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Abstract. Algebraic manipulation detection (AMD) codes, introduced
at EUROCRYPT 2008, may, in some sense, be viewed as keyless com-
binatorial authentication codes that provide security in the presence of
an oblivious, algebraic attacker. Its original applications included robust
fuzzy extractors, secure message transmission and robust secret sharing.
In recent years, however, a rather diverse array of additional applica-
tions in cryptography has emerged. In this paper we consider, for the
first time, the regime of arbitrary positive constant error probability ε
in combination with unbounded cardinality M of the message space.
There are several applications where this model makes sense. Adapting
a known bound to this regime, it follows that the binary length ρ of
the tag satisfies ρ ≥ log logM +Ωε(1). In this paper, we shall call AMD
codes meeting this lower bound optimal. Known constructions, notably a
construction based on dedicated polynomial evaluation codes, are a mul-
tiplicative factor 2 off from being optimal. By a generic enhancement
using error-correcting codes, these parameters can be further improved
but remain suboptimal. Reaching optimality efficiently turns out to be
surprisingly nontrivial. We propose a novel constructive method based
on symmetries of codes. This leads to an explicit construction based on
certain BCH codes that improves the parameters of the polynomial con-
struction and to an efficient randomized construction of optimal AMD
codes based on certain quasi-cyclic codes. In all our results, the error
probability ε can be chosen as an arbitrarily small positive real number.

1 Introduction

Algebraic manipulation detection (AMD) codes, introduced at EUROCRYPT
2008 [5], may, in some sense, be viewed as keyless combinatorial authentication
codes that provide security in the presence of an oblivious, algebraic attacker.
Briefly, a systematic AMD encoding is a pair consisting of a message m and a tag
τ . Given the message, the tag is sampled probabilistically from some given finite
abelian group, according to a distribution depending on the details of the scheme.
The attack model considers an adversary which substitutes an intercepted pair
(m, τ) by a pair (m̃, τ̃) with m̃ 6= m such that it knows ∆ := τ̃ − τ and such
that ∆ is independently distributed from τ . It may, however, depend on m. The



error probability ε of an AMD code upper bounds the success probability of the
best strategy to have a substitution accepted as a valid encoding. 4

The original applications [5] of AMD codes included robust fuzzy extractors,
secure message transmission, and robust secret sharing. During the last few
years, however, several interesting new applications have emerged. Namely, AMD
codes play a role in topics such as construction of non-malleable codes [7], codes
for computationally bounded channels [10], unconditionally secure multiparty
computation with dishonest majority [3], complete primitives for fairness [9],
and public key encryption resilient against related key attacks [13].

In this paper we consider, for the first time, the regime of arbitrarily small
positive constant error probability ε in combination with unbounded cardinal-
ity M of the message space. This model makes sense for most of the known
information-theoretic applications of AMD codes. This is the case for secure
message transmission, robust secret sharing and robust fuzzy extractors [5], and
also for non-malleable codes [7, Theorem 4.1], unconditionally secure multiparty
computation with dishonest majority [3, Theorem 8.3], and codes for computa-
tionally simple channels [10]. 5

Adapting a known bound to the constant-error model, it follows that the
binary length ρ of the tag τ satisfies

ρ ≥ log logM +Ωε(1),

where the hidden constant is about −2 log ε. In this work, optimal AMD codes are
those meeting this lower bound, i.e., their tag-length is log logM+Oε(1). Known
constructions, notably a construction based on dedicated polynomial evaluation
codes [5], are a multiplicative factor 2 off from being optimal (Proposition 3).
By a generic combination of these polynomial AMD codes with asymptotically
good error-correcting codes, AMD codes with tag-length

ρ = log logM + log log logM +Oε(1)

are obtained (Proposition 4), which is still suboptimal. Bridging the gap to
optimality efficiently turns out to be surprisingly nontrivial.

Owing to our refinement of the mathematical perspective on AMD codes,
which focuses on symmetries of codes, we propose novel constructive principles.
As we show, this leads to the following results.

1. There is a straightforward Gilbert-Varshamov type nonconstructive proof of
the existence of optimal AMD codes (Theorem 1).

2. There is an explicit construction of AMD codes based on cyclic codes (The-
orem 2). A construction with equivalent parameters to the polynomial con-
struction from [5] is retrieved immediately by instantiating the latter with

4 The adversary is even allowed to dictate the original message m that occurs in the
intercepted encoding.

5 Nevertheless, other applications require negligible error probability.



Reed-Solomon codes. Instantiating it with narrow-sense primitive BCH codes,
AMD codes with improved parameters are obtained (Theorem 4).

3. There is an efficient randomized construction of optimal AMD codes, based
on twists of asymptotically good quasi-cyclic codes of finite index (Theo-
rem 3). As an aside, the hidden constant in this construction is actually
quite small, namely about −6 log ε, which is roughly 3 times the hidden con-
stant in the lower bound (Remark 3). Nevertheless, the dependence on the
error probability ε is worse than in the polynomial construction in [5], for
which the tag-length is roughly 2 log logM − 2 log ε.

Note that in all our results, the error probability ε can be chosen as an
arbitrarily small positive real number.

Related Work The reader is referred to the survey [6] for more information
about known results, techniques and applications of AMD codes. A class of AMD
codes with a stronger security requirement was recently introduced in [11, 12].
Namely, all algebraic manipulations, even those that do not change the message
m but only the tag τ , should be detected with high probability. This additional
requirement is not needed in most of the applications of AMD codes. 6 Our
novel constructions of AMD codes in this paper satisfy that stronger security
requirement. 7 A variant of AMD codes achieving leakage resilience has been
presented [1].

2 Best Previous Constructions

The following definition of systematic AMD code was introduced in [5, 6]. A new,
equivalent definition, which fits our refinement of the mathematical perspective
on AMD codes, is given in Section 3.

Definition 1. Let ε be a real number with 0 ≤ ε ≤ 1 and let M , n be integers
with M,n ≥ 1. A systematic (M,n, ε)-AMD code consists of a map f :M×G→
V , where M is a set and G, V are finite abelian groups such that M = |M| and
n = |G| · |V |, and

|{g ∈ G : f(m, g) + c = f(m′, ge)}| ≤ ε · |G|.

for all m,m′ ∈M with m 6= m′ and for all (e, c) ∈ G×V . The tag-length of an
(M,n, ε)-AMD code is the quantity ρ = log2 n.

As discussed after Definition 3, a message m ∈ M is encoded by choosing
g ∈ G uniformly at random and adding the tag τ = (g, f(m, g)) ∈ G× V to the
message m.

6 It is nevertheless essential for the non-malleable secret sharing schemes introduced
in [9].

7 The only exceptions appearing in this paper are the non-constructive family in Corol-
lary 3 and the (known) multiplication AMD code in Proposition 1. The AMD code
from [5] also satisfies the stronger security requirement.



A simple example of a systematic AMD code, the so-called multiplication
AMD code, is given in Proposition 1. It is extracted from the robust secret
sharing construction in [4]. The proof of this result is straightforward.

Proposition 1. Let q be a positive prime power and k, ` positive integers with
k ≥ `, and take an embedding of F`q into Fqk . Then the map f : F`q × Fqk → Fqk
given by f(m, g) = mg (here the embedding of F`q into Fqk is used to compute

the product mg) defines a systematic (q`, q2k, 1/qk)-AMD code.

We present next the family of efficient AMD codes, with rather good param-
eters, that was introduced in [5]. The reader is referred to [5, 6] for more details
about this construction.

Proposition 2. Let Fq be a finite field of characteristic p. Let d > 0 be an
integer such that d + 1 < q and p is not a divisor of d + 2. Then the function
f : Fdq × Fq → Fq defined by

f((m1, . . . ,md), g) = gd+2 +

d∑
i=1

mig
i

determines a systematic (qd, q2, (d+ 1)/q)-AMD code.

The following discussion, which is adapted from [6, Section 6], demonstrates
the flexibility in the values of the parameters of this family of AMD codes. In
addition, it proves Proposition 3.

Consider a prime p, a real number ε0 with 0 < ε0 < 1, and an integer
M0 ≥ 1/ε0. Take the smallest integer d such that d+ 2 is not divisible by p and
logM0 ≤ d(log(d+ 1)− log ε0),

k =

⌈
log(d+ 1)− log ε0

log p

⌉
,

and q = pk. Then M = qd ≥M0 and ε = (d+ 1)/q ≤ ε0. Therefore, there exists
in the family introduced in Proposition 2 an (M,p2k, ε0)-AMD code, which can
be trivially transformed into an (M0, p

2k, ε0)-AMD code, with tag-length

ρ = 2k log p ≤ −2 log ε0 + 2 log(d+ 1) + 2 log p

≤ −2 log ε0 + 2 log

(
− logM0

log ε0
+ 3

)
+ 2 log p.

We have used here that (k − 1) log p ≤ log(d + 1) − log ε0 and (d − 2)(log(d −
1)− log ε0) ≤ logM0. The following two propositions are direct consequences of
this discussion.

Proposition 3. For every fixed value of ε with 0 < ε < 1 and arbitrarily large
values of M , there exist systematic (M,n, ε)-AMD codes in the family intro-
duced in Proposition 2 such that the asymptotic behavior of the tag-length is
ρ = 2 log logM +O(1).



When comparing the result in Proposition 3 with the asymptotic lower bound
in Corollary 1, we observe that the construction of AMD codes in [5] is a multi-
plicative factor 2 off from being optimal.

Finally, we observe here that it is possible to obtain an almost optimal con-
struction by combining the AMD codes above with an asymptotically good fam-
ily of Fq-linear error-correcting codes. The idea is to encode the message x ∈M
with an error-correcting code C of length s in the family, take the tag (g, Cg(x)),
where g is chosen uniformly at random from Gs, the cyclic group of order s, and
Cg(x) ∈ Fq is the g-th component of the codeword C(x), and then encode the
tag (g, Cg(x)) with a suitable AMD code.

Proposition 4. For every fixed value of ε with 0 < ε < 1 and arbitrarily large
values of M , there exist systematic (M,n, ε)-AMD codes such that the asymptotic
behavior of the tag-length is ρ = log logM + log log logM +O(1).

Proof. Consider a family of Fq-linear codes with constant rate R > 0 and con-
stant relative minimum distance δ ≥ 1 − ε. That is, for arbitrarily large values
of s there is in the family a code C : Fkq → Fsq with length s, dimension k ≥ Rs

and minimum distance at least δs. For every h in Gs and x ∈ M = Fkq , let
Cg(x) ∈ Fq be the g-th component of the codeword C(x). We have seen before
that one can find for these values of s AMD codes f ′ :M′×G′ → V ′ with mes-
sage spaceM′ = Gs×Fq, error probability ε, and tag-length log log sq+O(1) =
log log s+O(1). The proof is concluded by considering the AMD code

f : Fkq × (Gs ×G′)→ Fq × V ′

defined by f(x, (g, g′)) = (Cg(x), f ′((g, Cg(x)), g′)).

3 Overview of Our Results

To enable a bird’s eye view on our main results, we first briefly sketch our
refinement of the mathematical perspective on AMD codes. Let V and G be
finite abelian groups. Define the finite abelian group

V [G] =
⊕
g∈G

V,

together with the group action denoted by “·” that turns V [G] into a so-called
G-module by having G act on the coordinates. More precisely, if x ∈ V [G] with
“coordinates” x(g) ∈ V (g ∈ G), then

h · x ∈ V [G]

is defined such that

(h · x)(g) := x(−h+ g),



for all g ∈ G. 8 In particular, the G-action permutes coordinates. A G-submodule
C ′ is a subgroup of V [G] that is invariant under the G-action, i.e.,

G · C ′ = C ′,

or equivalently, h · x ∈ C ′ for all h ∈ G, x ∈ C ′. Let Γ ⊂ V [G] denote the
G-submodule of constants, i.e., it consists of the elements x ∈ V [G] such that
x(g) = x(g′) for all g, g′ ∈ G. If x ∈ V [G], then G · x is the G-orbit of x, i.e.,
it is the set of elements {h · x | h ∈ G}. Note that, if x 6= 0, then this is not a
G-submodule. Recall that, if A,B are subsets of an additive group, then A+B
is defined as {a+ b : a ∈ A, b ∈ B}.

Definition 2. For x, y ∈ V [G], the AMD-equivalence relation in V [G] is defined
by

x ∼ y if and only if x ∈ (G · y + Γ ).

For x ∈ V [G], the equivalence class of x under the AMD-equivalence relation is
denoted by cl(x).

Consider the set V [G]/ ∼, i.e., V [G] taken modulo this equivalence rela-
tion. Also consider the induced Hamming-distance dH, which defines the dis-
tance between classes cl(x), cl(x′) ∈ V [G]/ ∼ as the minimum of the (regular)
Hamming-distance dH(y, y′) taken over all y ∈ cl(x) and y′ ∈ cl(x′). 9 Observe
that dH(cl(x), cl(x′)) = dH({x}, cl(x′)). For a subset C ⊂ V [G], the image of C
under reduction by the equivalence relation is denoted by C ⊂ V [G] / ∼.

Our new perspective concerns the observation that “good” AMD codes cor-
respond to codes C ⊂ V [G] such that |C| = |C|, the cardinality |C| is “large”
and the minimum distance dmin(C) of C ⊂ V [G] / ∼ (i.e, in terms of the induced
Hamming-distance) is “large” as well. Only systematic algebraic manipulation
detection codes are considered in this paper. The reader is referred to [6] for
additional definitions and results about this and other classes of algebraic ma-
nipulation detection codes. For completeness, we present in Appendix 2 the
equivalent definition of asymptotic AMD code from [5].

Definition 3 (AMD Codes). Let ε be a real number with 0 ≤ ε ≤ 1 and let
M , n be integers with M,n ≥ 1. A systematic (M,n, ε)-algebraic manipulation
detection (AMD) code consists of finite abelian groups G, V and a subset C ⊂
V [G] such that |C| = |C| = M and |G| · |V | = n, and dmin(C) ≥ (1 − ε) · |G|.
The tag-length of an (M,n, ε)-AMD code is the quantity ρ = log2 n.

We prove in the following that Definitions 3 and 1 are equivalent. First assume
that C ⊂ V [G] is a systematic AMD code given in Definition 3. Take M = C
and consider the map f : C × G → V defined by (x, g) 7→ x(g). Then it is

8 Note that, (h′ · (h · x))(g) = x(−h − h′ + g) = (h′ + h) · x, for all h, h′, g ∈ G and
x ∈ V .

9 The (regular) Hamming-distance between two elements of V [G] is, of course, the
number of non-zero coordinates in their difference.



easy to verify that this coincides with Definition 1. On the other hand, assume
that we have a systematic AMD code given in Definition 1. Consider the set
C := {

∑
g∈G f(m, g)g : m ∈ M}. Then it is straightforward to verify that C is

a systematic AMD code given in Definition 3.

In applications, a bijection φ : M → C between the message space M and
the code C is fixed. To encode a message m ∈ M, take x = φ(m), select h ∈ G
uniformly at random and set

τ := (h, x(h)) ∈ G× V

as the tag.

AMD codes are a relaxation of combinatorial authentication codes. Their
purpose is similar, namely ensuring message integrity. However, AMD codes
are keyless and security is only guaranteed against a non-adaptive, algebraic
adversary that has a priori knowledge of m and effectively replaces (m, τ) by
(m′, τ ′) ∈M× (G× V ), under the following restrictions:

– m′ 6= m.

– Effectively selects an offset (e, c) ∈ G × V and sets τ ′ = (h + e, x(h) + c) ∈
G× V.

– The selection of (m′, e, c) may only depend on the message m and indepen-
dent randomness chosen by the adversary. In particular, this selection does
not depend on h.

Then the adversary is successful if and only if x′(h + e) = x(h) + c, where
x′ = φ(m′) ∈ C. It follows that success is equivalent to ((−e) ·x′)(h)− c = x(h).
Since x and x′ are in distinct equivalence classes and since h ∈ G is uniformly
random and independent of x, x′, e, c, the success probability of the adversary is
at most ε because

1− dH(cl(x), cl(x′))

|G|
≤ 1−

dmin(C)

|G|
≤ ε.

In several specialized situations the adversary is effectively reduced to non-
adaptive, algebraic attack. Moreover, authentication codes are typically not an
option there: the secret key is susceptible to the same attack. Interestingly, the
choice of the groups V,G is typically immaterial in applications. 10

These observations motivate the following novel approaches to show existence
of good AMD codes. Suppose, for now, that C ′ ⊂ V [G] is such that

1. C ′ is a G-submodule.

2. Γ ⊂ C ′.
10 Except perhaps that it is sometimes convenient if neither |V | nor |G| has a small

prime divisor.



Suppose that |C ′| is “large” and that the (regular) minimum distance dmin(C ′)
is “large.” In order to get a good AMD code out of this, it now suffices to de-
velop an (efficient) method to select a subset C ⊂ C ′ such that for each distinct
x, x′ ∈ C, the intersection between the orbits G · x and G · x′ is empty (orbit
avoidance). This way, one potentially achieves an AMD code C such that

|C| ≥ |C ′|
|V | · |G|

,

where the denominator upper bounds the cardinality of a class, and such that
the error probability ε satisfies

ε = 1−
dmin(C ′)

|G|
.

This discussion is summarized in the following result.

Lemma 1. Suppose C ′ ⊂ V [G] is a G-submodule, Γ ⊂ C ′, and dmin(C ′) ≥ (1−

ε)·|G| for some ε with 0 < ε < 1. Then there exists a systematic

(
|C ′|
|V | · |G|

, |V | · |G|, ε
)

-

AMD code C ⊂ C ′.

As we show, this approach immediately leads to a greedy, non-constructive
proof of the existence of optimal AMD codes. 11

Theorem 1. For every real number ε with 0 < ε < 1, there exist AMD codes
with unbounded message space cardinality M and error probability at most ε
whose tag-length ρ satisfies

ρ = log logM +Oε(1),

which is optimal.

Remark 1 (Locking trick). Suppose the condition that Γ ⊂ C ′. This complicates
the situation as the (regular) relative minimum distance of the code C ′ no longer
gives a non-trivial upper bound on the error probability of the AMD code C, i.e.,
the code obtained after application of orbit avoidance. But if |V | is constant, the
situation can be reduced to the previous situation by means of our locking trick,
without harming asymptotic performance: simply augment an AMD encoding
with a standard AMD encoding (with appropriate error probability) of the value
x(h) in the tag τ = (x, x(h)). This way, at the cost of an additive constant
increase in tag-length, we may as well assume that the adversary does not change
the V -component of the tag. This obviates the need for considerations involving
the constants Γ . As a consequence, the relative minimum distance of C ′ once
again governs the error probability ε of the AMD code C. 12

11 In fact, a Gilbert-Varshamov style argument.
12 Note that locking only makes sense if |V | is very small compared to |G|; otherwise

this is too costly!



Any AMD code with the suitable parameters can be used in the locking trick
as, for example, the simple multiplication AMD code in Proposition 1. 13 .

Hence, the remaining question is about effective construction. We apply the
idea above to cyclic Fq-linear codes and show an efficiently enforceable algebraic
conditions on the generator polynomial to ensure orbit avoidance. If V = K
is a (finite) field, then K[G] is a ring, where multiplication is defined from the
G-action by convolution, and hence K[G] is a K-algebra (since K is contained
in a natural way). A cyclic Fq-linear code is a G-submodule of Fq[G], where G
is a finite cyclic group. It is convenient, though, to work with the following more
common, equivalent definition.

Let q be a positive prime power and let Fq be a finite field with q elements.
Let s be a positive integer that is not a multiple of the characteristic p of Fq.
Set V = Fq and G = Gs, the cyclic group of order s. Let πq(s) = ord∗s(q) be
the multiplicative order of q mod s. An Fq-linear cyclic code C ′ of length s is
an ideal of Fq[Gs] ' Fq[X]/(Xs − 1), and hence it is generated by the class

a(X) ∈ Fq[X]/(Xs − 1) of some polynomial a(X) ∈ Fq[X] that divides Xs − 1.
This polynomial is called the generator of the cyclic code C ′.

Theorem 2. Let Fq be a finite field and s > 1 an integer that is not a multiple
of the characteristic p of Fq. Let C ′ ⊂ Fq[X]/(Xs − 1) be an Fq-linear cyclic
code of length s with generator a(X) ∈ Fq[X]. Let d be the minimum distance of
C ′. Suppose that the following conditions are satisfied.

1. The all-one vector is in C ′ or, equivalently, (X − 1) does not divide a(X).
2. There is a primitive s-th root of unity ω ⊂ Fq with a(ω) 6= 0.
3. πq(s) < s− deg a− 1.

Then there exists an explicit construction of a (qs−deg a−πq(s)−1, sq, (s − d)/s)-
AMD code C ⊂ C ′.

Notice that the conditions imply Γ ⊂ C ′, so the locking trick from Remark 1
is not necessary. For every real number ε with 0 < ε < 1, instantiation with
Reed-Solomon codes defined over a large enough finite field leads to an explicit
construction of AMD codes with arbitrarily large message space cardinality M
and tag-length 2 log logM +Oε(1), which is the same as in the explicit construc-
tion from [5] (see Appendix 2). Instantiation with narrow-sense primitive BCH
codes defined over a large enough finite field leads to an explicit construction of
almost-optimal AMD codes, i.e., achieving tag-length (1 + δ) log logM + Oε(1)
where δ is an arbitrary real constant with 0 < δ < 1.

One quickly sees that achieving optimality along the lines of twists on cyclic
codes as discussed above would require the existence of asymptotically good
cyclic Fq-linear codes, which is one of the central open problems in the theory

13 If an AMD code under the stronger security requirements from [11] is needed, then
one should select for the lock an AMD code that also satisfies those requirements
as, for instance, the polynomial AMD code from [5].



of error correcting codes. 14 The remainder of our results is concerned with
bypassing this major open problem.

Our final result is a randomized construction of optimal AMD codes.

Theorem 3. For every real number ε with 0 < ε < 1, there exist an efficient,
randomized construction of explicit AMD codes with arbitrarily large message
space cardinality M and tag-length ρ = log logM +Oε(1), which is optimal.

Relying on our AMD perspective as outlined above, it is achieved by a series
of twists on a result in a beautiful paper by Bazzi and Mitter [2] on asymptotically
good quasi-cyclic codes of constant index `. Let ` ≥ 2 and define V = F`2. One of
their results (stated in our terminology here) is that there exists a randomized
construction of Gs-submodules C ′ ⊂ F`2[Gs] of rate log |C ′|/(`s) = 1/` achieving
the Gilbert-Varshamov bound when s tends to infinity. 15 The error probability
of this randomized construction is exponentially small in s if the lengths s are
carefully selected.

We use four twists on their result to show our claim. First, we generalize it
to work over all finite fields Fq, with ` ≥ 2 an arbitrary integer constant. This
ensures that relative minimum distance arbitrarily close to 1 can be achieved,
and hence ε can be selected arbitrarily close to 0. This generalization is straight-
forward, using some results from [8]. Second, this time we need to resort to the
locking trick in Remark 1. Third, we need an adaptation of the efficient orbit
avoidance method alluded to above. This adaptation is necessary not only be-
cause of the shift from cyclic codes to quasi-cyclic ones, but also because of the
probabilistic nature of the construction. Fourth, we need to craft the lengths
s with additional care to ensure that the rate of the code drops by at most a
multiplicative positive constant factor after application of orbit avoidance.

4 Nonconstructive Optimal AMD Codes

In this section, we present the proof of Theorem 1. We begin by presenting the
asymptotic lower bound in Corollary 1, which is a consequence of the bound in
Proposition 6. This bound is a refinement of similar bounds presented in [6, 11].
We are going to use the following trivial result

14 It would not even be enough if asymptotically good cyclic Fq-linear codes exist for
some value of q. Namely, to suit our purposes, such codes should exist for infinitely
many values of q and, when sending q to infinity, the relative minimum distance
achieved should tend to 1. Finally, a certain condition on the lengths of the codes
should hold. Specifically, given such a value of q, the lengths `(C′) occurring must
satisfy πq(`(C

′)) ≤ γ`(C′) for some absolute real constant γ > 0. Otherwise the
orbit-avoidance eats away too many codewords, causing the rate to drop to 0. If the
codes do not contain the all-one vector, the locking trick alluded below could be
applied.

15 i.e., the relative minimum distance δ > 0 of these codes is such that H2(δ) = 1/`,
where H2(·) is the binary Shannon-entropy function.



Proposition 5. Let ε be a real number with 0 < ε < 1 and let C ⊂ V [G] be
an (M,n, ε)-AMD code. Then |G| ≥ 1/ε and |V | ≥ 1/ε. As a consequence, the
tag-length ρ satisfies ρ ≥ −2 log ε.

Proof. Consider x, x′ ∈ C with x 6= x′. Then there exists c ∈ V such that the
set {g ∈ G : x(g)− x′(g) = c} has cardinality at least |G|/|V |.

|{g ∈ G : x(g)− x′(g) = c}| ≥
⌈
|G|
|V |

⌉
.

Therefore,

(1− ε) · |G| ≤ dH(cl(x), cl(x′)) ≤ |G| −
⌈
|G|
|V |

⌉
≤ min

{
|G| − 1, |G| − |G|

|V |

}
and the proof is concluded.

Other lower bounds on the tag-length are obtained by applying some known
classical bounds from coding theory, as in Proposition 6. As a corollary, we obtain
a lower bound on the asymptotic behavior of the tag-length. 16

Proposition 6. Let ε be a real number with 0 < ε < 1. Suppose that M ≥ 1/ε.
Then the tag-length ρ of a systematic (M,n, ε)-AMD code satisfies

ρ ≥ log logM − 2 log ε−max{0, log(− log ε)}.

Proof. Let C ⊂ V [G] be an (M,n, ε)-AMD code. From the definition of AMD
code, C + Γ is a code of size M · |V |, length |G| and minimum distance at least
(1−ε)|G| over the alphabet V . Therefore, by the Singleton bound, M ≤ |V |ε·|G|,
and hence

log |G| ≥ log logM − log ε− log log |V |.

By Proposition 5, log |G| ≥ − log ε and log |V | ≥ − log ε. Take x = log |V |,
y = log |G|, A = max{1,− log ε}, and B = log logM . Since B − logA ≥ 0, the
minimum value of x + y under the constraints x, y ≥ A and y ≥ A + B − log x
is attained when x = A and y = A+B − logA.

Corollary 1. For every real number ε with If 0 < ε < 1, the tag-length ρ of
the AMD codes with arbitrarily large message space cardinality M and error
probability at most ε satisfies

ρ ≥ log logM +Ωε(1).

Application of the Hamming and Plotkin bounds instead of the Singleton
bound gives better results, but the asymptotic results are not improved. Next,
we prove Theorem 1 by using a variation on the Gilbert-Varshamov bound.

16 The looser, but easier to prove, lower bound ρ ≥ log logM− log ε is enough to obtain
the asymptotic lower bound in Corollary 1. Nevertheless, the bound in Proposition 6
provides a better description of the behavior of the tag-length ρ in relation to the
error probability ε.



Definition 4. Consider a finite field Fq, a real number ε with 1/q < ε < 1,
and a positive integer s. Then the quantity A′q(s, ε) is defined as the maximum
cardinality M of an (M,n, ε)-AMD code C ⊂ Fq[Gs].

Proposition 7. With conditions as above,

A′q(s, ε) ≥
⌊

qs

qs · Vq(s, 1− ε)

⌋
,

where Vq(s, 1− ε) is the volume of a sphere in Fq[Gs] with radius (1− ε)s.

Proof. Suppose that the result is false and take an (M,n, ε)-AMD code C ⊂
Fq[Gs] with M = A′q(s, ε). Observe that | cl(x)| ≤ qs for every x ∈ Fq[Gs].
Therefore, the number of elements y ∈ Fq[Gs] such that dH({y}, cl(x)) < (1−ε)s
is at most qs · Vq(s, 1 − ε). Since |C| · qs · Vq(s, 1 − ε) < qs there exist a vector
y ∈ Fq[Gs] r C such that

dH(cl(y), cl(x)) = dH({y}, cl(x)) ≥ (1− ε)s

for all x ∈ C. Therefore, C has not maximum cardinality among all codes with
the required property, a contradiction.

Corollary 2. Let q be a positive prime power, let ε be a real number with 1/q <
ε < 1, and let s be a positive integer. Then there exists a systematic(⌊

qs

qs · Vq(s, 1− ε)

⌋
, qs, ε

)
-AMD code

with V = Fq and G = Gs, the cyclic group of order s.

Lemma 2. With conditions as above,

lim
s→∞

logA′q(s, ε)

s
≥ (1−Hq(1− ε)) log q,

where Hq is the q-ary entropy function.

Proof. The result follows immediately from Corollary 2 by taking limits, taking

into account that, by coding theory, lim
s→∞

logq Vq(s, 1− ε)
s

= Hq(1− ε).

Finally, Theorem 1 is an immediate consequence of the following result.

Corollary 3 (Non-constructive optimality). For any real constant c > 0,
fix a positive prime power q and a real number ε with ε = 1/q + 1/q1+c. Then
there exist AMD codes with arbitrarily large message space cardinality M , error
probability at most ε and tag-length

ρ = log log |M | − (2 + c) log ε+O(1).

Note that the tag-length is minimal up to an additive constant.



5 An Explicit Construction from Cyclic Codes

This section is devoted to prove Theorem 2. We present here an effective method
to select, from any given cyclic code, a number of codewords in different AMD-
equivalence classes. By Lemma 1, this provides an effective construction of sys-
tematic AMD codes.

5.1 General Construction

Let Fq be a finite field. Let s > 1 be an integer that is not a multiple of the
characteristic p of Fq. Then Fq[Gs] is a ring, where the product is defined from the
Gs-action by convolution. So, Fq[Gs] is an Fq-algebra. Since Xs−1 is separable,
it follows by the Chinese Remainder Theorem that Fq[Gs] ' Fq[X]/(Xs − 1) is
a product of finite extension fields of Fq. Let ω ∈ Fq be a primitive s-th root of
unity. Then the degree of Fq(ω) over Fq equals

πq(s) = ord∗s(q),

the multiplicative order of q mod s. Equivalently, it equals the degree of the
minimal polynomial of ω over Fq. It is also the largest degree occurring among
the irreducible factors in the factorization of Xs − 1 over Fq[X] as each of the s
roots sits in some intermediate extension of Fq(ω) ⊃ Fq.

Definition 5. Let a(X) ∈ Fq[X] be a polynomial such that a(X) divides Xs−1
and let ω ∈ Fq be a primitive s-th root of unity with a(ω) 6= 0. We define
D(a(X), ω) ⊂ Fq[X] as the set of all polynomials f(X) ∈ Fq[X] such that

1. f(ω) = 1, and
2. deg f < s − deg a − δ, where δ = 0 if (X − 1) divides a(X) and δ = 1

otherwise.

An Fq-linear cyclic code C ′ of length s is a Gs-submodule of Fq[Gs]. Equiv-
alently, it is an ideal C ′ ⊂ Fq[X]/(Xs − 1) generated by the class of some
polynomial a(X) ∈ Fq[X] that divides Xs − 1. This polynomial is called the
generator of the cyclic code C ′. Then

C ′ =
{
a(X)f(X) : f(X) ∈ Fq[X] and deg f < s− deg a

}
⊂ Fq[X]/(Xs − 1).

Let C ′ be an Fq-linear cyclic code with generator a(X) and suppose that
a(ω) 6= 0 for some primitive s-th root of unity ω ∈ Fq. Let C ⊂ C ′ be the set of

all codewords a(X)f(X) ∈ Fq[X]/(Xs − 1) with f ∈ D(a(X), ω).

Lemma 3. No two distinct elements in C are in the same AMD-equivalence
class.

Proof. Suppose that there exist two different polynomials f, g ∈ D such that the
corresponding codewords in C are in the same AMD-equivalence class. Then

X`a(X)f(X) + λ(Xs−1 + · · ·+X + 1) ≡ a(X)g(X) (mod Xs − 1)



for some λ ∈ Fq and ` with 0 ≤ ` < s. Therefore, ω`a(ω)f(ω) = a(ω)g(ω),
and hence ω` = 1 by the definition of C. Since ω is a primitive root, ` = 0.
Consequently,

a(X)(f(X)− g(X)) ≡ −λ(Xs−1 + · · ·+X + 1) (mod Xs − 1). (1)

Suppose that (X − 1) divides a(X). Then λ 6= 0 because deg(f − g) < s− deg a,
but this implies that a(X) divides Xs−1 + · · ·+X + 1, a contradiction. Suppose
now that (X − 1) does not divide a(X), and hence δ = 1 and deg(f − g) <
s − deg a − 1. But then (1) is impossible because deg(a(f − g)) is too small, a
contradiction again.

Lemma 4. Suppose that πq(s) < s− deg a− δ. Then |C| = qs−deg a−πq(s)−δ.

Proof. Take h = s − deg a − δ and let Fq[X]<h be the Fq-vector space of the
polynomials in Fq[X] with degree at most h − 1. Since πq(s) < h, application
of Lemma 7 implies that the kernel of the Fq-linear map Fq[X]<h → Fq[ω],
f 7→ f(ω) has dimension h− πq(s).

The proof of Theorem 2 is now straightforward from Lemmas 1, 3 and 4.

5.2 Instantiations

Applying Theorem 2 to Reed-Solomon codes provides, for every real number ε
with 0 < ε < 1, an effective construction of (M,n, ε)-AMD codes with unbounded
message space cardinality M and tag-length 2 log logM + Oε(1), which is the
same as in the polynomial construction from [5] (see Section 2). Indeed, consider
a prime power q, a primitive element α of F∗q , an integer k with 1 ≤ k ≤ q − 1,

and the polynomial a(X) = (X − α)(X − α2) · · · (X − αq−k−1). By applying
Theorem 2 to the Fq-linear cyclic code with length q − 1 generated by a(X),
which is a Reed-Solomon code with minimum distance d = q−k, one obtains an
effective AMD code with parameters (qk−2, q(q− 1), (k− 1)/(q− 1)). The proof
of our claim is concluded by using a similar argument as for the polynomial
construction from [5] (see Section 2).

The instantiation to narrow-sense BCH codes is not so immediate. We refer
to Appendix B for the background on BCH codes.

Let e ≥ 1 be an integer. Let s = qe − 1. Choose an element α of Fqe
of order s = qe − 1. Let m(i)(x) ∈ Fq[x] denote the minimal polynomial of
αi with respect to Fq. For 0 < ε < 1, put d = (1 − ε)s and consider the
BCH code B of length s = qe − 1 with the generator polynomial a(X) :=
lcm{m(1)(X),m(2)(X), . . . ,m(d−1)(X)}. Then the minimum distance of B is at
least d. Let fai,j(X) be the polynomials defined in (2) of Appendix B.

By Lemma 11, the dimension s − deg a of B is equal to the dimension of
the Fq-span Vs−d = Vεs of {fai,j(X) : 1 ≤ i ≤ t, 1 ≤ j ≤ sai , deg fai,j ≤ εn}.
Hence, dim(B) = s − deg a ≥ (ε(q − 1) + 1)e ≈ e + 1 + (εq)e. Note that in this
case πq(s) = e. Applying Theorem 2, we obtain the following AMD codes.



Theorem 4. For any ε ∈ (0, 1), any integer e ≥ 1 and prime power q, there
exists an effective (q(εq)

e

, (qe − 1)q, ε)-AMD code. Thus, the tag-length equals to

e+ 1

e
log logM − (e+ 1) log ε+O(1).

Proof. Note that the message size M = q(εq)
e

satisfies log logM ≈ e · log ε + e ·
log q. The tag-length satisfies log q+log(qe−1) ≤ (e+1) log q ≤ e+ 1

e
log logM−

(e+ 1) log ε. This completes the proof.

Remark 2. When e = 1 in Theorem 4, we get almost the same result as in the
one in [5]. If we choose e = (log logM)0.5 in Theorem 4, then the tag-length is
log logM +O((log logM)0.5).

6 Monte-Carlo Construction of Optimal AMD Codes

In this section we prove Theorem 3. Namely, we present an efficient random-
ized construction of explicit optimal AMD codes. We proceed as follows. We
begin by presenting in Theorem 5 a randomized construction of Gs-submodules
C ′ ⊂ F`q[Gs]. By considering the codes C ′ over the alphabet Fq, they have
rate logq |C ′|/(`s) = 1/` and minimum relative distance δ arbitrarily close to 1
achieving the Gilbert-Varshamov bound when s tends to infinity. This is an ex-
tension of the corresponding result by Bazzi and Mitter [2] for the case q = 2.
This extension is based on some results from [8]. The error probability of this
randomized construction is exponentially small in s if the lengths s are carefully
selected. Then we apply the general method derived from Lemma 1 to those
Gs-submodules C ′ ⊂ F`q[Gs]. Since Γ 6⊂ C ′, we have to use the locking trick in
Remark 1. Furthermore, we have to adapt orbit avoidance to this probabilistic
scenario involving quasi-cyclic codes. In addition, we need to craft the lengths
s with additional care to ensure that the rate of the AMD code remains posi-
tive after application of orbit avoidance. Finally, in Remark 3, we use a simple
modification to reduce the size of the hidden constant in the tag-length.

Let Fq be a finite field and s > 1 an integer such that the characteristic p of
Fq does not divide s. As before, Gs denotes the cyclic group of order s. Recall
that, if ω ∈ Fq is a primitive s-th root of unity, then the degree of Fq(ω) over Fq
equals πq(s) = ord∗s(q), the multiplicative order of q mod s. The smallest degree
of an extension of Fq containing some (not necessarily primitive) s-th root of
unity different from 1 equals

αq(s) = min
p′|s

ord∗p′(q) = min
p′|s

πq(p
′),

where the minimum ranges over all prime divisors p′ of s. Equivalently, this
equals the smallest degree occurring among the irreducible factors in the factor-
ization of Xs−1 + · · ·+X + 1 over Fq[X].



Let Fq be a finite field and let s, ` be positive integers such that s is coprime
with q. An Fq-linear (s, `)-quasi-cyclic code C ′ is of the form C ′ = {(fa1, . . . , fa`) :
f ∈ Fq[Gs]} ⊂ (Fq[Gs])`, for some fixed a1, ..., a` ∈ Fq[Gs]. In particular, C ′ is
an Fq-linear code of length s`.

Let R ⊂ Fq[Gs] be the set formed by all a ∈ Fq[Gs] with
∑
g∈Gs

a(g) = 0.

Equivalently, R is the set of all a(X) ∈ Fq[X]/(Xs−1) with a(1) = 0. Recall that
Hq denotes the q-ary entropy function. The following theorem is a consequence
of the results in [2, 8].

Theorem 5. For a finite field Fq, an integer ` > 1, and an integer s that is not
a multiple of the characteristic p of Fq, consider the randomized construction of
quasi-cyclic codes

C ′ = {(fa1, . . . , fa`) : f ∈ Fq[Gs]} ⊂ (Fq[Gs])`,

where a1, . . . , a` are selected uniformly at random from R. Now consider C ′ as
an Fq-linear code of length s`. If δ is a real number with 0 < δ < 1− 1/q and

Hq(δ) ≤ 1− 1

`
−

logq s

`αq(s)
,

Then the probability that the relative minimum distance of the code C ′ is below

δ or the rate of C ′ is below
1

`
− 1

`s
is at most q−β, where

β = `αq(s)

(
1− 1

`
−Hq(δ)

)
− (`+ 2) logq s− `(1 + logq `)

As a consequence, for fixed values of δ, q and `, if αq(s) grows asymptotically
faster than log s, this code achieves the Gilbert-Varshamov (GV) bound for rate
1/` with high probability.

There is a natural identification between F`q[Gs] and (Fq[Gs])`. Indeed, every

element x ∈ F`q[Gs] is of the form (x(g))g∈Gs
, where x(g) = (x1(g), . . . , x`(g)) ∈

F`q for every g ∈ Gs. Then x ∈ F`q[Gs] can be identified with (x1, . . . , x`) ∈
(Fq[Gs])`. By this identification, every Fq-linear (s, `)-quasi-cyclic code C ′ is a
Gs-submodule of F`q[Gs].

We proceed next with the detailed description of our efficient randomized
construction of explicit optimal AMD codes. Given a real number ε with 0 <
ε < 1, take a large enough prime power q such that 1/q < ε and a large enough
integer ` such that 1/` < 1−Hq(1− ε). Note that this means that if an Fq-linear
code is on the GV-bound and it has rate 1/`, then its relative minimum distance
is at least 1− ε.

Next, we select arbitrarily large values of s such that the following conditions
are satisfied.



1. The characteristic p of Fq does not divide s.
2. The value αq(s) grows asymptotically faster than log s. By Theorem 5, this

ensures that the relative minimum distance or the code C ′ is at least 1− ε,
except with exponentially small (in s) probability.

3. Finally, πq(s) ≤ s/(` + 1). This condition is needed to ensure that the rate
of the code drops by at most a multiplicative positive constant factor after
application of orbit avoidance.

We describe next how to efficiently select arbitrarily large values of s satis-
fying those conditions. Take s a product of 2 distinct odd primes, In addition,
we require that these primes are different from the characteristic p of Fq, they
have roughly the same size, and they satisfy πq(p

′) > log2 p′. Then αq(s) grows
asymptotically faster than log s. Indeed, since the primes p′ are of similar size,
αq(s) = Ω(log2 s). By the Prime Number Theorem, a random prime satisfies
πq(p

′) > log2 p′ with quite high probability. We can efficiently check that the
condition is satisfied by simply factoring p′ − 1 over a factor basis consisting
of the primes up to log2 p′ (brute-force suffices as the factor basis is so small).
Moreover, by the Chinese Remainder Theorem, it is straightforward to verify
that the exponent of the group (Z/sZ)∗ is at most s/2 if s is the product of 2
distinct odd primes. Therefore, πq(s) ≤ s/2.

Given a large enough integer s sampled as above, take a primitive s-th root
of unity ω and a code C ′ = {(fa1, . . . , fa`) : f ∈ Fq[Gs]} ⊂ F`q[Gs] such
that a1, . . . , a` ∈ R are selected independently and uniformly at random. By
Theorem 5, the relative minimum distance of C ′ is at least 1 − ε except with
probability exponentially small in s. In addition, we require that ai(ω) 6= 0 for
every i = 1, . . . , ` and that there is no s-th root of unity η 6= 1 with ai(η) = 0
for every i = 1, . . . , `. The first property is used in Lemma 5 and the second
property is used in Lemma 6. By using a similar argument as in the proof of
Lemma 4, the probability that ai(ω) = 0 for some i = 1, . . . , ` is at most `q−πq(s).
The probability that there is some s-th root of unity different from 1 that is a
root of each ai(X) is at most (s − 1)q−`πq(s). Therefore, these two additional
requirements do not substantially decrease the success probability (use union
bound) if αq(s) is much larger than log s.

Let D ⊂ Fq[X] be the subset of polynomials f(X) ∈ Fq[X] such that
deg f < s − 1 and f(ω) = 1. The code C ⊂ C ′ is now formed by the code-
words (f(X)a1(X), . . . , f(X)a`(X)) ∈ C ′ such that f(X) ∈ D

The following two lemmas are conditioned on the “bad events” described
above not happening.

Lemma 5. Gs · x and Gs · x′ have empty intersection for every x,x′ ∈ C with
x 6= x′.

Proof. Assume that the result is false. Then there exist polynomials f(X), f ′(X) ∈
D such that Xi · f(X) · aj(X) ≡ f ′(X) · aj(X) mod (Xs − 1) for some integers
i, j with 1 ≤ i < s and 1 ≤ j ≤ `. Then this implies the identity ωi = 1, which
is nonsense since ω is a primitive s-th root of unity.



Lemma 6. |C| ≥ qs−1−`πq(s) = qΩ(s).

Proof. Consider the map φ : Fq[X]<s → (Fq[X]/(Xs − 1))` defined by φ(f) =
(fa1, . . . , fa`). Then the kernel of this map is spanned by the polynomial Xs−1+
· · ·+X + 1. Since the degrees of the polynomials in D are smaller than s− 1, it
follows that |D| = |φ(D)| = |C|. It now suffices to lower bound |D|. By Lemma 7,
the kernel of the map ψ : Fq[X]<s → Fq, f 7→ f(ω) has dimension s − πq(s).
Hence, |D| ≥ qs−1−πq(s). The claim follows since πq(s) ≤ s/2 by hypothesis.

The final ingredient in our construction is the locking trick in Remark 1, that
is, we use the multiplication AMD code described in Proposition 1 to encode
x(g) ∈ F`q. Since ε > 1/q, we can take k = `, and hence we add to the tag two
elements from Fq` . 17 This increases the tag-length by an additive constant.

This concludes the proof of Theorem 3.

Remark 3 (Achieving a smaller hidden constant). Even though this randomized
construction of AMD codes is optimal, the hidden constant is very large because
so is the value of `. This drawback can be avoided with a simple modification
to our construction. Namely, instead of the tag (g,x(g)) ∈ Gs × F`q with a lock
for x(g), use the tag (g, h, xh(g)) ∈ Gs ×G` × Fq with locks for h and xh(g). In
this way, the tag-length is reduced from log s+ 3` log q to log s+ 3 log `+ 3 log q,
which is around log s− 6 log ε.
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A A Generalization of Lagrange’s Interpolation Theorem

It is convenient to recall a simple extension of the usual version of Lagrange
Interpolation.

Lemma 7. Let K be a field. Fix an algebraic closure K of K. Suppose α1, . . . , αm ∈
K satisfy the property that if m > 1 then their respective minimal polynomi-
als hi(X) ∈ K[X] are pair-wise distinct. Equivalently, αi, αj are not Galois-
conjugate over K if i 6= j. For i = 1, . . . ,m, define

δi = deg hi (= dimK K(αi)).

Moreover, define

M =

m∑
i=1

δi.

Let K[X]≤M−1 denote the K-vector space of polynomials f(X) ∈ K[X] such
that deg f ≤M − 1.

Then the evaluation map

E : K[X]≤M−1 −→
m⊕
i=1

K(αi)

f(X) 7→ (f(αi))
m
i=1

is an isomorphism of K-vector spaces.

B On BCH codes

Let q be a prime power and let e ≥ 1 be a positive integer. Put s = qe − 1.
For any a ∈ Zs, we define a q-cylotomic coset modulo s

Sa := {a · qi mod s : i = 0, 1, 2, . . . }.



It is a well-know fact that all q-cyclotomic cosets partition the set Zs. Let
Sa1 , Sa2 , . . . , Sat stand for all distinct q-cyclotomic cosets modulo s. Then, we
have that Zs = ∪ti=1Sai and s =

∑t
i=1 |Sai |. We denote by sa the size of the

q-cyclotomic coset Sa. The following fact can be easily derived.

Lemma 8. For every a ∈ Zs, the size sa of Sa divides e which is the order of q
modulo s.

Proof. It is clear that sa is the smallest positive integer such that a ≡ aqsa mod s,
i.e, sa is the smallest positive integer such that s/ gcd(s, a) divides qsa −1. Since
s/ gcd(s, a) also divides qe − 1, we have e ≡ 0 mod sa by applying the long
division.

Now for each Sa, we form sa polynomials in the following way. Let α1, . . . , αsa
be an Fq-basis of Fqsa (note that Fqsa is a subfield of Fqe). Define the polynomials

fa,j(X) :=

sa−1∑
i=0

(αjX
a)
qi

(2)

for j = 1, 2, . . . , sa.

Lemma 9. For every a ∈ Zs, we have the following facts.

(i) The polynomials fa,j(X) for j = 1, 2, . . . , sa are linearly independent over
Fq.

(ii) fa,j(β) belongs to Fq for all β ∈ Fqe .

Proof. The first statement is clear since the coefficients of Xa in fa,j(X) are
αj and α1, α2, . . . , αsa form an Fq-basis of Fqsa . To prove (ii), it is sufficient to
prove that (fa,j(β))q = fa,j(β) for every β ∈ Fqe . Consider

(fa,j(β))q =

(
sa−1∑
i=0

(αjβ
a)
qi

)q
=

sa−1∑
i=0

(αjβ
a)
qi+1

=

sa−1∑
i=1

(αjβ
a)
qi

+ αq
sa

j βaq
sa

=

sa−1∑
i=1

(αjβ
a)
qi

+ αjβ
a = fa,j(β).

This completes the proof.

Lemma 10. The following properties hold.

(i) The set {fai,j(X) : j = 1, 2, . . . , sai , i = 1, 2, . . . , t} is linearly independent
over Fq.

(ii) Let V be the Fq-span of the set {fai,j(X) : j = 1, 2, . . . , sai , i = 1, 2, . . . , t}.
Then the map

π : V → Fsq; f(X) 7→ ((f(α))α∈F∗
qe

(3)

is an Fq-isomorphism.



Proof. (i) The degrees of fai1 ,j1(X) and fai2 ,j2(X) are distinct for any i1 6= i2.
Thus, the desired result follows from Lemma 9(ii).

Since both V and Fsq have the same dimension, it is sufficient to prove that
π is injective. This is clear since all polynomials in V has degree at most s− 1.

Choose an element α of Fqe of order s = qe − 1. Let m(i)(X) ∈ Fq[X]
denote the minimal polynomial of αi with respect to Fq. For 1 ≤ d ≤ s, con-
sider the BCH code B of length s = qe − 1 with the generator polynomial
l.c.m{m(1)(X),m(2)(X), . . . ,m(d−1)(X)}. Then the minimum distance of B is
at least d.

Lemma 11. With notations defined above, we have B = π(Vn−d), where Vn−d
is the Fq-span of the set {fai,j(X) : deg(fai,j(X)) ≤ n− d}.

Proof. It is clear that f(X) =
∑s−1
i=0 fiX

i ∈ Fq[X]/(Xs − 1) belongs to B if
and only if f(αi) = 0 for i = 1, 2, . . . , d − 2. This means that (f0, f1, . . . , fs−1)
belongs to the dual code of the following code

{(a(1), a(α), . . . , a(αs−1)) : a(X) ∈ Fq[X]; 1 ≤ deg(a(X)) ≤ d− 1}.

On the other hand, the dual of the above code is in fact the generalized Reed-
Solomon code

GRS(s− d) := {(a(1), a(α), . . . , a(αs−1)) : a(X) ∈ Fq[X]; deg(a(X)) ≤ s− d}.

This means that B = Fsq ∩GRS(s− d). The desired result follows from Lemma
10(ii).


