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New Lower Bounds and Constructions for Binary Codes It was shown in [24] that a binary code can correct or fewer asym-

Correcting Asymmetric Errors metric errors {-errors) if and only ifA(C') > ¢ + 1. A binary code
of lengthn and minimum asymmetric distanck is called a binary
Fang-Wei Fu, San Ling, and Chaoping Xing (n, A) asymmetric code. LeF(n, A) denote the maximum number

of codewords in a binary code of lengthand minimum asymmetric
distanceA. One of the fundamental research problems in the theory

Abstract—in this correspondence, we study binary asymmetric error- of asymmetric error-correcting codes is to deterniiite, A) or give

correcting codes. A general construction for binary asymmetric error-cor- dl d b d
recting codes is presented. We show that some previously known lower 9000 IOWer and upper bounas. _
bounds for binary asymmetric error-correcting codes can be obtained In this correspondence, we give a general construction and some
from this general construction. Furthermore, some new lower bounds for new lower bounds for binary asymmetric error-correcting codes. This
binary asymmetric error-correcting codes are obtained from this general  ¢orrespondence is organized as follows. In Section I, we present a
construction. These new lower bounds improve the existing ones. . . . .
general construction for binary asymmetric error-correcting codes by
Index Terms—Asymmetric error-correcting codes, code construction, modifying Xing’s construction of binary constant-weight codes (see
lower bounds, polynomials. [34]). In Section |1, we first give a general lower bound on the sizes of
the binary asymmetric error-correcting codes constructed in Section II.
Then, we show that some previously known lower bounds for binary
_ _ _ ~asymmetric error-correcting codes can be obtained from this general
Binary error-correcting codes are usually designed for communicgsnstruction. Furthermore, some new lower bounds for binary asym-
tion systems modeled by the binary-symmetric channel. However, fetric error-correcting codes are obtained from this general construc-

certain communication systems, such as optical communications §g#. These new lower bounds improve the existing ones.
some computer memory systems, the error probability fioim 0 is

significantly higher than the error probability frobrto 1. These com-
munication systems are modeled by the binary asymmetric channel (the
Z-channel). Error-correcting codes for the binary asymmetric channelXing [34] gave a construction of binary constant-weight codes. By
have been studied since the 1950s. There are a number of papers dedgifying his method, we present a general construction for binary
cated to the construction of good codes and the derivation of lower agymmetric error-correcting codes.
upper bounds for the asymmetric error-correcting codes, see [1]-[33]-et F', be a finite field ofg elements, wherg is a prime power. For
[35], and references therein. Klgve [19] gave a unified account of err@-monic polynomialf (x) € F,[x], consider the residue class ring
correcting codes for the binary asymmetric channel.

For two binaryn-tuples R = F [=]/(f(x)).

|. INTRODUCTION

Il. A GENERAL CONSTRUCTION

z=(x1,22,...,2,) and ¥ = (y1,y2,.--,Yn) Actually, in the isomorphic meaning, here we can consider the residue

class ringR as

the asymmetric distance betweemndy is defined as

R ={g(x) € Fy[x] : deg(g(x)) < deg(f(x))}.
do(2,y) = max{N(z,y), Ny, 2)}

The addition and multiplication operations overare the polynomial

where addition and multiplication modulg(z).

Let f(r) have the factorization
N(z,y)=|{i: v =0andy; =1} |.

kv
For a binary cod€” C {0,1}", the minimum asymmetric distance of flz) = HP? (z)
C is defined as =t

wherep: (z),...,pr(x) are distinct monic irreducible polynomials in
A(C) = min{da(z,y) : =,y € C andz # y}. P1(0). o pe() poly

F [«] andeq,. .., e are positive integers. Itis known that all invertible
polynomials of the ring? form a multiplicative group, denoted by
orkis
Sci- R™ = (Fala]/(f()))".
iining

aun-. - . . . .
thid is a finite Abelian group and consists of all polynomialsRrnwhich
are co-prime tof (¢), that is,
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elements, wheré; is the degree of; (). It is obvious that the séf;,  Hence, the elemeii2(u)/2(v) is the identity inG. This implies that
of all nonzero elements df, is a subgroup oR™. The quotient group in the groupR™, the element

G =R'/F; Q) I O = i)™

Q(v) li[l@(:c — )

is equal to a nonzero elemefitof F';,. Denote

is a finite Abelian group with

k
o 1 . 1 d; di(ei—1)
" (f(2) & —— (f(x)) = (" = 1)g"™*
(¢—1) (q_l)il;[l S={i: v;y=0andv; =1}
elements. Actually, in the isomorphic meaning, here we can consic?é}d '
G as the set of all monic polynomials &, that is, T ={i: u; =1andv; = 0}.
. . . ThenS (T = B, and eithelS # P orT # () sinceu # v. Furthermore
G={g(x) € Flr]: deg(g(x)) < deg(f(x)). glx) is monic N #horl# #
and(g(x), f(x))=1}. (2) | S |=N(u,v), |T|=N(v,u).

s . L It is easy to see that
The multiplication operatio?) overG is given by

Ou) [ Ole —ai)
§ €T .
a(x) @ blx) = M (a@) Dbix)) 20 - Tow—a] ="
JES
where in the groupR*. This is equivalent to the fact thgt(x) divides the
. polynomial
M(h(zx)) = h,, h(x)
A(x)2 H(r —a;)—f H(a — ;) € Fylx].

for i€l ics

. . The roots of the polynomidl], . (= — ;) area;, i € T, and the roots

B(2) = hona™ + hyp_12™ " 4 oo 4 hyx + ho € Fylx]. of the polynomial3[],. (= — a;) area;,i € S. Since

Hereh., # 0 is the leading coefficient ot (x). {a; 11 €8} ﬂ{ai ieTh=10

In the following, we use the quotient grodp to construct binary )
asymmetric error-correcting codes. For simplicity, we assume that ffad ithers # 0 or T # (), we have
finite Abelian groupg R*, () and(G, ) are given by (1) and (2), H(‘” —) # 8 H(‘” — ).

respectively. €T €S

Construction: Letn andd be two positive integers satisfying< ¢  Hence,A(x) # 0 and the degree od () is at most
and2 < d < n. Let f(z) € F4[z] be a monic polynomial of degree
d such that there exist distinct elementsvy, s, ..., a, € Fg with max{| S |.[ T |} = du(u,v).
flai) #0forall: = 1,2,...,n. Then(x — a;) is co-prime tof (x) Therefore,
fori = 1,2,...,n. Hence,

da(u,v) > deg(f(x)) = d.
(r — ;) € G, 1=1,2,...,n.
This completes the proof. d

Consider the map Foreveryg € G, if Cy # 0, C, is a binary(n, A > d) asymmetric

Q: {0, 1)" = & code. Hence(, can correctl — 1 or fewer asymmetric errord {er-
L rors). Next we design a decoding method for the asymmetric error-cor-
(C1,Caye e ey Cn) H®(T —a)% EG. recting codeC,.
=1

Decoding Algorithm: Assume that the received vector is

For everyg(x) € G, denote ¥ = (1,920 sym) € {0,137
Cy =2 (g(x)). Calculate

For everyg € G, if Cy # 0, thenC is a binary(n, A > d) asym- Ry(z) = H ®(:c —a))" € G

metric code. i=1

Proof of the Construction:For everyg € G, if C; # 0, we want
to show that

and

g(x)

E(z)= 22

() =3 5

To find the polynomialE(z), we can use the Euclidean algorithm.
Denotel = deg(E(x)).

eG (sinceg € G).
do(u,v) > d, u,v € Cy andu # v.

Letu = (uy,usz,...,un)ande = (v1,vz,...,v,). Then

Qu) = Qv) = g(x) € G. i) If 1 =0, thatis,E(z) = 1, then decodg into y.



i) If 0 <1< d—1andE(x)hagl distinctrootsy;,, ai,, ..., i,

then decodg into ¢ = (¢, c2,. .., ¢, ) where
{y;a JFE i, ..

c; = X . .. .
,U]@l-, J =02, 00,12

iii) Otherwise, we declare that the decoding has failed.
Proof of the Decoding Algorithm:Suppose the codeword =

(c1,¢2....,c) is transmitted. Assume that errors occur in positions

i1,02,...,pwhere0 <l <d—landl <i) <ix <---<i; <.
Then the received vectqr is given byy = c¢forl = 0 andy =

(Y1.Y25--.,yn) for1 <1 < d—1where
Y; = ¢y, forj#il,ig,...,il
y]':()andcj:l, fOI’jIl'lﬁiz./...,i[.

Hence, ifl = 0, then

Rya) = Relw) = [[ @ = a)) = glx) € G

andE(z) = 1.
If1<!<d-1,bythefactthat; = 1forj =i,i2,...,i;, We
have

Ry(x) = H ®(¢ —a;)¥ = H ®(:v — ;)

FAiL09,0
and
E(z) = 9(«) =(z—aip)(z—ay) - (& —ay).
Ry(x)
Hence,E(x) has! distinct rootsx;, , a4, , . . ., i, . Therefore, we de-

codey into ¢. This completes the proof. O

I1l. NEw LOWER BOUNDS

From the general construction in Section Il, we know fat g €
G form a partition of{0,1}". Since| G |= ®* (f(«)), we can find
one elementr(z) € & such that

27L
ks > YRS

X NFie)

Hence, we obtain the following result.

| C

Theorem 1: Let F; be a finite field ofq elements, wherg is a
prime power. Let» andd be two positive integers satisfying < ¢

and2 < d < n. Let f(x) € F,[z] be a monic polynomial of degree

d such that there exist distinct elementsv;, as, ..., a, € Fg with
fla;) #0foralli =1,2,...,n. Then there exists a binafy., A >
d) asymmetric cod€’ with size
271
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obtained from our general construction and Theorem 1. Furthermore,
some new lower bounds for binary asymmetric error-correcting codes
are obtained from Theorem 1. These new lower bounds improve on
the existing ones.
Theorem 2: (see [19, Theorem 6.1])
i) If n is a prime power, then fai > 2

an

s > - .
L(n.d) 2 nid=l4nd=24...4n4+1 ©)
ii) If n 4+ 1is a prime power, then fof > 3
T'(n,d) > 2 6
(n,d) > CES (6)

i) If ¢isthe least prime power satisfyigg> n+2, then ford > 3
2n
-q

T(n,d) > )

qu—1

d—2"

Proof:
i) Let¢ = n in Theorem 1 since is a prime power. Let

F,={a1,02,...,04}

and letf(z) € F4[z] be a monic irreducible polynomial of
degreed (d > 2). Then

B (f(x)=q"—1
and

d—1
=n

® (7)) = =] -

— 4+ +n+1.
qg—1

+n

It is easy to see that(«;) # O forall: = 1,2,...,n since
f(x) is a monic irreducible polynomial of degree(d > 2).
Hence, (5) follows from Theorem 1.

ii) Let g = n 4+ 1in Theorem 1 since + 1 is a prime power. Let
F,={0,a1,a2,...,an}

and letf(x) = zfi(x) wherefi(x) € Fy[z] is a monic irre-
ducible polynomial of degreé — 1. Then

@ (f(x)=(¢— D¢ "= 1)
and
Q* (f(‘L)) = qd71 —1= (n + 1)d71 _ 1.

It is easy to see that(w;) # 0 foralli = 1,2,...,n since
«; € F; andfi(x) is @a monic irreducible polynomial with de-
greed — 1 > 2. Hence, (6) follows from Theorem 1.

From the general construction in Section 1, it is easy to see the fol-ill) Since g is the least prime power satisfying> » + 2, we can

lowing.
Corollary 1: With notations as in Section II, we have

T'(n,A) > maxzea | Cy | -

(4)

Bound (4) is in general stronger than bound (3), but it is less explicit

and requires more computation to determine.

assume in Theorem 1 that

F,={0,1,a1,02,...,qn,...}.

Several lower bounds for binary asymmetric error-correcting codes

were obtained by a discussion of Varshamov’s constructions and their

generalizations (see [17, Theorem 6.1] and [11], [12], [17], [29], and

[31]). In this section, we first show that these previously known lower
bounds for binary asymmetric error-correcting codes can also be

Let f(z) = =(x — 1) . Then
®(f(x)=(¢= 17"
and
O (f(x)=(g—1)¢" " =¢""" ="
Itis easy to see that(a;) # Oforalli = 1,2,...,n. Hence,

(7) follows from Theorem 1. O



Remark 1: As pointed out by one referee, Bose and Cunningham [9] ii) In Theorem 1, let
presented a construction of binary asymmetric error-correcting codes

if n+ 1 is a prime power. This construction yields the following lower Fy={81,02,....0m,ar,q2,....au }.
bound: If2 <d<m,let
L(n.d) > (nfﬁ ®) fe)y=(x—8)(x = F2) - (& — Ba).
Note that bound (8) is slightly worse than bound (6). The referee ob- Then
served that after redescribing the construction of Bose and Cunningham & (f(2) = (¢=1)", B (f(a)) = (¢ = 1)

[9] in polynomial form it is somewhat similar to our construction here.

We note that the construction of Bose and Cunningham is actually a If d > m, by the fact thatl — m = 20/ + s, we have
special case of our general construction by takiitg) = = in the

proof of Theorem 2 ii). Bound (8) follows from Theorem 1 by noting g 4(‘12_ 1),

that®(z?) = (¢ — 1)¢* ' and®*(2¥) = ¢! = (n + 1)*7'.
choose distinct monic quadratic irreducible

4
< <—
- 2~

S ool
m|~

. . Hence, we ca
In the following theorem, we show that the lower bounds given by

olynomials
Theorem 2 can be generalized and improved by using Theorem 1. Note poly
that the number of monic quadratic irreducible polynomialgifjx] pi(x),pa(2), ... pole)
isq(q—1)/2.
in F[z]. Let
Theorem 3:
iy If ni i d<d< h
i) If nis a prime power and < _171;: en Flo) = (o — gl)lﬂ (o= o)~ (2 — Bun) HP (@),
T(n,d) > > _(’1;() — 9)
" n Thendeg(f(x)) = d and
wherer ands are the two unique nonnegative integers satisfying o ,
d = 2r +3sands € {0,1}. (f(x)=(@-1D"q¢" (¢"=1)"
i) If nisnota prime power, glenot& as the least positive integer * (f(z)) = (q — 1)’"—1(15'((12 _ 1)"'
such thaty; = »n + m is a prime power. I2 < d < m, then
o Itis easy to see thaft(«;) # O foralli = 1,2,...,n. Hence,
L(n,d) > T (10) by Theorem 1, we obtain (10) and (11). O
If d > m, then The lower bound (9) in Theorem 3 is better than the lower bound (5)
on in Theorem 2. Note that faf > 2
r /71'7d) Z ! © -l (11) « - S|
( (g—1)m g (¢* = 1) =) -1 < ¥ 1=nt -1

wherer’ ands’ are the two unique nonnegative integers satisfyin

) ) £ 5
d—m=2"+s ands’ € {0,1}. gnd the equality holds if and only & = 2 or 3. Hence, ford > 2

"2 _ 3 _ s 5
Proof. it e S T
i) Let¢ = n in Theorem 1 since is a prime power. Let n—1

F,={ai,as,...,a4}.

and the equality holds if and only i = 2 or 3.
The lower bound (9) in Theorem 3 can be rewritten in the following

Since form. If n is a prime power, then
d ) -1 "
<—<2 1< (1, ) T'(n, d)>¢ d evenandl > 2 (12)
2=-2 2 2 (n?2 —1)2
we can choose distinct monic quadratic irreducible polynomials T(n,d) > (n (:_22 7 doddandd > 3. (13)
p1(x),p2(x)s- .. pr(2) (n2=1)"72 (n3-1)
in F,[z] and a monic cubic irreducible polynomiaigz) in For two sequencefy(n) 1= and{h(n)};Z, we say
F [«]. Let /
! g(n) = O(h(n)), if lim gln) _ =1
] ’ n—oo h 7’))
=r(@) Ep"(l’)' By direct computation, it is not hard to see that
n—1
Thendeg(f(z)) = d and Bound (12)— Bound (5)= O <d27> , d even andl > 4
5 (f(s)) — (= 1) (¢ —1)° ~ (n® = 1)"(n® — 1)° Bound (13)— Bound (5)= O <T> , doddandd > 5.
. ¢-1 n—-1 Letm = 1in Theorem 3 ii), then we obtain the following.
Itis easy to see that(«;) # Oforalli = 1,2,...,n. Hence, by ) )
Theorem 1 Corollary 2: If n + 1 is a prime power, then fof > 2

(n—1)2" 2"
(n? — 1)r(n® — 1)+ Fond) 2 G s 7 =1

T(n.d) > (14)



wherer ands are the two unique nonnegative integers satisfying
1=2r+sands € {0,1}.
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(6) in Theorem 2. Note that fof > 3
n+1)°[n+1)?=1" <+ —1=m+1D"" -1

and the equality holds if and only if = 3.

1
The lower bound (14) in Corollary 2 can be rewritten in the following s
form. If n + 1 is a prime power, then
on [2]
L(n,d) > 2 : Gy deven andl > 2 (15)
n+D[n+1)2-1]"=2 (3]
T(n,d) > CAR— doddandl > 3. (16)
, 2 _ -
[(n+1) 1172 [4]
By direct computation, it is not hard to see that
_ o« n—1 [5]
Bound (15)— Bound (6)= O (%) ,
n [6]
d evenandl > 4
[ — 1)2"~! [71
Bound (16)— Bound (6)= O (%) ,
n [8]
d odd andd > 5.
[9]
Letm = 2 in Theorem 3 ii), then we obtain the following.
Corollary 3: If n + 2 is a prime power, then faf > 3
[10]
277.
n,d) >
Ln.d) 2 (n+ L)(n+2)[(n+2)%2-1]" (7
11
wherer ands are the two unique nonnegative integers satisfying ]
2=2r+sands € {0,1}. [12]
The lower bound (17) in Corollary 3 is better than the lower bound
(7) in Theorem 2. Note that fat > 3 andg = n + 2 [13]
qs(q2 _ 1)1" S q27”+s — (_[d72 [14]
and the equality holds if and only if = 3. Hence, ford > 3 [15]
(a=Da"(¢" = 1) < ¢ = ¢ (16]

and the equality holds if and only éf = 3. [17]
The lower bound (17) in Corollary 3 can be rewritten in the following
form. If n + 2 is a prime power, then for evehandd > 4 [18]

271

I(n,d) > — (18)
(n+ D[(n+2)? — 1] [19]
and for oddd andd > 3, [20]
L(n,d) > = aw- 19 2
(n+1)(n+2)[(n+2)2-1]"2
[22]

Note that ifn 4+ 2 is a prime power, the lower bound (7) in Theorem 2
is given by

on [23]
24
By direct computation, it is not hard to see that for edeandd > 4 [24]
_ Han—1
Bound (18)— Bound (20)= O <%) [25]
n
[26]
and for oddd andd > 5
[27]

Bound (19)— Bound (20)= O <M) )

nd+1

that helped to improve the correspondence.
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