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Abstract    
Feedback flow information is of significance to enable underwater locomotion controllers with higher adaptability and 

efficiency within varying environments. Inspired from fish sensing their external flow via near-body pressure, a computational 
scheme is proposed and developed in this paper. In conjunction with the scheme, Computational Fluid Dynamics (CFD) is 
employed to study the bio-inspired fish swimming hydrodynamics. The spatial distribution and temporal variation of the 
near-body pressure of fish are studied over the whole computational domain. Furthermore, a filtering algorithm is designed and 
implemented to fuse near-body pressure of one or multiple points for the estimation on the external flow. The simulation results 
demonstrate that the proposed computational scheme and its corresponding algorithm are both effective to predict the inlet flow 
velocity by using near-body pressure at distributed spatial points.  
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1  Introduction 

Fish are capable to adapt natural selection by de-
veloping distinctive and remarkable ability of movement 
in the water in order for prey, escaping from predators, 
reproduction and cluster migration. Fish possess a good 
environmental adaptability in addition to their stream-
line shape profile and skin micro-structure, fluctuations 
or oscillating propulsion mode[1–3]. Fish can sense the 
slow transformation of surrounded flow fields by bio-
logical sensing organs, so as to keep sustained speed 
under lower energy consumption and higher effi-
ciency[1,3–5]. They can also achieve high mobility under 
explosion speed. Lateral line plays an important role as 
the key component of fish perception system. It enables 
fish to detect wide-scale, ambient water motion created 
by wind and gravity, and local water disturbance created 
by animal movements or by the interaction between 
ambient water motion and aquascape features. Lateral 
line system includes Superficial Neuromast (SN) sub-
system and Canal Neuromast (CN) subsystem. SNs lie in 

fish body surface and CNs are buried deep in lateral line 
canal. Research found that SNs perceive external fluid 
velocity, while CNs perceive external fluid acceleration 
associated with external fluid pressure[6]. Despite the 
diversity of trunk canal patterns, one trunk canal typi-
cally extends along the fish body to the caudal peduncle 
(Fig. 1)[7]. 

Most of the robotic fish were developed to demon-
strate bionic wave propulsion, but the robotic fish did 
not perform as well as real fish in terms of swimming 
capability. The improvement of the performance is still 
an ongoing work[8–15]. A series of studies have shown 
the ability of pressure sensing on imitating the function 
of lateral line systems[16–28], though real fish do not have 
neuromasts that directly measure pressure. Pressure 
sensing applications reported in the literature include 
dipole source localization[17,18], object recognition[19,20], 
flow pattern detection such as steady uniform flow and 
unsteady periodic flow[21,22]. The artificial lateral line 
system would be beneficial for the performance im-
provement of underwater vehicle. The ability  to  obtain  
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Fig. 1  Lateral line along with fish body among teleost fishes. 
Many fish species have one or more lateral lines. One trunk canal 
typically extends down the length of the body to the caudal pe-
duncle. (A) Complete straight; (B) complete arched; (C) dorsally 
placed; (D) ventrally placed; (E) incomplete; (F) disjunct; (G) 
multiple and (H) absent. (Adapted from Ref. [7]). 
 
information about obstacles enables a prospective ap-
plication for complex underwater environment observa-
tion, and the ability of flow mapping allows the possi-
bility for optimizing energy efficiency and improving 
the performance of motion control. Distributed pressure 
measurements are used to estimate the orientation of 
streamline body and the free-stream flow speed, and to 
enhance a feedback controller[23,24]. Salumäe and 
Kruusmaa apply pressure sensing to achieve 
flow-relative and flow-aided navigation, such as speed 
control, orientation and station holding in the Kármán 
street[25]. Ježov et al. reduce robotic fish energy con-
sumption in turbulence by exploiting vorticity based on 
pressure measurements[26]. Most artificial line systems 
are demonstrated on a rigid body, such as plane, airfoil 
or rigid body of fish. However, undulation and perio-
dicity are typical characteristics in biomimetic fish-like 
swimming, thus hydrodynamic physical quantities pre-
sent undulation and periodicity, such as near-body 
pressure. Previous works[23–28] are important to progres-
sively characterize the hydrodynamic signatures by 
pressure sensing. However, to better understand the 
effects of pressure signals, the study on the tempo-

ral-and-spatial profiles and their effects by self-motion 
will be useful. Lateral-line inputs will provide informa-
tion about the body motion and the resulting activity in 
the sensing organ[27]. Akanyeti et al. used onboard 
pressure sensors to measure the pressure profiles while 
moving forward and backward harmonically, and pre-
sented the relationship between the craft motion and 
pressure signals across varying swimming speeds[28]. 
Nevertheless, self-generated signals caused by wave 
motion should be further considered besides those re-
lated to moving speed. 

Experiments of real fish have seldom repeatedly 
been carried into execution easily, due to the unpre-
dictable response of live fish and the non-repeatability of 
measurements. An alternate approach is to use 
model-based computational methods. The computa-
tional methods, e.g. Computational Fluid Dynamics 
(CFD) for fish-like locomotion, are definitely repetitive 
for various scenarios and sufficiently characterize mul-
tiple phenomena such as viscous effects, boundary layer 
separation and vortex shedding. The CFD method solves 
and analyses problems involving a fluid flow by nu-
merical simulations. The simulations generate numerical 
data describing the hydrodynamic characteristics of the 
whole computational domain. Liu et al. proposed a 
time-accurate solution of Navier-Stokes equations to 
solve unsteady hydrodynamics around an undulatory 
swimming body[29]. Since then, CFD models have been 
extensively exploited to understand the specific mecha-
nism of underwater bionic swimming[30–34]. Some ro-
botic fish experiments shows good agreement with the 
CFD results[35]. On the other hand, CFD is also used to 
calculate the stimulus to the lateral line of a fish[36–38] 
and the unsteady flow inside the lateral line trunk canal 
of the fish[39]. Inspiringly, it is validated that pressure 
sensing values matched approximately between those by 
respective CFD simulations and experiments[24,37–38]. 

This paper employs a CFD-aided approach to un-
derstand bio-inspired flow sensing and prediction via 
distributed near-body pressure. Pressure sensing on 
specified near-body points satisfies the requirements of 
practical applications, although the whole domain 
pressure information is available within the computa-
tional scheme. Firstly, fish-like swimming hydrody-
namics is numerically solved to provide pressure dis-
tribution within the whole computational domain. Sec-
ondly, several virtual pressure sensors inspired by lat-
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eral line are designed to collect pressure data on fish 
body surface. Thirdly, distributed near-body pressure is 
fused into estimation on the surrounding flow. Finally, 
scenarios of time-varying flow inlets are conducted to 
validate the effectiveness of the proposed  
CFD-aided approach for bio-inspired flow sensing and 
prediction. 

2  Computational flow sensing scheme 

2.1  Near-body pressure versus flow patterns  
The relationship between near-body pressure and 

flow pattern is concentrated in the computation-aided 
flow sensing scheme. Once near-body pressure at given 
points has been obtained, the flow pattern can then be 
estimated from the pressure. In this study, virtual pres-
sure sensors are allocated on fish body surface. 
Near-body pressure data is captured during the numeri-
cal simulation of fish swimming. 

Bionic fish-like swimming is a dynamical process 
of energy transformation back and forth between the 
pressure and the kinetic energy. Unsteady Bernoulli 
principle, describing the power conservation law under 
an ideal fluid assumption, is given by 

2

,
2
vz p

t
ρ φ∂

− − =
∂

                               (1) 

where z is related to the constant gravitational potential, 
p is statistic pressure, ρv2/2  represents flow kinetic en-
ergy, and φ is velocity potential. In steady flow, the right 
term of Eq. (1) can be treated as a constant. As a result, 
the work on fluid by pressure is equal to the change of 
fluid kinetic energy. Pressure decreases while velocity v 
increases. In fish-like swimming, we consider that ve-
locity potential depends on the flow initial condition and 
the active wave motion of fish body. Obviously, they 
both affect the near-body pressure. 

Energy transforming process is analyzed by ig-
noring the friction heat caused by viscosity, as shown in 
Fig. 2. The total energy in flow field comes from two 
sources: initial flow power and the power from fish 
active deformation. Initial flow power mainly contains 
gravitational potential, pressure energy and kinetic en-
ergy. The energy in the influenced flow field during 
fish-like swimming includes flow power and the energy 
of moving fish body. Energy in flow field is character-
ized by both the velocity and pressure. During fish-like 
swimming, the fluid kinetic energy is transferred into 

pressure energy, and then is turned into fish kinetic en-
ergy, and vice versa. For example: flow with velocity 
stagnates when it is blocked at the head of fish body; 
meanwhile the flow kinetic energy is converted into 
pressure energy. As a result, the pressure on the head 
point increases. 
 
2.2  Flow computational platform  

Fish use lateral line to sense flow information and 
avoid underwater obstacles. Biological mystery has 
attracted great attention from scientists and engineers. It 
is interesting to understand why and how the lateral line 
can sense flow information. Under such circumstance, 
computational scheme is proposed and developed to 
further promote understanding the lateral line system. 
The computation-aided flow sensing scheme employs 
CFD to transfer fish-like kinematics into digital hydro-
dynamics. 

CFD method is a computational hydrodynamics 
way to numerically solve Navier-Stokes equations and 
visualize flow field. The entire computational domain is 
defined by Ω = Ωf ∪ Ωb, where the domain Ωf is filled 
with fluid of constant density ρ and dynamic viscosity μ. 
The boundary Ωb denotes fish body surface. The com-
putational domain Ω is discretized in space by em-
ploying an unstructured, triangular mesh during 
pre-processing. A simulation of fish swimming is ba-
sically to solve the following problems: any deformed 
body motion and initial flow condition are defined (i.e., 
fish kinematics and flow pattern). Next, the incom-
pressible Navier-Stokes equations are discretized and 
evaluated in the computational domain. Finally, the 
hydrodynamic forces on the body are numerically 
evaluated, as well as the resulting flow field, especially 
the near-body pressure concerned, as shown in Fig. 3. 
 
2.3  Computational pressure sensing  

A fish swims in a uniform flow field with inlet ve-
locity, heading in the opposite direction of flow speed. 
Fish body deforms according to kinematics law. Its 
centroid position and orientation angle are both fixed 
through the simulations. Body wave travels in the same 
direction of inlet flow velocity. The computational do-
main is shown in Fig. 4. Fish active body deformation 
results in high and low pressure areas symmetrically 
and alternately distributed near the body. As the wave 
propagates  along  with  fish  body,  the  high  and  low  
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Fig. 2  Energy transforming process in fish-like swimming. Flow 
pattern defines the initial flow energy, and wave motion parame-
ters describe fish active wave motion. They both have effects on 
near-body pressure. 
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Fig. 3  CFD-aided flow sensing scheme in which fish kinematics 
and flow pattern are given as inputs. Hydrodynamics surrounding 
fish body are numerically calculated by CFD. Influenced flow 
field features are output after post-processing, especially 
near-body pressure concerned. 
 

 
Fig. 4  Computational pressure sensing in uniform flow. High 
pressure areas and low pressure areas locate along with fish body 
alternately, and virtual pressure sensors are utilized to sensing 
near-body pressure. 
 
pressure areas move backward from anterior body. The 
computational domain including fish body surface is 
discretized into mesh grid. Note that the minimum 
sampling interval of flow sensing is determined by the 
grid size. Considering the practical application in future, 
finite virtual pressure sensors are set on fish surface to 
collect near-body pressure, such as head end, body 
symmetry positions and adjacent positions, etc. 

3  Flow information filtering and estimation 
algorithm 

The relationship between statistical coefficients of 
near-body pressure and inlet flow velocity will be dis-
cussed. Pressure coefficients are obtained after the 
pressure data filtering. We will study how inlet flow 
velocity affects pressure coefficients, while fish swims 
with known wave motion parameters. The aim of the 
study is to estimate the inlet flow velocity by using 
pressure coefficients. 
 
3.1  Pressure processing algorithm  

The flow field is set as steady flow with inlet ve-
locity U. The propulsive force mainly comes from 
pressure difference, and viscous force is small due to the 
high Reynolds number. Inlet velocity would affect sur-
rounding flow of fish. These influences can be charac-
terized by near-body pressure. On the other hand, wave 
motion causes the cyclic hydrodynamics of flow field 
around fish body. In general, factors affecting the pres-
sure include time, sampling position, relative velocity 
and wave parameters. The present work considers pres-
sure cyclical changes, pressure distribution along body 
surface, relationship between the pressure and flow ve-
locity, and the relationship between pressure and wave 
motion parameters. Two questions will be presented: 
whether near-body pressure can reflect the flow inlet 
velocity? How to make use of near-body pressure to 
estimate flow inlet velocity? Pressure sensor information 
fusion can be further considered for the realization of 
flow velocity estimation, such as special difference, time 
average, variance, etc. 

Under the CFD scenarios, the near-body sensors 
definitely obtain the distributed pressure data at the 
sampling times. It is necessary to define the stochastic 
parameters that have relationship with the flow velocity. 
In this study, these stochastic parameters are defined by 
the temporal-and-spatial operators, as follows 

(1) Temporal average operator 

Average {p}: 0

0

d
t

t T
p

p
T

τ
−=
∫

    

(2) Temporal amplitude operator 
Amplitude {p}: 

0 0max{ [ , ]} min{ [ , ]}
2

p t T t p t T t
Amp

τ τ∈ − − ∈ −
=
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        (3) Temporal shift operator 
Shift {p, Δt}:  p(t) = p(t − ∆t) 
(4) Spatial sum operator 

Sum {pi}: n

1
/ nii

S p
=

= ∑ , τ ∈ [t − T0, t], n is the 

total number of sensors. 
(5) Spatial difference operator 
Differ {pi, pj}: D = pi − pj, τ ∈ [t − T0, t], i and j 

represent the ith and jth sensors. 
Pressure p obtained from the sensors can be ex-

pressed in dimensionless form. The normalization func-
tion is given by 

2 .
0.5p

pC
Uρ ∗=  

where Cp is normalized pressure coefficient and  
U∗ = λ/T = λf  (λ is wavelength, f = 1/T is wave fre-
quency). 
 
3.2  Estimation algorithm 

Establishing prior mapping relationship is a feasi-
ble way for online inlet flow velocity estimation. The 
remaining pressure average values are obtained to esti-
mate flow speed according to a priori mapping: g:Cp→ 
Ũ through sensor information filtering, fluctuations and 
noise removal. It is assumed that there are several 
pressure sensors on fish surface and the associated fish 
wave parameters are already known. Mapping m:p→Cp 
is the designed sensor information filter. Mapping 
g:Cp→ Ũ is offline identified by prior data. The estima-
tion algorithm is described as follows: 
(1) Input: p ← Virtual pressure sensing data 

φ0 (f, αmax, λ) ←Current wave motion parameters 
(2) Output: Ũ ← Estimated flow inlet velocity 
(3) Begin:  

For time t < Ts, which is total simulation time 
{ ( ), ( )}i ip p x t p x t ← Real-time pressure 

sensing information with signal pre-processing; 
{ ( ), ( ), [0, ]}i ip p x p x tτ τ τ ∈  ← Accumu-

lation history sensor information; 
 Cp ← Pressure coefficient generated by 

mapping m: p →Cp; 
 Ũ ← Estimated flow inlet velocity, by 

mapping g:Cp→ Ũ , which matches 

2
0 1 2 ... n

p p n pU C C Cβ β β β ε= + + + + +  

ε ~ N (0, σ2) 
 t ← t + ∆t; 

 End 
End 

If mapping h:U→φ (f, αmax, λ) would be provided 
by empirical data, which means that fish can maintain 
force balance in flow of inlet velocity U under wave 
parameters. Note that φ (f, αmax, λ) is a reference value 
for the controller according to Ũ, which is useful for 
online underwater control. The controller updates cur-
rent motion parameters according to pressure sensing 
information, in order to achieve the balance between 
thrust and drag. 

4  Results of flow information filtering 

4.1  Scenario and set-up  
About 85% of fish species use Body and/or Caudal 

Fin (BCF) mode, which are most aquatic creatures of 
high speed, high efficiency and high mobility. Fish of 
BCF mode generates thrust through wave travelling 
from the body head to tail. Body wave propagates with 
the wave velocity exceeding its locomotion speed in the 
direction opposite to cruising movement. The Reynolds 
number ranges between 103 and 108 in fish-like motion. 
As Reynolds number is the ratio of inertia force and 
viscous force, a large Reynolds number implies that the 
effect of inertia force is significant. 

The parameterized kinematics law of BCF is de-
scribed as 

( , ) ( )sin( ),y x t a x kx tω= −                      (2) 

where y(x, t) is the offset of body at body point x and 
time t, k is the wave number on fish body, i.e., k = 2πL/λ, 
L is body length. Note that ω = 2π/T. Also, a(x) is the 
largest amplitude at x, which reflects the situation of fish 
body involved in wave motion. 

 Fish of BCF mode are mechanically composed of 
stiff anterior body and flexible rear body. Particularly, 
a(x) = αmaxe(1−x/L) is set for anguilliform mode that the 
whole fish body is involved in movement. The body 
wave presents a flexible propulsion form. 

Flexible swimming of undulation and oscillation 
contribute to the excellent swimming performance, such 
as Kármán gaiting in Kármán vortex street[3]. Either 
undulation of tail fin or head motion results in the dis-
turbance of nearby flow field. Specially, the whole body  
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of eel is involved in wave motion, thus the correspond-
ing disturbance and hydrodynamics are obvious. Re-
search on the three-dimensional waving plate theory 
shows that as the wavelength is close to the body length, 
three dimensional effects almost disappear, of which 
hydrodynamic performance is equal to the effect of in-
finite two-dimensional wave plate[40]. When the wave-
length is about equal to the length of fish body, the 
means of the lateral force and yaw moment during in-
tegral wave cycle are nearly zero. It causes smooth 
moving and no significant additional energy loss. It 
reveals why anguilliform mode is able to maintain high 
propulsion performance. Thus, without the loss of gen-
erality, a two-dimensional CFD model is applied in our 
numerical simulation. Again, the wavelength is set as  
λ = L. Commercial CFD software FLUENT is used to 
solve the fluid dynamic equations in this paper. The 
details of the utilized CFD model can be found in our 
previous works[41–43]. The numerical model has been 
validated for flows with moving boundaries and has also 
been applied successfully to simulate fish-like swim-
ming. The computational and experimental comparison 
has demonstrated their consistency on the dynamic be-
haviors, in terms of cruising, hovering, and yawing[41]. 

Sensor information is a location and time correlated 
physical quality. The x coordinates of sensors are  
{xi|xi = i·L/n, 0 ≤ i ≤ n}. Sensor at head-end point is 
named as SH (i = 0), and sensor ST locates at tail-end 
point (i = n). Two pressure sensors are set symmetrically 
on both sides of body at position x at time t, which are 
called pair sensors. Pair sensors are coded from sensor 1 
to sensor (n−1), defined as Si, 1 ≤ i ≤ n−1. SiL locates on 
body’s left side, and SiR is on right side. Pressures on pair 
sensors are written by ( )ip x t and ( )ip x t , abbreviated 
as ip  and ip . As for the head and tail end, 0 0 0p p p= , 

n n np p p= . 
 

4.2  Near-body pressure in still flow field  
The pressure considered in the present work is a 

static pressure relative to reference pressure (i.e. at-
mospheric pressure). The pressure has a similar wave 
transmission process with fish wave motion. The high 
and low pressure zones transmit from front to back along 
body surface as the propulsion waveform travels. On the 
two sides of body surface with same x coordinates, one 
side drives outgoing fluid that leads to high pressure 

zone, and another leads to low pressure area. Fig. 5 
shows the spatial-and-time distribution of near-body 
pressure in still water caused by fish wave motion. Pe-
riodical trends are observed in both spatial and temporal 
dimension. Pressures on two sides of fish body are 
symmetrical (Fig. 5b). Particularly, Cp on body single 
sensor shows the same frequency as wave motion and Cp 
on sensors SH and ST represents twice the frequency as 
wave motion caused by motion symmetry (Fig. 5c). The 
pressure is negative on the point with the widest ampli-
tude while swimming.  This is agreed with that obtained 
by biological experiment[44], where the pressure distri-
bution on the fish body surface is experimentally meas-
ured. The negative pressure at the point of maximum 
diameter or girth can be explained from the Bernoulli 
principle, i.e. when water accelerates, the lateral pres-
sure surrounding the fish decreases. 

It is assumed that the direction of the pressure is 
normal to the body surface. In the cyclical fluctuations, 
due to the periodical body deformation in lateral direc-
tion, cyclic characteristics will be reflected in the lateral 
component of surface pressure. The mean of lateral force 
in integral cycles is nearly zero. We assume that the 
cyclic average of lateral pressure component on surface 
sampling point is approximately zero. Therefore the 
cyclic average pressure mainly describes numerical 
characteristics in forward direction. Another way to 
counteract pressure component on the lateral direction is 
to sum up the sensed pressure data of the pair-sensor 
mode, since the symmetric pair sensors share the same 
component in the vertical directions. Furthermore, the 
coefficients of Cp vary at the frequency twice that of the 
undulating locomotion, as shown in Fig. 6. The same 
phenomenon was in accordance with the thrust of 
fish-like undulating locomotion[42]. 
 
4.3  Near-body pressure effects of inlet velocity  

The present work studies the hydrodynamic per-
formance of fish-like swimming in flow field with dif-
ferent flow velocities. The set of flow velocities used in 
the simulation is {0, 0.2, 0.5, 0.8, 1.0} m·s−1. The wave 
motion parameters are frequency f = 1, and the maxi-
mum amplitude αmax = 0.1 L. CFD numerical results are 
analyzed after several motion cycles, when the change of 
hydrodynamic features becomes stable. 

The pressure signals from single sensor,  
symmetrical pair   sensors and multiple pair sensors are  



 
Journal of Bionic Engineering (2015) Vol.12 No.3 412 

            

0.0
0.2
−0.4

−0.5

SH

−1.0
0.0
0.5

0.0 0.5 1.0

0.0 0.5 1.0

0.0 0.5 1.0

0.0 0.5 1.0

1.0
0.0

−1.0

1.0
0.0

ST

SiR

SiL

C
p

C
p

C
p

C
p

t/T t/T

−0.5
0.0
0.5

C
p

−1.0
1.0

0.5
0.0 0.0 0.5 1.0

t/T

−0.5
0.0
0.5

C
p

−1.0
1.0

0.5
0.0 0.0 0.5 1.0

t/T

x/L

x/L

Right side

Left side

0.0
−0.1
−0.2

−0.3
−0.4

t = 0

t = 0.25T

t = 0.5T

t = 0.75T

t = T

x

y

x

y

x

y

x

y

SH
ST

SiR

SiL

0.6 Cp −1.2

−0.5

0.0

0.5

C
p

−1.0
0.4 1.00.80.0 0.2 0.6

−0.5

0.0

0.5

C
p

−1.0
0.4 1.00.80.0 0.2 0.6

−0.5

0.0

0.5

C
p

−1.0
0.4 1.00.80.0 0.2 0.6

−0.5

0.0

0.5

C
p

−1.0
0.4 1.00.80.0 0.2 0.6

−0.5

0.0

0.5
C

p

−1.0
0.4 1.00.80.0 0.2 0.6

x/L

Right side
Left side(a) (b)

(c) (d)

 
Fig. 5  The spatial-and-time distribution fish near-body pressure within still water: (a) Contour of pressure field; (b) the spatial distribution 
of pressure at different time; (c) the time variation of pressure from different sensors at specified points; (d) 3D view of the spa-
tial-and-time distribution of near-body pressure. 
 
further processed. Pressure coefficients are obtained after 
information filtering with the temporal and spatial op-
erators: 

(1) Single sensor coefficient 
M1 = Average {pi}    

(2) Pair sensors coefficient 
M2 = Average {Sum { ip , ip }} 

(3) Multiple pair sensors coefficient 

M3 = Average {Sum {Dif-
fer{ 1shif { , }, }i it p t p +Δ , Differ{ 1shift{ , }, }i ip t p +Δ  }}} 

The move motion phase difference of two adjacent 
sample points spaced by ∆x is 

2 xπϕ
λ

Δ = Δ  

The shift time is ∆t = ∆x/(λf), as calculated from  
2πf∆t =2π∆x/λ. 

Let us now define Cp as 
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Fig. 6  Characteristics of Cp achieved from the sensed pressure 
data of the pair-sensor mode. 
 

20.5p
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Uρ ∗=  

The periodical pressure averages at different posi-
tions of single sample point showing discrepant trends, 
as shown in Fig. 7. It presents the trends of pressure 
coefficients Cp along with inlet velocity in head-on 
uniform flow. The inlet velocity influences obviously on 
near-body pressure. Pressure coefficient Cp at specific 
point shows a monotonous relationship with flow ve-
locity. The experiment on real fish has demonstrated that 
the lateral-line is flow-sensitive to varying degrees, and 
the response magnitude increasing with flow rate[4]. The 
head end (SH) pressure is the most sensitive to the 
changes of flow velocity. In addition, SH locates at the 
highest pressure point (stagnation point) where the flow 
velocity approaches nearly zero. The trend is agreed 
with Bernoulli law. The pressures on the prior and rear of 
fish body are both related to flow velocity, but the trends 
of periodical pressure average are different. Sensors in 
prior body parts are preferred for estimation, which are 
more sensitive to inlet flow. Because of the symmetrical 
characteristic of wave motion, Cp from S2R and S2L are 
almost the same in average, but the standard deviation of 
Cp shows that pair sensors information is helpful to im-
prove sensing accuracy with less data fluctuation. Fig. 8 
displays the comparison of single sensor (S2R), pair 
sensors (S2) and multiple pair sensors (S2 and S3). The 
pressure coefficients Cp from single/multiple pair sen-
sors are different in functional relationship with inlet 
velocity (Fig. 8a), whereas the amplitude of data fluc-
tuation is similar (Fig. 8b). As sensing noise is un-
avoidable in physical application, any multi-sensor fu-
sion is therefore preferred to improve the capacity of 
resisting disturbance. 

5  Parametric study and the estimation of inlet 
velocity 

It has been shown that the wave motion frequency 
and amplitude has important influence on the thrust in 
cruise mode of fish swimming. We will now discuss the 
effects of wave parameters on pressure. Given the wave 
parameters, a mapping from pressure coefficients to 
inlet velocity can be established. The inlet velocity  
can then be estimated according to the mapping  
based on the sensor information during fish-like 
swimming. 
 
5.1  Near-body pressure effects of wave parameters 

The pressure coefficients present similar trends in 
spite of some diversity along with inlet flow velocity 
with different parameters (Fig. 9). It is not easy to move 
off the effects of wave motion parameters on the pres-
sure. However, the wave motion is an active deformation, 
and the wave motion parameters are known in advance. 
It is therefore possible to establish the relationship be-
tween inlet velocity and surface pressure with known 
information. 
 
5.2  Estimation on time-varying flow inlets using 

head sensors 
Pressure on the head end of fish body is sensitive to 

the inlet velocity, which can be used for estimation here. 
First of all, we generate the mapping of g:Cp→ Ũ with 
the results obtained above. The inlet flow velocity 
changes along with time in the simulation. Real-time Cp 
is gained from pressure sensors; then according to 
mapping g, the real-time Ũ is obtained. Flow velocity 
estimation algorithm includes two phases: the first is an 
off-line model identification, and the second is the 
on-line estimation. An algorithm is proposed for the 
flow velocity estimation. The wave frequency and am-
plitude are set as 1 Hz and 0.1 L, respectively in the 
following cases. 

(1) Off-line model identification 
The pressure coefficients in flow field with differ-

ent inlet velocities are obtained in advance. The set of 
flow velocity is {0, 0.2, 0.5, 0.8, 1.0} m·s−1. The model 
is defined in the form of polynomial, identified to be 
mapping g:Cp → Ũ using the least squares fitting 
method. 
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Fig. 7  Temporal change of Cp from single sensor and the trends 
along with inlet velocity. 
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Fig. 8  Comparison of single sensor (S2R), pair sensors (S2) and 
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0.0 0.5 1.0
−0.5

0.0

0.5

1.0

1.5

Inlet flow velocity (m·s−1)

0

0

f = 0.5, αmax = 0.1 L

f = 1.0, αmax = 0.1 L

f = 1.5, αmax =  0.1 L

(a)

0.0 0.5 1.0

−0.8

−0.2

0.0

Inlet flow velocity (m·s−1)
(b)

−0.4

−0.6

0.0 0.5 1.0
−0.3

0.0

0.1

Inlet flow velocity (m·s−1)
(c)

−0.1

−0.2

0.0 0.5 1.0
−0.5

0.0

0.5

1.0

1.5

Inlet flow velocity (m·s−1)
(d)

−1.0

0.0 0.5 1.0

−0.8

−0.2

0.0

Inlet flow velocity (m·s−1)
(e)

−0.4

−0.6

−1.0
0.0 0.5 1.0

−0.3

0.0

0.1

Inlet flow velocity (m·s−1)
(f)

−0.1

−0.2

   
Single sensor SH Pair sensors S2 Multiple pair sensors S2 and S3

f = 0.5, αmax = 0.1 L

f = 1.0, αmax = 0.1 L

f = 1.5, αmax =  0.1 L

f = 0.5, αmax = 0.1 L

f = 1.0, αmax = 0.1 L

f = 1.5, αmax =  0.1 L

f = 0.5, αmax = 0.1 L

f = 0.5, αmax = 0.08 L

f = 0.5, αmax = 0.05 L

f = 0.5, αmax = 0.1 L

f = 0.5, αmax = 0.08 L

f = 0.5, αmax = 0.05 L

f = 0.5, αmax = 0.1 L

f = 0.5, αmax = 0.08 L

f = 0.5, αmax = 0.05 L

 
Fig. 9  Trends along with inlet velocity in different wave motion parameters. 
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 (2) On-line estimation 
As the inlet velocity changes along with time, the 

pressure coefficients at t are gained using near-body 
pressure in [t−T, t] from sensors according to the filter-
ing algorithm. The flow velocity is estimated according 
to mapping g:Cp→ Ũ. The estimation result with pair 
sensors S2 is shown in Fig. 10. The actual velocity will 
be taken as the initial velocity of uniform flow in the 
simulation set. An estimated velocity is then obtained by 
the proposed estimation algorithm. 

Similarly, the pressure coefficients using informa-
tion from sensor SH are applied for estimation. Fig. 11 
shows the estimation performance. The estimation error is 
more obvious after the moment tS of flow velocity 
switching, such as {3, 6, 9, 12}T of the case set shown in 
Fig. 10 and Fig. 11(a), i.e. the flow velocity changes every 
3 cycles. The flow is going through a non-uniform phase 
during [tS, tS +T]. The current coefficient Cp is calculated 
based on pressure data of one wave cycle. When the 
pressure data reflects the flow effects of different veloci-
ties, as a result the estimation error increases. Fig. 11b 
shows another case, in which the flow velocity changes 
every 2T. The estimation error is generally acceptable in 
our simulation cases. 

The velocity estimation in a uniform inlet flow is 
mainly influenced by the fitting accuracy of mapping 
g:Cp→ Ũ and the on-line pressure sensing error. Suffi-
cient data by fine sampling precision of flow velocities 
is useful for off-line model identification. Multiple pair 
sensors can also be used, which will then improve the 
anti-noise capability. The developed algorithm is suit-
able for the cases of staged changes of flow velocity. 
After the flow state has been acquired, wave motion 
parameters can be changed accordingly to achieve 
control objective. The flow sensing and filtering pro-
vide feed-forward information, and the error from 
sensor and the algorithm can be reduced by the feed-
back controller. 

6  Concluding remarks 

The study presented in this paper concentrated on a 
spatially distributed pressure sensing system that is ad-
vantageous for bio-inspired fish-like swimming. Collec-
tion and usage of temporal data from multiple sensors 
were fused to reduce the flow estimation uncertainty. 
The results of computational fluid dynamics method re-
vealed that near-body pressure has similar characteristics 
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Fig. 10  Estimation result with pair sensors S2. 
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Fig. 11  Estimation result with sensor SH in different cases: (a) The 
flow velocity changes at every three cycles and the velocity either 
increases or decreases at the switching moment; (b) the flow 
velocity changes at every two cycles and the flow velocity 
changes incrementally. 

with wave motion, such as periodicity and symmetry. 
Wave motion parameters and inlet flow velocity will 
both affect the perception of sensors, which has an im-
portant influence on flow prediction and controller de-
sign. The cyclic average value of pressure is preferred to 
predict inlet flow velocity in a uniform flow. 

In the near future, flow estimation using distributed 
pressure sensing should be an inspiring and practical 
topic in the field of bio-inspired underwater locomotion. 
It does not only contribute to understanding inherence of 
lateral lines, but also draws inspirations for improving 
the adaptability of robotic fish prototypes within com-
plicated environments. Eventually, more compact flow 
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sensors and more accurate estimation algorithms are 
both in great need. They are to be developed to eliminate 
the influence of wave motion and disturbance, and 
meanwhile to unveil the essence of fish-like swimming 
flows. Furthermore, flow sensing and prediction of in-
stantaneous unsteady flows or obstacle-induced vortex 
streets will be great challenges in this field. 

Acknowledgment 

This work was supported in part by the National 
Science Foundation of China under Grant nos. 
61005077, 51105365 and 61273347, in  part  by  Re-
search  Fund  for  the  Doctoral Programme  of  Higher  
Education  of  China  under  Grant no. 20124307110002,  
and  in  part  by  the  Foundation  for  the Author   of   
Excellent   Doctoral   Dissertation   of   Hunan Province 
under Grant no. YB2011B0001. 

The authors would like to thank Daibing Zhang for 
his sincere guidance and constructive comments. The 
corresponding author (Tianjiang hu) would like to thank 
Dr. Xue-feng Yuan of University of Manchester, UK for 
the collaboration during Dr. Hu’s academic visit from 
February 2013 to August 2013 in Manchester Institute of 
Biotechnology. 

References 

[1] Fish F E, Lauder G V. Passive and active flow control by 
swimming fishes and mammals. Annual Review of Fluid 
Mechanics, 2006, 38, 193–224. 

[2] Wen L, Waver J, Lauder G V. Biomimetic shark skin: Design, 
fabrication and hydrodynamic testing. The Journal of Ex-
perimental Biology, 2014, 217, 1637–1638. 

[3] Liao J C. A review of fish swimming mechanics and be-
haviour in altered flows. Philosophical Transactions of the 
Royal Society B, 2007, 362, 1973–1993. 

[4] Voigt R, Carton A G, Montgomery J C. Responses of anterior 
lateral line afferent neurones to water flow. The Journal of 
Experimental Biology, 2000, 203, 2495–2502. 

[5] Przybilla A, Kunze S, Rudert A, Bleckmann H, Brücker C. 
Entraining in trout: A behavioural and hydrodynamic analy-
sis. The Journal of Experimental Biology, 2010, 213, 
2976–886. 

[6] Coombs S, Bleckmann H, Fay R R. The Lateral Line System, 
Springer, New York, 2014. 

[7] Webb J F. Gross morphology and evolution of the mech-
anosensory lateral line system in teleost fishes. Brain, Be-
havior and Evolution, 1989, 33, 34–53. 

[8] Liu J D, Hu H. Biologically inspired behaviour design for 
autonomous robotic fish. International Journal of Automa-
tion and Computing, 2006, 3, 336–347. 

[9] Triantafyllou M S, Triantafyllou G S. An efficient swim-
ming machine. Scientific American, 1995, 272, 62–70. 

[10] Wen L, Wang T M, Wu G H. Hydrodynamic investigation of 
a self-propulsive robotic fish based on a force-feedback 
control method. Bioinspiration & Biomimetics, 2012, 7, 
036012. 

[11] Kato N. Median and paired fin controllers for biomimetic 
marine vehicles. Applied Mechanics Reviews, 2005, 58, 
238–252. 

[12] Hu T J, Shen L C , Lin L X. Biological inspirations, kine-
matics modeling, mechanism design and experiments on an 
undulating robotic fin inspired by Gymnarchus Niloticus. 
Mechanism and Machine Theory, 2009, 44, 633–645. 

[13] Zhou C L, Low K H, Chong C W. An analytical approach for 
better swimming efficiency of slender fish robots based on 
Lighthill's model. IEEE International Conference on Ro-
botics and Biomimetics, Guilin, China, 2009, 1651–1656. 

[14] Low K H, Chong C W. Parametric study of the swimming 
performance of a fish robot propelled by a flexible caudal fin. 
Bioinspiration & Biomimetics, 2010, 5, 046002. 

[15] Wen L, Wang T M, Wu G H, Liang J H. Hydrodynamic 
performance of an undulatory robot: Functional roles of the 
body and caudal fin locomotion. International Journal of 
Advanced Robotic System, 2013, 9, 1–10.  

[16] Dusek J, Kottapalli A G P, Woo M E, Asadnia M, Miao J, 
Lang J H, Triantafyllou M S. Development and testing of 
bio-inspired microelectromechanical pressure sensor arrays 
for increased situational awareness for marine vehicles. 
Smart Materials and Structures, 2013, 22, 014002. 

[17] Yang Y C, Chen J, Engel J, Pandya S, Chen N, Tucker C, 
Coombs S, Jones D L, Liu C. Distant touch hydrodynamic 
imaging with an artificial lateral line. Proceedings of the 
National Academy of Sciences of the United States of 
America (PNAS), 2006, 103, 18891–18895. 

[18] Abdulsadda A T, Tan X B. Nonlinear estimation-based 
dipole source localization for artificial lateral line systems. 
Bioinspiration & Biomimetics, 2012, 8, 026005. 

[19] Fernandez V I, Maertens A, Yaul F M, Dahl J, Lang J H, 
Triantafyllou M S. Lateral-line-inspired sensor arrays for 
navigation and object identification. Marine Technology 
Society Journal, 2011, 45, 130–146. 

[20] Bouffanais R, Weymouth G D, Yue D K P. Hydrodynamic 
object recognition using pressure sensing. Proceedings of 
the Royal Society A, 2010, 467, 19–38. 

[21] Venturelli R, Akanyeti O, Visentin F, Ježov J, Chambers L 



 
Zhou et al.: Bio-inspired Flow Sensing and Prediction for Fish-like Undulating Locomotion: A CFD-aided Approach 417

D, Toming G, Brown J, Kruusmaa M, Megill W M, Fiorini P. 
Hydrodynamic pressure sensing with an artificial lateral line 
in steady and unsteady flows. Bioinspiration & Biomimetics, 
2012, 7, 036004. 

[22] Chambers L D, Akanyeti O, Venturelli R, Ježov J, Brown J, 
Kruusmaa M, Fiorini P, Megill W M. A fish perspective: 
detecting flow features while moving using an artificial lat-
eral line in steady and unsteady flow. Journal of the Royal 
Society Interface, 2014, 11, 20140467. 

[23] DeVries L, Paley D A. Observability-based optimization for 
flow sensing and control of an underwater vehicle in a uni-
form flowfield. American Control Conference, Washington 
D. C., USA, 2013, 1386–1391. 

[24] Lagor F D, DeVries L D, Waychoff K M, Paley D A. 
Bio-inspired flow sensing and control for autonomous un-
derwater navigation using distributed pressure measure-
ments. Proceedings of 18th International Symposium on 
Unmanned Untethered Submersible Technology, Ports-
mouth, New Hampshire, 2013. 

[25] Salumäe T, Kruusmaa M. Flow-relative control of an un-
derwater robot. Proceedings of the Royal Society, 2013, 469, 
20120671. 

[26] Ježov J, Akanyeti O, Chambers L D, Kruusmaa M. Sensing 
oscillations in unsteady flow for better robotic swimming 
efficiency. Proceedings of IEEE International Conference on 
Systems, Man and Cybernetics, Seoul, Korea, 2012, 91–96. 

[27] Ayali A, Gelman S, Tytell E D, Cohen A H. Lateral-line 
activity during undulatory body motions suggests a feedback 
link in closed-loop control of sea lamprey swimming. Ca-
nadian Journal of Zoology, 2009, 87, 671–683. 

[28] Akanyeti O, Chambers L D, Ježov J, Brown J, Kruusmaa M, 
Megill W M, Fiorini P. Self-motion effects on hydrody-
namic pressure sensing: Part I. forward-backward motion. 
Bioinspiration & Biomimetics, 2013, 8, 026001. 

[29] Liu H, Wassersug R J, Kawachi E. A computational fluid 
dynamics study of tadpole swimming. The Journal of Ex-
perimental Biology, 1996, 199, 1245–1260. 

[30] Carling J, Williams T L, Bowtell G. Self-propelled anguil-
liform swimming: Simultaneous solution of the 
two-dimensional navier-stokes equations and newton's laws 
of motion. The Journal of Experimental Biology, 1998, 201, 
3143–3166. 

[31] Wolfgang M J, Anderson J M, Grosenbaugh M A, Yue D K, 
Triantafyllou M S. Near-body flow dynamics in swimming 
fish. The Journal of Experimental Biology, 1999, 202, 
2303–2327. 

[32] Borazjani I, Sotiropoulos F. Numerical investigation of the 
hydrodynamics of carangiform swimming in the transitional 

and inertial flow regimes. The Journal of Experimental Bi-
ology, 2008, 211, 1541–1558. 

[33] Shirgaonkar A A, MacIver M A, Patankar N A. A new 
mathematical formulation and fast algorithm for fully re-
solved simulation of self-propulsion. Journal of Computa-
tional Physics, 2009, 228, 2366–2390. 

[34] Bergmann M, Iollo A. Modeling and simulation of fish-like 
swimming. Journal of Computational Physics, 2011, 230, 
329–348. 

[35] Wen L, Wang T M, Wu G H, Liang J H. Quantitative thrust 
efficiency of a self-propulsive robotic fish: Experimental 
method and hydrodynamic investigation. IEEE/ASME 
Transactions on Mechatronics, 2013, 18, 1027–1038. 

[36] Rapo M A, Jiang H S, Grosenbaugh M A, Coombs S. Using 
computational fluid dynamics to calculate the stimulus to the 
lateral line of a fish in still water. The Journal of Experi-
mental Biology, 2009, 212, 1494–1505. 

[37] Windsor S P, Norris S E, Cameron S M, Mallinson G D, 
Montgomery J C. The flow fields involved in hydrodynamic 
imaging by blind Mexican cave fish (Astyanax fasciatus). 
Part I: Open water and heading towards a wall. The Journal 
of Experimental Biology, 2010, 213, 3819–3831. 

[38] Windsor S P, Norris S E, Cameron S M, Mallinson G D, 
Montgomery J C. The flow fields involved in hydrodynamic 
imaging by blind Mexican cave fish (Astyanax fasciatus). 
Part II: Gliding parallel to a wall. The Journal of Experi-
mental Biology, 2010, 213, 3832–3842. 

[39] Barbier C, Humphrey J A. Drag force acting on a neuromast 
in the fish lateral line trunk canal. I. Numerical modelling of 
external-internal flow coupling. Journal of the Royal Society 
Interface, 2009, 6, 627–640. 

[40] Cheng J Y, Zhuang L X, Tong B G. Analysis of swimming 
three-dimensional waving plates. Journal of Fluid Me-
chanics, 1991, 232, 341–355. 

[41] Zhou H, Hu T J, Xie H B, Zhang D B, Shen L C. Computa-
tional and Experimental study on dynamic behavior of un-
derwater robots propelled by bionic undulating fins. Science 
China Technological Sciences, 2010, 53, 2966–2971. 

[42] Hu T J, Low K H, Shen L C, Xu X. Effective phase tracking 
for bioinspired undulations of robotic fish models: A learn-
ing control approach. IEEE/ASME Transactions on Mecha-
tronics, 2014, 19, 191–200. 

[43] Zhou H, Hu T J, Wang G M, Zhang D B, Lv Y X. Simulation 
platform for fishlike swimming. Applied Mechanics and 
Materials, 2014, 461, 451–458. 

[44] Dubois A, Cavagna G A, Fox R S. Pressure distribution on 
the body surface of swimming fish. The Journal of Experi-
mental Biology, 1974, 60, 581–591.  


