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  Abstract 
 

ii 
 

of pits in the drain-gate access region correlated well with ID-max degradation. It was 

concluded that 2DEG electrons contributed to the AlGaN oxidation away from the gate 

edge during ON-state stressing. A qualitative model for ON-state degradation was 

proposed based on the electro-chemical oxidation mechanism. 

 

In Chapter 5, fast and slow degradation modes were observed for devices stressed under 

ON-state condition. These two degradation modes were characterized by the dominant 

source of oxygen. In fast degradation mode, the dominant source of oxygen was the pre-

existing oxygen at the AlGaN/SixN1-x interface whereas the dominant source of oxygen in 

slow degradation mode was oxygen from the ambient which diffused through the SixN1-x 

passivation. In addition, it was established that the maximum distance for pit formation 

from the gate edge correlated with the stressing current density. 

 

In Chapter 6, effect of passivation density on AlGaN/GaN HEMT ON-state degradation 

was investigated. High passivation density will mitigate the passivation layer degradation 

and hinder oxygen diffusion from ambient to the AlGaN/SixN1-x interface. Once the 

passivation degrades, oxygen from the ambient will diffuse through and oxidize AlGaN 

layer. Mathematical relationship between stressing temperature and ID-max in slow mode 

degradation was derived based on oxygen diffusion through the SixN1-x passivation. 

 

In the final chapter, the thesis was summarized and its implications and limitations were 

discussed. Finally, possible future works were proposed to further advance the knowledge 

of AlGaN/GaN HEMT ON-state reliability.  
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Strong spontaneous polarization occurs in GaN and AlN since nitrogen has higher 

electronegativity than gallium and aluminum. The spontaneous polarization for GaN and 

AlN are 0.029 and 0.081 C/m2, respectively [62]. On top of spontaneous polarization, GaN 

and AlN have piezoelectric polarization as they are piezoelectric material. When a thin 

layer of AlxGa1-xN is grown on top of Ga-polar GaN, it will experience tensile strain. This 

tensile strain will generate piezoelectric polarization in the same direction with the 

spontaneous polarization (Figure 1.2b). This strong polarization generates electric field 

within the AlGaN layer. In the case of unintentionally-doped AlGaN, it is assumed that 

there are surface donor states at the top of AlGaN layer. When the AlGaN layer is thick 

enough such that the Fermi level will reach these states, electrons will be stimulated to 

jump into conduction band. These electrons are then swept towards AlGaN/GaN interface 

by the electric field. Upon contact with GaN layer, these electrons will flow into GaN side 

because GaN has a lower Fermi level. Electrons will continue to flow until the Fermi level 

is equalized and 2-dimensional electron gas (2DEG) is formed at the AlGaN/GaN interface 

[63-68]. These electrons are energetically confined at the AlGaN/GaN interface (Figure 

1.3) but they are highly mobile along the AlGaN/GaN interface. 

 

 
Figure 1.2 Schematics of (a) Ga-polar GaN crystal structure, (b) spontaneous and piezoelectric 

polarization in Ga-polar system with the 2DEG located at the lower AlGaN/GaN interface  [10] 
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