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Abstract

Protein complexes are key entities to perform cellular functions. Human diseases are also revealed to associate with some
specific human protein complexes. In fact, human protein complexes are widely used for protein function annotation,
inference of human protein interactome, disease gene prediction, and so on. Therefore, it is highly desired to build an up-to-
date catalogue of human complexes to support the research in these applications. Protein complexes from different
databases are as expected to be highly redundant. In this paper, we designed a set of concise operations to compile these
redundant human complexes and built a comprehensive catalogue called CHPC2012 (Catalogue of Human Protein
Complexes). CHPC2012 achieves a higher coverage for proteins and protein complexes than those individual databases. It is
also verified to be a set of complexes with high quality as its co-complex protein associations have a high overlap with
protein-protein interactions (PPI) in various existing PPI databases. We demonstrated two distinct applications of CHPC2012,
that is, investigating the relationship between protein complexes and drug-related systems and evaluating the quality of
predicted protein complexes. In particular, CHPC2012 provides more insights into drug development. For instance, proteins
involved in multiple complexes (the overlapping proteins) are potential drug targets; the drug-complex network is utilized
to investigate multi-target drugs and drug-drug interactions; and the disease-specific complex-drug networks will provide
new clues for drug repositioning. With this up-to-date reference set of human protein complexes, we believe that the
CHPC2012 catalogue is able to enhance the studies for protein interactions, protein functions, human diseases, drugs, and
related fields of research. CHPC2012 complexes can be downloaded from http://www1.i2r.a-star.edu.sg/xlli/CHPC2012/
CHPC2012.htm.
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Introduction

Protein complexes are a form of quaternary structures that are

of great importance for understanding cellular organization and

functions. They are involved in many essential biological

processes, such as the transcription of DNA, the translation of

mRNA, signal transduction and other processes. For example, the

RNA-Induced Silencing Complex (RISC complex) [1] plays an

important role in gene regulation by micro RNAs (miRNA) and in

defense against viral infections by incorporating one strand of a

small interfering RNA (siRNA) or miRNA. Another example is the

RNA polymerase II complex [2], which transcribes genetic

information into messages for ribosomes to produce proteins.

Moreover, several recent studies have revealed the associations

between some specific protein complexes and human disorders.

For instance, the Crumbs complex is associated with several

human diseases, including blindness and tumor formation [3]. The

IkB kinase (IKK complex) is an essential regulator of NF-kB

activation while dys-regulated NF-kB signaling will lead to various

diseases including cancer, chronic inflammation and neurodegen-

erative diseases [4].

With the recent development of experimental techniques, such

as tandem affinity purification with mass spectrometry (TAP-MS),

the information and knowledge of these biologically important

units become more enriched and are stored in a number of

databases. In 2004, a database named PINdb [5], which was

compiled from the published literature and existing databases,

provides us with many nuclear protein complexes for the first time.

Later, MIPS group released a database called CORUM in 2008,

which is a collection of experimentally verified mammalian protein

complexes [6]. The majority of protein complexes in CORUM

originates from human (65%), followed by mouse (14%) and rat

(14%). In addition, the HPRD database [7] also provides us with

many high-quality human protein complexes that are manually

curated. Note that while each database has certain overlaps with
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others, they can only cover part of the complete set of protein

complexes.

As data for protein complexes are identified and classified,

various computational applications utilizing those protein com-

plexes have recently been proposed for different purposes. For

example, Yang et al. [8] integrated data of protein-protein

interactions (PPI) and CORUM protein complexes to predict

human disease genes. Goh et al. [9] also utilized CUROM

complexes to calculate Proteomics Signature Profiles (PSP) for

cancer patients. PSP profiles can be used for effective clustering of

patient samples and is a powerful tool for cancer proteomics. A

recent application [10] also utilized CORUM complexes to

investigate the relationships between human complexes and drugs.

Although CORUM is a credible database, it is still far away from

being complete. Hence, it is highly motivated to integrate all the

aforementioned databases (i.e., PINdb, CORUM and HPRD) to

reflect the current state of knowledge and generate a unique and

more comprehensive database for human complexes to enhance

the above applications.

Redundancy is a challenging problem which we will definitely

encounter when we integrate human protein complexes from

different databases. Even records within the same database (e.g.,

CORUM) are highly redundant [9]. In this paper, we will process

those redundant protein complexes to build a non-redundant and

comprehensive catalogue called CHPC2012. In particular, we first

define the significance score for each protein complex based on

their Gene Ontology (GO) term enrichment (using the ‘‘biological

process’’ sub-ontology). We then measure the pair-wise similarities

between known protein complexes. For two highly similar

complexes, we will either discard the one with lower significance

score or merge them to form a larger complex, depending on the

level of their overlap. To our best knowledge, this is the first

attempt to integrate multiple databases and build a unique and

comprehensive catalogue for human protein complexes. With the

newly generated CHPC2012, we also verified that CHPC2012 is

better than individual databases by mapping their co-complex

protein associations to existing PPI databases [11].

It is a growing recognition that network-based approaches are

suitable to describe the complexity of human diseases and assist

the development of new drugs [12]. Recently, Li et al. built disease-

specific drug-protein connectivity maps using protein interaction

networks and literature mining [13]. Nacher and Schwartz

constructed networks for protein complexes and drugs. They

further investigated the polypharmacological properties by ana-

lyzing the topological features of the drug-complex networks [10].

Lee et al. established an integrate pharmacological network of

proteins, diseases and drugs [14]. In this paper, we introduce an

application of our CHPC2012 complexes for drug development by

constructing networks at different levels for complexes, drugs and

diseases. In particular, drug-drug interactions tend to be co-

complex drug pairs (i.e., the drug targets are in the same complex)

in the drug-complex network. Disease-specific drug-complex

networks, where complexes are enriched with proteins for specific

diseases, can provide us valuable information for drug reposition-

ing.

In addition, while experimental methods (e.g., TAP-MS) exist

for detecting protein complexes, they have several limitations, e.g.,

time-consuming, false-negative and false-positive detections.

Therefore, computational prediction of protein complexes can fill

up the map of protein ‘‘complexome’’ and is thus an interesting

topic in bioinformatics. In another application of our CHPC2012

complexes, we evaluate the performance of state-of-the-art

computational methods for predicting human protein complexes

using CHPC2012 as golden standard. These high quality protein

complexes predicted by computational methods may further serve

as interesting putative candidates for experimental verifications.

Furthermore, analysis on these evaluation results may guide us to

streamline future directions in this topic.

Results

In this section, we will first introduce our CHPC2012 in more

details, including the support for CHPC2012 from binary protein

interactions. Then, we will show the application of CHPC2012 in

drug-related systems. Lastly, we will evaluate the quality of protein

complexes predicted by various computational methods using our

CHPC2012.

CHPC2012 for human protein complexes
Details for various databases. We applied the Algorithm

(see Table 10) to build our CHPC2012 catalogue by integrating

the following three databases, namely CORUM, HPRD and

PINdb. Table 1 shows some statistics for these three raw

databases. We list the number of complexes, proteins and

overlapping proteins (i.e., proteins involved in multiple complexes)

in the rows 2, 3 and 4 in Table 1. Taking CORUM as an example,

it contains 1847 protein complexes (1826 distinct protein

complexes), covering 2507 proteins and 1485 out of these 2507

proteins occur in multiple protein complexes. The last row in

Table 1 shows the redundancy of each database, which is

measured by the number of redundant pairs. In particular, two

complexes with Jaccard similarity higher than the overlapping

threshold overlap thres (a pre-defined parameter in the Algo-

rithm) are considered as a redundant pair. For example, the

redundancy for the raw CUROM is 2727, which means there

are 2727 redundant pairs among CORUM complexes. Since

protein complexes in each raw database themselves are redundant

as mentioned previously, we also applied our Algorithm (Table 10)

to remove their redundancy.

In our experiments, two paramters merge thres and

overlap thres in the Algorithm (Table 10) are set as 0.8 and 0.5

respectively (see more details on the parameter settings in

Supporting Information S1). Table 2 shows the statistics of our

newly compiled CHPC2012 and the other 3 processed databases.

After processed by our Algorithm (Table 10), all the statistics

except for the average size of CORUM, HPRD and PINdb are

lower. For example, the redundancy of CHPC2012 is 1, which

means that there is only one redundant complex-pair in

CHPC2012. At the same time, the other 3 processed databases

even have no redundant pairs. In fact, we filtered out 1170 (656 vs.

1826) complexes from CORUM, thereby decreasing the number

of covered proteins from 2507 to 1808. We observe that these

1170 filtered complexes (64.07% of 1826 complexes) only cover

additional 699 proteins (27.88% of 2507 proteins). These results

demonstrate that the Algorithm (Table 10) addressed the

Table 1. Statistics for 3 raw databases.

Raw databases CORUM HPRD PINdb

# complexes 1826 1521 214

# proteins 2507 2738 666

# overlapping proteins 1485 1310 351

Average size 4.79 4.75 8.83

Redundancy 2727 1204 158

doi:10.1371/journal.pone.0053197.t001
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redundancy issue very well and the databases processed by this

algorithm, unlike those raw databases, no longer suffer from

redundant records.

Support from binary interactions. One important appli-

cation of protein complexes is to derive from them a reference set

of co-complex protein-protein associations. Co-complex protein

associations here are defined as all the pair-wise links between

proteins that belong to the same complex. We can assess the

quality of protein complexes by mapping those co-complex protein

associations to existing PPI databases. Generally, the set of

complexes, which has higher percentage of co-complex associa-

tions overlapping with existing PPI databases, has higher quality

[11].

To further verify the quality of the complexes in CHPC2012,

we generate co-complex protein-protein associations from the

above raw and processed databases. Tables 3 and 4 show the

generated co-complex protein associations and their overlap with

two existing PPI databases, BioGrid and HPRD (note that HPRD

provides both PPI data and protein complex data). By comparing

these two tables, we have the following three observations. First,

for CORUM, HPRD and PINdb databases, the percentage of co-

complex associations that overlap with HPRD and BioGrid PPI

databases is much higher in the processed databases than in the

raw ones. This indicates that the processed complexes have higher

quality than the raw complexes. Second, for our CHPC2012, its

percentage is slightly lower than those of processed CORUM and

HPRD, while much higher than those of raw CORUM and

HPRD. Therefore, the quality of our compiled CPHC2012 is

guaranteed in coverage of co-complex associations overlapping

with the existing PPI databases. Third, the coverage for proteins

and complexes is much improved by integrating these databases.

For example, Table 2 shows that CHPC2012 contains more

complexes and covers more proteins, and moreover Table 4 shows

that it has many more co-complex associations that also occur in

existing PPI databases. Overall, CHPC2012 is better than other

individual databases in balance between quality and coverage

based on the above observations.

CHPC2012 for drug-related systems
Druggability of overlapping nodes in protein

complexes. Recent studies showed that the overlapping pro-

teins among protein complexes tend to be targets because they are

key determinants of the co-operations among complexes [15,16].

It becomes highly desirable to investigate the druggability of

overlapping nodes in four processed databases for complexes.

Table 5 shows the number of established drug targets, potential

druggable proteins from druggable family [17], druggable proteins

in all, the number of overlapping proteins, the ratio of druggable

proteins versus the overlapping nodes and the p-value of binomial

test for the ratio. Three of the four databases (CHPC2012,

CORUM and HPRD) have significantly high ratio of druggable

proteins. For example, 26.2% of overlapping nodes in CHPC2012

complexes was druggable proteins, which is significantly higher

than expected (2000–3000 druggable proteins in human [17], the

expected number of protein-coding genes is about 20500 [18]).

Most of the known drug targets are membrane proteins or

enzymes while PINdb is a database of nuclear protein complexes.

This explains why PINdb has a low ratio of druggable proteins as

shown in Table 5.

HRPD database has the highest fraction of druggable proteins

among overlapping proteins (i.e., 29.7%). However, it is our

CHPC2012 that has the most druggable proteins with the lowest

p-value. As shown in Figure 1, our CHPC2012 covers almost all

the druggable proteins in the other 3 databases. Table 6 shows the

common druggable proteins among the 4 databases. For example,

CORUM and HPRD have 115 common druggable proteins. As

demonstrated above, CHPC2012 is obviously more congruent for

investigating druggable proteins than the other 3 databases.

Table 2. Statistics for 4 processed databases, including our
newly compiled CHPC2012.

Processed databases CHPC2012 CORUM HPRD PINdb

# complexes 1389 656 983 132

# proteins 3065 1808 2386 575

# overlapping proteins 1346 695 908 217

Average size 4.98 5.40 4.54 8.06

Redundancy 1 0 0 0

doi:10.1371/journal.pone.0053197.t002

Table 3. Co-complex protein associations for 3 raw databases
and their overlap with HPRD and BioGrid protein interactions.

Raw databases CORUM HPRD PINdb

# co-complex pairs 35361 24214 7012

Overlap with HPRD (# pairs) 2475 2843 612

Overlap with HPRD (ratio) 7.00% 11.74% 8.73%

Overlap with BioGrid (# pairs) 4384 4044 1997

Overlap with BioGrid (ratio) 12.40% 16.70% 28.48%

doi:10.1371/journal.pone.0053197.t003

Table 4. Co-complex protein associations for 4 processed
databases and their overlap with HPRD and BioGrid protein
interactions.

Processed databases CHPC2012 CORUM HPRD PINdb

# co-complex pairs 17810 10318 10592 4182

Overlap with HPRD (# pairs) 3245 1925 2486 506

Overlap with HPRD (ratio) 18.22% 18.66% 23.47% 12.10%

Overlap with BioGrid (# pairs) 4853 3061 3356 1470

Overlap with BioGrid (ratio) 27.25% 29.67% 31.68% 35.15%

doi:10.1371/journal.pone.0053197.t004

Table 5. Druggable proteins in 4 processed databases.

Processed databases CHPC2012 CORUM HPRD PINdb

# Targets 271 132 204 20

# Potential targets 82 39 66 6

# Druggable proteins 353 171 270 26

# Overlapping nodes 1346 695 908 217

Ratio 0.262 0.246 0.297 0.120

p-value(Binomial test) 2.02E-168 4.04E-71 2.89E-155 9.0E-4

doi:10.1371/journal.pone.0053197.t005
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Network of protein complexes and drugs. We model the

relationships between drugs and protein complexes as a network,

where both drugs and complexes are nodes, an edge between a

drug and a complex indicates that this complex contains at least

one target of the drug. We thereafter call this network as drug-

complex network. The drug-complex network plays important

roles to analyze the features of multi-target drugs and poly-

phamacological drugs and to unveil novel associations between

diseases and protein complexes [10].

The drug-complex network for CHPC2012 complexes consists

of 2648 nodes (1835 drugs and 813 complexes) and 9916 edges as

shown in Supporting Information S1. The network resembles a

scale-free topology. Hubs can be seen among both drugs and

complexes as shown in Table 7. We also observe that a small

number of drug targets (i.e., proteins in complexes) are used

frequently as edges between drugs and complexes. A recent study

[10] also built such a drug-complex network based on CORUM

complexes, which contains 680 drugs and 739 complexes. Here,

by using a more comprehensive database CHPC2012 for

complexes, we find many drug hubs that were not observed in

[10], such as Guanosine-59-Diphosphate and Geldanamycin.

However, some drugs and targets might be over-counted. For

example, suppose that three complexes (A, B and C) share a

protein D which is a target of drug E, so drug E is counted 3 times

(A–E, B–E, C–E) and target D is also used 3 times. To avoid the

over-counting problem, we should delete the repeats, i.e., both

drug E and target D should be counted only once. Table 8 shows

that the resulting hubs are thus changed — 5 new drug hubs are

listed, namely NADH, Alpha-D-Mannose, Adenosine triphos-

phate, L-Glutamic Acid and Myristic Acid. Taking NADH as an

example, it is the second top drug hub and its degree is 29. It is an

FDA-approved nutraceutical drug and is useful in treating

Parkinson’s disease, chronic fatigue syndrome, Alzheimer’s disease

and cardiovascular disease. Hence, it is not surprising that NADH

is a hub because it is a broad-spectrum nutraceutical drug. The

targets are also quite different between Tables 7 and 8. After

removing repeats, the most frequently used targets in Table 8

include GABAA receptros (GABRA1, GABRA2, GABRB2,

GABRG2), which have benzodiazepine sites and anxiolytic effect,

CDK2, which is a kind of protein kinase and anti-cancer target,

and F2 (Coagulation factor II), which is a target for anticoagulant

drugs.

As previously reported in Table 5, CHPC2012 has a higher

coverage of druggable proteins. The drug-complex network for

CHPC2012 also cover more complexes and drugs than those for a

single database such as CORUM. In addition, we provide a more

accurate estimation of network characteristics (e.g., degree).

Hence, we believe that the drug-complex network for CHPC2012

would be helpful for us to uncover more potential associations

between protein complexes and drug-related systems.

Drug-complex network and drug-drug interactions. Drug-

drug interaction is a situation where a drug affects the activity of

another drug when taken together. In our drug-complex network, we

found several drugs are interacting with the same complex (we call

these drugs as co-complex drug pairs). Our hypothesis is that drug-

drug interactions tend to be co-complex drug pairs. To verify this

hypothesis, we perform the following random test. Among 1901

known drug-drug interactions, there are 375 co-complex drug pairs.

We also generate 1901 random drug pairs for 1000 times. In this case,

the average number of co-complex drug pairs in these random pairs is

only 88. Figure 2 also shows the distribution of the numbers of co-

complex drug pairs in these 1000 random tests. These results validate

the above hypothesis effectively. Therefore, the drug-complex

network provides a new approach to in silico prediction of drug-drug

interactions.

Disease-specific complex-drug networks and drug

repositioning. We link phenotypes or diseases to protein

complexes based on their enrichment in these complexes (see the

Equation 3 in the Methods section). Disease-specific complex-drug

networks consist of a specific disease, all the complexes connecting

to this disease and all the drugs connecting to these disease-related

complexes. Therefore, we assume that all the drugs in a disease-

specific complex-drug network are associated with the given

disease. Here, drug-disease associations mean that these existing

drugs may be potential treatments for the diseases and the disease-

specific complex-drug networks can thus be utilized for drug

repositioning [19]. Using our CHPC2012 complexes, we managed

to predict 1400 novel drug-disease associations, involving 600

drugs and 62 diseases.

We applied the literature mining techniques to verify the above

identified drug-disease associations [20,21]. In particular, a drug-

disease association is considered to be verified if its drug and

disease share at least one PubMed record (see the Methods section

for more details). Verified drug-disease associations are supposed

to have higher reliability than those unverified association.

Meanwhile, unverified associations also provide novel knowledge

for further investigation. In our experiments, there are 1103 out of

1400 drug-disease associations whose drugs and diseases have

PubMed records. 371 out of 1103 associations, covering 223 drugs

and 43 diseases, are verified associations while the remaining 732,

covering 420 drugs and 54 diseases, are novel drug-disease

associations (all 1103 predicted drug-disease associations can be

found on our website).

The association between the drug Imatinib and type 1 diabetes

is a verified example predicted in our disease-specific complex-

drug networks. Type 1 diabetes is an autoimmune disease that

destructs insulin-producing beta cells of the pancreas with

subsequent lack of insulin and leads to increased blood and urine

glucose. The complexes linked to Type 1 diabetes as shown in

Figure 1. Venn diagram to show the druggable proteins in our
CHPC2012 and other 3 processed databases. Figure 1 shows that
our CHPC2012 covers almost all the druggable proteins in other 3
databases.
doi:10.1371/journal.pone.0053197.g001

Table 6. Overlap of druggable proteins between our
CHPC2012 and other 3 processed databases.

Datasets CHPC2012 CORUM HPRD PINdb

CHPC2012 353 170 267 26

CORUM 170 171 115 26

HPRD 267 115 270 24

PINdb 26 26 24 26

doi:10.1371/journal.pone.0053197.t006
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Figure 3 can be divided to three categories: (1) a group of

complexes (complex 638, 639, 892, 1036, 1069, 1251) intercon-

nected by shared drugs, (2) a single complex (complex 1032)

associated to 11 drugs and (3) complexes involved in the disease

but not linked to any drugs (complex 490, 741). This highlights a

certain bias of current pharmacological approaches, which tend to

focus on a few targets for which multiple drugs have been

developed. Meanwhile, Imatinib connects with complex 639 and

complex 1251 in our complex-drug network and is a tyrosine

kinase inhibitor for treating cancer. In our analysis, this drug is

predicted to be promising for treating Type 1 diabetes. In fact, our

discovery agrees with experimental research that Imatinib is a new

class of drug to cure type 1 diabetes by Louvet et al. [22], providing

new insights into possible solutions for such complex diseases.

CHPC2012 for evaluating predicted protein complexes
Currently, there are various computational approaches for

predicting protein complexes from protein interaction data, e.g.,

MCODE [23], MCL [24], DPClus [25], CFinder [26], DECAFF

[27], IPCA [28], COACH [29], CMC [30], C2S [31] and so on.

A comprehensive survey of such methods can be found in the

review paper [32].

In this work, CHPC2012 will be utilized to evaluate the quality

of protein complexes predicted by five of the above approaches

(e.g., MCODE [23], MCL [24], DPClus [25], CFinder [26] and

COACH [29]). We exploited two PPI datasets, namely HPRD [7]

and BioGrid [33]. HPRD data consist of 9454 proteins and 36868

protein-protein interactions and BioGrid data consist of 11120

proteins and 55014 protein-protein interactions. We used various

measures to evaluate the performance of the above approaches,

e.g., precision, recall, F-measure [29,34], sensitivity, PPV and

accuracy [31,35].

Table 9 shows the detailed comparative results of the various

computational detection methods on the HPRD data and the

BioGrid data, respectively. For each detection method, we have

listed the number of predicted complexes (# complexes), the

number of proteins covered by the predicted complexes (#
covered proteins), the number of predicted complexes which

match at least one real complex (Ncp) and the number of real

complexes that match at least one predicted complex Ncb.

For example as shown in Table 9, MCODE predicted 152

complexes, of which 61 match 116 real complexes. These 152

predicted complexes cover 1088 out of 9454 proteins in HPRD

database. It is observed that the complexes predicted by MCL

cover all the proteins in the PPI networks while those by all the

other methods only cover a fraction of proteins. This is because

MCL assigned every protein in the PPI network into its predicted

complexes while all the other methods only assigned those highly

interactive proteins into the predicted complexes. In addition, we

notice that MCODE and CFinder predict just a small number of

protein complexes while COACH and MCL predict quite a large

Table 7. Top drug hubs, complex hubs and targets in complex-drug network.

Drug hubs Drug degree Complex ID Complex degree Targets Times used

Adenosine-59-Diphosphate 166 438 159 CDK2 1620

Vorinostat 65 110 152 HSP90AA1 1260

Flavopiridol 56 460 141 SRC 630

Phosphoaminophosphonic Acid-Adenylate Ester 38 439 141 ESR1 427

Guanosine-59-Diphosphate 37 462 140 NR3C1 312

Dasatinib 33 528 135 GABRA1 268

DB02754 33 529 135 ADRB2 230

DB07594 33 459 135 F2 200

DB07877 33 357 135 MAPK14 200

Geldanamycin 33 461 135 CCNA2 198

doi:10.1371/journal.pone.0053197.t007

Table 8. Top drug hubs and targets after removing repeats.

Drug hubs Drug degree Targets Times used

Adenosine-59-Diphosphate 33 GABRA1 185

NADH 21 CDK2 168

Guanosine-59-Diphosphate 16 F2 100

Alpha-D-Mannose 16 GABRA2 93

Phosphoaminophosphonic Acid-Adenylate Ester 13 GABRB2 72

Dasatinib 12 GABRG2 68

Adenosine triphosphate 12 CCNA2 66

L-Glutamic Acid 12 DRD2 64

Flavopiridol 11 ESR1 61

Myristic Acid 9 HSP90AA1 55

doi:10.1371/journal.pone.0053197.t008
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number of protein complexes (the number of protein complexes

predicted by DPClus is moderate).

Figures 4 and 5 show the overall comparison results of existing

methods in terms of various evaluation metrics for HPRD and

BioGrid data, respectively. In both Figures 4 and 5, we observe

that MCODE was able to achieve the second highest precision

(lower than DPClus), indicating that protein complexes predicted

by MCODE have high quality. However, as pointed in Table 9

above, both the number of predicted complexes (only 152 for

MCODE) and real complexes that can be matched by predicted

complexes (Ncb is only 116 for MCODE) are very small.

Therefore, MCODE has a low recall and F-measure values.

We also noticed that CFinder attained an unusally higher

sensitivity than other methods. This is actually because it predicted

a huge cluster with too many proteins (e.g., the biggest cluster

predicted from HPRD contains 3434 proteins). In this case, all the

proteins in those real complexes were pretty much covered by this

very big cluster. Meanwhile, COACH achieved the highest F-

measure due to its balanced precision and recall in both Figures 4

and 5. Overall, the performance of these approaches in terms of F-

measure is in the following order: COACH and DPClus have

relatively high F-measure, MCL is moderate while MCODE and

CFinder have low F-measure.

After showing the comparative results of various methods in the

above table and figures, we can find that these results are

consistent with those collected for the model organism yeast

Saccharomyces cerevisiae [32]. For example, MCODE has high

precision and low recall when mapping its predicted complexes

to both real yeast and human complexes. In addition, various

methods are rated similarly based on their performance for yeast

and human. As we know, the yeast complexes [11] used for

Figure 2. The interacting drug pairs are likely to be co-complex
drug pairs. Figure 2 shows that there are 375 co-complex drug pairs
among 1901 known drug-drug interactions. Figure 2 also shows the
distribution of the numbers of co-complex drug pairs in 1000 random
tests.
doi:10.1371/journal.pone.0053197.g002

Figure 3. The drug-complexes network in Type 1 diabetes. Figure 3 shows the drug-complexes network in Type 1 diabetes. Complexes in
figure 3 are represented by circles, drugs by diamonds and disease by triangle.
doi:10.1371/journal.pone.0053197.g003

Table 9. Results of various approaches using HPRD and
BioGrid PPI data.

Database Algorithms COACH MCODE MCL CFinder DPClus

HPRD # Complexes 1751 152 3129 418 640

# Covered
proteins

3765 1088 9454 4288 2543

Ncp 676 61 534 121 285

Ncb 689 116 694 149 486

BioGrid # Complexes 2055 151 2541 219 442

# Covered
proteins

4851 1347 11120 5547 2357

Ncp 660 50 355 43 192

Ncb 655 77 479 50 363

doi:10.1371/journal.pone.0053197.t009
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Figure 4. Comparative performance of existing methods in terms of various evaluation metrics for HPRD data. Figure 4 shows
comparative performance of existing methods in terms of various evaluation metrics for HPRD data.
doi:10.1371/journal.pone.0053197.g004

Figure 5. Comparative performance of existing methods in terms of various evaluation metrics for BioGrid data. Figure 5 shows
comparative performance of existing methods in terms of various evaluation metrics for BioGrid data.
doi:10.1371/journal.pone.0053197.g005

Benchmarking Human Protein Complexes

PLOS ONE | www.plosone.org 7 February 2013 | Volume 8 | Issue 2 | e53197



evaluation are well curated and categorized. Based on the

consistency of evaluation results between yeast and human, it is

once again confirmed to some extent that our CHPC2012

catalogue provides comprehensive human protein complexes with

high accuracy and coverage for future research and applications.

However, a difference between the results of human and yeast is

that the performance of each individual method is much lower in

human than in yeast. For example, many methods including

MCL, DPClus and COACH achieve a recall higher than or close

to 0.6 on Krogan PPI data while all of them have a recall lower

than 0.4 on both HPRD and BioGrid datasets. The recall of MCL

on BioGrid data is even lower than 0.3. In addition, all the

methods used in the paper have very low PPV values, which

motivated the following strategies to improve the performance of

protein complex prediction for human. First, we may improve the

quality of our inputs, i.e., the PPI data. Due to the high false

positive and false negative rates, it would be necessary to assess the

reliability of PPI data used for protein complex detection [36].

Second, we may further integrate the topological properties of

human proteins in various biological networks (e.g., PPI networks)

as well as their genomic characteristics (e.g., gene expression

profiles) and then devise novel algorithms to cover those real

complexes that can’t be matched by current methods. Last and the

most importantly, we admit that our CHPC2012 catalogue is still

far from complete. We should keep on improving its quality with

more biological insights into these protein complexes to gradually

complete the map of protein ‘‘complexome’’. For example, in

order to better integrate those complexes from various data

sources, we should take the reliability of these data sources or their

detection methods into considerations.

Discussion and Conclusions
Protein complexes are key entities to perform cellular functions

and associate with specific human diseases. However, they are

highly redundant within and across various existing databases,

such as CORUM and HPRD. In this paper, we processed these

redundant complexes and compiled a non-redundant catalogue

for human protein complexes called CHPC2012. CHPC2012 is

verified to be a high quality set of protein complexes as it has a

high coverage for proteins and protein complexes, as well as

protein-protein interactions in existing PPI databases. It reveals

extensive advantage for applications in drug development,

especially in the drug-target prediction, drug-drug interactions,

and drug repositioning. CHPC2012 also provides a multidimen-

sional view of associations among biological components, includ-

ing drug-complex networks and disease-specific complex-drug

networks. In addition, CHPC2012 can be used as a golden

standard benchmark to evaluate the performance of various

methods that are designed to predict protein complexes from

human PPI data. The evaluation results also provide several useful

hints to fill up the current map of human protein ‘‘complexome’’.

Translational bioinformatics is dedicated to translate scientific

discoveries into better therapeutic outcomes through integrative

methods [37–39]. Our analysis based on the CHPC2012

complexes is an attempt for translational bioinformatics to

improve our understanding of complex diseases and their

therapies. For example, overlapping proteins among multiple

complexes tend to be drug targets. The construction of drug-

complex networks makes it much easier to speculate drug hubs

(i.e., multi-target drugs) and analyze drug-drug interactions. Drug-

drug interactions can lead to severe side effects and in some cases

have resulted in early termination of development [40]. The

prediction of drug-drug interactions in silico will provide guideline

for in vitro and in vivo studies. Furthermore, disease-specific drug-

complex networks (taking disease-gene associations into consider-

ation) reveal novel associations between drugs and diseases (i.e.,

drug repositioning). With these achievements of CHPC2012 for

drug development, we reasonably expect that broader applications

of CHPC2012 will be conducted for translational bioinformatics in

the future.

We applied literature mining techniques to verify our drug

repositioning results. Around a third of our predicted drug-disease

associations have at least one literature support, which suggests our

prediction is reliable and believable. Meanwhile, two thirds of the

associations are completely new discoveries, showing the novelty of

our analysis. However, we must be very cautious with the

computational verification of drug repositioning. A co-occurrence

of a drug and a disease sometimes implies that the drug might

cause the disease instead of cure it (i.e., a false positive prediction).

Therefore, more sophisticated literature mining techniques (e.g.,

searching more keywords like ‘‘treatment’’, ‘‘cure’’ and so on) are

needed for a more precise computational verification. Although

such false positive predictions cannot be ignored, our analysis

nonetheless can provide valuable information for drug reposition-

ing.

Lastly, Gene Ontology also provides some information for

protein complexes in the ‘‘cellular component’’ sub-ontology. We

didn’t utilize the complexes in GO to compile our CHPC2012 for

the following reasons. First, we define the significance scores for

known complexes based on their GO term enrichment, which

would bring bias for complexes in GO. Second, some complexes

in GO are computationally inferred and they may not be accurate.

Third, the support from binary interactions shows that complexes

in GO have much lower quality than those in other databases as

shown in Supporting Information S1 — GO complexes have the

lowest percentage of co-complex protein associations that also

occur in existing PPI databases. However, the hierarchical

organization of GO complexes inspires us to construct a more

accurate ontology for protein complexes. Some complexes, which

are considered to be redundant in this work, may be distinct in

reality and perform functions at different levels. A more accurate

ontology for complexes would address the redundancy issue better

than our current CHPC2012. Another future study is to predict

disease-related genes and protein complexes by integrating our

CHPC2012 complexes and some other data sources, such as gene

expression data from next-generation sequencing of cancer cells.

Methods

Compilation of the CHPC2012 catalogue
After human protein complexes from individual databases are

collected, we compile them to construct a more comprehensive

catalogue for further reference. However, many of those collected

complexes may overlap with one another. In order to process these

redundant complexes, we define a significance score for each

complex. Since proteins within the same complex tend to

cooperate with each other to perform a common function, the

significance score of a complex here will show the extent of its

functional enrichment. In particular, a protein pair can have a

semantic similarity based on their GO annotations. The signifi-

cance score of a complex c, S(c) in equation 1, is the average

semantic similarity for all protein pairs within this complex.

Specifically, the semantic similarity between proteins x and y,

sim(x,y) in equation 1, is calculated using the method proposed in

[41]. In addition, the overlap/similarity between two complexes is

measured by the Jaccard coefficient in equation 2.
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S(c)~
2|

P
x,y[c,x=y sim(x,y)

DcD|(DcD{1)
: ð1Þ

J(Ci,Cj)~
DCi\Cj D
DCi|Cj D

: ð2Þ

We have to be cautious to process the redundant complexes. For

two complexes Ci and Cj , we will perform the following operations

based on their Jaccard similarity. If they are highly similar

(i.e., J(Ci,Cj)§merge thres, where merge thres is a pre-

defined parameter), we will merge them because they are

almost identical. If they are relatively similar (i.e.,

merge thres§J(Ci,Cj)§overlap thres, where overlap thres is

another parameter), we will not merge them because the merged

complex would be arbitrary and may not reflect a true biological

unit. In this case, keeping the one with larger significance score

is a safe decision. If two complexes are not similar (i.e.,

J(Ci,Cj)ƒoverlap thres), we will of course keep both of them.

The above strategies are presented in the Algorithm (Table 10),

which is similar to the CMC algorithm [30] (clustering based on

maximal cliques). CMC algorithm was originally designed to

merge and remove highly overlapped cliques to predict protein

complexes from human PPI data. In Line 4, two complexes Ci and

Cj are considered to be redundant if their Jaccard coefficient is

larger than overlap thres. In Lines 5–6, Cj will be merged in Ci if

their Jaccard coefficient is larger than merge thres and Cj will be

discarded otherwise. Finally, the output of the Algorithm is our

new catalogue CHPC2012.

Disease-gene associations and disease-complex
associations

Disease-gene associations were collected from 118 GWAS

articles [42] as well as the GWAS catalog [43] (March, 2012).

Fisher’s meta p-value was calculated to combine p-values when the

same disease-gene association was reported in different studies. We

only keep associations with p-value lower than 10{7.

Based on the above collected disease-gene associations, we

extract disease-complex associations using the following hypergeo-

metric distribution [32] in Equation 3.

P(C,D)~1{
Xk{1

i~0

DDD
i

� �
DV D{DDD
DCD{i

� �

DV D
DCD

� � , ð3Þ

where a complex C contains k proteins associating with the disease

D. DDD is the number of proteins associating with the disease D

while DV D is the number of human proteins in our CHPC2012

catalogue. All the disease-complex associations with P(C,D) less

than 0.05 are considered to be significant [44] and thus kept for us

to construct the disease-related complex-drug network.

In addition, the drug targets and drug-drug interactions were

downloaded from Drugbank (Release 3.0) [45] in March, 2012.

Computational verification for drug repositioning
By constructing disease-specific drug-complex networks, we are

able to predict novel drug-disease associations for existing drugs

(i.e., drug repositioning). Here, we briefly introduce the compu-

tational verification for those predicted drug-disease associations.

As we know, MeSH (Medical Subject Headings thesaurus) is a

comprehensive controlled vocabulary for the purpose of indexing

scientific articles and it can also serve as a thesaurus that facilitates

searching in PubMed. To search drugs and diseases in PubMed,

we will map them to MeSH terms. For example, 315 drugs and 59

diseases have MeSH terms (there are 600 drugs and 62 diseases in

1400 predicted drug-disease associations). They can be automat-

ically linked to PubMed records (i.e., PubMed id). For those drugs

or diseases without MeSH terms, we will directly use their names

for searching in PubMed. As such, 550 drugs and 59 diseases in

1103 drug-disease associations have at least one PubMed record.

Finally, if a drug and a disease have a co-occurrence in the

PubMed record (i.e., they share a common PubMed id), they are

considered to be a verified drug-disease association. Otherwise,

they are considered as a novel drug-disease association.

Table 10. The Algorithm to Construct the CHPC2012 Catalogue.

Input: C, the set of raw human protein complexes;

Overlap-thres, the overlapping threshold;

Merge-thres, the threshold for merging;

Output: CHPC2012 catalogue of human protein complexes;

1: Calculate the significance score of each complex and rank all the complexes in the descending order of significance scores, denoted as C~ C1, C2,
:::

,Cnf g//the
significance score for a complex is defined in equation (1).

2: for all Ci [ C

3: for all Cj [ C and j.i

4: if J(Ci;Cj).overlap-thres then

5: if J(Ci;Cj).merge-thres then

6: Ci~Ci|Cj

7: C = C2Cj

8: end for

9: end for

10: return C as our CHPC2012 catalogue.

doi:10.1371/journal.pone.0053197.t010
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