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Abstract

Unit commitment means the pre-setting scheduling and arrangement of the

electrical generator operation. It plays a critical role in the power system opti-

mization problem which aims to utilize power resources rationally and enhance

the efficiency of operational economy under the condition of safe operation of

power system. With the high penetration of renewable energy, which increases

deregulation when renewable energy is fed into the traditional power system and

attention of safety operation in power system, there is a growing focus on opti-

mization with uncertainties. This thesis proposes a unit commitment model to

minimize the impact of uncertainty. The scheduling strategy is composed of two

main cases which correspond to the two intervals of the probability distribution

of the solar power output. The energy storage system is coordinated to guarantee

the power system security when the margin of error is beyond the confidence in-

terval of solar power probability. In order to deal with both volatile load demand

and the solar power, we apply a normal probability distribution to define net load

demand. The scheduling strategy is divided into two intervals based on its confi-

dence interval, and interval optimization is adopted to reduce the complexity of

this optimization problem in the confidence interval. Energy storage system is

flexible to maintain the power balance with an acceptable cost and maximize the

utilization of the renewable energy in the non-confidence interval. The numeri-
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cal results of 14-bus and 30-bus power systems demonstrate the effectiveness of

the proposed scheduling strategy which could provide economical, adaptive and

calculation time-saving features.
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Abbreviations

UC Unit Commitment.

PL Priority List.

DP Dynamic Programming.

LR Lagrangian Relaxation.

MIP Mixed Integer Programming.

TS Tabu Searching.

GA Genetic Algorithm.

SA Simulated Annealing.

PSO Particle Swarm Optimization.

ACO Ant Colony Optimization.

BD Benders Decomposition.

PTDF Power Transfer Distribution Factors.

RES Renewable Energy Resources.

ESS Energy Storage System.
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Nomenclature

Indexes
i Index of traditional generators.

s Index of photovoltaic energy units.

e Index of storage units.

b Index of buses.

d Index of loads.

l Index of transmission lines.

t Index of time periods, generally based on an hour.

Sets
Ng Set of traditional generators.

Ns Set of photovoltaic energy units.

Ne Set of storage units.

Nt Set of scheduling periods.

Nd Set of loads.

Nb Set of buses.

Nl Set of transmission lines.

Cg,t Operation cost of traditional generator i at time t.

Cs,t Operation cost of photovoltaic energy unit s at time t.

Ce,t Operation cost of energy storage unit e at time t.

T on
i Minimum time period traditional generator i must be initially online.

T off
i Minimum time period traditional generator i must be initially offline.
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T on
i0 Minimum time period traditional generator i has been online prior to the

first hour.

T off
i0 Minimum time period traditional generator i has been offline prior to the

first hour.

T u
i Minimum time period traditional generator i must remain online once

the unit is started up.

T d
i Minimum time period traditional generator i must remain offline once

the unit is shut down.

Parameters
PGmax

i Maximum real power output of traditional generator i.

PGmin
i Minimum real power output of traditional generator i.

Pd,t Load demand at load bus d at time t.

P f
s,t Forecasted output of photovoltaic energy unit s at time t.

Ps,t Output of photovoltaic energy unit s at time t.

RUi Ramp up hourly limits of traditional generator i.

RDi Ramp down hourly limits of traditional generator i.

SUi Startup ramp limits of traditional generator i in an hour.

SDi Shutdown ramp limits of traditional generator i in an hour.

Tl,b Element of the power transfer distribution factor matrix associated with
line l and bus b.

Fl Power flow limits of transmission line l.

Ee,t Energy stored in storage unit e at time t.

Emin
e Minimum energy stored in storage unit e.

Emax
e Maximum energy stored in storage unit e.

ηCe Charging efficiency of storage unit e.

ηDe Discharging efficiency of storage unit e.

PC,min
e Minimum charging power of storage unit e.
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PC,max
e Maximum charging power of storage unit e.

PD,min
e Minimum discharging power of storage unit e.

PD,max
e Maximum discharging power of storage unit e.

Variables
Ii,t On/off status of traditional generator i at time t.

Ii0 Initial commitment status of traditional generator i.

pi,t Real power output of traditional generator i at time t.

pb,t Real import/export power from/to bus b at time t.

PC
e,t Charging power of storage unit e at time t.

PD
e,t Discharging power of storage unit e at time t.

uCe,t Charge mode of storage unit e at time t.

uDe,t Discharge mode of storage unit e at time t.
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Chapter 1

Introduction

1.1 Background

There is a great variation in the load demand of power system: load demand

varies with the periodic fluctuation changes in a mix of issues, such as human

civilization and production of life activities, or caused by other factors like the

weather. For instance, people use more electricity on weekdays than Saturdays,

more on Saturdays than on Sundays, and at an extreme higher rate on peak hours

than off-peak hours [5–8]. In order to meet the load demand in peak hours, gen-

erating units will be online during the peak period which causes generating units

generate the minimum energy during the off-peak period without power system

operation strategy. Therefore, the problem confronting the power system oper-

ation is how to decide status of each generating unit, including on/off-line state

and output.

The basic goal of power system operation is to meet the load requirement

which is not a constant but varies. The preferable strategy in power system to

decide generating units status takes economical aspects into account. In other

words, it is vital in power system operation to satisfy the load demand by using

different combinations of generating units with operation cost minimization. Unit

Commitment (UC) is the one of the best solutions which is proposed to provide
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high-quality electricity in a safe and economical manner.

The objective of Unit Commitment (UC) [9] is, in a certain scheduling period,

to make rational arrangement of the electrical generator operation for the sake

of economical and safe operation, under conditions where these arrangements

satisfy different operation constraints.

Therefore, the output of UC is a mix of generating units which includes com-

mitment status and power output, moreover, the general objective of UC is to

minimize the total operation cost, such as fuel cost [10] and start-up cost [11],

as well as some specific costs under a certain circumstance [12]. In addition, in

order to ensure the safety of power system operation, it needs to satisfy all of the

constraints [10] such as generating unit physical constraints (e.g., capacity and

ramping down/up limits).

UC, with the characteristic of being high-dimensional, nonconvex and dis-

tributed, is a highly nonlinear optimization problem, which is mathematically a

NP-Hard problem [13] as UC uses binary variables to show the generating units

status (ON/OFF) with many constraints. The UC problem will become very dif-

ficult and complicated when the scale of the problem increases. For many years,

many researchers have developed a variety of solution methodologies from early

approaches in the basis of Priority List (PL) [14–16], Dynamic Programming

(DP) [5, 7, 17–19] and Lagrangian Relaxation (LR) [20–22] to the advanced ap-

proaches in the basis of Mixed Integer Programming (MIP) [23–25] which is

the most commonly adopted. Furthermore, artificial intelligence is being used

to solve the UC problem, i.e., Tabu Search (TS) [26, 27], Genetic Algorithm

(GA) [28–30], Simulated Annealing (SA) [31–33], Particle Swarm Optimization

(PSO) [34–36], and Ant Colony Optimization (ACO) [37,38]. This thesis focuses

on MIP that is the most rife methods.

Since UC problem aims to make more effective and economical decisions in

power system operation, the planning horizon is very important to affect its ac-

curacy and complexity. The exact long-term UC problem [39–41] is not practical
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enough, as the extrapolation of UC model is inadequate, e.g., prices change and

technologies advance, etc. On the other hand, it is a great degree of difficulty

to solve such a complicated problem with a mass of constraints which means

that the computation time is exorbitant. Considering uncertainty of renewables,

this thesis addresses short-term UC problem (day-ahead and hourly-ahead) rather

than long-term UC problem (seasonal and yearly).

1.2 UC Problem Formulation

The UC problem formulation mimics the standard power system so that it is

an adequate model of equipment and grid. Genearlly, the more complicated and

practical model is, the more difficulty and time-consuming the calculation is. The

considered short-term UC problem can be formulated as follows.

Objective:

min
∑
Nt

∑
Ng

Cg,t (1.1)

The objective of generic UC problem (1.1) is to minimize generating units

operating cost Cg,t, which contains fuel cost Fi(pi,t) and startup cost STi(ui) that

is considered as a constant.

Cg,t = Fi(pi,t) + STi(ui) (1.2)

The fuel cost Fi(pi,t) is widely modeled with a curve [42] given below.

Fi(pi,t) = aip
2
i,t + bipi,t + ci (1.3)

where ai > 0, bi > 0 and ci > 0 are the coefficients.
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Subject to constraints:

Power balance

∑
Nd

Pd,t =
∑
Ng

pi,t (1.4)

Physical output limits on generating units

PGmin
i Ii,t ≤ pi,t ≤ PGmax

i Ii,t (1.5)

Ramping rate

pi,t − pi,t−1 ≤ RUiIi,t−1 + SUi(Ii,t − Ii,t−1) + PGmax
i (1− Ii,t) (1.6)

pi,t−1 − pi,t ≤ RDiIi,t + SDi(Ii,t−1 − Ii,t) + PGmax
i (1− Ii,t−1) (1.7)

Grid limits

−Fl ≤
∑
Nb

Tl,b(
∑
Ng(b)

pi,t −
∑
Nd(b)

Pd,t) ≤ Fl (1.8)

Minimum certain period

Generating units must be initially online/offline for a certain time period, they

have been online/offline prior to the first hour and remain online/offline for a

certain number of hours once started up/ shut down.

1.3 Renewable Energy Resources

Nowadays, it is widely considered that human activities have meaningfully

changed global environment and catastrophic climate change is one of the most

serious consequences. The concentration of carbon dioxide (CO2) has signifi-

cantly risen from 290 ppm (part per million) over the last 800,000 years to above

380 ppm [43] and CO2-free power production is thus going to become an in-
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creasing concern worldwide.

Development and the use of renewable energy resources (RES) has become

the important measure to achieve the above goal – CO2-free power production.

RES consists of solar energy, geothermal energy, wind energy, waves energy,

tides energy, osmosis energy, hydroelectric power, biogenic energy. Photovoltaics

and wind energy are two main areas because they are non-pollution, economic

and abundant.

Solar energy is used for converting sun’s energy into electrical power. There

are two major conversations: direct and indirect. The direct conversation, as

the name implies, changes the energy of the sun into electricity directly in solar

photovoltaic (PV) panels without moving part, which is thus named as termed

solar photovoltaic energy [44]. The indirect conversation, which is considered

as solar thermal energy, most commonly takes place in water or other liquids to

generate heat. Besides, solar photovoltaic energy is more widely used than solar

thermal energy since the former one utilizes directly energy that sun reaches the

earth, which is around 8000 times than the world sum usage of nuclear energy

and fossil fuels [45]. The photoelectric cell, where solar energy is converted into

electricity, is highly efficient – over 20% efficiency, that is, 20% of solar energy

used is able to be converted into electrical power.

Wind energy is second to solar energy as the most prevalent renewable energy

type. The base concept of wind energy is rotational energy of turbines by wind

speed into electrical current, and then the specific converter input electrical cur-

rent to the power grid [44]. The facilities are always located on high elevations

where winds are stronger and use tall turbines to catch more winds.

1.4 Unit Commitment with RES

With a better understanding of RES, great attention has been paid to the RES

studies over the world because of the wide use of RES. Compared with the tra-
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ditional power generation, RES, such as wind and photovoltaic generation, can

contribute to the improvement of the whole energy structure, enhance energy

supply and improve environment in the framework of sustainable development.

Meanwhile the technical challenges of integrating RES into the distributed power

system while running and safe-guarding an efficient and economic power network

have more concerns.

Although the UC problem has advanced and evolved over the years in the ex-

isting literature, recent challenges are from the increasing penetration of RES,

which have attracted a vast amount of attention all over the world about im-

provements of UC models and algorithms. With the characteristic variability

and uncertainty, high-level RES integrated power system causes higher flexibility

requirements of power system to cope with fast and great fluctuation in RES.

The novel unit commitment model is used to solve the problem about the dis-

tribution of traditional generators with the objective of minimizing the operation

cost [11,42,46,47] without the consideration of uncertainties in RES. This means

the deterministic UC model has not kept up with requirements of today’s smart

network with RES integration. The earlier method relies on conservative reserve

requirements which is so-called reserve adjustment method, and it is widely uti-

lized in power industry because of its practicality. [48–51] focus on the reserve

requirements and analyze their levels in the basis of conventional criteria, e.g.,

system import change and the capacity of the largest generator. However, setting

the extra generating units as reserves means extra costs, and thus, this scheme

doesn’t satisfy the economical aim of the UC problem, especially when the re-

serve requirements are decided to be larger by ad-hoc rules. Moreover, reserves

are determined by systematic analysis which cannot handle insufficient problems

of power system in real condition, such as load deviations.

To solve this problem, many researchers have directed their attention to UC

models with intermittent nature source, including wind and photovoltaic resources.

Stochastic unit commitment (SUC) [52] based on simulation scenarios solves
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this problem and improves operational economic efficiency in power systems.

Numerous scenarios can be generated to realize possibilities of uncertain re-

sources by direct discretization of relevant parameters or the sampling method

based on a given probability distribution model. A sufficient condition for in-

active constraints are established by using the MILP method to simplify SUC

problem in [53]. Approaches to generate scenarios are MC sampling, one based

on stability analysis and moment matching principles. In [54], the normal distri-

bution model of load demand is discretized and mid-points are used to represent

uncertain load demand. Sample scenario trees are studied to evaluate load fore-

cast errors and generator outages to solve UC problem in [55–57]. The authors

in [58, 59] investigate a SUC problem with high penetration wind power gener-

ation and uses scenarios method to simulate wind forecast uncertainties by sam-

pling in certain probability distributions.In [60], a general survey on scenario tree

algorithms is conducted. As the quantity and quality of scenarios play important

roles in optimization via SUC solutions, the computational burden grows as more

scenarios are considered.

Another method for solving this problem is robust unit commitment (RUC)

which refers to the interval optimization [61]. Robust optimization has attracted

great attention at present of research area where parameter uncertainty severely

affects modeling framework for optimization [62–68]. Interval optimization re-

quires the range of uncertainty rather than a probability distribution model for

uncertainty. In addition to the loose requirement of uncertain data, the model is

flexible which can be adjusted properly by different available information about

model and the requirement to commitment accuracy [69, 70]. Load uncertainty

is modeled by interval optimization in [71], which divides the problem into two

subproblems and uses upper and lower bounds to obtain the solution. [72] pro-

poses a two-stage adaptive model for solving the problem about nodal net injec-

tion uncertainty. The outer approximation technique is considered to develop a

more practical solution methodology which is based on Benders Decomposition

27



(BD). [73] developes the robust optimization in the basis of BD to the security-

constrained problem. Load and wind uncertainty construct uncertain intervals

and eliminate the worst case which is no possibility to happen. Since RUC is

sensitive to the setting of interval, large interval period which is set to guarantee

the system security will deteriorate its economy operation.

In the following chapters, this thesis proposes a unit commitment model aim-

ing at assessing the impact of the quality of forecasted value of uncertain resource

and load demand. The forecasting method for PV generation depends on the so-

lar irradiance level [74], and the volatile load demand can be modeled by load

components [75]. In Chapter 2, this thesis focuses on the uncertain solar re-

source, meanwhile, the load demand is assumed to be a constant. Our proposed

model divides the solar power output into two intervals, corresponding to the con-

fidence interval of solar generation probability distribution, which can solve the

over-conservative problems effectively, based on the concept of the RUC model.

Different strategies are designed in different intervals of solar power output to

improve the system security and optimize the model computing in a reasonable

way. Energy storage system (ESS) [3, 76] is utilized in extreme case to realize

peak clipping, valley filling to maximize the utilization of energy and guaran-

tee the reliability of power system by following the change of power demand in

power system. When both uncertain solar resource and load demand are consid-

ered, net load demand is defined due to the property of normal probability dis-

tribution in Chapter 3. Hierarchical scheduling strategy is designed to cope with

different probability levels. In the high probability interval, interval optimiza-

tion [71, 77] is adopted to reduce the computational difficulty. Energy storage

system is regulated to compensate for the larger forecasting error which occurs

in the low probability interval. In Chapter 4, the conclusions of this thesis are

drawn and future research directions are discussed.
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Chapter 2

Day-ahead Unit Commitment with

Solar Resource

This chapter introduces the proposed UC model. The model assumptions are

made in Section 2.1, and strategies with mathematical formulation are described

in Section 2.2. In Section 2.3, this thesis summarizes the designed schedule as

a framework. The proposed scheduling is implemented on IEEE 14-bus solar

resource integrated test system in Section 2.4. Finally, we summarize the work

mentioned previously and draw conclusions on results obtained in Section 2.5.

2.1 Model Assumption

The main assumptions of the proposed unit commitment model are listed as

follows.

1) The ESS is deployed as an energy resource that is fully controlled by the

system and operates in a way which maximizes the overall economic benefits for

the whole power system.

2) Solar forecast output is based on historic solar radiation data. In order to
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collect forecast solar radiation data and generate scenario sets, the mathematical

model takes into account the difference between the solar radiation in different

intervals and initial sampling scheme from a multivariate distribution. In this

chapter, we focus on the forecasted error of solar power output and assume that

the probabilistic model of the PV power output approximates a normal distribu-

tion model N(µ, σ) for simplicity as shown in Figure 2.2.1.

3) The proposed hourly UC is based on hourly day-ahead forecast of the load

demand and the PV power output.

2.2 Adaptive Scheduling Strategy

The proposed day-ahead unit commitment strategy considers the forecasted

solar power output to determine the states of traditional generators. For real-time

dispatch, the proposed strategy is divided into two stages: base case (interval R1)

and extreme case (interval R2 and R3), based on the deviation between forecasted

solar power output and actual solar power output in each time period, as shown

in Figure 2.2.2. This thesis considers (1 − α) as the confidence level, and the

confidence interval is [P l, P h] as shown in Figure 2.2.1. Therefore, the base case

in confidence level (1 − α) has a greater probability while the extreme case in

the level α is of lower chance, such as 95% versus 5%. In base case (interval R1)

where the probability that solar power output falls in interval [P l, P h] is quite

high and the deviation is small, the power output of traditional generators can be

adjusted to satisfy the operation of the whole power system. In extreme case, it

can be divided into two sub-intervals R2 and R3. When there is no cloud, the

solar radiation intensity is greater than the forecasted value in R2, which means

that the solar output is higher than P h. The requirement of system security will

operate the energy storage system to charge the surplus power. When the sky is
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cloudy, the solar power output is smaller than the forecasted value in R3. The

energy storage system is utilized to guarantee the power balance of the whole

system by discharging power to compensate for the lack of power.

Figure 2.2.1: Probability distribution of solar power output

Figure 2.2.2: Interval division of solar power output
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2.2.1 Day-ahead Unit Commitment

Objective Function

The objective function of the day-ahead UC model is formulated as

min
∑
Nt

(
∑
Ng

Cg,t +
∑
Ns

Cs,t) (2.1)

The objective function (2.1) consists of traditional generator operating cost

Cg,t, and solar energy cost Cs,t.

The traditional generator costCg,t contains fuel costs Fi(pi,t) and startup costs

STi(ui).

Cg,t = Fi(pi,t) + STi(ui) (2.2)

The fuel costs Fi(pi,t) are widely considered as a quadratic function [42] given as

follows.

Fi(pi,t) = aip
2
i,t + bipi,t + ci (2.3)

where ai > 0, bi > 0 and ci > 0 are the coefficients.

Before providing electricity to the grid, the thermal plant has to be ramped

up at least to the minimum generation level, which causes the startup costs. This

thesis considers the startup cost as a constant.

The solar energy cost Cs,t includes maintenance and installation costs, which

is a constant.

According to [78], the generating units constraints in deterministic unit com-

mitment model can be written as:
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∑
Nd

Pd,t =
∑
Ng

pi,t +
∑
Ns

P f
s,t (2.4)

PGmin
i Ii,t ≤ pi,t ≤ PGmax

i Ii,t (2.5)

pi,t − pi,t−1 ≤ RUiIi,t−1 + SUi(Ii,t − Ii,t−1) + PGmax
i (1− Ii,t) (2.6)

pi,t−1 − pi,t ≤ RDiIi,t + SDi(Ii,t−1 − Ii,t) + PGmax
i (1− Ii,t−1) (2.7)

−Fl ≤
∑
Nb

Tl,b(
∑
Ng(b)

pi,t +
∑
Ns(b)

P f
s,t −

∑
Nd(b)

Pd,t) ≤ Fl (2.8)

∑
T on
i

[1− Ii,t] = 0 (2.9)

∑
T off
i

Ii,t = 0 (2.10)

t+Tu
i −1∑

h=t

Ii,h ≥ T u
i (Ii,t − Ii,t−1),∀t ∈ [T on

i0 + 1, Nt − T u
i + 1] (2.11)

Nt∑
h=t

[Ii,h − (Ii,t − Ii,t−1)] ≥ 0,∀t ∈ [Nt − T u
i + 2, Nt] (2.12)

t+T d
i −1∑

h=t

(1− Ii,h) ≥ T d
i (Ii,t−1 − Ii,t), ∀t ∈ [T off

i0 + 1, Nt − T d
i + 1] (2.13)

Nt∑
h=t

[1− Ii,h − (Ii,t−1 − Ii,t)] ≥ 0,∀t ∈ [Nt − T d
i + 2, Nt] (2.14)

Equation (2.4) enforces the system wide power balance. Equation (2.5) de-

scribes the physical limits of the traditional generators’ power output. The period-

to-period startup and shut down ramping constraints are presented in equations

(2.6) and (2.7). The Kirchhoff’s laws are presented by equation (2.8), the el-

ements of the power transfer distribution factors (PTDF), Tl,b, is obtained in a

lossless linear DC approximation. The transmission flow constraint is shown in

equation (2.8). Constraints on the initial online and offline requirements for gen-
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erators are represented by equations (2.9) and (2.10). Equations (2.11) and (2.12)

enforce the minimum online up-time limits for generators, including the last T u
i

time period. The minimum down-time limits in nominal time periods and last T u
i

time period for generators are shown in equations (2.13) and (2.14).

2.2.2 Real-time Dispatch

Base Case

The objective function can be formulated as

min
∑
Ng

Cg,t (2.15)

In base case, the traditional generators can be regulated to keep the new power

balance in equation (2.16). Physical output constraints in equation (2.17) of tra-

ditional generators are also needed.

∑
Nd

Pd,t =
∑
Ng

pi,t +
∑
Ns

Ps,t (2.16)

PGmin
i ≤ pi,t ≤ PGmax

i (2.17)

Extreme Case

In extreme case, the proposed strategy adds the energy storage system oper-

ating costs Cess,t to the objective function as follows.

min(
∑
Ng

Cg,t +
∑
Ne

Ce,t) (2.18)

Utilizing the energy power system to guarantee the system stability, extra

constraints are imposed.

34



For the energy storage system, the following constraints are shown for the

energy storage transition function in equation (2.19), and equation (2.20) sets the

upper and lower energy capacity limits of the energy storage system.

Ee,t = Ee,(t−1) + ηCe P
C
e,t −

1

ηDe
PD
e,t (2.19)

Emin
e ≤ Ee,t ≤ Emax

e (2.20)

a)Interval R2

∑
Ns

Ps,t +
∑
Ng

pi,t =
∑
Nd

Pd,t +
∑
Ne

PC
e,t (2.21)

PC,min
e uCe,t ≤ PC

e,t ≤ PC,max
e uCe,t (2.22)

The constraints in interval R1 are in the case where solar energy is higher than

load demand so that energy storage system can be used to store surplus power

for the economical sake. Equation (2.21) represents the new power balance and

equation (2.22) describes the physical limits on the charge of the energy storage

system.

b)Interval R3

∑
Ns

Ps,t +
∑
Ng

pi,t +
∑
Ness

PD
e,t =

∑
Nd

Pd,t (2.23)

PD,min
e uDe,t ≤ PD

e,t ≤ PD,max
e uDe,t (2.24)

In interval R3, the extreme case is used when solar energy is lower than load

demand. The energy storage system is regulated to discharge the sufficient power

and inject the discharging power to the power system for power balance as pre-

sented in equation (2.23). Equation (2.24) limits the energy storage system charge

physical ability.

For the whole extreme cases (R2+R3), the status constraint of energy power
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system can be described by the following equation

uCe,t + uDe,t ≤ 1 (2.25)

2.3 Algorithm Framework

Figure 2.3.1: Flowchart of the proposed unit commitment model

The proposed model to solve the hourly energy storage system dispatch prob-

lem is divided into two subproblems shown as in Figure 2.3.1.

The algorithm for handling the variation of forecasted solar power output

problem and dispatching the energy storage system can be summarized as fol-

lows.

Step 1. Make the forecast on day-ahead hourly solar power output and load de-
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mand. Calculate the confidence interval of solar power output at each

time interval. Determine the initial state of traditional generators and

energy storage system by day-ahead unit commitment.

Step 2. Compare the actual solar power output with the lower and upper confi-

dence bounds of forecasted solar power output and determine the type

of case to coordinate the power balance of whole network system. Base

case can solve the variation of solar power output in confidence interval.

Case R2 can solve the problem that actual solar power output is greater

than the forecasted, and case R3 enables the energy storage system to

keep power balance when the actual solar power output is less than the

forecasted solar power output.

Step 3. Update the state of traditional generators and energy storage system.

Step 4. If t is the last time interval, stop; otherwise, go to step 2.

2.4 Case Studies

This section presents the parameters for testing power system and solar power

output, and the results of simulation studies. In addition, the algorithm is com-

pared with an existing one from the literature.

2.4.1 Simulation Preconditions

In this section, a case study is conducted based on IEEE 14-bus test system as

shown in Figure 2.4.1. The test system is composed of 4 traditional generators,

14 buses, 20 transmission lines and 11 load points and its data is given by [1].

The cost coefficients of traditional generators are shown in Table 2.1 [79]. A

30MW PV installation with 50MW storage system are connected to the bus 8.

The characteristic of energy storage system is shown in Table 2.2. The initial
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stored power of the energy storage system is considered to be 35MW. Details

about test system including PV generation are in Appendix A.1.

Figure 2.4.1: IEEE 14-bus test system

Table 2.1: Traditional generators parameters

Unit
Cost Coefficients Start up

a b c Costs
1 0.00315 2.0 0 70
2 0.01750 1.75 0 74
3 0.06250 1.0 0 50
4 0.00834 3.25 0 110

The probability model of solar power output is assumed to follow a normal

distribution (Norm(µ,σ2)). The average (µ) is the forecasted generated power

P forecast at each time and the standard deviation (σ) is 0.05 as shown in Figure

2.2.1.

A simulation for a reference case (RC) [3], where ESS is regulated in hourly

dispatch with a deterministic day-ahead unit commitment model, is performed to
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Table 2.2: Energy storage system parameters

Capacity(MWh) Power(MW) Efficiency Cost
50 10 0.85 2.0

show the effectiveness of the proposed model. The details of the model formula-

tion are in Appendix B.1.

The confidence level (1− α) is set as 95%.

The proposed UC model is solved by CPLEX 12.7 on a personal computer

with 2.5-GHz CPU and 12GB RAM.

This thesis obtains solar power output from Belgium’s electricity transmission

system operator Elia [81], of which location is Luxembourg. Case A and Case

B are simulated to show the effectiveness of proposed strategy. Figure 2.4.2 and

Figure 2.4.3 show the comparison of forecasted and actual solar power output in

case A and case B, separately.

Figure 2.4.2: Case A: actual vs forecasted solar power output
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Figure 2.4.3: Case B: actual vs forecasted solar power output

2.4.2 Simulation Results

The minimization of operation cost is the objective for all optimize problems

in power system to obtain a more economical schedule. As the consideration of

energy storage system is to help the power system run steady, fast and accurate

calculation to the changes of solar power output is vital. Therefore, our results

focus on two main aspects: the handling time and the total operation cost.

Handling Time

Table 2.3: Case A: comparison of the handling time in whole day:RC and pro-
posed UC

Case Average handling time (in /1000 sec)
Reference case 160
Proposed UC 91
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Table 2.4: Case B: comparison of the handling time in whole day:RC and pro-
posed UC

Case Average handling time (in /1000 sec)
Reference case 140
Proposed UC 92

From Table 2.3 and Table 2.4, the average handling time of the proposed UC

is shorter than the RC. This means that the proposed UC model effectively re-

duces the computational complexity.

Operation Cost
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Figure 2.4.4: Case A: power output of ESS with deviation in RC

Figure 2.4.4 and Figure 2.4.5 show the combination with power output from

energy storage system with the deviation between forecasted and actual solar

power output for each time period in RC and the proposed model, respectively.
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Figure 2.4.5: Case A: power output of ESS with deviation in the proposed model

The yellow block represents that the energy storage system discharge stored

power or charge surplus power from power system to balance the whole sys-

tem power. Some observations on the commitment of energy storage system are

made. Energy storage system is committed when there appears the deviation of

solar power output in the proposed strategy, while the commitment of energy stor-

age system is made at the beginning of the whole day where there is no deviation.

In addition, from Table 2.5 and Table 2.6, the total operation cost of the pro-

posed UC is smaller than the RC.

Table 2.5: Case A: comparison of the total operation costs:RC and proposed UC

Case Operation Cost
Reference case 11688
Proposed UC 11681
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Table 2.6: Case B: comparison of the total operation costs:RC and proposed UC

Case Operation Cost
Reference case 11070
Proposed UC 11065

2.5 Conclusion

In this chapter, in order to be adaptive to the change of solar irradiance which

is closely related to the solar generation quantity, we proposed an hourly energy

storage system dispatch model to supplement and improve the day-ahead unit

commitment which is on the basis of the forecasted solar power output. The

proposed model is divided into two main cases according to the two intervals of

solar power output probability distribution. In addition, energy storage system is

coordinated when the deviation of solar power output is larger than the confidence

interval to help the power system run safely and steadily.

The simulation results reveal the effectiveness of the proposed UC model to

deal with the uncertainty of solar generation output. It shortens the computation

time effectively and reduces the total operation cost, as well as a more flexible

control in the face of the deviation of solar power output. The acceleration of op-

eration can reduce the calculative burden, which is more practical. The operation

cost reduction meets the economical requirement.
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Chapter 3

Unit Commitment with Solar

Resource and Uncertainty Load

This chapter presents the proposed UC model considering both uncertain so-

lar resource and load demand. The energy system model is given in Section

3.1, and the proposed UC model is presented in Section 3.2. In Section 3.2, the

main results are presented. The proposed scheduling strategy is implemented on

a modified IEEE 30-bus solar resource integrated test system in Section 3.4. In

addition, this thesis summarizes the work mentioned previously and draw con-

clusions on results obtained in Section 3.5.

3.1 Energy System Model

3.1.1 Uncertain Solar Model

The method adopted in this chapter uses historical solar radiation data to

forecast solar power output. In order to collect forecast solar radiation data and

generate scenario sets, the mathematical model takes into account the difference

among the solar radiation in different intervals and initial samples scheme from

a multivariate distribution. As in the last chapter, it is assumed that the proba-
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bilistic model of the PV power output approximates a normal distribution model

N(µ, σ1
2) for simplicity as shown in Figure 3.1.1, where the average µ1 is the

forecasted solar power output P f
s,t and the variance σ12 is deduced by weather

and geographic factors.

3.1.2 Uncertain Net Load

Most earlier work uses the single point estimation for hourly load demand,

which is actually inaccurate, and puts it into the deterministic formulation. In

[75], the normal distribution is assumed for load components with a standard de-

viation accounting for the forecast errors. Thus this chapter uses a hierarchical

unit commitment model assuming that the hourly loads follow a normal distribu-

tion Nd(µ2, σ2
2) with the corresponding mean is forecasted hourly load demand

P f
d,t and variance is deduced by forecast errors.

According to the characteristic functions of independent normal distribution,

the net load P f
net,t, as shown in equation (3.1), is also normally distributedNnet(µ2−

µ1, σ2
2−σ12), with its mean being the subtraction of the two means, and its vari-

ance being the subtraction of the two variances:

P f
net,t = P f

d,t − P
f
s,t (3.1)

From equation (3.1), we consider solar power output as injection load at the

bus. Therefore, the uncertain solar power output and uncertain load demand can

be combined to uncertain net load demand, which simplifies the whole optimiza-

tion.

3.1.3 Ideal and Generic Energy Storage System

This thesis defines a generic energy storage system as the device that is able to

transform and store energy. In this chapter, the function of the ideal and generic

energy storage system is to compensate for the inaccuracy of forecasting by ab-
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Figure 3.1.1: Probability distribution of power output

sorbing the surplus energy from the system and injecting back the stored energy

to the system. This thesis assume the ideal energy storage system has certain

simplifications about its operation and costing. It can by modeled [3] by equation

(3.2), (3.3)and (3.4). Equation (3.2) shows the energy storage system transition

function and equation (3.3) sets the upper and lower energy capacity limits of

the energy storage system. The status constraints of energy power system are

described in equation (3.4).

Ee,t = Ee,(t−1) + ηCe P
C
e,t −

1

ηDe
PD
e,t (3.2)

Emin
e ≤ Ee,t ≤ Emax

e (3.3)

uCe,t + uDe,t ≤ 1 (3.4)
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Then, some assumptions on the ideal and generic energy storage system are

listed as follows:.

1) There are no losses, such as stored energy losses and conversion losses.

The former means that the energy stored can be seen as a constant if there is no

energy conversion. The latter means that only transfer efficiency rate is consid-

ered in the energy transformation.

2) There is no hysteresis in energy transformation, including charging and

discharging. Power output of a unit can be acquired instantly.

3) The energy conversion occurs for the certain period (the period is one hour

in this chapter).

3.2 Proposed Methodology

This section introduces the proposed scheduling strategy.

3.2.1 Unit Commitment Model

Objective Function

min
∑
Nt

(
∑
Ng

Cg,t +
∑
Ne

Ce,t) (3.5)

The objective function is formulated as equation (3.5) to minimize the operat-

ing cost which is consisted of traditional generator costs Cg,t and energy storage

costs Ce,t. The solar cost is considered to be installation and maintenance fee

which is a constant, so that it can be assumed to be zero in this formulation.

The traditional generator costs contains fuel costs Fi(pi,t) and startup costs

STi(ui), as shown in equation (3.6).

Cg,t = Fi(pi,t) + STi(ui) (3.6)
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The fuel cost function Fi(pi,t) [42] is assumed to be quadratic as shown in

equation (3.7). ai, bi and ci are the coefficients of each traditional generator fuel

cost function.

Fi(pi,t) = aip
2
i,t + bipi,t + ci (3.7)

Constraints

∑
Nd

Pd,t =
∑
Ng

pi,t +
∑
Ns

Ps,t (3.8)

PGmin
i Ii,t ≤ pi,t ≤ PGmax

i Ii,t (3.9)

pi,t − pi,t−1 ≤ RUiIi,t−1 + SUi(Ii,t − Ii,t−1) + PGmax
i (1− Ii,t) (3.10)

pi,t−1 − pi,t ≤ RDiIi,t + SDi(Ii,t−1 − Ii,t) + PGmax
i (1− Ii,t−1) (3.11)

−Fl ≤
∑
Nb

Tl,b(
∑
Ng(b)

pi,t +
∑
Ns(b)

Ps,t −
∑
Nd(b)

Pd,t) ≤ Fl (3.12)

∑
T on
i

[1− Ii,t] = 0 (3.13)

∑
T off
i

Ii,t = 0 (3.14)

t+Tu
i −1∑

h=t

Ii,h ≥ T u
i (Ii,t − Ii,t−1),∀t ∈ [T on

i0 + 1, Nt − T u
i + 1] (3.15)

Nt∑
h=t

[Ii,h − (Ii,t − Ii,t−1)] ≥ 0,∀t ∈ [Nt − T u
i + 2, Nt] (3.16)

t+T d
i −1∑

h=t

(1− Ii,h) ≥ T d
i (Ii,t−1 − Ii,t), ∀t ∈ [T off

i0 + 1, Nt − T d
i + 1] (3.17)

Nt∑
h=t

[1− Ii,h − (Ii,t−1 − Ii,t)] ≥ 0,∀t ∈ [Nt − T d
i + 2, Nt] (3.18)
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According to [78], equation (3.8) enforces the system wide power balance.

Equation (3.9) describes the physical limits of the traditional generators’ power

output. The period-to-period startup and shut down ramping constraints are pre-

sented in equations (3.10) and (3.11). The Kirchhoff’s laws are presented by

equation (3.9), the elements of the power transfer distribution factors (PTDF),

Tl,b, is obtained in a lossless linear DC approximation. Constraints on the initial

online and offline requirements for generators are represented by equations (3.13)

and (3.14). Equations (3.15) and (3.16) enforce the minimum online up-time lim-

its for generators, including the last T u
i time period. The minimum down-time

limits in nominal time periods and last T u
i time period for generators are shown

in equations (3.17) and (3.18).

3.2.2 Hierarchical Scheduling Strategy

Due to the uncertainty of solar power and load demand, this chapter adopts

the forecast method as mentioned to acquire the hourly expected value of solar

power output and load demand.

Based on equation (3.1), define the minimum and maximum of net load de-

mand as 0 and Pmax
net , respectively. This means that the net load demand range is

[0, Pmax
net ] at each scheduled period.

Considering the energy storage system coordination, the proposed hierarchi-

cal scheduling strategy divides the value of net load demand range into two in-

tervals at each scheduled period, which correspond to confidence interval and

non-confidence interval based on the confidence level (1 − α) for probabilistic

interval model, as shown in Figure 3.2.1.

Figure 3.2.1: Interval partition of net load demand
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The First Interval

As shown in Figure 3.1.1, in this interval, net load demand has a significant

probability which actually falls into [P l
net, P

h
net]. All traditional generators are

committed to respond to uncertain net load demand. The constraints in the first

interval are the power balance, traditional generators physical constraints and

transmission constraints, which can be described by equations (3.8) to (3.18).

The Second Interval

Net load demand might occur in this interval, where the forecast error is rel-

atively large. Energy storage system is dispatched to satisfy the power system

security. Therefore, constraints in this interval are energy storage system physi-

cal constraints in equations (3.2) to (3.4) and charged/discharege power of energy

storage system in equation (3.19). ∆Pnet is the difference between the actual net

load and the endpoint of expected net load, which is determined in dispatch.

∑
Ne

Pe = ∆Pnet (3.19)

3.3 Solution of Hierarchical Scheduling

In this section, different solutions in different intervals are utilized to simplify

the formulation.

3.3.1 Solution for First Interval

The formulation in the first interval is a large-scale, mixed-integer problem

and is very difficult to solve directly due to the complexity and the additional

computational burden. To avoid this computational intractability, this problem

needs to be divided into master problem and subproblems and solved in different

conditions.

51



The master problem only takes the forecasted value of net load demand into

account, in other words, master problem is a standard unit commitment problem.

The subproblem is solved with confidence interval which considers many scenar-

ios in the interval and is hard to figure out due to its complexity. In the following,

we will introduce the decomposition of the unit commitment problem in details.

Decomposition of Unit Commitment

As mentioned earlier, the aim of the master unit commitment problem is to ac-

quire the optimal unit commitment solution under forecasted net load P f
net,t. For

other possible scenarios in confidence interval, the solution of master unit com-

mitment should also be feasible. And the expected power balance is presented by

equation (3.20) with traditional generator physical constraints.

∑
Nb

P f
net,t =

∑
Ng

pi,t (3.20)

The subproblem is to check the feasibility of the result of the master unit

commitment by substituting the on/off states into a series of equivalent economic

dispatch problem for each net load scenario, as shown in equation (3.21).

∑
Nb

P s
net,t =

∑
Ng

pi,t (3.21)

The resulting on/off state ii,t will be checked in subproblem to improve the

master unit commitment problem.

The subproblem takes the resulting on/off state ii,t into economic dispatch

problem for possible scenarios to improve the result.

However, as mentioned above, the possible scenarios are numerous, and can-

not be solved directly. Confidence interval for P f
net,t is utilized to simplify the

formulation.
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Simplification for Subproblem

Among lots of possible scenarios, some representative critical scenarios could

be found out, and the feasible solution for all possible scenarios could be obtained

by checking only these critical ones. These critical scenarios are defined as the

extreme-case to meet the requirement of simplifying the formulation.

From the unit commitment model, power balance and transmission constraints

take the uncertain net load demand into account and they are in linear program-

ming problem where the extreme cases are at the endpoints of interval [77] [80],

which means that the solution of the subproblem should focus on their simplifi-

cation. Shown in Figure 3.1.1, the lower and upper bound of the first interval are

two endpoints of confidence interval, P l
net and P h

net. These two constraints can be

explicitly expressed as equation (3.22) and (3.23) [71].

∑
Nb

[P l
net,t, P

h
net,t] =

∑
Ng

pi,t (3.22)

−Fl ≤
∑
Nb

Tl,b(
∑
Ng(b)

pi,t −
∑
Nb

[P l
net,t, P

h
net,t]) ≤ Fl (3.23)

Equation (3.22) can be transformed into equation (3.24a) and (3.24b) [71].

∑
Nb

P l
net,t =

∑
Ng

pli,t (3.24a)

∑
Nb

P h
net,t =

∑
Ng

phi,t (3.24b)

Equation (3.23) can be transformed into equation (3.25a) and (3.25b) [71].

∑
Nb

Tl,bpi,t ≥ −Fl +
∑
Nb

Tl,b[P
l
net,t, P

h
net,t] (3.25a)

∑
Nb

Tl,bpi,t ≤ Fl +
∑
Nb

Tl,b[P
l
net,t, P

h
net,t] (3.25b)
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In transmission constraints, Fl and Tl,b are constants. This thesis define
∑
Nb

Tl,b[P
l
net,t, P

h
net,t]

also has its certain range [TP l, TP h]. The term Tl,bP
l
net,t is the maximum value

when Tl,b < 0 and is the minimum value when Tl,b > 0, the term Tl,bP
h
net,t

presents otherwise.

The extreme cases occur when equation (3.25a) and (3.25b) reach their limits

on the right sides as follows

∑
Nb

Tl,bp
h
i,t ≥ −Fl + TP h (3.26a)

∑
Nb

Tl,bp
l
i,t ≤ Fl + TP l (3.26b)

These simplification substantially reduces computational complexity for un-

certain net load.

Therefore, the original constraints (3.8) and (3.12) with large number of sce-

narios is simplified in equation (3.24a), (3.24b), (3.26a) and (3.26b) without loss

of optimality.

3.3.2 Solution for Second Interval

In second interval, energy storage system is coordinated to guarantee the net

load demand ranges in the acceptable range so that solution of the first interval

can satisfy the net load demand with volatility.

The cost function of energy storage system adopted is a linear function as

shown in equation (3.27). Pe represents its discharged power and the negative

value represents the charged power, as presented by equation (3.28). New trans-

mission constraints in equation (3.29) is needed.

Ce = λPe (3.27)

Pe = PD
e

Pe = −PC
e

(3.28)
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−Fl ≤
∑
Nb

Tl,b(
∑
Ng(b)

pi,t +
∑
Ne(b)

Pe,t −
∑
Nb

Pnet,t) ≤ Fl (3.29)

3.3.3 Framework of Hierarchical Strategy

The hierarchical unit commitment is divided into two intervals according to

the definition of confidence interval as shown in Figure 3.3.1.

The algorithm for handling the deviation of forecasted value problem and

dispatching the energy storage system can be summarized as follows.

Step 1. Make the forecast value on day-ahead hourly solar power output and

load demand. Calculate the forecasted net load demand and its confi-

dence interval at each time interval. Determine the initial state of tradi-

tional generators and energy storage system by day-ahead unit commit-

ment.

Step 2. The master problem in the first interval where net load demand is ex-

pected value. Extra constraints for endpoint of confidence interval are

added to guarantee that the resulting state of master problem can meet

the security requirement of power system for different net load demand

in the confidence interval, which is used to improve the result of master

problem for day-ahead unit commitment.

Step 3. Compare the actual value with the endpoints of forecasted confidence

interval. Day-ahead resulting states of generators can accommodate the

real net load demand which is in the confidence interval. Energy storage

system is committed to guarantee the schedule result in the first interval

is able to keep wide power balance with different net load demand in the

low probability interval in hourly dispatch.

Step 4. Update the state of traditional generators and energy storage system.

Step 5. If t is the last time interval, stop; otherwise, go to step 3.
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Figure 3.3.1: Flowchart of hierarchical unit commitment

3.4 Case Studies

In order to focus on uncertain net load, this thesis assumes that other faults,

including N-1 contingency and outage in traditional generators, even break down

in system will not occur in our simulation. That means this thesis only studies

the violation of solar resource and load demand.

In this section, we present the details of testing power system, uncertain so-
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lar resource and load demand. The simulation results of proposed strategy and

reference case are given and analysis on the algorithm is provided.

3.4.1 Simulation System

The test system is a modified IEEE 30-bus system as shown in Figure 3.4.1,

which has 5 traditional generators, 41 transmission lines and 20 load demand

points. The system network parameters are given by [2]. The cost coefficients

of traditional generators are shown in Table 3.1. Two solar resources with en-

ergy storage system are located at bus 13 and 27, which are from a summer day

data from Belgium’s electricity transmission system operator Elia [81], and their

selection are Luxembourg and Brussels, separately. The two energy storage sys-

tems have the capacity of 50MW and 40MW, individually. Their characteristic

parameters in the case study are presented in Table 3.2. The initial stored power

of two energy storage systems are 30MW and 20MW, respectively.

Figure 3.4.1: IEEE 30-bus test system
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Table 3.1: Traditional generators parameters

Unit
Cost Coefficients Start up

a b c Costs
1 0.00315 2.00 0 70
2 0.01750 1.75 0 74
3 0.06250 1.00 0 110
4 0.00834 3.25 0 50
5 0.02500 3.00 0 72

Table 3.2: Energy storage system parameters

Power(MW) Efficiency Cost
10 0.85 2.5

The probability model of net load demand is assumed to be a difference be-

tween load demand and solar resource, given by equation (3.1), which also fol-

lows a normal distribution Nnet(µnet, σnet
2). The average µnet is the forecasted

net load demand P forecast
net at each time and the square of the variance σnet2 is 6.0

as shown in Figure 3.1.1. And Figure 3.4.2 shows the actual and forecasted net

load demand.

The confidence level (1− α) in this case is set as 95%.

All simulations of different model are carried out by CPLEX 12.6 on a per-

sonal computer with 3.7-GHz CPU and 16GB RAM.

3.4.2 Simulation Results

Due to the aim and structure of the proposed model, the effectiveness of pro-

posed model is shown in two parts: day-ahead part and hourly-ahead part.

1) For day-ahead part, we compare our results with reference case (RC) on the

generation capacity, which is the ability to guarantee system security by satisfying

the volatility of solar resource and load demand. Therefore, the reference case

[4] in day-ahead part is a deterministic day-ahead unit commitment with energy
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Figure 3.4.2: Actual vs forecasted net load demand

storage system under forecasted value of solar resource and load demand. The

details of model formulation are shown in Appendix B.2.

2) For hourly-ahead part, energy storage system is dispatched to attain the

goal of its regulation performance and economy. The effectiveness thus includes

handling time and operation cost. And the reference case [3] is a deterministic

hourly-ahead unit commitment with energy storage system under actual value of

solar resource and load demand. The details of the model formulation are given

in Appendix B.1.

Generation Capacity

This section focuses on the generation capacity of power system, in other

words, there is no power loss, such as transmission congestion, voltage loss and

equipment loss. Power generated from traditional generators and discharged or

absorbed from energy storage system can be delivered to load demand without
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any loss.

Reference case model is a day-ahead model which is solved by using pre-

dicted net load demand. Its energy storage system is committed for the objective

function of minimizing the operation cost. The details are given in the Appendix.

The comparison of generation capacity for resulting states for generators

between proposed model and reference case model is shown in Figure 3.4.3.

Each model has the maximum and minimum power generation owing to phys-

ical power output constraints of traditional generators.

Figure 3.4.3: Comparison of the power generation capacity

Figure 3.4.3 shows that each model can satisfy the forecasted net load de-

mand. However, some problems occur in the real net load demand condition.

During the time period t=16,17 and 18, the minimum power generation capacity

of reference case model is larger than real net load demand and the power system

suffers the power imbalance, which causes the power system stability. And the

proposed model satisfies the net load demand in the whole day.

Therefore, the proposed model is more flexible to uncertain solar resource
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and load demand with volatility, which enhances the stability of power system.

Handling time

From Table 3.3, the average handling time of our proposed UC is shorter than

the RC. Thus, the proposed model effectively reduces the computational com-

plexity.

Table 3.3: Comparison of the handling time in whole day:RC and proposed UC

Case Average handling time (in /1000 sec)
Reference case 162
Proposed UC 75

Operation Cost

From Table 3.4, the total operation cost of the proposed UC is smaller than

the RC. It is clear that the proposed model is effective for saving operation cost,

which is the main aim for all unit commitment models.

Table 3.4: Comparison of the total operation costs:RC and proposed UC

Case Operation Cost
Reference case 10150.0
Proposed UC 9717.3

Figure 3.4.4 and Figure 3.4.5 show the commitment of energy storage system

in different models. Different color blocks represent that the energy storage sys-

tem discharges of charge power which satisfy uncertain net load demand. Blue

line is the difference between forecasted and actual value of net load demand.

Some observations can be made. In the proposed model, energy storage sys-

tems are dispatched when the difference becomes larger. when the actual value
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Figure 3.4.4: ESS power output in hourly-ahead RC model
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Figure 3.4.5: ESS power output in proposed model
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is larger than forecasted value, energy storage systems are regulated to absorb

surplus power from power system, and inject the insufficient power to system as

the actual value is smaller than forecasted value, which realizes the function of

the energy storage system. While the hourly-ahead RC does not commit energy

storage system by following the error of forecasted net load demand. For last 4

hours, energy storage systems charge power to achieve the goal of turning back

the initial state and prepare for the next day’s schedule, as shown in Figure 3.4.6

and Figure 3.4.7.
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Figure 3.4.6: State of ESS in hourly-ahead RC model

3.5 Conclusion

This chapter considers both solar resource and load demand. In deterministic

unit commitment model, load demand is regarded as a constant which in reality
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Figure 3.4.7: State of ESS in proposed model

is volatile. Solar resource is a resource with uncertainties. Based on this obser-

vation, motivated from [74] and [75], we model two kinds of uncertainties as a

probability distribution. Based on the probability theory of normal distribution,

two independent normal distributions can form a new normal distribution, which

is defined as net load demand. Similar to that in the last chapter, the net load

demand range is divided into two intervals, namely, the confidence interval and

the non-confidence interval. Net load demand has a high probability of occur-

ring in the confidence interval. Hierarchical scheduling strategy is developed to

handle different intervals. In the first interval, which corresponds to the confi-

dence interval, master problem under the predicted value is solved to acquire the

resulting state of traditional generators day ahead, and subproblem for scenarios

in confidence interval are added to improve the result. Interval optimization are

used to simplify calculations of subproblem. Energy storage system is regulated

in hourly unit commitment when real value is beyond the confidence interval to
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compensate the power imbalance of whole power system.

The simulation results of IEEE 30-bus power system reveal the effectiveness

of the proposed UC model that considers both uncertain solar resource and load

demand. Compared with the day-ahead UC, it is more flexible and adaptive to

the volatility of net load demand. For real-time dispatch part, shorter computation

time and lower operation cost show its advantages.

Note that the considered problem in this chapter is different from that in the

preceding chapter. The day-ahead unit commitment in Chapter 2 considers the

forecasted value. While the day-ahead unit commitment in Chapter 3 considers

the confidence interval of forecasted value. Interval optimization [71] is used

to ensure large possibility of net load demand value fall in the confidence level

and obtain a more economical and safe operation scheduling. The end-points

of the confidence interval are considered as the worst-case conditions which are

formulated to simplify the interval optimization.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

Unit commitment in power system is a nonlinear combinatorial optimization

problem with typical large-scale mixed integers, which contains the discrete and

continuous variables. Almost all of mathematical optimization methods for solv-

ing mixed integer programming are employed to deal with UC problem, but it is

still difficult to find a perfect mathematical method which solves directly from

the enormous amount of discrete variable space. UC not only reduces the opera-

tion cost for whole power system to achieve maximization of economic benefit,

but also makes the operators in system run more smoothly. Therefore, many re-

searchers are keen to find the optimal method in this field. This thesis firstly

introduces related algorithms applied to UC problem, and the two main types of

solution methods are reviewed. With the development of technology in renew-

able energy, including wind and solar power, the integration of renewable energy

source in power system has received widespread attention in UC problem. The

uncertainty and intermittence of renewable energy source become the urgent is-

sues in UC problem to guarantee the stable operation of the power system.

Chapter 2 considers the uncertain solar resource, and designs a two-stage

scheduling strategy to solve the problem on error of solar power output forecast
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to ensure the stable operation of the power system. ESS will be more flexible

and make quick reactions in accordance with the power change in smart network.

The proposed strategy to determine the state of ESS allows more efficient energy

usage in power system.

Chapter 3 takes both volatile solar resource and load demand into account.

Endpoints of confidence interval are considered to make the day-ahead schedule.

Interval optimization method is utilized in the confidence interval to simplify

computation complexity. Simulation results verify that the resulting state is more

adaptive to the fluctuation of uncertain net load demand compared with an exit-

ing algorithm. Energy storage system is committed hourly to deal with the larger

error of day-ahead forecasted value to keep the whole power system balance. The

computing time in hourly dispatch is acceptable under more economical opera-

tion and keeps a high utilization rate of energy storage system.

4.2 Future Work

For future work, we will investigate different probability distribution models

of uncertain resource and load demand. 1) In this thesis, the normal distribution

is considered as the model for the resource and load demand. In power industry,

there are some resources that can be modelled as T distributions or beta distri-

butions. Motivated by this observation, dealing with uncertain resource and load

demand with more distribution models will be one of our future work. 2) In this

thesis, the probability distribution models are assumed to be known. However,

in practice, the uncertainties are usually difficult to be modeled. Recently, arti-

ficial intelligence and learning are being studied due to their wide applications

in industries. In future, we will explore the possibility to apply learning based

techniques (e.g., reinforcement learning) to deal with the uncertain resource and

load demand.

In addition, we will study the UC problem on more practical systems, such
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as a large power network that involves generation areas which are interconnected

by line.

Finally, more faults even outage which cause imbalance between supply and

demand in power system will be studied to improve the quality and reliability of

the power operation.
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Appendix A

Test Power System Data

A.1 IEEE 14-bus System [1]

A.1.1 Generator Data

Table A.1: IEEE 14-bus generators parameters

Unit
Bus Pmax Pmin Min. Min.

No. (MW) (MW) ON(hr) OFF(hr)

1 1 150 50 1 1

2 2 50 20 1 1

3 3 80 12 1 1

4 6 45 10 1 1

A.1.2 Transmission Line Data

Table A.2: IEEE 14-bus transmission line data

Line From To
R(pu) X(pu)

Full Line Charging Flow

No. Bus Bus Admittance(pu) Limits(MW)

1 1 2 0.0194 0.0592 0.0528 50
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Line From To
R(pu) X(pu)

Full Line Charging Flow

No. Bus Bus Admittance(pu) Limits(MW)

2 1 5 0.0540 0.2230 0.0492 65

3 2 3 0.0470 0.1980 0.0438 60

4 2 4 0.0581 0.1763 0.0374 60

5 2 5 0.0570 0.1739 0.0340 60

6 3 4 0.0670 0.1710 0.0346 60

7 4 5 0.0134 0.0421 0.0128 40

8 4 7 0.0000 0.2091 0.0000 65

9 4 9 0.0000 0.5562 0.0000 40

10 5 6 0.0000 0.2520 0.0000 65

11 6 11 0.0950 0.1989 0.0000 50

12 6 12 0.1229 0.2558 0.0000 50

13 6 13 0.0662 0.1303 0.0000 50

14 7 8 0.0000 0.1762 0.0000 50

15 7 9 0.0000 0.1100 0.0000 30

16 9 10 0.0318 0.0845 0.0000 50

17 9 14 0.1271 0.2704 0.0000 50

18 10 11 0.0821 0.1921 0.0000 50

19 12 13 0.2209 0.19999 0.0000 50

20 13 14 0.1709 0.3480 0.0000 50

A.1.3 Hourly Load Demand

Table A.3: IEEE 14-bus hourly load demand

Time(hr) 1 2 3 4 5 6 7 8

Load(MW) 181.30 170.94 150.22 103.60 129.50 155.40 181.30 202.03

Time(hr) 9 10 11 12 13 14 15 16

Load(MW) 212.38 227.92 230.51 217.56 207.20 196.84 227.92 233.10

Time(hr) 17 18 19 20 21 22 23 24

Load(MW) 220.15 230.51 243.46 253.82 259.00 233.10 225.33 212.38
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A.1.4 Bus Load Factors

Table A.4: IEEE 14-bus load factors

Load 1 2 3 4 5 6

Bus 2 3 4 5 6 9

Load Factor 0.0838 0.3676 0.1846 0.0293 0.0432 0.1139

Load 7 8 9 10 11

Bus 10 11 12 13 14

Load Factor 0.0347 0.0135 0.0236 0.0521 0.0575

A.1.5 Forecasted and Actual Solar Power Output

Table A.5: Hourly PV generation

Time(hr) 1 2 3 4 5 6 7 8

Forecasted(MW) 0.0 0.0 0.0 0.0 0.0 0.0 0.0058 3.485

Actual(MW) 0.0 0.0 0.0 0.0 0.0 0.0 0.0013 3.49

Time(hr) 9 10 11 12 13 14 15 16

Forecasted(MW) 8.655 12.233 16.523 18.698 22.475 26.385 23.575 18.574

Actual(MW) 10.654 12.354 14.689 17.563 20.916 25.265 21.234 15.152

Time(hr) 17 18 19 20 21 22 23 24

Forecasted(MW) 14.221 12.759 3.425 0.045 0.0 0.0 0.0 0.0

Actual(MW) 12.162 10.632 2.356 0.0245 0.0 0.0 0.0 0.0
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A.2 IEEE 30bus System [2]

A.2.1 Generator Data

Table A.6: IEEE 30-bus generators parameters

Unit
Bus Pmax Pmin Min. Min.

No. (MW) (MW) ON(hr) OFF(hr)

1 1 200 50 1 1

2 2 80 20 1 1

3 5 50 15 1 2

4 8 35 10 2 1

5 11 30 10 1 1

A.2.2 Transmission Line Data

Table A.7: IEEE 30-bus transmission line data

Line From To
R(pu) X(pu)

Full Line Charging Flow

No. Bus Bus Admittance(pu) Limits(MW)

1 1 2 0.0192 0.0575 0.0528 300

2 1 3 0.0452 0.1852 0.0408 300

3 2 4 0.0570 0.1737 0.0368 300

4 3 4 0.0132 0.0379 0.00084 300

5 2 5 0.0472 0.1983 0.0418 300

6 2 6 0.0581 0.1763 0.0374 300

7 4 6 0.0119 0.0414 0.0090 300

8 5 7 0.0460 0.1160 0.0204 300

9 5 7 0.0267 0.0820 0.0170 300

10 6 8 0.0120 0.0420 0.0090 300

11 6 9 0.0000 0.2080 0 300

12 6 10 0.0000 0.5560 0 300

13 9 11 0.0000 0.2080 0 300
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Line From To
R(pu) X(pu)

Full Line Charging Flow

No. Bus Bus Admittance(pu) Limits(MW)

14 9 10 0.0000 0.1100 0 300

15 4 12 0.0000 0.2560 0 300

16 12 13 0.0000 0.1400 0 300

17 12 14 0.1231 0.2559 0 300

18 12 15 0.0662 0.1304 0 300

19 12 16 0.0945 0.1987 0 300

20 14 15 0.2210 0.1997 0 300

21 16 17 0.0824 0.1923 0 300

22 15 18 0.1073 0.2185 0 300

23 18 19 0.0639 0.1292 0 300

24 19 20 0.0340 0.0680 0 300

25 10 20 0.0936 0.2090 0 300

26 10 17 0.0324 0.0845 0 300

27 10 21 0.0348 0.0749 0 300

28 10 22 0.0727 0.1499 0 300

29 21 22 0.0116 0.0236 0 300

30 15 23 0.1000 0.2020 0 300

31 22 24 0.1150 0.1790 0 300

32 23 24 0.1320 0.2700 0 300

33 24 25 0.1885 0.3292 0 300

34 25 26 0.2544 0.3800 0 300

35 25 27 0.1093 0.2087 0 300

36 28 27 0.0000 0.3960 0 300

37 27 29 0.2198 0.4153 0 300

38 27 30 0.3202 0.6027 0 300

39 29 30 0.2399 0.4533 0 300

40 8 28 0.0636 0.2000 0.0428 300

41 6 28 0.0169 0.0599 0.0130 300
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A.2.3 Hourly Load Demand

Table A.8: IEEE 30-bus hourly load demand

Time(hr) 1 2 3 4 5 6 7 8

Forecasted(MW) 148.0 132.0 125.0 100.0 86.0 110.0 130.0 156.0

Actual(MW) 145.0 130.0 122.0 100.0 90.0 108.0 120.0 150.0

Time(hr) 9 10 11 12 13 14 15 16

Forecasted(MW) 172.0 235.0 268.0 302.0 275.0 244.0 200.0 184.0

Actual(MW) 175.0 250.0 280.0 323.0 280.0 250.0 213.0 185.0

Time(hr) 17 18 19 20 21 22 23 24

Forecasted(MW) 150.0 127.0 116.0 179.0 213.0 175.0 154.0 142.0

Actual(MW) 142.0 125.0 105.0 166.0 220.0 180.0 153.0 140.0

A.2.4 Bus Load Factors

Table A.9: IEEE 30-bus load factors

Load 1 2 3 4 5 6 7

Bus 2 3 4 5 7 8 10

Load Factor 0.0765 0.0084 0.0268 0.3323 0.0804 0.1058 0.0204

Load 8 9 10 11 12 13 14

Bus 12 14 15 16 17 18 19

Load Factor 0.0395 0.0218 0.0289 0.0123 0.0317 0.0112 0.0335

Load 15 16 17 18 19 20

Bus 20 21 23 26 29 30

Load Factor 0.0077 0.0617 0.0122 0.0123 0.0084 0.0374
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A.2.5 Forecasted and Actual Solar Power Output

Table A.10: Hourly PV1 generation

Time(hr) 1 2 3 4 5 6 7 8

Forecasted(MW) 0.0 0.0 0.0 0.0 0.0 0.0 1.08 5.61

Actual(MW) 0.0 0.0 0.0 0.0 0.0 0.0 0.86 5.55

Time(hr) 9 10 11 12 13 14 15 16

Forecasted(MW) 11.88 18.48 25.10 31.31 36.64 39.34 39.06 37.01

Actual(MW) 8.15 11.78 17.37 30.51 38.80 42.83 40.80 33.74

Time(hr) 17 18 19 20 21 22 23 24

Forecasted(MW) 32.92 27.17 20.48 13.68 7.54 2.03 0.00 0.00

Actual(MW) 32.86 27.79 36.24 12.44 6.42 2.09 0.00 0.00

Table A.11: Hourly PV2 generation

Time(hr) 1 2 3 4 5 6 7 8

Forecasted(MW) 0.0 0.0 0.0 0.0 0.0 0.0 0.61 3.17

Actual(MW) 0.0 0.0 0.0 0.0 0.0 0.0 0.54 3.14

Time(hr) 9 10 11 12 13 14 15 16

Forecasted(MW) 6.72 10.44 14.19 17.70 20.71 22.23 22.08 20.92

Actual(MW) 4.61 6.66 9.82 17.24 21.93 24.21 23.06 19.07

Time(hr) 17 18 19 20 21 22 23 24

Forecasted(MW) 18.60 15.36 11.57 7.73 4.26 1.14 0.00 0.00

Actual(MW) 14.45 12.82 9.29 3.62 2.62 1.18 0.00 0.00
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Appendix B

Reference Case Model

B.1 Deterministic Hourly UC with ESS [3]

Objective Function:

min(
∑
Ng

Cg,t +
∑
Ne

Ce,t)

Constraints:

∑
Nd

Pd,t =
∑
Ng

pi,t +
∑
Ns

P f
s,t +

∑
Ne

Pe,t

PGmin
i ∗ Ii,t ≤ pi,t ≤ PGmax

i ∗ Ii,t

pi,t − pi,t−1 ≤ RUiIi,t−1 + SUi(Ii,t − Ii,t−1) + PGmax
i (1− Ii,t)

pi,t−1 − pi,t ≤ RDiIi,t + SDi(Ii,t−1 − Ii,t) + PGmax
i (1− Ii,t−1)

−Fl ≤
∑
Nb

Tl,b ∗ (
∑
Ng(b)

pi,t +
∑
Ns(b)

P f
s,t +

∑
Ne

Pe,t −
∑
Nd(b)

Pd,t) ≤ Fl

∑
T on
i

[1− Ii,t] = 0
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∑
T off
i

Ii,t = 0

t+Tu
i −1∑

h=t

Ii,h ≥ T u
i (Ii,t − Ii,t−1),∀t ∈ [T on

i0 + 1, Nt − T u
i + 1]

Nt∑
h=t

[Ii,h − (Ii,t − Ii,t−1)] ≥ 0,∀t ∈ [Nt − T u
i + 2, Nt]

t+T d
i −1∑

h=t

(1− Ii,h) ≥ T d
i (Ii,t−1 − Ii,t),∀t ∈ [T off

i0 + 1, Nt − T d
i + 1]

Nt∑
h=t

[1− Ii,h − (Ii,t−1 − Ii,t)] ≥ 0,∀t ∈ [Nt − T d
i + 2, Nt]

Ee,t = Ee,(t−1) + ηCe ∗ PC
e,t −

1

ηDe
∗ PD

e,t

Emin
e ≤ Ee,t ≤ Emax

e

PC,min
e ∗ uCe,t ≤ PC

e,t ≤ PC,max
e ∗ uCe,t

PD,min
e ∗ uDe,t ≤ PD

e,t ≤ PD,max
e ∗ uDe,t

uCe,t + uDe,t ≤ 1

Pe,t = PD
e,t

Pe,t = −PC
e,t

B.2 Deterministic Day-ahead UC with ESS [4]

Objective Function:

min
∑
Nt

(
∑
Ng

Cg,t +
∑
Ne

Ce,t)
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Constraints:

∑
Nd

Pd,t =
∑
Ng

pi,t +
∑
Ns

P f
s,t +

∑
Ne

Pe,t

PGmin
i ∗ Ii,t ≤ pi,t ≤ PGmax

i ∗ Ii,t

pi,t − pi,t−1 ≤ RUiIi,t−1 + SUi(Ii,t − Ii,t−1) + PGmax
i (1− Ii,t)

pi,t−1 − pi,t ≤ RDiIi,t + SDi(Ii,t−1 − Ii,t) + PGmax
i (1− Ii,t−1)

−Fl ≤
∑
Nb

Tl,b ∗ (
∑
Ng(b)

pi,t +
∑
Ns(b)

P f
s,t +

∑
Ne

Pe,t −
∑
Nd(b)

Pd,t) ≤ Fl

∑
T on
i

[1− Ii,t] = 0

∑
T off
i

Ii,t = 0

t+Tu
i −1∑

h=t

Ii,h ≥ T u
i (Ii,t − Ii,t−1),∀t ∈ [T on

i0 + 1, Nt − T u
i + 1]

Nt∑
h=t

[Ii,h − (Ii,t − Ii,t−1)] ≥ 0,∀t ∈ [Nt − T u
i + 2, Nt]

t+T d
i −1∑

h=t

(1− Ii,h) ≥ T d
i (Ii,t−1 − Ii,t),∀t ∈ [T off

i0 + 1, Nt − T d
i + 1]

Nt∑
h=t

[1− Ii,h − (Ii,t−1 − Ii,t)] ≥ 0,∀t ∈ [Nt − T d
i + 2, Nt]

Ee,t = Ee,(t−1) + ηCe ∗ PC
e,t −

1

ηDe
∗ PD

e,t

Emin
e ≤ Ee,t ≤ Emax

e

PC,min
e ∗ uCe,t ≤ PC

e,t ≤ PC,max
e ∗ uCe,t

PD,min
e ∗ uDe,t ≤ PD

e,t ≤ PD,max
e ∗ uDe,t
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uCe,t + uDe,t ≤ 1

Pe,t = PD
e,t

Pe,t = −PC
e,t
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