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There are two dimensions to process flexibility: range versus response. Range is the extent to
which a system can adapt, while response is the rate at which the system can adapt. Although
both dimensions are important, the existing literature does not analytically examine the response
dimension vis-a-vis the range dimension.

In this paper, we model the response dimension in terms of uniformity of production cost. We
distinguish between primary and secondary production where the latter is more expensive. We
examine how the range and response dimension interact to affect the performance of the process
flexible structure. We provide analytical lower bounds to show that under all scenarios on re-
sponse flexibility, moderate form of range flexibility (via chaining structure) still manages to accrue
non-negligible benefits vis-a-vis the fully flexible structure (the bound is 29.29% when demand is
normally distributed).

We show further that given limited resources, upgrading system response dimension outper-
forms upgrading system range dimension in most cases. This confirms what most managers believe
in intuitively. We observe also that improving system response can provide even more benefits
when coupled with initiatives to reduce demand variability. This is in direct contrast with range
flexibility, which is more valuable when the system has higher variability.

Subject Classifications: probability: renewal processes; production: process flexibility; facility plan-
ning: design.

1 Introduction

Trends in consumer markets have shown a shift towards more customized products and faster up-

grades in technology. This has resulted in more product lines, shorter product life cycles, and higher

demand variability. Facing increased demand uncertainty as well as heightened market competi-

tion, businesses can no longer rely on capacity, pricing, quality, or timeliness alone as competitive

strategies. In particular, firms are turning to process flexibility to improve their ability to match

supply with uncertain demand. This can be observed in manufacturing industries such as the au-

tomotive industry (Wall, 2003; Van Biesebroeck, 2007), the textile/apparel industry (DesMarteau,

1999) and the semiconductor/electronics industry (McCutcheon, 2004), as well as service industries

such as call centers (Wallace and Whitt, 2005).
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Over the past three decades, the academic literature on flexibility has grown extensively. Not

surprisingly, most of the early works were reviews and taxonomies for manufacturing flexibility

(Mandelbaum, 1978; Buzacott, 1982; Browne et al., 1984; Kusiak, 1986; Gupta and Goyal, 1989;

Sethi and Sethi, 1990; Parker and Wirth, 1999; Beach et al., 2000). During this period, efforts were

focused on understanding the very nature of flexibility and on developing measures and evaluation

criteria for flexible manufacturing systems (FMS). Because flexibility is a broad and abstract con-

cept, Browne et al.’s (1984) taxonomy breaks flexibility down into eight categories. The list was

subsequently expanded by Sethi and Sethi (1990) into eleven classes, summarized in Table 1.

Table 1: Definition of flexibility types

Flexibility type Definition
Machine Ability of a machine to perform various types of operations
Material handling Ability to move different parts efficiently through a manufacturing facility
Operation Ability to produce a part in different ways
Process Ability to make different parts without a major setup
Product Ease of adding or substituting new products in a manufacturing facility
Routing Ability to produce a part by alternate routes through a system
Volume Ability to operate profitably at different overall output levels
Expansion Ease by which a manufacturing system can increase capacity and capability
Program Ability of a system to run unattended for a period of time
Production Ability to produce different parts without adding major capital equipment
Market Ease with which a manufacturing system can adapt to a changing market

Various measures have been developed for the different types of flexibility. Gupta and Goyal

(1989) present a classification of flexibility measures into six types of approaches: economic conse-

quence based approaches, performance criteria approaches, multi-dimensional approaches, petri-net

approaches, information theoretic approaches, and decision theoretic approaches. For example, fi-

nancial losses due to failure to cope with demand fluctuations or machine breakdowns is a measure

based on economic consequences, while the ratio of the number of capabilities in a particular FMS

to the same number for an ideal FMS with the same number of facilities (Primrose and Leonard,

1986) is a performance-based measure.

Most works in the FMS literature focus on machine flexibility and routing flexibility (Chandra

and Tombak, 1992; Wahab et al., 2008). Such emphasis on operational details is understandable

because managers in the past faced the urgency of effective implementation of the FMS already

existing in their companies. Equally if not more important, though, is the strategic issue of design

(i.e. what kind of flexibility to employ and how much). However, when it comes to investing in

flexibility, managers have already formed a negative impression because of the enormous cost it

2
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entails and the little success it has achieved in the past (Jaikumar, 1986). To address this issue,

researchers in the management science community (Fine and Freund, 1990; Jordan and Graves,

1995; van Mieghem, 1998; Bish and Wang, 2004; Akşin and Karaesmen, 2007; Chou et al., 2009a;

Chou et al., 2009b; Bassamboo et al., 2009) began to examine process flexibility, which Sethi and

Sethi (1990) define as “the ability to make different parts without a major setup”.

The theoretical justification for the effectiveness of process flexibility can be traced back to

the early work of Eppen (1979). For a multi-location newsvendor problem, he showed that the

mismatch cost for a decentralized system exceed those in a centralized system, and that the gap

between these two systems depends on the demand correlation. Indeed, a decentralized system is

analogous to a dedicated production system, while the centralized system corresponds to flexible

production. Likewise, it makes sense that process flexibility is most effective when product demands

are negatively correlated and least effective when demand correlation is positive.

It should be noted, however, that Eppen’s (1979) result on the benefits of consolidation or

risk pooling is predicated on the assumption of full consolidation or complete pooling. In the

context of process flexibility, we must have a fully flexible production system where all facilities can

produce all products for the said theory to hold. In addition, most of the early works on process

flexibility examine the appropriate mix of dedicated versus flexible resources, thus focusing only on

fully flexible resources (Fine and Freund, 1990; van Mieghem, 1998; Bish and Wang, 2004). Since

companies realize that full flexibility typically comes at great expense, they can only make limited

use of these theories on full flexibility, hence the need for an extended theory of partial flexibility.

With most facilities capable of producing most products, one may overinvest in process flexibil-

ity. On the other hand, when one has too little or no flexibility at all, this may result in a high level

of lost sales. This becomes a question of whether one can achieve the benefits of full flexibility at

an acceptable cost level. Jordan and Graves (1995) show via simulation studies that this is possible

using the concept of a simple “chaining” strategy. Here, a facility capable of producing a small

number of products, but with proper choice of the process structure (i.e., product-facility link-

ages), can achieve nearly as much benefit as the full flexibility system. In the language of Gupta and

Goyal’s (1989) flexibility measurement classification, the chaining structure may score very poorly

based on a performance criterion such as inherent level of flexibility (score of only 20% compared to

the ideal fully flexible structure). However, according to an economic consequence-based approach

(e.g. expected financial benefits), the chaining structure fares just as well as full flexibility.

While the idea of chaining has been extended in various directions (Graves and Tomlin, 2003;

Gurumurthi and Benjaafar, 2004; Hopp et al., 2004; Iravani et al., 2005), efforts were also expended

3
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to strengthen the analytical aspect of the chaining theory (Akşin and Karaesmen, 2007; Chou et

al., 2009a; Chou et al., 2009b; Bassamboo et al., 2009). We briefly discuss some of the findings

in Chou et al.’s (2009a) paper. The approach taken is asymptotic analysis, i.e. their objective is

two-fold. First, they examine the effectiveness of chaining as system size grows very large. While

Jordan and Graves (1995) used a 2-chain (i.e each node has degree 2), when system size is large,

say n = 100, should a firm use a 20-chain? How would a 2-chain perform? Secondly, Chou et al.

(2009a) are able to prove their results analytically.

To illustrate asymptotic analysis, we consider the following n-facility, n-product example. Sup-

pose each plant has a capacity of Cj = 100 units for each j, and each product consumes one unit

of capacity and has an expected demand of Di = 100 units for each i.1 We assume further that

the demand is normally distributed with a standard deviation of 33 units (so that the probability

of negative demand is negligible), and let D be the vector of demand realization.

Process flexibility can be represented using a bipartite graph. A set A(n) of n product nodes lies

on one side of the graph while a set B(n) of n facility nodes lies on the other side. A link connecting

product node i with facility node j means that facility j has the capability to produce product i.

Let G(n) ⊆ A(n) × B(n) denote the set of all such links, i.e., the edge set of the bipartite graph.

Hence, each process flexible structure can be uniquely represented by the edge set G(n). Below are

the three most common structures. See Figure 1(a)-(c) for an illustration of these structures.

1. The Dedicated Structure: D(n) = {(i, i) | i ∈ {1, 2, . . . , n}}

2. The Chaining Structure: C(n) = D(n) ∪ {(1, 2), (2, 3), . . . , (n − 1, n), (n, 1)}

3. The Fully Flexible Structure: F(n) = A(n) × B(n)
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Figure 1: Bipartite Graph Representation of 3 x 3 Process Flexible Structures

To obtain the expected system sales of structure G(n), we simulate several scenarios of the

demand vector D and take the expected value of the optimal sales over all demand scenarios. In
1Note that the (mean) demand and supply are balanced and identical in this case.
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each scenario, we solve the following Maximum Flow problem, where xij is the amount of product

i produced by facility j and Z∗(G(n),D) denotes the optimal sales.

Z∗(G(n),D) = max
n∑

i=1

n∑

j=1

xij

s.t.
n∑

j=1

xij ≤ Di,
n∑

i=1

xij ≤ Cj

xij ≥ 0 ∀ i, j = 1, . . . , n,

xij = 0 ∀ (i, j) /∈ G(n).

Table 2 shows the expected sales E[Z∗(G(n),D)] of the different structures as n varies. The expected

sales ratio is the ratio of expected sales in a chaining structure vis-a-viz the fully flexible structure.

The expected improvement ratio measures the benefits of a structure (whether chaining or full

flexibility) in terms of improvement over the dedicated structure, i.e. expected sales of the given

structure minus expected sales of the dedicated structure, vis-a-viz the improvement obtained by

the fully flexible structure.

System Expected Sales Ratios
Size n Dedicated Chaining Fully Flexible Expected Sales Expected Improvement

10 864.47 949.36 955.14 99.39% 93.62%
15 1297.51 1434.44 1447.00 99.13% 91.59%
20 1728.52 1915.78 1938.93 98.81% 89.00%
25 2179.81 2401.94 2441.73 98.37% 84.81%
30 2601.84 2871.06 2929.84 97.99% 82.08%
35 3044.48 3352.66 3430.70 97.73% 79.79%
40 3469.06 3807.16 3905.48 97.48% 77.47%

Table 2: Expected Sales Ratio and Expected Benefits Ratio as System Size Increases

For small n (say n = 10), our simulation shows that the expected sales in the three structures

are 864.47, 949.36, and 955.14, respectively. This demonstrates that chaining already achieves

most (93.62%) of the benefits of full flexibility. However, Table 2 also shows that as the system

expands, chaining efficiency2 deteriorates to as low as 77.47% for n = 40. Chou et al. (2009a) prove

that chaining efficiency for the above example converges to approximately 70% as n approaches

infinity. Suitable for any general demand distribution, the approach they developed provides an

exact method to capture the asymptotic performance of the chaining structure. Because chaining

efficiency decreases in system size, the asymptotic chaining efficiency obtained using this method

serves as an analytical lower bound on the performance of any finite chaining system.
2We also refer to the expected improvement ratio of chaining to full flexibility as “chaining efficiency”.
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Another classification of flexibility is by Slack (1987), who suggested that flexibility has two

dimensions: range and response. Range is the extent to which a system can adapt, whereas response

is the rate at which the system can adapt. Although both dimensions are important, most papers

in the process flexibility literature only consider range flexibility (e.g. partial flexibility versus full

flexibility). To the best of our knowledge, there has been no paper in the literature that analytically

examines both range flexibility and response flexibility. This paper is an attempt to bridge this

gap by extending the theory of partial (range) flexibility (Jordan and Graves, 1995; Chou et al.,

2009a) to include the response dimension.

To further understand the response dimension, we observe that Slack’s (1987) work seems to

have influenced Upton (1994) who defined flexibility as “the ability to change or react with little

penalty in time, effort, cost or performance”. Like Slack (1987), Upton (1994) refers to the extent

to which the system can change or react as range. Unlike Slack (1987), he further breaks down the

response dimension into mobility and uniformity. Mobility is measured by the penalty incurred as

the system switches from state to state. On the other hand, uniformity is measured by how the

system can maintain the same performance level as it changes its state.

To model mobility, we can consider the setup time or the setup cost incurred when switching

from producing product A to product B. Both are undesirable as setup time effectively reduces

capacity whereas setup cost reduces total profits. Moreover, a fully flexible system can be expected

to exhibit more production switching than a less flexible system like chaining. Modeling response

this way, chaining efficiency or the performance of sparse structures can only improve as the response

level deteriorates. This implies that the core model in Chou et al. (2009a) as well as their results

are already robust against such setup effects. Hence, modeling response as mobility may not be a

productive endeavor.

In this paper, we model response as uniformity of production cost. To this end, we distinguish

between primary and secondary production. Suppose that the facilities are primarily designed to

produce certain products and can only serve as less efficient (or more costly) secondary (or back-

up) production options for other products. We then model the response dimension in terms of

production cost, whereby secondary production is at least as costly as primary production.3 If

secondary production cost is high, we say that the response is low. If secondary production cost

is low (comparable to primary production), we say that the response is high. In the special

case when secondary production cost equals primary production cost, we say that the response is
3Production efficiency can also be modeled in terms of production time. In that case, we can approximate increased

production time by increased production cost in the sense that in order to retain the original production speed, one

has to spend more on other resources like labor.
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perfect. To incorporate these production costs, we use an expected profit criterion for evaluating

process flexibility. This criterion generalizes the expected sales criterion used in Jordan and Graves

(1995) and Chou et al. (2009a).

We seek to address the following research questions. (1) What happens to the effectiveness of

chaining or sparse structure when response is not perfect? (2) Can we still analytically capture the

value of chaining efficiency as in Chou et al. (2009a)? (3) Given limited capital, how do we choose

our investment between range flexibility and response flexibility?

The rest of the paper is organized as follows. In Section 2, we study the general effect of

the response dimension on process flexibility. Section 3 presents our methods that analytically

capture asymptotic chaining efficiency for various response levels. We then examine in Section 4

the investment trade-off between range and response. Finally, Section 5 concludes the paper.

2 Effect of Response Dimension

In this section, we examine the effect of the response dimension on general process flexible struc-

tures. To this end, we consider a firm with m products and n plants, such that m ≥ n which is

typically the case. Product i has random demand Di whereas plant j has fixed capacity Sj.4 For

this general setting, the process flexible structure is represented by G(m,n). To model production

efficiency, we assume that each product has exactly one primary facility while each facility serves

as primary facility for at least one product. We further denote by φ(i) the index of the primary

facility designated to produce product i. Any link (i, j) ∈ G(m,n) such that j )= φ(i) is considered

secondary production. Each unit of product i sold earns the firm r dollars. Without loss of gen-

erality, we ignore the goodwill cost associated with unsatisfied demand.5 If this unit of demand is

produced by a primary plant φ(i), the production cost is cp. On the other hand, this same product

produced by a secondary plant j )= φ(i) costs the firm at least as much at cs ≥ cp. We call cp

and cs the costs of primary and secondary production, respectively. To avoid triviality, we assume

cs < r. We can then use the cost parameter cs to capture the system response level as summarized

in the table below.

As in Chou et al. (2009a), our goal is to measure the expected financial benefits of process

flexible structures. To incorporate the response dimension, the previous expected sales criterion

must be extended to the expected profit criterion. In lieu of the Maximum Flow problem, we solve
4At this stage, we do not make any assumptions on the demand distribution nor on system symmetry.
5In the case where the firm incurs a goodwill cost of g for every unit of unsatisfied demand, we add the goodwill

cost to the unit revenue and get the imputed revenue r̄ = r + g. Replacing r with r̄, our analysis carries over.
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Secondary Cost Range of cs System Response
High cs ≥ 1

2 (r + cp) Low
Low cp < cs < 1

2 (r + cp) High
Same as Primary cs = cp Perfect

the following profit maximization problem, where Π denotes the optimal profit.

Π(G(m,n),D, cs) = max (r − cp)
m∑

i=1

xi,φ(i) + (r − cs)
m∑

i=1

∑

j "=φ(i)

xij (1)

s.t.
n∑

j=1

xij ≤ Di

m∑

i=1

xij ≤ Sj

xij ≥ 0 ∀ i = 1, . . . ,m,∀ j = 1, . . . , n

xij = 0 ∀ (i, j) /∈ G(m,n)

We define a measure called Flexibility Efficiency, which generalizes the expected benefits

ratio in Table 2 from expected sales to expected profits. The measure is computed as follows.

FE(G(m,n), cs) =
E[Π(G(m,n),D, cs)] − E[Π(D(m,n),D, cs)]
E[Π(F(m,n),D, cs)] − E[Π(D(m,n),D, cs)]

where D(m,n) = {(i,φ(i))|i = 1, . . . ,m} is the dedicated structure with only primary links, and

F(m,n) = A(m) × B(n) is the fully flexible structure.

Observe that the arguments of FE(G(m,n), cs) adequately captures the dimensions of process

flexibility, as |G(m,n)| and cs respectively represent the range and response levels. For G1(m,n) ⊂

G2(m,n), it is easy to see that FE(G1(m,n), cs) ≤ FE(G2(m,n), cs) since G2(m,n) has a larger

feasible region. This means that upgrading system range improves system performance. The same

can also be said about upgrading system response as shown in the following result.

Theorem 1. For a fixed flexible structure G(m,n), such that D(m,n) ⊆ G(m,n) ⊆ F(m,n), its

flexibility efficiency is non-increasing in cs over the interval [cp, r).

Proof. Please refer to Appendix A.

It follows that for any flexible structure, its flexibility efficiency can only worsen or stay the

same as system response worsens. In other words, when we take into account the possibility of low

response flexibility, the value of any flexible structure may lessen.6 This serves as a precaution not

to oversell the benefits of any structure based on its range flexibility alone, and as a call to examine

the response dimension when investing in flexibility.
6Note that the result does not require any assumption about the demand distribution, facility capacity, or system

symmetry.
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Although the previous result may not have come unexpected, a more surprising result is that

when system response deteriorates to a certain level (i.e. it enters the low response region), further

deterioration will cause no more harm to the system than it does to the full flexibility system. The

following theorem captures this insight.

Theorem 2. For a fixed flexible structure G(m,n), such that D(m,n) ⊆ G(m,n) ⊆ F(m,n),

FE(G(m,n), cs) is constant over the interval [12 (r + cp), r).

Proof. Note that the profit margin derived from secondary production is lower than or equal to that

derived from primary production, i.e. r−cs ≤ r−cp. This implies that one must perform secondary

production only when either of two conditions holds. The first is when a particular facility has

excess capacity after exhausting all possible primary production. When it has no excess capacity,

secondary production can still occur if it can transfer some primary production to another facility

(albeit secondary for that product) in order to free up capacity for secondary production. In other

words, one trades a unit of primary production for two units of secondary production.

Since cs ∈ [12(r + cp), r), it follows that r− cp ≥ 2(r− cs). This means that trading one primary

unit for two secondary units leaves the system worse off. Hence, the optimal allocation can be

obtained greedily by letting each facility produce as many units of its primary products as possible,

and only thereafter use its extra capacity, if any, to produce the extra demand, if any, of secondary

product. If Xp and Xs are the optimal primary and secondary production, then we have

Xp =
n∑

j=1

min
( ∑

i:φ(i)=j

Di, Sj

)
and Xs = min

( m∑

i=1

Di,
n∑

j=1

Sj

)
−

n∑

j=1

min
( ∑

i:φ(i)=j

Di, Sj

)

Hence,

FE(G(m,n), cs) =
E

[
(r − cs)Xs − (r − cp)

(∑n
j=1 min

(∑
i:φ(i)=j Di, Sj

)
− Xp

)]

E
[
(r − cs)

(
min(

∑m
i=1 Di,

∑n
j=1 Sj) −

∑n
j=1 min(

∑
i:φ(i)=j Di, Sj)

)]

=
E[(r − cs)Xs]

E
[
(r − cs)

(
min(

∑m
i=1 Di,

∑n
j=1 Sj) −

∑n
j=1 min(

∑
i:φ(i)=j Di, Sj)

)]

=
E[Xs]

E
[(

min(
∑m

i=1 Di,
∑n

j=1 Sj) −
∑n

j=1 min(
∑

i:φ(i)=j Di, Sj)
)]

Theorem 2 shows that once the response level hits the halfway mark between perfect response

and worst-case response, the flexibility efficiency of the structure starts to plateau at a constant

9
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level. This is because at that point, any additional deterioration in response can cause only as

much harm to the structure as it does to the fully flexible structure. We present two examples

to illustrate this phenomenon. The first is a symmetric system with uncertain product demands

and fixed facility capacities. The second is a real-life case study on a bread delivery system in

Singapore. Unlike the first example, the “Food From the Heart” delivery system is asymmetric

with uncertain bread supplies but fixed demands.

Example 1. Chaining Structure for a 3 x 3 System with Uniform Demand

Suppose all product demands are i.i.d. and uniformly distributed in [0, 2µ]. Let CE denote the

flexibility efficiency of the chaining structure, i.e., CE(3, cs) = FE(C(3), cs). It is not difficult,

though it is tedious, to evaluate the CE(3, cs) in closed form for this special case.

CE(3, cs) =

{
1 − 3

11
cs−cp

r−cs
if cp ≤ cs < 1

2 (r + cp)
8
11 if 1

2(r + cp) ≤ cs < r

Without loss of generality, we let r = 1 and cp = 0, and we plot as follows.

c�s�

C
�E

�(�3
�,�c

� s�)�

c�p� (c�p�+ p) / 2� p�

8/11�

1�

Figure 2: Chaining Efficiency as a Function of Response (Uniform 3 x 3)

As in Theorems 1 and 2, Figure 2 shows that chaining efficiency deteriorates as system response

worsens. However, the amount of deterioration does not decrease below the 72.7% mark. This

means that upon entering the low response region, any further deterioration in response level will

have no more effect on the chaining structure than it would have on full flexibility. Since we expect

the 72.7% lower bound to decrease further as system size increases, we examine in Section 3 the

asymptotic limit of this lower bound as n approaches infinity.

Example 2. Food From the Heart, Singapore

Food From the Heart (FFTH) is a charity organization based in Singapore, where the focus is

on ensuring that end-of-day bread donations from bakeries go into the right hands, those of the

10
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people in the homes supported by the organization (Chou et al., 2009b). The logistics involved is

simple. Each bakery is served by one volunteer each night to bring the donated bread to his or her

designated home. An FFTH administrator selects routes (bakery-home assignments) and assigns a

volunteer to each route. To reduce the burden on the volunteers, the administrator usually assigns

a fixed route to each volunteer. Because the supply of bread from each bakery on each night is

random, the rigidity of having only fixed primary routes inevitably leads to supply and demand

mismatch. For an 18-bakery 9-home study of the FFTH system, Chou et al. (2009b) examine how

to optimally add a set of 18 secondary routes to the existing system of 18 primary routes. Figure

Figure 3: Food From the Heart - Flexible Routing System

3 shows the flexible routing system generated by their algorithm. The solid lines pertain to the

original primary routes, while the broken lines are the secondary routes. While the homes have

fixed demands for bread, the bakeries’ daily supplies are recorded for 66 days. The means and

standard deviations, as well as the fixed demands are shown in Figure 3. All units are in kilograms.

In this example, we investigate how the FFTH flexible routing system performs as system

response deteriorates. While Chou et al. (2009b) show that a system with uncertain supply and

fixed demand is equivalent to one with uncertain demand and fixed supply, we also observe that

the FFTH system has more uncertain nodes (18) than fixed nodes (9). Hence, the FFTH system

fits into the general model in this section. Moreover, we let r = 1 and cp = 0, and define u = 1− cs

as the utility from one kilogram of bread. Because cs ∈ [0, 1), if follows that u ∈ (0, 1] can be a

surrogate for the response level. We simulate the supplies at the bakeries over the 66-day empirical

distribution. We generate 1,000 demand scenarios and take the average maximum utility over all

scenarios. Figure 4 plots the flexibility efficiency of the FFTH flexible routing system as response

11
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level changes. As response deteriorates, so does flexibility efficiency. However, upon entering the

low response region, the system will no longer achieve benefits any lower than 65% of the fully

flexible system. This example illustrates the applicability of our results to asymmetric systems and

uncertain supplies.

Figure 4: Food From the Heart - Flexibility Efficiency vs. Response Level
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To sum up, our discussion yields the following fundamental insight on the performance of flexible

system:

While a little range flexibility allows the system to reap most of the benefits that can

be accrued from a fully flexible system in the perfect response scenario, there is a

threshold below which any further loss in response flexbility has absolutely no impact

on the performance of the flexible system.

3 Asymptotic Analysis for Range and Response

In this section, we examine how the relationship between flexibility efficiency and response level

changes as system size grows to infinity. Particularly, we extend Chou et al.’s (2009a) results

on asymptotic chaining efficiency to factor in less than perfect response. For ease of exposition,

we consider a stylized model where all products have independent, identically distributed, and

symmetric demands, with values in the range [0, 2E(Di)]. Examples of such demand distributions

are uniform and (truncated) normal distributions. Note that our analysis can be extended easily to

more general and asymmetric demand distribution. On the supply side, all facilities have capacities

Si = E(Di) = µ, ∀ i. This is the symmetric system, where demand and supply are identical and

balanced.

12
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Because of the assumption of symmetry, we can model demand in the following general form.

Let Di = µ + aiYi, where 0 ≤ Yi ≤ µ and

ai =

{
1, with probability 1

2

−1, with probability 1
2

Note that Yi follows some distribution with support [0, µ] and represents the absolute deviation of

demand Di from the mean µ. Our interest is in characterizing the chaining efficiency defined as

follows.

CE(n, cs) = FE(C(n), cs) =
E[Π(C(n),D, cs)] − E[Π(D(n),D, cs)]
E[Π(F(n),D, cs)] − E[Π(D(n),D, cs)]

.

From (10)-(12), we can express the denominator of CE(n, cs) as follows:

E[Π(F(n),D, cs)] − E[Π(D(n),D, cs)] = (r − cs)E
[
min

( n∑

i=1

Di, nµ

)
−

n∑

i=1

min(Di, µ)
]

(2)

The challenge in our analysis is to evaluate the term E[Π(C(n),D, cs)]. As shown in Theorem 2,

the optimal production allocation varies dramatically depending on whether cs falls in the low or

high response region.

3.1 Low Response Region

In this region, cs ≥ 1
2(r + cp), which implies r − cp ≥ 2(r − cs). That is, one unit of primary

production is at least as profitable as two units of secondary production. Hence, optimal allocation

must be greedy as follows. Let each facility produce as many units as possible of its primary

product, and only thereafter use its extra capacity, if any, to produce the extra demand, if any, of

its secondary product.

x∗
ii = min(Di, µ) ∀ i = 1, . . . , n

x∗
i,i+1 = min[(Di − µ)+, (µ − Di+1)+] ∀ i = 1, . . . , n − 1,

x∗
n1 = min[(Dn − µ)+, (µ − D1)+]

(3)

The following well-known facts on the normal distribution will be useful for our next result.

Lemma 1. If X,X1, X2 ∼ N(0,σ), and X1, X2 are independent, then E[X+] = σ√
2π

and E[min(X+
1 ,X+

2 )] =

σ√
2π

(
1 − 1√

2

)

Theorem 3. When 1
2(r + cp) ≤ cs < r and for sufficiently large n, the chaining efficiency is

decreasing in n and bounded below by the asymptotic chaining efficiency

ACE(cs) = lim
n→∞

CE(n, cs) =
1
2

E[min(Y1, Y2)]
E[Y1]

≤ 0.5.

13
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Proof. We first write the expected optimal profit for the chaining structure.

E[Π(C(n),D)] = (r − cp)E[
∑n

i=1 min(Di, µ)] + (r − cs)E[
∑n

i=1 min[(Di − µ)+, (µ − Di+1)+]]
= n(r − cp)E[min(Di, µ)] + n(r − cs)E[min[(D1 − µ)+, (µ − D2)+]]
= n(r − cp)E[min(Di, µ)] + 1

4n(r − cs)E[min(Y1, Y2)]
(4)

The first equation is from (3), while the second equation comes from the identical distribution of

the demands. The last equation is due to the definition of the absolute demand deviation Yi. Since

the first term in (4) is also the expected optimal profit for the dedicated structure, the numerator

of CE(n, cs) becomes
1
4
n(r − cs)E[min(Y1, Y2)] (5)

For the denominator, we let T =
∑

i Di. Since n is sufficiently large, we invoke the Central Limit

Theorem to get T ∼ N(nµ,
√

nσ) and X = T −nµ ∼ N(0,
√

nσ), where σ is the standard deviation

of demand Di. Then, we use (2), Lemma 1(a), and the definition of Yi to obtain

(r − cs)E[min(T, nµ) −
∑n

i=1 min(Di, µ)]
= (r − cs)E[

∑
i Di − X+ −

∑
i Di +

∑
i(Di − µ)+]

= (r − cs)
[
nE(D1 − µ)+ −

√
nσ√
2π

]

= n(r − cs)
[

1
2E[Y1] − 1√

n
σ√
2π

]
(6)

Combining (5) and (6), we obtain

CE(n, cs) =
1
4E[min(Y1, Y2)]
1
2E[Y1] − 1√

n
σ√
2π

which is decreasing in n. By taking limit, we arrive at the desired result.

Our analysis above does not consider that the chaining structure usually exploits long chains –

chains that link up as many supply and demand nodes as possible. In particular, we only consider

that the secondary links in the chaining structure form a perfect matching. Such a matching can

also be formed by a collection of short chains. As a result, a long chain performs identically to

short chains under this scenario. This observation contrasts with the fundamental insight in the

literature where system response is assumed perfect.

3.2 Perfect Response: The Expected Sales Criterion

When cs = cp, the expected profit criterion reduces to the expected sales criterion. While Chou

et al. (2009) have developed a method that analytically obtains the asymptotic chaining efficiency

(ACE), their method does not extend to the general high response region. In this section, we

14
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describe another method which can provide a lower bound for ACE in the perfect response case

and can extend to other high response scenarios.

Since expected optimal profit becomes expected maximum flow, we revert to the maximum flow

notation Z∗(G(n),D) for structure G(n) used in Section 1. If follows that

CE(n, cp) =
Expected Chaining Gain

Expected Full Flexibility Gain
=

E[Z∗(C(n),D)] − E[Z∗(D(n),D)]
E[Z∗(F(n),D)] − E[Z∗(D(n),D)]

Similar to (6), we can express the denominator as

Expected Full Flexibility Gain = n

(
1
2
E[Y1] −

1√
n

σ√
2π

)
(7)

For the numerator, consider any demand realization D. Observe that each demand node i has

either Di > µ (positive node) or Di < µ (negative node) with equal likelihood.7 We define a

cluster to be a run of consecutive positive nodes followed by a run of consecutive negative nodes.

For example, suppose n = 10 and the demand outcome is {N,P, P, P,N,N,N, P,N,N} where P

denotes a positive node while N denotes a negative node. The 2nd to 7th nodes form the first

cluster {P, P, P,N,N,N} while the last 3 and the 1st form the next cluster {P,N,N,N}. This

allows us to break the whole system into smaller pieces (clusters), and we can easily optimize the

flow for each cluster. The aggregate solution from all clusters remains feasible for the max-flow

problem of the whole system, and thus provides a lower bound for Z∗(C(n),D), that is,

Expected Chaining Gain ≥ E[Sum of Cluster Chaining Gains]
= E[Number of Clusters] · E[Cluster Chaining Gain]

(8)

The last equation holds for large n, and is the result of Wald’s equation (Ross 2003, pg 462) and

the fact that all clusters are probabilistically identical and independent.

To obtain expected cluster chaining gain, we consider just one cluster. For this cluster, the

lengths of the positive and negative runs as well as the deviations of realized demands from the

mean are all random variables. Let M and N be the lengths of the positive and negative runs,

respectively. Both M and N follow a geometric distribution with p = 0.5. From our earlier

definition, we have Yi for the demand deviations (Yi = Di − µ for positive nodes while Yi = µ−Di

for negative nodes). To apply (8), we derive the following lemmas.

Lemma 2. For any cluster with M positive nodes followed by N negative nodes, the maximum

chaining flow is

Max Flow = min
(M+N∑

i=1

Di, (M + 1)µ +
M+N∑

i=M+1

Di, (M + N)µ
)

7We assume demand distribution has continuous support.

15
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and the cluster chaining gain is

Cluster Chaining Gain = min
( M∑

i=1

Yi, µ,
M+N∑

i=M+1

Yi

)

Proof. We use the equivalence between max-flow and min-cut to derive the above result. Consider

the max-flow problem on the network shown in Figure 5, from source s to sink t. All links are di-

rected from left to right with capacities as indicated. Arcs from demand nodes to supply nodes have

infinite capacities. Let C be a cut of the network and V (C) be its cut value. Because of the infinite

capacities of demand-to-supply arcs, every cut with finite cut value can be uniquely represented by

{s} union with a subset of S = {1, 2, . . . ,M + N}. For example, C1 = {s, 1, 2, . . . ,M − 1,M + N}

represents the cut in Figure 5, with cut value V (C1) =
∑M+N−1

i=M Di + (M + 1)µ.

1�

M+N�

M+N-1�

M+2�

M+1�

M�

M-1�

2�

1�
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M+N-1�

M+2�

M+1�

M�

M-1�

2�

t�s�

D�
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D�
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D�M�

D�
M+1�

D�M+2�

D�
M+N-1�

D�M+N�

Figure 5: Maximum Flow Problem: C1 = {s, 1, 2, . . . ,M − 1,M + N}

Let S+ = {1, 2, . . . ,M} and S− = {M + 1,M + 2, . . . ,M + N}. Then every cut can be written as

C = {s} ∪ P ∪ N where P ⊆ S+, N ⊆ S−. Recall that Di > µ for i ∈ S+ and Di < µ for i ∈ S−.

Let C∗ = {s}∪ P∗ ∪N∗ be a minimum cut of the above network flow problem.It is easy to see that

the search for a minimum cut can be restricted to the three cuts {s}, {s} ∪ S+, and {s} ∪ S, from

which the first result follows.

The second result is an easy consequence of the first, since

Cluster Chaining Gain = Max Chaining Flow − Max Dedicated Flow

= min
(∑M+N

i=1 Di, (M + 1)µ +
∑M+N

i=M+1 Di, (M + N)µ
)

−
(∑M

i=1 µ +
∑M+N

i=M+1 Di

)

= min
(∑M

i=1 Yi, µ,
∑M+N

i=M+1 Yi

)

16
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Lemma 3. For an n × n system,

E[Number of Clusters]
n

→ 1
4

as n → ∞

Proof. Without loss of generality, assume node 1 is negative. Then, the number of clusters from

node 1 to node n can be viewed as a counting process, in fact, a renewal process whereby each

occurrence of a cluster constitutes a renewal. By the Elementary Renewal Theorem (Ross 2003, pg

409) and because E[cluster length] = E[M + N ] = 4, the result follows.

Combining (7), (8), Lemma 2, and Lemma 3, we obtain the following key result.

Theorem 4. When system response is perfect (cs = cp), the asymptotic chaining efficiency is

bounded below as follows:

ACE(cp) = lim
n→∞

CE(n, cp) ≥
1
2

E[min(
∑M

i=1 Yi,
∑N

i=1 Ỹi, µ)]
E[Y1]

where M,N are geometric r.v. with p = 0.5, and Yi, Ỹi are i.i.d. random variables with support

[0, µ].

3.3 High Response Region

In this region, cp < cs < 1
2 (r+cp), which implies r−cp < 2(r−cs). That is, it is profitable to displace

one unit of primary production in favor of two units of secondary production. Therefore, the greedy

production allocation used in Section 3.1 no longer works. On the other hand, the maximum flow

approach in Section 3.2 may include using the (extra) capacity of facility i to meet the extra demand

for product i+ j for any i and j, through the intermediate facility i+1, i+2, . . . , i+ j − 1. We call

such an allocation a j-order displacement. It is easy to see that a j-order displacement is justified

only if j units of secondary production are as profitable as j − 1 units of primary production, a

requirement not necessarily satisfied by r − cp < 2(r − cs). Hence, our analysis requires dividing

this high response region into countably infinite subcases, namely,

k

k − 1
≤ r − cp

r − cs
<

k − 1
k − 2

, ∀k = 3, 4, . . . (9)

For subcase k, a j-order displacement is profitable for j < k, but not for j ≥ k. Therefore, if we

use the maximum flow approach, we should distinguish flows that result in profitable displacement

from flows that do not. In particular, the optimal allocation should not include displacements

of order k or higher. Secondly, the flows must be assigned different weights, corresponding to

different profit levels, depending on the amount of production displaced. Specifically, for a j-order

displacement, the unit profit is j(r − cs) − (j − 1)(r − cp), provided j < k.

17
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We use the same terminology in Section 3.2, and let M + N denote the cluster length and

write as CCG for Cluster Chaining Gain in short. Let g(j) be the expected maximum flow net of

maximum dedicated flow, for a cluster of length j. That is,

g(j) = E[CCG|M + N = j].

We obtain g(j) in a manner similar to Section 3.2 and set g(1) = 0 for completeness. Let ∆g(j) =

g(j + 1) − g(j) represent the incremental gain in a cluster of length j + 1 over a cluster of length

j. The asymptotic chaining efficiency can then be bounded as follows.

Theorem 5. For k = 3, 4, . . ., if 1
k [r + (k − 1)cp] ≤ cs < 1

k−1 [r + (k − 2)cp], then

ACE(cs) = lim
n→∞

CE(n, cs) ≥
∑k−1

i=1 [i(r − cs) − (i − 1)(r − cp)]∆g(i) · P{M + N > i}
2(r − cs)E[Y1]

where ∆g(j) = g(j + 1) − g(j), g(j) = E[min(
∑M

i=1 Yi,
∑N

i=1 Ỹi, µ) | M + N = j], g(1) = 0,

and M,N are geometric with p = 0.5, and Yi, Ỹi are i.i.d. random variables with support [0, µ].

We omit the technical details of the proof due to space constraint. Theorems 3, 4, and 5 complete

the characterization of asymptotic chaining efficiency over all relevant response levels. Next, we

show some examples.

3.4 Computational Examples

3.4.1 Uniform Distribution

Suppose that demand Di ∼ U [0, 2µ], ∀ i. It follows that Yi ∼ U [0, µ]. It can be shown that

E[Y1] =
1
2
µ, E[min(Y1, Y2)] =

1
3
µ, σ =

µ√
3

Hence, for 1
2(r + cp) ≤ cs < r,

CE(n, cs) =
1

3 − 2
√

6√
n
√

π

, ACE(cs) =
1
3
≈ 33.33%.

In this case, even with very poor response flexibility and system size n becomes extremely large,

the chaining structure with only 2n links still manages to accrue 33.33% of the benefits of the fully

flexible system with n2 links. Moreover, if response flexibility improves, this worst-case performance

will likewise improve.
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3.4.2 Normal Distribution

Suppose Di ∼ N(µ,σ), ∀ i. It follows that Xi = Di − µ ∼ N(0,σ) and Yi = |Xi|. Assume further

that µ ≥ 3σ so that negative demand has negligible probability. It can derived that

E[Y1] =
2σ√
2π

, E[min(Y1, Y2)] =
4σ√
2π

(
1 − 1√

2

)

Hence, for 1
2(r + cp) ≤ cs < r

CE(n, cs) =
1 − 1√

2

1 − 1√
n

, ACE(cs) = 1 − 1√
2
≈ 29.29%

Note that this lower bound of 29.29% is not only independent of the actual magnitudes of µ and

σ, but also independent of CV
∆= σ/µ. This contrasts with the perfect-response result in Chou et

al. (2009a), where the ACE for normal distribution varies with the CV . Hence, as long as µ ≥ 3σ

but regardless of the CV , the chaining structure with 2n links can still achieve 29.29% of the fully

flexible system with n2 links. As system response improves, this lower bound also improves.

3.4.3 Beta Distribution

The methods can be extended to analyze the case when demand is not symmetric or not balance.

We illustrate the approach using beta distribution as demand distribution. While the general beta

distribution requires four parameters, we can focus (WLOG) on the standard beta distribution

which has only two parameters; namely, α and β. This is because ACE is invariant over the scale

of demand relative to supply. We consider 6 different sets of parameters and 5 different ratios of

supply to mean demand. The results are summarized in Table 3. Observe that for Case 2, which

is the uniform distribution, we reproduce the result in Section 3.4.1 for the balanced scenario (i.e.

S = µ).

Table 3: Low Response ACE for Beta Distribution

S/µ
Case α β µ σ 1.2 1.1 1 0.9 0.8

1 0.5 0.5 0.50 0.3536 46.26% 40.70% 35.81% 40.86% 45.64%
2 1 1 0.50 0.2887 45.98% 39.67% 33.90% 40.98% 46.98%
3 2 2 0.50 0.2236 49.15% 39.07% 31.44% 41.58% 50.52%
4 1 3 0.25 0.1936 39.38% 34.55% 29.88% 33.85% 38.46%
5 4 1 0.80 0.1633 74.41% 51.23% 28.93% 48.06% 64.03%
6 2 5 0.29 0.1597 45.04% 35.44% 29.38% 34.68% 44.21%

By varying the values of cs, our simulation result shows that all systems considered achieve at

least about 30% of the benefits of full flexibility even in the worst case. This bound further improves
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as system response improves or as expected demand deviates further away from total supply. This

is already evident in the low response case shown in Table 3. This implies that our earlier results

obtained for the balanced case are conservative estimates for the non-balanced case.

4 Trade-offs and Complements

4.1 Range versus Response

Although we have seen that the chaining structure manages to accrue non-negligible benefits even

in the worst case (e.g. 29.29% for normally distributed demands), one can certainly still improve

his system performance by either upgrading response flexibility or range flexibility. With limited

resources, it is of interest to know which upgrade provides greater improvement: a high response

with limited range or a high range with low response. For example, chaining with low secondary

cost or full flexibility with high secondary cost?

Let S1(n) and S2(n) be the high response (chaining) and high range (full flexibility) systems,

respectively. i.e., S1(n) = C(n) and S2(n) = F(n). Denote their respective costs of secondary

production by c1 and c2 such that c1 < c2. Our goal then is to compare the ratios of each system

to the best possible system, which is full flexibility with secondary cost at cp. That is,

lim
n→∞

E[Π(S1(n),D, c1)]
E[Π(F(n),D, cp)]

versus lim
n→∞

E[Π(S2(n),D, c2)]
E[Π(F(n),D, cp)]

For the moment, suppose that c2 ≥ 1
2(r + cp) and c1 = cp. It is easy to see that

lim
n→∞

E[Π(S1(n),D, c1)]
E[Π(F(n),D, cp)]

= lim
n→∞

E[Z∗(C(n),D)]
E[Z∗(F(n),D)]

= ACE + (1 − ACE)
(

lim
n→∞

E[Z∗(D(n),D)]
E[Z∗(F(n),D)]

)

= ACE + (1 − ACE)
(

µ − E[(µ − Di)+]
µ

)
= 1 − (1 − ACE) · E[(µ − Di)+]

µ

where

ACE
∆= lim

n→∞
CE(n, cp) = lim

n→∞

(
E[Z∗(C(n),D)] − E[Z∗(D(n),D)]
E[Z∗(F(n),D)] − E[Z∗(D(n),D)]

)
.

Moreover, we can prove a bound on ACE following the generalized random walk approach used

in Chou et al. (2009a) - where the ACE is related to some performance indicators (stopping time

and cycle overshoots) in a related generalized random walk. Due to space limitation, we refer the

readers to Chou et al. (2009a) for the technical details.

Lemma 4 (Chou et al. (2009a)).

ACE = 1 − E[ψ0]
2E[τ0]E[(Di − µ)+]

≥ 1
2
.

where ψ0 and τ0 are the cycle overshoot and cycle duration in the generalized random walk approach.
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Proof. The result follows from Theorem 2 in Chou et al. (2009a). The lower bound of 1/2 follows

from the symmetry of demand distribution, and

ψ0 ≤
τ0∑

i=1

(Di − µ)− + (Dτ0 − µ)+ =
τ0−1∑

i=1

(Di − µ)− + (Dτ0 − µ)+,

since (Di − µ)− = 0 when i = τ0.

We are now ready to present the following result:

Theorem 6. If demands are i.i.d. and symmetric, then response is at least as good as range, that

is,

lim
n→∞

E[Π(S1(n),D, c1)]
E[Π(F(n),D, cp)]

≥ lim
n→∞

E[Π(S2(n),D, c2)]
E[Π(F(n),D, cp)]

where response is chaining (S1(n) = C(n)) with secondary cost at c1 = cp while range is full

flexibility (S2(n) = F(n)) with secondary cost at c2 ≥ 1
2(r + cp).

Proof. Please refer to Appendix B.

Remark 1. If the response of the high range system improves, that is, c2 = 1
2(r + cp) − ε, and

ACE = 1
2 (e.g., 2-point distribution), then Theorem 6 no longer holds.

4.2 Upgrading Response and Reducing Demand Variability

The previous section shows the need to improve the response dimension of a system. This means

reducing cs to the level of cp. A natural question to ask is how much benefit does this bring? Using

Theorem 3 and results from Chou et al. (2009a), we compare the asymptotic chaining efficiencies

for high and low cs for some (discrete and continuous) uniform and normal distributions. It is easy

to see that for a discrete uniform distribution with 2∆ possible demand values, we have

E[min(Y1, Y2)] =
(∆ + 1)(2∆ + 1)

6∆2
· µ

E[Y1] =
∆ + 1
2∆

· µ

ACE(cs) =
E[min(Y1, Y2)]

2E[Y1]
=

2∆ + 1
6∆

=
1
3

+
1

6∆
for high cs

ACE(cp) =
7∆ + 2
12∆ + 6

=
7
12

− 1
8∆ + 4

when cs = cp

CV =

√
2∆2 + 3∆ + 1

6∆2

We tabulate the results for some values of ∆.
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∆ Distribution CV ACE(cs) for high cs ACE(cp) Improvement

1 2-point 1.00 0.5000 0.5000 0.0000
2 4-point 0.79 0.4167 0.5333 0.1166
3 6-point 0.72 0.3889 0.5476 0.1587
4 8-point 0.68 0.3750 0.5556 0.1806
...

...
...

...
...

...
∞ continuous 0.58 0.3333 0.5833 0.2500

Similar results hold for normal distributions. Recall that ACE for low response is independent

of CV.
CV ACE(cs) for high cs ACE(cp) Improvement

0.33 0.2929 0.7022 0.4093
0.31 0.2929 0.7145 0.4216
0.29 0.2929 0.7275 0.4346
0.27 0.2929 0.7413 0.4484
0.25 0.2929 0.7558 0.4629
0.23 0.2929 0.7708 0.4779
0.21 0.2929 0.7864 0.4935

These results suggest that upgrading system response brings more benefits as the demand coefficient

of variation decreases. Although upgrading response is important, it becomes even more so if

coupled with initiatives to reduce demand uncertainty. This contradicts the intuition that flexibility

becomes less valuable under an environment with less uncertainty.

5 Conclusions

In this paper, we have introduced a new way of studying process flexibility by modeling its response

dimension in addition to the traditional range dimension considered in the literature. We model

system response in terms of uniformity of production cost. To this end, we distinguish between

primary and secondary production, where low secondary production cost means high response,

while high secondary cost means low response.

While we have shown that even a system with low range (chaining) and low response (high

secondary cost) can already produce non-negligible returns relative to full flexibility, upgrading

either system range or system response (or both) can clearly improve system performance. However,

if one faces limited resources and has to choose investment between range flexibility and response

flexibility, our results suggest that a system with high response but limited range performs at least

as well as a system with high range but low response. This implies that one should focus first on

upgrading system response and then use residual resources to widen system range.

The model can be enriched by considering endogenized pricing and/or capacity decisions. On

the demand side, the distribution can also be extended to include correlated demands. Furthermore,

an interesting direction to look at is the effect of competition (say, in an oligopoly) on the behavior

of the flexibility-conscious firm. We leave these issues for future research.
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Appendices

A Proof of Theorem 1

Regardless of the value of cs, it is easy to derive the optimal production allocations for both the dedicated
and the fully flexible structures. For the dedicated structure, each facility j can only produce its designated
set of primary products {i|φ(i) = j}. Because this set does not overlap with those of other facilities, the
optimal allocation is for the facility to produce as many units of these primary products as possible, such
that ∑

i:φ(i)=j

x∗
ij = min

( ∑

i:φ(i)=j

Di, Sj

)
.

For each product that belongs to this set, we can allocate proportionately as follows.

x∗
ij = min

( ∑

i:φ(i)=j

Di, Sj

)
· Di∑

i:φ(i)=j Di
≤ Di ∀i : φ(i) = j (10)

We repeat this allocation procedure for all other facilities.
For the fully flexible structure, any facility can produce any product. Thus, it is optimal for each facility

to produce as many units as possible of its primary products, and only thereafter, use its extra capacity, if
any, to produce the extra demand, if any, of secondary products.

x∗
ij = min

( ∑

i:φ(i)=j

Di, Sj

)
· Di∑

i:φ(i)=j Di
≤ Di ∀i : φ(i) = j, ∀j = 1, . . . , n (11)
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m∑

i=1

∑

j "=φ(i)

x∗
ij = min

( m∑

i=1

Di,
n∑

j=1

Sj

)
−

n∑

j=1

min
( ∑

i:φ(i)=j

Di, Sj

)
(12)

To show our result, consider cs > c′s. For a fixed structure G(m, n) and a demand realization D,
we let Xp =

∑m
i=1 xi,φ(i) and Xs =

∑m
i=1

∑
j "=φ(i) xij be the optimal primary and secondary production,

respectively, when secondary production cost is cs. Similarly, X ′
p and X ′

S are the optimal primary and
secondary production when secondary production cost is c′s. From model (1), equations (10)-(12), and the
definition of flexibility efficiency, we obtain the following:

FE(G(m, n), cs) =
E

[
(r − cs)Xs − (r − cp)

(∑n
j=1 min(

∑
i:φ(i)=j Di, Sj) − Xp

)]

E
[
(r − cs)

(
min(

∑m
i=1 Di,

∑n
j=1 Sj) −

∑n
j=1 min(

∑
i:φ(i)=j Di, Sj)

)]

Hence,

FE(G(m, n), cs) =
E

[
Xs −

(
r−cp

r−cs

)(∑n
j=1 min(

∑
i:φ(i)=j Di, Sj) − Xp

)]

E
[
min

(∑m
i=1 Di,

∑n
j=1 Sj

)
−

∑n
j=1 min

(∑
i:φ(i)=j Di, Sj

)]

≤
E

[
Xs −

(
r−cp

r−c′s

)(∑n
j=1 min(

∑
i:φ(i)=j Di, Sj) − Xp

)]

E
[
min

(∑m
i=1 Di,

∑n
j=1 Sj

)
−

∑n
j=1 min

(∑
i:φ(i)=j Di, Sj

)]

≤
E

[
(r − c′s)Xs − (r − cp)

(∑n
j=1 min(

∑
i:φ(i)=j Di, Sj) − Xp

)]

E
[
(r − c′s) min

(∑m
i=1 Di,

∑n
j=1 Sj

)
−

∑n
j=1 min

(∑
i:φ(i)=j Di, Sj

)]

= FE(G(m, n), c′s)

The first inequality is because cs > c′s and Xp is bounded above by
∑n

j=1 min(
∑

i:φ(i)=j Di, Sj). The second
inequality results from the feasibility of (Xp, Xs) to model (1) when secondary cost is c′s.

B Proof of Theorem 6

Using Lemma 4, equation (10), and c2 ≥ 1
2 (r + cp),

lim
n→∞

E[Π(S2(n),D, c2)]
E[Π(F(n),D, cp)]

= lim
n→∞

(r − cp)E[
∑n

i=1 min(Di, µ)] + (r − c2)E[min(
∑n

i=1 Di, nµ) −
∑n

i=1 min(Di, µ)]
(r − cp)E[min(

∑n
i=1 Di, nµ)]

≤ lim
n→∞

(r − cp)E[
∑n

i=1 min(Di, µ)] + 1
2 (r − cp)E[min(

∑n
i=1 Di, nµ) −

∑n
i=1 min(Di, µ)]

(r − cp)E[min(
∑n

i=1 Di, nµ)]

= lim
n→∞

1
2E[min(

∑n
i=1 Di, nµ) + 1

2E[
∑n

i=1 min(Di, µ)]
E[min(

∑n
i=1 Di, nµ)]

=
1
2

+
1
2

lim
n→∞

E[
∑n

i=1 min(Di, µ)]
E[min(

∑n
i=1 Di, nµ)]

= 1 − 1
2
· E[(µ − Di)+]

µ
≤ 1 − (1 − ACE) · E[(µ − Di)+]

µ

= lim
n→∞

E[Π(S1(n),D, c1)]
E[Π(F(n),D, cp)]

25


