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Summary 

Decisions often require tradeoffs between costs and benefits, such as effort 

and reward. Prior findings show that decision makers discount the subjective value of 

a rewarding option as the effort required to obtain it increases. The mechanisms of 

discounting when the decision maker is also the recipient of the outcome 

(“egocentric” decision making) are known. However, in many cases, the decision 

maker decides for someone else, with the decision outcomes delivered entirely to 

another person (“allocentric” decision making). Implementing a neuroeconomics 

approach, the present thesis examines the mechanisms of allocentric decisions in 

the domain of effort discounting across three different levels: behavioral, 

computational, and neural descriptions of a single phenomenon. Behavioral results 

showed that making allocentric, as compared to egocentric, effort decisions shifts 

preferences toward smaller effort, smaller reward options. Computational modeling 

revealed that differential weighting of effort discounting parameters adequately 

explained choice differences between allocentric and egocentric decisions. 

Furthermore, neural activation patterns examined using functional magnetic 

resonance imaging in brain regions associated with value and reward (the prefrontal 

cortex and striatum) along with regions associated with theory of mind and social 

cognition (the temporoparietal junction, posterior cingulate cortex, and angular gyrus) 

reflected allocentric option valuation, choices, and estimated computational modeling 

parameters. Together, the research presented in this thesis describes allocentric 

effort decisions as a discriminant phenomenon, provides computational modeling of 

how allocentric decision makers value the tradeoff between effort and compensation, 

and offers physiological evidence of the related cognitive processes.  
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Definitions & Abbreviations 

 

Decision making (DM) – the process of evaluating options and choosing a 

preferred option 

Decision maker – the agent choosing the preferred option 

Options – potential outcomes that would result from a decision if chosen 

Choice – the act or result of selecting a preferred outcome 

Outcome – the consequential action(s) or event(s) mandated by a choice. 

Outcomes can be costly, beneficial, uncertain, or conditional. Furthermore, 

outcomes may contain bundled events representing combinations of costs and 

benefits. 

Social DM – decisions that have outcome externalities beyond the decision 

maker. 

Sociocentric DM – a type of social decision making where the tangible outcomes 

are shared by the decision maker and one or more other agents. These types of 

decisions may be interactive or non-interactive. 

Allocentric DM – a type of social decision making where the tangible outcomes 

are bestowed to an agent other than the decision maker. There may be social 

externalities, such as reputation and accountability that affect the decision maker. 

Egocentric DM – decision making where the outcomes are wholly incurred by the 

decision maker 

Accountability - the state or belief of needing to justify or explain one’s thoughts, 

feelings, or actions to one or more agents. 
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Neuroanatomy: 

Anterior (a)- forward portion of a neural region. Forward refers to the x-axis 

dimension with anterior being closer to a standing person’s face. 

Posterior (p)- rear portion of a neural region. Rear refers to the x-axis dimension 

with posterior being closer to a standing person’s back of the head. 

Ventral (v)- Underneath portion of a neural region. Underneath, inferior, or lower 

refers to the y-axis dimension with ventral being closer to the chin 

Dorsal (d)- Upper portion of a neural region. Upper, superior or greater refers to 

the y-axis dimension with dorsal being closer to the crown 

Medial (m)- Inner portion of a neural region. Inner refers to the z-axis dimension 

with medial being closer to the center of the brain. 

Lateral (r, l)- Outer portion of a neural region. Outer refers to the z-axis dimension 

with lateral being closer to the exterior of the brain. There are two lateral aspects, 

denoted left and right. Left and right are labeled from the perspective of the brain 

from posterior to anterior. 

fMRI – functional magnetic resonance imaging 

ROI – region of interest 

PFC – prefrontal cortex 

ACC – anterior cingulate cortex 

PCC – posterior cingulate cortex 

SMA – supplementary motor area 

TPJ – temporoparietal junction 
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1 Introduction & Literature Review 
1.1 Aim and Research Question 

This thesis presents research collectively aimed at understanding the 

cognitive processes associated with decisions where an agent other than the 

decision maker receives the outcomes – referred to here as allocentric decisions. 

The research focuses exclusively on decisions that require the recipient to exert 

effort and actively participate to earn monetary compensation. To fully explore the 

mechanisms underpinning these decisions, allocentric choices are examined at 

the levels of behavioral phenomena, computational cognitive modeling, and 

neural activity. The connection of these three levels brings a fuller picture of 

allocentric decision making into view. Allocentric choices are contrasted with 

egocentric choices to establish the discriminant cognition responsible for the 

evaluation of allocated outcomes. Furthermore, allocentric decisions are 

examined under the moderation of social accountability to compare the 

dissociable social presence of an observer from an active recipient. 

1.2 Motivation 

Decisions are ever-present. They are integral to free-market capitalism, 

efficacious democracy, Information Era social interactions, and many other facets 

of modern life. Trading time, effort, and ability in exchange for goods, services, 

and social capital requires decision making processes, either consciously or 

unconsciously. The reader is currently engaged in an autological example of a 

tradeoff decision: choosing to continue reading this introduction may result in the 

bookmark://_Toc489189824/
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benefits of learning new information, but at the cost of wading through 

pretentious meta-examples.  

Decisions are not only common, but necessary and important. The 

passage of time and a competitive natural environment impose scarcity 

constraints that force all organisms to make tradeoffs, sacrificing one scarce 

resource for another. Organisms flourish despite these constraints by making 

decisions. Decision making is the process of weighing and selecting from 

possible outcomes. Organisms must choose a location to search for food or 

when to flee from danger, who to mate with, and many other decisions crucial to 

both individual and species survival. While decision making is not unique to 

humans, due to the aforementioned resource constraints, the scope of this thesis 

pertains only to human decision making. 

Humans make important decisions with more extensive consequences 

than individual survival. As social animals, humans can organize themselves into 

groups capable of incredible and unique feats of social will: erecting monuments, 

waging war, and voyaging to the moon. Yet much of decision making research 

examines independent choice behavior in a social vacuum whereby the decision 

maker alone receives the outcomes – both benefits and costs – of his or her own 

decision. However, humans embedded in social networks allocate or bestow 

decision outcomes to other agents, social groups make decisions that impact 

rival or allied groups, leaders make decisions for followers, and partners make 

decisions for each other. Furthermore, such decisions are often unilateral. For 

example, politicians create laws and policies governing individuals in 
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socioeconomic classes and geo-political regions to which they do not belong. 

Parents must make health and lifestyle choices for their children, and only later 

will children reciprocate. Medical proxies and doctors choose between risky 

surgical procedures and lifetime symptom management, each with crucial quality 

of life implications for an incapacitated patient. Understanding distal social 

decisions is only growing in significance as an increasingly connected and 

specialized Network Society emerges through the rise of digital new media, neo-

tribal affiliations, and rapid communication methods (Castells, 2011; Dijk, 2012; 

Maffesoli, 1995). Using technology, the scope of social decisions is growing as 

information can now be transmitted from around the globe, aggregated, and 

mobilized into high-impact outcomes with ever-increasing speed. 

In the workplace, social decisions are intrinsic to the nature of 

organizations. Organizing human agents for a single purpose requires 

coordination, direction, and specialization afforded by a hierarchical structure 

where decision makers direct agents other than themselves. For example, CEOs 

and managers make strategic decisions that influence individuals throughout and 

beyond their firm with employees, customers, and stakeholders all sharing the 

outcomes. Employees may even be assigned tasks by managers in another 

country, despite being organizationally and geographically distant. Social 

influence can affect more than the outcome incurred by the recipients. Social 

pressure can operate as non-economic control measures as well. For example, 

CEOs make strategic decisions on behalf of stakeholders, but may face pressure 

from the general public or community stakeholders who are not directly affected 
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by the choice if the decision is unpopular. Firms with inappropriate hiring 

practices or those that source materials unjustly may be the subject of social 

media campaigns or in-person protests. 

Management scholars have identified the importance of social actors in 

management decisions. The framework for identifying the roles in managerial 

social decision making have been codified in Agency Theory and the principal-

agent problem (Eisenhardt, 1989; Jensen & Meckling, 1976). A principal-agent 

problem exists when an agent acts on behalf of the principal, but is compelled by 

personal preference to act against the desires of the principal thus creating a 

conflict of interest. Much of agency theory scholarship concerns itself with 

egocentric interests and governance such as risk attitudes, compensation, and 

performance. Recently, scholars have expanded their scope to investigate how 

agents and principals evaluate actions embedded in social contexts (Wiseman, 

Cuevas-Rodríguez, & Gomez-Mejia, 2012). Two important types of social 

influences are apparent in decision making: 1) the social relationship between 

the decision maker and the decision recipients and 2) the greater impact of 

outcomes embedded in existing social networks. Decisions may or may not 

reflect on the decision maker’s reputation or social standing. Often, the 

complexity of real world human social networks makes it difficult to distinguish 

the effects of one type of social influence from another. For example, a mid-level 

manager must make decisions for her employees and justify these decisions to 

her supervisor. Assigning additional tasks to the employee will please the 

supervisor with cost savings afforded from the additional labor efficiency, but 
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negatively strain the employee. If the other employees hold the decision maker 

accountable, this will negatively affect the relationship between management and 

employees. These two relationships – one with the supervisor and one with the 

employee - may present simultaneous, competing interests manifested through 

social relationships. 

To study the effects of social influence on decision making, scientific rigor 

is needed to specify what is meant by a social interaction, behavior, or influence. 

Behavioral choice experiments offer several key advantages for studying social 

interactions using human participants in a controlled environment. Experimental 

controls limit potential confounds inherent in the study of social decision making. 

For example, to control the identity of a decision recipient, experiments may use 

a confederate to receive the decision outcomes, recruit specific participant 

pairings such as friends or coworkers, or anonymize the recipient altogether. 

Each design has specific benefits for studying social decisions. Studying specific 

participant pairings can lead to comparison between relationships, while using a 

common confederate or anonymous other disentangles decision preferences 

from relationship effects.  

Furthermore, choice experiments have proven useful for understanding 

and comparing the underlying mechanisms of decision making. Are the decision 

processes for evaluating potential losses the same as potential gains (Kahneman 

& Tversky, 1979)? Under what conditions is known risk the same as unknown 

risk (Curley, Yates, & Abrams, 1986)? Is waiting for money the same as working 

for money (Sugiwaka & Okouchi, 2004)? The various components of such 
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decisions have been investigated using well-designed experiments. As 

researchers push to integrate findings from behavioral choice experiments into 

existing management theory, the field has grown to include experimental findings 

of interest to both management scholars and practitioners (Larraza-Kintana, 

Wiseman, Gomez-Mejia, & Welbourne, 2007; Martin, Washburn, Makri, & 

Gomez-Mejia, 2015; Wiseman & Gomez-Mejia, 1998). The research presented in 

this thesis follows in this vein focusing on decisions that managers commonly 

face in practice. 

Organizational decision makers face several important types of decisions 

including whether to make risky investments, when to launch a new product, or 

how to allocate human resources. To do so, decision makers must calculate the 

value of potential outcomes and choose the best option for the organization. The 

process of valuation is complex and dependent not only on external stimuli such 

as choice options, but also the decision maker’s past experiences and 

preferences. How choice options are valued is an important mechanistic question 

for researchers, yet little is known about how decision makers value options for 

another agent. To delve into the cognitive mechanisms responsible for valuation 

on behalf of another agent requires examining multiple aspects of the decision 

process in conjunction. The neuroeconomic approach to decision research 

utilizes multiple methods that complement strengths and weaknesses of each 

other. In combining multiple methods of study, individual layers of choice 

behavior can coalesce to provide a holistic understanding of decision making as 

a complex information processing system (Glimcher, 2004; Glimcher & Fehr, 
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2013). Using economic theory, computational modeling, and neuroimaging, the 

research presented in this thesis aims to provide a robust initial exploration of 

social decision making. Given the recent emergence of neuroeconomics as an 

integrated field, a brief overview and history is provided in the following section.  

1.3 Neuroeconomic Approach to the Study of Decision Making 

The neuroeconomic approach to investigating decision making is a 

multilevel, interdisciplinary approach aimed at understanding the cognitive 

processes of decision making. Neuroeconomics describe decision making as a 

complex information system following a model developed by the neuroscientist 

David Marr (Marr & Vision, 1982). According to Marr, a tri-level model describes 

the processing of information commonly referred to as the computational-, 

algorithmic-, and implementation-level descriptions of a system (Glimcher, 2004). 

The computational-level describes the root purpose of a system defining its goals 

and serves as a guiding principle of functionality. The algorithmic-level describes 

how an information system accomplishes its computational purpose and 

organizes itself. The implementation-level describes the physical manifestations 

of the functions necessary to achieve the computational purpose per the 

algorithm. This approach has led to advancement in the holistic understanding of 

decision making (Fehr & Camerer, 2007; Rangel, Camerer, & Montague, 2008). 

The study of each level requires a unique toolset while neuroeconomics 

provides the organization to integrate information from these disparate methods. 

The computational level relies on economic theory that has been validated with 

robust behavioral validation to serve as the driving organizing force of an 
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investigation. Theory and behavior phenomenon are closely intertwined as one 

cannot exist without the other. Algorithm-level understanding stems from 

representing logical frameworks that can explain behavior while abiding robust 

computational principles. Cognitive computational modeling borrowed from 

psychology creates testable hypotheses of latent mechanisms and constructs. 

Finally, implementation-level explanations rely on the physical manifestations of 

cognition in the brain. The following sections highlight some of the theories and 

methods used in a neuroeconomic approach and explicate the reasoning behind 

their application to decision making. 

The computational-level relies in economic theory. Traditionally, 

researchers have viewed human decision making through an economic lens 

where decision makers are economic agents attempting to find benefit from 

scarce resources while minimizing associated costs. Economic theory describes 

decision makers as rational agents with consistent and well-defined preferences. 

Axioms are economic rules that define a series of choices as rational. For 

example, if a decision maker prefers a block of cheese to a bottle of wine, this 

person would not later trade the block of cheese for a bottle of wine. This staple 

of rational decision theory is known as the Weak Axiom of Revealed Preference 

(Samuelson, 1938). 

When agents are rational, repeated decisions between one choice option 

and several others can reveal value estimates of a choice option’s value. This 

method of eliciting preferences through repeated choices is essential for testing 

economic theory using real human decisions. Economic decision experiments 
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use human participants’ choice behavior in controlled environments to test choice 

theory predictions. Choice options can be consumable goods, money, events, 

actions, or any combination of these presented as a bundle. Importantly, even 

uncertain choice options have value (Von Neumann & Morgenstern, 2007). This 

is an important caveat for incentivizing participants in choice experiments. Not 

every decision must necessarily reflect a certain reward, but real money 

incentives are important, particularly for reducing socially-desirable responses 

(C. F. Camerer, Hogarth, Budescu, & Eckel, 1999; V. L. Smith & Walker, 1993). 

Choice experiments also rely on the assumption that more money is always 

better based on the assumption that money has a positive, monotonic utility 

function. Importantly, economic theories can fall into one of two groups: 

descriptive (positive) or prescriptive (normative). Rational choice theory and 

expected utility theory are prescriptive theories that dictate what an individual’s 

preferences should be by establishing a formalized rule set for choice behavior. 

Using these basic assumptions, rational choice theory can classify an immense 

number of decision situations as rational or irrational. 

A rational actor is one that exhibits preferences consistently across 

choices. In social decision making, this becomes complicated. However, in a 

"social vacuum", a rational person making an allocentric decision would attempt 

to perfectly match outcomes with the preference of a recipient. Having no 

information about the recipient's preferences, the decision maker might attempt 

to minimize cognitive dissonance (Festinger 1957) about her own preferences by 

assuming the recipient shares her preferences identically. In this case, a rational 
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actor would exhibit no differences between egocentric and allocentric decisions 

ceteris paribus. However, a decision maker’s self-perception may alter this 

assumption. A decision maker that wants to preserve a self-image of being 

unique, risk-seeking, or exceptionally hard-working relative to others, may adjust 

allocentric decisions to keep this self-image intact and reduce cognitive 

dissonance. 

However, rational choice theory is not without criticism. One critique is 

rational choice theory only aims to describe and assess choice behavior and not 

choice mechanisms resulting in a black-box explanation of decision making. 

When viewing decisions through a strictly economic lens, the decision maker is a 

self-interested, utility-maximizing agent. While early economic models have been 

robust in describing general patterns in choice behavior, early experimental 

evidence has shown the assumptions of rational choice theory do not hold in 

certain contexts. Probing the limits of standard economic theory through 

experiments produced a new wave of decision insight and extensions to theory 

under the label of behavioral economics. 

If economic theory postulates that rational decision makers always 

choose $10 over $2, behavioral economics asks the question “when is $2 more 

valuable than $10?”. Pioneering studies showed that certain cost factors 

influence decision makers’ perception of outcomes in ways that are not predicted 

by rational choice theory, but are not “irrational” in the lay sense. Several 

important examples come from the work of Daniel Kahneman and Amos Tversky 

and their exploration of choice heuristics and biases that lead decision makers to 
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reverse their established preferences. For example, framing the same choice 

option as either a potential gain or a potential avoidance of loss can revert risk 

averse decisions into risk seeking decisions (Kahneman & Tversky, 1979; 

Tversky & Kahneman, 1992). Another important bias occurs when subsequent 

decisions are influenced by perceived default choices or initially presented 

options. These two examples, known as framing effects and anchoring bias 

respectively, exemplify how individual decision makers are sensitive to context 

and experience. Biases such as these are more than theoretical quirks, they 

have real impacts in the market (C. F. Camerer, 2004). For example, the 

endowment effect is a bias where individuals require more compensation for a 

good in their possession than they would pay to acquire the good (Carmon & 

Ariely, 2000; Thaler, 1980). Endowment effects describe an intrinsic 

disequilibrium that when extrapolated to a market breaks fundamental economic 

tenets that supply and demand converge at a common price. Choice behavior 

influences trade markets and shows individual decision makers can hold 

inconsistent preferences for the same economic good. 

Preferences for a choice option reflect a decision maker’s valuation of 

that option. However, understanding how an individual creates internal valuations 

is beyond the capabilities of rational choice theory and the computational-level. 

The algorithmic-level description of decision making focuses on how decision 

making occurs with regards to constructs and cognitive mechanisms. Cognitive 

mechanisms of decision making are internal, mental processes by which a 

decision maker (1) evaluates choice options and assigns each option a 
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subjective value before (2) comparing potential options and selecting the action 

or decision outcome (Glimcher, 2008; Rangel et al., 2008). Option valuation 

integrates the costs and benefits of a potential outcome into a subjective value 

representation of that choice option. In many choice studies, the benefits are 

monetary rewards, but can also be consumption goods like movies (Knutson, 

Rick, Wimmer, Prelec, & Loewenstein, 2007), lottery entries (Christopoulos, 

Tobler, Bossaerts, Dolan, & Schultz, 2009), or arousing images (Prévost, 

Pessiglione, Météreau, Cléry-Melin, & Dreher, 2010). Examples of common cost 

factors include risk, ambiguity, lost time, compensation, or effort. In many 

neuroeconomic stimuli presentations, a cost factor is paired with a reward to 

create bundled choice options with cost and reward varying orthogonally. To 

choose between these options, decision makers must evaluate the tradeoff 

between cost and reward. 

Option selection requires comparison of available options. This is 

straightforward when comparing like one-attribute options ($2 vs. $10 or 1 apple 

vs 2 apples), but becomes more complicated when choice options are multi-

attribute (1 large, red apple vs. 1 small, green apple), bundles (a $2 cost in 

exchange for 1 apple vs. a $3 cost in exchange for 2 oranges) or conditionally 

dependent on other events (a 50% chance to win $5 vs. a 10% chance to $50). 

Researchers have theorized that comparison relies on a common representation 

of options (Levy & Glimcher, 2012; Ruff & Fehr, 2014). How a decision maker 

cognitively represents options and uses comparison strategies falls outside the 

purview of economics. The shift from describing choice outcomes to describing 
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internal decision processes mirrors psychology as field shifting from behaviorism 

to the cognitive revolution. Neuroeconomics borrows the methods of 

computational cognitive modeling from psychology to link cognitive 

representation with decision behavior. 

Computational models represent latent cognitive processes with 

estimated parameters (Sun, 2008). The models are validated by their ability to 

explain and predict behavioral choice data. A prime example of this approach 

comes from discounting models. Discounting models are mathematical 

algorithms representing how the rewards of a potential decision outcome devalue 

as a cost factor increases. The discounting model estimates the subjective value 

for each possible outcome. By comparing multiple valuation models to the same 

data set, computational modeling is an efficient way to simultaneously compare 

many hypotheses about cognitive processes associated with valuation. The 

estimated values of all possible outcomes are weighted against each other to 

determine “the winner” or highest-value option. A prolific algorithm for comparing 

choice options is the SoftMax decision rule which compares exponentiated 

subjective value ratios. The ratio, which is standardized between 0 and 1, reflects 

the probability that a decision maker will choose a particular option from a set of 

all possible options. The model’s predicted choices are validated via comparison 

with real behavioral choices. 

However, computational modeling also has notable weaknesses. 

Representing “unknown cognitive processes” with parameters is convenient, but 

as with all modeling techniques, is only an estimation and is susceptible to 
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misappropriation or misapplication. For example, overfitting occurs when a model 

too closely mirrors a sample data set and results in a model that is not 

generalizable to the population. An overabundance of free parameters could 

reflect complex cognitive processes or simply random data. To prevent this, 

several measures must be taken. Models should be validated across multiple 

participants’ choices and ideally across multiple choice scenarios. It is also 

important to compare multiple models using an information criterion that 

accounts for the number of parameters used to preferentially retain more 

parsimonious models. Additionally, it is important that cognitive models reflect 

physical processes described at the implementation-level. In Marr’s tri-level 

framework, the physical processes should reflect these abstract algorithms in 

function and form. 

For cognitive processes, the physical manifestation exists in the brain. 

Tracing variance in model predictions across neural activity provides validation 

and context to model parameters. Likewise, variance in specific parameters can 

be linked to specific neural processes. Cognitive processes are localized both 

spatially and temporally in the brain. Cognitive models can provide a priori 

hypotheses about neural responses to stimuli and, in turn, be informed by neural 

correlates. Biological evidence does more than simply cross-validate cognitive 

modeling predictions. Understanding underlying biological processes has 

provided insights into decision making behavior (Bossaerts & Murawski, 2015; 

Saez, Set, & Hsu, 2014). A recent example of this bottom-up approach, 

discovering whether the brain uses universal or context-specific reward signals is 
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a generative finding that expands economic theories of substitute goods into 

substitute utility. Analysis of neurotransmitter differences in the brain has shown 

correlation with learning rates and strategy formation in competitive social games 

(Set et al., 2014). 

Another important neurologically driven theory is that of the “social brain”. 

The Social Brain Hypothesis stems from evolutionary anthropology and refers to 

a distinct brain region or network functionally dedicated to interactions with other 

agents (Dunbar, 2003, 2009; Dunbar & Shultz, 2007). The existence of such a 

region underlies theories of social and cultural evolution in humans and helps to 

explain the extraordinary social intricacies of human society. Group selection 

theories posit that cohesive groups may be more successful at fending off threats 

making group survival the aggregated level at which evolutionary selection 

occurs rather than the individual (Grafen, 1984; J. M. Smith, 1964; Wilson, 1975). 

Adapting a social brain, cultivating culture, and establishing social norms may be 

coevolutionary threads in the fabric of humans’ success. For example, how a 

decision maker manages relationships with others and how each agent 

contributes to essential effort tasks like gathering food or constructing shelter has 

larger scale implications for the efficiency and success of that population. 

Understanding the role of the social brain in decision making is crucial for 

developing further theory and insights into social behavior. 

Overall, these three approaches – behavioral economic, cognitive, and 

neurological – lean on each other to form a stronger and more complete 

understanding of phenomena. This interdisciplinary triangulation spawned the 
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field of neuroeconomics that aims to improve holistic understanding of decision 

making. The field has made great strides studying the mechanisms underpinning 

choices and the environmental contexts that can influence these choices. 

Important environmental contexts that have already been alluded to are social 

contexts. The next section reviews prior literature in social decision making and 

winnows this broad concept into discrete concepts using established frameworks. 

1.4 Social Decision Making 

Social decisions require selection from outcomes that entail externalities 

for agents other than the decision maker. These outcomes can be both tangible, 

like monetary rewards, or intangible, like social standing or prestige. Social 

decisions necessitate a relationship between decision makers and outcome 

recipients, often pitting the preferences of the individual at odds with social 

norms, cultural tenets, or the greater, common good. However, the “common 

good” and adherence to social norms do not have discrete representation like 

money or consumption goods. Rather these intangible outcomes are valued 

subjectively in the perception of the parties to the decision. A decision maker can 

be assumed to have full knowledge of her own preferences, but cannot fully 

comprehend the preferences of decision recipients. The inherent uncertainty 

between local and global social values creates tension between the decision 

maker and other agents. This tension between an individual decision maker and 

the social recipients of the decision outcomes is reflected in The Fundamental 

Social Dilemma: 
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“All social relationships involve the repeated dilemma … of identifying and 

contributing effort and personal resources to a social or organizational entity to 

accomplish goals and better outcomes and a self-identity that incorporates a 

broader social meaning than could ever be achieved alone. On the other hand, 

identification with and sacrifice for a group, organization, or society can limit 

individual freedom of action, invite exploitation, and open the door to rejection 

and loss of identity.” (Lind, 2002) 

The Fundamental Social Dilemma represents the broad-scope and 

dynamic relationship between an individual agent (or decision maker) and the 

social environment in which he or she operates. Social relationships can 

moderate decision making in several ways. For example, the relationship 

between the decision maker and recipient(s), the visibility or transparency of the 

interaction between them, or the type of decision being made can all impact the 

decision process. When considering social moderators, two primary mandates 

for investigation emerge: (1) contrasting how social decision making differs from 

non-social decision making and (2) understanding the social contexts and 

influences that affect decision mechanisms. The following section addresses 

these two mandates using established conceptual frameworks to identify and 

parse key aspects of social decisions and subsequently tailor the broad domain 

of social decision making to a specific and focused research theme. 

Foremost, social decisions require discriminant validity from non-social 

decisions. There may exist mechanistic differences between social and non-

social decisions. Recent research has shown that social and non-social decisions 



A l l o c e n t r i c  E f f o r t  D e c i s i o n s | 34 

 

likely leverage many of the same neural mechanisms when comparing the value 

of choice options regardless of the identity of the decision recipient (Dunne & 

O’Doherty, 2012; Nicolle et al., 2012; Zaki & Ochsner, 2011). These findings 

support an “extended common currency” theory that not only are different types 

of decision outcomes comparable such as gambles and certain outcomes, but 

also decisions that target different recipients (Ruff & Fehr, 2014). However, this 

does not preclude the social brain hypothesis entirely. The social brain may 

leverage existing decision-making pathways in the brain to evaluate latent social 

outcomes. Differences could also arise from the computational algorithms for 

ascribing value to options may differ in form or carry different weights to account 

for social factors. For example, a decision maker may be primarily motivated to 

choose a job based on monetary compensation because she is the recipient of 

that choice attribute; however, when choosing between charities to make a 

monetary donation, the amount of the donation requested may be a secondary 

concern to the charity’s cause. In this way, social factors moderate how decisions 

are made while still conforming to an extended common currency. To rigorously 

investigate these differences in social valuation processes, appropriate 

frameworks are required for classifying social influences and contexts. 

Organizing the myriad types of social influences on valuation requires a 

descriptive framework. Researchers have identified three levels of social 

valuation: 1) the value of the outcomes to the decision recipients, 2) the value of 

the decision recipients to the decision maker, and 3) the value of the outcomes to 

cultural and social norms and the role it plays in “reinforcing social constellation” 
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(Ruff & Fehr, 2014). For comparison between social and non-social decisions, 

the value of outcomes to the decision recipients is an accessible starting point, 

as both social and non-social decisions can evaluate similar outcomes without 

affecting other mechanisms. Additionally, the subjective value of options can be 

readily compared when decisions use monetary rewards because they have the 

same initial, objective value. Thus, the research presented in this thesis focuses 

on differences in valuation of tangible outcomes when the recipient of those 

outcomes changes. 

Another key aspect of social decision making is identifying and controlling 

aspects of the relationship between decision maker and the recipient(s) of the 

decision outcomes. To this end, a behavioral definition for decisions provides 

concrete labels based on the possible combinations of decision maker and 

outcome recipient relationship. This thesis employs a tripartite theory that 

identifies (1) egocentric, (2) sociocentric, and (3) allocentric decisions. Figure 1.1 

presents a visual description of each type of decision using effort and money 

outcomes. 
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Figure 1.1: Tripartite Model of Decision Making 
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Egocentric decisions are made by a single agent as decision maker who 

receives the entirety of the outcomes. Egocentric decisions are usually, but not 

necessarily, private and made by an individual independent of outside influence 

or oversight. However, recent research has highlighted the important role of 

social advice in these decisions (Bonaccio & Dalal, 2006; Brooks, Gino, & 

Schweitzer, 2015; Harries & Harvey, 2000; L. Kray & Gonzalez, 1999). Most 

neuroeconomic research has investigated egocentric decision processes. 

Sociocentric decision outcomes affect both the decision maker and others 

either simultaneously or iteratively. This type of decision making has been well 

studied within the framework of behavioral game theory, which provides a strong 

theoretical understanding of strategic interactions between players in a rule-

based system (C. Camerer, 2003). In laboratory experiments, social decisions 

are often operationalized through behavioral games where players (participants, 

confederates, or computers) interact with each other to maximize real outcomes, 

often exchanged for monetary compensation. The outcomes can be rewarding or 

costly depending on the game design and choices made by participants. Games 

can also be iterative, played repeatedly with the same participants, or single-shot 

where the all outcomes are resolved after one round of play and new participants 

enter the game for the next round. 

Many considerations and assumptions go into the design of a game to 

ensure it reflects social interaction outside of the laboratory. Any given game has 

several different forms and by tweaking the parameters of the game’s design, 

researchers can test different hypotheses. For example, the scenario may be 
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zero-sum where no player can receive a higher outcome without another player 

receiving a lower income, or payouts can be based on chance or cooperative 

behavior. Another design consideration is if the payout structure is known for all 

players (a “perfect information” scenario) or limited in a controlled way for some 

or all players. Repeating the game for multiple iterations with the same partner 

can lead to instrumental reputation building and signaling behavior while 

changing partners on every iteration can affect choice behavior (Fehr & Camerer, 

2007; Glimcher & Fehr, 2013).  

Each of these design parameters can be modified to reflect real social 

interaction phenomenon. Research using behavioral games has made vast 

strides in understanding the role of trust in investing, bargaining and negotiation 

strategies, and individual differences in cooperative and competitive behavior 

(Fehr & Camerer, 2007; Fehr & Fischbacher, 2004; Güth, Schmittberger, & 

Schwarze, 1982; Lave, 1960; Van Lange, De Bruin, Otten, & Joireman, 1997). 

Loaning money to another agent as an investment has been modeled to reflect 

trust (Berg, Dickhaut, & McCabe, 1995). Behaviors related to fairness and 

punishment have been modeled in the third-party dictator game where one agent 

unilaterally splits a monetary gift between herself and another recipient (Fehr & 

Fischbacher, 2004). Additionally, within each game paradigm, the individual 

parameters can be varied orthogonally to determine the unique effect 

parameters. For example, payout rates for each outcome can be adjusted to 

determine the effect of monetary incentive on choice behavior. The return on 
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investment for the trustee can be altered to determine the degree to which the 

loan is a prosocial act to help another or an egocentric investment decision.  

Yet, direct comparison between egocentric and sociocentric decisions 

does not adequately disentangle the relationship between social and egocentric 

influences. Another class of decision is needed to isolate decision makers from 

tangible, egocentric outcomes. In sociocentric decisions, a decision maker’s 

personal stake in the outcomes is directly correlated with the social outcomes for 

others making it difficult to parse the valuation mechanisms of outcomes for 

others against outcomes for the self. For example, many behavioral games used 

to study social decisions involve splitting a common pool of reward money 

between the decision maker and another agent (the decision recipient). This is 

common practice in the dictator’s game where the decision maker has unilateral 

power to share a reward pool, but economic incentive to hoard the entire payoff 

(Kahneman, Knetsch, & Thaler, 1986). The dictator’s game compares egocentric 

economic incentive with social desirability, norm adherence, and reputation-

building incentives. To study the impact of norms on game behavior, researchers 

manipulate the conditions of the game by affected the rules and relationships 

between the players. For example, one prominent study manipulated the social 

distance, a measure of relatedness, between players to determine the changes 

in sharing decision outcomes (Hoffman, McCabe, & Smith, 1996). However, this 

is fundamentally different from decisions for another person whereby the decision 

maker has no monetary stake in the outcome, relying strictly on social 

motivations to determine a choice for another. 
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Allocentric decisions are unilateral social decisions, where the decision 

maker is materially removed from the outcomes that are bestowed entirely to 

other agents. Other researchers have posited that social decisions can be either 

interactive or non-interactive (Utevsky & Huettel, 2015). For example, a 

marketing team deliberating over how to best implement an ad strategy uses a 

different decision-making process from a military leader administering battle 

commands to subordinates. The team likely engages each other through iterative 

communication which is one of many critical channels of social influence and has 

been shown to impact decision outcomes (Ellingsen & Johannesson, 2008; 

Johannesson & Persson, 2000). Allocentric decision making differs from 

sociocentric choices through the separation of outcome incentive from social 

influence. This separation allows for analysis of social influence and social 

outcome allocation independent of monetary incentive.  

Allocentric recipients are either individuals or groups that neither share 

nor reciprocate decision outcomes with the decision maker. Such a unilateral 

relationship limits the potential confound of future material gain through signaling 

and instrumental reputation building (“you scratch my back, I’ll scratch yours” and 

“she’s a good person so therefore deserves a larger payoff”). The foil to this is 

allocentric decisions inherently amplify the ambiguity of the choice; even if a 

decision maker has perfect information of all possible decision outcomes, she 

does not have perfect knowledge of the recipients’ preferences for these 

outcomes. How decision makers cope with unknown preferences of a decision 

recipient when evaluating choice options remains unknown. 
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Despite the ambiguity, allocentric decisions remain commonplace. 

Decision makers use internal and external cues, contextual clues, learned 

strategies, and cultural norms for guidance. Notably, allocentric decision making 

does not mean the complete removal of relationship influence from decision 

making. There are intrinsic rewards inherent in social interaction. For example, a 

decision maker may still feel some empathy for the recipient or kinship, and 

indirectly feel generous by bestowing a positive outcome. Other aspects such as 

feelings of responsibility, control, or dominance, may influence how a decision 

maker values potential options (Pratto, Sidanius, Stallworth, & Malle, 1994). For 

example, a mid-level manager may decide differently when choosing outcomes 

for employees under her supervision compared to outcomes for her own 

supervisor. Identifying aspects of social relationships and their effects on 

allocentric decisions is a crucial component of understanding overall social 

decision making. 

Furthermore, the circumstances that place a decision maker in the 

position to choose for another agent are important contextual factors that may 

affect the relationship between decision maker and recipient, or influence choice 

outcomes. Researchers have identified three important circumstances for 

consideration (Harvey, Twyman, & Harries, 2006). Proxy decision makers are 

requested by decision recipients because the decision maker possesses 

expertise or resources (including proximity to a location where decisions will take 

place) that the recipients cannot provide. Legal counsel is frequently closer to an 

allocentric decision than advice. Unlike advice or consultation, allocentric 
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decisions are not weighted with another agent’s own preferences – they are 

always enforced. Surrogate decisions are made for recipients who are incapable 

of deciding for themselves. Medical patients often require surrogate decision 

makers to make crucial treatment decisions. These decisions are often made by 

next of kin or established surrogates who know the patient well enough to make 

somewhat informed decisions in the event of an emergency. Finally, executive 

decisions are imposed on the recipient and reflect political and organizational 

decisions that are not directly requested by the recipient (Harvey et al., 2006). 

The difference between executive and surrogate decisions is crucial and reflects 

an implicit power hierarchy of the decision maker over the recipient. To protect 

decision recipients from decision makers who do not take their preferences into 

account, organizations use control mechanisms to balance this power imbalance. 

The research presented in this thesis focuses on executive decisions due to their 

prominence in managerial settings. Control mechanisms and their 

implementation for executive decision making are discussed in section 1.5.3. 

Allocentric decision makers may use different cognitive strategies. Such 

strategies would be conscious schemas accounting for the inherent ambiguity of 

another agent’s preferences. These strategies are reflective of different cognitive 

processes for evaluating decision outcomes. Two easily identifiable strategies 

follow a “would” vs “should” dichotomy (Fernandez-Duque & Wifall, 2007; Harvey 

et al., 2006). A decision maker can (1) choose an optimal outcome in line with a 

preset criteria, heuristic, or social norms thereby choosing what the recipient 

“should” choose in this situation or (2) choose the outcome that best coalesces 
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with the recipient’s preferences based on any information gathered beforehand 

or a cognitive model of the recipient’s preferences. This second strategy selects 

an option based on what the recipient “would” choose in an identical choice and 

is also known as preference prediction or a simulation perspective in the 

literature (Faro & Rottenstreich, 2006; Hsee & Weber, 1997; Tunney & Ziegler, 

2015).  

Another cognitive difference in allocentric decisions may reside in how a 

decision maker represents decision recipients. One method for approximating 

another agent’s preferences may be anchoring on a decision maker’s own 

preferences and adjusting based on perceived similarity to the decision recipient. 

This strategy relies on a form of social discounting or appraisal of social distance. 

Research has shown that genetic coefficients of relatedness may approximate 

this social distance (Ziegler & Tunney, 2012). On the other hand, preferences 

may be internally simulated and represented as distinct from the decision 

maker’s own (Tunney & Ziegler, 2015). Which strategy a decision maker 

ultimately uses may reflect individual differences or be determined by external 

factors. Given that these strategies are latent, both possibilities are considered 

without a priori hypotheses.   

The environmental context of an allocentric decision is also an important 

factor. While laboratory studies induce an artificial social environment, there are 

likely effects that carryover from the external environment and an agent’s prior 

experience. Chief among these is culture. Culture is the shared knowledge 

networks used by agents in social contexts mediated by social cognition (Y. Hong 
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& Chiu, 2001). This dynamic, constructivist view of culture describes a bilateral 

relationship between an agent’s internal cognition and external environment 

resulting in a combined effect on an agent’s behavior. The role of culture is 

inherent and intertwined with allocentric decision making as culture dictates 

social norms. Norms are the behavioral standards shared and enforced by a 

community (Chudek & Henrich, 2011). Norms provide a means for strangers to 

interact and engage, scripted responses or default behaviors in response to 

others, and guidelines for moral development in a particular culture. For example, 

an agent embedded in a culture valuing pride and honor is more likely to present 

aggressive responses to perceived threats (D. Cohen, Nisbett, Bowdle, & 

Schwarz, 1996). Further evidence from behavioral game experiments shows that 

cooperation, reputation, and punishment play varying roles in different cultures 

with some cultures even punishing excessively prosocial deviations from 

perceived norms (Herrmann, Thöni, & Gächter, 2008). The knowledge of norm-

enforcement plays a role in executive allocentric decisions, mollifying the power 

imbalance. Cultural-cognitive constructs like guilt or shame may play a 

moderating role in executive allocentric abuses by creating feelings of pre-

decision accountability (Y.-Y. Hong & Chiu, 1992).  

The next section reviews prior findings in the literature as they pertain to 

egocentric and allocentric differences in decision valuation.  
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1.5 Literature Review  

1.5.1 Allocentric vs. Egocentric Decision Making 
Allocentric decision making has been shown to differ from egocentric 

decisions in several types of choices. In laboratory studies, experiments utilize 

tradeoff decisions to assess differences in choice behavior. Most studies are 

concerned with the tradeoff between risk or loss aversion and monetary reward. 

A burgeoning literature has emerged examining allocentric temporal discounting 

and allocentric consumer choices. The following sections review these studies 

based on decision types while highlighting important contextual factors and 

experimental design considerations of allocentric – egocentric differences. 

When considering uncertain or risky options, decision makers predict 

others will prefer riskier options than themselves. Many studies require 

participants to make binary choices between receiving a certain amount of 

money or a 50-50 gamble for double-or-nothing payout. These choices can be 

framed as earning an amount of money or avoiding a monetary loss. In one of 

the first studies to directly measure allocentric – egocentric differences, four 

experiments placed participants into groups deciding for either unknown 

classmates, unrelated strangers, or themselves and their friends (Hsee and 

Weber 1997). The results showed egocentric decision makers were more risk 

averse than they predicted strangers to be. Stated another way, decision makers 

expected others to choose uncertain options more often than they would choose 

for themselves.  
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This early study highlights important contextual factors including the 

identity of the decision recipient playing a crucial role in allocentric decision 

making. Interestingly, the risk preference discrepancy was observed when 

presenting choice options for both gains and losses of imagined monetary reward 

but only when the recipient was an imagined stranger. While choices were 

incentivized for prediction accuracy, the actual choice options were hypothetical, 

using large sums of money. Additionally, these were preference predictions and 

not enforced choice outcomes, inferring a potential bias towards the cognitive 

strategy of “would” decisions.  

Studies investigating risk taking decisions for others, as opposed to 

preference prediction, have used similar binary choices between imagined 

monetary rewards however decisions were framed as for another person rather 

than a prediction of their behavior (Stone et al. 2002). One option was an 

uncertain gamble and the other option was a certain monetary reward. In one 

experiment, the choice options were a gamble with outcomes of a large monetary 

payoff or nothing vs. a certain amount of money equal to the expected value of 

the gamble. Across fifteen trials, choices were made with varying probability of 

winning the gamble and adjusted expected value amounts. Choices were made 

for the decision maker to collect the outcomes either privately, with a partner 

watching or for a partner to receive who was present in the room. Analysis was 

conducted by comparing the number of gambles selected. The data show no 

difference between risky decision counts for public allocentric decisions, private 

egocentric decisions, and public egocentric decisions. The null result held for the 
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second study when decisions were made about the probability of a skill task 

compared with a dice game for real money payouts instead of abstract gambles 

for imagined payouts. The contrasting evidence in allocentric predictions 

compared with egocentric action reflects the lack of understanding of allocentric-

egocentric differences and the importance of clear study design and rigorously 

controlled experimental conditions including how the decision outcomes are 

implemented and the identity of the recipient. 

In contrast, risk aversion differences are apparent when decision makers 

choose real monetary options for anonymous fellow laboratory participants. 

Using a multiple price list comparison task (Holt & Laury, 2002) and a computer-

simulated sealed auction game to elicit risk attitudes, researchers have observed 

differences in behavioral choice patterns and estimated risk aversion 

(Chakravarty, Harrison, Haruvy, & Rutström, 2011). While both allocentric and 

egocentric decision makers were risk averse compared to risk-neutral model 

predications, the allocentric decisions were significantly less risk averse. The 

studies were conducted using a within-participants design, meaning participants 

acted as both egocentric and allocentric decision makers. Within-participants 

designs strengthen the power of the study by controlling for individual risk 

attitudes. While this study provides reinforcing evidence for risk aversion 

differences between egocentric and allocentric decision making, the differences 

appear dependent on how decision stimuli are framed or presented to 

participants.  
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How decisions are framed is an important consideration in decision 

making research. If stimuli explicitly refer to a cognitive strategy for selecting or 

evaluating options, it may bias participants in favor or against the highlighted 

strategy. For example, passive viewers of a confederate participant engaging in a 

risky card-playing game were asked what the confederate should do on the next 

turn -  either take further risk or retire with the already won monetary earnings? 

The participants who viewed the confederate chose not to continue playing the 

risky game where participants who played the game themselves preferred the 

risk of continued play (Fernandez-Duque & Wifall, 2007). This effect persisted 

even when a follow-up experiment split participants into two groups with one 

group asked what should the player do next and the other asked what would the 

player do next. Both should and would groups exhibited similar choice patterns 

with both being less risk averse than the decisions of participants playing the 

game.  

When making risky decisions, another important contextual factor is how 

the decision stimuli are framed. Framing effects refer to how the presentation of 

choices can alter decision making (Kahneman & Tversky, 1979). Prior research 

has shown that framing effects interact with differences in egocentric and 

allocentric decision making (Ziegler and Tunney 2015). When choice options 

were presented as monetary gains, allocentric decision makers were less risk 

averse compared to egocentric decision makers. When choices were presented 

as avoiding further losses, allocentric decisions were more risk averse compared 

to egocentric decisions. Notably, the framing effect had a larger effect size on 
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egocentric decisions, but both frames significantly affected decisions for either 

outcome recipient. 

Risky decisions with regards to monetary gains and losses are common 

in management, but differences in allocentric and egocentric risk taking have 

been observed in other domains. Using social scenario decisions to study risk, 

researchers found the similar patterns of risk aversion in egocentric and 

allocentric decisions, but only when the decisions were considered “low-impact” 

and posed no lasting negative consequences (Beisswanger et al. 2003). 

Examples of the risky social scenarios used in this task include speaking to a 

stranger at a party or making romantic advances – common situations for the 

university undergraduate student participants. The stimuli used in this study were 

poised as choosing for a close, same-sex friend (allocentric) or taking 

independent action (egocentric). Their results show increased frequency of risky 

choices in both advice giving and executive allocentric decision making. 

However, differences in risk taking disappear if the choice outcomes contain 

high-impact decisions like disease or familial shame. The researchers also 

observed self-reports from participants stating that they weighed potentially 

negative outcomes more when making egocentric decisions. The negative 

outcomes are less emotionally salient when they impact other agents, creating a 

difference in emotional state or empathy gap (Boven, Loewenstein, Dunning, & 

Nordgren, 2013; G. Loewenstein, 2005). The empathy gap explanation is 

powerful and provides clear predictions for explaining decision making 
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phenomenon such as risk aversion, but is not a comprehensive theory for all 

allocentric-egocentric decision differences. 

Avoiding losses at the expense of foregoing equivalent gains is a robust 

decision phenomenon known as loss aversion (Kahneman, Knetsch, & Thaler, 

1991; Tversky & Kahneman, 1991). An empathy gap explanation predicts that 

egocentric decisions would show greater loss aversion than allocentric decisions 

because the egocentric loss is more emotionally salient. There is mixed evidence 

that deciding for other agents reduces loss aversion, particularly when 

considering domain-specific choices and different types of stimuli.  Researchers 

conducting an experimental study in Denmark showed reduced loss aversion 

with a multiple price list task, but notably not pure risk aversion, when deciding 

for others. Four choice conditions were used in the study to provide a range of 

contrasts including egocentric, shared outcome, hypothetical, and pure 

allocentric choices. Analysis was conducted using structural equation modeling 

controlling for gender, age, education, cognitive ability, and cognitive reflection 

(Andersson, Holm, Tyran, & Wengström, 2014). The researchers found an overall 

8% increase in expected returns when deciding for others due to the increase in 

loss-neutral decision making based on expected value returns. 

Researchers using alternative stimuli presentations of uncertain monetary 

gambles found similar results in a student population. In three decision tasks, 

participants made both egocentric and allocentric decisions, but exhibited 

reduced loss aversion when deciding for others (Mengarelli, Moretti, Faralla, 

Vindras, & Sirigu, 2014). The researchers solicited a willingness-to-pay response 
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from participants to determine how much compensation was necessary for a 

ticket to a lottery with known odds. The willingness-to-pay measure provides an 

explicit, continuous indicator of loss-aversion compared to implicit estimations 

from repeated decisions. Additionally, the experiment design controlled for the 

identity of the decision recipient for all allocentric choices by utilizing an 

anonymous confederate in another room and providing decision makers with no 

information on risk preferences. This is crucial and separates risk attitude 

prediction from decision making. 

Anonymity is an important consideration in allocentric decision making. 

Early research on bargaining behavior utilized anonymous participants to control 

for the intricacies inherent in human social relationships (Siegel & Fouraker, 

1960). Recent research utilizing the dictator’s game has also found evidence that 

anonymity between players influences decisions (G. Charness & Gneezy, 2000). 

When player names were known, the amount split from a reward pool was 

greater on average and contained a higher number of even (50-50 reward 

distribution) splits. When players remained anonymous, the amounts split were 

significantly reduced with more 100-0 splits of the reward pool.   

Loss aversion can be operationalized without monetary choice outcomes 

(Tversky & Kahneman, 1991). When choice options present physically harmful or 

dangerous outcomes, loss aversion or harm aversion differences in allocentric 

decision making become ambiguous. In a scenario choice task, student 

participants felt they were more likely than other college students to get out of a 

taxi driven by a drunk driver (G. F. Loewenstein, Weber, Hsee, & Welch, 2001). 
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This decision came at the cost of having to walk a large distance home. The 

scenario presents a tradeoff that is difficult to interpret as participants must 

choose between ambiguous, potential harm or certain effort and time cost.  

In a binary choice study using the subjective value of money to measure 

harm aversion, decision makers could forego monetary gains to avoid large 

painful shocks for either themselves or another participant. Another participant 

was used as the other agent in the study introduced through a “blind” handshake. 

The results show different estimates of valuation for another’s pain compared to 

the decision maker’s pain. Decision makers required a high money reward for 

causing others pain and a lower price threshold for their own self-inflicted shocks 

(Crockett, Kurth-Nelson, Siegel, Dayan, & Dolan, 2014).  

Real world risky scenarios often involve harm and loss. Poignant, but 

common examples come from the medical field when doctors and family 

members must make treatment decisions for incapacitated patients. A meta-

analysis of risk perception studies showed that doctors only had 66% success 

rate at predicting their patient’s medical preferences (Shalowitz, Garrett-Mayer, & 

Wendler, 2006). Such decisions can have life-altering consequences such as 

hours of arduous physical rehabilitation or risky surgery. Research has shown 

allocentric decision makers may have different preferences from the patients who 

receive medical care. In a large online study, participants were asked to imagine 

themselves as a patient, doctor deciding for a patient, director of a hospital 

deciding for many patients, or as a parent deciding for their sick child. While 

taking on their given role, they chose whether to engage in treatment that 
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mollified the probability of death from the flu or a slow growing cancer. All 

allocentric roles were more likely to choose treatment compared to the egocentric 

role (Zikmund-Fisher, Sarr, Fagerlin, & Ubel, 2006).  

Another medical decision study using more nuanced treatment decisions 

finds similar differences. In hypothetical decision scenarios investigating various 

treatment attributes, student participants were significantly more likely to choose 

treatment when making executive allocentric decisions for a loved one compared 

to both egocentric and choosing the treatment the loved one would want 

(Raymark, 2000). Treatment scenarios varied by attributes like mental and 

physical functioning, financial constraints, and pain. Interestingly, the attributes 

were not weighted differently by the participants who took on the role of 

executive allocentric decision makers akin to doctors.  

Such divergence in preferences is not specific to lay participants. In a 

study comparing doctors and lay decision makers, doctors showed greater 

egocentric-allocentric difference when considering risky treatments. Treatments 

varied in time to regain full health (immediately or after some delay) with 

changing probabilities of success. Doctors were much more risk averse when 

making allocentric decisions for their patients (Garcia-Retamero & Galesic, 

2012). Additionally, very few doctors predicted the risk preferences of their 

patients. These conflicts can create tension in the doctor-patient relationship and 

negatively impact the perceived success of medical treatment.  

Differences between egocentric and allocentric decisions are apparent, 

but inconsistent across several choice types. When making decisions between 
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monetary gambles, social action, and medical treatments, the broader context of 

the choice may be as important as the choice outcomes. Social context of 

decisions is important for understanding allocentric decisions. As such, 

researchers have proposed a social values theory of risk that relies on the value 

society places on safety, harm, and success (Stone, Choi, de Bruin, & Mandel, 

2013). While egocentric perception of risk may be represented as affective 

changes (G. F. Loewenstein et al., 2001), allocentric decisions must rely on a 

recipient conveying their risk preference emotions to the decision maker. 

Researchers have found a link between individual differences in empathy and 

allocentric risk attitude prediction (Faro & Rottenstreich, 2006). A corroborating 

study found that both long term and new partners could accurately predict 

valuations of consumer goods and medical health states better than unfamiliar 

pairs of participants (Tunney & Ziegler, 2015). Such findings highlight how social 

relationships can moderate differences between allocentric and egocentric 

decisions either through signaling or experience. 

However, preference signaling is not always possible for distant or 

anonymous decision recipients. In the absence of direct signaling, social norms 

dictate the approach to risk and loss for specific choice domains. To provide 

evidence for this theory, social relationship decisions that involved shame and 

embarrassment as possible loss outcomes were directly compared with choices 

that result in physical harm (Stone et al., 2013). Allocentric choices in these two 

domains were significantly different from each other and the corresponding 
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egocentric decisions. Importantly, differences in choice behavior between 

contexts was not driven by differences in risk preference prediction.  

In addition to the choice domain, the specific relationship between 

decision maker and recipient can influence how decisions are made. In a 

dictator’s game study with millionaire participants, greater differences in wealth 

between the decision maker and recipient lead to increased donation in a 

dictator’s game. While the dictator’s game is not a purely allocentric decision 

because of egocentric monetary incentives, it is notable that nearly half of the 

wealthy participants gave away all their potential earnings - an unusually 

generous behavior pattern in the dictator’s game (Smeets, Bauer, & Gneezy, 

2015). When paired with other millionaires as decision recipients, participants 

were far less generous. Furthermore, when recipients held some power in the 

decision and could accept or reject the proposed monetary split (known as the 

ultimatum game), millionaire participants reduced their donations to less wealthy 

recipients. This shows evidence that decision makers may take socioeconomic 

status into consideration when making allocentric choices. 

Social relationships also influence allocentric decisions when making 

temporal discounting valuations. Evidence for reduced temporal discounting in 

allocentric decisions was found (Albrecht, Volz, Sutter, Laibson, & von Cramon, 

2011). This difference was replicated but only when making decisions for an 

unrelated and unknown recipient. Temporal discounting differences between 

egocentric and allocentric decisions disappear when deciding for genetically or 

socially similar recipients (Ziegler & Tunney, 2012).  
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As noted earlier, predicting the risk preferences of unknown others has 

been shown to differ from egocentric risk preferences (Hsee & Weber, 1997). 

When deciding for unknown others, decision makers may rely more on social 

norms to make acceptable decisions rather than attempt to mentally simulate the 

preferences of an unknown person or anchor to their own preferences. However, 

a known recipient such as a friend or significant other can be mentally simulated 

with some confidence based on learned preferences or extrapolations from 

experience with the other that supersedes the information provided by social 

norms. Lived experience may override social default positions in allocentric 

decisions. 

In addition to dyad-level differences in relationships, individual differences 

in a decision maker’s cognition can also affect how allocentric decision makers 

value options. Using online survey platforms and experiments, four studies found 

evidence for cognitive moderators when comparing paying to improve one’s own 

life or the life of another individual. The studies identified construal level, 

regulatory focus, and power as significant constructs of interest in allocentric 

decisions (Polman, 2012). 

While moderators of egocentric-allocentric differences have been 

explored, mediating and mechanistic differences are less well understood. While 

this area of the literature is underdeveloped, there is some evidence for cognitive 

differences between egocentric and allocentric decision processes. Specifically, 

the processes of option valuation may function differently in allocentric decisions. 

Early studies examining the relative importance of choice option attributes reflect 
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this difference, but little work has been built around these findings. In one 

business scenario choice, participants chose to sell or lease out an inherited 

business either for themselves or for two hypothetical owners who disagree 

(Borreson 1987). In addition to the between-groups choice, participants ranked 

the hypothetical attributes of the choice outcome such as the ability to pay off 

debts, buying a better home, uncertain future income from leasing, and 

difficulties associated with leasing, based on how persuasive each attribute was 

to making the decision. The attributes were ranked differently between the 

egocentric and allocentric groups. Buying a new home in the future was more 

persuasive to the egocentric group, while concerns over the uncertain income 

during the leasing period were more important for allocentric decision makers.  

Another attribute weighting difference was found when participants were 

asked to give career advice. When giving advice, two studies showed differences 

in job attribute weighting between advice giving and egocentric decision making 

(L. Kray & Gonzalez, 1999). The attributes of choice options were presented as 

job characteristics including salary, job satisfaction, and location. Egocentric 

decision makers weighed all attributes relatively evenly compared to allocentric 

advice givers who emphasized primary attributes like satisfaction. The findings 

were replicated in students making a choice of study major given incoming 

budget cuts. Participants recommended others stay with the major despite the 

funding cuts more often than they chose to continue with their major.  

Using a similar attribute weighting paradigm, Kray found that advisors are 

more likely to choose options based on agreement with social norms rather than 
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personal preference (L. J. Kray, 2000). Additionally, advisors felt less post-

decision regret than egocentric decision makers. No significant differences were 

found between the allocentric and egocentric groups in the effort taken to 

evaluate choices. These findings point to a norm-driven response rather than 

anchoring and adjustment or empathy gap explanation for differences in decision 

processes. The authors of these studies note that advice giving is not identical to 

allocentric decision making due to framing or motivational differences between 

the two roles. However, moderating influences like social conformity and 

accountability may curb these differences. 

Understanding how norms influence valuation processes is of paramount 

importance to organizations with executive allocentric decision makers. Making 

decisions based on norms may result in suboptimal policies or outcomes if 

decision makers do not adhere to them, choose to ignore them in a culture of 

poor oversight and accountability, or are not uniform across the organization. The 

stability and consistency of decision preference norms is worth noting as several 

studies have found evidence that information becomes distorted differently 

between egocentric and allocentric decisions (Polman, 2010). In a restaurant 

selection task, decision makers rated neutral restaurant attributes such as 

location and menu iteratively until they made a choice. After making the choice, 

they again rated attributes they had either viewed prior or had not seen. The 

already viewed stimuli were rated higher after the choice for egocentric decision 

makers, while the new attributes were rated higher for allocentric decision 

makers. This difference in information evaluation implies a review process or 
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post-hoc distortion on behalf of egocentric decision makers. Early studies 

comparing allocentric and egocentric choices showed no difference in feelings of 

regret, which might otherwise be associated with post-decision information 

distortion (Stone, Yates, & Caruthers, 2002). Mechanisms that force an 

allocentric decision maker to review choices may be useful in reducing the 

difference between allocentric and egocentric decisions. Control mechanisms are 

further reviewed in section 1.5.3. 

Further study is needed to help understand the mechanisms underpinning 

egocentric-allocentric choice differences and the domains and social contexts 

that moderate egocentric-allocentric differences. The next section specifically 

addresses a new choice domain that has yet to be studied with regards to 

allocentric-egocentric decision differences and may inform the current 

understanding of allocentric decision making.   

1.5.2 Effort Decision Making 
Human and animal model decision makers prefer outcomes with lower 

effort costs, ceteris paribus (Hull, 1943). Effort costs arise inherently when 

decision makers act, both in the process of deciding and in manifesting outcomes 

(V. L. Smith & Walker, 1993). As effort costs increase, a decision maker’s 

valuation of an option decreases or discounts. Given that all actions require effort 

and all decisions result in action selection, understanding the mechanisms by 

which a decision maker values effort is important for understanding overall choice 

mechanisms. 
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Investigations into effort discounting harken back to the tradition of 

behaviorism in psychology. Using animal models and reinforcement schedules, 

animals would prefer options for food requiring fewer lever presses (Solomon, 

1948). In humans, cognitive effort is also a consideration in decision making. 

Economics generally equates physical and mental effort as both serve as generic 

costs (Camerer and Hogarth 1999). In a series of six, rigorous experiments, 

results showed that cognitive effort in the form of task switching and executive 

function also caused decision makers to discount the value of choice outcomes 

despite minimal physical effort (Kool, McGuire, Rosen, & Botvinick, 2010). Very 

rarely is cognitive (“physical”) effort disambiguated into specific subcomponents 

such as sustained duration (“endurance”) and difficulty or complexity (“strength”). 

Lay evidence exists for this separation. In willingness-to-pay experiment, 

participants exhibited a higher willingness to pay for household items that could 

be purchased preassembled, combining both the time to completion and the 

complexity of the task (Soman, 2004). Anyone who has spent an afternoon toiling 

with a toolset and poor instructions can affirm such generalized frustrations and 

tests of both mental and physical endurance. Formally, cognitive or mental effort 

is defined as “the mediator between the characteristics of a target task and 

available information processing capability and the fidelity of information-

processing operations actually performed” (Shenhav et al., 2017). Generally, 

effort discounting tasks require either or both of active physical and mental 

engagement to obtain a reward. This permits a tradeoff comparison of subjective 
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values (Shenhav et al., 2017; Westbrook & Braver, 2015; Westbrook, Kester, & 

Braver, 2013).  

The research presented in this thesis extends research on effort 

discounting by focusing on decisions that compare tradeoffs between effort and 

money for another agent. The aim is to better understand how effort is valued 

when deciding about one’s own effort compared to the effort of another. Little is 

known about how another agent’s effort is valued by an allocentric decision, 

however there is evidence that social factors are important in the valuation of 

effort. Market differences exist when effort compensation involves social rewards 

(Heyman & Ariely, 2004). When asking students to assist with a friend’s 

residential move in a hypothetical scenario experiment, researchers found that 

participants were more likely to help when more money was offered. However, 

when compensated with candy (a display of friendship) participants were always 

willing to help to a high degree. Interestingly, when the monetary value of the 

candy was presented to the participants, their responses mirrored those of 

participants who were offered cash. The researchers replicated these findings for 

cognitive effort using an intentionally boring computer task and increasingly 

difficult puzzles. The presence of monetary compensation elicits a market 

framework where decision makers began to value the degree of their efforts, 

while social compensation elicited high effort at all levels of compensation. This 

establishes an avenue for separation between social valuations of effort distinct 

from pure monetary incentives. However, this study only investigated egocentric 

valuations of effort. 
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Prior research has shown allocentric decision making differs from 

egocentric decision when choice outcomes are passive outcomes like uncertain 

gambles and hypothetical scenarios but very few with outcomes that require the 

active participation from choice recipients. Allocentric decision making studies 

have utilized several paradigms where the net result is a lump sum transferred to 

the recipient. In most studies, the decision recipient does not directly experience 

costs as a decision outcome - painful shocks in a harm aversion study being a 

notable exception (Crockett et al., 2014). If decision makers believe the final 

allocentric outcomes of their decisions will always be an aggregate monetary 

payout for another participant (only differing in magnitude of the payout), this may 

differ from assigning a costly penalty that requires the actions of the outcome 

recipient. A monetary gift still represents a gift; however, assigning tasks may be 

valued as social or market transactions with each having a different decision 

process (Heyman & Ariely, 2004).  

Many decision outcomes in a management setting require active 

participation from the decision recipient(s). For example, strategic decisions 

made by upper management create departmental shifts or revamped operation 

practices that must be learned and enacted by employees. While the 

pervasiveness of passive choice paradigms is understandable from the 

standpoint of experimental design logistics, choice options that require effort on 

the part of the recipients may be evaluated differently compared to options that 

require the recipient’s effort and attention and deserve attention. Yet, because 

the literature on allocentric effort decision making is scant, the next section 
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reviews research relevant to the study of egocentric effort valuation to cultivate 

understanding of study design considerations and moderating influences on 

effort discounting behavior. Focus is given to effort tasks that are feasible in an 

fMRI environment. The specific constraints of this environment are discussed in 

further detail in chapter 4. 

Effort discounting has been operationalized in several tasks that isolate 

either physical or mental effort. The most common task used in human effort 

discounting studies is the hand grip strength task utilized in prior research of self-

control (Muraven, Baumeister, & Tice, 1999). Several studies have shown that 

when choosing between option bundles of rewards magnitudes paired with a 

proportional requirement to squeeze a lever at some percentage of maximum 

strength, decision makers discount the value of the reward by the amount of 

effort required. Rewards in these tasks can vary from straightforward monetary 

payouts (Hartmann, Hager, Tobler, & Kaiser, 2013; Klein-Flügge, Kennerley, 

Saraiva, Penny, & Bestmann, 2015; Mitchell, 2004) to erotic images (Prévost et 

al., 2010). The handgrip task is useful because it can be completed in a 

neuroimaging scanner between decision trials and outcomes can be resolved 

immediately after being chosen. 

Cognitive effort decisions have been operationalized in neuroimaging 

experiments through memorization and attention tasks. A common memory task 

is an n-back task where participants must match a remembered symbol on a 

card while flipping through a deck of cards. Participants chose between difficult 

or easy n-back task. The easier task required remembering symbols from one 
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card beforehand while the harder task required participants to remember several 

cards of symbols. Larger payouts were given when matching in the more difficult 

effort task but the reward payout was varied based to titrate a participant’s 

indifference point or the amount of money that makes the two options 

subjectively equivalent in value (Westbrook et al., 2013).   

Other researchers have used a task switching paradigm inside a 

neuroimaging scanner to induce cognitive effort (Botvinick, Huffstetler, & 

McGuire, 2009). Participants were subjected to different levels of effort for the 

same pay in a block design experiment. In the low effort block, the task required 

no switching and was a monotonous matching task. In the high effort block, 

participants had to alternate between matching colors and numbers in various 

patterns. 

Another research group utilized a visual search task where participants 

learned eight possible combinations of effort and reward presented with a two-

dimensional stimulus before engaging in the effort task (Croxson, Walton, 

O’Reilly, Behrens, & Rushworth, 2009). The effort task required participants to 

move a trackball mouse to hover over visual targets with higher effort trials 

requiring more target matches. The use of a symbolic choice stimulus to 

represent both the monetary payout and the effort simultaneously allowed the 

researchers to study simultaneous presentation of value.   

However, these tasks are relatively abstracted from common behaviors. 

Gauging performance on an unfamiliar task adds a degree of complication when 

investigating allocentric decision making because decision makers may not know 
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the physical capabilities of the decision recipients who must perform the task in 

addition to their preferences. To isolate only the effects of effort preferences, a 

relatively common and consistent task is beneficial. Additionally, effort in the 

modern work environment is unlikely to be pure physical exertion or immobile 

mental exertion, but more likely both physically repetitive and mentally engaging. 

The effort typing task fits this niche better than others given that most university 

students are practiced typists. Researchers have shown effort discounting 

behavior when participants must type a list of words in reverse character order 

(Libedinsky et al., 2013; Massar, Libedinsky, Weiyan, Huettel, & Chee, 2015). 

The size of the word list provides a quantifiable measure for effort and can 

rewarded at variable wage rates (dollars per word typed successfully). 

Additionally, the typing task requires precision, but is simple enough that it can be 

completed by even sleep deprived participants. Choices can be made while 

inside a neuroimaging scanner with outcomes resolved after the decision trials to 

prevent excessive movement while inside the scanner (Massar et al. 2015).   

One important, but understudied moderator of effort is supervision. 

Supervision is the act or process of critically watching, inspecting, or directing a 

course of action. Research shows that supervision can negatively impact effort 

decisions (G. B. Charness, 1999, p. 199). In a behavioral experiment, 

participants were randomly paired and assigned roles in each round of the 

experiment. The roles were employer and employee where a wage rate for a task 

on each round was determined from a mutually visible public bingo ball drawing 

(chance) or by a private dictation from the head experimenter relayed through the 
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employer. The employer then chose effort tasks for the employee based on this 

information. Third party regulation of wage rate from the experimenter negatively 

impacted the amount of effort performed by the employee. This finding runs 

counterintuitive to the underlying premise of management and challenges the 

common expectation that supervision improves employee performance. The next 

section reviews supervision in the form of accountability and its effects on 

decision making. 

1.5.3 Accountability 
Professional decisions rarely occur in a social vacuum. Outside of the 

controlled confines of a laboratory, decision makers act in an environment with 

other agents who can perceive, judge, and respond to actions. In executive 

allocentric decision making, an inherent power imbalance exists between 

decision makers and decision recipients. Deciding unilaterally and without assent 

creates a relationship prone to abuse. To prevent abuse and reduce preference 

prediction errors, regulations are implemented by agents, institutions and 

governments, and culture. Regulations can be corrective like punitive fines or 

preventative like the permission of an authority figure. Accountability is the belief 

that an agent will need to justify his or her beliefs, thoughts, feelings, or actions to 

another (Lerner and Tetlock 1999) and ties preventative regulation to social 

norms. 

Allocentric decisions are subject to judgment of agents in the social 

environment – either in person or digitally via social media. Visibility is crucial and 

the information age helps accountability agents to hold decision makers to 
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standards and helps outcome recipients to receive more equitable decisions. 

Additionally, accountability can be enforced by social watchdogs, government 

agencies, or whistleblowers. Accountability is crucial in organizations who embed 

accountability in the very structure of hierarchies with terms like “supervisor”.  

While there are many avenues for accountability to be enforced, control is only 

effective if it alters behavior.  

Classic social psychology studies have shown that social presence can 

influence judgment and decision-making behavior (L. Festinger, 1954; Leon 

Festinger, 1950). Festinger showed that experiment participants were willing to 

conform to obviously incorrect judgements of line length when confederates 

espoused incorrect beliefs. The propensity of individuals to conform to social 

norms is a robust phenomenon that clearly displays the influential power of social 

contexts over behavior. Interacting with other agents imbues behavior with 

additional consequences in social standing or group cohesion. Thus, successful 

agents must consider ramifications of their actions beyond their egocentric 

outcomes. 

Furthermore, agents can be influenced by social contexts without 

interacting with other agents. By merely being observed, agents exhibit changes 

in behavior and task performance (Zajonc, 1965). Audience effects have been 

widely documented in studies where individuals perform well-learned tasks 

above expectations (social facilitation) and falter on novel or complex tasks 

(social inhibition) while in the presence of others. Social evaluation can reinforce 
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participants’ understanding of social norms when they are isolated from real 

world interaction in laboratory experiments.  

One formalized method for social evaluation that has real world 

implications is accountability. The presence of accountability manipulations has 

been shown to induce cognitive and behavioral changes in decision makers. 

Research has shown that accountability can reduce the influence of biases in 

judgment and decision making by altering attenuation to information and 

complexity of thought in judgment processing (Lerner & Tetlock, 1999). Philip 

Tetlock, a pioneer in formally investigating the effects of accountability on 

judgment and decision processes, found evidence that accountability promotes 

“complex and vigilant information processing” and reduces overweighting of initial 

information also known as a primacy effect. An earlier experiment consisted of a 

hypothetical legal case with participant’s deciding on guilt or innocence of the 

defendant (Tetlock, 1983). Before reading any information, decision makers were 

informed that their choices would either be confidential, require justification via 

interview with the experimenter, or neither and were subjected to an interview 

without warning. The stimuli consisted of equal numbers of anecdotes suggesting 

the guilt or innocence of the defendant presented in blocks with a 

counterbalanced order between participants. Those participants who knew they 

would be held accountable for their judgments updated their judgment using 

information presented later in the experiment and were better able to recall 

earlier information compared to participants who were not held accountable or 

not given prior knowledge of their accountability.  
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The relationship between accountability and increased awareness of 

information is robust and well replicated. The effect of accountability even 

persists when experiments present decision makers with irrelevant information 

resulting in judgments influenced by unrelated facts (Tetlock & Boettger, 1989). In 

two hypothetical scenarios, participants made predictions about a student’s 

academic performance and a patient’s diagnosis. Participants who were 

instructed that they would justify their choices at the end of the experiment were 

influenced by information unrelated to student performance when making their 

judgments. Presenting irrelevant information to accountable decision makers 

resulted in judgments akin to those made by participants shown contradicting 

information.  

Another bias thought to be affected by the presence of accountability is 

the sunk-cost bias. The sunk-cost bias arises when individuals have committed 

resources in prior time periods that are not recoverable and “double down” or 

continue with a course of action in hopes of breaking even or recovering some of 

the lost value rather than ignoring the lost resources in favor of future earnings 

(Arkes & Blumer, 1985; Staw, 1976). Prior losses create attachment to a choice 

option, making the decision maker commit further to a suboptimal choice. In four 

experiments using a hypothetical business investment scenario, researchers 

found that participants who had to explain their choices about whether to 

continue with a costly project or withdraw at cost were more likely to withdraw in 

favor of greater long-term payouts (Simonson & Nye, 1992). However, 

accountable decision makers were not more consistent in their choices.  
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Accountability can also influence chosen options such as consumption 

preferences for consumer goods or risk preferences. Researchers investigating 

consumer good choices for others found a stronger preference for bundles 

containing a larger variety of products when decision makers were held 

accountable (Choi, Kim, Choi, & Yi, 2006). Results from their experiment showed 

that making allocentric consumer choices increases variety-seeking choice. The 

tendency to choose variety options was enhanced when decision makers were 

asked to write down reasons why they made their choices to be passed along to 

the decision recipient. 

Additionally, the presence of social observers was found to increase 

charitable donations in decision makers (Izuma, Saito, & Sadato, 2010). 

Experiment participants chose to give a small donation to a charity or pocket the 

money themselves either privately or in the presence of two, gender-balanced 

observers. Participants more frequently donated the money when observed. 

Earlier research shows that observation may not even be necessary to elicit this 

effect. Researchers conducted a double-blind dictator’s game study where 

participants were anonymized both from each other (decision maker and 

recipient) and from the experimenters (Hoffman, McCabe, Shachat, & Smith, 

1994). They found decreased reward pool allocations when participants were 

double-blind compared to single-blind between participants despite the 

experimenters holding no power to alter the choices or affect the outcomes. 

Double blind decision makers were significantly more likely to keep the entire 

reward pool for themselves. 
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The perception that others are evaluating choices can affect how a 

decision maker evaluates uncertain choice options. Researchers observed that 

decision makers under the auspices of social evaluation significantly reduced 

their preference for ambiguous choice options (Curley et al., 1986). Participants 

were made to choose between two lotteries of varying ambiguity either in front of 

a group of participants or after all other participants had left the laboratory. 

Perceived social evaluation was the only effective moderator of ambiguity 

aversion in a series of experiments testing various ambiguity aversion 

moderators.  

Accountability also moderates loss aversion decisions (Vieider, 2009). 

Participants in the choice experiment stated the amount of money that could 

possibly be won in a gamble to make them indifferent between possibly losing 

money in that gamble or earning no money for certain. This indifference point 

elicitation method provides estimates of loss aversion with larger amounts 

reflecting a greater aversion to loss. The between-participants design had one 

group of participants make these choices privately while others had to write their 

name and email on paper and were told they would be interviewed about their 

choices after the experiment. The accountable participants exhibited decreased 

loss aversion. This result was repeated in a similar experiment where participants 

chose between a certain amount of money or a gamble with possibilities of a 

loss-gain pairing, smaller gain-larger gain pairing, or larger loss-smaller loss 

pairing (Pahlke, Strasser, & Vieider, 2012). Only the mixed loss-gain pairing 

showed differences between participants who were held accountable for their 



A l l o c e n t r i c  E f f o r t  D e c i s i o n s | 72 

 

choices and those who remained anonymous. No difference between groups 

was observed in risk preference for pure gains or pure loss gamble stimuli.  

However, results from a behavioral investment game have shown 

accountability can affect risk aversion (Pollmann, Potters, & Trautmann, 2014). In 

this within-participants design, investments were made both egocentrically and 

allocentrically and investments accrued over several rounds. Allocentric 

decisions showed reduced risk aversion in their investments. Yet, when 

allocentric decision makers were held accountable for their choices or the 

outcomes of their decisions, they shifted to more risk averse choices. The 

reduction in loss aversion resulted in accountable participants deciding for others 

more similarly to how they would decide for themselves.  

Many choice experiments operationalize accountability by requiring 

participants to justify their decisions or decision-making processes. For example, 

decision makers may engage with the decision recipient or a third-party observer 

directly. In some designs, the outcome recipient can communicate directly to the 

decision maker or engage in costly punishment retaliation such as in the 

ultimatum game. Researchers found that giving recipients the ability to respond 

to payment allocation in the dictator’s game with a handwritten letter significantly 

affected the decision makers’ choices. Decision makers distributed money more 

generously, following the pattern of distribution as when recipients held the power 

to reject unfair offers (Ellingsen & Johannesson, 2008). Decision makers were 

informed they would receive feedback from the recipient prior to making the 

decision. However, accountability in organizations is often less formal.  
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One common form of accountability is a verbal report or interview 

explaining a decision or the cognitive process that lead to a decision. To 

operationalize accountability in an ecologically valid way and still maximize its 

effects, the research presented hereafter uses an interview paradigm 

implemented in pioneering studies (Tetlock, 1983; Tetlock & Boettger, 1989) and 

replicated recently in the allocentric decision making study by Pahlke et al. 

(2012). This interview paradigm aims to maximize the effect of accountability 

along five dimensions: accountability stems from a 1) third party of 2) sufficient 

and reasonable authority with 3) valid interest in the decision and required both 

4) outcome and process accountability. Perhaps most importantly, the interview 

and its criteria were 5) made known to participants prior to making any decisions 

(Lerner and Tetlock 1999). There was no punishment or consequential retribution 

available to the regulator in any study, only the effect of pre-decision 

accountability was of interest. 

Both culture and gender have been found to play a role in the effects of 

accountability. Researchers studying negotiation in China and the US found that 

in-group identity of partners led to positive effects of accountability, as if social 

norms only applied to partners who shared the same culture (Liu et al. 2011). 

Recent research has shown that when participants made food choices from 

menu items for another person, European Canadians engaged in less post-

decisional justification compared with Japanese and Asian Canadian participants 

(Hoshino-Browne et al., 2005). Cultural constructs like shame and guilt reflect an 

inherent cultural attitude towards accountability by concerning agents with the 
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perceptions of their actions to others (Hong and Chiu 1992). To mitigate effects of 

cultural interaction, the research assistants in each experiment were from the 

participants’ home culture. 

Furthermore, researchers have found gender interaction effects in 

implementing accountability (Brandts & Garofalo, 2012). Particularly in gender-

crossed interactions, male participants were strongly affected by females holding 

them accountable. The studies in this thesis utilize a third-party agent introduced 

as the Head Experimenter to conduct interviews. The gender and cultural 

background of the Head Experimenter were masked in the instructions for all 

tasks and not explicitly mentioned by research assistants. 

1.6 Summary 

The following research utilized a neuroeconomic framework to investigate 

how decision makers value another agent’s effort. Employing a tripartite 

framework of investigation into decision phenomenon, cognitive modeling of 

decision processes, and neural localization of cognitive processes, the research 

investigates two aspects of social choice. The first is the presence of another 

agent as a decision outcome recipient. The second is the presence of an agent 

as third-party regulator holding the decision maker accountable.   

The neuroeconomic approach leverages unique methodologies to 

empirically investigate a phenomenon at each level of analysis. Economic theory 

predicts behavioral choice based on a decision maker’s interest in maximizing 

egocentric rewards. This establishes a baseline for comparison with pure 

allocentric choice. Computational cognitive models describe choice behavior with 
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respect to latent processes. Comparison of prediction accuracy and process 

typology between experimental conditions aims to clarify the structure of the 

information processing algorithm. Finally, fMRI scanning of real time decisions 

allows for localization of the dynamic processes associated with decision making. 

The decisions of interest are executive allocentric decisions for an 

anonymous fellow participant. Decisions are unilateral (non-reciprocated) and 

double-blind anonymous. All decision outcomes are bundles of monetary reward 

and active effort on the part of recipient whether it be the decision maker or 

another agent. Repeated decisions allow for tracking the decrease in subjective 

value as effort increases. 

Regulation by accountability takes the form of an interview with the head 

experimenter. The interview imposes pre-decision accountability that requires 

justification to an interested party with authority over the scenario to maximize 

the hypothesized effects. The interviewer’s identity is anonymized to control for 

gender and culture effects which are outside the purview of this research. 
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2 Behavioral Investigation of Allocentric – Egocentric 

Differences in Effort Discounting Decisions 
2.1 Motivation 

The initial step in investigating allocentric effort decisions is to describe 

allocentric behavior by discriminating it from egocentric decision making. 

Differences in chosen outcomes between egocentric and allocentric decisions 

given the same input stimuli imply different underlying mechanisms. Given that 

effort is a cost factor, decision makers have no incentive to choose larger effort 

options unless paired with a comparable reward or incentive. However, when 

effort options are paired with a form of compensation, comparing the choices 

between options of varying effort amounts becomes a feasible method for 

gauging differences in effort valuation. 

The two experiments in this chapter provide evidence that laboratory 

participants make different decisions for other agents than for themselves. Using 

tradeoff decisions between effort and compensation as choice stimuli, the 

experiments employ a binary choice design to investigate effort discounting 

behavior both between and within participants. Effort compensation tradeoffs 

force decision makers to choose the option that simultaneously minimizes effort 

costs while maximizing compensation. Independently, these attributes have 

opposite effects on preferences, and when combined create options that have 

similar objective values. For example, one choice option has a large monetary 

compensation coupled with a large monetary cost, while the other is a smaller 

option both in terms of effort required and compensation earned by the recipient. 
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Each option has a similar ratio of cost to compensation, but subjectively these 

options differ to the decision maker and to the decision recipient. The decision 

makers in these experiments must choose one, and only one, option as the 

outcome and thus reveal their subjective valuations for these options.  

This research offers a two-fold contribution to the literature by (1) 

exploring behavioral differences in effort decisions in an allocentric decision 

context, and (2) exploring a potential moderator of egocentric-allocentric 

differences in accountability.  

The first experiment used a between-groups design to establish 

behavioral differences in choice behavior. The second experiment provides 

within-participants evidence that this difference is robust and intrinsic to decision 

making processes as opposed to the manipulation of the prior experiment. 

Additionally, the choice options used in the decision task did not hinge on 

knowing another person’s strength or intelligence to determine capability. The 

typing task selected here combines physical and mental effort in a familiar and 

accessible form. Almost all university students are expected to type efficaciously, 

which reduces ambiguity from a decision maker when choosing a task for 

another participant without knowing his or her capabilities. Prior to the present 

work, this typing task has only been used in egocentric decisions (Libedinsky et 

al., 2013; Massar et al., 2015). Thus, these experiments also test a potentially 

effective method for dissociating effort discounting differences in allocentric 

decisions. 
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2.2 Hypotheses 

Behavioral choice differences between egocentric and allocentric 

decisions are expected for two reasons: 1) allocentric decisions present an 

empathy gap for decision makers and 2) given the ambiguity of the decision 

recipient’s preferences, decision makers may rely on social norms rather than 

their own preferences to make choices. Past research has investigated 

egocentric-allocentric differences across a variety of domains finding varying 

support for an empathy gap in decision making. The empathy gap is an 

extension of the risk-as-feelings hypothesis and refers to differences in choice 

outcomes caused by differences in the affective state of a decision maker not 

matching that of the recipient. In empathy gap scenarios, a decision maker is 

unable to fully realize the cost or benefit of a decision outcome because the 

outcomes are not salient (Beisswanger et al., 2003; Loewenstein et al., 2001; 

Wray & Stone, 2005). This is in line with moral hazard explanations of the 

principal-agent problem where the agent is only incentivized by personal gain 

and only acts on this incentive. This explanation predicts no clear difference 

between egocentric and allocentric decisions, as no emotional cues, preferences, 

or response information are provided to the decision maker about the recipient. 

Furthermore, the decision maker receives the same compensation for 

participating no matter which decision is made.  

An alternative hypothesis stems from socially accepted norms. Social and 

cultural norms act as a default or shorthand when engaging with new individuals. 

Social norms reflect the value a society places on domain-specific default 
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behavior (Stone et al., 2013). For example, assigning effort to another may 

culturally constitute an inconvenience, harm, trust, or duty. The do-no-harm 

principle (Baron, 1995) predicts that decision makers will attempt to minimize 

inconvenience or harm to another, which would lead to steep discounting 

behavior. However, an egocentric decision maker may believe monetary rewards 

compensate for effort resulting in a less steep discounting rate. If the 

inconvenience caused by an assigned effort task is weighted more than the 

monetary reward in option valuation, an allocentric decision maker is unlikely to 

choose larger effort options. This scenario is a logical extension of many findings 

in cognitive psychology that show the weight of negative events is greater than 

positive ones (Baumeister, Bratslavsky, Finkenauer, & Vohs, 2001). A decision 

maker would then prefer to minimize the effort assigned to others, even if this is 

not in line with her personal preferences. 

A complimentary perspective in response to allocentric preference 

ambiguity comes from the concept of illusory superiority. Illusory superiority is the 

implicit cognitive bias that individuals believe themselves as better-off-than-

average (Hoorens, 1993). This would imply that decision makers believe they are 

more capable than those they are deciding for and can outperform them in the 

typing task. Such over-estimating decision makers would likely minimize effort 

assigned to another to confirm this belief and reduce cognitive dissonance. 

 As the number of potential social factors is immense, the research 

presented here is basic and agnostic about the direction of the effect allocentric 

decision making will have on choice preferences and discounting behavior. 
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These initial studies only aim to establish the presence of a behavioral 

discrepancy between egocentric and allocentric effort discounting. The 

hypothesis is as follows: 

H0 = Allocentric decision outcomes will not differ from egocentric 

decision outcomes 

H1A = Allocentric decisions will result in less effort discounting than 

egocentric decisions 

H1B = Allocentric decisions will result in more effort discounting than 

egocentric decisions 

 

2.3 First Experiment 

2.3.1 Participants 
98 participants were recruited from a university student population in 

Singapore (54 = Nfemale; Mage = 22). 26 participants were removed from analysis 

for having less than 5% variation in choice preferences or multiple failed catch 

trials, resulting in 37 participants in the egocentric (“Self”) group and 35 

participants in the allocentric (“Other”) group. Participants were compensated for 

their time with $5 for the half-hour study duration plus the addition two averaged 

choices either made by themselves (“Self” group) or a participant before them 

(“Other” group).  The mean additional compensation for the Self group was an 

additional $6.58 for typing 22 additional words. The mean additional 

compensation for the Other group was $6.52 for typing 7 additional words.  
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2.3.2 Methods 
Participants were scheduled in group sessions, but responded 

independently in isolated, soundproof rooms using a computer. To incentivize 

participants to make decisions as accurately as possible, a random subset of 

decisions was resolved for real monetary and effort outcomes for each 

participant. In allocentric conditions, participants resolved outcomes from a prior 

participant and made choices for a future participant in a “pay-it-forward” design 

(M. H. Jung et al. 2014).  

Each participant was randomly allocated to one of two groups. The Self 

group made egocentric decisions, whereas the Other group made allocentric 

decisions for a future participant in the study. After providing written consent, 

participants then viewed instructions explaining the typing task being assigned in 

the upcoming decisions and the recipient of the decision outcomes along with a 

small sample of the typing task to prove comprehension. 

All participants underwent 75 decision trials, including three “catch” trials 

where one choice option was superior regardless of discounting. On each trial, 

participants chose between two bundles with each consisting of a variably sized 

effort task and compensation for completing that task (Figure 2.1); an example 

option pair would be choosing to type 0 words for $1 or 30 words for $5. Choices 

presented in the trials were identical between the two groups.  

The 72 non-catch trials, consisted of 36 pairs of choice options repeated 

– once offered with an effortless reference option and once offered with a 50-

word increase. The smaller effort, smaller reward option was held constant 
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across trials - 0 words for $1.5 with a low reference option or 50 words for $1.5 in 

the high effort option. The larger-effort, larger-reward option varied orthogonally 

from 10-40 words for $4-10 when paired with effortless reference option or 60-90 

words for $4-10 with the high reference option. Table 2.1 presents a 

representative subset of the stimuli used in the first experiment. 

 

 

Figure 2.1: Sample trial from the within-participants experiment 
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Table 2.1: Sample choice stimuli from the between-participants experiment 

 

Smaller 
Compensation 

Smaller 
Effort 

Larger 
Compensation 

Larger 
Effort 

Effort Reference 
Option 

1.5 50 4 80 High 

1.5 50 5 80 High 

1.5 50 6 80 High 

1.5 50 7 80 High 

1.5 50 8 80 High 

1.5 50 10 80 High 

1.5 50 4 85 High 

1.5 50 5 85 High 

1.5 50 6 85 High 

1.5 50 7 85 High 

1.5 50 8 85 High 

1.5 50 10 85 High 

… … … … … 

1.5 0 4 30 Low 

1.5 0 5 30 Low 

1.5 0 6 30 Low 

1.5 0 7 30 Low 

1.5 0 8 30 Low 

1.5 0 10 30 Low 

1.5 0 4 35 Low 

1.5 0 5 35 Low 

1.5 0 6 35 Low 

1.5 0 7 35 Low 

1.5 0 8 35 Low 

1.5 0 10 35 Low 

… … … … … 

 

Choice options were presented randomly on either the top or bottom of 

the computer screen. Participants indicated their choice by pressing the arrow 

key matching the direction of the arrow next to their chosen option. The arrow 
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directions were randomized on each trial to prevent automatic responses 

(Mullette-Gillman, Leong, & Kurnianingsih, 2015). After indicating their choice, 

participants received confirmation of their input with a black box surrounding their 

choice.  

The effort task assigned by the decision outcomes was a typing task 

adapted from prior effort discounting studies (Lebidinsky et al 2013; Massar et al. 

2016). After all choice trials, participants typed a list of words in reverse-letter 

order. If the decision recipient made a mistake, he or she was made to repeat the 

word. The size of the list was determined by averaging the outcomes from two 

choices made by either that participant or by another participant’s allocentric 

choice. The computer randomly generated a list of words from a predetermined 

set which was identical for all participants. Figure 2.2 shows an example of the 

recipient’s perspective of the typing task.  

 

Figure 2.2: Example of the typing task 
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2.3.3 Results 

2.3.3.1 Main Effects of Option Stimuli (Effort and Compensation) on Choice Behavior 

To ensure participants were sensitive to changes in the option stimuli 

(effort and compensation amount), choice behavior was analyzed in relation to 

the large options’ monetary value and effort value. Given that the monetary value 

and the effort of the larger option were varied independently, these option 

characteristics are shown in segregated analyses. 

  

Figure 2.2:  Figure 2.2 and Figure 2.3 show the mean proportion of choosing 

the smaller effort option (y-axis) as a function of the monetary compensation 

(Figure 2.3) or the effort required (Figure 2.4) of the larger alternative option (x-

axis). In Figure 2.4¸ the effort is presented as a proportion of the maximum effort 

for an easier comparison between reference options. 
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Figure 2.2: Choice proportions across Compensation 

 

Figure 2.3: Choice proportions across effort split by reference option 

To formally test these relationships, the proportion of smaller effort 

choices was regressed against compensation and effort in a linear model. 

Statistical analysis indicates that participants were sensitive to both 

compensation and effort. Linear regression shows a significant effect of both 

larger option compensation and effort in independently predicting the number of 

lower effort choices. Table 2.2 presents the results of the regression. Results 

show a negative main effect of the larger option’s value on choosing the smaller 

effort/reward option. As the monetary value of the larger option increases, it 

becomes the more attractive option and the proportion of smaller effort choices 

decreases. Conversely, increasing the effort of the larger option makes it less 
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attractive, resulting in a positive increase in lower effort choices.  Both main 

effects in the linear regression are significant (p < 0.001). 

 

Table 2.2: Linear Model Predicting Low Choice by Small Effort/Reward Option 

Predictor β Std. Error p-value  

Intercept 0.184 0.015 <0.001 *** 

Compensation -0.031 0.001 <0.001 *** 

Effort 0.280 0.013 <0.001 *** 

Significance codes: p<= 0.001 ***, p<= 0.01 **, p<= 0.05 * 

 

2.3.3.2 Effort Reference Option Effects 

The effects of the two effort reference options (0 and +50 words) were 

examined to ensure that effort discounting was reliable across ranges of effort, 

including effortless choices. Furthermore, it is important to dissociate effects of 

the effort reference option from allocentric-egocentric differences. Figure 2.4 

shows the proportion of choices for each option across groups and effort 

reference option. Participants made smaller effort choices more frequently when 

the reference option was 0 words (Mean0 = 0.213) than when the reference 

option was 50 words (Mean50 = 0.083) regardless of the outcome recipient. 

Similarly, participants making allocentric decisions more often chose the smaller 

effort option (MeanAllocentric = 0.175) than those making egocentric choices 
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(MeanEgocentric = 0.121). However, the relative proportions of choice between the 

allocentric and egocentric groups are similar across reference option trials. 

 

Figure 2.4: Choice proportion between groups and reference options 

 

A generalized linear model (GLM) using a logistic link function shows that 

binary choice behavior is affected by the reference option, but does not interact 

with decision group. GLM estimations show that choice behavior is significantly 

affected by the reference option scaling and group manipulation (p < 0.001 for 

both), but the two predictors show no interaction effect (p = 0.725). Full GLM 

results are shown in Table 2.3. 

. 
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Table 2.3:  GLM Predicting Smaller Effort Choice 

Predictor      β Odds Ratio SE p-value 

Intercept -2.673 0.069 0.111 <0.001 *** 

Allocentric Group 0.485 1.624 0.146 <0.001 *** 

Reference Option = 0 1.143 3.136 0.133 <0.001 *** 

Group x Reference Option -0.062 0.940 0.175 0.725   

Significance codes: p<= 0.001 ***, p<= 0.01 **, p<= 0.05 * 

 

2.3.3.3 Effect of Group on Choice 

To compare the effect of group manipulation on choice behavior across 

simultaneous changes to the effort and compensation of the larger option, a 

wage rate was calculated.  A combined Words per Dollar (WpD) rate was 

calculated per the following: 

 

𝑊𝑝𝐷 =  
𝐿𝑎𝑟𝑔𝑒𝑟 𝑂𝑝𝑡𝑖𝑜𝑛 𝐸𝑓𝑓𝑜𝑟𝑡 − 𝑆𝑚𝑎𝑙𝑙𝑒𝑟 Option Effort

𝐿𝑎𝑟𝑔𝑒𝑟 𝑂𝑝𝑡𝑖𝑜𝑛 𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛
 

 

The WpD rate of the larger option is always in reference to the alternative smaller 

option.  The choices were normalized by taking the difference between high and 

low effort (in words) and standardized by the compensation of the larger option. 

Compensation was constant across all smaller options and therefore irrelevant 

for determining the reference wage rate. 

The proportion of low effort choices was aggregated for each level of 

unique value of WpD rate. WpD values ranged from 1.176 to 16 with mean = 
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5.672 and median = 4.661 showing a slight positive skewed in the distribution. 

The distribution skew was by design as pilot studies showed choice preferences 

converge as WpD rate increases. 

Since there was no evidence of an interaction effect between group and 

reference option, we continue our analysis using combined, standardized data 

from both high and low effort reference option trials. Figure 2.6 shows the mean 

proportion of smaller effort choices as points with +/- 1 SE on the y-axis for each 

larger option’s WpD rate on the x-axis. Comparison of the points shows an 

overall effect of allocentric decision making on choice. Allocentric choices 

resulted in the more frequent selection of smaller effort options compared to 

egocentric choices. Another GLM was fit to the collapsed choice data with WpD 

rate, and group as predictor variables using the combined reference option data. 

Figure 2.6 shows the GLM predicted probability of choosing a smaller effort 

option overlapped onto the mean choice data. Comparing the predicted 

probability curves, WpD rate had a strong effect on choice, mirroring the 

independent stimuli effects seen before. The higher the WpD rate of the larger 

option, the more likely a participant would choose the lower effort alternative 

regardless of who would receive the outcome. 

Group manipulation between egocentric and allocentric decisions had a 

significant effect on both the intercept and slope of the model, with allocentric 

decisions showing increased smaller effort choices across all levels of WpD rate, 

with this effect increasing as WpD increases (p = 0.014). This suggests 
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participants making allocentric choices were more sensitive to the WpD rate of 

the larger option. Full results from the GLM are shown in Table 2.3. 

 

 

Figure 2.5: Mean Choice proportions across WpD with overlay of GLM predicted 

probabilities 
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Table 2.3  GLM Predicting Choice of Smaller Effort/Reward Option 

Predictor β Odds Ratio SE        p-value 

(Intercept) -3.438 0.015 0.058 <0.001 *** 

Allocentric Decision Group 0.289 1.335 0.079 <0.001 *** 

WpD 0.218 1.243 0.009 <0.001 *** 

WpD x Allocentric 0.031 1.032 0.013 0.014 * 

Significance codes: p<= 0.001 **, p<= 0.01 **, p<= 0.05 * 

 

2.3.3.4 Discounting Behavior Analysis 

To formally compare discounting behavior, a more precise method is 

needed than a wage rate; this is because there can be two sources of the same 

wage rate. For example, a low effort task coupled with low compensation will 

have a similar wage rate as a high effort task with high compensation, but these 

combinations are unlikely to have equivalent subjective value. To remedy this, 

discounting behavior analysis requires a function that represents value 

monotonically across one dimension (choice attribute). Effort discounting 

represents the change in subjective value across effort levels. Indifference points 

were used to represent the value at which a decision maker is ambivalent 

between the constant smaller option and the larger option. Indifference points 

reveal an estimate of a participant’s subjective value for the larger effort option 

and were estimated independently for each participant at each unique level of 

effort. 
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A logistic regression was fit predicting choice, a binary dependent 

variable, across all values of compensation at a given effort level. The 

indifference point is the monetary value (on the x-axis) where the predicted 

choice probability (y-axis) equals 0.5. In a one-predictor regression, the 

indifference point can be estimated by the negative inverse ratio of the intercept 

estimate divided by the slope estimate (Moscatelli, Mezzetti, & Lacquaniti, 2012):  

 

𝐼𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑃𝑜𝑖𝑛𝑡 =
−𝛽𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

𝛽𝑠𝑙𝑜𝑝𝑒
 

For effort levels where all choices were identical, the indifference point 

was set to the minimum or maximum compensation value +/- 1 standard 

deviation. The indifference points were then standardized by the smaller option 

value. To compare the indifference points across reference options, we used a 

standardized percent of maximum effort measure: 

 

𝐸𝑓𝑓𝑜𝑟𝑡 =
𝐿𝑎𝑟𝑔𝑒𝑟𝑂𝑝𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑑𝑠 − 𝑆𝑚𝑎𝑙𝑙𝑒𝑟𝑂𝑝𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑑𝑠

𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑂𝑝𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑑𝑠 − 𝑆𝑚𝑎𝑙𝑙𝑒𝑟𝑂𝑝𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑑𝑠
 

 

For example, if the effort reference option was 50 words and the larger option 

was 80, the effort would be 0.75 (
80−50

90−50
).  If the reference option was 0 and the 

larger option was 20, the effort would be 0.5 (
20−0

40−0
).   
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The mean subjective values for each level of effort in each condition are 

plotted in Figure 2.6 with +/- 1 SE error bars. Comparison of indifference points 

for each level of effort by Wilcoxon Rank Sum test are presented in Table 2.4.  

 

Table 2.4  Indifference Point Comparison between Groups 

Effort 0 25% 37.5% 50% 75% 87.5% 100% 

Wilcox Rank Sum Test p-values NA 0.99 0.35 0.30 0.01** 0.09 0.07 

Significance codes: p<= 0.001 **, p<= 0.01 **, p<= 0.05 * 

 

 

Figure 2.6: Mean indifference point estimates by group 

 

For a model-free analysis of discounting behavior across the effort 

domain, the area under the curve (AUC) was estimated for each subject and 
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compared between conditions (Myerson, Green, & Warusawitharana, 2001). By 

comparing discounting rates rather than indifference point estimates, these 

results reflect overall trends in effort valuation which are less susceptible to 

erroneous key press entry and are more easily interpreted and generalized 

across trials. Each participant’s indifference points were calculated independently 

for each effort reference frame and then in a combined data set that included 

both the high and low reference frames standardized as the difference between 

the options’ effort levels. The AUC was computed using trapezoidal 

approximation. Allocentric decisions showed a lower median AUC than 

egocentric decisions (AUCAllocentric = 0.39, AUCEgocentric = 0.43). Comparison of 

AUC values between conditions shows a statistical trend difference (Wilcoxon 

statistic = 482.5, p = 0.064). 

2.3.4 Discussion 
The results here provide evidence that differences in choice behavior and 

effort discounting exist between allocentric and egocentric decision makers when 

choosing between variably-sized effort tasks completed for monetary 

compensation. Both effort and compensation had significant, independent effects 

on choice outcomes. 

The effects of the effort reference option mirror prior literature on decision 

making distortions with zero-cost options (Shampanier, Mazar, & Ariely, 2007). 

The zero-cost option is analogous to the effortless reference option and was 

preferable to non-zero cost option in both groups. However, there was no 

interaction effect with group manipulation, the main variable of interest. 
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Participants exhibited choice differences between groups. The egocentric 

decision group made more high effort choices than the allocentric group. GLM 

estimations show this difference increases as the WpD rate of the larger option 

increases. Indifference point estimation show statistical trends that support this 

finding, but only one indifference point showed a statistically significant difference 

at 75% of maximum effort.  

The indifference point analysis combined with the GLM fit both show 

consistent evidence that participants in the allocentric condition discounted 

compensation by effort more than egocentric decision makers. The difference in 

AUC shows allocentric decision makers discounted the subjective value of choice 

options by effort more than egocentric decision makers across the entire effort 

range. Further investigation is needed to determine if the effect of allocentric 

decision context is robust or an artifact of the group manipulation. The second 

experiment controls for the effort preferences of the decision maker by utilizing a 

within-participants design.  

2.4 Second Experiment 

2.4.1 Motivation 
The second experiment serves the dual purposes of replicating the initial 

findings using a within-participants design and investigating a potential moderator 

of allocentric and egocentric differences in social accountability. As noted in the 

introductory chapter, accountability is an ecologically valid moderator of decision 

making. Professional decisions rarely occur in the absence of accountability to 

prevent fraud and malpractice. By definition, allocentric decisions take place in a 
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social environment and therefore are often subject to judgment of the recipients 

or third-party viewers. Additionally, both accountability and allocentric decision 

making are often used to curb egocentric biases by using social pressures to 

curb desires in favor of social norms. The following experiment investigates 

accountability from a third-party regulator as a potential moderator of allocentric 

decisions. 

2.4.2 Accountability 
Accountability is a state where an individual must justify beliefs, attitudes 

or behaviors to another (Lerner & Tetlock 1999). Accountability has been shown 

to affect attenuation to information and complexity of thought in decision making 

processing (Tetlock & Boettger, 1989). More recent work shows accountability 

can moderate robust decision-making phenomenon such as loss aversion, risk 

aversion, and sunk-cost bias (Pahlke, Strasser, & Vieider, 2012; Pollmann et al., 

2014; Simonson & Nye, 1992). Similar findings show when investing for others, 

participants exhibited less risk and loss aversion, but this difference was 

mitigated when decision recipients could reward the decision maker (Pollmann et 

al. 2014). Using interview paradigms from Tetlock’s early studies (1983; 1985) 

and replicated in Pahlke et al. (2012), this experiment attempts to maximize 

perceptions of accountability. Based on review and recommendation from the 

literature, the interview was presented to the participants as a request from a 

third party of authority who had valid interest in the decision – the head 

experimenter – and required both outcome and process accountability. 



A l l o c e n t r i c  E f f o r t  D e c i s i o n s | 98 

 

Participants were made aware of the requirements for accountable decisions 

before making any choices. 

2.4.3 Participants 
86 undergraduate students (55 female; MeanAge = 21) from a Singapore 

university were recruited. 10 participants had less than 5% variation in choice 

preferences or multiple failed catch trials (n = 76). Participants were recruited via 

an internal database and compensated $5 SGD for their time plus the average of 

an outcome chosen by themselves and one outcome chosen by another 

participant. The mean added compensation was $5.73 for typing an additional 

16.35 words. 

2.4.4 Procedure 
This experiment utilized a within-participants design conducted in a 

laboratory environment. All participants made identical decisions in each of three 

conditions. The first two conditions were similar to the first experiment where 

participants made choices for themselves (Self) or another participant (Other: No 

Accountability or ONA). The recipient was an anonymous participant who did not 

reciprocate decisions and was double-blind anonymous to the decision maker. 

The third condition was identical to the ONA condition, but required justification of 

the choice during an interview with the head experimenter (Other: Social 

Accountability or OSA). Participants were informed prior to any decision making 

that during the post-hoc interview, choices from randomly selected trials would 
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need to be explained to the head experimenter. The interview was conducted 

after all decisions were made, but before outcomes were resolved.  

 

Figure 2.7: Stimuli for indicating the condition of the upcoming trial 

 

After giving written, informed consent, participants made 81 binary 

decisions independently via computer including three catch trials. Participants 

first identified the condition of the upcoming trial presented via one of three 

indicator images on screen, shown in Figure 2.7. After confirmation of the 

condition on the computer, participants chose between two bundles of effort and 

compensation similar to the first experiment (Figure 2.8). One bundle was a 

constant, small effort-small reward option (10 words for $1.5 SGD). The other 

option was a larger effort – larger reward option with option stimuli varying 

orthogonally between $4-$10 and 20-50 words. The experiment operationalized 

effort using the same typing task as the prior experiment and trials were 

presented in random order with regards to effort, compensation, and condition. 
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Figure 2.8: Sample trial from the between-participants experiment 

  

2.4.5 Results 

2.4.5.1 Main Effects of Option Stimuli (Effort and Compensation) on Choice Behavior 

The stimuli for this design were examined using linear regression to 

demonstrate main effects of both the compensation and effort parameters on the 

probability of choosing the low effort option. Similar to the findings in the first 

experiment, the large option value has a negative effect on choosing the smaller 

option (p< 0.001) and the large options’ effort cost has a positive main effect (p< 

0.001), indicating that participants were sensitive to both effort and compensation 

manipulations. For full results, see Table 2.5. Figure 2.9 presents the smaller 
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effort choice proportion across all levels of effort (x-axis) with +/-1 SE bands. 

Figure 2.10 shows the same dependent variable across all levels of monetary 

compensation (x-axis).  

 

Table 2.5  Linear Model Predicting Choice of Smaller Effort/Reward Option 

Predictor 
    β 

Odds 

Ratio       SE          p- value 

Intercept 0.233 0.028 8.322 <0.001 *** 

Compensation - 0.095 0.003 - 31.071 <0.001 *** 

Effort 0.022 0.001 41.514 <0.001 *** 

Significance codes: p<= 0.001 ***, p<= 0.01 **, p<= 0.05 * 

 

Figure 2.9: Choice outcomes vary as the effort of the larger option increases 
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Figure 2.10: Choice outcomes vary with the compensation of the larger option 

 

2.4.5.2 Main Effect of Condition on Choice 

To compare the value of the combined bundle of effort and money, WpD 

Rate was computed as before. The proportion of low effort choices was 

calculated for each WpD rate and plotted by condition in Figure 2.11. A GLM was 

fit to the data using the Other: No Accountability condition as the reference 

category to allow likewise comparison for each alternative condition (decision 

recipient and accountability respectively). Both WpD rate and condition are 

significant predictors of choice with egocentric decisions less likely to result in 



F i t z g e r a l d | 103 

 

lower effort outcomes than allocentric choices at all levels of WpD Rate (p < 

0.001 Self Condition). However, allocentric decisions under accountability did not 

significantly differ from allocentric decisions without accountability (p = 0.102).  

 

 

Figure 2.11: Choice varies as the WpD rate increases 
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 Table 2.6      GLM Predicting Choice by WpD and Condition  

Predictor 
β 

Odds 

Ratio SE z-value       p-value 

(Intercept) -3.525 0.029 0.081 -43.330 <0.001 *** 

WpD Rate 0.508 1.662 0.016 32.670 <0.001 *** 

Self -1.643 0.193 0.158 -10.377 <0.001 *** 

Other: Social Acc. (OSA) -0.224 0.799 0.137 -1.637 0.102  

WpD x Self 0.203 1.224 0.027 7.484 <0.001 *** 

WpD x OSA 0.043 1.044 0.025 1.738 0.082  

Significance codes: p<= 0.001 ***, p<= 0.01 **, p<= 0.05 * 

 

2.4.5.3 Mixed Effects Modeling 

Traditional GLM does not distinguish variance in the dependent variable 

attributed to differences between participants from variance attributed to trial-

level predictors. Parsing these effects is important. Each decision maker may 

possess different typing abilities or contain other forms of unexplained 

heterogeneity that may bias the effect size estimate well beyond the 

experimental design of randomized sample selection. For example, one 

participant may think she is an excellent typist compared to the average student 

while another may think he is very poor. Furthermore, one participant may use 

different cognitive strategies when evaluating options, leading to systematic 

differences in option selection. Variance attributable to between-participants 

effects, also known as individual differences, is considered more specifically in 
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chapter 3, while the current analysis hones findings related to the effects of 

condition and trial-level predictors. 

To control for interpersonal differences post-hoc, a mixed-effects GLM 

(GLMM) was fit to allow for observations within-participants to covary in terms of 

both intercept (mean condition differences) and slope (WpD rate x condition 

interaction) (Baayen, Davidson, & Bates, 2008). This method of analysis helps to 

isolate the effect of condition across the sample and makes results more 

generalizable to the population level (Moscatelli et al., 2012). The model fits 

grouping-level parameter estimates (in this case the group of observations are 

linked to one participant) using maximum-likelihood estimation from the lme4 

package for R (Bates, Mächler, Bolker, & Walker, 2014). Unlike in two-step 

hierarchical regression, grouping-level parameters are estimated simultaneously 

with observation-level (choice-level) predictor estimates.   

To ensure the best fit to the data, three nested models were compared. 

The initial fixed-effects only GLM, a random-slope model, and a random slope 

and intercept (referred to hereafter as a “crossed”) model were compared using 

the Akaike Information Criterion (AIC). Of the three models, the crossed model 

exhibited the lowest AIC. A likelihood ratio test shows the improvement in the 

model fit is significant between the two mixed-effects models, justifying the need 

for a crossed-model. Full results are presented in Table 2.7.   
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Table 2.7  Model Comparison Likelihood Ratio Test 

Model df AIC Chi2 p-value 

Fixed Effects Only 6 14200.710   

Random Intercept 7 9114.434 9100.4  

Crossed (Random 

Intercept and Slope) 
9 7070.555 7052.6 <0.001*** 

Significance codes: p<= 0.001 ***, p<= 0.01 **, p<= 0.05 * 

  

The random effects of the crossed model are variance estimates of each 

participant (intercept) and the participant by WpD rate interaction (slope). Strong 

evidence for random effects can be seen in Figure 2.12 which shows the 

standardized variance estimate for each participant with respect to the grand mean 

(black vertical line). The blue and red colored participants show deviations from 

the grand mean that are significantly different using a two-tailed t-test. 
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Figure 2.12: Random effects estimates and 95% CI for each participant in the 

crossed model 

 

The fixed effects of interest are the same as with the prior GLM model, 

with independent and interaction effects of WpD rate and condition used as 

predictors of choice behavior. The model presents a similar shape to the GLM 

(Figure 2.11), but with additional power due to bootstrapped sampling of 

parameters over 5000 iterations. Using the Other: No Accountability condition as 
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the reference category, the model shows significant differences between Self and 

Other conditions both as a main effect and interaction across WpD rate (p < 

0.001 for both). No differences were observed between the two Other conditions 

or the interaction with WpD rate (pOSA = 0.490, pOSAxWpD = 0.345 respectively). 

Table 2.8 shows the full results of the GLMM while Figure 2.13 shows the 

predicted probabilities of choosing the smaller effort option for each condition as 

WpD increases. 

 

Significance codes: p<= 0.001 ***, p<= 0.01 **, p<= 0.05 * 

 

 Table 2.8  Results of the Crossed GLMM Predicting Choice  

Predictor β Odds Ratio SE z-value p 

(Intercept) -8.141 0 0.745 -10.929 < 0.001 *** 

WpD 1.222 3.394 0.113 10.759 < 0.001 *** 

Self  -2.515 0.081 0.201 -12.499 < 0.001 *** 

Other: Soc. Acc. (OSA) -0.126 0.882 0.182 -0.690 0.490  

WpD  x Self 0.296 1.344 0.034 8.608    < 0.001 *** 

WpD  x OSA 0.031 1.031 0.033 0.944 0.345  
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Figure 2.13: Fixed effects of the crossed model predicting choice by WpD and 

Condition 

 

2.4.5.4 Discounting Behavior Analysis 

To investigate discounting behavior, indifference points were estimated for 

all levels of effort within each subject and condition. The standardized subjective 

value across effort levels is shown in Figure 2.14. The larger effort option in the 

egocentric condition exhibits higher subjective value than in the allocentric 

conditions. AUC analysis confirms similar results to the findings from experiment 

one (MeanSelf = 0.379, MeanONA = 0.345, MeanOSA = 0.352). One-way ANOVA of 



A l l o c e n t r i c  E f f o r t  D e c i s i o n s | 110 

 

AUC by Condition shows significant differences between conditions (F = 3.826, p 

= 0.023). Pairwise Wilcoxon sign-rank tests confirms that allocentric-egocentric 

differences drive this effect, while there are no significant differences in the effect 

of accountability (pSelf-ONA = 0.0003, pSelf-OSA = 0.0018, pONA-OSA = 0.4076). 

 

Figure 2.14: Mean indifference points by condition for each unique effort level 

 

2.4.6 Discussion 
The results from the second experiment showed evidence for allocentric-

egocentric differences in effort decision making. These results confirm the 

findings from the first experiment. Choice differences were observed using 

mixed-effects modeling of all three conditions to increase the internal validity of 

the analysis. The mixed-effect model showed significant differences between 
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egocentric and both allocentric conditions while controlling for between-

participants’ variance.   

Analysis of effort discounting behavior was conducted indifference point 

estimation and AUC analysis. Comparison of AUC between conditions showed 

that choice differences are related to how decision makers value an option based 

on the effort required to obtain it.  

2.5 Conclusion 

In two behavioral choice studies, effort discounting behavior was 

observed in both egocentric and allocentric conditions when making decisions 

determining the effort and compensation of a typing task. Furthermore, both the 

within- and between- participants designs produced effort discounting behavior. 

The results of the stimuli validation provide evidence that the typing task is 

adequate for eliciting discounting behavior.  

The behavioral experiments presented here show a robust difference 

between allocentric and egocentric decision making, both within- and between- 

participants. Participants in these experiments discounted the monetary 

compensation of choice outcomes more when considering another person’s 

effort compared with their own. Stated another way, egocentric decision makers 

exhibited reduced effort discounting compared to allocentric decision makers. 

Findings from both experiments support hypothesis H1B.  

Furthermore, social accountability, a moderator of interest, did not affect 

allocentric decision making. This was an unexpected finding given prior research. 

Social accountability neither exacerbated nor reduced the effect of deciding for 
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another. While difficult to interpret a null result, it is noteworthy that both 

allocentric conditions exhibited similar results, which reinforces the robust effect 

of egocentric-allocentric differences. Whether the lack of an effect of 

accountability is due to poor operationalization or the effect size being dwarfed 

by the relatively larger effect of egocentric-allocentric differences is unknown and 

merits further investigation. Decision making studies using similar 

operationalizations of accountability have found effects on loss aversion and risk 

taking, but it may be such that accountability does not play a large roll in effort 

discounting decisions particularly. 

Overall, the behavioral evidence accrued in these studies requires a 

deeper understanding of the cognition underlying these choice outcomes. 

Different methods are required to understand the underlying cognitive 

mechanisms of the observed allocentric-egocentric choice differences. Decision 

makers may have given more weight to the attribute of compensation in 

egocentric decisions than allocentric ones, as predicted by the empathy gap 

explanation. Conversely, decision makers may have weighted the allocentric 

effort more than egocentric effort as predicted by the do-no-harm principle. The 

results are agnostic about these underlying mechanisms. Furthermore, it may be 

that both theories are correct and used by different decision makers.  

To advance understanding of this phenomenon, more specific models of 

cognition are needed to test hypotheses of latent cognitive processes.  
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3 Computational Cognitive Modeling of Effort Discounting 
3.1 Introduction 

Understanding the cognitive mechanisms driving differences between 

egocentric and allocentric decisions requires modeling latent processes. 

Computational models mimic the internal “black box” calculations of the brain 

responsible for valuing each option and selecting the one with highest value. 

Models can describe both the representation of the available choice options and 

the means of comparison for option selection. Computational modeling is 

important for comparing hypothesized latent processes between individuals, 

groups, or with other forms of discounting behavior. In addition to identifying and 

describing the mechanisms underlying allocentric effort decision making 

processes, computational cognitive modeling results can be compared with 

individual measures to investigate individual differences in decision making. 

Identifying an explicit model how effort discounts value is beneficial for 

two primary reasons: specificity and generalizability. One reason is that an 

explicit modeling approach allows for comparison of multiple models on the same 

data set which provides an opportunity to test theoretical differences in model 

construction. Using goodness of fit measures, multiple models can be compared 

independently even when fit to the same underlying data. Goodness-of-fit 

measures assess the ability of the models to explain behavioral choice data. 

Each model can test different assumptions about the latent mechanisms involved 

in decision making and therefore provide implicit testing of hypotheses. For 

example, four candidate models are used in this chapter, but they can be 
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grouped along two dimensions. Comparing each dimension results in a 

theoretical test without requiring new data collection. 

The second reason is that models are easily generalized to other data. 

Upon determination of the best fitting model for one data set, identical fitting 

methods and parameters can be replicated and tested on new data sets to 

evaluate a model’s robustness between experiments, manipulations, or 

participant samples. Theoretical assumptions drive this cross-validation strategy 

by grouping data by manipulation or sample while not explicitly modeling these 

differences. For instance, imposed experimental manipulations are used to 

segregate the data into sets (train-test splits) rather than modeling marginal 

effects of conditions from the average (such as in logistic regression analysis). 

This method allows the model to retain parsimony while allowing for cross-

sample comparison. 

Another method of analysis is to fit the same model between data sets 

but allowing the parameters to be estimated freely and independently for each 

data set. Parameter estimates can then be compared between participants, 

experiments, manipulations, or conditions. Parameter comparison is more 

specific than the goodness-of-fit comparison as parameters may explicitly 

correlate with theoretical cognitive constructs. For example, when modeling 

learning behavior, one parameter may distinguish between participants’ overall 

learning rate while another parameter estimates models task difficulty. 

Comparing the parameter differences provides evidence for which aspect of the 

cognitive mechanism is responsible for behavioral differences. The following 
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investigation in this chapter utilizes both goodness-of-fit and parameter 

comparison strategies. 

While prior computational models have successfully represented learning 

and reward (Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006; John P. 

O’Doherty, Dayan, Friston, Critchley, & Dolan, 2003), risk aversion (Tversky & 

Kahneman, 1992), and temporal discounting (Ainslie, 1975; Laibson, 1997), 

computational modeling can be a controversial as it relies on estimations of latent 

cognitive processes that are not directly observed and are heavily influenced by 

theoretical assumptions. Furthermore, models are prone to overfitting where 

representations of random variance in the data become modeled instead of true 

signal. To prevent overfitting, models should be estimated with large samples and 

ideally across multiple data sets. Fitting a model using different choice scenarios 

helps establish test-retest reliability. Additional measures to prevent overfitting 

include selecting parsimonious models that exhibit good fit to the data while 

using the fewest number of free parameters possible. Comparing multiple models 

using an information criterion that accounts for the number of parameters is 

crucial when determining the best representation of latent cognitive processes. 

 Even the best models are only approximations of cognitive computations, 

and are often contentious in the literature. Computational models of effort 

discounting behavior are not widely agreed upon (Hartmann et al., 2013; Klein-

Flügge et al., 2015). Several competing models and theoretical conflicts currently 

exist to explain effort discounting phenomena. They differ in generalizability 

between effort tasks and may not separate the differential effects of mental and 
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physical effort. As of writing, no models have been formalized for effort decisions 

related to the typing task used in this thesis.  

Two important theoretical questions arise when reviewing the current 

discourse on effort discounting models: 

(1) What is the relationship between the cost of effort and the value of its 

outcomes in computing subjective value? Is the relationship additive or 

multiplicative? 

(2) What is the shape of the effort discounting function and what does that 

imply about value computation of extreme effort values? 

 

Each question merits further development. The first question is arguably 

more straightforward as it can be reduced to a purely quantitative concern of 

model fit. Per common currency theories of decision making, benefits and costs 

must be combined when decision makers cognitively represent choice options 

(Levy & Glimcher, 2012). The overall or subjective value of a simple, single-

cost/single-benefit choice option can be mathematically expressed in many ways. 

Additive computational models involve a linear comparison between the amount 

of effort and the amount of reward where one term (usually the cost) has been 

scaled and subtracted from the objective value of the reward. Stated another 

way, the subjective value of these two attributes (effort cost and benefit) are 

computed independently and compared in the same scale through 

addition/subtraction of like terms where the effort cost has been weighted by 

estimated parameters.  
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A common alternative, is a multiplicative comparison where a lumped 

subjective value of the entire option arises from more complex computation. The 

reward is standardized by the effort cost which is scaled by a discounting 

parameter. Comparison between additive and multiplicative models can be tested 

with goodness of fit comparison to determine which is a better fit for the choice 

data. 

The second question reflects a theoretical argument and requires further 

explication in the form of an analogy. Imagine lifting weights. Lifting more weight 

at the gym always requires more effort (or “work” technically speaking in 

Newtonian physics). However, as the weight becomes heavier there will be a 

threshold where the weightlifter cannot perform the task regardless of effort 

applied. This upper limit of strength may differ between individuals, but it exists 

for some amount of weight for every human. Conversely, there are relatively 

small amounts of effort that are essentially “effortless” to even a weak person. 

Per cognitive miser theories, the cognitive cost of computing how to evaluate 

such effort may be more than the effort cost itself (Shenhav et al., 2017). 

Assuming these analogies hold in the typing task, the discounting function should 

show no change in subjective value for these extremely low or high levels of 

effort, but variable change in between. However, such extremes may or may not 

exist in the scope of effort levels used in the task. Limits of strength and 

endurance are different for each subject based on their capabilities and highly 

dependent on how a researcher chooses to operationalize effort. This makes “off-

the-shelf” model fitting risky without prior knowledge of discounting behavior in 



A l l o c e n t r i c  E f f o r t  D e c i s i o n s | 118 

 

the specific task used. The model must be contingent on the task and rooted in 

assumptions made based on data. To minimize issues from improper 

assumptions, several models were fit to the data using competing and diverse 

assumptions to determine the best-fitting model. 

Taking into consideration these issues, four models were selected from 

the current effort discounting literature to fit to behavioral choice data from 

chapter 2. Each model reflects a unique computation for how decision makers 

create a cognitive representation of value for a given choice option. The 

candidate models are the hyperbolic model, parabolic model, sigmoidal model, 

and the two-parameter flexible power model (referred to hereafter as “power 

model” for simplicity).  

All four of these models can be characterized based on two dimensions. 

The first dimension is the number of parameters freely estimated. The power 

model and sigmoidal model estimating two free parameters (denoted as k and p) 

while the hyperbolic model and parabolic model estimate only one parameter 

(denoted as k). The number of estimated parameters reflects the flexibility of the 

model and its ability to fit different shapes of discounting curves, with two 

parameters being more flexible than one. The second dimension is how the 

models combine effort and reward. The power model and parabolic model use 

additive combination while the hyperbolic and sigmoidal use multiplicative 

combination. The second dimension reflects the shape of the discounting 

function and the assumptions made at extreme values of effort. The combination 
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of these dimensions creates a unique model representing different cognitive 

processes. The implications of each model are discussed below. 

The hyperbolic model is a standard discounting model borrowed from 

temporal discounting literature (Ainslie, 1975) where the value of a reward 

decreases (or is discounted) as the time between choice and reward delivery 

increases. When a reward requires 0 effort, there is no discounting and the 

subjective value is equivalent to the listed value of the reward ($5 has a 

subjective value of $5 or 1 cookie is worth 1 cookie). The relationship is 

monotonically decreasing across all values of effort greater than 0. The rate of 

discounting is represented by one estimated parameter known as the k value. 

Graphically, the k value refers to the steepness of the function’s slope. The 

combination of reward and cost is multiplicative in this model and represent 

immediate discounting of all effort with decreased discounting at higher marginal 

effort. The hyperbolic model has successfully captured even irregular behavioral 

patterns such as preference reversals in prior behavioral choice experiments 

(Kirby & Herrnstein, 1995). Figure 3.1 shows how the hyperbolic subjective value 

estimates vary across effort levels as the k parameter changes. 
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Figure 3.1: Hyperbolic Model Simulations 

  
The parabolic model is an additive function that models the opposite 

theoretical pattern: flat initial discounting that gives way to steep discounting at 

larger amounts of effort (Hartmann et al., 2013). This model represents steep 

discounting past a threshold level of effort and effortlessness at low levels of 

effort. Cost and reward are additive in this model and only effort costs are 

modulated by the lone discounting rate parameter raised to the power of 1.2. The 

discounting rate in this model likewise controls the steepness of the model and 

how soon effort begins to discount value. Figure 3.2 shows how the parabolic 

subjective value estimate varies across effort levels as the k parameter changes. 
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Figure 3.2: Parabolic Model Simulations 

  
The third model is the sigmoidal model (Klein-Flügge et al., 2015) which 

fits two parameters to the data. The first parameter is analogous to the 

discounting rate in the prior models, again labeled as the k value. Larger values 

of k reflect increasingly steep discounting behavior. The second parameter is the 

p-threshold which represents the effort level of the lone inflection point in the 

curve. Values of p indicate the effort level where discounting is steepest and 

correlates with the threshold of effortlessness before discounting begins. By 

dissociating these parameters, the sigmoidal model is more flexible and allows 

for both shapes of discounting function at the cost of an extra degree of freedom.  

shows the change in subjective value across effort levels as each parameter is 

varied independently. Figure 3.3 shows simulated subjective values when the k 
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parameter is varied and p = 0.5.  Figure 3.4 shows simulated subjective values 

when the p-threshold parameter is varied while k = 5.  

 

Figure 3.3: Sigmoidal k value simulations 

  

Figure 3.4: Sigmoidal p value simulations 
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The sigmoidal model is a multiplicative model but should be noted that a 

two-parameter power function can also be fit to the data as an additive 

combination of reward and cost. The same study posited a more general form 

referred to as “the flexible two-parameter power model” using a simpler additive 

combination of effort and value (Klein-Flügge et al., 2015). This model is similar 

in form to the parabolic model, but estimates the power of the discounting 

function rather than defaulting to a prior set value based on the scale of the effort 

task. Figure 3.5 and Figure 3.6 show the change in subjective value across effort 

levels as each parameter is varied independently. When the k parameter is 

varied, p is fixed at 2; when the p parameter is varied, k is fixed at 5. 

 

Figure 3.5: Power model k simulations 
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Figure 3.6: Power model p simulations 

 
Each model represents a unique set of assumptions about how effort 

discounts the value of a monetary reward. These assumptions are best viewed in 

the shape of the curve created when plotting subjective value across effort levels. 

If the domain of choice options contains “effortless” levels of typing, then the 

curve is initially flat for low values of effort.  If participants find the effort task 

impossible at high levels of effort, the discounting curve should decrease sharply 

to zero before reaching maximum effort. Naturally, all model curves are 

monotonically decreasing as effort increases. For purposes of comparison, all 

four models were plotted in Figure 3.7 using representative parameters to 

provide contrast in the shape of each model. 
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Figure 3.7: Representative discounting models 

 

3.2 Motivation 
The primary motivation of this chapter is to determine an appropriate 

model for representing effort discounting behavior when decision outcomes result 

in the typing task. As of writing, no formal models have been proposed for such 

decisions with prior investigations using model-free analysis. Identifying the best 

fitting model allows for interpretations of how decision makers value the effort 

required to perform this task.  

A secondary motivation is to compare egocentric and allocentric effort 

discounting. One method is to determine if the best fitting model for egocentric 

decisions is the same as allocentric decisions. If the best fitting models are the 

same, then estimated parameters can be compared between egocentric and 
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allocentric decisions to investigate differences in how decision makers weight 

option attributes. Differences in parameter weights provide evidence for 

differences in cognitive valuation mechanisms. For instance, allocentric decision 

makers may undervalue a decision recipient’s effort compared to egocentric 

decisions.  

A tertiary motivation is to use parameter estimates to explore individual 

differences in how decision makers discount effort. This approach is particularly 

important for the within-participants design where a participant’s choices can be 

compared against themselves, effectively holding the neural basis responsible for 

valuation constant. “The Computer” (for lack of a better term) is held constant, 

providing more power to the analysis and reducing noise from interpersonal 

differences. Additionally, individual-level shifts in discounting behavior can be 

compared with self-reported measures from social-psychological scales and 

decision-making strategy questionnaires. The investigation of individual 

differences is a direct response to prior literature which calls for greater 

understanding of allocentric shifts in decision making (Andersson et al., 2014) 

3.3 Methods 
Computational models were fit to the behavioral choice data from chapter 

2. The subjective value equations Table 3.4 were fit to the data, where the inputs 

to the model are the effort and value of a choice option and the output is the 

subjective value. Parameters were estimated to minimize the deviance between 

subjective value from actual choice outcomes. 
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Table 3.4: Computational Discounting Models 

 
 

To estimate the parameters of each model, two fitting methods were 

used: (1) fitting inverse indifference points as estimates of subjective value and 

(2) fitting model predictions against raw choice responses through a SoftMax 

decision function. Both methods fit parameters with non-linear maximum 

likelihood estimation (MLE) across standardized effort levels. Normalized effort 

levels refer to the number of words needed to be typed backwards in a given 

option taken as a difference over the maximum number of words in the option 

set: 

Normalized EffortLarge = (EffortLarge – EffortSmall) / EffortMaximum 

Normalized EffortSmall = (EffortSmall – EffortSmall) / EffortMaximum = 0 

 

Model 
Num. of 

Parameters 
Subjective Value Equation 

Hyperbolic 1 𝑆𝑉 =
𝑉𝑎𝑙𝑢𝑒

1 + 𝑘 ∗ 𝐸𝑓𝑓𝑜𝑟𝑡
 

Parabolic 1 𝑆𝑉 = 𝑉𝑎𝑙𝑢𝑒 − 𝑘 ∗ 𝐸𝑓𝑓𝑜𝑟𝑡1.2 

Sigmoidal 2 𝑆𝑉 = 𝑉𝑎𝑙𝑢𝑒 (1 −
(

1
1 + 𝑒−(𝑘∗𝐸𝑓𝑓𝑜𝑟𝑡−𝑝) −

1
1 + 𝑒𝑘∗𝑝) ∗ 1

𝑒𝑘∗𝑝 ) 

Power 2 𝑆𝑉 = 𝑉𝑎𝑙𝑢𝑒 − 𝑘 ∗ 𝐸𝑓𝑓𝑜𝑟𝑡𝑝 
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The indifference points estimation method relies on the indifference points 

estimated in chapter 2 as estimations of subjective value. Indifference points 

were estimated from a logistic regression of compensation amount predicting 

choice outcomes grouped by level of effort. The following equation shows the 

simplified form where β0 is the intercept parameter and βi is the parameter of the 

compensation level from the logistic regression:  

 

𝑆𝑉𝐼𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑃𝑜𝑖𝑛𝑡 =
𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛($)𝑠𝑚𝑎𝑙𝑙𝑒𝑟

𝛽0
𝛽𝑖

 

The indifference points across each unique level of effort were fit with 

each discounting model to estimate parameters and assess fit. Parameters were 

estimated using nonlinear curve fitting minimizing the sum of squared errors. 

The second fitting method utilizes SoftMax estimation of choice 

probabilities. SoftMax estimation is a typical decision model for selection of one 

categorical option in machine learning (Jacobs, Jordan, Nowlan, & Hinton, 1991; 

MacKay, 1992) and has been applied to neuroeconomic studies (Daw et al., 

2006). This method differs from indifference point estimation because it uses the 

entirety of choice outcome data rather than a collapsed summary measure. The 

SoftMax decision function estimates the probability of option selection given a set 

of option values. The probability of a decision maker choosing option A is based 

on the relative value of option A compared to all other options. When values are 

nearly equal, the probability of choosing either option approaches 0.5. Figure 3.8 
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shows a simulated function and choices based on two possible options (labeled 

here as option A and option B). 

 

Figure 3.8: Simulated SoftMax function predicting the probability of choosing 

option A as the difference in value of choice options increases 

 

The SoftMax function returns a probabilistic representation of choice that 

allows for noise in the data where decision makers choose options that do not 

have the maximum subjective value. This means each trial in a given choice 

experiment is treated as an independent observation and all choice options are 

explicitly represented in fitting, even those trials that are incoherent with model 

predictions. A further advantage of the SoftMax function is option value can be 
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represented using any discounting model or model-free valuations. The SoftMax 

function compares the subjective values of whole options rather than individual 

attributes and does not dictate assumptions on how individual attributes of the 

choice option are valued. Modeling the entire bundle of choice attributes is a 

boon for analytic versatility and allows for comparison of all four discounting 

models while controlling for selection process.  To estimate discounting model 

parameters, the discounting models are nested within the SoftMax decision 

function and optimized with respect to a cost function.  

One strength of SoftMax parameter estimation is the additional free 

parameter for weighting the importance of the model when predicting choice 

outcome. This model-weight factor is known as the temperature and is also freely 

estimated. SoftMax decision functions estimate an additional parameter that 

denotes how strongly estimated subjective value affects choice outcome. 

Temperature estimation was conducted for all models and constrained between 

[0, 1]. All fitting results had suitably high temperature (>90% of Temperature 

estimations = 1). The SoftMax utility function follows the form: 

𝑃(𝑙𝑎𝑟𝑔𝑒𝑟) =

𝑒𝑆𝑉(𝑙𝑎𝑟𝑔𝑒𝑟)

𝑇𝑒𝑚𝑝.

𝑒𝑆𝑉(𝑙𝑎𝑟𝑔𝑒𝑟)

𝑇𝑒𝑚𝑝. +
𝑒𝑆𝑉(𝑠𝑚𝑎𝑙𝑙𝑒𝑟)

𝑇𝑒𝑚𝑝.

 

SoftMax choice predictions were compared with actual chosen outcomes 

to assess fit by minimizing a cross-entropy cost function. The probability of 

selecting the larger effort option was an arbitrary distinction as all choices used 

binary outcomes that were complete and mutually exclusive (probability of 
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choosing the larger option + probability of choosing the smaller options = 1). To 

optimize parameter estimates, a log-likelihood cost function for binomial 

distribution was utilized in maximum likelihood estimation. The loglikelihood was 

obtained by comparing choice prediction with actual choices via the binomial cost 

function. The cost function penalizes incorrect model predictions based on model 

confidence, or the probability estimate returned by the SoftMax function. 

Incorrect predictions with the probability of the incorrect option approaching 1 are 

harshly penalized compared to model predictions that are incorrect, but less 

confident (where the probability of the incorrect option approaches 0.5). The log-

likelihood is summed for all choices in each set space. Set space was 

determined by condition and participant for each fitting. The cost function follows 

the form below where p is the estimated probability of choosing the correct 

option: 

Log-Likelihood = − ∑ 𝑝 ∗ 𝑙𝑜𝑔 (𝑝) + (1 − 𝑝) ∗ 𝑙𝑜𝑔(1 − 𝑝) 

 
In both indifference point and SoftMax fitting methods, parameters that 

minimized the deviance between predicted and actual choice in each set space 

were retained for further analysis. For model comparison, the log-likelihood of 

each parameter estimation was weighted or penalized by the number of 

parameters estimated by the model. Model comparison was conducted using the 

Akaike Information Criterion or AIC (Akaike, 1974). The AIC is weighted by the 

number of parameters to penalize overfitting, but only provides a relative 

comparison of model fit, not an absolute measure. Therefore, AIC cannot be 



A l l o c e n t r i c  E f f o r t  D e c i s i o n s | 132 

 

compared between the types of fitting methods because fewer observations were 

used to estimate the model with indifference point fitting. Lower AIC reflects a 

relatively better fitting model. 

To clarify the following analysis, the experiments will be referenced by 

their design – within-participants and between-participants and the fitting 

approach used – indifference point or SoftMax. Choices across conditions were 

fit separately for the within-participants design. The following analyses lead with 

the within-participants design because the paired comparisons improve the 

power of the analysis. Between-participants design choices were also modeled 

and reported when appropriate to validate contrast between conditions.  

3.4 Results 
3.4.1 Model Fit Comparisons 

Model fit comparison results were dependent upon the fitting method. AIC 

distributions from SoftMax fitting methods for the within-participants experiment 

data were compared across the four candidate computational models as well as 

two model-free estimations of subjective value. The model free estimates were a 

standardized additive (Dollars – Words) and multiplicative (Dollars / Word) 

combination of effort and compensation. For a baseline comparison, a SoftMax fit 

estimate was calculated using only compensation (no inclusion of effort costs) as 

the “subjective” value. This represents decision makers who are indifferent to 

effort and whose subjective value of an option is equivalent to the objective 

monetary value. The Compensation model was not reflective of the choices 

made in the experiment and serves as an example of a poor-fitting model.  
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Figure 3.9 shows the AICs for each estimation as a point with distribution density 

represented by a violin-plot.  Better models are represented by high density 

grouping of lower AIC values. 

Comparison of the AIC distributions shows better that multiplicative 

combinations of effort and compensation fit the data better when considering 

either computational models or model free estimations. Dollars/Word outperforms 

Dollars-Words as a choice predictor (Kruskal-Wallis p < 0.001). Furthermore, 

both the hyperbolic and sigmoidal models have lower AIC distribution than the 

additive models. Kruskal-Wallis test confirms the difference between 

multiplicative and additive models is significant (χ2 = 774.49, df = 5, p < 0.001).  

 



A l l o c e n t r i c  E f f o r t  D e c i s i o n s | 134 

 

 
Figure 3.9: AIC distributions of SoftMax model fitting for the within-participants 

experiment data 
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Indifference point fitting resulted in similar findings for computational 

model fit. Figure 3.10 shows the distributions of AICs from indifference point 

fitting. The hyperbolic model was the best fitting with the sigmoidal model a close 

second. Both models were well suited to fit the data, but with the reduced 

number of observations used in indifference point fitting, the hyperbolic model is 

superior because it utilized one fewer parameter while estimating a similar 

discounting curve. The k values between sigmoidal and hyperbolic models were 

highly correlated (r = .95). The sigmoidal p parameter was not informative during 

indifference point fitting (>90% estimated p values were 0). Additive models were 

significantly worse at predicting indifference points, with the two-parameter power 

model being the worst performing model in part because of the additional 

parameter penalty. Again, Kruskal-Wallis test results confirm that the difference is 

significant amongst discounting models (χ2 = 701.34, df = 3, p < 0.001).  
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Figure 3.10: AIC distributions for models fit using indifference point estimation for 

the within-participants data 

 
The data followed this pattern with hyperbolic and sigmoidal models best 

representing the data. Furthermore, the AIC distribution patterns hold across 

effort reference options, meaning that computational models can describe 

differences in larger and smaller effort options. The distributions of AIC by model 

can be seen in the boxplots in Figure 3.11. The sigmoidal model was a very close 

second in both effort reference frames and the combined data. Going forward, 

only the sigmoidal and hyperbolic models are retained with the parabolic model 

chosen as a contrasting point of reference.   
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Figure 3.11: AIC distributions for models fit using SoftMax estimation for the 

between-participants experiment 

 

3.4.2 Condition-wise Model Fit Comparisons 
Comparing model fits between egocentric and allocentric choices shows 

no difference in AIC. The within-participants data set shows the sigmoidal model 

and hyperbolic model were the best fitting models across all three conditions. 

Kruskal-Wallis testing the AIC fit data for each model shows that condition does 

not affect model fit for either the hyperbolic (χ2 = 1.06, df = 2, p = 0.588) or 

sigmoidal models (χ2 = 5.16, df = 2, p = 0.076). Figure 3.12 shows the results of 

condition-wise model fits for the hyperbolic and sigmoidal discounting models. 
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Figure 3.12: AIC distributions by condition for the two best models fit with 

SoftMax estimation to the within-participants experiment data 

  
Between-participants fitting can be seen in Figure 3.11. Models fit 

allocentric group choices better than egocentric choices overall, yet the relative fit 

of the models was identical between groups. Kruskal-Wallis test shows the AIC 

distributions for models were not significantly different between groups (χ2 = 

2.86, df = 2, p = 0.239).  

3.4.3 Condition-wise Parameter Comparison 
Based on the prior analyses, the hyperbolic and sigmoidal models were 

retained for parameter comparison. The parameter estimates from the hyperbolic 

and sigmoidal model were then compared across conditions, with emphasis 

placed on allocentric and egocentric differences. Given the similarity of 

parameter estimates between models in a fitting method, only the best fitting 

model from each fitting method was retained. The hyperbolic model parameters 
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were compared using the indifference points data while the sigmoidal model 

parameters were compared when estimated via SoftMax decision function. The 

first comparison examines hyperbolic model k values between egocentric and 

allocentric decisions fit to the indifference point data. 

Within-participants data shows that the hyperbolic k parameter was 

significantly different between egocentric and both allocentric conditions, but did 

not differ between accountability conditions, mirroring the model-free findings 

from chapter 2. Similarly, the distributions are positively skewed in all three 

conditions, necessitating the use of non-parametric statistical analyses. Pairwise 

Wilcoxon sign-rank tests confirm that k value differences were significant (pSelf-ONA 

<0.0001, pSelf-OSA = 0.0022, pONA-OSA = 0.4861). The egocentric k values were less 

than either of the allocentric conditions reflecting the same pattern of discounting 

behavior from the between-participants design. The lower k value corresponds to 

a reduced discounting rate and the more likely selection of larger effort choices 

(MeanSelf = 5.79, MeanONA = 8.16 MeanOSA = 7.91). Figure 3.13 shows the 

distribution of k values presented as a violin plot overlaid with the mean and 

confidence interval as boxplots. 
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Figure 3.13: Hyperbolic model parameter distributions by condition estimated 

with indifference point fitting for the within-participants data 

  
In the between-participants experiment, the indifference point fit 

hyperbolic model shows evidence for trend differences in k value between 

egocentric and allocentric groups. Non-parametric tests of distribution between 

groups confirm this for both combined and low reference option choices, while 
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the high effort reference option choices were significantly different between 

groups. (Wilcoxon-Mann-Whitney test, Ucombined = 808.0 p = .071; Uhigh = 844.5, p 

= .025; Ulow = 799.0, p = .089). Participants who decided for others exhibited 

higher k values on average than those who decided for themselves. Both 

distributions are positively skewed and can be seen in Figure 3.14. 

 

 

Figure 3.14: Hyperbolic model parameter estimation for the between-participants 

experiment 
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The sigmoidal model parameters were estimated with SoftMax fitting.  No 

difference was found between conditions for either the k or p parameters. 

Wilcoxon sign-ranked tests for sigmoidal k (V= 1366, p = 0.62) and sigmoidal p 

(V = 1467, p = 0.99) parameters support the null hypothesis. However, when the 

sigmoidal model is fit to the indifference points, the k parameter shows similar 

egocentric-allocentric differences as the hyperbolic model. Figure 3.15 shows the 

estimates for all parameters using both fitting methods for the two best fitting 

models.  

 

 

Figure 3.15: Parameter estimates of the best fitting models for each fitting 

method 
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Given that the two parameters are constrained and estimated 

simultaneously, the model may suffer from an unnecessary additional parameter 

for some participants or conditions, masking real discounting differences with 

increased variance for each parameter. Thus, an area under the curve (AUC) 

measure was calculated for the simulated discounting curves and compared 

between egocentric and allocentric conditions. The AUC was not significantly 

different between conditions, as confirmed by ANOVA (F = 0.265, p = 0.768).  

Figure 3.16 shows the mean and +/- 1 standard error of the AUC for both the 

hyperbolic model discounting curves fit to indifference points and the sigmoidal 

model curves fit via SoftMax estimation.  

 
Figure 3.16: Model AUC distributions for the two best models by condition 

 

3.4.4 Individual Differences 

Individual differences in the parameter estimates were present in the 

data. The sigmoidal model parameter estimates captured this variance better 
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than the hyperbolic model, resulting in a large variety of sigmoidal discounting 

curves. To illustrate this discounting diversity, Figure 3.17 shows each 

participants’ discounting curves plotted for every condition. As an additional 

method of comparison, parameter differences were analyzed to understand 

individual differences in how decision makers shift their preferences between 

egocentric and allocentric decisions. 

 
Figure 3.17: Estimated discounting curves for each participant. Hyperbolic model 

estimates are shown in the top row while sigmoidal model estimates are shown 

in the bottom row. Each column represents one condition. 

 
To examine individual differences in allocentric-egocentric differences, the 

within-participants parameter estimates were used to calculate a condition-wise 

difference score. The difference between the egocentric condition parameter 
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estimate and the mean of the two allocentric conditions’ parameter estimate was 

calculated for each participant. The condition differences for each parameter are 

shown in Figure 3.18 and Figure 3.19 in magnitude rank order for the hyperbolic 

and sigmoidal models respectively. Negative scores resulted when participants 

discounted effort more in allocentric decisions than egocentric decisions. Positive 

scores reflect decision makers who discounted egocentric effort more than 

allocentric effort.  

 

Figure 3.18: Condition difference scores of the hyperbolic k parameter estimate 

for each participant in the within-participants experiment. 
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Figure 3.19: Condition difference scores of the sigmoidal model parameters for 

each participant in the within-participants experiment. 

 

The differences in parameter estimates (egocentric – allocentric) were 

correlated with self-reported measures administered immediately following the 

choice trials. The measures used were aggregated scores for Social Values 

Orientation (SVO) and Fear of Negative Evaluation (FNE) (Murphy, Ackermann, 

& Handgraaf, 2011; Leary, 1983). Additionally, one-item measurements of 

similarity with the recipient (“How similar do you think the decision recipient is to 

you?” 1- very similar: 7- very dissimilar); feelings of responsibility (“I feel 

responsible for and accountable to” [the decision recipient during the task]; 1- 

absolutely disagree: 7- absolutely agree); and personal decision making 
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strategies (“I chose what is best for” [the decision recipient during the task]; 1- 

absolutely disagree: 7- absolutely agree; “I chose what I think” [the decision 

recipient during the task] “would choose”; 1- absolutely disagree: 7- absolutely 

agree) were correlated with the differences in parameter estimates between 

egocentric and allocentric conditions. The resulting correlations are shown in 

Table 3.5 with significant (p < 0.05) positive correlations starred. 

Results show that differences in hyperbolic discounting rate parameters 

were significantly correlated with several post-hoc measures, but not correlated 

with shifts in sigmoidal model discounting rate between conditions (r = .1, p = 

0.684). However, the sigmoidal p shift was negatively correlated with the 

hyperbolic k (r = -.3, p = 0.018*). The inverse relationship is expected, as the 

hyperbolic model reflects increased discounting behavior with an increased 

discounting rate, while the sigmoidal model may reflect increased discounting 

behavior with a lower threshold for effort (discounting behavior can begin 

sooner). 

To concentrate the analysis of individual differences on discounting 

behavior, the AUC of the estimated sigmoidal model is used as a correlate with 

the self-reported measures. It should be noted that AUC and all model 

parameters are inversely related, where a greater AUC reflects a reduced 

discounting rate or k parameter. Larger shifts in the hyperbolic discounting rate 

between egocentric and allocentric decisions were correlated with those 

participants who felt feelings of responsibility for the recipient (r = .3, p < 0.001) 

and those who reported they chose what was best for the recipient (r =.6, p < 
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0.001). Similar findings were observed in sigmoidal model AUC (r = -.3, p < 0.001 

and r = -.5, p < 0.001 respectively). 

Smaller shifts in hyperbolic k were correlated with participants who 

reported feeling more similar to the recipient (r = -.3, p = 0.008). There was no 

observed correlation in the sigmoidal model parameters or AUC with decision 

recipient similarity. 

Egocentric-allocentric shifts in the hyperbolic k value were positively 

correlated with SVO responses (r = -.3, p = 0.026). Those participants who were 

more generous in hypothetical common-pool monetary splits exhibited increased 

shifts in the discounting rate, or stated another way valued allocentric effort more 

than egocentric effort. The opposite trend was found for sigmoidal discounting 

rate (r = .3, p = 0.024). However, this was accompanied by a reduction in the 

sigmoidal p. Sigmoidal AUC did significantly correlate with SVO (r = -.2, p = 

0.045). 

The strong similarity in individual differences results serve as a further 

check on the modeling paradigms used. Despite different estimation methods 

(indifference point estimation for hyperbolic model and SoftMax estimation for the 

sigmoidal model), both models reflected similar self-reported findings in affect, 

cognition, and decision-making strategy. 
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Table 3.5: Egocentric-Allocentric Parameter Differences Correlated with Self-

Reported Measures 

 Discounting Model Parameter 

 Hyperbolic k Sigmoidal k Sigmoidal p Sigmoidal AUC 

SVO .3* -.3* -.2 -.2* 

FNE 0 .1 0 0 

Similar -.3* 0 -.1 .2 

Choose best 
for the 
recipient 

.6* -.1 -.2 -.5* 

Choose what 
recipient 
would 

.2 -.2 0 -.1 

Feel 
Responsible 

.4* 0 -.1 -.3* 

Significance codes: p<= 0.05 * 

 

As an additional check on the null effect of accountability on allocentric 

decision making, gender effects were investigated. Research has shown that 

decision maker gender can moderate the effects of accountability even when the 

party holding the decision maker responsible is not personally known (Brandts & 

Garofalo, 2012). Differences in model parameter estimates between allocentric 

conditions were analyzed by gender. The difference in between allocentric 

parameter discounting rates was compared between groups using the 
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participants’ gender to segregate the groups. A two-sample t-test was conducted 

between gender groups and showed no significant difference (t = 0.488, p = 

0.627). 

3.5 Discussion 
The computational modeling results presented in this chapter provide 

evidence for the multiplicative combination of effort and value in option 

comparison. Multiplicative models fit the data better than additive models, 

including model-free combinations of effort and value. Dollars-per-word was a 

better model-free predictor of choice than dollars-words in SoftMax estimation of 

the within-participants experiment data. Amongst computational models, both the 

hyperbolic and sigmoidal models fit the observed choice data better than the 

parabolic and power models. Indifference point fitting also supports this finding 

with both multiplicative models outperforming the additive models when 

comparing AIC distributions. 

Comparing computational models, the hyperbolic and sigmoidal models 

were both good fits to the data. These models fit decisions in both egocentric and 

allocentric conditions equally well. When utilizing indifference point fitting, the 

reduced number of observations benefits the hyperbolic model because it uses 

one fewer parameter while still adequately describing the discounting behavior. 

When fitting with indifference points, the sigmoidal p threshold was very close to 

zero, implying that discounting was immediate for all levels of effort greater than 

0. The lack of variance of the secondary parameter resulted in the hyperbolic 

model being preferred for indifference point fitting.  
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The sigmoidal model was more apt when SoftMax estimation was used 

as the extra parameter affords it additional versatility to cope with increased 

variance given the greater number of observations. Regardless of fitting method, 

both models were able to represent the shape of the discounting curve and fit 

egocentric and allocentric decisions better than the other two models. 

The shape of the average discounting curve reflected several key findings 

about effort discounting in the data. Discounting behavior began at low effort 

levels in typing task decisions, and very little of the effort domain is considered 

“effortless”. At the other end of the domain, even maximum effort was perceived 

as feasible for the higher values of compensation. However, the higher values of 

effort were highly discounted in both egocentric and allocentric conditions. The 

discounting models estimated subjective values greater than 0 for all options. 

This finding was reassuring as a logical test of task-model fit.  

The best fitting models did not differ between egocentric and allocentric 

conditions, implying that similar cognitive processes and assumptions are made 

when deciding for others as when deciding for oneself. However, parameter 

estimates differed between egocentric and allocentric choices. When the 

hyperbolic model was fit to the indifference point data, discounting rates were 

reduced when participants made egocentric decisions. The sigmoidal model, 

which was the best fit using SoftMax estimation, did not exhibit significant 

differences in k or p parameters, nor in the AUC measure. This may be a result of 

increased noise in the data when fitting all choices, as participants may have 

erroneously entered choices during the trials. Indifference point fitting used 
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smoothed, summary statistics rather than direct choice observations, but greatly 

reduced the variance of the data. Another possible explanation is the two 

parameters were inversely related causing the overall shape of the model to 

change, but increasing variance in direct parameter comparison. For trial-by-trial 

comparison, the sigmoidal model may be of greater use, and thus both models 

were retained for further analysis. 

Variance in parameter estimates reflected individual differences. Post-hoc 

measures including SVO, FNE, feelings of similarity, and the decision-making 

strategy of choosing what was best for the decision recipient were all correlated 

with parameter shifts between egocentric and allocentric decisions in the 

hyperbolic model. The correlation between SVO and both models’ discounting 

rate parameters opens avenues for further exploration of sociocentric decision 

making correlations in the future.  

3.6 Conclusion 
The findings in this chapter yield both clear insights and further questions. 

The discounting curve for decisions about the typing task appears to follow a 

convex pattern with steep initial discounting based on a multiplicative 

combination of effort and compensation. This was found for both egocentric and 

allocentric decision making and coalesces well with the results from chapter 2 

where the significant effect of “effortless” choice options in the between-

participants study reflects steep initial discounting behavior. Both multiplicative 

models, the sigmoidal and hyperbolic models, allow for steep initial discounting. 
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Additive models, the parabolic and two-parameter power models, do not allow for 

steep initial discounting.  

This steep initial discounting was found in both the indifference point 

fitting method and the SoftMax estimation method. Furthermore, models were 

estimated using the within-participants data that did not use an effortless 

reference option as stimuli (unlike the between-participants design), yet model 

estimates showed a similar pattern. This finding is encouraging as it shows the 

robustness of the cognitive computational modeling approach generally, and the 

models selected more specifically. 

Steep initial discounting lends support to the do-no-harm principle as a 

potential mechanism for explaining allocentric effort discounting differences. 

Effort is immediately discounted for both self and others with allocentric effort 

discounted even further. Similarly, the do-no-harm principle is a viable 

mechanism for egocentric choices. The empathy gap explanation would likely 

present as less steep discounting at low levels of effort in egocentric decisions to 

obtain more compensation when effort is small, but be irrelevant when deciding 

for others. Thus, different discounting models would be expected for an empathy 

gap explanation. 

However, the sigmoidal model did not show a distinction between 

egocentric and allocentric decisions despite the strong behavioral differences. 

This begs the question of the appropriate number of parameters needed to 

model effort discounting and if “endurance” and “strength” are independent 

components of effort evaluated in the typing task. However, the sigmoidal model 
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captured a far more diverse array of discounting behavior than the hyperbolic 

model and was versatile enough to be the best predictor when describing 

subjective value and ultimately choice on a trial-by-trial basis using the SoftMax 

fitting method.  

Individual differences in effort discounting curves naturally opens the 

discussion to individual-level predictors of both effort discounting and egocentric-

allocentric differences. While preliminary findings show evidence that individual 

level predictors exist, these predictors were neither controlled for nor 

manipulated and only offer correlational results. However, investigating individual 

differences in the brain may glean more robust findings.  
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4 Neuroimaging Introduction and Background 
4.1 Motivation 

Computational models are representations of theoretical cognitive 

mechanisms suited to fit patterns in behavioral data. but theory can be validated 

by examining the physical implementations responsible for cognition. For 

cognition, physical reality is activity in the central nervous system, specifically in 

the brain (Collell & Fauquet, 2015). Neural correlates can both extend and further 

specify understanding of the mechanisms underpinning decision making. With 

modern neuroimaging methods, real time localization of neural activity can be 

recorded in human participants while they experience stimuli and make 

decisions. This chapter provides background on the current methods used in the 

neuroimaging of decision making coupled with a review of prior neuroimaging 

literature tailored to allocentric effort decisions. 

4.2 Background and Methodology 

The multitudinous neural regions and pathways that process stimuli and 

action responses transmit information at speeds of 120 m/s (432 km/h) and 

activate and deactivate on the order of milliseconds (Gerstner, Kreiter, Markram, 

& Herz, 1997). This creates an immense amount of data dispersed throughout 

the brain at any given time. Therefore, studying neural activity necessitates a 

high degree of temporal and spatial resolution. Of the available neuroimaging 

methods, functional magnetic resonance imaging (fMRI) is the technique best 

suited for the current study because fMRI scanners can detect differences in the 

time-scale of the decision-making task. In addition to being commonly used in 
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neuroeconomic studies, fMRI is also preferable because it is noninvasive, does 

not require participants to ingest radioactive isotopes, and is relatively easy for 

participants to undergo with simple training, instruction, and safety briefing lasting 

approximately 30 minutes. Additionally, there are various established decision-

making experiment paradigms that can be implemented and adapted to the 

current investigation. As fMRI is not yet commonly used in organizational and 

management research, the following sections provide brief overviews of fMRI 

including the underlying physics, neuroanatomy, neurophysiology, fMRI data 

collection, and fMRI analysis methods associated with neuroeconomic 

investigation of decision making.   

4.2.1 Neuroimaging Background 
MRI is a method for viewing static soft tissue inside an organism 

commonly used in medical diagnosis. Functional MRI is the dynamic imaging of 

changes in electromagnetic response of the soft tissue over time and has been 

particularly useful for researchers studying cognitive processes embedded in the 

brain. The brain contains multitudinous networks of soft tissue arranged in 

complex patterns. fMRI has unveiled the immense complexity of the neural 

pathways and activations underpinning cognitive phenomenon like emotion 

(Phan, Wager, Taylor, & Liberzon, 2002), attention (Coull & Nobre, 1998), 

exploration and exploitation tradeoffs (J. D. Cohen, McClure, & Yu, 2007) and 

even moral deliberation (Greene, Sommerville, Nystrom, Darley, & Cohen, 2001). 

To encompass this complexity, two separate types of scans distinguish the 

structure of brain regions from the active functioning of the brain. Each type of 
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scan utilizes a different temporal resolution. The next sections follow this 

methodological segregation with the first section focusing on neural structure and 

the second on neural function. All neuroanatomical regions of interest have been 

italicized for clarity and ease of identification. 

4.2.2 Structural Imaging and Neuroanatomy 
Structural images allow visualization of the anatomy of the brain. 

Structural MRI provides highly detailed images of the brain in a static state. By 

using a prolonged scan duration, these images provide more visual detail, but 

lose the ability to detect signal variance from neural activity – similar to how 

extending the exposure time on a camera (leaving the shutter open longer than 

usual) produces a photo with enriched color and detail, but blurs motion.  

Structural imaging reveals the complex structure of the brain evolved to 

store and process information. As such, the brain has many levels of 

organization. The basic unit of the brain is the cell. Cells in the central nervous 

system are highly specialized with those responsible for communication and 

information aggregation known as neurons. The average brain has 86 billion cells 

along with as many support cells, called glia, interlaced in a 1260 cm3 fluid-filled 

area of the human skull (Azevedo et al., 2009; Cosgrove, Mazure, & Staley, 

2007; Herculano-Houzel, 2009). Neurons communicate with each other in 

organized patterns producing neural tracts or pathways for rapid, aggregate 

signal transfer between major regions of the brain. This is analogous to smaller 

city roads feeding into a network of highways that link major cities. Clusters of 

neuronal cell bodies make up the major cities in this analogy and serve as the 
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processing centers of the brain where incoming signals are temporally and 

spatially aggregated and outgoing signals originate. Cell bodies are microscopic 

and cannot be observed without invasive methods and specialized tools. 

However, with modern neuroimaging methods and computer modeling, brain 

regions can be compared on a visible scale. 

On a visible scale, the brain is identified using large anatomically distinct 

regions. Lobes are the largest regions distinguished by differences in striation 

patterns and large fissures (sulci) between regions of tissue (gyri). The lobes 

contain modular regions and sub-regions of the brain. These structures are 

labeled and defined by their physical location, characteristics, or functionality. For 

example, the substantia nigra, Latin for “black substance”, is named for the dark 

stained color of the cells, and the hippocampus, translated from the Greek word 

ιπποκαμπος for seahorse, named because its slender and spiraled shape 

resembles a seahorse. Less uniquely shaped structures are named based on 

their relative location. Relative identifiers use axis-specific labeling based on the 

average position of a standing organism (see definitions and abbreviations for 

more information on terms used to navigate the brain). Additionally, four fluid-

filled cavities called ventricles exist in the interior regions of the brain that supply 

nutrients and remove waste. These major structures - lobes, fissures, bulges, 

and ventricles - serve as guideposts when visualizing the brain and identifying 

localized activity. 

The largest scale anatomical segmentation of the brain is the cerebrum 

which contains the cortex (“bark” from Latin) and covers the inner structures 
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including the basal ganglia and hippocampus. The cortex is the outermost layer 

of the brain and can be subdivided into four lobes. From front to back (anterior to 

posterior), the four lobes of the brain are: 1) the frontal lobe which begins above 

the eyes and extends centrally, covering the top, front-half of the brain until the 

central sulcus, 2) the temporal lobe which extends on both sides from the rear of 

the brain forward underneath the frontal lobe, 3) the parietal lobe which covers 

the crown and posterior dorsal region of the cortex, and 4) the occipital lobe 

which resides ventral and posterior to the parietal lobe and temporal parietal 

junction. 

  

  

Figure 4.1: Four major lobes of the brain 
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Centrally located beneath the cortex is the basal ganglia. The basal 

ganglia is a collection of neural substructures resting on top of the hindbrain. 

These substructures include the caudate, putamen, nucleus accumbens 

presented in Figure 4.2. This region spans the midbrain regions connecting the 

brain stem and spine to the cortex. The basal ganglia is an important structure for 

linking cortical networks with pre-motor neurons in the spine and peripheral 

nerves that lead to muscles in the body. While anatomical distinctions are useful 

for navigating and orienting brain images, functional sub-region distinctions are 

more important for theoretical discussion of cognitive processes. 

 

 

Figure 4.2: Substructures of the Basal Ganglia. Image from Lim, Fiez, & Holt, 

2014 
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The following sections identify and describe the regions and structures of 

the brain that correlate with decision making, social cognition, and effort 

discounting processes. For the sake of organization, these regions are discussed 

by lobe and anatomical region.   

4.2.2.1 Frontal Lobe 

Beginning with the anterior portion of the cortex, the frontal lobe contains 

several important regions related to decision making, particularly choice option 

valuation and representation of social preferences. The primary regions of 

interest are the prefrontal cortex (PFC), the anterior cingulate cortex (ACC), and 

the supplementary motor area (SMA).  

The PFC is the anterior section of the frontal lobe, and is most notable for 

its role in executive functions like emotion regulation (Ochsner, Bunge, Gross, & 

Gabrieli, 2013). Famously, Phineas Gage, a mild-mannered railroad laborer, 

suffered damage to his prefrontal cortex when a railroad spike was launched 

through his skull in a construction accident. After recovering from the injury, Gage 

became volatile and profane while retaining motor functioning, speech, and 

memory (Damasio, Grabowski, Frank, Galaburda, & Damasio, 1994; Wagar & 

Thagard, 2004). In clinical studies of patients suffering from PFC lesions, 

participants exhibited learning deficiencies and fell prey to myopic choice options 

in decision tasks involving uncertain outcomes (Bechara, Tranel, & Damasio, 

2000). Emotion and decision making appear to be intrinsically linked, particularly 

in choosing between risky decision outcomes (G. F. Loewenstein et al., 2001) 

and identifying costly choice outcomes (McGuire & Botvinick, 2010). In both the 
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valuation and selection phases of decision making, fMRI evidence has shown 

activity in the PFC to be strongly associated with the value of rewards and risk in 

egocentric choices (Todd A. Hare, Camerer, & Rangel, 2009; Tobler, 

Christopoulos, O’Doherty, Dolan, & Schultz, 2009).  

Social cognition may also occur in the PFC (Amodio & Frith, 2006). 

Patients with frontal lobe dementia exhibited difficulty inhibiting emotional 

responses when interacting with other agents (Plaisted KC & Sahakian BJ, 

1997). A large meta-analysis of fMRI studies found that mentalizing or “Theory of 

Mind” ability where one agent attempts to comprehend the cognition of others 

strongly correlates with PFC activity (Van Overwalle & Baetens, 2009). 

Furthermore, empathy, a form of emotional mentalizing, has been localized to the 

ventromedial PFC (Saxe, 2006). The vmPFC is a well-studied region associated 

with choice option valuation in egocentric decisions, but recently has been 

implicated in social preference formation and inter-agent preferences (Zaki, 

López, & Mitchell, 2013). While evidence for social cognition and socially 

important behavior exist, these early findings lack specificity, particularly with 

regards to the identity of other social agents and the relationship between 

agents. 

The ACC is located medially in the frontal lobe just posterior to the PFC 

and above the corpus callosum that connects the two hemispheres of the brain. 

This is an important region that has been associated with executive functions or 

top down cognitive processing. Cognitive modeling of this region has identified 

option comparison and selection through information conflict monitoring 
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(Botvinick, Braver, Barch, Carter, & Cohen, 2001). Evidence has also been found 

for encoding of decision error, task frequency in the ACC (Botvinick, Cohen, & 

Carter, 2004). Conflict management and control may be linked behaviors. 

Cognitive control has been associated with choice option comparison, and 

subjective valuation such as cost/benefit weighting for both gains and losses 

(Rogers et al., 2004).   

Posterior and dorsal to the ACC is the supplementary motor area. This 

area is a band of neurons arcing over the top of the PFC. The SMA is associated 

with action planning and movement. Studies have shown activity in this area 

correlates with choices that require future physical effort (Klein-Flügge, 

Kennerley, Friston, & Bestmann, 2016). The SMA resides medially anterior to the 

central sulcus which marks the boundary between the end of the frontal lobe and 

the beginning of the parietal lobe. Figure 4.3 shows these regions of interest and 

their relative location in the frontal lobe.  
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Figure 4.3: Frontal lobe regions of interest from Ullsperger, Danielmeier, & 

Jocham, 2014 

4.2.2.2 Parietal Lobe 

The parietal lobe contains the posterior cingulate cortex (PCC), angular 

gyrus, precuneus, and temporoparietal junction (TPJ) regions of interest. The 

parietal lobe has densely connected substructures that are diverse in function. 

Many of these regions have been associated with social behavior, decision 

making, and perspective taking. 

The PCC connects the ACC to the rest of the parietal lobe. It is 

associated with new environmental stimuli, change detection, and exploration 

behavior (Hayden, Nair, McCoy, & Platt, 2008; Pearson, Hayden, Raghavachari, 

& Platt, 2009; Pearson, Heilbronner, Barack, Hayden, & Platt, 2011). The angular 

gyrus is posterior and bilateral to the PCC. Both the PCC and angular gyrus have 

been implicated in moral decision making where other agents receive harmful 

outcomes (Greene et al., 2001). In clinical studies of sociopathic participants, 
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these regions have shown reduced activity particularly with regards to emotional 

perspective taking (Glenn, Raine, & Schug, 2009). The angular gyrus and inferior 

parietal lobule in general has been implicated in perception of another agent as 

the source of causality compared to self-induced causality (Farrer & Frith, 2002). 

The TPJ is located ventral to the angular gyrus and connects the 

temporal lobe and parietal lobe. Like the PFC, the right TPJ (rTPJ) is frequently 

correlated with mentalizing and perspective taking from the point of view of 

another agent (Saxe, 2006; Van Overwalle & Baetens, 2009). The rTPJ in 

particular has been associated with representation of the self and 

representations of other social agents (Decety & Sommerville, 2003). A large 

review of 70 studies suggests the rTPJ is responsible or correlated with a broad 

spectrum of basic and complex cognition and behavior including body 

perception, attention, self-awareness, feelings of agency, empathy, and detecting 

changes in the environment (Decety & Lamm, 2007). 

The precuneus and cuneus are regions with an especially dense network 

of neurons located anterior and medial to the angular gyrus. These regions are 

connected to myriad areas of the cortex and inner brain structures. The anterior 

portion of the precuneus has been associated with self-representation in 

storytelling, information processing, and self-awareness including contrasting 

self-representation from representation of others (Cavanna & Trimble, 2006). 

Figure 4.4 shows the regions of interest in the parietal lobe and their relative 
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locations.

 

Figure 4.4: Parietal lobe regions of interest from H. I. L. Jacobs, Van Boxtel, 

Jolles, Verhey, & Uylings, 2012 

4.2.2.3 Temporal Lobe and Basal Ganglia (mesolimbic system) 

The temporal lobe is bilateral extending below the lateral sulcus from the 

parietal and occipital lobes towards the frontal lobe. The temporal lobes contain 

the insula, amygdala, and hippocampus substructures. The basal ganglia reside 

centrally between the outer cortices of the temporal lobes and into the frontal 

lobe. The insula, amygdala, and basal ganglia are all important structures in the 

limbic system which past research has shown to correlate with specific aspects 

decision making including cost-value computation. 

Research has shown both the amygdala and insula are associated with 

cost factors including risk and loss. The amygdala contains neurons that project 

to the ACC and PFC, leading many researchers to consider the value encoded in 

these regions to reflect the potential cost of decision outcomes. The insula and 

amygdala are strongly associated with emotional processing, particularly 

negative affect (Dolan, 2002). Insula activity in human participants was found to 
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correlate with unfair offers from another agent in the ultimatum game (Sanfey, 

Rilling, Aronson, Nystrom, & Cohen, 2003). The insula also showed increased 

activity when participants were responsible for movement of a joystick compared 

to another agent (Farrer & Frith, 2002). The potential for social norms and 

economic costs to be encoded in the same regions is an important consideration 

in allocentric decision studies. 

While the amygdala and insula are often associated with fear, loss, and 

avoidance behavior, the basal ganglia are associated with positive outcomes of a 

decision and approach behavior. The basal ganglia are a collection of neural 

structures responsible for movement, learning, and reward, and are also part of 

the limbic system. The main sub-regions are the ventral and dorsal striatum. The 

ventral striatum includes the nucleus accumbens, while the dorsal striatum refers 

to the caudate and putamen. These regions contain many of the dopaminergic 

pathways involved in movement and learning associated with reward salience 

and reinforcement (Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006). The 

ventral striatum (vStriatum) is associated with reward outcomes relative to 

expectations with activity that predicts reward onset and responds to erroneous 

predictions (T. A. Hare, O’Doherty, Camerer, Schultz, & Rangel, 2008; Kuss et al., 

2013; McClure, Berns, & Montague, 2003; O’Doherty et al., 2003; Schultz, 

Dayan, & Montague, 1997). Neurons in the basal ganglia connect with lower 

brain structures near the spine that regulate muscles in the body. Figure 4.2 

shows some of the major substructures of the basal ganglia and their relative 

locations. 



A l l o c e n t r i c  E f f o r t  D e c i s i o n s | 168 

 

4.2.2.4 Occipital Lobe 

The occipital lobe resides at the posterior end of the brain and contains 

the visual cortex that receives and processes input from the optic nerves. This 

region has been well studied in both human and animal models and provided the 

foundational understanding of how networked regions in the brain operate in 

unison to perform higher-order functions (Marr, 1982). As such, the occipital lobe 

is immensely important for viewing experimental stimuli, but of little theoretical 

interest in investigating allocentric effort decision making. However, it is an apt 

transition point between anatomical distinctions of the brain and functional 

physiology 

4.2.3 Functional Scanning and Neurophysiology 
Functional scans record the dynamic activity of the brain over time.  

Unlike structural scans, functional scans are quick snapshots of the brain, 

producing images with little visual detail. However, these low-resolution images 

can capture signal change in relatively small time-windows throughout an 

experiment. When taken as a collective, these scans provide a trace of neural 

activity that can be used in functional analysis and statistical modeling. 

While structural imaging requires knowledge of neuroanatomy, functional 

analysis requires an understanding of the physiology of the brain beginning with 

activity at the neuronal level. Neurons are specialized to rapidly communicate 

with each other. Neurons function by aggregate electrical signals originating from 

receptors residing on cell protrusions known as dendrites. The electrical signal 

cascades down the neuron and ultimately transforms into chemical signals 
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(known as neurotransmitters) passed to other neurons (Jahn, 2016). Neurons 

receive inputs from many receptors and aggregate the signal both spatially and 

temporally. Receptors can detect chemical signals in the extracellular 

environment and alter the electrochemical gradient of the neuron in response. If 

the internal electrical charge reaches a threshold level, the cell chemistry of the 

neuron changes dramatically due to voltage-gated ion channels causing an all-

or-nothing electrical signal known as an action potential. The action potential 

cascades down elongated protrusions from the cell body called axons. At the end 

of the axon, the electrical gradient change triggers the release of chemical 

neurotransmitters into the fluid space between neurons called a synapse. 

Neurotransmitters activate receptors on downstream neurons and the original 

signal propagates in newly activated neurons. This process is not restricted to 

nearby neurons only. Axons can travel large distances, propagating signals from 

one region of the brain to another. 

A single action potential is neither a complex information carrier nor is it 

alone responsible for a decision or action. It is comparable to one binary switch – 

one bit in computer information processing. However, complex temporal and 

spatial patterns can emerge from aggregate action potentials that act as highly 

complex switches. From these temporal and spatial patterns, the brain is capable 

of elaborate functioning and incredible adaptability. Neurons aggregate and 

coordinate action potentials over time using different signal thresholds and 

synapse configurations to then pass information along grouped pathways or 
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neural tracts. Importantly, these regions and pathways are dissociable in the 

brain and can be identified through imaging (Kanwisher, 2010). 

To trace activity changes across time, fMRI analysis leverages signal 

changes due to the brain’s natural metabolism. Neurons must actively maintain 

an electrochemical gradient to create action potentials. As neurons activate in 

response to external stimuli and internal communication, the cells metabolize 

oxygen to reset the electrochemical gradients disrupted by the action potential. 

Oxygen is delivered by blood in the circulatory system to the recently activated 

neurons. Changes in the blood oxygen concentrations in nearby capillaries can 

be recorded by the MR scanner, known as a blood oxygen level dependent 

(BOLD) response. BOLD response is the source of variance recorded in fMRI 

experiments (Ogawa, Lee, Kay, & Tank, 1990). While this is an indirect measure 

of neural activity, it is useful for determining both the magnitude and location of 

neural activity at a slower timescale than the action potentials underpinning the 

metabolic response (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001). 

The BOLD response temporally and spatially aggregates neural activity by 

producing a predictable response over time, increasing in magnitude as more 

neurons are activated and as neurons are activated more frequently. As neurons 

activate more frequently, they require more oxygen to reset for the next action 

potential. Active regions absorb more oxygen from the surrounding blood than 

inactive regions. The greater the oxygen depletion, the larger the BOLD 

response recorded by the scanner. Figure 4.5 shows the relationship between an 
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external stimulus and BOLD response, which can increase given a longer 

reaction time (temporal summation). 

 

 
Figure 4.5: Relationship between external stimuli and BOLD response from 

Grinband, Wager, Lindquist, Ferrera, & Hirsch, 2008 

 

4.2.4 fMRI Methodology 
To gather images, a large and powerful electromagnet (3 Tesla used in 

this experiment), applies a constant magnetic field to the participant lying 

horizontal on a small platform inside the machine. The magnetic field forces polar 

molecules to align along a north-south axis. A brief radio wave pulse is then 

passed through the body, exciting molecules and disrupting the magnetically-

enforced alignment. Molecules with differing compositions due to 

electronegativity, polarity, or bonding release unique energy signatures as they 

return to their magnetically induced resting state. The energy signatures are 

recorded and time-stamped by sensors around the participant. During fMRI 
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scanning, the scanner collects data repeatedly at short intervals (approximately 

2- 6 seconds in most neuroimaging studies) creating a 4-D image (or time series 

of 3-D images).  

After participants are briefed and provide informed consent to all 

procedures, initial scans are taken to ensure participants are aligned in the 

scanner. Head movement creates artificial signal in fMRI scanning and should be 

minimized during the experiment. To assist with this, the participant’s head is 

locked into position with a head guard apparatus. A second set of images are 

scanned using low temporal resolution, to provide a map of the participants’ 

neural structure (structural scans). Finally, the behavioral task of the experiment 

commences while the scanner collects high temporal resolution scans (functional 

scans) of the brain. The differences between structural and  

Scans are taken in k-space and undergo Fourier transformation into 

three-dimensional space before processing the data. The resulting planar scans 

represent slices of the brain that intersect to create “3D volume pixels” or voxels 

representing ~2mm3 coordinates in the brain. The voxel is the basic unit of 

analysis in fMRI. Changes in BOLD signal are recorded for each voxel, making it 

imperative to fix voxel position across analysis. However, participants are in the 

scanner for extended periods of time and unintentionally move about due to 

basic metabolic functions (breathing, swallowing, or even furrowing their brow 

when making a difficult decision). Movements introduce random positional 

variance (or “noise”) to the data and must be corrected to improve the signal-to-

noise ratio. Additional noise arises from resting state processes in the brain, 
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exogenous stress, and other uncontrolled for differences both within- and 

between-participants. These corrections take place in a multistep procedure 

known as preprocessing, which happens offline after data have been collected. 

Preprocessing is the mathematical adjustment of imaging positional data using 5 

steps: realignment, coregistration, normalization, smoothing, and motion 

correction. Each step is described in further detail below. All steps were 

performed using SPM12 software (Wellcome Trust, UCL). 

4.2.5 Preprocessing 

The first step in preprocessing is spatial realignment. In this step, all 

subsequent functional scans are aligned with the first scan to correct small 

positional shifts and unintended motion. Six mathematical transformations are 

applied to the images: 3 translational shifts (one each in the x, y, and z 

dimension), two rotations (pitch and yaw), and a third skew transformation that 

shifts the left and right side of the brain in opposite directions along the same 

axis. This results in a twisting positional adjustment. The parameters for each 

realignment’s magnitude are saved for each participant and input later in 

statistical analysis. 

Next, coregistration maps the functional images to a structural image. 

Additionally, structural segmentation is applied to the structural images of each 

participant. Structural segmentation identifies and labels certain types soft tissue 

found in the skull to specify and validate areas of the brain to ensure the regions 

are grey matter rather than other types of soft tissue (Ashburner & Friston, 2005). 

Different types of soft tissue contain varying concentrations of water and causing 
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different energy signatures when scanned with low temporal resolution. Four 

major tissue types are segregated: 1) Grey matter which contains the neuronal 

cell bodies, the dendrites, synapses, and the supporting glial cells and capillaries. 

Grey matter areas are the focus of fMRI studies as they localize where cell-to-cell 

communication and interaction occurs. 2) White matter are long axon tracts 

wrapped in a fatty lipid layer called myelin that repels water and allows the 

neuronal signal to propagate faster. 3) Ventricles are the four cerebral-spinal fluid 

(CSF) filled cavities and the cerebral aqueduct that connects them. The final soft 

tissue type is the 4) soft tissue layer surrounding the skull that protects the brain 

from physical and chemical trauma. Thin membranes are responsible for this 

protective layer, including the meninges and blood-brain barrier. 

The third step is normalization. Normalization warps each participants’ 

image set to fit a common image template. Images can be normalized to a 

template image of the brain or a mean structural image bespoke to the 

participants of the study. This study opted for the latter to provide a more 

accurate-to-sample mapping of regions of interest and functional BOLD 

response.  

Smoothing is another step for improving signal-to-noise ratio. In this step, 

SPM software uses Gaussian kernel full-width half-maximum smoothing over an 

6 mm3 volume to aggregate response signals from voxels to small spatial 

regions. Aggregation reduces random error due to spontaneous neuron 

activation - present in all regions of the brain – and slight anatomical differences 

between participants with regards to neuron density in certain areas.   
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A final step of preprocessing, also used in this study, was movement 

artifact correction. This is an additional step to correct systematic error due to a 

permanent shift in the participant’s head rather than mere homeostatic 

movements. Positional changes beyond a 3-degree rotation in pitch, yaw, or roll 

were marked via timestamp and all subsequent images were realigned based on 

the estimated rotation vector. 

4.2.6 Statistical Analysis 

For data analysis and statistical comparison, a hierarchical generalized 

linear modeling (GLM) approach is common in fMRI studies (Holmes & Friston, 

1998). BOLD response across time is modeled by a Hemodynamic Response 

Function (HRF). The HRF serves as the dependent variable in GLM analysis and 

marks the replenishment of oxygen to neurons post-activation. The HRF is 

relatively flat when neurons are in a resting state, peaks sharply after a slight 

delay from stimulus time, and undershoots baseline levels slightly upon 

deactivation (this undershoot mirrors the theoretical refractory period of returning 

neurons to electrochemical equilibrium). A canonical HRF models BOLD 

response in each voxel over the duration of the scanning session in relation to 

event onsets (Friston, Josephs, Rees, & Turner, 1998). Additionally, temporal and 

dispersion derivatives can be modeled to improve fit and create a smoother 

prediction curve known as the canonical HRF. The right column of Figure 4.6 

shows an example of the canonical HRF in response to a single, stimulus onset.  

Estimates of the HRF are specific to conditions. For example, the HRF 

responses in the left column of Figure 4.6 are color coordinated based on 
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stimulus event type. A priori conditions determine the type of stimulus event. The 

timestamp of scans associated with manipulated conditions or onscreen events 

are used as predictors of the HRF. GLMs estimate the HRF function for each 

voxel in the brain. The results are then placed over a mean or template brain 

image creating a statistical parametric map of the brain. 

 

Figure 4.6: Relationship between stimulus events and HRF. The color 

coordination shows the specificity of the response. Temporal aggregation is 

reflected in increased response magnitude. Figure adapted from Perrachione & 

Ghosh, 2013. 
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Additional variables can be convolved with the HRF through parametric 

modulations. Parametric modulations represent variables of interest with multiple 

factors such as when controlling for individual differences, participant movement 

vectors, or the magnitude of a continuous stimuli parameter. Two examples from 

the effort discounting task are the variable amounts of compensation and effort of 

the larger choice option on each trial. The magnitude of these variables weight 

the mean HRF on a per-trial basis since each trial is time-stamped. Parametric 

modulations can be orthogonalized and therefore may be input-order dependent 

(Mumford, Poline, & Poldrack, 2015). Possible order effects were averted by 

independently computing one parametric modulation per analysis. Analyses were 

run iteratively with all first level analyses run, followed by independent second-

level analyses.  

First level GLM analysis estimates the HRF of each voxel using the same 

predictors independently for each participant akin to within-participants design in 

a mixed-effects model. The first-level GLM collapses observations across time 

resulting in estimates within-participants that model the effect of stimuli across all 

scans in each voxel. The estimates are overlaid onto an image of the brain 

creating a statistical parametric map (SPM) of the brain. The SPM is placed 

under a thresholding mask that colors voxels based on the p-values of the beta 

estimates. This level of analysis is computationally expensive as the number of 

observations is proportional to duration of scanning session multiplied by the 

number of voxels for each subject. Due to the sheer number of statistical tests 

required, many false positive results are likely. For a single whole-brain analysis 
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with 30 participants using the scanning settings of the following experiment, 

approximately 50,000 single-voxel regressions are performed. Assuming a 

single-sample t-test for each voxel given α = 0.05, 2,500 voxels can be expected 

as type-I errors. To reduce the false-positive rate while maintaining power, test-

number corrections are applied by restricting the area of interest (ROI analysis), 

using family-wise error rate corrections (FWE), or false-discovery rate (FDR) 

corrections. After obtaining beta values for each voxel and each subject, second-

level analysis is performed to compare the effects over time. 

 Second-level analysis combines the effect sizes and locations from first 

level analysis across all subjects to test for population-level effects. This step is 

less computationally intensive as the number of observations is only the number 

of estimated betas for each voxel for every participant. The second-level GLM 

results in a statistical parametric map reflecting a “grand-mean” brain. Again, a 

threshold mask highlights voxels with significant estimates. At this level, it is 

important to look for voxel groupings or regions of significance, thus clustering 

and a priori masks of regions of interest are used to improve signal-to-noise ratio 

and extrapolate findings.  

This is a broad overview of fMRI analyses, reflecting an outline of the 

approach to investigating neural activity. There are myriad details and follow-up 

analyses available to researchers that can be applied to specific hypotheses. For 

example, contrasts at the second level GLM can be defined using first level 

contrasts, paired t-tests, ANOVA, or other techniques. Furthermore, second level 

estimates can be correlated with individual differences such as self-reported 



F i t z g e r a l d | 179 

 

measures or computational model estimates (J. P. O’Doherty, Hampton, & Kim, 

2007). More detailed methods used for the fMRI study in this thesis are 

described in chapter 5. 

The next section highlights functional regions of interest in the brain 

through a review of prior literature related to allocentric effort valuation.   

4.3 fMRI Literature Review 
At the time of writing, no prior fMRI studies of allocentric effort decisions 

are known. However, fMRI studies have focused on allocentric decision making 

in other choice domains. Independently, egocentric effort discounting behavior 

has been examined in fMRI decision studies. As such, this review highlights 

these separate studies with the aim of synthesizing relevant aspects from each. 

4.3.1 fMRI Studies of Allocentric Decision Making 

Allocentric decisions have been studied in several choice domains 

including risk aversion and temporal discounting. When making choices between 

low and high reward/risk monetary gambles, participants have shown different 

risk preferences when deciding for others than when they decide for themselves 

and these differences correlate with neural activity (Jung, Sul, & Kim, 2013). In 

this experiment, participants in an fMRI scanner were presented two chance 

lotteries on each trial. One lottery had a reward magnitude of +10 if won and -10 

if lost. The alternative option had reward magnitudes of +90/-90. The probability 

of winning in each lottery was the direct compliment of winning the alternative 

option, varying on each trial between 17-83% and 83-17% chance to win. All 

choices were made twice, once as allocentric decisions and once as egocentric 



A l l o c e n t r i c  E f f o r t  D e c i s i o n s | 180 

 

decisions. Participants allocated the larger reward more to others than 

themselves when the probability of winning the larger option was lowest (17%). 

Conversely, participants assigned themselves the larger option more often than 

they gave to others when the probability of winning was the highest. Neural 

evidence from the twenty-three scanned participants in this study shows 

significant contrasts in areas associated with mentalizing. When deciding for 

others, regions including the TPJ and dmPFC showed increased BOLD 

response.  Areas associated with reward and cost salience were more active 

when making egocentric decisions, including the vStriatum and amygdala.  

An fMRI study of temporal discounting decisions shows similar results. 

When participants made decisions between options that required the recipient to 

wait for a larger reward or receive a smaller reward immediately, behavioral and 

neural differences were observed (Albrecht et al., 2011). Choosing between 

sooner, smaller rewards and later larger rewards participants who greatly 

discounted the value of later, larger options for themselves more often chose the 

delayed, larger choice for others – meaning that participants were more impatient 

when deciding for themselves compared to allocentric decisions. Neural activity 

in the twenty-eight participants shows that areas in the anterior medial PFC, 

vStriatum, and pregenual ACC exhibited greater BOLD response when 

immediate choice options were available for themselves, but not when both 

options were delayed or the immediate options were for another recipient. 

However, decisions with an immediate allocentric option were not distinguishable 

from decisions with two delayed egocentric options. 
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Further evidence shows that the same sub-regions of the medial PFC are 

used in choice option value comparison when making both egocentric and 

allocentric decisions for a confederate with different preferences from the 

participant. Comparisons of neural activity during decision making shows the 

vmPFC exhibited patterns of activity correlating with the discounting rate of the 

decision recipient. However, when participants made allocentric choices, the 

dmPFC correlated with egocentric discounting rate (Nicolle et al., 2012). 

Researchers have suggested that the dmPFC is responsible for simulated value 

computations irrespective of social influence, challenging prior theories of a 

“social brain” located in the PFC (Dunne & O’Doherty, 2012). While dissociable, 

the neural activity was inversely correlated, implying similar or related 

mechanisms localized to different areas. Notably, regions implicated in temporal 

discounting tasks are at least partially dissociable from those involved in effort 

discounting with studies showing different regions of activity involved in each 

type of decision (Massar et al., 2015). 

Evidence for agent-invariant valuation in the PFC also comes from 

sociocentric decisions in a wealth distribution task (Zaki et al., 2013). Participants 

made choices between either an egocentric monetary reward and an allocentric 

monetary donation to another participant. The wealth indifference ratio between 

egocentric and allocentric reward was used to predict pure egocentric choice 

amounts and pure allocentric choice amounts. Both predictions correlated with 

activation in the vmPFC.  
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The idea of common valuation mechanisms across decisions is not novel. 

Estimations of the subjective value of charitable giving in participants asked to 

share a monetary reward pool with a charity institution showed activity in the 

vmPFC in twenty-two female participants (Hare et al. 2010). This area is 

commonly associated with subjective value of choice options in egocentric 

decision making (Hare et al. 2011). Overlap of subjective value mechanisms in 

the brain for both social and non-social outcomes is a well-supported theory, 

known as the “common-currency model” of decision making (Ruff and Fehr 

2014). This model suggests that the neural computation of subjective value is the 

same irrespective of the physical properties of the choice options. Essentially, the 

benefits and cost valuations for apples are comparable to those for oranges. 

However, the same charitable donation study also found inputs from the 

anterior insula and the posterior superior temporal cortex (a specific sub-region 

of the TPJ) were more active in donation decisions than in purchasing decisions 

(T. A. Hare, Camerer, Knoepfle, O’Doherty, & Rangel, 2010). Purchasing 

decisions in this study resulted in egocentric outcomes while donations provided 

sociocentric outcomes. Despite the donations being made anonymously by the 

research group on behalf of the participant, both donations and purchases were 

costly to the decision maker, and therefore partially egocentric. The potential for 

uncovering neural regions responsible for social influence in effort decision 

making drives the following research. 

While evidence suggests egocentric and social decision making utilize 

similar regions in the brain, there remains evidence of unique neural inputs to 
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these regions correlating with social elements. One important social element is 

the influence and relationship between social agents. Research has found 

behavioral evidence that participants adjusted their preference ratings for t-shirts 

after viewing another person’s ratings (Izuma & Adolphs, 2013). Social influence 

depends on the identity and perceived relationship between social agents. Izuma 

and Adolphs also found the direction of a participant’s preference adjustment 

depended on the identity of the other: either a fellow student (conform) or a 

registered sex offender (distance). Depending on the direction of the adjustment, 

areas in the dmPFC and SMA were activated. These preference adjustments 

were powerful and manifested nearly identically even after 4 months. Further 

studies have measured the utility of such social influence in conveying risk 

preferences in group decision making scenarios (Chung, Christopoulos, King-

Casas, Ball, & Chiu, 2015).   

Another point of evidence for social influence on valuation processes 

comes from social discounting research (Strombach et al., 2015). Social 

discounting refers to decreasing generosity of a decision maker as the outcome 

recipient becomes increasingly unrelated or abstract to the decision maker. 

Social discounting reflects a gradient between sociocentric and allocentric 

decision making, where close ties reflect a higher likelihood of instrumental 

reputation building, reward sharing, or reciprocation. In the experiment, decision 

makers chose between an entirely egocentric payout or social payout that was 

smaller for the decision maker but matched for another recipient. The results 
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again showed egocentric value signals in the vmPFC, but also evidence for 

neural connection from the rTPJ when participants chose prosocial outcomes. 

Correlations between activity in the PFC and individual differences in 

allocentric decision making have also been investigated. In two studies where 

participants chose to give money and assistance in a task, individual differences 

in altruistic behavior correlated with activity in the dmPFC, ACC, and parietal 

cortex (Waytz, Zaki, & Mitchell, 2012). Participants who gave more of their time 

solving logic problems for another agent’s gain and shared more of a monetary 

pool with another agent had increased activity in the dmPFC, ACC, and parietal 

cortex when deciding how much money to share, but only the dmPFC when 

assisting with logic puzzles.  

Prior computational models provide a role for the direct input of advice in 

neural option valuation (Biele, Rieskamp, Krugel, & Heekeren, 2011). However, 

even passive social interactions can influence valuation. Social comparisons 

between the “haves” and “have-nots” can impact the perceived value of rewards. 

A study in which two participants underwent fMRI scanning simultaneously while 

participating in an estimation task found evidence that reward signals in the 

ventral striatum differed based on the reward received by a participants’ partner 

relative to the participant’s reward (Fliessbach et al., 2007). When the participant 

was rewarded and the partner was not, BOLD response increased in the 

participant’s vStriatum, PFC, PCC, and angular gyrus. When only the partner 

received a reward, the participant’s insula was activated and the vStriatum 

deactivated.  
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The complexity of social influence in the neural mechanisms of decision 

making remains a challenge for neuroscience research. Social influence can be 

difficult to operationalize in a tightly controlled fMRI environment. While social 

influence can be manipulated through advice, this may differ from unstated ties 

established through relationships, social hierarchies, and power dynamics. 

However, these and other studies have made headway into a vast new area of 

study and laid important groundwork for future investigations into the neural 

processes behind allocentric decisions. 

4.3.2 Effort Decision Making 

The literature of studies using fMRI to investigate neural correlates of 

effort decision making is well established compared to that of social decision 

making. Here I summarize recent results from human egocentric effort decisions. 

These studies highlight the discriminant neurophysiology of effort discounting 

compared to delay discounting, neural correlates of physical and mental effort, 

and localization of subjective value calculations in the brain. 

Discounting behavior is often operationalized with temporal delay, but 

effort also causes discounting behavior in decision making. While effort and delay 

exhibit similar behavioral choice patterns, unique neural activity drives these 

choice differences. Evidence comes from decisions where male heterosexual 

participants chose to view erotic visual stimuli. To earn the image, participants 

either had to wait or squeeze a handgrip lever for a time duration while inside the 

fMRI scanner. Using a preference-rank measure of subjective value, the 

researchers found disparate relationships between the subjective value of the 
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chosen option and regions associated with reward value computation. Delay 

options’ subjective value were positively correlated with vStriatum and vmPFC 

activity while effort options were associated with the insula and ACC (Prévost et 

al., 2010). In a similar handgrip task with money used as a reward outcome, 

results showed separate activity associated with learning pure reward value in 

the vmPFC and subjective value (cost-inclusive value) in the anterior insula, 

ACC, PCC (Skvortsova, Palminteri, & Pessiglione, 2014). 

Using monetary rewards and the effort typing task used in the present 

research, research has shown distinct neural responses related to effort 

discounting that differ from temporal discounting (Massar et al., 2015). Subjective 

value of effort options was associated with activity in the lateral PFC and parietal 

cortex. Additionally, the ACC showed increased activity during effort trials 

compared to temporal delay trials. One important assumption to note is the 

typing task requires more cognitive or mental effort than the handgrip task.  

Other studies have investigated cognitive effort decisions using different 

tasks. Researchers have used a visual search paradigm in which participants in 

the scanner had to locate objects in a varyingly crowded field of vision. 

Participants highlighted the located objects using a joystick in the fMRI scanner. 

Results showed that activity in the dorsal ACC and the ventral striatum correlated 

with the subjective value of the upcoming task where more difficult search fields 

were paired orthogonally with varying rewards (Croxson et al., 2009). 

Additionally, SMA activity was correlated with changes in task difficulty.  
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In another cognitive effort study, participants chose between two memory 

tasks of set difficulties (easy or hard) for varying monetary rewards. The memory 

task was a variation of an n-back task with either one or two dimensions of 

stimuli to remember. Results showed correlations between effort-modulated 

value and activity in the nucleus accumbens (a vStriatum sub-region), and ACC 

(Botvinick et al., 2009).  

An important note is both research groups studied cognitive effort with 

regards to anticipation of an upcoming task. Neural structures in the basal 

ganglia have been associated with reward expectation. In physical effort 

discounting implemented with the handgrip task, anticipated effort is associated 

with activity in the dACC and putamen, while anticipated rewards of the chosen 

option were associated with ventral striatum activity (Kurniawan, Guitart-Masip, 

Dayan, & Dolan, 2013). This study also examined the activity associated when 

effort was required to prevent monetary losses. In loss-avoidance trials, effort 

and negative subjective value were both correlated with insula activity. 

To clarify the role of effort in decision making, recent research has used 

computational modeling to show correlates of estimated discounting parameters 

(Klein-Flügge et al., 2016). The effort task used was a variable handgrip strength 

task coupled with either small or large monetary rewards. The researchers found 

a sigmoidal discounting model best fit the behavioral choice data when compared 

to a hyperbolic discounting model and model free expressions such as reward 

minus effort. In the brain, subjective value estimates from this model correlated 

with the SMA, putamen, and dACC. SMA and putamen activity were particularly 
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associated with effort avoidance while vmPFC activity correlated with reward 

seeking decisions. ACC activity was associated with option comparison rather 

than attribute evaluation. 

4.4 Summary 

The brain is an immensely complex organ which research has only begun 

to investigate. Using rigorous neuroimaging methods, researchers have begun to 

probe the underlying biological processes associated with decision making. After 

reviewing the literature on allocentric option valuation and egocentric effort 

discounting decisions, several distinct regions of interest emerge. The PFC and 

ACC in the frontal lobe appear to control subjective valuation and choice 

comparison in effort decisions, while neural pathways between the PFC and 

parietal cortex, PCC, and TPJ drive social inputs into decision making. Additional 

regions of interest include the insula for its relationship with cost valuation and 

empathy, and the vStriatum associated with reward seeking behavior.  

  



F i t z g e r a l d | 189 

 

5 fMRI Investigation of Allocentric Effort Decisions 
5.1 Motivation 

The primary motivation of this research is to investigate neural correlates 

of allocentric effort discounting. The implementation of decision processes is 

reflected in the dynamic patterns of neural activity. By recording concurrent brain 

activity while decision makers engage in the cognitive processes of option 

valuation and selection, computational models can be compared with 

biophysiological evidence. Using neuroimaging methods, latent constructs and 

parameter estimates like discounting rates can be visualized in the brain through 

correlated activity. This provides validity for theoretical cognitive models and 

improved understanding of neural processes responsible for decision making. 

 Allocentric decisions where the outcomes require the decision recipient’s 

effort have yet to be examined using neuroimaging methodologies. The 

experiment presented here investigates metabolic activity in the brain while 

laboratory participants chose between large effort, large reward options or small 

effort, small reward options for another agent. Using fMRI scanning, changes in 

BOLD response across the whole brain were investigated as an initial view of the 

processes responsible for allocentric effort discounting. Further theory-driven 

analysis of specific regions of interest (ROIs) were examined for more descriptive 

and thorough comparison of specific processes. For example, ROIs previously 

identified to reflect valuation processes should exhibit different activation patterns 

from those ROIs associated with social influence, mentalizing, or empathy.   
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Additionally, the research presented here investigated estimated 

discounting rates to determine if individual differences were reflected in region-

specific activity. Localization of variance in discounting rates helps to validate the 

theoretical construct and computational models of an allocentric effort 

discounting rate. Determining a specific region or regions associated with 

allocentric effort discounting provides insight into how the brain is organized and 

how it processes social allocations. Identified regions may act as moderating 

afferent connections to regions responsible for option valuation or selection. 

This experiment also attempts to refine the difference between two types 

of accountability. Accountability can be social, as described in chapter 2, where a 

third-party evaluator or judge enforces norms on the decision maker through an 

in-person interview. Accountability can also be personal and private. Self-

reflection or knowledge that a decision maker must revisit the decisions in the 

future may utilize similar cognition without the presence of another social agent. 

By manipulating accountability within-participants, the experiment attempts to 

identify and disambiguate neural correlates of the source of accountability: either 

a social agent or private introspection.  

5.2 Methods 

5.2.1 Participants 

39 participants were recruited from the general population in Virginia, 

USA. All participants were screened for mental illness, metal implants, drug and 

alcohol abuse. Participants who responded with less than 5% variance in choice 

preferences, failed 2 or more catch-trials, or moved excessively in the scanner 
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were removed during preprocessing leaving N = 29 (Meanage = 25.7, SDage = 7.9 

years; Nfemale = 16). All procedures were approved by the Virginia Tech Carillion 

Research Institute Institutional Review Board (VTCRI-IRB). Participants were 

compensated $20 for approximately 1 hour of participation plus the averaged 

outcome of two decisions earned by completing the typing task assigned by a 

previous participant. The mean added compensation was $4.38 for typing 28 

additional words. 

5.2.2 Task 

The experiment follows a within-participants design with each participant 

making identical decisions in two conditions. Participants made choices in 60 

decision trials and three catch trials. Catch trials were option pairs where one 

choice option was superior to the other irrespective of discounting rate. Decision 

trials were presented in pseudo-random order with each set of choice options 

shown twice, once in each condition. Figure 5.1 shows the progression of one 

decision trial. 
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Figure 5.1: Diagram of one decision trial in the scanner. Bold arrows show the 

progression of visual screens viewed by the participant including durations 

between onset of visual stimuli and the labels for each timestamped event used 

in fMRI analysis. 

 

On each trial, participants chose between two option bundles with each 

consisting of a variably sized effort task and compensation for completing that 

task. For example, a set of choice options might be choosing either to type 10 

words backwards for $1 or 30 words backwards for $5. One option was always a 

smaller effort, smaller compensation option (referred to as the smaller option) 

while the other option was a variable, larger effort, larger compensation option 

(referred to as the larger option). The larger option varied orthogonally with 

regards to effort and compensation, while the smaller option remained constant 

on all decision trials. Larger option attributes ranged from $4 to $10 in $1 

increments and 20 to 50 words in 5-word increments. The smaller option was a 
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constant bundle of $1 for 10 words. The smaller option varied during catch trials; 

however, these were excluded from analysis. 

Participants were informed about each of the two conditions prior to 

entering the scanner and were reminded prior to each decision using an indicator 

image. Indicator images identified the upcoming trial as requiring either written 

accountability or social accountability. The trial condition had to be identified and 

confirmed with a key press by the participant. For Written Accountability trials, 

participants knew they would be asked to review two randomly selected 

decisions for 60 seconds after the scanning session. During the 60 second 

review sessions, participants privately justified why they chose one option over 

the other in writing. The written justification was kept by the participant after the 

experiment and not shown to the experimenter or research assistants.  

For the Social Accountability trials, two decisions were reviewed after the 

two Written Accountability review sessions, again in 60 second intervals. After 

reviewing the choices, participants were escorted to another room with a 

confederate acting as the head experimenter. The participants then justified the 

Social Accountability choices during an interview with the head experimenter.  

The average of the decision outcomes from both conditions, effort and 

compensation, was given to the following participant in the study. After providing 

written consent, participants then viewed instructions for each condition and an 

explanation of the typing task assigned in the decision trials. Participants then 

completed a small sample of the typing task to prove comprehension and help 

them make informed decisions. 



A l l o c e n t r i c  E f f o r t  D e c i s i o n s | 194 

 

Before each trial, an indicator image appeared on screen displaying the 

condition of the upcoming trial. Participants then confirmed the condition of the 

upcoming trial as the prompt “Justify by:” appeared with the options “Write” or 

“Talk” below on either side. Participants confirmed using the plastic button box in 

their right hand. Participants received feedback only if they misidentified the 

condition causing a “Key Press Error” message to appear, otherwise the trial 

progressed as usual.  

Choice options were presented randomly on either the top or bottom of 

the computer screen. Participants indicated their choice by pressing keys on a 

plastic button box with either their right index or middle finger depending on the 

direction of the arrow next to their preferred option. The arrow directions were 

randomized on each trial to prevent automatic responses and motor preparation 

(Mullette-Gillman et al., 2015). After indicating their choice, participants received 

visual confirmation of their input with a black box surrounding their choice on the 

screen.  

Participants were then given a safety briefing and instructions pertinent to 

the fMRI scanning environment. Once completed and in the scanner, participants 

underwent two brief scanning procedures - localization and structural scanning - 

before completing three practice trials. Participants were permitted to ask 

questions and hear the instructor’s response during the practice trials. After 

completing the practice trials, participants began scanned trials.  

The effort task assigned in these trials was the typing task used in prior 

effort discounting (Libedinsky et al., 2013; Massar et al., 2015) studies in this 
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thesis. After the trials, participants typed each word from a list in reverse-letter 

order. If the decision recipient made a mistake, he or she was forced to attempt 

the same word again. The size of the list was determined by averaging the 

outcomes from two choices made by either that participant or by another 

participant’s allocentric choice. The computer randomly generated a list of words 

for each participant from a predetermined set. 

5.2.3 Behavioral Results 

The proportion of smaller option choices did not differ between the two 

accountability conditions. Figure 5.2 shows the distribution of each participant’s 

proportion of smaller option choice in each condition (Mean Written Acc. = 0.25; Mean 

Social Acc. = 0.26). Paired Wilcoxon signed-rank test fails to reject the null 

hypothesis (V=86.5 p-value = 0.37), confirming that the difference in choice 

behavior between conditions is not significant. 
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Figure 5.2: Proportion of smaller option choice for each participant in each 

condition. 
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5.3.3.2 Comparison of Reaction Times between Conditions 

Reaction times between arrow presentation and choice time differed 

significantly between conditions. On average, participants took 0.54s longer to 

make Social Accountability decisions (MeanSocial Acc = 2.53 s) than Written 

Accountability decisions (MeanWritten Acc.  = 2.30 s). Paired Wilcoxon signed rank 

tests confirms this difference is significant (V = 86, p-value = 0.011 *). Figure 5.3 

shows the distribution of each participant’s mean reaction time in each condition 

with a boxplot representing the distribution of reaction times in each condition. 

 

 

Figure 5.3: Mean reaction time for each participant in each condition. 
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5.3.3.3 Effect of Wage Rate on Choice 

To examine choice behavior across the domain of effort, decisions were 

compared using a multiplicative wage rate. Wage rate was normalized by taking 

the difference between high and low effort amounts. A combined Word per Dollar 

(WpD) rate was calculated as shown: 

𝑊𝑝𝐷 =
𝐿𝑎𝑟𝑔𝑒𝑟 𝑂𝑝𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑑𝑠 − 𝑆𝑚𝑎𝑙𝑙𝑒𝑟 Option Words

𝐿𝑎𝑟𝑔𝑒𝑟𝑂𝑝𝑡𝑖𝑜𝑛 𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛
 

Proportions of low effort choices were binned for each level of unique 

value of WpD rate. Higher WpD rate (always associated with the larger option) 

represents a lower value option (more effort for less compensation) and thus a 

higher likelihood of choosing the alternative, smaller option. Generalized linear 

model results confirm that WpD rate significantly affected choice proportion 

positively (βWpD > 0, p < 0.001). This implies participants were discounting the 

value of options by effort. 

The accountability manipulation did not have a significant effect on neither 

the intercept nor the slope of the model (p = 0. 076 and p =0.158 respectively). 

Full results from the GLM are shown in Table 5.6. Figure 5.4 shows the predicted 

probability of choosing the smaller effort option in each condition as the WpD rate 

increases. 
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Figure 5.4: GLM of choice proportion on WpD rate. 

 

Table 5.6: GLM Predicting Choice of Smaller Effort/Reward Option 

Predictor       β 
Odds 
Ratio 

    SE p 
 

(Intercept) -3.797 0.022 0.202 <0.001 *** 

WpD 0.441 1.554 0.031 <0.001 *** 

Social Accountability 0.491 1.634 0.276 0.076  

WpD x Soc. Acc. -0.061 0.941 0.043 0.158  

Significance codes: p<= 0.001 **, p<= 0.01 **, p<= 0.05 * 
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5.3.3.4 Discounting Behavior 

To formally compare discounting behavior between conditions, 

indifference points for each subject were estimated at each level of effort. 

Procedures for calculating indifference points followed those from the second 

experiment in chapter 2 which utilized a similar within-participants design. 

Indifference points reflect the value at which a decision maker is ambivalent 

between the constant smaller option and the larger option at a given effort level, 

thereby revealing an estimate of a participant’s subjective value for the larger 

effort option. 

A logistic regression was fit predicting choice, across all values of 

compensation for each unique value of effort. The indifference point was the 

compensation where the predicted choice probability of choosing either option 

equals 0.5. For effort levels where all choices were identical, the indifference 

point was set to the minimum or maximum compensation value +/- 1 standard 

deviation. The indifference points were then standardized by the smaller option 

value. To compare the indifference points across reference options, we used a 

standardized percent of maximum effort measure: 

𝐸𝑓𝑓𝑜𝑟𝑡 =
𝐿𝑎𝑟𝑔𝑒𝑟𝑂𝑝𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑑𝑠 − 𝑆𝑚𝑎𝑙𝑙𝑒𝑟𝑂𝑝𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑑𝑠

𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝐿𝑎𝑟𝑔𝑒𝑟𝑂𝑝𝑡𝑖𝑜𝑛𝑊𝑜𝑟𝑑𝑠
 

The mean subjective value for each level of effort in each condition are 

plotted in Figure 5.5 with +/- 1 SE error bars. The indifference points did not 

significantly differ between conditions (p25,50, 60, 75, 100 = 0.13, 0.94, 0.20, 0.95, 0.91 

respectively).  
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Figure 5.5: Indifference points estimates across normalized values of effort 

 

5.2.4 Computational Modeling Results 

Both the hyperbolic and sigmoidal computational models from Chapter 3 

were fit to the behavioral data. The hyperbolic model was fit to the indifference 

points estimated in section 5.2.3. The sigmoidal model was fit using SoftMax 

estimation method described in chapter 3 to the raw choice data from every trial. 

Each participant and condition was modeled separately regardless of modeling 

method. Figure 5.6 shows the estimated discounting curves for each participant. 

The sigmoidal model represents more diverse discounting shapes than the 
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hyperbolic model, though both retain monotonically decreasing subjective value 

estimates.  

 
Figure 5.6: Estimated discounting curves. The top row shows hyperbolic models 

of discounting estimated by fitting the indifference points while the bottom row 

shows the sigmoidal models estimated with the SoftMax function. 

 
Comparison between conditions was conducted using area under the 

curve (AUC) to standardize the methods given the different number of 

parameters in each model (Myerson, Green, & Warusawitharana, 2001). The 

AUC was computed using trapezoidal approximation across 100 subjective value 

estimates between [0,1]. Figure 5.7 shows the AUC distributions for each model 

by condition. The estimate for each participant is plotted as a point, while the box 

represents the mean +/- 1 SE. Results show decreased AUC in the Social 

Accountability condition (MeanHyp. = 0.44; MeanSig. = 0.45) compared to the 
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Written Accountability condition (MeanHyp. = 0.45; MeanSig. = 0.52) implying 

increased discounting for socially accountable decisions in both models. 

However, neither model exhibited a significant difference in AUC. Paired 

Wilcoxon tests failed to reject the null hypothesis for both models (WHyp = 276, p 

= 0.10; WSig = 282, p = 0.17). 

 

 
Figure 5.7: AUC distributions by model and condition 

 

5.2.5 fMRI Analysis Methods 

5.2.5.1 Preprocessing of imaging data 

Images were acquired using a 3T Siemens Tim Trio with scanner settings 

of repetition time (TR) = 2s, TE = 30 ms, and flip angle = 90 degrees; resulting in 

voxels 3.2 × 3.2 × 3.2 mm in size. The structural scan was acquired using a high-
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resolution scanning (TR = 1200 ms, with spatial resolution of 1 × 1 × 1 mm). 

Images were preprocessed using SPM12 (Wellcome Department of Imaging 

Neuroscience, London, UK), using default values unless otherwise specified. 

Images were realigned within subjects, normalized to a mean structural image, 

segmented based on soft tissue structure, and smoothed with a 6 mm3 volume 

FWHM Gaussian kernel. Movement artifact correction threshold was set to 1.6 or 

any movements more than 2.5 standard deviations from mean position. Analyses 

were conducted using a hierarchical GLM specifying both within- and between-

participants effects. 

5.2.5.2 First level GLM 

Preprocessed fMRI data were analyzed in an event-related analysis using 

two-level GLM. The first level GLM fit BOLD response used predictors of two 

timing events within each trial. The first timing event was the onset of option 

presentation. The second timing event was the onset of arrow presentation. 

Using the arrow presentation timestamp rather than the choice timestamp 

reduces noise associated with neural activity related to motor control and action 

planning (Mullette-Gillman et al., 2015). Event onset times were used to align 

image data with predictors when constructing the first level model. A canonical 

hemodynamic response function (HRF) was modeled along with temporal and 

dispersion derivatives (Henson, Rugg, & Friston, 2001). Six positional regressors 

specific to each participant were convolved with the first level model to account 

for spatial registration of the images. 
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Given that reaction times differed significantly between the two conditions, 

when modeling contrasts between written and social accountability, a variable 

epoch model was used based on the durations of the timing events to improve 

power and consistency of the model (Grinband et al., 2008).  

For analysis of specific trial-level variance in neural activity, parametric 

modulators were convolved in first level models individually to prevent 

multicollinearity. Three parametric modulations of attributes of the larger option 

were modeled: 1) Magnitude of compensation (the amount of money), 2) 

magnitude of effort (number of words), 3) the wage rate of the option represented 

as dollars per word. Two additional parametric modulators were used to 

investigate correlations between computational models and neural activity: 1) the 

hyperbolic model estimate of subjective value of the larger option and 2) the 

sigmoidal model estimate of subjective value of the larger option. The values for 

the parametric modulator were convolved with all basis functions, but only the 

canonical HRF for the parametric modulator was used in second level analyses. 

The first level GLM resulted in whole brain SPMs generated for each 

participant showing the relationship between BOLD response and the predictor 

variables over the duration of the scanning session. First level predictors 

included trial level events used for binary labelling. For example, decision 

outcome (larger or smaller option), trial condition (social or written accountability), 

or a median split of the larger option’s effort attribute (greater or lesser effort 

magnitude). The results are visualized by the t-test statistics either by comparing 

an individual predictor β using a one-sample t-test (null hypothesis β = 0) or by 



A l l o c e n t r i c  E f f o r t  D e c i s i o n s | 206 

 

creating a contrast map using comparisons within-participants. All following 

analyses utilized paired t-test contrasts at the first level. First level t-statistics for 

each voxel represented the difference in BOLD signal between trial types 

(choice, condition, or effort magnitude). 

5.2.5.3 Second level GLM 

Second level analyses tested the effects of predictors between-

participants across all voxels. The second level analysis reported utilized the 

paired t-statistics from the first level GLM in a one-sample t-test for each voxel. 

Given that all first level tests were paired t-tests, the second level analysis 

identifies paired contrasts that are significantly different from 0. Each second 

level test has observations equal to the number of participants, resulting in an 

SPM representing the estimated BOLD response of all participants’ brains.  

Several methods for second level comparison exist with respect to the 

number and type of timing events, trial comparisons, parametric modulations, 

and individual differences. Regardless of comparison test used, it is paramount 

that comparisons are established a priori to prevent inappropriately loose 

conclusions drawn from noisy data without a concrete hypothesis. In this study, 

paired t-test comparisons were established between binary labels given by the 

participants’ choices, a median split on the effort magnitude of the larger option, 

and the imposed condition manipulation on each trial. All second level analyses 

were only compared at the same timing event – either at time of stimulus option 

presentation or arrow presentation to retain parsimony in analysis. 
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Whole brain analyses were conducted using the results of the second 

level GLM. Thresholding of the SPMs was based on cluster extent and strict p 

values (p < 0.001 as recommended by Woo, Krishnan, & Wager, 2014). Analyses 

were conducted using single contrasts to minimize clusters of ancillary and 

random BOLD response. Each contrast was modeled independently. Three 

contrasts were used: 1) the choice on each trial (smaller vs. larger option), 2) the 

relative magnitude of the larger option’s effort on each trial (greater than median 

effort vs. less than or equal to the median effort), and 3) the accountability 

condition on each trial.  

5.2.5.4 Regions of Interest (ROIs) 

Specific analyses of allocentric valuation were conducted using a priori 

ROIs and parametric modulation of effort, compensation, and wage rate. ROI 

analysis was used because it controls the number of comparisons and enforces 

theoretical hypotheses (Poldrack, 2007). ROI analysis was conducted by 

restricting the second level analysis to voxels contained within the coordinates of 

a region-specific mask. The voxel-level statistics from the first-level GLM were 

averaged across the region for each participant. The mean ROI activation for 

each participant were tested using a one-sample t-test where H0 : tsecond level = 0.  

ROIs were identified in chapter 4 based on a review of the literature 

relating to allocentric decision making and egocentric effort discounting. ROIs 

considered were the anterior cingulate cortex (ACC), the dorsal medial and 

ventral medial prefrontal cortex (dmPFC and vmPFC), posterior cingulate cortex 

(PCC), angular gyrus, precuneus, cuneus, right temporoparietal junction (rTPJ), 
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supplementary motor area (SMA), and sub-regions of the basal ganglia including 

the ventral striatum (vStriatum), putamen, pallidum, and caudate. All ROIs were 

identified using the WFU pick-atlas toolbox (Maldjian, Laurienti, Kraft, & Burdette, 

2003) with aal mapping (Tzourio-Mazoyer et al., 2002) except for the rTPJ which 

was identified with a 15mm-radius sphere centered at the coordinates x = 54, y = 

-44, z = 18 based on a recent meta-analysis linking the region to social dilemmas 

and theory of mind (Krall et al., 2015). An inclusive mask was created based on 

the coordinates of each ROI which was then used to constrain the voxels used 

for second level analysis. All images of spatial representation of BOLD response 

were overlaid on a mean structural image from the 29 participants retained for 

analysis. 

5.2.6 fMRI Results 

5.2.6.1 Choice Outcome Contrast 

Trials were labeled based on the participants’ choices (smaller vs. larger 

option). At the time of choice option presentation during trials where participants 

chose the larger effort option, BOLD response was greater in the rTPJ, left 

angular gyrus, middle ACC. Only the rTPJ (MNI x = 60, y = -46, z = 5) survived 

FWE correction (pFWE = 0.038). Figure 5.8 shows the extent of the BOLD 

response in the rTPJ overlaid onto the mean structural image of all participants.  

ROI analysis showed no significant differences in BOLD response based 

on participants’ choices at time of option presentation. Likewise, when 

participants chose the smaller effort option, no clusters showed a significant 

increase in BOLD response. 
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Figure 5.8: Increased activation near the rTPJ at option presentation on trials 

where larger effort option was chosen. Image displayed at p = 0.001 uncorrected 

threshold with k > 20 contiguous voxels; the rTPJ was significant at pFWE = 0.038. 

 

At the time of arrow presentation when participants chose the larger effort 

option compared to when they chose the smaller option, BOLD response was 

significantly greater in the dmPFC (MNI x = 0, y = 29, z = 44; T= 4.20; pFWE = 

0.037), right angular gyrus (MNI x = 48, y = -49, z = 44; T= 4.59; pFWE = 0.010), 

and SMA (MNI x = 48, y = 29, z = 32; T= 4.76; pFWE = 0.016). These regions all 

survived FWE correction (pFWE < 0.05).  
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Figure 5.9 highlights the extent of the significant clusters in the dmPFC, 

SMA, and angular gyrus. When making smaller effort choices at time of arrow 

presentation, BOLD response was not significantly different from when 

participants chose larger options. 
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Figure 5.9: Increased BOLD response in clusters of the right angular gyrus, 

dmPFC, and SMA when choosing higher effort option at time of arrow 

presentation. Image displayed at p = 0.001 uncorrected threshold with k > 20 

contiguous voxels. 

 

ROI analysis showed increased mean BOLD response when participants 

chose the larger option over the smaller option in the PCC (p = 0.0021, 95% CI = 

0.160, 0.646), insula (p = 0.0022, 95% CI = 0.158, 0.648), pallidum (p = 0.0091, 

95% CI = 0.0117, 0.0751), putamen (p = 0.0083, 95% CI = 0.0143, 0.0884), and 

striatum (p = 0.0159, 95% CI = 0.0034, 0.0307). All ROIs showed increased 

activity when the larger option was chosen. Figure 5.10 shows the mean ROI 

response for each region. 
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Figure 5.10: Mean ROI BOLD response +/- 1 SE during trials when participants 

chose the larger option rather than the smaller option at the time of arrow 

presentation. 

 

5.2.6.2 Effort Magnitude Contrast 

Trials were labeled based on the magnitude of the larger option’s effort 

attribute in relation to the median effort presented (median = 35 words). For 

clarity, this contrast was labeled using “high effort magnitude” to refer to trials 

greater than the median and “low effort magnitude” for trials less than or equal to 

the median to avoid confusion with “larger” and “smaller” choice options which 

refer to the set of bundles of effort and compensation on each trial. Importantly, 

comparison of effort magnitude was based strictly on the stimuli values presented 

and not the behavior of the participant. By imposing a median split to label trials, 
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this contrast helps to strengthen the signal-to-noise ratio of BOLD response on 

trials where effort discounting was more pronounced.  

At the time of option presentation on trials when the larger effort option 

was greater than the median effort, whole-brain analysis showed increased 

BOLD response in the regions of the precuneus (MNI x = 0, y = -64, z = 35; T= 

4.67; pFWE = 0.002). Figure 5.11 shows the locations of increased BOLD 

response. 

When effort stimuli presented were less than or equal to the median, 

scans at the time of option presentation, no significant difference was observed 

in whole brain analysis. 

 

Figure 5.11: Precuneus BOLD response on trials of high effort magnitude 

compared to low effort magnitude at the time of option presentation. Image 

displayed at p < 0.001 uncorrected, k > 20 contiguous voxels; the precuneus was 

significant at pFWE = 0.002. 
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At the time of arrow presentation, whole-brain analysis showed no 

significant increases in BOLD response in high effort magnitude trials compared 

to low effort magnitude trials. However, at the time of choice arrow presentation 

on low effort magnitude trials, the precuneus (MNI x = 6, y = -52, z = 8; T = 6.90; 

pFWE = 0.004), vACC (MNI x = 3, y = 47, z = 5; T= 4.72; pFWE < 0.001), vmPFC 

(MNI x = -9, y = 35, z = -7; T = 5.40; pFWE < 0.000), and left angular gyrus (MNI x 

= -42, y = -70, z = 32; T= 5.33; pFWE = 0.007) showed significantly increased 

BOLD response compared with high effort magnitude trials. Figure 5.12 shows 

the locations and extent of activation of the precuneus, vACC, and vmPFC. 

 
Figure 5.12: Precuneus, vACC, and vmPFC activity when choice arrows were 

presented on trials where the larger option effort was less than or equal to the 

median effort. Activity of the left angular gyrus not shown. Image displayed at p < 

0.001 uncorrected, k > 20 contiguous voxels. 
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ROI analysis was conducted for this contrast at both event times. At the 

time of option presentation, the precuneus (p = 0.0074, 95% CI = 0.1454, 

0.8553) exhibited increased mean BOLD response on trials with high effort 

magnitude compared to trials of low effort magnitude. At the time of arrow 

presentation, the angular gyrus (p = 0.0219, 95% CI = -0.1412, -0.012), pallidum 

(p = 0.0426, 95% CI = -0.0447, -0.0008), putamen (p = 0.0207, 95%CI = -0.0574, 

-0.0051), and striatum (p = 0.0392, 95% CI = -0.0176, -0.0004) all exhibited 

decreased mean BOLD response during high effort magnitude trials compared to 

low effort trials.  

 

Figure 5.13: Mean BOLD response in ROIs during high effort magnitude trials 

compared to low effort magnitude trials. 

 

5.2.6.3 Social vs. Written Accountability Contrast 

Comparison was conducted between trials labeled based on the condition 

manipulation (social vs. written accountability). Both social and written 

accountability trials were presented identically between conditions, creating a 

balanced design with regards to number of observations. However, due to 
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differences in reaction time between conditions, a variable epoch model was fit to 

the fMRI data to scale the response according by reaction time of each trial. 

Whole brain analysis did not reveal significant differences between accountability 

conditions at either option presentation or arrow presentation event time. 

ROI analysis showed evidence of increased mean BOLD response in the 

SMA (p = 0.0474, 95% CI = 0.0014, 0.2255) and TPJ (p = 0.0344, 95% CI = 

0.0031, 0.0745) during social accountability trials compared to written 

accountability trials at the time of option presentation. At the time of arrow 

presentation, the precuneus showed decreased activity (p = 0.0301, 95% CI = -

0.3389, -0.0185) during social accountability trials compared to written 

accountability trials at the time of option presentation. Figure 5.14 shows the 

results of the ROI analysis. 

 

Figure 5.14: ROI results comparing social accountability trials compared to the 

written accountability condition with significant differences in mean BOLD 

response. Results shown with +/- 1 SE from the mean.  



F i t z g e r a l d | 217 

 

5.2.6.4 Analysis of parametric modulation (first level correlation)  

5.2.6.4.1 Compensation 

Analysis of parametric modulation was conducted with ROI analysis. 

Compensation amount varied on each trial in the larger option. The 

compensation value was convolved with the first level GLM. Second level results 

are presented to show first level correlation across participants.  

At the time of option presentation, ROI analysis of voxels in the striatum 

(T = 4.25; pFWE = 0.047; peak activation at x = 24, y = 8, z = -4) exhibited 

increased response as compensation increased. ROIs did not exhibit differences 

in mean BOLD response. Figure 5.15 shows the significantly different voxels in 

the striatum. No ROIs exhibited significant results at the time of arrow 

presentation. 

 

Figure 5.15: Parametric modulation of compensation shows increased BOLD 

response bilaterally in the striatum at the time of option presentation. Image 
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displayed with a threshold of p = 0.001 for visualization with k > 10 contiguous 

voxels. 

 

5.2.6.4.2 Effort 

At the time of option presentation, voxels in the posterior and dorsal 

precuneus (peak activation at T = 4.37; pFWE = 0.001; x = 12, y = -37, z = 53) 

showed significantly increased BOLD response as the effort of the larger option 

increased. Figure 5.16 shows the extent of the activation. Figure 5.18 shows the 

small effect size of this difference is due to small variance between participants. 

 

 
Figure 5.16: BOLD response in the precuneus increased with the effort of the 

larger option at the time of choice option presentation. Image displayed with a 

threshold of p = 0.001 and k > 20 contiguous voxels for visualization. 

 

At the time of arrow presentation, no significant increases in BOLD 

response were detected. However, significant decreases in BOLD response were 
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detected in the ACC (T = 5.68; pFWE = 0.002; peak activation at x = -6, y = 50, z = 

-1), PCC (T = 4.99; pFWE = 0.005; peak activation at x = -3, y = -52, z = 26), and 

ventral precuneus (T = 4.37; pFWE = 0.001; peak activation at x = 12, y = -37, z = 

53) as effort increased. Figure 5.17 shows the extent of significant BOLD 

response reductions as effort increases. Figure 5.18 presents the mean BOLD 

response of each ROI in relation to increasing effort of the larger option.  

 
 
Figure 5.17: The left image shows the extend of ACC activity negatively 

correlating with increasing effort. The right image displays the same results for 

the PCC, and precuneus. Both images displayed with threshold of p = 0.001 and 

k > 20 contiguous voxels for visualization.  
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Figure 5.18: Mean +/- 1 SE of BOLD response from each ROI in relation to 

increasing effort of the larger option.  

 

5.2.6.4.3 Dollars per Word 

Dollars per word (DpW) ratios were calculated for the larger option on 

each trial and convolved with the canonical HRF as a parametric modulator. 

Dollars per word was used to ensure consistent orientation across analyses with 

increasing subjective value increasing with DpW. ROI analysis was conducted 

with emphasis placed on regions that have been associated with value 

computation. These areas include the ACC, vStriatum, and vmPFC. 

At the time of option presentation, results showed increased BOLD 

response in the ACC and PFC, but these voxels did not survive FWE correction. 

Significant decrease in BOLD response in the cuneus (T = 5.99; pFWE = 0.001; 
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peak activation at x = 6, y = -85, z = 23) occurred as DpW increased. Figure 5.19 

shows the extent of the significant BOLD response at the second level. 

 

Figure 5.19: Decreased activation in the cuneus at time of option presentation 

when Dollars per Word of the larger option increased. Image displayed with 

threshold of p = 0.001 and k > 20 contiguous voxels for visualization.  

 
At the time of arrow presentation, BOLD response in the SMA was 

negatively correlated with DpW, but did not survive correction. ROIs in the 

parietal cortex showed increased BOLD response as DpW increased. The 

cuneus (T = 6.71; pFWE < 0.001; peak activation at x = 9, y = -82, z = 26), PCC (T 

= 6.31; pFWE = 0.001; peak activation at x = 12, y = -46, z = 26), and precuneus (T 

= 5.95; pFWE = 0.003; peak activation at x = 0, y = -49, z = 65) showed significant 

increases in BOLD response at the time of arrow presentation. Figure 5.20 

shows the extent of the increased BOLD response in the parietal cortex. Figure 
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5.21 shows the effect of DpW on mean BOLD response in the ROIs with 

significant response. For this analysis, the regions of the parietal cortex were 

grouped.  

 

Figure 5.20: Increased BOLD response in the parietal cortex as Dollars per Word 

increased at time of arrow presentation. Image displayed with threshold at p = 

0.001 and k > 20 contiguous voxels for visualization. 
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Figure 5.21: Mean +/- 1 SE of BOLD response from each ROI in relation to 

increasing DpW of the larger option.  

5.2.6.4.4 Hyperbolic model estimate of larger option subjective value  

 The hyperbolic model was estimated for each participant and used to 

create a point estimate of subjective value of the larger option on each trial. The 

subjective value estimate was used as the parametric modulator at the first level. 

At time of option presentation, BOLD response in the ACC and vmPFC was 

positively correlated with hyperbolic subjective value, but did not survive FWE 

correction. A decrease in BOLD response was found bilaterally in the angular 

gyrus; however, only the left angular gyrus (T = 4.74; pFWE < 0.049; peak 
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activation at x = -45, y = -58, z = 38) survived correction. In the medial parietal 

lobe, a cluster in the precuneus (cluster-level pFWE < 0.001; peak activation T = 

4.77; pFWE = 0.077; x = 12, y = -37, z = 53) also exhibited reduced BOLD 

response with increasing hyperbolic subjective value estimates of the larger 

option. Figure 5.22 shows the extent of significant BOLD responses in both the 

angular gyrus and precuneus. 

 
Figure 5.22: The left image shows the extent of significant BOLD response in the 

left angular gyrus. The right image shows the extent of activation in the 

precuneus. Both images show decreased BOLD response with increasing 

subjective value of the larger option as estimated by the hyperbolic model. 

Images displayed with thresholds at p = 0.001 uncorrected with extent of k> 20 

voxels. 

 
At the time of arrow presentation, the SMA showed a negatively 

correlated BOLD response, but did not survive FWE correction. The dorsal 

precuneus (T = 5.87; pFWE = 0.004; peak activation at x = 0, y = -49, z = 65), PCC 

(T = 5.48; pFWE = 0.001; peak activation at x = 12, y = -46, z = 26), left angular 

gyrus (cluster-level pFWE < 0.05; peak activation T = 4.56; pFWE = 0.059; peak 

activation at x = -42, y = -76, z = 29), and cuneus (T = 6.37; pFWE < 0.001; peak 
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activation at x = 9, y = -82, z = 38) all showed significant response with 

increasing hyperbolic model estimates of subjective value and survived 

correction. Figure 5.23 shows the spatial extent of the activation of each ROI 

while Figure 5.24 shows the mean BOLD response. 

 

 
Figure 5.23: BOLD response in the parietal cortex as hyperbolic model estimates 

of the subjective value of the larger option increase. In clockwise order from the 

top left, images display significant response in the cuneus, bilateral angular 

gyrus, precuneus, and PCC. All images displayed with threshold at p = 0.001 and 

k > 20 contiguous voxels. 
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Figure 5.24: Mean BOLD response from each ROI in relation to increasing 

subjective value of the larger option as predicted by the hyperbolic model with  

+/-1 SE shown. 

 

5.2.6.4.5 Sigmoidal model estimate of larger option subjective value 

The sigmoidal model was used to calculate subjective value estimates for 

the larger effort option using the fitting results from SoftMax estimation. The 

subjective values were convolved with the canonical HRF as a parametric 

modulator in the first level GLM. Second level results are reported. 

At the option presentation time, no significant increase in BOLD response 

was identified in any ROI. Inverse response patterns were observed in both the 

ACC (T = 4.89; pFWE = 0.019; peak activation at x = 6, y = 44, z = 5) and PCC (T 

= 4.51; pFWE = 0.016; peak activation at x = 6, y = -49, z = 29) whereby activation 
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increased as sigmoidal model subjective value estimates decreased. Figure 5.25 

shows the spatial extent of the activation. 

 

 

Figure 5.25: Extent of decreased BOLD response in ACC and PCC as the 

sigmoidal model estimate of the subjective value of the larger option increases at 

the time of option presentation. Images displayed with threshold set to p = 0.001 

and k > 20 contiguous voxels. 

 

At the time of arrow presentation, BOLD response to increasing sigmoidal 

subjective value estimates were detected in the ACC (cluster-level pFWE = 0.002; 

peak voxel activation T = 3.97; pFWE = 0.14; peak activation at x = 6, y = 53, z = 

14), precuneus (T = 5.33; pFWE = 0.017; peak activation at x = 3, y = -49, z = 29), 

and cuneus (T = 4.61; pFWE = 0.038; peak activation at x = 6, y = -82, z = 23). The 

PCC, angular gyrus and vStriatum were also positively correlated, but did not 

survive FWE correction.  
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Figure 5.26 shows the extent of activity in the ACC and parietal cortex. 

Figure 5.27 presents the mean activation from ROIs of the sigmoidal model 

estimate parametric modulator.  
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Figure 5.26: Extent of activation in response to increasing subjective value of the 

larger option as estimated by the sigmoidal model. Top left image shows the 

ACC¸ top right shows the precuneus¸ and the bottom left image shows the 

cuneus. All images displayed with thresholds at p = 0.001 and k > 20 contiguous 

voxels. 
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Figure 5.27: Mean +/- 1 SE of BOLD response from each ROI in relation to 

increasing subjective value of the larger option as estimated by the sigmoidal 

model. 

 

5.2.6.5 BOLD responses associated with individual differences in discounting behavior 

To investigate individual differences in discounting behavior in the brain, 

regression analyses were conducted using model parameter estimates and area 

under the curve values for each participant (Kable & Glimcher, 2007; Klein-

Flügge et al., 2016). These values were entered as correlates in the second level 

GLM predicting voxel BOLD response by choice outcome. Both time events, 

option and arrow presentation were tested and each correlate was tested 
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independently. Only the hyperbolic model k parameter and sigmoidal model p 

parameter exhibited significant correlations, reported below. 

5.2.6.5.1 Hyperbolic K 

Recall that in the hyperbolic model, participants with a smaller discounting 

rate estimate attribute greater subjective value to larger effort options. At time of 

option presentation, hyperbolic k parameter estimates were negatively correlated 

with BOLD response in four regions of interest: the right caudate in the basal 

ganglia (cluster-level pFWE = 0.004; peak voxel activation T = 4.26; pFWE = 0.102; 

peak activation at x = 12, y = -1, z = 20), the dmPFC (cluster-level pFWE = 0.001; 

peak voxel activation T = 4.25; pFWE = 0.573; peak activation at x = -9, y = 29, z = 

44), and the right ventrolateral PFC (cluster-level pFWE = 0.001; peak voxel 

activation T = 4.04; pFWE = 0.728; peak activation at x = -30, y = 44, z = -10). 

Figure 5.28 shows the spatial location of BOLD response, while Figure 5.30 

shows the correlation between Hyperbolic k values and peak voxel BOLD 

response for the given region in each participant.  

  



A l l o c e n t r i c  E f f o r t  D e c i s i o n s | 232 

 

 

Figure 5.28: Extent of significant voxels from the basal ganglia (left image), 

particularly the right caudate, and dmPFC (right image) shows BOLD response 

correlates with hyperbolic k parameters across participants. Images displayed 

with threshold at p = 0.001 and k > 20 contiguous voxels. 

At the time of arrow presentation, the ACC (T = 5.59; pFWE = 0.003; peak 

activation at x = 15, y = 44, z = 5) and left insula (T = 5.04; pFWE = 0.007; peak 

activation at x = -36, y = 17, z = -10) exhibited negative correlation between 

BOLD response and hyperbolic k values. Figure 5.29 shows the spatial extent of 

significant BOLD response, while Figure 5.30 shows the correlation between 

Hyperbolic k values and mean voxel response for each region for each 

participant. 
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Figure 5.29: Extent of significant correlation with hyperbolic k at time of arrow 

presentation. Left image presents the ACC while the right shows left insula. 

Images displayed with threshold at p = 0.001 k > 20 contiguous voxels. 

 

Figure 5.30: Correlation between BOLD response (y-axis) and hyperbolic k 

parameter  
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5.2.6.5.2 Sigmoidal P 

In the sigmoidal model, participants with a smaller p parameter begin 

discounting at lower effort values than participants with a larger p parameter. The 

sigmoidal p is an estimate of the inflection point of the discounting curve. Positive 

correlation with sigmoidal p could imply a region is involved with the inhibition of 

discounting mechanisms. Similarly, a negative correlation could imply a region is 

involved with discounting or positively correlates with discounted option selection. 

However, it is important to note this analysis was performed at the second level 

and contrasts differences between participants. As such, it is unreasonable to 

make a claim about a specific or global neural mechanism. 

At time of option presentation, sigmoidal p parameter estimates were 

negatively correlated with BOLD response in the dlPFC (cluster-level pFWE = 

0.008; peak voxel activation T = 4.19; pFWE = 0.457; peak activation at x = 27, y = 

41, z = 29), including the mSFG (a region in the dmPFC) (T = 5.04; pFWE = 0.007; 

peak activation at x = -36, y = 17, z = -10), and precuneus (cluster-level pFWE = 

0.001; peak voxel activation T = 3.67; pFWE = 0.587; peak activation at x = 15, y = 

-40, z = 44). Figure 5.31 shows the spatial location of BOLD response, while 
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Figure 5.33 shows the correlation between Sigmoidal p parameter values and 

peak voxel response for the given region. 



A l l o c e n t r i c  E f f o r t  D e c i s i o n s | 236 

 

 

Figure 5.31: Extent of significant, negative correlation with sigmoidal p-parameter 

at time of option presentation. Left image shows BOLD response in the dPFC 

while the right image shows precuneus. Images displayed with threshold at p = 

0.001 and k > 20 contiguous voxels. 

At the time of arrow presentation, the PCC (cluster-level pFWE < 0.001; 

peak voxel activation T = 4.42; pFWE = 0.200; peak activation at x = -6, y = -46, z 

= 29), cuneus (cluster-level pFWE < 0.001; peak voxel activation T = 3.71; pFWE = 

0.61; peak activation at x = -6, y = -79, z = 41), and mSFG (dmPFC) (cluster-

level pFWE = 0.001; peak voxel activation T = 4.12; pFWE = 0.692; peak activation 

at x = 0, y = 35, z = 35) were positively correlated with sigmoidal p-parameter 

values. Figure 5.32 shows the spatial location of BOLD response. 
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Figure 5.33 shows the correlation between parameter values and mean BOLD 

response for the given region. 
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Figure 5.32: Extent of significant correlation with sigmoidal p at time of arrow 

presentation. Left image presents activity in the PCC and cuneus while the right 

shows the PFC. Images displayed with threshold at p = 0.01 uncorrected and k > 

20 contiguous voxels for visualization purposes. 
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Figure 5.33: Correlation between BOLD response and sigmoidal p-parameter 

color coded for each ROI. 

 

5.3 Discussion 

Given the number of analyses presented in this chapter, the discussion 

has been segmented into three parts. The first part discusses the findings from 

the paired contrasts and parametric modulation analyses. Neural correlates of 

different choice options and valuation are highlighted. The second part discusses 
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the BOLD response correlated with individual differences in discounting 

parameters. These are the most exciting findings of the analysis and present the 

interlink between computational modeling and fMRI methods. The third part 

discusses the results of the accountability manipulation between written and 

social accountability.  

5.3.1 Neural Correlates of Choice and Discounting Behavior  
The study in this chapter investigated the neurophysiological responses 

of decision makers who chose either a larger effort, larger compensation option 

or smaller effort, smaller compensation option for another participant. Of primary 

interest was to investigate regions of the brain where the BOLD response 

correlated with decision behavior and estimations of subjective valuation on 

behalf of another agent. Behavioral results of the GLM showed participants were 

sensitive to changes in effort and compensation amounts in the larger option, 

and the change in the ratio of these attributes significantly affected the chosen 

outcome. Additionally, the behavioral findings aligned with results from chapters 2 

and 3.  

Neural correlates of valuation were observed through whole brain 

contrast between trials where participants chose the larger option over the 

smaller option. Significant increases in the BOLD response in the basal ganglia 

(striatum, pallidum, and putamen), were detected when decision makers chose 

the larger option. These regions have been shown to respond to increasing 

reward magnitudes which is likely due to the increased compensation of the 

larger option. Further evidence stems from the parametric modulation analysis of 
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compensation, where regions in the basal ganglia showed increased BOLD 

response as the larger option compensation amount increased. 

Conversely, the insula which has been shown to respond to increased 

cost exhibited an increased BOLD response when decision makers chose the 

larger option. However, in conjunction with increased activity in the parietal cortex 

such as in the PCC and precuneus which was observed here, prior research has 

shown the insula and parietal cortex are linked with information seeking behavior 

that is relevant to rewards (Furl & Averbeck, 2011).   

Regions in the parietal lobe including the precuneus, cuneus, and PCC 

were repeatedly found to reflect value in parametric modulation analyses. 

Egocentric valuation has often been implicated in the domain of the ACC, 

vmPFC, and vStriatum; however, the findings from this chapter suggest more 

dispersed neural activity may be involved in allocentric valuation. Research has 

shown the parietal cortex and medial temporal cortex may represent decision 

making goals (like maximizing value for another person) and project into the 

striatum which encodes value (Schultz, 2000). The PCC, cuneus, precuneus, 

and angular gyrus in the parietal cortex all exhibited significant changes in BOLD 

response in parametric modulation analyses of DpW, and model estimates of 

subjective value. 

Furthermore, when examining the effort magnitude contrast, BOLD 

response in the vmPFC and vACC were significantly increased on trials of low 

effort magnitude compared to high effort magnitude. When both choice options 

were similar in effort, these regions exhibited increased activity. Both the vmPFC 
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and vACC have been heavily implicated in valuation processes. One possible 

explanation is that an executive level goal or heuristic such as “always minimize 

effort for another” acts as an overriding or suppressive directive to valuation 

mechanisms when options are easily dissociated, but fails when the choice 

options are more similar. When comparing similar options, value computation is 

required. Such a model would support and extend a do-no-harm principle 

explanation of allocentric decision making. Parametric modulation analyses of 

effort and compensation supports this idea. As effort of the larger option 

increased, reduced BOLD response in the ACC was observed. Additionally, 

increased BOLD response in the parietal cortex was observed on trials with high 

effort magnitude. PCC and angular gyrus are particularly robust in the parietal 

cortex and have shown increased response when decision makers choose 

harmful outcomes for others (Greene et al., 2001). 

While the pattern of interaction between parietal cortex regions and PFC 

was observed, a clear mechanism for the interplay between these regions is not 

apparent. BOLD response in the parietal cortex was inconsistent between option 

presentation and arrow presentation time events. Similarly, the relationship 

between regions in the PFC and parietal cortex is correlational, indirect, and 

subject to a third variable explanation (or in this case, a third ROI that promotes 

activation in both the PFC and parietal cortex). More detailed functional mapping 

of the pathways connecting these regions is an important future direction. 
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5.3.2 Individual Differences in Model Parameter Estimates Correlated with ROI 

BOLD Response 
Individual differences in model parameters correlated with variation in ROI 

BOLD response. This was an important finding both for understanding allocentric 

valuation and for validating the computational models used. ROI regions of the 

ACC, basal ganglia, dmPFC, and insula correlated with individual differences in 

estimated discounting rates in the hyperbolic model. When participants had a 

high discounting rate, regions associated with subjective valuation exhibited 

decreased BOLD response. High discounting rates reflect participants that 

discounted value more steeply due to effort, reflected in reduced activity in ROIs 

associated with reward especially the ACC and rCaudate in the basal ganglia. 

Notably, insula response followed a similar pattern despite being hypothesized to 

reflect cost or devaluation. 

Conversely, when participants had higher sigmoidal p parameter 

estimates, and thus greater subjective valuations over effort, regions in the PFC 

and posterior parietal cortex exhibited greater BOLD response. Variations in the 

p parameter correlated with parietal cortex activity which supports the prior 

findings that a regulatory link may exist between the parietal cortex and valuation 

mechanisms in the PFC. A threshold may dictate an individual-specific level of 

effort that determines option sets to be evaluated by traditional valuation 

mechanisms in the vmPFC and ACC and those options that can be selected by 

alternative mechanisms in dispersed regions. 
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5.3.3 Effects of Social Accountability Condition 
Behavioral results showed no difference in choice behavior between the 

two accountability conditions, written and social. Indifference points analysis and 

computational modeling showed no difference between accountability conditions 

in how options were valued. Behavioral results from GLM analysis of the effect of 

WpD on choice showed significant effect of option value on choice, but no effect 

of condition. The null effect of accountability replicated findings from chapters 2 

which also showed no significant effect of accountability on choice or discounting 

behavior.  

Yet, reaction times differed significantly between these two conditions, 

with participants taking slightly longer to make socially accountable decisions. 

The difference in reaction times is encouraging with participants taking more time 

to respond to decisions subject to review and public justification compared to 

privately made allocentric decisions. Participants may have considered the 

manipulation in social accountability conditions, resulting in longer reaction times. 

Prior research has shown that individuals choosing pro-social outcomes exhibit 

increased reaction times compared to selfish decisions (Kuss et al., 2015). 

Whole brain fMRI analysis showed no significant differences between the 

conditions. While accountability effects were not observed behaviorally, ROI 

analysis of the mean BOLD response between the two conditions revealed the 

TPJ, precuneus, and dmPFC exhibited significant differences depending the 

condition of the trial. Given the robust activity of the precuneus, the increased 

activity of the SMA and TPJ corresponding to social accountability is a more 
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interesting initial finding. The SMA has been implicated in egocentric effort 

discounting rates (Klein-Flügge, Kennerley, Friston, & Bestmann, 2016) while the 

TPJ has been shown to reflect choice outcomes in this study and social 

perspective taking in others (Saxe & Kanwisher, 2003). Both regions showed 

reduced BOLD response in the social accountability trials. This would 

theoretically resemble a shift toward more egocentric-like decision making with 

reduced effort discounting and reduced perspective taking. However, further 

study is needed to assess the role these regions play in cognitive representation 

of accountability and if alternative operationalization of accountability can 

magnify this effect, resulting in behavioral modulation. 

5.4 Conclusion 

The findings from this chapter establish initial neural correlates of 

allocentric effort decisions. Further comparisons between allocentric decisions in 

other choice domains and using alternative effort tasks are necessary to provide 

a more robust understanding of the underlying cognitive processes responsible 

for allocentric effort decision processes. Furthermore, studies testing specific 

mechanisms are needed to elucidate the differences between neural correlates 

and process pathways. Studying neural causation requires proof through “double 

dissociation” and often relies on small samples of clinical participants with brain 

injuries or lesioned animal models.   

The absence of an effect of accountability condition on choice behavior is 

notable, but the presence of an effect on reaction time due to the accountability 

manipulation supports the idea that accountability was considered by the 
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participants but may not be effective in altering allocentric effort decisions. Given 

that accountability can be operationalized in several ways and from different 

sources, further study is needed to explore accountability in different contexts 

and using different operationalizations. Organizations that expend resources to 

enforce accountability on executive decision makers have a vested interest in 

these findings. 

The neurological validation of discounting models for allocentric effort 

decisions was an important contribution of this study. Computational models are 

the central cream filling of this thesis that binds the disparate empirical findings of 

behavioral choice studies and neurophysiological activity. Individual differences in 

parameter estimates correlated with expected regions of interest even when 

utilizing model free whole brain analysis. Furthermore, the valence of the 

associated activity could be interpreted using computational model assumptions. 

These results extend evidence that the hyperbolic and sigmoidal models of effort 

discounting are useful tools for mapping latent discounting cognition and 

allocentric effort valuation. 

An important finding across all fMRI results is the prominent role of the 

parietal cortex. The PCC, precuneus, cuneus, and angular gyrus were implicated 

in parametric modulation analyses and individual differences analyses. These 

regions are dense in cell bodies and heavily interconnected with each other and 

other regions of the brain. Given that the medial parietal lobe connects with 

diverse regions and neural tracts, it is possible that these areas integrate signals 

from other regions of the brain and do not represent unique cognitive functions 
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but rather an amalgamation of several processes. Prior findings have shown 

regions in the PFC and midbrain correlate with valuation. It is possible the 

parietal cortex could integrate these signals with information from social cues, 

inhibit or enhance these processes given a social context, or otherwise modulate 

the inputs and outputs of the valuation process. Further study is needed to 

investigate the exact mechanisms involved with these regions to elucidate their 

role in allocentric decision making. 
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6 Conclusion 
6.1 Assessment of research aims and review of findings 

The overarching aim of the thesis was to provide a description of 

allocentric decision making in the domain of effort choice outcomes. The 

experimental design was effective at eliciting effort discounting behavior in 

allocentric decisions similar to prior studies of egocentric decisions (Libedinsky et 

al., 2013; Massar et al., 2015). Using choice experiments where participants 

made effort decisions, this thesis investigated allocentric decision making across 

three levels in the style of the neuroeconomic approach outlined in chapter 1.  

First, allocentric decisions were shown to be behaviorally dissociable from 

egocentric decisions when decision makers chose between different sized typing 

tasks and their corresponding compensation. Choice differences reflected 

differences in effort discounting between egocentric and allocentric decisions. 

The distinction between egocentric and allocentric decisions persisted regardless 

if the recipient of the decision outcomes was manipulated within- or between-

participants.  

Second, computational models with multiplicative combinations of effort 

and compensation resulted in better model fit than additive combinations. 

Specifically, the hyperbolic and sigmoidal models were found to be the best fit to 

the data as discounting began at low levels of effort in the choice task. The same 

computational models best represented both allocentric and egocentric 

decisions. However, allocentric decisions exhibited increased discounting rates of 
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effort relative to egocentric decisions in the hyperbolic model. The sigmoidal 

model was better apt to representing individual differences in discounting.  

Third, neural correlates of allocentric effort discounting were found in 

several regions of interest including the PFC, ACC, basal ganglia, insula, rTPJ, 

and parietal cortex. Activity in these regions correlated with participant behavior, 

variations in stimuli, and individual differences in model parameter estimates. 

Choice differences were reflected in the BOLD response of the rTPJ, a region 

associated with theory of mind and social cognition. Regions associated with 

value (the basal ganglia and PFC) exhibited BOLD response that increased with 

compensation and decreased with increased effort. Importantly, regions in the 

parietal cortex (cuneus, precuneus, PCC, and angular gyrus) were also 

correlated with value. Furthermore, the activity in the parietal cortex correlated 

with the estimated sigmoidal p-parameter across individuals. Given that the 

sigmoidal p-parameter acts as a threshold indicator that reflects the level of effort 

where a decision maker begins to discount value, the parietal cortex may be 

responsible for modulating the value mechanisms in the PFC responsible for 

discounting behavior. Such findings open avenues for further explorations of the 

neural mechanisms connecting these regions.   

An additional aim was to investigate the effects of accountability on 

allocentric decisions as a possible moderator of egocentric-allocentric 

differences. Accountability was implemented via an in-person interview with the 

head experimenter. Contrary to the hypothesis, accountability did not have a 

moderating effect on choice behavior large enough to be detected. Null effects of 
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accountability on allocentric effort discounting persisted even when pairwise 

conditions in the fMRI study controlled for self-reflection and the additional effort 

of reviewing past choices. Reaction times did differ significantly between social 

accountability and private, written accountability in the fMRI study, but choice 

outcomes were nearly identical. ROI analysis showed differential BOLD response 

in the precuneus, TPJ, and SMA between social accountability trials and written 

accountability trials. The decreased response in the TPJ and SMA during social 

accountability trials compared to private, written accountability trials suggest that 

social cognition and effort cost considerations (respective to each ROI) may be 

influenced by accountability, and warrant further investigation.  

6.2 Current findings in relation to prior literature 

Allocentric effort discounting is a novel phenomenon in the decision-

making literature.  However, allocentric temporal discounting findings are 

comparable, using the same binary choice paradigm of combined monetary 

reward and cost options. Making allocentric decisions has been shown to 

decrease temporal discounting rates compared to egocentric discounting rates 

(Albrecht et al., 2011; Ziegler & Tunney, 2012). In contrast, studies in this thesis 

found allocentric effort discounting decisions were better modeled with higher 

discounting rates compared to egocentric decisions. This difference may be due 

to the requirement of the decision recipient’s participation, the aversion to 

imposing a task on another individual, or increased salience of monetary reward 

in egocentric decisions. 
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One explanation supported by the findings here is the do-no-harm 

principle (Baron, 1995). This principle suggests that assigning the tedious typing 

task is akin to causing harm or inconvenience to another. Decision makers’ 

aversion to assigning another person an effortful task may outweigh the benefits 

of providing an opportunity for another to earn monetary rewards. For 

comparison, when temporal delay is the cost associated with a monetary reward, 

increased discounting is not observed, as no participation is required on behalf of 

the decision recipient. Additionally, this coalesces with the findings from chapter 2 

where effort reference option was found to have a significant effect on choice in 

both egocentric and allocentric conditions; whereas matching designed temporal 

discounting studies using two-period delay designs have shown an interaction 

effect between decision recipient (egocentric vs. allocentric) and reference option 

(immediate-delay vs. delay-longer delay options) (Albrecht, Volz, Sutter, Laibson, 

& von Cramon, 2011). Illusory superiority would predict decision makers to view 

themselves as more patient than others, which is contrary to the observed 

behavior. The do-no-harm principle may not apply to temporal discounting 

behavior as waiting may not be considered “harm” on the recipient, while effort 

discounting studies impose a cost in terms of time, attention, and exertion. 

Another explanation may stem from the salience of immediate egocentric 

monetary rewards which would explain the shift in favor of larger rewards in effort 

discounting and smaller, sooner rewards in temporal discounting. While temporal 

and effort discounting have been shown to be dissociable (Klein-Flügge et al., 

2015; Massar et al., 2015; Prévost et al., 2010), such a “greed-primacy” 
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hypothesis is supported by findings in other choice domains. Prior studies of 

egocentric risk decisions have shown mounting pressure to succeed influences 

decision making. Participants chose increasingly risky choice options as the 

number of opportunities to meet reward goals decreased (Kolling, Wittmann, & 

Rushworth, 2014). External circumstances may have evoked a similar salience of 

egocentric reward in the effort studies used in chapter 2 which would explain the 

reduced egocentric discounting rate observed.  

Evidence from other fields supports the pattern of egocentric-allocentric 

differences found in the two behavioral experiments. Research shows 

participants from a gender-specific negotiation game argue for higher salaries for 

others than they are willing to accept themselves in a salary negotiation game 

(Amanatullah & Morris, 2010). This implies participants value the effort of others 

more than their own. Similarly, third party non-forgiveness studies show that 

participants are more likely to work for the forgiveness of others than for their 

own wrongs (Green, Burnette, & Davis, 2008). These findings coalesce with the 

evidence provided here in that rather than discounting their own effort, decision 

makers likewise value the effort of others more. This provides a further evidence 

against an empathy gap explanation and in favor of the do-no-harm principle. An 

empathy gap explanation derives primacy from personal reward, in which case 

the women would be valuing themselves equally, or participants would be 

working to expunge their own shame just as fervently. The do-no-harm principle 

would require additional compensation for others. Further study is necessary to 

specify the mechanisms responsible for egocentric-allocentric differences. 
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Computational modeling results favored selection of the hyperbolic and 

sigmoidal models. Of the models tested, the hyperbolic model was the best fit 

when fitting the indifference points. While the parabolic model has been shown in 

prior literature to be a good fit for indifference point fitting in effort discounting 

(Hartmann, Hager, Tobler, & Kaiser, 2013), the implementation of the physical 

effort task likely placed more emphasis on duration endurance than the typing 

task. When using SoftMax fitting, the sigmoidal model was the best fit to the data, 

similar to prior effort discounting studies that used physical effort tasks (Klein-

Flügge, Kennerley, Saraiva, Penny, & Bestmann, 2015).  

Neural findings coalesced with prior literature. ROIs in the limbic system 

were associated with allocentric reward (compensation) and cost (effort) 

including the basal ganglia, ACC, and insula. Furthermore, parietal cortex activity 

was robust across all analyses, which was expected given participants were 

making allocentric effort decisions in both conditions. The PCC and angular gyrus 

have shown increased activity in intrapersonal decisions that result in harm to 

another (Greene et al., 2001), further supporting the do-no-harm explanation. 

BOLD activity in these regions correlated with the estimated parameters in both 

sigmoidal and hyperbolic discounting models between subjects. This provides 

strong evidence supporting the computational models selected in chapter 3. 

Prior literature showed that social accountability, when operationalized 

through an interview, increased complexity of thought in decision makers (Lerner 

& Tetlock, 1999). Social accountability was hypothesized to influence allocentric 

decision making by encouraging consideration of another agent’s possible 
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preferences and, assuming a decision maker’s egocentric preferences are 

known, more easily expressed, and thus easier to justify, aligning egocentric and 

allocentric preferences. However, no effects of accountability on choice behavior 

were observed in two experiments.  

Overall, the three research approaches point to a difference in cognition 

between allocentric and egocentric effort discounting. While the decision 

mechanisms may be the same (or very similar), as evidence by the same models 

best predicting choice outcomes, the effort is likely weighted differently when it is 

for another person than for oneself.  Neural regions commonly associated with 

valuation in egocentric decision-making studies, were correlated with the value of 

the larger effort/larger compensation option when making allocentric decisions. 

However, there were additional regions that correlated with differences in 

discounting parameters between participants in the PCC and dmPFC which may 

be responsible for varying sensitivity to social agents. Furthermore, individual 

differences in sensitivity to social agents were correlated with SVO, feelings of 

responsibility, and self-reporting the intent to choose what was best for the 

recipient. The evidence supports a do-no-harm interpretation of allocentric effort 

discounting where effort is steeply discounted for others as an inconvenience, 

but evaluated in a transactional cost-benefit analysis method by egocentric 

decision makers. This claim is subject to the limited evidence provided by these 

studies. The limitations are discussed further in the following section. 
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6.3 Limitations 

The experiments used in this study were limited by design with regards to 

the relationship between decision maker and recipient. Double blind allocentric 

decisions were used to preserve the anonymity of both decision maker and 

recipient. Outside of the laboratory, single-blind allocentric decisions may be 

more common and may have differential effects on effort choices. For instance, 

given an increasing reliance on digital communication, agents may be knowable 

through an online identification, but this identity may be manifested for ulterior 

motives or uncorrelated to the person’s true preferences. Thus accountability, as 

was enacted here, needed to be more than simply a name, but action that tied 

the decision maker to the outcome. 

Furthermore, only one type of accountability and one effort task was used 

in these experiments. The design of these studies was an intentional tradeoff to 

allow comparison between studies coherent with a multilevel, neuroeconomic 

approach. The tradeoff improved the internal validity and rigor of the research 

presented here at the cost of study variety and ecological robustness. However, 

some extrapolations from the laboratory findings are discussed in the next 

section. 

6.4 Managerial implications 

As modern firms move toward contingent short-term labor based on 

projects and contracts (a “gig-economy”), wage rates and effort allocation are 

increasingly important factors for attracting and rehiring employees. How 



A l l o c e n t r i c  E f f o r t  D e c i s i o n s | 256 

 

managers choose to position job availabilities will be a large predictor of 

successful hiring solutions, successful HR managers, and ultimately better usage 

firm-level human resources. The research presented here has implications for 

how managers allocate effort.  

Within firms, the allocation of employee effort is required to produce 

outputs and services. Assigning effort tasks amongst teams and team members 

is integral to an organization’s success. Doing so in an efficient manner allows 

firms to operate more effectively and reduces wasted resources. This research 

shows that managers and project team leaders may overestimate their own 

abilities or underestimate the effort of team members. Conversely, managers 

may overvalue underperforming team members or undervalue their own efforts. 

This may create strain on managers or team relations. Oftentimes, firms expend 

resources to enforce accountability on managers to reduce agency problems and 

moral hazard. However, at least in the domain of effort decisions, accountability 

here showed no effect on allocentric effort decisions. While it is difficult to draw 

any conclusions from null results, resources used to ensure accountability, may 

be better freed for other operational needs.   

A third implication is at a strategic level. Effort at a firm level is related to 

production costs. Firm directors engaged in bidding against competitors to earn 

contract work may undervalue their own firm’s efforts or overvalue rival firms’ 

efforts when competing for production contracts. Assessing the value of a rival’s 

production costs and comparing this to a firm’s own production costs may alter 

how strategic managers make competitive bids or if they choose to compete at 
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all. Further study is needed to expand the scope of this work and to improve the 

ecological validity of these findings.  

6.5 Future Directions 

Future aims and extensions of this research include the expansion of 

stimuli used. Allocentric effort discounting differences from egocentric decisions 

may be different based on the type of effort task used - purely physical, purely 

cognitive, or mixed effort. Dissociating these effects, particularly neurologically, 

poses a challenge that is ripe for neuroeconomic approaches. 

Similarly, parsing the ways in which decision maker – decision recipient 

relationships influence effort discounting is a paramount extension of this 

research. The role of social distance in moderating allocentric effort discounting 

has not yet been explored. Temporal discounting research has shown social 

distance is an important moderator of allocentric discounting rates (Strombach et 

al., 2015; Ziegler & Tunney, 2012). However, findings in this thesis have shown 

divergence from the temporal discounting literature with regards to the effect of 

allocentric decision making on egocentric discounting rates. Determining if and 

how social distance moderates allocentric effort discounting is an important gap 

in the literature, both for understanding allocentric decision making and its 

relationship with temporal discounting mechanisms.  

Broadening the investigation of accountability is also an important future 

direction. While a third-party regulator did not influence choice behavior in these 

studies, accountability may be impactful when operationalized in other ways. 

Accountability directly to the decision recipient or third-parties in the decision 
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maker’s social network may exhibit significant impact on allocentric decision 

makers. Decision makers may wish to maintain a certain social standing with 

these agents and alter choices to pander to the preferences of the agent holding 

the decision maker accountable. Emphasizing reputation building may be a 

stronger mechanism of accountability than the authority of the head experimenter 

used in these studies. 

A necessary and intrinsic addendum to the roles that social distance, 

sources of accountability, and social relationships play in allocentric decision 

making can more generally be represented by the role culture plays in setting the 

social environment and the assumptions made about other agents. Individuals 

from different cultures ascribe to different social norms that may influence 

egocentric-allocentric differences or the potential for moderating effects of 

accountability. Cultures may impose effects on cognition via social norms that 

dictate the acceptability of certain decisions for others, such as choosing what is 

best for them compared to their preference. For example, cultures high in 

collectivism may exhibit reduced egocentric-allocentric differences in effort 

discounting if members are making decisions for a fellow in-group member but 

exacerbated differences when deciding for an out-group member compared to 

decision makers from an individualistic culture. Additionally, a decision maker’s 

accountability may change with context and culture. Decision makers from 

cultures that place a greater value on conformity to social norms may be affected 

by accountability more when they are identifiable to known others and may be 

subjected to shame or guilt than cultures that are looser regarding norms of 
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conformity (Gelfand et al., 2011). The behavioral studies in chapter 2 were 

conducted in Singapore while the fMRI study was conducted in the United 

States. Both samples exhibited effort discounting in the task, but the data 

themselves are not directly comparable due to the different designs and stimuli 

used. Delving into the myriad effects of culture on allocentric decisions likely 

holds vast reserves of untapped knowledge.   

6.6 Conclusion 

The neuroeconomic methods used here provide evidence that decision 

makers in a social context value effort differently than isolated, egocentric 

decision makers. This was shown using allocentric-egocentric contrasts in 

behavior and computational modeling and fMRI correlates of allocentric decision 

making processes. To stress, the research presented here are initial steps into 

the study of allocentric effort discounting and allocentric effort decisions more 

generally. The research provides an exploratory basis for generating more 

specific hypotheses testing more concrete mechanisms and moderators 

responsible for this decision phenomenon.  

The research presented here contributes to the understanding of effort 

discounting by identifying useful computational models for future study of the 

phenomenon. Additionally, it provides evidence that egocentric and allocentric 

effort are valued differently, with allocentric decisions requiring more 

compensation for effort. Individual differences in effort discounting correlate with 

the endorsement of “should” type decision strategies, feelings of responsibility for 

the decision recipient, and social values orientation. Finally, the fMRI findings 
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point to a need for further study of regions in the parietal cortex and posterior 

cingulate cortex which are not commonly associated with the valuation 

mechanisms of the vStriatum and vmPFC. Future investigation into the 

mechanism relating these regions could yield important results for understanding 

how humans evaluate outcomes for social agents. This thesis was performed in 

the anticipation of future study and to establish a foundation for future work in 

allocentric effort discounting.  
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Appendix A: fMRI Results Tables 

Choice Outcomes Contrast - Option Presentation  

Region cluster cluster cluster cluster Coordinates 

  
p(FWE-

corr) 
p(FDR-
corr) 

equivk p(unc) x y z  

right TPJ 0.038 0.03 36 0.002 60 -46 5 

left 
Angular 
Gyrus 

0.344 0.162 17 0.025 -48 -64 20 

mid. 
Cingulate 
Gyrus 

0.657 0.243 11 0.063 9 20 29 

ACC 0.719 0.243 10 0.075 -9 47 20 
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Choice Outcomes Contrast - Arrow Presentation  

Region cluster cluster cluster cluster Coordinates 

  
p(FWE-

corr) 
p(FDR-
corr) 

equivk p(unc) x y z 

Middle 
Frontal 
Gyrus 
(PFC) 

0.016 0.032 41 0.001 48 29 32 

 
    45 38 26 

 
    48 20 38 

r Angular 
Gyrus 

0.01 0.032 45 0.001 48 -49 44 

 
    42 -46 50 

 
    45 -46 35 

 0.068 0.054 29 0.004 18 23 56 

 
    9 29 59 

 
    21 17 62 

Middle 
Frontal 
Gyrus  

0.042 0.041 33 0.002 33 56 2 

 
    45 50 8 

 0.505 0.336 13 0.038 -39 -70 -31 

 0.628 0.345 11 0.054 39 26 29 

Superior 
Frontal 
Gyrus 

0.037 0.041 34 0.002 0 29 44 

 
    -3 29 35 

 0.628 0.345 11 0.054 -39 23 29   
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Effort Magnitude Contrast - Option Presentation  
 

Region cluster cluster cluster cluster Coordinates 

  
p(FWE-

corr) 
p(FDR-
corr) 

equivk p(unc) x y z  

Precuneus 0.002 0.004 60 0 0 -64 35 

 
    3 -73 38 

 
    -6 -82 38 

rTPJ  0.16 0.116 22 0.009 54 -28 8 

 
    42 -28 11 

Cerebellu
m 

0.69 0.469 10 0.063 15 -58 -13 

PCC 0.074 0.077 28 0.004 12 -55 2 

 
    6 -49 8 

r 
Postcentra
l Gyrus 

0.69 0.469 10 0.063 33 -31 56 

 
       

        
Region cluster cluster cluster cluster Coordinates 

  
p(FWE-
corr) 

p(FDR-
corr) 

equivk p(unc) x y z 

Precuneus 0.002 0.004 60 0 0 -64 35 

 
    3 -73 38 

 
    -6 -82 38 

rTPJ  0.16 0.116 22 0.009 54 -28 8 

 
    42 -28 11 

Cerebellu
m 

0.69 0.469 10 0.063 15 -58 -13 

PCC 0.074 0.077 28 0.004 12 -55 2 

 
    6 -49 8 

r 
Postcentra
l Gyrus 

0.69 0.469 10 0.063 33 -31 56 
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Effort Magnitude Contrast - Arrow Presentation  

Region cluster cluster cluster cluster Coordinates 

  
p(FWE-

corr) 
p(FDR-
corr) 

equivk p(unc) x y z 

Precuneus 
and PCC 

0 0 250 0 6 -52 8 

 
    -3 -58 14 

 
    0 -49 26 

vACC 0 0 134 0 -9 35 -7 

 
    -9 44 -4 

 
    3 47 5 

left 
Angular 
Gyrus 

0.007 0.009 51 0 -42 -70 32 

 
    -51 -67 29 

 0.468 0.296 14 0.036 0 -19 41 

 0.097 0.086 27 0.006 -15 26 44 

 0.258 0.18 19 0.017 48 -70 35 

 
    45 -64 26 

 0.291 0.182 18 0.02 -51 -28 26 

 
    -45 -22 23 

 0.582 0.307 12 0.05 42 -25 14 

 0.086 0.086 28 0.005 21 -73 -7 

 
    15 -58 -16 

 
    21 -64 -7 

 0.157 0.121 23 0.01 -12 59 26 

 0.582 0.307 12 0.05 -9 -61 -16 

 0.582 0.307 12 0.05 24 38 44 
 0.708 0.371 10 0.07 36 -7 59 
 0.644 0.336 11 0.059 -30 -73 -16 
     -24 -67 -10 
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Compensation - Option Presentation 

 Region cluster cluster cluster peak Coordinates 

  
p(FWE-

corr) 
p(FDR-
corr) 

equivk T x y z  

r Putamen 0.047 0.119 9 4.25 24 8 -4 

l Putamen 0.209 1 2 3.72 -24 11 2 

r Caudate 0.162 1 3 3.53 18 14 8 

l Putamen 0.281 1 1 3.46 -21 5 -10   
 

       
 

Effort - Option Presentation 

Region cluster cluster cluster peak Coordinates 

  
p(FWE-

corr) 
p(FDR-
corr) 

equivk T x y z  

Precuneus 0.001 0.203 928 4.37 12 -37 53 

 
   3.9 3 -52 32 

 
   3.87 0 -46 38 

 
       

 
Effort - Arrow Presentation 

Region cluster peak peak peak Coordinates 

  equivk 
p(FWE-

corr) 
p(FDR-
corr) 

T x y z  

ACC 261 0.002 0.009 5.68 -6 50 -1 
  0.048 0.019 4.47 9 32 17 
  0.758 0.331 2.78 9 35 2 

PCC 227 0.005 0.021 4.99 -3 -52 26 
  0.045 0.042 4.02 -6 -43 14 
  0.115 0.089 3.56 -9 -37 32 

Precuneus 1539 0.021 0.054 5.24 6 -52 8 
  0.041 0.054 4.99 -3 -52 26 
  0.043 0.054 4.97 -3 -55 17 
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DpW - Option Presentation 

Region cluster peak peak peak Coordinates 

  equivk 
p(FWE-

corr) 
p(FDR-
corr) 

T x y z  

Cuneus 688 0.001 0.008 5.99 6 -85 23 
  0.004 0.009 5.45 15 -85 32 
  0.063 0.028 4.42 -6 -82 38 

        
 
 

DpW - Option Presentation 

Region cluster peak peak peak Coordinates 

  equivk 
p(FWE-

corr) 
p(FDR-
corr) 

T x y z  

Cuneus 2254 0 0.008 6.71 9 -82 26 

PCC  0.001 0.008 6.31 12 -46 26 

d 
Precuneus 

 0.003 0.008 5.95 0 -49 65 

        
 
 

Hyperbolic SV - Arrow Presentation 

Region cluster peak peak peak Coordinates 

  equivk 
p(FWE-

corr) 
p(FDR-
corr) 

T x y z 

l Angular 
Gyrus 

290 0.036 0.049 4.74 -45 -58 38 

  0.375 0.089 3.68 -42 -67 44 
  0.417 0.092 3.61 -51 -70 26 

r Angular 
Gyrus 

234 0.342 0.089 3.74 48 -73 29 

  0.812 0.26 3 51 -64 29 
  0.816 0.26 2.99 45 -52 41 

Precuneus 1310 0.077 0.156 4.77 12 -37 53 
  0.211 0.156 4.32 -3 -79 38 
  0.224 0.156 4.29 3 -64 17 
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Hyperbolic SV - Arrow Presentation 

Region cluster peak peak peak Coordinates 

  equivk 
p(FWE-

corr) 
p(FDR-
corr) 

T x y z  

PCC 181 0.001 0.007 5.48 12 -46 26 
  0.006 0.01 4.91 -9 -46 29 
  0.039 0.032 4.08 0 -52 26 

Cuneus 623 0 0.003 6.37 9 -82 26 
  0.001 0.003 6.05 -6 -82 38 
  0.186 0.067 3.87 -12 -85 26 

dorsal 
Precuneus 

1719 0.004 0.025 5.87 0 -49 65 

  0.011 0.025 5.48 12 -46 26 
  0.021 0.035 5.24 -6 -82 41 

l Angular 
Gyrus 

293 0.059 0.115 4.56 -42 -76 29 

 
 0.288 0.176 3.83 -42 -64 35 

  0.489 0.177 3.48 -42 -55 35 

        

        

Sigmoidal SV - Option Presentation 

Region cluster peak peak peak Coordinates 

  equivk 
p(FWE-

corr) 
p(FDR-
corr) 

T x y z  

ACC 240 0.019 0.05 4.89 6 44 5 
  0.042 0.05 4.56 3 53 11 
  0.292 0.098 3.57 12 38 11 
 16 0.756 0.356 2.81 -9 26 29 
  0.985 1 2.05 -3 17 29 
 1 0.97 0.578 2.2 -9 35 -10 

PCC 91 0.016 0.047 4.51 6 -49 29 
  0.044 0.06 4.05 -6 -49 29 
  0.346 0.308 2.95 -3 -43 14 
 1 0.878 1 1.93 -9 -37 32 
 2 0.915 1 1.8 -3 -31 29 
 1 0.928 1 1.74 -6 -37 5 
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Sigmoidal SV - Arrow Presentation 

        
Region cluster peak peak peak Coordinates 

  equivk 
p(FWE-

corr) 
p(FDR-
corr) 

T x y z  

ACC 286 0.14 0.325 3.97 6 53 14 
  0.368 0.325 3.42 9 32 17 
  0.389 0.325 3.39 6 47 8 

Precuneus 1315 0.017 0.111 5.33 3 -49 29 
  0.028 0.111 5.13 -6 -49 32 
  0.276 0.145 4.19 -12 -55 17 

Cuneus 366 0.038 0.07 4.61 6 -82 23 
  0.051 0.07 4.51 15 -85 32 
  0.111 0.07 4.16 21 -79 41 

        
 

Hyperbolic K Individual differences - Option Presentation 

Region cluster peak peak peak Coordinates 

  equivk 
p(FWE-

corr) 
p(FDR-
corr) 

T x y z  

rCaudate 
(Basal 
Ganglia) 

481 0.102 0.155 4.26 12 -1 20 

  0.165 0.155 4.01 15 -19 20 
  0.19 0.155 3.93 -6 5 -1 
 21 0.614 0.162 3.16 -15 -19 23 
 2 0.682 0.196 3.05 -21 11 26 
 2 0.996 1 1.96 15 14 -13 
 1 0.997 1 1.92 -6 23 5 
 4 0.998 1 1.88 24 23 11 
 4 0.998 1 1.84 -12 20 -7 

SMA 1325 0.573 0.399 4.25 -9 29 44 

mSFG   0.721 0.399 4.05 15 44 29 

vmPFC  0.728 0.399 4.04 30 44 -10 
 187 0.999 0.399 3.15 51 23 8 
  1 0.4 2.94 48 17 17 
  1 0.455 2.65 45 26 29 
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Hyperbolic K Individual differences - Arrow Presentation 

Region cluster peak peak peak Coordinates 

  equivk 
p(FWE-

corr) 
p(FDR-
corr) 

T x y z  

ACC 367 0.003 0.021 5.59 15 44 5 
  0.066 0.104 4.36 -9 38 23 
  0.092 0.104 4.2 -9 47 17 
 8 0.935 0.674 2.37 6 50 23 
 2 0.995 1 1.84 -3 32 -1 

left Insula 104 0.007 0.011 5.04 -36 17 -10 
  0.288 0.216 3.31 -39 5 -4 
  0.818 1 2.4 -42 14 5 
 2 0.976 1 1.82 -36 -10 8 

        

        
 

Sigmoidal P Individual differences - Option Presentation 

Region cluster peak peak peak Coordinates 

  equivk 
p(FWE-

corr) 
p(FDR-
corr) 

T x y z 

Precuneus 663 0.587 0.515 3.67 15 -40 44 
  0.608 0.515 3.64 -12 -52 47 
  0.814 0.515 3.33 12 -40 59 
 25 0.949 0.515 3 6 -43 14 
  1 0.773 2.2 -3 -49 11 
 24 0.986 0.515 2.77 -18 -73 35 
  0.996 0.515 2.61 -21 -64 32 

dPFC 537 0.457 0.322 4.19 27 41 29 

 
 0.924 0.322 3.46 33 23 35 

  0.993 0.322 3.1 36 38 29 
 145 0.902 0.322 3.51 27 -10 62 
  1 0.395 2.67 21 5 62 
  1 0.406 2.59 15 2 50 
 260 0.915 0.322 3.48 -21 -4 53 
  0.993 0.322 3.09 -27 -4 68 
  0.994 0.322 3.08 -45 14 38 
 86 0.959 0.322 3.34 -24 56 26 
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Sigmoidal P Individual differences - Arrow Presentation 

Region cluster peak peak peak Coordinates 

  equivk 
p(FWE-

corr) 
p(FDR-
corr) 

T x y z  

PCC 1125 0.2 0.395 4.42 -6 -46 29 
  0.537 0.395 3.81 6 -61 38 

Cuneus  0.61 0.395 3.71 -6 -79 41 
 8 0.963 0.395 3.03 3 -88 26 
 13 1 0.542 2.37 18 -97 14 
 5 1 0.604 2.27 -18 -67 62 
 2 1 1 2.1 12 -52 8 
 2 1 1 1.97 27 -67 26 
 1 1 1 1.74 24 -85 14 

mSFG 
(PFC) 

791 0.692 0.441 4.12 0 35 35 

  0.732 0.441 4.07 33 23 35 
  0.96 0.441 3.62 -6 29 50 
 145 0.916 0.441 3.75 -27 41 32 
  1 0.441 2.83 -24 50 23 
  1 0.611 2.31 -30 41 20 
 43 0.991 0.441 3.41 -33 11 44 
  1 0.441 3.11 -33 14 59 
  1 0.441 2.84 -15 14 68 
 239 0.991 0.441 3.41 -36 26 -13 

 
 0.994 0.441 3.37 -51 23 14 

 
 1 0.441 2.82 -48 14 5 

 82 0.994 0.441 3.37 27 -4 71 
  0.995 0.441 3.36 27 -7 62 
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