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Abstract 
Nanostructured materials are gaining new impetus owing to the advancements in material 

fabrication techniques and their unique properties (their nanosize, high surface area-to-volume 
ratio, and high porosity). Such nanostructured materials mimic the subtleties of extracellular 
matrix (ECM) proteins, creating artifi cial microenvironments which resemble the native niches 
in the body. On the other hand, the isolation of mesenchymal stem cells (MSCs) from various 
tissue sources has resulted in the interest to study the multiple differentiation lineages for various 
therapeutic treatments. In this review, our focus is tailored towards the potential of biomimetic 
nanostructured materials as osteoinductive scaffolds for bone regeneration to differentiate MSCs 
towards osteoblastic cell types without the presence of soluble factors. In addition to mimicking 
the nanostructure of native bone, the supplement of collagen and hydroxyapatite which mimic the 
main components of the ECM also brings signifi cant advantages to these materials. 
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Introduction
Bone is the second most common transplantation tissue 

after blood. Globally, at least 2.2 million of bone grafting 
procedures are performed annually and approximately 
500,000 of such procedures are done in the United States 
(US) alone.1-3 Figure 1 shows the orthopaedic industry by 
market segmentation in the US.4 It is estimated that the 
orthopaedic market is set to generate revenues of over 
US$20 billion in 2010. The US being the biggest player 
is said to contribute 59% of the total world orthopaedic 
market shares.4 Bone graft market alone is valued over 
US$2.5 billion.5 

The ideal bone graft should possess the 3 properties 
namely osteoconduction, osteogenesis and osteoinduction. 
Osteoconduction is the ability of biocompatible scaffolds to 
promote the attachment, survival, migration, and distribution 

of ostegogenic cells. Osteogenic graft materials contain 
osteogenic stem cells or progenitors to create new bone 
through the differentiation process. Lastly, osteoinductive 
bone grafts contain soluble or matrix-bound signals to initiate 
stem cells or progenitors towards osteoblastic cell type.6,7 

Currently, autogenous and allogeneic bone grafts are 
the most common approaches for bone defects treatment. 
However, these sources of bone grafts have signifi cant 
disadvantages including limited supplies, the hazard 
of adverse immunological response and pathogenic 
transmission.8,9 So, synthetic bone grafts (usually calcium 
phosphate-based) provide an alternative bone graft option. 
Growth factors (e.g. bone morphogenetic protein-2 or -7 
(BMP-2, BMP-7)) can be incorporated to improve their 
osteoinductive capabilities. The main drawbacks of these 
synthetic materials are that they are brittle, possess low 
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mechanical strength; and depending on their fabrication 
methods, they can be highly crystalline (due to sintering at 
very high temperatures of more than 1000ºC). Additionally, 
most biomaterials have poor surface interaction with the 
host tissue, resulting in the lack of adequate tissue formation 
around the biomaterials.10 Besides, some materials act 
only as passive scaffolding, so insuffi cient remodeling 
occurs.10 These phenomena may be caused by the fact that 
structural and composition properties of those materials 
do not resemble those of natural bone. Current bone graft 
systems are usually blended systems and mimic native 
bone only at a micro-level, such as HEALOS® Bone Graft 
Replacement, CopiOs® Bone Void Filler,  Osteopore® PCL 
scaffold Bone Filler, etc. To solve those issues, many recent 
studies have focused on nanostructured materials which 
mimic the native bone at nano-level. 

One of current challenges in bone tissue engineering is 
how to develop osteoinductive graft materials to differentiate 
stem cells towards osteoblasts without the presence of 
soluble factors. Biomimetic structured materials have been 
expected to do that. In this review, we summarise recent 
studies which have provided evidence of these materials 
as potential regulators for osteogenesis.

Mesenchymal Stem Cells for Bone Regeneration
Work in the last decade includes evidence that stem cells 

possess self-renewal, multi-lineage differentiation and in 

vivo functional capabilities. Stem cells of interest include 
mainly embryonic stem cells (ESCs) and mesenchymal stem 
cells (MSCs). Embryonic stem cells (ESCs) are derived 
from the inner cell mass (ICM) of blastocyst-stage 5-day 
embryo.11 They possess high proliferative capability,12,13 are 
able to form 3 embryonic germ layers (endoderm, mesoderm 
and ectoderm),11 produce germline chimaeras,14 exhibit 
differentiation in teratomas11 and express specifi c ESC 
markers.11 However, the safety and effi cacy of hESC lines 
may be a concern. These include technical issues such as 
potential of hESC rejection and the risk of tumorigenicity. 
There are also ethical and religious issues involving the 
harvesting of donor oocytes and destruction of the blastocyst. 

As such, MSCs provide an attractive alternative to ESCs 
and these cells can be readily obtained with less controversy 
from bone marrow,15 umbilical cord blood16 and adipose 
tissue.17 A recent study shows that the bone nodules that 
are formed by osteoblasts and MSCs exhibit the hallmarks 
of native bone, whereas those are formed by ESCs differ 
in terms of composition, stiffness and nano-architecture.18 

More importantly, MSC has a versatile differentiation 
profi le. Autologous MSCs surmount immune rejection and 
carcinogenesis is minimised.19 Several reports stated that 
MSCs facilitate bone repair.20-22

MSCs are able to differentiate into many cell types such 
as adipocytes, chondrocytes, osteoblasts and myocytes.15 
Under suitable stimuli, MSCs can be initiated to differentiate 
into osteoblastic cell types. This process is known as 

 

Fig. 1.  Orthopaedic industry by market segmentation in the US.4
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osteogenic differentiation. The use of growth factors such as 
BMP and fi broblast growth factor (FGF)22-24 and osteogenic 
supplements (dexamethasone, β-glycerophosphate, ascorbic 
acid, vitamin D)25,26 are some approaches which aim to 
induce osteogenic differentiation. In addition, others have 
illustrated the benefi ts of culturing more than one cell type 
(co-culture) to aid in osteogenic differentiation.27 In this 
review, not such growth factors/ osteogenic supplements, but 
biomimetic nanostructured materials will be emphasised to 
indicate their role in the osteogenic differentiation of MSCs.

Strategy for the Design of Bone Graft Materials
The key tenet of tissue engineering is to regenerate 

diseased, damaged tissue or organ using biodegradable 
materials including synthetic or natural polymers. Examples 
of synthetic polymers for potential bone applications include 
polycaprolactone (PCL),28 poly(L-lactide) (PLLA),29 

poly(D, L-lactic-co-glycolide) (PLGA)30 and poly(3-
hydroxybutyrate-co-3-hydroxyvalerate) (PHBV).31 Others 
have used natural polymers such as collagen,32 chitosan,33 

alginate,34 agarose34 and silk35 in the quest for developing 
better bone graft materials.  

The understanding of material science together with 
stem cell biology and signaling pathways (e.g. mitogen-
activated protein kinase (MAPK) and phosphatidyl inositol-
3-kinase (PI3K) etc.) is important to expedite expansion 
and differentiation of stem cells into tissue-specifi c lineages 
without changing the plasticity nature of the stem cells. 
Various biomaterial fabrication techniques aim to construct a 
microenvironment or niche similar to that in the body. During 
trauma and disease conditions, loss of tissue may occur and 
instead of being in homeostasis state, the stem cells migrate 
out and start their proliferative and differentiation work at 
the damaged site. At this site, stem cells stored in the niche 
are exposed to an array of soluble chemokines, cytokines, 
growth factors, as well as insoluble transmembrane receptor 
ligands and ECM proteins.36 ECM not only provides the 
structural and functional aspects of bone, it also provides key 
regulatory signals for cell proliferation and differentiation 

by cell-receptor interactions, mediating the diffusion of 
soluble growth factors and transmitting and attenuating 
mechanical signals.37

Understanding the composition, architectural, biophysical 
and mechanical properties of native bone would give 
us great insights in designing bone grafts for various 
applications. Bone ECM is a nanocomposite with an intricate 
hierarchical structure, assembled through the orderly 
deposition of nano-hydroxyapatite (HA) within a type I 
collagenous fi bril matrix. Collagen molecules are triple 
helices with a length of about 300 nm. The HA mineral 
crystals are embedded parallel to each other and parallel 
to the collagen fi brils, in a regularly repeating, staggered 
conformation (Fig. 2). Besides, bone is a nanocomposite 
where cells reside on ridges, grooves, pores and fi bers of 
the extracellular matrix (ECM). The explosion in research 
towards designing nanocomposites for bone grafts are 
directed at polymeric nano-scale materials which closely 
mimicking the native bone structure.  One can envisage 
that cellular interactions and behaviour such as adhesion, 
proliferation and differentiation on these nanotextured 
materials will be tremendously improve the osteogenic 
potential of these nanocomposites.

Biomimetic Nanostructured Materials
Since the conceptual approach is to mimic native ECM, 

nanofi brous scaffolds (NFS) have been widely used 
recently to mimic the protein nanofi brils in the native 
ECM. Currently, there are 3 common methods for the 
fabrication of nanofi brous structures: self-assembly, phase 
separation and electrospinning. Among these techniques, 
self-assembly is the most complex technique, and able 
to construct nanofi bres with very small diameters (a few 
to 100 nm). Phase separation is much simpler than self-
assembly, and able to process many biodegradable and 
biocompatible polymers with diameters of 50 to 500 nm. 
However, the common constraints of these 2 techniques 
are that only short strands of nanofi bres are produced, and 
it is really diffi cult to obtain nanofi bres throughout a large 

 

Hydroxyapatite crystals  
(thickness: 2-4 nm) 

Collagen molecules in triple-
helices (300 nm in length) 

67 nm

1-1.5 nm

Fig. 2.  Schematic of mineralised collagen fi brils of bone.
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scaffold. Electrospinning is a technique used to fabricate 
polymeric nanofi bers by means of an electrostatic force. 
Electrospinning is a reliable method to fabricate long 
continuous strands of nanofi bres with diameters in the 
range of 50 ÷ 1000 nm, and these fi brous diameters can be 
controlled with a rather small deviation. Its fl exibility in 
terms of material selection and the ability to create various 
nanofi brous architectures (nonwoven fibre mesh, aligned 
fibre mesh, patterned fibre mesh and random 3-dimensional 
structures) have also made this process highly attractive for 
scaffold fabrication.38-40 Recently, a technique for fabrication 
and remodeling of 3D hierarchically organised nanofi brous 
assemblies using a dynamic liquid support system has been 
developed.41,42

To mimic the nanocomposite nature of bone, newer 
compositions of synthetic bone graft substitutes attempt to 
resemble the nano-HA and collagen fi brils composition of 
natural bone. Collagen, as one of the ECM proteins plays 
critical role in bone mineralisation, thus collagen is a prime 
candidate material for tissue-engineered graft material. 
Type I collagen has been used in several commercial 
products such as Collapat II (Biomet Inc.), Collagraft 
(Zimmer Inc.), Healos (Depuy Spine Inc.). Note that the 
above-mentioned commercial products are not tissue-

engineering nanofi brous scaffolds. As collagen has a rapid 
adsorption rate and possess weak mechanical strength, 
polymer additions are often incorporated for enhancing the 
mechanical properties of the material constructs. Besides, 
polymers by themselves lack cell recognition signals,43 and 
the addition of collagen provides the necessary binding sites 
for cell-material interactions.  Polymer and collagen can be 
co-blended and then fabricated into nanofi brous scaffolds via 
electrospinning.40 In electrospinning a high voltage fi eld is 
applied to electrically-charge a liquid (material of interest: 
polymer, collagen, salts that can be fully dissolved in the 
appropriate solvents), resulting in nanofi bres. Calcium salts 
such HA,29 β-tricalcium phosphate (β-TCP) and calcium 
carbonate (CaCO3)

28 can also be incorporated to mimic the 
inorganic component of native bone and to improve the 
osteoconductivity of the material construct. 

The reasons why these biomimetic nanostructured 
materials are considered as potential regulators for 
osteogenesis and their examples will be discussed in the 
following section.

Potential Regulators for Osteogenesis
Figure 3 shows that regulating stem cell fate can be 
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achieved through various means, as such chemical, 
topographical, mechanical and electrical or electromagnetic 
cues. For chemical cues, media supplements or peptides/ 
functional groups can be added into the environment to 
differentiate MSCs into osteoblasts. Besides, topographical 
cues such as size affect (micro/nano), architecture form 
(2D/3D) and morphological structures (pits/grooves/
ridges/pores), etc are able to help MSCs differentiated. 
Additionally, various stress stimuli applied to substrate 
and/or cell construct, called mechanical cues, have been 
supposed to induce osteogenesis. Lastly, the differentiation 
of MSCs into osteoblasts can be stimulated by electrical and 
electromagnetic cues (through application of electrical or 
electromagnetic currents/fi elds to stimulate substrate and/or 
cell construct). In this review, we focus on the importance 
of topographical features and substrate characteristics of 
biomimetic nanostructured materials to inducing/enhancing 
MSC differentiation.

Nanofi brous scaffolds being in nanometer scale (in 
diameter) are said to resemble the ECM proteins, and such 
microenvironment is conducive for cellular interaction.  

Nanotexture is said to infl uence cell activity. Cells are 
subjected to topographical features such as protein folding, 
collagen bending within a niche in vivo. Nanoscale disorder 
has shown to stimulate osteogenic stem cell differentiation 
without chemical treatments.44 Such geometric cues have 
demonstrated a dominant effect on adhesion, spreading, 
growth and differentiation of MSCs in several studies.  
Lateral spacing geometry of TiO2 nanotubes of 30 to 50 
nm was reported to be the critical threshold for cell fate.45 
Diameter (<15 nm) and spacing (<30 nm) was considered 
to be the effective length scale for augmenting integrin 
clustering and focal contact formation. Good evidence 
showed that smaller diameter nanotubes (15 nm) were 
associated with greater focal contact formation, stress 
fi ber (contractile actomyosin bundles or actin fi laments) 
assembly, cell spreading and osteocalcin differentiation 
compared to larger diameter nanotubes (100 nm). On the 
other hand, larger diameter nanotubes (>50 nm) resulted 
in the reduction in cellular activity, fewer focal contact 
and stress fi bers and even programmed cell death.45 In a 
separate study, it was shown that larger diameter nanotubes 
enhanced cell spreading compared to smaller diameter and 

Fig. 3. Regulating cell fate through various cues. (a) Chemical (through use of media chemicals or surface modifi cation), (b) Topographical 
(through surface features [such as pits, grooves, ridges, pores etc.], architectural form [2D vs 3D] or size effect [micro, nano scale]), (c) 
Mechanical (through various stress stimuli applied to substrate and/or cell construct) and (d) Electrical and electromagnetic cues (through 
application of electrical or electromagnetic currents/fi elds to stimulate substrate and/or cell construct).
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fl at substrates as depicted in Figure 4.46 Increased MSC 
adhesion on smaller diameter nanotubes was said to be 
due to the increased protein aggregates such as fi bronectin 
and albumin. Conversely, larger diameter nanotubes 
increased osteogenic differentiation as cells were forced 
to elongate and stretch in search of protein aggregates, and 
such guidance and stressed-induced elongation resulted in 
osteogenic differentiation. Lower cell numbers were seen 
on larger diameter nanotubes within 24 hours, but after 7 
days, the cell numbers for the different sized nanotubes were 
comparable, suggesting that the initial cell density could 
play a role in regulating the stem cell fate.46 Increasing 
cell growth, cell numbers and osteogenic differentiation 
was also more evident 3D scaffolds with nanotextured 
surfaces compared to smooth 3D scaffolds,47 implying the 
importance of nanotopographical features in modulating 
cellular activities. Besides, there is a central concept that 
cells attach and organise well on fi bers that have diameters 
smaller than that of the diameter of the cells.48  

Additionally, the high surface area-to-volume ratio and 
its high porosity (with small pore sizes) allow effi cient 
nutrient delivery, gas exchange and waste excretion. One 
of the characteristics of nanoscale scaffolds is the enhanced 
absorption of biomolecules such as vitronectin on the 
scaffolds due to a high surface area-to-volume ratio,49 

which is important for example wound healing, creating 
a more favourable environment for cellular interaction. In 
addition, biomineralisation was signifi cantly increased on 
nanofi brous scaffolds compared to solid-walled scaffolds.50 

For instance, when osteoblasts (bone cells) were seeded 
on both types of scaffolds, early bone markers such as 
runt-related transcription factor 2 (RUNX-2) protein and 
alkaline phosphatase (ALP) and middle-stage bone marker 
bone sialoprotein were higher on the nanofi brous scaffolds 
than on solid-walled scaffolds. Furthermore, the nanofi brous 
substrates seemed to promote protein adsorption such 
as fi bronectin and vitronectin. Integrins associated with 
fi bronectin (αvβ3), vitronectin (αvβ3) and collagen-binding 
(α2β1) were enhanced on nanofi brous scaffolds compared to 
solid-walled scaffolds. This implies that substrates have an 
infl uence on osteoblastic phenotype and cellular signaling, 
suggesting the superiority of nanofi brous materials over 
solid-walled materials.50 

Type I collagen which is used for co-blended nanofi bres, 
proved to be a substrate for binding of BMPs23 and is also 
chemotactic to fi broblasts, having high affi nity cell-binding 
domains.51 The activation of type I collagen specifi c integrins 
is said to have an osteogenic response to a bone cell line52 
and human bone marrow stem cells (BM-MSCs).53      

Mineralised nanofi bres, which mimic collagen fi brils and 

Fig. 4. SEM images of human MSCs on fl at Ti and TiO2 nanotubes with diameters of 30 nm, 50 nm, 70 nm and 100 nm after 2hrs and 
24 hrs of incubation.46
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nano-HA in native bone, elevated osteoblastic activities 
compared to non-mineralised nanofi bres.30 Figure 5 shows 
the nanotextured surfaces of mineralized nanofi bres, where 
prominent groves and ridges are more evident on HA fi bers 
than non-HA fi bers.30 The importance of closely mimicking 
the natural composition of bone can be delineated in several 
studies.29,30,54 For instance, enhanced mineral deposition 
(57% higher) was observed when osteoblasts were grown 
on PLLA/Collagen/HA nanofi bres compared to PLLA/
HA nanofi bres, suggestive of the synergistic effect of 
collagen and HA in osteogenic differentiation and bone 
mineralisation.54 Many studies have shown that BM-MSCs 
are capable of differentiating towards an osteoblastic 
lineage.32,37,55-57 It was also shown that when MSCs were 
cultured on HA surfaces, osteo-specifi c genes were up-
regulated.55,57 Not only the viability of human MSCs was 
not affected, the expression of ALP, osteogenic genes and 
calcium mineralisation of the MSCs were elevated when 
the cells were cultured on blended PLGA and nano-HA 
nanofi bres.58 It was speculated that when the cells interacted 
with HA, potent inductive substances were released. Using 
this conditioned media after the initial culture, uncommitted 
MSCs were then cultured without the presence of HA 
and upregulation of osteo-specifi c genes were observed.57 
Although some reports stated that HA induced osteogenic 
differentiation of MSCs and other cell types, there were 
also confl icting reports which saw an attenuation in 
osteogenic differentiation when cells were cultured on HA 
surfaces.59,60 This could be due to the physical and chemical 
characteristics of the HA material such as crystallinity and 
particle size etc.59  

A landmark paper highlighted the importance of matrix 
stiffness and its infl uence in directing MSC commitment 
towards a specifi c lineage.61 Briefl y, soft matrices were 
associated with neurogenic differentiation, stiffer matrices 
were corresponded to myogenic differentiation and lastly 
rigid matrices were related with osteogenic differentiation.61 

In a separate study, the stiffness of substrates (PEG-based 
materials) affected differentiation of pre-osteoblastic cells 
via mitogen-activated protein kinase (MAPK) activation.62 

It was reported that such ECM rigidity regulated osteogenic 
differentiation involving MAPK activation downstream 
of the RhoA-ROCK signaling cascade.63 Early osteogenic 
differentiation markers, such as RUNX-2 and ALP 
expression were associated with stiffer materials.62,63 

The elasticity of the substrates also impinges upon cell 
proliferation, where stiffer substrates resulted up to 10-
fold increase in cell numbers compared to lower stiffness 
substrates.64 Interestingly, osteogenic differentiation of 
MSC were signifi cantly increased on collagen-I coated 
substrates with the highest modulus,64 suggesting that 
substrate elasticity alone did not direct stem cell fate, but 

rather a network of factors such as the presence of integrins 
and integrin-receptor interactions was also likely at work. 
This highlights the importance of designing materials that 
are more closely related to the microenvironments found 
in native tissues. 

Several studies have shown that the dimensionality of 
the substrate (2D vs 3D) has an impact on cell fate and 
signaling cascade. Three-dimensional scaffolds provide 
more precise, reproducible nano-topographical features 
and such nano-texturing is usually absent in 2D substrates. 
Certain stress mediators such as p38 and c-Jun N-terminal 
kinase (JNK) were signifi cantly activated in 3D calcium 
phosphate scaffolds, thereby indicating that cells response to 
environmental signals, triggering certain signaling pathways 
such as MAPK cascade. This phenomenon was less evident 
in 2D calcium phosphate scaffolds.65  

Current Perspectives, Challenges and Future Directions
The substrate composition, dimensionality, mechanical 

properties, nanotopographical cues, elasticity, biophysical 
characteristics, biochemical signaling regulatory networks 
are some important factors that affect the differentiation 
lineage of MSCs. Nevertheless, the mechanisms of stem cell 
biology and cell-material interactions needs to be further 
harnessed. Standardising culture techniques and conditions 
for the expansion and differentiation of stem cells, and 
also narrowing down to a few material substrates from 
the plethora of material choices is a gargantuan task. The 
arduous, time-intensive culture process of MSC expansion 
can also be daunting. Kinks need to be worked out, such 
as the establishment of more robust culture protocols 
(controlled expansion and differentiation into specifi c 
lineages), effective cell delivery systems to ensure cell 
survival, and designing the appropriate material carriers 
suitable for specifi c clinical conditions (e.g. trauma, spinal 
fusion, fractures, maxillofacial reconstruction, cranial and 
dental applications). It is also imperative to ameliorate 
scale-up and characterisation efforts for effective MSC-
based therapies. Particularly, growth factors that are used 
to hasten MSC differentiation and directly isolating MSCs 
from various tissue sources may not give rise to one cell-type 
exclusivity. In some instances, it may be more important to 
have an enrichment of the cell of interest. Other challenges 
include matching the mechanical properties of the substrates 
to bone and supporting angiogenesis in tissue-engineered 
constructs. Although harvesting MSCs from bone marrow is 
the gold standard, a recent study showed that adipocytes that 
reside in bone marrow could antagonise the haematopoietic 
activity in the bone marrow niche.66 By suppressing 
marrow adipogenesis, haematopoietic activity may have 
been improved but balancing between osteogenesis and 
adipogenesis has to be considered as both osteoblasts and 
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                              (a)                                                                  (b) 

 

                            (c)                                                                    (d) 

Fig. 5. Atomic force microscopy (AFM) 
images of nanotexturing of mineralized 
nanofi bers.30 (a) PLGA, (b) PLGA/Col, 
(c) 3D surface topography of (a) PLGA 
, (d) 3D surface topography of (b) 
PLGA/Col, (e) PLGA+HA, (f) PLGA/
Col+HA, (g) 3D surface topography 
of (e) PLGA+HA and (h) 3D surface 
topography of (f) PLGA/Col+HA.

                             (e)                                                                (f) 

(g)                                                             (h) 
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adipocytes originate from bone marrow MSCs and they 
have a reciprocal relationship.67 Other reasons stymieing 
the clinical application of tissue-engineered constructs on 
a wide scale is the lack of large clinical trials. Most in vivo 
work involves animal models and there should be concerted 
effort in carrying out clinical trials to elucidate the true 
performance of tissue-engineered graft materials. These 
unaddressed issues call for the global push for collaborative 
work which aims to accelerate its clinical application. 
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