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ABSTRACT 
 
Photoacoustic tomography is a hybrid imaging modality that combines optical and ultrasound imaging. It is rapidly 
gaining attention in the field of medical imaging. The challenge is to translate it into a clinical setup. In this work, we 
report the development of a handheld clinical photoacoustic imaging system. A clinical ultrasound imaging system is 
modified to integrate photoacoustic imaging with the ultrasound imaging. Hence, light delivery has been integrated with 
the ultrasound probe. The angle of light delivery is optimized in this work with respect to the depth of imaging. 
Optimization was performed based on Monte Carlo simulation for light transport in tissues. Based on the simulation 
results, the probe holders were fabricated using 3D printing. Similar results were obtained experimentally using 
phantoms. Phantoms were developed to mimic sentinel lymph node imaging scenario. Also, in vivo sentinel lymph node 
imaging was done using the same system with contrast agent methylene blue up to a depth of 1.5 cm. The results validate 
that one can use Monte Carlo simulation as a tool to optimize the probe holder design depending on the imaging needs. 
This eliminates a trial and error approach generally used for designing a probe holder. 
 
Keywords: Photoacoustic tomography, Handheld probe, Clinical photoacoustic system, Monte Carlo simulations, 
Sentinel lymph node imaging.  
 

 
1. INTRODUCTION 

 
Photoacoustic tomography (PAT) is a hybrid imaging modality, gaining importance rapidly in the field of biomedical 
imaging. It utilizes the high contrast of optical absorption and high resolution of ultrasound imaging.1-5 It’s clinical 
applications include sentinel lymph node imaging, breast cancer imaging, brain imaging, temperature sensing etc.6-10 The 
advantages of PAT in comparison to other optical imaging modalities are many, like deeper penetration depth, good 
spatial resolution, and high soft tissue contrast. In PAT, a pulsed laser light is used to irradiate the tissue sample. The 
light is absorbed by the chromophores present in the tissue. Due to thermo-elastic expansion, the absorbed light produces 
a local temperature rise leading to the generation of the photoacoustic (PA) waves. The PA signals are detected by an 
ultrasonic transducer placed on the surface of the tissue and are used to image the light absorption map inside the tissue. 
Blood, melanin, or even water are some of the intrinsic contrast agents. To improve the contrast, several exogenous 
contrast agents (organic dyes, metal nanoparticles etc.) were developed which can be used for targeted molecular 
imaging also.11-15  
 
With respect to PA signal detection, single element ultrasound transducer based scanners require mechanical scanning 
and hence slow.16 Therefore, not suitable in a clinical scenario. So, clinical ultrasound array based transducers are better 
suited for clinical applications. Therefore, integrating clinical ultrasound system for PA imaging is a better solution for 
clinical translation.17 To achieve this one needs to find ways to integrate the light delivery and the ultrasound probe. It 
can be done by modifying the ultrasound transducer to incorporate the laser light delivery internally. A pulsed laser 
diode was integrated inside the linear array transducer to develop an integrated photoacoustic ultrasound imaging system 
(PAUS).18 However, the energy of the light source is not high enough for deep tissue imaging. The other, more practical 
approach is to externally integrate the laser light delivery with the ultrasound probe. This method was used for the 
guided needle biopsy of the sentinel lymph nodes (SLN) for both pre-clinical and clinical imaging.8, 19 
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The design of the probe holder may also vary depending on the area/organ being imaged. Here, we focus on sentinel 
lymph node (SLN) imaging. Noninvasive SLN identification with PA imaging is a promising tool for breast cancer 
staging.8, 19 Sentinel lymph node biopsy (SLNB) is commonly used for staging of breast cancer. To visualize the lymph 
nodes methylene blue dye or radioactive colloids are commonly used. In this work, MCES is used to study the effect of 
light delivery angle for varying of depths of SLN imaging.20-22 Monte Carlo code by Wang et al.23 was modified for fiber 
source illumination and to handle refractive index mismatch of embedded sphere (SLN is modelled as a sphere) and 
tissue. Before selecting the various parameters different scenarios were simulated to optimize the probe holder design. 
The effect of fiber-to-probe distance (FPD) was computed for different angles of illumination for a fixed SLN depth. The 
light hitting the transducer was also considered, which is more realistic. Also, the effect of fiber-to-tissue distance (FTD) 
for various light launch angles was studied. Lastly, for a fixed FPD and FTD, angle of light illumination was varied at 
different SLN depths inside the tissue. Simulations and experiments were performed to validate that Monte Carlo 
simulations can be used as a precursor for optimizing PA imaging. 
 

2. MATERIALS AND METHODS 
 

Monte Carlo simulation for light propagation in multi-layered tissue (MCML) written in ANSI C was modified to embed 
the SLN inside the tissue layer.23-25 To simulate light delivery with a bifurcated fiber bundle modifications were done. 
Each end has 800 fiber tips distributed over a surface of 4 cm x 0.142 cm. The fibers of diameter 200 µm were randomly 
packed during fabrication. Therefore, to simulate the same, fibers were placed randomly in a rectangular space of 40 mm 
x 1.42 mm. 2 such sets of 800 fiber tips were distributed to simulate two ends of the bifurcated fiber bundle. The angular 
distribution of photons exiting the fiber was modeled as a function of its numerical aperture (NA).26 For achieve angular 
launch, according to the launching angle the direction cosines of the photons were varied. To optimize the fiber holder 
design different scenarios were simulated by varying the FPD, FTD, angle of illumination and depth of imaging.  
 
In this work, equal numbers of photons were launched from each fiber tip. Total absorbance in the sphere and 
distribution of absorbance in 3-dimensional XYZ grids were recorded. PA signal generated is usually directly 
proportional to the absorbance in the sphere. MATLAB (MathWorks, Massachusetts, USA) was used for generation of 
the absorption maps. Simulations were run for 16 million photons (10000 photons from each fiber tip). The thickness of 
the tissue layer above the sphere was varied from 0.5 cm to 3.0 cm in steps of 0.5 cm. In experimental case as the surface 
of the fiber is stainless steel and the colour of the ultrasound transducer leads to reflection of the diffuse reflected 
photons from tissue back into the tissue. It is considered that 36% of the diffused reflected photons are diverted back into 
the medium. This reflection of photons in simulation occurs at the Z = 0 plane. All simulations were done in a desktop 
computer with an Intel Xeon 3.7 GHz, 64-bit processor, and 16 GB RAM running windows 10 operating system. 
 
The block diagram of the PAT experimental set up is shown in Fig. 1 (a). ECUBE 12R (Alpinion, South Korea) clinical 
research ultrasound system was used for this study. The excitation soured was an OPO (Continuum, Surelite OPO) laser 
pumped by a frequency doubled nanosecond pulsed Nd:YAG pump laser (Continuum, Surelite Ex). It generates 5 ns 
duration pulses at 10 Hz repetition rate with wavelengths tunable from 670 nm to 2500 nm. For the experiments the laser 
was tuned to 675 nm (absorption of methylene blue). The laser light was coupled to the sample through a one meter long 
optical fiber bundle (Ceramoptec GmbH, Germany) containing 1600 fused multimode fibers. The fiber bundle was 
bifurcated towards the end. The two ends of the fiber bundle is fixed in the probe holder designed along with the 
ultrasound transducer as shown in Fig. 1(c), leading to a handheld system. The coupling efficiency of the fiber was 
~65%. The fluence on the sample surface was calculated to be ~6.4 mJ/cm2. Thus, falling within the ANSI safety limit of 
20 mJ/cm2.27 The 3D design of the optical bundle holder was done using a computer-aided design (CAD) software. The 
angles were chosen keeping in mind the limitations caused by the flexibility of the fiber and its length. The fiber holder 
was designed with two slots to hold two ends of the fiber and a single slot to accommodate the ultrasound transducer. 
The holder was designed for different angles of light launch from the fiber bundle. The various angles used for the 
experiments are 0°, 5°, 10°, and 15°. The various probe holders are shown in Fig. 1(b). 
 
Imaging with phantoms mimicking SLN was performed. A linear array transducer L3-12 was used to acquire the PA 
signal generated from the sample. A spherically shaped transparent object was prepared with latex material of and filled 
with methylene blue (10 mg/mL). The spherical phantom was embedded in a 3 cm thick chicken breast tissue as shown 
in Fig. 1(d). For imaging at various depths chicken tissue was sliced at 0.5 cm thickness. They were stacked on top to 
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mapping, the excitation wavelength of 675 nm was used. This has to be modified depending on the contrast agent of 
interest.  

 
4. CONCLUSION 

 
Monte Carlo simulations were done to study the effect of the light launching angles on PA signal using a 

handheld photoacoustic probe. Different simulation scenarios were considered taking into account the different 
parameters that will affect the imaging. Experimental validation was provided for the different illumination angles at 
various SLN depths. It was evident from simulations that illumination angle needs to be varied to obtain maximum 
absorbance in SLN. Different 3D printed probe holders were designed and PA imaging was done using the clinical 
ultrasound system. It was reaffirmed through experiments that the angle of light delivery plays an important role with 
respect to the depth of imaging. From the results the best scenario for in vivo imaging was determined. SLN was imaged 
non-invasively in vivo in rats using methylene blue as contrast agents using the handheld probe. Non-invasive needle 
biopsy of SLN using handheld probe will be part of our future work. 
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