preparation. To retrieve the necessary data from the server-side, the client

constructs a query, encrypts it and sends the encrypted query content to the server.

• Query Evaluation. Receiving the encrypted query content, the server and the proxy

initiate an interactive process so that at the end of the stage, the client will receive

the index set of matching data records.

3.3.2 Basic Secure Conjunctive Query Processing

This section describes the construction of our basic secure conjunctive query processing

scheme:

(i) Setup. The client generates two Paillier keypairs (pk1, sk1) and (pk2, sk2). The first

keypair is utilized to encrypt data and query content at the second and third stage.

The latter keypair is used for the query evaluation stage. We denote Enc(pki,m)

as the encryption of a message m under the public key pki. The client shares sk1

with the proxy while keeping sk2 in secret.

(ii) Encryption. For each data record di ∈ D, the client encrypts the attribute values

of the data record one by one using the public key pk1, and outsources the whole

encrypted dataset to the server. The server stores one encrypted data record in the

following form:

〈id, Enc(pk1, t1id), Enc(pk1, t2id), · · · , Enc(pk1, tmid)〉

,where id is the index of the data record in the server. The server index allows an

authorized client to obliviously retrieve the data record from the server database

(i.e. Oblivious RAM techniques [81]).
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(iii) Query Preparation. The client wishes to query for the data record satisfying the

following requirements:

Q← tj1 = x1 ∧ tj2 = x2 ∧ · · · ∧ tjk = xk

The query Q comprises k expressions (k ≤ m). Each expression is a simple equality

predicate on one attribute ji: t
ji ?

= xi.

We can represent a query Q by two components the attribute identifier, and the

query values:

Q = {[j1, j2, · · · , jk], [x1, x2, · · · , xk]}

. The second component is encrypted under the public key pk1 and sent to the

server:

Enc(Q) = {[j1, j2, · · · , jk], [Enc(pk1, x1), Enc(pk1, x2), · · · , Enc(pk1, xk)]}

.

(iv) Query Processing. Protocol 1 presents the query processing protocol specification.

After the execution of the algorithm, the client receives the indexes of all satisfied

records. He/she can subsequently perform private information retrieval to obtain the

necessary information.

Correctness. The soundness of the protocol follows the additive homomorphic prop-

erty of the additive homomorphic cryptosystem:

Aji = Encpk(t
ij)× c1−1 (modN2)

= Encpk(t
ji − xi) (mod N2)

Hence,

C =
k∏
i=1

Bji =
k∏
i=1

(Aji)ri = Enc(
k∑
i=1

ri(t
ji − xi))(mod N2)
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Algorithm 1: Basic Query Processing Algorithm

Input: The attribute index set {[j1, j2, · · · , jk] and the value set

{c1 = Enc(pk1, x1), c2 = Enc(pk1, x2), · · · , ck = Enc(pk1, xk)}

Output: Indexes of satisfied records

1 for each record, Server does do

2 for i = 1 to k do do

3 Compute Aji = Enc(pk1, t
ji)× c1−1 (modN2);

4 Compute Bij = (Aji)ri (modN2) where ri is a random positive number ;

5 end

6 Compute C =
∏k

i=1B
ji ;

7 Send C and encrypted index Enc(pk2, id) to Proxy;

8 end

9 for each received record, Proxy do

10 Send En(pk2, id) to Client if Dec(C) = 0;

11 end

12 Client decrypts Enc(pk2, id) and receives the result;

C is a linear combination of k random positive numbers. Hence, once a record passes the

test when C = 0, it must satisfy the conditions: tj1 = x1 and ... tjk = xk, with negligible

false positives.

Security. Data records stored in the server’s database are encrypted by the Paillier

cryptosystem, which is semantically secure. Hence, the server cannot distinguish any

particular alert from other ones. Besides that, the server cannot gain any information

from the query as well as it cannot distinguish any two queries from each other since all

the information, that it obtains, is an encrypted form of the query. Therefore, client pri-

vacy and client unlinkability requirements are satisfied. The only inevitable information
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leakage is the number of records that the server receives from each client.

On the other hand, for the client, without colluding with the proxy, all data he/she

receives during the protocol are the indexes of records that match the query’s conditions.

Hence, he/she does not get any information of the records from the server except for

the records that satisfy the query. Similarly, given two queries, the client is not able to

detect any changes in the server’s database, except for the information implied (by the

client) from the results of the queries.

For each record, the proxy receives the value of Dec(C) =
∑k

i=1 rj(t
ji − xi). If there

is ∃j : tji 6= xi, that value is a random number. Hence, the only knowledge the proxy

obtains is the number of matched records. In order to resolve this issue, the server

can encrypt a random number of “fake” matched immediate results (encryption of value

zero), and send them to the proxy.

3.3.3 Secure Range Query Processing

In a particular context, the protocol can be modified to support certain range queries.

One possible scenario is the alert correlation process described in Section 3.1.1. Upon

the arrival of a new alert data, a client often wants to know past related intrusion alerts.

Rather than examining the exact source and destination IP addresses, security analysts

are often more interested in the subnet addresses.

An IP4 address can be represented by a 32-bit integer. A subnet address query such

as “10.10.1.0/24” (a class C network) can be represented by a range query as follows:

168427776 ≤ x ≤ 168428031

In order to support such a type of range query, we perform a prefix encryption as the

follows:
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(i) Transform the IP4 address to binary representation. For example, 10.10.1.24 is

recorded as 1010000010100000000100011000.

(ii) Represent different subnet classes of interest in binary format. For example, 10.10.1.24/32

(exact address), 10.10.1.24/24 is represented as 1010000010100000000100011000,

and 1010000010100000000100000000, respectively.

(iii) Encrypts the IP4 address multiple times, each encryption for a subnet class of

interest.

(iv) The query process for particular subnet addresses can be performed using the sim-

ilar method described in Section 3.3.2.

The intuitive concept behind the prefix encryption in this scenario is that the bound-

aries of the range and the actual data point have the same prefix in binary representation.

This concept can also be extended to support the more general problem of an integral

range query such as a 32-bit integer range query. In order to support such queries, each

data point should be encrypted multiple times (i.e., 32 times) for each prefix in the binary

representation of this data point. The query for an arbitrary range [a, b] is now translated

into a union of prefix range queries.

We illustrate this approach by a simple example of the query: 50 ≤ x ≤ 100. We

only consider an 8-bit integer representation for simplicity.

(i) Represent the boundaries in binary format: 50 = 00110010, 100 = 01100100.

(ii) Create the queries for the binary prefix of these boundaries. There will six queries

as follows: 00110010, 00110100, 00111000, 01000000, 01010000, 01100001.

Here, we note that the union of six queries would include all the numbers between

50 and 100. However, we also emphasize that while this approach is not impossible, it
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is impractical in almost all other scenarios. Even for such simple query, we are required

to process six separate subqueries, and create a huge overhead for data storage (i.e., 32

times larger).

Chapter 5 discusses a much more efficient method to address the problem of range as

well as multi-dimensional range queries.

3.4 Discussion

Since for each query, the data server performs an indistinguishable computation process

for each data record, there is no information it can gain from the query processing process.

Hence, the access pattern and the query privacy requirements are satisfied.

This chapter presents a protocol to support conjunctive exact matching queries and

a certain type of range query. This query model is useful for the process for alert corre-

lation. A more complex query that is required in the alert correlation process can also

be supported by this model. More specifically, sequential information can be included

as the query criteria. This knowledge is encoded as a binary matrix, and homomorphic

encryption is utilized to deliver the corresponding records. Interested readers can refer

to our paper [36] for more details.

While the scheme we present in this chapter provides rigorous security in terms of

access pattern, and query privacy, etc., there is one known shortcoming that affects the

practicality of the solution, that is, the private key sharing with the proxy. The client is

normally reluctant to share the key with a third party, even when they claim that there

will be no collusion with the data server.
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3.5 Experimental Results

This section examines the performance of our proposed solution to the problem of secure

conjunctive equality tests on encrypted remote data. We firstly discuss the implemen-

tation of the Paillier cryptosystem–an additive homomorphic encryption scheme. In the

subsequent chapters, when we refer to the performance of the additive homomorphic en-

cryption, we refer to the practical results we obtain in this section. Later the performance

of the cryptosystem for the proposed solution is presented.

Paillier Implementation. We implemented a Paillier cryptosystem using Java

BigInteger class. All the experiments were conducted using a Windows 10.0 machine

with a 3-GHz processor and 16 GB of RAM. To examine the performance of the Paillier

implementation, we performed 200,000 encryption/decryption operations with a varying

key length of {512, 640, 768, 896, 1024, 2048}. These experiments were also used to test

the correctness of the Paillier implementation. The input of the experiment is the SHA-

256 value of the random text. The execution time for Paillier encryption/decryption is

calculated by taking the average time from 200,000 operations and the results are graphed

in Figure 3.1.

The results show that the encryption operation is slightly more expensive than the

decryption. The experimental results also guide us on the performance of the Paillier

cryptosystem in practice. With a medium-sized data of 1,000 to 10,000 records, it may

take up to minutes just to encrypt and decrypt the whole dataset. We also note that

the execution time of the addition operation in ciphertext space is much shorter than

the execution time of the encryption/decryption operation. To perform one addition

operation in 1024-bit length Paillier takes 0.019 ms.

Secure Conjunctive Query Processing. To investigate the efficiency of the pro-

posed solution, we test a simulated network log dataset of 10,000 data records. The

dataset contains multiple attributes: username, IP4 address, country, gender, datetime,
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Figure 3.1: Execution times of Paillier cryptosystem’s operations

and time interval. We conduct the experiment with different Paillier key lengths of

{512, 1024, 2048}.

The data storage overheads when encrypting the dataset using different key lengths

are 39.1, 78.1, and 156.2 times, respectively. The storage overhead is roundly doubled

when the key length doubles. The execution time of the protocol is reported in seconds

in Table 3.1.

For the standard 1024-bit length, the solution only takes around three minutes in order

to return results of the whole dataset of 10,000 records. This is clearly acceptable in most

applications. Moreover, we also note that the execution times scale at a magnitude of

seven times when the key length doubles.

3.6 Summary

This chapter presents a simple but secure solution for the problem of conjunctive equality

matching. The extension that supports range queries in certain scenarios is also discussed.
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Table 3.1: Execution time of private query processing via proxy-assisted computation

No. of Records 512-bit 1024-bits 2048-bit

500 1.659 9.06 68.322

1000 3.172 18.026 149.56

2000 6.194 36.425 318.84

3000 8.815 56.483 438.941

4000 11.425 74.107 541.164

5000 15.308 97.252 701.143

6000 18.22 113.999 908.048

7000 20.872 133.758 1052.807

8000 24.253 151.372 1119.793

9000 27.126 166.588 1346.356

10000 29.849 190.15 1380.214

The solution reveals no information to the data server as well as the proxy. The security

of the protocol is analyzed against the secure multi-party computation model. However,

there is one certain limitation of the protocol. The protocol requires the client to share

his/her private key with a third party (i.e., the proxy), which is unrealistic for many ap-

plications. In addition, the solution only supports conjunctive queries. In the subsequent

chapters, we discuss different approaches that support more general queries.
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4
Private Boolean Keyword Search on

Encrypted Data

4.1 Introduction

In the previous chapter, we presented a simple but secure solution that supports conjunc-

tive exact matching queries. This chapter aims to solve a more general problem: private

Boolean keyword searches. The solution presented in this chapter allows the evaluation
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of any combination of Boolean functions over a set of keywords. The problem we address

in this chapter is the same as the classical Boolean information retrieval problem.

We consider a scenario where an encrypted dataset contains a number of encrypted

documents. Each document is associated with a certain set of keywords. An authorized

user is able to perform search queries that are a combination of logic predicates of the

keyword set. The output of the query processing is the index set of satisfied documents

and nothing else to the data consumer. During the query processing, not only the

outsourced data is kept private from the data storage provider, but also the user’s input

query remains confidential.

There are two general approaches to address the problem of secure query processing

over encrypted data without downloading the entire dataset. The first approach deploys

tamper-proof trusted hardware (which is either trusted or certified by the clients) on

the cloud-side. The hardware provides a secure environment that allows the cloud to

perform secure operations over the data in critical query processing stages. Along with

this direction, Bajaj and Sion [6] leveraged the existence of trusted hardware to design

TrustedDB, an outsourced database prototype that allows a client to execute SQL queries

with privacy and under regulatory compliance constraints. However, the secure hardware

is costly and may not be suitable for a general cloud computing paradigm, which typically

makes use of cheap commoditized machines.

The second approach makes use of cryptographic protocols to perform operations

over the encrypted data. Chapter 2 provides an extensive review of existing works on

searching over encrypted data. We emphasize that existing works either only support

single (or only conjunctive) keyword search or fail to provide rigorous privacy protection

due to access pattern leakage. In this chapter, we present a secure protocol that not only

preserves query privacy but also keeps the access pattern confidential.
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4.1.1 Motivating Scenario

We consider an example of outsourcing personal email. Alice wishes to outsource her

archived emails to free up her mobile device storage. However, these emails contain

important information that she is required to use in the future. Each email belongs to

some certain categories or includes several keywords such as “work”, “education”, “leave”,

etc. Later, she wishes to search and retrieve the useful emails using combinations of these

keywords.

4.1.2 Organization

We organize the chapter described by the following. In the next section, we review the

existing works on secure query processing over encrypted data. Section 4.2 describes

our problem statement, data model, and query model as well as the requirements for

the designed framework. Section 4.3 reviews the necessary building blocks which are

Bloom Filters and Oblivious Transfer. The proposed solution for complex Boolean query

processing on encrypted data is presented in Section 4.4. The section systematically

discusses four stages of the solution. Section 4.5 presents our experimental evaluations of

the proposed sub-protocols. The final section discusses future works and concludes the

chapter.

4.2 Problem Formulation

4.2.1 Problem Statement

In our problem settings, we consider three different parties: the data owner, the data

server and the data consumer.
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• The Data Owner outsources a set of documents. In order to ensure the data

security, these documents are encrypted at the client side.

• The Data Server has the resposiblity to store the data owner’s dataset and provide

the search service to the data consumer.

• Data Consumer is authorized entity that has permission to search on the encrypted

dataset and obtain partial but useful data content.

Let D be the data owner’s dataset with n documents. Each document is associated

with a certain set of keywords that enable it to be searched or retrieved efficiently. We

assume that the data owner wishes to encrypt D using his/her key and outsources the

encrypted data to a cloud so that later an authorized data consumer is able to search

on the encrypted data. The input query is represented by a logical combination (i.e.,

negation, conjunction, and disjunction) of the keyword predicates. At the same time,

several security issues should be addressed, such as data confidentiality, the privacy of

query content, etc.

Formally, let W = {0, 1}∗ be a universe of words and D ⊆ W be the corpus. Let

Kw = {w1, · · · , wn} denote a set of searchable keywords. The keyword set Kw is pre-

defined (hence it is called a common reference keyword set). While Kw can be any

searchable property set of the corpus D, for simplicity, we assume the problem as a

general Boolean keyword search. That means Kw ⊆ D and the predicate d(wi) = 1 if

and only if the document d contains the keyword wi. Otherwise, d(wi) = 0.

A Boolean query qK contains a keyword predicate and a set of logical expressions

∧,∨,¬. Let dC = {d(1), . . . , d(n)} be n documents stored in a server C. With a set of

keywords K ⊆ Kw, we define a query qK : d→ {0, 1} that takes a document d as input

and outputs 1, if and only if d matches the criteria.
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4.2.2 Security Requirements

In this chapter, we consider the following security requirements for the problem of private

Boolean keyword searches on encrypted data:

• Data Confidentiality. The data are encrypted by a provably secure cryptosystem.

Besides, during the query processing, the data server should not gain any new

knowledge of the stored data.

• Query Privacy. At any point of time, the data consumer’s query should never be

revealed to the data server and the data owner.

• Access Pattern Privacy. Data access patterns of the data consumer should not

be disclosed to the data server and the data owner. Data access patterns are the

information about the documents that satisfy the query (even the attackers do not

know the query content).

• End-user Privacy. At the end of the query processing protocol, only the satisfied

results should be revealed to the data consumer and nothing else.

4.2.3 Comparision with Related Work

Section 2.5 briefly review representative approach to the problem of the secure complex

query over the encrypted dataset. Table 4.1 shows the comparisons of the presented

solution in this chapter with the existing ones on different security aspects.
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Table 4.1: Comparision with Related Work

Data Confi-

dentiality

Query

Privacy

Access

Pattern

CNF &

DNF

No Key

Sharing

Golle et al. [50] 3 3 7 7 3

Boneh et al. [18] 3 3 7 7 3

Popa et al. [71] 7 7 7 3 3

Do et al. [36] 3 3 3 7 7

Samanthula et al. [76] 3 3 3 3 7

Proposed method 3 3 3 3 3

4.3 Building Blocks

4.3.1 Bloom Filter

A Bloom filter [10] provides a way to probabilistically represent set membership of el-

ements using a small amount of space, even when the universe set is large. It repre-

sents a set S = {s1, . . . , sn} of n elements by a space-efficient m-element array B =

{B[1], B[2], . . . , B[m]}. A random set of hash functions h1, . . . , ht, where each function

hi : {0, 1}∗ → [0, . . . ,m] is chosen to associate with the Bloom filter B.

The filter algorithm is constructed as follows. The bit array B is initially set to 0.

For each element si ∈ S, the bits corresponding to the positions h1(si), h2(si), ..., ht(si)

are set. The same bit in the array may be set several times without any restriction.

Figure 4.1 depicts how an element is inserted into a Bloom filter.

After the Bloom filter is constructed, membership queries can be easily answered. To

determine whether an element x belongs to the set S, we check all the bits corresponding

to the positions h1(s), h2(s), ..., ht(s). If at least one bit is 0, then x 6∈ S is certain.
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Figure 4.1: Bloom Filter Insertion

Otherwise, we conclude that x ∈ S. A false positive may occur when an element x 6∈ S

is recognized as an element of the set. However, mathematical analysis shows that the

probability of the algorithm returning 1 for x 6∈ S is approximately (1− e−tn
m )t, which is

small enough for practical use.

4.3.2 Oblivious Transfer and OT Extension

Oblivious transfer (OT) is a major building block for designing a number of secure

computation protocols. The protocol consists of two parties: the receiver and the sender.

The basic 1-out-of-2 OT 2
1 allows the receiver to choose either one from two input of the

senders without learning anything regarding the other. OT 2
1 was introduced by Even

et al. [37] as a generalization of Rabin’s “oblivious transfer” [73]. Brassard et al. [20]

further extended OT 2
1 to 1-out-of-n OT n1 where the receiver is able to obtain 1 message

from n messages possessed by the sender. Since then, many efficient protocols for OT

with different security assumptions have been proposed over the years. The k-out-of-

n OT kn scheme is the final form of OT schemes and the one we make use of in our

solution. In it, from n encrypted messages sent by the sender, the chooser can obtain k

of them that he/she had chosen without the sender’s knowledge about which part of the

messages can be obtained by the chooser. While it is clear that OT kn can be constructed
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by applying k repetitions of OT n1 , there have been more efficient protocols. Wu et al. [84]

introduced two-lock cryptosystems to improve the efficiency of the OT kn protocol from

O(kn) to O(k + n). Recently, Guo et al. [53] proposed a cryptographic concept called

subset membership encryption and applied it to construct a two round OT kn protocol

against semi-honest adversaries. The algorithm only requires the communication cost of

O(n) for the sender and O(k) for the receiver.

4.4 Proposed Framework

4.4.1 Solution Overview

As mentioned in Section 4.2, the data owner outsources a corpus D of encrypted doc-

uments so that later the data consumer is able to perform complex Boolean keyword

queries. A query is represented by logical expressions ∧,∨,¬ of Boolean keyword predi-

cates qk. The results of the query are the indices of satisfied documents.

We explicitly assume that each document di is associated with a subset S(i) ⊆ K

of keywords. For simplicity, we assume that each document has the same number of

associated keywords. For each document, we represent these associated keywords by

a Bloom-filter of size m. Let {h1, h2, . . . , ht} be independently keyed hash functions.

A keyed hash function hi inputs a secret key from key space K and a keyword k and

outputs an integer in the range of [1, . . . ,m]. The preprocessing stage when the data

owner prepares the data and uploads them to the data server is described as follows:

(i) The data owner generates a secret pseudorandom function F mapping an integer

to a random key in the key space K.

(ii) For each document d(i), the data owner does the following:

• Generating a key for hash functions: k(i) ← F (i).
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• Creating a Bloom-filter B(i) associated the documents.

• Inserting the document keyword set S(i) into Bloom-filter B(i) with the hash

functions: h1, h2, ..., ht using the key k(i). Concretely, for each keyword w
(i)
j of

the document d(i), we set the bit h1(k
(i), w

(i)
j ), . . . , ht(k

(i), w
(i)
j ) in Bloom-filter

B(i).

• Encrypting the content of the document with a standard cryptosystem (i.e.

AES).

(iii) The data owner sends the encrypted dataset as well as the Bloom-fiters for all the

encrypted documents to the data server.

(iv) The data owner shares the secret function F with the authorized data consumer.

Let D
′

denote the outsourced data of the data owner. D
′

consists of multiple records

and each of them has the following form:

〈
Document index, Encrypted content, Bloom Filter data

〉
Two arbitrary documents have two different Bloom filters that are generated by two

different sets of hash functions (i.e., different keys for keyed hash functions). Moreover,

the keys are generated by a pseudorandom function F . The input of F is the index of the

document. Hence, having only the view of the Bloom filter data, the data server cannot

make any conclusion about the associated keyword sets.

Now consider an authorized data consumer (who would typically be authorized by the

data owner) who wants to securely retrieve data from D
′
in the data server. The satisfied

documents are defined by his/her private Boolean query. The query phase consists of

three stages as follows:
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• Secure Single Keyword Evaluation – In this stage, the data consumer evaluates a

single keyword query for each encrypted document. The output of this stage is

the encryption of either 1 or 0, depending on whether the document contains the

keyword.

• Secure Complex Boolean Query Evaluation – Based on the results of the previous

stage, the data consumer collaborates with the data server to compute the result

of the complex logical combination of Boolean predicates. Again, the output of

this stage is the encryption of either 1 or 0 depending on whether the document

satisfies the input query.

• Retrieval of Output Data – At this stage, the data consumer collaborates with

the data server to securely retrieve the indices of satisfied documents, and obtains

the final documents by private information retrieval or oblivious RAM with known

indices.

4.4.2 Secure Single Keyword Evaluation

We consider the scenario of evaluating a single Boolean predicate qk(d) for each document

d in the encrypted data corpus D
′
. More concretely, we propose an algorithm to answer

the query whether a particular encrypted document d contains a given keyword k.

We denote Alice, S, and Bob to be the data owner, the cloud, and the data consumer

respectively. Let (pk, sk) be the Paillier key pair of S, and Enc(·) be the encryption under

public key pk. Protocol 2 describes the algorithm that inputs an index i, and a keyword

w and outputs an encrypted bit b. Bit b = 1 if the document contains the keyword and

0 otherwise. The result is held by Bob but remains encrypted under S’s public key pk.

In line 5 of protocol 2, Bob and S collaboratively compute the multiplication operation

on the encrypted data. In this protocol (i.e., SecMul), Bob holds two private encrypted
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Algorithm 2: Secure Single Keyword Evaluation

Input: Integer i denotes the index of document d(i), keyword w, pk is the Paillier

public key of S

Output: Encrypted bit Enc(b), where b = q(w, d(i)) - whether d(i) contain w

1 S encrypts each bit in the Bloom filter B(i) by its Paillier public key;

2 Bob generates key k = F (i);

3 S and Bob perform (t,m) oblivious transfer to send encrypted

{Enc(B(i)[hj(k, w)])} to Bob, j = 1, t;

4 Bob computes r = Enc(1) ;

5 For each corresponding bit hj(k, w), Bob computes

r = SecMul(r, Enc(B(i)[hj(k, w)])) ;

6 Bob outputs r.

inputs (Enc(x), Enc(y)) and S keeps the Paillier secret key sk, where x and y are unknown

to both two parties. The output of SecMul(Enc(x), Enc(y)) is Enc(x× y) and revealed

only to Bob. The protocol SecMul is presented in protocol 3. Regarding the definition of

SecMul (i.e., protocol 3 ), Bob iteratively computes the product of
∏
Enc(B(i)[hj(k, w)]

in the encrypted form for j = 1, . . . , t. The product equals 1 if any only if all the bits

of {Enc(B(i)[hj(k, w)]} are set and 0 otherwise. Hence, the correctness of the protocol

follows that observation.

We note that this chapter is using the iterative approach to compute the product of

multiple encrypted bits for simplicity. The improved version of computing the product

encrypted bits will be discussed and presented in Chapter 6.

As described in steps 1 and 2 of protocol 2, S is required to encrypt the Bloom filter

sets each time for a single keyword evaluation. However, since a complex Boolean query

generally contains multiple keyword evaluations, one time Bloom filters encryption and
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communication for a query are sufficient. The protocol requires n encrypted bit transfers

for the Bloom filter and 2×t encrypted integer communication for t Secure Multiplication

rounds.

Algorithm 3: Secure Multiplication

Input: Bob holds (Enc(x), Enc(y)), and S holds the private key sk

Output: Bob holds Enc(x× y)

1 Bob generates two random number r, s;

2 Bob computes Enc(x+ r), Enc(y + s) sends them to S;

3 S decrypts and obtains x+ r, y + s;

4 S computes (x+ r)(y + s) and sends Enc((x+ r)(y + s)) to Bob;

5 Bob computes

Enc(x× y) = Enc((x+ r)(y + s))− Enc(x× s)− Enc(y × r)− Enc(r × s).

The computations at lines 2-5 of protocol 3 are simply performed by the homomorphic

property of Paillier encryption. During the protocol, Bob only works on the encrypted

data, while the server receives two random numbers. Hence, no information regarding x

and y is gained by Bob and S. The correctness of the protocol is trivial as (x+r)(y+s) =

x × y + x × s + y × r + r × s. The protocol requires two encrypted integer transfers

for communication cost. Bob has to perform five multiplicative operations and five

exponential operations in the ciphertext space.

4.4.3 Secure Complex Boolean Query Evaluation

At this stage, Bob holds the encrypted result of the evaluation for each document with

each keyword appearing in the private query. This sub-section discusses three basic

primitives that operate on the encrypted inputs of the stage. With these primitives, Bob

has the capability to compute the encryption of the desired bit result for each document’s
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query evaluation. The output of this stage is a single encrypted bit for each document.

This single bit indicates whether the document has satisfied the query.

Inputs of the three primitives are either one single encrypted bit (NOT operation) or

two encrypted bits (AND and OR operations). The descriptions of these are presented

as follows:

(i) ¬ (NOT ) - It is straightforward to derive the formula for the bit negation oper-

ation: Enc(¬x) = Enc(1) − Enc(x). Clearly, the operation leaks no information

regarding the encrypted bit x to both the cloud S and Bob. It requires one expo-

nential operation and one multiplicative operation. Clearly, the protocol leaks no

information to Bob and S, since S receives no more data while Bob only works on

his inputs which are encrypted data.

(ii) ∧ (AND) - Because x ∧ y = x × y for any two bits x, y, the primitive is exactly

the same as the description of Secure Multiplication (protocol 3). The protocol

requires five multiplicative operations and five exponential operations in the cipher-

text space. The security of the protocol follows the analysis of Secure Multiplication

(i.e., protocol 3).

(iii) ∨ (OR) - Since x∨y = x+y−x×y, we can derive the definition of the OR primitive

from protocol 4. The protocol requires seven multiplicative operations and six

exponential operations in the ciphertext space. During the protocol, the data that

Bob and S receive is exactly the same as the data received during protocol 3, hence,

Bob and S gain nothing after the protocol’s execution.

4.4.4 Secure Retrieval of Output Data

Following the output of the Secure complex Boolean query evaluation stage, Bob has the

evaluation result (in encrypted form) for the combination of all predicates in the input
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Algorithm 4: Secure OR Operation

Input: Bob holds (Enc(x), Enc(y)), and S holds the private key sk

Output: Bob holds Enc(x ∨ y)

1 Bob and S collaboratively compute Enc(x× y) using protocol 3 ;

2 Bob computes r = Enc(x) + Enc(y)− Enc(x× y);

3 Bob outputs r;

of each data record. The goal of this stage is to utilize these results to reveal the raw

evaluation result to Bob. The results are the indices of satisfied records. It is still worthy

to point out that after this final stage, Bob can obtain only the result and nothing else,

at the same time S gains nothing regarding Bob’s query.

Let us denote (pkB, skB) as Bob’s Paillier key pair, and Enc(pkB, ·) as the encryption

using Bob’s public key. The process of the Secure retrieval of output data is presented

in protocol 5.

At line 1.4, the cloud S receives Enc(pkB, ri) (encrypted by Bob’s public key) and

a random number bi × idi + ri for each document. Clearly, it learns nothing regarding

the evaluation results of Bob’s input query. On the other hand, while Bob receives two

random numbers bi × idi + ri + si and si + ri for document idi, the only information he

obtains is bi × idi and nothing else.

4.5 Experimental Results

We implemented and calculated the CPU time required to run the sub-protocols that we

proposed in Section 4.4. Our experiments were conducted on a Windows 10.0 machines

with a 3.0GHz processor and 16GB RAM. We used the Paillier cryptosystem as the

underlying additive homomorphic encryption scheme and implemented the proposed sub-

protocols in Java. In order to make all the same subprotocols tp play a similar role,
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Algorithm 5: Secure Retrieval of Output Data

Input: Bob holds Enc(bi)- the encrypted evaluation result of each document,

Output: Bob holds Sr the set of satisfied indices

1 For each index idi

(1.1) S sends Enc(idi) to Bob.

(1.2) Bob and S compute Enc(bi × idi) = SecMul(Enc(bi), Enc(idi))

(1.3) Bob generates a random integer ri, and computes Enc(bi × idi + ri)

(1.4) Bob sends Enc(bi × idi + ri) and Enc(pkB, ri) to S.

(1.5) S decrypts to get bi × idi + ri

(1.6) S generates a random integer si and encrypts Enc(pkB, bi × idi + ri + si)

(1.7) S computes Enc(pkB, si + ri);

2 S sends pairs of {Enc(pkB, bi × idi + ri + si), Enc(pkB, si + ri)} to Bob in a

random order;

3 Bob decrypts and computes pi = bi × idi;

4 If pi 6= 0, Bob adds pi to Sr;

5 Bob outputs Sr;

we implemented a simplified version of Secure Retrieval of Output Data protocol (i.e.,

protocol 5). In this simplified version, we considered only one document. As the result

of the assumption, the output of the sub-protocol is either 0 or the index of the single

document. Table 4.2 shows the processing time of four sub-protocols with different

Paillier encryption key sizes.

While the specification of the secure OR protocol requires four more multiplicative

operations compared with the secure AND protocol in the ciphertext space, the result

shows that there is not much difference between the running times of secure AND and

secure OR. On the other hand, we note that the running time of secure Negation is sig-
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Table 4.2: Execution time of sub-protocols in private Boolean keyword search system

Key Size Secure Negation Secure AND Secure OR Secure Retrieval

512 4 ms 20 ms 22ms 38 ms

1024 17 ms 73 ms 86 ms 150 ms

2048 81 ms 517 ms 558 ms 1090 ms

nificantly larger than the difference between the previous two protocols. That means the

encryption/decryption operations are more computationally expensive than performing

arithmetic calculations on the ciphertext space. The computational cost of our proposed

method is much lower than Samanthula et al. [76]’s results. Their approach required

approximately 350ms on each encrypted AND and OR encrypted operation.

If we fix the Paillier encryption key size to 1024 bits, we note that the running time

of the secure retrieval of output data is 150 milliseconds. However, we observed that the

computation cost of the sub-protocols increases by almost a factor of seven when the

Paillier key size is doubled.

Figure 4.2 shows the computation cost for the frameworks for a synthetic dataset

respects to the number of predicates in the query. The dataset contains 2000 documents,

each a document contains a random set of keywords (ranging from 50-250 keywords).

The size of the whole keyword set is 1000.

The execution time of the proposed framework goes linearly with the size of the

dataset. To process the dataset with average of 5 predicates in a query, it requires around

20 minutes for completion. It is important to note that the computations performed

on each document are independent of other documents. Hence, by utilizing the parallel

processing paradigm to parallelize the processing, we are able to improve the performance

drastically. We leave these implementation details for future work.
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Figure 4.2: Computational cost of proposed framework (corpus size = 2000)

4.6 Summary

This chapter presents a framework to securely evaluate Boolean queries over encrypted

data in the cloud. We applied the Bloom filter and additive homomorphic encryption to

construct a secure single keyword evaluation. We also presented an efficient mechanism

to systematically combine the evaluation results of individual predicates to compute the

corresponding query evaluation result. Our protocol not only protects data confidentiality

and the privacy of user input queries but also hides the access patterns of the queries.

The experimental results show that our protocol is practical for a small and medium size

datasets. Since the evaluation for each record can be done independently, the protocol is

able to be performed in parallel paradigms such as Map-Reduce or GPU.
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5
Secure Multidimensional Range

Query on Outsourced Database

5.1 Introduction

In this chapter, we study the other important class of complex search operations: multi-

dimensional range query. Chapter 3 discussed a possible scheme to support range query.

However, in general settings, it creates a signification overhead for both of complexity
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and storage. The complexity of the solution, presented in this chapter, only is sublinear

to the size of the database. Moreover, instead of assuming the presence of a proxy, this

chapter utilizes a multi-server approach. The client is not required to share the secret

key with the proxy, and thus, the solution inherently eliminates the shortcomings of the

previous approach.

Multi-dimensional range queries are required for a wide range of practical applications,

including network traffic log analysis, long-term health monitoring, and banking audits.

There are essentially three broad categories of solutions: special data structure for range

query evaluation, bucketization-based schemes, and order-preserving encryption-based

techniques. However, these techniques fail to provide rigorous privacy protection due

to their statistical patterns, access patterns, or query leakage. Moreover, nearly all

existing solutions support only static data (i.e., data that has been uploaded to the

server only once) and previously known queries. To address the abovementioned issues,

this chapter proposes a three-party architecture and investigates different protocols that

support multi-dimensional range queries over encrypted remote data while rigorously

guaranteeing privacy. We examine both static and dynamic cases in which data records

can be appended to the existing data set. In addition, solutions for both fixed and

unknown sets of queried attributes are studied.

5.1.1 Motivating Scenario

We consider this context similar to the scenario we described in Chapter 3. Network audit

logs of an enterprise are outsourced to a third party for future usage and sharing among

different security groups of the company. Storing raw network audit logs is hampered

by the presence of security and privacy sensitive information. The contents of the log

should be encrypted by a certain method so that necessary query operations can be

carried out. Suppose a particular host with a range of IP addresses is determined to have
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been compromised at time t1 and later involved in scanning other hosts for vulnerabilities

at a certain range of ports [p1, p2]. The audit logs should be examined for :

(ip1 ≤ ip ≤ ip2) ∧ (t1 ≤ t ≤ t2) ∧ (p1 ≤ p ≤ p2)

Other applications of secure multidimensional range query include medical records,

and financial audit logs, etc.

5.1.2 Organization

The remainder of this chapter is organized as follows. Section 5.2 formulates the problem

statement. Section 5.3 describes our system model as well as the requirements for the

designed protocols. Section 5.5 discusses the solution for full-domain queries where the set

of queried attributes is fixed and unchanged for all queries. This type of query is similar

to most existing techniques for multi-dimensional range queries. Section 5.4 presents

solutions for a generalized version where the attributes of interest can dynamically vary

for different queries. The naive approach to this problem is to apply multiple single

range queries. However, this approach leads to single-dimensional privacy leakage. In

the proposed protocol, we leverage the concept of secure set intersection to resolve this

issue. Section 5.6 discusses practical considerations for system implementation. Finally,

Section 5.7 concludes the chapter.

5.2 Problem Formulation

We consider a scenario involving a data owner Alice. Alice possesses a multi-dimensional

dataset D of n records. Each data record has m numerical attributes. Let ai denote

the identifier of the ith attribute and vij denote the value of the jth attribute of the ith

record.
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Alice wishes to outsource her dataset (i.e., the set of data records) to a cloud server to

save on local storage costs. A typical example is the data of body measurement recorded

by sensors or mobile devices. Because mobile devices are normally limited in terms of

storage capability, outsourcing such information to cloud services offers easy and low-

cost solutions for long-term continuous health monitoring. On the other hand, such data

includes confidential personal information; hence, they should be stored in an encrypted

form. At the same time, to facilitate health monitoring and treatment, the data owner

needs to use the outsourced data efficiently.

To query the outsourced dataset, Alice performs a multi-dimensional range query.

A multi-dimensional range query is a process of retrieving the data records that satisfy

query values from the relative attribute domains:

Select * From D where axi ∈ [sxi , txi ], where xi ∈ {1, . . . , n}

We follow the convention to denote [a, b] representing an interval of integers from a

to b, inclusively. The set of attribute identifiers Sq = {xi} is called the set of queried

attributes. A multi-dimensional range query requests data records such as each attribute

axi in the set of queried attributes, and takes the value in the interval [s(xi), t(xi)]. Roughly

speaking, each data record can be considered as a point in m-dimensional space, and the

multi-dimensional range query is defined by a hyper-rectangle. All the points inside this

hyper-rectangle are considered to be the results of the query.

When the set of queried attributes covers all m dimensions of the database D: Sq =

{xi} = {1, · · · ,m}, we say that the query is a full-domain query. Section 5.5 discusses

viable solutions where the query’s dimensions change dynamically from one query to

another, with no fixed set of the concerned attribute domain for the query. Although

studies [76] have been conducted to address such a multi-dimensional query, they require

the data owner to share his/her private key with a semi-trusted third party, which is not
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practical owing to privacy threats. In Sections 5.5 and 5.4, we will discuss the solutions

for the settings of static and dynamic data storage. In the static database setting, the

data owner uploads the entire data only once and is later able to query for the necessary

records. On the other hand, in the dynamic database setting, new data records can be

appended to the previously uploaded data, and expired data can be transferred a data

storage archive and removed from the query results. We assume that the three parties

loosely synchronize the time of archiving the data.

5.3 System Overview

5.3.1 System Model

We adopt the three-party architecture described by Boneh et al. [15] and Cristofaro et

al. [32]. The system consists of three parties: the data server, the client, and the index

server as depicted in Figure 5.1

(i) Client : The client possesses a numerical multi-dimensional dataset and wishes to

outsource his/her dataset in an encrypted form to the data server. At some point,

he/she should have the capability to securely construct a multi-dimensional range

query to obtain the requested data.

(ii) Data server : The data server provides storage services to the client. The cloud

server is trusted to provide reliable services but it may also be curious about the

content of the data records stored in its database or the content of the queries

submitted by the data owner.

(iii) Index server : The index server stores meta-data to support answering of the query.

As with the data server, it is trusted to store the meta-data as well as correctly
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Figure 5.1: Three Party Model for Secure Multidimensional Range Query

process the query initiated by the data owner. In addition, it may be curious about

the client’s data as well as the query content.

Workflow. Based on the notation in Figure 5.1, the workflow of our system can be

described as follows. The data is first preprocessed by the data preparation module on

the client side. The dataset and the meta-data (i.e., the output of the preprocess phase)

are encrypted by the encryption/decryption module and sent to the data server and the

index server. The entire dataset should be encrypted by a symmetric encryption scheme.

It involves low overhead for data storage and bandwidth, as well as efficient encryp-

tion/decryption operations. On the other hand, the meta-data should be encrypted by

a specific public key cryptosystem and embedded in a special data structure to enable

secure query processing.

To construct a multi-dimensional range query, the client constructs the query content

using the query processor module, which has an interface with the encryption/decryption
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module. The encrypted query content is sent to the index server. The index server will

output the corresponding indices of the satisfied data records so that the client is able to

efficiently retrieve them from the data server. Furthermore, the query processor module

may be invoked to filter the results returned from the data server.

5.3.2 Security Requirements

In this work, we attempt to design a secure multi-dimensional range query while pre-

serving the privacy of the database content and query values. Ideally, a secure protocol

should only reveal what is leaked by system parameters known to all parties and by

the intended functional output. More specifically, we consider the following information

leakage:

(i) Data Privacy. A passive attacker who gets a snapshot of the encrypted database

and encrypted index data should not be able to obtain any information about the

user’s private data. This implies that these two types of data should be encrypted

by a probabilistic cryptosystem.

(ii) Query Privacy. The cloud and index servers should not be able to determine

whether two queries are the same.

(iii) Access Pattern. Access to satisfied data records should not be revealed to the cloud

server. Islam et al. [59] showed that data access pattern leakage could lead to the

disclosure of a significant amount of sensitive information.

(iv) 1-d Dimension Privacy. Informally, single-dimensional privacy means that given

a search token of a multi-dimensional range query, a computationally bounded

adversary is not able to independently obtain the exact search results for any single-

dimensional query.
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While allowing the user to download the entire database and performing the query lo-

cally will achieve all the abovementioned privacy requirements, this solution is infeasible.

The proposed solution should be efficient in terms of time complexity, communication,

and round complexity.

5.4 Full-Domain Multidimensional Range Query

First, we describe the construction of full-domain multi-dimensional range queries. The

dataset contains multiple data records that are points {xj}nj=1 in a m-dimensional lattices.

A full-domain query is defined by a hyper-rectangle in the m-dimensional space:

B = {[s1, t1], [s2, t2], . . . , [sm, tm]},

where [si, ti] represents a single dimensional range. A data record {vj}mj=1 satisfies a query

represented by the hyper-rectangle B if and only if vj ∈ [sj, tj] for ∀j : 1 ≤ j ≤ m.

As mentioned above, each record of the dataset is encrypted individually by a sym-

metric encryption scheme such as AES. This allows for the efficient retrieval of specific

records from the data server. Hence, this work focuses on designing the data structure

and algorithms to find the indices of data records that satisfy the query criteria. Specif-

ically, we present a method for constructing the meta-data, the data structure to store

the metadata in the index server, and the algorithms to process the query.

Our solution for the full-domain multi-dimensional range query problem is inspired

by the multi-dimensional bucketization approach. First, we partition the data space into

M disjoint buckets. The number of buckets M is smaller than the number of data points

n. Each data record belongs to exactly one bucket. The query processing translates into

the problem of retrieving the bucket content. Hore et al. [57] claimed that nondetermin-

istic encryption of the bucket labels does not raise the level of security, because simply
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encrypting bucket labels cannot protect the query privacy or access pattern from an ad-

versary. In this chapter, we leverage the ORAM technique to hide the access pattern and

thus provide a stronger security guarantee.

5.4.1 Solution Overview

The dataset is first pre-processed by the data preprocessing module. It is partitioned

into non-overlapping buckets, and the bucket label is set as the tag for each data record

in the bucket. The data owner encrypts each original data record (i.e., a d-dimensional

data point) and uploads it to the data server. Furthermore, an encrypted inverted index

table is stored at the index server in the following form:〈
Bucket Label, encrypted-set-of-record-indices

〉
The idea of the solution is to leverage ORAM data access for each intersecting bucket

without leaking any information about the data or query content. The satisfied records

are determined by the buckets intersecting the query. Many existing studies have in-

dicated that ORAM is impractical due to its high computational cost. However, this

claim is not necessarily true, especially because nearly all existing studies focus only on

designing various methods to retrieve the indices of the satisfied records while leaving the

actual data retrieval process to a black box. The black box is assumed to be a standard

ORAM protocol for data records with known indices. It contradicts the abovementioned

concerns with regard to practical applications. Recent results of Path-ORAM have shown

that it is a practical tool for data access. When the record indices are known to the client,

a constant number of communication rounds of ORAM data access should be required

to retrieve the data.

The two main challenges facing this approach are how to partition the space into

buckets and how to embed the record indices into the ORAM data structure stored at

the index server.
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Figure 5.2: Secure multidimensional Range Query from ORAM

Bucketization Algorithms. We retrieve a bucket if and only if it overlaps the query

rectangle. We partition the space into M non-overlapping hyper-rectangles. Each rect-

angle contains approximately the same number of data points. The parameter M is

determined by the tradeoff between the cost of false positives and the cost of communi-

cation between the client and the index server. When the number of buckets increases,

each bucket contains fewer points, and the false positive rate decreases. However, the

number of buckets intersecting with the query increases, which means that the number

of ORAM accesses increases. On the other hand, when the number of buckets decreases

to one, fewer ORAM accesses are required for each query. Furthermore, when the false

positive rate increases, additional bandwidth overhead is incurred to retrieve the ac-

tual data records from the server. With a certain parameter M, we use the Mondrian

multi-dimensional partition algorithm presented by LeFerve et al. [62]. The algorithm is
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described in protocol 6. In this protocol, we assume that M = 2k for simplicity.

Algorithm 6: Partition(D,M)

Input: Dataset of multidimnensional points D, number of bucket M = 2k

Output: M buckets

1 attr → 1, · · · ,m ;

2 splitV al→ findmedian(D, attr) ;

3 left half → {r ∈ D : r.attr ≤ splitV al} ;

4 right half → {r ∈ D : r.attr > splitV al};

5 return Partition(lefthalf,M/2)
⋃
Partition(righthalf,M/2);

At each call, the algorithm partitions the space according to the value of attribute

attr, which is chosen at step 1. The data space is partitioned into two parts. Each part

has approximately the same number of elements. The complexity of the preprocessing

phase is O(logn).

ORAM storage. Each data label is associated with a list of record indices. Our

solution stores these indices in the ORAM data structures so that we can have secure

access to the contents of a particular bucket. A naive solution is to use a sufficiently

large ORAM data block to store the entire set of encrypted record indices. The user can

retrieve the entire set of indices for a block label at once. However, because the size of

the index set of each bucket label may vary, it is wasteful to use a large-sized data block

to store a small piece of information. Moreover, it is computationally expensive to read

from and write to a large-sized data block. Our approach is to represent the index sets

in a compact form so that the data from an ORAM block can be determined beforehand

with reasonable size.
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5.4.2 Static dataset

First, we consider the simplest scenario where the dataset is intact after being uploaded

to the server. Archiving data is an example of this scenario.

The dataset is preprocessed and encrypted once before being uploaded to the data

server. In the preprocessing stage, the bucketization algorithm (Algorithm 6) is applied

to partition the space into buckets. Each record (i.e., a data point) belongs to exactly one

bucket. Data is rearranged so that the identifiers of data records in the same bucket label

form a consecutive numerical counter. Hence, the necessary information to reconstruct

an index set is the starting counter and ending counter. The meta-data stored in the

index server is ORAM data structures such that each block has an encrypted bucket label

as the key for the encryption of the starting counter and ending counter as the values.

Hence, to query for a data bucket, the data owner performs an ORAM data access with

the index server; the access key is the bucket label. Then, the client obtains the range of

data identifiers. The last step is to perform one more round of data access for each data

identifier with the data server.

Analysis. Because the data and their indices are encrypted on the client side by a

standard secure cryptosystem, the data server and index server obtain no information

from the view of the stored data. Furthermore, the data owner accesses the index data

at the index server and the data content at the data server by means of ORAM. The two

servers are not able to obtain additional information on the query content or the access

pattern. Because the data is obtained by the bucket label, one-dimensional privacy is

satisfied for the query.

The bandwidth overhead of the solution is O(logn) owing to the overhead of the Path

ORAM. The client is also required to maintain a local storage of O(logn)). Finally, the

complexity of each data access incurred at the server is O(logn).
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We also note that in the case of the static dataset, private information retrieval

(PIR) can be used as an alternative to ORAM. In the PIR approach, for reading data,

the computational complexity for the data owner is linearly related to the size of the

retrieved data; in terms of the server size, the computational cost is linearly related to

the size of the entire data set.

5.4.3 Dynamic dataset.

We consider the case where the update operation is allowed. More specifically, new data

records may be appended to the existing dataset. The log file is an example of this

scenario.

Because new data records can be in any data bucket, we cannot use the previous

approach. In the abovementioned approach, the indices of data records with the same

bucket label are required to form consecutive integers. Because the new records are not

necessarily in the bucket containing the previous records, this requirement does not hold.

We adopt another approach to index the records. We make use of the collision-resistance

hash function. The index of a new record is determined by the hash of the previous record

index that is in the same bucket. More specifically, we consider a collision-resistant hash

function h : {0, 1}n 7→ {0, 1}m and define a sequence generated by h as follows:

a0 = label-id, ai = h(ai−1).

To obtain the index set of the bucket label for the ith bucket, we need to know the

values of a
(i)
0 and a

(i)
k where a

(i)
k is the last element in the sequence generated for data

records belonging to the ith bucket. In this case, when the data is appended, the data

owner is required to modify the corresponding ORAM data block to update the last

element of the current index set. To obtain the index sets of buckets intersecting the

query, the data owner retrieves the corresponding block to get Enc(a
(i)
0 ) and Enc(a

(i)
n ).
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He/she decrypts the encrypted content and iteratively generates the sequence starting

from the first element until the last element using the formula ai = h(ai−1). A collision-

resistant hash function is required for this construction so that different data records are

not mapped to the same index.

To insert a new record into the data set, the data owner first determines the bucket

label of the new data record. Next, he/she performs a read and an update operation

with the index server by means of ORAM. The new content of the ORAM block now

contains the encrypted next sequential number of the last record index in this bucket.

Analysis. We use a collision-resistant hash function to index the records because

each data record belongs to exactly one data bucket. Moreover, it is difficult to find a

collision; each data record has a unique identifier determined by the hash functions.

The security of dynamic case construction is analyzed in the same way as that of the

static case. In both cases, the user accesses the indices and the real data records using

ORAM. Hence, the only information leakage to the cloud server is the result size, which

is the lower bound of the number of satisfied records. The reason is that the user is

required to make at least the minimum number of satisfied records ORAM data accesses

to the cloud server data.

The complexity and bandwidth overhead of the solution remains polylogarithmic due

to the use of Path ORAM. The update operation as an ORAM write operation also

requires O(logn) memory bandwidth and computational complexity.

5.5 Dynamic Multidimensional Range query

The aforementioned approach can be generalized to address the scenario where the set of

queried attributes is fixed. Roughly speaking, we should be able to efficiently represent

the query space by a small number of fixed hyper-rectangles. In this section, we examine a
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more general case where the set of queried attributes varies for different queries. In other

words, the number of dimensions in each query can vary from one to m – the number of

attributes in each data record. Clearly, we can treat the query as a full-domain query by

considering each missing dimension as the full range. However, this approach normally

leads to an excessive number of communication rounds with the index server. Instead

of using the multi-dimensional bucketization technique, we apply the single-dimensional

bucketization approach as a solution to this generalized problem.

A general multi-dimensional range query is defined by an unordered set:

S = {[si1 , ti1 ], [si2 , ti2 ], . . . , [sik , tik ]},

1 ≤ ij ≤ m and [si, ti] represents a single dimensional range. The size of the set of queried

attributes is k, 1 ≤ k ≤ m.

5.5.1 Solution Overview

Our solution for the generalized problem employs private set intersection techniques.

First, we partition each single-dimensional domain into buckets. A data record of m

attributes falls into m buckets. For each single-dimensional range in the query, the

requested data records must belong to the buckets intersecting with the range. A naive

solution is to perform multiple queries on each queried dimension. The results are the

intersection of the results. This approach has been used by Zhang et al. [88] to design

multi-dimensional range queries in sensor environments. However, the naive approach

fails to provide single-dimensional privacy because the server gains the results for each

queried dimension. In this chapter, instead of performing the intersection operation on

the client side, we conduct it on the server side in a manner that preserves privacy.

The query is firstly decomposed into each corresponding dimension. For each queried

dimension, the intersecting buckets are enumerated. The query now can be translated
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into one or multiple conjunctive queries. The variables in the conjunctive query are

intersection buckets in each dimension. Finally, a secure set intersection algorithm should

be applied to answer the conjunctive query.

To illustrate our idea, we consider the following example. Alice has a dataset where

each data record is a three-dimensional point (x, y, z). The attributes receive integer

values in the domain [1, 10]. Alice decomposes the data space with eight buckets:

[0, 5]x, [6, 10]x, [0, 5]y, [6, 10]y, [0, 5]z, [6, 10]z. Each record is in exactly 2 buckets. Alice

wishes to perform a simple multi-dimensional range query: 3 ≤ x ≤ 6, 2 ≤ y ≤ 4. The

query can be transformed into two conjunctive queries: [0, 5]x∧ [0, 5]y and [6, 10]x∧ [0, 5]y.

Query [0, 5]x∧ [0, 5]y (similar for the other) is translated as retrieving all the data records

belonging to both [0, 5]x and [0, 5]y. The answer to it is the intersection between the two

buckets.

Bucketization Algorithms. We apply a simple equi-depth bucketization approach to

partition each dimension for the data space. The number of buckets M in each dimension

is determined by the tradeoff between the number of conjunctive queries and the false-

positive rate. If we partition the dimension into many small buckets, we are able to

reduce the false positive rate of the results. On the other hand, if M in each dimension

is small, we are required to perform fewer conjunctive queries but additional work is

required for the post-processing.

We now describe the method for securely answering each transformed conjunctive

query in two different settings.

5.5.2 Static data case

For the case of a static dataset, the entire dataset is processed and uploaded only once

to the servers. We leverage the Kissner-Song private set intersection [61] to perform

conjunctive queries.
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The idea behind the Kissner-Song protocol is to fix a large field F and represent a set

S ⊂ F by a polynomialAS that has zeros in all the elements of S i.e., AS(x) =
∏

s∈S(x−s).

To compute the intersection of many sets Si , we construct a polynomial B whose zeros

are the intersection of these sets. Clearly, if a point s ∈ F is contained in all the sets Si,

then ASi
(s) = 0 ∀i, and therefore, if we compute B as a linear combination of the ASi

s, then B(s) = 0 also. On the other hand, if ASi
(s) 6= 0 for some i and B is a random

linear combination of the ASi
s, then there is a high probability that B(s) 6= 0. Roughly

speaking, instead of storing the record indices for each bucket, we store the coefficients

of the polynomial that represents the index set. However, the coefficients should be

encrypted so that the index server is not able to trace the indices.

In this chapter, we use the BGN encryption technique [17] to encrypt the polynomial

coefficients. The BGN cryptosystem, proposed by Boneh, Goh, and Nissim, allows both

addition and multiplication with ciphertexts of constant size. However, there is a catch:

while the addition can be performed multiple times, only one instance of multiplication is

permitted. Nevertheless, this protocol is considered to be much more practical than fully

homomorphic encryption schemes. The homomorphism allows us to compute a linear

combination of the polynomial in encrypted form so that set intersection operations can

be securely performed on the index server. Chapter 2 provides a quick overview of the

BGN cryptosystem.

Consider a bucket consisting of ` data records with indices i1, , i`. It can be represented

by a polynomial in the form A(x) = (x− i1) · · · (x− i`) =
∑
ci × xi. The coefficients ci

of the polynomial are encrypted by a BGN cryptosystem and stored at the index server.

The index server stores m×M encrypted polynomials, where M is the number of buckets

for each dimension and m is the number of attributes in each data record.

To issue a multi-dimensional range query (i.e. Q = {[si1 , ti1 ], . . . , [sik , tik ]} ), the

client first decomposes the query into k dimensions: i1, i2, . . . , ik. The query is translated
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into multiple conjunctive queries; each one is associated with k buckets corresponding

to k dimensions. To obtain the answer for each conjunctive query, the client does the

following:

(i) We consider a bit bij = 1 if the jth bucket of ith dimension intersects with the

query and is zero otherwise.

(ii) The client generates appropriate tags: σik = Enc(bij) and sends σik to the index

server.

(iii) The index server generates random non-zero numbers pik and computes B(x) =∑
i,j σik · pij · Aij (in encrypted form), and sends the corresponding result to the

user.

(iv) The client decrypts and factors the polynomial B(x) and finds its roots, which are

the indices of the records that the user is interested in.

(v) The client performs ORAM data access to obtain the necessary data records from

the cloud server.

At step 3, the outer sum and pij · Aij are calculated using the additive homomorphic

property of BGN encryption, while the product with the encrypted bit σik = Enc(bij) is

performed using the one time multiplication property of the cryptosystem.

If Ai1 , . . . , Ain are the polynomial representation of the index set for the query q, B is

a random linear combination of them. Clearly, when record id satisfies the query, it must

be the common root of Ai1 , . . . , Ain . Hence, id is also included in the root of B(x), which

leads to the correctness of the protocol. Since B(x) may have superfluous roots, we use

a large space F so that there is a probability that these roots are identified as invalid.

Moreover, the user can also perform post-processing to filter out the false positives of the

processes.
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Analysis. To analyze the security of the proposed protocol, we need to examine

the data view of the two servers. Because the server stores securely encrypted data and

the data is accessed only by the ORAM, it can gain no knowledge of the user sensitive

data, query content, or access pattern. Moreover, the index server receives only BGN-

encrypted bits; it is not able to obtain any information about the query. Hence, the

proposed protocol leaks no information of the data content, query content, or query

result to the server or the index server, except for the upper bound of the number of

matching records (due to the number of ORAM accesses).

The proposed solution requires the client to send O(m ×M) encrypted bits to the

index server and receive approximately O(n/M) bits from the index server. At the

same time, the index server is also required to perform up to O(n) multiplication and

exponentiation operations in the ciphertext space. The computation and communication

costs for the server are the same as those of the previous methods.

The presented solution has a linear complexity in terms of both communication and

computation. Moreover, it requires a somewhat homomorphic encryption for computa-

tion. A minor modification can be applied to achieve sub-linear complexity, and only an

additive homomorphic encryption is required, with a security trade-off. The idea can be

expressed as follows:

• Apply an additive homomorphic cryptosystem (e.g., Paillier) to encrypt the poly-

nomials that represent the buckets’ content.

• To answer a conjunctive query on bucket {bij}j=1,··· ,k, the client sends the indices

of this bucket to the index server.

• The index server computes the random linear combination of the corresponding

polynomials by additive homomorphism.
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There is one trade-off for the security of the modified solutions. Since the index server

is able to observe the requested buckets for each conjunctive query, the query privacy

requirement is violated.

5.5.3 Dynamic data case.

In the case of a dynamic dataset, the new data records may be dynamically appended

to the existing dataset. The aforementioned approach, which represents the index sets

by polynomials, requires all encrypted coefficients for each corresponding bucket of the

new record to be recomputed. We propose another approach that requires interaction

between the server and the index server. We note that the abovementioned methods for

both full-domain queries and dynamic multi-dimensional range queries do not require

any communication between the two servers. The proposed protocol is inspired by a

conjunctive keyword searchable encryption protocol proposed by Cash et al. [26]. We use

it with a major modification to adapt it to our privacy requirements.

We start the protocol description by reviewing a few concepts related to bilinear

maps. We will use the following notation:

(i) G1 and G2 are two (multiplicative) cyclic groups of prime order p.

(ii) g1 is a generator of G1 and g2 is a generator of G2.

A bilinear map is a map e : G1 ×G2 → GT with the two following properties:

(i) Bilinear: for all u ∈ G1, v ∈ G2 and a, b ∈ Z, then e(ua, vb) = e(u, v)ab.

(ii) Non-degenerate: e(g1, g2) 6= 1.

The proposed solution consists of two algorithms: INSERT and SEARCH for appending

new records and performing multi-dimensional range queries on the encrypted data set

respectively.
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Let F denote a keyed pseudo-random function f : Zp × K → Zp, and select keys

KS, KX , KI , KZ for F .

INSERT(Record id: x = {x1, · · · , xm} )

• For each ith dimension (1 ≤ i ≤ m), the client does:

– Let jth bucket of ith dimension: bucket lji contains attribute value xi.

– Compute xind← FKI
(id), z ← FKZ

(lji ) and y ← g
xind/z
1 .

– Set eid ← Enc(id), append (eid, y) to a list for bucket lji at the index

server.

– Set xtag ← e(g1, g2)
FKx (l

j
i )·xind and append to a set S at the data server .

• Encrypt the data record and upload the cloud server.

SEARCH(Q = {(si1 , ti1), . . . , (sik , tik)})

• The client decomposes the query into k dimensions: i1, i2, . . . , ik. The query is

transformed into conjunctive queries of buckets. For each conjunctive query q,

we denote the buckets of interest for these k dimensions as L1, . . . , Lk.

• For i = 2, . . . , k:

– The client computes xtokeni ← g
FKz (L1)·FKx (Li)
2

– The client sends L1, {xtoken2, · · · , xtokenk} to the index server.

– For each item (eid, y) in L1 list in random order:

∗ The index server sends eid to the cloud server.

∗ The index server computes the cardinality size of the intersection

between set S of cloud server and {e(y, xtoken2), . . . , e(y, xtokenk)}
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∗ If size = k − 1 cloud server sends eid to the client.

• The client decrypts and obtains the indices.

• The client performs ORAM data access to obtain the necessary data records

from the cloud server.

The correctness of the search protocol relies on the following fact:

e(y, xtokeni) = e(g
xind/z
1 , g

FKz (L1)·FKx (Li)
2 )

= e(g
FKI

(id)/FKZ
(L1)

1 , g
FKZ

(L1)·FKX
(Li)

2 )

= e(g1, g2)
FKI

(id)·FKX
(Li)

Hence, if the set {e(y, xtoken2), . . . , e(y, xtokenk)} is a subset of set S, the data record

belongs to exactly all the requested buckets.

Our construction of the index list for the bucket and for set S is similar to the con-

struction of TSet and XSet proposed by Cash et al. [26]. In their protocol, TSet and

XSet are stored in the same place in the cloud server. The correctness and the privacy

of the two sets follow the proofs given by the authors [26]. However, because the set

intersection is performed locally by the cloud server, that construction leads to unnec-

essary information leakage (i.e., access pattern leakage). In the proposed construction,

the storage of the bucket list and set S is separated into two parts, and the cardinality

of the set intersection is obtained by a secure two-party computation protocol. We use

the protocol proposed by Cristofaro et al. [31]. Figure 5.1 shows the workflow of the

protocol. The protocol is secure under the assumptions of the semi-honest model. The

complexity is linearly related to the sizes of the two sets.

Analysis. . The insertion algorithm only appends the semantically secure encryp-

tions to the server and index server. It leaks no information to the two servers; for details

of the proof, readers may refer to [26].
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During the search phase, the server only receives the encryption of the record index eid

and knows whether the encrypted index belongs to the results. By observing the value

of eid, the server is able to determine whether there are records that satisfy multiple

queries. This information leakage can be eliminated by applying one more encryption

layer on eid.

On the other hand, the newly proposed protocol does not provide query privacy for the

index server. The index server is able to determine whether two queries are the same by

observing the xtoken sets received from the client. However, this is the only information

leakage of the client’s private data to the index server. Because the cardinality of private

set intersection is only revealed to the cloud server, the index server does not obtain any

information about the satisfied records.

The computational complexity and communication cost of the two servers are linearly

related to the number of data records. The communication cost and computational

complexity for the client are O(max(log|D|, k)), where |D| is the number of data records

and k is the size of the set of queried attributes.

5.6 Experimental Results

We conducted a number of experiments to verify the practicality of the proposed solution.

The experiments were performed on a synthetic dataset. We created the synthetic dataset

by sampling 20,000 data points, each having four integral attributes from the domain

[0,999].

Our implementation of Path ORAM required up to two minutes to construct the

ORAM data structures of the dataset of 20,000 data records. It also only took only

0.02 s per access, including the time for decryption. This execution time is considered a

criterion for the trade-off between the accuracy and the number of buckets, as discussed
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in Section V. For full-domain multi-dimensional range queries, we randomly generated

10,000 queries where each dimension is randomly selected from a uniform distribution

from the same domain with the dataset. We took the average results of these queries

and reported them.

Consider the number of buckets M. The accuracy of the intersection bucket approach

was 0.1, 0.15, 0.3, 0.5 for M = 128, 256, 512, 1028, respectively. On the other hand, the

number of buckets intersecting with the query was 22, 33, 53, 107 for each configuration

of M. Thus, when the parameter M increases, we are able to reduce the false-positive rate;

however, we need to perform additional ORAM queries with the index server. When we

fixed the number of bucket M = 1028, the solution requires 50 seconds for the search

time. Here we note that is is much faster than Wang et al. [82]’s method. The previous

method took around 250 second for 2D multidimensional range queries and doubles for

4D dimensions.

To test dynamic multi-dimensional range queries, we considered 5000 random queries.

The set of interested attributes contains 13 attributes. The two end points of each query

are uniformly generated from the attribute domain.

Figure 5.3 shows the relation between the accuracy of the proposed approach and

the number of buckets in each dimension (M). We conducted experiments with M in the

range of 520. When we used only five buckets per dimension, the reported false positive

rate was high, but we were only required to perform five conjunctive queries on average

for each query. On the other hand, when we increased M to 20, the accuracy increased

to 70%. However, we also needed to answer 60 conjunctive queries (i.e., depicted Figure

5.4) to obtain the complete set of requested records.

We also report that the execution time of our implementation of BGN encryption to

evaluate the combination of two sets of size 128 is 2 seconds.
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Figure 5.3: Accuracy vs number of

buckets (M)

Figure 5.4: Number of conjunctive

queries vs number of buckets (M)

5.7 Summary

This chapter investigates different protocols to securely evaluate multi-dimensional range

queries over encrypted data in cloud platforms. Our main idea is to leverage the bucketi-

zation algorithm to label the numerical range. The server stores the encrypted data, while

the index server stores the meta-data output by the bucketization algorithm. When the

multi-dimensional range queries are fixed beforehand, we perform two rounds of ORAM

data access to answer the queries. The data records are labeled before encryption and

sent to the server. On the other hand, to support more general queries, we presented

novel solutions that allow multi-dimensional range queries to be answered, where the

query constraints are not required to be fixed. The idea is to bucketize each attribute

of a multi-dimensional data record and perform set intersection to answer conjunctive

queries for multiple data labels. While the latter approach is able to support more gen-

eral requirements, it is costly in terms of both computational complexity and bandwidth

communication. In the most general case, where the dataset can be dynamically ap-

pended and the set of queried attributes is not fixed, our approach leaks a small amount

of information to the index server.
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6
Secure Personal Information

Verification

6.1 Introduction

In this chapter, we investigate the problem of secure personal information verification.

The scenario we consider is different with the data outsourcing contexts that we discussed

in the previous three chapters. However, the two problems are on the same theme of
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secure query processing. They share the same challenges and requires a similar approach

to design the solutions.

Recent advances in technology have led to the introduction of many digital and auto-

mated services, such as e-shopping, e-learning, and e-banking. These digitalised services

not only reduce the cost of operation, but also increases throughput for businesses. How-

ever, several tasks in these services continue to involve a considerable amount of human

effort. Physical document verification is a necessary task in the process of reviewing

applications for many services, such as loans, insurances, and mortgages. This process

consumes a large amount of time, money, and human resources. Consider the example

of a loan or an insurance application. The applicants are usually required to provide

numerous documents to certify their relevant personal information, such as birth cer-

tificate, statement of monthly income, marriage certificate, medical records, and so on.

At the same time, the loan/insurance provider requires a considerable amount of human

resource to verify and store these documents. This process can take several weeks to

complete, and serves to limit business throughput.

Moreover, the process of physical document verification incurs a critical privacy risk

for applicants. They provide to a third party (i.e. the service provider) many sensitive

documents, such as birth certificates, IDs, health records, and so on. All these documents

are stored in the provider’s database. If the client applies for multiple schemes or sub-

scriptions, multiple copies of his/her personal data are stored in different places. Since

data can be leaked from the server, storing personal information in multiple third-party

databases is not recommended. One source of such a leak is employees who do not follow

the company’s privacy policies, and may, intentionally or unintentionally, reveal sensitive

client information. Even when the provider claims to enforce strict policies pertaining

to privacy, there is still a chance that the database systems are vulnerable to malicious

external attacks.
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This chapter presents a systematic approach to address the abovementioned short-

comings of the current state of the process of physical document verification. We assume

that there is a trusted data source that stores the certified personal information of clients.

We also assume that a list of requirements (maybe involving the divulgence of private

information) needs to be fulfilled by the applicant to qualify for a given scheme or sub-

scription. We present a series of protocols that allow the verifier and the data keeper to

communicate with each other and securely verify the applicant’s information according

to the requirements proposed by the verifier. The proposed approach creates space for

new services for information data storage and verification.

6.1.1 Motivating Scenario

To illustrate, consider the following example: A client first outsources his/her personal

information to a data keeper called Alice. Alice can be a governmental agency. The client

and Alice are responsible for ensuring the correctness of the information. The client can

pay a small fee to Alice for keeping track of his/her data. The verifier Bob provides a

subscription scheme. In order to subscribe to the scheme, the client needs to satisfy a

number of statements for personal information, including age, income, nationality, health

condition, etc. He/She wants to prove that he/she qualifies for the scheme, but does not

want to reveal exact information. At the same time, he/she also wishes to hide the fact

that he/she is applying the certain scheme through others (such as Alice). He/She should

anonymously authenticate Bob to communicate with Alice. Bob interacts with Alice by

our proposed approach. Finally, Bob should be able to decide whether the client qualifies

for the given scheme.
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Figure 6.1: Secure personal information verification system model

6.1.2 Organization

The remainder of the chapter is organised as follows: In the next section, we review

related work in the literature. Section 6.2 contains our problem formulation as well as our

security model and assumptions. The proposed solution to the problem of secure personal

information verification is described in Section 6.3, which systematically discusses four

stages of the solution. Section 6.4 presents experimental evaluations of the proposed

sub-protocols. The final section discusses future work and our conclusions.

6.2 Problem Formulation

6.2.1 Problem Statement

Definitions. Our proposed system involves three general parties—the client, the verifier,

and the data keeper—as illustrated in Figure 6.1.

• The client. The client wishes to privately prove that his/her personal data satisfy

the predicates predefined by the verifier.

• The verifier. The verifier (we call the verifier Bob) provides a series of predicates

that need to be satisfied by the client.
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• The data keeper. The data keeper (whom we call Alice) stores the personal data

of the client and provides a security guarantee for the data storage.

The database stored by the data keeper consists of n records. Each record describes

a client by m attributes. Table 6.1 presents a simple example of data content maintained

by the data keeper.

Table 6.1: Sample personal data records

ID Name Age Sex Income Nationality Marital Status

1 Julia 29 F 30,000 Singaporean Married

2 Deny 32 M 35,000 Singaporean Single

3 Christina 38 F 80,000 Myanmar Single

4 Alwen 41 M 120,000 Indonesian Married

5 Dino 37 M 90,000 Malaysian Divorced

A personal information verification scheme is a Boolean function on a data record.

The Boolean function is informally described by single and complex predicates. We as-

sume that the single predicates are equality, inequality, membership, and non-membership.

• An equality predicate examines whether a variable x is equal to a certain value a:

x
?
= a.

• An inequality predicate inputs a variable x and a certain value a, and outputs 1

when x
?
< a (and 0 otherwise).

• The membership and non-membership predicates check whether variable x belongs

(or does not belong) to a set A of elements: x
?
∈ A, A = {e1, e2, · · · , en}.
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A complex statement contains multiple single predicates and a set of logical expres-

sions ∧,∨,¬. A series of predicates (provided by the verifier) can be expressed as a

complex predicate by combining them using the ∧ operator. The personal data of clients

is accepted by the verifier only if they satisfy the final complex predicate.

6.2.2 Security Assumptions

In this paper, the privacy/security of the proposed protocols is measured by the amount

of information disclosed during execution. We adopt the security definitions and proof

techniques from the literature on secure multi-party computation to analyze. The secure

multi-party computation problem involves multiple parties collaboratively performing

various types of computation without compromising the privacy of data. In the mid-

1980s, C. Yao [86] introduced the idea of securely computing any two-party functionality

in the presence of dishonest adversaries. Since then, various privacy-preserving protocols

have been proposed to address different class of computation problems in the context of

private data.

There are two common adversarial models under secure multi-party computation:

semi-honest and malicious. In the malicious model, the adversary has the ability to

arbitrarily deviate from the protocol specifications. On the other hand, in the semi-

honest model, an attacker (i.e. one of the participating parties) is expected to follow the

prescribed steps of the protocol. However, the attacker is subsequently free to compute

additional information based on his or her private input, output and messages received

during the execution of the secure protocol. Although the assumptions of the semi-

honest adversarial model are weaker than those of the malicious model, we insist that

this assumption is realistic under the problem settings. We assume that the data keepers

are trusted (as they are governmental agencies) to ensure the confidentiality of sensitive

client data. It is difficult to imagine them colluding with other companies to damage their
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own reputation. Moreover, it is often non-trivial for one party to maliciously deviate from

a particular protocol which may be hidden in a complex process.

In short, we assume that the verifier and the data keeper are semi-honest. They will

correctly follow the protocol specifications. However, at the same time, they are also

curious about the applicants’ information. In general, secure personal information as

described in Section 6.3 should meet the following privacy requirements:

• Client-to-verifier privacy. The verifier should not be able to gain any details con-

cerning the client’s personal data stored in the data keeper’s database, except for

those he can learn from the result (i.e. the client qualifies or not).

• Client-to-data-keeper privacy. At any point during protocol execution, the identity

of the applicant should not be revealed to the data keeper.

• End user’s privacy. The verifier should not be able to obtain any information

relating to other clients stored in the data keeper’s database.

• Verifier-to-data-keeper privacy. The details of the predicates should not be leaked

to the data keeper. This requirement is particularly applicable to private services

where the selection criteria may be private to the provider.

6.3 Secure Information Verification

6.3.1 Overview

Our proposed approach to the secure information verification problem consists of four

stages:

(i) Setup - During this phase, the client goes through an anonymous authentication

process so that the verifier is authenticated to communicate with the data keepers
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for the verification stage. In addition, the data keeper and the verifier generate an

encryption key pair and exchange the public key of the homomorphic cryptosystem.

These public keypairs are utilized for secure communication and computation at

the later stages.

(ii) Single Predicate - In this stage, the data consumer evaluates a predicate for each

entity in the dataset of the data keeper. The output of this stage is the encryption

of either 1 or 0, depending on whether the entity satisfies the predicate.

(iii) Secure Complex Predicate Evaluation - Based on the results of the previous stage,

the verifier collaborates with the data keeper to compute the result of the complex

logical combination of Boolean predicates. Again, the output of this stage is the

encryption of either 1 or 0 depending on whether the entity satisfies the predicate.

(iv) Aggregation of Output Data - At this stage, the final result is aggregated, decrypted

and shown to the verifier. Since the data keeper computes the decryption, we

propose a secure protocol to generate the outcome so that the data keeper cannot

obtain any information concerning the final result.

6.3.2 Setup

In the setup phase, the client is first required to complete an anonymous authentication

with the data keeper Alice, who then allows the verifier Bob to initiate the secure infor-

mation verification process for the records of Alice’s database. When the client agrees

to his/her personal information being stored in Alice’s database, she issues to the client

credentials to be used for authentication. Each time a client subsequently requests access

to Alice’s database, he/she uses the credentials for verification with Alice, who begins

communication with Bob for the information verification process.
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Traditional password-based authentication systems expose the identity of the client

to the data keeper Alice. Hence, they violate the client-to-data-keeper privacy require-

ment. To satisfy this, it is desirable to have an authentication scheme that promises

unlinkability, i.e. the server should not be able to link user requests such that access to

the same user cannot be recognized as such.

As the anonymous authentication process is not our main contribution here, we only

briefly review possible approaches to satisfy this requirement. The most feasible solution

is anonymous credentials introduced by Chaum [28]. This allows a user to prove that

he/she has obtained a credential issued by an organization without revealing anything

regarding his/her identity other than the credential. Camenisch [24] proposed a protocol

that allows an organization to issue a credential by obtaining a signature on a committed

value. The client can then prove with zero knowledge that he/she has a signature under

the organization’s public key on the given value.

When applied to our problem setting, the client first generates a non-interactive zero-

knowledge proof (i.e. applying the Fiat–Shamir transform) of his/her credentials with

Alice. The client transfers the proof to Bob, who submits the proof to Alice. Finally,

Alice authenticates Bob to communicate and verify the client’s information.

Following the authentication process, Alice and Bob generate two Paillier key pairs

using theKeyGen algorithms and agree on two public key pairs for communication during

the verification execution. We denote EncA(·) and EncB(·) as the Paillier encryption

under Alice’s public key and that under Bob’s public key, respectively.

6.3.3 Single Individual Predicate Evaluation

In the single predicate evaluation stage, for each data record and each attribute that

needs to be verified, the verifier Bob and the data keeper Alice together perform one

of the following protocols: equality predicate evaluation, inequality predicate evaluation

100



Chapter 6. Secure Personal Information Verification

and (non-) membership predicate evaluation. The output of each protocol is an encrypted

bit maintained by Bob. The resulting bit is encrypted under the data keeper’s public key

so that Bob cannot obtain any information relating to the other entities in the database.

We now describe the three protocols to securely evaluate the results of these predicates.

6.3.3.1 Equality Predicate

A secure equality predicate evaluation tests whether two private inputs x and y are equal:

x
?
= y. We use the protocol presented by C. Gentry et al. [44] to develop the protocol

for secure equality predicate evaluation. Gentry’s equal-to-zero protocol [44] allows the

comparison between a private value and zero. To be able to apply the equal-to-zero

protocol, we execute a transformation (as presented in Protocol 7) on the two private

inputs.

The computation in Steps 1-2 transforms the problem into a secure equal-to-zero

protocol. In this protocol, Alice holds an encrypted message with value a. The message

is encrypted under Bob’s key; hence, neither Alice nor Bob has information concerning

the value a. The remaining part of the protocol involves comparing a with 0. In the

last step, Bob is required to compute an AND operator in the ciphertext space. In a

binary setting, the AND operator is an exact multiplication scheme. In Chapter 2, we

introduced the secure multiplication scheme. That protocol works on general integer

inputs. Here, we present a variant of that protocol that only works with binary inputs.

However, with this modification, we are able to improve the performance of the Secure

Equality Evaluation protocol.

The key idea of the modification is instead of masking the input by adding a random

number, we only need to mask a random bit in the case of binary inputs. The variant of

the Secure Multiplication protocol is presented in Protocol 8.

101



Chapter 6. Secure Personal Information Verification

Algorithm 7: Secure Equality Evaluation

Input: Alice holds integer x, Bob holds integer y

Output: Bob holds an encrypted bit EncA(b) such that b = 1 if x = y, and 0

otherwise.

1 Bob computes and sends EncB(y) to Alice;

2 Alice computes EncB(a) = EncB(x− y) using the homomorphism;

3 Alice chooses a random r and uses the homomorphism to compute

c→ EncB(a+ r);

4 Denote the bit representation of r by rn · · · r2r1. Alice encrypts the bits ri under

her key to obtain ci = EncA(ri);

5 Alice sends to Bob both c and all ci;

6 Bob decrypts c to obtain a′ = a+ r. Let denote a′n · · · a′2a′1 be the binary

representation of a′;

7 For each i, Bob computes c′i = Enc(1− ri) if a′i = 0; otherwise, keep ci unchanged;

8 Bob computes rc =
∧
i c
′
i, and outputs EncA(b) = 1	 rc;

Bob is able to evaluate EncA(x ⊕ r) since EncA(x ⊕ r) = EncA(1 − x) when r = 1

and EncA(x ⊕ r) = EncA(x) when r = 0. Enc(y ⊕ s) at line 2 is similarly computed.

During the protocol, Bob only works on encrypted data while the server receives two

random numbers. Hence, no information regarding x and y is obtained by Bob and S.

The correctness of the protocol is trivial. Step 4 presents a data packing technique of

encrypted data. The modification reduces the bandwidth memory, in which Alice sends

to Bob, from two to only one ciphertext. It also further reduces the number of decryption

operations of Bob from two to one when compared to the original protocol described in

Chapter 4.

As mentioned above, the modification allows us to improve the efficiency of the Secure
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Algorithm 8: Secure AND

Input: Bob holds (EncA(x), Enc(y))- the encryption of two bits x and y, and

Alice holds private key skA

Output: Bob holds EncA(x ∧ y)

1 Bob generates two random bit r, s;

2 Bob computes EncA(z0) = EncA(x⊕ r), EncA(z1) = EncA(y ⊕ s);

3 Bob packs the encrypted data: EncA(z) = EncA(z0 + 2 ∗ z1) and sends them to

Alice;

4 Alice decrypts, unpacks and obtains x⊕ r, y ⊕ s;

5 Alice computes (x⊕ r)(y ⊕ s) and sends Enc((x⊕ r)(y ⊕ s)) to Bob;

6 Bob computes

Enc(x ∧ y) = Enc((x⊕ r)(y ⊕ s))− Enc(x ∧ s)− Enc(y ∧ r) + Enc(r ∧ s);

Equality Evaluation. The last step of the protocol requires the computation of AND

operations on n encrypted bits {c1, · · · , cn}. The straightforward solution is performing

Protocol 8 n times on the aggregated results. This approach requires n rounds of commu-

nication, n encryption operations, and 2n−2 decryption operations. For the text domain,

the size of the inputs may be as high as several hundred bits (after hashing), it incurs

a high cost for communication and computation. Here, we introduce an improvement

to reduce the number of communication round and encryption/decryption operations to

O(logn). The improvement is based on data packing technique. The protocol describes

details of our improvements. For simplicity, we assume that the size of input in bits:

n = 2k.

The correctness of Protocol 9 can be proven in similar way as Protocol 8. Each round

reduces the size of the input by a factor of two, hence there is only logn communication

rounds. At each round, Bob is only required to decrypt one ciphertext. Hence, the
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Algorithm 9: Secure AND on multiple binary inputs: f(c, n)

Input: Bob holds n encrypted bits: {EncA(x1), · · · , Enc(xn}

Output: Bob holds EncA(
∧
i xi)

1 if n=1 then

2 Bob returns c1;

3 for i = 1, · · · , n do

4 Bob computes EncA(x′i) = EncA(xi ⊕ ri), where ri is a random bits;

5 Bob computes EncA(x′i) = EncA(2i × xi);

6 end

7 Bob computes EncA(x′) = EncA(
∑

2i × xi) and sends to Alice ;

8 Alice decrypt x′ and unpack x′ to bits {x′1, · · · , x′n};

9 for i = 1, · · · , n/2 do

10 With (2i)− th and (2i− 1)− th bits, Alice computes z′i = x′2i−1x
′
2i.;

11 Alice encrypt EncA(z′i) and sends to Bob;

12 Bob computes

EncA(zi) = Enc(z′i)− Enc(x′2i−1 ∧ r2i−1)− Enc(x′2i ∧ r2i) + Enc(r2i−1 ∧ r2i)

13 end

14 Bob recursively performs f(z, n/2);

number of decryption operations is reduced to logn. On the other hand, the bandwidth

and the encryption operations reduce by a constant factor (i.e. two times), and the

asymptotic complexity remains the same.

Analysis. We now analyze the correctness and security of the equality predicate

evaluation protocol (Protocol 7). Due to the transformation in Steps 1-2, we only need

to examine the remaining parts, where the two parties together compare the encrypted

value a with 0.
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We note that in Step 7, Alice reserves bit ci when a′i = 0. This means that we

perform the XNOR operation on bit a′i and ciphertext ci for all i = 1, n. Remember that

ci = EncA(ri), so at this step, we actually compute c′i = EncA(fi) = EncA(ri XNOR a′i).

Moreover, since a′ = a+ r, all ri ⊕ a′is are zero if and only if a = 0. Therefore, all fi = 1

if a = 0; the last step concludes the protocol, where Bob computes the AND of all bits

fi and outputs the inverted result.

The security of the two parties follows the semantic security properties of the employed

encryption scheme—the Paillier cryptosystem. Alice only obtains the encryption version

of y. On the other hand, Bob receives a randomized value a′ = a + r and an array of

encrypted bits {Enc(rn), . . . , Enc(r1)}. Hence, no more information is leaked to either

party.

6.3.3.2 Inequality Predicate

The inequality predicate considers two parties that pose two private integral values x

and y and wish to evaluate the predicate x
?
< y. This problem is known as secure

comparison. The first solution to it was proposed by A. Yao [86] in the 1980s, and

pioneered research on secure multi-party computation. Since then, extensive research has

been conducted to address the problem of secure comparison. Di Crescenzo [30] proposed

a secure comparison protocol with O(n2logN) complexity, where n is the length of the

compared numbers in bits, and N is the group size of the plaintext of the employed

encryption scheme. Fischlin [38] and Blake [9] reduced the complexity of the solutions

to O(nlogN).

We propose a variant of Blake’s protocol [9] as a building block to compare two private

inputs. In our problem setting, at this stage, it is expected that no information relating

to the results of the evaluation are known to the verifier or the data keeper. Therefore,

we cannot directly apply the protocol proposed by Blake [9], as it leaks the comparison
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results to one of the parties. In order to prevent such information leakage, we propose a

mechanism, as an extension of the original scheme [9], shown in Protocol 10.

Blake’s protocol allows us to obliviously transfer one over two secrets depending on

the result of the secure comparison. The protocol considers the scenario where there

are two parties holding two private inputs x and y. The second party holds two secrets

(s0, s1) (in addition to private input y). Blake’s protocol allows the two parties obliviously

transfer s0 when x > y and s1 in the other case. Our modification adds one more step

which is the secure equality evaluation protocol to determine the secret that has been

sent. At the end of the protocol, Bob obtains an encrypted bit that indicates the result

of the inequality comparison. To present the protocol, we follow Blake [9] and denote

with DS a set of integers agreed to by the two parties before executing the protocol.

In Step 3.b, Bob is required to compute the XOR of two encrypted bits xi, and yi.

Since fi = xi⊕ yi = xi + yi− 2xiyi, we can evaluate the result with the help of the secure

multiplication protocol (Protocol 8). To compute the encryption of vector γ, δ, µ, Bob

only needs to apply the homomorphic property of the Paillier cryptosystem.

Analysis. We first show that the protocol correctly computes the desired functionality.

The flag vector f = {fi = xi⊕yi} is a binary vector, where the i-th bit indicates whether

xi 6= yi. Therefore, vector γ as constructed in Step 2c is a vector with the following

structure: it starts with one or more 0s followed by a 1, and then a sequence of non-1s.

Let k be the first position where xi and yi differ, which implies that γk = 1 and dk

determine the result of predicate x < y. δ randomizes the value of γ but keeps δk = dk.

We note that with a large probability, γi is statistically close to being uniformly random

in ZN . Finally, the transformation in Step 2e is a permutation of Zn where set −1→ s0

and 1 → s1. The final step, where a random permutation π(µ) is sent back to Alice,

hides information concerning index k.

Since there is a negligible minority of elements of DS in a group of size N, with an

overwhelming probability, there is exactly one element in vector µ belonging to set DS.
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Algorithm 10: Secure Inequality Evaluation

Input: Alice holds integer x and Bob holds integer y; common integer set Ds

Output: Bob holds an encrypted bit EncA(b) such that b = 1 if x < y, and 0

otherwise

1 Bob draws two random number s0 6= s1 from the set Ds;

2 Denote the bit representation of x by xn · · ·x2x1; Alice encrypts each bit xi under

her key and sends (EncA(x1), . . . , Enc(xn)) to Bob;

3 For each i = 1, . . . , n, Bob does the following:

(a) Compute EncA(di) = EncA(xi − yi)

(b) Compute the encryption of the XOR between i− th bits

EncA(fi) = EncA(xi ⊕ yi) using homomorphism.

(c) Compute an encryption of vector γ, where γ0 = 0 and γi = 2γi−1 + fi

(d) Compute an encryption of vector δ, where δi = di + ri(γi − 1), where ri is a

random number in Zn

(e) Compute a random encryption of vector µ, where µi = s1−s0
2
γi + s1+s0

2

and send a random permutation π(EncA(µ)) to Alice.;

4 Alice obtains π(EncA(µ)), decrypts it and determines that µ contains a single

value v ∈ DS;

5 Alice and Bob perform secure equality evaluation on inputs v, s0;

6 Bob outputs the encrypted result Enc(b);

In Step 3, Alice can output either s0 or s1 depending on whether x < y. The last two

steps conclude our construction of the protocol, where v = s0 only if x < y as desired.

We now prove the security of the protocol. Due to the universal security of the secure

equality evaluation protocol, we only need to consider the first part (i.e. Steps 1 − 3).

Alices privacy trivially holds because of the semantic security properties of the employed
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encryption scheme—the Paillier cryptosystem. Bob only receives from Alice a list of

encryption messages, and obtains no more information about Alice’s private input.

Bob’s privacy against the semi-honest party Alice is proven by constructing a simula-

tor SimA(x, v), where x is the private input of Alice and v the value obtained in the part

of the protocol that is examined. SimA(x, v) needs to generate a distribution statistically

close to the view of Alice in real execution. The simulator generates a random vector µ′:

for i = 1, . . . , n, and a random element µ′i ∈ Zn is chosen. It then replaces the randomly

chosen element of µ′ with s (i.e. µ′i ← s), and outputs {x,Enc(µ′)}. As discussed above,

due to the randomization in Step 2.d, vector µ is statistically close to being uniformly

random in ZN (except one element in DS).

6.3.3.3 (Non-)Membership Predicate

A membership predicate allows the verifier to examine whether an attribute of the client

falls into certain categories. A simple example is the case where the verifier wishes

to know if an applicant works in the education industry (e.g. as a teacher, student,

librarian, or school counselor). A non-membership predicate should be the complement

of the membership query, and tests whether a particular value is excluded from a set.

The membership predicate evaluation protocol is presented in Protocol 11. The non-

membership predicate can be easily derived from Protocol 11 by applying the NOT

operator discussed in Section 6.3.4.

In the protocol, Alice is required to evaluate the encrypted polynomial P (x) at point

x = a (line 3). She can do so due to the homomorphism of the cryptosystem. She

first computes ai in plaintext, and then computes EncB(ci × ai) = EncB(ci)
ai by the

homomorphic multiplication property of the Paillier cryptosystem. Finally, she calculates

P (a) =
∑
ci × ai in encrypted form by applying the homomorphic addition property.
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Algorithm 11: Secure Membership Evaluation

Input: Alice holds an integer a, Bob holds a set if integer S = {x1, x2, · · · , xn}

Output: Bob holds an encrypted bit EncA(b) such that b = 1 if a ∈ S and 0

otherwise

1 Bob computes the characteristic polynomial of the set:

P (x) = cnx
n + · · ·+ c1x+ c0 = (x− x1)(x− x2) · · · (x− xn);

2 Bob encrypts the coefficients of a polynomial {c0, c1, . . . , cn} under his own key,

obtaining {EncB(c0), EncB(c1), . . . , EncB(cn)}, sends the encrypted set to Alice;

3 Alice securely evaluates the encrypted value of the polynomial at x = a, denote

v → P (a);

4 Alice generates random r, and computes EncB(v + r) and sends it to Bob;

5 Bob decrypts to obtain v + r;

6 Alice and Bob perform Secure Equality Evaluation to with inputs r,v + r;

7 Bob outputs the encrypted result Enc(b);

Analysis. We first analyze the correctness of the protocol. If a ∈ S, there exists one

xi such that x = xi. This implies v = P (a) = 0. This observation leads to the final step

of the protocol, where Bob and Alice collaboratively evaluate the equality predicate with

inputs r and v + r. Hence, the encrypted bit Enc(b) is an indicator of whether value a

belongs to set S.

The security of the protocol can be proven with two simulators that generate the

views of the two parties, Alice and Bob. For Alice, a simulator that generates and sends

n random encrypted values is a valid simulator. Due to semantic security, she cannot

distinguish the simulator from a real-world scenario. Similarly for Bob, a random number

v + r can be easily simulated. Finally, the security of Protocol 11 concludes the proof of

security of the secure membership evaluation protocol.
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6.3.4 Complex Predicate Evaluation

At this stage, Bob holds the encrypted result of the evaluation for each data record, with

each attribute in a complex predicate that needs to be verified. There are three basic

primitives that operate on the encrypted inputs at this stage. With these primitives, Bob

has the capability to compute the results of the encryption of the desired bit to evaluate

each data record. The output of this stage is an encrypted bit for each data record. This

bit indicates whether the given record satisfies the complex statement.

The inputs of the three primitives are either one encrypted bit (NOT operation) or

two encrypted bits (AND and OR operations).

(i) ¬ (NOT ) - The negation operation is computed by the formula: Enc(¬x) =

Enc(1)− Enc(x).

(ii) ∧ (AND) - Protocol 8 describes the method to compute AND operation on two

encrypted binary inputs.

(iii) ∨ (OR) - OR operation evaluation protocol is derived from the formula: x ∨ y =

x+ y − x× y.

They are described as similar to the those described in Chapter 4. However, with the

data packing techniques we introduce in this chapter, the bandwidth memory as well as

the number of decryption operations can be further reduced by a constant factor. This

modification significantly improves the performance of the sub-protocols.

6.3.5 Aggregation of Output Data

For the input of this stage, Bob holds an encrypted bit, for each entity in Alice’s database,

that determines whether the data record satisfies the complex statement. In order to
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ensure that there is exactly one qualified data record in the case that the application

is successful, we introduce one special attribute to the final complex predicate. The

attribute is the secret identification of the client in the database.

We assume that when the client registers his/her data with Alice the data keeper,

Alice generates a secret random number rc to identify the client. The number is stored

in the database as an attribute of the client. We introduce additional steps to address

the requirement:

(i) The client encrypts the random secret under Bob’s key, obtaining EncB(rc).

(ii) The client anonymously sends the encryption of secret value to Alice.

(iii) Alice and Bob perform secure equality evaluation (starting from Step 2) and get

the result EncA(b).

(iv) Bob applies the AND operation on EncA(b) and the current result of the evaluation

process.

With the additional step, Bob now holds an array of encrypted bits with all 0s and

at most one bit 1. Bob uses a homomorphism to compute the encrypted sum of these

bits; the result is the encryption of either 1 or 0. He can send it to Alice for decryption

and obtain the final result to determine whether the applicant qualifies. However, this

may compromise Bob’s privacy, especially when he wants to hide his business progress.

In order to maintain his privacy, we introduce one step for the randomization of the

decryption process as follows:

(i) Bob computes the encrypted sum using a homomorphism to obtain EncA(s).

(ii) Bob generates a random number r, and computes c = EncA(s+ r) and sends it to

Alice.
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(iii) Alice decrypts c to obtain s + r and sends it back to Bob. Note that Alice only

receives a random number so that she learns nothing about the result of the appli-

cation.

(iv) Bob computes the result s = s+ r − r.

Finally, Bob is able to decide the result of the verification process using bit s.

6.3.6 Discussion

We first consider the security of the entire system, since all intermediate results, that

are revealed to Alice and Bob, are either random or semantically secure encryption of

numbers. Furthermore, the outputs of all sub-protocols (only seen by Bob) are always

encrypted under Alice’s key. Under the assumptions of the semi-honest model, we claim

that the sequential composition of these sub-protocols leaks no details of the client or

the predicates proposed by the verifier.

The second issue we consider is the practical implementation of the system. Since the

same procedure is applied for all data entries, the verification results for each data record

can be computed in parallel. That means we are able to construct multiple verification

threads, each one corresponding to one data entry. By the batch verification approach,

we can improve the running time of the whole process by a factor of n/m, where n is the

number of data records and m is the number of threads.

While the same procedure is applied for each data record, the data keeper is not able

to know who the applicant is. In practice, there are some cases where the data keeper

(e.g. a governmental agency) is allowed to know the identity of the applicant, and this

rigorous security feature is then not required. The proposed solution can be modified,

and inherently improves performance. Specifically, the client can perform a simple au-

thentication rather than an anonymous solution to allow the verifier to communicate with
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the data keeper. The verification process only needs to be performed on the one data

record only identified by the client. Hence, the cost of the proposed solution is reduced

by a factor of n where n is the number of data records in the data keeper’s database.

In our proposed solution, an applicant qualifies only if he/she satisfies all criteria

specified by a single predicate or several complex predicates. Hence, we can define a

complex predicate to cover all criteria using the AND operation. We also can extend

our protocol to adapt to threshold criteria, where the applicant qualifies only if he/she

satisfies more than k criteria. The idea is to compute the sum of each of the predicate’s

evaluation (in encrypted form) and apply a slightly modified version of Protocol 10 to

compare the encrypted value with threshold k.

6.4 Implementation

We implemented our proposed method, and calculated the CPU time required to run

our sub-protocols from Section 6.3. Our experiments were conducted on a Windows 10.0

machine with a 3-GHz processor and 16 GB of RAM. We used the Paillier cryptosystem as

the underlying additive homomorphic encryption scheme and implemented the proposed

sub-protocols in Java.

We first examined the operation of the secure equality evaluation and the secure

inequality evaluation protocols. Two factors affect the performance of these protocols:

the Paillier key size and the domain size of the input. Table 6.2 shows the processing times

of Algorithms 7 and 10 with different settings of bit size and key size. We performed the

experiment with bit lengths of 32, 64 and 160. The latter was the size of the output of the

SHA-1 hash function we used for the secret identification described in Section 6.3.5. The

result showed that these protocols require twice the time for double-bit size of inputs; the

time needed increased by a factor of nearly seven when the Paillier key size was doubled.
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1024 bit Key size

Size Algo.7 Algo.10

32 796 1769

64 1472 3542

160 3277 8623

2028 bit Key size

Size Algo.7 Algo.10

32 4477 12047

64 9983 24755

160 22569 57393

Table 6.2: Run times of secure equality and inequality evaluation protocols (ms)

The third building block of the single-predicate evaluation was the (non-) membership

predicate. The run time of the building block depends on three factors: the Paillier key

size, the number of elements in the set, and the bit size of the inputs; bit size only affects

the final step of Protocol 10, which is the secure equality evaluation protocol. Figure 6.2

below shows the relationship between the run times of the two remaining factors and the

performance of the building block.

Figure 6.2: Running time of Secure Membership Evaluation

We had made a similar observation earlier: the cost of the secure membership eval-

uation protocol when the key size was 1024 bits was roughly six to seven times more
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efficient than with a length of 2048 bits for the Paillier key. The computational cost of

the protocol also increased linearly with the size of the set.

In order to verify the feasibility of the whole proposed system, we conducted an exper-

iment on a simulated dataset. We considered a complex statement verification comprising

of 10 single predicates linking together by two Boolean operations AND, OR. The run-

ning time for verifying a single data record was 25 seconds, and it took approximately

one hour to verify one thousand data records in the parallel mode of 10 threads running

simultaneously.

6.5 Summary

This chapter presents a framework for the privacy-preserving verification of personal

information. We used the secure multi-party computation model and homomorphic en-

cryption to develop a systematic solution to the problem in four stages. We showed

that the proposed scheme can protect the client’s privacy from both the verifier and the

data keeper, and at the same time, protects the privacy of the verifier. Different ways

to further enhance the performance of the proposed method and a scheme extension for

threshold verification were discussed. The experimental results highlighted the efficiency

and feasibility of our proposed scheme under different security settings.
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7
Conclusion

In this chapter, we recapitulate the previous chapters and highlight key points that are

the major contributions from this thesis. We then discuss several promising directions of

research in secure data processing in the future.

7.1 Conclusion

Data privacy has emerged as an important area of research in the recent years, due to the

increasing amount of information available that contains sensitive data from people and
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companies. Securing data at rest does not adequately address the modern requirements

for data confidentiality. The demand for supporting various digital services requires effi-

cient methods to process and extract useful subsets from encrypted data while preserving

data confidentiality. The new challenges need new approaches rather than simple data

encryption. In this thesis, we have proposed various techniques to efficiently process the

encrypted data in a secure manner.

In Chapter 3, we presented a simple but secure solution that supports conjunctive

matching queries. The searching scheme is based on the additive homomorphism prop-

erty of cryptosystems such as the Paillier cryptosystem. We presented the three-party

architecture and applied the secure multi-party model to analyze the security of the so-

lution. The solution can also be extended to support range and multi-dimensional range

queries. We also investigated the overhead incurred by the solution.

Chapter 4 presented a more general problem of searching encrypted data. In this

chapter, we considered the classical problem of Boolean information retrieval. The solu-

tion allows the evaluation of any combination of Boolean functions over a set of keywords.

The solution employs Bloom-filter data structure, oblivious transfer techniques, and ho-

momorphic encryption. The solution consists of several phases. At each stage, secure

protocols were proposed to solve a subproblem.

Chapter 5 considered the problem of multi-dimensional range queries. It addressed

the limitation of the previous solution presented in Chapter 3. In this chapter, we exam-

ined various scenarios. Different approaches were proposed to address the requirements

for these different contexts. The basic idea behind the solution is to combine the bucke-

tization and Oblivious RAM techniques to secure access to the data.

Finally, in Chapter 6, wwe considered the problem of personal information verification.

The root of the problem is similar to the problems that have been discussed in the three

previous chapters. We took a similar approach to address the security requirements. The
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solution eliminates the limitations of the current personal verification process. Moreover,

it also creates an opportunity for a new kind of digital service.

7.2 Future Work

As an ongoing effort, we are exploring several extensions to the work in this dissertation.

Stronger Security Notions. In the thesis, we assume the participating parties

follow the semi-honest model. We assume they faithfully act according to the protocol

specification. While we emphasize that this model is more practical than the concept of

a strong security notion with a fully malicious adversary. The fully malicious adversary

model makes no assumptions of the behaviors of the adversaries. They may diverge

from the normal execution of a protocol, as long as the deviation cannot be detected.

It is possible for them to craft the input or wrongly compute certain corresponding

functions. While this is unlikely to happen to the well-established service providers, the

fully malicious adversary model still provides a stronger security guarantee and covers

more real-world scenarios.

In Chapter 3 and 5 we assumed that the participating parties (i.e., proxy and the

servers, index server and data server) do not collude. This may be not sufficient for

several applications. In a future work, we may explore possible approaches to eliminate

this requirement.

Multi-user Support Our works support single user model. Loosely speaking, the

client is only able to interact with his/her own dataset. In order to support multi-user

scenario, Chapter 3 and 4 required the data owner to share the secret key with the

authorized data consumers. Popa and Zeldovich [72] proposed an interesting scheme

that enables single keyword search in the outsourced database for multi-user settings.

In future works, we will explore possible approaches that support secure complex query

processing in multi-user contexts without key sharing.
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Multi-source Support. The idea of supporting multi-source datasets should be an

interesting extension. In the context of data outsourcing, different types of data may be

required to be outsourced to different service providers. The research question is how to

efficiently support the queries whose answers are fused information from these various

encrypted databases. In the context of personal information verification, the client may

wish to have different organizations handle different personal documents; for example, a

bank to take care of financial documents or a hospital to store healthcare records. We

wish to explore secure multi-party computation solutions to allow the private verification

process to be performed in these distributed settings.

Graph dataset. Graph structure provides a way to represent the complex data

structure and relationships between data entities. The abundance of information in the

real world today can be modeled as graph-structured data, e.g. communication networks,

biological networks, or social networks. Therefore, graph analysis has become an inter-

esting and attractive research topic and will be for a long time. In future research, we

will examine efficient methods for storing graph-based data as well as securely answering

graph queries such as connectivity or shortest-path queries.
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