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Abstract—There is a rich theory of relations between lattices
and linear codes over finite fields. However, this theory has been
developed mostly with lattice codes for the Gaussian channel
in mind. In particular, different versions of what is called
Construction A have connected the Hamming distance of the
linear code to the Euclidean structure of the lattice.

This paper concentrates on developing a similar theory, but for
fading channel coding instead. First, two versions of Construction
A from number fields are given. These are then extended to
division algebra lattices. Instead of the Euclidean distance, the
Hamming distance of the finite codes is connected to the product
distance of the resulting lattices, that is the minimum product
distance and the minimum determinant respectively.

I. INTRODUCTION

Constructions of lattices from linear codes have been classi-
cally studied [1]. There are several ways to obtain lattices from
linear codes, which are usually referred to as Construction
A,B,C,. . .. For example, Construction D and its variations
involve sequences of nested binary linear codes of length N
that are embedded in ZN in the natural way (see e.g. [2]
for some recent results), while the term Construction A has
been used for a family of constructions obtained by quotient:
the classical Construction A takes a vector in ZN and uses a
map ρ2 : ZN → FN2 = {0, 1}N that reduces componentwise
(mod 2). Then ρ−12 (C) is a lattice of rank N , for C ⊂ FN2 a
linear code. This construction may be seen as a particular case
of the following more general construction [3]. Let Q(ζp) be
a cyclotomic field and Z[ζp] be its ring of integers, with p a
prime, and ζp a primitive pth root of unity. Let Fp denotes the
finite field with p elements. Consider ρ(1−ζp) : Z[ζp]

N → FNp
the reduction modulo the ideal p = (1− ζp) componentwise.
Then ρ−1(1−ζp)(C) is a lattice for C ⊂ FNp a linear code.
The first construction is obtained by choosing p = 2. In
fact, one may replace Q(ζp) by another number field K of
degree n (that is a field extension of Q of degree n), which
is either totally real or CM, and the prime (1 − ζp) by a
prime p totally ramified [4]. Let ρp : ONK → FNp be the
reduction (mod p) componentwise, where OK is the ring
of integers of K. Then ρ−1(C) is a lattice of rank nN for
C ⊂ FNp a linear code. This construction is motivated by its
applications to wiretap encoding. Another incentive to revisit
these classical constructions is found in the context of physical
layer network coding. In [5], the lattice obtained from the ideal

pOK/pOK has been studied for p a prime above p with a
large ramification index. In the cases explored, the quotient
OK/pOK is a polynomial ring, and the ideal pOK/pOK
corresponds to one of its ideals, which in turn defines a code
over the given polynomial ring.

In this paper, we are interested in two lattice constructions
from number fields, and an extension to division algebras.
While classically the Euclidean properties of the lattices are
of interest, here we consider instead the minimum product
distance (or the minimum determinant) of the constructed
lattices, having in mind coding applications to fading channels.
Indeed, after the diversity (that we will guarantee), the mini-
mum product distance [6] and determinant are respectively the
main code design parameter for fading (MIMO) channels.

We will use several results and notions from algebraic num-
ber theory. We refer the reader to [7] for a basic introduction
to this theory, including some standard facts and definitions
that we will use without explicit reference.

a) Construction 1: Consider a degree n totally real cyclic
extension K/Q, with cyclic Galois group 〈σ〉, and suppose
that some p ∈ Z is completely split in this extension, namely:
pOK = p1p2 · · · pn, where pi are separate prime ideals.

The Minkowski embedding maps x ∈ K to

ψ(x) = (x, σ(x), σ2(x), . . . , σn−1(x)).

Then ψ(OK) = L is a lattice in Rn. Define a reduction map

red1 : ψ(OK) 7−→ Fnp ,

where (x, σ(x), . . . σn−1(x)) gets mapped to

(x (mod p1), σ(x) (mod p1), . . . , σn−1(x) (mod p1)).

Let C ⊂ Fnp be a linear code. Then LC = red−11 (C) is the
first lattice that we are interested in studying. The proof that
this is indeed a lattice, together with a product distance lower
bound, are given in Section II. This construction is generalized
to the division algebra case, as shown in Section IV, where
the determinant of the difference of lattice points is lower
bounded.

b) Construction 2: Consider again a degree n totally real
cyclic extension K/Q, with cyclic Galois group, and a prime
p which totally splits. We define this time the reduction map

red3 : OK 7−→ Fnp



where x 7→ (x (mod p1), x (mod p2), . . . , x (mod pn)). We
show that on average, the coset representatives are far apart
in product distance in the lattice ψ(red−13 (Fnp )). In particular,
this allows us to choose low energy codewords, as proven in
Section III.

In this paper, by a lattice L, we will mean a Z-module of
rank n in Rn, that is L = Zx1 ⊕ Zx2 ⊕ · · · ⊕ Zxn ⊂ Rn, for
some basis {xi, i = 1, . . . , n}. The volume of a lattice L is
|det(x1, . . . , xn)| and is denoted by vol(L).

II. LATTICE CONSTRUCTION 1 AND MINIMUM DISTANCE

Let K/Q be a number field of degree n, with cyclic Galois
group 〈σ〉. We further assume that K is totally real, that is,
all the n embeddings of K are real, and that a prime p is
completely split in this extension, meaning that

pOK = p1p2 · · · pn,

where pi are separate prime ideals.
For x ∈ K, the so-called Minkowski embedding gives

ψ(x) = (x, σ(x), σ2(x), . . . , σn−1(x)). (1)

Then ψ(OK) = L is an n-dimensional lattice in Rn. Let us
now define a reduction map

red1 : ψ(OK) 7−→ Fnp ,

where (x, σ(x), . . . σn−1(x)) gets mapped to

(x (mod p1), σ(x) (mod p1), . . . , σn−1(x) (mod p1)).

Indeed, OK/p1 ' Fp, since K is a Galois extension, and there
are n distinct primes above p.

Since K is Galois, it is known that the automorphisms σk,
k = 1, . . . , n permute the prime ideals pi and we have that

pOK = σ(p1)σ2(p1) · · ·σn(p1),

with σn = 1. Let us now fix p = p1 and use the notation

pi =: σi(p), i = 1, . . . , n.

Since σ is an automorphism of K, we have a useful lemma.
Lemma 2.1: Take x and y in OK . The equations

x = y (mod pi) and σk(x) = σk(y) (mod σk(pi))

are equivalent for any k ∈ {1, . . . , n}.
Recall the number field version of the famous Chinese

Remainder Theorem.
Proposition 2.2 (Chinese Remainder Theorem): Let

M1, . . . ,Mk be pairwise prime ideals in OK , and take
arbitrary elements a1, . . . , ak in OK . Then there exists
x ∈ OK such that

x ≡ ai (mod Mi)∀i.

Furthermore

OK/(M1 · · ·Mk) ∼= OK/M1 ⊗ · · · ⊗ OK/Mk.

We next prove that the proposed construction gives a lattice.

Proposition 2.3: The mapping red1 is a surjective ring
homomorphism. If C is a linear subspace in Fnp , then LC =

red−11 (C) is a lattice of rank n in Rn.
Proof: That red1 is a surjective ring homomorphism

follows from the Chinese Remainder Theorem, and

red1(ψ(OK))/red1(ψ(pOK))

= red1(ψ(OK))/red1(ψ(p1p2 · · · pn))

' OK/p1 ⊗ · · · ⊗ OK/pn ' Fnp .

Then C is a subgroup of Fnp , and red−11 (C) is a subgroup of
the lattice ψ(OK) = L. Since |OK/pOK | < ∞, ψ(OK) and
red−11 (C) have same rank as Z-module, and LC = red−11 (C)
is a lattice of rank n in Rn.

Let us now suppose that C ∈ Fnp is a k-dimensional error
correcting code with minimum Hamming distance dH(C) =
d. We refer to such a code as an (n, k, d) code. By abuse of
notation, we write dH(c) for dH(c, 0) to denote the Hamming
weight of a codeword c of C.

The following propositions give a lower bound on the
minimum product distance [6] of the lattice red−11 (C). The
product distance of a lattice point x = (x1, . . . , xn) is by
definition (assuming all xi are nonzero, that is full diversity)

dp(x) =

n∏
i=1

|xi|.

Since a lattice point is of the form (x, σ1(x), . . . , σn−1(x))
for x ∈ OK , we may rewrite the product distance in terms of
an algebraic norm:

n∏
i=1

|xi| =
n∏
i=1

|σi(x)| = |NK/Q(x)|.

Note that since K is totally real, we immediately guarantee
that indeed all xi are nonzero, and thus the diversity criterion
is fulfilled. For a lattice, its minimum product distance dp,min
is

min
x 6=0

dp(x)

over all lattice points x.
Proposition 2.4: Let x1 6= x2 ∈ OK satisfy dH(red1(x1 −

x2)) ≤ t, we then have that

dp(x1 − x2) ≥ pn−t.

Proof: Let us set x = x1 − x2. As red1(x) ∈ Fnp has
nonzero coefficients in at most t positions, it follows that
σi(x) ∈ p for at least n − t powers i. This together with
Lemma 2.1 reveals that x ∈ σn−i(p) = pn−i for at least n− t
ideals above p in K. Therefore pn−t|NK/Q(x).

Proposition 2.5: Let C be an (n, k, d) linear code over Fp.
The volume of LC = red−11 (C) is

vol(LC) = pn−k
√
d(OK/Z),

where d(OK/Z) denotes the discriminant of OK .
If furthermore the highest weight codeword in C has

Hamming weight t, then

dp,min(LC) ≥ pn−t.



Proof: The mapping red1 is surjective, and red−11 (C) is
of index pn−k, therefore the volume of LC is

vol(LC) = pn−k
√
d(OK/Z).

The second claim follows from Proposition 2.4, since for any
x ∈ OK , dH(red1(x)) ≤ t and

dp(x) ≥ pn−t.

Example 2.1: Let K be given by the minimal polynomial
X3 + X2 − 10X − 8. It is totally real of degree n = 3, and
has a cyclic Galois group. Furthermore

2OK = p1p2p3.

Take C = {(000), (101), (011), (110)}, the binary parity
check code with parameters (3, 2, 2). Then

dp,min(LC) ≥ p.

III. LATTICE CONSTRUCTION 2 AND ITS PROPERTIES

In this section we will describe another lattice construction
method by considering a well known general form of Con-
struction A, but by concentrating on number field lattices.

A. A First Reduction (mod p)

Let us consider a real lattice

L = Zx1 ⊕ Zx2 ⊕ · · · ⊕ Zxn ⊂ Rn, (2)

of rank n for some basis {xi, i = 1, . . . , n}.
Let p be a prime, and y =

∑n
i=1 aixi ∈ L a lattice point,

where ai ∈ Z. Define the mapping red2 : L 7→ Fnp as

red2(y) = (a1 (mod p), a2 (mod p), . . . , an (mod p)).

This gives a surjective mapping from L to Fnp . It is well
known that red−12 (C), where C is a linear code in Fnp , is a
sublattice of L.

Let us now suppose that the product distance dp,min(L) =
c 6= 0 and that we have a k-dimensional linear code C ⊆ Fnp .

Proposition 3.1: We have that

vol(red−12 (C)) = pn−kvol(L),

dp,min(red−12 (C)) ≥ c.

Proof: The first equality follows just as in the previous
section. The minimum product result follows as we know that
red−12 (C) is a sublattice in L.

Let us now suppose that we have a totally real field K
with cyclic Galois group, and the Minkowski embedding ψ as
defined in (1). As previously L = ψ(OK) ⊂ Rn is a lattice
of rank n. Let {y1, . . . , yn} be a Z-basis for OK . Let us set
xi = ψ(yi) and X = {x1, x2, . . . , xn}. We then have

L = Zx1 ⊕ · · · ⊕ Zxn,

a particular case of (2), where the basis is coming from a
number field. We clearly have that

red−12 (0, · · · , 0) = ψ(pOK) and red−12 (Fnp ) = ψ(OK).

Let us now consider the set

X(p) = {
n∑
i=1

hixi|hi ∈ N, 0 ≤ hi ≤ p− 1}.

It contains pn elements and red2(X(p)) ' Fnp . In other words
the set X(p) presents a collection of coset leaders for the group
ψ(OK)/ψ(pOK).

The first construction of Section II gave an explicit relation
between the product distance of a lattice point x and the weight
of the codeword red1(x). This allowed to lower bound the
product distance of the lattice red−11 (C) if we knew the weight
of the codewords in C. This second construction does not offer
such a luxury. However, we will show next that if the ideal
structure of the field K is suitable, we will find out that the
elements in X(p) are on average well separated in product
distance. This is a desirable property to use the elements in
X(p) for bit labeling or for coset coding for fading channels.

B. A Second Reduction (mod p)

The general construction based on the mapping red2 obvi-
ously works for any prime p and basis {x1, . . . , xn}. However,
if we again suppose that

pOK = p1p2 · · · pn,

the average product distances of the elements in X(p) is better
understood.

For x ∈ OK , consider the reduction mapping red3 :
OK 7−→ Fnp , given by

red3(x) = (x (mod p1), x (mod p2), . . . , x (mod pn)).

Lemma 3.2: Using the previous notation we have that

red3(X(p)) ' Fnp

Proof: The reduction mapping red3 : OK 7→ Fpn, is a
surjection. This follows from Proposition 2.2. As an Abelian
group OK is freely generated by y1, y2, . . . , yn. Therefore
〈red3(y1), . . . , red3(yn)〉Fp = Fnp . As there are pn elements
in X(p) this mapping must be a bijection.

We next study the product distance of the lattice
ψ(red−13 (Fnp )).

Lemma 3.3: Take x in OK such that the vector red3(x) has
Hamming weight k. Then its product distance dp satisfies

dp(ψ(x)) ≥ pn−k.

Proof: By definition red3(x) is

(x (mod p1), x (mod p2), . . . , x (mod pn)) ∈ Fpn.

Therefore if the ith coordinate of red3(x) is zero then we must
have that x ∈ pi. Therefore N(pi)|NK/Q(x), and dp(x) =
|NK/Q(x)|.

This finally gives the distribution result of the product
distances between the elements in X(p).

Proposition 3.4: Let us fix ti ∈ X(p). We then have that

dp(ψ(ti)− ψ(tj)) ≥ p,



for all but (p− 1)n elements tj ∈ X(p), i 6= j.
Proof: We saw in Lemma 3.2 that red3 gives a bijection

between X(p) and Fnp . Therefore for a fixed vector ti there
are exactly (p − 1)n vectors tj , i 6= j for which red3(ti) −
red3(tj) = red3(ti − tj) has weight n. The rest then follows
from Lemma 3.3.

In particular we have the following bound for p = 2.
Corollary 3.5: Pick p = 2 and fix ti ∈ X(2). Then

dp(ψ(ti)− ψ(tj)) ≥ 2,

for all but one tj ∈ X(2), j 6= i.
In other words, if p = 2, any Z-basis of OK does already

give a very good separation (in product distance) for points in
X(2). This is meaningful for the design of codes for fading
channels. If we are using classical lattice constructions for bit
mapping or coset coding, it is desirable that we can choose
coset representatives such that their (normalized) Euclidean
distance is big. For fading channels, the coset representatives
should have a good (normalized) product distance instead. The
above construction cannot guarantee that the product distance
between every representative is ”large”. However, Proposition
3.4 does show that on average the representatives are far apart
in product distance. In particular this construction also allows
to choose low energy codewords for the coset representatives,
therefore giving a coset code promising shaping properties.

Remark 3.1: One should note that we could have also
defined a third lattice construction by considering mapping

red3 ◦ ψ−1 : ψ(OK) 7→ Fnp .

IV. TWO CONSTRUCTIONS FOR DIVISION ALGEBRAS

In this section we will give two lattice constructions for
division algebras. The first construction is a generalization of
the construction of Section II for number fields. We first need
a general definition of a lattice in the space Mn×T (C).

Definition 4.1: A lattice L ⊆Mn×T (C) has the form

ZB1 ⊕ ZB2 ⊕ · · · ⊕ ZBk,

where the matrices B1, . . . , Bk are linearly independent over
R, i.e., form a lattice basis, and k is called the rank or the
dimension of the lattice.

This definition covers also the case where L ⊂ Cn (and
obviously L ⊂ Rn). For any lattice in Mn×T (C) we always
have the general Construction A, where we simply take a
reduction with respect to a given prime p on coefficients of
the basis matrices (see the reduction red2 in Section III for
number fields). This method provides a reduction map from
L to (Fp)k, where k is the dimension of the lattice L.

However, we will present two versions of Construction A
that are specific to division algebras. Before we can work
with division algebras, we have to generalize the number field
construction to totally complex fields. We warn the reader that
the algebraic prerequisites for this section are higher than for
the previous sections. For applications of orders in division
algebras to coding theory, we refer the reader to [8]. For the
algebraic theory of orders, we suggest [9].

A. First Construction for Complex Number Fields

Suppose that K/Q(i) is a degree n cyclic extension of
algebraic number fields with Galois group 〈σ〉. The relative
Minkowski embedding maps x ∈ K to

ψ(x) = (x, σ(x), σ2(x), . . . , σn−1(x)),

similarly as (1). Then ψ(OK) = L is a 2n-dimensional lattice
in Cn. Let us now suppose that p is a prime in Z[i] such that
NQ(i)/Q(p) = p, for some prime p ∈ Z, and p is completely
split in K, namely:

pOK = P1P2 · · ·Pn,

for P1,P2, . . . ,Pn distinct prime ideals of K. We then define
a mapping

red4 : ψ(OK) 7−→ Fnp ,

where (x, σ(x), . . . σn−1(x)) gets mapped to

(x (mod P1), σ(x) (mod P1), . . . , σn−1(x) (mod P1)).

We then have an analogue for the real case (defined with
red1 in Section II) with the same proof.

Proposition 4.1: The mapping red4 is a surjective ring ho-
momorphism. If C is a linear subspace in Fnp , then red−14 (C)
is a lattice in Cn.

B. First Construction for Division Algebras

Suppose that K/Q(i) is a degree n cyclic extension of
algebraic number fields. Let D = (K/Q(i), σ, γ) be a cyclic
division algebra, with γ ∈ Z[i].

We can consider D as a right vector space over K and every
element a = x0+ux1+· · ·+un−1xn−1 ∈ D has the following
representation as a matrix ψ(a) = A

=


x0 γσ(xn−1) γσ2(xn−2) · · · γσn−1(x1)
x1 σ(x0) γσ2(xn−1) γσn−1(x2)
x2 σ(x1) σ2(x0) γσn−1(x3)
...

...
xn−1 σ(xn−2) σ2(xn−3) · · · σn−1(x0)

 .

Note that from now on, ψ will refer to the map that sends
an algebra element to its matrix representation given above.
A Z-order Λ in the division algebra D is a finitely generated
subring of D such that Q(Λ) = D [9]. We then have that
ψ(Λ) is a 2n2-dimensional lattice in Mn(C).

Let us now consider a specific order Λ = OK ⊕OKu · · ·⊕
OKun−1 and fix a prime p such that pOK = P1 · · ·Pn for
which NQ(i)/Q(p) = p, for some prime p.

We can now define a reduction map red5 : Λ 7→ Mn(Fp),
by simply setting for a = x0 + ux1 + · · · + un−1xn−1 ∈ D,
that red5(a)

=


x0 γσ(xn−1) γσ2(xn−2) · · · γσn−1(x1)

x1 σ(x0) γσ2(xn−1) γσn−1(x2)

x2 σ(x1) σ2(x0) γσn−1(x3)
...

...
xn−1 σ(xn−2) σ2(xn−3) · · · σn−1(x0)

 .



Here the overline refers to reduction modulo P1.
We get the following analogue to the commutative case.
Proposition 4.2: Suppose that p and (γ) are pairwise prime.

We then have that the mapping red5 is a group homomorphic
surjection from ψ(Λ) to Mn(Fp). If C is an additive group in
Mn(Fp), then red−15 (C) is a lattice in Mn(C).

Proof: The group homomorphism part is obvious. Sur-
jectivity can be proved analogously to Proposition 2.3 as we
can use the same proof for every layer ψ(uixi) independently.
Note that the additional terms γ do not pose a problem as we
chose γ such that it is invertible in all the groups OK/Pi.
The fact that red−15 (C) is a lattice follows again similarly to
Proposition 2.3.

Remark 4.1: Obviously Mn(Fp) can be realized as a vector
space Fn2

p and any subspace C ⊆Mn(Fp) can be realized as
a subspace in Fn2

p .
Let us suppose that we have a set of elements X =

{x1, . . . , xpn2 } ⊂ ψ(Λ) ⊂ Mn(C) such that red5 gives us
a bijection between X and Mn(Fp). In an analogous way to
the second construction in Section III, we are now interested
on average values of det(xi−xj) between elements in X . We
need a well known lemma first first.

Lemma 4.3: Let GLn(Fp) be the set of matrices in Mn(Fp)
that have non zero determinant. Then |Mn(Fp)| = pn

2

and

|GLn(Fp)| = (pn − 1)(pn − p) · · · (pn − pn−1).

Proposition 4.4: Let us suppose that X = {x1, . . . , xpn2 }
is a set of elements in ψ(Λ) ⊆ Mn(C) such that red5(X) =
Fn2

p . Then
|det(xi − xj)| ≥ 1, xi 6= xj .

If xi is fixed, then

|det(xi − xj)| ≥
√
p,

at least for |Mn(Fp)| − |GLn(Fp)| − 1 elements xj .
Proof: When xj goes through all the elements in X we

have that red5(xi − xj) goes through all the elements in
Mn(Fp). Clearly the determinant and reduction mapping red5
commute: (det(xi − xj)) = det(red5(xi − xj)), where over-
line refers to reduction modulo P1. Therefore if red5(xi−xj)
is not invertible it means that P1 | det(xi − xj). The theory
of central simple algebras tells us that det(xi−xj) ∈ Z[i] and
therefore if P1 | det(xi − xj) we have that p | det(xi − xj).
The rest then follows from Lemma 4.3.

C. A Second Division Algebra Construction

Our previous construction was strictly restricted to the case
where the ring Λ has a particularly simple structure and the
prime p is completely split in the maximal subfield K. In
this section we present a version of Construction A, that is
an analogue to the commutative version of the construction
presented in Remark 3.1. The crucial point of this construction
is that the prime p is completely split in K. The division
algebra analogue for this result is the following.

Definition 4.2: We say that the division algebra D splits at
the prime p ⊂ Z[i] if

D ⊗Q(i) Q(i)p 'Mn(Q(i)p),

where Q(i)p is the p-adic completion of D at the prime p.
Let us now suppose that we have a Q(i)-central index n

division algebra D and a maximal order Λ. The following
proposition is a collection of results from [9], stated without
proof.

Proposition 4.5 ([9]): Let us suppose that we have a max-
imal two-sided ideal M ⊂ Λ such that M ∩ Z[i] = p. If D is
split at the prime p then

Λ/M 'Mn(Fp).

Let us now denote by f the reduction mapping that gives
the isomorphism of the previous proposition. We next define
a reduction mapping red6 that will give us the desired lat-
tice construction. Consider the cyclic division algebra D =
(K/Q(i), σ, γ) and let ψ be the previously defined embedding
to Mn(C).

Proposition 4.6: The mapping red6 : ψ(Λ) 7→ Mn(Fp)
where for an x ∈ ψ(Λ) we have

red6(x) = f ◦ ψ−1(x)

is a group homomorphism and if C is a linear subspace in
Mn(Fp), then f−1(C) is a lattice in Mn(C).
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