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Abstract:
In this paper, a non-cooperative distributed MPC algorithm based on reduced order model is proposed to stabilize large-scale

systems. The large-scale system consists of a group of interconnected subsystems. Each subsystem can be partitioned into two parts:
measurable part, whose states can be directly measured by sensors, and the unmeasurable part. In the online computation phase, only the
measurable dynamics of the corresponding subsystem and neighbour-to-neighbour communication are necessary for the local controller
design. Satisfaction of the state constraints and the practical stability are guaranteed while the complexity of the optimization problem
is reduced. Numerical examples are given to show the effectiveness of this algorithm.
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1 Introduction

Due to its capability to handle hard constraints on s-
tate, control input and output explicitly, and optimize the
performance of the system with respect to the cost func-
tion [1] [2] [3], model predictive control (MPC) has re-
ceived increasing attention in the last decades. At each time
instant, the controller is required to solve a finite horizon
optimal control problem and the first element of the con-
trol sequence is applied to the plant. Then the optimization
problem is reformulated when a new measurement comes
and it is solved again. Traditionally, to compute the opti-
mal control input, the controller needs the full model and s-
tate/output information of the system, and the optimization
problem is formulated and solved in a centralized manner.
However, when interconnected large scale systems such as
power systems [4], traffic networks [5], biology system-
s [6] and building systems [7] are considered, it is usually
not practical for the controller to know the full model and
state/output information, and solve the optimization prob-

lem in reasonable time. To overcome these obstacles, dis-
tributed model predictive control (DMPC) is proposed in a
lot of literatures [8] [9] [10] [11].

Usually, in the DMPC setup, the model complexity
mainly comes from the large number of interconnected
subsystems. In some industrial control applications, each
subsystem may also have complex dynamics. For exam-
ple, the model of heating, ventilation and air-conditioning
(HVAC) systems in buildings are usually obtained by dis-
cretization of partial differential equations [12] [13]. To
guarantee high accuracy, the number of the grids should be
large enough and the resulted ordinary differential equa-
tions usually have high dimension. Furthermore, because
of the limited number of sensors, it is not practical to mea-
sure every state of a HVAC system. Therefore, even though
the HVAC system in a building can be partitioned into con-
nected subsystems by zones and rooms, the complexity of
each subsystem should be reduced further. Model reduc-
tion techniques have been proposed in several literatures
to simplify system dynamics at the expense of some mod-
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elling error [14] [15].
In this paper, we consider a distributed control problem

for a large-scale interconnected system where its subsys-
tem also has complex dynamics. Based on the similar idea
in [16], the dynamics of each subsystem is assumed to be
partitioned to the main dynamics and the minor one. Only
the states of the main dynamics are assumed to be mea-
surable. Then for each subsystem, an MPC controller is
designed only based on the main dynamics, by which the
complexity of the controller is reduced. The modelling er-
rors are handled as disturbances. Then it is shown that this
problem can be cast into robust distributed MPC by using
an algorithm proposed in [11]. In [11] and [17], the au-
thors studied the distributed algorithms and the implemen-
tation issues for large-scale linear systems. Compared with
these two works, in this paper, we consider a more com-
plex model and a model reduction technique is introduced
to reduced the computational burden.

The remainder of this paper is organized as follows. In
Section 2, the problem is formulated. In Section 3 and
4, the design and implementation procedures of the MPC
controller are given. In Section 5, a numerical example is
given to illustrate our algorithm. Finally, some conclusions
are drawn in Section 6.

Some remarks on notations are given as follows. R and
N are used to denote the real number set and the natural
number set respectively. 0 denotes a zero matrix with prop-
er dimension. The m× n dimensional space is denoted as
Rm×n. A matrix is Schur stable if its eigenvalues lie in the
interior of the unit circle. The Minkowski sum of sets A
and B is defined as C = A ⊕ B = {c = a + b, ∀a ∈
A and b ∈ B}. The Pontryagin difference of sets A and B
is defined as C = A	 B = {c|c+ b ∈ A, ∀ b ∈ B}. For
a discrete-time signal sk and a, b ∈ N, a < b, we denote
s[a : b] as (sa, sa+1, . . . , sb). Given a generic compact set
X, Y = box(X) is the smallest hyperrectangle containing
X with faces perpendicular to the cartesian axis.

2 Problem Formulation

Consider a linear discrete-time system

x(k + 1) = Ax(k) + Bu(k) + Dw(k), (1)

where x(k) ∈ Rn is the state of the system, u(k) ∈ Rm

is the control input and w(k) ∈ Rp is the external distur-
bance.

The system can be partitioned into N linear, discrete-
time, interconnected non-overlapping subsystems. For

each subsystem Si, the system dynamics is given by:

xi(k + 1) =Ai,ixi(k) +Biui(k) +
∑
j∈N 1

i

Ai,jxj(k)

+Diwi(k), (2)

where xi(k) ∈ Rni , ui(k) ∈ Rmi and wi(k) ∈ Rwi

are the state, the control input and the bounded exter-
nal disturbance for subsystem i and N 1

i = {j|Ai,j 6=
0, j = 1, . . . , N, j 6= i}. According to this decom-
position, we have x(k) = (x1(k), . . . , xN (k)), u(k) =

(u1(k), . . . , uN (k)), w(k) = (w1(k), . . . , wN (k)), A =
A1,1 . . . A1,N

...
. . .

...

AN,1 . . . AN,N

, B = diag(B1, . . . , BN ) and D =

diag(D1, . . . , DN ).
Each xi(k) can be further partitioned into two parts:

measurable part x1i (k) ∈ Rn1,i and unmeasurable part
x2i (k) ∈ Rn2,i , where n1,i � n2,i. The matrices Ai,j , Bi

and Di have the corresponding structures:

Ai,j =

(
A11

i,j A
12
i,j

A21
i,j A

22
i,j

)
, Bi =

(
B1

i

B2
i

)
, Di =

(
D1

i

D2
i

)
.

The initial value of x2i (k) is bounded by a known
polyhedron ∆i. The external disturbance wi(k) is bound-
ed by Wi. The matrix A22

i,i is Schur. The objective
of this paper is to design a distributed control law
to stabilize the system while enforcing the local con-
straints x1i (k) ∈ Xi, ui(k) ∈ Ui and the joint con-
straints (x11(k), . . . , x1N (k), u1(k), . . . , uN (k)) ∈ Jl, l =

1, . . . , nc. The sets Wi, Xi, Ui and Jl are polyhedron con-
taining the origin in their interiors. If the projection of the
polyhedron Jl on (x1i , ui) is not the whole hyperplane,
(x1i , ui) is called an argument of Jl. If (x1i , ui) and (x1j , uj)

are arguments of Jl, Jl is defined as a joint constraint on
subsystem i and j . We call subsystem j a neighbor of sub-
system i if Ai,j 6= 0 and/or they have at least one com-
mon joint constraint hm. We do not consider constraint on
x2i (k).

3 Controller Design

For simplicity, in this section, we assume that D2
i , A12

i,j

and A22
i,j are 0, ∀i 6= j.
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3.1 Bounded Unmeasurable State

First we rewrite the dynamics of x2i (k) into the follow-
ing form:

x2i (k + 1) = A22
i,ix

2
i (k) + d2i (k),

d2i (k) = A21
i,ix

1
i (k) +B2

1ui(k) +
∑
j∈N 1

i

A21
i,jx

1
j (k).

Thus we obtain

x2i (k) = (A22
i,i)

kx2i (0) +

k−1∑
l=0

(A22
i,i)

k−1−ld2i (l). (3)

Considering the bounds on xi(k), xj(k) and ui(k), we
know that d2i (k) ∈ A21

i,iXi ⊕ B2
1Ui ⊕

∑
j∈N 1

i
A21

i,jXj ,

D2
i . Therefore by (3), we have x2i (k) ∈ (A22

i,i)
k∆i ⊕∑k−1

l=0 (A22
i,i)

lD2
i , S2i (k). An over-approximation S2i (∞)

for all S2i (k), k ∈ N can be easily given by ∆i ⊕ (I −
A22

i,i)
−1D2

i .
Rewrite the dynamics of x1i (k) in the following form:

x1i (k + 1) =A11
i,ix

1
i (k) +B1

i ui(k) +
∑
j∈N 1

i

A11
i,jx

1
j (k)

+d1i (k), (4)

d1i (k) =A12
i,ix

2
i (k) +D1

iwi(k).

From the above discussion, we know that d1i (k) ∈
S2i (∞)⊕D1

iWi , D1
i . This fact implies that d1i (k) can be

treated as an additive bounded disturbance to x1i (k). There-
fore distributed robust MPC can be designed to stabilize
this system.

3.2 Distributed Robust MPC

Consider the nominal subsystem model

x̂i(k + 1) = A11
i,ix̂i(k) +B1

i ûi(k) +
∑
j∈N 1

i

A11
i,j x̃j(k),(5)

where x̂i(k) is the nominal state trajectory, ûi(k) is the
nominal control input and x̃i(k) is the reference state tra-
jectory which will all be specified later.

Before providing the distributed robust MPC algorithm,
the following assumption on decentralized stabilizability is
necessary.

Assumption 1 There exist matrices Ki, i = 1, . . . , N

such that (i) AKi
= A11

i,i + B1
iKi is Schur, (ii) Â +

B̂K is Schur, where Â =


A11

1,1 . . . A
11
1,N

...
. . .

...

A11
N,1 . . . A

11
N,N

, B̂ =

diag(B1
1 , . . . , B

1
N ) and K = diag(K1, . . . ,KN ).

The control law for the i-th subsystem (2) is given by

ui(k) = ûi(k) +Ki(x
1
i (k)− x̂i(k)). (6)

By defining ei(k) = x1i (k) − x̂i(k), (4), from (5) and
(6), we have

ei(k + 1) =AKi
ei(k) +

∑
j∈N 1

i

A11
i,j(x

1
j (k)− x̃j(k))

+d1i (k) (7)

Due to the stability of the matrix AKi and the bounded-
ness of di(k), if it can be further guaranteed that x1j (k) −
x̃j(k) are bounded, ∀j = 1, . . . , N , there exists a robust
positively invariant set Ei for (7), such that ∀ei(k) ∈ Ei,
ei(k+1) ∈ Ei which implies that if x̂i(k)→ 0 as k →∞,
x1i (k)→ Ei as k →∞.

At each time instant t, each subsystem Si transmits its
future state and control reference trajectory over the pre-
diction horizon Nc to its neighborsN 1

i , and the MPC con-
troller of each subsystem Si solves the following i-th opti-
mization problem:

min
x̂i(t),ûi[t:t+Nc−1]

V N
i

subject to (5),
x1i (t)− x̂i(t) ∈ Ei, (8)

and for k = t, . . . , t+Nc − 1 and l = 1, . . . , nc,

x̂i(k)− x̃i(k) ∈ Zi, (9)

ûi(k)− ũi(k) ∈ Si, (10)

x̂i(k) ∈ X̂i ⊆ Xi 	 Ei,

ûi(k) ∈ Ûi ⊆ Ui 	KiEi,

(x̂1i (k), ûi(k), x̃1−i(k), ũ−i(k)) ∈ Ĵl
x̂i(t+Nc) ∈ X̂F

i ,

where V N
i =

∑t+Nc−1
k=t li(x̂i(k), ûi(k)) + V F

i (x̂i(t +

Nc)), Zi is a convex set which contains the origin
as its interior point, X̂F

i is a nominal terminal set,
li(x̂i(k), ûi(k)) = x̂i(k)TPix̂i(k) + ûi(k)TQiûi(k)

is the stage cost, V F
i (x̂i(t + Nc)) = x̂i(t +

Nc)
TRix̂i(t + Nc) is the terminal cost, Ĵl is construct-

ed such that if (x̂1i (k), ûi(k), x̃1−i(k), ũ−i(k)) ∈ Ĵl
then (x11(k), . . . , x1N (k), u1(k), . . . , uN (k)) ∈ Jl with
x̃1−i(k) = (x̃11(k), . . . , x̃1i−1(k), x̃1i+1(k), . . . , x̃1N (k)) and
ũ1−i(k) = (ũ11(k), . . . , ũ1i−1(k), ũ1i+1(k), . . . , ũ1N (k))

Remark 1 (8) implies that ei(t) ∈ Ei. Based on the
invariance of Ei and by induction, it follows that ei(k) ∈
Ei, k = t, . . . , t + Nc − 1. Combining this fact with
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constraint (10), it can be obtained that x1i (k) − x̃i(k) ∈
Ei ⊕ Zi, k = t, . . . , t + Nc − 1 which guarantees the
boundedness of

∑
j∈N 1

i
A11

i,j(x
1
j (k) − x̃j(k)) + d1i (k) in

(7). Considering (7), a sufficient condition of the sets Ei

and Zi, i = 1, . . . , N is that

AKiEi ⊕
∑
j∈N 1

i

A11
i,j(Ej ⊕ Zj)⊕ D1

i ⊆ Ei. (11)

The following assumptions for the terminal constraint
X̂F

i and terminal cost function V F
i (·) are necessary to guar-

antee the recursive feasibility of the optimization problem
and stability of the system.

Assumption 2 Denote X̂ =
∏N

i=1 X̂i, Û =
∏N

i=1 Ûi,
X̂F =

∏N
i=1 X̂F

i and x̂ = (x̂1, . . . , x̂N ).
i) X̂F ⊆ X̂ is an invariant set for x̂(k + 1) = (Â +

B̂K)x̂(k);
ii) Kx̂(k) ∈ Û for all x̂(k) ∈ X̂F ;
iii) for all x̂(k) ∈ X̂F and for a given constant α > 0,

N∑
i=1

[V F
i (x̂i(k + 1))− V F

i (x̂i(k))]

≤−(1 + α)

N∑
i=1

li(x̂i(k), ûi(k)).

At each time instant t, a pair (x̂i(t), ûi[t : t + Nc − 1])

can be obtained by Si by solving the i-th problem. Based
on (5) and (6), the future state trajectory x̂i[t+ 1 : t+Nc]

can also be computed. Then set x̃i(t + Nc) = x̂i(t + Nc)

and ũi(t + Nc) = ûi(t + Nc) as the last elements of the
reference state and control trajectory and transmitted to the
neighbours of the i-th subsystem for updating and reformu-
lating the local optimization problems at time instant t+1.

Based on the above setup, we have the following con-
vergence result of the distributed MPC algorithm.

Theorem 1 If Assumption 1 and 2 hold, then
(x11(k), . . . , x1N (k)) exponentially converges to the invari-
ant set of system x(k+ 1) = (Â + B̂K)x(k) + d(k), where
d(k) = (d11(k), . . . , d1N (k)).

The proof goes along the line of Theorem 1 in [11] so it
is omitted here.

4 Implementation

In this section, some algorithms for the computation
of the weighted matrices, the feedback gains, the invari-
ant sets and the initial feasible reference trajectory will be
briefly introduced [17].

4.1 Feedback Gains and Weighted Matrices

Denote R = diag(R1, . . . , RN ). Define matrices S =

R−1 and Y = KS. Considering S and Y as feasible so-
lutions to the following LMI, the feedback gain Ki and
terminal weighted matrices Ri which satisfy Assumption
1 with R − (Â + B̂K)T R(Â + B̂K) � 0 can be obtained
by the definition of S and Y.(

S (ÂS + B̂Y)T

ÂS + B̂Y S

)
� 0, (12)(

Si,i (Âi,iSi,i + B̂i,iYi,i)
T

Âi,iSi,i + B̂i,iYi,i Si,i

)
� 0,(13)

Si,j = 0,∀i, j = 1, . . . , N(i 6= j), (14)

Yi,j = 0,∀i, j = 1, . . . , N(i 6= j), (15)

where Si,j and Yi,j , ∀i, j = 1, . . . , N are the (i, j)th block
of S and Y.

Once K and R are computed, P = diag(P1, . . . , PN )

and Q = diag(Q1, . . . , QN ) can be constructed to satisfy
Assumption 2 iii) by considering the following inequality:

R− (Â + B̂K)T R(Â + B̂K)− (Q + KT PK)(1 + α) � 0

Due to the positiveness of R− (Â + B̂K)T R(Â + B̂K), the
above inequality can be satisfied by choosing sufficiently
small α, P and Q.

4.2 Computation of Sets

Sets D1
i , i = 1, . . . , N can be easily computed fol-

lowing the discussion in Section 3. Then it needs to find
Zi 6= ∅, Ei ⊂ Xi and KiEi ⊂ Ui which satisfy (11) for
all i = 1, . . . , N . By using the box(·) operator, sets Ei

and Zi, i = 1, . . . , N can be constructed by the following
algorithm.

Algorithm 1
• Step 1: initialize Zi, i = 1, . . . , N as arbitrarily hyper-

rectangles.
• Step 2: initialize Ei =

∑
j∈N 1

i
box(A11

i,jZj)⊕ box(D1
i ),

i = 1, . . . , N .
• Step 3: compute E+

i = box(AKi
Ei) ⊕∑

j∈N 1
i

box(A11
i,j(Ej ⊕ Zj))⊕ box(D1

i ), i = 1, . . . , N .

• Step 4: for all i = 1, . . . , N , if E+
i ⊂ Ei, which mean-

s that Ei satisfies (11), then go to step 5. Otherwise set
Ei = E+

i and repeat step 3.
• Step 5: if Ei ⊂ Xi and KiEi ⊂ Ui then stop. Otherwise

set Zi = βZi with β ∈ (0, 1) and go to step 2.
Finally, X̂F

i can be simply chosen as βEi with β ∈
(0, 1).
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4.3 Initial Feasible Reference Trajectories

Denote the current measurement of system state is
x̃(0) = (x̃1(0), . . . , x̃N (0)). The algorithm to find the ini-
tial feasible reference trajectories of each subsystem Si is
based on the one-step prediction.

Algorithm 2
• Step 1: for all i = 1, . . . , N , initialize x̃i(0) and v = 0.
• Step 2: for all i = 1, . . . , N , each subsystem Si trans-

mits its state x̂i(v) to its neighbours Sj , j ∈ N 1
i and

solves the following optimization problem.

min
ûi(v)

||x̃i(v + 1)||2

subject to

x̃i(v + 1) = A11
i,ix̃i(v) +B1

i ûi(v) +
∑
j∈N 1

i

A11
i,j x̃j(v)

x̃i(v + 1) ∈ X̂i

(x̂1i (k), ûi(k), x̃1−i(k), ũ−i(k)) ∈ Ĵl
ûi(v) ∈ Ûi

• Step 3: for i = 1, . . . , N , if x̃i(v + 1) ∈ X̂F
i , set predic-

tion horizon as v+ 1 and stop. Otherwise, set v = v+ 1

and go to step 2.

5 Numerical Example

In this section, the proposed control algorithm is test-
ed on a building temperature regulation problem proposed
in [17] with slightly modification.

Consider four connected rooms A, B, C and D as in
Fig. 1. Room A and B are combined together as one a-
partment while room C and D as the other apartment.
The air temperature TA, TB , TC and TD are considered
as the measurable states and the control objective is to reg-
ulate them to the set point. Each room is equipped with
an air-conditioner qA, qB , qC and qD. The heat transfer
coefficient between rooms A − C and B − D is kt1 =

5.8W/m2K, the one between rooms A − B and C − D

is kt2 = 5.8W/m2K, and the one between each room and
the external environment is kte = 3W/m2K. The nomi-
nal external temperature T̄E is 35◦C and solar radiation
is not considered for simplicity. The volume of each room
is V = 48m3, and the wall surfaces between the rooms are
all equal to sr = 12m2, while those between the rooms and
the environment are equal to se = 24m2. Air density and
heat capacity are ρ = 1.225kg/m3 and c = 1005J/kgK,
respectively. Letting φ = ρcV , the dynamic model is the

following:

φ
dTA
dt

= srk
t
2(TB − TA) + srk

t
1(TC − TA)

+sek
t
e(TE − TA) +

3∑
i=1

siAk
i
A(T i

A − TA)− qA

φ
dTB
dt

= srk
t
2(TA − TB) + srk

t
1(TD − TB)

+sek
t
e(TE − TB) +

3∑
i=1

siBk
i
B(T i

B − TB)− qB

φ
dTC
dt

= srk
t
2(TA − TC) + srk

t
1(TD − TC)

+sek
t
e(TE − TC) +

3∑
i=1

siCk
i
C(T i

C − TC)− qC

φ
dTD
dt

= srk
t
2(TB − TD) + srk

t
1(TC − TD)

+sek
t
e(TE − TD) +

3∑
i=1

siDk
i
D(T i

D − TD)− qD

φ
dT i

A

dt
= 60siAk

i
A(TA − T i

A), i = 1, 2, 3

φ
dT i

B

dt
= 60siBk

i
B(TB − T i

B), i = 1, 2, 3

φ
dT i

C

dt
= 60siCk

i
C(TC − T i

C), i = 1, 2, 3

φ
dT i

D

dt
= 60siDk

i
D(TD − T i

D), i = 1, 2, 3

where T i
A, T i

B , T i
C and T i

D, i = 1, 2, 3 are used to repre-
sent the thermal dynamics of furniture and walls which are
assumed unmeasurable, siA, siB , siC and siD are the equiva-
lent surfaces chosen randomly, and kiA, kiB , kiC and kiD are
the equivalent heat transfer coefficients chosen randomly.

The considered equilibrium point is: qA = qB = qC =

qD = q̄ = sek
t
e(T̄ − T̄E) = 1081.4W , with TA =

TB = TC = TD = T̄ = 20◦C. Let δTA = TA − T̄ ,
δTB = TB − T̄ , δTC = TC − T̄ , δTD = TD − T̄ , δqA =

(qA−q̄)/cρV , δqA = (qA−q̄)/cρV , δqB = (qB−q̄)/cρV ,
δqC = (qC − q̄)/cρV and δqD = (qD − q̄)/cρV .

The corresponding discrete-time model of the form (1)
is obtained by mE-ZOH discretization [18] with sampling
time h = 10s. The partition of inputs and measurable s-
tates is:

x1 = [δTA δTB ]T , u1 = [δqA δqB ]T

x2 = [δTC δTD]T , u2 = [δqC δqD]T

The constraints on the inputs and the states of the dis-
cretized system is:

x1min = [−10 − 10]T , x1max = [10 10]T
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x2min = [−10 − 10]T , x2max = [10 10]T

u1min = [−2500 − 2500], u1max = [2500 2500]

u2min = [−2500 − 2500], u2max = [2500 2500]

||u1||1 + ||u2||1 ≤ 8000

Matrices Ki =

(
−0.0193 −0.0002

−0.0002 −0.0193

)
and Ri =(

2.9249 · 107 118.2915

118.2915 2.9249 · 107

)
are constructed by finding

feasible solutions to LMI (12)-(15). The selected weight-
ing matrices are Pi = I2 and Qi = 100I2. Algorithm 1
is used to find the invariant sets and the initial feasible ref-
erence trajectory is constructed by using Algorithm 2 with
Nc = 6.

The initial condition of this numerical example is δTA =

3◦C, δTB = 2◦C, δTC = 4◦C and δTD = 5◦C. The ini-
tial temperature of the unmeasurable states are randomly
chosen between [22◦C, 25◦C]. The real external tempera-
ture is assumed to randomly vary between [25◦C, 45◦C].
At time instant t = 700s, there is a sudden increase of tem-
perature TA and TB representing the opening of doors and
windows. Over time interval [700s, 1400s] additional heat
sources with 30◦C are added in both rooms. The control
input is calculated by using the descretized model and ap-
plied to the continuous-time model. The simulation results
are shown in Fig. 2. To compare the performance of the
proposed distributed algorithm, a decentralized MPC and
a centralized MPC with complete state information are also
used to regulate the temperature. The simulation results are
shown in Fig. 3-4. To show the difference among these al-
gorithms more clearly, the temperature deviation between
distributed algorithm and the decentralized algorithm are
shown in Fig. 5-6. The temperature deviation between dis-
tributed algorithm and the centralized algorithm are shown
in Fig. 7-8.

In the Fig. 2-4, the black dashed lines represent the cor-
responding main states and control inputs of roomA andC
while the grey solid lines represent those of roomC andD.
in Fig. 5 the black dashed line represents δTA,dis−δTA,dec

and the grey solid line represents δTB,dis − δTB,dec, and
in Fig. 6 they represent δTC,dis − δTC,dec and δTD,dis −
δTD,dec respectively. In Fig. 7 the black dashed line rep-
resents δTA,dis − δTA,c and the grey solid line represents
δTB,dis − δTB,c, and in Fig. 8 they represent δTC,dis −
δTC,c and δTD,dis − δTD,c respectively. The subscripts
dis, dec, c represent distributed algorithm, decentralized
algorithm and centralized algorithm respectively. For clar-
ity reason, the minor dynamics are not shown in these fig-

ures.
In the decentralized algorithm, there is no information

exchange between controllers. Therefore the joint con-
straint ||u1||1 + ||u2||1 ≤ 8000 is tightened as ||u1||1 ≤
4000 and ||u2||1 ≤ 4000. The dynamics coupling terms are
treated as unknown bounded disturbance and the method
in [19] are used to design local controller. For the central-
ized algorithm, we also follow the way in [19] to design
the centralized controller.

From Figs. 2-4 it can be observed that with the addition-
al heat source, all the three algorithms have some off-set.
From Fig 5-6 one can see that distributed algorithm has
faster response than the decentralized one. This is due to
the fact that in the distributed algorithm, controllers can
communicate with each other. Therefore, controllers for
room A and B know how much power will be used by
the other two controllers and the overall power, which is
restricted to be less or equal to 8000W , can be used more
efficiently. This fact can also be observed in Fig. 2-3. In
Fig. 2, controllers for room A and B attain the maximal
power 2500W while in Fig. 3, their power has to satis-
fy the constraint qA + qB ≤ 4000W . The off-set of both
algorithms are similar. Fig 7-8 show that centralized algo-
rithm has faster response than the distributed one and its
off-set is also smaller than that of the distributed one. This
is not surprising because the centralized algorithm utilizes
the complete state information.

Finally, we compare the energy, which is defined as∫ 2110

0

∑
A,B,C,D ‖qi‖dt, and the average computational

time consumed by the three algorithms in Table 1.
Table 1 Cost and average computational time of the three

algorithms

time(s) cost(kJ)

Centralized (full model) 0.47 732

Distributed (reduced order) 0.23 758

Decentralized (reduced order) 0.35 893
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Fig. 1 Schematic representation of a building with two apart-
ments
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Fig. 2 State and input trajectory of distributed algorithm
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Fig. 3 State and input trajectory of decentralized algorithm
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Fig. 4 State and input trajectory of centralized full order algo-
rithm
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Fig. 5 Temperature deviation between distributed and decentral-
ized algorithm (room A and B). In this example, the air-condition-
ing system is working on cooling mode. Therefore the distributed
algorithm has faster response than the decentralized one since the
former one has lower temperature.
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Fig. 6 Temperature deviation between distributed and decentral-
ized algorithm (room C and D)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Trajectory difference

Time(s)

δT
(°

C
)

Fig. 7 Temperature deviation between distributed and centralized
algorithm (room A and B)
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Fig. 8 Temperature deviation between distributed and centralized
algorithm (room C and D)

6 Conclusion

In this paper, a distributed robust MPC algorithm has
been proposed. Each subsystem can be partitioned into
measurable main dynamics and unmeasurable minor dy-
namics. Only the main dynamics is used to predict the fu-
ture trajectory while the minor dynamics is not handled ex-
plicitly in the online computation, by which the complexity
of the optimization problem is significantly reduced. Nu-
merical examples has been given to illustrate the effective-
ness of our algorithm.
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