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ABSTRACT  585 

To increase our understanding of the genetic basis of body fat distribution and its molecular 586 

links to cardiometabolic traits, we conducted genome-wide association meta-analyses of waist- 587 

and hip-circumference related traits in up to 224,459 individuals. We identified 49 loci (33 new) 588 

associated with waist-to-hip ratio adjusted for body mass index (WHRadjBMI) and an additional 589 

19 loci newly associated with related waist and hip circumference measures (all P < 5 × 10-8). 590 

Twenty of the 49 lead WHRadjBMI variants exhibited differential effect size estimates in men 591 

and women. The 49 loci were enriched for genes expressed in adipose tissue and for putative 592 

regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, 593 

transcriptional regulation, and insulin resistance as processes affecting fat distribution.  594 

595 
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INTRODUCTION 596 

Depot-specific accumulation of fat, particularly central abdominal fat, confers an elevated risk of 597 

metabolic and cardiovascular diseases and mortality1. An easily accessible measure of body fat 598 

distribution is waist-to-hip ratio (WHR), a relative comparison of waist and hip circumferences. A 599 

larger WHR indicates more intra-abdominal fat deposition and is associated with higher risk for 600 

type 2 diabetes (T2D) and cardiovascular disease2-4. Conversely, a smaller WHR indicates 601 

greater gluteal fat accumulation and is associated with lower risk for T2D, hypertension, 602 

dyslipidemia, and mortality5-8. Our previous genome-wide association study (GWAS) meta-603 

analyses identified loci for WHR after adjusting for body mass index (WHRadjBMI)9,10. These 604 

loci are enriched for association with other metabolic traits9,10 and showed that different fat 605 

distribution patterns can have distinct genetic underpinnings11,12.  606 

 607 

To further elucidate the genetic architecture of fat distribution and to increase our understanding 608 

of molecular connections between fat distribution and cardiometabolic traits, we performed a 609 

meta-analysis of WHRadjBMI in 142,762 individuals with GWAS data, combined with up to 610 

81,697 individuals genotyped with the Metabochip13, all from the Genetic Investigation of 611 

ANthropometric Traits (GIANT) Consortium (see URLs). Given the marked sexual dimorphism 612 

previously observed among established WHRadjBMI loci9,10, we performed analyses in men and 613 

women both separately and together. In secondary analyses to more fully characterize the 614 

genetic determinants of specific aspects of body fat distribution, we also examined unadjusted 615 

WHR, as well as BMI-adjusted and unadjusted waist (WCadjBMI and WC) and hip 616 

circumferences (HIPadjBMI and HIP). We evaluated the associated loci in greater detail to 617 

understand their contributions to variation in fat distribution, metabolism, and adipose tissue 618 

biology, and their links to cardiometabolic traits on the molecular level. 619 

 620 
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RESULTS 621 

New loci associated with WHRadjBMI  622 

We performed meta-analyses of GWAS of WHRadjBMI in up to 142,762 individuals of 623 

European ancestry from 57 new or previously described GWAS9, and separately in up to an 624 

additional 67,326 European ancestry individuals from 44 Metabochip studies (Supplementary 625 

Fig. 1; Supplementary Tables 1-3). The further meta-analysis of these GWAS and Metabochip 626 

meta-analyses included up to 2,542,447 autosomal SNPs in up to 210,088 European ancestry 627 

individuals (Online Methods). We defined new loci based on thresholds of genome-wide 628 

significant association (P < 5 × 10-8 after genomic control correction at both the study-specific 629 

and meta-analytic levels) and initially, based on distance (>500 kb) from previously established 630 

loci9,10. 631 

 632 

Across all meta-analyses of European ancestry individuals, we identified 48 loci for 633 

WHRadjBMI, 32 novel and 16 previously described9,10.  Of the 48 loci, 39 were identified in the 634 

sex-combined analysis, 24 of which were novel (Table 1, Supplementary Table 4, and 635 

Supplementary Figs. 2-4)9,10. The sex-specific analyses confirmed a 16th established locus 636 

(TNFAIP8-HSD17B4)10 and identified eight additional new WHRadjBMI loci significant in women 637 

but not in men (all P > 0.05; Table 1, Supplementary Fig. 5). When we included Metabochip 638 

data from eight studies of 14,371 individuals of non-European ancestry (Supplementary 639 

Tables 1-3), we identified a 49th WHRadjBMI locus in women (rs1534696, near SNX10, Pwomen = 640 

2.1 × 10-8, Pmen = 0.26, Table 1), with no evidence of heterogeneity across ancestries (Phet = 641 

0.86, Supplementary Note).  642 

 643 

Genetic architecture of WHRadjBMI 644 
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To evaluate sexual dimorphism, we compared sex-specific effect size estimates of the 49 645 

genome-wide significant WHRadjBMI lead SNPs. The effect estimates were significantly 646 

different (Pdifference < 0.05/49 = 0.001) at 20 SNPs, 19 of which showed larger effects in women 647 

(Table 1, Supplementary Fig. 6), similar to previous findings9,10. The only SNP that showed a 648 

larger effect in men mapped near GDF5 (rs224333, βmen = 0.036 and P =  9.00  ×  10-12, βwomen = 649 

0.009 and P =  0.074, Pdifference= 6.42 x 10-5), a locus shown previously to be associated with 650 

height (rs6060369, r2 = 0.96 and rs143384, r2 = 0.96) without significant differences between 651 

sexes14,15. Consistent with the larger number of loci identified in women, however, variance 652 

component analyses demonstrated a significantly larger heritability of WHRadjBMI in women 653 

than men in the Framingham Heart (h2
women = 0.46, h2

men = 0.19, Pdifference = 0.0037) and 654 

TwinGene studies (h2
women = 0.56, h2

men = 0.32, Pdifference = 0.001, Supplementary Table 5, 655 

Supplementary Fig. 7, Online Methods).  656 

 657 

To identify additionally associated variants, we performed approximate conditional analyses of 658 

the sex-combined and sex-specific data using GCTA16,17, allowing signals within 500 kb of each 659 

other to be identified (Online Methods, Supplementary Note). Additional significant association 660 

signals (P < 5 × 10-8) were identified at nine loci (Table 2). Fitting SNPs jointly identified different 661 

SNPs in the sex-specific and sex-combined analyses at some loci. For example, the MAP3K1-662 

ANKRD55 locus showed two independent SNPs 54 kb apart (r2 < 0.06) that were significant 663 

only in women (rs3936510) or in men (rs459193, Table 2, Supplementary Table 4). Other 664 

signals are more complex. The TBX15-WARS2 locus showed different lead SNPs in men and 665 

women near WARS2 (r2 = 0.43), an independent signal near TBX15, and a distant independent 666 

signal near SPAG17 (Fig. 1, Table 2). At the HOXC gene cluster, conditional analyses identified 667 

SNPs ~80 kb apart near HOXC12-HOXC13-HOTAIR and near HOXC4-HOXC5-HOXC6, which 668 

exhibit low pairwise linkage disequilibrium (LD) (r2 < 0.01, Fig. 1, Table 2). These data identify 669 
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additional, independent signals that might suggest different possible underlying genes and show 670 

that these independent SNPs could be specific to one sex. 671 

 672 

We assessed the aggregate effects of the 49 lead WHRadjBMI variants using a genetic risk 673 

score in the KORA study (n = 3,440 individuals) by calculating sex-combined and sex-specific 674 

risk scores including genome-wide significant SNPs (Online Methods). The risk scores were 675 

significantly associated with WHRadjBMI in a linear regression model, with substantially 676 

stronger effect in women than in men (overall effect per allele β = 0.001, P = 6.7 × 10-4, women 677 

β = 0.002, P = 1.0 × 10-11, men β = 7.0 × 10-4, P = 0.02, Supplementary Fig. 8, Supplementary 678 

Note). The 49 SNPs combined explained 1.4% of the variance in WHRadjBMI overall, more in 679 

women (2.4%) than in men (0.8%) (Supplementary Table 6; Online Methods). When 680 

compared to the 16 previously reported loci9,10, the new loci approximately doubled the 681 

explained variance in women and tripled the explained variance in men. Sex-combined 682 

analyses demonstrating an excess of directionally consistent effects between GWAS and 683 

Metabochip meta-analyses suggest that additional common WHRadjBMI variants may be found 684 

to be reproducible with larger samples (Pbinomial = 3.9 × 10-12, Supplementary Note). 685 

 686 

At 17 loci with high-density coverage on the Metabochip18, we used association summary 687 

statistics to define credible sets of variants with a high probability of containing a likely functional 688 

variant (Online Methods). The 99% credible sets at seven WHRadjBMI loci spanned <20 kb, 689 

and at HOXC13 included only a single SNP (Supplementary Table 7, Supplementary Fig. 9). 690 

Although these analyses do not test all SNPs and thus do not necessarily pinpoint the causal 691 

variants, they help prioritize variants for further investigation. 692 

 693 

Association of WHRadjBMI variants with other anthropometric and cardiometabolic traits  694 
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Given the epidemiological associations between central obesity and other anthropometric and 695 

cardiometabolic traits and diseases, we evaluated lead WHRadjBMI variants in association data 696 

from GWAS consortia for 22 traits (Online Methods). The 49 variants were associated (P < 5 × 697 

10-8) with high-density lipoprotein cholesterol (HDL-C; n = 7 SNPs), triglycerides (n = 5), low-698 

density lipoprotein cholesterol (LDL-C; n = 2), adiponectin (n = 3), fasting insulin adjusted for 699 

BMI (n = 2), T2D (n = 1), and height (n = 7) (Supplementary Tables 8-9). WHRadjBMI SNPs 700 

showed enrichment for directionally consistent (as expected from phenotypic correlations) and 701 

nominally significant (P < 0.05) associations with these traits and also with 2-hour glucose, 702 

coronary artery disease, and endometriosis (Pbinomial < 0.05/23 = 0.0022, Supplementary Table 703 

10); these results were generally supported by meta-regression analysis of the beta-estimates 704 

(Supplementary Table 11). Further, our WHRadjBMI loci overlap with associations reported in 705 

the NHGRI GWAS Catalog (Supplementary Table 12)19, the strongest of which is the locus 706 

near LEKR1, which is associated (P = 2.0 × 10-35) with birth weight20. These data extend 707 

knowledge about genetic links between WHRadjBMI and metabolic, insulin resistance-related 708 

traits; whether this reflects underlying causal relations between WHRadjBMI and these traits, or 709 

pleiotropic loci, cannot be inferred from our data. 710 

 711 

To evaluate whether these cross-trait SNP associations segregate into subsets of WHRadjBMI 712 

loci with shared biological effects, we performed unsupervised hierarchical clustering of the 713 

corresponding matrix of association Z-scores (Fig. 2). The WHRadjBMI-increasing alleles at the 714 

49 lead SNPs segregate into three major clusters comprised of alleles that associate with: 1) 715 

larger WCadjBMI and smaller HIPadjBMI (30 SNPs); 2) taller stature and larger WCadjBMI (8 716 

SNPs); and 3) shorter stature and smaller HIPadjBMI (11 SNPs). The three visually identified 717 

SNP clusters could be statistically distinguished with >90% confidence21. Alleles of the first 718 

cluster were predominantly associated with lower HDL-C, and with higher triglycerides and 719 
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fasting insulin adjusted for BMI, suggesting that the genes at these loci may play a role in 720 

regulating metabolic traits. Our data cannot distinguish whether these effects are independent of 721 

or mediated by WHR.  722 

 723 

Potential functional variants at new WHRadjBMI loci  724 

We next examined variants in strong LD with the WHRadjBMI lead SNPs (r2 > 0.70, 1000 725 

Genomes Phase 1) for predicted effects on protein sequence, copy number, or cis-regulatory 726 

effects on expression (Table 3, Online Methods). New loci did not contain any known copy 727 

number variants (Supplementary Table 13, Supplementary Note). We identified one 728 

nonsynonymous substitution (GDF5 S276A; Supplementary Table 14) and 25 variants (at 12 729 

loci) within 500 bp of a transcription start site (Supplementary Table 15). At 11 of the new loci, 730 

the SNP associated with WHRadjBMI was either the strongest SNP associated (P < 10-5) in cis 731 

with expression of a transcript in subcutaneous adipose tissue, omental adipose tissue, liver, or 732 

blood cell types, or it explained a substantial portion of the variance in transcript levels when 733 

conditional analyses were performed (adjusted P > 0.05; Table 3, Supplementary Table 16). 734 

There was no convincing evidence of sexual dimorphism in the expression quantitative trait 735 

locus (eQTL) associations, perhaps reflecting limited power (Supplementary Table 17). 736 

 737 

At the 11 WHRadjBMI loci harboring eQTLs, we compared the location of the candidate variants 738 

to regions of open chromatin (DNase I hypersensitivity and FAIRE22 peaks) and histone 739 

modification enrichment (H3K4me1, H3K4me2, H3K4me3, H3K27ac, and H3K9ac peaks) in 740 

adipose, liver, skeletal muscle, bone, brain, blood, and pancreatic islet tissues or cell lines 741 

(Supplementary Table 18). At seven of these 11 loci, at least one variant was located in a 742 

putative regulatory element in two or more datasets from the same tissue as the eQTL, 743 

suggesting that these elements may influence transcriptional activity (Supplementary Table 744 
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19). For example, at LEKR1, five variants in LD with our WHRadjBMI lead SNP are located in a 745 

1.1 kb region with evidence of active enhancer activity (H3K4me1 and H3K27ac) in adipose 746 

tissue (Supplementary Fig. 10).  747 

 748 

We also examined whether any variants overlapped with open chromatin or histone 749 

modifications from only one of the tested tissues, possibly reflecting tissue-specific regulatory 750 

elements (Supplementary Table 19). For example, five variants in a 2.2 kb region located 77 751 

kb upstream from the first CALCRL transcription start site overlapped with peaks in at least five 752 

datasets in endothelial cells (Supplementary Fig. 10), suggesting that one or more of these 753 

variants may influence transcriptional activity. In line with this, CALCRL, which is highly 754 

expressed in endothelial cells, is required for lipid absorption in the small intestine, and 755 

influences body weight in mice23. Other variants located in apparently tissue-specific regulatory 756 

elements were detected at NMU for endothelial cells, at KLF13 and MEIS1 for liver, and at 757 

GORAB and MSC for bone (Supplementary Table 19). 758 

 759 

Biological mechanisms identified by the genes underlying the WHRadjBMI variants  760 

To identify potential functional connections between genes mapping at the 49 WHRadjBMI-761 

associated loci, we used three partly complementary approaches that rely on published 762 

literature, predefined gene sets, or expression data-based gene sets (Supplementary Note). A 763 

survey of published literature using GRAIL24 identified 24 genes with nominal significance (P < 764 

0.05) for potential functional connectivity, and key words describing these connections include 765 

‘development’, ‘VEGF’ (vascular endothelial growth factor), ‘mesenchyme’ and ‘transcription’ 766 

(Supplementary Table 20). To identify potential predefined gene set relationships across loci 767 

we used MAGENTA25, which prioritizes gene sets. MAGENTA highlighted VEGF and PTEN 768 

(phosphatase and tensin homolog) signaling (Supplementary Table 21); VEGF signaling plays 769 
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a central, complex role in angiogenesis, insulin resistance, and obesity26, and PTEN signaling 770 

promotes insulin resistance27. In parallel, we employed DEPICT, which facilitates prioritization of 771 

genes at associated loci, analyses of tissue specificity, and enrichment of gene sets through 772 

integration of association results with expression data, protein-protein interactions, phenotypic 773 

data from gene knockout screens in mice, and predefined gene sets (Online Methods). To avoid 774 

biasing the identification of genes and pathways covered by SNPs on the Metabochip, analyses 775 

were restricted to GWAS cohort data and included 226 WHRadjBMI SNPs in 78 non-776 

overlapping loci with sex-combined P < 10−5. DEPICT identified at least one significantly 777 

prioritized gene (false discovery rate (FDR) < 5%) at 28 of the 78 loci (8 of the 49 new loci) 778 

(Table 3, Supplementary Table 22). DEPICT also identified 234 gene sets (161 after pruning 779 

of overlapping gene sets) enriched for genes at WHRadjBMI loci, including gene sets involved 780 

in body fat regulation (including adiponectin signaling, insulin sensitivity, and regulation of 781 

glucose levels), skeletal growth, transcriptional regulation, and development (Fig. 3, 782 

Supplementary Table 23). These gene sets include sets specific for abundance or 783 

development of metabolically active tissues including adipose, heart, liver, and muscle. Specific 784 

genes at the associated loci were also significantly enriched (FDR < 5%) for expression in 785 

adipocyte-related tissues, including abdominal subcutaneous fat (Fig. 4, Supplementary Table 786 

24). Together, these analyses identified processes related to insulin and adipose biology and 787 

highlight mesenchymal tissues, especially adipose tissue.  788 

 789 

We also tested variants at the 49 WHRadjBMI loci for overlap with elements from 60 selected 790 

regulatory datasets from the ENCODE and Epigenomic RoadMap data28 and found evidence of 791 

enrichment in 12 datasets (P < 0.05/60 = 8.3 × 10-4, Supplementary Table 25). The strongest 792 

enrichments were detected for datasets typically attributed to enhancer activity (H3K4me1 and 793 

H3K27ac) in adipose, muscle, endothelial cells, and bone, suggesting that variants at 794 
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WHRadjBMI loci may regulate transcription in these tissues and cells. These analyses point to 795 

mechanisms linking WHRadjBMI loci to regulation of gene expression in tissues highly relevant 796 

for adipocyte metabolism and insulin resistance.  797 

 798 

We subsequently evaluated reported functions in the literature of candidate genes located near 799 

new and previously identified WHRadjBMI loci9,10, identifying numerous genes involved in 800 

adipogenesis, angiogenesis, and transcriptional regulation (Table 3, literature review in the 801 

Supplementary Note). Adipogenesis candidate genes include CEBPA, PPARG, BMP2, 802 

HOXC/miR196, SPRY1, TBX15, and PEMT. Of these, CEBPA and PPARG are essential for 803 

white adipose tissue differentiation29, BMP2 induces differentiation of mesenchymal stem cells 804 

toward adipogenesis or osteogenesis30, and HOXC8 is a repressor of brown adipogenesis in 805 

mice that is regulated by miR-196a31, also located within the HOXC candidate gene region (Fig. 806 

1). Angiogenesis genes may influence expansion and loss of adipose tissue32; they include 807 

VEGFA, VEGFB, RSPO3, STAB1, WARS2, PLXND1, MEIS1, FGF2, SMAD6, and CALCRL. 808 

VEGFB is involved in endothelial targeting of lipids to peripheral tissues33, and PLXND1 limits 809 

blood vessel branching, antagonizes VEGF signalling, and affects adipose tissue 810 

inflammation34,35. Transcriptional regulators at WHR loci include CEBPA, PPARG, MSC, 811 

SMAD6, HOXA, and HOXC genes, ZBTB7B, JUND, KLF13, MEIS1, RFX7, NKX2-6, and 812 

HMGA1. Other candidate genes include NMU, FGFR4, and HMGA1, for which mice deficient for 813 

the corresponding genes exhibit obesity, glucose intolerance, and/or insulin resistance36-38. 814 

 815 

New loci associated with five additional central obesity traits and their biology 816 

To determine whether the WHRadjBMI variants exert their effects primarily through an effect on 817 

WC or HIP and to identify loci that are not reported for WHRadjBMI, BMI, or height39,40, we 818 

performed association analyses in GWAS and Metabochip data for five additional traits: 819 
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WCadjBMI, HIPadjBMI, WHR, WC, and HIP. Based on phenotypic data alone, WC and HIP are 820 

highly correlated with BMI (r = 0.59–0.92), and WHR is highly correlated with WHRadjBMI (r = 821 

0.82–0.95), while WCadjBMI, HIPadjBMI are moderately correlated with height (r = 0.24–0.63) 822 

(Supplementary Table 26). Analyses of genetic correlations showed that, in contrast to 823 

WHRadjBMI, which has almost no genetic correlation with height (rG < 0.04, Online Methods, 824 

Supplementary Table 27), WCadjBMI and HIPadjBMI have moderate genetic correlations with 825 

height (rG = 0.42 and 0.82, respectively), suggesting that some, but not all, WCadjBMI and 826 

HIPadjBMI loci would be associated with height. For all five traits, sex-combined and sex-827 

specific analyses were performed in European ancestry individuals and in individuals of all 828 

ancestries. Association loci were defined as novel based on distance and LD thresholds (>500 829 

kb and r2 < 0.1) compared to loci previously or currently reported for WHRadjBMI, BMI, or 830 

height39,40.  831 

  832 

Sex-combined and sex-specific association meta-analyses identified an additional 19 loci 833 

associated with traits other than WHRadjBMI (P < 5 × 10-8), nine of which showed significantly 834 

larger effects (Pdifference < 0.05/19 = 0.003) in one sex (Table 4, Supplementary Figs. 2-5, 835 

Supplementary Tables 28-29). Three of the four new loci with larger effects in women were 836 

associated with HIPadjBMI, the strongest of which mapped near KLF14 (P = 9.89 × 10-14), a 837 

locus previously associated with multiple metabolic traits41-­‐44  (Supplementary Table 12). Three 838 

of the five new loci with larger effects in men were associated with WCadjBMI, one of which 839 

mapped near ARL15, a locus at which other variants (r2 < 0.7) have been associated with 840 

adiponectin and lipid levels43,45. The locus near PDXDC1 associated with HIP was previously 841 

associated with phospholipid levels, fatty acid metabolism, and bone mineral density46-­‐48  842 

(Supplementary Table 12). Of the 19 loci identified for these additional traits, most showed 843 

some evidence of association with WHRadjBMI in sex-combined, women-specific or men-844 
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specific analyses, but four loci showed no association (P > 0.01) with WHRadjBMI, BMI, or 845 

height (Supplementary Tables 8G, 8H and 30).  846 

 847 

We next asked whether the genes and pathways influencing these additional aspects of body 848 

fat distribution are shared with WHRadjBMI or are distinct. Candidate genes were identified 849 

based on association with other metabolic traits, eQTLs, GRAIL pathway analysis, and literature 850 

review (Supplementary Tables 8, 12, 14, 16, 20, 28). Coding variants were identified (r2 > 0.7) 851 

in NTAN1 and HMGXB4, and six loci showed significant eQTLs in subcutaneous adipose tissue. 852 

Based on the literature, several likely candidate genes are involved in adipogenesis and insulin 853 

resistance. For example, delayed induction of preadipocyte transcription factor ZNF423 in 854 

fibroblasts results in delayed adipogenesis49, NLRP3 is part of inflammasome and pro-855 

inflammatory T-cell populations in adipose tissue that contribute to inflammation and insulin 856 

resistance50, and FABP6 is involved in fatty acid uptake, transport, and metabolism51. GRAIL 857 

analyses for the five traits identified connections that partially overlap with those identified for 858 

WHRadjBMI. The largest overlap was observed for WHR and HIPadjBMI (~50–55% overlap), 859 

following by WCadjBMI and HIP (~35–40%); common key words describing the connections 860 

included ‘expression’, ‘growth’, ‘signaling’ and ‘transcription’ (Supplementary Table 20). Based 861 

on these collected analyses, the additional loci appear to function in processes similar to the 862 

WHRadjBMI loci. The identification of loci that are more strongly associated with WCadjBMI or 863 

HIPadjBMI than the other anthropometric traits suggests that these traits characterize aspects 864 

of central obesity and fat distribution that are not captured by WHRadjBMI or BMI alone.     865 

 866 

DISCUSSION 867 

These extensive meta-analyses of GWAS and Metabochip data in up to 224,459 individuals 868 

identified 33 new and 16 known loci associated with WHRadjBMI, including nine loci that 869 
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harbored two or more signals. Our analyses identified 19 additional loci associated with waist 870 

and hip circumference measures that had not been reported previously for anthropometric traits. 871 

Collectively, these observations help elucidate the role of common genetic variation in body fat 872 

distribution that is distinct from BMI and height, and provide new insights into its molecular basis 873 

and connections with cardiometabolic traits.  874 

 875 

Our results emphasize the strong sexual dimorphism in the genetic regulation of fat distribution 876 

traits, a characteristic not observed for overall obesity as assessed by BMI39,52,53. Of the 49 877 

WHRadjBMI loci, 19 show stronger effects in women compared to one with stronger effects in 878 

men, and we report larger heritability of WHRadjBMI in women. Nine of the 19 loci associated 879 

with WCadjBMI, HIPadjBMI, and WHR not adjusted for BMI also showed clear evidence of 880 

sexual dimorphism. WCadjBMI loci usually had stronger effects in men and HIPadjBMI loci in 881 

women.  882 

 883 

Annotation of the loci associated with body fat distribution based on functional relationships with 884 

respect to tissue expression and biological pathways, other metabolic traits, eQTLs, and 885 

epigenomic data emphasized an important role for mesenchymally-derived tissues, especially 886 

adipose tissue, in fat distribution and central obesity. The development and regulation of 887 

adipose tissue deposition is closely associated with angiogenesis, a process highlighted by 888 

prioritized candidate genes at several WHRadjBMI loci. Explant cultures of adipose tissue 889 

trigger the formation of blood vessels through production and secretion of proangiogenic factors, 890 

such as VEGFA and VEGFB; in parallel, adipose endothelial cells stimulate preadipocyte 891 

differentiation54. These peripheral tissues are implicated in insulin resistance, consistent with the 892 

enrichment of shared GWAS signals with lipids, diabetes, and glycemic traits. The identification 893 

of skeletal growth processes suggests that the underlying genes affect early development 894 
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and/or differentiation of adipocytes from mesenchymal stem cells. The processes observed here 895 

are also consistent with those in monogenic disorders, such as partial lipodystrophies, which 896 

affect development and/or maintenance of specific regional fat depots55.  897 

 898 

Together, these data demonstrate that the genetic regulation of fat distribution involves genes 899 

and processes largely distinct from those that influence overall obesity, as assessed by BMI. 900 

BMI has a significant neuronal component, involving processes such as appetite 901 

regulation39,52,53, in contrast to the central role of adipocyte biology and insulin resistance 902 

suggested here for the fat distribution traits. Further, BMI has significant enrichment of 903 

expression in neuronal tissues (see accompanying GIANT paper) while WHRadjBMI shows 904 

enrichment of adipose tissue only (Fig. 4). We thus provide a foundation for future biological 905 

research in the regulation of body fat distribution and its connections with cardiometabolic traits, 906 

and offer potential target mechanisms for ultimate interventions in the risks associated with 907 

abdominal fat accumulation.  908 

909 
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FIGURE LEGENDS 910 

Figure 1 - Regional SNP association plots illustrating the complex genetic architecture at 911 

two loci related to WHRadjBMI. Sex-combined meta-analysis SNP associations in European 912 

individuals were plotted with –log10 P values (left y-axis) and estimated local recombination rate 913 

in blue (right y-axis).  Regional SNP coverage is shown in rows above each panel. Three SNPs 914 

near HOXC6-HOXC13 (A–C) and four near TBX15-WARS2-SPAG17 (D–G) were identified at 915 

these loci through approximate conditional analyses of sex-combined or sex-specific 916 

associations (values shown as Pconditional < 5 × 10-8, see Methods). On each plot, the signals are 917 

distinguished by both color and shape, and linkage disequilibrium (r2) of nearby SNPs is shown 918 

by a color intensity gradient. 919 

 920 

Figure 2 - Heat map of unsupervised hierarchical clustering of the effects of 49 921 

WHRadjBMI SNPs on 24 anthropometric and metabolic traits and diseases. The matrix of 922 

Z-scores representing the set of associations was scaled by row (locus name) and by column 923 

(trait) to range from –3 to 3. Negative values (blue) indicate that the WHRadjBMI-increasing 924 

allele was associated with decreased values of the trait and positive values (red) indicate that 925 

this allele was associated with increased values of the trait. Dendrograms indicating the 926 

clustering relationships are shown to the left and above the heat map. WCadjBMI, waist 927 

circumference adjusted for BMI; HIPadjBMI, hip circumference adjusted for BMI; HDL, high-928 

density lipoprotein cholesterol; eGFRcrea, estimated glomerular filtration rate based on 929 

creatinine; LDL, low-density lipoprotein cholesterol; FIadjBMI, fasting insulin adjusted for BMI; 930 

UACR, urine albumin-to-creatinine ratio; BMD, bone mineral density. 931 

 932 

Figure 3 - Significant gene sets from the DEPICT gene set enrichment analysis. Among 933 

genes at loci associated with WHRadjBMI (P < 10-5), gene sets found to be significantly 934 
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enriched by DEPICT are represented as nodes. Their degree of pairwise overlap with other 935 

gene sets, as measured by the Jaccard Index, is denoted by the width of the line connecting 936 

nodes. Gene sets were collapsed into meta-nodes if the proportion of overlapping genes was 937 

greater than 25%. All gene sets with FDR < 5% are shown and are color-coded according to 938 

their empirical enrichment P value (dark blue gene sets as most significant). The inset shows in 939 

greater detail the ‘Decreased Liver Weight’ meta-node, which consisted of 12 overlapping gene 940 

sets, several of which are relevant to WHRadjBMI, including adiponectin signaling and insulin 941 

sensitivity. 942 

 943 

Figure 4 - Genes at WHRadjBMI-associated loci are significantly enriched for expression 944 

in adipocytes and adipose tissues. Based on expression patterns in 37,427 human 945 

microarray samples, DEPICT identified that genes at WHRadjBMI loci (P < 10-5) were 946 

significantly enriched for expression in adipocytes and adipose tissues (FDR < 5%). 947 

Enrichments are grouped according to cell- and tissue-type annotations and significance   948 

 949 

 950 

URLs  951 

Summary results for GIANT Consortium studies are available at  952 

http://www.broadinstitute.org/collaboration/giant/  953 

NHGRI GWAS Catalog, http://www.genome.gov/gwastudies  954 

GENCODE, http://www.gencodegenes.org/ 955 

ANNOVAR, http://www.openbioinformatics/annovar/ 956 



Table 1 - WHRadjBMI loci achieving genome-wide significance (P < 5 × 10-8) in sex-combined and/or sex-specific meta-analyses 
      Sex-combined Women Men Sex difference 

Pb SNP Chr Position Locus EAa EAF β P N β P N β P N 
Novel loci achieving genome-wide significance in European-ancestry meta-analyses 
rs905938 1 153,258,013 DCST2 T 0.74 0.025 7.3E-10 207,867 0.034 4.9E-10 115,536 0.015 1.10E-02 92,461 1.6E-02 
rs10919388 1 168,639,127 GORAB C 0.72 0.024 3.2E-09 181,049 0.033 4.8E-10 102,446 0.013 2.98E-02 78,738 9.8E-03 
rs1385167 2 66,054,152 MEIS1 G 0.15 0.029 1.9E-09 206,619 0.023 4.0E-04 114,668 0.036 2.32E-07 92,085 1.6E-01 
rs1569135 2 187,823,643 CALCRL A 0.53 0.021 5.6E-10 209,906 0.023 6.9E-07 116,642 0.019 1.48E-04 93,398 5.8E-01 
rs10804591 3 130,816,923 PLXND1 A 0.79 0.025 6.6E-09 209,921 0.040 6.1E-13 116,667 0.004 5.28E-01 93,387 5.7E-06 
rs17451107 3 158,280,303 LEKR1 T 0.61 0.026 1.1E-12 207,795 0.023 1.0E-06 115,735 0.030 1.42E-08 92,194 3.5E-01 
rs3805389 4 56,177,507 NMU A 0.28 0.012 1.5E-03 209,218 0.027 4.6E-08 116,226 -0.007 2.09E-01 93,125 1.6E-06 
rs9991328 4 89,932,144 FAM13A T 0.49 0.019 4.5E-08 209,925 0.028 3.4E-10 116,652 0.007 1.69E-01 93,407 8.5E-04 
rs303084 4 124,286,398 SPATA5-FGF2 A 0.80 0.023 3.9E-08 209,941 0.029 3.4E-07 116,662 0.016 9.91E-03 93,412 1.1E-01 
rs9687846 5 55,897,651 MAP3K1 A 0.19 0.024 7.1E-08 208,181 0.041 3.8E-12 115,897 0.000 9.69E-01 92,417 1.3E-06 
rs6556301 5 176,460,183 FGFR4 T 0.36 0.022 2.6E-08 178,874 0.018 7.1E-04 101,638 0.029 1.00E-06 77,370 1.4E-01 
rs7759742 6 32,489,714 BTNL2 A 0.51 0.023 4.4E-11 208,263 0.024 1.7E-07 115,648 0.023 5.49E-06 92,749 8.6E-01 
rs1776897 6 34,302,989 HMGA1 G 0.08 0.030 1.1E-05 177,879 0.052 6.8E-09 100,516 0.003 7.42E-01 77,497 1.8E-04 
rs7801581 7 27,190,296 HOXA11 T 0.24 0.027 3.7E-10 195,215 0.025 7.7E-06 108,866 0.029 2.39E-06 86,483 6.9E-01 
rs7830933 8 23,659,269 NKX2-6 A 0.77 0.022 7.4E-08 209,766 0.037 1.2E-12 116,567 0.001 8.35E-01 93,333 1.4E-06 
rs12679556 8 72,676,782 MSC G 0.25 0.027 2.1E-11 203,826 0.033 2.1E-10 114,369 0.017 4.15E-03 89,591 2.8E-02 
rs10991437 9 106,775,741 ABCA1 A 0.11 0.031 1.0E-08 209,941 0.040 2.8E-08 116,644 0.022 6.13E-03 93,430 7.2E-02 
rs7917772 10 104,477,433 SFXN2 A 0.62 0.014 5.6E-05 209,642 0.027 5.5E-09 116,514 -0.001 8.57E-01 93,263 2.3E-05 
rs11231693 11 63,619,188 MACROD1-VEGFB A 0.06 0.041 4.5E-08 198,072 0.068 2.7E-11 110,164 0.009 4.20E-01 88,043 2.5E-05 
rs4765219 12 123,006,063 CCDC92 C 0.67 0.028 1.6E-15 209,807 0.037 1.0E-14 116,592 0.018 5.32E-04 93,350 5.7E-03 
rs8042543 15 29,495,555 KLF13 C 0.78 0.026 1.2E-09 208,255 0.023 6.7E-05 115,760 0.030 1.01E-06 92,629 3.6E-01 
rs8030605 15 54,291,890 RFX7 A 0.14 0.030 8.8E-09 208,374 0.031 1.0E-05 115,864 0.031 5.91E-05 92,644 9.9E-01 
rs1440372 15 64,820,205 SMAD6 C 0.71 0.024 1.1E-10 207,447 0.022 1.1E-05 115,201 0.027 1.39E-06 92,380 5.2E-01 
rs2925979 16 80,092,291 CMIP T 0.31 0.018 1.2E-06 207,828 0.032 3.4E-11 115,431 -0.002 7.86E-01 92,531 1.2E-06 
rs4646404 17 17,360,924 PEMT G 0.67 0.027 1.4E-11 198,196 0.034 5.3E-11 115,337 0.017 2.45E-03 87,857 2.6E-02 
rs8066985 17 65,964,940 KCNJ2 A 0.50 0.018 1.4E-07 209,977 0.026 4.0E-09 116,683 0.007 1.89E-01 93,428 1.8E-03 
rs12454712 18 58,996,864 BCL2 T 0.61 0.016 1.0E-04 169,793 0.035 1.1E-09 96,182 -0.007 2.45E-01 73,576 1.6E-07 
rs12608504 19 18,250,135 JUND A 0.36 0.022 8.8E-10 209,990 0.017 2.6E-04 116,689 0.028 1.05E-07 93,435 1.2E-01 
rs4081724 19 38,516,786 CEBPA G 0.85 0.035 7.4E-12 207,418 0.033 9.2E-07 115,322 0.039 1.41E-07 92,230 5.0E-01 
rs979012 20 6,571,374 BMP2 T 0.34 0.027 3.3E-14 209,941 0.026 1.0E-07 116,668 0.028 6.59E-08 93,407 6.7E-01 
rs224333 20 33,487,376 GDF5 G 0.62 0.020 2.6E-08 208,025 0.009 7.4E-02 115,803 0.036 9.00E-12 92,356 6.4E-05 
rs6090583 20 44,992,238 EYA2 A 0.48 0.022 6.2E-11 209,435 0.029 2.8E-10 116,382 0.015 2.37E-03 93,187 3.2E-02 
Novel loci achieving genome-wide significance in all-ancestry meta-analyses 
rs1534696 7 26,363,764 SNX10 C 0.43 0.011 1.3E-03 212,501 0.027 2.1E-08 118,187 -0.006 2.64E-01 92,243 2.1E-06 
Previously reported loci achieving genome-wide significance in European-ancestry meta-analyses 
rs2645294 1 119,376,110 TBX15-WARS2 T 0.58 0.031 1.7E-19 209,808 0.035 1.5E-14 116,596 0.027 1.46E-07 93,346 2.0E-01 
rs714515 1 170,619,613 DNM3-PIGC G 0.43 0.027 4.4E-15 203,401 0.029 1.8E-10 113,939 0.025 8.54E-07 89,596 5.1E-01 
rs2820443 1 217,820,132 LYPLAL1 T 0.72 0.035 5.3E-21 209,975 0.062 5.7E-35 116,672 0.002 6.91E-01 93,437 2.6E-17 
rs10195252 2 165,221,337 GRB14-COBLL1 T 0.59 0.027 5.9E-15 209,395 0.052 4.7E-30 116,329 -0.003 5.33E-01 93,199 2.4E-17 
rs17819328 3 12,464,342 PPARG G 0.43 0.021 2.4E-09 208,809 0.035 4.6E-14 116,072 0.005 3.26E-01 92,871 5.1E-06 
rs2276824 3 52,612,526 PBRM1c C 0.43 0.024 3.2E-11 208,901 0.028 3.7E-09 116,128 0.020 1.35E-04 92,907 2.0E-01 
rs2371767 3 64,693,298 ADAMTS9 G 0.72 0.036 1.6E-20 194,506 0.056 1.2E-26 108,624 0.012 3.49E-02 86,016 3.6E-09 
rs1045241 5 118,757,185 TNFAIP8-HSD17B4 C 0.71 0.019 4.4E-07 209,710 0.035 6.6E-12 116,560 -0.001 9.29E-01 93,284 8.3E-07 
rs7705502 5 173,253,421 CPEB4 A 0.33 0.027 4.7E-14 209,827 0.027 1.9E-08 116,609 0.027 2.30E-07 93,352 1.0E+00 
rs1294410 6 6,683,751 LY86 C 0.63 0.031 2.0E-18 209,830 0.037 1.6E-15 116,624 0.025 1.37E-06 93,340 6.3E-02 
rs1358980 6 43,872,529 VEGFA T 0.47 0.039 3.1E-27 206,862 0.060 3.7E-34 115,047 0.015 4.02E-03 91,949 3.7E-11 
rs1936805 6 127,493,809 RSPO3 T 0.51 0.043 3.6E-35 209,859 0.052 3.7E-30 116,602 0.031 3.08E-10 93,392 1.0E-03 
rs10245353 7 25,825,139 NFE2L3 A 0.20 0.035 8.4E-16 210,008 0.041 7.9E-13 116,704 0.027 1.43E-05 93,438 7.2E-02 
rs10842707 12 26,362,631 ITPR2-SSPN T 0.23 0.032 4.4E-16 210,023 0.041 6.1E-15 116,704 0.022 1.44E-04 93,453 1.1E-02 
rs1443512 12 52,628,951 HOXC13 A 0.24 0.028 6.9E-13 209,980 0.040 1.1E-14 116,688 0.013 2.77E-02 93,425 1.6E-04 
rs2294239 22 27,779,477 ZNRF3-KREMEN1 A 0.59 0.025 7.2E-13 209,454 0.028 6.9E-10 116,414 0.024 2.31E-06 93,173 5.0E-01 
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P values and β coefficients (per change of the effect allele) for the association with WHRadjBMI on the inverse normal transformed ranked scale in 
the meta-analyses of combined GWAS and Metabochip studies. The smallest P-value for each SNP is shown in bold. Positions are reported in base 
pairs (NCBI Build 36). aThe effect allele is the WHRadjBMI-increasing allele in the sex-combined analysis. bTest for sex difference; values significant 
at the table-wise Bonferroni threshold of 0.05/49 = 1.02 × 10-3 are marked in bold. cLocus previously named NISCH-STAB1. Chr, chromosome; EA, 
effect allele; EAF, effect allele frequency.  Details of GWAS and metabochip analyses are provided in Supplementary Table 4, and between-study 
heterogeneity is provided in Supplementary Table 31. 
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Table 2 - WHRadjBMI loci with multiple association signals in the sex-combined and/or sex-specific approximate conditional meta-
analyses 

       Sex-combined Women Men Sex 
difference 

Pc 

CEU r2 
with lead 

SNP Locusa SNP Chr Position 
Nearest 
gene(s) EAb EAF β P N β P N β P N 

TBX15- rs2645294 1 119,376,110 WARS2 T 0.58 0.031 7.6E-19 209,808 0.035 1.5E-14 116,596 0.014 2.2E-02 93,346 4.9E-03 Same SNP 
WARS2 rs1106529 1 119,333,020 TBX15 A 0.75 0.016 1.4E-03 209,930 0.021 1.1E-03 116,663 0.034 4.8E-09 93,401 1.1E-01 0.43 
  rs12143789 1 119,298,677 TBX15 C 0.21 0.026 1.0E-09 209,874 0.022 1.3E-04 116,640 0.019 2.3E-03 93,369 7.1E-01 0.06 
  rs12731372 1 118,654,498 SPAG17 C 0.76 0.024 1.3E-09 209,856 0.020 1.1E-04 116,636 0.028 3.4E-06 93,354 2.8E-01 >500 kb 
GRB14- rs1128249e 2 165,236,870 COBLL1 G 0.60 0.062 8.6E-19 209,414 0.093 1.0E-24 116,348 -0.002 7.1E-01 93,200 8.6E-22 0.93 
COBLL1 rs12692737 2 165,262,555 COBLL1 A 0.31 0.043 1.6E-08 203,265 0.134 2.7E-26 112,317 0.003 5.7E-01 91,082 2.8E-21 0.71 
  rs12692738 2 165,266,498 COBLL1 T 0.76 0.021 5.9E-05 209,551 0.092 3.8E-20 116,474 -0.005 4.1E-01 93,211 4.7E-18 0.30 
  rs17185198 2 165,268,482 COBLL1 A 0.83 0.002 7.4E-01 207,702 0.072 8.5E-13 115,657 -0.004 5.8E-01 92,179 8.0E-11 0.15 
PRBM1 rs13083798 3 52,624,788 PRBM1 A 0.49 0.023 4.1E-11 209,128 0.013 1.2E-01 115,974 0.016 1.1E-03 93,288 7.4E-01 0.88 
 rs12489828 3 52,542,054 NT5DC2 T 0.55 0.011 6.5E-02 204,485 0.029 2.6E-10 112,633 -0.015 2.9E-03 91,986 7.2E-11 0.57 
MAP3K1 rs3936510 5 55,896,623 MAP3K1 T 0.18 0.022 1.5E-06 207,896 0.042 6.0E-12 115,645 -0.002 8.2E-01 92,386 5.9E-07 0.88 
 rs459193 5 55,842,508 ANKRD55 A 0.26 0.026 1.6E-11 209,952 0.016 1.9E-03 116,677 0.033 6.7E-09 93,410 2.3E-02 0.06 
VEGFA rs998584d 6 43,865,874 VEGFA A 0.48 0.043 1.1E-29 189,620 0.065 1.0E-35 106,771 0.018 8.2E-04 82,983 3.1E-10 0.84 
 rs4714699 6 43,910,541 VEGFA C 0.38 0.019 3.5E-07 193,327 0.028 1.0E-08 107,987 0.007 1.9E-01 85,475 4.9E-03 0.01 
RSPO3 rs1936805d 6 127,493,809 RSPO3 T 0.51 0.038 2.0E-28 209,859 0.071 6.4E-37 116,602 0.031 3.3E-10 93,392 8.4E-08 Same SNP 
 rs11961815 6 127,477,288 RSPO3 A 0.75 0.022 5.0E-06 209,679 0.037 6.5E-09 116,503 0.021 3.6E-03 93,310 6.9E-02 0.32 
  rs72959041e 6 127,496,586 RSPO3 A 0.06 0.101 8.7E-15 72,472 - - - - - - - 0.05 
NFE2L3,  rs1534696 7 26,363,764 SNX10 C 0.44 0.011 2.0E-03 198,194 0.028 2.0E-08 111,643 -0.007 1.9E-01 86,685 2.2E-07 Same SNP 
SNX10 f rs10245353 7 25,825,139 NFE2L3 A 0.20 0.035 8.4E-16 210,008 0.016 1.3E-01 116,704 0.027 1.4E-05 93,438 3.6E-01 Same SNP 
  rs3902751 7 25,828,164 NFE2L3 A 0.25 0.009 2.0E-01 209,969 0.039 4.2E-14 116,676 0.019 8.4E-04 93,427 7.4E-03 0.608f 
HOXC13 rs1443512 12 52,628,951 HOXC13 A 0.24 0.016 2.7E-03 209,980 0.040 1.1E-14 116,688 0.012 3.0E-02 93,425 1.8E-04 Same SNP 
 rs10783615 12 52,636,040 HOXC12 G 0.14 0.037 6.7E-14 209,368 0.023 8.5E-03 116,356 0.022 1.8E-03 93,146 9.3E-01 0.59 
  rs2071449d 12 52,714,278 HOXC4/5/6 A 0.37 0.028 5.0E-15 206,953 0.026 4.6E-08 114,259 0.029 3.4E-08 92,829 6.6E-01 0.00 
CCDC92 rs4765219 12 123,006,063 CCDC92 C 0.67 0.025 6.9E-12 209,807 0.032 2.5E-11 116,592 0.018 5.3E-04 93,350 3.8E-02 Same SNP 
 rs863750 12 123,071,397 ZNF664 T 0.59 0.022 3.9E-10 209,371 0.031 1.6E-11 116,367 0.015 4.0E-03 93,138 1.8E-02 0.02 

 
P values and β coefficients (per change of the effect allele) for the association with WHRadjBMI on the inverse normal transformed ranked scale 
from the joint model in the approximate conditional analysis of combined GWAS and Metabochip studies. SNPs selected by conditional analyses as 
independently associated with WHRadjBMI in a meta-analysis (sex-combined, women- or men-specific) have their respective summary statistics for 
these analyses marked in black and bold. SNPs not selected by a particular conditional analysis as independently associated are marked in gray 
and show the association analysis results for the SNP conditioned on the locus SNPs selected by GCTA. Positions are reported in base pairs (NCBI 
Build 36) and sample sizes are from the unconditioned meta-analysis.  aLocus and lead SNPs are defined by Table 1. bThe effect allele is the 
WHRadjBMI-increasing allele in the sex-combined analysis. cTest for sex difference in conditional analysis based on the effect correlation estimate 
from primary analyses; values significant at the table-wise Bonferroni threshold of 0.05 / 25 = 2 × 10-3 are marked in bold. dSNPs selected by 
conditional analysis in the sex-combined analysis; proxies were selected by joint conditional analysis in the women- and/or men-specific analyses. 
eSNP not present in the sex-specific meta-analyses due to sample size filter requiring N ≥ 50,000; sample size from GCTA. fAt NFE2L3-SNX10, 
different lead SNPs were identified in the European and all-ancestry analyses but LD is reported with respect to rs10245353. Chr, chromosome; EA, 
effect allele; EAF, effect allele frequency. 
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Table 3 - Candidate genes at new WHRadjBMI loci 

SNP Locus 

Expression quantitative  
trait locus genes 

(P < 10-5)a 

Pathway genes in 
GRAIL  

(P < 0.05)b  

Lead genes in 
DEPICT 

(FDR < 0.05)c 

Candidate genes  
based on  

literature reviewd  

Genes at  
current or previous  

GWAS signalse 
rs905938 DCST2 ZBTB7B (PBMC, Blood) - - - - 
rs10919388 GORAB - - - - - 
rs1385167 MEIS1 - - - MEIS1 - 
rs1569135 CALCRL - TFPI - CALCRL - 
rs10804591 PLXND1 - PLXND1 - PLXND1 - 
rs17451107 LEKR1 TIPARP (SAT, Omental), LEKR1 

(SAT) 
VEPH1 - - Birthweight: CCNL1, LEKR1 

rs3805389 NMU - - - NMU - 
rs9991328 FAM13A FAM13A (SAT) FAM13A FAM13A - Fasting insulin adjusted for BMI: FAM13A 
rs303084 SPATA5-FGF2 - FGF2 - FGF2, NUDT6, SPRY1 - 
rs9687846 MAP3K1 - ANKRD55, MAP3K1 - MAP3K1 Fasting insulin adjusted for BMI, 

Triglycerides: ANKRD55, MAP3K1 
rs6556301 FGFR4 - MXD3 - FGFR4 Height 
rs7759742 BTNL2 HLA-DRA (SAT), KLHL31 (SAT) - (not analyzed) - - 
rs1776897 HMGA1 - - (not analyzed) HMGA1 Height: HMGA1, C6orf106, LBH 
rs1534696 SNX10 SNX10 (SAT), CBX3 (SAT) - - SNX10 - 
rs7801581 HOXA11 - HOXA11 HOXA11 HOXA11 - 
rs7830933 NKX2-6 STC1 (SAT) - - NKX2-6, STC1 - 
rs12679556 MSC - EYA1 - MSC, EYA1 - 
rs10991437 ABCA1 - ABCA1 - ABCA1 - 
rs7917772 SFXN2 - - - SFXN2 Height 
rs11231693 MACROD1-VEGFB - VEGFB MACROD1 MACROD1, VEGFB - 
rs4765219 CCDC92 CCDC92 (Omental, SAT, Liver), 

ZNF664 (SAT, Omental) 
FAM101A - - Adiponectin levels, Fasting insulin adjusted 

for BMI, HDL cholesterol, Triglycerides: 
CCDC92, ZNF664 

rs8042543 KLF13 - KLF13 - KLF13 - 
rs8030605 RFX7 - TEX9 - - - 
rs1440372 SMAD6 SMAD6 (Blood) SMAD6 SMAD6 SMAD6 Height 
rs2925979 CMIP CMIP (SAT) - - CMIP, PLCG2 Adiponectin levels, Fasting insulin adjusted 

for BMI, HDL-cholesterol: CMIP 
rs4646404 PEMT - RAI1 PEMT PEMT - 
rs8066985 KCNJ2 - KCNJ2 - KCNJ2 - 
rs12454712 BCL2 - - - BCL2 - 
rs12608504 JUND KIAA1683 (PBMC, Omental), 

JUND (LCL) 
JUND - JUND - 

rs4081724 CEBPA - CEBPA, PEPD - CEBPA, CEBPG - 
rs979012 BMP2 - BMP2 BMP2 BMP2 Height: BMP2 
rs224333 GDF5 CEP250 (Omental, SAT), UQCC 

(Blood, Omental, SAT, Liver, LCL) 
GDF5 GDF5 GDF5 Height: GDF5, UQCC 

rs6090583 EYA2 - EYA2 EYA2 EYA2 - 
Candidate genes based on secondary analyses or literature review.  Further details are provided in Supplementary Tables 8-9, 12-14, 16, 20, 22 and the Supplementary Note. 
Loci are shown in order of chromosome and position. aGene transcript levels associated with the SNP in the indicated tissue(s).  bGenes in pathways identified as enriched by 
GRAIL analysis; cSignificant pathway genes derived by DEPICT. dStrongest candidate genes identified based on manual literature review. eTraits associated at P < 5 x 10-8 in 
GWAS lookups or in the GWAS catalog using the index SNP or a proxy in LD (r2 > 0.7), and the genes(s) named in those reports. The only nonsynonymous variant in high LD with 
index SNP based on 1000 Genomes CEU reference panel was GDF5 S276A. No copy number variants were identified   
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Table 4 - New loci achieving genome-wide evidence of association (P < 5 × 10-8) with additional waist and hip circumference traits 
       Sex-combined Women Men Sex diff. 

SNP Trait Chr Position Locus EAa EAF β P N β P N β P N Pb 
Loci  achieving genome-wide significance in European-ancestry meta-analyses 
rs10925060 WCadjBMI 1 245,717,763 OR2W5-NLRP3 T 0.03 0.017 2.2E-05 140,515 0.002 6.8E-01 85,186 0.045 9.1E-13 55,522 1.7E-08 
rs10929925 HIP 2 6,073,008 SOX11 C 0.55 0.020 4.5E-08 207,648 0.021 9.0E-06 115,428 0.018 3.2E-04 92,499 6.1E-01 
rs2124969 WCadjBMI 2 160,697,732 ITGB6 C 0.42 0.020 7.1E-09 231,284 0.016 3.5E-04 127,437 0.025 2.3E-07 104,039 1.4E-01 
rs17472426 WCadjBMI 5 159,626,935 CCNJL T 0.92 0.014 3.1E-02 217,564 -0.014 1.0E-01 119,804 0.052 4.3E-08 97,954 3.9E-08 
rs7739232 HIPadjBMI 6 53,648,294 KLHL31 A 0.07 0.037 5.4E-05 131,877 0.063 1.0E-08 80,475 -0.004 7.5E-01 51,589 2.9E-05 
rs13241538 HIPadjBMI 7 130,090,402 KLF14 C 0.48 0.017 1.6E-06 210,935 0.033 9.9E-14 117,210 -0.003 5.0E-01 93,911 2.0E-09 
rs7044106 HIPadjBMI 9 122,533,883 C5 C 0.24 0.023 4.1E-05 143,412 0.039 5.7E-09 86,733 -0.003 6.9E-01 56,865 1.3E-05 
rs11607976 HIP 11 68,988,292 MYEOV C 0.70 0.022 4.2E-08 212,815 0.019 1.9E-04 118,391 0.024 7.7E-06 94,701 4.4E-01 
rs1784203 WCadjBMI 11 93,089,782 KIAA1731 A 0.01 0.031 1.3E-08 63,892 0.000 9.9E-01 35,539 0.075 1.0E-19 28,353 1.2E-01 
rs1394461 WHR 11 98,727,559 CNTN5 C 0.25 0.017 4.7E-04 144,349 0.035 3.6E-08 87,441 -0.011 1.6E-01 57,094 1.1E-06 
rs319564 WHR 13 92,630,880 GPC6 C 0.45 0.014 3.4E-05 212,137 0.003 5.3E-01 117,970 0.027 1.6E-08 94,350 6.0E-05 
rs2047937 WCadjBMI 16 48,422,292 ZNF423 C 0.50 0.019 4.7E-08 231,009 0.022 5.5E-07 127,288 0.014 3.6E-03 103,914 2.0E-01 
rs2034088 HIPadjBMI 17 369,801 VPS53 T 0.53 0.021 4.8E-09 210,737 0.028 9.6E-10 117,142 0.014 6.5E-03 93,781 2.5E-02 
rs1053593 HIPadjBMI 22 33,990,875 HMGXB4 T 0.65 0.021 3.9E-08 202,070 0.029 1.8E-09 114,347 0.011 5.1E-02 87,908 6.2E-03 
                 
Loci achieving genome-wide significance in all-ancestry meta-analyses 
rs1664789 WCadjBMI 5 53,318,406 ARL15 C 0.41 0.014 2.6E-05 244,110 0.005 2.8E-01 133,052 0.026 3.6E-08 109,025 4.4E-04 
rs722585 HIPadjBMI 6 1,720,862 GMDS G 0.68 0.015 2.1E-04 205,815 -0.001 8.8E-01 113,965 0.032 9.2E-09 89,831 4.3E-06 
rs1144 WCadjBMI 7 104,543,591 SRPK2 C 0.34 0.019 3.1E-08 239,342 0.020 1.2E-05 131,398 0.018 4.1E-04 105,911 7.8E-01 
rs2398893 WHR 9 95,798,163 PTPDC1 A 0.71 0.020 4.0E-08 226,572 0.019 5.1E-05 124,577 0.019 2.7E-04 99,968 9.5E-01 
rs4985155c HIP 16 15,036,960 PDXDC1 A 0.66 0.018 4.5E-07 227,296 0.011 1.6E-02 125,048 0.029 9.7E-09 100,313 6.3E-03 
 
P values and β coefficients (per change of the effect allele) for the association with the trait indicated on the inverse normal transformed ranked 
scale in the meta-analysis of combined GWAS and Metabochip studies. The smallest P-value for each SNP is shown in bold. Positions are reported 
in base pairs (NCBI Build 36). aThe effect allele is the trait-increasing allele in the sex-combined analysis. bTest for sex difference; values significant 
at the table-wise Bonferroni threshold of 0.05 / 19 = 2.63 × 10-3 are marked in bold. cP = 7.3 × 10-6 with height in Okada et al.56 (index SNP 
rs1136001; r2 = 0.790, distance = 2,515 bp). Chr, chromosome; EA, effect allele; EAF, effect allele frequency. 
 
.



ONLINE METHODS 1000 

 1001 

Study overview. Our study included 224,459 individuals of European, East Asian, South Asian, 1002 

and African American ancestry. The European ancestry arm of the study included 142,762 1003 

individuals from 57 cohorts genotyped with genome-wide SNP arrays and 67,326 individuals 1004 

from 44 cohorts genotyped with the Metabochip18 (Supplementary Fig. 1, Supplementary 1005 

Table 1). The non-European ancestry arm comprised ~1,700 individuals from one cohort of 1006 

East Asian ancestry, ~3,400 individuals from one cohort of South Asian ancestry, and ~9,200 1007 

individuals from six cohorts of African American ancestry, all genotyped with the Metabochip. 1008 

  1009 

Phenotype definition. Our primary phenotype was WHRadjBMI, the ratio of waist and hip 1010 

circumferences adjusted for age, age², study-specific covariates if necessary, and BMI. For 1011 

each cohort, age- and BMI-adjusted residuals were calculated for men and women separately. 1012 

These residuals were then transformed by the inverse standard normal function to ensure 1013 

comparability across cohorts and between sexes. Cohorts with related men and women 1014 

provided inverse standard normal transformed sex-combined residuals. For each cohort, the 1015 

same transformations were applied to other related phenotypes: (i) WHR without adjustment for 1016 

BMI (WHR); (ii) waist circumference with (WCadjBMI) and without (WC) adjustment for BMI; 1017 

and (iii) hip circumference with (HIPadjBMI) and without (HIP) adjustment for BMI.  1018 

 1019 

European ancestry meta-analysis for genome-wide SNP array data. Sample and SNP 1020 

quality control (QC) were undertaken within each cohort (Supplementary Table 3). The GWAS 1021 

scaffold in each cohort was imputed using CEU data from HapMap resulting in ~2.5 million 1022 

SNPs. Each directly typed and imputed SNP passing QC was tested for association with 1023 

WHRadjBMI and additional phenotypes under an additive model using linear regression 1024 

(Supplementary Table 1). All analyses took account of uncertainty in imputation in a “missing 1025 
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data” likelihood framework, or by computing expected dosages over the genotype probability 1026 

distribution (Supplementary Table 3). For each cohort, sex-specific association summary 1027 

statistics for WHRadjBMI and additional phenotypes were corrected for residual population 1028 

structure using the genomic control inflation factor57 (median λGC = 1.01, range = 0.99 – 1.08). 1029 

SNPs were removed prior to meta-analysis if they had a minor allele count ≤ 3, Hardy-Weinberg 1030 

equilibrium P < 10-6, directly genotyped SNP call rate < 95%, or low imputation quality (below 1031 

0.3 for MACH, 0.4 for IMPUTE, and 0.8 for PLINK imputed data). Association summary 1032 

statistics for WHRadjBMI and additional phenotypes were then combined via inverse-variance 1033 

weighted fixed-effects meta-analysis, and corrected for a second round of genomic control to 1034 

account for structure between cohorts (Supplementary Fig. 2).  1035 

 1036 

European ancestry meta-analysis for Metabochip data. Sample and SNP QC analyses were 1037 

undertaken in each cohort (Supplementary Table 3). Each SNP passing QC was tested for 1038 

association with WHRadjBMI and additional phenotypes under an additive model using linear 1039 

regression (Supplementary Table 1). Inflation of the number of statistically significant 1040 

association signals for WHRadjBMI and additional phenotypes across the content of the 1041 

Metabochip would be anticipated, even in the absence of latent population substructure, 1042 

because the array is enriched, by design, for loci associated with anthropometric and 1043 

cardiometabolic traits. Thus, we based our correction on a subset of 4,425 SNPs selected for 1044 

inclusion on Metabochip18 based on suggestive associations with QT-interval that were not 1045 

expected to be associated with anthropometric traits (>500 kb from variants on Metabochip18 for 1046 

these traits). These study-specific inflation factors had a median λGC	
  of 1.01 (range 0.93 – 1.11), 1047 

with only one study exceeding 1.10. After further removing SNPs for QC as described in the 1048 

previous section, association summary statistics for WHRadjBMI and additional phenotypes 1049 

were combined via inverse-variance weighted fixed-effects meta-analysis, and corrected for a 1050 
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second round of genomic control on the basis of QT-interval SNPs to account for structure 1051 

between cohorts. 1052 

 1053 

European ancestry sex-combined meta-analysis. Association summary statistics from the 1054 

two parts of the European ancestry arm were combined via inverse-variance weighted fixed-1055 

effects meta-analysis using METAL58. No further genomic control correction was performed. 1056 

Results were reported for SNPs with a sex-combined sample size ≥ 50,000. 1057 

 1058 

European ancestry sex-stratified meta-analyses. The genome-wide, Metabochip, and 1059 

combined meta-analyses were repeated for men and women separately, for WHRadjBMI and 1060 

the additional phenotypes. Analyses were corrected for population structure within each sex. 1061 

The meta-analysis of WHRadjBMI in men included up to 93,480 individuals, and in women up to 1062 

116,742 individuals. Tests for differences in allelic effects between men-specific and women-1063 

specific beta estimates were performed using a t statistic as described previously10.  1064 

 1065 

Meta-analyses of studies of all ancestries. Sample and SNP QC analyses were undertaken 1066 

in each cohort of non-European ancestry, all of which were genotyped on the Metabochip 1067 

(Supplementary Table 3). Each SNP passing QC was tested for association with WHRadjBMI 1068 

and additional phenotypes, under an additive model using linear regression (Supplementary 1069 

Table 1). For each cohort, association summary statistics for WHRadjBMI and additional 1070 

phenotypes were corrected for latent population substructure using the genomic control inflation 1071 

factor obtained from QT-interval SNPs (median λGC	
  = 1.01, range = 0.90 – 1.17), with only one 1072 

study exceeding 1.10. Association summary statistics were combined via inverse-variance 1073 

weighted fixed-effects meta-analysis, corrected for a second round of genomic control on the 1074 

basis of QT-interval SNPs. Sex-combined and sex-specific meta-analyses were undertaken. 1075 

Association summary statistics from the European ancestry and non-European ancestry meta-1076 
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analyses were finally combined via inverse-variance weighted fixed-effects meta-analysis 1077 

without further genomic control correction. 1078 

 1079 

Heterogeneity. For each lead SNP, we tested for sex differences based on the sex-specific 1080 

beta estimates and standard errors, while accounting for potential correlation between the sex-1081 

specific estimates10. We tested for potential differences in effects between European and non-1082 

European samples in a similar manner, comparing the effects from GWAS+Metabochip data for 1083 

Europeans and Metabochip data for non-Europeans. Between-study heterogeneity in all meta-1084 

analyses was assessed using I2 statistics59. 1085 

 1086 

Heritability, and genetic and phenotypic correlations of waist traits. We calculated the 1087 

heritability and genetic correlations of several central obesity traits using variance component 1088 

models60,61 in the Framingham Heart Study (FHS) and TWINGENE study. In this approach, the 1089 

phenotypic variance is decomposed into additive genetic, non-additive genetic, and 1090 

environmental sources of variation (including model error), and for sets of traits, the covariances 1091 

between traits. We report narrow sense heritability (h2), the ratio of the additive genetic variance 1092 

to the total phenotypic variance. Sex-specific inverse normal trait residuals, adjusted for age 1093 

(and cohort in FHS), were used to estimate heritability separately in men and women, using 1094 

variance components analysis in SOLAR version 4.2.7 62 (FHS) or Mx 1.70363 (TWINGENE). 1095 

Additionally, the sex-specific residuals were used to conduct bivariate quantitative variance 1096 

component genetic analyses that calculate genetic and environmental correlations between 1097 

traits. The genetic correlations obtained are estimates of the additive effects of shared genes, 1098 

and a genetic correlation significantly different from zero suggests a direct influence of the same 1099 

genes on more than one trait. Similarly, significant environmental correlations suggest shared 1100 

environmental effects. 1101 

 1102 
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We estimated sex-stratified correlations between all waist traits, as well as BMI, height, and 1103 

weight in TWINGENE, FHS, KORA, and EGCUT. In TWINGENE and FHS, age-adjusted 1104 

Pearson correlations were used; in EGCUT and KORA, correlations were adjusted for age and 1105 

age2. 1106 

 1107 

European ancestry approximate conditional analyses. To evaluate the evidence for multiple 1108 

association signals within identified WHRadjBMI loci, we performed approximate conditional 1109 

analyses of sex-combined, women-specific, and men-specific data as implemented in the GCTA 1110 

software16,17. This approach makes use of association summary statistics from the combined 1111 

European ancestry meta-analysis and a reference dataset of individual-level genotype data to 1112 

estimate linkage disequilibrium (LD) between variants and hence also the approximate 1113 

correlation between allelic effect estimates in a joint association model. Although it is expected 1114 

that the set of SNPs selected by GCTA and their effect estimates will depend on the reference 1115 

dataset, the results should be fairly robust when the reference dataset LD pattern represents 1116 

well the population considered and when the reference dataset offers good coverage of the 1117 

SNPs in the meta-analysis. 1118 

 1119 

To evaluate robustness of the GCTA results, we performed analyses using two reference 1120 

datasets that contributed to the combined European ancestry meta-analysis with Metabochip 1121 

and/or GWAS genotype data: Prospective Investigation of the Vasculature in Uppsala Seniors 1122 

(PIVUS) consisting of 949 individuals from Uppsala County, Sweden, with both GWAS (imputed 1123 

using CEU haplotypes from Phase II of the International HapMap Project)64 and Metabochip 1124 

genotype data; and Atherosclerosis Risk in Communities (ARIC) consisting of 6,654 individuals 1125 

of European descent from four communities in the USA with GWAS data also imputed using 1126 

data from Phase II of the International HapMap Project64. Results shown use the PIVUS 1127 

reference dataset because Metabochip genotypes are available (see a comparison in the 1128 
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Supplementary Note. Assuming that the LD correlations between SNPs more than 10 Mb 1129 

away or on different chromosomes are zero, and using each of the reference datasets in turn, 1130 

we performed a genome-wide stepwise selection procedure to select associated SNPs one-by-1131 

one at a P value < 5×10-8. Table 2 shows the loci for which GCTA identifies multiple association 1132 

signals in the sex-combined, women-, and/or men-specific data. For each locus, the SNPs 1133 

selected by GCTA as independently associated with WHRadjBMI in any of the three meta-1134 

analyses are reported, with the SNP identified in the sex-combined analysis taken by default 1135 

when proxies are identified in the women- and/or men-specific analyses. For SNPs not selected 1136 

by a particular joint conditional analysis, but identified by either of the other two analyses, 1137 

summary statistics were calculated for association analysis of the SNP conditioned on the 1138 

GCTA-selected SNP(s).  1139 

 1140 

Genetic risk score. We calculated a genetic risk score for each individual in the population-1141 

based KORA study (3,440 individuals: 1,670 men and 1,750 women) using the 49 identified 1142 

variants, weighted by the allelic effect from the European ancestry meta-analyses of 1143 

WHRadjBMI. Sex-combined scores were computed on the basis of the sex-combined meta-1144 

analysis. Sex-stratified scores were calculated on the basis of men- and women-specific meta-1145 

analyses, where SNPs not achieving nominal significance in the respective sex (P ≥ 0.05) were 1146 

excluded (resulting in 48 SNPs in the women-specific score and 33 SNPs in the men-specific 1147 

score). For each individual, the sex-combined and sex-stratified risk scores were rounded to the 1148 

nearest integer for plotting. Risk scores were then tested for association with WHRadjBMI using 1149 

linear regression.  1150 

 1151 

Explained variance. We calculated the variance explained by a single SNP as: 1152 

2 ∙MAF ∙ (1 −MAF) ∙ 𝛽!/Var(Y) 

where MAF is the minor allele frequency, β the SNP effect estimate computed by meta-analysis, 1153 
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and Var(Y) being the variance of the phenotype Y as it went into the study-specific association 1154 

testing. To derive the total variance explained by a set of independent SNPs, we computed the 1155 

sum of single-SNP explained variances under the assumption of independent contributions.   1156 

 1157 

Fine-mapping analyses. We considered each identified locus, defined as 500 kb upstream and 1158 

downstream of the lead SNP, and computed 95% credible intervals using a Bayesian approach.  1159 

On the basis of association summary statistics from the European ancestry, non-European 1160 

ancestry, or all ancestries sex-combined meta-analyses, we calculated an approximate Bayes’ 1161 

factor65 in favor of association, given by: 1162 

𝐵𝐹𝑗 =
1 − 𝑅𝑗

exp  (−
𝑅𝑗𝛽𝑗

2

2𝜎𝑗
2 )

 

where βj is the allelic effect of the jth SNP, with corresponding standard error σj, and Rj = 1163 

0.04/(σj
2+0.04), which incorporates a N(0,0.22) prior for βj. This prior gives high probability to 1164 

small effect sizes, and only small probability to large effect sizes. We then calculated the 1165 

posterior probability that the jth SNP is causal by: 1166 

𝜑𝑗 =
𝐵𝐹𝑗

𝐵𝐹𝑘𝑘
 

where the summation in the denominator is over all SNPs passing QC across the locus. We 1167 

compared the meta-analysis results and credible sets of SNPs likely to contain the causal 1168 

variant as described66. Assuming a single causal variant at each locus, a 95% credible set of 1169 

variants was then constructed by: (i) ranking all SNPs according to their BF; and (ii) combining 1170 

ranked SNPs until their cumulative posterior probability exceeded 0.95. For each locus, we 1171 

calculated the number of SNPs contained within the 95% credible sets, and the length of the 1172 

genomic interval covered by these SNPs. 1173 

 1174 

Comparison of loci across traits 1175 
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To determine whether the identified loci were also associated with any of 22 cardio-metabolic 1176 

traits, we obtained association data from meta-analysis consortia DIAGRAM (T2D)67, 1177 

CARDIoGRAM-C4D (CAD)68, ICBP (systolic and diastolic blood pressure (SBP, DBP))69, GIANT 1178 

(BMI, height)39,40, GLGC (high density lipoprotein cholesterol (HDL), low density lipoprotein 1179 

cholesterol (LDL), and triglycerides (TG))70, MAGIC (fasting glucose, fasting insulin, fasting 1180 

insulin adjusted for BMI, and two-hour glucose)71-73, ADIPOGen (BMI-adjusted adiponectin)74, 1181 

CKDgen (urine albumin-to-creatinine ratio (UACR), estimated glomerular filtration rate (eGFR), 1182 

and overall CKD)75,76, ReproGen (age at menarche, age at menopause)77,78, and GEFOS (bone 1183 

mineral density)48; others provided association data for IgA nephropathy79 (also Kiryluk K, Choi 1184 

M, Lifton RP, Gharavi AG, unpublished data) and for endometriosis80. Proxies (r2 > 0.80 in CEU) 1185 

were used when an index SNP was unavailable. 1186 

 1187 

We also searched the National Human Genome Research Institute (NHGRI) GWAS Catalog for 1188 

previous SNP-trait associations near our lead SNPs81. We supplemented the catalog with 1189 

additional genome-wide significant SNP-trait associations from the literature15,48,82-88. We used 1190 

PLINK to identify SNPs within 500 kb of lead SNPs using 1000 Genomes Project Pilot I 1191 

genotype data, which includes the majority of the Metabochip SNPs; LD (r2) values were from 1192 

CEU89,90. All SNPs within the specified regions were compared with the NHGRI GWAS 1193 

Catalog19 for overlap. For rs7759742, 1000 Genomes Project data were unavailable and 1194 

HapMap release 22 CEU data 89,91	
  were used for r2 and distance calculations.  1195 

 1196 

Enrichment of concordant cross-trait associations and effects. To evaluate whether the 1197 

alleles associated with increased WHRadjBMI at the 49 identified SNPs convey effects for any 1198 

of the 22 cardiometabolic traits, we conducted meta-regression analyses of the beta-estimates 1199 

on these metabolic outcomes from other consortia with the beta-estimates for WHRadjBMI in 1200 

our data74.  1201 
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 1202 

Based on the association data across traits, we generated a matrix of Z-scores by dividing the 1203 

association betas for each of the 49 WHRadjBMI SNPs for each of 22 traits by their respective 1204 

standard errors. These traits did not include WHRadjBMI itself or nephropathy in Chinese 1205 

subjects, but did include HIPadjBMI and WCadjBMI. Each Z-score was made positive if the 1206 

original trait-increasing allele also increased the look-up trait and negative if not. Eleven missing 1207 

associations with endometriosis, nephropathy in Italians, and CAD were assigned a value of 1208 

zero, treating these unknowns as null associations. We performed unsupervised hierarchical 1209 

clustering of the Z score matrix in R using the default settings of the “heatplot" function from the 1210 

made4 library (version 1.20.0), agglomerating clusters using average linkage and Pearson 1211 

correlation metric distance. The rows and columns of matrix values were each automatically 1212 

scaled to range from 3 to −3. Confidence in the hierarchical clustering was assessed by 1213 

bootstrap analysis (10,000 resamplings) using the R package "pvclust"21. 1214 

 1215 

Identification of candidate functional variants. The 1000 Genomes CEU pilot data were 1216 

queried for SNPs within 500 kb and in LD (r2 > 0.7) with any index SNP. All identified variants 1217 

were then annotated based on RefSeq transcripts using Annovar to identify potential 1218 

nonsynonymous variants near identified association signals. The distance between each variant 1219 

and the nearest transcription start site were calculated using gene annotations from GENCODE 1220 

(version 12). 1221 

 1222 

To investigate whether SNPs in LD with index SNPs are also in LD with common copy number 1223 

variants (CNVs), we extracted waist trait association results for a list of SNP proxies that are in 1224 

high LD (r2 > 0.8, CEU) with CNVs in European populations as described previously9. Altogether 1225 

6,200 CNV-tagging SNPs were used, which are estimated collectively to capture > 40% of 1226 

CNVs > 1 kb in size.  1227 
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 1228 

Expression quantitative trait loci (eQTLs). We examined our lead SNPs (Tables 1, 2 and4) 1229 

in multiple tissues in a collection of eQTL datasets from several sources (Supplementary Note) 1230 

for cis effects significant at P < 10-5. We then checked if the trait-associated SNP also had the 1231 

strongest association with the expression level of its corresponding transcript. If not, we 1232 

identified a nearby SNP that had a stronger association with expression (peak transcript SNP) 1233 

of that transcript. To check whether effects of the peak transcript SNP and waist trait-associated 1234 

SNP overlapped, we conducted conditional analyses to estimate associations between the 1235 

waist-associated SNP and transcript level when the peak transcript-associated SNP was also 1236 

included in the model, and vice versa. In these conditional tests, where the association for the 1237 

expression-associated SNP was not significant (P > 0.05) when conditioned on the waist-1238 

associated SNP, we concluded that the waist-associated SNP is likely to explain a substantial 1239 

proportion of the variance in gene transcript levels in the region and that the two SNP signals 1240 

most probably coincide. Additionally, for SNPs that passed these criteria in either women or 1241 

men eQTL datasets from the deCODE dataset, we investigated sex heterogeneity in gene 1242 

transcript levels for whole blood in 312 men and 435 women and for subcutaneous adipose 1243 

tissue in 252 men and 351 women based on the sex-specific beta estimates and standard 1244 

errors, while accounting for potential correlation between the sex-specific associations10. 1245 

 1246 

Epigenomic regulatory element overlap with individual variants. We examined overlap of 1247 

regulatory elements with the 49 WHRadjBMI-associated variants, the 19 secondary signals, and 1248 

variants in LD with them (r2 > 0.7, 1000 Genomes Phase 1 version 2 EUR92), totaling 1,547 1249 

variants. We obtained regulatory element data sets from the ENCODE Consortium28 and 1250 

Roadmap Epigenomics Project93 corresponding to eight tissues selected based on a current 1251 

understanding of WHRadjBMI pathways. The 226 regulatory element datasets included 1252 

experimentally-identified regions of open chromatin (DNase-seq, FAIRE-seq), histone 1253 
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modification (H3K4me1, H3K27ac, H3K4me3, H3K9ac, and H3K4me2), and transcription factor 1254 

binding (Supplementary Table 18). When available, we downloaded data processed during the 1255 

ENCODE Integrative Analysis28. We processed Roadmap Epigenomics sequencing data with 1256 

multiple biological replicates using MACS294 and the same Irreproducible Discovery Rate 1257 

pipeline used in the ENCODE Integrative Analysis. Roadmap Epigenomics data with only a 1258 

single replicate was processed using MACS2 alone. 1259 

 1260 

Global enrichment of WHRadjBMI-associated loci in epigenomic datasets. We performed 1261 

permutation-based tests in a subset of 60 open chromatin (DNase-seq) and histone modification 1262 

(H3K27ac, H3K4me1, H3K4me3, H3K9ac) datasets to identify global enrichment of the 1263 

WHRadjBMI-associated loci. We matched the index SNP at each locus with 500 variants having 1264 

no evidence of association (P > 0.5, ~1.2 million total variants) with a similar distance to the 1265 

nearest gene (± 11,655 bp), number of variants in LD (±8 variants), and minor allele frequency. 1266 

Using these pools, we created 10,000 sets of control variants for each of the 49 loci and 1267 

identified variants in LD (r2 > 0.7) and within 1 Mb. For each SNP set, we calculated the number 1268 

of loci with at least one variant located in a regulatory region under the assumption that one 1269 

regulatory variant is responsible for each association signal. We initially calculated an 1270 

enrichment P value by finding the proportion of control sets for which as many or more loci 1271 

overlap a regulatory element than the set of associated loci. For increased P value accuracy, we 1272 

estimated the P value assuming a sum of binomial distributions to represent the number of 1273 

index SNPs (or their LD proxies; r2 > 0.7) that overlap a regulatory dataset compared the 1274 

expectation observed in the 500 matched control sets. 1275 

 1276 

GRAIL. Genes from independently identified trait regions that share more text in the scientific 1277 

literature than expected by chance are more likely to be functionally related and therefore more 1278 

likely to truly contribute towards the trait variation. Using a text-based definition of relatedness, 1279 
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Gene Relationships Among Implicated Loci (GRAIL)24 is a text-mining algorithm that evaluates 1280 

the degree of relatedness among genes within trait regions. Using PubMed abstracts, a subset 1281 

of genes enriched for relatedness and a set of keywords that suggest putative pathways are 1282 

identified. To avoid potential bias caused by selecting papers focused on the investigation of 1283 

candidate genes stimulated by GWAS, we restricted our search to PubMed abstracts prior to 1284 

2006. We tested for enrichment of connectivity in the list of independent SNPs that were 1285 

statistically significant in our study (P < 10-5).  1286 

 1287 

MAGENTA. To investigate if pathways including predefined sets of genes were enriched in the 1288 

lower part of the gene P value distribution for WHRadjBMI, we performed a pathway analysis 1289 

using Magenta 2.4.25 All SNPs included in both the Metabochip and in the GWAS meta-1290 

analyses were included in these analyses. SNPs were assigned to a gene if within 110 kb 1291 

upstream or 40 kb downstream of the transcript’s most extreme boundaries, based on 1292 

chromosome and position. The most significant SNP P value within this interval of a gene was 1293 

adjusted for putative confounders (gene size, number of SNPs in a gene, LD pattern) using 1294 

stepwise linear regression, creating a gene association score. If the same top SNP was 1295 

assigned to multiple genes, only the gene with the lowest gene score was kept. The HLA region 1296 

was removed from further analyses due to its high LD structure and gene density. Each gene 1297 

was then assigned one or several pathway terms using multiple annotation databases (GO, 1298 

PANTHER, Ingenuity, KEGG)95-98. Finally, the genes were ranked based on their gene 1299 

association score, and a modified gene-set enrichment analysis (GSEA) using MAGENTA was 1300 

performed; the purpose of this analysis was to test for enrichment of gene association score 1301 

ranks above a given rank cutoff (including 5% of all genes) in a gene-set belonging to a 1302 

predefined pathway term, compared to multiple, equally sized gene-sets that were randomly 1303 

sampled from all genes in the genome. A minimum of 10,000 gene-set permutations were 1304 

performed, and up to 1,000,000 for GSEA P < 10-4. 1305 
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 1306 

Data-driven Enrichment-Prioritized Integration for Complex Traits (DEPICT).  This method 1307 

is described in detail in the accompanying manuscript39 and Pers et al., in preparation. Briefly, 1308 

DEPICT uses gene expression data derived from a panel of 77,840 expression arrays99, 1309 

169,810 high-confidence experimentally-derived protein-protein interactions100, 211,882 gene-1310 

phenotype pairs from	
   the Mouse Genetics Initiative101, 737 Reactome pathways102, 184 KEGG 1311 

pathways103, and 5,083 Gene Ontology terms24. DEPICT uses the expression data to 1312 

reconstitute the protein-protein interaction gene sets, mouse phenotype gene sets, Reactome 1313 

pathway gene sets, KEGG pathway gene sets, and Gene Ontology term gene sets. We used 1314 

DEPICT to map genes to associated WHRadjBMI regions, which then allowed us to (1) 1315 

systematically identify the most likely causal gene(s) in a given associated region,  (2) identify 1316 

reconstituted gene sets that were enriched in genes from associated regions, and (3) identify 1317 

tissue and cell type annotations in which genes from associated regions were highly expressed. 1318 

All loci with WHRadjBMI association P values < 10-5 were included in the DEPICT analysis. 1319 

Associated regions were defined by all genes residing within LD (r2 > 0.5) distance of the 1320 

WHRadjBMI-associated index SNPs. Overlapping regions were merged, and we excluded two 1321 

SNPs (rs7759742 and rs1776897) that mapped near to or within the HLA region (chromosome 1322 

6, base pairs: 20,000–40,000). The 93 WHRadjBMI SNPs with P < 10-5 (HapMap release 27 1323 

CEU data based LD (r2) threshold for clumping = 0.01, physical (kb) threshold for clumping = 1324 

500) resulted in 78 non-overlapping regions.  1325 
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