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ABSTRACT 

A systematic downscaling-disaggregation study was conducted over Singapore Island, with 

an aim to generate high spatial and temporal resolution rainfall data under future 

climate-change conditions. The study consisted of two major components. The first part was 

to perform an inter-comparison of various alternatives of downscaling and disaggregation 

methods based on observed data. This included (i) single-site generalized linear model (GLM) 

plus K-nearest neighbor (KNN) (S-G-K) vs. multisite GLM (M-G) for spatial downscaling, 

(ii) HYETOS vs. KNN for single-site disaggregation, and (iii) KNN vs. MuDRain 

(Multivariate Rainfall Disaggregation tool) for multisite disaggregation. The results revealed 

that, for multisite downscaling, M-G performs better than S-G-K in covering the observed 

data with a lower RMSE value; for single-site disaggregation, KNN could better keep the 

basic statistics (i.e. standard deviation, lag-1 autocorrelation and probability of wet hour) than 

HYETOS; for multisite disaggregation, MuDRain outperformed KNN in fitting interstation 

correlations. In the second part of the study, an integrated downscaling-disaggregation 

framework based on M-G, KNN, and MuDRain was used to generate hourly rainfall at 

multiple sites. The results indicated that the downscaled and disaggregated rainfall data based 

on multiple ensembles from HadCM3 for the period from 1980 to 2010 could well cover the 

observed mean rainfall amount and extreme data, and also reasonably keep the spatial 

correlations both at daily and hourly timescales. The framework was also used to project 

future rainfall conditions under HadCM3 SRES A2 and B2 scenarios. It was indicated that 

the annual rainfall amount could reduce up to 5% at the end of this century, but the rainfall of 

wet season and extreme hourly rainfall could notably increase. 

 

Key words: downscaling; disaggregation; GLM; KNN; HYETOS; MuDRain.  
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1. Introduction 

High-resolution spatial and temporal rainfall data is essential for studies of water resources 

management, hydrological modeling, and flood risk assessment. This is especially true for 

tropical urban areas where highly complex rainfall patterns exist (Abustan et al., 2008). The 

previous studies on climate variables and their implications to runoffs have highlighted the 

necessity to have input data at short timescales for many hydrological models (Mezghani and 

Hingray, 2009). However, high-resolution data is limited at many regions due to restrictions 

of cost, technical capability and physical geographic condition. It is also challenging to 

conduct high-resolution impact studies for hydrological systems under climate change, due to 

the coarse resolution of general circulation models (GCMs). Using statistical methods (such 

as spatial downscaling and temporal disaggregation methods) to generate high-resolution 

rainfall data has demonstrated a viable alternative and the number of the related studies has 

increased dramatically in the past years.  

 

The fundamental concept of statistical downscaling is to build a linkage between the 

variables of GCMs at a large scale (predictors) and local observed weather information 

(predictands) (Fowler, et al., 2007). The widespread used downscaling models could be 

classified into three types: (i) linear regression models, such as statistical downscaling model 

(SDSM) (Wilby et al., 2002), generalized linear model (GLM) (Chandler and Wheater, 2002), 

and automated statistical downscaling tool (ASD) (Hessami et al., 2008); (ii) non-linear 

regression models, such as artificial neural network (ANN) (Zorita and von Storch, 1999) and 

support vector machine (SVM) (Tripathi et al., 2006); (iii) weather generators, such as Long 
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Ashton research station-weather generator (LARS-WG) (Racsko et al., 1991), 'Richardson' 

type weather generator (WGEN) (Wilks, 1992), and agriculture and agri-food 

Canada-weather generator (AAFC-WG) (Hayhoe, 2000). Among many alternatives, GLM is 

an effective stochastic rainfall model based on linear regression, and has proved to be 

advantageous in addressing issues of spatial correlation, site effect, and seasonal variations 

etc. Chandler and Wheater (2002) applied GLM to downscale atmospheric predictors at 

western Ireland, where logistic regression and gamma distribution were used for occurrence 

and amount modeling, respectively. Yang et al. (2005) employed GLM to generate daily 

rainfall at southern England, and showed that the model could reproduce properties at a scale 

ranging over 2,000 km
2
. Tisseuil et al. (2011) used GLM, generalized additive model (GAM), 

aggregated boosted trees (ABT), and multi-layer perceptron neural networks (ANN) to 

downscale precipitation and evaporation at southwest France. The results showed that the 

three non-linear models had a better performance than GLM for modeling fortnightly flow 

percentiles. Beuchat et al. (2012) applied GLM with weighting schemes for downscaling 

rainfall at 27 sites covering Switzerland. The results showed that the downscaled rainfall 

exhibited a spatially coherent pattern at seasonal timescale, although spatial independence 

was assumed by the GLM method. 

 

Many studies also focused on generation of rainfall at a finer timescale using different 

disaggregation methods. The major types include stochastic point process models 

(Rodriguez-Iturbe et al., 1987; Rodriguez-Iturbe et al., 1988; Khaliq and Cunnane, 1996; 

Heneker et al., 2001; Debele et al., 2007; Engida and Esteves, 2011), non-parametric 



5 
 

resampling models (Prairie et al., 2007; Nowak et al., 2010; Kalra and Ahmad, 2011) and 

others (Gyasi-Agyei, 2005; Gyasi-Agyei 2011; Beuchat et al., 2011). Among these models, 

HYETOS and K-nearest neighbors (KNN) were widely used. Koutsoyiannis and Onof (2001) 

developed a hybrid model based on the Bartlett-Lewis rectangular pulses model, called 

HYETOS. It added an adjustment procedure to assure the sum of disaggregated hourly data 

be consistent with the given daily data. Debele et al. (2007) applied HYETOS to disaggregate 

daily rainfall to hourly ones at Cedar Creek watershed in US. Prairie et al. (2007) explored a 

stochastic nonparametric method, KNN, for spatial-temporal disaggregation of stream flows, 

and indicated that the KNN method could guarantee the simulation of statistical properties in 

the original space (historical record). Kalra and Ahmad (2011) applied KNN nonparametric 

method to generate seasonal precipitation by disaggregating annual precipitation, and the 

study results indicated that the KNN method performed better than the first-order periodic 

autoregressive parametric approach, and the seasonal precipitation reproduced on winter and 

spring seasons was more satisfactory. These studies focused on single-site disaggregation. For 

multiple sites, the cross-correlation becomes an important factor to be considered. Some 

studies attempted development of stochastic weather generators for multi-site rainfall 

generations (Wilks, 1998; Burton et al. 2008; Jennings et al., 2010), but most of them were 

not able to deal with disaggregation at the same time. As a viable attempt, Koutsoyiannis et al. 

(2003) developed a method, called MuDRain, by combining a simplified multivariate rainfall 

model and transformation model to disaggregate daily rainfall to hourly ones at multiple sites. 

In the study of Debele et al. (2007), MuDRain model was applied and showed an 

outperformed result for reproduction of expected statistical properties (e.g. average hourly 
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rainfall, standard deviation, probability of wet hour and skewness) with small RMSE values, 

especially for the reproduction of peak value and temporal distribution; more importantly, the 

inter-site cross-correlation could be captured very well.  

 

Based on the above review, it is recognized that many hydrological applications require a full 

spatial distribution of rainfall at finer timescale. This is especially true for climate change 

impact studies, where the global circulation models could only offer projections at coarse 

spatial and temporal resolutions. Hence, integrated downscaling and disaggregation effort is 

necessary as it provides rainfall data with both high spatial and temporal resolutions to meet 

the requirement of hydrological modeling. There are relatively few studies in such an area. 

Segond et al. (2006) proposed a combined spatial-temporal downscaling and disaggregation 

approach using GLM, HYETOS and an artificial profile multisite transformation method. In 

this approach, the daily data was generated by GLM for multiple sites; HYETOS was used 

for disaggregating daily data to hourly ones at the master station which contained a historical 

hourly record; then, the disaggregated hourly data pattern was projected to other sites (i.e. 

satellite stations) using the artificial profile method. The disaggregation results showed that 

the desired statistical properties were maintained at acceptable levels, while the inter-site 

correlation was somewhat overestimated. Mezghani and Hingray (2009) developed another 

combined downscaling-disaggregation approach for both temperature and rainfall over the 

Upper Rhone River basin in the Swiss Alps. GLM was used for downscaling mean areal 

weather variables (including total precipitation, rainfall and temperature) from GCM model, 

and KNN was used for disaggregating them to sub-daily and sub-regional scales. The study 



7 
 

results showed a good performance of the proposed method in generating statistical 

relationship, including spatial cross-correlations.  

 

Generally, the integration of spatial downscaling and temporal disaggregation could offer 

high-resolution rainfall data projected from GCM scenarios, and has great potential to help 

examine the impact of climate change on rainfall patterns and hydrological systems. From 

reviewing the recent research works, it turns out that such studies are relatively limited. 

Essentially, there is a lack of an inter-comparison study that could show the advantages or 

limitations of various options of single-site or multisite rainfall downscaling and 

disaggregation techniques that could keep the key statistics at different time scales, 

particularly in connection with the output from a downscaling model. In addition, most of the 

previous studies focused on a relatively larger scale watershed or basins. There are limited 

efforts on integrated downscaling and temporal disaggregation for the urban areas at 

Southeast Asia, which is characterized by tropical climate with rainfalls showing high 

temporal-spatial variations. 

 

Therefore, the objective of this research work is to conduct a systematic rainfall 

downscaling-disaggregation study at a tropical urban area (i.e. Singapore Island). An 

inter-comparison study will be performed first to evaluate various options in implementing 

single and multiple site downscaling and disaggregation, based on statistical indicators (at 

daily and hourly scales) and observed data. Downscaling will essentially be based on GLM 

model as it has already been proved as an advantageous tool in keeping many key daily 
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statistics of rainfall (Yang et al., 2005). Options of KNN, HYETOS, and MuDRain will be 

tested for temporal disaggregation. Based on the comparison result, the deemed best option of 

downscaling-disaggregation framework will be used for projecting high-resolution rainfall 

patterns under future climate conditions for the Singapore Island. The paper will be structured 

as follows: the study area and data will be introduced first, followed by a description of the 

general methodology; results and discussions will be given afterwards, followed by a 

conclusion.  

 

Study area and data 

Singapore, with an area of about 723 km
2
, locates at the equator pluvial region. Most of the 

surface elevation over the island is below 15 m, and the highest point is Bukit Timah hill 

which has a height of 165 m at the central region. The small hill leads to a ‘rain shadow’ 

phenomenon (Whiteman, 2000) that induces slight disparities of weather distribution on the 

western and eastern sides of the island (e.g. the western side of Singapore is wetter than the 

eastern one). Singapore has a rich precipitation, with an average annual rainfall amount being 

more than 2,400 mm. The highest record of daily rainfall was near 520 mm which happened 

at the wettest month, December. There are two monsoons occurring each year: the Northeast 

Monsoon from December to early March, and the Southwest one from June to September 

(NEA, 2009). Other months range in period between the two monsoons and have relatively 

less rainfall. Figure 1 shows the map of the study region and locations of eight rainfall 

stations that will be used in this study. 
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Six variables from National Centre for Environmental Prediction (NCEP) reanalysis data 

(Kistler et al., 2001), re-gridded on Hadley Centre Coupled Model, version 3 (HadCM3) 

grids (Collins et al., 2001) are used as the predictors to build the statistical relationship to 

local station data. They include: mean sea level pressure (mslp), 500 hPa geopotential (p500), 

850 hPa geopotential (p850), near surface relative humidity (rhum), relative humidity at 500 

hPa height (r500), relative humidity at 850 hPa height (r850), and near surface specific 

humidity (shum). The data has been pre-processed through standard normalization and are 

obtained from CCCSN (Canadian Climate Change Scenarios Network) project of 

Environment Canada (Dibike, et al., 2008). In terms of predicands, 31-years continuous daily 

and hourly rainfall record from 1980-2010 at eight stations over the island are available.  

 

For the downscaling study, the NCEP reanalysis data from 1980 to 2000 is used for training 

(or building) the GLM model. Then, the HadCM3 modeled data from 1980 to 2010 based on 

the established GLM model will be used to evaluate the validity of HadCM3 in simulating 

the historical rainfall patterns. The future HadCM3 projected data (from 2011 to 2100) is 

applied to predict the rainfall amounts under changing climatic conditions. For disaggregation 

study, 21-years hourly data (from 1980 to 2000) is used for calibrating the disaggregation 

models, and the rest (from 2001 to 2010) is used for verification. For future predictions, all 

available data (from 1980 to 2010) is used for building the disaggregation model.  

 

----------------------------------- 

Place Figure 1 here 

----------------------------------- 
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Methodology 

There are four methods to be used in this study: GLM (Chandler and Wheater, 2002), 

HYETOS (Koutsoyiannis and Onof, 2001), KNN (Prairie et al., 2007) and MuDRain 

(Koutsoyiannis et al., 2003). Two types of downscaling strategies are employed: (i) 

single-site GLM downscaling plus KNN for spatial disaggregation (denoted as S-G-K) and (ii) 

multisite GLM downscaling (denoted as M-G). S-G-K means, a single-site GLM is 

implemented to downscale the summation of daily rainfalls from eight stations; then KNN 

method is used to downscale spatially from daily rainfall summation to individual stations. 

Such an idea is similar to the one proposed by Mezghani and Hingray (2009). M-G means the 

rainfall will be downscaled for multiple sites at the same time, with inter-site correlation 

being taken into consideration. The inter-comparison study include: (i) S-G-K vs. M-G for 

multisite daily rainfall downscaling, (ii) HYETOS vs. KNN for single-site hourly rainfall 

disaggregation, and (iii) KNN vs. MuDRain for multisite hourly rainfall disaggregation. 

Based on the comparison results, a relatively better framework of performing an integrated 

downscaling and disaggregation for the study region will be identified. Then, it will be used 

to project future sub-daily rainfall patterns. In the entire framework, a number of basic 

statistical indicators (including mean, standard deviation etc.) and spatial cross-correlation at 

both daily and hourly timescales will be evaluated. Figure 2 shows the structure of the study 

methodologies. Detailed introduction on individual components will be given in the 

following sections. 

 

------------------------- 

Place Figure 2 here 

------------------------- 



11 
 

 

Generalized linear model (GLM) 

GLM is a popular method to build flexible and veracious relationship between predictors and 

local observed rainfall data. It simulates the daily rainfall based on two sub-models. The first 

one is the occurrence model depending on logistic regression (Coe and Stern, 1982; Stern and 

Coe, 1984; Chandler and Wheater, 2002):  
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

1
ln                                                           (1) 

 

where pi is the probability of rain for the i
th

 day, xi is the predictor for the i
th

 day, β is the 

coefficient, and T means the transpose of matrices. The rainfall-amount distribution of wet 

day is assumed in gamma distribution with mean μi, given by (Chandler and Wheater, 2002): 

 

 T

ii ln                                                                (2) 

 

where εi is the predictor and γ is the coefficient. Another added parameter for rainfall amount 

model is dispersion coefficient ν for all gamma distribution, which assumed having a 

common shape (Yang et al., 2005; Segond et al., 2006). The atmospheric predictors affecting 

rainfall process may not be independent, and generally interact with each other. Therefore, 

the interaction parameters are added into the model framework. The response of occurrence 

and amount model are both linked with non-linearly transformed predictors. A joint 

distribution for the rainfall of the next day at all stations is built by the spatial dependence of 
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model construction. Normally, the covariate selection and coefficient calculation are both 

estimated by likelihood methods. Otherwise, the effect of monsoon season specifically for 

this region also is considered into model. More detailed descriptions can be found in 

Chandler and Wheater (2002), Yang et al. (2005), and Segond et al. (2006).  

 

HYETOS  

HYETOS is used for disaggregation of single-site based on two versions of Bartlett-Lewis 

rectangular pulse (BLRP) model. The original version was developed by Rodriguez-Iturbe et 

al. (1987, 1988); the modified BLRP (MBLRP) model was proposed by Onof and Wheater 

(1993). This study is mainly based on MBLRP. There are several assumptions in such a 

model: (i) the rainfall occurrence and rain-cell arrival both follow Poisson processes; (ii) the 

duration of rainfall event and rain-cell both follow exponential distributions; (iii) the rain-cell 

intensity (depth of rectangular pulse) follows an exponential or gamma distribution. The 

method of moments (MOM) is used to fit MBLRP model parameters. An adjustment 

procedure is added into the framework of HYETOS model. The HYETOS model would be 

applied within the maximum tolerance distance in the adjusting procedure, where the 

tolerance distance d was defined as (Koutsoyiannis and Onof, 2001):  
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where YMi and 𝑌𝑀𝑖̃ are the original and modeled daily rainfall data respectively, L is the 

number of wet day in sequence, c is a constant (threshold, 0.1 mm here). The model would 
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run continuously until the simulated daily depths match the sum of whole sequence of daily 

data within d. There are four levels of repetition procedure in HYETOS model to minimize 

error. For details, readers are referred to Koutsoyiannis and Onof (2001) and Segond et al. 

(2006). 

 

MuDRain 

The MuDRain model is a simplified multivariate autoregressive model of rainfall and the 

major equation can be written as (Koutsoyiannis et al., 2003): 

 

ttt bVaXX  1                                                           (4) 

 

where Xt is the hourly rainfall at time t and n location, and could be written as Xt = [𝑋𝑡
1, 𝑋𝑡

2,…, 

𝑋𝑡
𝑛]; a and b are parameters as [n × n] matrixes; Vt is an independent identically distributed  

sequence of size n vectors of innovation random variables (Debele et al., 2007). A 

transformation procedure is adopted to adjust the output from multivariate rainfall model to 

reduce error of stochastic properties. Koutsoyiannis et al. (2003) provided the following 

method to calculate the cross-correlation for satellite stations: 

 

 mdijhij rr ,,                                                                (5) 

 

where rij,h is the hourly cross-correlation coefficient, rij,d is the daily cross-correlation 

coefficient, and m is a constant need to be estimated. If the hourly data for multiple stations is 

available, the actual correlation coefficients can be applied into the model; if the hourly data 
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is not available, m value could be assumed in the range from 2 to 3 (Koutsoyiannis et al., 

2003; Debele et al., 2007). In this study, the actual correlation coefficients based on hourly 

data of the studied stations are used.  

 

K-Nearest Neighbors  

KNN, as a nonparametric method, is used for both spatial and temporal disaggregation in this 

study. The spatial disaggregation is to project from the daily rainfall summation from eight 

stations (whole region) to each single station (sub-region). The temporal disaggregation is to 

generate hourly rainfall from daily record, for single site or multiple sites (Nowak, et al., 

2010). The nearest neighbor of Z should be computed from the observed daily record matrix 

W with 1×n dimensions. The ‘neighbors’ are selected among the potential candidates using 

Euclidean distance, given by (Deza and Deza, 2013):  
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where (x, y) and (a, b) are the coordinates of two points. Lall and Sharma (1996) provided a 

method based on heuristics to define the weight scheme of neighbors: 
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where the K is the number of the nearest neighbors, i is the ‘index of neighbor’, Wi is the 

weight scheme of i
th

 index of neighbor; when i = 1, the index refers to the closest of the 
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nearest neighbors. The candidates of daily or region data could be selected as the ‘nearest 

neighbor’ based on the arranged weight scheme based on a decreasing kernel function. Then, 

the sub-daily or sub-region data from the candidates are converted to a proportion of the 

candidate. Let T be the target daily or region data which need to be disaggregated. P is the 

selected candidate daily or region data with m number of sub-daily or sub-region records. 

Then, P could be converted to a sub-record proportion vector matrix Z with dimension 1×m. 

Finally, the disaggregated sub-daily or sub-region data of T could be calculated by T 

multiplying matrix Z.  

 

Instead of using a stochastic selection scheme for generating multiple ensembles, an 

optimization scheme to choose the best ensemble is adopted in this study (Mezghani and 

Hingray, 2009). This is for the benefit of reducing uncertainty and easiness of comparing with 

other methods (Khan et al., 2006). The optimization steps are given by (i) selecting 10 

nearest neighbors based on Euclidean distance; (ii) arranging equivalent weight to each 

neighbor (potential disaggregated candidate), and dividing them into ten ensembles based on 

distance; (iii) using minimization of the objective function to estimate the optimal candidate 

from the ten ensembles. The objective function (OF) is given by: 

 

N

MAPE
OF

N

i i  1                                                   (8) 

 

where MAPE means the mean absolute percentage error (Ghosh and Katkar, 2012), i means 

the statistical properties, including mean, standard deviation, lag-1 autocorrelation, lag-2 
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autocorrelation, probability of wet hour and skewness for single-site disaggregation; another 

property, cross-correlation is added for multisite disaggregation; N is the number of 

properties (six for single-site disaggregation, and seven for multisite disaggregation in this 

study). Figure 3 shows the test result of the objective function value vs. the number of K for 

single-site disaggregation at station S24. It is found that, when K equals to 5, the objective 

function would reach its minimum. Similar results were found for other stations.  

 

------------------------- 

Place Figure 3 here 

------------------------- 

 

 

Results and discussions  

Model configurations 

Six statistical indicators (reflecting rainfall characteristics) are used for evaluating model 

performances: rainfall mean (Meanh/Meand), standard deviation of rainfall (STDh/STDd), 

lag-1 autocorrelation of hourly rainfall (AC1h), probability of wet hour/day (Pweth/Pwetd), 

skewness of hourly rainfall (Skewnessh), maximum daily rainfall (Maxd) and 

cross-correlation coefficients (rd/rh), where the subscripts of d and h represent daily and 

hourly, respectively. The simulated statistical indicators will be evaluated by standard 

deviation (Se), relative bias (Rb), change in standard deviation (∆S), significant test (Test) 

(Debele, et al., 2007), root-mean-square-error (RMSE) (Armstrong and Collopy, 1992),  

mean absolute percentage error (MAPE) (Ghosh and Kathar, 2012) and cross correlation 

coefficient (Liu et al., 2011). The equations are given by: 
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where xobs,i is the observed rainfall data, xsim,i is the simulated rainfall data, obsx  is the mean 

of observed data, simx  is the mean of simulated data, Sobs is the standard deviation of 

observed data, Ssim is standard deviation of simulated data, and N is the number of record. 

 

Multisite downscaling based on GLM 

Two strategies of multisite downscaling based on GLM, namely S-G-K and M-G, are 

compared in this section. The large-scale predictors are from NCEP reanalysis data ranging 

from 1980 to 2000. Twenty ensembles are generated by each method to form envelops of the 

downscaled results. Figure 4 shows the downscaled results vs. the observed data for four 
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statistical properties (Meand, STDd, Pwetd and Maxd) at station S46. The results indicate that 

the S-G-K and M-G methods perform fairly close for standard deviation (Figure 4a1). S-G-K 

shows a slightly better result in terms of daily maximum data (Figure 4d1) but is inferior to 

M-G with reference to other two indicators. However, both methods show somewhat 

underestimation of rainfall frequency, especially at the northeast monsoon season (as shown 

in Figures 4c1 and 4c2). Table 1 shows the average cross-correlation coefficients which are 

calculated from twenty ensembles. It is indicated that the two methods could both capture the 

spatial structure well. Overall, the multisite GLM method performs slightly better than 

single-site GLM plus KNN.  

 

-------------------------------------- 

Place Figure 4 and Table 1 here 

-------------------------------------- 

 

KNN vs. HYETOS for single-site disaggregation  

In this section, the observed hourly rainfall from 1980 to 2000 is used to build the 

disaggregation model; the observed record from 2001 to 2010 is used for model verification. 

Figure 5 shows the statistical properties of disaggregated hourly data using KNN and 

HYETOS during the verification period at two stations. It shows that, KNN and HYETOS 

could both keep the standard deviation of the disaggregated results. From Figures 5b and 5c, 

HYETOS illustrates a notable underestimation for the AC1h and Pweth at the two stations; 

KNN shows a better performance in fitting the observed data, especially for the reproduction 

of rainfall frequency. Hanaish et al. (2011) applied HYETOS to disaggregate daily rainfall in 

Southeast Asia (Malaysia) and the results also showed that the HYETOS had a lower 
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accuracy in reproducing of Pwet. However, there are also a slight underestimation by KNN at 

the two wettest months, i.e. January and December. The reason is that KNN does not consider 

the seasonal effects due to limited number of samples for individual months. Reproduction of 

skewness is useful for assessing the extreme-event representation for the disaggregation 

models. From Figure 5d, KNN method performs better in terms of skewness at S24 than that 

at S46; HYETOS shows an opposite result.  

 

Figure 6 presents the quantile-quanile plot for the extreme data at two stations for quantitative 

examination. The threshold of a large rainfall event is defined as the rainfall intensity being 

greater than 30 mm/hour. At S24 station (Figure 6a), HYETOS illustrates an overestimation 

for almost the entire range of rainfall data, and the error would increase with the increase of 

rainfall intensity; while, KNN shows a closer trend to the observed data. For S46 station, 

KNN provides a better fit than HYETOS when the rainfall is below around 70 mm/hour. 

However, a significant overestimation for peak value is seen by KNN (Figure 6b). This may 

because the KNN method resamples the historical extreme record for calibration period, but 

the twenty-four hours rainfall distribution of peak daily rainfall in the verification period does 

not follow the same distribution in the found ‘nearest neighbors’ in the calibration period.  

 

Table 2 illustrates the summary of goodness of fit for each month at S24 station. It shows that 

the bias and the value of significant test for two models are both small. The absolute average 

values of RMSE, Rs and ∆S for KNN are 2.699, 1.274 and 0.097, respectively; those for 

HYETOS are 2.964, 1.415 and 0.131, respectively. Similar results are also observed for S46 
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station (not shown). Generally, the closer the values of RMSE, Rs and ∆S to zero, the better 

the models are (Debele, et al., 2007). Overall, by comparing the MAPE values and other 

indicators in Table 2, KNN is considered to perform generally better than HYETOS for 

single-site disaggregation.  

 

---------------------------------------- 

Place Figures 5 and 6, Table 2 here 

----------------------------------------- 

 

 

KNN vs. MuDRain for multisite disaggregation  

KNN and MuDRain both need a master station that has historical hourly rainfall record to 

disaggregate hourly data to satellite stations. In this section, S46 station is used as the master 

station due to its central location. The performance assessment of multisite disaggregation 

should also consider the interstation cross-correlation. Figure 7 shows a comparison between 

KNN and MuDRain in terms of STDh, AC1h, Pweth and Skewnessh at one of the satellite 

stations (S24) for the verification period. From Figure 6a, the standard deviation of the 

disaggregated rainfall by MuDRain is somewhat underestimated from January to November.  

KNN generally performs better than MuDRain except for January. For AC1h, different from 

the result of single-site disaggregation, KNN shows a poorer performance (with MAPE level 

at 0.22) compared with MuDRain (0.08). From Figure 7c, both methods well capture the 

rainfall frequency. However, similar to those in single-site disaggregation, January and 

December are also underestimated (perhaps due to extreme rainfall patterns in this two 

month). For skewness, MuDRain shows a much better fitting at the first six months from 

January to June; but for the rest four months, KNN outperforms MuDRain (Figure 7d). For 
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other stations, the MuDRain generally shows a better result for Pwet, Skewness and AC1; but 

KNN performed generally better in terms of standard deviation. Table 3 shows the summary 

of goodness-of-fit of downscaled results at station S24 using other measurement criteria. The 

absolute average values of RMSE, Rs and ∆S for KNN are 2.772, 1.312 and 0.093, 

respectively; those for MuDRain are 2.432, 1.139 and 0.148, respectively. It shows that KNN 

could better reflect rainfall variation, but MuDRain has a smaller error in overall fitting of the 

rainfall time series.  

 

Interstation correlation is another important factor that should be considered for model 

assessment in multisite disaggregation. Table 4 illustrates the correlation coefficients against 

master station (S46) for the observed and disaggregated hourly rainfall data in each month. 

MuDRain seems to generate fairly close correlation coefficients in comparison to observed 

ones; whereas, KNN shows a notable underestimation. The reason is that KNN is incapable 

of addressing spatial correlation as the satellite stations rely heavily on the historical record 

from the master station. MuDRain has the capability to keep the correlation by the 

optimization procedure based on the input cross-correlations matrix. Overall, MuDRain 

model could reproduce most of the statistical properties reasonable well, especially for the 

extreme data and interstation correlation. It is selected for multisite disaggregation in further 

studies.  

 

------------------------------------- 

Place Figure 7, Tables 3 and 4 here 

------------------------------------- 
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Integrated downscaling-disaggregation 

From inter-comparison study, the multisite GLM, KNN and MuDRain are selected to be 

included in an integrated downscaling-disaggregation framework. GLM is established by 

using NCEP reanalysis data for multisite spatial downscaling and future projections are based 

on HadCM3 predictors.  

 

(1) Spatial downscaling 

GLM model is used for spatial downscaling at eight stations. The observed daily data and 

NCEP reanalysis data during the period from 1980 to 2000 have been used for establishing 

the GLM model. Then, HadCM3 modeled predictors with a period from 1980 to 2010 are 

linked with the GLM model for verifying the quality of the modeled data. Figure 8 shows the 

observed and simulated monthly statistical properties (i.e. Meand, STDd, Pwetd, and Maxd) 

for station S46 during the verification period 1980-2010. From Figure 8, all observed indexes 

are generally fall between the envelop curves generated by GLM (with 20 ensembles), 

especially for the simulation of standard deviation (Figure 8b). Figure 8(c) shows a slight 

underestimation for the rainfall frequency in two months of wet season, November and 

December. For the extreme data, except an underestimation for March, the observed data is 

well covered by the simulated envelops (as shown in Figure 8d). Overall, it is indicated that 

the GLM model and HadCM3 predictors could generally offer acceptable reproduction and 

prediction of rainfall patterns for the historical condition. Figure 9 shows the spatial 

cross-correlation coefficients vs. inter-gauge distances for both observed and simulated 

rainfalls. GLM shows a good performance for keeping the spatial correlation, and the average 
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values of 20 ensembles are much close to observed ones (CC equal to 0.99).  

 

--------------------------------- 

Place Figures 8 and 9 here 

---------------------------------- 

 

(2) KNN single-site disaggregation at master station 

KNN is selected for single-site disaggregation based on the output of GLM model. As the 

error of mean is mainly from input data in the disaggregation procedure, Figure 10 only 

presents standard deviation, lag-1 autocorrelation, probability of wet hour and the skewness 

at the hourly scale. From the figure, most of the observed properties fall within envelop of the 

simulated series. The simulation of rainfall frequency (probability of wet hour) is slightly 

underestimated. This may be caused by errors of the downscaled results and KNN does not 

consider the seasonal effect. Regarding the prediction of extreme data (i.e. skewness), the 

simulated envelopes mostly cover the observed data.   

 

------------------------- 

Place Figure 10 here 

------------------------- 

 

(3) MuDRain multisite disaggregation at satellite stations 

MuDRain is used for multisite disaggregation at seven satellite stations. The input data 

include the downscaled daily data for all stations and disaggregated hourly data for the master 

station. Figure 11 compares the disaggregated and observed statistical properties (STDh, 

AC1h, Pweth and Skewnessh) at station S24. The standard deviation from disaggregated data 
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shows a tendency of underestimation. There are slight overestimations for the probability of 

wet hour in April to June and the underestimations for January and December. Overall, the 

range of disaggregated data also presents good performance to cover most of the observed 

statistics. Other stations show similar trends. Figure 12 shows the cross-correlation 

coefficients for four selected months (February, June, September and December), which 

distribute in dry/wet seasons and two monsoon seasons, respectively. From the figure, the 

correlation coefficients from disaggregated data could well cover the observed data for the 

four months. Based on the average value of 20 ensembles, the correlation coefficients to the 

observed data are generally over 0.98, which demonstrates an acceptable performance of 

multisite disaggregation.  

 

Based on the above-mentioned results, the integrated downscaling-disaggregation framework 

based on GLM, KNN and MuDRain could offer reasonable simulations of hourly rainfall at 

multiple sites for the Singapore, using HadCM3 as the predictors. The approach shows the 

framework’s high capability in capturing the average rainfall amount and extreme data, and 

maintaining spatial correlations at both daily and hourly timescales. The reason of a relatively 

poorer performance for Pwet is mainly affected by the downscaled results. The limited 

number of samples in different seasons for this study also affects KNN’s performance in 

simulation of rainfall frequency.  

 

---------------------------------- 

Place Figures 11 and 12 here 

---------------------------------- 
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(4) Projected hourly rainfall to the future condition  

Through the validation of GLM model and HadCM3 predictors, this section presents the 

projected rainfall for next century for the study region under the climate change conditions. 

The SRES A2 and B2 scenarios are used for downscaling model to assess rainfall variation 

during period of 2011-2100. Figure 13 illustrates the mean and maximum hourly rainfall for 

Singapore island during the baseline period (1980-2010) and three future periods including 

2030s (2011-2040), 2050s (2041-2070) and 2080s (2071-2100). It is indicated that, the 

annual average rainfall would increase (about 2%) in the first period (2030s) slightly, but 

drop in 2050s and 2080s. The annual rainfall amount would be expected to drop about 5% at 

the end of this century. For each month, the rainfall in the Northeast Monsoon season would 

generally increase (December, January and February); in the Southwest Monsoon season, the 

rainfall tend to reduce and the highest decreasing rate (more than 40%) would be occurring at 

September. This result is somewhat consistent with the findings in IPCC Fourth Assessment 

Report (2007), which points out a decreasing trend in precipitation over Southeast Asia, and 

HadCM3 projections presented in LARS-WG (Semenov and Barrow, 1997). Regarding the 

extreme rainfall amount, the results (Figure 13a2, b2 and c2) show a generally increasing 

tendency. Under A2 emission scenario, only August and September would have a decreasing 

trend of rainfall at the end of this century; other months, on the contrary, demonstrate notable 

increases. The maximum rainfall would reach up to 181 mm/hr in December, which is about 

60% higher than the baseline level. Under B2 emission scenario, the increasing trend of 

maximum rainfall is generally milder than that in A2 scenario. At the end of this century, the 

maximum increase rate is about 47% in June, but the peak value (139 mm/hr) is still expected 
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to occur in December. Overall, the projected results imply that the annual rainfall amount 

would have a slight reduction, but the extreme rainfall events and the rainfall in the wet 

season could increase notably.  

 

It should be noted that, the projection results are largely determined by the type of GCMs 

selected. A multiple run of the integrated framework under various models and emission 

scenarios is essential for reaching a more reliable conclusion. This is especially important 

when the related results are to be used in adaptation planning. This study aims to demonstrate 

the validity of the proposed methodology, only one GCM with two emission scenarios is used. 

Furthermore, the integrated spatial downscaling and temporal disaggregation model is 

established based on the historical observed data. It is a common difficulty to exam the 

stationarity of the statistical relationship between local data and large scale predictors under 

the future climate-change conditions. Two potential ways might be helpful to mitigate such a 

problem. Firstly, the high-resolution regional climate model (e.g. WRF) could consider to be 

coupled with the statistical method to predict future rainfall. This method could both consider 

the physical process and statistical adjustment. Secondly, if the observed dataset is sufficient, 

the rainfall data at different periods could be selected to examine the changing trend of the 

statistical relationship and the related information could potentially be used to update or 

improve the statistical models. Nevertheless, the integrated multisite downscaling and 

disaggregation framework investigated in this study is a viable way to investigate future 

rainfall patterns and uncertainties. Most importantly, the hourly rainfall data, with essential 

statistical properties being kept, will be particularly useful for urban hydrological impact 
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studies. It is also noted that if the method is to be applied in other regions with a large area, 

the cross-correlation may not be of a serious concern and the framework could be largely 

simplified by assuming gauge independence.  

 

------------------------- 

Place Figure 12 here 

------------------------- 

 

Conclusions  

With an aim of generating high spatial and temporal resolution rainfall data at multiple sites 

over Singapore Island under future climate-change conditions, a systematic 

downscaling-disaggregation study was conducted. The framework was based on multisite 

spatial downscaling, master-station-based disaggregation and multisite disaggregation models. 

The study was divided into two major components. The first one was to evaluate various 

alternatives of spatial downscaling and temporal disaggregation methods based on observed 

data. The results revealed that, for multisite downscaling, the direct multisite GLM method 

performs better than single-site GLM combined with KNN spatial disaggregation. For 

single-site disaggregation, KNN could better keep the basic statistics (STD, AC1 and Pwet) 

than HYETOS, especially for the reproduction of rainfall frequency. For multisite 

disaggregation, KNN and MuDRain showed comparable performance in terms of STD, Pwet 

and Skewness. However, only MuDRain could keep a good fit for interstation correlations, 

while KNN made significant underestimations.  

 

In the second component of study, an integrated downscaling-disaggregation framework 
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based on GLM, KNN, and MuDRain was used to predict rainfall patterns under future 

climate change conditions. HadCM3 model predictors were firstly evaluated for reproducing 

the current rainfall condition. The results indicated that downscaled and disaggregated 

rainfall data based on multiple ensembles from HadCM3 for the period from 1980 to 2010 

could well cover the mean rainfall amount and extreme data, and also keep reasonable spatial 

correlations at both daily and hourly timescales. However, the results showed a relatively 

lower accuracy for simulation of rainfall frequency. The framework was also used to project 

future rainfall under HadCM3 SRES A2 and B2 scenarios. It indicated that the annual rainfall 

amount would have a slight increase in the period of 2011-2040, and would reduce at a rate 

about 5% at the end of this century. However, the rainfall in wet season and extreme events 

would notably increase. 

 

The major contributions of this study include: (i) it made an inter-comparison on the 

performance of multiple downscaling and disaggregation tools; (ii) it proposed an integrated 

downscaling-disaggregation framework that could offer a cost-effective alternative for 

generating high-resolution rainfall data in tropical areas. The study outputs could help 

decision makers evaluate future rainfall patterns in tropical urban areas and examine the 

impacts of climate change on urban hydrological systems. The methodology can also be used 

for other regions where spatial correlations among multiple stations are high. Due to the 

limited number of predictors or accuracy of the general circulation models in the tropical 

region, the performance of statistical models is subjected to a certain level of uncertainties. It 

is necessary to use multiple GCMs or regional climate models (RCM) to improve the 
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performance of the related downscaling and disaggregation models in future studies.  
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Table 1: Comparison of average cross-correlation coefficients between single-site GLM plus 

KNN and multisite GLM method based on NCEP reanalysis data in the period of 1980-2000.  

 

Distance Station OBS S-G-K M-G 

3.3 S46-S69 0.74 0.72 0.73 

4.65 S40-S69 0.67 0.70 0.68 

6.3 S40-S66 0.64 0.70 0.66 

7.85 S46-S40 0.63 0.62 0.60 

9.13 S55-S69 0.51 0.53 0.55 

9.55 S46-S55 0.54 0.55 0.58 

10.2 S46-S60 0.52 0.51 0.54 

10.71 S66-S69 0.50 0.54 0.53 

10.9 S24-S55 0.56 0.58 0.60 

11.7 S40-S55 0.50 0.54 0.52 

11.8 S44-S66 0.46 0.50 0.46 

13.3 S40-S44 0.49 0.51 0.49 

13.52 S60-S69 0.44 0.42 0.46 

13.6 S46-S66 0.50 0.52 0.48 

13.73 S44-S69 0.46 0.47 0.46 

14.2 S46-S44 0.51 0.51 0.52 

16.1 S55-S60 0.42 0.43 0.45 

17.8 S55-S66 0.41 0.45 0.42 

17.9 S40-S60 0.43 0.42 0.41 

19.2 S46-S24 0.48 0.51 0.50 

19.2 S44-S60 0.46 0.44 0.46 

19.8 S24-S69 0.41 0.44 0.43 

21.6 S24-S60 0.44 0.46 0.47 

22.6 S24-S40 0.44 0.45 0.43 

22.9 S44-S55 0.38 0.40 0.39 

23.14 S60-S66 0.36 0.40 0.36 

28.5 S24-S66 0.38 0.40 0.38 

33.4 S24-S44 0.38 0.38 0.38 

Note: Average cross-correlation correlations are calculated from twenty ensembles.  
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Table 2: Goodness-of-fit statistics of disaggregated hourly rainfall at S24 station based on 

KNN and HYETOS. 

 

S24 Method RMSE Rs ∆S Test 

Jan 
KNN 3.566 1.316 0.099 0.001 

HYETOS 3.994 1.474 0.181 <0.001 

Feb 
KNN 2.219 0.88 -0.12 <0.001 

HYETOS 1.971 0.949 -0.051 <0.001 

Mar 
KNN 2.575 1.372 0.116 <0.001 

HYETOS 2.625 1.398 0.071 <0.001 

Apr 
KNN 2.674 1.344 -0.078 <0.001 

HYETOS 2.717 1.365 0.041 <0.001 

May 
KNN 2.582 1.206 -0.162 <0.001 

HYETOS 2.826 1.32 -0.113 0.002 

Jun 
KNN 2.11 1.391 0.065 <0.001 

HYETOS 2.327 1.534 0.195 <0.001 

Jul 
KNN 2.276 1.322 0.006 <0.001 

HYETOS 2.494 1.448 0.07 0.002 

Aug 
KNN 2.422 1.195 -0.149 <0.001 

HYETOS 3.145 1.552 0.195 <0.001 

Sep 
KNN 2.315 1.317 -0.024 <0.001 

HYETOS 2.773 1.578 0.219 <0.001 

Oct 
KNN 2.665 1.304 -0.075 <0.001 

HYETOS 2.88 1.41 0.107 <0.001 

Nov 
KNN 3.365 1.241 -0.085 <0.001 

HYETOS 3.757 1.386 -0.008 <0.001 

Dec 
KNN 3.626 1.404 0.184 0.003 

HYETOS 4.055 1.571 0.325 0.002 

 

  



37 
 

Table 3:Goodness-of-fit statistics of rainfall from KNN and MuDRain at S24 station. 

S24 Method RMSE Rs ∆S Test 

Jan 
KNN 4.11 1.52 0.33 <0.001 

MuDRain 3 1.11 -0.08 <0.001 

Feb 
KNN 2.2 0.9 -0.1 <0.001 

MuDRain 2.19 0.86 -0.14 <0.001 

Mar 
KNN 2.78 1.48 0.21 <0.001 

MuDRain 2.27 1.21 -0.15 <0.001 

Apr 
KNN 2.49 1.25 0.05 <0.001 

MuDRain 2.53 1.27 -0.15 <0.001 

May 
KNN 2.69 1.26 -0.05 <0.001 

MuDRain 2.61 1.22 -0.14 <0.001 

Jun 
KNN 2.15 1.42 0.08 <0.001 

MuDRain 1.64 1.08 -0.13 <0.001 

Jul 
KNN 2.33 1.35 -0.04 <0.001 

MuDRain 1.95 1.13 -0.1 <0.001 

Aug 
KNN 2.73 1.35 -0.04 <0.001 

MuDRain 2.3 1.13 -0.26 <0.001 

Sep 
KNN 2.36 1.34 -0.04 <0.001 

MuDRain 1.88 1.07 -0.23 <0.001 

Oct 
KNN 2.85 1.39 0 <0.001 

MuDRain 2.27 1.11 -0.24 <0.001 

Nov 
KNN 3.1 1.14 -0.08 <0.001 

MuDRain 3.39 1.25 -0.13 <0.001 

Dec 
KNN 3.47 1.34 0.1 <0.001 

MuDRain 3.15 1.22 0.03 <0.001 
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Table 4: Comparison of spatial correlation coefficients between station S46 and station S24. 

 

 OBS KNN MuDRain 

Jan 0.43 0.12 0.47 

Feb 0.10 0.04 0.10 

Mar 0.27 0.05 0.32 

Apr 0.16 0.04 0.07 

May 0.29 0.06 0.16 

Jun 0.36 0.01 0.54 

Jul 0.31 0.01 0.38 

Aug 0.28 0.01 0.38 

Sep 0.30 0.01 0.41 

Oct 0.39 0.03 0.27 

Nov 0.25 0.09 0.14 

Dec 0.29 0.10 0.34 

Average 0.29 0.05 0.30 

 


