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ABSTRACT 

Construction of a cavern in close proximity to an existing cavern modifies the state of stresses 

and movements in a zone around the existing cavern, as some degree of interaction between 

these two caverns generally takes place. This study investigates the interaction of two parallel 

caverns and the influence of such interaction on stress-induced global stability in terms of a 

global factor of safety. A series of finite difference analyses were performed to derive the global 

factor of safety of a system of two parallel and adjacent caverns. A mathematical response 

surface model was then built using the multivariate adaptive regression splines (MARS) 

approach and a series of charts based on this surrogate model were developed to relate the global 

factor of safety to the critical parameters. The built MARS model is of high accuracy and is 

simple to interpret and can be used to perform probabilistic assessment of ultimate limit state of 

twin caverns. 

Keywords: reliability assessment; ultimate limit state; factor of safety; twin caverns; interaction; 

multivariate adaptive regression splines. 

 

 

 

 

 

                                                           

Corresponding author Tel.: +65 6790 5271. Fax: +65 6792 0676 

E-mail address: ctcgoh@ntu.edu.sg 



2 
 

1. Introduction 

The construction of a new cavern close to an existing cavern modifies the state of stresses and 

movements in a zone around the existing cavern. For multiple caverns, the size of this influence 

zone depends on the ground type, the in situ stress, the cavern span, the width of the pillar 

separating the caverns, and the excavation sequences. If two adjacent excavations are constructed 

far apart such that their influence zones do not overlap, then the individual cavern can be 

considered separately as single isolated caverns and analyzed as such. However, if the influence 

zones of the two caverns do overlap, some degree of interaction between the two caverns will 

take place. Interaction of the two caverns will affect the global stability, the state of stress and 

the deformations around the caverns.  

The subject of interaction between parallel caverns/tunnels has been studied by several authors 

who have reported the results of field measurements or analytical studies of the problem. Barla 

and Ottoviani (1974) adopted the finite element (FE) method to study the case of two parallel 

unlined tunnels excavated at the same time in rock. Their results indicate that the interaction 

between two tunnels become negligible for Sc/D = 1 or greater (Sc is the width of the pillar 

separating the tunnels and D is the diameter of the tunnels). A series of FE analyses on two 

parallel circular tunnels performed by Ghaboussi and Ranken (1977) suggested that interaction 

effects are small at Sc/D=1, and that at a Sc/D value of approximately two the two tunnels should 

behave independently of each other. Gercek (2005) numerically analyzed the interaction between 

closely spaced and parallel underground openings with complicated geometry and concluded that 

no interaction exists between the parallel openings when Sc/B > 1.5 (B is the span of the opening). 

Zhao and Ma (2009) set up FEM models to study the influence of cavern spacing on the stability 

of adjacent caverns. Their research indicates that regardless of the strength of the rocks, once the 

cavern spacing is less than one cavern characteristic length (taken to the biggest width of a 

cavern in the group), the stability of adjacent caverns is dramatically affected by cavern spacing. 

Mortazavi et al. (2009) carried out an extensive numerical analysis to study the pillar 

deformation and failure process under natural loading conditions. They found that as Sc /h (h is 

the pillar height) ratio reduces, pillar load-bearing capacity drops and at low Sc /h ratios, it is the 

inherent material strength that governs the failure. At high Sc /h ratios, the pillar behaves in a 

very stiff manner in the elastic range demonstrating a high load-bearing capacity. Karademir 
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(2010) performed 3D FE analyses on excavations in weak rock and concluded that the 

interaction effects may be eliminated by increasing Sc/ D ratio equal to or larger than an 

approximate value of 2.5-3.0. Based on observations of stable and failed cases, Esterhuizen et al. 

(2011) supplemented numerical models and suggested that, for room-and-pillar mining in stone 

mines, pillars having a Sc /h ratio of less than 0.8 should be avoided. 

Conventional deterministic evaluation of stability of geotechnical structures and underground 

openings involves the calculation of global factor of safety FS. Even after obtaining the limit 

state surface, this single FS value cannot quantify the margin of safety with absolute certainty 

since the stochastic nature of the design parameters is usually not considered. The alternative is 

to use probabilistic design approaches which take uncertainty and complexity into account to 

assess the probability of failure Pf. The calculation of Pf involves the determination of the joint 

probability distribution of the resistance R and the load (stress) S and the integration of the 

probability density function (PDF) over the failure domain. For a problem with multiple n 

random variables, the calculation of Pf involves the determination of a multi-dimensional joint 

PDF of the random variables and the integration of the PDF over the failure domain. A Monte 

Carlo simulation (MCS) is a procedure, which seeks to simulate stochastic processes by random 

selection of input values to an analytical model in proportion to their joint PDF. The basis of 

MCS is the use of random numbers which were originally either manually or mechanically 

generated by using such techniques as spinning wheels, dice rolling or card shuffling. It is a 

powerful technique that is applicable to both linear and non-linear problems.  

This study presents a study of the interaction of two parallel caverns and the influence of such 

interaction on global stability in terms of global factor of safety (FSg_t) with regard to stress-

induced instability. Since FSg_t is not known explicitly, it is determined through repeated point-

by-point numerical analyses which take into account design variables including the cavern span 

B, the width of the pillar separating the two caverns Sc, and the rock mass classification Q. Based 

on the numerical results, closed-form limit state surfaces are then constructed artificially using 

the multivariate adaptive regression splines (MARS) approach. Subsequently, probabilistic 

assessment on ultimate limit state of twin caverns was performed using MCS. Charts potentially 

useful for preliminary design and checking of twin cavern stability are proposed. The developed 

MARS model can be implemented into MCS to calculate Pf for twin cavern stability. 
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2. Details of MARS 

Friedman (1991) introduced MARS as a statistical method for fitting the relationship between a 

set of input variables and dependent variables. It is a nonlinear and nonparametric regression 

method based on a divide and conquer strategy in which the training data sets are partitioned into 

separate piecewise linear segments (splines) of differing gradients (slope). No specific 

assumption about the underlying functional relationship between the input variables and the 

output is required. The end points of the segments are called knots. A knot marks the end of one 

region of data and the beginning of another. The resulting piecewise curves (known as basis 

functions), give greater flexibility to the model, allowing for bends, thresholds, and other 

departures from linear functions. 

MARS generates basis functions by searching in a stepwise manner. An adaptive regression 

algorithm is used for selecting the knot locations. MARS models are constructed in a two-phase 

procedure. The forward phase adds functions and finds potential knots to improve the 

performance, resulting in an overfit model. The backward phase involves pruning the least 

effective terms. An open source code on MARS from Jekabsons (2010) is used in carrying out 

the analyses presented in this paper. 

Let y be the target output and X = (X1, , XP) be a matrix of P input variables. Then it is 

assumed that the data are generated from an unknown “true” model. In case of a continuous 

response this would be 

y = f(X1, , XP) + e =  f(X) + e                                                                                                     (1) 

in which e is the distribution of the error. MARS approximates the function f by applying basis 

functions (BFs). BFs are splines (smooth polynomials), including piecewise linear and piecewise 

cubic functions. For simplicity, only the piecewise linear function is expressed. Piecewise linear 

functions are of the form max(0, )x t with a knot occurring at value t. The equation max(.)  

means that only the positive part of (.)  is used otherwise it is given a zero value. Formally, 

,
max(0, )

0,

x t if x t
x t

otherwise

 
  


                                                                                                          (2) 
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The MARS model f(X), is constructed as a linear combination of BFs and their interactions, and 

is expressed as 

0

1

( ) ( )
M

m m

m

f X X  


                                                                                                                 (3) 

where each ( )m X is a basis function. It can be a spline function, or the product of two or more 

spline functions already contained in the model (higher orders can be used when the data 

warrants it; for simplicity, at most second-order is assumed in this paper). The coefficients  are 

constants, estimated using the least-squares method. 

Figure 1 shows a simple example of how MARS would use piecewise linear spline functions to 

attempt to fit data. The MARS mathematical equation is expressed as 

𝑦 = −44.08 + 4.24𝐵𝐹1 − 3.67𝐵𝐹2 + 6.31𝐵𝐹3 − 2.50𝐵𝐹4                                             (4) 

where BF1 = max(0, 16 – x), BF2 = max(0, x – 10), BF3 = max(0, x – 5.5) and BF4 = max(0,  

5.5 – x). The knots are located at x = 5.5, 10 and 16. They delimit four intervals where different 

linear relationships are identified. 

Figure 1  

The MARS modeling is a data-driven process. To fit the model in Eq. (3), first a forward 

selection procedure is performed on the training data. A model is constructed with only the 

intercept, 0 , and the basis pair that produces the largest decrease in the training error is added. 

Considering a current model with M basis functions, the next pair is added to the model in the 

form  

^ ^

1 2( )max(0, ) ( )max(0, )M Mm j m jX X t X t X                                                                      (5) 

with each   being estimated by the method of least squares. As a basis function is added to the 

model space, interactions between BFs that are already in the model are also considered. BFs are 

added until the model reaches some maximum specified number of terms leading to a purposely 

overfit model.  
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To reduce the number of terms, a backward deletion sequence follows. The aim of the backward 

deletion procedure is to find a close to optimal model by removing extraneous variables. The 

backward pass prunes the model by removing the BFs with the lowest contribution to the model 

until it finds the best sub-model. Thus, the BFs maintained in the final optimal model are 

selected from the set of all candidate BFs, used in the forward selection step. Model subsets are 

compared using the less computationally expensive method of Generalized Cross-Validation 

(GCV). The GCV equation is a goodness of fit test that penalizes large numbers of BFs and 

serves to reduce the chance of overfitting. For the training data with N observations, GCV for a 

model is calculated as follows (Hastie et al. 2009) 

2

1

2

1
[ ( )]

( 1) / 2
[1 ]

N

i ii
y f x

NGCV
M d M

N





  


                                                                                                                        (6) 

in which M is the number of BFs, d is the penalizing parameter, N is the number of observations, 

and ( )if x denotes the predicted values of the MARS model. The numerator is the mean squared 

error of the evaluated model in the training data, penalized by the denominator. The denominator 

accounts for the increasing variance in the case of increasing model complexity. Note that 

( 1) / 2M   is the number of hinge function knots. The GCV penalizes not only the number of the 

model’s basis functions but also the number of knots. A default value of 3 is assigned to 

penalizing parameter d (Friedman 1991). At each deletion step a basis function is removed to 

minimize Eq. (3), until an adequately fitted model is found. MARS is an adaptive procedure 

because the selection of BFs and the variable knot locations are data-based and specific to the 

problem at hand.  

After the optimal MARS model is determined, by grouping together all the BFs that involve one 

variable and another grouping of BFs that involve pairwise interactions (and even higher level 

interactions when applicable), the procedure known as analysis of variance (ANOVA) 

decomposition (Friedman 1991) can be used to assess the contributions from the input variables 

and the BFs through comparing (testing) variables for statistical significance. Previous 

applications of MARS algorithm in civil engineering can be found in Attoh-Okine et al. (2009), 

Lashkari (2012), Mirzahosseinia et al. (2011), Zarnani et al. (2011), Samui (2011), Samui and 
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Karup (2011), Zhang and Goh (2013) and Goh et al. (2013). Zhang and Goh (2013) 

systematically explored the generalization capacities and accuracy of MARS approach in 

comparison to the back-propagation neural network algorithm and found that the main 

advantages of MARS were its capacity to produce simple, easy-to-interpret models, its ability to 

estimate the contributions of the input variables, and its computational efficiency. However, use 

of MARS in underground excavations is limited. In this study, the MARS model was found to be 

more accurate than the commonly used logarithmic regression (LR) method. For brevity, the LR 

results have been omitted from this paper. 

3. Numerical Modeling 

The FLAC
3D

 code (Itasca, 2005) was utilized for the numerical experiments even though only 

plane strain conditions are considered in this paper as the project will subsequently consider 3D 

effects and installation of supports. FSg_t is solved through the shear strength reduction (SSR) 

technique (also called c--reduction method), in which the shear strengths are systematically 

reduced until failure occurs. This procedure was proposed by Zienkiewicz et al. (1975), 

improved by Brinkgreve and Bakker (1991) and is now available in many commercial finite 

element (FEM) and finite difference (FDM) programs. This procedure essentially involves 

repeated analyses by progressively reducing the shear strength properties until collapse occurs. 

For a Mohr-Coulomb material, by reducing the shear strength by a factor F the shear strength 

equation becomes: 

tanf

n

c

F F F

                                                                               (7) 

* *tan

f

n

F
c


 




                                                                                                  (8) 

where f is the shear strength, n is the normal stress, and 
*c c F and 

* arctan(tan )F   are 

the new Mohr-Coulomb shear strength parameters. Systematic increments of F are performed 

until the finite element or finite difference model does not converge to a solution (i.e. failure 

occurs). The critical strength reduction value which corresponds to non-convergence is taken to 

be the global factor of safety FS. It has been applied to caverns (Hammah et al., 2007; Zhang and 
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Goh 2012; Goh and Zhang 2012), and circular tunnels (Vermeer et al. 2002). The assumptions of 

the numerical analysis, the cross-section layout of the twin caverns, and the basic design 

parameters used are described in this section. 

3.1 Assumptions of numerical analysis 

The basic assumptions of numerical analyses in this case are: 

a) the study was a two-dimensional plane strain problem; 

b) the discontinuous nature of the rock is incorporated implicitly in the Mohr-Coulomb 

constitutive relationship used to represent the mass as an equivalent continuum; 

c) the rock material obeyed Mohr-Coulomb failure criterion that follows the elastic 

perfectly-plastic stress-strain relationship; 

d) the caverns are unsupported and only hydrostatic in situ stress fields considered; 

e) the twin caverns are of equal size, both horse-shoe shaped, with semi-circular roof, the 

span-to-side wall height ratio (B/H) is 2, and horizontally aligned; 

f) the excavation involves six stages: heading, first benching, second benching of the right 

cavern, followed by heading, first benching, second benching of the left cavern; 

g) the effect of creep was not considered in the analysis. 

3.2 Cross-section layout 

One significant parameter influencing the interaction is the cavern span B. In this study, B values 

of 10, 20 and 30 m are considered. In the numerical models, the cavern crown is 65 m below the 

ground surface. The plane strain conditions are enforced by including a thin 1 m slice of material 

in the longitudinal direction and imposing boundary conditions on the two off-plane surfaces that 

allow movement vertically but are restrained against displacements normal to these planes. Outer 

boundaries are located far from the cavern wall. No surface loading above-ground surface is 

considered. The initial vertical in situ stress v is induced by self-weight of the rock. The 

physical and geometrical model including the twin caverns and the design variables considered 

are shown in Figure2. 

Figure 2  
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3.3 Ranges of design parameters  

The main factors affecting interaction between the twin caverns are found to be the cavern 

geometrical characteristics, the rock strength properties, the in situ stress field, and the 

excavation sequence. While the effects of some of the factors such as the strength properties and 

the in situ stresses are measurable, the effects of the others such as excavation sequence cannot 

be quantified. For simplicity, excavation in six stages as described in Figure 2 is regarded as 

deterministic. The other important factors are shown in Table 1. 

Table 1  

For the numerical analyses, the rock mechanical properties are indirectly (through RMR) 

determined from the Q system by means of the commonly used empirical equations and 

correlations. 

3.4 Determination of rock mass strength parameters 

In the preliminary stage of an engineering design, the need for an approximate estimate of the 

rock mass parameters frequently arises (Barton et. al. 1980; Hoek and Brown, 1997; Basarir, 

2006; Aksoy et al., 2010).  For the numerical analyses carried out in this study, the following 

Equations (Equations 9-15) are adopted for determining the rock mass properties.  

7ln 36RMR Q                (Tugrul 1998)                                                                                                     (9) 

( 10) 40( ) 10 RMR

mE GPa   ( 50)RMR              (Serafim and Pereira, 1983)                                               (10) 

( ) 2 100mE GPa RMR  ( 50)RMR              (Bieniawski 1978)                                                                   (11) 

( ) 0.005( 1.0)c MPa RMR                (Bieniawski, 1989)                                                                      (12) 

( ) 0.5 4.5RMR                  (Bieniawski, 1989)                                                                                   (13) 

( )cm MPa RMR                (Palmstrom 2000)                                                                                             (14) 
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( ) 10t cmMPa                                                                                                                                     (15) 

where Em is the deformation modulus of rock mass, c is the cohesive strength,  is the friction 

angle, cm is the Uniaxial Compressive Strength (UCS) and t is the tensile strength. Adopting 

the above empirical equations, the Q value of each category and its corresponding Mohr-

Coulomb rock properties to be used in the numerical calculations are shown in Table 2. In Table 

2, the Poisson’s ratio  values are assumed. For simplicity, density of 2670 kg / m
3
 is assumed 

for rock mass of all the ranges of Q. Similar correlations were used for the analysis of single 

caverns (Goh and Zhang 2012). 

Table 2  

4. Modeling Results and Analyses 

4.1 Modeling results of FSg_t 

Based on the parameter combinations, a total of 180 cases were analyzed to determine the global 

factor of safety for twin caverns FSg_t. The FSg_t values are shown in Table 3. Also shown in 

Table 3 for comparison are the global factors of safety FSg_s for a single cavern. 

Table 3  

It is obvious from Table 3 that both Q and B significantly affect FSg_t. Figure 3 shows that for the 

same Q and B, FSg_t increases with the increase of the pillar width. Figure 3 also plots the single 

cavern FSg_s values (dots with hollow symbol). It is obvious that as the pillar width Sc gradually 

increases, FSg_t converges to the FSg_s. The difference between FSg_t and FSg_s is generally less 

than 7% for Sc/B  2.0. 

Figure 3  

4.2 Determination of FSg_t using MARS 

Based on the above results, this problem is analyzed by means of MARS. Of the 60 observations, 

48 patterns were randomly selected as the training data and the remaining 12 data were used for 
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testing. The testing data sets are listed in Table 4. The MARS training results together with the 

relative error e (
_ _ _ _

_ _

(%) ( ) 100
max s MARS max s FDM

max s FDM

u

u
e b

u
a s


  , in which abs() is 

absolute value function) are shown in Table 5. 

Table 4  

Table 5  

The MARS model adopted 10 BFs of linear spline functions with second-order interaction. A 

plot of MARS predicted global factor of safety FSg_t_MARS versus the FSg_t_FDM determined using 

FLAC
3D

 as shown in Figure 4 indicates that the MARS model is reasonably accurate.  

 

Figure 4  

Table 6 displays the ANOVA decomposition of the developed MARS model. The first column in 

Table 6 lists the ANOVA function number. The second column gives an indication of the 

importance of the corresponding ANOVA function, by listing the GCV score for a model with 

all BFs corresponding to that particular ANOVA function removed.  This GCV score can be 

used to evaluate whether the ANOVA function is making an important contribution to the model, 

or whether it just slightly helps to improve the global GCV score. The third column provides the 

standard deviation of this function. The fourth column gives the number of BFs comprising the 

ANOVA function. The last column gives the particular input variables associated with the 

ANOVA function. Table 7 gives the parameter relative importance, which is evaluated by the 

increase in the GCV value caused by removing the considered variables from the developed 

MARS model. It can be observed that B is the most important parameter in determining FSg_t, 

followed by Q.  

Table 6  

Table 7  

Table 8 lists the BFs of the MARS model for FSg_t and their corresponding equations. The 

interpretable MARS model to predict FSg_t is given by 
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_ _ 1.322 0.0224 1 0.0113 2 0.0484 3 0.1082 4

0.17 5 0.00057 6 0.0034 7 0.0496 8 0.0173 9 0.0028 10

 = g t MARSFS BF BF BF BF

BF BF BF BF BF BF

        

          
   (16) 

Table 8  

The response surfaces relating FSg_t to Q and B, B and Sc/B, Q and Sc/B are illustrated in Figure 5 

(a), (b) and (c), respectively. These response surfaces provide a practical design tool, especially 

during early stages of design and construction. By specifying the pillar geometries Sc/B for a 

given Q as well as the cavern span B, the expected global factor of safety FSg_t can be estimated 

quickly. Or by assuming the threshold FSg_t for a given Q and B, the approximate pillar width 

can be estimated. Figure 6 a-c plots the knot locations for Q, B, and Sc/B respectively. Since 

MARS explicitly defined these intervals (boundaries) for the inputs Q, B, and Sc/B, the model 

enables engineers to have an insight and understanding of where significant changes of FSg_t may 

occur. 

Figure 5 

Figure 6 

4.3 Design curves of FSg_t 

Based on Equation (16), charts relating FSg_t to Q, B and Sc have been developed as shown in 

Figure 7. The proposed charts are potentially useful for preliminary design and checking of twin 

cavern stability.  

Figure 7  

 

5. Probabilistic Assessment on Ultimate Limit State 

Assuming the critical FSg_t value is FSg_t_cr, the ultimate limit state function of the MARS model 

is: 

_ _ _ _

_ _

1.322 0.0224 1 0.0113 2

0.0484 3 0.1082 4 0.17 5 0.00057 6 0.0034 7

0.0496 8 0.0173 9 0

(

.

)

0028 10

g t MARS g t cr

g t cr

Bg F BF

BF BF BF BF

x FS FS

F

BF

BF BF F SB

    

         
     

  

                          (17) 
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The expressions of BFs in this equation can be found in Table 8. With the determination of the 

limit state function - Equation (17), reliability assessment of the FSg_t can be carried out using 

MCS. In this study, the MCS was carried out using the software package @RISK 

(http://www.palisade.com). For each MCS simulation, the number of iterations is 1 000 000 and 

Latin Hypercube sampling is adopted. The MCS procedures and the calculation of Pf are 

illustrated in Figure 8 (the critical FSg_t_cr is assumed as 1). Failure in terms of global stability 

occurs if the predicted FSg_t is smaller than unity. For illustration, the assumed statistical 

information of the input variables for the MCS is listed in Table 9. 

Figure 8  

Table 9  

Figure 9a plots the influences of the choice of FSg_t_cr on the calculated Pf. It is obvious that 

FSg_t_cr substantially influences Pf. Figure 9b and 9c plot the influences of design parameter 

statistics on Pf, assuming FSg_t_cr value of 1. The results indicate that both the COV and the 

average value of Q significantly influence Pf. It is also clear that Pf of twin caverns with large 

spans is much higher than that with small spans. In addition, Pf decreases with the increase of 

Sc/B. 

Figure 9  

6. Conclusions 

This study investigates the interaction between two adjacent horse-shoe shaped caverns in terms 

of the global FSg_t. MARS model was developed to predict FSg_t in terms of Q, B and Sc/B. A 

series of charts relating FSg_t to Q, B and Sc have been developed, which are potentially useful for 

preliminary design and checking of twin cavern stability. For the MARS model, the modeling 

process, the mathematical expression, the parametric relative importance, the response surfaces, 

and the knot locations of the input variables are elaborated. Probabilistic assessments on the 

ultimate limit state can be performed once the limit state functions are determined and statistical 

information of the design parameters are known. Probabilistic assessments are carried out based 

on MCS and the limit state function derived by MARS model is used. This paper explores the 

http://www.palisade.com/
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use of MARS and illustrates a feasible approach to perform probabilistic assessment of ultimate 

limit state of twin caverns. 

It should be emphasized that the rock mass properties in this study is assumed to obey the Mohr-

Coulomb failure criterion. Other constitutive models such as the Hoek-Brown model will also be 

considered in future research, for which Hoek and Diederichs (2006) and Hoek et al. (2002) have 

proposed relationships for estimating rock mass properties from Geological Strength Index (GSI). 

It should also be noted that the proposed model of Eq. (16) is only applicable to the stress 

controlled instability. 
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Table 1 Cavern design parameters 

Parameter Description Values 

B Cavern span (m) 10, 20, 30 

Sc/B Ratio of pillar width to cavern span 1, 1.5, 2, 2.5 

Q Tunneling quality index 1, 4, 10, 40, 100 
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Table 2 Rock mass properties with different Q values 

Q c (MPa) (°) Em (GPa)  t (MPa) 

1 0.18 22.5 4.47 0.35 2.40 

4 0.22 27.4 7.81 0.20 3.05 

10 0.26 30.6 11.30 0.20 3.47 

40 0.30 35.4 19.75 0.16 4.12 

100 0.34 38.6 28.57 0.16 4.55 
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Table 3 Results from numerical experiments for FSg_t 

B 

(m) 
Q 

FSg_t 
FSg_s 

Sc/B=1 Sc/B=1.5 Sc/B=2 Sc/B=2.5 

30 

100 1.38 1.47 1.59 1.66 1.67 

40 1.24 1.31 1.42 1.48 1.48 

10 1.04 1.10 1.19 1.25 1.25 

4 0.90 0.96 1.03 1.08 1.09 

1 0.72 0.77 0.83 0.87 0.88 

20 

100 1.55 1.64 1.72 1.79 1.82 

40 1.38 1.46 1.53 1.61 1.63 

10 1.17 1.23 1.29 1.35 1.36 

4 1.01 1.06 1.12 1.17 1.19 

1 0.81 0.85 0.90 0.94 0.96 

10 

100 2.13 2.15 2.20 2.24 2.25 

40 1.90 1.92 1.96 2.00 2.02 

10 1.61 1.62 1.65 1.68 1.69 

4 1.39 1.40 1.43 1.46 1.47 

1 1.11 1.12 1.15 1.17 1.19 
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Table 4 Testing data sets for FSg_t 

Q 
B 

(m) 
Sc/B FSg_t_FDM FSg_t_MARS Q 

B 

(m) 
Sc/B FSg_t_FDM FSg_t_MARS 

4 30 1 0.90 0.888 4 20 2 1.12 1.140 

10 30 1.5 1.10 1.144 40 20 2.5 1.61 1.551 

40 30 2 1.42 1.384 4 10 1 1.39 1.365 

4 30 2.5 1.08 1.081 10 10 1.5 1.62 1.569 

40 20 1 1.38 1.358 40 10 2 1.96 1.980 

10 20 1.5 1.23 1.257 4 10 2.5 1.46 1.471 
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Table 5 Training data sets for FSg_t and relative error  

Q 
B 

(m) 
Sc/B FSg_t_FDM FSg_t_MARS 

e 

(%) 
Q 

B 

(m) 
Sc/B FSg_t_FDM FSg_t_MARS 

e 

(%) 

1 30 1 0.72 0.663 7.9 1 20 2 0.9 0.915 1.7 

10 30 1 1.04 1.059 1.9 10 20 2 1.29 1.311 1.7 

40 30 1 1.24 1.245 0.4 40 20 2 1.53 1.497 2.2 

100 30 1 1.38 1.445 4.7 100 20 2 1.72 1.697 1.3 

1 30 1.5 0.77 0.748 2.8 1 20 2.5 0.94 0.969 3.1 

4 30 1.5 0.96 0.973 1.3 4 20 2.5 1.17 1.194 2.0 

40 30 1.5 1.31 1.330 1.5 10 20 2.5 1.35 1.365 1.1 

100 30 1.5 1.47 1.530 4.1 100 20 2.5 1.79 1.751 2.2 

1 30 2 0.83 0.802 3.3 1 10 1 1.11 1.123 1.2 

4 30 2 1.03 1.027 0.3 10 10 1 1.61 1.571 2.4 

10 30 2 1.19 1.198 0.7 40 10 1 1.9 1.928 1.5 

100 30 2 1.59 1.584 0.4 100 10 1 2.13 2.129 0.1 

1 30 2.5 0.87 0.856 1.6 1 10 1.5 1.12 1.121 0.1 

10 30 2.5 1.25 1.252 0.2 4 10 1.5 1.4 1.363 2.6 

40 30 2.5 1.48 1.438 2.9 40 10 1.5 1.92 1.926 0.3 

100 30 2.5 1.66 1.639 1.3 100 10 1.5 2.15 2.127 1.1 

1 20 1 0.81 0.776 4.2 1 10 2 1.15 1.175 2.2 

4 20 1 1.01 1.001 0.9 4 10 2 1.43 1.417 0.9 

10 20 1 1.17 1.172 0.2 10 10 2 1.65 1.623 1.6 

100 20 1 1.55 1.558 0.5 100 10 2 2.2 2.181 0.9 

1 20 1.5 0.85 0.861 1.3 1 10 2.5 1.17 1.229 5.1 

4 20 1.5 1.06 1.086 2.4 10 10 2.5 1.68 1.677 0.2 

40 20 1.5 1.46 1.443 1.2 40 10 2.5 2 2.034 1.7 

100 20 1.5 1.64 1.643 0.2 100 10 2.5 2.24 2.235 0.2 
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Table 6 ANOVA decomposition of the developed MARS model for FSg_t 

Functions GCV STD #basis variable(s) 

1 0.205 0.297 4 Q 

2 0.262 0.261 2 B 

3 0.02 0.072 2 Sc/B 

4 0.033 0.08 1 Q, B 

5 0.005 0.024 1 B, Sc/B 
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Table 7 Relative importance of the parameters  

Parameters Relative importance (%) 

Q 78.0 

B 100 

Sc/B 6.6 
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Table 8 BFs and corresponding equations of MARS model for FSg_t 

BFs Equation BFs Equation 
BF1 max(0, 10 - Q) BF6 BF3  max(0, 40 - Q) 

BF2 max(0, B - 20) BF7 max(0, Q - 4) 

BF3 max(0, 20 - B) BF8 max(0, 4 - Q) 

BF4 max(0, Sc/B -1.5) BF9 BF3  max(0, 1.5 - Sc/B) 

BF5 max(0, 1.5 - Sc/B) BF10 max(0, 40 - Q) 
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Table 9 Input variables for reliability assessment of ultimate limit state 

Variable Distribution type Mean coefficient of variation (COV) 

Q Normal 4, 10 0.1, 0.2, 0.3, 0.4 

B Normal 10, 20, 30 0.1 

Sc/B Normal 1, 1.5, 2, 2.5 0.1 
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Figure captions 

Figure 1 Knots and linear splines for a simple MARS example 

Figure 2 Geometrical model and basic design parameters 

Figure 3 Influence of Sc on the FSg_t: (a) B=10 m, (b) B=20 m, and (c) B=30 m 

Figure 4 Comparison between FSg_t_FDM and FSg_t_MARS 

Figure 5 Response surfaces relating FSg_t to: (a) Q and B, (b) B and Sc/B, and (c) Q and Sc/B 

Figure 6 Knot locations for: (a) Q, (b) B, and (c) Sc/B 

Figure 7 Design curves for FSg_t: (a) FSg_t=1.0, (b) FSg_t=1.2, and (c) FSg_t=1.5 

Figure 8 Implementation of MARS model into MCS 

Figure 9 Influence of design parameters on Pf  of ultimate limit state: (a) the choice of FSg_t_cr, (b) 

COV of Q, mean values of B and Q and (c) Sc/B and mean values of B and Q 
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Figure 1 Knots and linear splines for a simple MARS example 
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Figure 2 Geometrical model and basic design parameters 
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     (a)                                                    (b)  

 

(c)  

Figure 3 Influence of Sc on the FSg_t: (a) B=10 m, (b) B=20 m, and (c) B=30 m 
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Figure 4 Comparison between FSg_t_FDM and FSg_t_MARS 
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(a) 

 

(b) 

 

(c) 

Figure 5 Response surfaces relating FSg_t to: (a) Q and B, (b) B and Sc/B, and (c) Q and Sc/B 
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(a) 

 

(b) 

 

(c) 

Figure 6 Knot locations for: (a) Q, (b) B, and (c) Sc/B 
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(a) 

 
(b) 

 
(c)  

Figure 7 Design curves for FSg_t: (a) FSg_t=1.0, (b) FSg_t=1.2, and (c) FSg_t=1.5 
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(b) 

Figure 8 Implementation of MARS model into MCS 
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(a) 

 

     (b)                                                              

 

              (c) 

Figure 9 Influence of design parameters on Pf  of ultimate limit state: (a) the choice of FSg_t_cr, (b) 

COV of Q, mean values of B and Q and (c) Sc/B and mean values of B and Q 


