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Abstract

In Chapter 1, we first review several literature and relevant results that lead to the

ideas of the main problems discussed within the thesis. The subsequent parts provide

the basic notations and definitions for basic concepts regarding to the main classes of

cones we consider in the thesis, including positive semi-definite (PSD) cones, symmetric

cones and second-order cones (SOCs). Especially, for the class of symmetric cones,

beside defining the symmetric cone via using the concept of homogeneous cone, we also

introduce the closely related concepts like Euclidean Jordan algebra, Jordan frame, Pierce

decomposition, etc. In the last section of this chapter, we take a glance over the main

contributions, discussed in Chapers 2 and Chapter 3.

We start Chapter 2 by recalling several concepts about differentiability, semismoothness

and strong semismoothness. In the next section, we revise the method of verifying the

strong semismoothness of projection onto the closed convex cone K̃ in the vector space

X given in the article “On the Semismoothness of Projection Mappings and Maximum

Eigenvalues Function” by M. Goh and F. Meng, and divide the method into four steps.

The next parts of Chapter 2 discuss the application of the method for adjusting the strong

semismoothness of projection onto second-order cones, then give a couple of counter

examples to see the important things we need to notice when doing this method.

Chapter 3 mentions the smoothing Newton continuation algorithm firstly given in the

article“A combined smoothing and regularization method for monotone second-order cone

complementarity problems” by S. Hayashi, N. Yamashita and M. Fukushima (Algorithm

2) to solve the SOC complementarity problems. C.B. Chua and L. T. K. Hien, in

their article “A superlinearly convergent smoothing Newton continuation algorithm for

variational inequalities over definable set”, give the criterion for this algorithm to converge

superlinearly when being applied to solve the smoothing natural map equation. The

follow up sections of Chapter 3 give the proof for a lemma that ensure the sufficient
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condition for one of the criterion, applied for the case of PSD cones, then generalize to

symmetric cones (in the paper of Chua and Hien, the lemma is applied for the epigraph

of nuclear norm). The method used for the proofs is based on the explicit formular

for the smoothing approximations and application of Lowner’s operator for the spectral

decomposition.

Chapter 4 sums up the works of Chapter 2 and Chapter 3. It also points out the

difficulties we may encounter for doing the method discussed in Chapter 2. Finally, we

consider the possible way of generalize the lemma in Chapter 3 to the case of homogeneous

cones, when we cannot get the implicit formula for the smoothing approximation, by using

the graphical convergence of monotone mappings.
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Notation

|a| the absolute value of a scalar a

R set of real numbers

Rn the n-dimensional real vector space

C set of complex numbers

Cn the n-dimensional complex vector space

Rm×n the space of m× n real matrices

Sn the space of n× n symmetric matrices.

Sn+ the cone of n× n symmetric positive semidefinite matrices

On set of orthogonal matrices in Sn

Diag(λ1, . . . , λn) the n× n diagonal matrix with (Diag(λ1, . . . , λn))ii = λi, i ∈ {1, . . . , n}

I identity matrix of appropriate order

tr(A) trace of a matrix A

A−1 the inverse of an operator or a matrix A
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AT the transpose of a matrix A

detA the determinant of a matrix A

LA the Cholesky factor of a matrix A, if A is positive semidefinite

A � B means A−B is positive semidefinite, i.e., xT (A−B)x ≥ 0 ∀x,

or all eigenvalues of A−B are non-negative

A � B means A−B is positive definite, i.e., xT (A−B)x > 0 ∀x 6= 0,

or all eigenvalues of A−B are positive

X] the dual set of a set X

X− the polar set of a set X

int(X) the interior of a set X

X̄ the closure of a set X

bd(X) the boundary of a set X, i.e., bd(X) = X̄ \ int(X)

ΠX the Euclidean projector onto a set X

∇f the F -derivative of a function f

JFx(x, y) the partial derivative of F with respect to variable x

− ln det(X) the barrier function defined on Sn++, given by − ln det(X) := − ln(detX)

xii



Chapter 1

Introduction and motivation

1.1 Motivation

The initial studies for the complementarity problems (CPs) can be dated back to the 60s

decade of the twentieth century, for instance, when Lemke and Howson, in their paper [19],

gave the linear complementarity problem (LCP) form for calculating a Nash equilibrium

point. In the same year (1964), Richard W. Cottle introduced the classical nonlinear

complementary problem (NCP) in his thesis. These are also the first problems relating

to the general problem of variational inequalities problem (VIP), until Hartman and

Stampacchia gave the concept of VIP in 1966. One of the noticeable materials regarding

to VIPs and CPs is the book [12] where we can find a great deal of formulations for those

problems and related algorithms.

1.1.1 Motivation for the strong semismoothness of projection

onto homogeneous cones

Among the problems that can be written in the form of CP, a problem of finding the

projection onto homogeneous cones can be justified under many aspects. One aspect that

we mentioned in Chapter 2 is considering the strong semismoothness of that projection.

It is already proved for a class of symmetric cones, which is a subclass of homogeneous

cones, that the projections onto those cones are strongly semismooth. The result given

in [2] that a function that is locally Lipschitz and definable is also a semismooth one

brings a great help in considering the semismooth. Since the projections onto classes
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of cones like homogeneous cones or power cones can be proved to be locally Lipschitz

definable, they are semismooth. Howerver, the strong semismoothness of projection onto

homogeneous cone in general is still a challenge. Wang and Xiu, in their paper [25],

showed that the projection onto any slice of SOC is strong semismooth. However,

the strong semismoothness of projection onto other nonpolyhedral symmetric cones,

especially PSD cones, remains an unsolved question. That question draws our careful

attention because of the fact mentioned in [8] that each homogeneous is actually isomorphic

to a slice of a PSD cone. Motivated by those results, in this thesis, we will discuss one of

the methods that possibly helps us carry out deeper study into the strong semismoothness

of the projection onto homogeneous cones.

1.1.2 Motivation for the superlinear convergence of Newton’s

method solving complementarity problems

The Newton’s approximation method for solving equations was invented and used from

17-th century. Several developments of the classical Newton’s method can be listed. Pang

[20] extended the classical Newton’s method used to solve the continuously differentiable

systems of nonlinear equations to the systems which is B-differentiable, which opened

up a fundamental for nonlinear programming problems, complementarity problems, etc.

Later on, a nonsmooth version of this method was created by Qi and Sun in [21], which

is applied for locally Lipschitz and semismooth functions. One of the applications of

Newton’s method is solving complementarity problems via solving the corresponding

natural map equations, which is essentially related to Euclidean projectors. To avoid the

difficulty of using typical Newton-based method caused by the general nonsmoothness

of the Euclidean projector, the Newton’s method can be considered to be applied for

the smoothing approximation of Eucliden projector. An example of this method is

in [17], where the combined and smoothing regularization method was built to solve

complementarity problems for second-order cones. Within the context of this thesis,

we will consider one of the features that makes up the superlinear convergence of one

algorithm mentioned in [17].
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1.2 Concepts and notations for the space of symmetric

matrices

In this thesis, we will let Im denote the identity matrix of size m ×m for some positive

integer m. Besides, for simplicity, the notation I will also be used to denote the identity

matrix if the size is already clearly determined and no confusion would happen (the

general case that we consider is the space of n × n symmetric matrices, hence, I would

always denote the corresponding matrix In). At the same time, we always let O denote

the zero matrix.

Let Sn denote the space of real symmetric n × n matrices. Sn+ and Sn++ will be used

to denote the subsets of Sn, which are the cone of positive semi-definite matrices (from

now on, this cone will be mentioned as the PSD cone) and the cone of positive definite

matrices respectively, which are:

Sn+ = {X ∈ Sn : X � 0}

Sn++ = {X ∈ Sn : X � 0}.

Let ΠSn+ denote the Euclidean projector onto Sn+, i.e.,

ΠSn+(Z) = arg min
X∈Sn+

1

2
‖X − Z‖2,

where ‖ · ‖ is the norm induced by the trace inner product 〈·, ·〉 of Sn given by

〈A,B〉 = tr(AB) for all A,B ∈ Sn.

During this thesis, the Euclidean projectors onto other cones in other spaces are also

defined similarly.

Let E and E′ denote two finite-dimensional vector spaces each equiped with an inner

product and its corresponding induced norm. A smoothing approximation of a continuous

map G : E→ E′ is a continuous map H : E× R such that H(·, µ) = G when µ ≤ 0, and

for each µ > 0, H(·, µ) is differentiable.

Let p(Z, µ) denote the smoothing approximation of the corresponding Euclidean projector.

For the case we consider the cone K being Sn+, p is corresponding to the barrier function
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defined on Sn++, given by f(X) = − ln det(X) := − ln(detX).

For this thesis, we also use the formula Diag(λ1, λ2, . . . , λn) to denote the diagonal

matrix with the main diagonal containing λ1, λ2, . . . , λn respectively. For a matrix Z ∈

Sn, with λ1(Z) ≥ λ2(Z) ≥ · · · ≥ λn(Z) being its eigenvalues with multiplicity, we let

λf (Z) := (λ1(Z), . . . , λn(Z))T ; and we use On(Z) to denote the set of orthogonal matrices

such that Diag(λf (Z)) = QZQT .

We would also use the concept of Cholesky factor of a PSD matrix, which is given

in [7]. For a matrix A which is positive semidefinite, we let LA denote a unique lower

triangular matrix satisfying LAL
T
A = A and if any entry on its main diagonal satisfies

(LA)ii = 0, then all the entries on the corresponding i-th column equal zero. Such matrix

LA is called the Cholesky factor of A.

1.3 Concepts and notations for Euclidean Jordan algebras

and corresponding Symmetric Cones

The concepts and notations we use in this part are mainly taken from the book [13],

which is a cornerstone in symmetric cones study.

A homogeneous cone K is a full-dimensional convex pointed cone in a finite-dimensional

space such that the group of linear automorphism of K acts transitively on it. A

symmetric cone is a self-dual homogeneous cone. It is proved in [13] that any real

symmetric cone is the interior of the cone of all squares of some real Euclidean Jordan

algebra. Therefore, within the context of this thesis, we always consider the symmetric

cone determined in this way from some Euclidean Jordan algebra. Now we take a closer

look into the concept of Euclidean Jordan algebra.

A vector space V over R is an algebra if there exists a product on V , which is a

bilinear mapping from V × V to V , denoted by (x, y) 7→ xy. For x ∈ V , we have the

linear mapping L(x) defined by L(x)y := xy. The algebra V is called Jordan algebra if

any x, y ∈ V satisfy the following conditions:

xy = yx (J1)

x(x2y) = x2(xy). (J2)
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A Jordan algebra V is said to be Euclidean if there exists an inner product 〈·, ·〉

on V , which is a positive definite symmetric bilinear form from V × V to R satisfying

〈L(x)u, v〉 = 〈u, L(x)v〉 for all x, u, v in V .

For an Euclidean Jordan algebra V , c ∈ V is said to be an idempotent if c2 = c. Two

idempotents c and d in V is said to be orthogonal if cd = 0. An element c in V is called a

primitive idempotent if it is a non-zero idempotent and we are not able to represent c as

the sum of the other two non-zero idempotents. We say that the idempotents c1, . . . , cm

in V make up a Jordan frame, if each cj is a primitive one and if

cjck = 0, j 6= k,

m∑
j=1

cj = e.

Let V be a real Euclidean Jordan algebra. It is pointed out in Theorem III.1.2 of [13]

that for any x ∈ V , there exists a Jordan frame c1, . . . , cr and the scalars λ1, . . . , λr ∈ R

such that

x =
r∑
j=1

λjcj.

The scalars λi (with their multiplicities) are uniquely determined by x and called the

eigenvalues of x. Besides, we use detx and trx to denote the determinant and trace of

x respectively, which are given by1

detx :=
r∏
j=1

λj, trx :=
r∑
j=1

λj.

It is also pointed out in [13] that for x, y ∈ V , the bilinear form given by (x, y) 7→ tr(xy)

is an inner product of V .

Let V be a real Euclidean Jordan algebra with an identity element e and the inner

product 〈·, ·〉 defined by 〈x, y〉 = tr (xy). Now we consider the set K := {x2 | x ∈ V }. K

1Actually, in [13], the determinant and trace of x is defined via the minimal polynomial of x. However,
within the context of this thesis, we just need to determine those concepts via the eigenvalues of x.
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is the closed cone and therefore its closed dual

K] = {y ∈ V | ∀x ∈ V, 〈y, x2〉 ≥ 0}

= {y ∈ V | ∀x ∈ V, 〈L(y)x, x〉 ≥ 0}

= {y ∈ V | L(y) is positive semi-definite}

is a closed convex cone. It is also proved in [13] that K = K] and as a consequence, K is

self-dual and a closed convex cone itself. As we already pointed out before, the interior

Ω of K is a symmetric cone, the closure Ω̄ of Ω is exactly K itself and we also know that

Ω is the connected component of e in the set I of invertible elements in V .

Now we give the brief introduction to the Pierce decomposition. Let c be an idempotent

element in an Euclidean Jordan algebra V . By Proposition III.1.3 of [13], L(c) has only

three possible values: 0, 1 and 1
2
. Therefore, V can be represented as the direct sum of

the subspaces generated by those eigenvalues, which we denoted by V (0, c), V (1, c) and

V (1
2
, c). The decomposition

V = V (0, c) + V (1, c) + V (
1

2
, c)

is called the Pierce decomposition of V with respect to the idempotent c.

Let V be a real Euclidean Jordan algebra and c1, . . . , cr be a Jordan frame in V . By the

Theorem IV.2.1 in [13], V decomposes in the following orthogonal direct sum:

V =
⊕

1≤i≤j≤r

Vij,

where,

Vii = V (1, ci) = Rci,

Vij = V (
1

2
, ci) ∩ V (

1

2
, cj) when i 6= j.

The orthogonal projection onto Vij is then denoted by Πij and given by

Πii = L(ci)(2L(ci)− I),

Πij = 4L(ci)L(cj).
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where I is an identity mapping in V . For an element h ∈ V , the reperesentation of h as

the direct sum:

h =
∑

1≤i≤j≤r

hij for hij ∈ Vij,

is called the Pierce decomposition of h.

1.4 Concepts and notations for second-order cone

Let Kn denote the second-order cone (SOC), or Lorentz cone in Rn, which is defined as

Kn = {(x1, x2) ∈ R× Rn−1 | x1 ≥ ‖x2‖}.

Actually, SOC belongs to the category of symmetric cones. Thus, a SOC Kn is a

cone of squares of an Euclidean Jordan algebra. For any x = (x1, x2) ∈ R × Rn−1 and

y = (y1, y2) ∈ R× Rn−1 their Jordan product is defined by

x ◦ y = (〈x, y〉, y1x2 + x1y2).

As being mentioned in [4], for each x = (x1, x2) ∈ R × Rn−1, x has the spectral

decomposition associated with Kn which has the form

x = λ1(x)u(1)
x + λ2(x)u(2)

x (1.1)

where λ1(x), λ2(x) and u
(1)
x , u

(2)
x are the spectral values and the corresponding spectral

vectors of x, respectively, given by

λi(x) := x1 + (−1)i‖x2‖ and u(i)
x =

 1

(−1)ix̄2

 , i = 1, 2, (1.2)

where x̄2 = x2/‖x2‖ if x2 6= 0, and otherwise x̄2 being any vector in Rn−1 with ‖x̄2‖ = 1.
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1.5 Overview of contributions

In Chapter 2, we discuss the method containing four steps, given by Goh and Meng in

their paper [15], to justify the strong semismoothness of projection onto homogeneous

cones and its application to the case of SOC cones, as well as the difficulties that may

arise from this method.

In Chapter 3, the problem that we consider gives us the overview of the sufficient

condition for one of the criteria to consider the superlinear convergence of an algorithm

given in [17] by Hayashi, Yamashita and Fukushima. We then consider the superlinear

convergence of this algorithm when being applied to case of symmetric cones, which is

the subcase of a category of homogeneous cones. We will prove the lemma that provides

a sufficient condition for one of the criteria to ensure the superlinear convergence.



Chapter 2

On the strong semismoothness of the

projection onto homogeneous cones

We consider the problem of finding the Euclidean projector. For a closed convex subset K

of a finite dimensional Euclidean vector space E, the problem of finding the (Euclidean)

projector ΠK(y) of a vector y ∈ E is to find the unique solution of the following convex

minimization problem:

minimize
1

2
(y − x)T (y − x)

subject to x ∈ K.

According to [12], this problem is in the form of the variational inequality, thus, it

can be rewritten in the equivalent form of a complementarity problem.

In this section, we will discuss the problem of considering the strong semismoothness

of the projection onto homogeneous cones, which is not yet fully solved. Within the

context of the thesis, we will consider one of the possible approaches towards the problem

and observe the application of that approach to a couple of subclasses of the class of

homogeneous cones. Through this point of view, we have the initial view on the advantage

and drawback of the method.

2.1 Differentiability and semismoothness of mappings

We begin with recalling several concepts that would be used later on.
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Definition 2.1.1. Consider two finite-dimensional vector spaces X and Y which are

equipped with the inner products 〈·, ·〉X , 〈·, ·〉Y and their induced norms ‖ · ‖X , ‖ · ‖Y
respectively (from now on, for simplicity, we can use the common notation ‖ · ‖ for both

‖ · ‖X and ‖ · ‖Y . Similarly, we use 〈·, ·〉 to replace 〈·, ·〉X and 〈·, ·〉Y ). Let f : X → Y be

a single-valued mapping and let x, h ∈ X. If ∇f(x) : X → Y is a linear mapping that

satisfied

lim
h→0

‖f(x+ h)− f(x)−∇f(x)h‖
‖h‖

= 0,

then f is said to be Fréchet differentiable (F -differentiable) and ∇f(x) is a F -derivative

of f at x.

We also give the definition of directional derivative.

Definition 2.1.2. Let f : X → Y , x, h ∈ X and τ be a positive real number. The

directional derivative of f at x along h is the following limit (if it exists)

f ′(x, h) = lim
τ↓0

f(x+ τh)− f(x)

τ
.

f is said to be directionally diffentiable at x if f ′(x, h) exists for all h.

Certainly, we have the following relation between F -differentiability and directional

differentiability.

Theorem 2.1.1. If f is F-differentiable at x, then it is directionally differentiable at x

and for every h ∈ X,

f ′(x, h) = ∇f(x)h.

We also need the concept of the Clarke generalized derivative, which plays an important

role in stating the concept of semismoothness.

Definition 2.1.3. Let f : X → Y be a locally Lipschitzian mapping. Let Df denote

the set of points at which f is F -differentiable1. We let ∂f(x) denote the generalized

derivative of f at x, which is the set defined by

∂f(x) := co
{

lim
k−→∞

∇f(zk) | {zk} ⊆ Df , zk → x
}
.

1By Rademacher’s theorem, a locally Lipschitzian mapping on X is F-differentiable almost everywhere
on X.
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Notice that we use co(C) to denote the convex hull of a set C.

Now we give the definition of semismooth mapping. Though there are various ways of

stating this concept, here we will use the similar definition with the one for semismooth

matrix valued function given in [24].

Definition 2.1.4. Let f : X → Y be a locally Lipschitzian mapping. f is said to be

semismooth at x ∈ X if f is directionally differentiable at x and for any V ∈ ∂f(x + h)

and h→ 0,

f(x+ h)− f(x)− V h = o(‖h‖).

f is said to be p-order semismooth (0 < p <∞) if f is semismooth at x and

f(x+ h)− f(x)− V h = O(‖h‖1+p).

In particular, for the case p = 1, f is said to be strongly semismooth.

2.2 One approach to consider the strong semismoothnesss

of the projection onto homogeneous cones

Now we consider the method of proving the strong semismoothness for the projection

mapping which is mention in [15]. We first state that problem. Let X and Y be two

finite-dimensional vector spaces, each of them has an inner product 〈·, ·〉 and its induced

norm ‖·‖. K ⊆ Y is a closed convex set. Let G : X → Y be a singled-valued continuously

differentiable mapping. Consider the parametric optimization problem, parameterized by

y ∈ X

min
1

2
‖x− y‖2, (2.1)

s.t. G(x) ∈ K.

Let G−1(K) be the set

G−1(K) = {x ∈ X | G(x) ∈ K}. (2.2)
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The solution mapping of (2.1) can be represented as the following mapping

ΠG−1(K)(y) := argmin

{
1

2
‖x− y‖2 | G(x) ∈ K

}
. (2.3)

which is the projection onto G−1(K).

For any vector s ∈ Y , we let TK(s) denote the tangent cone of K at s. For an

arbitrary closed convex cone C, we use lin(C) to denote the lineality space of C, i.e.,

lin(C) = C ∩ (−C). Now we bring out the concept of nondegeneracy, which always plays

an important role in the approach that we will consider later on.

Definition 2.2.1. x̄ ∈ G−1(K) is said to be nondegenerate, with respect to the mapping

G and the set K, if

∇G(x̄)X + lin(TK(G(x̄))) = Y. (2.4)

Next, we have the Lagrangian function of problem (2.1) to be

L(x,Λ, y) =
1

2
〈x− y, x− y〉X + 〈Λ, (−G(x))〉Y , (2.5)

where (y,Λ, x) ∈ X × Y × X. According to [15], the first order necessary condition of

(2.1) can be written in the form

H(x,Λ; y) = 0, (2.6)

where H(x,Λ; y) is the vector-valued function given by

H(x,Λ; y) =

 x−∇G(x)∗Λ− y

Λ− ΠK] [Λ−G(x)]

 ,
with ∇G(x)∗ : Y → X is the adjoint of ∇G(x).

The solution of equation (2.6) is also called the Karush-Kuhn-Tucker solution, or KKT

solution for simplicity.

In [15], it is pointed out that under the nondegeneracy condition (2.4), for any given

ȳ ∈ X, equation (2.6) always has the unique corresponding solution (x̄, Λ̄). We also have

the following assumption, which is considered under the condition that x̄ is nondegenerate.
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Assumption 2.2.1. If (I − V )(H) = 0 for V ∈ ∂ΠK(Λ̄ − G(x̄)) and H ∈ Y , then

H ∈ [lin(TK(G(x̄)))]⊥, where I denotes the identity mapping from Y to Y .

Now, we recall the Theorem 3.1 in [15] that we would use as a main approach for

the method that we consider to prove the strong semismoothness of the projection onto

homogeneous cones.

Theorem 2.2.1. Given ȳ ∈ X, let (x̄, Λ̄) be the corresponding KKT solution of (2.6).

Suppose (i) x̄ is nondegenerate with respect to the mapping G and set K; (ii) The mapping

G : X → Y is affine; (iii) Assumption 2.2.1 holds. Then,

(i) there exists an open neighborhood N of ȳ and a Lipschitz continuous function (x(·),Λ(·))

defined on N such that H(x(y),Λ(y); y) = 0 for every y ∈ N ;

(ii) if ΠK is semismooth (strongly semismooth) around Λ̄ − G(x̄), then (x(·),Λ(·)) is

semismooth (strongly semismooth) around ȳ.

The above theorem gives us the idea of how to prove that the projection into a closed

convex cone K̃ ⊆ X is strongly semismooth at some point ȳ ∈ X. The following are

general steps of the process.

• Step 1: First, we need to find a closed convex cone K in the vector space Y that we

already know the projection onto K is strongly semismooth.

• Step 2: The next step is to find a mapping G : X → Y that is affine and also satisfies

G−1(K) = K̃.

• Step 3: For a KKT solution (x̄, Λ̄) = (x(ȳ),Λ(ȳ)) corresponding to ȳ, we are able to

verify that x̄ is nondegenerate and Assumption 2.2.1 holds with x̄ and Λ̄.

• Step 4: Using Theorem 2.2.1, we conclude that ΠK̃ is strongly semismooth at ȳ.

The coneK that we put into consideration could be Sn+, the positive semi-definite cone.

The reason for this choice is that the projection onto PSD cone is strongly semismooth,

which is a result shown in Theorem 4.13 of [24]. Besides, it is already proved in Section

5 of [15] that under the nondegeneracy condition, Assumption 2.2.1 always holds if K is

a cone of positive semi-definite matrices. Consequently, this way of chosing the cone K

may reduce the works we need to carry out for the four steps mentioned above since we

do not need to justify the validity of Assumption 2.2.1.

There is one more reason for us to draw our attention in using K as a PSD cone to

prove the strong semismoothness of the projection onto homogeneous cones. It is proved
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in Corollary 4.3 of [8] that for any homogeneous cone K̃, there always exists an injective

linear mapping M that maps K̃ into a slice of a PSD cone. This mapping M is obviously

an affine one, hence, it could be a mapping G that we look for in Step 2. The cone K

we may use here is certainly a PSD cone.

The notice in the relation between homogeneous cones and PSD cones could be the

direction for the further study on proving the strong semismoothness of projection onto

homogenous cones. However, within the context of this thesis, we only consider two

simpler classes of homogeneous cones, that will be presented in the following parts.

2.3 Application on second-order cones

Now we proceed to use the method with four steps that we stated previously to verify

the strong semismoothness of the projection onto second-order cones. It is convenient for

us to choose the cone K in Step 1 as a PSD cone. Now we consider the linear mapping

G : R×Rn−1 → Sn given by G(x) = Lx, where x = (x1, x2) ∈ R×Rn−1 and Lx is defined

as

Lx :=

 x1 xT2

x2 x1In−1

 .
Lx is an arrow-shaped matrix, which is sometimes called an arrow matrix and denoted by

Arw(x). The mapping G in this case is obviously a linear mapping and hence an affine

one. We use this mapping G because there is a close relation between elements in Kn

and positive semi-definite arrow matrices. We can see that

x ∈ Kn ⇐⇒ Lx =

 x1 xT2

x2 x1In−1

 � O,

Actually, this fact is verified in [1] with a very short argument. We have Lx is PSD if and

only if either x1 = 0, x2 = 0 or x1 > 0 and the Schur complement x1− xT2 (x1In−1)−1x2 =
1

x1

(x2
1 − ‖x2‖2) ≥ 0. Therefore, we easily see that G(Kn) ⊂ Sn+ and actually, G−1(Sn+) =

Kn.

According to [1], there are some known relations between the SOC and the PSD cone,

for instance,
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(a) x ∈ intKn ⇔ Lx ∈ intSn+;

(b) x = 0 ⇔ Lx = O;

(c)x ∈ bdKn \ {0} ⇔ Lx ∈ bd Sn+ \ {O}.

Before moving on, we need to mention the following spectral decomposition for Lx.

Lemma 2.3.1. Let x = (x1, x2) ∈ R × Rn−1 have the spectral decomposition as being

given in (1.1)-(1.2). Then Lx has the spectral decomposition:

Lx = P Diag(λ1(x), λ2(x), x1, . . . , x1)P T (2.7)

where

P =
[√

2u(1)
x

√
2u(2)

x u(3)
x · · · u(n)

x

]
∈ Rn×n (2.8)

is an orthogonal matrix, and u
(i)
x , for i = 3, . . . , n, have the form of (0, ūi) with ū3,. . ., ūn

forming an orthonomal basis for the linear subspace orthogonal to x2. Needless to say,

any matrix P of this form belongs to On(Lx).

The proof for Lemma 2.3.1 can be found in [6].

At this stage, we already find the cone K and a mapping G for Step 1 and Step

2 of the method. What left is only to verify the nondegeneracy property. Recall from

previous arguments that to prove the strong semismoothness of a projection at a point

y ∈ R×Rn−1, it is sufficient for us to justify the nondegeneracy at x = x(y) ∈ Kn, where

(x(y),Λ(y)) is the solution of equation (2.6) corresponding to y. That means,

∇G(x)(R× Rn−1) + lin(TSn+(G(x))) = Sn. (2.9)

However, since G is a linear mapping, ∇G(x) = G for every x ∈ Kn. By that fact together

with G(x) = Lx, we can rewrite (2.7) to be

G(R× Rn−1) + lin(TSn+(Lx)) = Sn. (2.10)

Subsequently, we will consider the following cases of x.

• Case 1. x ∈ intKn, corresponding to y = x ∈ intKn.

As we mentioned above, x ∈ intKn ⇔ Lx ∈ intSn+. Thus, we see that Lx ∈ intSn+ in this
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case. We have TSn+(Lx) is the set of all matrices T in Sn such that there exist a sequence

of matrix {Tν} ⊂ Sn+ and a sequence of positive scalars {τν} ∈ such that

lim
ν→∞

Tν = Lx, lim
ν→∞

τν = 0, and lim
ν→∞

Tν − Lx
τν

= T. (2.11)

By the assumption, Lx ∈ intSn+, then for every T ∈ Sn, there exists a sequence {τν}

of small enough positive scalars converging to 0 that satisfies: for a sequence {Tν} which

is defined by Tν := Lx + τνT , we have Tν ∈ Sn+ for every ν. It then follows that

lim
ν→∞

Tν − Lx
τν

= lim
ν→∞

(Lx + τνT )− Lx
τν

= T.

Consequently, for every T ∈ Sn, we also have T ∈ TSn+(Lx). It shows that TSn+(Lx) = Sn

and obviously lin(TSn+(Lx)) = Sn. This fact helps us see that the nondegeneracy condition

(2.8) holds at x.

• Case 2. x ∈ bdKn \ {0}, corresponding to y ∈ R×Rn \ (intKn ∪ (Kn)−), where (Kn)−

is a polar cone of Kn).

In this case, we will use the result from [3] that

TSn+(Lx) = {A ∈ Sn | (u(1)
x )TAu(1)

x ≥ 0}.

Therefore, we have,

lin(TSn+(Lx)) = {A ∈ Sn | (u(1)
x )TAu(1)

x = 0}. (2.12)

For a matrix P ∈ On(Lx) of the form P =
[√

2u
(1)
x

√
2u

(2)
x u

(3)
x · · · u(n)

x

]
given in

(2.8), from (2.12) we see that

(P TAP )11 = 0 for any A ∈ lin(TSn+(Lx)), (2.13)

where we use (P TAP )ij to denote the entry at i-th row and j-th column of the matrix

(P TAP ). This time, instead of proving the condition (2.8) directly, we will verify its

following equivalent form:

(G(R× Rn−1))⊥ ∩ (lin(TSn+(Lx)))
⊥ = {O}. (2.14)
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Suppose that H ∈ (G(R× Rn−1))⊥ ∩ (lin(TSn+(Lx)))
⊥, then for any A ∈ lin(TSn+(Lx)),

we have:

〈H,A〉 = tr(HA) = 0. (2.15)

Since P is an orthogonal matrix, it is easy to derive that

〈H,A〉 = 〈P THP,P TAP 〉 = 0 for every A ∈ lin(TSn+(Lx)). (2.16)

With the form of A shown in (2.12)-(2.13), in the equality (2.16) we can choose P TAP

to be the symmetric matrix of the form O(i, j) for any i, j = 1, . . . , n and (i, j) 6= (1, 1),

where O(i, j) is a symmetric matrix in Sn, defined as

O(i, j)kl = O(i, j)lk =

 1 if (k, l) = (i, j) or (l, k) = (i, j)

0 if (k, l) 6= (i, j) and (l, k) 6= (i, j)

Substituting P TAP = O(i, j) into the latter equality in (2.16), we can easily get that

(P THP )ij = 0 for every (i, j) 6= (1, 1). (2.17)

On the other hand, we also have H ∈ (G(R× Rn−1))⊥ while

G(R× Rn−1) = {Lz | z ∈ R× Rn−1}.

Therefore, we have

〈H,Lz〉 = 〈P THP,P TLzP 〉 = 0 for every z ∈ R× Rn−1. (2.18)

Due to (2.17), we can rewrite (2.18) as

〈P THP,P TLzP 〉 = (P THP )11(P TLzP )11 = 0 for every z ∈ R× Rn−1. (2.19)

We can simply let z = (1, 0, · · · , 0) ∈ R × Rn−1. With that choice, we have Lz = In.
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Substituting Lz = In into (2.19), we have

(P THP )11(P T InP )11 = (P THP )11(In)11 = (P THP )11 = 0. (2.20)

From (2.17) and (2.20), we see that

P THP = O,

⇔ P (P THP )P T = O,

⇔ H = O.

And we can conclude that the condition (2.14) holds.

• Case 3. x = 0, corresponding to y belonging to the polar cone of Kn.

We will leave this case for the discussion in the subsequent part.

2.4 The importance of choosing the cone K and the

mapping G

Now we will give some counter examples where we cannot use the method, to see the

necessity of choosing the appropriate cone K and the mapping G in Step 1 and Step 2

of the method.

2.4.1 Projection onto the cone of positive semi-definite Hermitian

matrices

Consider the vector spaces Hn containing all Hermitian matrices of the form M = A+ iB

where A ∈ Sn and B is an n × n real skew-symmetric matrix, which means BT = −B.

Each Hermitian matrix M has the spectral decomposition

M = P †Diag(λ1, λ2, . . . , λn)P

where P is an n× n complex unitary matrix and P † is its Hermitian conjugate. We also

let λ1,. . . , λn denote the eigenvalues of M . Notice that all the eigenvalues of Hermitian

matrices are real numbers.
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Now we consider the cone Hn
+ of positive semi-definite Hermitian matrices, which is

determined by

Hn
+ = {M = P †Diag(λ1, λ2, . . . , λn)P ∈ Hn | λ1, λ2, . . . , λn ≥ 0},

and we try applying our method to justify the strong semismoothness of the projection

onto Hn
+. First, we can observe that if M = A+ iB belongs to Hn

+ if and only if for any

complex vector u+ iv ∈ Cn (u, v ∈ Rn), we must have:

(u+ iv)†(A+ iB)(u+ iv) ≥ 0

⇔ (uT − ivT )(A+ iB)(u+ iv) ≥ 0

⇔ uTAu+ vTAv − uTBv − vTBTu ≥ 0

⇔ (uT vT )

 A −B

−BT A

 u

v

 ≥ 0. (2.21)

The inequality (2.21) gives us the idea of taking the cone K as S2n
+ and the linear mapping

G : Hn → S2n given by:

G(A+ iB) =

 A −B

−BT A

 .
However, now we will bring out a counter example to show that under this kind of

choosing a cone K and a mapping G, our method does not work. More exactly, for that

specific case, the nondegeneracy condition (equivalent form)

(∇G(A+ iB)Hn)⊥ ∩
(

lin(TS2n+ (G(A+ iB)))
)⊥

= {O} (2.22)

does not hold.

We consider the space H2. The matrix M = A+ iB ∈ H2 in this case will simply be

the real symmetric matrix, with B = 0 and A given by,

A = P

 1 0

0 0

P T ,
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where,

P =

 1√
2

1√
2

− 1√
2

1√
2

 .
We consider H ∈ (∇G(A+ iB)H2)

⊥
. At first, since G is a linear mapping, then the

fact that H ∈ (∇G(A+ iB)H2)
⊥

is actually the same with H ∈ (G(H2))
⊥

. That means,

for any matrices C ∈ Sn and 2× 2 real skew-symmetric matrix D, we always have:

〈H,G(C + iD)〉 = 0

⇔ tr

H
 C −D

−DT C

 = 0.

From this inequality, it is not difficult for us to verify the fact that H ∈ (∇G(A+ iB)H2)
⊥

if and only if it is of the following form

H =

 O S

S O

 (2.23)

where O is the 2× 2 zero matrix and S is some 2× 2 real symmetric matrix.

Now we turn our attention to the tangent cone TS4+(G(A + iB)) and its corresponding

lineality space. With our choice of A and B, G(A + iB) has the form G(A + iB) =

QDiag(1, 1, 0, 0)QT , where,

Q =



1√
2

0
1√
2

0

− 1√
2

0
1√
2

0

0
1√
2

0
1√
2

0 − 1√
2

0
1√
2


,

which is an orthogonal matrix. Actually, Q is easily built up from the matrix P in the

spectral decomposition of A.
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We take the notice that the following matrix

W =



1√
2

0

1√
2

0

0
1√
2

0
1√
2


,

is the one containing two columns of Q which correspond to the eigevalue 0 in the

eigenvalue decomposition of G(A + iB). Therefore, the tangent cone TS4+(G(A + iB))

is determined by

TS4+(G(A+ iB)) = {M ∈ S4 | W TMW � O}.

And certainly, its lineality space has the form

lin(TS4+(G(A+ iB))) = {M ∈ S4 | W TMW = O}. (2.24)

We let aij, i, j = 1, . . . , 4 denote the entries of a matrix M , with a notice that aij = aji

for every i, j = 1, . . . , 4. Then after a several basic computations, we see that the equality

(2.24) is equivalent to the fact that

a11 + 2a12 + a22 = 0,

a33 + 2a34 + a44 = 0, (2.25)

a13 + a23 + a14 + a24 = 0.

Next, we only need to take the matrix H0, where

H0 =


0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0

 ,
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then we can easily compute the inner product between H and any matrix M = [aij]4×4 ∈

lin(TS4+(G(A+ iB))) to get

〈H0,M〉 = 2(a13 + a23 + a14 + a24) = 0.

By this result, this matrix H0 belongs to
(

lin(TS4+(G(A+ iB)))
)⊥

. At the same time, by

(2.23), H0 also belongs to (∇G(A+ iB)H2)
⊥

, consequently, we can conclude that

(
∇G(A+ iB)H2

)⊥ ∩ (lin(TS4+(G(A+ iB)))
)⊥
6= {O}.

Therefore, the nondegeneracy does not hold for all the matrices in H2
+, and we cannot

use our method in this case.

2.4.2 Projection onto the SOC

Now we are back to the case 3 that remains unconsidered from the usage of the method

for the projection onto second order cones. When x = 0, according to the result from [3],

we have

TSn+(Lx) = Sn+,

and the corresponding lineality space lin(TSn+(Lx)) is certainly Sn+ ∩ (−Sn+) = {O}.

Therefore, we have

G(R× Rn−1) + lin(TSn+(Lx)) = G(R× Rn−1) 6= Sn.

The reason for the inequality here is that G(R × Rn−1) contains only arrow-shaped

matrices hence cannot cover all the matrices in Sn. Thus, unfortunately, we also cannot

apply our method in this case.



Chapter 3

On the superlinear convergence of

smoothing Newton continuation

algorithm

During this chapter, we will consider one criterion for the superlinear convergence of the

Algorithm 4.2 of [9]. This algorithm is initially stated in [17] (Algorithm 2).

3.1 Stating the problem

We consider the finite-dimensional vector space E which has 〈·, ·〉 as it inner product. Let

X ⊆ E be closed convex such that int(X) 6= ∅. Let Ω be a subset of E that contains X.

Let F : Ω→ E be a continuous mapping which is differentiable in int(Ω). The variational

inequality problem V I(X,F ) is the one requiring us to find x ∈ X satisfying

〈F (x), y − x〉 ≥ 0 for all y ∈ X. (3.1)

This problem can be solved, using the natural map equation: Gnat(x, y) = 0, where Gnat

is the natural map defined by

(x, y) ∈ Ω× E 7→ (x− ΠX(x− y), F (x)− y)T .
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The smoothing approximation Hnat of Gnat is defined by

(x, y, µ, ε) ∈ E2 × R2 7→ (x− p(x− y, µ), F (x) + ΠR+x− y)T ,

where f : int(X)→ R is a differentiable barrier function and p the smoothing approximation

of ΠX corresponding to f .

From now on, for the finite-dimensional vector spaces E, E′, E′′ and a mapping

T : E × E′ → E′′, we will use the notation JFx(x, y) to denote the partial derivative

of F with respect to variable x (if it exists). We consider the following algorithm which

aims at approximating the solution of V I(X,F ).

Algorithm 3.1.1. (Algorithm 4.2 of [9])

Inputs. Initial data w0 = (x0, y0) ∈ E × E and parameters β > 0, α, η ∈ (0, 1),

η̄ ∈ (0, 1/2) and κ > 0. Set k = 0 and µ0 = ε0 = ‖Gnat(w0)‖ and we repeat the steps

mentioned below until ‖Gnat(wk)‖ = 0.

Step 1. Set j = 0 and vk0 = wk.

Step 1a. Find dkj ∈ E2 such that

Hnat(vkj, µk, εk) + JwH
nat(vkj, µk, εk)dkj = 0.

Step 1b. If ‖Hnat(vkj + dkj, µk, εk)‖ ≤ βηk, set wk+1 = vkj + dkj and proceed to Step

2.

Step 1c. Otherwise, find the largest λkj ∈ {1, α, α2, . . .} such that

‖Hnat(vkj + λkjdkj, µk, εk)‖2 − ‖Hnat(vkj + dkj, µk, εk)‖2 ≤ −2σλkj‖Hnat(vkj + dkj, µk, εk)‖2

and set vk,j+1 = vkj + λkjdkj.

Step 1d. If ‖Hnat(vk,j+1 + dkj, µk, εk)‖ ≤ βηk, set wk+1 = vk,j+1 and proceed to Step

2.

Otherwise, update j = j + 1 and return to Step 1a.

Step 2. Set µk+1 = min{κ‖Gnat(wk+1)‖2, µ0 η̄
k+1} and εk+1 = min{κ‖Gnat(wk+1)‖2, ε0 η̄

k+1}

and update k = k + 1. �

Theorem 4.3 of [9] proved that if F is locally Lipschitz continuous and monotone, and

the solution set of V I(X,F ) is non-empty and bounded, then Algorithm 3.1.1 generates
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a bounded sequence {wk = (xk, yk)} with an accumulation point w∗ = (x∗, y∗) that is a

zero of Gnat. This theorem also states the conditions under which the x-component of

the sequence {xk} converges superlinearly to the solution x∗ of V I(X,F ). One of these

conditions is that {JwHnat(wkl , µkl , εkl)} is uniformly nonsingular for any subsequence

{wkl} that converges to w∗. Subsequently, in Theorem 4.4 of that paper, it is pointed out

the sufficient condition for the sequence {JwHnat(wkl , µkl , εkl)} to be uniformly nonsingular

is that for a sequence {(xk, yk, µk, zk)} generated by Algorithm 3.1.1 that converges

to {(x∗, y∗, 0, 0)} and any limit point J of {Jzp(xk − yk, µk)}, L⊥ ∩ (nullspace(J) ×

nullspace(I − J)) = 0, where L = {(h, k) | JF (x∗)h = k}. Later on, when we let X

to be a closed convex cone K of E, it is shown in section 6 of [9] that nondegeneracy1

implies this sufficient condition, and the cone considered in that situation is the epigraph

of the nuclear norm. The key result for the proof is Lemma 6.1 of that paper. Within

the context of this thesis, we will state and prove the same result for the cases of PSD

cones and symmetric cones.

3.2 Proof for the case of PSD cones

Consider the Lemma 6.1 of [9]. In the paper, the statement of that lemma holds in the

case of the cone K being the epigraph of nuclear norm. In this thesis, we will restate the

lemma in the case of cone K being the PSD cone, prove it and generalize the proof for

the case that K being the symmetric cone Sn.

To avoid any confusion, we will keep the notations from the original paper. Now let K

be a PSD cone Sn+, which is the closed convex one. Notice that since the PSD cone is

self-dual, the dual cone K] of K is K itself, hence, we do not need to state the part of the

lemma for the dual cone. The smoothing approximation p of the projection onto PSD

cone mentioned in the lemma is defined by the barrier function f : Sn++ → R given by

f(X) = − ln det(X).

Lemma 3.2.1. (Statement of lemma 6.1 of [9] for the PSD cone)

If {Zk} is a convergent sequence in Sn and µk is a positive sequence coverging to 0, then

1Once again, we mention the concept of nondegeneracy. However, in this context, a vector x ∈ K is
defined to be nondegenerate for L if it satisfies L⊥ ∩ span(F∆) = {0} with F being the smallest face of
K containing x and F∆ being the complementary face of F .
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every limit point J of the sequence {Jzp(Zk, µk)} satisfies

nullspace(J) ⊆ span(F4X∗),

where FX∗ is the smallest face of Sn+ containing the limit point

X∗ := lim
k→∞

p(Zk, µk)

and F4X∗ is its complementary face.

Proof. First, we find the formula of the smoothing approximation p(Z, µ) for the given

matrix Z and the positive number µ. We recall that p is defined by the barrier function

f(X) = − ln det(X). Thus, for Z ∈ Sn and µ > 0, we have

p(Z, µ) + µ2∇f(p(Z, µ)) = Z. (3.2)

By the calculation given in [16], we have∇f(X) = −X−1 and∇f(X)(H) = −tr(X−1H).

Now we get back to the equation (3.2). We make some transformation for this equation

based on the ∇f(X) we calculated above.

p(Z, µ) + µ2∇f(p(Z)) = Z

⇔ p(Z, µ)− µ2p(Z, µ)−1 = Z. (3.3)

We will consider the spectral decomposition

Z = QTDQ

for Q ∈ On(Z) and D = Diag(λf (Z)).

By the result given in Example 3.2 of [10], the smoothing approximation p(z, µ) that

satisfies equation (3.3) has the form

p(Z, µ) =
1

2
QTλf (Z)Q+

1

2
QT
(√

λ1(Z)2 + 4µ2, · · · ,
√
λn(Z)2 + 4µ2

)
Q (3.4)

=
1

2
Z +

1

2
QT
(√

λ1(Z)2 + 4µ2, . . . ,
√
λn(Z)2 + 4µ2

)
Q.



Chapter 3 Superlinear convergence of smoothing Newton continuation algorithm 27

For the next part of the proof, we need the concept of “spectral function” that is

defined in [23]. Based on the formula for p(Z, µ) we just found, we consider the real

function

fµ : u ∈ R 7→ fµ(u) = u+
√
u2 + µ2,

then f ′µ(u) = 1 +
u√

u2 + 4µ2
. Based on the formula given in [10], we now define the

spectral function f
[1]
µ : Rn → Sn given by

(f [1]
µ (d))ij = 1 +

di + dj√
d2
i + 4µ2 +

√
d2
j + 4µ2

. (3.5)

Then we have the formula Jzp(Z, µ)[H] = 1
2
QT [f

[1]
µ (λf (Z)) ◦ (QHQT )]Q for Z,H ∈ Sn

and Q ∈ On(Z). The symbol ◦ stands for the Hadamard product.

Now we turn our attention to the main statement of the lemma. We consider the

sequences {Zk} and {µk} that we already mentioned in the statement of the lemma.

Let Z∗ ∈ Sn be the limit of {Zk}. Consider J being a limit point of the sequence

Jzp(Zk, µk), then there exist a subsequence {Zkl} such that Jzp(Zkl , µkl) converges to J .

For simplicity, we still use {Zk, µk} in the place of that subsequence, without any loss of

generality.

For each k, let Zk = QT
k λf (Zk)Qk being the spectral decomposition of Zk. Obviously,

{λf (Zk)} converges to λf (Z
∗). Since {Qk} is the sequence of orthogonal matrices, it is

bounded. Thus, it has a converging subsequence {Qkm}. Let Q∗ be the limit of {Qkm},

we then have

QT
km λf (Zkm)Qkm −→ (Q∗)T λf (Z

∗)Q∗

⇔ Zkm −→ (Q∗)T λf (Z
∗)Q∗.

However, since {Zkm} converges to Z∗, we have Z∗ = (Q∗)T λf (Z
∗)Q∗. It implies that

Q∗ ∈ On(Z∗). For the following steps of this proof, we can still use {Zk} in the place of

{Zkm} without changing its generality. Under that procedure, we see that

J [H] = lim
k→∞

1

2
QT
k [f [1]

µk
(λf (Zk)) ◦ (QkHQ

T
k )]Qk ∀H ∈ Sn. (3.6)
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Because Qk −→ Q∗ and λf (Zk) −→ λf (Z
∗), we see that the right hand side of (3.6)

equals to 1
2
(Q∗)T [f

[1]
0 (λf (Z

∗)) ◦ (Q∗H(Q∗)T )]Q∗ and so does J [H].

We now consider X∗ = limk→∞ p(Zk, µk). According to (3.4) we see that for each k,

p(Zk, µk) has the eigenvalues being

1

2

(
λ1(Zk) +

√
λ1(Zk)2 + 4µ2

k

)
, . . . ,

1

2

(
λn(Zk) +

√
λn(Zk)2 + 4µ2

k

)
.

Hence, as k tends to infinity, we see that the eigenvalues ofX∗ will be
1

2
(λ1(Z∗) + |λ1(Z∗)|),. . .,

1

2
(λn(Z∗) + |λn(Z∗|). Since λ1(Z∗) ≥ · · · ≥ λn(Z∗), we easily see that X∗ has the spectral

decomposition

X∗ = (Q∗)T Diag (λ1(X∗), . . . , λm(X∗), 0, . . . , 0) Q∗

with λi(X
∗) = λi(Z

∗) for i = 1, 2, . . . ,m. Here λ1(Z∗) ≥ · · · ≥ λm(Z∗) are the first m

eigenvalues of Z∗ which are positive while the remaining n−m ones are non-positive. This

spectral decomposition of X∗ actually shows that X∗ is ΠSn+(Z∗). This result agrees with

the fact that X∗ is the limit of the sequence {p(Zk, µk)} of smoothing approximations.

Now, according to formula (169) from [11], we see that the smallest face of X∗ in Sn+
has the form

FX∗ =
{
Y ∈ Sn+ | 〈(Q∗(I − ΛΛ‡) (Q∗)T , Y 〉 = 0

}
=
{
Y ∈ Sn+ | tr

(
(Q∗Y (Q∗)T )(I − ΛΛ‡)

)
= 0
}

(3.7)

with Λ being the diagonal matrix Diag(λ1(X∗), . . . , λm(X∗), 0, . . . , 0) in the spectral

decomposition of X∗ and Λ‡ stands for the Moore-Penrose pseudoinverse matrix of Λ.

We see that

I − ΛΛ‡ =


0

. . .

0

In−m

 .

We recall the result from Lemma A.2 of [18] that two PSD matrices W1 and W2 satisfy

tr(W1,W2) = 0 if and only if their matrix product satisfies W1W2 = O. We combine that
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fact with (3.7) and the formula of I − ΛΛ‡ to see that

Y ∈ FX∗ ⇔ Y =

 B A

A O

 , B ∈ Sm+ , A ∈ Rm×(n−m).

However, we notice that, for a PSD matrix X, if one of its entries on the main diagonal

Xii equals 0, then all of the corresponding entries on the i-th row and i-th column all

equal 0. This fact is easily seen by using the Cholesky factor of X. When Xii = 0, then by

the simple computation, we also have (LX)ii = 0. By the property of the Cholesky factor

given in [7], all the entries in the i-th column of LX are equal 0. Consequently, by the

direct computation of the entries in the i-th column and i-th row of X via X = LXL
T
X ,

we are able to confirm the above statement that Xik = Xki = 0 for every k = 1, · · · , n.

With the notice we just give, all the matrix Y belongs to FX∗ if and only if

Q∗Y (Q∗)T =

 B O

O O

 .

We then have FX∗ to be:

FX∗ =

Y ∈ Sm : Y = (Q∗)T

 B O

O O

Q∗, B ∈ Sm+

 .

Thus, the complementary face F4X∗ has the form

F4X∗ =

Y ∈ Sn+ :

〈
Y, (Q∗)T

 B O

O O

Q∗

〉
= 0, ∀B ∈ Sm+


=

Y ∈ Sn+ :

〈
Q∗Y (Q∗)T ,

 B O

O O

〉 = 0, ∀B ∈ Sm+

 ,

or equivalently, using the Lemma A.2 of [18] once again, we have:

F4X∗ =

Y ∈ Sn+ : Q∗Y (Q∗)T =

 O O

O C

 , C ∈ Sn−m+

 .

Consequently, with the notice that the spanning space of Sn−m+ is Sn−m, the spanning
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space of F4X∗ has the following form

span(F4X∗) =

Y ∈ Sn : Q∗Y (Q∗)T =

 O O

O C

 , C ∈ Sn−m
 . (3.8)

On the other hand, assume that H ∈ nullspace(J). As J [H] is already calculated

above, we have

J [H] =
1

2
(Q∗)T [f

[1]
0 (λf (Z

∗)) ◦ (Q∗H(Q∗)T )]Q∗ = 0. (3.9)

From (3.5), for each k, we get

(f [1]
µk

(λf (Zk)))ij = 1 +
λ(Zk)i + λ(Zk)j√

λ(Zk)2
i + 4µ2

k +
√
λ(Zk)2

j + 4µ2
k

,

and when k →∞ we have

(f
[1]
0 (λf (Z

∗)))ij = 1 +
λ∗i + λ∗j
|λ∗i |+ |λ∗j |

. (3.10)

Here, for simplicity in notation, we use λ∗i in the place of λ(Z∗)i. Recall that the first

m eigenvalues of Z∗ are positive. Clearly, for every couple of indexes 1 ≤ i, j ≤ m, from

(3.10) we see that

(f
[1]
0 (λf (Z

∗)))ij = 1 +
λ∗i + λ∗j
λ∗i + λ∗j

> 0 .

For every couple of indexes 1 ≤ i ≤ m < j, we have

(f
[1]
0 (λf (Z

∗)))ij = 1 +
λ∗i + λ∗j
λ∗i − λ∗j

> 0 with λ∗i > 0, λ∗j ≤ 0.

By the same argument, we also see that (f
[1]
0 (λf (Z

∗)))ij > 0 when 1 ≤ j ≤ m < i and

therefore (f
[1]
0 (λf (Z

∗)))ij > 0 when either i ≤ m or j ≤ m.

For H ∈ nullspace(J), from (3.9), we have

(f
[1]
0 (λf (Z

∗)))ij
(
Q∗H(Q∗)T

)
ij

= 0 ∀ i, j such that 1 ≤ min{i, j} ≤ m

⇒
(
Q∗H(Q∗)T

)
ij

= 0 ∀ i, j such that 1 ≤ min{i, j} ≤ m. (3.11)



Chapter 3 Superlinear convergence of smoothing Newton continuation algorithm 31

From (3.11), we see that the matrix Q∗H(Q∗)T has the form

Q∗H(Q∗)T =

 O O

O Ĥ

 , (3.12)

with Ĥ ∈ Sn−m.

We combine (3.12) and (3.8) to see that H ∈ span(F4X∗) for every H ∈ nullspace(J).

Consequently, nullspace(J) ⊆ span(F4X∗) and we complete our proof. �

3.3 Proof for the case of symmetric cones

Now we will state and prove the similar lemma for the case that K is the symmetric

cone, which is the generalized case of the one in the previous part on PSD cones. First,

we need the barrier function f : Ω → R given by f(x) = − ln det x := − ln(det x).

The smoothing approximation of the Euclidean projector that is generated from f is still

denoted by p(z, µ) for z ∈ V and µ ∈ R. Now we give the lemma, which is actually

the generalized one for the case of PSD cone, because the PSD cone is a subcase of a

symmetric cone.

Lemma 3.3.1. Let V be an Eulcidean Jordan algebra of rank r. K is the set of all

squares in V and Ω = Int(K) is the corresponding symmetric cone. If {zk} is a convergent

sequence in V and µk is a positive sequence coverging to 0, then every limit point J of

the sequence {Jzp(zk, µk)} satisfies

nullspace(J) ⊆ span(F4x∗),

where Fx∗ is the smallest face of K containing the limit point

x∗ := lim
k→∞

p(Zk, µk)

and F4x∗ is its complementary face.

Proof. By the result given in Example 3.3 of [10], we get the formula for ∇f as
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∇f : x 7→ −x−1 for every x ∈ Ω and the formula for for p as

p(z, µ) =
z +

√
z2 + 4µ2e

2
.

where we use
√
z2 + 4µ2e to denote the element of V which has the spectral decomposition

as

√
z2 + 4µ2e =

r∑
j=1

√
λ(z)2

j + 4µ2 cj.

The following concepts are taken from [23]. For φ : R→ R be a scalar valued function,

we define a vector valued function φV associated with V . For z ∈ V which has the spectral

decomposition z =
∑r

j=1 λ(z)jcj, we have

φV (z) =
r∑
j=1

φ(λ(z)j)cj.

φV is called the Löwner’s operator. When φ(t) = t+ := max(t, 0), t ∈ R, Löwner’s

operator becomes the metric projection operator

φV (z) = z+ = (λ(z)1)+c1 + · · ·+ (λ(z)r)+cr.

Next, we consider the scalar function

φµ(t) :=
t+
√
t2 + 4µ2

2
,

which is corresponding to the formula of p(z, µ) that we just found. Similar to the proof
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for the case of PSD cone, we also define the map φ
(1)
µ : Rr → Sr given by

(φ(1)
µ (τ))ij =


φµ(τi)− φµ(τj)

τi − τj
if τi 6= τj

φ′µ(τi) if τi = τj

=


1 +

√
τ 2
i + 4µ2 −

√
τ 2
j + 4µ2

τi − τj
if τi 6= τj

1 +
τi√

τ 2
i + 4µ2

if τi = τj

= 1 +
τi + τj√

τ 2
i + 4µ2 +

√
τ 2
j + 4µ2

. (3.13)

By the formula (33) from [23], any h ∈ V is able to be represented as the Pierce

decomposition

h =
r∑
j=1

〈cj, h〉cj +
∑

1≤j<l≤r

4cj(clh)

and also from Lemma 3.1 of [23], we have

((φµ)V )′(z)h =
r∑
j=1

(φ(1)
µ (λ(z)))jj〈cj, h〉cj +

∑
1≤j<l≤r

4(φ(1)
µ (λ(z)))jlcj(clh) (3.14)

with λ(z) = (λ1(z), · · · , λr(z)) and λ1(z) ≥ · · · ≥ λr(z) are the eigenvalues of z.

Now we get back to the context of the lemma. For each k, we have zk =
∑r

j=1 λ(zk)jc
k
j

being the spectral decomposition of zk. For the limit z∗ of {zk}, we have the spectral

decomposition z∗ =
∑r

j=1 λ(z∗)jcj. It is obvious that λ(zk)j → λ(z∗)j for each j =

1, . . . , r. Besides, similar to the PSD cone case, without loss of generality, using the

subsequence if necessary, we can assume that ckj → cj for each j. We take m ≤ r such

that λ(z∗)1 ≥ λ(z∗)2 ≥ · · · ≥ λ(z∗)m > 0 and 0 ≥ λ(z∗)m+1 ≥ · · · ≥ λ(z∗)r.

Next, for x∗ taken from the lemma, by the same argument with the case of PSD cone,

we easily find that

x∗ = z∗+ =
r∑
j=1

(λ(z∗)j)+cj

=
m∑
j=1

λ(z∗)jcj.
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We can easily see that c1, . . . , cr is a Jordan frame.

Now we consider the following cases.

• Case 1: x∗ ∈ Ω̄ \ Int Ω̄.

According to Theorem 2 of [14], the face Fx∗ is

Fx∗ = Ω̄ ∩ V (1, c1 + · · ·+ cm),

so its complementary face is

F4x∗ = {y ∈ Ω̄ | 〈y, z〉 = 0 ∀z ∈ Ω̄ ∩ V (1, c1 + · · ·+ cm)}.

And we then imply that

F4x∗ ⊇ {y ∈ Ω̄ | 〈y, z〉 = 0 ∀z ∈ V (1, c1 + · · ·+ cm)}. (3.15)

Therefore, from (3.15), we may imply that

span(F4x∗) ⊇ span({y ∈ Ω̄ | 〈y, z〉 = 0 ∀z ∈ V (1, c1 + · · ·+ cm)}). (3.16)

As being pointed out in Section 1.3, we know that V has the following orthogonal

decomposition corresponding to the Jordan frame c1, . . . , cr

V =
⊕

1≤i≤j≤r

Vij

where Vjj = V (1, cj) = Rcj and Vij = V (1
2
, ci) ∩ V (1

2
, cj).

Now we consider one arbitrary limit point J of the sequence {Jzp(zk, µk)}. Using the
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subsequence if necessary, for h ∈ V we may consider J(h) as the the following limit

J(h) = lim
k→∞

Jzp(zk, µk)(h)

= lim
k→∞

((φµk)V )′(zk)h

= lim
k→∞

r∑
j=1

(φ(1)
µk

(λ(zk)))jj〈ckj , h〉ckj + lim
k→∞

∑
1≤j<l≤r

4(φ(1)
µk

(λ(zk)))jlc
k
j (c

k
l h)

=
r∑
j=1

(φ
(1)
0 (λ(z∗)))jj〈cj, h〉cj +

∑
1≤j<l≤r

4(φ
(1)
0 (λ(z∗)))jlcj(clh). (3.17)

The equality in (3.17) gives us the representation of J(h) as the direct sum of elements

in the subspaces Vij for 1 ≤ i ≤ j ≤ r. Recall that this representation is called the Pierce

decomposition of J(h). From formula (3.17), we see that for any h ∈ nullspace(J) and

each j such that 1 ≤ j ≤ m, the projection of J(h) into the subspaces Vjj must equal

zero. Recall that we let ΠVjj denote that projection, then

ΠVjj(J(h)) = (φ
(1)
0 (λ(z∗)))jj〈cj, h〉cj = 0. (3.18)

Therefore, for each j such that 1 ≤ j ≤ m, we have

φ
(1)
0 (λ(z∗)))jj = lim

k→∞
φ(1)
µk

(λ(zk)))jj

= lim
k→∞

1 +
(λ(zk)j√

(λ(zk)2
j + 4µ2

k

 = 2 > 0, (3.19)

here we already used formula (3.13) for the second equality. From (3.18) and (3.19) we

imply that 〈cj, h〉 = 0 for every j = 1, . . . ,m.

On the other hand, for each couple i < j such that i ≤ m, we have

ΠVij(J(h)) = φ
(1)
0 (λ(z∗)))ijci(cjh) = 0. (3.20)
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And we also see that

φ
(1)
0 (λ(z∗)))ij = lim

k→∞
φ(1)
µk

(λ(zk)))ij

= lim
k→∞

1 +
λ(zk)i + λ(zk)j√

λ(zk)2
i + 4µ2

k +
√
λ(zk)2

j + 4µ2
k


= 1 +

λ(z∗)i + λ(z∗)j
|λ(z∗)i|+ |λ(z∗)j|

> 0. (3.21)

Where we get the last inequality in (3.21) by the same argument we did in the proof for

the case of PSD cone. From (3.20) and (3.21), we see that ci(cjh) = 0 for every couple

i < j such that i ≤ m.

Now, based on the Pierce decomposition of V , we have the following Pierce decomposition

of h:

h =
r∑

1≤i≤j

hij for hij ∈ Vij.

We observe that hij = ΠVij(h). For each couple i < j such that i ≤ m, according to

Theorem IV.2.1 of [13], we have ΠVij = 4L(ci)L(cj). Therefore, we see that

hij = 4L(ci)L(cj)(h) = 4ci(cjh) = 0.

Now, for each j such that 1 ≤ j ≤ m, since Vjj = Rcj, we let hjj = αjjcj where αjj

is some scalar. From Theorem IV.2.1 of [13], if {i, s} ∩ {k, l} = ∅, then Vis · Vkl = {0}.

Therefore, for every couple k, l such that k 6= j and l 6= j, we have

〈cj, hkl〉 = 〈cjcj, hkl〉 = 〈cj, cjhkl〉 = 0,

since cj ∈ Vjj and hkl ∈ Vkl. We combine that result with the fact that hjk = 0 for every

k 6= j, we can transform 〈cj, h〉 = 0 as

〈cj,
r∑

1≤i≤j

hij〉 =
r∑

1≤i≤j

〈cj, hij〉 = 0

⇔ 〈cj, hjj〉 = 〈cj, αjjcj〉 = 0

⇔ αjj = 0.



Chapter 3 Superlinear convergence of smoothing Newton continuation algorithm 37

Consequently, hjj = 0 for each for each j such that 1 ≤ j ≤ m. The Pierce decomposition

of h then becomes

h =
r∑

m<i≤k

hik for hik ∈ Vik.

Now we will show that h ∈ V (0, c1 + · · ·+ cm). For each j = 1, . . . ,m we have cj ∈ Vjj
and each i, k such that m < i ≤ k, we have hik ∈ Vik. Since {j, j} ∩ {i, k} = ∅ and so

Vjj ∪ Vik = 0, we see that

cjhik = 0 ∀ j ≤ m, ∀m < i ≤ k.

Therefore,

cjh = cj

r∑
m<i≤k

hik =
r∑

m<i≤k

cjhik = 0 ∀ j ≤ m.

Consequently,

L(c1 + · · ·+ cm)h = (c1 + · · ·+ cm)h = c1h+ · · ·+ cmh = 0.

Thus, we have h ∈ V (0, c1 + · · ·+ cm). Because c1 + · · ·+ cm is an idempotent of V , as it

is pointed out in [14], V (0, c1 + · · ·+ cm) is a subalgebra of V and therefore an Euclidean

Jordan algebra itself. For that reason, we can represent hik as a linear combination of

the idempotents in V (0, c1 + · · · + cm). Assume that c̃ is one of those idempotents. Let

z be one arbitrary element in V (1, c1 + · · ·+ cm), we see that

〈z, c̃〉 = 〈(c1 + · · ·+ cm)z, c̃〉

= 〈z, (c1 + · · ·+ cm)c̃〉

= 〈z, 0〉 = 0.

And we also notice that c̃ ∈ Ω̄. All in all, we finally see that h can be represented as

the linear combination of the elements in Ω̄, each of them is orthogonal to every z in

V (1, c1 + · · · + cm). By that argument and (3.16), we imply that h belongs to spanF4x∗ .

That helps us observe that nullspace(J) ⊆ span(F4x∗).



Chapter 3 Superlinear convergence of smoothing Newton continuation algorithm 38

• Case 2: x∗ ∈ Int Ω̄.

Assume that a convex subset T ⊆ Ω̄ is the face of Ω̄ which contains x∗. For any z ∈ Ω̄,

since x∗ ∈ Int Ω̄ there exist a scalar β > 0 such that x∗+βz ∈ Ω̄. Sice Ω̄ is a convex cone

and
1

1 + β
> 0, we have:

1

1 + β
(x∗ + βz) ∈ Ω̄

⇔ 1

1 + β
x∗ +

β

1 + β
z ∈ Ω̄.

The above relation and the fact that
1

1 + β
+

β

1 + β
= 1 imply that z ∈ T , since T is a

face of Ω̄. Then we see that z ∈ T for any z ∈ Ω̄, hence T = Ω̄ for any face T containing

x∗. Since Fx∗ is the intersection of all the faces of Ω̄ containing x∗, Fx∗ = Ω̄. Thus, its

complementary face is

F4x∗ = {y ∈ Ω̄ : 〈y, z〉 = 0 ∀z ∈ Ω̄} = {0},

and certainly, span(F4x∗) = {0}.

Now we consider an arbitrary element h in the null space of J . According to the

results from Chapter III of [13], the interior Ω of Ω̄ is the set of elements with positive

eigenvalues. Since x∗ ∈ Ω, all of its eigenvalues (λ(z∗)1)+, . . . , (λ(z∗)r)+ are positive, or

λ(z∗)1, . . . , λ(z∗)r are all positive. Hence, for every i, j such that 1 ≤ i ≤ j ≤ r, by the

same calculation that we did in Case 1, we see that

φ
(1)
0 (λ(z∗)))ij = lim

k→∞
φ(1)
µk

(λ(zk)))ij

= 1 +
λ(z∗)i + λ(z∗)j
λ(z∗)i + λ(z∗)j

= 2 > 0.

And by the same argument that we did in Case 1, we imply that 〈cj, h〉 = 0 for j =

1, · · · , r and for any 1 ≤ i < j ≤ r, we have ci(cjh) = 0. Thus, when we represent h in

the form

h =
r∑

1≤i≤j

hij for hij ∈ Vij,

we can repeat the argument in Case 1 and show that hij = 0 for all 1 ≤ i < j ≤ r, and
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hence h is zero element and obviously belongs to span(F4x∗). It leads to the fact that

nullspace(J) ⊆ span(F4x∗).

To sum up, the statement of the lemma holds for both cases that we consider, and

we complete our proof. �



Chapter 4

Conclusion and future work

Throughout Chapter 2, we already consider the usage of one method to justify the

strong semismoothness of projections onto some subclasses of the class of homogeneous

cones. The method helps us prove that the projection onto the SOC is actually strongly

semismooth in several cases. However, in the case that x(y) = 0, which corresponds to

the fact that y is in the polar cone of Kn, with the choice of K and G we presented, the

nondegeneracy does not hold. The same result happens when we consider the cone of

positive semidefinite Hermitian matrices. These facts reflect the importance of the Step

1 and Step 2 of the method, which is how we choose the cone K and an appropriate

affine mapping G. The good choice may help us prove the most important thing: the

nondegeneracy property.

Indeed, the second order cones and the cone of positive semi-definite Hermitian

matrices are the subcases of the category of symmetric cones. The projection onto

symmetric cones is already proved to be strongly semismooth. What we did here is not

something new. However, we got the initial insight into how we proceed one of the possible

methods to consider the strong semismoothness of the projection onto homogeneous cone

and the difficulties that we may encounter. We hope that in the future, this method

would help to solve the problem.

In the paper [17], the Algorithm 2 was used to solve the second order cone complementarity

problem (SOCCP). Chapter 3 of the thesis focuses on proving a lemma that allows us

to build up the superlinear convergence for this Algorithm. However, the cone K in

the lemma that we focus on in the context of this thesis is a symmetric cone, where the

smoothing approximation can be calculated explicitly. Therefore, we will encounter many
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obstacles when generalize the statement of the lemma for bigger classes, like homogeneous

cones and even hyperbolic cones, since we are not able to find the exact formula for the

smoothing approximation. One possible direction that we may follow in the future is to

utilize the Theorem 12.32 in [22] about the graphical convergence of monotone mappings

to consider the convergence of the sequence of Jacobians of the smoothing approximation

without knowing the formula of the smoothing approximation.





Bibliography

[1] F. ALIZADEH AND D. GOLDFARB, Second-order cone programming, Mathematical

Programming, 95 (2003), No. 1, pp. 3-51.

[2] J. BOLTE, A. DANILIDIS AND A. LEWIS, Tame functions are semismooth, Mathematical

Programming, 117 (2009), pp. 5-19.
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